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High Order Coherence Functions and
Spectral Distributions as Given by
the Scully-Lamb Quantum Theory of
the Laser
Tao Peng 1, Xingchen Zhao 1, Yanhua Shih 2 and Marlan O. Scully 1,3,4*

1 Texas A&M University, College Station, TX, United States, 2University of Maryland, Baltimore County, Baltimore, MD,

United States, 3Baylor University, Waco, TX, United States, 4 Princeton University, Princeton, NJ, United States

We propose and demonstrate a method for measuring the time evolution of the off-

diagonal elements ρn,n+k (t) of the reduced density matrix obtained from the quantum

theory of the laser. The decay rates of the off-diagonal matrix element ρn,n+k (t) (k = 2,3)

are measured for the first time and compared with that of ρn,n+1(t), which corresponds to

the linewidth of the laser. The experimental results agree with the Scully-Lamb quantum

theory of the laser.

Keywords: high order coherence, quantum theory of the laser, spectral line distribution, density matrix, heterodyne

detection

1. INTRODUCTION

Quantum coherence effects in molecular physics are largely based on the existence of the laser [1].
Indeed, in most of our experiments and calculations we take the laser to be an ideal monochromatic
light source. If the laser linewidth is important then we usually just include a “phase diffusion”
linewidth into the logic. But what if we are thinking about higher order correlation effects in
an ensemble of coherently driven molecules. For example, photon correlation and light beating
spectroscopy involving Glauber second order correlation functions [2, 3]. Furthermore, third and
higher order photon correlations of the laser used to drive our molecular system can be important.
The investigation of higher order quantum laser noise is the focus of the present paper.

Fifty years ago the Scully-Lamb (SL) quantum theory of the laser (QTL) was developed using a
density matrix formalism [4]. In the interesting threshold region [5, 6] the steady state laser photon
statistics is given by the diagonal elements of the laser density matrix as

ρn,n = N

n
∏

m=0

[α − βm]/γ , (1)

where α is the linear gain, β is the non-linear saturation coefficient, γ is the cavity loss rate, andN

is the normalization constant:

N
−1 =

∑

n

n
∏

m=0

[α − βm]/γ . (2)

Equation (1) is plotted in Figure 1 where it is compared with a coherent state.
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FIGURE 1 | Steady state photon distribution function for coherent (orange

dashed line) and laser radiation (blue solid line). The laser is taken to be 20

percent above threshold, 〈n〉 = 200.

TABLE 1 | Parameters in laser and BEC systems.

Laser BEC

α Linear stimulated emission gain Rate of cooling due to interaction with

walls times the number of atom N

β Non-linear saturation due to the

reabsorption of photons

generated by stimulated

emission

Non-linearity parameter due to the

constraint that there are N atoms in

the BEC: numerically equal to α/N.

γ Loss rate due to photons

absorbed in cavity mirrors etc.

Loss rate due to photon absorption

from the thermal bath (walls) equal to

α(T/Tc)
3.

The formalism developed in the QTL density matrix analysis
has since been successfully applied to many other physical
systems such as the single-atom maser(aka the micromaser) [7],
the Bose-Einstein condensate (aka the atom laser, seeTable 1) [8],
pion physics [9], etc. Other applications of the formalism have
been developed recently and more will likely emerge. Thus, we
are motivated to deeper our understanding of the QTL by further
analyzing and experimentally verifying the time dependence of

off-diagonal elements ρn,n+k(t) ≡ ρ
(k)
n (t). The diagonal elements

of the laser density matrix for which k = 0, have been well-

studied. Not as for the off-diagonal elements. In particular ρ
(1)
n (t)

yields the Schawlow-Townes laser linewidth. But what about the
higher order correlations k = 2, 3 · · · ? That is the focus of the
current paper.

2. THEORY AND EXPERIMENT

The off-diagonal elements vanish at steady state, regressing to
zero as [4]

ρ(k)
n (t) = ρ(k)

n (0)exp(−k2Dt) (3)

where D = γ /n̄ is the Schawlow-Townes phase diffusion
linewidth and n̄ = (α − γ )/β . The expectation value of the laser

FIGURE 2 | Experimental setup used in measuring the spectrum of the beat

note between lasers 1 and 2. The beat note signal is measured by the detector

(D1) and analyzed by the spectrum analyzer(SA). BS, non-polarizing

beamsplitter.

amplitude operator is given by

〈Ê(z, t)〉 = E0e
iκz

∑

n

ρ(1)
n (0)

√
n+ 1e−Dte−iνt , (4)

where ν is the center frequency of the laser field and the electric
field per photon is given by E0 =

√

h̄ν/ǫ0V , where ǫ0 is the
permittivity of free space and V is the laser cavity volume.

As is discussed in the following, the second order off-diagonal
elements are given by the field operator averages

〈Ê(z, t)Ê(z, t)〉 = E
2
0e

i2κz
∑

n

ρ(2)
n (0)

√

(n+ 1)(n+ 2)e−4Dte−i2νt ,

(5)

and the third order off-diagonal elements are given by

〈Ê(z, t)Ê(z, t)Ê(z, t)〉
= E

3
0e

i3κz
∑

n

ρ(3)
n (0)

√

(n+ 1)(n+ 2)(n+ 3)e−9Dte−i3νt . (6)

Equation (4) gives the time evolution associated with the first

order off-diagonal elements ρ
(1)
n , yielding the spectral profile of

the laser. The heterodyne method is usually adapted to measure
the linewidth of the laser [10, 11], in which case the center
frequency is shifted from optical frequency to the radio frequency
range. A natural way to measure the laser linewidth is to beat two
almost identical but uncorrelated lasers [12] such that the beat
frequency between the lasers is in the MHz range. The result, as
seen from Equation (10), is twice of the laser linewidth when the
two independent lasers are nearly identical.

Many experiments have been carried out to determine the
linewidth [10] and photon statistics [13] of the laser. Other
experiments have measured the intensity correlation of the
laser at threshold [14], revealing the influence of the intensity
fluctuation on the laser spectrum. However, to the best of our
knowledge, nomeasurements have beenmade of the higher order
phase correlations (k ≥ 2). Here we measure the second and
third correlation of the heterodyne signals from two independent
lasers, which yields the second and third order time evolution of
a laser above threshold. Specifically, we performed the following

Frontiers in Physics | www.frontiersin.org 2 April 2021 | Volume 9 | Article 6573336

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Peng et al. High Order Coherence by the QTL

FIGURE 3 | Schematic setup for measuring higher order spectral line distribution up to 3rd order. Laser 1 and 2 : He-Ne lasers; P, polarizer; F, filter; A, analyzer; BS,

non-polarizing beamsplitter; Mixer, frequency mixer; D1, D2, and D3, photodiode detectors.

experiments: the first set of experiments is tomeasure the spectral
profile of the laser beat note, i.e., allows us to measure the decay
rate as shown in Equation (4). The other two sets of experiments
determine the spectral profile of the second and third order
correlated beat notes, this allows us to measure the decay rate as
shown in Equations (5) and (6).

Figure 2 illustrates the setup of the first set of experiments.
This is a typical heterodyne detection setup, the center frequency
between the two He-Ne lasers is in the MHz range. This
difference allows us to analyze the beat signal around a non-
zero value hence the full shape of the linewidth is obtained
unambiguously. A non-polarizing beamsplitter (BS) is used to
mix the two laser beams. The beat signal is then directed to the
photodiode (D1) after the BS. A fast Fourier transform (FFT) of
the signal is performed by the spectrum analyzer (SA) giving the
frequency spectrum of the beat note.

For the first set of experiments, the first order coherence
function [3, 4] is

G(1)(t) = Tr{ρ[(Ê†
1(t)+ Ê†

2(t))(Ê1(t)+ Ê2(t))]}
= Tr{(ρ1 ⊗ ρ2)[|Ê1(t)|2 + |Ê2(t)|2 + Ê†

1(t)Ê2(t)+ c.c.}
= E

2
1Tr[ρ1â

†
1(t)â1(t)]+ E

2
2Tr[ρ2â

†
2(t)â2(t)]

+ E1E2{Tr[(ρ1 ⊗ ρ2)â
†
1(t)â2(t)]e

i(ν2−ν1)t + c.c.]}, (7)

where ρ = ρ1 ⊗ ρ2 is the density operator of the system, ρ1
and ρ2 represent the density operators of laser 1 and 2, ν1 and ν2
represent the center frequencies of the lasers 1 and 2, respectively.

From the above equation, we can see the only terms that carry
the beat note frequency are

Ŵ(1)(t) = E1E2Tr[(ρ1 ⊗ ρ2)â
†
1(t)â2(t)]e

iν0t , (8)

with its complex conjugate which contributes to the −ν0
frequency component, where ν0 ≡ ν2 − ν1. Under the
condition that the two lasers are independent, we can rewrite
Equation (8) as

Ŵ(1)(ν0, t) = E1

∑

n1

√
n1 + 1ρ(1)

n1
(0)e−D1te−iν1t

×E2

∑

n2

√
n2ρ

(−1)
n2

(0)e−D2teiν2t . (9)

Taking the Fourier transform, we have a Lorentzian spectrum
centered at the beat frequency ν0 with a width D′ = D1 + D2,
which is essentially twice the width of one laser

Sν0 (ω) ∝
D′

(ω − ν0)2 + (D′)2
. (10)

The second and third experiments measure the spectral profile of
the second and third order correlation of beat notes, the setup is
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FIGURE 4 | Experimental results from the two sets of measurements. The bandwidths of the detectors are 50 MHz, the resolution bandwidth of the SA is 10 kHZ. The

black dots are experimental data and the red curves are theory. (A) is the beat signals from D1, where the FWHM is 107.9 kHz with average 50 times. Theory is the

Fourier transform of the laser fields time evolution (e−D
′ t ) associated with frequency ν0, as shown in Equation (10); (B) is correlated signal from D1 and D2, where the

FWHM bandwidth is 420.6 kHz with average 50 times. Theory is the Fourier transform of the correlated laser fields time evolution (e−4D′ t ) associated with frequency

2ν0, as shown in Equation (13). (C) is correlated signal from D1, D2, and D3, where the FWHM is 963.3 kHz with average 50 times. Theory is the Fourier transform of

the correlated laser fields time evolution (e−9D′ t ) associated with frequency 3ν0, as shown in Equation (16).

shown in Figure 3. We used the same two lasers to create the beat
signal, where three detectors Di(i = 1, 2, 3) are used. The outputs
from the photodiodes are used as inputs for a frequency mixer.
The output from the mixer is then sent to the spectrum analyzer
and the frequency spectrum of the correlated signal is obtained
after the FFT. As shown in Figure 3, this set of experiments
measures the laser field correlation that is governed by the time
evolution of the second and third order off-diagonal elements

ρ
(2)
n (t) and ρ

(3)
n (t), respectively. The quantity we now measure

is determined by the correlation of the heterodyne signals from
detectors as in Figure 3. We have the signal of interest at
frequency 2ν0 from the second order coherence function is

Ŵ(2)(t) = E
2
1E

2
2Tr(ρ1 ⊗ ρ2)â

†
1(t)â

†
1(t)â2(t)â2(t)e

i2ν0t . (11)

The correlated heterodyne signal is

Ŵ(2)(2ν0, t) = E
2
1

∑

n1

ρ(2)
n1

(0)
√

(n1 + 2)(n1 + 1)e−4D1te−i2ν1t

× E
2
2

∑

n2

ρ(−2)
n2

(0)
√

(n2 − 1)n2e
−4D2tei2ν2t .

(12)

Taking the Fourier transform, we get a Lorentzian spectral profile
centered at 2ν0 with a width of 4D′

S2ν0 (ω) ∝
4D′

(ω − 2ν0)2 + (4D′)2
. (13)

similarly, the signal of interest at frequency 3ν0 from the third
order coherence function is

Ŵ(3)(t) = E
3
1E

3
2Tr(ρ1 ⊗ ρ2)â

†
1(t)â

†
1(t)â

†
1(t)â2(t)â2(t)â2(t)e

i3ν0t .
(14)

The correlated heterodyne signal is

Ŵ(3)(3ν0, t) = E
3
1

∑

n1

ρ(3)
n1

(0)
√

(n1 + 3)(n1+ 2)(n1+ 1)e−9D1te−i3ν1t

× E
3
2

∑

n2

ρ(−3)
n2

(0)
√

(n2 − 2)(n2 − 1)n2e
−9D2tei3ν2t .

(15)

We therefore get a Lorentzian spectral profile centered at 3ν0 with
a width of 9D′

S3ν0 (ω) ∝
9D′

(ω − 3ν0)2 + (9D′)2
. (16)

The main experimental results are shown in Figure 4. All
measurements were taken with the laser operating at the same
average output power level. The resolution bandwidth (RBW)
of the SA is 10 kHz, video bandwidth (VBW) is 30 kHz in all
the measurements. For the sake of simplicity, the Full width at
half maximum (FWHM) linewidth is taken at the -3 dB width
of the measured spectrum by considering only the Lorentzian
fitting [12]. Figure 4A represents the data of the first set of
experiments with an average of 50 measurements of beat note
signal from D1. The theoretical fitting in the red solid line is
based on Equation (10), and the FWHM is 107.9 kHz. Figure 4B
represents the data of the second set of experiments with 50
measurements of correlated beat note signals from D1 and
D2. The theoretical fitting in the red solid line is based on
Equation (13), and the FWHM is estimated to be 420.6 kHz.
Figure 4C represents the data of the third order experiments
with 50 measurements from all three detectors. The theoretical
fitting in the red solid line is based on Equation (16), and
the FWHM is estimated to be 963.3 kHz. First of all, we see
that the obtained linewidth from the second order correlation
spectrum is essentially 4 times wider than that of the single
beat note linewidth, as well as the third order spectrum is 9
times wider than that of the single beat note linewidth, validating
our theoretical expectation. Secondly, we see that the theoretical
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curves fit the data well in the center peak, but not as good at the
tails. This is mainly due to the influences from other noises that
also contribute to the spectral profile. For the same reason, we
see that the single beat note signal can be better fitted than the
second and third order correlation signals. There are some small
peaks in the higher order measurements, due to our remeasured
higher order spectral signal is close to the noise level of the
detection system. Ideally, more averaging (≫50) should be able
to smooth out these peaks. However, we note here that, there is a
trade-off between time averaging and the accurate measurement
of the center beat note frequency, due to the drifting of center
frequencies of the two lasers. Further using an intense local
oscillator and sensitive detection system (detector and spectral
analyzer) should be able to solve this issue. Nevertheless, our data
confirms the Lorentizan spectral profile of the signal and the time
evolution described by Equation (3), in the case of k = 1, k = 2,
and k = 3.

3. CONCLUSION

In conclusion, we have studied the time evolution of the higher
degrees of off-diagonality obtained SL theory of the laser. We
particularly measured the bandwidth of the laser beat note
and the bandwidth of the correlated laser beat note, which
reveal the evolution of the first, second, and third order off-
diagonal elements of the laser density operator. The higher order
spectra reveal the influence of the randomness in the phase
of the laser field due to quantum fluctuation. Experimental
results agreed with the SL QTL showing that the bandwidth

of the third order and second order spectral profile are nine
times and four times wider than that of the first order spectral
profile, respectively.
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Direct Optimal Control Approach to
Laser-Driven Quantum Particle
Dynamics
A. R. Ramos Ramos and O. Kühn*

Institut für Physik, Universität Rostock, Rostock, Germany

Optimal control theory is usually formulated as an indirect method requiring the solution of
a two-point boundary value problem. Practically, the solution is obtained by iterative
forward and backward propagation of quantum wavepackets. Here, we propose direct
optimal control as a robust and flexible alternative. It is based on a discretization of the
dynamical equations resulting in a nonlinear optimization problem. The method is
illustrated for the case of laser-driven wavepacket dynamics in a bistable potential. The
wavepacket is parameterized in terms of a single Gaussian function and field optimization
is performed for a wide range of particle masses and lengths of the control interval. Using
the optimized field in a full quantum propagation still yields reasonable control yields for
most of the considered cases. Analysis of the deviations leads to conditions which have to
be fulfilled to make the semiclassical single Gaussian approximation meaningful for field
optimization.

Keywords: optimal control, quantum dynamics, semiclassical dynamics, Gaussian wavepackets, proton transfer

1 INTRODUCTION

“Teaching lasers to control molecules” has been a long-standing goal in molecular physics [1].
Among the various methods of the early days [1–5], optical control theory (OCT) emerged as a
versatile tool. Originally developed by Rabitz et al. [6, 7] and Kosloff et al. [8], numerous
methodological extensions have been developed over the years (for reviews, see e.g., [9–12]). In
terms of practical realizations of chemical reaction control, the feedback strategy [1, 13, 14] as well as
straightforward resonant excitation schemes [15–17] have been most successful.

In quantum optimal control theory the goal of optimizing the expectation value of a target
operator such as a projector onto a certain state, is formulated as a variational problem for a cost
functional subject to certain constraints. The latter includes, for instance, some penalty for high field
intensities or that the wavepacket should fulfill the Schrödinger equation. This control problem is
usually solved using an indirect approach, i.e., the cost functional is not minimized directly. Instead,
the stationarity condition for the cost functional is converted to a two-point boundary problem for
two coupled Schrödinger equations. A numerical solution is obtained by iterative forward and
backward propagation of the actual wavepacket and an auxiliary wavepacket, respectively (e.g., [18]).
This procedure is sometimes referred to as the optimize and then discretize paradigm [19]. Indirect
methods for optimal control are in use in other areas of physics, e.g., stochastic control [20], but also
in engineering and biology [21].

Direct optimal control, in contrast, follows the discretize and then optimize paradigm, i.e. the cost
functional is minimized directly using methods from nonlinear optimization. Although being
popular, for instance, in applied mathematics [22], engineering [23], and biology [21], there
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have been no applications to quantummolecular dynamics so far.
The present paper is devoted to fill this gap.

Indirect optimal control requires to solve iteratively two time-
dependent Schrödinger equations where the numerical effort
scales exponentially with the number of degrees of freedom.
To cope with this situation the Multi-Configurational Time-
Dependent Hartree (MCTDH) approach is most suited [24,
25]. An OCT implementation has been reported in Ref. [26],
for an application see also Ref. [27]. The solution of the time-
dependent Schrödinger equation requires a priori knowledge of
the potential energy surface. But, when driving the wavepacket
into a particular region of configuration space using laser control,
a global potential might not be needed. Thus on-the-fly
approaches, e.g., in the context of MCTDH [28, 29] could be
of advantage. On the other hand, semiclassical approximations in
terms of Gaussian wavepackets play a prominent role in
molecular quantum dynamics [30] and indeed there has been
a semiclassical formulation of indirect OCT reported in Refs. [31,
32] (for related work using Wigner space sampling, see Ref. [33]).

In this paper we explore direct OCT using a representation of
the wavepacket dynamics in terms of a single Gaussian function.
Although this choice has been made for numerical convenience, it
also facilitates exploration of its limitations by comparison with
solutions of the time-dependent Schrödinger equation. Specifically,
for the considered problem of quantum particle motion in a
bistable potential we are able to identify conditions for which
the single Gaussian approximation is adequate.

2 THEORETICAL METHODS

2.1 Equations of Motion
The equations for the time evolution of a quantum mechanical
state can be obtained from the time-dependent variational
principle starting with the stationarity condition for the action
S, i.e. [34].

δS � δ∫t2

t1

L(Ψ,Ψ*)dt� 0 , (1)

where the quantum Lagrangian is given by (Note that atomic
units are used throughout)

L � 〈Ψ
∣∣∣∣∣∣∣i zzt −H(t)

∣∣∣∣∣∣∣Ψ〉 . (2)

In the following we will focus on one-dimensional systems
(coordinate x and momentum p) coupled to a radiation field,
E(t), in dipole approximation (dipole operator μ(x)). Thus
the Hamiltonian operator in the coordinate representation is
given by

H(t) � H0 +Hf(t) � − 1
2m

d2

dx2
+ V(x) − μ(x)E(t) . (3)

Equation 1 yields the condition [34].

Re[〈δΨ
∣∣∣∣∣∣∣i zzt−H(t)

∣∣∣∣∣∣∣Ψ〉] � 0 . (4)

Assuming that the time-dependence of the wavepacket is
implicitly parameterized by the set of time-dependent real
parameters a(t) � {a1(t), . . . , an(t)}, this yields

δΨ � ∑n
j�1
(zΨ
zaj

)δaj . (5)

Inserting Eq. 5 into Eq. 4 gives the equations of motion for the
general set of parameters used to describe the wavepacket

_ai � −∑n
j�1

Kij Re〈zΨ
zaj

∣∣∣∣∣∣∣∣HΨ〉 ∀i � 1, . . . , n , (6)

with Kij being the elements of the inverse of the matrix formed by
Im〈zΨ/zai

∣∣∣∣zΨ/zaj〉.
In order to connect to on-the-fly approaches and to reduce

the number of differential equations of motion (and thus the
computational cost) we assume that the wavepacket has the
following Gaussian form [30] at all times

Ψ(x, α, β, x0, p0) � (2α
π
)1/4

exp[ − (α + iβ)(x − x0)2

+ ip0(x − x0)] (7)

where α and β describe the width and tilt of the phase space
Gaussian. Further, x0 and p0 are the average position and
momentum, respectively. Hence, we identify a(t) �
{α(t), β(t), x0(t), p0(t)} and using Eq. 6 gives the following set
of coupled differential equations

_α � 4αβ
m

, (8)

_β � −2(α2 − β2)
m

− 4α2 z

zα
U(t) , (9)

_x0 � p0
m

, (10)

_p0 � − z

zx0
U(t) (11)

subject to some initial conditions at time t0. Here, we defined the
time-dependent expectation value of the potential

U(t) � 〈Ψ(t)∣∣∣∣V(x) − μ(x)E(t)∣∣∣∣Ψ(t)〉 (12)

In the next section we will focus on the control problem
assuming that these equations of motion can be solved, which
implies that the expectation value of the potential and its
derivatives are available.

2.2 Statement of the Control Problem
Let us start with a brief summary of optimal control theory [9, 10,
35]. Given a functional of the form

J [a, u, k] � T [a(tf), k, tf] + ∫  tf

t0

R[a(t), u(t), k, t] dt . (13)

where T and R are the terminal and running cost, respectively,
the task is to find the state trajectory a(t), external control u(t)
(where the time t ∈ [t0, tf ]) and the set of static parameters k that
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minimize the functional J [a, u, k]. The minimization is
performed subject to the following differential constraints

_a(t) � f [a(t), u(t), k, t] , t ∈ [t0, tf ]. (14)

Further, there can be path constraints

hL ≤ h[a(t), u(t), k, t]≤ hU , (15)

and event constraints such as

eL ≤ e[F[a(t), u(t)], k, t0, tf ]≤ eU . (16)

Here, the subscript L and and U denotes the lower and upper
boundary, respectively, defining the constraints. Notice that in
contrast to path constraints, event constraints are not time-
dependent, but could include a functional, F, of, e.g., the state
trajectory or the external control (see below).

Next, we specify this general control problem to the model
introduced in Section 2.1. The state is characterized by the set
a(t) � {α(t), β(t), x0(t), p0(t)} and the external control is given
by the laser field u(t) � E(t). Additional time-independent
parameters, k, will not be used. The differential constraints
(14) are given by Eqs. 8–11.

The goal of the optimization can be stated as follows. Given
some initial quantum state |Ψ(t0)〉, parameterized by
ai � {αi, βi, xi0, pi0}, find a laser field E(t) such that the overlap
is maximized between the time-evolved final state at t � tf ,∣∣∣∣∣Ψ(tf )〉, and some target state

∣∣∣∣Φt〉. Thus, the terminal cost in
Eq. 13 is given by (notice the minus sign because the terminal cost
will be minimized and we want to maximize the overlap)

T (a(tf), tf) � −
∣∣∣∣∣〈Ψ(tf)∣∣∣∣∣Φt〉∣∣∣∣∣2 (17)

Here, for simplicity we will use the parametrization of Eq. 7 for
the target state as well, labeling the target parameters as at �
{αt, βt, xt0, pt0}.

The running cost will be chosen as follows

R[E(t), t] � κ
[E(t)]2
s(t) , s(t) � sin2(π

tf
t) + ϵ . (18)

Besides the field intensity we have included a factor κ scaling
the penalty for high field strengths as well as a shape function s(t),
which ensures that the field increases(decreases) slowly when
turned on(off) [36]. Note that ϵ is a small parameter introduced to
avoid division by zero and numerical problems at times t � 0 and
t � tf . Throughout the text we have used ϵ � 0.005.

For the application presented below we don’t use any path
constraints, but event constraints. Given the event

e[F[E(t)], a(t0)] �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(t0)
β(t0)
x0(t0)
p0(t0)

∫  tf

t0

E(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (19)

upper and lower bounds will be chosen equal as follows

eL � eU �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αi

βi

xi0
pi0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (20)

Hence, the parameters of the initial state are fixed and not
subject to optimization. Further, we enforce the zero-net-force
condition by demanding that F[E(t)] � ∫ tf

t0
E(t)dt � 0 [37].

The optimization problem will be solved using a direct
method, i.e. by means of discretization of the differential
equations. Details will be specified in the next section.

2.3 Model System and Computational
Details
The direct optimal control approach will be applied to the
problem of particle dynamics in a bistable potential. This
could represent, for instance, proton or hydrogen atom
transfer in a tautomerization reaction [38, 39]. The following
potential will be used

V(x) � VB(( x
xB
)2

− 1)2

. (21)

Here, xB is the distance between the minimum of the potential
and the top of the barrier, and VB is the barrier height.

The system-field interaction is treated in semiclassical
approximation, taking the polarization of the field in the same
direction as the dipole, and assuming a linear model for the latter
(q is the charge)

μ(x) � qx . (22)

Specific parameters for the numerical simulations have been
chosen to mimic typical situations in proton transfer reactions
[38, 39], i.e. xB � 2a0 ( ≈ 1.06 Å), VB � 0.01Eh ( ≈ 6.3 kcal/mol),
and q � 1 (� 1e). The particle’s mass, m, will be used to tune the
‘quantumness’ of the dynamics. Exemplary, we show potential
and eigenstates for two choices of the masses in Figure 1.
Comparing the two cases we note that in particular the
number of eigenstates below the barrier is 8 and 16 for masses
of 1mH and 5mH respectively (where mH is the hydrogen mass).

Using Eqs. 21, 22 together with Eq. 7 one can calculate the
time-dependent expectation value of the potential, Eq. 12, and its
derivatives with respect to α and x0 required for the equations of
motion (Eqs. 9, 11). Although in the present case the required
expectation value could have been calculated analytically, we have
used a more general prescription. To this end the potential is
globally approximated by a sum of Gaussians of the form

V(x) ≈ ∑g
p�1

gpe
−bp(x−xp)2 . (23)

We have used g � 5 which gives gp �
{31.000,−1.529,−1.529, 31.000, 1.348} (in units of VB),
bp � {1.397, 1.658, 1.658, 1.397, 0.} (in units of x−2B ),
and xp � { − 2.981,−1.142, 1.142, 2.981, 0.} (in units of xB).
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Using Eq. 23 one obtains for Eq. 12

U(t) � ∑5
p�1

gpe
−Bp( 2α(t)

2α(t) + bp
)1/2

− qx0(t)E(t) , (24)

z

zα
U(t) � ∑5

p�1
Dp

⎛⎝ 1

4α(t)2 −
bp

α(t)(2α(t) + bp)(x0(t) − xp)2⎞⎠ ,

(25)

z

zx0
U(t) � −2∑5

p�1
Dp(x0(t) − xp) − qE(t) , (26)

where

Bp � 2α(t)bp
2α(t) + bp

(x0(t) − xp)2 (27)

and

Dp � gpbpe
−Bp( 2α(t)

2α(t) + bp
)3/2 .

(28)

For the solution of the control problem the software package
PSOPT has been used [40]. This package employs an
approximation for the state trajectory of the form

a(t) ≈ aN(t) � ∑N
k�0

a(tk)Lk(t) , (29)

where tk are the Gauss-Lobatto quadrature nodes (a(tk) �
aN(tk)) and Lk are the Lagrange basis polynomials. This
approximation allows to transform the performance functional
(Eq. 13) into the performance function

G(y) � T [a(tf ), k, tf ] +∑N
k�0

R[aN(tk), uN(tk), k, tk]wk , (30)

and the differential constraints into a set of holonomic
constraints for the decision vector
y � (u(t0), . . . , u(tN), a(t0), . . . , a(tN ), k, t0, tf ); wk are the
Gauss-Lobatto weights. For more details see Ref. [40]. The
performance function (30) is optimized using nonlinear
programming (NLP) algorithms, such as the ones
implemented in IPOPT [41]. PSOPT provides different

discretization schemes. The global pseudospectral Legendre
and Chebyshev discretization yield very slow convergence for
non-smooth functions [19], as it is the case for the solutions
found for α(t) and β(t) (see first and second row, (b) and (d)
columns of Figure 2 below). Increasing the number of nodes is
not an option for these discretization schemes because of the non-
sparsity of the Jacobian matrices which cannot be handled
properly by the implemented IPOPT NLP solver. This issue
translates into a disproportional increase of computational
time. The local methods available are trapezoidal and
Hermite-Simpson discretization. In order to check their
performance we simulated the case of a particle of mass of
1mH and a final time of tf � 20, 000 au. In doing so the
number of time discretization nodes has been scanned from
200 to 6,000. To evaluate the discretization error we use the
maximum relative local error, εdisc, defined in Ref. [40]. The
results are shown in Figure 3. If the number of nodes is below
1,000 the trapezoidal method has a smaller error εdisc compared to
Hermite-Simpson for the same number of nodes. Beyond 1,000
nodes, Hermite-Simpson outperforms the trapezoidal
discretization. However, this comes at the expense of an
increased computational time as can be seen in the lower
panel of Figure 3. For the simulations reported below we have
used Hermite-Simpson discretization with 2,000 nodes, which
offers a good balance between accuracy and speed.

In order to quantify the importance of quantum effects beyond
the simple Gaussian ansatz for the wavepacket, Eq. 7, MCTDH
simulations have been performed using the optimized field. For
this purpose the Heidelberg MCTDH package has been used [42].

3 RESULTS

3.1 Laser-Controlled Proton Transfer
In the following we present a proof-of-principle application of
direct OCT using the example of proton transfer in a bistable
potential. Specifically, the two cases (particle masses) given in
Figure 1 will be considered. For the initial state we choose the
parameters of a Gaussian in the left well, and as the target state we
choose a symmetrically located Gaussian in the right side well.
The Gaussian parameters have been optimized to the ground
state using a local harmonic approximation. Although direct

FIGURE 1 | Eigenstates for a particle of mass (A) 1mH and (B) 5mH in the potential given by Eq. 21 with xB � 2a0 and VB � 0.01Eh. Solid and dashed lines
correspond to even and odd eigenstates, respectively.
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control in principle allows to vary the final time, in the present
application the final time has been fixed to tf � 20, 000 au. The
penalty factor has been chosen as κ � 0.3 a20/Eh (cf. Eq. 18). To
solve the problem we also have to provide an initial guess for
states and control which is shown in Figures 2A,C. The rapid
oscillations have been chosen randomly; there is no correlation
between the different variables.

The optimal solutions for the two particle masses are
given in Figures 2B,D. Apparently, the optimal field is able
to drive the center of the wavepacket across the barrier into
the right minimum at t � tf . In this respect one should note
that the optimal fields have a relatively simple shape and
little resemblance with the initial guess. This is one of the
major advantages of the direct approach to optimal control
problems, i.e. the convergence region of the initial guess is
very broad. The dynamics is rather similar, i.e., in both cases
the trajectory passes the barrier coming from the turning
point at the left hand side. Just before and after the barrier
the wavepacket gets localized in coordinate and delocalized
in momentum space, whereas the position-momentum

correlation (β) vanishes. The wavepacket passes the top of
the barrier with large momentum.

The question now arises if the optimum field found for a single
Gaussian wavepacket is able to trigger the same particle dynamics
in the full quantum case. To this end the optimal field is used
within a quantum dynamics simulation. The results are compared
in Figure 4 in terms of coordinate and momentum expectation
values and the respective standard deviation. Until after the
barrier crossing, Gaussian and full quantum results are rather
similar. Indeed, if the goal would have been to trigger the
localization of the wavepacket somewhere in the region of the
right well at a particular time, the optimal field would still
perform this task also in the quantum case. Of course, the
agreement between classical and quantum propagation is
better in case of the heavier mass even though there is
considerable larger spread of the wavepacket in the quantum
case after reflection at the right turning point. For the lighter mass
the agreement after barrier crossing is less favorable due to the
larger spread and the structured character of the quantum
wavepacket which cannot be captured by a single Gaussian.

FIGURE 2 | Initial guess (A) and (C) and optimal solution (B) and (D) for state, a(t), and control field for two different particle masses (1mH – (A) and (B), 5mH –

(C) and (D)).
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3.2 Region of Validity of the Gaussian
Wavepacket Approximation
Single Gaussians cannot capture the dynamics of structured
wavepackets. Nevertheless, the agreement between Gaussian
and full quantum results is at least qualitative, even for the
lighter particle. This provides the motivation for the
investigation of the validity of the Gaussian approximation

over a wider range of parameters. Again the optimum field is
obtained following the procedure described in Section 3.1, but
now for different final times (ranging from 5, 000 au to 20, 000 au
in steps of 1, 000 au) and masses (ranging from 1 to 10 mH in
steps of 1mH). To evaluate the performance of the optimum field
to drive the wavepacket to the right well in the full quantum case
we choose the following error:

Err �
∣∣∣∣∣xt0 − 〈~Ψ(tf )|x|~Ψ(tf )〉∣∣∣∣∣

xB
, (31)

where ~Ψ(tf ) is the exact quantum wavefunction at the final time.
This error will be between 0 and 1 if the expectation value of the
quantum wavepacket crossed the barrier and greater than 1 if it
did not. Results are shown in Figure 5.

FIGURE 3 | Maximum relative local error (upper panel) and timing
(lower panel) for trapezoidal (blue) and Hermite-Simpson (orange) as a
function of the number of nodes.

FIGURE 4 | Comparison of the coordinate (top row) and momentum (bottom row) expectation values and their respective standard deviation (shaded area),
using the Gaussian approximation (blue) and the full quantum propagation (orange). Both trajectories are propagated under the influence of the optimal control field as
obtained for the Gaussian (A) 1mH (B) 5mH).

FIGURE 5 | Error according to Eq. 31 as a function of different final times
and masses. Green lines represent an odd number of half harmonic oscillation
periods for the corresponding mass (2n + 1)T/2 with n � 1, 2, 3 and red lines
represent an integer number of periods nT with n � 2, 3.
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In general, we can see from Figure 5 that the Gaussian optimal
control fields are able to drive the particle reaction on a broad
range of masses and final times. As expected the performance
deteriorates for the lighter masses. There are some features which
deserve closer attention. For example, there are regions where
the Gaussian wavepacket approach works exceptionally well
(characterized by stripes of intense blue color). In these
regions the final time is matching a total integer number of
well oscillations plus the barrier crossing time. Assuming that
these oscillations are harmonic with period T and taking the
barrier crossing time as being half of the harmonic period, these
final times can be estimated. The middle green line in Figure 5
corresponds to a final time of 5T/2. It nicely matches with the
dark blue region where the approach works well. Thus, in general
one would expect regions with (2n + 1)T/2 and nT where the
approximation works well and not so well, respectively. This is
roughly seen in Figure 5, although the deviation from the
harmonic approximation causes some quantitative
disagreement. This analysis points to the importance of the
final time tf for the effect of the quantumness of the dynamics

on the overlap with the target. In passing we note that in principle
direct optimal control offers the possibility to optimize the final
time as well, e.g., to fulfill some constraints with respect to the
spread of the wavepacket.

Another interesting feature apparent from Figure 5 are the
isolated “islands” of poor performance, e.g. at tf � 14, 000 au and
m � 7mH. To rationalize this behavior Figure 6 shows various
expectation values for tf � 14, 000 au and m � 6 and 7mH. The
first and second row compares Gaussian and quantum results and
we can notice that the corresponding trajectories diverge
considerably more for 7mH (b) than for 6mH (a), even
though a naive consideration would suggest that the
performance of the single Gaussian approximation is better for
the more massive particle. In general we observe that while in the
good performing cases the wavepacket essentially stays localized,
the opposite is true for the poor performing cases, which stands
out as a likely reason for the discrepancy between Gaussian and
quantum propagation in the later case. This holds irrespective of
the actual mass of the particle. From the second and fourth rows
of Figure 6 we notice that the cases m � 6 and 7mH differ in the
momentum and thus kinetic energy when crossing the barrier.
While in the former case the momentum is maximum at the
barrier top, in the latter the particle is slowed down when
reaching the barrier. As a consequence it becomes rather
delocalized in position space and thus the single Gaussian
approximation fails.

In principle one could expect that decreasing the penalty factor
κ would alleviate this problem, i.e. stronger fields would imply
higher momentum. However, after inspecting Figure 6, it is
apparent that for a given final time it depends on the initial
direction of momentum whether the wavepacket will pass
the barrier with high or low momentum. This idea supports
the conclusion that not only the mass of the particle, but also the
specific optimal path, are important for the validity of the single
Gaussian approximation. Controlling the initial direction in a
way which works in a black-box fashion for all cases covered in
Figure 5 has not been successfull. However, in contrast to indirect

FIGURE 6 | Expectation values of coordinate and momentum (shaded
areas indicate the standard deviation), optimal field, as well as total (Etot ),
potential (V) and kinetic (K) energy of the moving wave packet (rows from top
to bottom) for tf � 14, 000 au and (A) 6mH, (B) 7mH. In the bottom row
the expectation values are plotted at the respective positions of the Gaussian
wavepacket.

FIGURE 7 | Error according to Eq. 31 as a function of different final times
and masses. Running cost according to Eq. 32 has been used together with
Eq. 18. The penalty scaling factor was η � 0.003, except for a few cases
where lower or higher values has been used, ranging from 0.001 to
0.015.
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control, where one would have to compute running cost
derivatives with respect to state variables to get coupling terms
between forward and backward Schrödinger equation, including
additional running costs is straightforward in direct control. To
demonstrate this we have added a second term to the running
costs of Eq. 18, which serves to maximize the kinetic energy, i.e.

R′[p0(t), t] � −η p
2
0(t)
2m

. (32)

Here, η is a penalty scaling factor and the minus sign ensures
that this term gets maximized. It is expected that this will lead to
barrier crossing with high momentum and thus a reduced error,
Eq. 31.

The results shown in Figure 7 clearly support our hypothesis,
i.e. adding the running cost functional Eq. 32 leads to the
elimination of the poor-performing islands. Hence, using the
flexibility of the direct optimal control approach the region of
validity of the single Gaussian approximation could be extended.

4 CONCLUSION

In this paper we have introduced a new tool for quantum optimal
control. In contrast to indirect methods, which require the
solution of a two-point boundary value problem, the present
direct method builds on the first discretize and then optimize
paradigm. Thus, by construction there is no need for explicit
propagation of a wavepacket. So far direct methods have found
application mostly in engineering [23, 40]. The performance and
capabilities of the direct method have been demonstrated for the
case of one-dimensional particle transfer in a bistable potential.
For simplicity the wavepacket has been approximated by a single
Gaussian function, but in principle other forms are possible, e.g.,
superposition of Gaussians [28] or even expansions in terms of an
eigenstate basis. Of course, Gaussians have the potential
advantage of being suited for on-the-fly simulations, which
brings OCT into the realm of the dynamics of complex
molecular systems, at least in principle. At this point it will be

required to explore the scaling of the numerical effort associated
with the direct method more thouroughly. Here, we merely
explored the dependence on the number of nodes. But the
number of parameters will be another limiting factor.
Preliminary calculations performed on regular hardware
showed that about 50 parameters and 500 nodes are feasible.

For a simple test system the question has been addressed
whether the quantumness of the dynamics influences the final
control yield, given a field which has been optimized for the single
Gaussian approximation. Interestingly, it turned out that nearly
complete particle transfer can be achieved for a wide range of
masses and final times. Here, the important point is whether the
wavepacket crosses the barrier with high or low momentum,
which for the given model is decided by the sign of the
momentum during the initial dynamics. As a consequence,
even the optimization based on a simple Gaussian wavepacket,
possibly using on-the-fly dynamics, may provide reasonable
control fields.
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We investigate the control landscapes of closed n-level quantum systems beyond

the dipole approximation by including a polarizability term in the Hamiltonian. The

latter term is quadratic in the control field. Theoretical analysis of singular controls

is presented, which are candidates for producing landscape traps. The results for

considering the presence of singular controls are compared to their counterparts in the

dipole approximation (i.e., without polarizability). A numerical analysis of the existence

of traps in control landscapes for generating unitary transformations beyond the dipole

approximation is made upon including the polarizability term. An extensive exploration

of these control landscapes is achieved by creating many random Hamiltonians which

include terms linear and quadratic in a single control field. The discovered singular

controls are all found not to be local optima. This result extends a great body of recent

work on typical landscapes of quantum systemswhere the dipole approximation is made.

We further investigate the relationship between the magnitude of the polarizability and

the fluence of the control resulting from optimization. It is also shown that including a

polarizability term in an otherwise uncontrollable dipole coupled system removes traps

from the corresponding control landscape by restoring controllability. We numerically

assess the effect of a polarizability term on a known example of a particular three-level

3-system with a second order trap in its control landscape. It is found that the addition

of the polarizability removes the trap from the landscape. The general practical control

implications of these simulations are discussed.

Keywords: quantum control, dipole approximation, polarizability, landscape topology, singular control

1. INTRODUCTION

There is extensive interest in quantum control, and in quantum control landscapes, which arises
from the fundamental desire to manipulate quantum systems for both basic scientific reasons
and for technological applications [1–13]. The field has been driven by many experimental and
theoretical advances. Experimental domains extend from atoms and molecules including the
control of chemical reactions [14, 15], out to manipulating biological systems [16]. One area of
application for quantum control which has attracted interest is quantum information science [17–
19] as optimal control offers the promise of discovering fields to implement quantum gates with
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high fidelity and to minimize errors introduced by decoherence
and environmental noise. Typical desiderata in quantum control
include driving a system to a desired density matrix ρ,
maximizing the expectation value of an observable 〈O〉, and
driving a unitary propagator U(t) to a desired goal gate
W ∈ SU(n) (i.e., typical in quantum information science). In
the latter case, one often seeks a minimum time control for
maximizing the fidelity of the desired physical transformation
W in order to better ensure that a gate is implemented with
minimal decoherence induced by the environment. In some
cases of minimum time optimal control, the associated control
landscapes are known to have singular critical points [11, 20]
resulting from singular controls. Accordingly, we focus on the
unitary transformation fidelity landscape with a fixed end time
T well above the minimal time.

In this work, we study the landscapes with numerical
simulations, illustrated for the control of the quantum propagator
of closed quantum systems having n levels with a single control
field, thereby extending existing studies by moving beyond
the typical dipole approximation through the inclusion of a
polarizability term in the Hamiltonian [21, 22]. This extension
is motivated by the fact that the polarizability term is inherently
present in many physically realistic conditions, including the case
of controlling molecules where the control field can result in
a redistribution of charge. We specifically assess the potential
for singular controls (i.e., see section 3 for basic definitions
and relevant aspects of singular controls) to introduce traps
into the landscapes of such systems in order to understand
when gradient based (or any local) optimization algorithms
should succeed in discovering high fidelity controls. Such
findings aid in determining which algorithms are appropriate
for use in simulations and in automated pulse discovery in
the laboratory [2].

Given a prescribed final time T ∈ R and the desire to evolve
the n-level quantum system to a specific goal gateW ∈ U(n) (i.e.,
the unitary Lie group), we specify the fidelity of evolution as:

J[U(T)] = 1

n2

∣

∣

∣
Tr

[

W†U(T)
]∣

∣

∣

2
, (1)

whose maximum over all U ∈ U(n) is 1p. Supporting the
landscape analysis of J as a functional of the control field are
three assumptions (see section 2) whose satisfaction, at least in
the dipole approximation, enables a theoretical analysis of the
landscape topological features. The nature of such features are
essential to understand in deciding the best algorithms to use
for selecting an optimal control field, and even assessing if an
optimal control exists. We note that the form of Equation (1)
can be alternatively chosen as˜J(U(T)) = ℜ

(

Tr(W†U(T))
)

in
the case ofU(n), but it is not recommended to use the latter form
for SU(n) ( i.e., the special unitary group) as traps can arise in
the landscape; the fidelity in Equation (1) should form a trap free
landscape for SU(n).

The critical point topology of the function J is discussed
in detail in [23], where it is shown that it possess only global
maxima, global minima and saddle points when considered as a
function of U; that is, J possess no so-called kinematic landscape

traps.We study the control landscape of the cost function: F[E] =
J[VT[E]] where E is the control field, andVT is the end-pointmap
[see [11, 24] for a more detailed and general discussion of this
map in control theory]. Thus, this work will distinguish between
the kinematic landscape J and the dynamic analog F. VT is a
mapping from the space of controls to the corresponding final
time solution U(T) to the Schrödinger equation:

U̇(t) = −iH(t)U(t). (2)

Throughout this work h̄ will be set to 1. The type of Hamiltonian
we study has the following form:

H(t) = H0 + E(t)H1 + E2(t)H2, (3)

where iH0, iH1, iH2 ∈ u(n). This is the first step toward including
higher order terms beyond the dipole approximation (where only
the first power of E is included) from the expansion:

H(t) = H0 +
∞
∑

k=1

Ek(t)Hk, (4)

wherein the sequence {Hk} generally reduce in matrix norm
with increasing k in keeping with diminishing higher order
polarization effects. The terms Hk have a clear physical
interpretation as the ability of the external field to redistribute
the charge within a system so that an induced dipole is created.
In a more physically complete model of a molecular system
interacting with an external vector field, the term Hk would
be replaced by a kth-order tensor. Some work on the control
under these conditions can be found in [25–27]. For a physical
discussion of this type of system and the interpretation of H3

(i.e., the hyper-polarizability) and the terms beyond this see [28].
While the control landscapes of quantum systems have been
studied intensively, landscape analysis of systems including the
effect of polarizability, even at the level of H2, has not yet been
performed. The present work provides numerical evidence on the
affect of H2 in the presence of the H1 term.

In this work we address the status of the assumptions
of quantum control landscape analysis applied to systems
which have a polarizability term H2 present. In particular,
we numerically investigate random quantum systems, with a
polarizability term, for traps in their control landscapes. For a
few dipole control system cases it has been shown that zero or
some constant control is singular critical, and thus a potential
trap.With a polarizability term present, we show numerically that
no traps are present for initial controls near to the zero field for a
specific example of such a system. We also assess the effect of the
addition of a polarizability term on the controllability of systems
which would not otherwise be controllable. In a large number of
additional cases with n = 4 and random tuples (H0,H1,H2,W)
we find no numerical evidence of traps being present.

2. THE THREE ASSUMPTIONS OF
LANDSCAPE ANALYSIS

Satisfaction of the following three assumptions imply a trap free
landscape in the caseH = H0 + E(t)H1. This scenario provides a
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backdrop to consider the roles of H2 later in the paper. The three
assumptions are:

1. The system is globally controllable. That is, beyond some
critical time T∗, all U ∈ U(n) are reachable using some
control, such that every unitary U(T) can be implemented
by some control E. Equivalently, the end-point map VT is
globally surjective.

2. The system is locally controllable. That is, VT is
locally surjective.

3. The controls are unconstrained, such that all control functions
can be implemented without restriction.

Various studies [7, 8] as well as mathematical analysis [29–31]
are consistent with the assumptions above ensuring that a given
quantum control landscape should be trap free. However, the
weakest sufficient conditions assuring a trap free landscape are
not known. Consideration of the assumptions above are relevant
to the paper, as we will numerically show that violation of either
assumptions (1) or (2) can be lifted by the presence of a randomly
chosen polarizability term H2.

In the context of quantum control (for systems without the
polarizability term), it has been shown [32] that assumption
(1) regarding global controllability, generically holds when
H0,H1 are chosen at random. More precisely, it is shown that
controllability fails only for a null set of pairs (iH0, iH1) ∈ u(n)×
u(n) [equivalent to full accessibility, such that every point on
U(n) can be reached using some control at some final time T].
A controllability analysis of systems which include polarizability
has been performed in [27] and controllability has been found to
be similarly generic, but this advance has yet to be folded into a
full landscape topology analysis (i.e., see remarks in section 5).

It has further been shown [6] that there exists a critical time
T∗ such that ∀T ≥ T∗ the system is fixed-time controllable
as long as it is controllable. If iH0, iH1 generate u(n) and the
final time T is large enough, one can always find a control E
such that U(T) = W for any goal operator W in U(n). In
all simulations in this work a sufficiently large time has been
chosen so that all systems are fully accessible whenever they are
controllable. It is thus guaranteed that the first assumption will
be satisfied for almost all systems with Hamiltonian terms H0

andH1 generated at random and controlled over sufficiently large
intervals, as the set for which this fails is null. This circumstance
does not imply that there are no uncontrollable systems in reality
or that they cannot be deliberately mathematically constructed.
Neither does it imply that the uncontrollable cases [6, 33], or
additional cases, for examples, with insufficient resources [13]
do not have interesting control landscape structure potentially
including traps.

Assumption (2) has been shown to be violated for some
specific systems [6] and potential effects on gradient based
searches for optimal controls has been discussed in [11, 30]. See
[31] for a refined discussion of assumption (2) in order to obtain
a weaker sufficient condition for a trap free landscape based on
the geometric notion of local transversality of the end point map
from the level sets of fidelity rather than local surjectivity of this
map [31]. It has been further shown that in two level systems,
singular controls never represent traps [34, 35] on the landscape

of ensemble average of observables. In randomly generated four
level systems, singular controls are generally saddles within
control space for the task of controlling the density matrix [11]
for systems in the dipole approximation. It has not, however, been
rigorously proven that all singular controls are always saddles to
some order (i.e., where order refers to second or higher order
derivatives of F[E]), despite mounting corroborating numerical
evidence that this is the case.

Assumption (3) concerns resources, and is satisfied if no
restriction is imposed on the control. Even in simulations
resources have limits due to computational considerations,
but this situation tends not to be a serious issue. However,
in laboratory practice, there are always restrictions on the
controls, although their influence is application specific. Control
restrictions include the local peak amplitude of the fields, the
total achievable field fluence, and also the ability to accurately
implement and vary the control field. Typical scenarios are
those of the control of molecules by electromagnetic fields.
Importantly, access to control resources continues to increase.
As such, this matter is a technological issue rather than a
fundamental one. Noise is also always present in reality, and if
the noise is weak it can be treated perturbatively; the present
work will not treat the impact of noise and only considers
closed systems.

In this work we will assess if systems violating assumptions
(1) or (2) and exhibiting traps on the landscape created by H0

and H1 remain to have traps upon including the polarizabillity
term. As it is known that the failure of either of these latter
assumptions can indicate traps [6, 11, 33], we follow [11]
attempting to understand the singular controls for systems
beyond the dipole approximation.

3. SINGULAR CONTROLS AND SINGULAR
CRITICAL POINTS

The work in [1] first discussed that singular controls could
in principle introduce saddle type critical points, or even true
local optima, into quantum control landscapes, but this was
conjectured to be rare in practice. This conjecture has since been
backed up with extensive simulations [11, 30]. Several studies
[4–6, 11, 30] have discussed the potential effect of the existence
of singular controls on the associated quantum landscapes and
the significance of some of these findings has been debated
[4, 5, 36, 37].

If the time-dependent Hamiltonian H(t) of a (finite
level) quantum system undergoes an arbitrary infinitesimal
transformation H(t) 7→ H(t) + δH(t) then the end-point map
VT[E] : = U(T) varies according to:

U†(T)δU(T) = i

∫ T

0
U(t)δH(t)U†(t)dt ∈ u(n). (5)

In the dipole approximation with a single control field, the
Hamiltonian takes the form: H(t) = H0 + E(t)H1 and
thus a variation δE(t) of the control induces a corresponding
variation δH(t) = δE(t)H1. The latter formula put into in
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Equation (5) yields:

U†(T)δU(T) = i

∫ T

0
δE(t)U†(t)H1U(t)dt. (6)

A control E is said to be singular if there exists at least one
B ∈ su(n) such that for all δE:

〈

U†(T)δU(T),B
〉

= 0, (7)

where 〈·, ·〉 is the trace inner product on su(n). Applying the
fundamental lemma of the calculus of variations [38] and then
differentiating Equation (7) twice with respect to t yields an
implicit formula for a singular E mathematically connecting
it with a so called singular trajectory U(t) in the case of a
system in the dipole approximation [11]. Unfortunately, an
explicit formula for the singular controls is not known and
appears impossible to obtain by any method known to the
authors. Intuitively, a singular control has the property that the
corresponding end point U(T) cannot be “steered” in at least one
particular direction on U(n) by applying a small (infinitesimal)
variation to the control field δE. It is noteworthy that, although a
specific inner product is invoked here, the singularity of any given
control does not depend on which inner product is chosen and
any choice yields the same set of singular controls. Singularity of
a given E is equivalent to the (Fréchet) derivative δVT/δE(t) being
rank deficient for the field E in control space. By substituting
Equation (6) into Equation (7) and applying the fundamental
lemma of the calculus of variations, one sees that a singular
control in the dipole approximation must satisfy:

〈iU†(t)H1U(t),B〉 = 0, ∀t ∈ [0,T]. (8)

In the case of Equation (3), where the Hamiltonian contains the
additional polarizability term E2(t)H2, the singular controls take
a novel form. Equation (7) in this case implies:

〈

i

∫ T

0
δE(t)U†(t)

[

H1 + 2E(t)H2

]

U(t)dt,B

〉

= 0. (9)

After again applying the fundamental lemma of calculus of
variations and rearranging (assuming 〈iU(t)†H2U(t),B〉 6= 0
∀t ∈ [0,T]), we have:

E(t) = −1

2

〈iU†(t)H1U(t),B〉
〈iU†(t)H2U(t),B〉 , (10)

which is in contrast to the results on controlling the density
matrix in the dipole approximation found in [11]; in the latter
case a second derivative with respect to t of the formula analogous
to (8) was required to determine the corresponding form of the
singular controls. However, a similar formula can be found in the
case of controlling the propagator in the dipole approximation
and it requires an identical differentiation procedure, which
we do not include in this work. At points in time where the
denominator in Equation (10) satisfies 〈iUtH2U

†(t),B〉 = 0
further differentiation (with respect to t) and rearrangement

[i.e., analogous to the procedure found in [11] in a general
form] results in a suitable formula for singular controls with the
polarizability term present. The number of derivatives required
to find a singular control is known as the order of a singular
control and the quantity: n2−rank(δVT) is known as the co-rank
of a singular control. The co-rank corresponds to the number
of linearly independent dimensions of choices for B to which
the image of δVT is orthogonal. In contrast to the case without
the polarizability term found in [11], a differential equation is

now found as dE
dt

remains in the resulting equation. The full
significance of this difference in form merits investigation and is
left as a basis of further work.

A singular control may correspond to a singular critical point
of the map F. That is, a singular control (satisfying Equation 7) E
may have the property that:

〈U†(T)δU(T),U†(T)∇J
∣

∣

U(T)
〉 = 0, ∀δE. (11)

These are candidates for traps (i.e., local optima) in the landscape
F as they are controls for which ∇F

∣

∣

E
= 0. These controls are

critical points of F for which VT[E] = U(T) is not a critical point
of J.

The analysis of which singular critical controls, if any, are true
traps requires an assessment of the Hessian index of the end-
point map evaluated at a singular critical point; such a task is
computationally intensive. With or without polarizability, which
controls are singular does not depend on the function J being
optimized, but only on the form of the Hamiltonian. However,
which controls are singular critical points does depend on J
through ∇J. Insight into the issue can be gained by examining
the derivative of F by applying the chain rule:

δF

δE
= dJ

dVT[E]
◦ δVT[E]

δE
. (12)

If a control E is singular then δVT [E]
δE fails to be full rank. One

sees that a control being singular can, but does not always,
introduce a critical point of F (i.e., a control E for which δF

δE = 0).
In particular, only when δU(T) cannot vary (when all δE are
considered) in the direction of increasing J (i.e., in the direction
of the gradient of ∇J) is there a critical point of F. However,
such singular points may still not be traps if a pathway up the
landscape is accessible via higher order derivatives in the Taylor
expansion of the end-point map. Thus, generically, we expect
that there is very little chance for a singular control to become
a local trap along the search for global optimal controls. The
remainder of the paper will expand upon this remark to consider
the impact of a polarizability term being present in various
scenarios, including the violation of assumptions (1) or (2).

4. NUMERICAL SIMULATIONS OF
QUANTUM CONTROL LANDSCAPES
INCLUDING POLARIZABILITY

In order to perform numerical optimization we approximate the
smooth control field E by piecewise constant functions with M

Frontiers in Physics | www.frontiersin.org 4 May 2021 | Volume 9 | Article 67479422

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Russell et al. Control Landscapes Beyond the Dipole Approximation

pieces permitting significant freedom in E. This procedure is
in keeping with a well-known theorem about approximating a
general smooth function with a piecewise constant form [39].

The final time propagator, with the polarizability H2 term,
associated to the control E is

VT :E 7→ U(T) =
M
∏

k=1

e−i(H0+EkH1+E2
k
H2)1T , (13)

where Ek is the amplitude of the kth piecewise-constant sub-pulse
and 1T = T/M. The sequence in the product of Equation (13)
is time ordered. The form in Equation (13) is used to optimize
E with the gradient ascent algorithm (often known as GRAPE or
gradient ascent pulse engineering in quantum control) [40].

In order to statistically assess for the existence of traps in the
landscape associated with a given Hamiltonian, the algorithm
must be repeated many times with different initial random fields
E. If the algorithm consistently reaches the optimum, regardless
of the starting point, this finding would indicate that the given
Hamiltonian’s landscape likely has no traps for generating a
desired unitary transformationW. All calculations are performed
with the system variables as dimensionless.

4.1. The Effect of Adding a Polarizability
Term to a Globally Uncontrollable System
With Traps
It is known that the landscapes of globally uncontrollable systems
can contain traps [33]. Here we investigate whether or not
including a polarizability term may eliminate the presence of
such a trap. The system we study possess drift and control terms,
respectively, given by:

H0 =













−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2













, (14)

H1 =













0 1 0 0 0
1 0 1.225 0 0
0 1.225 0 1.225 0
0 0 1.225 0 1
0 0 0 1 0













. (15)

The Lie algebra formed by H0 and H1 is rank deficient showing
that this system is not globally controllable [i.e., violation of
assumption (1) in section 2]. The target gate is chosen as W =
e−i π2 H1 . This globally uncontrollable system has traps [33], in
particular at J = 0.04. We note that this system can be viewed
as a controlled molecular rotor [33], but such character will not
be exploited here, particularly in consideration ofH1 andH2 both
driven by the same scalar field E(t) in keeping with the model in
Equation (3) used throughout the paper.

In order to assess the effect of adding a polarizability term, we
first identify a sub-optimal field [33] corresponding to the trap
J = 0.04. Then, we select the polarizability term H2 randomly
as a 5 × 5 complex Hermitian matrix with norm ‖H2‖ = λ,

FIGURE 1 | The optimization from an initial control field that traps the system

at J = 0.04 in the absence of polarizability (λ = 0). The presence of the

random polarizability term (see the text for further details) steers the

optimization away from the trap.

and the optimization is started from the preselected field with
λ = 0, 0.05, 0.1, 0.2, where λ = 0 corresponds to the case with
only the dipole interaction H1. It can be seen in Figure 1 that
the presence of polarizability steers the optimization away from
the trap and on to full fidelity. section 4.4 returns to the globally
uncontrollable Hamiltonian formed by Equations (14) and (15)
for an examination of the landscape with random choices for W
and H2.

4.2. The Effect of Adding a Polarizability
Term to a System With a Second-Order
Trap
In this section we assess the potential for the addition of
a polarizability term to remove a trap from the landscape
of a system known to possess one due to the loss of local
controllability [i.e., violation of assumption (2) in section 2]. This
example can be found in [6] [i.e., and in [30] where it is referred
to as “system E”]:

H0 =





1+ π
1000 0 0
0 1 0
0 0 2



 , H1 =







−5
√

2
3 −1 0

−1 −4 −1
0 −1 −1






, (16)

W =







ei
2π
3 0 0

0 −iei
3π
4 0

0 0 −ieiφ






exp (−iH0 · 1000) .

The field E = 0 is known to be a second order trap for this system.
We generated 1,000 random polarizability matricesH2 ∈ u(3)

( 1
10 of the norm of H1), and for each case a random initial field
was generated in the vicinity of the zero field. It was found that,
for initial fields arbitrarily close to the zero field, all gradient
ascent runs converged to full fidelity. As such, we can conclude
that the dipole trapping effect due to Equation (16) observed in
[30] can be counteracted by the addition of a polarizability term.
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4.3. Observed Properties of Generic
Systems With a Polarizability Term
In this section, we assess if the addition of a polarizability term
can introduce traps into the landscapes of systems known to have
none in practice without a polarizability term; that is, each of the
cases utilizes randomly chosenH0 andH1, which are known [31]
to almost always produce trap free landscapes forW. All the cases
here and in section 4.4 have n = 4 levels, unless otherwise stated.
We numerically analyze the landscape of general systems of the
form in Equation (3), which include polarizability. One thousand
random tuples (H0,H1,H2,W = eiA) were generated and their
landscapes similarly analyzed with 100 runs, each with a random
initial field E(t). The real and imaginary elements of the complex
Hermitian matrices H0, H1, H2, and A were drawn separately
from a uniform distribution over [−1, 1]. This procedure is used
in the other studies below. The initial fields E(t) were uniformly
and randomly generated to have E(t) ∈ [−1, 1] for all discretized
components for t ∈ [0,T], but the components were unrestricted
in magnitude during the optimization. The resultant landscapes
were found to be trap free, as all runs converged within practical
computational timescales to fidelity above 0.99.

The term H2 typically has a norm which is less than H1 in
physical applications. In situations where a control is exploiting
the effect of H2 to achieve the implementation of a desired
gate W, one might reasonably conjecture that a small size
polarizability H2 requires a very strong field or very high total
field fluence. The fidelity is plotted along with the field fluence
of E(t) in Figure 2 vs. algorithm iteration for three cases of
100 randomly generated tuples (H0,H1,H2,W). In all cases the
fidelity reached at least 0.99. The fluence of a field E is defined as:

‖E‖ = 1

T

∫ T

0
E2(t)dt.

All the simulations start from a small-fluence initial guess
of the control field, and the fluence increases with iteration.
When the polarization H2 is weak (compared with the norm of
H1, as in Figures 2A,B, the fluence significantly increases with
iteration, suggesting that the polarizability plays an important
role requiring sufficient fluence. When H1 and H2 have the
same norms (as in Figure 2C), the controls do not significantly
increase in fluence with iteration. This case suggests that the
effects of polarizability can be exploited for control without a
significant rise in field amplitude over iteration. Moreover, in
all cases and to some degree in Figure 1 the inflection points in
the fidelity vs. iteration curves likely indicate that the climbing
trajectories come near saddles, which are known to exist in the
case ofH = H0+E(t)H1 and are expected to be present whenH2

is included.

4.4. The Neighborhood of Singular Controls
In this section, we explore the neighborhood of singular controls
to check for trapping behavior in several types of systems. It is
not known generally what proportion of singular controls are
singular critical controls, and what proportion of singular critical
controls are traps. Here we assess if singular controls play a
significant role in determining the topology of critical points

on quantum control landscapes for systems with a polarizability
term present. Following the work in [11], one can numerically
solve the Schrödinger equation to obtain singular controls E(t).
This can be achieved by substituting Equation (10) into Equation
(3) and then substituting the resultingHamiltonian into Equation
(2) to obtain the initial value problem (i.e., in Equation 17) it is
understood that E(t) is given by Equation (10), thereby making
Equation (17) highly non-linear in U(t):

U̇(t) = −i
[

H0 + E(t)H1 + E2(t)H2

]

U(t), U(0) = I. (17)

A solutionU(t) to this system of equations is a singular trajectory
emanating from the group identity at t = 0. Equation (10)
shows that the set of all singular trajectories is parameterized
by B ∈ su(n). From a numerical solution of Equation (17), the
corresponding singular control can be obtained by substituting
the singular trajectory U(t) into Equation (10).

In order to test if any given singular control E is a trap, it is
possible to explore the neighborhood of E by evaluating F[E+δE]
formany small δE and assessing the sign of δF = F[E+δE]−F[E].
If two linearly independent δE can be found such that δF has
different signs (i.e., one positive and one negative) then the point
Emust be a saddle in control space rather than a trap. Two types
of systems were assessed in this respect.

In the first scenario 10,000 tuples (H0,H1,H2,B,W) were
uniformly and randomly generated, as previously described, and
the corresponding singular control was found numerically by
solving Equation (17) in order to obtain a singular trajectory and
thus, in turn generate a singular control from Equation (10). In all
cases, no traps were found, as an average of 3.23 variations δE of
the control were required to identify twowhich resulted in fidelity
variations of opposite sign. Furthermore, the highest number of
trial variations required for any singular control was 70. This
behavior indicates that all of the singular controls examined are
saddles on the control landscape.

The second class of Hamiltonians assessed were those in
Equations (14) and (15) with n = 5 forH0 andH1. Ten thousand
tuples (H2,B,W) were generated uniformly at random and the
corresponding singular control was found numerically by solving
Equation (17) in order to obtain a singular trajectory and thus
a singular control, as before. In all cases, no trapping behavior
was found, and the highest number of trial variations required for
assessing the nature of any singular control was 200. This again
indicates that all of the singular controls examined are saddles
on the control landscape, even when the landscape derived from
H = H0 + E(t)H1, which produces at least one trap (i.e., see the
discussion in section 4.1).

From these cases upon visual examination of many singular
controls, they can be seen to exhibit characteristic features. Most
notably, there are two distinct classes. The dominant first class
are all physically plausible fields as they are smooth and bounded.
Controls in the second class all possess at least one blow-up point
where the control becomes both unbounded and discontinuous
(i.e., they possess infinite jump discontinuities, similar to the
reciprocal function f (x) = 1

x at x = 0), as such, they are clearly
excluded from physical consideration. This behavior arises from
the denominator in Equation (10) passing through zero. The
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FIGURE 2 | Fidelity and fluence ‖E‖ plotted verses algorithm iteration in three cases from weak to strong randomly chosen polarizability: (A) ‖H2‖ ∼ 0.01‖H1‖, (B)
‖H2‖ ∼ 0.1‖H1‖, and (C) ‖H2‖ ∼ ‖H1‖.

comments below Equation (10) explain how to deal with this
behavior, but it was not explored in the simulations here.

For each matrix B ∈ su(4), there is a singular control
defined by Equations (17) and (10). Using randomized gradient
decent for B, we can produce singular critical controls, rather
than just singular ones. We thus optimize over B such that it
is co-linear to U†(T)∇J

∣

∣

U(T)
(to a numerical tolerance of 0.001

radians). For all cases, U(T) was not found to be a kinematic
critical point of J(U(T)). In the case of su(4), this procedure
consists of minimization over the 15 parameters of su(4). One
parameter can be discarded as the formula for a singular control
in Equation (10) doesn’t depend on the norm of B due to the
linearity of the numerator and denominator in B. Thus, it is
possible to restrict the search to the unit norm of B.We found that
this search did not always succeed in finding a singular critical
control; only about 5% of searches succeeded. This suggests that
the set of singular critical controls is very small in the set of
singular controls.

In order to explore the latter prospect, we studied the structure
of the control landscape in systems with randomly generated
tuples (H0,H1,H2,B,W) as before. We analyzed the possibility
of whether a singular critical control E is a trap on the control
landscape of F by making many small variations E′ : = E +
δE around E. For each E′ a randomized gradient ascent was
initiated. If a singular critical E were a true trap, rather than
a saddle, this would be identified by at least some gradient
ascent runs returning back to E (or a control near to E of the
same fidelity) when initiated from E + δE. If full fidelity was
reached during the run, then E cannot be a trap. One hundred
tuples (H0,H1,H2,B,W) were generated and for each tuple 100
singular critical controls were created as described in the last

paragraph. For each singular critical control E, 200 points E
′

in the neighborhood of E were generated and an associated
gradient-ascent run was completed. The norm of δE was chosen
to be random within [0, 0.001] (which is typically very small
compared to the norm of E(t)) so as to ensure exploring close
to the candidate trap and the behavior around it. We found
that all runs converged to F[E] ⋍ 1.0 and displayed similar
convergence rates as those cases seen when initial controls were
chosen at random from the whole control space. Lastly, the
singular critical controls generally exhibited no clear visually
differentiating features when compared to the singular, non-
critical controls. As such, no example is shown; also see the
remarks earlier in this section regarding the denominator in
Equation (10).

5. CONCLUSIONS, OUTLOOK, AND
FURTHER STUDIES

We have shown that upon including a polarizability term in
the Hamiltonian, and thus moving beyond the standard dipole
approximation, a change in the character of quantum control
landscapes is seen in some relevant n = 3, 4, and 5 level cases.
We have also shown that there is a theoretical difference between
the nature for the singular controls in the cases with and without
the polarizability term.

There are two central conclusions from this work:

1. Including a polarizability term H2 does not introduce traps
into the landscape for typical tuples (H0,H1,H2,W).

2. Including a random polarizability term can remove traps from
the landscapes for a class of otherwise uncontrollable systems

Frontiers in Physics | www.frontiersin.org 7 May 2021 | Volume 9 | Article 67479425

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Russell et al. Control Landscapes Beyond the Dipole Approximation

based upon H0 and H1, including the situation of a trap at
zero field.

It has been shown that almost all Hamiltonians based up on
H0 and H1 do not correspond to traps in quantum control
landscapes with the exceptions forming a null set of systems [31].
However, this result does not exclude exceptions to particularly
violating assumptions (1) or (2) of section 2. Concerning
satisfaction of global or local controllablity, this paper considered
a few known exceptions and showed that the addition of a
random H2 term returned the augmented system to normal
behavior [i.e., the original (H0,H1) driven traps were removed].

In this work for systems based on arbitrary (H0,H1,H2,B,W),
an algorithm was devised to search for singular critical controls
and analyze if they are traps by examining F in a neighborhood of
any discovered singular critical controls. Effectively, this process
is exploring the nature of the eigenvalues of the Hessian of
the end-point map (i.e., and possibly the impact of higher
order derivatives of F[E] playing a role) at the singular critical
points. In [11] no trapping singular controls were found in
the case of linear coupling H1 and the control of the density
matrix. Our work extends this finding in two respects. Firstly,
we study the control of the full quantum propagator U(t).
Secondly, we study the role of non-linear polarizability coupling
H2 along with H1. Future work should include repeating the
numerical analysis of [11] in the case of the control of the density
matrix and the observable maximization task for systems with
a polarizability term and even higher order coupling terms in
the Hamiltonian.

This work provides numerical evidence to bolster the claim
that trap free landscapes are ubiquitous in the practice of
quantum control. We conjecture that including more terms and
their tensor character in the expansion in Equation (4) will
have the general effect of removing traps from the landscape
by adding novel dynamical mechanisms induced by the controls
via couplings to an external field or fields (in the case of
tensor Hk). This conjecture simply states that nominal system
“complexity” aids in increasing the likelihood that assumptions

(1) and (2) will hold, naturally assuming that adequate resources
are available for this purpose [i.e., satisfaction of assumption
(3)]. An assessment of this conjecture should form the basis
for further analytical and numerical investigation. A possible
path to proving this conjecture may lie in combining the
proof of global controllability [27] with an extension of local
controllability [41]. Importantly, in the laboratory with atoms
andmolecules additional terms beyond the dipole approximation
will inherently be present, even if they are weak. In summary, this
work goes beyond the majority of theoretical studies in quantum
control and quantum control landscapes, which investigate
systems restricted to the dipole approximation. The tantalizing
numerical findings in the paper and the generic existence of
molecular polarization warrants an assessment of the physical
conjecture made above, which may be captured by the statement
that system complexity appears to be a friend for finding
favorable control landscape topology.
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Photo-initiated processes in molecules often involve complex situations where the

induced dynamics is characterized by the interplay of nuclear and electronic degrees of

freedom. The interaction of the molecule with an ultrashort laser pulse or the coupling at

a conical intersection (CoIn) induces coherent electron dynamics which is subsequently

modified by the nuclear motion. The nuclear dynamics typically leads to a fast electronic

decoherence but also, depending on the system, enables the reappearance of the

coherent electron dynamics. We study this situation for the photo-induced nuclear and

electron dynamics in the nucleobase uracil. The simulations are performed with our

ansatz for the coupled description of the nuclear and electron dynamics in molecular

systems (NEMol). After photo-excitation uracil exhibits an ultrafast relaxation mechanism

mediated by CoIn’s. Both processes, the excitation by a laser pulse and the non-adiabatic

relaxation, are explicitly simulated and the coherent electron dynamics is monitored

using our quantum mechanical NEMol approach. The electronic coherence induced

by the CoIn is observable for a long time scale due to the delocalized nature of the

nuclear wavepacket.

Keywords: quantum dynamics, coupled nuclear and electron dynamics, electronic coherence, conical

intersection, photo-excitation, uracil

1. INTRODUCTION

The interaction of molecular systems with light induces numerous chemical processes which can
be natural, such as vision [1–3] and photosynthesis [4–7], or artificial like organic photovoltaics
[8–12] and photocatalysis [13, 14]. In these processes a molecule often absorbs light with a
wavelength in the visible or ultraviolet range where electrons are promoted from the molecular
ground state to higher electronic states. The excited molecule can undergo radiative or non-
radiative decay processes. Only the non-radiative processes can lead to photo-chemical reactions
which are often mediated by non-adiabatic transitions [15]. The necessary non-adiabatic couplings
(NACs) between the states involved are only present in the vicinity of a conical intersection (CoIn)
[16–18] or an avoided crossing. Depending on the number of degrees of freedom these CoIn’s are
extraordinary points, seams or even higher dimensional crossing spaces. Besides the possibility of
non-radiative relaxation they lead to the breakdown of the adiabatic separation between nuclear
and electronic motion and equalize the time scales of their dynamics. Overall the excitation process
and the non-adiabatic transitions are complex situation where both nuclear and electronic motion
and their interaction play a key role. In order to simulate these situations a theoretical approach is
needed that can describe the coupled nuclear and electron dynamics in a molecular system.
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Most methods which can describe the electron dynamics
are often modified versions of their well-known quantum-
chemical counter parts and neglect the influence of the
nuclear motion [19–23] or treat it classically [24–27]. One
of the possibilities to treat both the nuclear and the electron
dynamics in a molecular systems is the quantum-mechanical
NEMol ansatz [28–32]. Within this ansatz the electronic
wavefunctions are propagated in the eigenstate basis and
coupled to the nuclear wavepacket propagated on coupled
potential surfaces. Compared to similar but more expensive
approaches based on the coupled propagation of the nuclear
and electronic wavefunction on a single time-dependent
potential energy surface [33–36], in NEMol the feedback of
the electron motion to the nuclear dynamics is less directly
included. In the beginning we give a brief introduction to
the NEMol ansatz and how we determine the time-dependent
electron density. This density is used to distinguish the
Born-Oppenheimer part of the dynamics from the coherent
electron dynamics. With the help of the NEMol ansatz
the electron and nuclear dynamics along a photo-induced
relaxation process in molecular systems can be simulated,
including both interaction with a laser pulse and non-
adiabatic events.

In the main part of this paper we apply NEMol to derive
photo-induced dynamics in uracil which is one of the four
nucleobases in RNA. Like all other nucleobases uracil absorbs
mainly in the UV range due to an accessible π −→ π∗

transition [37, 38]. After the excitation uracil can undergo
harmful chemical modifications, such as methylation or base
alteration [39–41]. The altered structures and the subsequent
changed base pairings can lead to mutations, genomic instability
and cancer [37, 40, 42]. To prevent potential mutations in
advance, the inherent photostability of the nucleobases is a
key factor, assuring that the vast majority of photoexcitations
do not lead to harmful modifications [37]. The photostability
of all nucleobases is due to the presence of fast relaxation
mechanisms back to the ground state. Uracil exhibits an
ultrafast relaxation mechanism with experimentally observed
relaxation times between 50 fs and 2.4 ps [37, 43–46]. The
relaxation is mediated via CoIn’s between the first two excited
states and has been well-studied using quantum-dynamics on
two-dimensional surfaces [47, 48], as well as semi-classical
approaches allowing for all degrees of freedom [38, 49–51].
As already demonstrated [52] the coherence induced by these
CoIn’s is long-lived since the non-adiabatic transition is rather a
continuous process due to the delocalized nature of the nuclear
wavepacket. We are following the photoinduced dynamics in
uracil starting with the explicit simulation of the excitation
processes via a laser pulse up to the relaxation via CoIn’s. During
the whole process NEMol is used to monitor the temporal
evolution of the electron dynamics. The simulations demonstrate
that the electron dynamics even in large molecular systems
reflect coherence, decoherence, and reappearance due to nuclear
motion. In previous work the effect of decoherence has been
discussed from the nuclear dynamics side [53–55], and the
reappearance has been reported for small molecular systems
[56–58].

2. COUPLED NUCLEAR AND ELECTRON
DYNAMICS IN MOLECULES (NEMol)

To describe the coupled nuclear and electron dynamics it is
necessary to determine the temporal evolution of the total
molecular wavefunction. This is realized with our NEMol ansatz
[28–30]. In a system with multiple electronic states the total
wavefunction 9tot(r,R, t) can be expressed as a sum over the
products consisting of the electronic wavefunctions ϕ(r, t;R) and
the wavefunctions of the nuclei χ(R, t) (see Equation 1), with the
nuclear and electronic coordinates R and r and the time t. In
this ansatz both the electronic and the nuclear wavefunctions are
explicitly time-dependent.

9tot(r,R, t) =
∑

i

χi(R, t) · ϕi(r, t;R). (1)

The electronic wavefunctions ϕi are parametrically depending
on the nuclear coordinates R and define a multi-dimensional
vector comprising the electronic states involved. Analogously,
the total nuclear wavefunction χtot is given by a multi-
dimensional vector composed of the nuclear wavefunctions
χi residing in the i potential surfaces. Its temporal evolution
is simulated on coupled potential energy surfaces (PES), for
details see Supplementary Section I. Multiplying 9tot(r,R, t)
from the left with χtot and the subsequent integration over the
nuclear coordinates results in an expression of the coupled total
electronic wavefunction [28–30].

8tot(r, t; 〈R〉(t)) =
∫

χ∗
tot(R, t) · 9tot(r,R, t)dR (2)

The individual components 8j of this vector are defined by the
following equation:

8j(r, t; 〈R〉(t)) = Ajj(t) · ϕj(r, t; 〈R〉(t))
+

∑

k6=j

Ajk(t) · ϕk(r, t; 〈R〉(t)), (3)

with Ajk(t) =
〈

χj(R, t)
∣

∣χk(R, t)
〉

R
. (4)

The time-dependent populations Ajj(t) and the time-dependent
nuclear overlap terms Ajk(t) are determined by the nuclear
quantum-dynamics simulation. The overlap terms specify the
degree of coherence induced between two states j and k. If
the coupling between the electronic states is weak, the nuclear
wavefunctions propagate independently and the overlap term
becomes zero. In this case, the coupled electronic wavefunctions
8j in Equation (3) become equivalent to the uncoupled electronic
wavefunction ϕj. All electronic wavefunctions coupled and
uncoupled are parametrically depending on the time-dependent
expected value of the position 〈R〉(t). This means that the coupled
electronic wavefunctions are evaluated at one single nuclear
geometry which changes with time. The time evolution of the
ϕj(r, t; 〈R〉(t)) is determined by the deformation of the electronic
structure induced by the nuclear motion and the propagation in
the electronic phase space [28–30].

ϕj(r, t; 〈R〉(t)) = ϕj(r; 〈R〉(t)) · e−iξj(t) (5)
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Here the ϕj(r; 〈R〉(t)) are the real-valued electronic
wavefunctions of the relevant electronic states and ξj(t) is
the electronic phase factor computed by numerical integration
of the electronic eigenenergies Ej(〈R〉(t)) over time.

ξj(t) =
∫ t

0
Ej(〈R〉(t))dt. (6)

In practice the calculation of ξj(t) has to be done recursively
to retain the memory of the progressing electronic phase since
Ej(〈R〉(t)) changes with propagation time

ξj(t) = Ej(〈R〉(t))1t + ξj(t − 1t). (7)

Thereby the propagation velocity of the phase in the complex
plane changes smoothly in time while the nuclear wavepacket
propagates. Within the original NEMol a much smaller time step
must be used for the calculation of the phase term ξj(t). The
coupled total electronic wavefunction is used to determine the
coupled one-electron density ρ(r, t; 〈R〉(t)) [28–30].

ρ(r, t; 〈R〉(t)) =
∑

j

Ajj(t)ρjj(r; 〈R〉(t))

+
∑

k>j

2Re
{

Ajk(t)ρjk(r; 〈R〉(t))e−iξjk(t)
}

, (8)

with ξjk(t) = 1Ejk(〈R〉(t))1t + ξjk(t − 1t). (9)

The first summation consists of the state specific electronic
density ρjj(r; 〈R〉(t)) weighted with the corresponding time-
dependent population Ajj(t). The second summation defines
the coherent contribution to the coupled electron density
and consists of the time-dependent overlap Ajk(t), the one-
electron transition density ρjk(r; 〈R〉(t)) and its pure electronic
phase ξjk(t) defined by the energy difference 1Ejk between the
electronic states involved. This coherent part of the density
can be induced by an interaction with a laser pulse or by
non-adiabatic coupling events. For non-dissociative molecular
dynamics like in uracil the time-dependent overlap determines
the disappearance and especially the potential reappearance of
the coherent electron dynamics.

To go beyond this single geometry approximation we
introduced the NEMol-grid [32] where the full nuclear
coordinate space is split up into segments for which partial
densities are calculated. In the limit the NEMol-grid is equal to
the grid for the nuclear wavepacket propagation, but in practice
we choose a coarser one. The partial densities ρml(r, t;Rml) are
defined by:

ρml(r, t;Rml) =
∑

j

αml
jj (t)ρjj(r;Rml)

+
∑

k>j

2Re
{

αml
jk (t)ρjk(r;Rml)e

−iξml
jk

(t)}
, (10)

with ξml
jk (t) = 1Ejk(Rml)1t + ξml

jk (t − 1t). (11)

The population terms αml
jj (t) and the overlap terms αml

jk
(t)

are calculated by integration over the wavepackets within the

boundaries of the segments. At the center Rml of each segment
the state specific electronic densities ρjj(r;Rml), the one-electron
transition densities ρjk(r;Rml), and the pure electronic phase

ξml
jk
(t) are determined. Since the positions Rml do not vary with

time the time step for the calculation of the phase term can be
chosen larger than for the original NEMol. In this work a time
step of 1 a.u. is used. To obtain the total coupled electron density
the individual contributions for each segment are summed up.

ρ(r, t;R) =
M

∑

m=1

L
∑

l=1

ρml(r, t;Rml). (12)

This total coupled one-electron density ρ(r, t;R) (also called full
electron density in the following) contains the information of
all partial densities determined at multiple grid points weighted
with the corresponding population and overlap terms. This is
a significant difference from the original NEMol where the
electronic structure was only considered at one geometry. To
visualize the coupled one-electron density the weighted average
R of all Rml is formed. The NEMol-grid extension is used to
sample the nuclear wavefunction to improve the resolution of the
spatial dependence of the electronic phase term. This is crucial for
situations where the nuclear wavepacket is delocalized and only
parts of the wavepacket induce coherence in the system. As this
is increasingly the case for two and more dimensional systems,
the expected value of the position 〈R〉(t) is no longer appropriate
to capture the electron the electron dynamics. Since uracil is such
case we apply the NEMol-grid for all calculations in this work. To
study the electron dynamics the induced dipole moment vector Eµ
is calculated using the coupled one-electron density:

Eµ(t) =
∫

dErρ(r, t;R) · Er. (13)

If the entire dynamics or at least parts of it can be described by
two coupled states, it is possible to obtain a simplified description
of the electron density in the one-electron-two-orbital (1e-2o)

FIGURE 1 | Uracil molecule at the Franck-Condon point. The studied carbonyl

group is indicated in purple. Carbon atoms are shown in gray, hydrogen in

white, oxygen in red, and nitrogen in blue.
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picture, which was derived and successfully applied in reference
[32]. Based on the assumption that the two states are described
by two Slater determinants, which only differ in the occupation
of one spin orbital θ , it is possible to condense the coupled
dynamics in a simple 1e-2o-density. The following Equation (14)
is based on the original NEMol ansatz (see Equation 8), but
the 1e-2o-density can also be determined in combination with
the NEMol-grid.

ρ1e2o(r, t; 〈R〉(t)) = A11(t)|θ1(r; 〈R〉(t))|2 + A22(t)|θ2(r; 〈R〉(t))|2

+ 2Re
{

A12(t)θ1(r; 〈R〉(t))θ2(r; 〈R〉(t))e−iξ12(t)
}

.

(14)

Neglecting the contributions of the equally occupied orbitals, the
first two terms represent the remaining two orbitals weighted
with their respective population Ajj(t). The third term denotes
the coherence between the states characterized by the product of
the two orbitals.

3. PHOTO-INDUCED DYNAMICS OF
URACIL

In this work we investigate the photo-induced nuclear and
electron dynamics of the nucleobase uracil with NEMol. The
geometry of uracil at the Franck-Condon (FC) point is depicted
in Figure 1. Uracil is characterized by an ultrafast photo-
relaxation channel starting in the second excited state (S2) which
is mediated by CoIn’s. As shown in previous studies [47, 48], the
photo-excitation and the initial steps of the subsequent relaxation
can be well-described on two-dimensional PES. We adopt these
adiabatic PES, which were first reported by Keefer et al. [47]
and later modified [52, 59]. The underlying two-dimensional
coordinate space spanned by the vectors q1 and q2 includes all
relevant structures, the FC point, the S2 minimum, the optimized

S2/S1 CoIn and also parts of the associated CoIn seam. Both
vectors are depicted on the right side of Figure 2. The resulting
PES for the bright S2 state is shown on the left of Figure 2. The
potential surface exhibits a double-well structure with a small
barrier separating the S2 minimum on the top left from the CoIn
seam on the bottom right (black). Further information about the
simulations can be found in the Supplementary Section I. The
molecular orientation within the laboratory frame is chosen in
such a way that the molecular plane is equal to the xy-plane at
the FC point and the center of mass defines the origin of the
laboratory frame (see Figure 1). To initiate the dynamics and
promote the system from the electronic ground state to the S2
state we use a Gaussian shaped pulse. Its parameters were adapted
from a previous work [47]. The pulse has a central frequency ω0

of 6.12 eV, a full width at half maximum (FWHM) of 30 fs and
a maximum field strength of 0.036GV cm−1. This maximum is
reached after 40 fs simulation time. The light-matter interaction
is treated within the dipole approximation. We assume that the
electric component of the pulse is optimally aligned with the
transition dipole moment whose absolute value is used. The
complete temporal evolution of the population of all three states
is shown in Figure 3. The excitation pulse is active in the time
period between 10 and 75 fs and leads to an S2 population
yield close to 90%. The motion of the wavepacket in the S2
state is indicated in white in Figure 2. The wavepacket evolves
from the FC point toward the S2 minimum and oscillates back
near the FC region. After this first oscillation period (about
80 fs) a part of the wavepacket splits and travels toward the
CoIn seam. At around 100 fs the population of the S2 state
starts to decay. During the following oscillations this behavior
continues leading to a rather continuous flow of population into
the S1 state.

The NEMol simulations are used to monitor the coupled
nuclear and electron dynamics of uracil during the first 200 fs.
We assume that the coherent part of the electron dynamics

FIGURE 2 | Potential energy surface of the bright S2 state of uracil with indicated CoIn seam (black) and a schematic representation of the path of the wavepacket

(white). The energy scale is given with respect to the global minimum of the S0 potential energy surface. The two coordinate vectors defining the two-dimensional

coordinate space are shown on the right. Only contributions larger than 0.3 Å are depicted.
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FIGURE 3 | Populations of the S0, S1, and S2 state as a function of the

simulation time. The envelope of the excitation pulse is indicated in gray.

is only active during the laser pulse excitation and when the
wavepacket is interacting with the CoIn seam. Since these two
events are spatially and temporally separated from each other
we split our simulation into two parts. Within the interval of
the excitation process (0–75 fs) we calculate the coupled electron
density including only the properties (densities, population and
overlap) of the S0 and S2 states. In the second part (75–200 fs),
characterized by the relaxation via the CoIn seam, we include
only the properties of the S1 and S2 states. For both cases we use
a NEMol-grid of 14 × 10 segments equally distributed between
−0.37 and 1.57Å in the q1 coordinate and from −0.57 to 0.86Å
in the q2 coordinate, shown in Supplementary Figure 1. For
each of these segments the population terms and the overlap
terms of the involved states were determined. The population
outside the NEMol-grid was added to the nearest segment on
the edge of the grid. For the detailed analysis of the electron
dynamics we focus on two quantities, the induced dipole
moment and the temporal evolution of the local density at the
upper carbonyl group (marked in purple in Figure 1). Both are
observables, e.g., the fluctuations in the local density could be
probed by transient X-ray absorption spectroscopy [60, 61]. Both
observables show qualitatively very similar features. The results
for the induced dipolemoment are presented and discussed in the
manuscript, while the ones for the local density are shown in the
Supplementary Material. We should note that for the excitation
dynamics it is important to ensure that the phase information of
the laser pulse is solely imprinted on the electronic wavefunction
and not also on the nuclear wavefunctions. In our previous
work [62, 63], this was realized by calculating the dynamics in
the rotating-wave-approximation to describe the laser-induced
coupling between the molecular states. In this work we have
chosen to remove the phase information of the laser pulse from
the nuclear overlap terms.

FIGURE 4 | Molecular orbital schemes for the S0 −→ S2 excitation with the

active electron indicated in green and corresponding orbitals at the

Franck-Condon point. Orbitals are shown with an isovalue of 0.05.

FIGURE 5 | Snapshots of the electron density and the difference in density

relative to the density at t = 0 fs (green electron-loss, orange electron-gain) for

the excitation-pulse induced dynamics between 0 and 75 fs. The isovalues

used are 0.08, respectively ±0.003.

3.1. Excitation-Pulse Induced Dynamics
The dynamics induced by the laser pulse excitation is basically
characterized by the excitation of one electron from a bonding π

orbital into an anti-bonding π∗ orbital. This process is illustrated
in Figure 4. For the following analysis we calculate the full
coupled electron density according to Equation (12).

Snapshots of the full coupled electron density are depicted
in Figure 5. The excitation process follows with slight delay
the profile of the resonant light pulse (Figure 3). Close to its
maximum we observe a slight backtransfer from S2 to S0.
Thereafter the S2 population smoothly further increases up to
nearly 100% reached at 52 fs. Toward the end of the pulse (at
60–70 fs) about 5% of the population is transferred back to the
ground state. In total, 92% of the population was promoted into
the S2 state. With the naked eye nearly no variation is visible
in the temporal evolution of the full electron density (top row
Figure 5). However, studying the difference in density (bottom
row) recorded with respect to the one at t = 0 fs the change
in the bonding/anti-bonding pattern of the π-system becomes
observable. In addition the deplanarization of the molecule leads
to changes in the σ -system. The corresponding snapshots of the
1e-2o-density can be found in Supplementary Figure 4.

The temporal evolution of the induced dipole moment (DM)
is determined with and without the coherent part of the coupled
electron density included. The difference 1DM is used to
monitor the part of the dipole moment which is induced by the
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FIGURE 6 | Temporal evolution of the dipole moment components for (A) the calculation with the full density and (B) for the difference (1DM) between the dipole

moment calculated with and without the coherence term included. The 1DM are only shown for the for x- and y-components. The envelope of the excitation pulse is

indicated in gray. (C) Fourier spectra of x-1DM and y–1DM. All spectra are normalized to one. (D) Comparison of y–1DM (green) and the electric field of the

excitation pulse (black).

coherent electron dynamics. The DM components, the 1DM
along the x- and y-coordinate and their Fourier transforms are
shown in Figure 6. In addition also the comparison of the y–
1DM signal and the laser field is depicted. In the beginning of
the excitation process the wavepacket mostly remains near the FC
point and the molecular geometry stays planar in the xy-plane.
Therefore, up to 30 fs the z-component of the induced dipole
moment stays zero. After this period the wavepacket movement
toward the S2 minimum breaks up the planar structure and
small modulations of the z-component are observed. Compared
to the other two components it does not change significantly
and is neglected for the further analysis. Regarding the x- and
y-components of the DM, two main features are apparent.
There is an overall increase (y-component), respectively decrease

(x-component) in the DM which is modulated by a slow
oscillation with a period of about 40 fs caused by the initial
nuclear wavepacket motion around the S2 minimum. The
second feature is an extremely fast oscillation which is especially
dominant in the range of 10–45 fs. With the help of the 1DM
components (Figure 6B) these fast oscillations can be attributed
to the coherent electron dynamics. Close to the pulse maximum
a pronounced destructive interference appears around 35 fs
which coincides with the slight backtransfer of the population
(Figure 3). The Fourier transforms (Figure 6C) of the two 1DM
signals clearly reveal that both components share the same main
frequencies at 6.18 eV. These frequencies agree very well with
the excitation frequency of 6.12 eV. A table of all observed
frequencies with an intensity larger than 0.1 can be found in
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FIGURE 7 | Time-windowed Fourier transform of the y-component of 1DM.

The Fourier spectrogram is normalized and a Gaussian window function with a

width of 120 data points corresponding to a time of 2.9 fs is used.

Supplementary Table 1. If we now compare the time evolution
of the electric field of the pulse with the evolution of y–1DM
(Figure 6D) this good agreement is confirmed and furthermore
a maximum phase shift of about 0.5π between the field and the
coherent part of the induced dipole moment can be recognized as
expected [62, 63]. That means there is a briefly delayed response
of the electron dynamics to the laser pulse. Also the beginning
of the destructive interference of the electron wavefunctions at
33 fs is visible. In a final step of the analysis we have used a time-
windowed Fourier transform of the y–1DM signal to determine
the time at which the observed frequencies occur. In Figure 7 the
result of the time-windowed Fourier transform is shown applying
a Gaussian window function with a width of 120 data points
corresponding to a time of 2.9 fs.

In the spectrogram only frequencies in an energy window
between 5.5 and 7 eV are visible. During the simulation these
frequencies are occurring twice, once between 10 and 45 fs
with the maximum being located between 25 and 35 fs, and
a second time much weaker from 60 fs onward. The first one
is directly induced by the laser pulse and the starting point
of this signal matches with the beginning of the population
transfer into S2 state. The second occurrence takes place at the
end of the excitation pulse. Until then parts of the wavepacket
traveled back to the FC area and are again resonant with the
excitation pulse. This enables backtransfer from the S2 state to
the ground state creating again non-zero nuclear overlap terms in
Equation (10) and thus coherent electron dynamics. As described
in the theory section instead of using the total coupled electron
density it is also possible to perform the calculations in the
1e-2o picture (see Equation 14). Besides small deviations, the
results in the 1e-2o picture are quite similar and can be found
in the Supplementary Material. A complete summary of all

FIGURE 8 | Molecular orbital schemes for the S2 −→ S1 relaxation with the

active electron indicated in green and corresponding orbitals at the

Franck-Condon point. Orbitals are shown with an isovalue of 0.05.

performed analyses of the coupled electron density can be found
in Supplementary Section IIIA. In summary, the laser pulse
builds up electronic coherence in the molecule. The subsequent
nuclear movement leads to decoherence within 10 fs, but about
40 fs later a weak reappearance of the signal due to laser coupling
is observed.

3.2. Conical Intersection Induced Dynamics
Since the coupled dynamics of the excitation process is well-
described in the 1e-2o picture, we also performed the simulation
for the conical intersection induced dynamics in this picture. The
two active orbitals which are required to describe the NEMol-
dynamics according to Equation (14) are shown in Figure 8 at
the FC point. In this simplified picture the CoIn dynamics is
characterized by the transfer of one electron from a non-bonding
orbital into a bonding π orbital.

The population dynamics in the time window from 75 to
200 fs and snapshots of the coupled electron density in the
1e-2o picture are depicted in Figure 9. The corresponding
snapshots obtained with the full electron density are show in
Supplementary Figure 11. A slow but steady decay of the S2
population indicating two shallow steps (from 110 to 160 fs and
from 170 to 200 fs) is visible. This rather continuous relaxation
process is due to the delocalized nature of the nuclear wavepacket.
In the 1e-2o picture the variation in the temporal evolution of
the electron density is clearly visible (top row Figure 9B). For
illustration also the difference in density with respect to the one
at t = 75 fs is depicted. The snapshots reveal a transition from an
exclusive non-bonding character at 75 fs to a mixed non-bonding
and π character at 195 fs. Over the observed time the majority
of the density is located at the upper oxygen atom, but the two
left carbon atoms gain more and more density and a π-bond
is formed.

For further analysis the temporal evolution of the induced
dipole moment calculated with and without the coherent part
of the electron density included was determined. The resulting
DM components, the 1DM of the x- and y-components and
their Fourier transforms are shown in Figure 10. In addition
the time-windowed Fourier transform of the y–1DM signal is
depicted there, applying a Gaussian window function with a
width of 2.9 fs. As for the excitation dynamics, the z-component
of the induced dipole moment does not play a major role and is
neglected also in the discussion of the CoIn induced dynamics.
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FIGURE 9 | (A) Temporal evolution of the population of the S1 and S2 state

during the time period between 75 and 200 fs. (B) Snapshots of the 1e-2o

electron density and the difference in density relative to the density at t = 75 fs

(green electron-loss, orange electron-gain) in the 1e-2o picture.The isovalues

used are 0.002, respectively ±0.0008.

In the overall picture the x-component exhibits a slow and rather
small increase, only the y-component shows significant changes
and decreases step-wise analogously to the population in S2.
Since the electron density moves mainly along the y-coordinate
(see Figure 9B), it is logical that this component changes most.
Superimposed weak and fast oscillations can be recognized for
the y-DM signal and to some extent also for the x-DM signal.
As in the previous analysis of the laser induced dynamics these
oscillations can be assigned to the coherent electron dynamics.
Using the 1DM components (see Figure 10B), intervals with
fast oscillations and with slow oscillations can be identified. For
the y-component the fast ones appear in the range from 75 to
100 fs, around 120 and 180 fs while the slow ones have larger
amplitudes and appear from 100 to 120 fs, 130 to 170 fs, and
after 180 fs. Correspondingly two prominent frequency bands
occur in the Fourier transforms (Figure 10C) of these two
1DM signals. For the y-component, e.g., the stronger band is
centered in a range from 0.25 to 0.75 eV and a weaker band
is located between 0.9 and 1.25 eV. A table of all observed
frequencies with an intensity larger than 0.1 can be found
in Supplementary Table 3. Again, as final step of the analysis

we performed a time-windowed Fourier transform of the y–
1DM signal using a Gaussian window function with a width
of 2.9 fs. Compared to the case of the laser induced 1DM
(see Figure 7) the spectrogram (Figure 10D) shows significantly
more structured signals. We observe two main peaks in an
energy range from 0 to 0.75 eV at 170 and 195 fs and additionally
many weaker signals in the same energy region, as well as for
higher frequencies (1.0–1.25 eV). The frequencies appearing at
early times (75–100 fs) origin from the first parts of the nuclear
wavepacket reaching the coupling region but not actually the
CoIn seam. This explains the higher energy reflecting the actual
energy gap 1E. Later at 100 fs also lower frequencies appear
as the wavepacket now hits the CoIn seam and the energy gap
between the states closes. From now on parts of the moving
nuclear wavepacket can be found close to the CoIn or in its
environment. The intense signals at 170 and 195 fs correlate
with the efficient transitions through the CoIn (see Figure 9A).
The same simulations were also performed to obtain the total
coupled electron density according to Equation (12). Comparing
the results of the full and the 1e-2o density, the same frequencies
and pattern are observed in the electron dynamics. However,
the intensities for the higher frequencies are dominant for full
density. The results for the full density can be found in the
Supplementary Material. A complete summary of all performed
analyses of the total coupled electron density can be found in
Supplementary Section IIIB.

In summary, two observations can be made from our NEMol
simulation of the conical intersection induced dynamics. The
first one is, that the CoIn induces coherent electron dynamics
which slows down the closer the system approaches the CoIn.
This is expected since CoIn’s equalize the time scales of the
electron and nuclear dynamics [16, 17]. The second aspect is
the longevity of the observed coherence. Due to the delocalized
character of the nuclear wavepacket parts of it induce almost
continuously coherence in the vicinity of the CoIn leading
to a long lived observable signal. This is in good agreement
with recently published simulations [52] of TRUECARS signals
(transient redistribution of ultrafast electronic coherences in
attosecond Raman signals) of the uracil S2/S1 CoIn. There,
the long lived signal of coherence is also observed and
the time-resolved vibronic frequency maps are in the same
energy region.

4. CONCLUSION

In this paper, we applied our ansatz for the calculation of the
coupled electron and nuclear dynamics in molecular systems
(NEMol) [28–32] to the nucleobase uracil. We use the recently
formulated extended version [32] operating on the NEMol-
grid. As the interplay between nuclear and electron dynamics
plays a crucial role in excitation processes as well as during
non-adiabatic transitions both situations were studied. The
NEMol ansatz treats the nuclear and the electron dynamics
both quantum-mechanically. The electronic wavefunctions are
propagated in the eigenstate bases and coupled to the nuclear
dynamics simulated on coupled potential energy surfaces.
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FIGURE 10 | Temporal evolution of the dipole moment for (A) the calculation with the 1e-2o picture density and (B) for the difference between the dipole moment

calculated with and without the coherence term included. The 1DM are only shown for the for x- and y-components. (C) Fourier spectra of x-1DM and y–1DM. All

spectra are normalized to one. (D) Time-windowed Fourier transform of the y-component of 1DM. The Fourier spectrogram is normalized and a Gaussian window

function with a width of 120 data points corresponding to a time of 2.9 fs is used.

With a simple approximation it was possible to simplify
the description of the excitation and relaxation processes by
expressing the total electron density in the one-electron-two-
orbital (1e-2o) picture [32]. In this work, both, the total
coupled electron density and the simplified 1e-2o picture,
were applied.

The NEMol simulations were used to study the photo-
excitation and the CoIn mediated relaxation in uracil. By
the choice of ultrashort light pulses these two processes are
temporally and spatially separated and can be treated separately.
During the excitation one electron is promoted from a bonding
π orbital into an anti-bonding π∗ orbital. This general change
is clearly visible in the NEMol dynamics but it also enables us

to analyze the excitation process in greater depth. As a possible
observable in an experiment we choose to focus on the induced
dipole moment. Studying its temporal evolution, fast oscillations
are observed which could be directly attributed to the coherent
electron dynamics. Their frequencies are close to the central
frequency of the excitation pulse. The coherent dynamics is
induced by the laser pulse and subsequent nuclear movement
leads to decoherence. A partial reappearance is induced at the
end of the laser pulse when the S2 wavepacket has reentered
the FC area. The good agreement between the results obtained
with the total electron density and that of the 1e-2o picture
supports that the simplified 1e-2o picture can be sufficient to
describe the coupled electron dynamics. This 1e-2o picture was
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used to monitor the coupled electron dynamics induced by the
S2/S1 conical intersection. The electronic coherence is induced
by parts of the rather delocalized nuclear wavepacket and its
recurrences at the CoIn and thus can be observed for long times.
The frequencies in the induced dipole moment are now rather
small, as expected since at the CoIn’s the electron dynamics
slows down [16–18]. A distinct modulation of these frequencies
is observed in the time-windowed Fourier transform reflecting
the movement of the nuclear wavepacket around the CoIn
seam. Both the longevity and the modulation of the coherence
by the nuclear motion is in good agreement with the recent
simulation of the TRUECARS signal of the uracil S2/S1 CoIn
[52]. Here, we demonstrated the capability of the NEMol ansatz
to describe the coupled nuclear and electron dynamics in a
complex molecular system like uracil. We were able to investigate
the electronic coherence that is built up by the laser excitation
and modulated by the subsequent nuclear motion. The following
relaxation via a conical intersection induces again electronic
coherence in the system, which is also treated within the NEMol
approach. The verified 1e-2o picture will allow to simulate even
larger system.
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A Bi-Axial Quantum State That
Controls Molecular Collisions Like a
Double-Slit Interferometer
William E. Perreault, Haowen Zhou, Nandini Mukherjee* and Richard N. Zare*

Department of Chemistry, Stanford University, Stanford, CA, United States

To control molecular scattering, we consider hydrogen molecules prepared in a coherent

superposition ofm states within a single rovibrational (v, j) energy eigenstate using Stark-

induced adiabatic Raman passage (SARP). Specifically, SARP can prepare a bi-axial

state of the HD molecule in which the HD bond axis exists simultaneously in two possible

alignments at right angles to one another with a well-defined relative phase. We show

that scattering from this biaxial state will interfere, resulting in a ϕ -dependent scattering

intensity distribution, where ϕ is the azimuthal angle about the collision velocity direction.

Using the scattering matrix extracted from our experiments on the rotationally inelastic

collisions of quantum state prepared HD at low temperatures, we calculate the differential

scattering cross-section dσ/d�, which shows an interference pattern as function of θ

and ϕ in the image plane perpendicular to the collision velocity. The calculated scattering

image shows that scattering from the bi-axial state directs molecules along well-defined

angles, corresponding to interference maxima. Thus, the bi-axial state behaves like a

double slit for molecular scattering. Moreover, by rotating the polarizations of the SARP

preparation lasers, we can control the interference thereby altering the scattering angular

distribution. This molecular interferometer, which experimentally measures the relative

phases of the scattering matrix elements, allows a direct test of theoretical calculations

on important, fundamental collision processes.

Keywords: interference, biaxial spatial distribution, angular distribution, molecular scattering, coherence

INTRODUCTION

Interference is a fundamental characteristic of the physical world that results from the intrinsic
uncertainty in which multiple definite pathways connect the initial and final states of a system
[1]. This uncertainty arises because, at the most fundamental level, a physical system is described
by a quantum mechanical wavefunction that defines the state variables probabilistically. While
interference plays an important role in controlling dynamics at the atomic scale, its effects are
generally impossible to discern at the macroscopic level because the presence of many quantum
states with randomly fluctuating phases either removes the interference or obscures its effects.
Control over the quantum state of the system is therefore a necessary prerequisite for the
interrogation of any interference effects in collision processes [2].

The progenitor of the quantum mechanical interference experiment is Young’s double-slit
experiment, where interference was observed as light passed through two different optical
pathways. A long series of more modern experiments has successfully demonstrated interference
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of this type using collimated monoenergetic beams of electrons,
atoms, and molecules [3–5]. In these experiments, constructive,
and destructive interference of two coupled pathways connecting
the impinging beam and the detector created positional maxima
and minima of particle detection probability in much the same
way as bright and dark optical fringes appeared in Young’s
experiment. Interference is only observed whenever the two slits
are separated by nearly the De Broglie wavelength of the particles,
meaning that finer and finer control is required as the mass of the
system is increased.

Quantum interference that arises from the wave nature of
matter contributes to the dynamics of many collision systems.
Using advanced techniques to prepare the quantum states of
isolated atomic and molecular systems, recent experiments have
illustrated the effects of these interferences on the integral or
differential cross section of the scattering process. In each of
these instances the interference effects resulted because of the
possibility of two or more pathways connecting the initial and
final states of the matter system. One dramatic example exists
in the photoionization of a diatomic molecule [6, 7]. Because
the electron is delocalized over two atomic centers, the nuclei
function analogously to a double slit in creating two distinct
pathways for the excited electron to leave the molecule, thus
generating an interference effect that has been measured in
the angle-resolved double photoionization of H2 molecules.
In addition to the photoionization half-reaction, signatures of
interference are also present in two-body collision processes
when the transformation involved is mediated by two separate
pathways [8–10]. Interference effects of this type have been
measured in the rotationally inelastic scattering of optically
excited states of small molecular systems including Na2 and
CO, where the interference occurred between the singlet and
triplet pathways [11]. Similarly, such interferences have been
observed in the reactive scattering of systems ranging from
H + H2 to Li + NaLi [12–16]. However, in most of the
prior experimental interrogations of scattering interferences, the
multiple pathways were determined entirely by the material
properties of the system, and therefore the interferences could
not be controlled experimentally.

With even more precise ability to define the molecular
quantum state, interference resulting from multiple quantum
mechanical pathways can be exploited to control the outcome
of a molecular collision [8, 10, 17–20]. This is achieved by
preparing the atom-molecule collision system in a phase coherent
superposition of quantum states. Because each state in the
superposition provides a distinct pathway to the scattering
output, control can be achieved by varying the amplitudes
and phases of the superposed states. An experimental example
can be found in the work of Nichols et al. who prepared
NO in a coherent mixture of even and odd 3-doublet states
by the application of a DC field, to study how an inelastic
scattering process is influenced by quantum interference between
the coherently coupled initial states [8]. In this paper, we will
consider the rotationally inelastic collision between a state-
prepared H2 molecule and a ground state He atom. Prior to
the collision event, the H2 has been placed in a specific target
state that consists of a coherent superposition of m states

belonging to a rovibrational (v, j) energy eigenstate. Here, the m
quantum number defines the projection of the rotational angular
momentum j on a suitable symmetry axis of the collision system.
Following preparation, collision with the He atom will induce
the 1j transition (v, j,m → v, jf ,mf ). The target state can be
expressed as follows:

ψT = exp(−iEv,jt/h̄)
∑

m

Cm

∣

∣v, j,m
〉

, (1)

where the coefficients Cm are the complex numbers representing
the time-independent amplitudes to find the target state in a
specific m sublevel. When calculating the probability density of
this state, |Cm|2 gives the population of the various m sublevels,
while the terms C∗

mCm′ (m 6= m′) are the off-diagonal elements of
the density matrix ρ̂ describing the coherences between different
m sublevels. As opposed to a rotational wavepacket [21–23], the
superposition in Equation (1) evolves with a single frequency
Ev,j/h̄ , and so the superposition is a temporally stationary
state, which is most desirable in a collision experiment. Optical
excitation can be used to prepare a degenerate superposition of
m states, thereby injecting optical coherence into the molecular
system. To prepare large atomic and molecular ensembles in
a coherent superposition of the m sublevels, many coherent
optical methods including stimulated Raman adiabatic passage
(STIRAP) [24–27], and Stark-induced adiabatic Raman passage
(SARP) [28–30] have been developed.

The inelastically scattered quantum state of the H2 molecule
can be expressed as:

ψP(v, jf , θ ,ϕ) =
∑

mf

Amf
(v, jf , θ ,ϕ)

∣

∣v, jf ,mf

〉

, (2)

where Amf
(v, jf , θ ,ϕ) is the probability amplitude to find the

scattered product (H2) in a rovibrational m eigenstate |v, jf ,mf 〉
within a unit solid angle along the direction |v, jf ,mf 〉 . The
polar angle (θ , ϕ) is defined in the center of mass coordinate
system with the Z axis oriented along the relative velocity of
the colliding partners. Equation (2) is fully general in that
it can describe a pure scattered state as well as one that is
coherently generated as a superposition of degenerate m states.
In this case, the collision process, be it reactive, inelastic, or
elastic, has transferred coherence (information) from the target
state defined by Equation (1) to the product state defined by
Equation (2). The product state coherence is determined by
the off-diagonal density matrix elements ρmfmf ′ proportional

to Amf
(v, jf , θ ,ϕ)

∗Amf ′(v, jf , θ ,ϕ).
In this paper, we consider theoretically a state-resolved

scattering experiment where the unpolarized differential
scattering cross section is measured as a sum over all
sublevelsmf :

dσ

d�

∣

∣

∣

∣

j→jf

=
∑

mf

|Amf
(v, jf , θ ,ϕ)|2. (3)

The scattering amplitude Amf
(v, jf , θ ,ϕ) may be expressed as:

Amf
(v, jf , θ ,ϕ) =

∑

m

Cm q(v, j,m,Ec → v, jf ,mf ), (4)
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where q(v, j,m,Ec → v, jf ,mf ) is the state-to-state reaction
amplitude within a unit solid angle defined by r̂(θ ,ϕ) in the
center-of-mass frame. For scattering with well-defined initial
momentum, the incoming orbital state is a plane wave described
by a superposition of many partial waves. Each of these
incoming orbitals is then scattered by the interaction potential to
produce multiple orbitals in the outgoing channel. A scattering
process can thus be regarded as the diffraction of the incoming
matter wave by the colliding partner, where the diffraction
efficiency is determined by the strength of the interaction
forces. The scattering amplitudes q(v, j,m,Ec → v, jf ,mf ) are
determined by the coherent sum over the contribution of all these
outgoing waves. These individual contributions are given by the
scattering matrix, which asymptotically connects the incoming
and outgoing orbital states and contains information about the
dynamics of the molecular interaction.

The measured state-resolved differential scattering cross-
section (unpolarized) is given by

dσ (θ ,ϕ)
d�

∣

∣

∣

j→jf
=

∑

mf

∣

∣

∣
Amf

(v, jf , θ ,ϕ)
∣

∣

∣

2

=
∑

mf

∣

∣

∣

∣

∑

m
Cm q(v, j,m,Ec → v, jf ,mf )

∣

∣

∣

∣

2

= dσ (θ ,ϕ)
d�

∣

∣

∣

Pop.
+

∑

m 6=m′
Cm

∗Cm′ Qmm′ .

(5)

Here, Qmm′ contains the phase information of the state-to-state
scattering amplitude q as follows:

Qmm′ =
∑

mf

q∗(v, j,m → v, jf ,mf )q(v, j,m
′ → v, jf ,mf ) . (6)

The population-driven term in Equation (5) is defined as follows:

dσ

d�

∣

∣

∣

∣

Pop.

=
∑

m

|Cm|2
∑

mf

|q(v, j,m → v, jf ,mf )|2. (7)

Equation (7) shows that without m state coherence, the collision
cross-section measured in a scattering experiment is determined
solely by them state population of the target state. This is because
without coherence each m state contributes independently to
the differential cross-section. As a result, no information about
the phase of the state-to-state scattering amplitude q can
be determined.

The second term on the right-hand side of Equation (5)
contains C∗

mCm′ terms, and thus gives rise to the interference
effects in the scattering angular distribution. Specifically, the
terms Qmm′ defined in Equation (6) give the products of
the state-to-state reaction amplitudes for two different initial
target states and |v, j,m′〉 that scatter into the same final
product state|v, jf ,mf 〉, thus describing interference between two
coherently tied input channels. The interference thus results from
the fact that eachm state in the superposition provides a possible
quantummechanical pathway connecting an incoming orbital to
an outgoing or scattered orbital. The m state superposition thus

behaves much like a multi-slit interferometer where the number
of slits, or the number of m states, and their separations, or
their relative phase, can be varied experimentally. The maxima
and minima of the resulting interference are determined by
the amplitudes as well as the relative phases of the complex
amplitudes Cm. However, if the molecules are not prepared in a
phase coherent superposition ofm states, the effect of these cross
terms vanish, 〈CmCm′∗〉 = ρmm′ ≈ 0 for m 6= m′, where the
angular bracket represents the ensemble average.

We show in this paper that the outcome of a collision
experiment can be directly controlled using modulation of the
superposition of the target state. Further, we demonstrate that
the interference in the state-resolved differential scattering cross-
section for molecular targets prepared in addressable quantum
states is a useful probe for both the magnitude and the
phase of the state-to-state reaction amplitudes q(v, j,m,Ec →
v, jf ,mf ). To illustrate these points, we consider the molecular
interferometer created by preparing specific superpositions of m
states, including an entangled biaxial state, of the HD molecule
and show the interference effects in the rotational relaxation of
these state-prepared HD by collision with a ground-state He
atom. Our work here parallels a recent theoretical study that
investigated coherent control using m state superposition in the
F+H2 reaction [31].

A MOLECULAR INTERFEROMETER
ILLUSTRATED BY PREPARING HD
MOLECULES IN A SUPERPOSITION STATE

The molecular interferometer discussed in this work has been
previously prepared using SARP [28, 32]. SARP accomplishes
population transfer by manipulating the crossings of the optically
dressed adiabatic states using a pair of partially overlapping
nanosecond laser pulses of unequal intensities. The dynamic
Stark shift from the intense laser pulse controls the crossing
of resonance. A large population is adiabatically transferred to
the target state in the presence of a strong two-photon Rabi
frequency as the Stark-shifted detuning slowly passes through the
Raman resonance. The molecular axis orientation is controlled
by the polarization of the two laser pulses. A comprehensive
description of SARP can be found elsewhere [29, 30, 33, 34].
Figure 1 describes the geometry of SARP excitation where the
lasers propagate along the Y axis, while their polarizations are
confined to the XZ plane. By rotating the pump and Stokes laser
polarizations, various molecular axis orientations can be realized
as shown in Figure 1B. Throughout this paper, we will consider
the Z axis as the angular momentum quantization axis.

We consider three specific axis alignments, shown in
Figure 1B as well as the top panel of Figure 2 below. The
simplest, called HSARP, is prepared when α = 0 and β =
0 and consists of only |m = 0〉. Because HSARP is a pure
uniaxial state preferentially polarized along the collision velocity
axis, the density matrix has only one element ρmm = 1 .
Choosing both polarizations perpendicular to the Z axis (α =
0,β = π/2) creates the superposition state (−1/2) |m = 0〉 +√
3/8 |m = ±2〉 with non-zero off diagonal density matrix
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FIGURE 1 | (A) The coordinate system used in this paper. The Z axis is the direction of the molecular beam, which defines the collision velocity, while the laser

propagates along the Y axis. The polarization of the pump and Stokes lasers are in the XZ plane, and their directions are given by the angles β and α. The scattered

particles are imaged in the XY plane. (B) Axis distributions for the three specific alignment states discussed in the paper shown with the plane of the page as the XZ

plane.

elements called VSARP. However, it is possible to diagonalize
its density matrix by appropriate rotation of the coordinate
system because VSARP is a uniaxial state preferentially polarized
perpendicular to the collision velocity axis. Rotating only one
polarization away from the Z axis (α = π/2,β = 0) produces the
state |m = ±1〉 /

√
2 called XSARP. The off-diagonal elements are

ρmm′ = −1/2 form 6= m′, |m| = |m′| = 1. The XSARP state is
a biaxial, and so there is no coordinate rotation that transforms it
to a pure state. The presence of two simultaneous axis alignments
provides two possibilities for the rotationally inelastic scattering.
The two distinct pathways connecting the initial and the final
scattering states will interfere, making XSARP the molecular
scattering analog of an optical double-slit experiment.

To show the interference effects in molecular collisions
produced by a superposition of m quantum states, we consider
the specific example of cold, rotationally inelastic hydrogen-
helium scattering. We have previously studied cold HD (v
= 1, j = 2) → (v = 1, jf = 0) rotational relaxation via
collision with a ground state He atom [35]. These collisions
were confined within a single supersonic beam moving along
the Z axis in Figure 1, thus precisely defining the collision
geometry. Figure 2 shows the calculated differential scattering
cross-section dσ (θ ,ϕ)/d� given in Equation (5), which we also
call the scattering image, in the X-Y plane. The scattering image is
calculated using the experimentally determined scattering matrix
from our earlier work. In this calculation, each of the scattering
amplitudes q(v, j,m,Ec → v, jf ,mf ) is expanded in terms of the
outgoing partial waves with complex amplitudes proportional to
the scattering matrix element SJ

(

j = 2, l; jf lf
)

. Here, l and lf give
the orbital angular momentum of the incoming and outgoing
orbitals, respectively, and J gives the total angular momentum,
which is conserved in the collision process. A detailed description

of the scattering calculation can be found in our publications [32,
35, 36] and is briefly reproduced in the Supplementary Material.
Although we have considered here a specific example of 1j =2
rotational relaxation with a single final state (jf = 0,mf = 0), our
treatment will remain valid even if there are multiple final states.
For example, in 1j = 1 transition with (jf = 1, mf = 0, ±1), the
scattered intensity will be just the sum of the intensities for each
individualmf state shown in Equation (5).

The second panel in Figure 2 shows the image of scattered
HD (v = 1, jf = 0) for the HSARP, XSARP, and VSARP axis
orientations. The cylindrical symmetry of HSARP about the
collision velocity is readily reflected in the scattering image
shown in Figure 2A. The cylindrical symmetry about the Z-
axis is broken for the VSARP orientation as seen in Figure 2C.
The scattering image for the XSARP orientation in Figure 2B

differs drastically from the HSARP and VSARP images. For the
XSARP scattering not only is the azimuthal symmetry about
the collision velocity broken, two bright interference fringes
separated by a dark region in the center of the image are created.
The dark center corresponds to a complete absence of the intense
forward and backward scattering present for the HSARP and
VSARP orientations. We note that the XSARP axis orientation
scatters particles in well-defined directions in space much like
a grating interferometer for optical waves. The third panel of
Figure 2 shows the ϕ dependence of the scattering images for
the three axis distributions. The scattering intensity as a function
of ϕ was calculated by integrating dσ (θ ,ϕ)/d� over all polar
angles θ . The characteristic interference pattern for the XSARP
makes it clear that the scattering of this state acts like a classic
double-slit interferometer for molecular scattering. Because of
the symmetry about the collision velocity, HASRP does not
produce any ϕ dependency. The VSARP orientation breaks
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FIGURE 2 | Controlling molecular collision using m state superposition of three orientations: (A) HSARP |m = 0〉 obtained with pump and Stokes polarizations given

by α = 0, β = 0 in Figure 1. (B) XSARP: |m = ±1〉 /
√
2 obtained with α = π/2, β = 0. (C) VSARP: (−1/2) |m = 0〉 +

√

3/8 |m = ±2〉. Here the plane of the page is

the XY image plane shown in Figure 1A, which is perpendicular to the collision velocity along Z. The top panel gives the axis distributions and the collision geometry.

The second panel shows the scattered images of rotationally relaxed HD (v = 1, jf = 0, mf = 0). The third panel shows the ϕ dependence of the scattering images.

the cylindrical symmetry about the collision velocity axis and
modulates the scattering intensity as a function of ϕ. However,
compared to XSARP, the ϕ dependence is much weaker because
VSARP is still a uniaxial state and therefore does not act as a
double-slit interferometer.

Figure 3 compares the scattering images for the XSARP and

VSARP orientations calculated with and without the coherence
terms. For the right-hand images with coherence turned off,

the calculation is performed by setting the off-diagonal density

matrix elements ρmm′ = CmCm′form 6= m′ to zero. As described
by Equation (7), in the absence ofm state coherence the scattering
angular distribution is determined by the m state populations.
The cylindrically symmetric scattering angular distributions
shown in Figure 3 prove that the symmetry about the collision
velocity can be broken only by introducingm sublevel or Zeeman
coherence.

TESTING THE S-MATRIX USING THE
MOLECULAR DOUBLE-SLIT
INTERFEROMETER

An optical interferometer measures the phase shift between two
optical waves. Given the direct parallel between the XSARP state
and an optical double slit, this molecular interferometer ought
to be able to measure phase shift of the scattered waves. The
scattering image is generated as the coherent sum of the many
partial waves, whose complex amplitudes are determined by the
scattering matrix elements. To calculate the images shown in
Figure 4, the phase of one of the scattering matrix elements was
varied from 0 to π . As the phase of the chosen scattering matrix
element is changed by relatively small increments from 0.6 to
0.8π , the calculated image changes dramatically, demonstrating
the power of the molecular interferometer as an experimental

Frontiers in Physics | www.frontiersin.org 5 May 2021 | Volume 9 | Article 67199744

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Perreault et al. Double-Slit Interferometer for Molecular Scattering

FIGURE 3 | The effect of the coherent interfering terms given in Equation (6) on the scattering images of rotationally relaxed HD (v = 1, jf = 0, mf = 0) for the VSARP

and XSARP axis orientations. The scattering images including the coherence terms are given on the left side, while those without are given on the right side. Clearly,

the m state superposition breaks the ϕ symmetry.

tool to interrogate the scattering matrix. This tool may be
instrumental in resolving the many disagreements between
experiment and theory that persist for even the simplest low
temperature atom-diatom scattering. This is especially true for
all-important scattering resonances, where the phase of the
scattering matrix becomes more sensitive to the exact structure
of the long-range potential.

CONTROL OF MOLECULAR DIFFRACTION
BY ROTATING THE POLARIZATION OF
THE PREPARATION LASER

Figure 5 shows how the diffraction by the molecular grating
can be controlled simply by rotating the polarization of one
of the preparation lasers. In these examples the different
axis distributions are generated by rotating the Stokes laser

polarization angle (α) in the XZ plane, while the pump laser
polarization is kept fixed parallel to the X axis corresponding to
β = 90

◦
(see Figure 1). The oriented rovibrational (v, j= 2) state

can be expressed as:

|ψ〉 =
∑

m′

[

cosα d
j=2
0m′ (β)|m = 0〉 + sinα√

2
(d

j=2
1m′ (β)|m = 1〉

−d
j=2
−1m′(β)|m = −1〉)

]

(8)

In Equation (8) d
j=2
mm′(β) represents the Wigner rotation matrix

for the j = 2 rotational state. Figure 5 illustrates the control
of scattering using four specific axis distributions obtained by
varying the Stokes polarization according to (a) α = 0,β =
90

◦
, (b) α = 30

◦
,β = 90

◦
, (c) α = 60

◦
,β = 90

◦
, (d)

α = 90
◦
,β = 90

◦
. Figure 5 shows that the three-dimensional
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FIGURE 4 | Scattering images of rotationally relaxed HD (v = 1, jf = 0, mf = 0) calculated by varying the phase of one of the scattering matrix element

SJ=2 (j = 2, l = 2; jf = 0, lf = 2) (see Supplementary Material). From (A)–(F), the six images are calculated using phases of 0, 0.6π , 0.65π , 0.75π , 0.8π , and π .

scattering distribution changes in a spectacular way as the axis
orientation changes from VSARP (a) to XSARP (d) with rotation
of the angle α by90

◦
.

CONCLUSION

We have shown that a coherent superposition of degenerate
m states within a single rovibrational eigenstate behaves like a
multi-slit interferometer for molecular scattering. To illustrate
this idea, we considered the 1 j = 2 rotationally inelastic
scattering of HD prepared in coherent superpositions of m
states within a single (v = 1, j = 2) eigenstate using SARP.
The m sublevel coherence breaks the symmetry about the
collision velocity direction. Each m state in the superposition
provides a quantum mechanical pathway connecting the initial
and final state in the collision process that gives rise to the
interference pattern in the azimuthal angle ϕ, the coordinate
canonically connected to the Z component of the angular
momentum. In particular, we showed that the coherently

mixed m = ±1 biaxial state of HD behaves like an optical
interferometer producing interference fringes for the scattered
intensity as a function of ϕ. The two phase-locked orientations
of the molecular axis create two distinct quantum mechanical
pathways, and so this molecular interferometer provides a
proof of fundamental quantum mechanical principles. The
biaxial state has already been prepared and used in scattering
experiments in our laboratory, and so demonstration of
these interference effects is highly experimentally feasible.
We further showed that the phase of the scattering matrix
can be measured using such a molecular interferometer. We
also demonstrated that the coherent superposition can be
used to control molecular scattering by spatially directing the
scattered molecules in much the same way a multi-slit grating
interferometer diffracts optical waves. Because the polarization
directions of the pump and Stokes laser pulses determine
the m state superposition, they can be used to control the

interference effects in the scattering process. Such control is

not limited to inelastic scattering, the m state superposition
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FIGURE 5 | Control of molecular scattering by laser polarizations. Here, the pump laser polarization is kept fixed parallel to the X axis, corresponding to β = 90◦, while

the Stokes laser polarization is rotated from α = 0 (A), 30 (B), 60 (C), to 90◦ (D). The axis distributions shown in the bottom panel are given with the plane of the page

as the XZ plane. The top panel shows the calculated scattering images of rotationally relaxed HD (v = 1, jf = 0, mf = 0), demonstrating that the maxima of the

scattering can be directed at different positions.

can control elastic and reactive scattering processes as well
[9, 37, 38].
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Laser-Induced Control of the Optical
Response of Aluminum
Phthalocyanine Chloride Complexes
Dissolved in Ethanol
Carina da Costa Castanheira*, Andreas Persch, Paul Birk, Christian Ott* and Thomas Pfeifer*

Max Planck Institute for Nuclear Physics, Heidelberg, Germany

We show that absorption spectra of aluminum chloride phthalocyanine (AlClPc) in the liquid
phase can be dynamically modified through the time-resolved interaction with a second
laser pulse during a time window on the order of 100 fs. The observed effects can be
explained by laser-induced coherent coupling dynamics between the ground state and a
bath of excited states as reproduced by a few-level toy model. The presented results help
to understand how intense laser fields interact with complex molecules in solution, but in
their laser-controlled response still much alike isolated atoms in the gas phase. This
understanding can, in the future, be used to modify and control the dynamics in complex
systems.

Keywords: transient absorption spectroscopy, coherence in the liquid phase, atom-likemulti-level simulation, laser-
induced control of the optical response, aluminum phthalocyanine chloride

1 INTRODUCTION

Coherent laser-control concepts are widely used to efficiently control matter [1–3]. In the gaseous
phase the optical response of atomic and molecular targets can be controlled by XUV-NIR multi-
pulse experiments which have been understood through laser-induced couplings between isolated
electronic states [4–7], and also including vibrational couplings [8–12]. This approach also includes
the possibility to selectively modify and control the dipole response with intense fields [13–15]. For
more complex systems of molecules dissolved in the liquid phase, the intricacy of coherent light-
matter interaction increases, where typically the coupling to a bath leads to rather rapid decoherence
effects [16–20]. Nevertheless, coherent control concepts have been realized in these systems [21–23]
and can also be understood through atom-like modeling [24, 25]. Based on existing dynamic
coherent-control concepts which have been already established in the XUV-NIR spectral region on
gas phase targets [14, 26, 27] it is the goal of this work to expand the dynamic control of absorption
spectra to the liquid phase using time-resolved absorption spectroscopy in the visible (VIS) to near-
infrared (NIR) regime.

The conceptual idea of measuring and controlling the optical dipole response of the system is
presented in Figure 1. A weak excitation pulse induces a freely decaying dipole moment at time t � 0,
which itself interferes with the electric field of the excitation pulse. This interference leads to the
characteristic (unperturbed) static absorption spectrum of the system that is imprinted on the
excitation pulse spectrum. When a control pulse subsequently interacts (at time t � τ > 0) with the
initially induced dipole moment it can be coherently modified, which is also known as perturbed
free-induction decay [28–30]. This leads to characteristic spectral modifications of the absorption
spectrum of the excitation pulse [5, 7, 14]. Hereby it should be noted that a grating-based

Edited by:
Philip Bucksbaum,

Stanford University, United States

Reviewed by:
Arkaprabha Konar,

Kent State University, United States
Marcos Dantus,

Michigan State University,
United States

*Correspondence:
Carina da Costa Castanheira

dacosta@mpi-hd.mpg.de
Christian Ott

christian.ott@mpi-hd.mpg.de
Thomas Pfeifer

thomas.pfeifer@mpi-hd.mpg.de

Specialty section:
This article was submitted to

Physical Chemistry and
Chemical Physics,

a section of the journal
Frontiers in Physics

Received: 10 November 2020
Accepted: 04 May 2021
Published: 31 May 2021

Citation:
da Costa Castanheira C, Persch A,

Birk P, Ott C and Pfeifer T (2021) Laser-
Induced Control of the Optical

Response of Aluminum
Phthalocyanine Chloride Complexes

Dissolved in Ethanol.
Front. Phys. 9:627826.

doi: 10.3389/fphy.2021.627826

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 6278261

ORIGINAL RESEARCH
published: 31 May 2021

doi: 10.3389/fphy.2021.627826

49

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.627826&domain=pdf&date_stamp=2021-05-31
https://www.frontiersin.org/articles/10.3389/fphy.2021.627826/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.627826/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.627826/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.627826/full
http://creativecommons.org/licenses/by/4.0/
mailto:dacosta@mpi-hd.mpg.de
mailto:christian.ott@mpi-hd.mpg.de
mailto:thomas.pfeifer@mpi-hd.mpg.de
https://doi.org/10.3389/fphy.2021.627826
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.627826


spectrometer (not shown in Figure 1) intrinsically performs the
Fourier transform and thus a time-integrated spectral
measurement is carried out, which includes both the excitation
pulse at t � 0 and its (possibly perturbed; in the presence of the
control pulse) dipole response for t > 0. This concept thus invokes
a time-domain picture of light-matter interaction where the
absorption of light is understood in the impulsive limit of a
time-domain (dipole) response function, the laser control of
which is only possible while the system still reacts coherently
upon the initial (excitation-induced) impulsive stimulus, which is
here realized experimentally. The full real-time action of the
control pulse on the system’s dynamics can in principle be
retrieved from the measured absorption spectrum provided a
sufficiently short excitation pulse is used [15].

With this understanding laser-induced coupling dynamics can
be extracted across isolated atomic [6, 13, 31], molecular [9, 10]
and also more complex resonances [25]. Here, we apply these
laser-control concepts of absorption spectra and the dipole
response to a larger system of an organo-metallic complex in
the liquid phase to explore new possibilities to dynamically
control the system’s absorption properties. Therefore we
experimentally and computationally explore the impact of a
laser field on a molecular coherence, which is encoded in the
weak-field excitation-only absorption spectrum, by applying the
concept of the induced dipole moment and its manipulation. We
further confirm this approach by reproducing the measured
coherent effects of the dynamically modified dipole response
by using a numerical atom-like few-level toy model.

In this work our target of interest are aluminum
phthalocyanine chloride (AlClPc) complexes dissolved in

ethanol. Due to their outstanding electronic and optical
properties phthalocyanines in general enjoy a variety of
industrial and medical applications such as solar cells [32, 33]
and photodynamic therapy (PDT) of tumors [34–36].
Phthalocyanines are thermally and chemically stable and can
therefore sustain also slightly more intense electromagnetic
radiation, which makes them adequate candidates for the
interaction with intense laser fields in the liquid phase. Their
absorption is mostly governed by a π − πp transition of the 18
delocalized π-electrons of the phthalocyanine ring resulting in
two characteristic absorption bands, the Soret- (300–350 nm) and
the Q-band (600–700 nm) [37]. The Q-band of AlClPc shows a
substructure consisting of the strong Q3 and weak Q2 and Q1
bands which are maintained also in solution in ethanol [38].

2 MATERIALS AND METHODS

To exert laser-induced control of the optical response of AlClPc
in the liquid phase we use a transient-absorption measurement
scheme “in reverse”: A weak (excitation) pulse to excite the
system, and a second stronger pulse—referred to as control
pulse—arriving later. Both pulses are in the visible spectral range.

The measurement concept is depicted in Figure 2. The
preceding weak pulse induces in the sample a freely decaying
dipole moment (blue) which can be understood as the coupling
between the ground state GS and the excited states of the Q-band.
The interference of the induced dipole response in time with the
weak pulse itself—both are in a fixed phase relationship—leads to
an (unperturbed) absorption spectrum which is dispersed by a

FIGURE 1 | Schematic illustration of controlling the optical dipole response. The excitation pulse (depicted in blue) initiates the system’s dipole response d(t) at time
t � 0 which thereafter evolves freely in time (blue solid curve) for t>0. At time t � τ a control pulse (depicted in orange) interacts with the dipole response, leading to a
perturbed dipole response (orange dashed curve), which thereafter deviates from the unperturbed dipole response (evolving in absence of the control pulse) for t> τ. See
also Ref. [14] for further discussions of this concept.
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grating and measured as a function of energy (see the
corresponding blue spectrum). If the control pulse arrives in
time before the coherent dipole response has decayed completely,
it is able to disturb the system by modifying the dipole response,
leading to changes in the measured weak-field absorption
spectrum (depicted in red color).

For the case of control-pulse first, that pulse does induce a dipole
moment with which the later arriving weak pulse can interact. This
effect is not seen in our measurements, since the control pulse (and
therefore the co-propagating control-induced dipole moment) is
spatially blocked after the sample. This is the reason why in our case

we are only sensitive to the weak-field induced dipole moment. The
difference in our experiment is thus rooted in the slightly non-
collinear geometry where in the far field (after the sample) the pulses
are detected spatially separate. Please note, due to the non-collinear
geometry, measuring the excitation pulse together with its dipole
response perturbed by the control pulse, any higher-order coherent
effects induced by the control pulse itself, including stimulated
emission induced by the control pulse [39], are not observed in
the measurement direction of the excitation pulse.

To generate broadband ultrashort laser pulses in the visible
spectral range we use a commercially available Ti:Sapphire

FIGURE 2 |Measurement concept. Pulses propagate from left to right, so, if considered temporally, real time increases from right to left. Therefore, the depicted
pulse arrangement shows a configuration for positive delay times, where the delayed control pulse modifies the excitation-pulse-induced dipole moment (depicted in
blue). Exemplary absorption spectra are shown for the case of very late control delays in blue (effectively “weak field only”) where the control pulse does not change the
dipole response anymore, as well as for the time delay τ � +40 fs, where the control pulse significantly perturbs the induced dipole moment. Black arrows denote
the position of the Q3-, Q2-, and Q1-band. The inset shows an atom-like level scheme which is used for our toy model.

FIGURE 3 | Fit of the instrumental response function on the mean lineout of the Q3-band as a function of the time delay. The fit function (1) was applied in the grey
shaded pulse-overlap area.
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multi-pass amplifier laser system (Femtolasers FEMTOPOWER™

HE/HR CEP4) with a 3 kHz repetition rate, approximately 3 mJ
pulse energy and a pulse duration of 20 fs full-width at half
maximum (FWHM). After nonlinear propagation in a hollow-
core fiber, a supercontinuum is generated which approximately
covers the spectral range from 500 to 1000 nm. Subsequently the
pulses are compressed with chirped mirrors. For this
measurement we use chirped supercontinuum pulses of 32.7 ±
0.8 fs (FWHM), determined by fitting the instrumental
response function on the lineout of the ground-state bleach of
the Q3-band over the time delay, as can be seen in Figure 3. This
helps to attenuate the peak intensities of the laser pulses to avoid
permanent damage of the sample. As a fit function we used a
convolution between a Gaussian, a Heaviside and an exponential
function:

ffit(t) � (( A����
2πσ2

√ e−
t2

2σ2) p (Θ(t) · (c + B · e− t
τ))) + b (1)

with c and b being constants representing the depth and the total
offset of the step, while A and B are constants for the amplitude of
the instrumental response function (IRF) and the exponential
decay, respectively, and σ denotes the width of the IRF and τ the
exponential relaxation time. We apply this fit in the gray shaded
pulse overlap area (Figure 3) near temporal overlap, i.e. before
the onset of more complex molecular dynamics at later times.

The experimental response-control setup is depicted in detail
in Figure 4. The collimated beam is divided into phase-
synchronized excitation and control beams by a custom-built
array of two iris apertures. The iris parameters are adjusted for the
control beam to obtain a bigger focus diameter than the excitation

beam. This ensures that the excitation-pulse-induced dipole
response can be globally modified by the control beam, fully
illuminating the excited sample volume. The preceding variable
metallic neutral-density (ND) filters allow for an independent
adjustment of the intensity of the beams. The time delay between
both beams is introduced by a two-component mirror consisting
of two mirrors separately mounted on piezo micrometer delay
stages (PIHera Piezo Linearstage P-622.1CD, Physik
Instrumente) which are hit by the laser beams under close-to
normal angle of incidence, allowing to access time delays up to
±1.7 ps. Shortly after the focusing mirror (with a focal length of
50 cm), both beams pass a broadband beamsplitter (Layertech
110105) which reflects 80% and transmits 20% of the two
beamlets. The transmitted part is used as a reference while the
reflected part is guided into the sample where control and
excitation beams spatially overlap with an intersection angle of
1.72 degree and a spot size of 150 μm FWHM diameter for the
excitation beam and 400 μm for the control beam. In both
pathways the control beam is blocked and only the excitation
beam and its reference replica are refocussed using two additional
focusing mirrors with a focal length of 50 cm each onto the slit of
a Czerny-Turner-type spectrometer (Acton SpectraPro,
Princeton Instruments). The excitation signal and reference
beams are spectrally resolved with a resolution of 1.7 meV by
a concave grating of 600 grooves/mm and detected with a spatial
offset on the same CCD camera chip (CoolSnap K4, Teledyne
Photometrics) as a function of the excitation-control time delay.

As a sample container, cyclic olefin copolymer cuvettes
(SpecVette™ manufactured by Aline Inc.) with 0.5 mm path
length and 25 μl volume were used. The solution of AlClPc
was prepared by dissolving 0.0042 g of AlClPc (purchased

FIGURE 4 | Experimental response-control setup. See text for details.—Note: The 2-split mirror, as well as the focusingmirror are experimentally hit under close-to-
normal angle of incidence. Increased angles are depicted in the illustration for a better schematic overview of the experimental setup.
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from Sigma Aldrich) in 0.01 ml of 99.9% ethanol (Uvasol® by
Sigma Aldrich) and was further diluted with distilled water with a
ratio of 3:1 which results in a solution with a concentration of
55 nmol/ml.

3 RESULTS

3.1 Experimental Results
For the measurements the excitation-beam average power was set
to 0.28 mW and the control average power to 4.0 mW which
correspond to on-target peak intensities of 3.2 · 1010 and
1.7 · 1011 W/cm2 respectively. The transmitted signal and
reference spectra were recorded for excitation-control time
delays between −180 and +150 fs with a step size of 1.33 fs,
where positive delays denote the excitation pulse preceding the
control pulse. Laser-inducedmodifications of the excitation-pulse
induced dipole response can therefore only take place for positive
time delays (τ > 0). With this in mind the optical density
OD(ω, τ) is calculated according to Beer-Lambert’s law:

OD(ω, τ) � −log10
Isig(ω, τ)

c(ω) · Iref (ω, τ) (2)

with the signal and reference spectral intensity Isig and Iref
depending on both time delay τ and frequency ω. The factor
c(ω) is a calibration factor which corrects for the relative
intensities between the signal and reference beams which are
dependent on ω and mainly introduced by the beamsplitter. To
determine c(ω) a measurement is conducted beforehand with an
empty cyclic olefin copolymer cuvette in the focus. To
additionally ensure that the solvent does not introduce effects
which might be interpreted as a contribution from the coherent

response of the AlClPc complexes, a time-delay scan in the neat
solvent was conducted which showed no significant time-
dependent spectro-temporal structures. After this step the
actual measurement in the AlClPc complexes in ethanol are
conducted with the same settings.

The static absorption of AlClPc’s Q-band is depicted in blue in
Figure 2 and spans the spectral range between 1.80 and 2.08 eV. The
highest contribution to the ground-state absorption is attributed to
the Q3-band centered at 1.85 eV. The Q1-band is centered at
2.04 eV, while the Q2-band at 1.93 eV is only faintly visible. The
measured time-delay-dependent absorption OD(ω, τ) can be seen
in Figure 5. For a better visibility of the dynamic changes the relative
optical density [ΔOD(ω, τ)]was calculated by subtracting the weak-
field static absorption spectrum. The latter has been determined
through the average of the optical density for control-pulse time
delays between +150 and +140 fs, where the excitation-pulse
induced absorption is no longer influenced as can be seen in
Figure 5A. This can be rationalized since for late time delays the
laser control of the dipole response is no longer possible. The most
prominent feature which can be observed in Figure 5 is the decrease
in absorption of theQ3-band for negative time delays. This effect can
be explained by a ground-state bleach [40, 41]. In this case the
control pulse itself, when arriving first, triggers a significant amount
of population transfer into the excited states, which then leads to a
lowered ground-state absorption of the excitation pulse as expected
in conventional pump-probe transient absorption spectroscopy. For
positive times (control pulse arrives later than the excitation pulse) a
time-dependent modulation in the measured absorption spectrum
between 1.85 and 2.10 eV is observed. For a better visibility the area
of interest is marked in Figure 5B with a grey box. These slow
modulations can be observed for positive time delays only and up to
approximately +100 fs which implies that coherent modification of

FIGURE 5 | Time-delay traceOD(ω, τ) (A) and ΔOD(ω, τ) (B) of AlClPc complexes dissolved in ethanol. TheΔOD (B) underlines the control-induced changes of the
excitation-pulse induced dipole response in AlClPc. Faint rapid fringes along the time-delay axis are due to residual stray light of the control beam which optically
interferes with the excitation beam and occur symmetrically for both positive and negative times. At negative/positive times, the control pulse arrives before/after the
excitation pulse, where the latter is centered at time t � 0 and induces a coherent dipole response for times t>0. The grey boxmarks the area of interest where slow
spectro-temporal modulations of the measured absorption are visible. The color bars represent the magnitude of OD.
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the excitation-pulse induced dipole response is still possible at these
relatively long time scales even in the liquid phase. In addition a
slight splitting of the Q3-band for positive time delays between 0 and
+50 fs can be found.

To verify the origin of the observed effects a Fourier transform
along the time-delay axis for positive and negative times of the ΔOD
trace is performed separately and depicted in Figure 6. In atoms, this
procedure was used to reveal couplings of different energy levels by
plotting the Fourier energy over absorption spectral energy [14, 26,
31]. In these two-dimensional Fourier energy vs. spectral energy
representations, diagonals of slope ±1 that intersect the energy axis
have been previously identified to indicate the modification of the
coherent dipole response of that particular state for a variable time
delay between excitation and control pulses [14]. Furthermore,
enhancements in the Fourier amplitude along these diagonals are
indicative of a coherent coupling between different states [31]. Such
diagonals of slope ±1 can be observed in Figure 6A which arise at a
spectral energy of approximately 1.84 eV and hence can be further
associated to the Q3-band. Comparing the Fourier plots for positive
and negative time delays, Figure 6A shows rich structure, while in
Figure 6B only a globally enhanced signal around the Q3-band is
visible.

The significant qualitative difference between both Fourier
plots confirms that the observed diagonal features are associated
with laser-driven excited-state dipoles: for positive time delays the
control field is able to modify the freely evolving dipole response
of the excitation pulse. This qualitative difference between
Figure 6A,B therefore strongly suggests that the previously
introduced mechanism (Figure 1, 2) plays a significant role.
Further confirmation of the underlying origin of the observed
effects will be discussed in the following section by employing an
atom-like multi-level model calculation.

3.2 Atom-Like Multi-Level Toy Model
We implement a numerical toy model through the propagation of the
time-dependent Schrödinger equation in a multi-level system. Hereby

we approximate the Q-bands through an ensemble ofN � 300 closely
spaced states with respective energy widths of 2.2meV each. We have
ascertained that this choice of linewidth is sufficiently small to
reproduce quantum interferences over the time-delay range of the
measured data. In order to approximate theweak-field-onlywhite-light
absorption spectrum (depicted by the blue curve in the inset of
Figure 2), the 300 states are brought to a mutual overlap and are
equidistantly distributed over an energy range between 1.61 and
2.21 eV. Their respective real-valued transition dipole moments to
the ground state are set such that the simulated white-light absorption
spectrum agrees with the measurement, which is shown for
comparison in Figure 7A. To solve the time-dependent
Schrödinger equation

i
z

zt

∣∣∣∣ψ(t)〉 � H
∣∣∣∣ψ(t)〉 (3)

with

H � H0 +Hint (4)

a split-step algorithm [42] has been used. Under the assumption
that the Hamiltonian H is constant during each time step, this
routine solves the equations of motion iteratively for every time
step by changing between the diagonalized Hilbert spaces of the
unperturbed Hamiltonian H0 and the interaction Hamiltonian
Hint � d̂ · E(t) in the dipole approximation with the dipole
operator d̂ and the time-dependent electric field E(t). The
wavefunction

∣∣∣∣ψ(t)〉 � ∑ici(t)|Φi〉 can be represented as a
sum of time-dependent state coefficients ci(t) and the spatial
eigenstates of the system |Φi〉. The dipole response d(t) of the
system can therefore be calculated by

d(t) � 〈ψ(t)∣∣∣∣d̂∣∣∣∣ψ(t)〉 � ∑
m,n

dnmcn(t)cpm(t) + c.c., (5)

where dnm � 〈Φm|d̂|Φn〉. The dnm are chosen with the aim to
reproduce the measured (weak-field, excitation pulse only)

FIGURE 6 | Fourier plot for positive (A) and negative (B) time delays of the ΔOD(ω, τ) depicted in Figure 5B. Diagonals of slope ±1 pointing at a spectral energy of
approximately 1.84 eV can be observed in the Fourier plot only for positive time delays.
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absorption spectrum. Therefore the dipole matrix elements were
set such that the thereby generated absorption spectrum closely
matches the experimental data (Figure 7A). The final
Hamiltonian matrix then reads

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω0 d1,0E(t) d2,0E(t) . . . d300,0E(t)
d0,1E(t) ω1 0 . . . 0
d0,2E(t) 0 ω2 . . . 0

« « « 1 0
d0,300E(t) 0 0 0 ω300

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (6)

where E(t) � Eexcitation(t) + Econtrol(t − τ) is the sum electric fields
of both excitation and control pulses, and ωi represent the
complex eigenenergies of the states. The arrival time of the
excitation pulse is kept constant at t � 0 while the control
pulse is temporally varied with the relative time delay τ. The
pulses are implemented with a Gaussian envelope, an intensity
FWHM of 3 fs and a central photon energy of 1.70 eV.

The dipole spectrum ~d(ω) is obtained by Fourier-
transforming the dipole response d(t), and together with the
spectral representation of the electric field Ẽs(ω), the absorption
cross section σ(ω) can be calculated according to

σ(ω)∝ω · Im[ ~d(ω)
~Es(ω)], (7)

which reflects the interference of the excitation-pulse induced
dipole response with the excitation pulse itself, and their
propagation through the medium according to Maxwell’s
equations. The OD is in turn proportional to the absorption
cross section via

OD(ω) � −log10( I(ω)
I0(ω)) � Nalσ(ω)

ln(10) , (8)

where Na represents the number density of absorbers (i.e. AlClPc
molecules) and l is the length of the absorption volume. A more
detailed derivation of Eqs 7, 8 can be found [7].

To mimic the non-collinear experimental setup, an additional
wave-front averaging { Refs. [43, 44]} is performed by calculating
the absorption spectra with different carrier-envelope-phase
(CEP) values for the control pulse, while keeping the CEP of
the excitation pulse fixed, and subsequently taking the average of
the resulting absorption spectra. Using this procedure the optical
interference (heterodyne effect) between both optical pulses is
suppressed in the toy model. Experimentally this optical
interference is suppressed by the intersection angle of 1.72
degree which corresponds, together with the focal size of
150 μm, to a spread in delay of approximately seven full cycles
of the wavelength. Finally, the simulated time-delay trace was
convoluted with the instrumental response function, to account

FIGURE 7 | Simulated static absorption spectrum (A), time-delay trace (B) and Fourier plot (C) for positive time delays only. Panel 7B depicts the modeled optical
density over a time-delay range of 300 fs, where the color bar marks the magnitude of OD. The Fourier plot (Panel 7C) reveals diagonals with slope ±1 in a similar fashion
as seen in the experimental data. Negative time delays refer to control-pulse first, positive to excitation-pulse first.
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for the finite temporal and spectral resolution of the experiment.
The resulting time-delay trace, as well as the corresponding
Fourier plot (see discussion of Figure 5 above) are depicted in
Figures 7B,C.

To show the impact of the control-pulse intensity on the
manipulation of the excitation-pulse induced dipole response the
numerical toy model was additionally conducted for two more
intensities, half (Figure 8) and double (Figure 9) of the case

FIGURE 8 | Simulated time delay trace (A) and Fourier plot (B) for positive time delays only, but for the case of half the control-pulse intensity compared to Figure 7.
Panel 8A depicts the modeled optical density over a time-delay range of 300 fs, where the color bar marks the magnitude of the OD. The Fourier plot (Panel 8B) reveals
less pronounced diagonals with slope ±1 compared to the experimental data. As can be seen by lowering the intensity of the control pulse the structures upon the
absorption decrease. Negative time delays refer to control-pulse first, positive to excitation-pulse first.

FIGURE 9 | Simulated time delay trace (A) and Fourier plot (B) for positive time delays only, but for the case of double the control-pulse intensity of Figure 7. Panel
9A depicts the modeled optical density over a time-delay range of 300 fs, where the color bar marks the magnitude of the OD. The Fourier plot (Panel 9B) reveals
diagonals with slope ±1 in a more pronounced fashion compared to the experimental data. The Rabi-/Autler-Townes splitting for small time delays near resonance can
be observed to set in and grow with increasing control pulse intensity. Negative time delays refer to control-pulse first, positive to excitation-pulse first.
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shown in Figure 7. Hereby the results shown in Figure 7
reproduce the experimental results best.

As can be seen in Figure 8 by lowering the intensity of the
control pulse the structures upon the absorption decrease, while
for increasing the control-pulse intensity one enters the strong-
coupling limit. In this intensity region the control pulse is able to
strongly modify the excitation-pulse induced dipole moment,
leading to the splitting of the Q3-band which can already be seen
in Figure 7B and increases toward higher control-pulse intensity
(Figure 9). This band splitting is a Rabi-/Autler-Townes splitting
involving light-induced level shifts of strongly coupled states,
which can be observed to set in and grow with increasing control-
pulse intensity.

In our toy model we only consider states up to a total excitation
energy of 2.21 eV. Excitation of higher-lying states might also take
place in ourmeasurement but were neglected in the toymodel due to
lower relative population and thus have only a minor effect on the
strong coupling of the lower-lying states. A prominent representative
of such energetically higher-lying states is the Soret-band, which
could imprint coupling signatures induced by the strong control
pulse, which one could also try to identify by measuring its
subsequently decay to the Q-band by fluorescence emission [40,
45]. Additional influence due to the coupling to higher excited states,
like the Soret-band, may give rise to additional fine structures of the
observed time-delay dependent interference.

4 DISCUSSION

Comparing the measured time-delay-dependent absorbance
(Figure 5A) with the simulated trace (Figure 7B), a good
qualitative agreement can be observed for energies > 1.80 eV.
A discrepancy between the experimental and simulated data in
the low-energy region is present since not all coupling channels
are taken into account yet in the toy model to fully describe the
experiment. Including more couplings currently lies outside the
scope of this first study. Nevertheless the model reproduces the
slight splitting of the Q3-band between 0 and 50 fs, the decrease in

the overall absorption for negative time delays as well as the
hyperbolic structures converging toward the Q3-band.
Furthermore, also the Fourier energy plot in Figure 7C reveals
diagonals of slope ±1 linked to the center of the Q3 band at
spectral energy 1.84 eV, in qualitative agreement with the
experiment. All these effects can thus be realized and
understood with the described simplified atom-like multi-level
toy model, with its level scheme depicted in Figure 2. The good
structural agreement between experimental observation and the
model results shows that the dynamical mechanism at work in
this laser-driven AlClPc solution can be effectively approximated
in the coupled system of ground and excited states.

To summarize, we have observed time-dependent coherent
modifications of the ground-state absorption spectrum attributed
to the Q-band of AlClPc complexes in the liquid phase. By
comparing our measurements with an atom-like multi-level
toy model, we were able to qualitatively reproduce and
identify the spectro-temporal structures in the optical density
as a laser-induced coupling between the ground state and a bath
of excited states. Thus, by controlling the dipole response with a
time-delayed laser pulse it is possible to understand the coherent
ultrafast dynamics of complex systems in solution under the
influence of intense light fields.
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Electronic Currents and Magnetic
Fields in H+

2 Induced by Coherent
Resonant Bichromatic Circularly
Polarized Laser Pulses: Effects of
Orientation, Phase, and Helicity
André D. Bandrauk1*, Szczepan Chelkowski1 and Kai-Jun Yuan1,2†

1Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, 2Institute of
Atomic and Molecular Physics, Jilin University, Jilin, China

We theoretically study pulse phase and helicity effects on ultrafast magnetic field
generation in intense bichromatic circularly polarized laser fields. Simulations are
performed on the aligned molecular ion H2

+ from numerical solutions of corresponding
time-dependent Schrödinger equations. We demonstrate how electron coherent resonant
excitation influences the phase and helicity of the optically induced magnetic field
generation. The dependence of the generated magnetic field on the pulse phase arises
from the interference effect between multiple excitation and ionization pathways, and is
shown to be sensitive to molecular alignment and laser polarization. Molecular resonant
excitation induces coherent ring electron currents, giving enhancement or suppression of
the phase dependence. Pulse helicity effects control laser-induced electron dynamics in
bichromatic circular polarization excitation. These phenomena are demonstrated by a
molecular attosecond photoionization model and coherent electron current theory. The
results offer a guiding principle for generating ultrafast magnetic fields and for studying
coherent electron dynamics in complex molecular systems.

Keywords: magnetic field generation, intense laser pulses, coherent ring currents, multiple ionization pathways,
bichromatic circularly polarized pulse

1 INTRODUCTION

Imaging and manipulating molecular electron dynamics is one of the main goals in photophysical
processes and photochemical reactions. Advances in synthesizing ultrashort intense laser pulses [1,
2] allow one to visualize and control electrons on their natural attosecond (1 as � 10−18 s) timescale
and sub-nanometer dimension [3–6]. One important application of ultrashort circularly polarized
attosecond pulses is to produce strong magnetic field pulses from electronic ring currents in atomic
and molecular systems [7–13]. By creating unidirectional constant valence-type electronic currents
in molecules with circularly polarized UV laser pulses, static magnetic fields [7–9] can be efficiently
generated by the excitation of resonant degenerate orbitals. These laser-induced magnetic fields are
much larger than those obtained by traditional static field methods [14]. In [8], it has been found that
for the hydrogen-like atom, the existence of ring currents is related to the presence of the states
having nonzero magnetic orbital momentum magnetic quantum numbers. Surprisingly, the
strongest magnetic field originates from the 2p ± orbital in the hydrogen-like atom, which can
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be prepared via resonant 1s→ 2p ± transition. One also finds
that, in general, ring electronic currents are dependent on the
symmetry of the molecular orbitals. The helicity of driving
circularly polarized pulses [15] can be used to reconstruct
attosecond charge migration [16–19]. Linearly polarized laser
pulses can also induce excited ring currents by controlling the
rotation direction of π electrons in planar/nonplanar aromatic
molecules [20–22]. We have proposed methods previously to
create “spinning” continuum electrons which can be generated
and remain localized on sub-nanometer molecular dimensional
scales [23, 24], offering a way to produce high-order harmonic
generation (HHG). Time-dependent circular coherent electron
wave packets (CEWPs) and currents are created as superposition
of bound-continuum states. They thus become the source of
intense time-dependent internal magnetic fields generated on
attosecond timescale. The induced attosecond magnetic fields
have been shown to be a function of various laser pulse
parameters, such as the pulse intensity, wavelength, and
duration [25, 26], thus providing new tools for control of
ultrafast optical magnetism generation [27–31].

Investigating ultrafast electron dynamics by bichromatic
circularly polarized attosecond laser pulses with corotating or
counter-rotating components has been attracting considerable
attention in the field of light–matter interactions. It has already
been shown that counter-rotating intense ultrafast circularly
polarized pulses can induce re-collision, thus ensuring efficient
HHG [32–35], the new source of circularly polarized X-ray
attosecond pulses. These counter-rotating laser fields are now
being adopted to produce circularly polarized HHGwith nonzero
initial angular momenta [36–38]. With counter-rotating
circularly polarized laser pulses, the technique of double
optical gating can be efficiently employed for producing
isolated elliptically polarized attosecond pulses [39].
Bichromatic laser fields have also been adopted to probe
atomic and molecular structure by photoelectron momentum
distributions [40]. By combination of two circularly polarized
attosecond ultraviolet (UV) pulses, spiral electron vortices in
photoionization momentum distributions have been predicted
theoretically in both atomic [41–43] and molecular systems
[44–46], which are shown to be sensitive to the helicity of the
bichromatic fields. Recent experiments have demonstrated this
fact by focusing on multiphoton femtosecond ionization of
potassium atoms [47, 48]. Most recently, above-threshold
ionization obtained previously by a bicircular field has been
reported [49–52].

In this work, we present attosecond magnetic field generation
and electron currents under molecular resonant excitation in
bichromatic attosecond circular polarization processes. Such
ultrafast attosecond pulses have been generated by current
laser techniques from circularly polarized HHG [53–55].
Numerical simulations are performed on the aligned molecular
ion H+

2 at equilibrium by numerically solving the corresponding
three-dimensional (3D) time-dependent Schrödinger equation
(TDSE). Ultrafast magnetic field generation has been studied
previously by bichromatic circularly polarized laser pulses [56,
57]. It has shown that the interference effect between multiple
ionization pathway influences the magnetic field generation.

However, the effect of the coherent electron currents in
bicircular magnetic field processes under molecular resonant
excitation has not been presented. We focus here on the pulse
phase and helicity-dependent magnetic field generation. We
demonstrate molecular resonant excitation effects by
comparing the dependence of the generated ultrafast magnetic
field on the relative carrier-envelope phase (CEP) and the helicity
of pulses at different molecular alignments. It is also found that
attosecond charge migration arising from coherent resonant
excitation induces coherent electron ring currents in
molecules, leading to an absence of the CEP dependence.
Induced electron ring currents resulting from molecular
coherent resonant excitation are shown to be an important
factor in bichromatic magnetic field generation. These results
allow to control ultrafast magnetic fields, leading to molecular
attosecond charge migration dynamics. Since molecular
vibrational and rotational effects occur on the femtosecond
(1 fs � 10−15 s) and picosecond (1 ps � 10−12 s) timescales,
fixed nuclei simulations are valid and used to describe ultrafast
magnetic field generation processes on the attosecond timescale.

The article is organized as follow: We briefly describe the
computational method for solving TDSEs of the aligned
molecular ion H+

2 to simulate electron currents and magnetic
field generation in Section 2. The results of ultrafast magnetic

FIGURE 1 | Illustration of ultrafast magnetic field generation B under
resonant excitation of H+

2 aligned along the x/z axis by bichromatic co- and
counter-rotating circularly polarized XUV pulses E(t) with their field vectors
polarized in the (x, y) plane. Two excitation processes for the molecule
axis parallel and perpendicular to the laser (x, y) polarization plane, that is, (A) in
plane R ‖ E and (B) around axis R⊥E, are compared. (C) Molecular σg − π ±

u

resonant excitation and ionization are shown for different molecular
alignments, and corresponding evolutions of coherent electron wave packet
density distributions at different times. Protons are at ±R/2 � ±1 a.u.
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fields by intense bichromatic circularly polarized attosecond
XUV laser pulses are presented and discussed in Section 3. In
Section 4, we finally summarize our findings. Throughout this
article, atomic units (au) which are defined by setting Z � e2 �
me � 1 are used unless otherwise stated.

2 NUMERICAL METHODS

For the aligned molecule ion H+
2 within Born–Oppenheimer

approximation static nuclear frames, the corresponding 3D
TDSE in the cylindrical coordinate r � (ρ, θ, z) reads as

i
z

zt
ψ(r, t) � [ − 1

2
▽2

r + Ven(r,R) + VL(r, t)]ψ(r, t), (1)

with the Laplacian

−1
2
▽2

r � − 1
2ρ

z

zρ
(ρ z

zρ
) − 1

2ρ2
z2

zθ2
− 1
2

z2

zz2
, (2)

where Ven(r,R) is the electron-nuclear potential in which we
fixed the internuclear separation to the equilibrium separation
and |R| � 2 au. The circularly polarized laser pulse propagates
along the z axis, perpendicular to the (x,y) plane, with x � ρcosθ
and y � ρsinθ, as shown in Figure 1. The radiative interaction
between the laser field and the electron VL(r) � r · E(t) is
described in the length gauge for circularly polarized pulses of
frequencies ω1 and ω2.

E(t) � E1(t) + E2(t)
� Ef (t){ êx[cos(ω1t + ϕ1) + cos(ω2t + ϕ2)]

êy[sin(ω1t + ϕ1) + ϵ sin(ω2t + ϕ2)] , (3)

where êx/y is the laser polarization direction, and the symbol ϵ �
± 1 denotes the helicity of combined fields, that is, corotating
(ϵ � +1) or counter-rotating (ϵ � −1) components. ϕ1 and ϕ2 are
CEPs of the pulses E1(t) and E2(t), respectively. A smooth
sin2(πt/Tlp) pulse envelope f (t) for maximum amplitude E,
intensity I � Ix � Iy � cε0E2/2, and duration Tlp � nτ is
adopted, where one optical cycle period τ1,2 � 2π/ω1,2.

The 3D TDSE in Eq. 1 is propagated by a second-order split
operator method which conserves unitarity in each time step Δt
combined with a fifth-order finite difference method and Fourier
transform technique in the spatial steps Δρ, Δz, and Δθ [59, 60].
The initial electron wave function ψ(r, t � 0) is prepared in the
ground 1sσg state calculated by propagating an initial appropriate
wave function in imaginary time using the zero-field TDSE in Eq.
1. The time step is taken to be Δt � 0.01 au � 0.24 as. The spatial
discretization is Δρ � Δz � 0.25 au for a radial grid range
0≤ ρ≤ 128 au (6.77 nm) and |z| ≤ 32 au (1.69 nm), and the
angle grid size Δθ � 0.025 radian. To prevent unphysical
effects due to the reflection of the wave packet from the
boundary, we multiply ψ(ρ, θ, z, t) by a “mask function” or
absorber in the radial coordinate ρ with the form
cos1/8[π(ρ − ρa)/2ρabs]. For all results reported here, we set the
absorber domain at ρa � ρmax−ρabs � 104 au with ρabs � 24 au,
exceeding well the field-induced electron oscillation αd � E/ω2

1/2
of the electron [25]. The time-dependent probability current
density is defined by the quantum expression in the length gauge,

j(r, t) � iZ
2me

[ψ(r, t)∇rψ
*(r, t) − ψ*(r, t)∇rψ(r, t)], (4)

where ψ(r, t) is the exact Born–Oppenheimer (static nuclei)
electron wave function obtained from the TDSE in Eq. 1, and
∇r � eρ∇ρ + eθ∇θ/ρ + ez∇z is the momentum operator in
cylindrical coordinates. Then the corresponding time-
dependent magnetic field is calculated using the following
classical Jefimenko equation [61]:

B(r, t) � −e μ0
4π

∫ [ j(r′, tr)|r − r′|3 +
1

|r − r′|2c
zj(r′, tr)

zt
] × (r − r′)d3r′,

(5)

where tr � t − r/c is the retarded time and μ0 � 4π × 10− 7 NA−2

(6.692 × 10−4 au) is the permeability of free space. Units of B(r, t)
are teslas (1 T � 104 Gauss) if the elementary charge e is in
Coulombs. For the static zero-field time-independent conditions
occurring after the pulse duration, Eq. 5 reduces to the classical
Biot–Savart law, that is, B(r, t) � −e(μ0/4π)(v × r)/r3 [61]. Note
that the retardation effects due to r/c � 0.35 attoseconds (where
for an estimate r � R � 2 au. is used) are negligible.

Of note is that equation Eq. 4 defines the quantum probability
current (not the electric current) as defined in any quantum
mechanics textbook. The electron electric current used in the
Biot–Savart law in Eq. 5 is therefore jelectric � −ej. This explains
the sign (−) in Eq. 5, e � 1 in atomic units.

3 RESULTS AND DISCUSSIONS

The ground and excited states of H+
2 ion and its electron

potentials, 1sσg , 1sσu, 2sσg , 2sσg , 1πu, etc., are well
documented in [65]. Numerical solutions of the TDSE for H+

2
aligned with the laser polarization (x–y) plane, that is, R ‖ to the
x-axis with the electric field vector E(t) rotating in the (x,y) plane
(Figure 1A), are used for obtaining time-dependent probabilities
P(t) of the 1sσg and 2pπu states at equilibrium R � 2 au. excited by
a 70-nm pulse at two different intensities, I � 2× 1014 W/cm2 and
I � 1 × 1015I � 1×1015 W/cm2, by a five-cycle pulse (one cycle �
0.234 fs � 234 as). Thus, at I � 2 × 1014, Figure 2A, one sees no
significant ionization, whereas at I � 1 × 1015 W/cm2, Figure 2B,
the 2pπu state is 85% occupied, and still one sees little ionization.
In conclusion, short few-cycle intense and resonant pulses
contribute little ionization with major excitation of the
resonant state, such as the 2pπu state at 70 nm and some
Rydberg states above the 2pπu state shown in 1.

We investigate laser-induced highly nonlinear optical effects
using pairs of bichromatic circularly polarized laser pulses. We
use λ1 � 70 nm (ω1 � 0.65 au) circularly polarized pulse in
combination with λ2 � 35 nm (ω2 � 2ω1 � 1.3 au) circularly
polarized pulse. Pairs of circularly polarized harmonics of
different frequency and helicity can easily be prepared by a
combination of pairs of counter-rotating circularly polarized
laser pulses at different frequencies [62]. The molecular ion
H+

2 is aligned along the x/z axis, the two X-ray ultra violet
(XUV) pulses with their field polarization vectors in the (x,y)
plane propagate along the z axis, as illustrated in Figure 1A, for
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in-plane excitation, and Figure 1B for around axis excitation.With
the pulse frequencyω1 � ΔE and the energy difference
ΔE � Eπu − Eσg � 0.65 au, a resonant excitation with the ground
1sσg state and the excited πu electronic states occurs. Moreover,
with ω2 � 2ω1, such bichromatic laser pulses can also produce
CEWPs with the same kinetic energies, Ee � 2ω1 − Ip � ω2 − Ip, by
combination of multiple multiphoton transitions to Rydberg and
the continuum state, thus leading to electron interference between
the two ionization pathways. Since the induced electron currents
are localized in the laser (x, y) polarization plane, the generated
magnetic field is concentrated along the z axis. We therefore only
present the results of the magnetic field B along the z axis.

As illustrated in Figure 1C, the coherent resonant excitation
between the ground 1sσg state and the excited πu state by the λ1 �
70 nm circularly polarized laser pulse is dependent on the
molecular alignment. In the case of R ‖ E, the in-plane
degenerates perpendicular excitation, π ±

u ←σg for different
angular momenta Δm � ± 1 dominates, and the electron
density distribution evolves nearly perpendicular to the
molecular axis [63], whereas in the case of R⊥E, the produced
electron wave packets move around the molecular axis due to
individual π+/−

u ←σg transitions Δm � 1 or −1 [64]. Meanwhile,
two ω1 and single ω2 transitions to the continuum (2ω1 � ω2 > Ip)
occur, leading to interference effects between these two excitation
ionization channels. We show how coherent resonant excitation
influences the interference effect on the magnetic field generation.
We present the effects of the pulse phase on the attosecond
magnetic field generation under the resonant excitation with
various molecular alignments. Processes with different
helicities ϵ, that is, corotating (ϵ � +1) and counter-rotating
(ϵ � −1) pulse combinations, are compared as well.

3.1 Dependence of Generated Magnetic
Fields on Circular Error Probability and
Molecular Alignments
We first present the counter-rotating (ϵ � −1) dynamics. Figure 3
shows results of the generated maximum magnetic field B at the

molecular center r � 0 by intense single and bichromatic
circularly polarized attosecond pulses described in Eq. 3 [57].
Two cases of molecular excitation–ionization processes in the
molecular ion H+

2 aligned along a) the x axis, R ‖ E, and b) the z
axis, R⊥E, are compared for the bichromatic laser pulses with
their field polarization vectors in the (x,y) plane, as illustrated
in Figure 1. The corresponding generated magnetic fields mainly
lie in both cases along the z axis. The pulse wavelengths are,
respectively, λ1 � 70 nm (ω1 � 0.65 au) and λ2 � 35 nm
(ω2 � 1.3 au). We always fix the pulse intensities I � 1 ×
1014 W/cm2 (E � 0.0534 au) and durations Tlp � 48.3 au �
1.16 fs, corresponding to 580 as FWHM (full width at half
maximum), that is, 5τ1 for ω1 pulse and 10τ2 for ω2 pulse.
We also set the pulse CEP ϕ1 � 0 and vary the CEP ϕ2 from 0 to
2π, that is, the relative CEP is ϕ � ϕ2 − ϕ1 � ϕ2. Figure 3 shows
the CEP ϕ dependence of the generated magnetic fields with
different molecular alignments.

3.1.1 Resonant Excitation in the Case of In-Plane R ‖ E
For the case of in-plane excitation with the molecule axis parallel
to the laser (x, y) polarization plane as shown in Figure 1A, the
generated magnetic field B at the molecular center is critically
sensitive to the relative pulse CEP ϕ, as shown in Figure 3A. It is
found that as the CEP ϕ varies from 0 to 2π, B oscillates
periodically as cos(ϕ). The maximum and minimum values of
the magnetic field are B � 0.225 T and 0.165 T at ϕ ≈ 0 (or 2π)
and π, respectively. For comparison, we also simulate the results
of the induced magnetic field B with single-color circularly
polarized attosecond pulses at separated wavelengths λ � 70
and 35 nm. The other parameters are the same as those used
in Figure 3A. For the two single-pulse processes, the
corresponding maximum strengths of induced magnetic
fields at the molecular center are, respectively, B‖

ω1
� 0.194 T

and B‖
ω2

� 0.022 T. Due to the σg − π+
u resonant excitation, the

magnetic field induced by the resonant 70 pulse is much
stronger than that induced by the nonresonant 35-nm
pulse, B‖

ω1
≈ 8.8B‖

ω2
. The sum value of the generated

magnetic fields B‖
s � B‖

ω1
+ B‖

ω2
is slightly smaller than the

FIGURE 2 | Time-dependent probability density D(t) for in-plane excitation of (black solid line) the ground 1sσg state and of (red dashed line) the excited 2pπu by
λ1 � 70 nm (ω1 � 0.65 au) and 580 as FWHM circularly polarized UV laser pulses at two different pulse intensities: (A) I � 2 × 1014 W/cm2 and (B) I � 1 × 1015 W/cm2.
1-cycle � 234 as.
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maximum field B � 0.225 T of the bicircular process.
Comparing to the single-color circular processes, one notes
that the sensitivity of the induced magnetic field B to the CEP ϕ
in Figure 3A results from the interference effects between λ1 �
70 nm and λ2 � 35 nm optical processes.

From Eq. 4, 5, for a simple ring current flowing in the ring
having the radius r, one can derive a simple relation:

B ∼ Dv/r2, (6)

where D is the probability density and v is the electron speed. This
simple relation can be obtained in the following way: from the
quantum definition of the current given in Eq. 4 in which we assume
thatψ is the plane wave, that is,ψ � ��

D
√

exp(ip · r/Z), where p is the
electron momentum tangent to the ring, one gets after performing
the ∇ derivation a simple relation j � D p

me
� Dv as shown in [58].

Next, for the case of the electron current mainly localized in a plane
one gets from Eq. 5, that is, B ∼ j/r2 ∼ Dv/r2, we thus derived Eq. 6.

Thus, in Eq. 6, the magnetic field is proportional to the
electron probability density D and the electron velocity which
originates from the electron current density j � Dv [58]. Density
D for the case of resonant transitions corresponds to the excited
state transition probability, which is determined by the intrinsic
transition dipole of molecules and the electric field strength as
discussed in detail in Supplementary Appendix A2. Therefore,
the dependence of the generated magnetic field in Figure 3 on the
pulse CEP ϕ mainly comes from the transition probability D
which is influenced by the interference effect between color λ1 �
70 nm and λ2 � 35 nm pulse nonlinear optical responses, as
presented in Supplementary Appendix A1.

With the bichromatic counter-rotating circularly polarized
pulse at λ1 � 70 nm and λ2 � 35 nm, two nonlinear responses
can be triggered. By the λ1 � 70 nm pulse, resonance-enhanced

excitation ionization occurs where the molecule is resonantly
excited from the σg state to the degenerate π ±

u state with ω1 �
Ee − Eg via a perpendicular transition. Meanwhile, the
absorptions of two ω1 photons and one ω2 � 2ω1 photon
give rise to photoelectron wave packets with the same
kinetic energies Ee in the continuum. The total
photoionization probability is the sum of the two ionization
excitation processes and their interference. As shown in
Supplementary Appendix A1, the two ionization
probabilities D(1) and D(2) are insensitive to the pulse
phases, whereas the interference term D(1,2) depends on the
relative phase of the laser pulses and on the relative phase of
the electron wave packets in the continuum. As a result, the
total excitation probability density D � D(1) +D(2) +D(1,2) is
also a cosine function of the relative pulse phase ϕ with the
form D ∼ cos(ϕ). The interference effect between the two
processes modulates the total transition and current
probabilities. Combining Eq. 6 with Eqs 19 and 20 in
Supplementary Appendix A1, one obtains B ∼ cos(ϕ),
giving rise to a CEP dependence of the generated magnetic
field, as illustrated in Figure 3A (blue diamond), B (r � 0).

3.1.2 Resonant Excitation in the Case of
Around-Axis R⊥E
For around R axis excitation, Figure 3B shows phase-dependent
magnetic field B generation in the process of molecule axis
perpendicular to the laser (x, y) polarization plane, leading to
around-axis currents. Comparing to the in-plane R ‖ E case in
Figure 3A, one sees that the oscillation of the magnetic field B
with the relative phase ϕ is, however, strongly suppressed. As shown
in Figure 3B, the magnetic field is almost insensitive to the phase ϕ,
with a constant value of B � 0.38 T. The magnetic fields generated
by the individual bichromatic pulses are less than the sum of the two

FIGURE 3 | Maximum magnetic fields B(r � 0) (blue diamond) at the molecular center as a function of CEP ϕ�ϕ2 -ϕ1 for the aligned molecule H+
2 in bichromatic

counter-rotating (ϵ � −1) circularly polarized laser pulses with their field vectors polarized in the (x, y) plane. Two cases are compared for the molecule aligned along (A)
the x axis, in plane R ‖ E, and (B) the z axis, around axis R⊥E. Pulse wavelengths λ1 � 70 nm (ω1 � 0.65 au) and λ2 � 35 nm (ω2 � 1.3 au), intensities
I � 1 × 1014 W/cm2 (E � 0.0534 au), and duration Tlp � 5τ1 � 10τ2 (580 as FWHM) are fixed. Red solid lines denote the generated magnetic field B‖

ω1
� 0.194 T

and B⊥
ω1

� 0.382 T by a single λ � 70 nm circularly polarized laser pulse, and green dashed lines present the sum values of the magnetic fields B‖
s � B‖

ω1
+ B‖

ω2
� 0.216 T

and B⊥
s � B⊥

ω1
+ B⊥

ω2
� 0.401 T.
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single 70 and 35 nm processes, that is, B<B⊥
s � B⊥

ω1
+ B⊥

ω2
� 0.4 T,

where B⊥
ω1

� 0.382 T and B⊥
ω2

� 0.019 T. The bichromatic magnetic
fields mainly arise from the single-photon 70 nm process, B � B⊥

ω1
,

whereas the contribution from the absorption of single 35 nm (ω2)
or two 70 nm (ω1) photons is weak and negligible, as shown in
Figure 3B. This implies that the interference effect between the two
ionization processes does not influence the bichromatic magnetic
field generation. Of note is that for the single ω1/ω2 pulse case, the
generated magnetic fields are also dependent on the molecular
alignments and the pulse wavelength. At λ � 70 nm, B⊥

ω1
≈ 2B‖

ω1
,

the perpendicular case is stronger, whereas at 35 nm, the generated
magnetic fields are nearly equivalent, B⊥

ω2
≈ B‖

ω2
. The difference

indicates essentially the importance of the around R axis ring
electron currents in the resonant intermediate πu electronic state.

For the optical responses in Figure 3B of the molecule H+
2

perpendicular to the laser (x, y) polarization plane, R⊥E,
Figure 1B, by a single 70-nm circularly polarized pulse,
resonant excitation between the ground σg state and the
excited π+u state with magnetic quantum number Δm � 1 leads
to ring electron currents in molecules [64, 67]. As shown in
Supplementary Appendix A2, using the electronic angular
continuity equation [16, 17],

d
dt

D(r, t) + d
dθ

j⊥θ (r, t) � 0. (7)

One obtains the laser-induced electron current j⊥θ (r, t) in the
following form

j⊥θ (r, t) ∼ cos(ΔEt + θ). (8)

Eq. 8 combined with Eqs. 21 and 26 shows that for the
superposition electron state ψc(r, t), the time-dependent
electronic density D(r, t) and the induced angular current
j⊥θ (r, t) evolve in time with the electron coherence period of
Δτ(0) � 2π/ΔE. Therefore, the total magnetic field B in the
bichromatic circularly laser field is mainly generated from the
electron currents in the coherent electron wave packet ψc(r, t) in
Eq. 21 by the λ �70 nm pulse. The contributions from the
continuum electron wave packets with energy Ee by the 35-nm
pulse are clearly very weak, that is, B⊥

ω1
≈ 20B⊥

ω2
, and therefore

negligible. As a result, altering the relative CEP ϕ does not lead to a
variance of the generated magnetic field B.

3.1.3 Laser-Induced Electron Currents in Molecules
For the magnetic field B generated by coherent electron currents
in molecules, the evolution of the induced electron currents
jθ(r, t) with time t is determined by the coherent resonant
excitation and the molecular alignments. Figure 4 illustrates
snapshots of angular electron probability currents j⊥θ (x, y, z �
0, t) at the center of H+

2 obtained from Eq. 4 at different times t
(unit of τ � 2π/ω1 � τ1) for the molecule H+

2 perpendicular to the
laser (x, y) polarization plane, R⊥E, Figure 1, leading to around
R axis currents, j⊥θ (x, y, z � 0, t) � j⊥θ (ρ cos θ, ρ sin θ, z � 0, t). The
bichromatic counter-rotating (ϵ � −1) circularly polarized XUV
pulse at CEPs ϕ1 � ϕ2 � 0 is used to excite the molecule. It is
found that the induced electron currents are asymmetric with
respect to the molecular center and rotate with a period of τ

around the z or molecular R axis in the (x, y) polarization plane
with an anticlockwise direction, as predicted in Eq. 8. This
confirms that the ring electron currents mainly arise from the
coherent resonant excitation between the ground σg state and the
excited π+u state by the 70-nm circularly polarized pulse [64].
From such coherent electron currents, the generated magnetic
fields are unidirectional, along the z/R axis. At the molecular
center z � 0, the magnetic field is the sum of those at the two
nuclei, ± R/2. In the bichromatic circular polarized processes, the
contributions of the magnetic field generation from the 70 nm
pulse are dominant, which do not depend on the pulse phase.
Therefore, varying the relative pulse CEP ϕ does not influence the
generated magnetic field B, as illustrated in Figure 3B.

For comparison, in Figure 5, we also plot the in-plane electron
probability current j‖θ(x, y, z � 0, t) at the center of the molecule
H+

2 aligned along the x axis, parallel to the laser polarization (x, y)
plane, R ‖ E in Figure 1A, of bichromatic counter-rotating
circularly polarized pulses. Combining Figure 4 with Figure 5,
one sees that these time-dependent electron currents are sensitive
to the molecular alignments. The joint σg − π ±

u resonant
excitations induce coherent electron currents. The induced
electron probability currents are mainly localized along the
molecular internuclear axis, that is, the resonant perpendicular
atomic (py←s) transitions dominate during the excitation
processes. In this case, the coherent exited electronic state is
given by

πc
u(r) � −i[π+

u(r) − π−
u(r)]/2 � πy

u(r) , (9)

where π ±
u (r) � [πx

u(r) ± iπyu(r)]/
�
2

√
and |~π ±

u (r)|2
� [∣∣∣∣πxu(r)|2 + ∣∣∣∣πyu(r)|2] / 2. Then the corresponding interference
term in the time-dependent electron density becomes (in
cylindrical coordinates (ρ, θ, z) as shown in [9, 64] and in
Supplementary Appendix A2)

D(e,g)(r, t) � 2cgceψg(r)~ψ ±
e (ρ, z)cos(ΔEt)sin(θ), (10)

and the time-dependent current

j‖θ(r, t) � −2cgceψg(r)~ψ ±
e (ρ, z)ΔE sin(ΔEt)cos(θ), (11)

where ~ψ ±
e (ρ, z) is the absolute value of ψ ±

e (see Eq. 23). It is
found that the coherent density and current superposition terms
in Eqs. 10 and 11 follow the forms ∼ sin(θ) and cos(θ). As a
result, the coherent wave packets due to the σg − π ±

u
superposition oscillate along the y direction, perpendicular to
the molecular axis, Figure 1C, whereas the corresponding currents
oscillate mainly along the molecular axis, Figure 4. The generated
magnetic field at the two molecular nuclear centers ± R/2 has
opposite phases [70]. Their overlap leads to a weak magnetic field
at the molecule center z � 0. The generated magnetic field in
Figure 3A therefore mainly results from the coherent excitation by
bichromatic circularly polarized laser pulses.

3.2 Influence of the Pulse Helicity
We next study the process with a bichromatic corotating
(ϵ � +1) circularly polarized laser pulse. Figure 6 shows the
maximum generated magnetic field B at various relative pulse
phases ϕ. The other laser parameters are the same as those
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used in Figure 3. It was found that similar results are
obtained in Figure 6, as the counter-rotating (ϵ � −1) case
in Figure 3. For the case of R ‖ E, the magnetic field B varies
as a sine function of the phase ϕ, as predicted in
Supplementary Appendix A1. A phase π/2 shift occurs in
the CEP ϕ-dependent magnetic field generation by the
corotating bichromatic pulses. This mainly results from
the different electron dynamics induced by the two pulses
with opposite helicity. It was also found for the corotating
(ϵ � +1) case the generated magnetic field depends on the
molecular alignment. In Figure 6B, we see that for the case of
R⊥E, the total generated magnetic field (blue diamond) is
shown to be almost insensitive to the relative CEP ϕ, similar
as in Figure 3B. At various pulse phases ϕ, the magnetic field
B � 0.38 T is obtained. The σg − π+

u resonant excitation with
Δm � 1 gives rise to unidirection ring electron currents, as
illustrated in Figure 3. The contribution from the coherent
electron wave packets ψ0(r, t) in Eq. 21 dominates. The effects
of the multiple pathway (2ω1 and ω2) excitation interference
can be neglected. Consequently, the generated magnetic field
does not depend on the pulse CEP ϕ. The independence of the
generated magnetic field on the pulse helicity ϵ also confirms
the importance of the charge migration. This offers an
approach to explore molecular structure and orbitals.

It should be noted that in the case of R ‖ E in the general
pulse E(t) with its field polarization vectors in the (x, y) plane,

the strength of the generated magnetic field is slightly
sensitive to the pulse helicity ϵ. As shown in Figure 6A, at
ϵ � +1 for corotating cases, the maximum magnetic field is
B � 0.206 T at ϕ � 0.4π, which is slightly weaker than that at
ϵ � −1 for counter-rotating cases in Figure 3A, where
B � 0.225 T at ϕ � 0. Eq. 6 predicts that the induced
magnetic field, in general, is proportional to the ratio of
the electron velocity v and inversely proportional to r2,
where r is the radius of the excitation state of an electron
under the influence of a strong laser field. The difference
between the corotating and counter-rotating generated
magnetic fields in Figures 3A,6A results from the laser-
induced dynamics, which depends on the helicity of driving
pulses.

According to the classical laser-induced electron motion
models [68, 69], the electron velocity and radius are
determined by the pulse amplitude E, frequency 2ω1 � ω2, and
helicity ϵ, which are given by

_x(t) � − E
ω1

{sin(ω1t) − sin(ω1t0) + 1
2
[sin(ω2t) − sin(ω2t0)]},

_y(t) � − E
ω1

{cos(ω1t0) − cos(ω1t) + ϵ
2
[cos(ω2t0) − cos(ω2t)]},

(12)

and the corresponding electron displacements are

FIGURE 4 | Evolutions of the induced angular electron probability current density j⊥θ (x, y, z � 0, t) at different times t (unit of τ � τ1 � 2π/ω1) for the molecule
perpendicular to the laser polarization (x, y) plane, that is, around-axis R⊥E, by bichromatic counter-rotating (ϵ � −1) circularly polarized laser pulses at wavelengths
λ1 � 70 nm (ω1 � 0.65 au) and λ2 � 35 nm (ω2 � 1.3 au), intensities I � 1 × 1014 W/cm2 (E � 0.0534 au), duration Tlp � 5τ1 � 10τ2 (580 as FWHM), and relative CEP
ϕ � 0. Units of induced angular electron currents are arbitrary.
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FIGURE 5 | Time dependence of the induced angular probability electron current j‖θ(x, y, z � 0, t) at different moments t (unit of τ � τ1 � 2π/ω1) for themolecular axis
parallel to the laser polarization (x, y) plane, that is, in-plane R ‖ E, by bichromatic counter-rotating (ϵ � −1) circularly polarized laser pulses at wavelengths λ1 � 70 nm
(ω1 � 0.65 au) and λ2 � 35 nm (ω2 � 1.3 au), intensities I � 1 × 1014 W/cm2 (E � 0.0534 au), duration Tlp � 5τ1 � 10τ2 (580 as FWHM), and CEP ϕ � 0. Units of induced
angular electron probability currents are arbitrary.

FIGURE 6 | Dependence of the maximum magnetic field B (blue diamond) at the molecular center, r � 0 on the relative pulse CEP ϕ � ϕ2 − ϕ1 for the aligned
molecule H+

2 by bichromatic corotating (ϵ � +1) circularly polarized laser pulses with their field vectors polarized in the (x, y) plane. Two cases are compared for the
molecule aligned parallel to (A) the x axis and (B) the z axis, that is, parallel R ‖ E in Figure 1A and perpendicular R⊥E in Figure 1B, to the laser (x, y) polarization plane.
Pulse wavelengths λ1 � 70 nm (ω1 � 0.65 au) and λ2 � 35 nm (ω2 � 1.3 au), intensities I � 1 × 1014 W/cm2 (E � 0.0534 au), and duration Tlp � 5τ1 � 10τ2 (580 as
FWHM) are fixed. Magenta solid lines denote the generated magnetic field B‖

ω1
� 0.194 T and B⊥

ω1
� 0.382 T by a single λ � 70 nm circularly polarized laser pulse, and

green dashed lines are the sum values of the magnetic fields B‖
s � B‖

ω1
+ B‖

ω2
� 0.216 T and B⊥

s � B⊥
ω1

+ B⊥
ω2

� 0.401 T.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6753758

Bandrauk et al. Electronic Currents and Magnetic Fields

66

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


x(t) � − E
ω2
1

{cos(ω1t0) − cos(ω1t) − ω1(t − t0)sin(ω1t0)

+ 1
4
[cos(ω2t0) − cos(ω2t) − ω2(t − t0)sin(ω2t0)]},

y(t) � − E
ω2
1

{sinω1t0 − sinω1t + ω1(t − t0)cos(ω1t0)

+ ϵ
4
[sinω2t0 − sin(ω2t) + ω2(t − t0)cos(ω2t0)]},

(13)

where t0 is the ionization time. Figure 7 shows bichromatic
circularly polarized laser field vectors with corotating and
counter-rotating components and corresponding induced
electron displacements, where zero initial position of one
ionized electron is assumed, that is, x(t0) � y(t0) � 0. Such
electron displacements can be measured by interfering spirals
in photoelectron momentum distributions [71]. With the XUV
pulses, a multiphoton ionization process occurs since the Keldysh
parameter c> 1 [72]. The initial electron velocities are nearly

equivalent with
���������
2(ω2 − Ip)

√
. As shown in Figure 7, for the

corotating ϵ � 1 case, the radius of the continuum electron is
much larger than that of the counter-rotating ϵ � −1 case. The
electron moves way quickly in the corotating field, whereas the
counter-rotating field restricts the ionized electron around the
molecular center. Because B ∼ j/r2 in Eq. 5, 6, weaker maximum
magnetic field is generated in the corotating case in Figure 5A.
The dependence of generated magnetic fields on the pulse helicity
ϵ reflects the laser-induced electron dynamics in bichromatic
fields. The present simulation confirms that steering the radius of

the induced electron currents allows to control generated magnetic
fields with bichromatic circularly polarized pulses.

4 CONCLUSION

We present the ultrafast magnetic field generation in molecules
from one electron molecular TDSE simulation under effects of
coherent resonant excitation in bichromatic (ω2 � 2ω1) co- and
counter-rotating circularly polarized laser fields. Numerical
results are obtained for the aligned molecular ion H+

2 , which
can be fully and exactly studied. We evaluate the generated
magnetic field B(r � 0) at the molecular center at different
relative CEP ϕ of the two circularly polarized pulses with both
counter-rotating and corotating combinations. It is found that
altering the CEP ϕ varies the maximum values of the generated
magnetic field, B(r � 0), which is shown to be dependent on the
molecule alignment, and is maximum for in-plane bichromatic
excitation.

In a bichromatic (frequency ω1 ≠ω2) circularly polarized field,
a σg − π ±

u resonant excitation of individual magnetic
components m � ± 1 is triggered by the resonant ω1 (70 nm)
pulse. As a result, coherent electron currents between the ground
σg state and the degenerate excited π ±

u electronic state are
induced in molecules. We compare two nonlinear responses
for different molecular alignments:

• For the around-axis case, R⊥E, the molecule aligned along
the z axis, perpendicular to the laser (x, y) polarization
plane, Figure 1B, and the magnetic field mainly results
from the coherent electron currents which are induced by
one resonant ω1 photon around R. The contribution from
two ω1 photons or one ω2 photon is negligible. Varying the
relative CEP ϕ does not influence the generated magnetic
field. Similar results are obtained for both counter-rotating
ε � −1, Figure 3B, and corotating ε � +1, Figure 6B,
excitations, confirming the main role of the around-axis
circular coherent electron current.

• For the in-plane case, R ‖ E, the molecule aligned parallel to
the laser (x, y) polarization plane, Figure 1A, and the
magnetic field generation is shown to be strongly
dependent on the pulse phase ϕ, confirming the effects of
multiple pathway ionization. The in-plane coherent electron
currents generate the magnetic fields in the two nuclei with
opposite phases and evolve perpendicular to the molecular
R axis. Their superposition suppresses the magnetic field
generation at the molecular center, Figure 3. The results we
present arise mainly from the total electron currents by one
ω1 photon absorption, that is, the σg − π ±

u resonant
excitation, and two ω1 or one ω2 transition to the
continuum. The generated magnetic field depends on the
photoionization probability which is a function of the
relative CEP ϕ Eq. 20. As a consequence of interference
effects between the ω1 and ω2 photoionization pathways,
altering their relative phase ϕ gives rise to a modulation of
the generated magnetic field B(r � 0) at the molecular
center with forms ∼ cos(ϕ) for counter-rotating and

FIGURE 7 |Bichromatic (ω2 � 2ω1) circularly polarized (top row) electric
field vectors and (bottom row) corresponding laser-induced displacement
trajectories [x(t), y(t)] of free electrons for (A) corotating (ϵ � +1) and (B)
counter-rotating (ϵ � −1) helicity schemes. The initial position is
x(t0) � y(t0) � 0, where t*0 indicates the ionization time at the maxima of the
combined fields. Green line corresponds to the minimum laser-induced radius
r0 of an ionized electron at frequency ω1 and circular field amplitude E, r0 �
(2E/ω2

1)
���������
1 + (π/2)2

√
as shown in [23].
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sin(ϕ) for corotating combinations. It is also shown that the
maximum of themagnetic field for the counter-rotating case
is larger than that for the corotating case because of the
difference in laser-induced electron displacements, which
depends strongly on the helicity of the driving pulse,
Figure 6.

The present results in principle provide the importance of
coherent electron dynamics and of control magnetic fields by
bichromatic circularly polarized laser pulses. The dependence of
the generated magnetic field on the relative phase and helicity of
driving laser pulses also allows to characterize the property of
laser pulses and probe coherent electron currents and to charge
migration in molecules. Although a simple single electron
molecular ion H+

2 is used, similar electron dynamics
phenomena should be predicted in more complex molecular
systems [7, 27, 30, 73], thus offering an approach for
controlling ultrafast magnetic field generation.

The above laser-induced molecular magnetic field generation
on the electron’s quantum timescale, the asec, was studied in the
Born–Oppenheimer Approximation, that is, with static nuclei.
Nuclear motion effects, that is, non–Born–Oppenheimer, are
now being pursued on the near femtosecond timescale in
order to include nuclear motion effects with bound and
dissociation molecular states [83], de-and re-coherence in
charge migration [84] and isotope effects in HD+ ultrafast
ionization [85]. In the case of laser pulses propagating
perpendicular to the molecular R-axis with the pulse electric
fields in the molecular plane, Figure 1A, re-collision of electron
currents with nuclei is an important nonlinear optical effect
shown in Figure 6 to be examined in detail for moving nuclei.
Finally, the strong magnetic fields generated by intense ultrafast
laser pulses are expected to interact with the electron currents
themselves. Proton beams have been shown recently to be useful
tools to measure intense magnetic field directions generated by

current solenoids [86], thus confirming that laser-generated
magnetic fields can interact also with nuclei in matter.
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Controlling H+
3 Formation From

Ethane Using Shaped Ultrafast
Laser Pulses
Tiana Townsend1, Charles J. Schwartz1, Bethany Jochim2, Kanaka Raju P.2,3, T. Severt2,
Naoki Iwamoto1, J. L. Napierala1, Peyman Feizollah2, S. N. Tegegn1, A. Solomon1, S. Zhao1,
K. D. Carnes2, I. Ben-Itzhak2 and E. Wells1*

1Department of Physics, Augustana University, Sioux Falls, SD, United States, 2J. R. Macdonald Laboratory, Physics
Department, Kansas State University, Manhattan, KS, United States, 3School of Quantum Technology, DIAT(DU), Pune, India

An adaptive learning algorithm coupled with 3D momentum-based feedback is used to
identify intense laser pulse shapes that control H+

3 formation from ethane. Specifically, we
controlled the ratio of D2H

+ to D+
3 produced from the D3C-CH3 isotopologue of ethane,

which selects between trihydrogen cations formed from atoms on one or both sides of
ethane. We are able to modify the D2H

+:D+
3 ratio by a factor of up to three. In addition, two-

dimensional scans of linear chirp and third-order dispersion are conducted for a few fourth-
order dispersion values while the D2H

+ and D+
3 production rates are monitored. The

optimized pulse is observed to influence the yield, kinetic energy release, and angular
distribution of the D2H

+ ions while the D+
3 ion dynamics remain relatively stable. We

subsequently conducted COLTRIMS experiments on C2D6 to complement the velocity
map imaging data obtained during the control experiments and measured the branching
ratio of two-body double ionization. Two-body D+

3 + C2D
+
3 is the dominant final channel

containing D+
3 ions, although the three-body D + D+

3 + C2D
+
2 final state is also observed.

Keywords: coherent control, molecular dynamics, bond rearrangement, laser physics, imaging, ultrafast science

1 INTRODUCTION

The intramolecular migration of hydrogen continues to be an active area of investigation in ultrafast
science [1–11] with implications for topics ranging from combustion [12] to peptide dissociation
[13] and characterizing conformational differences in molecules [14, 15]. In some cases the
migration of hydrogen leads to the formation of new molecular ions, such as H+

3 [5, 16–21], by
processes such as H2 roaming or double hydrogen migration [18, 19, 22, 23].

The formation of H+
3 is usually a multi-step process that often involves the association of

hydrogen atoms from different sites of the parent molecule. In allene (C3H4), at least one hydrogen
migration to the other side of the molecule is required [24, 25]. Even in molecules that contain a
methyl group with three hydrogen atoms close together, there are H+

3 formation pathways that
involve hydrogen atoms from other parts of the parent molecule. Methanol is perhaps the best
studied example of this behavior [5, 16–21, 26–29]. In methanol (CH3OH), there is clear evidence
that H+

3 may form when a roaming H2 from the methyl side abstracts the hydroxyl proton in addition
to alternative mechanisms that only involve the methyl side. For ethanol (CH3CH2OH) and several
slightly longer alcohol molecules, multiple pathways to H+

3 formation exist that involve hydrogen
migration, although the relative importance of these pathways decreases as the carbon chain length
increases [19, 20].
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Ethane (C2H6) is composed of two back-to-back methyl
groups, and thus it is an excellent baseline system for
examining hydrogen-related bond rearrangement. H+

3
formation following double ionization of ethane has been
examined in several previous experimental and theoretical
studies [16, 30–35]. Kraus and co-workers theoretically
identified a minimum-energy-path transition state with a
neutral hydrogen molecule attached to a C2H2+

4 ion that led to
the H+

3 + C2H+
3 final state [31]. Their calculations were in good

agreement with the measured kinetic energy release (KER) of
these final products, in which the KER is essentially the reverse
activation energy along the proposed reaction path. Kanya et al.
showed, using different isotopologues of ethane, that hydrogen
atoms are statistically scrambled between the initial and final
states following double ionization [32]. In a later study, Boran
et al. proposed a pathway that begins with hydrogen elimination
(H + C2H2+

5 ) and continues through a sequence of transition
states leading to a neutral hydrogen molecule attached to a C2H2+

3
ion followed by dissociation into C2H+

2 + H+
3 [34]. Recent electron

impact studies by Zhang et al. suggest the presence of an
additional roaming-induced isomerization pathway that leads

to H+
3 formation on a longer timescale than the transition-

state pathways [35].
Motivated by significant H+

3 yields from the dissociation of
ethane dications, the suggestions of multiple pathways that lead
to H+

3 formation following double ionization of ethane, and the
sensitivity of the H+

3 production to laser pulse parameters
reported by Schirmel and co-workers [33], this article reports
our efforts to manipulate the formation of H+

3 using shaped
ultrafast laser pulses.

2 EXPERIMENTAL METHOD

The experimental techniques applied in this study have recently
been discussed elsewhere [21, 36], and in this section we will only
highlight a few key points. Two different approaches are used to
examine the interactions of intense laser pulses with ethane gas:
First, the laser pulses are shaped using an acousto-optic
programmable dispersive filter (AOPDF) [37] and the ethane
reaction products are measured using velocity map imaging
(VMI) [38, 39]. Second, COLd Target Recoil Ion Momentum

FIGURE 1 | Molecular fragmentation data obtained with 35 fs FWHM, 1.3 × 1014 W/cm2 pulses centered at 785 nm, the conditions used in the closed-loop
experiment. (A) Inverse Abel transformed VMI of D2H

+ ions. (B) Inverse Abel transformed VMI of m/q � 6, which contains D+
3 and C2+ ions. At this intensity, the two

features are separated, with the C2+ ions inside the D+
3 ring. The laser polarization is vertical for the VMI data. (C) Current mode time-of-flight (shown as a function ofm/q)

showing that the integrated yield of them/q � 5 andm/q � 6 peaks are similar. When only the yield from the higher momentum feature in them/q � 6 is considered,
the ratio of D2H

+ to D+
3 is approximately 7:1, in agreement with the results of Kanya et al. [32]. The laser polarization is perpendicular to the time-of-flight axis in (C).
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Spectroscopy (COLTRIMS) [40, 41] characterizes the dissociation
dynamics of the ethane molecule following strong-field ionization.

2.1 Shaped Pulses and Velocity Map
Imaging
In the shaped pulse/VMI portion of the experiment linearly
polarized pulses with a duration of 35 fs full-width at half-
maximum (FWHM) in intensity and a center wavelength of
785 nm are generated at 1 kHz by a Ti:Sapphire laser system
named KLS. In this laser system, the compressor grating pair is in
the Treacy configuration [42] while the stretcher gratings are in
the Martinez configuration [43]. The amplified pulse energy of
about 1.5 mJ was attenuated to the levels needed in the
experiment. These near-Fourier-transform limited pulses will
be denoted as TL pulses in this article. The acousto-optic
programmable dispersive filter [37] was placed between the

laser oscillator and multi-pass amplifier. In this experiment,
we controlled only the spectral phase of the laser pulse. Pulse
characteristics were determined using a second-harmonic-
generation frequency-resolved-optical-grating (SHG-FROG)
[44] device. Our version of VMI [45–47] integrates the
momentum image of a given m/q time-of-flight peak over
many laser shots by fully powering the detector within a
specific time window. For a typical trial pulse, we collected VMI
data for 5,000 laser shots for D2H

+ and 35,000 laser shots for D+
3 in

order to obtain similar statistics for each ion. While our VMI
approach does not measure correlated information about all the
products from a specific laser-molecule interaction, it enables rapid
data acquisition, making adaptive control experiments possible [48,
49]. Typical VMI data obtained with the online inversion method
[47] are shown in Figures 1A,B.

In the closed-loop adaptive control approach, ion-specific
three-dimensional momentum information provides the

FIGURE 2 | (A) The red line shows the probability for two-body D+
3 + C2D

+
3 fragmentation as a function of kinetic energy release (KER) measured with COLTRIMS.

To compare the COLTRIMS and VMI measurements, we added the D2H
+ and D+

3 ions measured with VMI in a 7:1 ratio and plotted the combined probability for
dissociation as a function of KER (olive line). (B) The VMI-derived KER distribution for D2H

+ ions assuming two-body breakup of D3C-CH3 into D2H
+ + C2DH

+
2 . The red

line represents the KER distribution produced by the transform limited (TL) pulse. The blue line is the KER distribution produced by the optimized pulse. The peak of
the KER distribution from the optimized pulse is 0.3 eV lower than the peak of the KER distribution from the TL pulse. (C) The KER distributions for the D+

3 channel
assuming two-body breakup into D+

3 + C2H
+
3 initiated by a TL (red) and optimized (blue) pulse. The vertical lines in (B) and (C) indicate the edges of the regions used to

calculate the fragment yield in the adaptive control experiment. The lower-KER structure in (C) is thought to be C2+.

FIGURE 3 | (A)Measured frequency-resolved-optical-grating trace of the laser pulse optimized to increase the D2H
+:D+

3 ratio. (B) The retrieved intensity (violet) and
temporal phase (green) of the optimized pulse. While second-harmonic-generation is symmetric with respect to time, this ambiguity can be removed with the additional
information from the pulse shape parameters. (C) The retrieved intensity and temporal phase of an unshaped laser pulse for comparison, using the same color scheme.
(D) The retrieved spectral density (violet) and phase (green) of the optimized pulse. (E) The unshaped spectral density and phase for comparison, again with the
same color scheme.
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feedback to drive a genetic algorithm that optimizes the pulse
shapes to a control objective [46, 47]. The raw VMI data is
inverted on-the-fly to recover a slice through the center of the
three-dimensional momentum distribution using a modified
“onion-peeling” algorithm as described by Rallis et al. [47].
The yield within user-defined regions of interest on the
momentum plot is then evaluated, resulting in a numerical
value that defines the “fitness” of the laser pulse being
examined. The adaptive search parameterizes the pulse
characteristics in terms of the spectral phase, which is broken
into 16 evenly spaced segments between 734 and 830 nm. Since a
portion of this range is beyond the pulse bandwidth, the effective
number of search parameters is somewhat smaller than 16. Linear
interpolation fills in the values between the adjacent phases. The
algorithm is allowed to adjust each phase value between 0 and 2π.

To complement the closed-loop studies, systematic scans of
the second- and third-order pulse dispersion were made for a few
values of fourth-order dispersion. In this pulse-parameterization

scheme [21, 50, 51], we describe the spectral phase, φ(ω), as a
Taylor series expansion [52]:

φ(ω) � φ(0) + φ(1)(ω − ω0)
1!

+ φ(2)(ω − ω0)2
2!

+ φ(3)(ω − ω0)3
3!

+ φ(4)(ω − ω0)4
4!

+/. (1)

2.2 Coincidence Momentum Imaging
In the COLTRIMS [40, 41] measurement, the laser pulses are
produced by the PULSAR laser [53] at 10 kHz, with 25-fs
(FWHM in intensity) pulse duration, a central wavelength of
790 nm, and maximum pulse energy of 2 mJ. The laser pulses
were again characterized with SHG-FROG. The pulses are
focused by a f � 7.5-cm spherical mirror onto randomly
oriented target molecules in the supersonic molecular beam of
the COLTRIMS apparatus. Following the laser-molecule
interaction within the electric field of the spectrometer, all the

FIGURE 4 | The yield of (A) D2H
+ and (B) D+

3 as a function of second—and third-order dispersion for three values of fourth-order dispersion. In these
measurements, the pulse energy is kept constant, so the intensity decreases as the dispersion lengthens the pulses. (C) The D2H

+:D+
3 ratio as a function of the same

pulse parameters. The ratio is defined to be 1.0 at φ(2) � φ(3) � φ(4) � 0.
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charged ethane photofragments are directed toward a time- and
position-sensitive detector where they are measured in
coincidence. The base pressure in the spectrometer region was
below 2 × 10−10 Torr. Since the charged fragments are recorded on
an event-by-event basis, we can use themeasured time and position
of all the charged fragments alongwith conservation ofmomentum
to determine the three-dimensional momentum distributions.

3 RESULTS AND DISCUSSION

The experiments on D3C-CH3 (1,1,1-d3 ethane, 98% pure) with
shaped pulses and VMI detection used both an adaptive search
strategy and a systematic search of pulse parameters.With this target,
D+

3 fragments must originate from only one side of the parent
molecule, while D2H

+ fragment formation must involve both sides
of the parent molecule. While the D3C-CH3 target allows us to
determine which hydrogen atoms participate in the bond
rearrangement process, the m/q � 6 channel contains both the D+

3
channel of interest and C2+ fragments [30]. At laser intensities that
did not have a significant yield of C+ ions (around 8×1013W/cm2),
for whichwe could assume there was noC2+ signal, theD+

3 signal rate
was too low for adaptive control experiments.

As the intensity was increased, the VMI of the m/q � 6 ions
began to have two features, as shown in Figure 1B. The outer

feature, corresponding to a KER of around 5 eV, remained at that
KER as the intensity increased. In contrast, both the signal size of
the inside feature relative to the ≈5 eV feature and the radius of
the inner feature in Figure 1B increased with intensity. We
assume this inner feature, which is more aligned with the laser
polarization at higher intensities, is caused by C2+ ions. At 1.3 ×
1014 W/cm2, the total yields of m/q � 5 and m/q � 6 are similar,
as shown in Figure 1C. Using the VMI information, we can
separate the two features in momentum space. The range of
interest is shown by the vertical lines in Figures 2B,C. After
separation of the C2+ from the D+

3 and correction for different
image exposure times, the ratio of D2H

+ to D+
3 is approximately 7:

1, as expected from the time-of-flight studies performed by Kanya
et al. on different isotopologues of ethane [32].

3.1 Pulse Shaping and Control
We were able to increase the D2H

+:D+
3 ratio by a factor of 3.2 ±

0.7 using adaptive control. With phase-only shaping the pulse
energy is kept constant at around 11 μJ/pulse, which corresponds
to a peak intensity of 1.3 × 1014 W/cm2. Experiments at slightly
higher pulse energy also resulted in a D2H

+:D+
3 ratio higher than

obtained with a TL pulse, but we observed significant overlap
between the C2+ and D+

3 fragments making it difficult to evaluate
these results. When attempting to optimize the inverse D+

3 :D2H
+

ratio, we did not observe any improvement over the TL 35-fs pulse.
Figure 2 shows the KER distributions obtained for the D2H

+

and D+
3 fragments with the optimized pulses and TL pulses. For

the VMI data, we calculate the KER by assuming a two-body
breakup of the D3C-CH3 parent molecule into an ion pair. For
comparison, the KER distribution of C2D2+

6 →D+
3 + C2D+

3
directly measured with COLTRIMS is shown in Figure 2A.
The KER distributions are similar, although the COLTRIMS
measurement is slightly lower. This could be due to small
differences in the respective momentum/energy calibration or
the slightly different pulse characteristics. As described in the
introduction, Kraus et al. [31] and Boran et al. [34] have
examined the dissociation pathways leading to H+

3 formation
from ethane and found KER values peaked between 5.2 and
5.5 eV. Zhang and co-workers have observed a slightly lower KER
in recent electron-impact studies and suggested a different
dissociation pathway [35].

Notably, the D2H
+ KER distribution obtained with the pulse

optimized to increase the D2H
+:D+

3 ratio is shifted about 0.3 eV
lower than the KER distribution obtained with the TL pulse. The
corresponding KER distribution for the D+

3 yield, which is in the
denominator of the control objective, shows no significant shift.
In addition, the increase in the D2H

+:D+
3 ratio was due to an

increase in D2H
+ yield, not a reduction of D+

3 yield. In some
similar experiments, this combination of indicators has been a
signature of a barrier-suppression mechanism [46]. Several of the
theoretical efforts with ethane [31, 34, 35] identified one or more
transition states in the dissociation process. If the energy of the
transition state was modified by the field at an appropriate time, it
could promote D2H

+ production.
The characteristics of the optimized pulse are shown in

Figure 3. While there is indeed a trailing secondary pulse
around 125 fs after the main pulse, there are other features of

FIGURE 5 | The portion of the coincidence-time-of-flight map of two-
body channels including D+

2 and D+
3 fragments from C2D6 exposed to a 25-fs,

790-nm, 1.5 × 1014 W/cm2 laser pulse.

TABLE 1 | Ethane (C2D6) branching ratios for two-body double ionization by 25-fs,
1.5 × 1014-W/cm2 laser pulses centered at 790-nm.

Dissociation channel Branching ratio (%)

D+ + C2D
+
5 1.00 ± 0.03

D+
2 + C2D

+
4 4.91 ± 0.08

D+
3 + C2D

+
3 69.80 ± 0.15

CD+
2 + CD+

4 1.01 ± 0.04
CD+

3 + CD+
3 23.27 ± 0.71
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the pulse shape that could be significant. To try and determine
which pulse parameters are important for the manipulation of the
control objective, we systematically scanned the linear chirp and
third-order dispersion for three values of fourth-order dispersion.
During these systematic scans we recorded the D2H

+ and D+
3

yields, shown in Figure 4, using the same gates on the VMI data
as in the adaptive control experiment.

From a time-domain perspective, the second–and fourth-
order dispersions lengthen the pulse symmetrically, while the
third-order dispersion adds a pedestal either before or after the
main pulse (see, e.g., Ref. 50). Thus, some of the temporal
characteristics of the optimized pulse (Figure 3) can be
reproduced, but the secondary pulse would be more difficult
to construct using dispersive pulse parameters. As shown in
Figure 4C, there are a number of combinations of pulse
parameters that reach nearly the same level of effectiveness at
manipulating the D2H

+:D+
3 ratio as the optimized pulse. The

highest values of the D2H
+:D+

3 ratio are seen at negative values of
both φ(2) and φ(3). In this region of parameter space, the yield of
the individual channels have both been reduced by roughly a
factor of 10. Therefore, while the adaptive and systematic search
strategies can both find pulses that improve the control objective,
and thus distinguish between formation of trihydrogen cations
from one side of the parent molecule or both sides of the parent
molecule, the adaptive search result maintains the overall yield
better than the systematic search. This result is similar to the
observations in a recent methanol experiment [21].

One curious element of the dispersion scan is the comparison
to the previous work of Schirmel et al., who also examined H+

3 ,
D2H

+, and D+
3 yields from various isotopologues of ethane as a

function of second-order dispersion (linear chirp) [33]. Our
results match the results of Schirmel et al. in the sense that

the sign of the linear chirp matters in the production of H+
3 . This

is somewhat unusual, since dissociation rates rarely seem to
depend on the sign of the chirp [54]. Our results show
increases in D2H

+ and D+
3 yields, as well as an increasing

D2H
+:D+

3 ratio, for positive linear chirp, with a maximum
around φ(2) � +250 fs2. This is in direct contrast to the result
of Shirmel and co-workers who reported that negative linear
chirp increases the yield of H+

3 and other fragments from ethane,
with a maximum at φ(2) ≈ − 1000 fs2. They also report an
essentially constant D2H

+:D+
3 ratio as a function of chirp.

One possible explanation for the seemingly conflicting results
is that different intensities lead to different dissociation dynamics.
The TL intensity of 1.3 × 1014 W/cm2 used in this experiment is
higher by about a factor of two than the highest intensity pulses
used by Schirmel et al. [33]. In both our scans of the dispersion
parameters and those of Schirmel et al., the pulse energy was kept
constant. Schirmel et al. also noted that as the pulse energy
increased in their experiments, the value of linear chirp that
produced the most fragmentation became closer to zero (more
positive). It is possible that our results simply continue this trend,
although if the intensity is becoming the dominant factor in the
dynamics it is unclear why zero dispersion does not produce a
maximum or a minimum. We note that our D2H

+ and D+
3 yields

also increased for φ(3) > 0 and changing φ(4) had limited effect.
Additional work, including a more detailed study of how
dispersion and intensity combine to influence the dissociation
dynamics, is needed to resolve these issues.

3.2 Branching Ratio
Another factor potentially confounding our understanding of
how the production of H+

3 can be manipulated with shaped laser
pulses is the likelihood that more than one dissociation pathway

FIGURE 6 | A comparison of the (COLTRIMS-derived) KER spectrum of D+
3 + C2D

+
3 (red) and D + D+

3 + C2D
+
2 (olive) produced by 25 fs, 1.5 × 1014 W/cm2 laser

pulses centered at 790 nm.
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is active. To partially address this issue, we performed
COLTRIMS measurements of laser-induced dissociation of
C2D6. We selected C2D6 as a target because D3C-CH3 was
financially prohibitive for use in a supersonic jet without a
buffer gas. While the peak intensities were similar in the
COLTRIMS and VMI measurements, the pulse duration in the
COLTRIMS measurements was 25 fs, i.e., significantly shorter
than the 35 fs in the VMI case. As an approximate guide, we note
that the Keldysh parameter [55] is approximately 0.9 for 1.3 ×
1014 W/cm2 pulses and the 11.52 eV ionization potential of
ethane [56]. When the pulses are lengthened by pulse shaping
the corresponding decrease in intensity raises the Keldysh
parameter. The quasi-static approximation used in tunnel

ionization is therefore not clearly valid in any of the
experiments described here. Figure 5 shows the relevant
portion of the coincidence-time-of-flight (CTOF) plot.
Following the procedure outlined in Ref. 36 for removing false
coincidences, we use this data to obtain the two-body double-
ionization branching ratio reported in Table 1.

We also analyzed the three-body D + D+
3 + C2D+

3 channel.
While the D+

3 + C2D+
2 ion pair is visible in Figure 5, the

momentum carried by the neutral deuterium atom smears out
the corresponding island in the CTOF plot compared to the sharp
two-body channels. The detailed corrections needed to reach the
level of precision given in Table 1 for three-body channels is
time-consuming because of contributions from three-body
channels containing three ions. By making some simplifying
assumptions about which channels provide the most
significant background, however, we estimate the D + D+

3 +
C2D+

2 yield is 16 times smaller than the main D+
3 +C2D+

3 channel.
Using momentum conservation to deduce the contribution

from the deuterium atom gives a KER distribution for this three-
body channel, shown in Figure 6. The KER distribution is similar
to the C2D2+

6 →D+
3 + C2D+

3 KER distribution shown in Figure 2C

FIGURE 7 | The angular distributions of D2H
+ and D+

3 from VMI measurements of D3C-CH3 dissociation. (A) D2H
+ fragments from a TL pulse. (B) D2H

+ fragments
produced from pulses optimized to increase the D2H

+:D+
3 ratio. In the right column are the same distributions for D+

3 fragments by the (C) TL and (D) optimized pulses.
The molecular ions forming the angular distributions are from within the areas on interest shown in Figure 2. The angle θ is between the laser polarization direction and
the fragment dissociation direction. The solid lines in each panel are fits of the data to a Legendre polynomial in cosθ. The fit coefficients are shown in Table 2.

TABLE 2 | Legendre polynomial coefficients, an, obtained by fitting the probability
of dissociation of D2H

+ and D+
3 as a function of cosθ.

Dissociation channel Pulse type a0 a2 a4

D2H
+ TL 0.0050 0.0017 -

D2H
+ Optimized 0.0054 0.0038 0.0012

D+
3 TL 0.0050 0.0027 -

D+
3 Optimized 0.0050 0.0043 0.0012
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and also the prediction of Boran et al. [34] for a C2D2+
6 →D +

C2D2+
5 →D + D+

3 + C2D+
2 process.

In addition, we did not find any significant evidence for D+
3

production from the monocation, that is, D+
3 + neutral fragments.

Such a process would typically have low KER and there are
negligibly few D+

3 ions at low kinetic energy. Thus, we can
conclude that we observe two, and only two, final channels that
result in D+

3 ions: two-body D+
3 + C2D+

3 and three-body D + D+
3 +

C2D+
2 . Of these, the two-body channel has the larger yield. When

considering the results of our control experiments, it is likely that
themain channel involved is a two-body double ionization process.

3.3 Angular Distributions
Since the control experiments with the D3C-CH3 isotopologue
of ethane are designed to distinguish between the involvement
of the hydrogen atoms on one or both sides of the molecule,
the angular distributions from the VMI data might provide
information about the dissociation dynamics beyond the KER
shift shown in Figure 2B. Since the angular COLTRIMS data
can be readily corrected using available experimental symmetries
[36], we compared the COLTRIMS-measured D+

3 + C2D+
3 angular

distribution to the weighted sum of the D2H
+ and D+

3 VMI angular
distributions to derive a function that ensured uniform detection
efficiency across the VMI detector.

The angular distributions of the D2H
+ and D+

3 ions are shown
in Figure 7 for both TL and optimized pulses. These angular
distributions were fit using a Legendre polynomial in cosθ, and the
resulting coefficients are shown in Table 2. The most notable
difference between the TL and optimized pulses is that the latter
pulses produce aD2H

+distribution that ismuchmore alignedwith the
laser polarization direction than the TL pulses. This trend is also
apparent in theD+

3 results, although to a lesser extent. In addition, both
of the optimized pulses yield angular distributions that are better fit to
4th-order Legendre polynomials, while adding a 4th-order term does
not improve the fit of the angular distributions produced by TL pulses.

The optimized pulse, therefore, is observed to have a
significant impact on the yield, KER, and angular distribution
of the D2H

+ ions. In contrast, the D+
3 ions display relatively

similar dynamics for the optimized and TL pulses. A close
comparison of Figures 4A,B shows that while the D+

3 yield
changes by a factor of 65 over the range of the dispersion
scan, the D2H

+ yield changes by a factor of 122 over the same
parameter space. The relative stability of the D+

3 formation
process under the range of laser conditions may be a result of
the limited combinations of atoms that could be involved. The
greater multiplicity available for D2H

+ formation might make
that process more flexible and therefore more susceptible to the
influence of the laser pulse changes.

4 SUMMARY

By using the D3C-CH3 isotopologue of ethane we were able to
separate two different types of dissociation processes leading to

the formation of trihydrogen cations: D+
3 formation which

involves atoms from only one side of the molecule and D2H
+

that involves atoms from both sides of the molecule. Using
shaped laser pulses, we increased the D2H

+:D+
3 ratio by a

factor of up to three. The laser pulses optimized with an
adaptive search strategy were more effective at improving the
D2H

+:D+
3 ratio while maintaining the overall ion yield than the

most effective pulses found with a systematic scan of pulse
dispersion parameters. Using coincident ion detection available
in a COLTRIMS measurement of C2D6, we verified that while
three-body D + D+

3 + C2D+
3 is observed, two-body D+

3 + C2D+
3 is

the dominant fragmentation channel containing D+
3 ions. The

pulse optimized with an adaptive search produces D2H
+

fragments with a lower KER and an angular distribution more
strongly peaked along the laser polarization direction than the
TL pulse. This could be a signature of a barrier suppression
mechanism. A multiple-pulse experiment probing the time
dependence of H+

3 formation in this process could be informative,
as could further theoretical investigation of the timescales of some
of the proposed H+

3 formation mechanisms.
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Dynamics of Molecules by
Fourier-Synthesized Intense Laser
Pulses: Effective Potential Analysis
of CO
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1Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya, Japan, 2National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba, Japan, 3Department of Chemistry, School of Science, The University of Tokyo,
Bunkyo-ku, Japan, 4Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan

We present a theoretical investigation as to how multielectron dynamics of CO are manipulated
by Fourier-synthesized intense laser pulses. The pulses used are assumed to be comprised of
harmonics up to the fourth order. The multiconfiguration time-dependent (TD) Hartree-Fock
(MCTDHF) method, where the multielectron wavefunction Ψ(t) is expressed as a linear
combination of various electron configurations, is employed to simulate the dynamics of CO
interacting with Fourier-synthesized pulses. The multielectron nature such as electron correlation
is quantified by using our effective potential approach. To begin with, the time-dependent natural
orbitals {ϕj(r, t)}which diagonalize the first order reduced densitymatrix are obtained fromΨ(t),
where r is the one-electron coordinate. The effective potentials υeffj (r, t) that determine the
dynamics of ϕj(r, t) are then derived from the equations ofmotion for {ϕj(r, t)}. υeffj (r, t) consists
of the one-body part υ1(t) including the interaction with the laser electric field ε(t) and the two-
body part υ2,j(t) originating from electron-electron interaction. In this way, the role of electron
correlation can be quantified by comparing υeffj (r, t) with those obtained by the TDHF method,
where Ψ(t) is approximated by a single Slater determinant. We found a very similar profile in
υeff5σ(r, t) of the 5σ highest occupied molecular orbital for both near-infrared one-color (ω) and
directionally asymmetric ω+2ω two-color pulses; when ε(t) points from the nucleus C to O, a
hump appears in υeff5σ(r, t) only 2 bohrs outward from C. The hump formation, which originates
from the field-induced change in υ2,5σ (t ) (especially, due to electron correlation), is responsible for
preferential electron ejection from the C atom side (experimentally observed anisotropic
ionization). A coherent superposition of ω and 2ω fields with an appropriate relative phase
thus works as a one-color pulse of which either positive or negative peaks are filtered out. More
sophisticated manipulation is possible by adding higher harmonics to a synthesized field. We
show that the 5σ orbital can be squeezed toward the inside of the potential valley in υeff5σ(r, t),
which encloses themolecule at a radius of∼7bohrs (semicircle in the region of z<0), by adjusting
the phases of a ω+2ω+3ω+4ω field. The hump and valley formation in υeff5σ(r, t) are closely
correlated with domains of increasing and decreasing electron density, respectively.

Keywords: muliticonfiguration time-dependent Hartree-Fock theory, natural orbital dynamics, time-dependent
effective potential, multielectron dynamics, tunnel ionization, intense laser pulse, multicolor superposition
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INTRODUCTION

Coherence is the succinct but vital word in modern science
that features a wave of definite phase such as a laser field. The
coherence of light [1] can be engraved in matter. Interaction
of a coherent laser field with matter induces unique
phenomena such as molecular alignment [2, 3] and high-
order harmonic generation (HHG) of emission by intense
near-infrared laser pulses [4]. Molecules can be aligned by
intense near-infrared (IR) laser fields along a given space-
fixed axis or plane, depending on the choice of light
polarization through the anisotropic interaction of the
electric field vector of intense laser radiation with the
induced dipole moment. For a polarizable molecule, the
major principal axis of the polarizability tensor is forced
parallel to the polarization direction of a linearly polarized
laser field. The mechanism of HHG is associated with the
dynamics of an electron in field-dressed continuum states:
Electrons freed by tunnel ionization (TI) [5–7] are pulled
away from, pulled back near to, and recollided with parent
ions within one optical cycle (the well-known three-step
model [8]), while synchronized with the oscillating field.
High energy photons even up to the soft x-ray range are
emitted upon radiative recombination of an electron in field-
driven quiver motion with the parent ion. In HHG, electronic
continuum states in atoms or molecules are coherently
excited with certain phases (described by a linear
superposition of states), which leads to quantum
interference between different electron trajectories (such as
short and long trajectories) in the applied laser field [9, 10].
The HHG intensity is provided by the Fourier components of
the induced dipole moment associated with individual
trajectories. Coherent electronic motion in an ensemble of
atoms or molecules, characterized by a definite dipole phase,
is prerequisite for coherent emission of soft x-rays.

Phase coherence is the key concept in the optical control of
quantum systems with high accuracy. Constructive and
destructive interference between the wave packets created by a
phase-locked pump-probe sequence can be controlled by varying
the delay between the two pulses with interferometric precision
[11, 12]. Various schemes for the control of optical phases have
been devised to manipulate the wave functions or dynamics of
quantum systems directly through the coherent nature of a laser
field. This extensively growing research area is called coherent (or
quantum) control [13–15]. Among various coherent control
scenarios is utilization of a two-color phase-controlled laser
field consisting of fundamental light and its harmonic light,
which has been theoretically explored by Brumer and
Shapiro [14]. For laser fields of moderate light intensity
(below ∼1012W/cm2), the population of a target state

∣∣∣∣ f 〉 can
be controlled through quantum interference between two photo-
induced transitions to

∣∣∣∣ f 〉, which is achieved by adjusting the
relative phase between fundamental and harmonic fields [14]. In
contrast, for the high intensity regime (above ∼1012W/cm2),
phase-controlled two-color fields can steer the motion of
charges or dipoles with large amplitude. Such intense fields are
used to induce asymmetric dynamics such as selective C-O bond

breaking of ionized CO2 [16, 17] and also to control the nonlinear
coherent motion in TI [18–27] or HHG [28–31] of atoms and
molecules.

An ultimate extension of this kind of methodology is Fourier
synthesis of arbitrary light waveforms constructed of a
fundamental frequency of light and its harmonics [32].
Sophisticated Fourier syntheses of laser fields have been
reported [33–36]. Light wave engineering based on Fourier
synthesis enables precise manipulation of electron motion
beyond the case of single-frequency excitation; e.g., trajectory
control of the HHG electrons in atoms and molecules by intense
laser fields with various waveforms has been investigated
theoretically [37] and achieved experimentally [38, 39].
Directionally asymmetric molecular TI induced by Fourier-
synthesized four-color laser fields, consisting of fundamental,
second-, third-, and fourth-harmonic light, can make possible
orientation-selective molecular TI [40–43].

For a few-cycle single-frequency (one-color) pulse, carrier-
envelope phase (CEP), i.e., the phase between the carrier wave
and envelope peak of the pulse, also plays a significant role in
electron dynamics such as TI and HHG. CEP stabilization has
been achieved by the active feedback control which uses the
combination of an f-to-2f interferometer to detect CEP drifts and
a stereo-ATI (Above Threshold Ionization) phasemeter [44] to
determine the value of CEP [45–48]. Few-cycle intense laser
pulses with a stable CEP enable one to steer the electronic
motion of atoms and molecules with an ultimate precision.
Consequently, the HHG spectrum exhibits unique features
depending on the CEP [49, 50].

Intense laser fields of light intensity above I≈1012–1013Wcm−2

initiate large amplitude electronic motion in atoms, molecules,
etc., which triggers various physical or chemical phenomena in a
wide range of timescale. Such systems can then be excited to high-
lying electronic states or ionized in a nonperturbative manner. A
typical phenomenon is TI, which is the source of the HHG upon
recombination with the parent ion, as mentioned above. TI
occurs mainly in the sub-femotosecond or attosecond (1 as �
10–18 s) region, owing to a highly nonlinear optical response,
when the electric field of the laser reaches its maximum values. A
number of experimental and theoretical studies have been
devoted to profoundly understanding the intense-field induced
electron dynamics in atoms [51], molecules [52], solids [53], and
biological systems [54].

Different types of theoretical approaches beyond perturbation
theory have been developed to deal with nonperturbative electronic
dynamics of molecules. Epoch-making is the one proposed by
Keldysh [55], in which the intense-field ionization rate or
probability of an atom is formulated as an electronic transition
from the ground state to continuum states of an electron liberated
in a driving laser electric field (Volkov states) [56]. In this
approach, the detailed atomic energy structure, such as
information on excited states or electron correlation, is not
taken into account and the Coulomb interaction of the released
electron in the laser field with the remaining ion core is neglected.
In the Perelemov-Popov-Terent’ev (PPT) approach [57], the long-
range Coulomb interaction is incorporated into the Keldysh
approach as the first-order correction in the quasi-classical
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action of the electron. These types of approaches can be integrated
into S-matrix theory in which the transition amplitude of a
quantum process is formulated by the projection of the total
wave function of the system onto the final state. Several
versions of the S-matrix approach have been developed which
are together known as the Keldysh-Faisal-Reiss (KFR) theory or
Strong Field Approximation (SFA) [58, 59].

Ionization induced by intense fields is characterized by the
Keldysh parameter c � (ω/fmax)(2IP)1/2 [55] (in atomic units),
where ω is the angular frequency of the applied laser electric field
ε(t), fmax is the maximum of the envelop f (t) of ε(t) and IP is the
ionization potential of the system. As f (t) becomes larger and/or
its optical period 2π/ω becomes longer (i.e., c< 1), an electron
penetrates (or goes beyond) the “quasistatic” distorted barrier for
ionization before the sign of the laser field reverses. The opposite
case of c> 1 is the multiphoton regime. In the case of c< 1, the
Ammosov–Delone–Krainov (ADK) model [60], which is the
quasistatic limit c→ 0 of the PPT approach, is most
commonly used for atoms. A molecular version of the ADK
model is developed by Lin et al. (called MO-ADK theory) [61].

In the above theoretical approaches, only one atomic or
molecular orbital is considered as the main ionizing orbital
and is allowed to interact with the applied field [61–63]. This
is the so-called single active electron (SAE) approximation, where
the time-dependent (TD) Schrödinger equation to be solved for
the least-bound one-electron is constructed by modelling an
“effective potential” after the interaction with the remaining
electrons, the nuclei, and the applied fields. In [64, 65], model
effective potentials for the ionizing orbital of a CO molecule were
constructed by semiempirically formulating the dynamic
multielectron polarization effects induced by the applied field
[66–68]. The TD version of the Hartree-Fock (HF) method,
which is a first-principles approach, can be used to describe
the time evolution of a multielectron system (beyond the above
SAE approximation). In this TDHF, the multielectron wave
function Ψ(t) at time t is however approximated by a single
Slater determinant and the atomic or molecular orbitals involved
therein evolve in time under the mean field approximation for
electron-electron interaction; electron correlation (correlated
electron motion) is thus not taken into account, as in the case
of the HF method.

Correlated multielectron dynamics such as simultaneous
double ionization of atoms and molecules is currently one of
the primary targets in the research field of attosecond science [50,
52, 69, 70]. Among related subjects are correlated intramolecular
electron dynamics [71, 72] and channel interference in HHG
[73]. To describe such dynamics properly, one has to go beyond
the computationally inexpensive SAE approximation or TDHF
method. The multiconfiguration time-dependent Hartree-Fock
(MCTDHF) method [74–83] has been developed in the past two
decades as a legitimate method for including electron correlation
in dynamics. In the MCTDHF, the multielectron wave function
Ψ(t) is expanded in terms of Slater determinants corresponding
to various electron configurations, as in the case of time-
independent quantum chemistry; both the orbitals and the
coefficients of Slater determinants are optimized in compliance
with TD variational schemes such as the Dirac-Frenkel

variational principle [84, 85]. As the number of Slater
determinants used increases, the quantitative accuracy is
systematically improved.

As the level of the theory employed is higher, numerical
results obtained become more detailed and reliable;
accordingly, what is acquired to unveil the intrinsic
physics underlying behind the numerical results becomes
more complicated. The TD orbitals in the MCTDHF method
evolves under the effects of electron correlation, but it is hard
to extract the information of electron correlation from the
time evolution of each orbital. For example, the temporal
change in MCTDHF orbitals cannot be linearly decomposed
into the change due to the one-body interaction (interaction
of an electron with nuclei and external fields) and that due to
the two-body interaction.

In our previous papers [86–90], a novel approach, i.e., a single
orbital picture was established under the framework of the
MCTDHF. We adopted the representation of TD natural spin-
orbitals (SOs) {ϕj(t)} (see, for the natural SO, [91]), which
diagonalizes the first-order reduced density matrix of electrons
constructed from the MCTDHF multielectron wave function
Ψ(t). The orbital-dependent effective potentials {υeffj (t)} that
govern the time evolution of {ϕj(t)} under the influence of
electron correlation were then derived as a function of the
spatial coordinate of an electron, r [88–90]. The obtained
effective potential υeffj (r, t) for ϕj(t) can be partitioned into
υeffj (t) � υ1(t) + υ2,j(t), where υ1(t) is the one-body interaction
and υ2,j(t) originates from the two-body interaction between
electrons.We have investigated themechanisms of the directional
anisotropy in intense-field induced ionization of heteronuclear
diatomic molecules CO [88–90] and LiH [90] by scrutinizing the
temporal change in their effective potentials. The results of CO
effective potentials are summarized in the second last paragraph
of this section.

Directional anisotropy in the intense-field induced ionization
of CO has been extensively investigated [20, 21, 26, 92] by using
space-asymmetric ω+2ω two-color fields. The emission direction
of C+ or O+ from CO in two-color field ionization experiments
indicates that ionization is enhanced when the laser electric field
ε(t) points from C to O [20, 21, 26, 92] (ionization from the C
atom side). Intense-field ionization of CO mainly proceeds from
the highest occupied molecular orbital (HOMO). It has been
suggested, e.g., in the SAE approximation or single active orbital
treatment [20, 21, 26, 61] that for CO the large-amplitude lobe of
the HOMO around C is the origin of the preferential TI from C.

The direction of anisotropic ionization does not always agree
with the prediction based solely on the shape of the HOMO. For
OCS, the HOMO has a large amplitude around the C-S axis but
ionization in a circularly polarized field is enhanced when the
electric field turns to the direction from O to S [93]. This
anisotropy is attributed to the linear Stark effect for polar
molecules which increases (or reduces) the ionization potential
of HOMO when ε(t) is parallel (or antiparallel) to the HOMO
permanent dipole moment. In the linearly polarized ω+2ω two-
color experiment reported by Ohmura et al. [27], the preferential
direction was however from the S atom side (opposite to the case
for circularly polarized pulses [93]). The linear Stark effect on
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intense-field-induced ionization has yet to be fully elucidated
[94–100].

The results obtained by the conventional MO-ADK theory
[61] are in agreement with the experimental result that the
ionization rate of the HOMO of CO takes the maximum
when ε(t) points from C to O. The Stark-shift-corrected MO-
ADK theory, on the contrary, indicates the opposite trend [21],
which directly reflects the tendency that the linear Stark effect
increases the ionization potential of CO when ε(t) points from C
to O and is therefore apt to reduce the HOMO ionization rate
from the C atom side. The prediction by the Stark-shift-corrected
molecular SFA [21] is in accord with the experimental
observation. The diversity of theoretical predictions requires
further investigation of the anisotropic ionization of CO.

Among other relevant factors to be considered for intense field
ionization are the combined contribution from multiple orbitals
[101, 102], field-induced multielectron correlation effects [87],
and dynamic electron polarization [64, 99]. Although the
emission direction of C+ or O+ from CO in the two-color
ionization experiments [20, 21, 26] suggests that the main
channel of the TI in CO is the 5σ HOMO, next lower lying
orbitals such as 1π HOMO-1 and 4σ HOMO-2 can contribute to
the ionization yield [88, 101]. These factors also affect the HHG
process. The effects of dynamic electron polarization on HHG
have also been discussed in [103, 104].

In previous studies [88–90], we calculated the effective
potentials for natural orbitals of CO in an intense near-IR
field (λ � 760 nm, I � 1014 Wcm−2) from the MCTDHF wave
function and investigated the mechanism of anisotropic
ionization of CO. The analysis of the 5σ HOMO effective
potential υeff5σ (t) � υ1(t) + υ2,5σ(t) obtained indicates that when
ε(t) points to the direction from C to O, TI from the C atom side
is enhanced and a thin hump barrier then emerges in
υ1(0) + υ2,5σ(t). A hump formed in υeff5σ (t), of which the
location is only 2 bohrs away outside from the nucleus C,
originates from the interaction between the electron leaving
the ion core and the electrons swarming to the region of
hump formation (ionization exit). We attributed the origin of
the anisotropic TI in CO to this thin hump barrier, through which
an ionizing electron penetrates. This kind of hump structure due
to electron correlation is general and cannot be described by the
TDHF. We simulated the dynamics of LiH interacting with an
intense pulse of λ � 1,520 nm, which also indicates that a hump
structure emerges in the 2σHOMO effective potential and brings
about anisotropic ionization.

We have so far shown how useful the effective potential
approach is to unveil the intrinsic nature of multielectron
dynamics [88–90]. In this paper, we examine the role of
electron-electron interaction or electron correlation in CO
interacting with Fourier-synthesized intense laser pulses by
monitoring the temporal change in effective potentials, though
the effective potential itself comes from a single-electron picture.
The structure of this paper is as follows. TheMCTDHFmethod for
the calculation of multielectron dynamics is outlined in
Methodology for Effective Potential, together with a brief
derivation of the effective potentials for time-dependent natural
orbitals. The results and discussion on the ionization and

multielectron dynamics of CO in one-color to four-color phase-
controlled fields are presented in Results and Discussion. Finally,
conclusions about the manipulation of multielectron dynamics of
CO by Fourier-synthesized pulses are given in Conclusion.

METHODOLOGY FOR EFFECTIVE
POTENTIAL

In this section, we outline the MCTDHF method developed for
the simulation of multielectron dynamics of atoms and
molecules. In our approach, the multielectron wave function
Ψ(t) of a target system is obtained by numerically solving the
equations of motion (EOMs) for time-dependent SOs and
configuration interaction (CI) expansion coefficients in the
MCTDHF method. We then convert the set of SOs in Ψ(t) to
an appropriate set of natural orbitals. The effective potential for
each natural orbital is derived from the EOMs for natural orbitals;
in this way, the role of multielectron dynamics or electron
correlation can be quantified in a single orbital picture.

Outline of the Multiconfiguration
Time-Dependent Hartree-Fock Method
The dynamics of an Ne-electron system is governed by the TD
Schrödinger equation for the wave function Ψ(t)

iZ
zΨ(t)
zt

� Ĥ(t)Ψ(t) (1)

where Ĥ(t) is the total electronic Hamiltonian including the
interaction with the applied radiation field ε(t). We solve Eq. 1 by
using the MCTDHF method where Ψ(t) is approximated as a
liner combination of different electron configurations {ΦI(t)}
(represented by Slater determinants or configuration state
functions) [74–83]:

Ψ(t) � ∑M
I�1

CI(t)ΦI(t) (2)

where CI(t) are the CI coefficients for ΦI(t) and M is the total
number ofΦI(t). Each electron configuration is constructed ofNe

spin-orbitals (SOs) {ψk(t)}; ψk(t) is the product of a one-electron
spatial orbital and a one-electron spin eigenfunction for the kth
single-orbital state |k(t)〉. One may write ψk(t) as
ψk(t) � 〈x|k(t)〉, where x consists of the spatial coordinate r
and the spin coordinate μ of an electron. In the present study, the
spin state of Ψ(t) is assumed to be a singlet. The SOs used in the
expansion of Ψ(t) are here referred to as occupied orbitals.
The number of the occupied orbitals, denoted by No, satisfies
the relation No ≥Ne in general; No � Ne for TDHF.

The working EOMs for {ψk(t)} and {CI(t)} have been derived
by means of the Dirac-Frenkel TD variational principle [84, 85]:

〈δΨ(t)|[Ĥ(t) − iZ
z

zt
]|Ψ(t)〉 � 0 (3)

where δΨ(t) represents possible variations of {ψk(t)} and {CI(t)}
in the wave function (2). The EOMs for {ψk(t)} are derived by
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inserting 〈δΨ(t)| � 〈zΨ(t)/zψk

∣∣∣∣δψk into Eq. 3, whereas the
EOMs for CI-coefficients are derived by instead using
〈δΨ(t)| � 〈zΨ(t)/zCI |δCI . Once the EOMs for {ψk(t)} and
{CI(t)} are solved, various quantities such as the first-order
reduced density matrix (1RDM) ρ(x, x′, t) can be calculated
from {ψj(t)} and {CI(t)}.

ρ(x, x′, t) � ∑NO

ij

Aij(t)ψp
i (x, t)ψj(x′, t) (4)

where the (i, j) matrix element of the 1RDM, Aij(t), is expressed
by using the annihilation operator âj(t) and creation operator
â†j (t) for an electron in each ψj(t)

Aij(t) � 〈Ψ(t)|â†i (t)âj(t)|Ψ(t)〉 (5)

Up to this point, Aij(t)≠ 0 in general ({ψk(t)} are not natural
orbitals). The expectation value u(t) of any one-body operator û,
such as the dipole moment operator d̂, is given by

u(t) � ∑NO

ij

Aij(t)〈ψi(t)
∣∣∣∣û∣∣∣∣ψj(t)〉 (6)

We now show briefly how to derive the effective potential for
each SO. To begin with, we present in this paragraph the EOM for
ψk(t) derived in [88]:

iZ
z
∣∣∣∣ψk(t)〉
zt

� [ĥ(t) − ĝ(t)]∣∣∣∣ψk(t)〉 + Q̂(t)⎡⎢⎢⎣ĝ(t)∣∣∣∣ψk(t)〉

+∑NO

ij

A−1(t)kiV̂ ij(r, t)
∣∣∣∣∣ψj(t)〉⎤⎥⎥⎦ (7)

where ĥ(t) is the one-body Hamiltonian including the electric
dipole interaction r · ε(t), Q̂(t) � 1 −∑NO

k

∣∣∣∣ψk(t)〉〈ψk(t)
∣∣∣∣ is the

projector onto the complement to the current orbital space
{ψk(t)}, V̂ ij(r, t) represents the orbital coupling between i and
jmediated by other orbitals [76] (which depends on {CI(t)}), and
ĝ(t) is to be determined so that the orthonormalization condition
〈ψj(t)

∣∣∣∣ψk(t)〉 � δjk is maintained. Since Eq. 7 leads to the
following relation

iZ〈ψj(t)
∣∣∣∣∣∣ zzt

∣∣∣∣∣∣ψk(t)〉 � 〈ψj(t)
∣∣∣∣[ĥ(t) − ĝ(t)]∣∣∣∣ψk(t)〉 (8)

the time propagation of {ψk(t)} is unitary if ĝ(t) is a Hermitian
operator like ĝ(t) � ∑NO

mn

∣∣∣∣ψm(t)〉gmn(t)〈ψn(t)
∣∣∣∣ with

gmn(t) � gpnm(t). The EOM for CI(t), coupled with Eq. (7),
contains {CI(t)}, {gkm(t)} and the matrix elements of electron-
electron interaction among SOs [75–77]. We choose ĝ(t) � ĥ(t)
to ensure that solving the EOMs for {ψj(t)} and {CI(t)} is
numerically stable; then, because of 〈ψi(t)

∣∣∣∣∣zψj(t)/zt〉 � 0 (for i �
j and i≠ j), the orthonormalization condition 〈ψi(t)

∣∣∣∣∣ψj(t)〉 � δij
holds in the time-propagation of

∣∣∣∣∣ψj(t)〉.

How to Derive the Effective Potentials for
Natural Orbitals
In the case of ĝ(t) � ĥ(t), the off-diagonal elements of the 1RDM
are in general nonzero, i.e., Aij(t)≠ 0 for i≠ j. Diagonalization of

the rhs of Eq. 4 is equivalent to find a unitary transformation
which converts {ψj(t)} to an orbital set {ϕj(t)} that satisfies
Aij(t) � 0 for i≠ j. These orbitals {ϕj(t)} are called natural
orbitals [91]. The diagonal element, nj(t) � Ajj(t), is the
occupation number of ϕj(t). For {ϕj(t)}, Eq. 6 becomes the
sum of the diagonal ones uj(t) � 〈ϕj(t)

∣∣∣∣û∣∣∣∣ϕj(t)〉 as u(t) �∑NO
j nj(t)uj(t) [86, 87].
The elements {Akm(t)} of Eq. 5 can be expressed by using CI-

coefficients. We have derived the EOM for Akm(t) in the natural
orbital representation [88–90]:

dAkm(t)
dt

� − i
Z
{Wmk(t) −Wp

km(t) + gmk(t)[nk(t) − nm(t)]} (9)

where Wkm(t) is given in atomic units by [105, 106]

Wkm(t) � ∑
pqr

∫ dx1dx2ϕ
p
k(x1)ϕq(x1)|r1 − r2|− 1

ϕp
r(x2)ϕp(x2)〈Ψ(t)|â†m(t)â†r(t)âp(t)âq(t)|Ψ(t)〉 (10)

We start with the natural orbitals at t � t0, i.e., ψj(t0) � ϕj(t0),
which are obtained from the MCTDHF wave function Ψ(t) at
t � t0. To satisfy Akm(t) � 0 at t ≥ t0 for k≠m, we have to set
gmk(t) for m≠ k in Eq. 9 as

gmk(t) � Wmk(t) −Wp
km(t)

nm(t) − nk(t) (11)

The constraint thatAkm(t) � 0 for k≠m does not fix the values
of the diagonal elements gkk(t). The phases of {CI(t)} and the
global phases of {ϕj(t)} are consistently determined through Eq. 7
and EOMs for {CI(t)}. For simplicity, we set the diagonal
elements to be gkk(t) � 0.

By substituting Eq. 11 and gkk(t) � 0 into Eq. 7, we reach the
EOMs for natural SOs [88]

iZ
zϕk(r, t)

zt
� [t̂ + υeffk (r, t)]ϕk(r, t) (12)

where t̂ is the kinetic energy operator of an electron. Here, the
one-body orbital-dependent effective potential υeffk (r, t), which
determines the time evolution of ϕk(t) under multielectron
interaction, is comprised of the one-body term υ1(r, t)
including the electric dipole interaction r · ε(t) and the two-
body interaction term υ2, k (r, t):

υeffk (r, t) � υ1(r, t) +∑NO

j

〈r|Ûkj(t)
∣∣∣∣∣ϕj(t)〉

ϕk(r, t)
� υ1(r, t) + υ2,k(r, t)

(13)

where Ûkj (t) is the coupling between ϕk(t) and ϕj(t)

Ûkj(t) � (1 − δkj)Wjk(t) −Wp
kj(t)

nk(t) − nj(t) + Q(t) V̂kj(t)
nk(t) (14)

We designate the expectation value of t̂ + υeffk (r, t) over ϕk(t)
as a real-valued effective orbital energy Ek(t). υeffk (r, t) is proved
to be a Hermitian [88]. In practice, we calculate the
“instantaneous” (orthonormal) natural orbitals {ϕj(t)} at time
t from {ψj(t)} and {CI(t)} obtained under the condition of
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ĝ(t) � ĥ(t). υeffk (r, t) can be plotted as a function of r by
inserting {ϕj(t)} and the corresponding {CI(t)} (different
from those for ĝ(t) � ĥ(t)) into Eq. 13. Multielectron
dynamics can be examined by plotting the temporal change
in υ1(r, t) and that in υ2,k(r, t) separately. Electron correlation in
dynamics can be quantified by the difference in υeffk (r, t)
between TDHF and MCTDHF.

RESULTS AND DISCUSSION

In addition to a one-color (ω) two-cycle pulse with different
carrier-envelope phases [88–90], we theoretically investigated the
response of CO to intense multicolor pulses; two-color (ω+2ω),
three-color (ω+2ω+3ω), and four color (ω+2ω+3ω+4ω) pulses
with different relative phases. We present the numerical results
of ionization dynamics of a COmolecule interacting with the above
four types of pulses to extract how laser field coherence affects
multielectron dynamics from the spatial profiles of TD effective
potentials of the 5σ HOMO natural orbital.

Applied Pulses
The C-O axis is assumed to be parallel to the polarization
direction of the applied electric field ε(t). The frequency ω is
chosen to be the fundamental of a Ti:Sapphire laser: here,
Zω � 0.06Eh � 1.64 eV (wavelength λ � 760 nm), where Eh is
the Hartree. The electric field of the one-color pulse, ε1(t), is
assumed to have the form:

ε1(t) � f (t)cos(ωt + φ1) (15)

where φ1 is the CEP and f(t) is the envelope function (The
definition of φ1 is shifted by π, compared to that in [88–90]). For
all pulses presented in this paper, we use the same shape for f(t)

f (t) � F sin2(πt/2Tc) for 0≤ t ≤ 2Tc (16)

and otherwise f (t) � 0. Here F is the maximum of f (t) and Tc �
2π/ω � 2.53 fs is the optical period for the fundamental. The pulse
length is 5.06 fs for all pulses. If f (t) � 0.0534 Eh/(ea0) � 2.74 ×
1010 Vm−1, where e is the elementary charge and a0 is the Bohr
radius, the corresponding light intensity is I � 1.0×1014 W cm−2.
We use the following general form for multi-color pulses:

ε(t) � f (t)[cos(ωt + φ1) + a2 cos(2ωt + φ2) + a3 cos(3ωt + φ3)
+ a4 cos(4ωt + φ4)]

(17)

These four phases φ1,φ2,φ3, and φ4 are chosen so that the main
profile of ε(t) is built in the middle of the pulse (Experimentally
available is a pulse train of ε(t)). ε1(t) is given by setting a2 �
a3 � a4 � 0 in ε(t). F in f (t) is defined as

F � FT/(1 + a2 + a3 + a4) (18)

where FT is determined so that the maximum peak Fp of the
electric field |ε(t)| is the same as Fp � 0.0378 Eh/(ea0) �
1.94×1010 Vm−1 throughout this paper, unless otherwise
noted. This field of Fp, which corresponds to I � 5.0×1013

Wcm−2 in the case of one-color pulses, is weaker than in
previous studies [88–90].

TD-CASSCF Calculation
In One-Color Pulses, Two-Color Pulses, Three-Color Pulses, Four-
Color Pulses, we discuss the characteristic features of the
ionization of CO for one- and multi-color pulses. The effects
of electron correlation is in detail examined on the basis of the TD
effective potentials for the 5σ natural orbitals obtained in the
MCTDHF framework. We trace the temporal change in effective
potentials to investigate how distinctly electron correlation
influences the electronic dynamics.

In the numerical simulations for CO in one-color pulses of
λ � 760 nm [88–90], we considered 10 spatial orbitals 1σ, 2σ, 3σ,
4σ, 2×1π, 5σHOMO, 2×2π LUMO (lowest unoccupied molecular
orbital) and 6σ. There is a limit to the number of molecular
orbitals (MOs) that we can handle in practical applications of the
MCTDHF. The most commonly used scheme is the complete
active space (CAS) method, where the orbitals used in the Slater
determinants (or configuration state functions) are divided into
inactive (core) and active orbitals. The two inactive spin-orbitals
(SOs) with the same spatial function are singly occupied
respectively in all electron configurations; all possible electron
configurations are generated by distributing the other electrons
among the active orbitals. This type of expansion scheme is called
the time-dependent complete-active-space self-consistent-field
(TD-CASSCF) method [107, 108]. Various wave-function-
based multiconfigurational TD approaches to the dynamics of

FIGURE 1 | (A) Electric field profile ε1(t) of the applied two-cycle pulse
(15) of ω � 0.06Eh/Z with CEP of φ1 � 0.5π; (B) the asymmetric ω+2ω two-
color field with φ1 � φ2 � 0 and a2 � 2/3 (both are denoted by green broken
lines). ε2(t) is defined by Eq. 17. The value of FT in Eq. 18 is chosen to be
0.0437Eh/(ea0) for ε1(t) and 0.0378Eh/ea0 for ε2(t). The induced dipole
moment d5σ(t) of the 5σ natural orbital of CO, obtained by TD-CASSCF, is
superimposed in each panel (black solid lines).
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indistinguishable particles are compiled in a recent review [109].
We adopted the following TD-CASSCF scheme in the present
study; the lower lying core SOs up to 4σ were treated to be
occupied by one electron and the shapes of the orbitals are
allowed to vary according to the EOMs derived for the core
SOs. The high lying 6 SOs, i.e., 2×1π, 5σ, 2×2π, 6σ, were treated as
active orbitals that constitute the CAS to accommodate 14−8�6
electrons (the expansion length M � 400).

Since the molecular axis is parallel to the polarization
direction, cylindrical symmetry is maintained; then, the
cylindrical coordinates z and ρ are convenient for the
numerical grid point representation of spatial orbitals; z is
chosen parallel to the molecular axis. The nuclei C is placed at
z � −1.066 a0 and O is placed at z � 1.066 a0 (ρ � 0). The C-O
difference is equal to the equilibrium internuclear distance
R e � 2.132 a0. The parameters necessary to describe MOs
such as grid intervals are given in [88]. To estimate the

ionization probability, we simply set an absorbing boundary
that eliminate outgoing ionizing currents from propagating
molecular orbitals. The details are explained in [87, 88].

One-Color Pulses
The temporal change in induced dipole moments characterizes
the overall electronic dynamics of a molecule. Shown in
Figure 1A are the one-color pulse ε1(t) (i.e., Eq. 15) with φ1 �
0.5π and the induced dipole moment of the 5σ HOMO natural
orbital ϕ5σ(t), denoted by d5σ(t). FT in Eq. 18 is chosen to be
0.04374 Eh/(ea0) so that the maximum peak is the target value of
Fp � 0.0378 Eh/(ea0) (of which the value is used in all figures
except Figure 2D). Up to around the end of the first optical cycle,
the electronic response is quasi-adiabatic with respect to temporal
change in ε1(t): the change in d5σ(t) is nearly proportional to
ε1(t). This quasi-adiabatic feature is related to the fact that the
energies of the excited singlet states of CO are higher than 8.5 eV
[110]. The total induced dipole moment is nearly proportional to
d5σ(t). In the adiabatic regime, the induced dipole moment is
represented by a function of the applied filed ε1(t) (not
necessarily a linear function of ε(t)). In the second optical
cycle, electrons go back and forth during a half cycle to some
extent (continuum states are also involved); the response becomes
nonadiabatic and more complex as the interaction proceeds.

We have numerically confirmed that ionization exclusively
occurs from the 5σ orbital when the electric field points from C to
O, i.e., ε1(t)> 0, for instance, at t ≈ 2 fs in Figure 1A. At ε1(t)> 0,
the electric field then exerts a force on electrons toward the
direction from O to C. The calculated ionization rate around the
second peak of ε1(t) at t ≈ 2 fs is roughly a few times larger for
φ1 � 0.5π than for the phase reversed case of φ1 � −0.5π (The
ionization from 5σ was significantly suppressed when ε1(t)< 0.).
This tendency, already found in the case of FT∼0.06 Eh/(ea0) [88],
is in agreement with the experimentally observed anisotropy [26].
A criterion as to whether the ionization is adiabatic or not is given
by the Keldysh parameter c. For the pulse ε1(t), c∼1.6. It has been
reported that TI remains as the dominant mechanism up to c ∼3
for few-cycle laser pulses [111]. The ionization process for ε1(t) is
thus categorized as TI.

The origin of anisotropic ionization of CO in near-IR fields has
been argued mostly in connection with the fact that the 5σ
HOMO natural orbital has a large lobe around the C atom. In
what follows, we examine what role electron correlation plays in
the anisotropic ionization process. We investigate the mechanism
of anisotropic near-IR induced ionization of CO by tracing the
TD effective potentials of natural orbitals, defined by Eq. 13,
which are changing every moment. More generally, the
(correlated) multielectron nature intrinsic in intense-field-
induced phenomena can be extracted from the analysis of the
temporal change in the effective potential of each natural orbital.

Figure 2 display different types of 5σ HOMO effective
potentials υeff5σ (t) � υ1(t) + υ2, 5σ(t) for four cases, which are
one-dimensional cuts parallel to the z-axis. The value of ρ is
fixed at ρ � 0.755a0, around which the electron density integrated
over z takes a maximum. For the pulse in Figure 1A with
φ1 � 0.5π, the effective potentials at t ≈ t1 � 2 fs obtained by
TD-CASSCF are shown in Figure 2A and those obtained by

FIGURE 2 | Four kinds of 5σ effective potentials plotted parallel to the
z-axis at the fixed value of ρ � 0.755a0: (A) potentials obtained by TD-CASSCF
at t � t1 ≈ 2 fs under the interaction with ε1(t) in Figure 1A; (B) TD-CASSCF
potentials at t ≈2.53 fs for ε2(t) in Figure 1B; (C) TDHF potentials at t �
t1 ≈ 2 fs for ε1(t), i.e., the same pulse as in Figure 1A; (D) TD-CASSCF
potentials at t � t1 ≈ 2 fs for the pulse (15) with a higher strength of FT � 0.06
Eh/(ea0). υ1(t) and υ2,5σ(t) are respectively the one-body part and two-
body part in υeff5σ(t). In each panel, the black broken, blue, red, and purple
lines denote υ1(0) + υ2,5σ(0), υ1(t) + υ2,5σ(0), υ1(0) + υ2,5σ(t), and
υeff5σ(t) � υ1(t) + υ2,5σ(t), repectively. For reference, the level of the effective
orbital energy E5σ(t) is given by a green horizontal dotted line. The time point t
at which the effective potentials are calculated is indicated by a red filled circle
in each panel in Figure 1.
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TDHF (M � 1) are shown in Figure 2C. The electric field ε1(t) at
t ≈ t1 points from C to O for the case of φ1 � 0.5π (i.e., ε(t1)> 0).
The one-body part υ1(t) changes according to the dipole
interaction, i.e., υ1(t) � υ1(0) + zε1(t); υ1(t1) + υ2,5σ(0) in
Figures 2A,C therefore exhibit the same linear slant in the
asymptotic region of large |z|. On the other hand, the change
in υ2, 5σ(t) is distinctly different between the two methods. The
effective potential of υ1(0) + υ2,5σ(t1) obtained by TD-CASSCF
has a hump around z � −3a0 and crosses υeff5σ (0) at z ≈ −5a0;
υ1(0) + υ2,5σ(t1) asymptotically approaches υeff5σ (0) as z goes

negative. As a result, the total one υeff5σ (t1) � υ1(t1) + υ2,5σ(t1)
in Figure 2A has also a hump (extra thin barrier) around z � −3a0
in comparison with υ1(t1) + υ2,5σ(0).

When the sign of ε1(t) is reversed in the next half cycle at
t ≈ t2 � 3 fs, the two-body part υ1(0) + υ2,5σ(t2) monotonically
increases up to z ≈11a0 (υeff5σ (t2) is even slightly higher than υeff5σ (0)
up to z ≈ 11a0, albeit the presence of the applied electric field
of ε1(t2)< 0). A tunnel barrier in υeff5σ (t2) is thus formed in the
region of z > 10a0, far away from the nuclei. Long propagation is
required for an electron to reach the barrier located at z ≈ 10a0.
We found that these features are responsible for the suppression
of TI when ε1(t)< 0 [88–90]. The fact that the tunnel barrier is far
distant from the O atomwhen the electric field points fromO to C
can be also clearly demonstrated by the TD-CASSCF effective
potential υeff5σ (t1) for the opposite case of φ1 � −0.5π. For this
choice of φ1, ε1(t1)< 0; the upward slope in υeff5σ (t1) shifts
downward around z ≈ 13a0. Another example for the opposite
CEP is shown in Figure 5 in [90] (where the field strength is about
one and a half times of the present one). The temporal change in
the spatial profile of υeff5σ (t) is consistent with the experimentally
observed anisotropic TI of CO.

To quantify the role of electron correlation, we compare the
effective potentials in Figure 2A with TDHF ones shown in
Figure 2C. In Figure 2C, υ1(0) + υ2,5σ(t1) increases gradually
with decreasing z and is higher than υ1(0) + υ2,5σ(0) by a
constant of ∼0.1Eh. Accordingly, υeff5σ (t1) is nearly parallel to
υ1(t1) + υ2,5σ(0). The tunnel barrier in υeff5σ (t1) is higher and
wider in Figure 2C than in Figure 2A. As expected from the
tunnel barriers in Figures 2A,C the ionization probability
obtained by TDHF was less than 1/30 of the TD-CASSCF
value (∼0.0008 for the whole pulse of ε1(t) with φ1 � 0.5π).
More importantly, hump formation in υ1(0) + υ2,5σ(t1) is not
observed in Figure 2C. Hump formation is hence ascribed to
the effects of multielectron interaction beyond the mean field
approximation, i.e., the electron correlation originating from
the interaction with the applied field. To grasp the appearance
of the hump more comprehensively, we present 5σ effective
potentials for a higher field strength of FT�0.06 Eh/(ea0) in
Figure 2D [88–90]. Comparison in υ1(0) + υ2,5σ(t1) between
Figures 2A,D shows that the hump grows and the peak
position in υ1(0) + υ2,5σ(t1) slightly shifts toward the nucleus
C with increasing field strength (ε1(t1)> 0). The resulting thin
barrier formed around z � −3a0 in υeff5σ (t1), which is not
reproduced by TDHF, clearly indicates preferential
ionization from the C atom side. The hump formation in
υ1(0) + υ2,5σ(t1) reflects the process that an electron
penetrates through the potential barrier due to a field-
induced local rise of electron density, of which area may be
called an ionization exit.

In Four-Color Pulses, we provide a more concrete picture to
understand the root of hump formation in υeff5σ (t) and the
mechanism of anisotropic ionization of CO.

Two-Color Pulses
The one-color field ε1(t) is directionally symmetric: the absolute
value of ε1(t) is the same for its positive and negative extremes.
The TOF fragment analyses of ω +2ω experiments for CO [20, 21,

FIGURE 3 | Electric field profiles for multi-color pulses (green broken
lines): (A, B) three-color pulses with relative intensities a2 � 2/3 and a3 � 1/3;
(C, D) four-color pulses with relative intensities a2 � 1/2, a3 � 1/3, and
a4 � 1/4. The relative pahses and the intensity parameter FT in Eq. 18
are given as follows: (A) φ1 � φ2 � −π/2,φ3 � π/2, and ET � 0.0541Eh/(ea0);
(B) φ1 � −π/2, φ2 � φ3 � π/2, and FT � 0.0611Eh/(ea0); (C) φ1 � φ2 � φ3 �
φ4 � −π/2 and FT � 0.0528Eh/(ea0); (D) φ1 � φ3 � −π/2, φ2 � φ4 � π/2, and
FT � 0.0778Eh/(ea0). The induced dipole mements d5σ(t) of the 5σ natural
orbital for each pulse, denoted by a black solid line, is obtained by TD-
CASSCF.
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26] have indicated that the ionization rate takes the maximum
when the field points from C to O and takes the minimum when
the field is reversed. To reveal more explicitly the correlation in
anisotropy between the ionization of CO and the applied field, we
here employ two-color fields that provide asymmetric fields.
Figure 1B is an example of an asymmetric two-color field ε2(t).
The parameters in Eq. 17 are chosen for ε2(t) as a2 � 2/3,
φ1 � φ2 � 0, and FT � Fp � 0.0378 E/ea0 (a3 � a4 � 0). The sign
of the electric field ε2(t) is reversed by setting φ1 � φ2 � π. Similar
parameter sets of φ1,φ2, a2 and ET are experimentally feasible as
demonstrated in [20, 21, 26].

The largest peak in ε2(t) of Figure 1B appears in the positive
side. The central peak at t ≈ 2.53 fs is overwhelmingly high and
the effects of the other peaks are expected to be minute. The
induced dipole moment of the 5σ orbital, calculated by TD-
CASSCF, is also plotted in Figure 1B, indicating that the orbital
responds to the two-color field mainly near the central peak. The
TD-CASSCF effective potential υeff5σ (t) at t ≈ 2.5 fs is shown in
Figure 2B, which quantitatively agrees with that in the one-color
case of Figure 2A. The positive peak of ε2(t) in Figure 1B has

therefore almost the same effect on ionization as the positive peak
of ε1(t) in Figure 1A does. The ionization probabilities for the
pulses in Figures 1A,B are nearly the same as ∼0.0008. This
results again suggests that the ionization probability induced by
the negative peak is much smaller than that by the positive peak,
under the assumption that the effects of individual peaks in ε1(t)
on TI are separable from each other. What ionization dynamics
the positive or negative peak of a one-color pulse brings about can
be separately examined by employing two-color pulses that are
per se directionally asymmetric like ε2(t). The ionization
probability for the sign-reversed pulse, i.e., −ε2(t), is about
one-third as small as that for ε2(t). This approach has already
been realized experimentally, as mentioned above.

Three-Color Pulses
Multicolor fields can be used to manipulate the modulation
between the peaks of the electric field. In this subsection, we
present d5σ(t) and υeff5σ (t) for three-color pulses with relative
amplitudes a2 � 2/3 and a3 � 1/3. Two three-color pulses and
corresponding d5σ(t) are shown in Figures 3A,B. The relative
phases and the intensity parameter FT in Eq. 18 are as follows:
(A)φ2 � −π/2 and FT � 0.0541Eh/(ea0); (B)φ2 � π/2, and
FT � 0.0611Eh/(ea0). For both cases, φ1 � −π/2 and φ3 � π/2.

FIGURE 4 | Four kinds of 5σ effective potentials plotted parallel to the
z-axis at the fixed value of ρ � 0.755a0. The pulses used in four panels (A–D)
correspond to those in Figure 3(A–D), respectively. υ1(t) and υ2,5σ(t) are
respectively the one-body part and two-body part in υeff5σ(t). The
definitions of effective potentials are designated in each panel. The effective
potentials in these panels are all calculated by TD-CASSCF. The green
horizontal dotted line denotes the effective orbital energy E5σ(t). The time
point at which the effective potentials are calculated is indicated by a red filled
circle in each panel in Figure 3.

FIGURE 5 | TD-CASSCF results for the pulse in Figure 3C: (A) 2D
contour plot of υ1(0) + υ2,5σ(t) at t ≈ 2.8 fs; (B)Contour plot of the difference in
total electron density between t ≈ 2.8 and t � 0. The contour lines in (A) are
drawn at height intervals of 0.02Eh. The numbers near contour lines
indicate the heights (in units of Eh). The contour lines in (B) are drawn at
intervals of 0.0001 a−30 . The symbol “+” designates that the electron density
increases in the region. The hump ridgeline in υ1(0) + υ2,5σ(t) is schematically
illustrated in (A) by a light green dotted line, which is also drawn on the contour
plot (B) as a dotted line.
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In the case of (A), the time difference between the negative
maximum at t � 2.05 fs and positive maximum at t � 3.02 fs is 0.97
fs. This may be converted to an optical period as 2 × 0.97�1.94 fs,
which is a little shorter than the period of a one-color field and
longer than that of a two-color field, i.e., 2π/(2ω) � 1.27 fs. For
the case of (B), an additional wiggle intervenes between the
negative maximum at t � 1.81 fs and positive maximum at t �
3.26 fs. The time difference between the two peaks corresponds to
the optical period of 2 × 1.45�2.90 fs, which is slightly longer than
the one-color period of Tc � 2.53 fs. The period of the wiggle
around t � Tc is ∼0.8 fs, which corresponds to the period of a 3ω
field, i.e., 2π/(3ω) � 0.84 fs.

The induced dipole moment d5σ(t) in Figure 3A shows a
quasiadiabatic response and the maximum value is as large as in
Figure 1A. Corresponding effective potentials of the 5σ HOMO
at t ≈ 3.0 fs, shown in Figure 4A, are almost the same as in
Figure 2A. These similarities to the case of the one-color pulse in
Figure 1A may be attributed to the fact that the period between
the main negative and positive peaks, i.e., 1.94 fs, is close to the
period of one-color field, i.e., Tc � 2.53 fs. As a matter of fact,
the ionization probability for the pulse in Figure 3A is nearly the
same as that for ε1(t) in Figure 1A. Although a wiggle intervenes
between the main negative and positive peaks in the electric field
in Figure 3B, the corresponding induced dipole moment d5σ(t)
also behaves nearly adiabatic, especially around t � 3.3 fs,. The
present calculation for CO indicates that the response to three-
color pulses is still more or less adiabatic. The peaks in d5σ(t)
nearly coincide temporally with the peaks of the applied three-
color field. The adiabatic character of three-color pulses is
consistent with the recently reported experimental results for
CO using femtosecond ω +2ω +3ω laser fields [43], where the
phase-dependent behavior of ionization was explained by
the phase-dependence and directional anisotropy of the
instantaneous maxima of applied three-color fields. The
maximum value of d5σ(t) in Figure 3B is slightly larger than
that in Figure 3A and the hump in υ1(0) + υ2,5σ(t) at t ≈3.3 fs in
Figure 4B becomes more prominent, compared to Figure 2A or
Figure 4A. The wiggle in the applied field of Figure 3B, which
appears around t � 2.53 fs with a short period of ∼0.8 fs (≈the
period of the 3ω field), exerts influence on the effective potential
υeff5σ (t) at a later time t ≈ 3.3 fs, though the wiggle is relatively small
and the overall response is almost adiabatic. The ionization
barrier of υeff5σ (t) in Figure 4B is thus largely different from
that of υ1(t) + υ2,5σ(0). The ionization probability for the pulse in
Figure 3B is larger than that for Figure 3A. The former is ∼0.0013
and the latter is ∼0.0008.

Four-Color Pulses
The effects of sawtooth wave forms on multielectron dynamics
can be investigated by using four-color fields. The relative
amplitudes are fixed as a2 � 1/2, a3 � 1/3, and a4 � 1/4 in this
subsection. We show the responses to two four-color pulses in
Figures 3C,D: (C)φ2 � φ4 � −π/2 and ET � 0.0528Eh/(ea0); (D)
φ2 � φ4 � π/2 and ET � 0.0778Eh/(ea0). For both cases,
φ1 � φ3 � −π/2. These sets lead to Ep � 0.0378Eh/(ea0). In the
case of Figure 3C, the time difference between the negative
maximum at t � 2.29 fs and positive maximum at t � 2.78 fs

is 0.49 fs. This may be converted to an optical period as
2×0.49 � 0.98 fs, which is shorter than the optical period of a
two-color field and longer than that of a three-color field
(2π/(3ω) � 0.84 fs). The electric field increases steeply and
almost linearly from the negative maximum to the positive
maximum. For the case of Figure 3D, an additional
undulation intervenes between the negative maximum at t �
1.55 fs and positive maximum at t � 3.52 fs. The time difference
between the two main peaks corresponds to the optical period of
3.94 fs, which is one and a half times as long as the one-color
period of Tc � 2.53 fs. The period of the sawtooth-like undulation
between the two peaks is 0.56 fs, which is close to the period of a
4ω field, i.e., 2π/(4ω) � 0.63 fs.

The induced dipole moment d 5σ(t) in Figure 3C behaves
rather nonadiabatically even in the initial region up to t � 2 fs,
though the appled field ε(t) as a whole seems a single cycle pulse
with two dominant peaks at t � 2.29 fs and t � 2.78 fs. In fact,
d 5σ(t) in Figure 3C sensitively reflects how much high frequency
components (in the present case, up to the fourth harmonic) are
included in ε(t). Notice that the induced dipole moment d 5σ(t)
rises steeply from t ≈ 2.3 fs to t ≈ 2.8 fs, while the abolute value of
d 5σ(t) prior to the midpoint of the pulse (t � 2.53 fs) is relatively
small. The maximum value of d 5σ(t) at t ≈ 2.8 fs is as large as
0.18 ea0, much larger than in the other cases of the same Fp. In
Figure 3D, d 5σ(t) increases with undulation from t � 1.55 fs to t �
3.52 fs, while reflecting the modulation in the applied pulse ε(t).
The resulting undulation amplitude in d 5σ(t) is much larger than
that in ε(t), which indicates that the electron motion in ϕ 5σ(t) is
sensitive to the presence of high frequency componets in ε(t)
even when the change in ε(t) is moderate. Peaks in d 5σ(t) are
delayed from the corresponding peaks in ε(t), which is a proof of
nonadiabatic character.

Four types of 5σ effective potentials at t ≈ 2.8 fs for the pulse in
Figure 3C are shown in Figure 4C. The difference between
υ1(0) + υ2,5σ(t) and υ1(0) + υ2,5σ(0) in Figure 4C is striking in
comparison with the cases of Figures 2A,B: A hump is more
clearly observed around z � −3a0 in υ1(0) + υ2,5σ(t) at t ≈2 .8 fs.
The induced dipole moment of ϕ 5σ(t) responds to the steep rise
in ε(t) in the time span from t � 2.3 fs to t � 2.8 fs, and increases to
a large maximum value (∼0.18 ea0) as shown in Figure 3C;
concurrently, the other electrons also enter or appraoch the
ionization exit. This is the reason why the hump become more
distinct in Figure 4C, which is attributed to the electron
correlation (stronger electron-electron interaction) induced by
the coherent four-color pulse in Figure 3C. A more concrete
evidence will be presnted below.

In the present treatment, the effective potential of CO is a two-
dimensional (2D) function, i.e., a function of z and ρ. We have
already examined TD-CASSCF effective potentials in 2D
representation for a one-color pulse [90]. In Figure 5A, we
present a 2D contour plot of υ1(0) + υ2,5σ(t) at t ≈ 2.8 fs for
the four-color pulse in Figure 3C. On the whole, the hump height
in υeff5σ (t) drops from (z, ρ) � (−3a0, 0) with increasing ρ; i.e., the
hump is formed around the molecular axis. The ridgeline of the
hump slides down along a curve line from (z, ρ) � (−3a0, 0)
toward (−2a0, 2a0), which is schematically illustrated in
Figure 5A by a dotted line.
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The change in field-induced electron-electron interaction is
definitely affected by the spatial change in total electron density
P(z, ρ; t) or by the induced dipole moment. We present in
Figure 5B a 2D plot of the difference P(z, ρ; t) − P(z, ρ; 0) at
t ≈ 2.8 fs for the pulse in Figure 3C. A positive peak emerges around
(z, ρ) � (−3a0, 0). Electrons mostly move along the C-O axis in the
case where it is parallel to the polarization direction of the applied
field. This buildup zone in the electron density P(z, ρ; t) −
P(z, ρ; 0) overlaps with the hump in Figure 5A, as indicated by
the hump ridgeline superimposed on Figure 5B. The hump
formation is hence ascribed to the interactions between electrons
swarming to the buildup zone or between orbitals, which cannot be
described by the TDHF level of theory. In conclusion, the hump in
υ1(0) + υ2,5σ(t) results from the penetration of an electron into the
potential barrier formed by a field-induced local rise of electron
density. When ε(t) < 0, P(z, ρ; t) − P(z, ρ; 0) exhibits no distinct
peaks in the region en route to ionization.

The hump ridge elevates as the field strength ε(t) (> 0) increases,
which sharply incises the protruding lobe of the 5σ natural orbital
ϕ 5σ(t) around the C atom (See the light green dotted line in
Figure 6A). This mechanism accelerates the ionization from
ϕ 5σ(t) in the area outside the hump ridge. The area of the newly
emerging hump is regarded as a TI exit in the presence of electron
correlation or a crowd of electrons. We have confirmed that the
hump height from the asymptotic value of υ1(0) + υ2,5σ(t1) at z �
−∞ is nearly proportional to the induced dipole moment of ϕ 5σ(t)
associated with the spatial change in electron density [90]. For
TDHF, the buildup zone in electron density spreads vaguely in
comparison with the TD-CASSCF case, in agreement with the fact
that no hump appears in Figure 2C.

For the pulse of Figure 3D, effective potentials at t ≈ 3.5 fs are
shown in Figure 4D. The potential υ1(0) + υ2,5σ(t) at t ≈ 3.5 fs
exhibits a very unique feature, i.e., a deep dent around z �
−7.5a0. The dents connected in the (z, ρ) space form a deep
valley in υeff5σ (t), which significantly distorts the profile of υeff5σ (t).
The time span where ε(t) > 0 in the latter half of the pulse
(t > 2.53 fs) is as long as 1.3 fs and the ionization barrier of υeff5σ (t)
is then largely shifted down. Considering these facts and
following a primitive picture of TI, we expected that the
ionization probability for the pulse in Figure 3D is rather
large. However, it is only slightly larger than that for
Figure 3C; the ratio is ca. 0.008:0.006 (Overall, the ionization
probabilities for the four-color pulses are about one order of
magnitude larger than in the pulses comprised of harmonics up
to the third order.). The ionization probaility for Figure 3D
includes the additional contribution from the positive field area
around t � 1 fs. We add that the effective potential υeff5σ (t) at
t ≈ 3.5 fs obtained by TDHF levels off in the range from z � − 4a0
to z � −7a0 (as high as 0.4 Eh) and exhibits only a shallow valley
at z ≈ −8a0 (The depth is ∼0.1Eh). The TDHF ionization
probabilities for Figures 3C,D were one order of magnitude
smaller than the TD-CASSCF values.

An interpretation based on the present single-electron picture is
that the valley in υeff5σ(t) of Figure 4D serves to block the electron
current from the bound region (by reflection). This interpretation
can be evidenced by the 2D contour plot of

∣∣∣∣ϕ 5σ(t)
∣∣∣∣. Figure 6A

represents log10|ϕ5σ(t)| at t ≈ 2.8 fs for the pulse in Figure 3C;
Figure 6B represents log10|ϕ5σ(t)| at t ≈ 3.5 fs for the pulse in
Figure 3D. Figure 6A simply shows a typical feature of TI that
electron density leaks out from the bound region toward the negative
z direction (for ε(t) > 0). On the other hand, Figure 6B shows that
the bound component of ϕ 5σ(t) is encircled by the valley in υeff5σ(t),
which is indicated by the red dotted line. The four-color pulse ε(t) in
Figure 3D behaves as if it squeezes ϕ 5σ(t) toward the inside of the
valley, i.e., toward the center of the molecule, though at this moment
the field ε(t) pushes an electron toward the negative z direction. We
found that the difference P(z, ρ; t) − P(z, ρ; 0) at t ≈3.5 fs becomes
slightly negative in the area along the valley in υeff5σ(t) and it rises
around the hump near (z, ρ) � (−3a0,0) in υeff5σ(t), of which rise is
more prominent than in the other cases with the same Fp. The valley
in υeff5σ(t), associated with a diminution in electron density, is
regarded as a signature of strong electron correlation induced by
the four-color pulse. This type of coherent control of ϕ 5σ(t)works in
forvor of ionization suppression. Since ϕ 5σ(t) in Figure 6B is
spatially squeezed, d 5σ(t) at t ≈ 3.5 fs in Figure 3D is smaller
than d 5σ(t) at t≈ 2.8 fs inFigure 3C. The former is∼0.13ea0 and the
latter is ∼0.18ea0. The “squeezed” ϕ 5σ(t) orbital might be associated
with the formation of a localized excited or resonance state as
discussed in the next subsection.

On the Information out of High-Order
Harmonic Generation Spectra
We here discuss the connection of the present results of TI with
HHG. The HHG spectra of asymmetric molecules, which reflect
the presence and motion of the charges in applied fields, can be
utilized to investigate the mechanism of coherent control and to

FIGURE 6 | 2D contour plots of ϕ5σ(t) for four-color fields: (A)
log10

∣∣∣∣ϕ 5σ(t)
∣∣∣∣ at t ≈ 2.8 fs for the pulse in Figure 3C; (B) log10

∣∣∣∣ϕ5σ(t)
∣∣∣∣ at t ≈ 3.5

fs for the pulse in Figure 3D. The brown line represents the height of∣∣∣∣ϕ5σ(t)
∣∣∣∣ � 10− 4a−3/20 . The contour interval on the logarithmic scale is 0.5.

The light green dotted line in (A) denotes the hump ridgeline in Figure 5A. The
red dotted line in (B) denotes the valley in υeff5σ(t) for Figure 4D, along which a
groove runs in the contour map of log10

∣∣∣∣ϕ5σ(t)
∣∣∣∣.
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assess the degree of controllability. The ionization potential for a
polar molecule in an intense field is a time-dependent one, as
denoted by Ip(t), which is due to the Stark-shift of the ground
state; for HeH2+, Ip(t) is approximately given by Ip(t) ≈ I0 +
Rε(t)/2 [112–114], where I0 is the field-free ionization potential
and R is the internuclear distance. The Stark-shifted ionization
potential leads to a cutoff energy in HHG that is higher than the
widely accepted prediction by the three-step model, i.e. E(0)

cutoff � I0 +
3.17f 2max/4ω

2 [8], for the one-color applied field with a frequency ω,
where fmax is the maximum field envelope. Etches andMadsen [115]
have shown theoretically for a polar molecule CO that HHG
components are generated beyond the predicted value of E(0)

cutoff .
The cutoff energy experimentally measured can serve as an index to
quantify how the Fourier-synthesized fields manipulate the
electronic wave function.

Another feature inherent in the HHG spectra of asymmetric
molecules was pointed out by Bandrauk et al. [113, 114], who
theoretically investigated the role of excited states in HHG for
HeH2+. They found that a transient localized state (Stark-shifted or
field-dressed first excited state of HeH2+) is resonantly populated prior
to ionization by laser induced electron transfer from the He2+ side to
the H+ side. This field-dressed excited state is able to get back directly
to the ground state with emission. A resulting new HHG channel,
regarded as the quasi two-step pathway, gives birth to an intense
resonance peak (<E(0)

cutoff ) near the field-dressed energy gap between
the transient excited state and the ground state. In the case where the
resonance state has long lifetime, the ionization via the resonance state
is expected to be delayed, which for short laser pulses, redshifts the
HHG spectrum in the plateau region [113]. This type of resonance
channel is also investigated in [116]. A four-step model was thus
proposed for the HHG of asymmetric molecules [113, 114], in which
the representative transient state is incorporated into the three-step
model as an additional step in the HHG. The extension of the cutoff
energy mentioned in the above paragraph can also be interpreted by
the following four-step pathway in the four-step model: i) An electron
is pumped from the ground state to the localized long lifetime excited
state (field-induced electron transfer from the He2+ side to the H+

side), ii) then, part of the population is transferred to field-dressed
continuum states, iii) the freed electron is accelerated in the laser field,
and iv) recombination with the ground state (the neighboring He2+)
[114]. The cutoff extension is attributed to the difference in electric
field potential between (ii) the ionization site (H+) and (iv)
recombination site (He2+). The four-step pathway interferes in
HHG with the quasi two-step pathway. It has been theoretically
demonstrated that distinct vestiges of the interference between the
two pathways appear in the HHG spectrum if the amplitudes of the
two pathways are comparable with each other [114].

Intermediate states prepared by tailored multi-color fields, such
as represented by a “squeezed” orbital in Figure 6B, may work as
such transient excited states leading to resonance HHG. A realistic
attempt to confirm the existence of such resonance states and to
assess the controllability of the wave function is to examine how the
HHG spectrum (regarding the cutoff energy, individual peak
positions and intensities, etc.) changes by varying the relative
phases among multi-color fields. In line with this, it is necessary
to quantify how long the intermediate states (orbitals) prepared live.
We would like to take on the applications of the effective potential

approach to the setup of new experimental schemes and to the
search of possible results, as discussed in [90].

CONCLUSION

We presented the results of theoretical investigation of the
multielectron dynamics of CO in intense laser fields and
discussed various manipulation schemes by Fourier-
synthesized coherent fields comprised of harmonics up to the
fourth order. The multielectron wavefunction Ψ(t) to describe
the electron dynamics are obtained by using the MCTDHF
method, where Ψ(t) is expanded in terms of various electron
configurations or Slater determinants {ΦI(t)}. In the MCTDHF,
both the CI coefficients {CI(t)} and molecular orbitals {ψj(r, t)}
in {ΦI(t)} obey the coupled EOMs derived from the Dirac-
Frenkel TD variational principle, where r is a one-electron
coordinate. In actual numerical simulations for the dynamics
of CO interacting with Fourier-synthesized pulses, we employed
the TD-CASSCF scheme where the orbital space in the Slater
determinants is split into inactive (core) and active orbitals. The
peak of the applied field is fixed at Fp � 0.0378 Eh/(ea0) �
1.94×1010 Vm−1 throughout this paper except that in
Figure 2D, of which the light intensity corresponds to
I � 5.0×1013 Wcm−2 in the case of one-color pulses.

We then quantified the multielectron nature such as electron
correlation by using our effective potential approach: the time-
dependent natural orbitals {ϕj(r, t)}, which diagonalize the first
order reduced density matrix, are obtained from {ψj(r, t)}; next, the
EOMs for {ϕj(r, t)} are derived, which define the effective single-
electron potentials υeffj (r, t) that determine the dynamics of ϕj(r, t)
under the influence of electron-electron interaction. The effective
potentials {υeffj (t)} consist of two terms: υeffj (t) � υ1(t) + υ2,j(t),
where υ1(t) is the one-body interaction including that with the
applied laser field ε(t) and υ2, j(t) represents an effective two-body
electron-electron interaction for a single electron. The TD effective
potentials as functions of a one-electron spatial coordinate r are thus
obtained from the natural orbitals {ϕj(r, t)} and CI expansion
coefficients {CI(t)} of the calculated Ψ(t). In this approach, the
role of electron correlation can be quantitatively analyzed by
comparing υeffj (r, t) with those obtained by the TDHF method.

Two-body interaction υ2,5σ(t) can dramatically change the
shape of the tunnel barrier in the 5σ ΗΟΜΟ effective potential
υeff5σ (r, t), whereas the one-body potential υ1(t) is simply slanted
by the electric dipole interaction. For near-IR one-color pulses, as
the field strength increases when ε(t) points from C to O
(ε(t)> 0), a hump is formed ∼2 a0 away outside from C (z <
0) in υ1(0) + υ2,5σ(t). Around this region, the lobe of ϕ 5σ(t)
spreads out extensively. Electron density is then transferred from
the interior to the exterior region outside the hump ridge (which
is considered the border between the interior and exterior
regions), and ionization proceeds together with a bound
component already distributed in the exterior region. The
experimentally observed anisotropic ionization in CO is
ascribed to the hump formation, which brings about
preferential electron ejection from the C atom side. Hump
formation originates from the field-induced change in υeff5σ (r, t)
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mainly due to electron correlation. Upon the reversal of the sign
of ε(t), ionization is relatively suppressed, because the tunnel
barrier is then located far away (>13a0) from the O atom. This is
the mechanism we proposed for the anisotropic ionization of CO
[88–90].

We found that υeff5σ (r, t) for an optimized asymmetric ω+2ω
two-color pulse exhibits a very similar profile as in υeff5σ (r, t) for
one-color pulses. A coherent superposition of ω and 2ω fields
with an appropriate relative phase works as if either positive or
negative peaks are filtered out from a one-color pulse. The
induced dipole moments d5σ(t) for three-color pulses behave
almost adiabatic. The peaks in d5σ(t) nearly coincide temporally
with the peaks of the applied three-color field. This suggests that
the main ionization mechanism in three-color fields is still TI.
More sophisticated manipulation can be realized by adding
higher harmonics to a synthesized field. The controllability of
electron dynamics is higher in four-color fields than in three-
color fields. By adjusting the relative phases of a ω+2ω+3ω+4ω
field, one can create, in addition to a hump, a deep potential valley
in the negative z region of υeff5σ (r, t)which encloses the molecule at
a radius of ∼7 a0. The 5σ orbital of CO is then squeezed toward
the inside of the potential valley in υeff5σ (r, t). It is of much interest
to reveal what is the origin of this “squeezed” orbital. We would
like to point out again that a hump and valley in υeff5σ (r, t) are
closely correlated with domains of increasing and decreasing
electron density, respectively. As a first step to establish robust
control schemes for multielectron dynamics by Fourier-
synthesized coherent laser fields, we are planning to extract
the information of two-body parts {υ2, j(t)} from phase-
dependent quantities (functions of relative phases among
harmonics), e.g., HHG spectra as well as the yields and
release-direction propensities of fragment ions and electrons.

The final point to be discussed here concerns the future extension
of the present effective potential approach to chemical reactions. The
strong coupling between intense fields and valence electrons
dramatically distorts the potential hypersurfaces which determine
the motion of the nuclei and brings about decisive changes in
reaction pathways [17, 117, 118]. Kübel et al. [118] ionized H2 by a
few-cycle visible pulse and prepared a wave packet on the σg state of
H +

2 . The behavior of H +
2 was controlled by a mid-infrared pulse

with a delay that couples the σg state with the σu state by one-, three-,
and five-photon absorption. They analyzed a strongly modulated
angular distribution of protons by using two-color Floquet theory
and proved the existence of complex light-induced (field-dressed)
potential surfaces that multiphoton couplings afford. These
potentials can be shaped by the amplitude, phase, and duration
of the applied fields, which allows for manipulating the dissociation
or reaction dynamics of small molecules.

A feasible extension along with this line is to include the
nuclear coordinates {Qk} as adiabatic parameters into the
present approach, i.e., to define or calculate “adiabatic”
natural orbitals {ϕj(r, {Qk}, t)}. The effective potential for
ϕj(r, {Qk}, t) are then expressed as υeffj (r, {Qk}, t), which
might connect more tightly the two pictures of molecular
orbital and molecular dynamics. Another conceivable
approach is to use a more fundamental method, namely, the
extended MCTDHF method where the nuclear coordinates in

the total wave function Ψ({rj}, {Qk}, t) are dealt with as
quantum mechanical variables (e.g., each nucleus is
expressed by a single-particle function, like in the treatment
of electrons as molecular orbitals) [89, 109, 119–121]. The
molecular orbitals used in the extended MCTDHF are
functions of a one-electron coordinate alone (i.e., {ψj(r, t)});
{Qk} are not involved, unlike in the conventional Born-Hung
expansion [122]. An effective potential for each nucleus could
in principle be derived from the non-Born-Oppenheimer wave
function Ψ({rj}, {Qk}, t), which would provide a single nucleus
picture in the presence of correlated nuclear motion. The
extended MCTDHF method also offers a novel concept of
potential surfaces (extended-MCTDHF potentials). So far, the
effective potential curves of the ground and excited states
defined in this method are obtained for a 1D model H2 [89,
120, 121] and the time-dependent system of 3D H2

+ [123]. The
memory size used in this method is shown to be about two
orders of magnitude smaller than in the Born-Hung expansion
method when the same accuracy is required for the lowest
vibronic energy. It is intriguing, especially for polyatomic
molecules, to construct multiphoton field-dressed potentials
based on Floquet theory from extended-MCTDHF potentials.

The various effective potential approaches abovementioned
would help reveal the entire picture of the quantum electronic
and nuclear dynamics of molecules and help contribute to further
development of coherent control of chemical reactions.
Challenges are widespread ahead of the frontier of the
research on Coherent Phenomena in Molecular Physics.
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39. Haessler S, Balčiunas T, Fan G, Andriukaitis G, Pugžlys A, Baltuška A, et al.
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Decoherent Excitation of Transverse
Free Currents in Dielectric Liquids via
Inter-Molecular Interactions
C. S. DiLoreto1 and C. Rangan2*

1Department of Natural Sciences, Northwest Missouri State University, Maryville, MO, United States, 2Department of Physics,
University of Windsor, Windsor, ON, Canada

We present a theoretical model for a class of optical scattering experiments in which short-
duration, linearly-polarized electromagnetic pulses scatter off dielectric liquids. The pattern
of scattering, particularly in the transverse direction, indicates that significant free currents
are generated in the direction orthogonal to the polarization of the incident light. Modelling
the target as a dense cluster of two-level systems, we show that transverse free currents
are produced by short duration, electric-dipole interactions between proximate molecules,
and result in scattering patterns similar to those observed in the experiments. Calculations
provide a rationale for why these scattering patterns are not observed in the same
molecules at lower densities or with lower field intensities. These features make this
model a relevant alternative to proposed transverse optical magnetism theories.

Keywords: femtosecond pulse scattering, inter-molecular interactions, transverse scattering, lindblad master
equation, ensemble scattering

1 INTRODUCTION

Optical or artificial magnetism is typically seen in specifically-engineered, nanofabricated
metamaterials such as thin metallic strip pairs [1], split-ring resonators [2], and hyperbolic
metamaterials [3]. As the name metamaterial implies, these devices are specifically engineered to
have properties beyond those traditionally found in naturally-occuring materials, and typically
contain nanostructures with precise geometries. Over the last decade, a series of experiments
[4–7] have reported observing optical magnetism in dielectric liquids. These experiments have
generated significant interest due to the prospect of observing magneto-optic interactions in
naturally-occurring, non-magnetic materials [8]. These experiments, in which a dielectric liquid
(such as water or carbon tetrachloride) is excited by a short-duration ( ≈ 100 − 150 fs), high-
intensity ( ≈ 1 × 108 − 4 × 108 W/cm2) electromagnetic pulse, have shown that the scattered, free-
emitted light in the propagation direction orthogonal to that of the incident light, has a significant
intensity in the polarization direction orthogonal to the incident polarization. These results,
suggestive of magnetic dipole radiation patterns, have led to the theory that intense optical fields
induce magnetism in individual molecules, that lead to the generation of significant transverse
free currents, which in turn generate the observed radiation patterns [9–12]. This “transverse
optical magnetism” theory has encountered a number of criticisms, primarily centered around the
need for a large relative magnetic permeability μr ≈ c for agreement with experiments [9, 10,
13–16].

In this paper, we present an alternate theoretical model that can explain the experimental
observations in Refs. [4–7] by including inter-molecular effects. In this model, strong, transverse
free currents are produced through inter-molecular electric-dipole interactions without
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invoking magneto-optic effects in single molecules. Because
the strength of inter-particle interactions decreases directly as
the density of emitters decreases, this model can explain
experiments in which scattering effects exhibit a strong
density dependence. For example, it explains why these
intensity patterns are not observed in scattering experiments
that use low molecular density phases (such as the gas
phase) [17].

2 THEORETICAL MODEL AND
CALCULATIONS

When a linearly-polarized electromagnetic pulse is incident on a
dense ensemble of molecules, the light absorbed by an individual
molecule creates a free current in the initial polarization direction.
Upon spontaneous emission, this light is re-emitted in a well-
known dipole pattern. In a dense medium, this light is reabsorbed
by neighboring molecules located at different spatial positions.
This subsequent absorption by neighboring molecules leads to a
free current that is not necessarily in the same direction as the
incident polarization direction. By exciting radiating dipoles
perpendicular to the polarization of the incident field, the
ensemble will emit photons in multiple polarization directions.
This creates radiation patterns similar to those observed in the
experiments.

In our calculations, we model the scattering of a strong,
electromagnetic pulse by the target molecular liquid in the
experiments by a single-particle model of a dense, driven
ensemble of quantum dipoles (two-level systems) [18]. We
assume that the incident electromagnetic pulse is near-
resonant with a single optical transition in the molecule.
Since the quantum dipoles are excited by the local
electromagnetic field, the excitation direction of each dipole
can be different from each other and from the initial
polarization of the incident electromagnetic field. To model
excitations in directions other than the incident polarization
direction, the state of the ensemble is represented by the density
matrix of a four-level quantum system with one ground energy
level \ketg and three excited “directional” states |ex〉,

∣∣∣∣ey〉 and
|ez〉, an idea first proposed for a single atom in Ref. [19]. The
three excited states |ex〉,

∣∣∣∣ey〉 and |ez〉 represent the excited
energy levels when an x, y or z-polarized photon is absorbed by
the ensemble in the ground state. We assume that the
polarization of the incident electromagnetic field is in the
y-direction. The inter-molecular interactions are modelled by
decoherences that arise from nearest-neighbor dipolar energy
transfers [18, 20]. The ensemble density matrix representing a
cluster of molecules is therefore a 4 × 4 matrix, and its evolution
can be calculated quickly. This model requires no a priori
assumptions about the specific quantum levels of the target
molecules other than the applied field being near-resonant with
a single transition, therefore the conclusions are generalized to a
wide class of molecules.

The Hamiltonian of the ensemble of two-level molecules, after
making the rotating wave approximation as in Ref. [18] is:

Hens �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ZΩx

2
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2
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2
−△ 0 0

ZΩ*
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2
0 −△ 0

ZΩ*
z

2
0 0 −△

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where △ represents the detuning between the molecular
transition frequency and the frequency of the incident light,
and the Rabi frequency-like terms (Ωi � μiEi, i � x, y, z) are
proportional to the electric field amplitudes in each of the
three Cartesian directions (Ei) and the transition dipole
moment (μi). The incident electromagnetic pulse is polarized
in the y-direction, and propagates along the x-direction. The
electric field in the y-direction is dominated by the incident field,
while the electric fields in the x and z directions represent the
dipolar emission from a quantum emitter due to spontaneous
emission, and are about an order of magnitude smaller than that
of the incident field [18]. Note that we ignore the magnetic
component of the electromagnetic field since it is much smaller
than the electric field component, and the value of the relative
magnetic permeability of the molecules is assumed to be 1.

In our four-level model, the spontaneous emission from the
|ex〉,

∣∣∣∣ey〉, and |ez〉 excited directional states to the ground state∣∣∣∣g〉 have rates cxg , cyg and czg respectively. These emission rates
are determined using Fermi’s Golden Rule [20]. An individual
molecule in the ensemble can spontaneously emit in all
directions, and this radiation can excite a neighbouring
molecule. These “inter-particle interactions” are modelled by
adding in additional decoherence rates between all three
excited states, represented by the set of all possibleδij’s
(i, j � x, y, z) [18]. These rates represent the transfer of energy
between molecules in which the energy emitted by one molecule
transitioning to the ground state (|i〉→ ∣∣∣∣g〉) is absorbed and
causes a nearby molecule in the ground state to transition to
an excited state (

∣∣∣∣g〉→ ∣∣∣∣j〉). This model of the intermolecular
energy transfer as a decoherence rate is inspired by models of the
Forster-Resonance Energy Transfer (FRET) process commonly
seen in biophysical systems [20]. These δ’s do not result in a loss
of energy from the ensemble, therefore, they act like dephasing
rates for the ensemble density matrix.

Themagnitude of these dephasing rates associated with energy
transfer between molecules (δij) are calculated by modelling the
radiation emitted by a molecule as electric dipole radiation that is
absorbed by the nearest neighbors (separated by r) in a square
lattice. The expressions are derived in [18] and are of the form:

δij
c0

� Naπc3

4ω3
(3(ûi · r̂i)(ûj · r̂i) − ûj · ûi)( ����

ρiiρgg
√ ����

ρjjρgg
√ ), (2)

where Na is the number density of the ensemble, ω is the natural
frequency of the transition dipole, c0 � cig � cjg is the
spontaneous emission rate of the involved transitions and ûi is
the direction of the transition dipole moment.
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The term
�����
ρiiρgg

√ �����
ρjjρgg

√
, modifies the decoherence rate by

estimating how many dipoles are undergoing transitions that
experience the |i〉→ ∣∣∣∣j〉 energy transfer. Since ρgg , ρii and ρjj are
functions of time, and depend on the intensity of the applied field,
the dephasing rates exhibit an intensity-dependence. If the
intensity of the applied field is significantly low, the ensemble
state will simply oscillate around the ground state and these
dephasing rates will remain close to zero.

A diagram of all the decoherence processes in the single-
particle quantum model of the ensemble is provided in Figure 1.
The Lindblad superoperator representing the spontaneous
emission, and dephasing due to intermolecular energy transfer
has the form:

L(ρ) � ∑
i�x,y,z

cig
2
(σ†

igσ igρ + ρσ†
igσ ig − 2σ igρσ

†
ig) (3)

+ ∑
i�x,y,z

∑
j�x,y,z

δij
2
(σ†ijσ ijρ + ρσ†

ijσ ij − 2σ ijρσ
†
ij),

with σ ij �
∣∣∣∣j〉〈i|.

The density matrix of the ensemble, ρ, is evolved in time using
the Lindblad-von Neumann equation:

_ρ � − i
Z
[Hens, ρ] − L(ρ). (4)

As shown in Ref. [18], the time-dependent behavior of the
density matrix of an ensemble in a four-level basis, agrees very
well with the numerically calculated, average time-dependent
behavior of ≈ 4000 two-level molecules calculated via a mean-
field solution of Maxwell-Lindblad equations.

After calculating the time-dependent density matrix elements,
we determine the Emission Ratio (R), the ratio of the intensity
perpendicular the incident polarization (called IM as in the
experimental papers) to the intensity parallel to the incident
polarization (IE). In comparison to the experiments, this ratio is

calculated at a point along the transverse z-direction. The
instantaneous intensities will be proportional to the ratio of
the square of the modulus of the free currents (Ji)in the
driving field polarization direction (i � y) and an orthogonal
direction (i � x) [5], that is,

IM(t)
IE(t) �

|Jx(t)|2∣∣∣∣Jy(t)∣∣∣∣2. (5)

This ratio can be expressed in terms of the ensemble density

matrix elements since Ji � _μi � Tr( _ρμi ) � Tr( _ρ zH
zEi
). The

observed Emission Ratio is the ratio of the intensities
integrated over time. Therefore,

R � ∫ dt∣∣∣∣∣μx( _ρxg + _ρgx)∣∣∣∣∣2
∫ dt∣∣∣∣∣μy( _ρyg + _ρgy)∣∣∣∣∣2 , (6)

which yields a simple relationship between calculated elements of
the ensemble density matrix, and the measured Emission Ratio.
We assume that the transition dipole moments are the same in
each direction, μx � μy , and as in Eq. 2, ρig ≈

�����
ρiiρgg

√
. Note that

the Emission Ratio scales with the dipole moment of the

transition as ( μ
μ0
)2.

This model is sensitive to both the density of molecules in the
ensemble as well as the intensity of the applied field. Under low
intensities or low densities these inter-molecular effects are not
significant. Over long time periods, these effects die out very
quickly. However at high intensities, high densities and short time
periods these effects can lead to significant excitation and free
currents generated in orthogonal polarization directions [18].
This is similar to experiments in coherent atomic ensembles that
have shown that inter-atomic interactions affect resonance
frequencies and scattering polarizations, in a way that is
dependent on both the density of emitters and the incident
intensity [21].

3 EMISSION RATIOS FROM A DENSE
ENSEMBLE

We now calculate the Emission Ratio R generated in response
to a strong incident pulse similar to the experiments in Refs.
[5, 6]. A 100fs pulse with an intensity of 8 × 108 W/cm2 and a
central wavelength of 775 nm excites an ensemble of
molecules with a molecular number density NA, assumed to
have a value similar to that of water (NA � 3.3 × 1028m−3). Our
model makes the approximation that there is a single, optical
transition that is resonantly excited by the pulse. We make the
simplification that the pulse amplitude is a constant over its
duration (i.e., it is a rectangular pulse). This simplification
takes advantage of the pulse-area theorem used in quantum
control frameworks, in which only the area under the pulse
significantly affects excitation [22]. We also assume that all
the molecules are initially in the ground state. The dipole
moment of system was taken to be ≈ 1.8D � 3.7 × 10−11em,
based on the net dipole of a single water molecule [23],

FIGURE 1 | Decoherence structure in a single-particle approximation of
a driven molecular ensemble. Inter-molecular energy transfer due to
reabsorption of spontaneously emitted photons (cig’s in dashed/blue) are
modelled as decoherent dephasing terms (δij ’s in solid/red) For details on
how the decoherence rates are calculated, see Ref. [18].
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however this value may actually be higher due to water being
in a condensed phase [24].

Figure 2 shows the dependence of the emission ratio for water
on the intensity of the applied 100fs pulse. The range of pulse
intensities was chosen to match the overall range found in the
experiments in Refs. [5, 6].

From this figure, it is seen that for the emission ratio to
become significant for 100fs pulses, the average field intensity
needs to be higher than ≈ 107 W/cm2). This minimum
intensity limit is seen in experiments [5]. The curve is
similar to the measured experimental curves in that it
shows a linear increase at low intensities [6]. At higher
intensities, we predict the emission will reach a saturation
value. We find that the calculated emission ratio for a dielectric
liquid similar to water is fairly significant with a value of 0.15,
close to the experimentally measured emission ratio of
approximately 0.22 [6].

This quantitative difference is not surprising as our model
treats the molecules as dipole emitters and looks at no other
interactions between molecules. However, given the generality of
our model and the fact that the Emission Ratio under this
mechanism is similar in strength to what is measured, it
suggests that this alternate pathway from transverse free
currents and scattered intensities should represent a significant
step in understanding short-pulse scattering experiments from
dielectric liquids.

In addition to intensity-dependent effects, our model also
predicts that there should be a strong dependence on the density
of the medium. This dependence is an attractive feature of this
alternate model as strong transverse free currents are typically not
seen in gas-phase scattering experiments [17].

Using our simplified model, Figure 3 shows the predicted
density dependence of the Emission Ratio of a general molecular
ensemble with electric dipole transition moment around
μ0 � 10−10em. As the density of the liquid increases (thus
increasing the probability of intermolecular energy transfer),
the emission ratio increases. Quantitative comparison to the

experiments is made challenging since our model assumes that
the molecules are infinitesimally small in size, whereas the size of
molecules such as carbon tetra chloride or benzene is large, and
the atoms in the molecules are actually much closer together than
the number density suggests. Thus for larger molecules such as
CCl4, the Emission Ratio would reach saturation at lower
intensities than predicted by the number density alone, which
appears to be the case in experiments [6].

Due to the presence of this density dependence, we suggest
two possible experiments that could validate our model. The
first involves performing the same experiments as described in
Refs. [4–7] by using systems with varying molecular densities.
If the transverse free currents are caused by inter-molecular
electric interactions, the Emission Ratio should clearly
increase as a function of density (whereas a single-molecule
magneto-optic effect will not be effected by density). This may
be accomplished by performing these short-pulse scattering
experiments on the same liquids at different temperatures and
pressures. The second suggested experiment is a measurement
of the time-dependence of the scattered signal. Since out
model involves absorption and re-emission between
molecules, it is naturally time-dependent and thus the
Emission Ratio should change as a function of time, and
also be fairly sensitive to different pulse widths at the same
intensity.

4 CONCLUSION

For optical scattering experiments in dense media, the
interactions between molecules can have a significant effect on
the observed scattering intensity patterns. We have proposed a
theoretical model wherein significant transverse currents are
generated in optical scattering experiments on dielectric
liquids due to inter-molecular electric-dipole interactions.
Using our model, we show that the strength of these inter-
molecular interactions increase with both density and incident

FIGURE 2 | Emission Ratio of water as a function of increasing intensity
of the applied 100fs pulse. As the intensity increases, the transition to the
excited state of each molecule is driven more strongly, and the probability of
inter-molecular energy transfer increases, thus increasing the Emission
Ratio.

FIGURE3 |Density dependence of the Emission Ratio of an ensemble of
molecules with electric dipole transition moment μ � 10−10em as a function of
increasing number density in the ensemble. As the number density is
increased, the probability of inter-molecular interactions increases, thus
increasing the Emission Ratio.
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intensity. The calculated dependence of the transverse currents
on the intensity of the incident electromagnetic pulse agrees with
experimental results. The density dependence provides a direct
explanation for why these effects do not appear in scattering
experiments involving less-dense targets such as gases. We
provide suggestions for future scattering experiments that can
validate our model.
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Quantum Control of Coherent
π-Electron Dynamics in Aromatic Ring
Molecules
Hirobumi Mineo1,2*, Ngoc-Loan Phan3 and Yuichi Fujimura4*

1Atomic Molecular and Optical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho
Chi Minh City, Vietnam, 2Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam, 3Department of
Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam, 4Department of Chemistry, Graduate School of
Science, Tohoku University, Sendai, Japan

Herein we review a theoretical study of unidirectional π-electron rotation in aromatic ring
molecules, which originates from two quasi-degenerate electronic excited states created
coherently by a linearly polarized ultraviolet/visible laser with a properly designed photon
polarization direction. Analytical expressions for coherent π-electron angular momentum,
ring current and ring current-induced magnetic field are derived in the quantum chemical
molecular orbital (MO) theory. The time evolution of the angular momentum and the ring
current are expressed using the density matrix method under Markov approximation or by
solving the time-dependent Schrödinger equation. In this review we present the results of
the following quantum control scenarios after a fundamental theoretical description of
coherent angular momentum, ring current and magnetic field: first, two-dimensional
coherent π-electron dynamics in a non-planar (P)-2,2’-biphenol molecule; second,
localization of the coherent π-electron ring current to a designated benzene ring in
polycyclic aromatic hydrocarbons; third, unidirectional π-electron rotations in low-
symmetry aromatic ring molecules based on the dynamic Stark shift of two relevant
excited states that form a degenerate state using the non-resonant ultraviolet lasers. The
magnetic fields induced by the coherent π-electron ring currents are also estimated, and
the position dependence of the magnetic fluxes is demonstrated.

Keywords: quantum control, electron dynamics, coherent ring current, ring current localization, angularmomentum,
quantum switching, Stark-induced degenerate electronic state

1 INTRODUCTION

Recent progress in laser science and technology has facilitated the coherent control of ultrafast
charge migration dynamics in molecular systems [1–21]. Controlled charge migration can
generate unidirectional currents and current-induced magnetic fields, which can be used as a
guiding principle for the next-generation ultrafast optoelectronic devices [22, 23]. Laser control
of π-electron rotations in aromatic ring molecules is a typical example. Pioneering studies on the
generation of coherent π-electron rotations in high-symmetry ring molecules such as Mg
porphyrin having degenerate excited states have been reported by the Manz group [24–26].
π-Electron rotations were induced by degenerate electronic excited states, which were
coherently created by circularly polarized ultraviolet (UV) lasers. The generation
mechanism of the photon angular momentum involves the photon transfer from the
circularly polarized UV lasers to the π-electrons, thereby the left- or right-handed circular
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polarization of the applied laser defines the rotational
direction of the angular momentum [27]. In contrast in
ring molecules with low-symmetry π-electrons cannot be
rotated by using the circularly polarized lasers, due to the
absence of electronic excited states degenerate, that would
receive the photon angular momentum. Thus, it was
commonly understood that coherent π-electron rotations
could not be generated in low-symmetry aromatic ring
molecules. However, Kanno et al. [28–31] have invalidated this
long-established understanding by demonstrating that π-electrons
in oriented chiral aromatic ring molecules can be rotated by the
coherent excitation of a pair of quasi-degenerate π-electronic
excited states using a linearly polarized UV/vis laser pulse with
a properly designed photon polarization direction [28, 29]; the
polarization direction of the pulse determines the initial direction
of the π-electron rotation, whether right- or left-handed one. The
duration of the unidirectional rotation is inversely proportional to
the energy difference between the two quasi-degenerate excited
states, and inverse rotation begins after the duration because the
coherent state is not a nonstationary state rather than an eigenstate.
Pump and dump laser pulses with their properly designed
polarization directions for these lasers are applied to eliminate
the reverse rotation. The number of unidirectional rotations during
the duration can be estimated from the energy difference between
the quasi-degenerate excited and ground states. This only applies to
the ideal case in which any dephasing processes disturbing the
electronic coherence are omitted. It is expected that unidirectional
ring currents produce much stronger magnetic fields than
traditional static magnetic fields [32, 33].

The concept of the conventional ring current has already
been established previously and plays an important role in
interpreting the magnetic properties and aromaticity of
conjugated molecular systems [34, 35]. The molecules
investigated based on the ring current are in the ground
state, and the current densities for evaluation of the ring
current are calculated using the first-order electronic wave
function in the time-independent magnetic field and in a
permanent magnetic dipole. Such a conventional ring current
should be called an incoherent current.

In this article, we present the most recent results of our
theoretical studies on the quantum control of coherent
π→electron rotations in low-symmetry aromatic ring
molecules. Low-symmetry aromatic ring molecules are not
rare, but rather common: high-symmetry aromatic molecules
often become low-symmetry ones by substitution of a functional
group, or under environment conditions. In the next section, the
fundamental theory for the quantitative analysis of coherent
π-electrons in a low-symmetry aromatic ring molecule is
introduced. Here, the time-dependent coherent angular
momentum, ring current, and ring current-induced magnetic
field are analytically derived in a closed form in the quantum
chemical MO theory. Time-evolutions of these quantities are
derived by the density matrix method [36–39]. The temporal
behavior of coherence is determined by the off-diagonal element
of density matrix. Then, the Markov approximation is ultilized
for considering the dephasing effects on the conherent angular
momenta and ring currents. The magnitudes of the electronic

angular momenta and ring currents are expressed as the
summation of the expectation values of the corresponding
one-electron operators in the aromatic rings. The bond
current between the nearest neighbor carbon atoms, Ci and
Cj, is defined as an electric current flowing through a half plane
perpendicular to the Ci − Cj bond. The coherent bond current in
an aromatic ring is defined as the average of all bond currents.
The application of this theory to a nonplanar chiral aromatic
molecule, (P)-2,2’-biphenol, is briefly described. (P)-2,2’-
biphenol has four patterns of coherent π-electron rotations
along with the two phenol rings because of its nonplanar
geometrical structure [39, 40]. A sequence of the four
rotational patterns can be controlled through a coherent
excitation of two electronic states with two requirements: the
symmetry of the two electronic states, and their relative phase.
Quantum switching of coherent π-electron rotations is
proposed [40]. In Section 3, the key points are summarized
for the application of the quantum optimal control method for
controlling coherent ring currents in polycyclic aromatic
hydrocarbons (PAHs). These molecules exhibit several
localization patterns of coherent π-electron rotations.
Therefore, how to set up the target state for a desired
localization pattern is crucial [41, 42]. However, we
demonstrate that the target state can easily be set up using
the Lagrange multiplier method. As examples, two types of
current localizations for the simplest PAH, anthracene, are
adopted [42]: current localization to the designated benzene
ring, and the perimeter ring current. In Section 4, a
convenient scenario involving unidirectional π-electron
rotations in low-symmetry aromatic ring molecules is
described [43]. The basic idea behind unidirectional
electron rotations is to degenerate two nondegenerate
excited states by utilizing dynamic Stark shifts. A
degenerate state induced by dynamic Stark shifts is called a
dynamic Stark-induced degenerate electronic state (DSIDES).
Two linearly polarized continuous lasers with different
frequencies and phases are used to form a DSIDES, where
each laser is set to selectively interact with each electronic
state through non-resonant excitation. As a result, the
unidirectional π-electron rotation is driven by the lasers.
This scenario was applied to toluene. The resulting angular
momenta can be represented by a pulse train having an
angular momentum. Each angular momentum pulse
represents the unidirectional π-electrons rotation, which
begins with acceleration and ends with deceleration.

2 COHERENT π-ELECTRON DYNAMICS IN
LOW-SYMMETRY AROMATIC RING
MOLECULES
In this section we present the theoretical formalism for the
coherent π-electrons in a low-symmetry aromatic ring
molecule to derive analytical expressions for the coherent
angular momentum, ring current and the current-induced
magnetic field within the framework of the quantum chemical
MO treatment [39, 40].
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2.1 Equations of Motion for Coherent
π-Electron Rotations Induced by Ultrashort
UV/Vis Lasers
The expectation values of the coherent π−electron angular
momentum and the ring current operators in an aromatic
molecule are generally expressed as

〈Ô(t)〉 � n∫ d3r1/d3rnΨp(t)Ô(r)Ψ(t). (1)

Here, Ô(r) is a single-electron operator for the angular
momentum or current. Ψ(t) is the wave function of the
π−electrons in laser field F(t) at time t, n denotes the number
of electrons, and ri express the ith electron coordinates. Since the
optically-allowed electronic excited states of the conjugated
aromatic rings are of our interest, the electronic wave function
can be expanded by the two electronic configurations, i.e., the
ground configuration Φ0, and the singly excited ones Φα as

Ψ(t) � c0(t)Φ0 +∑
α

cα(t)Φα, (2)

where Φ0 is defined by a single Slater determinant as
Φ0(r1,/, rn) �

����ϕ1/ϕa/ϕb/ϕn
���� with ϕn ≡ ϕn(rn). Here, ϕa

and ϕb are the occupied orbitals,Φα is the electronic wave function
for a single electron excited configuration α : a→ a′, i.e., the single
electron transition from the occupied molecular orbital (MO) a to
the unoccupiedMO a′, whenΦα(r1,/, rn) �

����ϕ1/ϕa’/ϕb/ϕn
����.

The coherent and incoherent temporal behaviors of the
electrons induced by a laser field F(t) can be obtained directly
by solving the coupled electronic equations of motion expressed
by the density matrix elements ραβ(t) under the initial population
conditions ρ00(0) � 1 and ραα(0) � 0 for α≠ 0 and ραβ(0) � 0 for
α≠ β, that is, there is no electronic coherence at the initial time
such that

dραβ(t)
dt

� − i
Z
∑
c

(Vαc(t)ρcβ(t) − ραc(t)Vcβ(t)) − (iωαβ + cαβ)ραβ(t). (3)

Here, ραβ(t) ≡ cα(t)cpβ(t) is the density matrix element, and
Vαc(t) is the coupling matrix element between states α and c via
the molecule-laser interaction V̂(t) � −μ · F(t), where μ denotes
the transition dipole moment operator, cαβ( � 1

2 (cα + cβ) +
c(d)αc) are the dephasing constants in the Markov
approximation [38, 39] and ωβαis the frequency difference
between the two electronic states α and β. Here, cα(cβ) is the
non-radiative transition rate constant of the electronic state α(β),
and c(d)αβ are the pure dephasing constants induced by the elastic
interaction between the heat bath and molecule of interest.

Because we are interested in the coherent behaviors of dipole-
allowed quasi-degenerate π-electronic excited states in the visible
or UV region of an aromatic ring molecule, Eq. 1 can be rewritten
in terms of singly excited configurations {Φκ} if κ≠ 0 as

〈O(t)〉 � n∫ d3r1/d3rnTr(ρ(t)O(r)), (4)

where Oαβ(r) � 〈Φα

∣∣∣∣Ô(r)∣∣∣∣Φβ〉.
In Eq. 4, the coherence between singly excited state configurations

is considered, and the coherence between the ground state and the

excited state is neglected because this coherence is much shorter
compared to that between the singly excited state configurations. In
this case, the coherence time is proportional to the inverse of the
energy gap between the two electronic states.

The coherent π-electron angular momentum is formulated in
the quantum chemical MO theory, and the π-orbital ϕk associated
with the optical transition is expanded in terms of a linear
combination of atomic orbitals χi as

ϕk � ∑
i

ck,iχi, (k � a, a′, b, b′), (5)

where χi denotes the atomic orbital, and ck,i indicates the
molecular orbital coefficient.

Equation 4 can be expressed by using the Eq. 5 as

〈Ô(t)〉 � 2n∑
α< β

Im ρβα(t)∑
ij

(δabcpa′icb′j + δa′b′c
p
aicbj) ∫ d3rχpi iÔ(r)χj. (6)

Here, the temporal behavior of the expectation value 〈Ô(t)〉
can be expressed using the off-diagonal density matrix element
ρβα(t). The suffixes (a, a’) ((b, b’)) corresponds to the electronic
configurations α(β), respectively.

2.2 Coherent π-Electron Angular Momentum
Consider the spatially fixed aromatic ring molecule with N aromatic
rings. The electron angular momentum operator is defined as Ô(r) �
lZ � ∑

K
ÔK(r) with ÔK(r) � lZ,K � −iZ(xKz/zyK − yKz/zxK)n⊥,K .

Here lZ,K is the electronic angular momentum operator of the
component perpendicular to ring K. Coordinates xK and yK are
defined on the aromatic ring K, and n⊥,K is the unit vector
perpendicular to the aromatic ring. The expectation value of
Kth angular momentum operator is given in terms of a 2pz
carbon atomic orbitals (AOs) as

lZ,K(t) ≡ ∫ d3rK〈Ψ(t)
∣∣∣∣lZ,K ∣∣∣∣Ψ(t)〉

� −2neZ n⊥,K ∑
α< β

Im ρβα(t)∑
ij∈K

(δabcpa′icb′j + δa′b′c
p
aicbj)

× ∫ d3rχpi(x z

zy
− y

z

zx
)χj,

(7)

where ne is the total number of electrons in the system.

FIGURE 1 | The interatomic bond current Jij(t) and bridge bond current
JB,pq(t) are depicted. Here, i and j indicate the positions of two atomic sites in
the bond Ci − Cj, and each carbon atom Cp, or Cq belongs to a different
aromatic ring P or Q, which are in neighbors.
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Note that in Eq. 7 the dependence of the electron angular
momentum on the laser intensity is reflected in the imaginary
part of the off-diagonal density matrices Im ρβα(t).

2.3 Coherent π-Electron Ring Current
From Eq. 6, the perpendicular component of the time-dependent
electric current flowing through a surface S (See Figure 1) is
generally defined as

〈J(t)〉 � 2ne∑
α< β

Im ρβα(t)∑
ij

(δabcpa′icb′j + δa′b′c
p
aicbj)∫ d3rχpi îJ(r)χj.

(8)

Here Ĵ(r) � eZ
2mei

(∇→− ∇
← ) is the current density operator.

∇
→
(∇
←
) is the nabla operating on the atomic orbital on the

right-hand side (left-hand side).
Equation 8 can be expressed as

〈J(t)〉 � ∑
i< j
Jij(t), (9)

where

Jij(t) � 2ne∑
α<β

Im ρβα(t)(δab(cpa′icb′j − cpb′ica′j)+δa’b’(cpaicbj − cpbicaj))Jij,
(10a)

with

Jij � ∫
S
d2r⊥χ

p
i n⊥,S · ∇→χj, (10b)

where n⊥,S is a unit vector perpendicular to a surface S, which is
given as n⊥,S � rj−ri

|rj−ri|, and the surface S is set at the center of the

carbon bond Ci − Cj. The surface integrations in Eqs. 8, 10b are
carried out over the half-plane S (see Figure 1). Using Slater type
AOs for {χi}, Jij in Eq. 10b can be expressed in analytical
form [40].

We introduce the bridge bond current JB,pq(t) which is a
specific case of an interatomic bond current, and is defined as
the current bridging two aromatic rings P andQ, passing from the
nearest neighbor carbon atom at site p to q. Here, each carbon
atom Cp, or Cq belongs to a different aromatic ring P or Q which
are in the neighbors. (see Figure 1).

The bridge bond current is given in terms of the interatomic
current, Jpq(t), as

JB,pq(t) � −Jpq(t) cos θd . (11)

Here, θd is the dihedral angle between the two rings P andQ [39].
We now define an averaged ring current along ring K, JK(t),

which is defined by taking the average of all bond currents as

JK(t) ≡ 1
nK

∑nK
(i< j) ⊂ K

Jij(t), (12)

where nK is the number of bonds in ring K.

FIGURE 2 | (A) Geometrical structure of (P)-2,2’-biphenol belonging to point group C2 and the transition dipole moments between the ground state (g) and three
excited states a, b1 and b2. (B) Three electronic excited states and the dipole allowed transitions used to create the coherent electronic states. A and B are the irreducible
representations of point group C2. Dotted lines indicate the laser band widths that cover the superpositions of two electronic excited states (a b1), (a b2) and (b1 b2)
respectively. (C) Linearly polarized unit vector of laser e+ (e−) used to generate the in-phase superposition (a+b1) (out-of-phase superposition (a-b1)).
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2.4 Application toNonplanar (P)-2,2’-biphenol
(P)-2,2’-biphenol is one of the typical nonplanar chiral
aromatic ring molecules, which has two aromatic rings
connected through the C-C bridge bond. For convenience,
hereafter, we denote L (R) for the left- (right-) hand side
phenol ring of (P)-2,2’-biphenol. Figure 2A exhibits the
geometrical structure of (P)-2,2’-biphenol with the
transition dipole moments vectors between the ground and
excited states. (P)-2,2’-biphenol was assumed to be fixed on a
surface by a non-conjugated chemical bond or was oriented
in the space by the molecular orientation techniques by laser

[44–46]. The laboratory-fixed Y-axis was set parallel to the
single chemical bond bridging two phenol molecules, and the
rotational axis of the molecule belonging to point group C2

was set along the laboratory-fixed Z-axis which was parallel
to the surface normal. The ground state geometry of (P)-2,2’-
biphenol was optimized using the DFT-B3LYP level theory
with the 6-31G+(d,p) basis set in the GAUSSIAN09 code
[47]. The dihedral angle θd between the two phenol rings, was
found to be 108.9+ based on the density functional theory
(DFT) calculations. The calculated geometrical structures are
provided in Refs. [39, 40].

FIGURE 3 | Temporal behaviors of the coherent angular momenta, total values lZ (lX), and components, lL (lR) of L (R) ring for three types of the electronic coherence
and the directions of the bond currents at the initial time: upper panel for (b1 + b2) electronic coherence excited by laser pulse with amplitude of 0.19 TW/cm2; middle
panel for (a + b1) electronic coherence excited by laser pulse with amplitude of 0.83 TW/cm2; lower panel for (a + b2) electronic coherence excited by the laser pulse with
amplitude of 3.32 TW/cm2. The dephasing constants were set as cb1b2 � cab1� γab2 � 0.01 eV (∼1/50 fs −1). The arrows above the C – C bonds indicate the initial
directions of the currents. Note that the bridge bond current J1,7 � 0 for the (b1 +b2) electronic coherence, while J1,7≠0 for the (a +b1) and (a +b2) electronic coherences.
Reprinted with permission from Ref. [39] Copyright (2013) American Institute of Physics.
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To create the coherent angular momenta and ring currents
in (P)-2,2’-biphenol, we focused on the three dipole-allowed
electronic excited states (a, b1, and b2) as shown in
Figure 2B. The transition energies from the ground (g) to
the a, b1, and b2 states, which were calculated under the
optimized ground state geometry using the TD-DFT B3LYP
level of theory [39, 40] were 6.67, 6.78, and 6.84 eV,
respectively.

2.4.1 Generation of Two-state Electronic Coherence
Using Linearly Polarized UV Pulses
For a creation of the coherent angular momentum and ring
current using linearly polarized laser pulses, it is essential to
prepare for an electronic coherence with a fixed relative phase
between two electronic states, a and b1, i.e., in-phase (a + b1) or
out-of-phase (a - b1). The principle behind the preparation of the
electronic coherence (a + b1) ((a − b1)) using a linearly polarized
laser with polarization unit vector e+ (e-) is schematically
demonstrated in Figure 2C [39, 40].

In the frame work of the three-excited state model, there are
three types of two-electronic coherent states represented as b1 ± b2,
a ± b1 and a ± b2, respectively. At the initial time each electronic
coherence can be generated by applying a linearly polarized UV
laser with a properly selected laser polarized direction. Because of
the non-planar geometry of the molecule, the angular momentum
is two-dimensional, and the two ring currents flow are on the two
different planes, the direction of total angular momentum is
dependent on the symmetry of the coherent state created by the
laser: The Z-directional angular momentum (ring current) is
generated for the created coherent state with the A-irreducible
representation of the C2 point group, while the X-directional
angular momentum (ring current) is generated for the coherent
state with B.

It is remarkable that even though the third excited state is
located between the two excited states in the three-excited states
system, the coherent electronic state can still be created if the
applied linearly polarized lasers satisfy the following conditions.
For example, for the (a ± b2) electronic coherence, the conditions
for the linearly polarized lasers with polarization vectors e ± are
given as

μga · e ± � ± μgb2 · e ± and μgb1 · e ± � 0, (13)

or equivalently,

e ± � μgb1 × (μgb2 ∓ μga)/∣∣∣∣∣μgb1 × (μgb2 ∓ μga)∣∣∣∣∣. (14)

Thus, if the laser overlaps the electronic states a, b1, and b2, the
(a+ b2) or (a – b2) electronic coherent state can be created selectively.

2.4.2 Coherent Angular Momentum Quantum Beats
and Bond Currents
Figure 3 exhibits the temporal behaviors of the angular momenta
calculated for three types of electronic coherences, (b1+b2),
(a + b1) and (a + b2), each of which is created by a linearly
polarized UV laser pulse with a properly selected polarization
direction of laser. For the (b1+b2) electronic coherence, the total
angular momentum parallel to the Z-axis, lZ, is created together
with two ring components lL � lR, whereas for both the (a + b1)
and (a + b2) electronic coherences, the total angular momenta
parallel to the X-axis, lX, are generated with lL � − lR, with a
π-phase shift. Similarly, for out-of-phase electronic coherences,
(b1 − b2), (a − b1) and (a − b2), the angular momentum can be
given by the corresponding in-phase electronic coherence with a
π-phase shift. The simple sinusoidal temporal behavior originates
from the coherence of two electronic states with the oscillation
period corresponding to a frequency difference between the two-
electronic states. This is referred to as the angular momentum
quantum beats, which are similar to the fluorescence quantum
beats which originate from the vibronic coherence [48]. We note
that π-electrons rotate a few times in a unidirectional manner
within a half cycle of the oscillation. This unidirectional
π-electron rotation can produce a unidirectional ring current
and corresponding current-induced magnetic flux. In principle,
this enables the design of ultrafast switching devices which consist
of organic aromatic ring molecules.

The angular momenta lZ(t) and lX(t), shown in Figure 3, are
obtained by the summation of the angular momenta created in
the L and R aromatic rings lL(t) and lR(t) using the following
relationship lZ(t) � 2lL(t) · eZ sin θd

2 with lL(t) · eZ � lR(t) · eZ ,
and lX(t) � 2lL(t) · eX cos θd2 (where lL(t) · eX � −lR(t) · eX).
Table 1 lists the angular momenta of (P)-2,2’-biphenol with
the dihedral angle θd � 108.9+where the electronic coherence
is maximum at time t � tp, i.e., when the magnitude of the
imaginary part of the density matrix element is maximized
(Im ραβ(tp) � −1

2) and dephasing effects are neglected. This
results in lX(tp)> 0 or lX(tp)< 0 for the (a + b1) and (a + b2)
electronic coherences, respectively, and in lZ(tp)< 0 for the
(b1 + b2) electronic coherence.

The magnitudes of the bond current, Jij calculated at the
maximum coherence time, are presented in detail in [40]. The
magnitudes of the averaged ring current over the C-C bonds at
the maximum coherence time, J are on the order of tens of μA,
i.e., J � 161, 86.5 and 63.4 μA for (b1 + b2), (a + b1), and (a + b2)
coherences, respectively.

Effects of dephasings on coherent π-electron angular
momentum and ring currents were treated in the Markov
approximation, and time-independent dephasing constants were
used under the assumption of instantaneous interactions between
the system and phonon baths. In a system such as condensed
phases, the Markov approximation is broken down. Non-Markov

TABLE 1 | Angular momenta of the two phenol rings lL ≡ lL(tp) · nL and
lR ≡ lR(tp) · nR, and the resulting angular momenta lX and lZ at the maximum
coherence time t � tp1).

lL/Z lR/Z lX /Z lZ /Z
(a + b1) −1.09 1.09 −1.27 0
(a + b2) 0.17 −0.17 0.20 0
(b1 + b2) −1.44 −1.44 0 −2.34
1) The maximum coherence occurs at Im ρb2,b1 � Im ρb1,a � Im ρb2,a � −1/2.lX �
2lL cos θd

2 � 1.163lL � −1.163lR for the (a+b1) or (a+b2) electronic coherences; lZ �
2lL sin θd

2 � 1.627lL � 1.627lR for the (b1+b2) electronic coherence with dihedral angle
θd (� 108.9°) between the two phenol rings. Reprinted with permission from Ref. [39]
Copyright (2013) American Institute of Physics.
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response of coherent should be essential. Time evolution of
coherent ring currents were calculated in a hierarchical master
equation approach beyond the Markov approximation has been
treated [49].

2.4.3 Ultrafast Quantum Switching of Angular
Momentum
Consider the quantum control of π-electron rotations for two-
dimensional angular momentum switching based on the results
shown in Table 1. Here, two-dimensional quantum switching is
defined as a sequential pulse of the electronic angular
momentum with its constant sign (positive or negative)
along the Z- or X-axis. Note that any quantum switching
step should be completed before the reverse rotation of the
π-electrons begins, because it may otherwise disturb the signal.
Consider a sequential four-step control, which is expressed as
lZ(−)→lX(+)→lZ(+)→lX(−). This indicates the switching of
rotational patterns in the order CC → AC → AA → CA,
where the symbol C (A) means clockwise (anti-clockwise)
direction, and for example, CA rotation means clockwise and
anti-clockwise rotations along the phenol rings L and R,
respectively. Here, lX(+) (lZ(−)) means the π-electron
angular momentum along the X- (Z-) axis with a positive

(negative) sign, i.e., anti-clockwise (clockwise) rotation of
π-electrons around the corresponding axis.

Figure 4A presents a 3D plot of the angular momentum as
it switches based on the sequential four-step control scheme.
From Figure 4A, we can see that the π-electron rotations are
successfully manipulated by the pulses depicted in Figure 4B.
That is, both the rotational axis parallel to the Z- or X-axis and
the rotational directions around those axes, clockwise or anti-
clockwise, are manipulated by the sequential four-step
process. In Figure 4B, each switching step of control was
performed using pump and dump pulses with specific
polarization directions and phases. The laser pulse with an
amplitude of 1.2 GV/m (� 1.9 × 1011 W/cm2) was used in the
second and fourth steps. The dynamic Stark shifts between
electronic states a, b1 and b2 were on the order of 0.01 eV [39],
indicating that the Stark effects could be omitted in
Figure 4A.

The pulses shown in Figure 4B have two features. The
first feature is that the pump (dump) pulse for each step
has polarizations, e(−)αβ (e

(+)
αβ ) or e(+)αβ (e(−)αβ ). Each pulse has

an energy width that is large enough to coherently
excite two quasi-degenerate electronic excited states, as
shown in Figure 2. The second feature is that the pump

FIGURE 4 | (A) Sequential four-step quantum switching of π-electron rotations in (P)-2,2’-biphenol. (B) The sequential overlapped pump and dump laser pulses.
Reprinted with permission from Ref. [40] Copyright (2012) American Chemical Society.
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and dump laser pulses partially overlap. In the creation of the
CC rotation, for example, the electric field of the pump
pulse was E(+)

b1b2(t) � e(+)b1b2E
0
b1b2 sin

2(πt/Tb1b2)sin(ωc,b1b2t),
while the electric field of the dump pulse was E(−)

b1b2(t)� e(−)b1b2E
0
b1b2 sin

2(π(t − tpdb1b2)/Tb1b2)sin(ωc,b1b2t + π/2). Here,
Tb1b2 (� 60.9 fs) indicates the oscillation period between b1
and b2 states, E0

b1b2 is the amplitude of the laser pulse, ωc,b1b2 is
the central frequency between the two excited states b1 and b2;
and tpdb1b2 (the time interval between the pump and dump laser
pulses) was set to Tb1b2/2 (Supporting information in Ref.
[39]). The angle between the two polarization vectors, e(+)b1b2
and e(−)b1b2, was 113.5°.

With respect to ultrafast quantum switching, it is crucial to
create the overlap of the pump and dump pulses, where the
resulting electric field rotates as an elliptically polarized electric
field in the overlapped time domain, and the dump laser pulse
reverse the rotation that occurs during this region. As a result,
the angular momentum of the π-electrons is nullified.

2.4.4 Coherent Ring Current-Induced Magnetic Field
There have been interesting reports on the evaluation of the
magnetic fields of atoms and oriented heteronuclear diatomic
molecules, AlCl and BeO [32, 50, 51]. Strong and unidirectional
magnetic fields are generated from the degenerate electronic
states of these atoms and molecules excited by circularly
polarized intense laser pulses. We estimated the magnetic
fields (magnetic field flux density) generated by the coherent
ring currents of (P)-2,2’-biphenol. The results may provide
fundamental information for designing ultrafast switching
devices controlled by current-induced magnetic fields as well
as coherent ring currents [52–54].

As an example, consider the magnetic field induced by the ring
current for the (b1 + b2) electronic coherence. In Figure 5,
BK(tp, h) represents the current-induced magnetic field along
the central axis perpendicular to ring K (L or R) as a function of
the height h above the Z-axis at t � tp under the maximum
coherence condition (when Im ρb1b2(tp) � −1/2). An expression
for the magnetic field BK(tp, h) was derived by taking into
account the interatomic bond currents with the 2pz Slater AOs
[40]. Note that BL(tp, h) � BR(tp, h) for the (b1 + b2) electronic
coherence (Table 1). It is interesting to compare the behaviors of
BK(tp, h) with those calculated using

BSRL
K (t, h) � μ0JK(t)

2r
sin3 η, (15)

which was derived using a simple ring loop (SRL) model. Here, μ0 �
4π · 10−7[Wb/(A ·m)] is the magnetic constant, r (� rij) is the ring
radius, and η (� sin−1(r/ ������

r2 + h2
√ )) is defined as the angle between

the Z-axis and a straight line depicted from the point on ring K that
crosses the Z-axis.BK(t, 0) at η � π/2 is themagnetic fieldmeasured
at the center of ring K. The magnitude of BK(tp, 0) induced by
JK(tp) � 100 μA is 448mT at the center of the ring K with r �
0.14 nm. It can be found from Figure 5 that the magnitudes of
BSRL
K (tp, h) are overestimated near the aromatic ring plane

0≤ h< 1 Å, while the magnitudes are reasonable for h> 1 Å,
although slightly different results can be observed between the
two magnetic fields for large values of h. At the center of the

aromatic ring, BK(tp, h � 0) � 0.66BSRL
K (tp, h � 0). This can be

understood from the result that the π-electron current density is
densely distributed over the aromatic ring. A subtle difference between
BSRL
K (tp, h)and BK(tp, h) is observed for large h, although both

magnetic fields BSRL
K (tp, h→∞) � 0 and BK(tp, h→∞) � 0

approach zero. This deviation originates from the approximation
that the aromatic ring is not a considered to be a perfect ring.

It is necessary to check whether the value of BK(t, 0) is larger
than the one corresponding to the magnetic field BLaser induced by
the applied laser field Fwhen the inducedmagnetic fields are created
during an ultrasfast laser pulse excitation at the early time regime.
The magnitude of magnetic field BLaser can be estimated from a
simple formula |BLaser | � |F|/c with c � 3.0 × 108 ms−1. The
calculated magnitude of magnetic field BLaser with |F| � 1.0 GV/
m is approximately 7.4BK(tp, h), which is on the same order as the
field induced by the ring current J � 100 μA. This implies that we
need a careful examination to observe the current-induced magnetic
flux, or to use the electro-magnetic device as a switching control tool.

Thus far, we have taken into account the ring current-induced
magnetic fields of the low-symmetry aromatic ring molecule (P)-
2,2’-biphenol, in which nondegenerate two electronic excited
states are coherently excited by the linearly polarized UV
lasers. Here we briefly discuss the ring current-induced
magnetic field for the degenerate electronic excited states of an
aromatic molecule induced by the intense circularly polarizedUV
laser pulse. Yuan and Bandrauk [2, 33] have numerically
demonstrated that the circularly polarized ultrashort pulses are
generated from the molecular high-order harmonic generation
using the intense linearly and circularly polarized laser pulses.
This indicates a possibility for the ultrashort circularly polarized
UV laser pulses to create the ring current-induced magnetic fields
in high symmetric aromatic ring molecules. We can estimate the
magnitude of the ring current-induced magnetic field of benzene
within the SRL model using Eq. 15. Here, J(t) is the electric ring
current of the degenerated electronic state. The electronic
spectrum of benzene is characterized by the dipole-allowed
transition from the ground state to the third singlet electronic
excited state (1E1u). For an equal population between the two
states at t � tp, BSRL(tp, 0) � 874 mT is obtained using the
maximum value of the coherent ring current J(tp) � 195 μA
evaluated under the π-electron approximation [40, 55]. For
comparison, we obtained BSRL

K (tp, 0) � 874 mT and
BK(tp, 0) � 579 mTwhen J(tp) � 195 μAfor (P)-2,2’-biphenol.
Note that the same magnitudes of the induced magnetic field
BSRL
K (tp, 0) for (P)-2,2’-biphenol and BSRL(tp, 0) � 874 mT for

benzene were obtained in the SRL model because the two
parameters in the SRL model, the radius of the ring r, and the
ring current J(tp) have the same values for both types of ring
molecules. The same tendency in the magnitudes between
BSRL
K (tp, 0) and BK(tp, 0) is also observed for benzene.

3 CURRENT LOCALIZATION IN
POLYCYCLICAROMATICHYDROCARBONS

In this section we consider a localization of coherent ring current
in polyatomic aromatic hydrocarbons (PAH) [41, 42]. There exist
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various current localization patterns in PAH simply because of
their geometrical structures consisting of many benzene units.
Quantum optimal control method is a general and reliable one to
choose a desired current localization pattern from the various
patterns using control lasers. The quantum control method has
successfully been applied to manipulation of molecules such as
coherent control of chemical reactions [56, 57]. After a brief
introduction of quantum optimal control method [41, 42, 58],
we demonstrate how the target state is set up for the designated
ring current using the Lagrange multiplier method. Here, the
π-electron ring current is expressed in terms of the interatomic
bond currents between two adjoining C–C atoms. At final, the
target states are derived for the two types of current
localization: the localized ring current, which indicates that

the ring current is localized to the designated aromatic ring in
linear PAH, and the perimeter ring current in linear PAH
[41, 42].

3.1 Quantum Optimal Control Approach
The objective functional to be maximized, is defined as
[59–61].

J[F] � 〈Ψ(T)∣∣∣∣ÔT

∣∣∣∣Ψ(T)〉 − α0 ∫T

0
dt(F(t))2

−2 Im[∫T

0
dt〈ξ(t)

∣∣∣∣∣∣∣iZ z

zt
− (H0 − μ · F(t))∣∣∣∣∣∣∣Ψ(t)〉], (16)

where H0 is a Hamiltonian in absence of field, and Ψ(t) is the
time-dependent wave function in the electric field F(t). Here, the

FIGURE 5 | Induced magnetic fields for the (b1 +b2) electronic coherence as a function of height h measured from the center of aromatic ring K at the maximum
coherence time t � tp. BSRL

K (tp, h) and BK(tp, h) represent the induced magnetic field calculated by a simple ring loop model, and the field calculated by the expression
that explicitly takes into account the coherent ring currents, respectively. The inset panel defines the coordinate system for height h and angle η. Rc denotes the center of
the phenol ring.

FIGURE 6 | π-Electron ring currents Jl and bridge bond currents JBl′ (1≤ l ≤m, 1≤ l′ ≤m − 1) in a linear planar polycyclic aromatic hydrocarbon (PAH). Jχ refers to
the π-electron ring current localized on aromatic ring χ.
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target operator ÔT is expressed as ÔT � ∣∣∣∣ΨT > <ΨT

∣∣∣∣, whereΨT is
the target state wave function at the final time T, defined as
ΨT � ∑

a
ca(T)Φa, and is equal to Ψ(T) under the optimal

condition, ÔT � ∣∣∣∣∑
a
ca(T)Φa〉〈∑

b
cb(T)Φb

∣∣∣∣. The penalty factor

α0 is introduced to suppress the magnitude of the electric field
F(t). ξ(t)is the time-dependent Lagrange multiplier. The third
term in Eq. 16 is added to decouple the boundary conditions of
the equations forΨ(t) and ξ(t) as indicated in Eq. 17. Taking the
variational condition δJ[F] � 0, the following coupled equations
are obtained,

iZ
z

zt
Ψ(t) � (H0 − μ · F(t))Ψ(t), (17a)

iZ
z

zt
ξ(t) � (H0 − μ · F(t))ξ(t), (17b)

where

F(t) � − 1
α0

Im〈ξ(t)|μ|Ψ(t)〉. (17c)

Here, Ψ(t) satisfies the initial condition Ψ(0) � Φ0, and ξ(T)
satisfies the condition, ξ(T) � ÔTΨ(T) at final time T. Note that
by solving Eq. 17, we obtain the optimal solution Ψ(T), which is
equal to ΨT .

3.2 Setup of Target Operators
Consider the ring current localization to a designated ring χ in a
PAH, as shown in Figure 6. From Eqs. 10a, 12, the ring current
on ring κ at the target time T is expressed as

Jκ(T) ≡ 1
nκ

∑n
α�1

∑n
β�1

∑nκ
(i< j) ⊂ κ

Jij,αβ(T)

� ∑n
α�1

∑n
β�1

Jκ,αβIm(cα(T)cpβ(T))
� Jκ(c1, c2, · · ·cn), (1≤ κ≤m) (18a)

with ci ≡ ci(T), and

Jκ,αβ � 2neeZ
me

∑nκ
(i< j)⊂ κ

{(δab(cpa′icb′j − cpb′ica′j)+δa′b′(cpaicbj − cpbicaj))Jij}.
(18b)

Here, n is the number of electronic excited states. Hereafter, we
write cα(T) as cα for simplicity.

The target state ΨT � ∑
α
cαΦα can be determined by applying

the Lagrange multiplier method to the ring currents at the target
time T in Eq. 18a, which provides the coupled equations in terms
of the configuration interaction coefficients with {Recα, Imcα}.
The target operator is given as ÔT � ∣∣∣∣ΨT > <ΨT

∣∣∣∣.
The coupled equations for the ring current localization to

aromatic ring χ can be expressed as

∑n
β�1

Jχ,βα Imcβ +∑m
κ≠χ

∑n
β�1

λκJκ,βα Imcβ +λχRecα � 0, (1≤α≤n) (19a)

−∑n
β�1

Jχ,βαRecβ −∑m
κ≠χ

∑n
β�1

λκJκ,βαRecβ +λχImcα � 0, (1≤α≤n) (19b)

∑n
α�1

((Recα)2 + (Imcα)2) − 1 � 0, (19c)

and

∑n
β�1

∑n
α�1

Jκ,αβ(ImcαRecβ − RecαImcβ) � 0 . (19d)

A brief derivation of Eq. 19 is summarized in Appendix A.
The coefficients {Recα, Imcα}with λl included are numerically

determined by applying the Newton-Raphson method to the
coupled equations in Eq. 19. The target operator for the
localization is obtained as ÔT � ∣∣∣∣∑αcαΦα〉〈∑βcβΦβ

∣∣∣∣∣.
Now consider the bridge bond currents JBl′ shown in Figure 6,

and the perimeter ring current of a PAH with m aromatic rings,

JP ≡ 1
m ∑m

l�1
Jl , which is defined as the average of the π-electron ring

currents at each aromatic ring site. For the perimeter ring current,
the bridge bond currents JBl’(1≤ l′ ≤m − 1) flowing among the
nearest neighbor aromatic rings, should be zero at the target time.
The target operators for the bridge bond currents,
JBl’( 1≤ l′ ≤m − 1), and perimeter ring current, JP , can be
derived from Eq. 19 by replacing Jκ,βα with JBl’,βα and JP,βα,
respectively, because JBl’ and JP can be written in terms of
{Recα, Imcα} as

JP � ∑n
β�1

∑n
α�1

JP,αβ(Im cα Recβ − Recα Im cβ), (20a)

and

JBl′ � ∑n
β�1

∑n
α�1

JBl′ ,αβ(Im cα Recβ − Recα Im cβ), (20b)

respectively.
Similar to Eq. 19, the coupled equations for the perimeter ring

current are derived in Appendix B.

3.3 Application of Current Localization
Control to Anthracene
We applied the quantum optimal control (QOC) method
described in the preceding section to anthracene, one of the
smallest PAHs [42]. Anthracene (D2h) was assumed to be fixed on
a surface (the XY plane), or oriented spatially by lasers The
molecular geometry was optimized in the MP2/6-311+g(d,p)
level theory using the GAUSSIAN09 code [47]. As
demonstrated in Figure 7A, anthracene consists of three
aromatic rings, which are called L-,M-, and R- rings respectively.

Consider the two types of π-electron localized ring currents of
anthracene: the perimeter current flowing along the outside
chemical bonds of anthracene, and the middle ring current
localized to the M-ring. Both types of localized ring currents
belong to the irreducible representation B1g of the D2h point
group, which are symmetry-adapted. The excited states
contributing to the two ring currents need to belong to the
B3u and B2u representations, because each corresponding
electronic coherence created by the two excited states belongs
to the B1g representation. The excited state for the localized ring
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FIGURE 8 | Quantum optimal control simulations for generation of the perimeter ring current in anthracene: (A) temporal behavior of the three ring currents
JL(t) � JR(t) (solid line), JM(t) (broken line), and those of the two bridge bond currents JB1(t) � −JB2(t) (dotted line); (B) temporal behavior of the population in S0, and
those in the three excited states: S3(B2u), S5(B2u), and S6(B2u); (C) optimized X- polarized laser pulse field FX(t) (left-hand side) and Y-polarized FY(t) (right-hand side);
(D) Fourier transformed spectra of the two laser fields FX(ω) and FY(ω); (E) five components of the perimeter ring current at an arbitrary time. Reprinted with
permission from Ref. [40] Copyright (2012) American Chemical Society.

FIGURE 7 | (A) Symmetry-adapted ring currents (B1g) in anthracene, perimeter ring current, and middle ring current. (B) The electronic excited states adapted for
laser control of π-electron ring in anthracene (D2h), and the non-zero transition dipole moments between the ground/excited-excited states. The solid (dashed) arrows
represent the transition dipole moments which are parallel to the X (Y) axis.
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current is S3 with B3u representation, and the other two excited
states S5 and S6 with B2u representation as shown in Figure 7B.
This defines a “symmetry-adapted ring current” [41, 42].

The excited state energies in Figure 7B were calculated to be
E3 � 5.10 eV, E5 � 5.71 eV, and E6 � 5.78 eV. Here, S4 (B3u) with
E4 � 5.13 eV was excluded because the oscillator strength was
negligibly small (f � 0.0013) in our numerical simulation. The non-
zero transition dipolemoments relevant to the coherent π-electron ring
current control were calculated using the time-dependent density
functional theory (TDDFT) method as, μS0,S3 � (−3.98, 0, 0) ,
μS0,S5 � (0,−0.64, 0), and μS0,S6 � (0,−0.44, 0) (in a.u.) for the
ground and excited states. The vapor absorption spectrum of
anthracene shows the strongest absorption peak at 5.30 eV [62],
which corresponds to E3 � 5.10 eV in the TDDFT calculation.

Figure 8 shows the QOC results for the generation of an anti-
clockwise perimeter ring current in anthracene. The target state is
expressed from the results obtained using the Lagrange multiplier
method as

ΨAAA � 0.717iΦS3 + 0.581ΦS5 + 0.385ΦS6. (21)

Here, the subscripts specifying the target state, for example,
ACA for ΨACA, indicates the anti-clockwise ring currents in two
aromatic rings, L and R, and a clockwise ring current in aromatic
ringM. It should be noted that the target state for a generation of
any coherent ring current is expressed in terms of its complex
form. The control target time was set to T � 60 fs. The matrix
elements of π-electron ring currents JΧ,αβ (X � L, M, R) and the
bond current JBi,αβ (i � 1, 2), for two excited states α, β are
presented in Table 2. Here the π-electron ring current flowing in
an anticlockwise direction is defined as positive, whereas the bond
current flowing toward the Y direction is defined as positive (See
Figure 6). Figure 8A shows the temporal evolutions of the coherent
ring currents Jχ for the three aromatic rings of anthracene,
χ � L, M, R, and those for B1 and B2. It can be observed from
Figure 8A that the two bond currents JB1,αβ and JB2,αβ vanish at the
target control time ofT� 60 fs, and all ring currents in three aromatic
rings exhibit positive. This indicates that the coherent π-electrons
rotate clockwise along the outside (perimeter) of the aromatic ring.
The laser-controlled π-electrons includes a ring current averaged over
the three aromatic rings, Jp ≡ (JL + JM + JR)/3 � 89.0 μA, which is
the perimeter ring current.

Figure 8B shows the temporal behavior of the ground state S0,
and three excited states S3 (B3u), S5 (B2u), and S6 (B2u) populations
during the QOC process, which are induced by the two control
lasers. Figure 8C shows the X and Y-components of the electric
field F(t) generated by the control lasers, and Figure 8D shows
the Fourier transformed spectra FX(ω) and FY(ω) in the

ultraviolet (UV) frequency domain. By analyzing the temporal
behavior of the electric field F(t) of the control lasers in
Figure 8C and the Fourier transformed spectra of the control
laser fields in Figure 8D, the mechanisms of the laser-controlled
ring currents in anthracene can be clarified. It is evident that from
the modulation in Figure 8C the two linearly (Y-) polarized lasers
with a relative phase zero induce the electronic coherence
between the two excited states S5 (B2u) and S6 (B2u), and that
the linearly polarized laser pulse parallel to the X-axis creates the
perimeter ring current on the molecular plane.

Thus far, we have considered the QOC procedure for
generating an anti-clockwise perimeter current. The QOC
procedure for generating a clockwise perimeter current can be
carried out in the samemanner as described above (See Eq. 21) by
considering the target state,

ΨCCC � Ψp
AAA � −0.717iΦS3 + 0.581ΦS5 + 0.385ΦS6. (22)

We carry out the QOC procedure to generate the
anticlockwise ring current localized to the middle ring of
anthracene. The target state is expressed as

Ψ0A0 � 0.707ΦS3 − 0.440iΦS5 + 0.553iΦS6. (23)

The target state for the middle ring current with the clockwise
flow is given by the relationship Ψ0C0 � Ψp

0A0. Figure 9 exhibits
the QOC results, where Figure 9A displays the temporal
evolutions of ring current localization control to the three
aromatic rings, indicating that JM is a ring current with
64.4 μA at the target control time of 60 fs, but on the other
hand the ring currents JL and JR of the other two aromatic rings
vanish. This indicates that the ring current localized to the middle
aromatic ring is created by the control laser pulses presented in
Figures 9C,D. The temporal behaviors of the populations shown
in Figure 9B are nearly the same as those of the perimeter ring
currents as shown in Figure 8B. As presented in Figure 9C, the
two linearly (Y-) polarized lasers induce the electronic coherence
between the two excited states S5 and S6 with a definite relative
phase π, in contrast to the results presented in Figure 8C. In the
mechanism of generation between the perimeter and the middle
ring currents there is no difference except the phase difference
between the two excited states S5 and S6, because the temporal
behavior in both Figure 8B and Figure 9B and the temporal
behavior in the X-polarized laser pulse in both Figure 8C and
Figure 9C are similar to each other.

Main difference between the temporal behaviors of the
Y-polarized lasers in Figure 8C and Figure 9C can be
explained briefly in the following. The two coherent states
created by the Y-polarized lasers can be expressed as

TABLE 2 | Matrix elements of the coherent π-electron ring currents for the three aromatic rings of anthracene, Jx,αβ(X � L, M, R), and those of the coherent bond currents
shared by the two adjacent aromatic rings, JBi,αβ (i � 1, 2) (see Figure 8E).

α β JL,αβ (μA) JM,αβ (μA) JR,αβ (μA) JB1,αβ (μA) JB2,αβ (μA)

S3 (B3u) S5 (B2u) 82.2 80.8 82.2 −32.5 32.5
S3 (B3u) S6 (B2u) 65.4 −18.0 65.4 49.0 −49.0
L (R) indicate the left (right)-hand side ring, M corresponds to the middle ring. Here a positive current denotes that the ring current flows (the π-electron rotates) in an anti-clockwise
(clockwise) direction. Reprinted with permission from Ref. [42] Copyright (2017) American Institute of Physics.
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F+(t) � FS5 sin(ωS5t) + FS6 sin(ωS6t), (24a)

and

F−(t) � FS5 sin(ωS5t) − FS6 sin(ωS6t). (24b)

For simplicity, the amplitudes of the two coherent states are
assumed to have the same value, i.e., FS5 � FS6 ≡ FY . The above
expressions can then be simplified to

F+(t) � FYsin[(ωS5 + ωS6)t
2

]cos[(ωS5 − ωS6)t
2

], (25a)

and

F−(t) � FYcos[(ωS5 + ωS6)t
2

]sin[(ωS5 − ωS6)t
2

]. (25b)

Here, the frequency difference |ωS5 − ωS6|/2 yields an
oscillation beating period of 120 fs, which is nearly the same

as that of the quantum beat frequency observed in Figure 8C and
Figure 9C.

Having clarified the control mechanism of the coherent ring
current generation, we can semi-quantitatively reproduce the
above results in Figures 8, 9 by using an analytical method
[42]. This indicates, in principle, that two types of ring current
localizations, the perimeter ring current and the middle ring
current in linear PAHs, can be generated in experiment using
three coherent UV lasers without a sophisticated QOC device.

For QOC numerical simulations of the ring current
localization control in anthracene, we have only considered
the perimeter and the middle ring currents generations, which
are symmetry-adapted, while we did not consider a ring current
localization to the L- or R-ring of anthracene, which are created
by a symmetry-broken procedure, as demonstrated for
naphthalene in Ref. [41]. That is, other excited state(s) with
gerade symmetry must be considered in addition to the excited

FIGURE 9 | Quantum optimal control simulations for generation of the middle ring current in anthracene: (A) temporal behavior of the ring currents JL(t) � JR(t)
(solid line) and JM(t) (broken line); (B) temporal behavior of the S0 population and those of the three excited state S3(B2u), S5(B2u) and S6(B2u) populations; (C) optimized
X- and Y-polarized laser pulse fields FX(t) (left-hand side) and FY(t) (right-hand side); (D) Fourier transformed spectra of the laser pulse fields FX(ω) and FY(ω). Reprinted
with permission from Ref. [42] Copyright (2017) American Institute of Physics.
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states with ungerade symmetry as described in the previous
subsection.

It is important to consider how to observe the ultrafast
coherent ring currents in PAHs. We proposed a method to
detect the direction of the atto-second coherent ring current
by tracking the femtosecond molecular vibrational motions that
can induce the nonadiabatic couplings [30]. Rodriguez and
Mukamel [63] have proposed measuring the circular
dichroism (CD) of the ring current using the pump-probe
method. Recently, two methods have been proposed for the
detection of the ultrafast coherent ring currents. One method,
recently proposed by Yuan et al., Bandrauk’s group [64], is
utilizing the atto-second detection method of the coherent
electronic dynamics in molecules with the temporal and
spatial resolutions using the circularly polarized ultrashort UV
pump and X-ray probe laser pulses. The other method is to utilize
the time-resolved scanning microscopy (STM) and the magnetic
force microscopy (MFM) to detect the ring current-induced
magnetic fields during the ultrashort time [65–67].

It is also expected that to apply our methods to planar or non-
planar extended molecular systems, such as graphene sheets. In
principle, our method can be extended to these large systems, by
considering the symmetry of the molecular system and the
constraints on the π-electron ring currents.

Using laser control, it is also essential to maintain the created
ring current at the target region (path) at least during one
vibrational period of the PAH [68]. Otherwise, the created
ring current would dissipate quickly because of the vibronic
interactions and/or the nonadiabatic couplings between the
two electronic excited states [30, 69–71].

4 DYNAMIC STARK-INDUCED π-ELECTRON
ROTATIONS IN LOW-SYMMETRY
AROMATIC RING MOLECULES
In this section, we present a convenient method for inducing
unidirectional π-electron rotations in aromatic ring molecules
with low symmetry [43]. The basic idea behind the induction
of unidirectional electron rotations is to degenerate two
nondegenerate excited states by utilizing dynamic Stark
shifts, as demonstrated in Figure 10. We refer to this as the
dynamic Stark-induced degenerate electronic state (DSIDES)
[43]. Two linearly polarized continuous lasers operating at
different frequencies and phases are used to form DSIDES:
Each laser is set to selectively interact with each electronic state
through non-resonant excitation. The lower and higher
excited states are shifted up and down with the same
population, respectively, and the DSIDES is formed at the
center between them. As a result, unidirectional π-electron
rotation is driven by two lasers. In the laser control scenario,
only one input parameter out of the four possible parameters
(frequency and intensity for each laser), is required to induce
the DSIDES formation.

First, the DSIDES formation is described in a three-electronic
state model under the fixed nuclei condition, and the time-
dependent expectation value of the angular momentum
operator of π-electrons is derived and analytically expressed.
Next, to demonstrate the applicability of the control scenario,
the results of the DSIDES treatment for toluene, which is a typical
aromatic ring molecule of low symmetry belonging to Cs point
group, are presented.

4.1 Formation of Dynamic Stark-Induced
Degenerate Electronic State DSIDES and
the Resulting Angular Momentum
Consider the coherent π-electron angular momentum in an
aromatic ring molecule with low symmetry excited by non-
resonant, stationary UV/visible lasers. The molecule of our
interest is one oriented in a space or attached to a surface, as
mentioned in the preceding sections. We adopt a three-electronic
statemodel in the frozen nuclei approximation. The three electronic
states including the ground state specified by the energy ε0(≡ Zω0),
and two excited states specified by ε1(≡ Zω1) and ε2(≡ Zω2), as
shown in Figure 10. Here, DSIDES can be formed by two
stationary linearly polarized lasers with detuning frequencies
Δ1 � ωa − ω10 < 0 and Δ2 � ωb − ω20 > 0. The frequency
difference between the two excited states is expressed as
ω21 � ω2 − ω1. The dynamic Stark shifts are denoted by the
Rabi frequenciesΩ1 andΩ2, as presented in Figure 10. The wave
function of the total system in the stationary lasers is defined
through laser-molecular interactions as

Φ(t) � c0(t)exp( − iω0t)ϕ0 + c1(t)exp( − iω1t)ϕ1

+ c2(t)exp( − iω2t)ϕ2.
(27)

Here, the normalization condition for the coefficients c0(t),
c1(t), and c2(t) are as follows,

FIGURE 10 | Dynamic Stark-induced degenerate state with the Rabi
frequencies (Ω1 and Ω2) using two stationary linearly-polarized lasers with the
frequencies, ωa and ωb, and detuning frequencies Δ1 andΔ2 respectively.
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∣∣∣∣c0(t) 2 + ∣∣∣∣c1(t) 2 + ∣∣∣∣c2(t) 2 � 1.
∣∣∣∣∣∣∣∣∣∣∣∣ (28)

The system Hamiltonian interacting with the electric fields is
given as

H(t) � H0 + V(t), (29)

where H0 satisfies H0ϕi � εiϕi for i �0, 1, and 2. In Eq. 29, the
interaction Hamiltonian V(t) between the system and the two
electric fields is written as

V(t) � −μ · Fa cos(ωat − ζa) − μ · Fb cos(ωbt − ζb). (30)

Here μ � −er is the electronic dipole moment operator, where r
means the electron coordinate. Fα � Fαeα (α � a, b) is the electric
field with amplitude Fα and photo-polarization vector eα, ζα is the
initial phase, and ωα is the central frequency. In Eq. 30, the two
electric fields denoted by a and b induce non-resonant transitions
from the ground state to the two excited states. The selective
transition conditions are set by the choice of the laser polarization
vectors (ea and eb) satisfying μ02⊥ea and μ01⊥eb, respectively.

The time-dependent Schrödinger equation can be written as

iZ
zΦ(t)
zt

� H(t)Φ(t). (31)

The coefficients must satisfy the coupled differential equation

iZ
z

zt
⎛⎜⎝ c0(t)

c1(t)
c2(t)

⎞⎟⎠ � H(t)⎛⎜⎝ c0(t)
c1(t)
c2(t)

⎞⎟⎠, (32)

where the interaction Hamiltonian,

H(t) � ⎛⎜⎜⎝ 0 Va
01(t) Vb

02(t)
Va

10(t) 0 0
Vb

20(t) 0 0

⎞⎟⎟⎠, (33)

is applied with Va
01(t) � < ϕ0

∣∣∣∣μ · Fa∣∣∣∣ϕ1 > cos(ωat − ζa)exp(−iω10t)
and Vb

02(t) � < ϕ0
∣∣∣∣μ · Fb∣∣∣∣ϕ2 > cos(ωbt − ζb)exp(−iω20t).

Equation 32 can be rewritten in the rotating approximation
(RWA) and solved under the following restriction conditions to
obtain the analytical solutions for the time-dependent coefficients
{ci(t)}. For this purpose, we introduce three conditions that can
be set experimentally:

i.V ≡ Va
01 � Vb

02 for the transition magnitudes, (34a)

ii.Δ ≡ Δ2 � −Δ1 > 0 for detuning frequencies, (34b)

And

iii.Δ � Ω − ω21

2
to induce the degeneracy condition, (34c)

where the transition magnitudes are Va
01 ≡ − μ01 · Fa/(2Z), and

Vb
02 ≡ − μ02 · Fb/(2Z).
In Eq. 34c, the two dressed states are assumed to have equal

energies, i.e., Ω ≡ Ω1 � Ω2(�
��������
Δ2 + 2V2

√ ), which is called the
Rabi frequency [43]. The three conditions lead to a reduction of
the input parameters of the two lasers, such that the two
amplitudes (Fa and Fb), and two central frequencies (ωa and
ωb) are reduced to one input parameter. We take Fa ≡ F hereafter.
Analytical expressions for time-dependent coefficients {ci(t)} are
given in Appendix C.

The time-dependent angular momentum defined as an
expectation value of an angular momentum operator
L̂Z � −iZ z

zφ � (ẐlZ , l̂Z � −i z
zφ), can be expressed,

LZ(t) � <Φ(t)∣∣∣∣L̂Z ∣∣∣∣Φ(t)>
� −2ZIm(lZ,12)Im[c1p(t)c2(t)exp( − iω21t)]. (35)

Here, lZ,12 � < ϕ1
∣∣∣∣∣̂lZ ∣∣∣∣∣ϕ2 > � −< ϕ2

∣∣∣∣∣̂lZ ∣∣∣∣∣ϕ1 > � −lZ,21 and
lZ,12 � iImlZ,12.

FIGURE 11 | (A) Geometrical structure of toluene molecule (CS) in the ground state (S0) with the directions of the two electronic transition dipole moments; (B)
Parameters for the three electronic states adopted to induce the unidirectional angular momentum: ZωS4S3 � 0.10 eV as the energy difference between S4 and S3,
μS3S0 ,X � 5.27 D, and μS4S0 ,Y � 5.67 D as the transition dipole moments, ES3 � 8.2 eV and ES4 � 8.3 eVas the vertical transition energies. The angular momentum matrix
element between S3 and S4, ℓZ,S3S4 � 0.672i, is perpendicular to the aromatic ring.
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4.2 Unidirectional π-Electron Rotations in
Toluene
We calculate LZ(t) (derived in the preceding subsection) in a real
molecule, toluene. The simplest three-electronic state model is
applied for toluene because the quasi-degenerate states S3 (A")
and S4 (A′) in toluene (Cs) correspond to the doubly degenerate
state S3 (E1u) in benzene (D6h): Note that the S3 (E1u) state is a
dipole-allowed excited state in benzene (D6h), whereas the other
two lower excited states, S2(B1u) and S1(B2u), are dipole-
forbidden. The geometry optimization of toluene was carried
out with the MP2 level of theory [43]. The CS symmetry of
toluene indicates that one of the hydrogen atoms belonging to the
methyl group is perpendicular to an aromatic ring plane
(Figure 11A).

Figure 12A shows the calculated time-dependent angular
momentum expectation values LZ(t) with respect to the
relative phase ζ � −π/2 (ζ � +π/2) between the two lasers for
the left (right) panel. These were calculated using Eq. 35

combined with Eq. 34. Here, the amplitude of the electric field
Fa is adopted as the input parameter F (≡ Fa). Other parameters
are shown in Table 3A, while Table 3B shows the time-
dependent populations in the three electronic states.

The time-dependent angular momenta plotted in Figure 12A
are comprised of angular momentum pulse trains of the same
shape for each value of F. Each angular momentum pulse
corresponds to the unidirectional π-electron rotation, which
begins with acceleration and ends with deceleration. The
direction of the π-electron rotations is determined by the
relative phase ζ between the two lasers: clockwise rotation for
ζ�+π/2, and anti-clockwise rotation for ζ�−π/2. Here we
discuss how the unidirectional π-electron rotations are created.
We first note that LZ(t) can be rewritten under the two conditions,
Eq. 34a and Eq. 34b, for Ω≈Δ as

LZ(t) ≈ 4ZIm(lZ,12)V2Δ2

Ω4 (1 − cosΩt)sin((2Δ + ω21 −Ω)t + ζ).
(36)

FIGURE 12 | (A) Expectation values of the angular momentum operator LZ(t) for toluene, calculated with the laser input parameter values F � 1.0, 1.5 and 2.0 GV/m.
The left (right) panel shows LZ(t) with respect to the relative phase between two lasers ζ � −π/2 (ζ � +π/2); (B) Temporal evolutions of the populations in S0, S3, and S4 for
F � 1.0, 1.5 and 2.0 GV/m. Reprinted with permission from Ref. [43] Copyright (2016) Royal Society of Chemistry.
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Equation 36 expresses no unidirectional π-electron rotations.
By introducing the third condition, Eq. 34c, which provides for
the formation of the doubly degenerate dressed states with ζ �
±π/2, Eq. 36 can be expressed as

LZ(t) ≈ 4ZIm(lZ,12)V2Δ2

Ω4 (1 − cosΩt)sin(Ωt + ζ). (37)

This indicates a unidirectional π-electron rotation whose
direction is determined by the relative phase ζ, that is, LZ(t) >
0 for ζ � −π/2 and LZ(t) < 0 for ζ � +π/2, as demonstrated in
Figure 12. The dotted line shown in Figure 12A represents LZ(t)
for F � 1.5 GV/m as calculated by Eq. 37, which well reproduces
LZ(t) curve calculated using Eq. 35 without the approximation of
Ω≈Δ approximation. Thus, the unidirectional π-electron rotation
originates from the DSIDES formed by the two non-resonant
lasers with a definite relative phase of ±π/2.

As demonstrated in Figure 12A, the oscillation periods of the
angular momentum pulses become shorter (higher Rabi
frequency Ω), and those amplitudes decrease as F increases.
These two behaviors result from the third restriction condition
for degeneracy (Eq. 35c) used in the derivation of LZ(t). This
degeneracy condition should be satisfied for the two dressed
states with equal energies to maintain their energies located at the
center of the two excited states, even though the laser intensities
of two lasers increase. This results in an increase in the detuning
parameter Δ of the two lasers, that is, a decrease (increase) in ωa

(ωb), as shown in Table 3A.
Figure 12A exhibits that the maximum magnitude of the

angular momentum occurs in the vicinity of F � 1.5 GV/m. This
can be explained by noting that the constant in Eq. 37, V2Δ2/Ω4,
with Rabi frequency of Ω � ��������

Δ2 + 2V2
√

, reaches its maximum at
Δ2 � 2V2, which in turn provides the maximum angular
momentum. Using the relationship Δ2 � 2V2for the dressed
states with equal energies in Eq. 34c, the electric field F is
estimated as F � �

2
√

ZΔ/(μ10)X � 1.52 GV/m with Δ � 0.118 eV,
which is close to the F � 1.5 GV/m value shown in Figure 12A.

Figure 12B shows the F-dependence of the
∣∣∣∣cS0(t)∣∣∣∣2, ∣∣∣∣cS3(t)∣∣∣∣2

and
∣∣∣∣cS4(t)∣∣∣∣2 populations in toluene, which were calculated using

Eqs. (B2). The relationship between the excited state populations,∣∣∣∣cS3(t)∣∣∣∣2 � ∣∣∣∣cS4(t)∣∣∣∣2, is maintained because the conditions
represented by Eqs. 34a, 34b, were used for a derivation of
LZ(t). Inversion of populations between the ground and
excited states occurs for F � 1.5 GV/m and 2.0 GV/m, as
demonstrated in Figure 12B. By comparing Figures 12A,B, it
can be observed that major components of the unidirectional
angular momentum pulse are created during when the
population inversion occurs.

We now estimate the physical constants associated with
π-electron rotations, which are listed in Table 3B: one cycle
count of π-electron rotationNr, and themagnitude of ring current
J in one cycle of Rabi oscillation with periodicity T ≡ 2π/Ω. In
particular for aromatic molecules the ring current is an important
physical quantity because it is directly related to the magnetic
field induced by the ring current. For simplicity, we consider the
classical model of π-electron rotation, in whichNr is defined asNr

≡ T/τ. Here τ � 2πmer/p � 2πmer2/
∣∣∣∣LZ ∣∣∣∣ is the rotational period of

a π-electron having an angular momentum averaged over one
cycle period of Rabi oscillation (LZ).me is the electronmass, and r
indicates the radius of the aromatic ring. L was calculated using
Eq. 37 substituting for LZ(t) as

LZ � 1
T
∫T

0
dtLZ(t) � −2ZImlZ,12

Ω4 V2Δ2 sin ζ . (38)

The ring current can be approximately expressed as J ≈ LZJ0/Z
[39–41, 43]. Here on a single aromatic ring, J0 � 200 μA was a
typical value of the ring current estimated with a unit angular
momentum �h. Table 3B exhibits the calculated ring current J,
cycle counts of π-electron rotations along the aromatic ring Nr

and three values of F adopted in Figure 12, together with the
parameters used in this model calculation. In section 3, we
presented a pump-dump control procedure for the generation
of sequential unidirectional ring currents in a 2,2’-biphenol

TABLE 3A | Input parameter F (≡ Fa) and other parameters for a generation of unidirectional π-electron rotation in toluene.

F [GV/m]
([W/cm2])

2|V| [eV] Ω [eV] |V|/Ω Δ [eV] ωa [eV] ωb [eV]

1.0 (0.13 × 1012) 0.110 0.084 0.655 0.032 8.16 8.33
1.5 (0.30 × 1012) 0.165 0.157 0.525 0.105 8.09 8.40
2.0 (0.53 × 1012) 0.220 0.260 0.423 0.208 7.99 8.51

Reprinted with permission from Ref. [43] Copyright (2016) Royal Society of Chemistry.

Table 3B | Calculated physical properties of the unidirectional π-electron rotation in toluene.

F [GV/m] T [fs]a τ [fs]a LZ[�h]
a J [μA] Nr

1.0 49.2 12.6 0.084 16.8 3.90
1.5 26.3 6.40 0.166 33.2 4.10
2.0 15.9 6.87 0.155 31.0 2.32

aParameters V, Δ, Ω, ωa, and ωb, were calculated for three values of F using Eq. 34. These parameters used for the calculation of the following physical quantities: T as a period of Rabi
oscillation; LZ is the angular momentum averaged over one cycle period of Rabi oscillation, τ � 2πmer/p � 2πmer2/

∣∣∣∣LZ ∣∣∣∣ as the rotational period of a π-electron, J as a ring current, and
Nr≡T/τ as one cycle count of π-electron rotations.
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molecule having non-degenerate excited states. The same order of
magnitudes of the pump- and dump- pulse lasers were applied in
the vicinity of ∼1 GV/m, considering that the number of aromatic
rings differs between biphenol and toluene. This can be explained
by the point that the magnitudes of the ring current J or the
angular momentum LZ are proportional to that of the coherence
between the two excited states, but not proportional to the
number of aromatic rings. It is remarkable that in Table 3B J
is not proportional to Nr, it is actually proportional to Nr/T. This
is originated from the different behaviors between J andNr related
to the F-dependence shown in Table 3B.

5 SUMMARY AND PERSPECTIVE

This paper briefly provides an overview of the theoretical study
of quantum laser control of coherent π-electron dynamics in
low-symmetry aromatic ring molecules, which we have
undertaken in recent several years [39–43, 68–73]. The
essential principles to generate the π-electron angular
momentum and ring current in a low symmetry aromatic
ring molecule are first to create a superposition of two
electronic excited (coherent) states using two linearly
polarized lasers, and second to select the clockwise or
anticlockwise rotational component from the non-stationary
time evolution of the coherent state using pump and dump
lasers with properly designed polarization directions. Here, the
direct product of the irreducible representations of each excited
states in the molecular point group belongs to that of the
molecular rotation, (Rx, Ry or Rz), and the relative phase
between the two linearly polarized lasers are fixed in order to
determine the initial direction of the angular momentum and
ring current. In additon to the laser conditions, aromatic ring
molecules also need to satisfy the follwing conditions to generate
the π-electron angular momentum and ring current. First two
electronic excited states are nearly degenerate, and second, those
states can be excited from the ground states using UV lasers,
i.e., transitions between the electronic excited states and ground
states are optically allowed.

On the basis of the above principles, analytical expressions for
coherent π-electron angular momentum, ring current, and ring
current-induced magnetic field are derived in the quantum
chemical MO theory. A coherent π-electron ring current is
defined as the average of the bond currents. Temporal
behaviors of these coherent quantities are calculated using the
density matrix method within the Markov approximation.
Quantum simulations of the coherent quantuities have been
performed for (P)-2,2’-biphenol. Based on the simulation
results a new quantum control method for two-dimensional
ultrafast angular momentum switching was proposed. The
essential point of the quantum control is to use a sequence of
the overlapped pump and dump pulses with a selected relative
phase and selected polarization directions between the two lasers.
The results for the (P)-2,2’-biphenol indicate that this new control
scheme can potentially be used for the design and realization of
ultrafast multi-dimensional electronic switching devices, or field-
effect transistor devices.

The familiar quantum optimal control procedure was applied
to an optiaml control of the coherent π-electron ring currents in
planar PAHs with D2h symmetry. For this purpose, we have to set
up the target state for a desired ring current pattern. The final
target wave functions are determined via the Lagrange multiplier
method by solving the coupled equations of motion under the
constraints that the ring currents must satisfy. The method was
applied to anthracene. The creation of the perimeter current and
the middle ring current in anthracene were successfully realized.
The control mechanisms were elucidated by analyzing the time-
dependent behaviors of the control laser puses and the
populations of the relevant electronic states. Concerning the
types of molecules used in the above laser control studies,
polycyclic planar aromatic molecules like PAHs, coronene and
benzoic acids dimers are applicable for a laser control of
perimeter or localized ring currents.

Another laser control method for the π-electrons
unidirectional rotation in low symmetric aromatic rings was
presented. The basic idea of the control method is to
degenerate two nondegenerate excited states by using dynamic
Stark shifts. Doubly degenerate excited state was created by the
Stark shift using the two linearly polarized non-resonant lasers
with a definite relative phase of ± π

2, which determines the
angular momentum direction (clockwise or anti-clockwise
π-electron rotation). Applying the RWA, the coherent
π-electron angular momentum in a three-electronic state
model was analytically expressed in a closed form, and the
proposed control theory have been applied to toluene (Cs).
The numerical simulations indicated that the resulting angular
momentum comprised sequential angular momentum pulses
with a positive or negative value depending on the relative
phases between the two lasers.

Some theoretical studies on laser control of the coherent
π-electron rotations that were not included in this review are
noteworthy. Probing molecular chirality, right-handed or left-
handed chiral molecules, is a central issue in natural science. E.x.,
Phenylalanine is an essential amino acid, and L-enantiomer is
found in natural system. On the other hand, D-enantiomer is
synthesized artificially, and racemate phenylalanine is used for
dietary supplement. However, in conventional methods such as
CD spectroscopy and optical rotatory dispersion (ORD)
spectroscopy [74, 75], the signals are very week because these
processes involve second-order evaluations. As a possible of laser
control scheme of the unidirectional π-electron rotations in low
symmetric aromatic ring molecules, we previously proposed an
efficient enantiomer-probing scenario for chiral aromatic
molecule [71, 72]. A pair of nondegenerate excited states
becomes degenerate by applying the dynamic Stark shift in the
presence of two non-resonant UV lasers, producing an
enantiomer-specific angular momentum. In that study,
phenylalanine was adopted as an example for the numerical
simulation. The resulting enantiomer-specific magnetic fluxes
were on the order of a few Tesla, with periods of several tens
of femtoseconds.

The contribution of vibrational motion to coherent π-electron
rotations is also an important research topic that was not
discussed in this review. In our previous research, vibrational
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effects on the coherent π-electron rotations in (P)-2,2’-biphenol
were theoretically studied in the adiabatic approximation [73]. It
was found that the low-frequency torsion mode around the
bridge causes modulations in the beat of the ring current [73].
The vibrational effects on dynamic Stark-induced π-electron
rotations in aromatic ring molecules with low symmetry were
also studied using the displaced harmonic oscillator (DHO)
model in the adiabatic approximation [72]. A pair of the
lowest vibronic state in the two electronic excited states was
degenerated using the two linearly polarized UV lasers. The two
potential displacements between the ground state and the two
electronic excited states were used as the parameters. The shapes
of the sequential angular momentum pulses were affected by the
potential displacements.

From one perspective, theoretical treatments beyond the
adiabatic approximation [28, 31, 74–77] are expected to be
incorporated such that other electronic excited states interact
with the two relevant excited states through nonadiabatic
couplings. It is crucial to clarify the effect of nonadiabatic
couplings to the unidirectional π-electron rotations and
determine how to maintain π-electron rotations by way of
quantum optimal control techniques. In large PAHs, once
π-electron rotation is realized at a localized ring site and once
a site-selective coherent ring current is generated, the localized
ring current is transferred from site to site using the laser pulses,
i.e., transferred ring currents, which allow for an ultrafast
switching function at the selected local site. Furthermore, the

site-selective coherent ring current and transferred ring current
can create the induced magnetic fields. These electromagnetic
fields are expected to provide ultrafast probing of local sites in
large molecular systems, biomolecules with chiral aromatic ring
molecules, and PAHs. Further development of theoretical
treatments involving photon-induced electronic coherence in
molecular systems would be promising in the near future.
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APPENDIX

A BRIEF DERIVATION OF TARGET
OPERATORS, CALCULATED USING THE
COUPLED EQUATIONS FOR THE RING
CURRENT LOCALIZATION (EQ. 19).

In general, the Lagrange function LJ consists of “the function to
be maximized or minimized” and “all related constraint
conditions of the system,” For the localization of the
π-electron ring current, Jχ in PAHs, LJ(c1,/, cn, λ1,/, λm)
can be rewritten as

LJ(c1,/, cn, λ1,/, λm) � Jχ + λ1J1 +/ + λχ−1Jχ−1

+λχ⎛⎝∑n
α�1

|cα|2 − 1⎞⎠ + λχ+1Jχ+1 +/ + λmJm, (A1)

Where the first term Jχ is the target ring current to be maximized,
while the other terms with Lagrange multiplier λκ, Jκ ≡ Jκ(T), are
irrelevant to the localization under the constraint conditions,
such that J1 � / � Jχ−1 � Jχ+1 � / � Jm � 0, and
(∑n

α�1|cα|2 − 1) � 0, which indicates the number conservation
of the π-electrons associated with the ring current.

The partial derivatives of Eq. 19 with respect to
xα � (Recα, Imcα), λχ and λκ are then

zLJ

zxα
� zJχ
zxα

+ ∑m
κ≠ χ

λκ
zJκ
zxα

+ λχ
z

zxα
⎛⎝∑n

β�1

∣∣∣∣cβ∣∣∣∣2 − 1⎞⎠ � 0, (1≤ α≤ n),

(A2a)

zLJ
zλχ

� ∑n
α�1

|cα|2 − 1 � 0, (A2b)

And

zLJ

zλκ
� Jκ � 0, (1≤ κ≤m, κ≠ χ), (A2c)

Respectively, where Jl(i.e.,Jχand Jκ) can be rewritten in terms of
Recα and Imcα as

Jl � ∑n
α

∑n
β

Jl,αβ(ImcαRecβ − RecαImcβ)(1≤ l ≤m). (A3)

By substituting the partial derivatives of Jl in Eq. (A3), with
respect to Recα and Imcα into Eq. (A2a), we obtain 2n+m coupled
equations with 2n+m variables as

∑n
β�1

Jχ,βαImcβ + ∑m
κ≠ χ

∑n
β�1

λκJκ,βαImcβ + λχRecα � 0, (1≤ α≤ n),

(A4a)
And

−∑n
β�1

Jχ,βαRecβ − ∑m
κ≠ χ

∑n
β�1

λκJκ,βαRecβ + λχImcα � 0, (1≤ α≤ n).

(A4b)

Equations (A2b), (A2c) can be expressed as

∑n
α�1

((Recα)2 + (Imcα)2) − 1 � 0, (A4c)
And

∑n
β�1

∑n
α�1

Jκ,αβ(ImcαRecβ − RecαImcβ) � 0 . (A4d)

Equation (A4) contains the final equations, which are the
same as those in Eq. 19.

B BRIEF DERIVATION OF TARGET
OPERATORS, CALCULATED USING THE
COUPLED EQUATIONS FOR THE
PERIMETER RING CURRENT (EQ. 20).

Similar to the ring current localization, the Lagrange functional
for the perimeter ring current is given as

LP
J (c1,/, cn, λ1,/, λm) � JP + λ1JB,1 +/ + λm−1JB,m−1

+λm⎛⎝∑n
α�1

|cα|2 − 1⎞⎠, (B1)

Where JP is the perimeter ring current (Eq. 20a) to be maximized,
and JB,l′ are the bridge bond currents (see Eq. 20b), which should
be zero at the target time t � T, JB,l′ � 0 where 1≤ l′ ≤m − 1. The
last term indicates the normalization condition for the total target

wave function ∑n
α�1

|cα|2 − 1 � 0.

In the same manner as the ring current is localized to a
designated ring, the coupled equations for the perimeter ring
current are obtained by taking partial derivatives of the Lagrange
functional LPJ (Eq. (B1)) with respect to Recα, Imcα, and λl .

The coupled equations for the perimeter ring current can then
be expressed as

∑n
β�1

JPβαImcβ + ∑m−1

l′�1
∑n
β�1

λl′ J
B,l′
βαImcβ + λmRecα � 0, (1≤ α≤ n) (B2a)

−∑n
β�1

JPβαRecβ − ∑m−1

l′�1
∑n
β�1

λl′ J
B,l′
βαRecβ + λmImcα � 0, (1≤ α≤ n)

(B2b)

∑n
α,β�1

JB,l′αβ(ImcαRecβ − RecαImcβ) � 0, (1≤ l′ ≤m − 1) (B2c)

And

∑n
α�1

((Recα)2 + (Imcα)2) − 1 � 0. (B2d)

C CALCULATED RESULTS OF TIME-
DEPENDENT COEFFICIENTS {ci(t)} IN
EQ. 31.

Equation 32 can be rewritten in the rotating approximation
(RWA) as
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_c0(t) � −iVa
01 exp(iΔ1t)c1(t) − iVb

02 exp(iΔ2t + iζ)c2(t), (C1a)

_c1(t) � −iVa
01 exp( − iΔ1t)c0(t), (C1b)

_c2(t) � −iVb
02 exp( − iΔ2t − iζ)c0(t), (C1c)

Where ζ ≡ ζa − ζb is the laser relative phase between the two
lasers. Note that the laser phases ζa and ζb are transferred to the
electronic states.

The coupled differential equations in Eq. (B1) are analytically
solved under the two conditions described by Eqs. 34a, 34b by

setting the initial condition: c0(0) � 1, c1(0) � c2(0) � 0 [43]
such that

c0(t) � Δ2 + V2(e−iΩt + eiΩt)
Ω2 , (C2a)

c1(t) � V
2Ω2 [2ΔeiΔt +(Ω−Δ)ei(Ω+Δ)t −(Ω−Δ)e−i(Ω−Δ)t], (C2b)

c2(t) � −e−iζ V
2Ω2 [2Δe−iΔt + (Ω − Δ)e−i(Ω+Δ)t − (Ω − Δ)ei(Ω−Δ)t].

(C2c)
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Long-Lasting Orientation of
Symmetric-Top Molecules Excited by
Two-Color Femtosecond Pulses
Long Xu*†, Ilia Tutunnikov*†, Yehiam Prior* and Ilya Sh. Averbukh*

AMOS and Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot, Israel

Impulsive orientation of symmetric-top molecules excited by two-color femtosecond
pulses is considered. In addition to the well-known transient orientation appearing
immediately after the pulse and then reemerging periodically due to quantum revivals,
we report the phenomenon of field-free long-lasting orientation. Long-lasting means that
the time averaged orientation remains non-zero until destroyed by other physical effects,
e.g., intermolecular collisions. The effect is caused by the combined action of the field-
polarizability and field-hyperpolarizability interactions. The dependence of degree of long-
lasting orientation on temperature and pulse parameters is considered. The effect can be
measured by means of second (or higher-order) harmonic generation, and may be used to
control the deflection of molecules traveling through inhomogeneous electrostatic fields.

Keywords: long-lasting orientation, symmetric-top, two-color laser pulses, polarizability interaction,
hyperpolarizability interaction

1 INTRODUCTION

Over the years, diverse optical methods have been developed to align and orient molecules of varying
complexity and many applications related to studies of molecular and photon-induced processes are
based on the ability to control the absolute orientation of the molecules. For reviews, see [1–6].

There are several laser-based strategies for achieving molecular orientation in the gas phase,
including using a combination of intense non-resonant laser and weak electrostatic fields [7–15], and
using strong single-cycle terahertz (THz) pulses [16–23], alone or together with optical pulses
[24–26]. In addition, laser and THz pulses with twisted polarization were shown to be effective for
inducing enantioselective orientation of chiral molecules [27–33].

The techniques listed above rely on the laser-dipole and/or laser-polarizability interactions.
Another route to molecular orientation stems from higher-order laser-molecule interactions, e.g., the
laser field-hyperpolarizability interaction. Non-resonant phase-locked two-color laser pulses
consisting of the fundamental wave (FW) and its second harmonic (SH) were used for inducing
molecular orientation by interacting with the molecular hyperpolarizability [34–49].

Here, we investigate the orientation dynamics of symmetric-top molecules excited by single two-
color femtosecond laser pulses. In addition to the well-known transient orientation appearing
immediately as a response to the laser excitation, we predict the existence of long-lasting orientation.
Long-lasting means that the time-averaged orientation remains non-zero, within the model,
indefinitely or until destroyed by additional physical effects, e.g., by collisions. The long-lasting
orientation induced by a two-color pulse has an intricate dependence on both the molecular
polarizability and hyperpolarizability. Related effects have been recently observed in chiral molecules
excited by one-color laser pulses with twisted polarization [30, 32] and investigated in non-linear
molecules excited by THz pulses [23, 33].
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The paper is organized as follows. In the next section, we
describe our numerical approaches for simulating the laser-
driven molecular rotational dynamics. In Section 3, we
present the long-lasting orientation, which is the main result
of this work. Section 4 is devoted to a qualitative analysis of the
effect, and a derivation of the approximate classical formula for
the degree of long-lasting orientation. Additional results are
presented in Section 5.

2 NUMERICAL METHODS

In this work, the rotational dynamics of symmetric-top molecules
is treated within the rigid rotor approximation. We performed
both classical and quantum mechanical simulations of molecular
rotation driven by two-color laser fields. This section outlines the
theoretical approaches used in both cases.

2.1 Classical Simulation
In the classical limit, the rotational dynamics of a single rigid top
is described by Euler’s equations [50]

I _Ω � (IΩ) ×Ω + T, (1)

where I � diag(Ia, Ib, Ic) is the moment of inertia tensor, Ω �
(Ωa,Ωb,Ωc) is the angular velocity, and T � (Ta,Tb,Tc) is the
external torque resulting from the interaction between field-
induced dipole moment and the electric field. All the
quantities in Eq. 1 are expressed in the rotating molecular
frame of reference, equipped with a basis set including the
three principal axes of inertia, a, b, and c.

In the laboratory frame of reference, the electric field of a two-
color laser pulse is defined by

E(t) � ε1(t)cos(ωt)eZ + ε2(t)cos(2ωt + φ)eSH, (2)

where the two terms correspond to the FW and its SH, respectively.
ω is the carrier frequency of the FW field, φ is the relative phase of
the second harmonic, εn(t) � εn,0exp[−2 ln2 (t/σn)2], n � 1, 2, is
the field’s envelope with εn,0 as the peak amplitude, and σn is the full
width at half maximum (FWHM) of the laser pulse intensity profile.
The polarization direction of the SH field is given by
eSH � cos(ϕSH)eZ + sin(ϕSH)eX , where ϕSH is its angle with
respect to the Z axis, eZ and eX are the unit vectors along
laboratory Z and X axes, respectively. The electric field in the
molecular frame of reference can be expressed as

E(t) � ε1(t) cos(ωt)e1 + ε2(t) cos(2ωt + φ)e2, (3)

where e1 � QeZ and e2 � QeSH are the unit vectors expressed in
the molecular frame of reference. Q is a 3 × 3 time-dependent
orthogonal matrix relating the laboratory and the molecular
frames of reference. It is parametrized by a quaternion, q
which has an equation of motion _q � qΩ/2, with Ω � (0,Ω)
being a pure quaternion [51, 52]. Considering laser-polarizability
and laser-hyperpolarizabiltiy interactions, the torque induced by
a two-color field has two contributions T � Tα + Tβ, where [53]

Tα � (αE × E) � ε21
2
(αe1) × e1 + ε22

2
(αe2) × e2, (4)

Tβ
i � 1

2
[(EβE) × E]i

� ∑
m,n,j,k

ε21ε2
4
ϵijkβmnje1me2ne1k + ∑

m,n,j,k

ε21ε2
8
ϵijkβmnje1me1ne2k. (5)

Here, the overline (/) represents averaging over the optical
cycle, α and β are the polarizability and hyperpolarizability
tensors, respectively. ϵijk is the Levi-Civita symbol, βmnj is a
component of the hyperpolarizability tensor, e1m and e2m are
the components of the FW and SH fields, respectively.

To simulate the behavior of an ensemble of non-interacting
molecules, we use the Monte Carlo approach. For each
molecule, the Euler’s equations [Eq. 1] with the torques in
Eqs. 4, 5 are solved numerically using the standard fourth
order Runge-Kutta algorithm. In the simulations we used
ensembles consisting of N≫ 1 molecules. The initial
uniform random quaternions, representing isotropically
distributed molecules, were generated using the recipe from
[54]. Initial angular velocities are distributed according to the
Boltzmann distribution,

f (Ω)∝∏
i

exp(− IiΩ2
i

2kBT
), (6)

where i � a, b, c, T is the temperature and kB is the Boltzmann
constant.

2.2 Quantum Simulation
The Hamiltonian describing the rotational degrees of freedom
of a molecule and the molecular polarizability and
hyperpolarizability couplings to external time-dependent
fields can be written as H(t) � Hr +Hint(t), where Hr is
the field-free Hamiltonian [55], and Hint(t) is the molecule-
field interaction potential, with two contributions
Hint(t) � Vα + Vβ, where [56]

Vα � − 1
2
∑
i,j

αijEiEj, Vβ � − 1
6
∑
i,j,k

βijkEiEjEk. (7)

Here Ei, αij, and βijk are the components of the field vector,
polarizability tensor α, and hyperpolarizability tensor β,
respectively. Since the optical carrier frequency of the laser
fields, ω [see Eq. 2], is several orders of magnitude larger than
a typical rotational frequency of small molecules, the energy
contribution due to the interaction with the molecular
permanent dipole, μ, −μ · E(t) is negligible.

We use the eigenstates of Hr , |JKM〉, describing the field-free
motion of quantum symmetric-top [55], as the basis set in our
numerical simulations. The three quantum numbers are J, K and
M, where J is the total angular momentum, while K andM are its
projections on the molecular a axis and the laboratory-fixed Z
axis, respectively. The time-dependent Schrödinger equation
iZzt|Ψ(t)〉 � H(t)|Ψ(t)〉 is solved by numerical
exponentiation of the Hamiltonian matrix (see Expokit [57])
with the initial state being one of the field-free eigenstates,
|Ψ(t � 0)〉 � |JKM〉. The degree of molecular orientation is
derived by calculating the induced polarization, the expectation
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value of the dipole projection. The polarization along each of the axes
in the laboratory-fixed frame of reference is given by

〈μ(J ,K ,M)
i 〉(t) � 〈Ψ(t)∣∣∣∣μ · ei

∣∣∣∣Ψ(t)〉, (8)

where ei represents one of the unit vectors eX , eY , eZ . Thermal
effects are accounted for by computing the incoherent average of
the time-dependent polarizations obtained for the various initial
states |JKM〉. The relative weight of each of the projections
〈μ(J ,K,M)

i 〉(t) is defined by the Boltzmann distribution,

〈μi〉(t) �
1
Z ∑

J ,K,M

ϵK exp[ − εJ,K ,M
kBT

]〈μ(J ,K ,M)
i 〉(t), (9)

where Z � ∑J,K ,MϵKexp(−εJ ,K ,M/kBT) is the partition function,
and εJ,K ,M is the energy/eigenvalue corresponding to |JKM〉 state.
For molecules with two or more identical atoms, an additional
statistical factor ϵK must be included in the distribution [58]. For
the case of methyl fluoride (CH3F) molecule considered in this
work, ϵK is given by

ϵK � (2IH + 1)3
3

[1 + 2cos(2πK/3)
(2IH + 1)2 ], (10)

where IH � 1/2.
In our simulations, the basis set included all the states with

J ≤ 30. For our sample molecule, CH3F, at initial temperature of
T � 5K, this means that initial states with J ≤ 8 were included.
Additional details about the numerical simulations, including the
matrix elements of the interaction Hamiltonian Hint, can be
found in Supplementary Appendix A.

3 LONG-LASTING ORIENTATION

We continue to consider the methyl fluoride (CH3F), as an
example for a symmetric-top molecule. The molecule is

excited by a two-color pulse in which the polarizations of the
FW and SH are parallel and along Z axis [ϕSH � 0, see Eq. 2]. In
addition, here we set the relative phase between them to be zero
(φ � 0). Later on we discuss what changes when this phase
changes. Table 1 summarizes the molecular properties of
CH3F. Moments of inertia, dipole moment, and polarizability
tensor components are taken from NIST, where they were
computed within the density functional theory (DFT, method
CAM-B3LYP/aug-cc-pVTZ) [59]. The hyperpolarizability values
are literature values taken from [60].

Figure 1 shows the projection of the dipole moment along the
laboratory Z axis, 〈μZ〉, calculated classically and quantum
mechanically (see Methods Section 2). In the classical case,
the angle brackets 〈/〉 denote ensemble average, that is the
average of the dipole projections of N � 108 molecules, initially
isotropically distributed in space and having random angular
velocities [see Eq. 6]. In the quantum case, 〈/〉 denotes
incoherent average of initially populated rotational states [see
Eq. 9]. Note that the averages 〈μX〉 and 〈μY〉 are zero. Here, the
initial temperature is T � 5K, the peak intensities of the FW and
SH fields are IFW � 8 × 1013 W/cm2 and ISH � 3 × 1013 W/cm2,
respectively, and the duration (FWHM) of the pulses are σ1 �
σ2 � 120 fs [see Eq. 2]. On the short time scale (first ≈ 2 ps), the
classical and quantum results are in remarkable agreement, and
show the expected immediate response to a kick by a two-color
pulse. On the long time scale, the quantum mechanical
simulation exhibits distinct quantum revivals of the
orientation [61–65]. This transient orientation effect is well
studied and was observed in the past [34–49].

In the case of symmetric-top molecules considered here, we
observe long-lasting (persistent) orientation, a previously
unreported phenomenon in two-color orientation schemes.
The inset in Figure 1 demonstrates that after the initial
oscillations are washed out, the classical polarization/degree of
orientation attains a constant, nonzero value. In the quantum
case too, despite its being partially masked by the revivals, the
sliding time average of the signal is approximately constant and it
persists indefinitely within the adopted model. This long-lasting
orientation is one of the main results of this work.

Several comments are in order. Additional physical effects can
distort the long-term field-free picture of identical periodically
appearing revivals seen in Figure 1. These include the centrifugal
distortion and the radiation emission due to rapidly rotating
molecular permanent dipole moment. Dephasing of the
rotational states caused by the centrifugal distortion leads to
the eventual decay of the revivals’ peaks [21, 22]. Nevertheless, the
average dipole remains almost unchanged (see [23]). The
radiative emission results in the gradual decrease of the
rotational energy [21, 22]. However, for a rarefied molecular
gas, the estimated relative energy loss during a single revival is
very small. The proper description of the behavior on an even
longer timescale (nanoseconds), requires the inclusion of
collisions and fine structure effects [66, 67], which is beyond
the scope of the current work. Furthermore, it should be noted
that higher laser pulse intensities lead to higher degree of
orientation, but when the intensity is high enough for
molecular ionization, another effect kicks in, namely

FIGURE 1 | Z-projection of the dipole moment, 〈μZ〉 and the orientation
factor, 〈cos(θμZ )〉 ≡ 〈μZ〉/μ as a function of time for CH3F molecule at initial
rotational temperature T � 5K. Here μ is the magnitude of the dipole moment
and θμZ denotes the angle between the dipole moment and laboratory Z
axis. The solid blue and dotted red lines represent the results of quantum and
classical simulations, respectively. The solid green line is the time average
defined by 〈μZ〉(t) � (Δt)−1 ∫t+Δt/2

t−Δt/2 dt
′〈μZ〉(t′), where Δt � 19.6 ps. The inset

shows a magnified portion of the signals.
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orientation mechanism due to selective molecular ionization of
molecules with specific orientation [43, 44]. Considering this kind
of orientation is also beyond the scope of this work.

4 LONG-LASTING ORIENTATION - A
QUALITATIVE DESCRIPTION

An explicit form of the interaction potential [Eq. 7] can be obtained
by expressing the electric field vector in the rotating molecular frame
of reference. For the sake of the current discussion, this can be done
conveniently by using an orthogonal rotation matrix parameterized
by the three Euler angles, R(ϕ, θ, χ). We use the definition
convention adopted in [55], according to which, ϕ and θ are the
standard azimuth and polar angles defining the orientation of the
molecular frame z axis, and χ is the additional rotation angle about z
axis. The basis set in the rotating molecular frame of reference
consists of the three principal axes of inertia, a, b, c. For molecules
belonging to the C3v symmetry group (such as CH3F), there are
three non-zero polarizability components (two of them are equal),
and 11 non-zero hyperpolarizability components (three of which are
independent) [68]. For definiteness, we associate the axis of the
three-fold rotational symmetry with the most polarizable molecular
principal axis a (z axis in the rotating frame), having the smallest
moment of inertia, Ia. In this case, the non-zero polarizability
elements are αaa > αbb � αcc, and the independent
hyperpolarizability elements are βaaa, βabb � βacc, βbbb � −βbcc.
The other non-zero hyperpolarizability elements are obtained by
permuting the indices of the independent elements [68]. The
parameters of the CH3F molecule are listed in Table 1.

We consider the case of a two-color pulse in which both the
FW and SH are polarized along Z axis. The interaction potential is
obtained by carrying out the summation in Eq. 7 (where all the
quantities are expressed in the basis of principal axes of inertia)
and we average over the optical cycle. The resulting potential has
two contributions,

Vα(θ) � −ε
2
1(t) + ε22(t)

4
(αaa − αbb) cos2(θ), (11)

Vβ(θ, χ) � − ε
2
1(t)ε2(t)

8
cos(φ) sin3(θ) cos(3χ)βbcc

− ε21(t)ε2(t)
8

cos(φ)[3 sin2(θ) cos(θ)βabb
+ cos3(θ)βaaa]. (12)

To facilitate the qualitative discussion in this section, we let
βbbb � βbcc � 0. These elements of the hyperpolarizability

tensor are the smallest (see Table 1), and their omission does
not affect the qualitative features of the discussed phenomena.
Thus, the hyperpolarizability interaction becomes

V
+

β (θ) � −ε
2
1(t)ε2(t)

8
cos(φ)[3sin2(θ)cos(θ)βabb + cos3(θ)βaaa].

(13)

And V � Vα + V
+
β is a function of a single variable θ—the polar

angle between the symmetry axis of the molecule (a axis) and the
laboratory Z axis (axis of laser polarization).

The two parts of the interaction potential lead to two distinct
effects. Vα(θ) is a symmetric function of θ (about θ � π/2), and a
kick by such a potential results in molecular alignment (for
reviews, see [1–6]). The second part, V

+
β (θ) is an asymmetric

function of θ, causing molecular orientation. Transient
orientation of linear molecules excited by two-color laser
pulses has been observed [38–40, 42, 44] and is being studied
theoretically [45–49]. Figure 2 shows the angular dependence of
V

+
β (θ), cos(φ)[3bsin2(θ)cos(θ) + cos3(θ)], see Eq. 13. The

orienting potential is proportional to cos(φ), such that the
orientation is zero for φ � π/2. Also, the relative phase can be
used to control the orientation direction. To simplify the
following expressions, we set φ � 0.

4.1 Approximate Classical Formula
In the case of weak excitation, we can derive an approximate
classical formula for the degree of long-lasting orientation. Since
the long-lasting orientation manifests itself under field-free
conditions, we begin by considering the free motion of a
single classical symmetric top. The free motion of the unit
vector a, pointing along the rotational symmetry axis of the
molecule, is given by a simple vectorial differential equation

TABLE 1 |Molecular properties (in atomic units) of CH3F: moments of inertia, nonzero elements of dipole moment, polarizability tensor, and hyperpolarizability tensor. All the
quantities are represented in the reference frame of molecular principal axes of inertia.

Moments of inertia Dipole components Polarizability components Hyperpolarizability components

Ia � 20982 μa � −0.736 αaa � 18.38 βaaa � 40.449
Ib � 129238 αbb � 16.76 βabb � βacc � 26.970
Ic � 129238 αcc � 16.76 βbbb � −βbcc � −11.019

FIGURE 2 | Angle dependence of the potential V
+

β (θ),
cos(φ)[3bsin2(θ)cos(θ) + cos3(θ)], see Eq. 13, for different relative phases,
φ. Here, b � βabb/βaaa � 2/3.
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_a � (L/I) × a. Here, L is the conserved angular momentum
vector, I is the moment of inertia along the orthogonal axes b
and c (Ia < Ib � Ic ≡ I). The solution of this equation is given by

a(t) � L
L · a(0)

L2
+ [a(0) − L

L · a(0)
L2

]cos(L
I
t) + L

L

× a(0)sin(L
I
t), (14)

where L is the magnitude of angular momentum and a(0) is vector a
at t � 0. The above equation describes precession of a around L at a
rate L/I (see Figure 3). In the special case of a linear molecule,
La � L · a(0) � 0, so that Eq. 14 reduces to

a(t) � a(0)cos(L
I
t) + L

L
× a(0)sin(L

I
t). (15)

Equation 15 describes a uniform rotation of a in a plane
perpendicular to the angular momentum vector L.

The degree of long-lasting orientation (see the inset of
Figure 1) can be obtained by considering the ensemble
average projection of the molecular axis a on the laboratory Z
axis, aZ � eZ · a, and then evaluating its time average

〈aZ〉 � lim
τ→∞

1
τ
∫τ

0
〈eZ · a(t)〉dt, (16)

where t � 0 defines the end of the two-color pulse (when the free
motion begins). Note that for CH3F the molecular dipole, μ
points along −a (see Table 1). Next, we exchange the order of the
ensemble and time averaging. The time average of aZ is obtained
from Eq. 14 and it reads

aZ � (LZ)f(La)f
L2
f

, (17)

where LZ � eZ · L, La � a · L, and subindex f denotes that all the
quantities are taken after the pulse. With the potential in Eqs. 11,
13, both ϕ and χ are cyclic coordinates. Therefore, the canonically
conjugate angular momenta LZ and La are conserved. As a
consequence, Eq. 17 becomes

aZ � LZLa

L2
f

, (18)

where LZ and La are taken before the pulse. At this stage, we can
conclude that the long-lasting orientation is strictly zero when the
initial temperature is zero and/or in the limit of a linear rotor. In
the first case, LZ � La � 0, while in the second case La � 0,
because Ia � 0 for linear molecules.

For the ensemble averaging, it is advantageous to express all
the quantities in the basis of principal axes of inertia. The
magnitude of the angular momentum after the pulse, L2f , is
given by

L2
f � (Lb + δLb)2 + (Lc + δLc)2 + L2

a, (19)

where La, Lb, Lc are the values before the pulse, while δLb and δLc
are the changes in angular momentum components due to laser
excitation. Explicit expressions for δLb and δLc can be obtained
using the impulsive approximation. In this approximation, we
assume that the duration of the two-color pulse is much shorter
than the typical period of molecular rotation, such that the
molecular orientation remains unchanged during the pulse.
Using this approximation and the Euler-Lagrange equations,
we derive the explicit expressions for δLb and δLc (the details
are summarized in Supplementary Appendix B),

δLb � f (θ)sin(χ), (20)

δLc � f (θ)cos(χ), (21)

where

f (θ) � P1sin(2θ) + P2sin(θ)[(3cos(2θ) + 1)βabb − 2cos2(θ)βaaa],
(22)

and

P1 � σ

4

������
π

ln(16)
√ (ε21,0 + ε22,0)(αbb − αaa), (23)

P2 � 3σ
16

������
π

ln(64)
√

ε21,0ε2,0. (24)

Here σ � σ1 � σ2, ε1,0, and ε2,0 are the peak amplitudes of the FW
and SH, respectively. LZ is expressed in terms of the molecular
frame components La,b,c using the rotation matrix R(ϕ, θ, χ), such
that

LZ � −sin(θ)cos(χ)Lb + sin(θ)sin(χ)Lc + Lacos(θ). (25)

Finally, we carry out the ensemble average

〈aZ〉 � 1
Z ∫

Ω
∫

L3

LZLa
L2f

exp[− 1
2kBT

(L2
a

Ia
+ L2

b

I
+ L2

c

I
)]

× sin θdθdχdϕdLadLbdLc, (26)

where Z is the partition function. To simplify the integral, we
assume that |δLb/Lb|, |δLc/Lc|≪ 1 [see Eqs. 19–21] and expand
1/L2f in powers of f (θ) [see Eq. 22]. Only terms proportional to
even powers of f (θ) contribute to the integral. We consider the
first non-vanishing term proportional to f 2(θ), such that [see
Supplementary Equation S26]

〈aZ〉 ≈
~IL(w)
4kBTI

��
w
π

√ ∫  f 2(θ)sin(2θ) dθ, (27)

FIGURE 3 | Illustration of precession of the vector a about the angular
momentum vector L. The tip of a describes a circle, while the arrow lies on the
surface of a cone. The angular frequency of the precession is L/I, see Eq. 14.
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wherew � I/Ia, and~IL(w) is a monotonic function ofw> 1. In the
limit of a linear molecule (w→∞), ~IL(w)→ 0 [see
Supplementary Equation S27 and Figure S1].

For the polarizability interaction alone, f (θ) � P1sin(2θ), and∫ 
f 2n(θ)sin(2θ) dθ � 0. For the hyperpolarizability interaction alone,

f (θ) � P2sin(θ)[(3cos(2θ) + 1)βabb − 2cos2(θ)βaaa] which is a
symmetric function (about θ � π/2), and therefore∫ 
f n(θ)sin(2θ) dθ � 0 for all n. Only when both polarizability and

hyperpolarizability interactions are included, 〈aZ〉≠ 0. In this case,

〈aZ〉 ≈
16~IL(w)
105kBTI

��
w
π

√
P1P2(2βabb − 3βaaa), (28)

where P1 and P2 are given by Eqs. 23, 24, and ~IL(w) is given by
Supplementary Equation S27. The details of the derivation of
Eq. 28 are summarized in Supplementary Appendix C.

According to Eq. 28, the degree of long-lasting orientation
scales as σ2/T . In Figure 4, we compare the temperature (panel
A) and pulse duration (panel B) dependencies of the long-lasting
orientation obtained using the approximate formula in Eq. 28
with the numerical results obtained by evaluating the formula in
Eq. 18 using the Monte Carlo approach as described in the
Methods Section 2 (using the impulsive approximation, see
Supplementary Appendix B).

There is a good agreement between the numerical results and
the results obtained using the approximate formula, especially at
higher temperatures (higher initial angular momenta), where the
assumption |δLb/Lb|, |δLc/Lc|≪ 1 is well satisfied. The pulse
duration dependence shows the connection to the energy
gained by the molecule from the laser pulse. In the limit of
weak excitation (low pulse intensity and/or high temperature),

the approximate formula also reveals the more involved
dependence on the fields’ amplitudes, according to Eqs. 23, 24.

The hyperpolarizability part of the interaction potential, V
+
β (θ)

[see Eq. 13], is an asymmetric function of θ (about θ � π/2, see
Figure 2), similar to the orienting potential, which is proportional to
−cos(θ), due to a single THz pulse interacting with the molecular
dipole, μ. As we show here and as it was shown in [23], excitation by
such orienting potentials results in transient orientation followed by
residual long-lasting orientation.

Despite the similarity, the mechanisms behind the long-lasting
orientation induced by a femtosecond two-color and a picosecond
THz pulse are not the same. It was shown in [23] that in the limit of
vanishing THz pulse duration, the induced long-lasting orientation
tends to zero. In other words, a δ-kick by a purely orienting potential
doesn’t lead to long-lasting orientation. In contrast, here we show that a
δ-kick by a combined, aligning and orienting, potentials results in a long-
lasting orientation [see the discussion under Eq. 27, also see Figure 5].

5 TEMPERATURE AND POLARIZATION
DEPENDENCE OF THE LONG-LASTING
ORIENTATION

Figure 5 depicts the long-lasting orientation of the dipole moment
as a function of temperature for the case of collinearly polarized two-
color pulse. Due to the short pulse duration (σ � 120 fs), the results
of the fully time-dependent simulation (solid blue line) are well
reproduced using the impulsive approximation (dashed red line).
The impulsive approximation is described in Supplementary
Appendix B. As mentioned in Section 4, the long-lasting
orientation vanishes at T � 0K, (see Eq. 18). At high
temperatures, the long-lasting orientation decreases as ∝T−1.
Therefore, there should be an optimal temperature for which the
long-lasting orientation is maximal. As is shown in Figure 5, for the
field parameters used here, the optimal temperature is T ≈ 20K. In

FIGURE 4 | (A) Temperature and (B) pulse duration dependence of the
degree of long-lasting orientation obtained using the approximate formula in
Eq. 28 (red line) and numerically using the impulsive approximation (blue dots).
Here IFW � 2 × 1013 W/cm2, ISH � 0.75 × 1013 W/cm2, and σ � 120 fs.
Each point is an average of 108 sample molecules. In B, the temperature is
fixed to T � 30K.

FIGURE 5 | Classically calculated permanent values of Z-projection of
the dipole moment. The field parameters are similar to Figure 1. Cases of fully
time-dependent field (solid blue) and using impulsive approximation (dashed
red) are compared. The dotted green line is obtained using the
approximate formula in Eq. 28 with 〈μZ〉p � −μ〈aZ〉 (dipole moment points
againts a axis, see Table 1).
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the derivation leading to the approximate formula in Eq. 28, we
assumed βbbb � βbcc � 0. Nevertheless, the results obtained usingEq.
28 qualitatively agree with the numerical results at higher
temperatures as well (dotted green line).

As an additional example, we consider the case of a cross-
polarized two-color pulse in which the polarizations of the FW
and SH are along Z and X axes, respectively. Figure 6 shows the
dipole signal along the laboratory X axis. Note that the Y and
Z-projections of the dipole moment, 〈μY ,Z〉 are exactly zero. In this
case, a similar transient dipole response along the polarization
direction of SH can be seen. On the long time scale, it is
followed by the long-lasting orientation. Notice that for the field
parameters used here, the achieved degree of both transient and
long-lasting orientation is higher in the case of cross-polarized FW
and SH compared with Figure 1 (also see [46]).

6 CONCLUSION

We have theoretically demonstrated a new phenomenon of long-
lasting (persistent) orientation of symmetric-top molecules excited
by a single two-color femtosecond pulse. The residual orientation
was shown to last indefinitely (within the adopted model), or until
destroyed by other physical effects, e.g., intermolecular collisions.We
derived an approximate classical expression revealing several
qualitative features of the phenomenon, including the scaling
with temperature, pulse duration, and other field and molecular
parameters. The predictions of the formula are in full agreement
with the results of numerical simulations in the limit of weak
excitation. A quick check for different polarizations showed that
in the case of cross-polarized FW and SH, the achieved degree of
both transient and long-lasting orientationmay be higher than in the
case of parallel configuration. The magnitude of the long-lasting

dipole signal shown in this work is about 10 × 10−3 Debye,
corresponding to a degree of molecular orientation of about
0.5%. This value is similar to typical experimental values
observed by means of the Coulomb explosion technique,
which is of the order of 0.1%, e.g., see [32, 44]. Further
and careful optimization of the parameters of the two-color
pulse may give rise to even higher degrees of long-lasting
orientation. Moreover, it has been demonstrated before that
the degree of molecular alignment/orientation can be
enhanced when a sequence of several laser pulses is used
instead of a single pulse [17, 69–74], and a similar approach
may be beneficial for increasing the degree of the long-lasting
orientation. The orientation may be measured with the help
of second (or higher-order) harmonic generation [42]. In
addition, the long-lasting orientation may be utilized in
deflection experiments using inhomogeneous electrostatic
fields [75–77], where the deflection angle of a molecular
beam in a static electric field depends on the time-
averaged directional cosine, 〈cos(θ)〉. Therefore, although
small compared to the peak value of the transient orientation,
the long-lasting orientation may have a significant,
observable effect on the deflection angle.
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FIGURE 6 | X-projection of the dipole moment, 〈μX〉 and the orientation
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are the same as in the case shown in Figure 1, except that the angle
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Classical Limit of QuantumMechanics
for Damped Driven Oscillatory
Systems: Quantum–Classical
Correspondence
Jeong Ryeol Choi*

Department of Nanoengineering, Kyonggi University, Suwon, Korea

The investigation of quantum–classical correspondence may lead to gaining a deeper
understanding of the classical limit of quantum theory. I have developed a quantum
formalism on the basis of a linear invariant theorem, which gives an exact
quantum–classical correspondence for damped oscillatory systems perturbed by an
arbitrary force. Within my formalism, the quantum trajectory and expectation values
of quantum observables precisely coincide with their classical counterparts in the case
where the global quantum constant Z has been removed from their quantum results. In
particular, I have illustrated the correspondence of the quantum energy with the classical
one in detail.

Keywords: quantum–classical correspondence, classical limit, Caldirola–Kanai Hamiltonian, quantum energy,
invariant operator

1 INTRODUCTION

A fundamental issue in physics is to elucidate how classical mechanics (or Newtonian mechanics)
emerges from a more general theory of physics, the so-called relativistic quantum mechanics. While
the appearing of classical mechanics as a low velocity limit of relativistic mechanics is well known, the
classical limit of quantum mechanics is a subtle problem yet. Planck’s Z→ 0 limit [1] and Bohr’s
n→∞ limit [2] are the oldest proposals for the formulation of the classical limit of quantum theory.
However, there has been controversy from the early epoch of quantum mechanics concerning this
limit through different ideas and thoughts [3–9]. Accordingly, the mechanism on how to interlace
the exact correspondence between the quantum and the classical theories has not yet been fully
understood. Man’ko and Man’ko argued that the picture of extracting classical mechanics with the
simple limitation Z→ 0 does not have universal applicability [4]. Some physicists believe that
quantummechanics is not concerned with a single particle problem but an ensemble of particles, and
its Z→ 0 limit is not classical mechanics but classical statistical mechanics instead (see Ref. [5] and
references therein). For more different opinions concerning the classical limit of quantum
mechanics, refer in particular to Refs. [7, 8].

The purpose of this research is to establish a theoretical formalism concerning the classical limit of
quantum mechanics for damped driven oscillatory systems, which reveals the quantum and classical
correspondence, without any approximation or assumption except for the fundamental limitation
Z→ 0. To deduce Newtonian mechanics from quantum one along this line, canonical quantum
mechanics with fundamental Hamiltonian dynamics will be used. My theory is based on an invariant
operator method [10–13] which is generally employed for mathematically treating quantum
mechanical systems. This method enables us to derive exact quantum mechanical solutions for
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time-varying Hamiltonian systems. I will interpret and discuss
the physical meanings of the consequences in order to derive
insight into the correspondence principle.

2 INVARIANT-BASED DYNAMICS AND
QUANTUM SOLUTIONS

To investigate quantum–classical correspondence, I consider a
damped driven harmonic oscillator of mass m and frequency ω0,
whose Hamiltonian is given by [13–16]

Ĥ � e−ct
p̂2

2m
+ 1
2
ectm[ω2

0q̂
2 − 2f(t)q̂], (1)

where c is a damping constant and f(t) is a time-dependent
driving force divided by m. From canonical Hamiltonian
dynamics, one can confirm that this Hamiltonian gives an
exact equation of motion for the damped driven harmonic
oscillator. In the case of f(t) � 0, this becomes the
conventional Caldirola–Kanai (CK) Hamiltonian [17, 18]
which has been widely used in a phenomenological approach
for the dissipation of the damped harmonic oscillator.

If I denote the classical solution of the system in configuration
space as Q(t), it can be written in the form Q(t) � Qh(t) + Qp(t)
where Qh(t) is a homogeneous solution and Qp(t) a particular
solution. From the basic algebra in classical dynamics, we
have [19]

Qh(t) � Q0e
−ct/2cos(ωt + φ), (2)

Qp(t) � ∫t

0
[ f(t′)/ω]e−c(t−t′)/2sin[ω(t − t′)]dt′, (3)

whereQ0 is the amplitude of the mechanical oscillation at t � 0, ω
is a modified frequency which is ω � (ω2

0 − c2/4)1/2, and φ is an
arbitrary phase. The canonical classical solution in the
momentum space can also be represented in a similar form:
P(t) � Ph(t) + Pp(t), where Ph(t) � m _Qh(t)ect and Pp(t) �
m _Qp(t)ect .

In order to describe quantum solutions of the system, it is
useful to introduce an invariant operator which is a powerful tool
in elucidating mechanical properties of dynamical systems that
are expressed by a time-dependent Hamiltonian like Eq. 1. A
linear invariant operator of the system can be derived bymeans of
the Liouville–von Neumann equation and it is given by (see
Appendix A)

Î � c[e−ct/2p̂p +m(c
2
− iω)e−ct/2q̂p]eiωt , (4)

where p̂p � p̂ − Pp(t), q̂p � q̂ − Qp(t) and c � (2Zmω)−1/2eiχ with
a real constant phase χ. The eigenvalue equation of this operator
can be expressed in the form

Î
∣∣∣∣ϕ〉 � λ

∣∣∣∣ϕ〉, (5)

where λ is the eigenvalue and
∣∣∣∣ϕ〉 is the eigenstate. I have

represented the formulae of λ and the eigenstate 〈q
∣∣∣∣ϕ〉 in the

configuration space in Appendix A, including detailed derivation
of them.

According to the Lewis–Riesenfeld theory [10, 20], the wave
function that satisfies the Schrödinger equation is closely related
to the eigenstate of the invariant operator. In fact, the wave
function of the system in the coherent state is represented in
terms of 〈q

∣∣∣∣ϕ〉 as [10]

〈q
∣∣∣∣ψ〉 � 〈q

∣∣∣∣ϕ〉eiθ(t), (6)

where θ(t) is a time-dependent phase. If we insert this equation
together with Eq. 1 into the Schrödinger equation, we have
θ(t) � −ωt/2. The wave function described here is necessary
for investigating quantum–classical correspondence through
the evolution of the system. It is notable that the probability
density

∣∣∣∣〈q∣∣∣∣ψ〉∣∣∣∣2 is Gaussian and such a Gaussianity is maintained
through the lapse of time as in the case of other Gaussian
waves [21, 22] proposed in the literature. The fact that
the wave function, Eq. 6, exactly satisfies the Schrödinger
equation may guarantee the validity of the research unfolded
in this work.

3 CORRESPONDENCE BETWEEN
QUANTUM AND CLASSICAL
TRAJECTORIES

Let us now see whether the expectation values of the position and
the momentum operators under this formalism agree with the
corresponding classical trajectories or not. Considering that the
position operator is represented in terms of Î as (see Appendix A)

q̂ � i
����������
Z/(2mωect)

√ [Îe−i(ωt+χ) − Î
†
ei(ωt+χ)] + Qp(t), (7)

and using Eq. 6, it can be easily verified that

〈q̂〉 � Q(t), (8)

where 〈 · 〉 � 〈ψ| · |ψ〉. Hence, the quantum expectation value of
the position operator is exactly the same as that of the classical
trajectory Q(t). In a similar way, the expectation value of the
canonical momentum is also derived such that 〈p̂〉 � m _Q(t)ect .
However, in general, the physical momentum in a damped system
is not equivalent to the canonical one. Because the physical
momentum operator is defined in the form p̂k � p̂e−ct [23] in
the present case, its expectation value is given by

〈p̂k〉 � m _Q(t)( ≡ Pk(t)), (9)

where Pk(t) is the classical physical momentum.We thus confirm
that the linear invariant operator theory admits quantum
expectation values of q̂ and p̂k in a simple manner, of which
results precisely coincide with the corresponding classical values.
We can regard this outcome as an initial step for verifying that the
invariant formalism of quantum mechanics reconciles with the
principle of quantum and classical correspondence.

The above consequence, however, does not mean that the
quantum particle (oscillator) follows the exact classical trajectory
that is uniquely defined. Quantum mechanics is basically
nonlocal and there are numerous possible paths allowed,
within the width of a wave packet, for a quantum particle that
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has a definite initial condition. It is impossible to indicate exactly
which path the quantum particle actually follows, but some
paths may be more likely than others, especially those close
to the classically predicted path. As a consequence of the
Ehrenfest’s theorem [24], the trajectory of the quantum
particle can be approximated to that of the classical one only
when the width of the quantum wave packet is sufficiently
narrow. Details of the Ehrenfest’s theorem for a particular case
of the system where the oscillator is driven by a sinusoidal force
are shown in Ref. [25].

4 QUANTUM ENERGY AND ITS CLASSICAL
LIMIT

As pointed out by Hen and Kalev [9] and some other authors
[26], obtaining a quantum–classical correspondence from a test
performed at the level concerned expectation values is the key for
achieving the genuine correspondence. Hence, it is necessary to
compare the expectation values of quantum observables with
their counterpart classical quantities. I will now analyze the
expectation value of the quantum energy which is one of the
most common observables in the system. Notice that quantum
energy E(t) for a nonconservative system is different from the
expectation value of the Hamiltonian and the expression of the
energy operator, in the present case, is [16, 27]

Ê � e−2ct p̂2/(2m) + (1/2)mω2
0q̂

2. (10)

After representing this operator in terms of Î and Î
†
, it is able to

evaluate the expectation value of Ê with the help of Eq. 6.
Through this procedure, I finally have (see Appendix B)

E(t) � 1
2
ZΩ + e−2ct

P2(t)
2m

+ 1
2
mω2

0Q
2(t), (11)

where Ω � (ω2
0/ω)e−ct . This is the main consequence of my

present research. The first term that contains Z is the zero-point
energy that does not vanish even when the displacement of the
oscillator is zero. Note that this term varies over time. Although q2

(p2) can be obtained by raising q (p) squared classically, the
quantum expectation value 〈q̂2〉 (〈p̂2〉) is different from 〈q̂〉2
(〈p̂〉2) because it involves a zero-point quantity. Such zero-point
quantities also act as the origin of the zero-point quantum
energy. When it comes to a measure of energy, great care must
be taken in order to distinguish its classicality from the quantum
nature. Fundamentally, the behavior of energy and its variance
are directly related to the uncertainty principle [28, 29]. The
(quantum) energy is, in general, not conserved over time in
dissipative systems like this, while it is possible to predict its
amount at any given instant in time.

For better understanding of the time behavior of Eq. 11, let
us consider a specific system which is the cantilever in the
tapping mode atomic force microscopy (TMAFM) [30]. This
system is widely used as a dynamic imaging technique. For a
mechanical description of TMAFM, see Appendix C. The
time evolutions of quantum energy for TMAFM are illustrated
in Figure 1 using Eq. 11 with comparison to its counterpart

classical one. This figure exhibits complete consistency
between the quantum energy (with Z→ 0) and the
corresponding classical one. I have also applied the present
theory to another system which is the familiar damped
harmonic oscillator driven by a periodic sawtooth force (see
Appendix D and Figure 2 for its mechanical description).
Sawtooth forces or signals are typically observed from atomic
force microscopy with biomolecules like proteins [31] and
from a modulation of current density in a nuclear-fusion
tokamak [32]. Figure 3 shows that the quantum description
of this system using my theory also coincides with the classical
one. We thus confirm that the formalism of quantum
mechanics based on the linear invariant yields exact
quantum–classical correspondence.

For further analysis, let us consider the case where the driving
force disappears (f(t)→ 0). We can then confirm using Eq. 2 that
Eq. 11 reduces to that of Ref. [33], which is of the form

E(t) � 1
2
ZΩ + E0e

−ct(1 + c

2ω0
cos[2(ωt + φ) − δ]), (12)

FIGURE 1 | Exact quantum energy (red line), quantum energy with Z→ 0
(blue line), and classical mechanical energy (circle) of the oscillating cantilever
in TMAFM as a function of t where k � 0.5, a0 � 0.3, D0 � 0.5, Z � 1,meff � 1,
Q0 � 3, c � 0.1, Fext � 0.3, and φ � 0. The values of (ω0 ,ωd) are (1, 0.3)
for (A) and (1.5, 0.6) for (B). All values are taken to be dimensionless for
convenience; this convention will also be used in subsequent figures.
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where E0 � mω2
0Q

2
0/2 and δ � tan−1(2ω/c). Except for the first

term which is a purely quantum one, this is the well-known
formula of the classical mechanical energy for the damped
harmonic oscillator. Of course, for the high displacement limit
Q0 ≫ Z/(mω), it is possible to neglect the quantum effect via
the use of the assumption Z ∼ 0 and, consequently, the
quantum energy can be successfully approximated to the
classical one. Though the quantum energy is considered
now as a model example in order to explain the
correspondence principle, one can easily check, using the
formalism developed here, that the analytical expectation
values of other observables are also in precise congruence
with their classical counterparts under the limit Z→ 0. For
other formulae of quantum energies and their interpretation
for this reduced system (f(t)→ 0), which were derived using
other methods such as the SU(1,1) Lie algebraic approach,
refer to Ref. [34].

5 UNCERTAINTY AND THE
CORRESPONDENCE PRINCIPLE

An important feature of quantum mechanics, which
distinguishes it from classical mechanics, is the appearance
of a minimum uncertainty product between the arbitrary two
noncommutative operators. One cannot simultaneously know
the values of position and momentum with an arbitrary
precision from a quantum measurement, while the classical
theory of measurement has nothing to do with such a
limitation.

The quantum variance of an observable Ô in the state
∣∣∣∣ψ〉

is given by ΔÔ � [〈Ô2〉 − 〈Ô〉2]1/2. From this identity and

the use of Eq. 6, the quantum uncertainty product for
position and momentum of the system can be directly
derived as

Δq̂Δp̂ � Zω0/(2ω). (13)

Because this consequence is independent of the particular
solutions, Qp(t) and Pp(t), the driving force does not affect
the uncertainty product. In other words, the uncertainty
product of the system is the same as that of the undriven
damped harmonic oscillator [12]. Due to the obvious
inequality ω0 ≥ω, the uncertainty principle holds in this case.
For the case c→ 0, this uncertainty product reduces to Z/2 which
is its minimal value allowed in quantum mechanics for the
harmonic oscillator. On the other hand, for Z→ 0, this
becomes zero, showing the classical prediction.

6 OTHER FORMALISMS AND
APPROACHES

There are several other quantum formalisms for describing the
damped harmonic oscillator, such as the Lindblad dynamics

FIGURE 2 | Sawtooth driving force f(t) with f0 � 1, m � 1, and τ � 1,
where the mathematical formula of f(t) with a period τ is defined in
Appendix D. n is the natural number (see Appendix D). I have considered n
up to three for the blue dashed line and up to 1,000 for the red solid line.
As n increases, the form of the obtained sawtooth driving force becomesmore
exact.

FIGURE 3 | Exact quantum energy (violet line), quantum energy with
Z→ 0 (green line), and classical mechanical energy (triangle) of the oscillator
driven by the sawtooth force as a function of t where m � 1, Z � 1, c � 0.1,
ω0 � 1, φ � 0, and n � 1000. The values of (Q0 ,ωd , f0) are (3, 0.3, 1) for
(A) and (1, 1.2,2) for (B).
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[35–38], non-Hermitian Hamiltonian dynamics [39–41], and
the Schwinger action method [15, 42]. Let’s look into the
relatively well-known Lindblad dynamics here. Whereas my
approach uses invariant operators Î and Î

†
as basic tools for

unfolding quantum theory, the approach based on the
Lindblad theory uses an annihilation operator and its
Hermitian adjoint operator (creation operator). The
definition of the annihilation operator in that theory is
given by â � ��������

mω/(2Z)√
q̂ + ip̂/

�����
2mωZ

√
, where p̂ is a

momentum which is defined in terms of the notation in this
work as (see Eq. 46 of Ref. [35])

p̂ � p̂k +m(c/2)q̂. (14)

Although the momentum given above seems similar to the
physical momentum, it is not exactly the same due to the
presence of the additional second term.
In particular, Korsch evaluated the expectation value of â†â
for the damped oscillator driven by a sinusoidal force of the
form

f(t) � fdcos(ωdt). (15)

If we denote the expectation value of an observable Ô in the
Lindblad theory as 〈Ô〉L, Korsch’s result for â†â with Z � 1 and
m � 1 is given by (see Eq. 98 of Ref. [35])

〈â†â〉L� 1
b(t) − 1 + |α(t)|2, (16)

where

b(t) � (μ − ])(1 − u0)ect
μu0 − ] + μ(1 − u0)ect , (17)

α(t) � α0e
−(iω+c/2)t − fd

2
���
2ω

√ (e−(iω+c/2)t − eiωdt

ω + ωd − ic/2
+ e−(iω+c/2)t − e−iωdt

ω − ωd − ic/2 ), (18)

while μ � c′ + c/2 and ] � c′ − c/2, c′ is a diffusion constant [38],
and u0 is a constant chosen within the range 0< u0 < 1.

Let us now compare the present result with Korsch’s together
with the classical one. The expectation value of â†â in my theory is
given by

〈â†â〉 � mω

2Z
〈q̂2〉 + 〈p̂2〉

2mωZ
− 1
2
e−ct . (19)

The expectation values 〈q̂2〉 and 〈p̂2〉 are provided in
Appendix E. On the other hand, a classical counterpart of the
expectation value of â†â can be defined as A*A, where

A �
��������
mω/(2Z)√

Q(t) + iP(t)/ �����
2mωZ

√
, (20)

with

P(t) � Pk(t) +mc

2
Q(t). (21)

Figures 4, 5 are the comparison of the time behavior
between 〈â†â〉, 〈â†â〉L, and A*A. The difference of Figure 5

compared with Figure 4 is the chosen amplitude α0, that is, α0
in Figure 5 is relatively smaller than that used in Figure 4.
Although the result in this work agrees well with the Korsch’s
one for the case of Figure 4, the two results in Figure 5
are somewhat different from each other. Especially,
the discrepancy between them is very large for the case
ωd <ω0 (see Figure 5B). By the way, my results in both
Figures 4, 5 agree with the classical ones. From a lengthy
calculation after substituting Equations E1 and E2 in Eq. 19,
it can also be verified that 〈â†â〉 is exactly the same as A*A
analytically.

There are lots of different approaches for the classical limit
of quantum mechanics with their own viewpoints. The
problem of quantum–classical transition has been
extensively investigated for the quartic oscillator by Oliveira
et al. [29, 43–45]. They argued that quantum–classical
correspondence can be achieved via the convergence of
three factors, which are large classical actions, the object-
environment interaction, and experimentally induced
limitations. It was reported by Zurek [46] that the
quantum–classical limit is governed by decoherence that
takes place through environmental perturbations.
As a quantum chaotic system is decohered, it restores
classical behavior as a consequence of the destruction of
quantum superpositions. Wiebe and Ballentine [47]

FIGURE4 | Time evolution of the expectation values (EV), 〈â† â〉 (Eq. 19),
〈â†â〉L (Eq. 16), and A*A, for several different choices of the sinusoidal driving
force characterized by fd and ωd. The chosen values of fd and ωd are
designated in each panel. I have used α0 � 5, u0 � 0.5, ω0 � 1, c � 0.1,
c’ � 0,m � 1, Z � 1, χ � 0, and φ � 0. The value ofQ0 is 7.21 for A, 4.54 for B,
and 7.85 for C.
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examined quantum–classical differences by computing the
chaotic tumbling of the satellite Hyperion from both
classical and quantum points of view regarding the
hypothesis of Zurek.

7 CONCLUSION

Classical limit of quantum mechanics for a driven damped
harmonic oscillator has been investigated based on the linear
invariant operator. The full wave function of the system was
represented in terms of the eigenstate of the linear invariant
operator according to the Lewis–Riesenfeld theory [10]. The
expectation values of observables, such as position,
momentum, and quantum energy, have been derived by
using the wave function, and I have compared them with
their classical counterparts. From this, it was shown that
Z→ 0 limit of quantum mechanics for the system coincides
with the counterpart classical mechanics within my
formulation. The quantum formalism adopted here may be
extended to other systems beyond the harmonic oscillator,
provided that a given system admits a linear invariant quantity
as a tool for its analysis.

The recent trend [48, 49] of the reimplementation of
classical mechanics in particle optics using quantum
particles is a clear testimony of the close relationship

between quantum and classical mechanics. Some essential
knowledge of quantum information theory is developed
on the basis of classical-like wave properties, while the
quantum nature of a physical system is unquestionable
especially when nonlocal entanglement is concerned [50].
It may be the very common opinion that every new physical
theory should not only precisely describe facts that cannot be
covered by existing theories but must also reproduce the
predictions of classical mechanics in an appropriate
classical limit.

Quantum systems exhibit various nonclassical properties
such as entanglement, superposition, nonlocality, and negative
Wigner distribution function. While such nonclassicalities
are important in the next-generation quantum information
science, the description of nonclassical properties is
valid and reliable only when the underlying quantum
formalism used in such descriptions is precise and
complete. A formalism of quantum theory may be
acceptable only when it gives classical results in the classical
limit (Z→ 0 limit). This is the reason why a complete
quantum formalism that obeys quantum–classical
correspondence is important. Such a formalism may admit
to explaining the various characteristics of dynamical systems
in a reasonable and consistent way from every possible angle.
The result for a correspondence principle that I have developed
in this research beyond simple static systems may provide a
deep insight into understanding how classical mechanics
emerges from quantum mechanics through a limiting
situation.

8 METHODS

I considered a time-dependent Hamiltonian, which is
composed of the basic CK Hamiltonian and an additional
term associated with a time-varying driving force. This
Hamiltonian corresponds to a damped driven harmonic
oscillator.

The linear invariant operator of the system is constructed
from the Liouville–von Neumann equation. The eigenvalue
and the eigenstate of the linear invariant operator are
derived by solving its eigenvalue equation through a
fundamental mathematical procedure. If a system is
described by a time-dependent Hamiltonian like the case
given here, the eigenstate of the (linear) invariant operator
is important because the full wave function of the system
is expressed in terms of such an eigenstate [10]. More
clearly speaking, the wave function in this case is
represented by the eigenstate and a phase factor (see Eq. 6
in the text). Because we now know the formula of the
eigenstate, the phase of the wave function can be easily
evaluated by means of the Schrödinger equation. In this
way, we can derive the full wave function eventually. This
wave function is necessary in order to investigate the Z→ 0
limit of quantum mechanics.

The quantum expectation values of observables, such
as position, momentum, and the energy operator, are

FIGURE 5 | Time evolution of 〈â† â〉, 〈â†â〉L, andA*A for the casewhere the
amplitude is relatively small (α0 � 1). The value of Q0 is 2.00 for A, 1.50 for B,
and 2.67 for C. Other unspecified values used here are the same as those of
Figure 4.
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derived using the wave function. By comparing such
expectation values with their classical counterparts, the
correspondence principle between quantum and classical
mechanics is analyzed.
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APPENDIX A: LINEAR INVARIANT
OPERATOR AND ITS EIGENSTATE

From a straightforward evaluation of the Liouville-von Neumann
equation,

dÎ/dt � zÎ/zt + [Î, Ĥ]/(i�h) � 0, (A1)

using the Hamiltonian given in Eq. 1 in the text, we can
easily derive the linear invariant operator Î that is given
in Eq. 4 in the text (see Ref. 13). Notice that the Hermitian
adjoint of this operator, Î

†
, is also an invariant operator.

From a combined evaluation of the two equations for Î
and Î

†
, it is possible to eliminate p̂ and, as a consequence,

the expression for q̂ which appeared in Eq. 7 in the text can
be obtained. From a similar method, we can also obtain the
expression for p̂. By solving the eigenvalue equation of the
invariant operator, Eq. 5, in the configuration space on
the basis of the technique adopted in Ref. 20, we obtain the
eigenvalue as

λ � βeiωt , (A2)

where β � −i ��������
mω/(2�h)√

Q0e−i(ωt+φ−χ), and the eigenstate of the
form

〈q
∣∣∣∣ϕ〉 �

���
mω

�hπ

√
exp [ect/2C1qp − C2q2p

�h
+ C3], (A3)

where qp � q − Qp(t) and
C1 �

�����
2�hmω

√
β, (A4)

C2 � 1
2
mect/2(ω + ic/2), (A5)

C3 � iPp(t)q
�h

+ ct
4
− β2

2
−
∣∣∣∣β∣∣∣∣2
2
. (A6)

APPENDIX B: EXPECTATION VALUE OF
THE ENERGY OPERATOR

I present how to evaluate the expectation value of the energy
operator. From a minor evaluation with the energy operator
using the expression of Î (and its Hermitian conjugate Î

†
), it is

possible to represent the energy operator in terms of Î and Î
†

such that

Ê � [�h
4
(2ω2

0

ω
(2Î† Î + 1)− εÎ

2− ε* Î
†2) +

��
�h
2

√
(ΘÎ + Θ* Î

†)]e−ct+ Ep,

(B1)

where ε � c[c/(2ω) + i]e−2i(ωt+χ) and

Θ � [ ��
ω

m

√
e−ct/2ηPp(t) + iect/2

��
m
ω

√
ω2
0Qp(t)]e−i(ωt+χ), (B2)

Ep � e−2ct
P2
p(t)
2m

+ 1
2
mω2

0Q
2
p(t), (B3)

with η � 1 − ic/(2ω). Here, I have used the relation
Î Î

† � Î
†
Î + 1, i.e., all Î Î

†
are replaced by Î

†
Î + 1: this

procedure of operator ordering is necessary when we
manage a coherent state (see, for example, Ref. 51). Now by
considering the fact that the eigenvalues of Î and Î

†
are λ and λ*

respectively, we can easily identify the expectation value of the
energy operator, 〈ψ

∣∣∣∣Ê∣∣∣∣ψ〉, which is given in Eq. 11 in the text.
Notice that the �hmust not be taken simplistically to zero at the
initial stage of the evaluation under the pretext of obtaining the
classical limit. We should keep it until we arrive at the final
representation, Eq. 11.

APPENDIX C: CANTILEVER SYSTEM

Description of the cantilever system appears in Ref. 30. If we
denote the effective mass of the cantilever as meff , the force acted
on the lever is represented in the form

f (t) � [Fext + k(D0 − a0sinωdt)]/meff , (C1)

where Fext is the tip-sample force, k(� meffω2
0) is the cantilever

spring constant, D0 is the resting position of the cantilever
base, a0 is the driving amplitude, and ωd is the drive
frequency [30].

APPENDIX D: DAMPED HARMONIC
OSCILLATOR WITH A SAWTOOTH FORCE

I regard the damped harmonic oscillator to which applied an
external sawtooth force with the period τ � 2π/ωd. The sawtooth
force can be represented as f (t) � f0t/(mτ) for a period
−τ/2< t < τ/2 (see Figure 2), where f0 is a constant that
represents the strength of the force. In this case, f (t) can be
rewritten in terms of an infinite series such that [52]

f (t) � [f0/(πm)]∑∞
n�1

(−1)n+1
n

sin(nωdt). (D1)

APPENDIX E: EXPECTATION VALUESOF q̂2

AND p̂2

The expectation values of q̂2 and p̂2 in the state
∣∣∣∣ψ〉, which are

necessary in the development of a consequence in Section 6, are
given by

〈q̂2 〉 � − �h
2mωect

[λ2e−2i(ωt+χ) + λ*2e2i(ωt+χ) − 2
∣∣∣∣∣λ 2 − 1]∣∣∣∣∣

+ iQp(t)
�����
2�h

mωect

√
[λe−i(ωt+χ) − λ*ei(ωt+χ)] + Q2

p(t), (E1)

〈p̂2〉 � mω�h
2

e−ct[λ2e−2i(ωt+χ) + λ*2e2i(ωt+χ) + 2
∣∣∣∣∣λ 2 + 1]∣∣∣∣∣

+Gp(t)
�����
2mω�h

√
e−ct/2[λe−i(ωt+χ) + λ*ei(ωt+χ)] + G2

p(t), (E2)

where Gp(t) � Pp(t)e−ct + cmQp(t)/2. The particular solutions
that correspond to the driving force of Eq. 15 are given by
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Qp(t) � fd���������������(ω2
0 − ω2

d)2 + c2ω2
d

√ cos(ωdt − δd), (E3)

Pp(t) � − mfdωd���������������(ω2
0 − ω2

d)2 + c2ω2
d

√ ectsin(ωdt − δd), (E4)

where

δd � atan(ω2
0 − ω2

d, cωd). (E5)

Here, ϑ ≡ atan(x, y) is a two-argument inverse function of
tan ϑ � y/x. This function is defined in the range 0≤ ϑ < 2π.
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Multichromatic
Polarization-Controlled Pulse
Sequences for Coherent Control
of Multiphoton Ionization
Kevin Eickhoff , Lars Englert , Tim Bayer and Matthias Wollenhaupt*

Ultrafast Dynamics Group, Institut für Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany

In this review, we report on recent progress in the generation and application of
multichromatic polarization-tailored pulse sequences for the coherent control of
multiphoton ionization (MPI) dynamics and present unpublished experimental results
that complement our previous findings. Specifically, we utilize single-color, bichromatic,
and trichromatic polarization-controlled pulse sequences generated by spectral
amplitude, phase and polarization modulation of a carrier-envelope phase (CEP)-stable
white light supercontinuum for MPI. The analysis of the number of ionization pathways and
the number of distinct final free electron states shows that both increase significantly, but
scale differently with the number of absorbed photons and the number of pulses in the
sequence. In our experiments, ultrafast polarization shaping is combined with high-
resolution photoelectron tomography to generate, control, and reconstruct three-
dimensional photoelectron momentum distributions from atomic and molecular MPI.
We discuss the use of polarization-controlled single-color and bichromatic pulse
sequences in perturbative and non-perturbative coherent control of coupled electron-
nuclear dynamics in molecules, atomic spin-orbit wave packet dynamics and the
directional photoemission from atoms and chiral molecules. We compare the coherent
control of CEP-insensitive intraband multipath interference in the MPI with a fixed number
of photons with CEP-sensitive interband multipath interference in the ionization with a
different number of photons. The generation and control of free electron vortices with even-
numbered rotational symmetry by MPI with single-color pulse sequences is contrasted
with the bichromatic control of CEP-sensitive electron vortices with odd-numbered
rotational symmetry. To illustrate the potential of multichromatic pulse sequences for
coherent control, we present a trichromatic scheme for shaper-based quantum state
holography.

Keywords: coherent control, bichromatic polarization shaping, multiphoton ionization, photoelectron tomography,
chiral molecules
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1 INTRODUCTION

The basic principles of coherent control have been established
more than 30 years ago [1–6]. Today many applications of
coherent control have been demonstrated in various areas of
physics and chemistry including multiphoton excitation [7–10]
and ionization (MPI) of atoms [11, 12] and small molecules
[13–15], electronic transitions in condensed matter [16],
controlled molecular dissociation [17], spectroscopy [18, 19]
and laser chemistry [20, 21]. Even in emerging fields such as
high harmonic generation (HHG) [22, 23], material processing
[24, 25], nonlinear microscopy [19], photoassociation [26],
nanomaterial research [27] and quantum information [28]
coherent control has proven its usefulness. A very effective
method to control the dynamics of quantum systems is by
specific manipulation of constructive and destructive quantum
interferences [29] using ultrashort tailored laser pulses. Advanced
techniques for generating tailored ultrashort laser pulses on the
one hand and for highly differential detection on the other hand,
have been key to experimental advances in coherent control.
Since the implementation of the first single layer 128 pixel pulse
shaping devices [30–40], remarkable advances have been
achieved towards high precision pulse shaping using 640 pixel
devices [41–50] and polarization shapers [51, 52], vector-field
synthesizers [53–58] and supercontinuum pulse shaping [59–66].
Recently, we have introduced a scheme for polarization shaping
of carrier-envelope phase (CEP)-stable over-octave-spanning
white light supercontinua (WLS) to generate polarization-
tailored bichromatic fields [65]. The latter work resulted in the
experimental demonstration of a new class of cycloidal pulse
shapes, such as counterrotating circularly polarized (CRCP) and
corotating circularly polarized (COCP) cycloidal fields. In
general, polarization-tailored multicolor femtosecond laser
fields have opened up new perspectives in numerous
applications ranging from HHG [67–72, 74, 75] over the
coherent control of ultrafast electron dynamics in atoms and
molecules [73, 76–78] to the manipulation of coherent excitations
in nanostructures [79, 80].

The use of advanced polarization-shaped pulses for the
generation of free electron wave packets by MPI has
necessitated 3D detection to characterize the full 3D
photoelectron momentum distribution (PMD). While time-of-
flight techniques enabled the kinetic energy-resolved detection of
photoelectrons from ultrafast MPI dynamics [81, 82], their
angular distribution became available through the use of
velocity map imaging (VMI) techniques [83–85]. Currently,
the most sophisticated detection method is based on
COLTRIMS [86, 87]. Cylindrically symmetric PMDs can be
retrieved from the measured 2D projections using the Abel-
inversion technique [88]. In order to image non-cylindrically
symmetric PMDs, we have introduced a VMI-based
photoelectron tomography technique [89]. By now,
photoelectron tomography has become an established method
with versatile applications including 3D imaging of PMDs from
atomic strong-field ionization [90], the reconstruction of
molecular PMDs in the laboratory [91] and molecular [92]
frame, the retrieval of circularly polarized XUV fields from

HHG [93] or the reconstruction of PMDs from strong-field
photodetachment of negatively charged ions [94]. Applications
of photoelectron tomography have ranged from the generation
and characterization of designer electron wave packets [95, 96]
and multiphoton photoelectron circular dichroism (PECD)
measurements [97] to the extraction of transition matrix
elements from tomographic data [98]. More recently, we have
used photoelectron tomography to study free electron angular
momentum wave packets [99], spin-orbit [100] and Rydberg
wave packet dynamics [101] and photoelectron vortices with even
[102–104] and odd [73] rotational symmetries. An overview of
our recent photoelectron tomography studies of coherent control
of atomic MPI can be found in [105, 106].

In this contribution, we review the application of shaper-
generated multichromatic polarization-controlled fields for
coherent control of atomic and molecular MPI. We study the
quantum dynamics of atomic and molecular model systems
induced by absorption of N photons from M pulses, focussing
on the new opportunities offered by polarization-tailored
multichromatic fields. The paper is organized as follows: In
Section 2, we introduce the time-dependent laser electric field
and summarize the theoretical methods that we have used to
reproduce and analyze our experimental results. Details of our
experimental setup for generating polarization-controlled
multichromatic pulse sequences by spectral amplitude and
phase modulation of a CEP-stable supercontinuum and the
VMI-based photoelectron tomography technique are given in
Section 3. In Section 4 we present our results on coherent
control of MPI with multichromatic pulse trains ordered by the
type of pulse sequence we have used in the experiment. We start
with experiments using single-color linearly polarized pulse
sequences (Section 4.1) for perturbative and non-
perturbative control of atomic and molecular MPI. By
analyzing the 3D PMD, we rationalize the observed
photoelectron spectra in an experiment on the interference of
ultrashort free electron wave packets [11]. We review the
generation of free electron vortices (FEVs) with c4, c6 and c8
rotational symmetry using circularly polarized pulse sequences
and present previously unpublished results on the vortex
formation. The article’s focus on intraband and interband
coherent control scenarios using linearly and circularly
polarized bichromatic pulse sequences is elaborated in
Section 4.2. Examples include the control of frequency
mixing contributions in the MPI with orthogonal linearly
polarized (OLP) and CRCP bichromatic fields with
applications to the observation of spin-orbit wave packets.
In addition, we present the control of directional
photoemission in the MPI of atoms and chiral molecules by
bichromatic parallel linearly polarized (PLP) fields or few-cycle
circularly polarized fields, and the use of cycloidal bichromatic
fields to generate and manipulate 3D PMDs with c1 and c7
rotational symmetry. Finally, results on coherent control by
trichromatic pulse sequences are presented in Section 4.3. The
phase-sensitive combination of intra- and interband
interferences is used for trichromatic shaper-based quantum
state holography. We conclude with a summary and an outlook
in Section 5.
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2 THEORY

The MPI of atoms and molecules has been studied extensively
both experimentally and theoretically. The fundamentals are
documented in a vast body of literature, see for example
[107–112]. In this section, we present the notation to describe
multichromatic pulse sequences (Section 2.1) and
summarize the theoretical concepts based on either non-
perturbative description of the atomic and molecular
neutral dynamics perturbatively coupled to the continuum
(Section 2.2) or fully perturbative intraband and interband
interference in MPI. The theoretical description is specifically
adapted to reproduce the experimental results and discuss the
relevant control aspects.

2.1 Ultrashort Polarization-Controlled
Multichromatic Pulse Sequences
We start by describing the electric field of a pulse sequence
consisting of M pulses, each of which with a different
polarization state, e.g. linear, circular or in general
elliptic. Ej(t − τj) represents the complex valued time-
delayed (τj) envelope of the jth pulse with a pulse-
duration of Δt, which contains the effects due to higher-
order spectral phase functions [113]. Here, Δt describes the
full width at half maximum of the laser intensity. Taking into
account the carrier oscillation with the central angular
frequency ωj, the relative phase φj, and the common CEP
φce, the scalar field of the jth pulse reads

Ej(t) � E j(t − τ j)e−i(ωj t+φj+φce). (1)

The coefficients c−1j and c+1j in Eq. 2 describe the weights of the
respective right-handed circularly polarized (RCP) (−1) and left-
handed circularly polarized (LCP) (+1) components

E−1
j (t) � Ej(t)c−1j ,

E+1
j (t) � Ej(t)c+1j .

(2)

For example, cj � (c−1j , c+1j ) � (1, 0) denotes RCP light while cj �
(1, 1)/

�
2

√
represents horizontally linearly polarized light. Using

the Jones vectors e−1 � 1�
2

√ (ex − iey) for RCP and e+1 � − 1�
2

√ (ex +
iey) for LCP pulses, we obtain the time-dependent vectorial
electric field of the jth pulse

Ej(t) � E−1
j (t)e−1 + E+1

j (t)e+1. (3)

The total field is obtained by superposition of allM pulses in the
sequence

E(t) � ∑M
j�1

Ej(t) � ∑M
j�1

Ej(t − τj)e−i(ωj t+φj+φce) c−1j e−1 + c+1j e+1( ). (4)

The physical field is given by Re[E(t)]. Schematic
representations of single-color (M � 2,ω1 � ω2), bichromatic
(M � 2,ω1 ≠ω2) and trichromatic (M � 3,ωi ≠ωj) pulse
sequences with different polarizations are depicted in Figures
4, 7, 12, respectively.

2.2 Simulation of Multiphoton Ionization
Many theoretical concepts and numerical methods are available
to describe and simulate the quantum dynamics of atoms and
molecules induced by the interaction with ultrashort laser pulses
[4, 6, 114]. In the past two decades, we have used different
methods to model ultrafast dynamics driven by shaped
femtosecond pulses to model our experiments and interpret
our observations. In parallel with our experimental studies, we
have presented the corresponding theoretical descriptions and
numerical simulations of the multilevel coherent control of
atomic [115, 116] and molecular [117, 118] excitation. We
have devised a resonant strong-field control mechanism based
on the manipulation of dressed state populations and energies
[119] and, in this context, developed a formalism to model
photoelectron spectra from resonance-enhanced multiphoton
ionization (REMPI) accounting for non-perturbative
population dynamics and AC Stark shifts [118, 120]. In [48,
103], we provided a description for the calculation of sculpted 3D
free electron wave packets from MPI, including the energy and
angular distribution. Recently, we employed ab initiomethods to
numerically solve the time-dependent Schrödinger equation
(TDSE) for a 2D model atom interacting with a polarization-
tailored bichromatic femtosecond laser pulse sequence [121]. The
model was applied to reproduce and analyze our experimental
results reported in [73, 103] taking into account phase
fluctuations in the CEP and the Gouy phase.

2.2.1 Non-Perturbative Neutral Dynamics Coupled to
the Continuum
Resonant strong-field control of MPI dynamics is based on the
non-perturbative manipulation of resonant bound state dynamics
and the simultaneous perturbative mapping of those dynamics
into the ionization continuum by absorption of additional
photons. To model this type of non-perturbative REMPI
processes we adapt the concept from Meier et al. [122] and
divide the calculation into two steps. In the first step, we calculate
the non-perturbative neutral dynamics of the time-dependent
amplitudes ci(t) by solving the corresponding TDSE numerically
for a multistate quantum system, including all relevant bound
states. This procedure yields the time-dependent bound state
populations |ci(t)|

2. In the second step, we compute the
photoelectron kinetic energy spectrum using time-dependent
perturbation theory by inserting the amplitudes determined in
the first step. This strategy is illustrated in Figure 1A for a generic
atomic system and in (B) for the potassium molecule.

2.2.1.1 Atomic Multiphoton Ionization
To simulate our experiments, we have modeled atomic systems by
multilevel schemes involving two [120, 123–125], three [48, 116]
or more [115] bound states. As an example, we consider a two-
level atom, consisting of a ground state |1〉 and an excited state |2〉
separated in energy by Zω21 � Zω2−Zω1 and coupled by the
transition dipole moment μ21. The non-perturbative dynamics of
the atom interacting with an intense near-resnant femtosecond
laser pulse E(t) � E(t)e−iω0t , where ω0 is the laser central
frequency and E(t) is the generally complex-valued temporal
envelope, is governed by the TDSE. Using both, the dipole
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approximation and rotating wave approximation, the interaction
picture TDSE for the time-dependent ground and excited state
amplitudes c1(t) and c2(t) reads [5, 119, 126].

iZ
d
dt

c1(t)
c2(t)[ ] � 1

2
0 −μ21E*(t)eiδt

−μ21E(t)e−iδt 0
[ ] c1(t)

c2(t)[ ]. (5)

Herein, δ � ω0−ω21 is the detuning of the laser with respect to the
atomic resonance. The TDSE in Eq. 5 is solved numerically on a
discrete temporal grid using short-time propagator methods [4].
This procedure yields the time evolution of the state vector
c(t) � [c1(t), c2(t)]

T . With the knowledge of the excited state
amplitude c2(t), we calculate the amplitudes c(ωk) of the free
electrons, released with a kinetic energy of Zωk by perturbative
N -photon ionization from the excited state, byN -th order time-
dependent perturbation theory [115, 123, 127]

c(ωk) � μ(N )

(iZ)N ∫∞

−∞
c2(t) EN (t)ei(ωk−ω2)tdt. (6)

The notation was adapted from Dudovich et al. [128]. The
multiphoton transition dipole moment μ(N ) for the bound-
free transition is in general complex-valued and depends on
the atomic structure. In the narrow energy windows
considered here, we assume an unstructured continuum,
i.e., treat the coupling as energy-independent. This numerical
method was applied to reproduce the experimental photoelectron
spectra obtained in our studies of basic physical mechanisms of
resonant non-perturbative coherent control of atomic model
systems using PLP single-color double pulse sequences [123,
124], multipulse sequences [117, 120, 129, 130], chirped pulses

[115, 125, 130] and shaped pulses from spectral step-phase
modulation [116, 127] (cf. Section 4.1.1.2).

2.2.1.2 Molecular Multiphoton Ionization
Molecular systems are modeled in the framework of the Born-
Oppenheimer approximation by a set ofN bound electronic states
|ϕn〉 characterized by the adiabatic potential energy curves Vn(R).
For simplicity, we restrict ourselves to the diatomic case, where
the nuclear coordinate R denotes the internuclear separation of
the atoms and describes the vibration of the molecule. In the
electronic basis, the TDSE for the state vector ψ(R, t) �
(ψ1(R, t), ‥,ψn(r, t), ‥,ψN )

T reads [131]

iZ
z

zt
ψ(R, t) � H ̂(R, t)ψ(R, t). (7)

The time-dependent probability amplitudes ψn(R, t) of the
electronic states describe the nuclear wave packets in the
electronic potentials Vn(R). Making use of the dipole
approximation, the Born-Oppenheimer Hamiltonian is given
by [132]

H ̂(R, t) � − Z2

2mr

z2

zR2
1̂ + V ̂(R) − μ(R) · E(t), (8)

with the reduced massmr of the molecule. Explicit expressions of
the Hamiltonian matrix are provided in [118, 132]. The diagonal
matrix V

̂
(R) contains the potentials Vn(R). These potentials, as

well as the R-dependent transition dipole matrix elements
contained in μ(R), were supplied by C. Meier and F.
Spiegelman (see [118] for more information) and were

FIGURE 1 |Generic ionization schemes: (A) and (B) Non-perturbative neutral dynamics perturbatively coupled to the continuum [119]. (A)Generic scheme for the
selective population of dressed states [119]. (B) Light-induced potentials of potassium dimers for ultrafast switching via the selective population of dressed states. (C)
Scheme for perturbative control of intraband [73] and interband [105] MPI with polarization-shaped pulses along with multiphoton spectra. (D) Model potential for ab
initio simulations of MPI with cycloidal laser pulses [121].
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recently confirmed by Petersen et al. [133]. The TDSE in Eq. 7 is
solved numerically by iterative propagation of the state vector on a
temporal grid employing a Fourier-based split-operatormethod [134].
The time evolution of ψ(R, t) yields the coupled electron-nuclear
(vibronic) wave packet dynamics in the boundmolecular system. In a
theoretical study, we demonstrated efficient ultrafast switching
between different electronic target states in potassium dimers
(Figure 1B) by resonant non-perturbative control of the vibronic
dynamics in the X1Σg ground and A1Σu states using an intense PLP
single-color pulse sequence [118, 131] (cf. Section 4.1.1.2).

To calculate the photoelectron contribution from a bound
electronic state Vn(R), produced by perturbative one-photon
ionization with a probe pulse Epr(t) � Epr(t)e-iωprt , we pursue
two alternative strategies. The first approach makes use of the
semi-classical difference potential analysis technique by Mulliken
[81, 135, 136]. The combination of energy conservation and the
Franck-Condon principle provides a mapping R → ωk � ωk(R) of
the internuclear distance R to the photoelectron excess energy Zωk,
which is mediated by the difference potential ΔVn(R) � Vion(R)−
Vn(R). Here, Vion(R) is the Born-Oppenheimer potential of the
ionic state. If this mapping is invertible, requiring that ΔVn(R) is
strictly monotonous throughout the ionization R-window, then the
photoelectron contribution from state n can be written as

Pn(ωk)∝ d(ΔVn)
dR

[ ]−1 ∫∞

−∞
ψn R(ωk), t( )∣∣∣∣ ∣∣∣∣2 · Epr(t)

∣∣∣∣ ∣∣∣∣2dt. (9)

If ΔVn(R) is non-monotonous within the ionization window, i.e.
ΔVn′(R) vanishes locally, we decompose the wave packet into a set
of Gaussian functions which are locally mapped into Gaussian-
shaped photoelectron distributions with a narrow, but finite spectral
width in the order of the experimental energy resolution. The
second approach is based on a perturbative quantum mechanical
treatment of the ionization process. Consider a transition from the
bound vibrational eigenstate ] to an ionic vibrational eigenstate ]′
with the transition frequency ω]′] � ω]′−ω]. For a fixed spectral
component ω of the probe pulse spectrum E ̃pr(ω) � F [Epr(t)](ω),
the photoelectron excess energy is given by ωk � ω−ω]′]. The
photoelectron contribution from the nth electronic state is
determined by the Franck-Condon factor |〈]′|]〉|2, the final
population of the bound vibrational states |〈]|ψ∞

n 〉|2 �
|〈]|ψn〉t→∞|2 and the spectral intensity of the probe pulse:

Pn(ωk)∝ ∑
],]′

|〈]′|]〉|2 · |〈]|ψ∞
n 〉|2 · E p̃r(ωk + ω]′])

∣∣∣∣ ∣∣∣∣2. (10)

The quantum mechanical description was used to reproduce and
analyze the experimental results in [132, 137]. Using intense PLP
single-color multipulse sequences followed by an ionizing probe
pulse with a different color, we were able to demonstrate the
resonant non-pertubative control scheme described above
experimentally [131, 132, 137].

2.2.2 Perturbative Intraband and Interband
Interference in Multiphoton Ionization
In this section we consider perturbative atomic MPI with a pulse
train consisting of M pulses. A schematic representation of the

available intraband pathways for absorption of N � 2 photons is
shown in Figure 2 for (A) single-color, (B) bichromatic, and (C)
trichromatic ionization scenarios. The specific scheme for
bichromatic intraband MPI reported in [99] and interband
MPI by (3ω:4ω) pulse sequences reported in [73] is presented
in Figure 1C. To describe the general intraband case, we extend
the perturbative description of non-resonant bichromatic MPI
reported in [73, 105, 106] to photoionization with N photons
from a multichromatic CEP-stable sequence ofM pulses. To this
end we consider absorption of rj RCP and lj LCP photons from
the jth polarization components E+1

j (t) and E−1
j (t) introduced in

Eq. 2, respectively. Representing the total number of absorbed
RCP and LCP photons by r and l,

r � ∑M
j�1

rj and l � ∑M
j�1

lj, (11)

the order of the MPI process is N � r + l. We introduce (l, r) �
(l1, . . . , lM, r1, . . . , rM) as a shorthand notation for the tuples of
absorbed photon numbers to characterize the relevant temporal
multiphoton field

E(l,r)(t) � ∏M
j�1

E−1
j (t)[ ]rj E+1

j (t)[ ]lj , (12)

which is written down explicitly for a tricromatic field (M � 3)

E(l1 ,l2 ,l3 ,r1 ,r2 ,r3)(t) � E−1
1 (t)[ ]r1 E+1

1 (t)[ ]l1 E−1
2 (t)[ ]r2 E+1

2 (t)[ ]l2 E−1
3 (t)[ ]r3 E+1

3 (t)[ ]l3 .
(13)

Taking the Fourier transform of the temporal multiphoton field
E(l,r)(t), we obtain the multiphoton spectrum S(l,r)(ω) to describe
the absorption of (l, r) photons

S(l,r)(ω) � F E(l,r)(t)[ ](ω). (14)

Taking into consideration the selection rules for absorption of
RCP (Δm � −1) and LCP (Δm � + 1) photons and ignoring for
simplicity Δl � −1, the dipole moments μ(l,r), the multiplicity of a
specific N -photon ionization pathway given by the multinomial
coefficients (N , (l, r)), the kinetic energy Zω and ionization
potential ZωIP as well as the angular distribution YN ,l−r(θ, ϕ)
for the absorption of N � l + r photons, we obtain the
photoelectron wave function

ψN (ε, θ, ϕ) � iN ∑
N�l+r

N
(l, r)( )μ(l,r) S(l,r)(Zω + ZωIP)YN ,l−r(θ, ϕ),

� ∑
k
αkψl,mk

(ε, θ, ϕ),
(15)

where we sum over all indices (l, r) such that l + r � N . The αk
describe the complex-valued coefficients of the partial wave
functions ψl,mk

including the multiphoton transition dipole
moments and the electric field amplitudes and phases. In the
discussion of the different control scenarios below, we use a
shorthand notation based on Eq. 15 including the amplitudes and
phases of αk relevant to the control scenario. In addition, since we
focus on the field-induced variation of the wave function, the
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intrinsic atomic phases and radial amplitudes of the dipole
couplings are generally omitted. The geometric part of the
dipole couplings, given by the Wigner 3-j symbols, is written
explicitly whenever the amplitudes of the participating partial
wave functions cannot be manipulated individually by the electric
field amplitudes. Otherwise, the field amplitudes are generally
adapted in the experiment to optimize the interference contrast.
The optical phases are written explicitly whenever they are used
as control parameters to manipulate the resulting photoelectron
wave packet. A more comprehensive theoretical description is
given for example in [107–109, 138].

Control of multiphoton processes by multichromatic pulse
sequences is based on the interference of multiple pathways
leading to the same final state. As we increase the number of
pulses, both the number of available quantum pathways and the
number of final states increase significantly, opening up more
versatile options for control. Figure 2 illustrates the pathways
for absorption of N � 2 photons in a single-color (M � 1)
scenario (A), a bichromatic (M � 2) scheme (B), and
trichromatic (M � 3) (C) intraband MPI with elliptical
polarization. Examples for indistinguishable pairs of
pathways (see below) are indicated with black dotted lines on
top of the arrows. The numbers of available pathways and final
states scale differently with the number of absorbed photons
(N ) and the number of pulses (M) in the sequence, suggesting a
change in the overall physical picture of MPI for single-color
versus multichromatic pulse sequences. The total number of
final states Cf (M,N ) is the product of the number of available
angular momentum states Cl(N ) and the number of different
energy levels. The former is Cl(N ) � N + 1 determined by the
selection rules Δm � ±1 and the latter is given by all
combinations of energies

Ce(M,N ) � (M +N − 1)!
N !(M − 1)! , (16)

some of which may be degenerate. For each absorption of a
photon, there are 2M different paths, i.e. two for the circularity

(LCP and RCP) and M for the different colors, yielding
Cp(M,N ) � (2M)N pathways for N -photon ionization.
Because the ordering of the photons in an absorption event,
i.e. in a specific (non-resonant) pathway, cannot be distinguished,
the number of the distinguishable pathways is given by the
number of contributions in Eq. 15 yielding

Cd(M,N ) � N + 2M − 1
2M − 1

( ). (17)

An overview of the numbers of angular momentum states (Cl),
free electron energy states (Ce), pathways (Cp) and distinguishable
pathways (Cd) for ionization with N � 1, . . . , 4 and M � 1, 2, 3
pulses is presented in Table 1.

In addition to the above discussed intraband interferences
characterized by absorption of N photons, in multichromatic
scenarios further interferences arise when pathways with a
different number of absorbed photons N 1 and N 2 interfere. In
this case the wave function is a superposition of both contributions

ψ(ε, θ, ϕ) � ψN 1
(ε, θ, ϕ) + ψN 2

(ε, θ, ϕ). (18)

If both pathways address overlapping final continuum states, i.e.
the energy gained by absorption of N 1 photons with Zω1 agrees
within the bandwidth with the energy delivered by N 2 photons
with Zω2, as shown in Figure 1C for a (3ω:4ω) bichromatic field,
CEP-sensitive interband interferences occur. Bichromatic fields
with commensurable frequencies ω2 � ω1 ·N 1/N 2 satisfy the
above condition ε � ZN 1ω1 � ZN 2ω2. Examples for CEP-
control of interband interferences in the MPI by linearly and
circularly polarized bichromatic pulse sequences are presented in
Section 4.2.1.1 and Section 4.2.1.2.

2.2.3 2D Ab Initio Simulation of Atomic Multiphoton
Ionization in Cycloidal Laser Fields
Another efficient method to simulate atomic photoionization
dynamics by polarization-shaped ultrashort laser fields is based
on solving of the TDSE numerically for a 2D model system

FIGURE 2 | Pathways for intraband MPI with N � 2 photons using elliptically polarized multichromatic pulse sequences: (A) M � 1 single-color, (B) M � 2
bichromatic, (C) M � 3 trichromatic pulses. The black dotted lines on top of the arrows indicate a pair of indistinguishable pathways.
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aligned in the laser polarization plane. In [121], we employed the
2D model potential shown in Figure 1D

V(r) � − ze2

4πε0

erf(r/a)
r

, (19)

with the error function erf and a soft-core parameter a, and solved
the TDSE for the time-dependent Hamiltonian

H(r, t) � − Z2

2me
Δ + V(r) + e r · E(t) (20)

on a 2D grid using the Fourier-based split-operator method [134].
Specifically, atomic MPI with cycloidal, i.e. COCP and CRCP,
femtosecond laser pulse sequences was investigated. Employing
single-color pulse sequences, we were able to reproduce selected
recent experimental results on the generation of photoelectron
vortices [102, 103] and to analyze the transient vortex formation
dynamics in different physical pictures, including the bound state
population dynamics, the time evolution of the free electron wave
function and its asymptotic topological charge. Employing
cycloidal bichromatic fields, we reproduced the experimental
results on the generation of free electron wave packets with
odd rotational symmetries [73]. We analyzed the final state
wave function with respect to the relative orientation between
field and PMD and extracted the azimuthal probability density
current to validate the physical discussions in the experimental
studies [73, 105, 106]. Furthermore, the simulations allowed us to
examine the influence of experimental CEP and Gouy phase
fluctuations on the measured PMD. Eventually, we applied the
technique to investigate photoelectron vortices theoretically in so
far unexplored intensity regimes.

3 EXPERIMENT

In this section, we introduce our experimental scheme for the
coherent control of ultrafast MPI dynamics in atoms and
molecules using polarization-tailored single-color or
multichromatic fields. In the experimental studies, we combine
advanced supercontinuum pulse shaping techniques with the
highly differential detection of photoelectrons using a VMI
spectrometer. The experimental setup is portrayed in Figure 3.
CEP-stable polarization-shaped laser pulse sequences are
generated using a phase-stabilized white light polarization
shaper in 4f geometry. Photoelectron wave packets, released by
the interaction of the shaped pulses with the atomic or molecular

sample in the VMI spectrometer, are observed with energy and
angular resolution. By rotating the pulses about the laser beam
axis using a wave plate, the VMI spectrometer is turned into a
photoelectron tomography apparatus, allowing us to retrieve the
full 3D PMD. In the following, we give an overview of white light
polarization shaping in Section 3.1 and photoelectron
tomography in Section 3.2. For a more detailed description of
both techniques, we refer to [106].

3.1 Supercontinuum Polarization Pulse
Shaping
Various experimental schemes for the generation of multicolor
laser fields have been reported, including 4f pulse shapers adapted
to an octave-spanning WLS [61, 64] and extensions to optical
waveform synthesizers [139, 140] as well as four-wave mixing
schemes [141] and molecular modulation [142–144]. Our
method to generate multichromatic polarization-tailored pulse
sequences is based on 4f-polarization pulse shaping of a white
light supercontinuum. The primary light source of our
experiments is an actively CEP-stabilized multipass chirped
pulse amplifier system (FEMTOLASERS Rainbow 500, CEP 4
module, Femtopower HR 3 kHz) providing 20 fs infrared
pulses centered at 790 nm with an energy of 1.0 mJ. These
pulses are used to seed a neon-filled hollow-core fiber
(absolute pressure ∼ 2.0 bar) generating an over-octave
spanning WLS which is amplitude- and phase-modulated in
the spectral domain using a home-built 4f polarization pulse
shaper [48, 50, 51, 145]. While traditional 4f pulse shaping allows
for either independent amplitude and phase modulation or phase
and polarization shaping [51, 145], recently we introduced a pulse
shaping scheme specifically adapted for the independent shaping
of amplitude, phase and polarization of bichromatic fields [65,
106, 146]. The bichromatic white light polarization shaper is
shown on the lefthand side of Figure 3. Bichromatic amplitude
profiles are sculptured from the WLS via combined amplitude
and phase modulation using a traditional polarization shaping
setup consisting of a 640 pixel dual-layer liquid crystal spatial
light modulator (LC-SLM) in the Fourier plane of a folded 4f
setup with holographic transmission gratings at the in- and
output. A customized composite polarizer mounted directly
behind the LC-SLM enables independent polarization control
of both spectral bands (colors). Along the spectral axis, the
polarizer is divided into two parts, each of which can be
chosen in s- or p-configuration, resulting in the generation of
either bichromatic PLP (both colors s- or p-polarized) or OLP

TABLE 1 | Overview of the total number of possible pathways for ionization with a given number of photons (N ) from (M) pulses. Shown are the numbers of angular
momentum states (Cl ), free electron energy states (Ce), pathways (Cp) and distinguishable pathways (Cd ).

N = 1 N = 2 N = 3 N = 4

M � 1 Cl � 2 Ce � 1 Cl � 3 Ce � 1 Cl � 4 Ce � 1 Cl � 5 Ce � 1
Cp � 2 Cd � 2 Cp � 4 Cd � 3 Cp � 8 Cd � 4 Cp � 16 Cd � 5

M � 2 Cl � 2 Ce � 2 Cl � 3 Ce � 3 Cl � 4 Ce � 4 Cl � 5 Ce � 5
Cp � 4 Cd � 4 Cp � 16 Cd � 10 Cp � 64 Cd � 20 Cp � 256 Cd � 35

M � 3 Cl � 2 Ce � 3 Cl � 3 Ce � 6 Cl � 4 Ce � 10 Cl � 5 Ce � 15
Cp � 6 Cd � 6 Cp � 36 Cd � 21 Cp � 216 Cd � 56 Cp � 1296 Cd � 126
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(one color s-, the other one p-polarized) fields. The bichromatic
pulse shaping approach allows us to control the center frequency
ratio, spectral bandwidths and amplitude profiles of both spectral
bands and, moreover, independently permits the application of
arbitrary phase modulation functions. By use of a
superachromatic quarter wave plate (λ/4) at the shaper output,
we generate circularly polarized single-color or bichromatic pulse
sequences. An additional half wave plate (λ/2) is used to rotate the
polarization-shaped laser pulses about the propagation axis,
which is the basis for the photoelectron tomography technique
discussed in Section 3.2. To ensure the CEP-stability of the
shaped pulses, we use the shaper to generate an additional (ω:
2ω) field which is split off the main beam by a dichroic mirror and
sent to an f-2f interferometer. The interferometer feeds the active
control loop of the amplifier, which stabilizes the CEP of the
shaped pulses before they are focused into the VMI spectrometer.
The root mean squared CEP stability after the shaper was
measured over 11 h and is better than 215 mrad [101]. Finally,
dispersion control and pulse characterization are implemented in
situ, i.e. in the interaction region of the VMI spectrometer, by
using the shaper for adaptive optimization of the highly nonlinear
MPI of xenon atoms and to perform shaper-based cross-
correlation measurements [146].

3.2 Photoelectron Tomography
In order to study the full 3D PMD caused by the interaction of
atoms and molecules with polarization-tailored ultrashort laser

pulses, we employ the VMI technique [83, 103] for the energy-
and angle-resolved measurement of photoelectron wave packets.
The VMI spectrometer is shown on the righthand side of
Figure 3. The tailored laser pulses are focused via a
broadband silver mirror with a focal length of 250 mm into
the interaction region of the VMI spectrometer. The
background pressure is typically in the order of 5 × 10−7 mbar.
All experiments were carried out in the gas phase. Alkali atomic
samples are supplied by dispenser sources (working pressure:
∼10−7 mbar), whereas rare gases or molecular samples are
injected using an effusive gas-inlet (working pressure:
∼10−6 mbar). An electrostatic lens setup consisting of a
repeller, an extractor and an Einzellens, projects the 3D PMD
created by MPI of the sample by the incident laser pulses onto a
chevron-type microchannel plate detector stacked with a
phosphor screen. The resulting 2D image of the projected
PMD is recorded by a charge-coupled device camera. PMDs
created by MPI with either linearly or circularly polarized laser
pulses are, in general, cylindrically symmetric and can therefore
be reconstructed from a single 2D image via Abel inversion, e.g.
using the pBASEX algorithm [88]. In contrast, PMDs created by
polarization-shaped pulses typically exhibit no such symmetry.
For the retrieval of 3D PMDs with arbitrary shape, we developed a
tomographic reconstruction technique [89] based on the rotation
of the laser pulse—and hence the PMD—using a superachromatic
λ/2 wave plate. After acquiring numerous 2D projections of the
PMD under various rotation angles, we retrieve the 3D PMD by

FIGURE 3 | Experimental setup for multichromatic coherent control of MPI utilizing a white light polarization pulse shaper (A) and a photoelectron VMI spectrometer
(B). Multichromatic amplitude, phase and polarization tailoring of an input WLS is implemented by a specifically adapted polarization shaper in folded 4f geometry. The
WLS input beam is spectrally dispersed at the input grating (G), collimated at the cylindrical mirror (CM) and spectrally modulated in the Fourier plane by a dual-layer LC-
SLM and a custom composite polarizer (CP). Active CEP-stabilization is realized by an f-2f interferometer feeding the control loop of the laser system. A
superachromatic λ/4 wave plate at the output allows to generate circularly polarized pulse sequences. Using an additional λ/2 wave plate, the shaped laser pulse is
rotated about the beam axis, which is the basis for VMI-based photoelectron tomography. The VMI spectrometer on the right consists of an electrostatic lens system
projecting the PMD onto an microchannel plate detector attached to a phosphor screen. Images of the resulting 2D projections are recorded with a charge-coupled
device camera. Exemplarily, a CRCP (3ω:4ω) output pulse is depicted in magenta along with the tomographically reconstructed 3D PMD created by MPI of
potassium atoms.
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application of tomographic techniques such as the Fourier slice
algorithm [89, 147, 148] or the backprojection algorithm [90,
147, 149]. An advantage of the Fourier slice method is that the
angular discretization inherent to the measurement appears
only in the Fourier domain representation, whereas the
retrieved real-space PMD is angularly smooth. For a typical
tomographic measurement, we use about 45 different
orientations of the λ/2 wave plate ranging from −90° to 86°.
Energy calibration of the reconstructed 3D PMD is performed
by taking 151 azimuthal 2D slices through the 3D data cube and
convert the radial momentum distributions into corresponding
energy distributions. We estimate an energy-resolution of better
than 80 meV for photoelectrons with a kinetic energy of about
1 eV. Thus, our VMI-based photoelectron tomography
technique is well suited to retrieve the highly structured 3D
PMDs generally created by MPI with multichromatic
polarization-shaped laser pulse sequences. Similar
tomographic techniques have been applied, e.g., for the
imaging of molecular orbitals [148], the discrimination of
chiral molecules via the multiphoton PECD [150] and the
time-resolved imaging of ultrafast laser-matter interactions
inside transparent media [149].

4 RESULTS AND DISCUSSION

In this section, we discuss our experimental results on
photoelectron tomography of 3D PMDs obtained by atomic
and molecular MPI using multichromatic polarization-
controlled pulse sequences. We present our findings in the
order of the type of pulse sequence: We start with experiments
on MPI with single-color pulse sequences in Section 4.1 and
focus on various coherent control scenarios by bichromatic pulse
sequences in Section 4.2. New results on trichromatic pulse
sequences are presented in Section 4.3.

4.1 Single-Color Pulse Sequences
Single-color pulses consist of a single connected spectral band
with bandwidth Δω centered around a carrier frequency ω1. A set
of single-color pulse sequences for different polarizations is
depicted in Figure 4. These pulses are the starting point of
our discussion.

4.1.1 Single-Color Linearly Polarized Pulse Sequences
Single-color PLP pulse sequences with variable time-delay τ, as
shown in Figure 4A, are the standard tool in pump-probe
experiments [151]. Even in the overlapping region τ ≈ 0, such
pulses remain linearly polarized. In contrast, OLP pulse
sequences, as shown in Figure 4B, additionally address the
spatiotemporal aspect of the light-matter interaction due to
their time-dependent polarization. Their application ranges
from the phase-control of currents in semiconductors [152] to
the steering of molecular rotation [153, 154]. Crossed
polarizations demand a vectorial description of the field and
thus provide access to the angular properties of the interaction
energy −μ · E. Depending on the relative phase, OLP pulses are
either linearly, elliptically or circularly polarized at τ � 0.

4.1.1.1 Perturbative Multiphoton Ionization
In [11], Wollenhaupt et al. have used phase-locked pairs of
linearly polarized single-color pulses to study the interference
of ultrashort free electron wave packets generated by perturbative
MPI of potassium atoms. By variation of the time delay in the PLP
sequence, the interference pattern in the photoelectron kinetic
energy spectrum from one-photon ionization of the excited 5p
state was controlled. The observation of interferences in the
photoelectron spectrum demonstrated that the coherence
properties of the ultrashort laser pulses were transferred to the
electrons. Using OLP sequences, i.e. crossed polarizations, no
such interference fringes have been found in the threshold
electrons. However, the quantum interferences reappeared at

FIGURE4 | Single-color pulse sequences. The projection in z-direction visualizes the time-dependent electric field vector at the position of the atom ormolecule. (A)
PLP, (B)OLP, (C)COCP and (D)CRCP single-color pulse sequences. Upper figures: Sequence with separated pulses τ > 2Δt, lower figures: Coinciding pulses at τ � 0.
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twice the modulation frequency in the above-threshold
ionization (ATI).

To rationalize the experimental findings reported in [11], we
apply the general formalism discussed in Section 2.2.2 to describe
one- and two-photon ionization of a pre-excited atom with
single-color PLP and OLP pulse sequences and analyze the full
3D PMD. Figure 5A shows a schematic energy level diagram of
potassium atoms for the excitation of the 5p state and subsequent
photoionization at the threshold (THR) and the ATI. The
description in the spherical basis provides a consistent picture
for excitation and ionization with both PLP and OLP sequences.
Simulated PMDs at the ionization threshold and the ATI are
depicted in Figure 5B. The left column shows the PMDs from
ionization with either a single pulse or a PLP pulse sequence
whose polarizations are parallel (p) to the initial blue excitation
pulse. Ionization with a single orthogonal (o) polarized pulse or
an OLP pulse sequence are depicted in the right column. To
calculate the modulation of the interference in the photoelectron
spectra, we first consider the wave function in the excited 5p state
prepared by the initial, linearly polarized blue (405 nm) laser
pulse. In the spherical basis, the p state is a superposition of the
two ψ1,±1 states

Ψ5p � ψ1,1 + ψ1,−1. (21)

Taking into account the transition dipole moments determined
by the Wigner 3-j symbols, the absorption of another parallel or

orthogonal polarized photon from the 5p state yields the wave
functions for the photoelectrons at the ionization threshold

Ψp
THR � 1��

15
√ ψ2,2 +

2
3

��
10

√ ψ2,0 +
1��
15

√ ψ2,−2,

Ψo
THR � 1��

15
√ ψ2,2 +

1��
15

√ ψ2,−2.
(22)

By calculating the electron density ρ(ε, θ, ϕ) � |Ψ(ε, θ, ϕ)|2, we see
that ionization with a parallel polarized field yields the expected
d-type electron density ρpTHR plotted on the left side of Figure 5B,
whereas orthogonal ionization of the aligned 5p state gives rise to
the dx,y-type state due to the cancellation of the ψ2,0 state via
destructive quantum interference. The generation of such a dx,y-
type state in the continuum, exhibiting a c4 rotational symmetry,
has been experimentally demonstrated using a two-color OLP
sequence to ionize potassium atoms [105]. Ionization with a
single-color PLP sequence, i.e. two phase locked time-delayed
parallel polarized pulses, leads to the superposition state

ΨPLP
THR � 1 + e−iετ/Z( )Ψp

THR (23)

characterized by the interference structures in the electron
density ρPLPTHR. By integration over the angular coordinates θ
and ϕ, we obtain the energy-resolved photoelectron spectrum

IPLPTHR(ε)∝ IpTHR(ε)[1 + cos(ετ/Z)], (24)

FIGURE 5 | One- and two-photon ionization of potassium atoms with an infrared PLP or OLP pulse sequence after preparation of the atom in the excited 5p state
by a blue prepulse. (A) Energy level diagram for excitation and ionization in the spherical basis. (B) Simulated electron densities of the excited 5p state (bottom) and the
emitted photoelectron at the threshold (middle row) and ATI (top row). Left side of each column: Single pulse ionization at the threshold and the ATI for parallel ρpTHR
(ρpATI) and orthogonal ρoTHR (ρoATI) polarized pulses, respectively. Right side of each column: Double pulse ionization at the threshold (ATI) for PLP ρPLPTHR (ρPLPATI ) and OLP
ρOLPTHR (ρOLPATI ) pulse sequences.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 67525810

Eickhoff et al. Polarization-Controlled Multiphoton Ionization

153

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


yielding the fully cosinusoidally modulated spectrum in
agreement with the experimental results [11]. In contrast, in
the OLP case, the superposition of two different wave functions

ΨOLP
THR � Ψp

THR + Ψo
THR e

−iετ/Z (25)

results in the highly patterned electron density ρOLPTHR displayed on
the right side of Figure 5B. Again, by angular integration we find
that in the OLP case the interference in the photoelectron
spectrum cancels out as reported in [11]. Consequently, the
OLP-photoelectron spectrum at the ionization threshold is
unstructured and independent of the time delay

IOLPTHR(ε)∝ ITHR(ε). (26)

In the next step, we apply the same procedure to analyze the
PMDs at the ATI. To this end, we write down the
corresponding wave functions and densities and calculate
the photoelectron spectra to rationalize the experimental
findings in the ATI spectrum. Absorption of another
parallel (orthogonal) linearly polarized photon from the
threshold states given by Eq. 22 yields the wave functions
in the ATI

Ψp
ATI � 1���

105
√ ψ3,3 +

3
15

�
7

√ ψ3,1 +
3

15
�
7

√ ψ3,−1 +
1���
105

√ ψ3,−3,

Ψo
ATI � 1���

105
√ ψ3,3 −

1
15

�
7

√ ψ3,1 −
1

15
�
7

√ ψ3,−1 +
1���
105

√ ψ3,−3.
(27)

The corresponding densities ρpATI and ρ
o
ATI are shown in the upper

row of Figure 5B. Assuming the two pulses in the sequence are
fully separated (τ ≫Δt), i.e. the temporal overlap vanishes, there
are no contributions from paths describing sequential ionization
from different pulses, and hence the wave functions for PLP and
OLP sequences read

ΨPLP
ATI � 1 + e−2iετ/Z( )Ψp

ATI,
ΨOLP

ATI � Ψp
ATI + Ψo

ATI e
−2iετ/Z.

(28)

Again, in the PLP case, the PMDs given by ρPLPATI, and hence the
corresponding photoelectron spectra in the ATI are fully
modulated by the delay-dependent interferences

IPLPATI(ε)∝ IpATI(ε)[1 + cos(2ετ/Z)]. (29)

Using the above method to calculate the PMDs from two-photon
ionization with an OLP sequence, given by ρOLPATI , and the
respective photoelectron spectra, we obtain

IOLPATI (ε)∝ IATI(ε)[5 + 3 cos(2ετ/Z)]. (30)

In contrast to the unmodulated photoelectron spectra from
ionization with OLP pulses at the threshold (Eq. 26), the
spectra in the ATI are indeed modulated—albeit more
weakly—in the OLP case in agreement with the
experimental work.

In another polarization-sensitive pump-probe experiment,
single-color PLP and OLP pulse sequences have been used to
control the perturbative MPI of potassium molecules [52]. It was
demonstrated that the ionization efficiency is higher for OLP
pulses than for PLP pulses. This result was rationalized by the

orthogonality of transition dipole moments encountered along
the major MPI pathways in the potassium dimer. The
experiment, which included the first demonstration of control
of molecular dynamics via ultrafast polarization shaping, showed
that tailored polarization-shaped pulses are better suited than the
corresponding linearly polarized fields to manipulate the
spatiotemporal evolution of molecular wave functions.

4.1.1.2 Non-perturbative Resonance-Enhanced Multiphoton
Ionization
The basic concept behind the non-perturbative control of REMPI
processes is depicted in Figure 1A. The scheme is based on the
selective population of dressed states (SPODS), recently reviewed
in [119], by a sequence of PLP single-color femtosecond laser
pulses. A relatively weak prepulse with a pulse area of π/2 [5] with
respect to the resonant transition—typically between the ground
and first excited state—is followed by an intense main pulse.
Initially, the prepulse excites an electronic wave packet of
maximum coherence, i.e., an efficient charge oscillation
described by a time-dependent induced dipole moment μi(t).
After a time delay τ, the electric field E(t) of the main pulse
couples to the induced charge oscillation. By suitable adaption of
the optical phase to the electric dipole dynamics, the interaction
energy −μi(t) · E(t) is maximized (minimized), equivalent to the
selective population of the upper (lower) dressed state in the
strongly coupled resonant sub-system. This energy shift
(resonant AC-Stark shift) opens up new multiphoton routes to
higher-lying (lower-lying) target states which are inaccessible by
perturbative excitation as shown in Figure 1A.

Resonant non-perturbative control via SPODS was first
reported on 1 + 2 REMPI of potassium atoms [123]. Using
interferometric double pulse sequences, we demonstrated
efficient ultrafast switching between different ionization target
channels by controlling the dressed state populations of the
resonant 4s−4p transition via the relative optical phase. The
interpretation of the scheme in a dressed state picture, was
presented in [124]. On the same system, we also implemented
SPODS with PLP single-color multipulse trains generated by
sinusoidal spectral phase modulation [120]. In that work, dressed
state control by all sine-parameters was demonstrated.

Subsequently, we applied SPODS to the non-perturbative
control of coupled electron-nuclear dynamics in molecules. In
the molecular case, the charge dynamics induced by the prepulse
is altered due to the coupling between electronic and nuclear
degrees of freedom. For example, the amplitude of the dipole
oscillation depends on the overlap of vibrational wave packets
launched in the resonant electronic states. Also, as the vibrational
wave packets propagate, the electronic resonance frequency
varies changing the eigenfrequency of the dipole and
introducing an additional phase drift which the main pulse
needs to adapt to. Our proof-of-principle studies were
performed on the potassium dimer serving as a molecular
prototype system. The corresponding excitation scheme is
depicted in Figure 1B. The prepulse resonantly couples the
X1Σ+

g ground state and the A1Σ+
u excited state, giving rise to

two light-induced potentials (i.e. molecular dressed states) and
launching the vibronic dynamics. By selective population of a
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single light-induced potential through the main pulse, population
is transferred efficiently to a predefined target state out of a
manifold of high-lying but bound electronic states. In a first
theoretical study, we demonstrated ultrafast efficient (∼ 80%
population transfer) switching between the 21Πg and 51Σ+

g
state using PLP single-color double pulse sequences [118]. The
scenario was demonstrated experimentally employing single-
color multipulse trains from sine-modulation [137].

4.1.2 Free Electron Vortices With Circularly Polarized
Pulse Sequences
In this section we consider the creation of free electron wave
packets by REMPI of potassium atoms with single-color circularly
polarized pulse sequences (Figures 4C,D). First, in Section 4.1.2.1,
we discuss the formation of a FEV by perturbative MPI at the
ionization threshold with c6 rotational symmetry and in the ATI
with c8 rotational symmetry. In addition, we study the evolution of
the c6 FEV into an angular momentum eigenstate as the time-delay
in the sequence vanishes. Then, non-perturbative REMPI resulting
in a FEV with c4 rotational symmetry is examined in Section
4.1.2.2. We show, how the wave function of the latter FEV is
reconstructed using a holographic method.

4.1.2.1 Perturbative Resonance-Enhanced Multiphoton
Ionization
Recently, the generation of FEVs by photoionization with two
time-delayed CRCP attosecond laser pulses has been theoretically
predicted and termed “an unusual kind of Ramsey interference”
[155]. FEVs with c|m1−m2| rotational symmetry arise from the
interference of two free electron angular momentum states ψl,m

with different magnetic quantum numbersm1 andm2. In general,
the wave function ΨFEV of this superposition state reads

ΨFEV � Ψ|m1−m2 |∝ψl1 ,m1
+ ψl2 ,m2

e−iετ/Z. (31)

Note that, in the single-color case l1 � l2. Motivated by the helical
interference structures in the electron density, Starace and coworkers
[155] coined the term “electron vortex” for this type of PMD. In
general, this notion of an electron vortex is not identical with a vortex
state defined by its non-vanishing azimuthal probability density
current j. The probability density current of the vortex state defined
in Eq. 31 has been derived in [106] and reads

j∝ Im Ψ*
FEV∇ΨFEV[ ] � 1

2
|ΨFEV|2 τ

Z
eε + (m1 +m2)

ε sin(θ) eϕ[ ], (32)

where eε and eϕ denote the respective unit vectors in energy and
azimuthal direction. A detailed discussion of the probability
density current of vortex states can be found in [105, 106,
156]. Interestingly, PMDs exhibiting simultaneously helical
interference structures and a non-vanishing azimuthal
probability density current (Eq. 32) have been experimentally
demonstrated by bichromatic MPI using time-delayed CRCP
pulses [73] and analyzed by TDSE simulations [121]. FEVs
have recently attracted much attention, both theoretically [155,
157–174] and experimentally [73, 102–104]. In this section we
discuss our experimental results on the creation and
manipulation of FEVs from femtosecond atomic MPI using

shaper-generated single-color femtosecond CRCP pulse
sequences (Figure 4D). By combining ultrafast polarization
pulse shaping with photoelectron tomography, Pengel et al.
[102] were the first to experimentally demonstrate FEVs from
REMPI of potassium atoms. Initially, it was shown that
perturbative REMPI with a single-color CRCP sequence gives
rise to the six-armed Archimedean spiral-shaped FEV depicted in
Figure 6B. The corresponding wave function

Ψ6 ∝ψ3,−3 + ψ3,3 e
−iετ/Z (33)

produces a vortex-shaped electron density distribution. In the
same work, it was shown that changing from MPI with a time-
delayed single-color CRCP sequence to the corresponding single-
color COCP sequence (Figure 4C) results in the wave function

Ψ0 ∝ψ3,3 1 + e−iετ/Z( ), (34)

corresponding to a toroidal PMD with spectral interference fringes
in the radial (energy) direction spaced by h/τ. Subsequently, Pengel
et al. [103] reported on the formation of FEVs from polarization-
shaped supercontinua and on the generation of an eight-armed
FEV in the ATI with the wave function

Ψ8 ∝ψ4,−4 + ψ4,4 e
−iετ/Z. (35)

The c8 rotationally symmetric FEV in the ATI is shown in
Figure 6C. The time-dependent electric field of single-color
CRCP sequences shown in Figure 4D reveals that, as the time
delay vanishes, the sequence evolves into a linearly polarized field
whose orientation is determined by the relative phase between the
LCP and RCP components. In Figure 6D we present results from
tomographic reconstruction of the PMDs as τ → 0. The initial c6
rotationally symmetric FEV (τ � 20 fs) evolves into a distorted
vortex (14 fs) with more and more pronounced lobes in the vicinity
of the x-axis at 10 fs and eventually turns into the rotated angular
momentum state Rx(π/2)ψ3,0 at τ � 0. Partially overlapping LCP
and RCP pulses resulting in the non-vanishing product [E−1

1 (t)]r1 ·
[E+1

1 (t)]l1 give rise to the additional pathways with alternating
circularity, e.g. LCP → RCP → LCP and RCP → LCP → RCP,
shown in Figure 1C with light arrows for a bichromatic MPI
scenario. These pathways populate the free electron angular
momentum states ψ3,−1 and ψ3,1 in addition, leading to the
superposition of four ψ3,m states with m ∈ (−3, −1, 1, 3). MPI
with the horizontally polarized pulse at τ � 0 results in the rotated
angular momentum state Rx(π/2)ψ3,0 which is a superposition of
the four ψ3,m states according to

Rx(π/2)ψ3,0(θ, ϕ)∝
1���
105

√ ψ3,3 +
3

15
�
7

√ ψ3,1 +
3

15
�
7

√ ψ3,−1

+ 1���
105

√ ψ3,−3, (36)

where the amplitudes have been taken from Eq. 27. This result
can be checked by decomposition of the rotated state into the
unrotated basis

Rx(π/2)ψ3,0(θ, ϕ) � ∑
m�−3,−1,1,3

D(3)
m,0(π/2)ψ3,m(θ, ϕ), (37)
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where D(l)
m,m′ represent the Wigner-D coefficients [95, 138,

175, 176].

4.1.2.2 Non-Perturbative Resonance-Enhanced Multiphoton
Ionization
So far, we discussed c6 and c8 rotationally symmetric FEVs
generated by perturbative three- and four-photon
ionization, respectively, with the intermediate resonant 4p
state being only weakly populated and not contributing
significantly to the vortex formation. In contrast, it was
demonstrated that FEVs with c4 rotational symmetry can
be generated by non-perturbative REMPI [102]. By using
CRCP pulse sequences with a pulse area of π [5], the 4s state
was fully depleted and the 4p state fully populated. Hence,
ionization with the second pulse started from the excited 4p
state resulting in a wave function characterized by the
superposition of angular momentum states with different
values of |m|

Ψ4 ∝ψ3,−1 + ψ3,3 e
−iετ/Z. (38)

The tomographic reconstruction of the corresponding PMD
depicted in Figure 6A shows a FEV with four arms. Using the
same REMPI scheme, Pengel et al. [103] demonstrated a
holographic method for direct measurement of the wave
function of the non-perturbative c4 vortex by measuring a π

shift in the azimuthal interferences in the polar direction of the
vortex due to the polar nodal line of the ψ3,1 angular
momentum state.

4.2 Bichromatic Pulse Sequences
In this section, we discuss a number of applications of
bichromatic polarization-shaped pulse sequences for
femtosecond spectroscopy and coherent control of ultrafast
quantum dynamics [105, 106]. Bichromatic fields are
characterized by two spectral bands with individual
bandwidths of Δω1 and Δω2 centered around two different
carrier frequencies ω1 and ω2, as detailed in [99]. The spectral
band with the lower (higher) carrier frequency is typically
referred to as red (blue) component. Our shaper-based
approach for the generation of bichromatic fields offers
independent control over the amplitude, phase and
polarization profile of the field [65, 146]. Shaper-generated
polarization-tailored bichromatic fields are therefore very
versatile, not only regarding their use in bichromatic coherent
control schemes but also in terms of their application in time-
resolved studies of ultrafast dynamics. For example, employing a
linear spectral phase function (ω−ωi) · τ allows us to introduce a
variable time delay τ between the two colors to generate
bichromatic pulse sequences for polarization-sensitive two-
color pump-probe experiments [177]. Several examples of
polarization-controlled bichromatic pulse sequences, with both

FIGURE 6 | Tomographically reconstructed Archimedean spiral-shaped FEVs with c4, c6 and c8 rotational symmetry from 1 + 2 REMPI of potassium atoms using
single-color CRCP pulses along with their projection in the z-direction [103]. (A) Non-perturbative REMPI with a sequence of two π pulses creates a FEV with four arms.
(B) Perturbative REMPI gives rise to a six-armed FEV. (C) Absorption of an additional photon in the continuum results in an eight-armed FEV in the ATI. (D) Evolution of
the c6 FEV as the time delay decreases from τ � 20 fs to τ � 0 fs.
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colors being fully separated in time, are depicted in the top row of
Figure 7, including the prototypical PLP, OLP, COCP and CRCP
fields. The bottom row illustrates the same sequences for τ � 0. In
contrast to the single-color case, temporally overlapping
bichromatic fields occur in a plethora of shapes and
symmetries, depending on the frequency ratio, polarization,
amplitude and relative phase of the two colors. For example,
in the OLP case shown in Figure 7B, the bichromatic polarization
profile exhibits a Lissajous-type shape, while in the COCP and
CRCP cases, shown in (C) and (D), the polarization profiles are
cycloidally shaped. The applications of polarization-tailored
bichromatic fields are as versatile as their shapes. For example,
PLP bichromatic fields were applied to control plasmon-
enhanced photoemission from silver clusters [178] and strong-
field photoemission from gold nanotips [79]. OLP bichromatic
fields with commensurable frequencies, characterized by
Lissajous-type polarization profiles which exhibit a time-
varying optical chirality, have been used to investigate sub-
cycle variations in the PECD of chiral molecules [179, 180].
Commensurable CRCP bichromatic fields exhibit unique
propeller shapes with distinct rotational symmetry. Currently,
such fields play a prominent role in HHG [67, 68, 70–72, 181,
182], strong-field ionization [158, 183–186], and were employed
for the time-resolved probing of molecular chirality [187]. In the
perturbative regime, coherent control of bichromatic MPI is
governed by the manipulation of intra- and interband
interferences [105] (Section 2.2.2). In the following, we
discuss examples for the bichromatic control of MPI in atoms
(Section 4.2.1) and molecules (Section 4.2.2).

4.2.1 Atomic Multiphoton Ionization
Atomic model systems interacting with multichromatic pulse
sequences are ideally suited to elucidate the physical mechanisms
underlying the coherent control. In this section, we study two

mechanisms of coherent control of multipath interference in the
atomic MPI by polarization-tailored bichromatic fields. We
compare the CEP-insensitive intraband MPI with N photons
to the CEP-sensitive interband MPI with different numbers
N 1 ≠N 2 of photons. Different bichromatic control scenarios
are implemented using linearly (Section 4.2.1.1) and circularly
(Section 4.2.1.2) polarized bichromatic fields.

4.2.1.1 Linearly Polarized Bichromatic Pulse Sequences
The two prototypes of linearly polarized bichromatic pulse
sequences, PLP and OLP fields, are illustrated in Figures
7A,B, respectively. To illustrate the difference between
interband and intraband interferences in optical phase-control,
we discuss below the results from bichromatic MPI of alkali
atoms using CEP-stable commensurable PLP (3ω:4ω) fields [73]
on the one hand and incommensurable OLP bichromatic fields
[99, 100] on the other hand. We start by investigating phase-
sensitive interband interferences arising from the superposition
of continuum states with opposite parity [73, 188]. MPI of
sodium atoms with a PLP (3ω:4ω) field creates an f-type
photoelectron wave packet (ψ3,0) via 3-photon ionization by
the blue pulse (ω2) and a g-type wave packet (ψ4,0) via 4-
photon ionization in the continuum by the red pulse (ω1).
Both wave packets overlap at a kinetic energy of ε � 4Zω1 �
3Zω2 resulting in interband interferences. Because the difference
between the number of photons absorbed by each partial wave is
odd, the resulting photoelectron wave function is a superposition
of two states with opposite parity

ΨPLP ∝ψ3,0 + iψ4,0 e
−iφce . (39)

As illustrated in Figure 8A, this wave function exhibits a
directional asymmetry along the laser polarization axis (y-
axis), which is sensitive to the CEP. To study the CEP-

FIGURE 7 | Bichromatic pulse sequences. The projection in z-direction visualized the time-dependent electric field vector at the position of the atom or molecule.
(A) PLP, (B) OLP, (C) COCP and (D) CRCP bichromatic pulse sequences. Upper figures: Sequence with separated pulses τ > 2Δt, lower figures: Coinciding pulses at
τ � 0.
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dependence of the asymmetry, we measured 2D projections of the
PMD for φce � 0 and φce � π. The recorded projections were Abel-
inverted using the pBASEX algorithm [88]. The retrieved 2D
sections of the PMD through the (x, y) polarization plane are
shown in the left and middle frames of Figure 8A. The sections
display a pronounced left/right asymmetry which is inverted by
switching the CEP from 0 to π. To quantify the asymmetry, we
derived the asymmetry contrast [105, 189] directly from the
measured projections. The result shown in the right frame of
Figure 8A reveals a CEP-induced directional asymmetry of up to
±28%. A similar scheme for the control of directional
photoemission from xenon atoms by bichromatic MPI with
phase-modulated PLP (7ω:8ω) fields was recently reported in
[189, 190]. In that contribution, the bichromatic pulses were
specifically tailored to induce phase-controlled 7- vs. 8-photon
interband interference in the 5P3/2 ionization continuum of
xenon. An alternative strategy to steer the directionality of
ultrafast electronic processes in atoms [188, 189, 191, 192],
molecules [193–195] or solids [196–201] is based on the use
of CEP-stable few-cycle femtosecond laser pulses. In this case,
however, the interpretation of the interference mechanism is
generally complicated by the multitude of MPI pathways
connecting the ground state to a specific energy target state.
Using shaper-generated commensurable bichromatic fields
tailored to the MPI process, has enabled us to excite specific
asymmetric target states in the continuum by two-path interband
interference, fully controllable via the CEP and the relative phase
of the two colors. In contrast to the few-cycle approach, we were
thus able to localize phase-controlled asymmetries in a
preselected photoelectron energy window [189]. To
demonstrate the concept of intraband interference, we
employed temporally overlapping (τ < Δt) OLP bichromatic
fields with incommensurable frequencies for 3-photon
ionization of potassium atoms. While both the blue and the
red component produce individual single-color signals centered

at ε0 � 3Zω1−ZωIP and ε3 � 3Zω2−ZωIP, third-order intrapulse
frequency mixing leads to two additional contributions centered
at ε1 � 2Zω1 + Zω2 − ZωIP and ε2 � Zω1 + 2Zω2 − ZωIP, which are
energetically disentangled from the single-color signals (cf. Eq.
15) [99, 100]. The measured and tomographically reconstructed
3D PMD is shown in the main frame of Figure 8B. The different
above mentioned contributions are color-coded. Since each of the
frequency mixing pathways is composed of three photons—albeit
with different combinations of red and blue photons—the
accumulated optical phase in each target state is identical,
rendering the resulting intraband interference of all target
states CEP-insensitive. Each of the photoelectron angular
distributions within a given energy interval is determined by a
specific coherent superposition of angular momentum states as
described in Eq. 15. For example, the two single-color signals are
described by rotated f-type wave packets perpendicularly to one
another along the respective laser polarization axis, i.e. the x- and
y-axis for the OLP pulse shown in Figure 7B. The two inner
partial wave packets in the energy interval around ε1 (magenta)
and ε2 (purple) resulting from intraband interference read

Ψε1/ε2
OLP ∝ψ3,3 ∓ 1��

15
√ ψ3,1 −

1��
15

√ ψ3,1 ± ψ3,−3, (40)

analogously to Eq. 27, where the upper and lower signs in the sum
correspond to ε1 and ε2, respectively. Both reconstructed partial
wave packets are shown separately in Figure 8C. They are also
aligned perpendicularly with respect to one another and exhibit a
pseudo c6 rotational symmetry. Using (ω:2ω) bichromatic OLP
fields, we recently demonstrated the generation of a c4 rotationally
symmetric PMD in the 2-photon ionization of potassium atoms
[105] similar to the dx,y state shown in Figure 5B. Again, the
mechanism was based on the cancellation of specific quantum
pathways by intraband interference. Due to the energetic
disentanglement of the different photoelectron contributions

FIGURE 8 |Measured PMDs from bichromatic MPI of sodium and potassium atoms. (A) Retrieved (x, y)-sections from the photoemission of sodium atoms using
CEP-stable (3ω:4ω) PLP fields. The left and middle frames show the Abel-inverted sections for φce � 0 and φce � π, respectively. The top insets show the corresponding
generic 3D PMDs of the wave packets. The calculated asymmetry contrast, depicted in the right frame, shows pronounced asymmetries in the laser polarization plane
originating from CEP-sensitive interband interference. (B)Measured and tomographically reconstructed 3D PMD from three-photon ionization of potassium atoms
using bichromatic fields with incommensurable frequencies. The PMD shows four energetically separated shells originating from single-color and frequency mixing
contributions, equidistantly centered around energies εi (i � 0, 1, 2, 3). (C) The partial wave packets from the intermediate energy channels ε1 and ε2, exhibit pseudo c6
rotational symmetry resulting from intraband interference.
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from intraband interference, this scheme is suitable for pump-
probe experiments featuring background-free detection of
ultrafast dynamics. For example, employing shaper-generated
linearly polarized bichromatic pump-probe pulse sequences,
we investigated Rydberg [177] and spin-orbit [100] wave
packet dynamics. The full potential of polarization-shaped
bichromatic fields to generate and manipulate angular
momentum superposition states via frequency mixing has
been studied in [99]. Very recently, we introduced a shaper-
based quantum state holography (SQuaSH) method by
combining intra- and interband interferences using
commensurable CEP-stable bichromatic fields for phase-
sensitive pump-probe measurements [101].

4.2.1.2 Circularly Polarized Bichromatic Pulse Sequences
Circularly polarized bichromatic fields, with their cycloidal
polarization profiles (Figures 7C,D), offer fascinating
possibilities for the generation and control of electronic
angular momentum wave packets with unusual physical
properties, whether in the neutral system as in the case of
spin-orbit wave packets (SOWPs) or in the ionization
continuum as in the case of free electron wave packets. Similar
to the linearly polarized case discussed in Section 4.2.1.1, the
mechanism to control the spectrum, the symmetry and the
rotation of the PMD is based on the manipulation of
intraband and interband interference by the polarization state
of the sequence (CRCP or COCP) and the optical phases. We
illustrate the basic concepts with two examples. In the first
example, we use bichromatic CRCP pulse sequences with
incommensurable frequencies for MPI of potassium atoms and
make use of the energetic disentanglement of the angular
momentum states in the continuum. This ionization scheme is
utilized for background-free observation of SOWP dynamics in
the bound state. The second example deals with the creation and
coherent control of FEVs with unusual rotational symmetry by
interband interference in the MPI of sodium atoms with CEP-
stable commensurable cycloidal bichromatic pulse sequences.

Recently, we demonstrated intraband frequency mixing by
shaper-generated CRCP bichromatic fields in the three-photon
ionization of potassium [99]. Using temporally overlapping (τ <
Δt) sequences of two colors with incommensurable frequencies, we
showed that in the CRCP case, frequency mixing results in a
complete energetic disentanglement of the different angular
momentum target states in the ionization continuum. The
reconstructed 3D PMD is depicted in Figure 9A. The two single-
color contributions in the inner- (red) and outermost (blue) energy
channels correspond to the torus-shaped partial waves ψ3,±3. The
two frequency mixing contributions in the intermediate energy
channels ε1 and ε2 correspond to the partial waves

Ψε1/ε2
CRCP � ψ3,±1 (41)

displayed in the insets. This result shows that in the CRCP case,
bichromatic frequency mixing provides a unique mapping
between the number of absorbed red and blue photons and
the different continuum target states, enabling the selective
excitation of individual angular momentum states which
otherwise (e.g. in the single-color case) overlap inseparably in
the energy spectrum (Eq. 36). As pointed out in Section 4.2.1.1, if
the two colors are spectrally disjoint, the frequency mixing signals
are insensitive to the optical phases implying that frequency
mixing signals are inherently robust with respect to phase
fluctuations of the CEP, the relative phase between the colors
or the Gouy-phase. Moreover, the process of frequency mixing is
very efficient due to the large number of pathways leading to the
same final state (see Figure 2). These properties, i.e. efficiency,
robustness and the disentanglement of target states, make
frequency mixing a well-suited test-bed for bichromatic pump-
probe studies. The potential of shaper-based bichromatic pump-
probe spectroscopy was recently demonstrated on the examples
of time- and angular-resolved measurement [177] and
holographic observation [101] of ultrafast Rydberg dynamics
and the time-resolved 3D imaging of ultrafast SOWP
dynamics in potassium atoms [100].

FIGURE 9 | Tomographically reconstructed 3D PMDs of free electron wave packets created by MPI of potassium and sodium atoms with circularly polarized
bichromatic pulses. (A) Intraband interferences and single-color contributions fromMPI of potassium using CRCP bichromatic fields with incommensurable frequencies.
(B) FEV with c1 rotational symmetry from interband interference in the MPI of sodium using CEP-stable COCP (3ω:4ω) bichromatic fields. (C) FEV with c7 rotational
symmetry created by MPI of sodium using CRCP (3ω:4ω) fields.
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In the latter experiment, the LCP blue pulse (pump) was tuned
on resonance with the two 4p fine structure states 4p1/2 and 4p3/2.
These states are separated energetically by Δε � 7 meV which
corresponds to a SOWP oscillation period of T � h/Δε � 580 fs.
The bandwidth of the pump was chosen sufficiently large to excite
both states coherently and, thus, launch the SOWP in the neutral
system. After a variable time delay τ, introduced experimentally
by linear spectral phase modulation via the shaper, the RCP red
pulse (probe) ionized the atom from the 4p states in a two-photon
process, mapping the SOWP into the ionization continuum as
depicted in Figure 10A. More specifically, the electron dynamics
in the neutral atom were mapped into the ε1-channel,
where—due to the energetic disentanglement from other
contributions—the time evolution of the SOWP could be
observed without any interfering background. By tomographic
reconstruction of the PMD as a function of time delay τ, we
obtained 3D images of the spatiotemporal SOWP dynamics. The
images are shown in Figure 10B. Initially, at τ � 0, the partial
wave from the ε1-channel displays ψ3,−1 symmetry. This
symmetry maps the torus-shaped ψ1,1 state (4p (m � 1)) in
the neutral system, which is consistent with the impulsive
excitation of the 4p state by the circularly polarized pump
pulse. At half-period τ ≈ T/2, the symmetry of the
photoelectron angular distribution in the ε1-channel evolves
into that of a ψ3,−2 state, mapping the dumbbell-shaped ψ1,0

state [4p (m � 0)]. The time evolution of the SOWP between these
two states is driven by the spin-orbit interaction which, in a semi-
classical picture, is interpreted as the precession of the coupled
spin and orbital angular momenta around the total angular
momentum. After a full period T, the distribution in the ε1-
channel returns to ψ3,−1 symmetry indicating the completion of
the first SOWP oscillation cycle. These findings, along with
additional results obtained for OLP bichromatic pump-probe

sequences [99, 100], showcase the capabilities of bichromatic
pump-probe spectroscopy, based on shaper-generated
polarization-shaped tailored bichromatic pulse sequences in
combination with photoelectron tomography, for the
background-free 3D imaging of ultrafast spatiotemporal
quantum dynamics.

Next, we discuss the application of circularly polarized
bichromatic pulse sequences with commensurable frequencies
for the coherent control of interband N 1 vs. N 2 MPI processes.
When the different colored pulses overlap in time, i.e. at τ � 0, the
resulting field exhibits a cycloidal polarization profile with an
Sopt-fold rotational symmetry (Figures 7C,D) described by

Sopt � (N 1 ± N 2)/gcd(N 1,N 2). (42)

Here, the upper and lower sign correspond to CRCP and COCP
pulses, respectively, and gcd denotes the greatest common
divisor. For the sake of clarity, we discuss below the case of
gcd(N 1,N 2) � 1. The use of commensurable frequency cycloidal
fields enables the creation of FEVs with unusual rotational
symmetry by controlling the multipath interference in N 1- vs.
N 2-photon ionization. The resulting FEV exhibits an SFEV-fold
rotational symmetry with SFEV � N 1 ± N 2, reflecting the field
symmetry from Eq. 42. Due to the different photonic orders of
the contributing ionization pathways, the resulting interband
interference is sensitive to the optical phases (cf. Eq. 39).
Both, the relative phases φ1 and φ2 of the two colors and the
CEP φce of the field induce an azimuthal rotation of the FEV, i.e.
in the polarization plane, by different angles and in different
directions. The general expression for the total rotation angle
induced by the optical phases reads [73]

α � 1
N 2 ± N 1

ΔNφce +N 2φ1 −N 1φ2( ), (43)

FIGURE 10 | Applications of intra- and interband interference in the MPI of potassium and sodium atoms using circularly polarized bichromatic pulse sequences.
(A) Excitation scheme for the time-resolved 3D imaging of ultrafast SOWP dynamics in potassium using shaper-generated bichromatic pump-probe pulse sequences.
(B) Reconstructed 3D PMDs for different stages of the SOWP cycle, revealing the orbital realignment dynamics in the excited 4p state due to the spin-orbit interaction.
(C) and (D)Coherent control of the azimuthal rotation of the c1 and c7 rotationally symmetric FEVs from Figures 9B,C, respectively. (E)Reconstructed 3D PMD of a
seven-arm Archimedean spiral-shaped FEV created by MPI of sodium using a time-delayed (τ1 � −20 fs) CRCP (3ω:4ω) bichromatic pulse sequence.
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with ΔN � N 2 −N 1. Again, the upper and lower sign
correspond to the CRCP and the COCP case, respectively.
This relation first implies that for the observation of interband
interference in the experiment, the stabilization of the CEP is
crucial, otherwise the interference pattern is rotationally averaged
out [73]. Apparently, the response of the quantum system to
fluctuations of the CEP is different for interband interference
compared to intraband frequency mixing (Section 4.2.1.1),
which is robust with respect to optical phase variations. The
second important implication of Eq. 43 is that the orientation of
the FEV in polarization plane is controllable by all optical phases,
albeit to different extents. Recently, we have experimentally
demonstrated the creation and manipulation of 1- and 7-fold
rotationally symmetric FEVs by controlled interband interference
in the 3- vs. 4-photon ionization of sodium atoms using CEP-stable
(3ω: 4ω) circularly polarized pulses [73]. Similar to the linear case
(cf. Eq. 39), the photoelectron wave function in the circular case is
described by the coherent superposition of a partial wave ψ4,4,
created by absorption of four LCP photons from the red pulse, and a
partial wave ψ3,±3 created by absorption of three LCP
(+: COCP case) or RCP (−: CRCP case) photons from the blue pulse

Ψ4±3 ∝ψ3,±3 + iψ4,4e
−i(Δφ−ετ1/Z). (44)

The phase term Δφ � 4φ1 − 3φ2 + φce describes the optically
induced relative phase between both partial waves. The phase
term ετ1/Z accounts for an additional energy-dependent
propagation phase accumulated if the red pulse is time-
delayed by τ1 relative to the blue pulse. The FEV described by
Ψ1, created by COCP ionization, exhibits a single azimuthal lobe
reminiscent of a crescent, while the FEV with the wave function
Ψ7, created by CRCP ionization, displays seven lobes in the
polarization plane. The corresponding tomographically
reconstructed 3D PMDs, measured at the parameters Δφ � 0
and τ1 � 0, are shown in Figures 9B,C, respectively. To
demonstrate the rotational control of both FEVs, we varied
the CEP from φce � 0 to φce � π, analogously to the
directional control discussed in Section 4.2.1.1 (Figure 8).
The resulting rotation of the PMD is depicted in Figures
10C,D, indicated by the green and blue angle segments,
respectively. While the c1 FEV is rotated by αCOCP � π, the c7
FEV is rotated by an angle of αCRCP � π

7, in agreement with Eq. 43.
In addition, we demonstrated the generation of a vortex-shaped
PMD with c7 rotational symmetry by introducing a time-delay of
τ1 � −20 fs between the two colors in the CRCP pulse sequence.
The reconstructed corresponding 3D PMD of the c7 rotationally
symmetric FEV, shown in Figure 10E, exhibits the characteristic
helical interference structure, causing the vortex-like tilt of the
lobes. The results on the FEVs with odd rotational symmetry
created by MPI with circularly polarized commensurable
bichromatic fields demonstrate our ability to manipulate the
properties of the PMD by precise control on multipath
interband interference. The rotational symmetry of FEVs is
determined by the selection of the MPI pathways via the
polarization state (COCP or CRCP), while its azimuthal
orientation is manipulated by the optical phases including the
relative phase and the CEP.

4.2.2 Molecular Multiphoton Ionization
Two-color femtosecond pump-probe experiments are ideally
suited to study ultrafast dynamics in molecules driven by
femtosecond laser pulses [151]. In the following Section
4.2.2.1 and Section 4.2.2.2, we discuss the application of this
concept to the observation of non-Born-Oppenheimer dynamics
in sodium dimers and the mapping of non-perturbative control of
concerted electron-nuclear dynamics in potassium dimers. In
Section 4.2.2.3, we present new results demonstrating axial and
lateral asymmetries in the photoemission from chiral molecules
induced by MPI with CEP-stable circularly polarized few-cycle
pulses from a WLS.

4.2.2.1 Non-adiabatic Molecular Dynamics
In [202], we used a PLP two-color pump-probe sequence to study
the effect of adiabatic (non-Born-Oppenheimer) dynamics in the
21Σ+

u double-minimum state of the sodium dimer. The sequence
consisted of a 340 nm pump pulse, to launch a vibrational wave
packet in the 21Σ+

u state by single photon excitation, and a time-
delayed 265 nm probe pulse to interrogate the vibrating molecule
by single photon ionization. Time- and energy-resolved
photoelectron spectra were measured in order to map the time
evolution of the nuclear wave packet along the vibrational
coordinate R. The sodium double-minimum state arises from
an avoided crossing of diabatic states [203]. Therefore, the
electronic structure changes rapidly as a function of R
suggesting a strong dependence of the ionization probability
on the internuclear distance. This reasoning was supported by
theoretical predictions in [204, 205]. In the experiment, the
nuclear wave packets were used as local probes to determine
R-dependent ionization probabilities. By comparison of the
measured photoelectron spectra to numerical wave packet
simulations a linear R-dependence of the dipole moment
μn→i(R) for the neutral-to-ionic transition was retrieved. The
experiment demonstrated that PLP two-color pump-probe
sequences combined with time-resolved photoelectron
spectroscopy is a powerful technique for the observation and
unraveling of ultrafast photochemical dynamics in molecules.

4.2.2.2 Non-perturbative Electron-Nuclear Dynamics
In the experiments reported in [132, 137], we applied a two-color
pump-probe scheme to demonstrate efficient ultrafast switching
between bound electronic target states in the potassium dimer,
based on a detailed understanding of the underlying strong-field
control mechanism. Intense femtosecond pulse sequences,
shaped with attosecond precision [50], were used to switch the
neutral excitation selectively between the 21Πg and the 51Σ+

g state
(cf. Section 4.1.1.2). Employing a time-delayed 570 nm probe
pulse, generated by an optical parametric amplifier and combined
interferometrically with the pump pulse, the final population of
the target states was mapped into the energy-resolved
photoelectron spectrum via one-photon ionization. By careful
choice of the probe wavelength, the target state signals were tuned
to an almost background-free energy window within the crowded
photoelectron spectrum. In the measurement of non-perturbative
bound state dynamics, signatures of strong-field interaction are
typically washed out by volume averaging over the intensity
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distribution of the pump beam focus [132]. One way to
counteract this effect is the utilization of a non-linear probe
step. Due to the non-linear decrease of efficiency towards the
focal edges, the probe volume is effectively reduced [119, 120]. In
this experiment however, dealing with a linear probe step, the
probe beam was expanded to be focused more tightly into the
interaction region than the pump. By this means, the probe
mapped only the central part of the interaction region with an
approximately homogeneous pump intensity distribution. Both
the energetic disentanglement of the two-color probe signals from
the broad single-color background and the minimization of the
focal intensity averaging were key to the interference-free
observation of the non-perturbative population dynamics
induced in the target states by the intense tailored pump pulse
sequence. The results demonstrated our ability to efficiently steer
the coupled electron-nuclear dynamics of a molecule into
different preselected target channels by controlling the delicate
interplay between the quantum phase of the induced charge
dynamics and the optical phase of the driving laser field.

4.2.2.3 Asymmetries in the Photoemission From Chiral
Molecules
Polarization-shaped bichromatic fields are particularly suitable to
chiral applications. Recent examples comprise the control of
optical chirality [206], fundamental investigations on the
PECD of chiral molecules [179, 180] and time-resolved studies
of molecular chirality [187, 207]. Motivated by our experimental
findings on the CEP-control of lateral asymmetries in the atomic
MPI of sodium atoms by (3ω: 4ω) [73] and xenon atoms by (7ω:
8ω) [189] bichromatic PLP pulses (cf. Section 4.2.1.1), we
investigated asymmetries in the PMD from MPI of the chiral
fenchone molecule using CEP-stable few-cycle pulses. The
manipulation of lateral asymmetries in chiral molecules is
particularly interesting because these molecules also exhibit a
pronounced axial, i.e., forward/backward asymmetry in the
photoelectron emission due to the PECD [208]. Recent
measurements of the PECD of (-)-fenchone molecules from
MPI with circularly polarized 400 nm pulses, depicted in

Figure 11A, reproduce our previous results [97, 150].
Displayed is the antisymmetric part of the PMD with respect
to the polarization plane, showing the well-known asymmetries
of up to ±12%. Using a CEP-stable circularly polarized
bandwidth-limited white light pulse centered at 800 nm, we
observed CEP-sensitive lateral, i.e., left/right asymmetries in
the photoelectron emission of (-)-fenchone. In Figure 11B we
plot the difference between the PMDs measured with a CEP of
φce � 0 and φce � π. This representation yields the antisymmetric
part of the spectrum with respect to the propagation direction (z-
direction), revealing pronounced lateral asymmetries of up to
±15%. The CEP-dependence of this asymmetry is shown in
Figure 11C in the form of an energy-resolved asymmetry map
obtained by integrating the spectra over the angular coordinate in
one half-plane. These results demonstrate that MPI of chiral
molecules with circularly polarized few-cycle pulses can be used
to control the axial asymmetry via the PECD and, moreover, the
lateral asymmetry via the CEP. Very recently, fully 3D
polarization-tailored laser fields, generated by superposition of
two polarization-controlled multichromatic laser pulses
propagating non-collinearly in different directions, have been
proposed as novel tools for the investigation of chiral light-matter
interactions [209–212]. These so-called superchiral light fields
[213] promise an unprecedented enantio-sensitivity which makes
them highly attractive for chiral discrimination applications.

4.3 Multichromatic Pulse Sequences
A natural extension of bichromatic white-light polarization pulse
shaping (cf. Section 3.1) is to generate multichromatic
polarization-controlled pulse sequences. As a first step towards
more complex pulses, we consider a trichromatic application.
Trichromatic fields offer enhanced possibilities for ultrafast
applications such as multicolor spectroscopy [214], strong-field
physics [215, 216], the generation of terahertz radiation [217,
218] and HHG [219]. Further examples of trichromatic pulse
sequences are illustrated in Figure 12. Each sequence consists of a
temporally overlapping polarization-tailored bichromatic pulse
which is either preceded by a circularly polarized [(A) and (B)] or

FIGURE 11 | PECD and lateral photoelectron asymmetries in the MPI of (-)-fenchone molecules using circularly polarized femtosecond laser pulses. (A) PECD
observed at 400 nm. (B) Previously unpublished results on lateral asymmetries in the photoelectron emission using LCP few-cycle pulses with a duration of Δt ≈ 5 fs
centred at λ0 � 800 nm. (C) CEP-dependence of the lateral asymmetry displayed as an energy-resolved asymmetry map.
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followed by a linearly polarized [(C) and (D)] single pulse of a
third color. The use of an additional color allows us to combine
the bichromatic mechanism of intraband interference, e.g. for the
background-free observation of ultrafast dynamics, with phase-
sensitive interband interferences for the coherent control of the
underlying multiphoton processes. For example, an auxiliary
pulse can be used to provide a separate reference wave packet
for an experimental implementation of wave packet holography.
This extension opens up a manifold of coherent control scenarios
ranging from multichromatic SQuaSH via the creation and
manipulation of multiple FEVs to multichannel quantum-
phase clocks [101, 220]. However, trichromatic MPI is not
only an extension of bichromatic MPI but also changes the
physical picture, since the number of available pathways and
the number of target states scales differently with the number of
pulses, as discussed in Section 2.2.2. So far, we have distinguished
between intraband and interband interference in bichromatic
MPI scenarios. Phase-sensitive interband interference was
characterized by interfering pathways involving the absorption
of a different number of photons per color, i.e.N 1 ≠N 2, resulting
in the condition ε � ZN 1ω1 � ZN 2ω2. If more than two colors
are present this condition can be generalized into

ε � ZN 1ω1 + ZN 2ω2 � ZN 3ω3 (45)

involving two distinct pathways, e.g., with three pairwise different
numbers of photons N 1 ≠N 2 ≠N 3. Building on the results of
self-referenced bichromatic SQuaSH in [101], we devise a
trichromatic scenario to study the interference of bichromatic
2 + 1 REMPI for the detection of a background free pump-probe
signal with direct three photon ionization delivering a reference
signal for wave packet holography. According to Eq. 45, the three
frequencies are adjusted so that both contributions yield
photoelectrons in the same energy window. In this particular
scenario, we choose N 1 +N 2 � N 3, such that the CEP-
dependence in the final state cancels. Here we present
previously unpublished data from SQuaSH on 2 + 1 REMPI
of potassium atoms using a trichromatic PLP pulse sequence.

As shown in the excitation scheme in Figure 13A a
photoelectron wave packet is created by resonant two-photon
excitation of the 3d state by the red pump and subsequent one-

photon ionization by the blue probe pulse. This wave packet
interferes with the reference wave packet originating from off-
resonant 3-photon ionization of the ground state by the green
reference pulse to generate a phase-sensitive photoelectron
hologram. We expect the hologram to be sensitive to the
relative phases between the pump, the probe and the
reference, but, because the same number of photons are
absorbed in each pathway, the interference pattern should not
depend on the CEP. To investigate this scheme experimentally,
we apply spectral amplitude modulation of the WLS (cf.
Figure 13B) to generate a tailored PLP trichromatic pulse
sequence composed of a λpu � 928 nm pump pulse (red band),
followed by a λpr � 722 nm probe (blue band) and λref � 848 nm
reference pulse (green band). The time delays between the pulses
are introduced via additional linear spectral phase modulation of
the pump and probe band with τpu � −215 fs and τpr � −15 fs
relative to the reference pulse. The wave function of the resulting
photoelectron hologram reads

Ψholo ∝ cpucpr e
−i(2φpu+φpr) + cref e

−i3φref( )ψ3,0, (46)

where cpu, cpr and cref denote the complex valued amplitudes
including delay-dependent phases and φpu, φpr and φref the
relative optical phases corresponding to the pump-the probe-
and the reference pulse, respectively. A tomographically
reconstructed 3D PMD is depicted in Figure 13C. To evaluate
the phase-dependence of the hologram, we measure the
modulation of the integral cross-section in the SQuaSH channel
of the photoelectron spectrum by variation of the relative optical
phase φref ∈ [−π, π]. To this end, the measured PMDs are energy-
calibrated [221] and integrated over the angular coordinates to
yield the photoelectron spectra. In Figures 13D,E the resulting
energy-resolved photoelectron spectra I (ε; φref) with ε ∈ [0.01, 0.1]
eV are plotted as a function of the relative phase of the reference
pulse. The insets in the top frame show the measured projections
for constructive (φref � −1.64 rad) and destructive interference
(−0.77 rad). In agreement with Eq. 46, the interference signal
shows a 2π

3 -periodic oscillation because the reference pulse
ionizes the system by absorption of three photons. We invert
the interference structure (Figure 13E) by introducing a phase of
φpu � π

2 to the pump pulse (Eq. 46), because the pump pulse

FIGURE 12 | Trichromatic pulse sequences. The projection in z-direction visualizes the time-dependent electric field vector at the position of the atom or molecule.
(A) Circularly polarized single pulse followed by a CRCP pulse sequence, (B) Circularly polarized single pulse followed by an OLP pulse sequence, (C) CRCP pulse
sequence followed by a linearly polarized (s) single pulse and (D) COCP pulse sequence followed by a linearly polarized single pulse tilted by 45°. In all figures the single
pulse is separated by a delay τ > 2Δt from the coinciding pulse sequences.
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contributes two photons to the REMPI process. The cosinusoidal
oscillation is confirmed by showing sections through both
interference patterns together with cosine-fits in Figure 13F.

5 SUMMARY AND OUTLOOK

In this review, we have reported on coherent control of MPI
dynamics of atomic and molecular model systems using fully
coherent polarization-tailored single-color, bichromatic and
trichromatic pulse sequences. Building on previous
experiments with single-color pulse sequences, we have shown
that the advanced polarization shaping of CEP-stable
supercontinua enables the generation of unprecedented
bichromatic laser fields such as propeller-shaped CRCP pulses
or Lissajous-like OLP pulses. Even more flexibility is achieved in
trichromatic polarization shaping by the many possible
combinations of linearly or circularly polarized pulses,
resulting in an increasing number of final states and
interfering pathways. These new pulse shapes enable the
targeted use of CEP-insensitive intraband and CEP-sensitive
interband multipath interference for quantum control. The
experimental results on atomic and molecular MPI by

multichromatic pulse sequences reviewed here, serve to
illustrate the new options for coherent control. We have
summarized the theoretical methods used to reproduce and
analyze our experimental results and presented a powerful
experimental technique combining supercontinuum polarization
shaping and VMI-based high-resolution photoelectron tomography
to reconstruct the full 3D PMD. The presented applications of single-
color pulse sequences included perturbative and non-perturbative
control of atomic andmolecularMPI.We have analyzed the 3DPMD
from a previous experiment on the interference of free electron wave
packets created by PLP sequences and reported on free electron
vortices with even-numbered rotational symmetry originating from
MPI with single-color CRCP sequences. We have reviewed results on
bichromatic coherent control by intraband and interband multipath
interference on various examples including control of the directional
photoemission in the MPI of atoms and chiral molecules by PLP and
COCP fields, the use of COCP and CRCP cycloidal fields to generate
and manipulate free electron vortices with odd-numbered rotational
symmetry, and spin-orbit wave packets controlled by PLP pulses.
Finally, we have introduced trichromatic shaper-based quantum state
holography using a trichromatic PLP pulse sequence by adding a
reference pulse to a bichromatic pump-probe sequence. As an
example for the new options of trichromatic pulse shaping, we

FIGURE 13 | SQuaSH on potassium atoms using PLP trichromatic pulse sequences. (A) Excitation scheme for the two-photon excitation (pump) and time-delayed
one-photon ionization (probe) of the potassium 3d state. Interference of the resulting free electron wave packet with a reference wave packet created by three-photon
ionization of the ground state by the reference pulse provides a phase-sensitive photoelectron hologram in the continuum. (B) The triple pulse sequence is generated by
trichromatic WLS shaping applying linear spectral phases to introduce the time delays of pump and probe relative to the reference pulse. (C) Tomographically
reconstructed 3D PMD from SQuaSH with PLP trichromatic pulses. (D) Angularly integrated photoelectron spectra I (ε; φref) versus the applied optical phase φref of the
reference pulse for φpu � 0 showing a pronounced 2π

3 -periodic oscillation due to wave packet interferences. (E) same as (D) but for a relative phase of φpu � π
2, resulting in

an inversion of the interference pattern. (F) Sections through (D) and (E) along the phase axis, together with cosine-fits, highlighting the cosinusoidal oscillation.
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have devised an MPI scheme based on a polarization-tailored
trichromatic CRCP pulse sequence which results in a CEP-
insensitive c6 rotationally symmetric inner vortex surrounded by a
CEP-sensitive crescent-shapedwave-packet (Figure 14). Extensions of
our shaping scheme towards the generation of independently
polarization-controlled multichromatic multipulse sequences are
currently explored in our labs.

Shaper-based multi-color 2D spectroscopy using fully
coherent multichromatic CEP-stable pulse sequences is
another emerging application of our technique. Taking
advantage of the shaper’s capability to additionally introduce
higher order spectral phase modulation, the trichromatic scheme
can be further developed into a powerful tool for coherent control
spectroscopy by using sequences of tailored pulses, thus
generalizing the concept of 2D spectroscopy. In addition, the
tunability of the shaper-generated polarization-controlled multi-
color fields makes them attractive for applications in quantum
information [222], quantum metrology [109, 110, 223] and
ultrafast nanotechnology [79, 178, 214, 224, 225]. In all the
experiments reported above, the tailored polarization profile
was confined to the (x, y)-plane perpendicular to the
propagation direction of the pulse. Building on recent
theoretical proposals [209–212, 226], we envision the next
challenge in experimental coherent control to be the
generation and tailoring of full 3D light fields by
superimposing two polarization-shaped laser pulses
propagating non-collinearly in different directions.
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The RVPMethod—From Real Ab-Initio
Calculations to Complex Energies and
Transition Dipoles
Arie Landau1,2*, Idan Haritan1* and Nimrod Moiseyev1,3*

1Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel, 2Institute of Advanced Studies in Theoretical
Chemistry, Technion-Israel Institute of Technology, Haifa, Israel, 3Faculty of Physics, Technion-Israel Institute of Technology,
Haifa, Israel

The purpose of this review is to describe the rationale behind the RVP (resonance via Padé)
approach for calculating energies and widths of resonances, while emphasizing a solid
mathematical ground. The method takes real input data from stabilization graphs, where
quasi-discrete continuum energy levels are plotted as a function of a parameter, which
gradually makes the employed basis functions more diffuse. Thus, input data is obtained
from standard quantum chemistry packages, which are routinely used for calculating
molecular bound electronic states. The method simultaneously provides the resonance
positions (energies) and widths (decay rates) via analytical continuations of real input data
into the complex plane (via the Padé approximant). RVP holds for isolated resonances (in
which the energy-gap between resonance states is smaller than their decay rates). We
focus also on the ability to use an open-source “black-box” code to calculate the
resonance positions and widths as well as other complex electronic properties, such
as transition dipoles.

Keywords: resonances, ab-initio, electronic structure, stabilization graph, analytical continuation, RVP

1 INTRODUCTION AND MOTIVATION

1.1 Resonances in Chemistry
Resonances are perhaps one of the most striking phenomena in chemistry [1, 2]. Molecules in
metastable states (so called resonances) have enough energy to ionize or dissociate but do not do it
right away. They have finite lifetimes and decay to the products which can be electrons, ions and
radicals. The decay rates can vary from case to case and can be different by many order of magnitudes
and there may be several open decay channels.

Let’s consider the following illustrative triatomic (ABC) molecular reaction that occurs on a
ground electronic potential energy surface,

A + BC → ABC[ ]# → AB + C
Or → AC + B
Or → A + BCp.

(1)

Where [ABC]# represents an activated complex that has enough energy to dissociate to several
different products and, BC* is the diatomic molecule BC in an excited ro-vibrational state. This
reaction takes place for a specific collision energy (within a given uncertainty) at which the activated
complex is created in a well defined metatsable state. This metastable state is known as a resonance
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state, as time passes it decays into the reaction products. The
energy of the activated complex above the lowest energy
threshold (i.e., above the minimal energy in which it can
dissociates) is the resonance position, Eres. The decay rate or
width of the activated complex, Γres, is inverse proportional to the
lifetime of the activated complex, where 2πZ is the proportional
parameter. The decay rate, Γres, is a sum over the partial decay
rates into all the possible products. That is,

Γres � ΓAB+C + ΓAC+B + ΓA+BCp.

The difference between the energy of the activated complex in
a resonance (metastable) state and the energies of the different
bound-state energies of the reaction products provide the relative
kinetic energies of the AB + C, AC + B and A + BC* products. The
energy and width of the activated complex and the partial decay
rates can be calculated from a single eigenfunction of the time
independent nuclear Schrödinger equation when outgoing
boundary conditions are imposed [1–3]. Notice that by
imposing outgoing boundary conditions on the non-
equilibrium reaction presented in Eq. 1 will turn the real
physical molecular Hamiltonian into a non-Hermitian
Hamiltonian, as will be explained in details below. The
resonance via Padé (RVP) method, which is the focus of this
review, enables the calculations of the energy and decay rate of
such an activated complex. In principle, also the partial widths
can be calculated by RVP, but the way to do it is out of the scope
of this review.

A second illustration examines the autoionization process in
the helium atom. Helium has an infinite number of discrete
bound states. The bound states of helium are associated with the
ground and singly excited electronic states. Contrary, the doubly-
excited states must ionize after a finite period of time, i.e., these
states are resonance states,

Hepp → He+ + e−. (2)
Let us prove it. The starting point in our proof is to neglect the

electronic repulsion and approximate the energy of a doubly-
excited helium (He**) as,

En1 > 1,n2 > 1 no − repulsion( ) � −Z2 1
n21

+ 1
n22

( )13.6 eV ,

where Z = 2. This value must be lower than the exact energy of a
doubly-excited helium state since the electronic repulsion was
neglected. Therefore, whenever

−Z2 1
n21

+ 1
n22

( )13.6 eV > − Z2 1
n2ion

13.6 eV

ionization takes place, where n1, n2 are the neutral He electronic
levels and nion is the level of He+. This inequality can be
reformulated as,

n21n
2
2

n21 + n22
> n2ion.

The lowest doubly-excited states occur when n1 = n2 = 2, for
which n21n

2
2

n21+n22 � 2, i.e., the energies of these He** states are higher

than the ionization threshold (corresponding to nion = 1). As long
as n21n

2
2

n21+n22 ≤ 4 (corresponding to nion = 2), there is only one open
channel–autoionization decay into the helium cation in its
ground electronic state. In case n21n

2
2

n21+n22 > 4, there will be several
open decay channels involving also excited helium-cation states.
Note that the spontaneous-emission time of He** is longer by
several order of magnitude than the resonance lifetime. The
spontaneous-emission time can be estimated using the
Einstein coefficient for spontaneous emission (A, which is
proportional to the calculated transition dipoles and the
energy differences between the relevant states) [4], where the
emission time is T = A−1. The resonance lifetimes are inverse
proportional to the calculated widths. Therefore, auto-ionization
would dominate the dynamics of He**.

These kind of resonances are referred to Feshbach type
resonances [2] since their energies (for n1 = n2 = 2) are below
their own ionization threshold, i.e., He*+(2s or 2p), but above the
He+(1s) threshold. Thus, Feshbach resonances are associated with
two-electron processes. Therefore, dynamical electronic
correlation, in which one go beyond the mean field (Hartree
Fock) approximation, must be considered. Imposing outgoing
boundary conditions on the electronic solutions of the time-
independent Scrödinger equation makes the electronic
Hamiltonian non-Hermitian, as in the above molecular
dissociation example. Thus, the resonance energy positions
and decay rates of He**, and any chemical systems in
autoionization states, can be immediately obtained from the
eigenvalue spectrum of a non-Hermitian Hamiltonian (see the
next section for more details). Moreover, below we show that
RVP can be used to study the autoionization process in Eq. 2with
great accuracy.

Another type of metastable electronic states are the shape-type
resonances [2], which lay above their own ionization threshold,
therefore they represent a one-electron transition and they can be
obtained within the Hartree-Fock approximation. This is a one-
electron process, in which an electron tunnels through a potential
barrier that results from a mean repulsion potential that
corresponds to all the other electrons. Of course, for accurate
calculations of energies and widths (inverse lifetimes) one should
go beyond the mean field approximation. The simplest examples
for electronic shape-type resonances are the ground electronic
states of the molecular Hydrogen, Nitrogen and CO anions [5, 6].
Notice that in such anionic-resonance cases the decay process is
referred to as autodetachment.

Uracil anion is an example for a biochemical system in which
ionization and dissociation may occur simultaneously.
Attachment of an electron to uracil leads to two types of
electronic resonance anion states. Shape resonances appear as
an electron is attached to one of the unoccupied π* orbitals of the
neutral ground state of uracil. Alternatively, an electron can be
attached to excited states of the neutral uracil, forming an
electronica Feshbach resonances. In addition to the
autoionization process associated electronic resonance states,
also dissociative electron attachment (DEA) processes may
follow upon the creation of a uracil anion. Uracil may
undergo DEA into C3H3N2O

− by eliminating CO and H [7].
These autoionization and DEA process may result in damage to
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the RNA strand. Below we show that RVP can be used in studying
such processes, by calculating the complex energies of the lowest
three shape-type states of the uracil anion as well as the transition
dipoles between them.

All in all, electronic resonances refer to autoionization (e.g.,
Eq. 2) and nuclear resonances refer to a situation in which a
molecule pre-dissociates (e.g., Eq. 1). Notice that autoionization
can become a more complicated and “rich” phenomenon, as in
the case of: Auger [8–11], ICD (interatomic Coulombic decay)
[12–20], ETMD (electron-transfer mediated decay) [15, 20–23],
etc. Nuclear shape-type and Feshbach-type resonances are
described in detail in Chapter 2 in Ref. 1 that is dedicated to
Resonances Phenomena in Nature. Of course, often the decay of
the electron and nuclear resonance states may happen
simultaneously. As for example,

A + BC → ABC[ ]# → AB + C+ + e−.

The RVPmethod, which is described below, is applicable to all
these cases.

1.2 Wavepacket Time-Dependent
Propagation vs. Time-Independent
Stationary Solutions via Outgoing Boundary
Conditions
Let us first briefly explain the motivation to look for such a
comparison. In scattering theory resonances are associated with
wavefunctions or eigenstates of the time-independent
Schrödinger equation (TISE), which only consist of outgoing
waves at the asymptote. The physical reason is clear. The system is
prepared in a metastable state and as time passes it breaks apart
into sub-systems as described above. Solving the TISE with such
outgoing boundary conditions (OBCs) results in a discrete
spectrum with real and complex eigenvalues, which are
associated with bound states and resonances, respectively
[1–3]. Notice that such a spectrum characterizes the non-

Hermitian quantum mechanics (NHQM) formalism, i.e., by
imposing OBCs we turn the QM problem into the NH regime.
The bound state eigenvalues are real and the corresponding
eigenfunctions are exactly as usual (i.e, decay asymptotically to
zero). The resonance eigenvalues are complex, Eres − i

2Γres. The
real part, Eres, corresponds to the resonance energy position, while
the imaginary part, Γres, corresponds to the resonance decay rate
(inversely proportional to the resonance lifetime) [1]. Alas, the
asymptotes of the corresponding resonance eigenfunctions
exponentially diverge. This asymptotic exponential divergent
of the TISE is also obtained by wavepacket propagation
calculations as illustrated in Figure 1A.

This seems to contradict the representation of resonances as
the solutions of the time-dependent Schrödinger equation
(TDSE) known as wavepackets. Since resonances are
embedded in the continuous part of the spectrum they cannot
be described using a single stationary eigenstate. Though, at any
given time of the dynamics, the wavepackets are represented as
superpositions of the (Hermitian) Hamiltonian eigenstates. Thus,
wavepackets by definition are square integrable functions,
i.e., their asymptotes decay exponentially and do not
exponentially diverge.

The answer to this puzzle was given in Refs. [1, 3, 24]: before a
wavepacket decays at the asymptote it actually diverges
exponentially (at very large but finite distance from the
interaction region). Figure 1B illustrates this point at different
dynamic times. The conclusion is quite clear. It is appropriate to
impose OBCs in order to describe a decaying system since the
corresponding solution of the TISE with OBCs also display the
same divergence as the wavepacket solution of the TDSE does.

So which method, out of the two, is recommended for
calculating resonances? The answer is that neither of them can
be recommended for realistic molecular systems. The reason is as
follows: within Hermitian QMwe cannot use the TISE and we are
forced to solve the TDSE; this presents a major numerical
difficulty when considering standard quantum chemistry

FIGURE 1 | (A) Illustration of the asymptotic divergence of the resonance state density for the model potential V(x) � (1 − cosh−2(x))2 exp(−0.05x2) (B) The
probability density of the wavepacket at different times on a logarithmic scale. Note that the region of exponential increase in the spatial domain is expanding with time.
Reprinted from Ref. [3], Copyright (Year), with permission from Elsevier.
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packages for calculating resonance states. Within NHQM, solving
the TISE with OBCs does not allow one to use square integrable
basis sets, which transform the partial differential eigenvalue
problem into a matrix eigenvalue problem, as in the
Hermitian case. Therefore, a practical approach for describing
resonances would be to transform the problem into the NH
regime while retaining the square-integrability of the eigenstates.
Such a procedure (the so-called complex scaling, which is
described in the next section) can be used within many-body
electronic structure formalism.

Let us briefly explain why the asymptote of the resonance
wavefunction diverges exponentially in space but decays
exponentially in time. The time-independent Schrödinger
equation is given by,

Ĥ|ΨE〉 � E|ΨE〉, (3)
where E = Ethreshold + |Zk|2/(2m) and Ethreshold is the ionization/
dissociation threshold energy. The asymptote of an eigenfunction
associated with an above threshold energy and with only one
open decay channel is given by,

〈r|ΨE〉→r → ∞ Aout E( ) e
ikr�
r

√ + Ain E( ) e
−ikr�
r

√ . (4)

The scattering matrix is the ratio between the amplitudes of
the incoming [Ain(E)] and the outgoing [Aout(E)] waves. The
poles of the scattering matrix are complex and the associated
wavevectors take discrete values,

kn � kRen − ikImn � |kn|e−iϕn (5)
when ϕn ≥ 0, for which Ain(En) = 0 (see chapter 4 in Ref. [1]).

Therefore, since

eiknr � ei|kn |r exp −iϕn( )→r → ∞ ∞, (6)
the resonance function is not part of the Hilbert space. That is, it
is not a square integrable function since it exponentially diverges
in space. Due to this spatial behavior the resonance wavefuctions
can not be expanded with a basis set of square integrable
functions, as in the calculations of bound electronic states.
Therefore we need to find out how we can transform the
electronic coordinates such that the resonance wavefunction
will remain square integrable and can be described as a finite
linear combination of square integrable basis functions. As for
example Gaussians which are used in standard electronic
structure calculations.

Now, let’s turn to the exponential decay of the resonance
function in time. The time phase factor

e−iEnt/Z � e−iReEnt/Ze−ImEnt/Z→t → ∞ 0, (7)
where En = ReEn + iImEn (and for resonances ImEn < 0) and the
number of particles is conserved only when ZkRen t � r (for
explanation see Ref. [1] on the coupling of space and time
even in the non-relativistic quantum mechanics framework).
An interesting situation, which demonstrates the decay of the
resonance function in time is presented in Figure 2. When the
initial wavepacket mainly populates the two narrowest
resonances of a model Hamiltonian, which is given in the
caption of Figure 2. As one can see from Figure 2 first the
shorter resonance decays and only then the resonance with longer
lifetime (smaller width) decays. The plot of the log of the survival
probability as function of time gives two straight lines that their
slopes provide the decay rates of the two resonances initially
populated.

1.3 Complex Scaling Transformations in
Order to Calculate Resonances by Methods
Originally Developed for Bound States
It is straightforward to realize that Eq. 6, when r→ reiθ and using
Eq. 5, becomes,

e+iknr exp iθ( ) � e+i|kn |r exp i θ−ϕn( )[ ]→r → ∞ 0, (8)
when θ ≥ ϕn. And since (Eq. 5)

kn � |kn|e−iϕn �
���������������
2m En − Ethreshold( )√ /Z,

the condition θ ≥ ϕn yields,

tan 2θ( )≥ 2Γn
Re En[ ] − Ethreshold

. (9)

Where {En} are the complex resonances energies, Γn = −2Im[En],
m is the mass of the emitted particle (e.g., an electron) and
Ethreshold is the ionization/dissociation threshold energy. For
additional details see Chapter 5.2 in Ref. [1]. In such a case,
the resonance state can be represented as a square integrable
function, thus, it can be expanded in terms of localized basis
functions (such as Gaussians), similarly to a bound state. Upon
such complex coordinate rotation, the Hamiltonian becomes

FIGURE 2 | The survival probability, Pint = |〈Ψ(0)|Ψ(t)〉|2, as a function of
time. The initial Gaussian mainly populates the two narrowest resonances of
the model potential V(x) = (x2/2 + 0.8) exp(−0.2x2). The slope of each line
represents the decay rate of each resonance. The larger slope (of y2) is
the decay rate of the shorter resonance while the smaller slope (of y1) is for the
longer (i.e. narrower) resonance. Reprinted by permission of the publisher
(Taylor & Francis Ltd, http://www.tandfonline.com).
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non-Hermitian and the complex resonance energies are obtained
regardless of the value of the rotation angle θ inside the interval
[θc, π/4]. (The upper limit on the θ interval is also explained in
Chapter 5.2 in Ref. [1].)

This raises the question: is it possible to rotate the coordinate
into the complex plane? If the physical potential is an analytical
function, as in the case of atomic potentials, the coordinates of the
system can be rotated into the complex half lower plane when θc <
θ < π/4. However, the molecular electronic Hamiltonian within
the Born-Oppenheimer approximation is singular at the nuclei
positions and therefore a uniform analytical continuation into the
complex plane by re → ree

iθ is not allowed. This complication
results in different methodologies for tackling this problem. The
rigorous solution to this problem is to chose complex electronic
coordinates that remain real inside an interaction volume, which
include all the molecular nuclei. By that we avoid the singularities
in the electron-nucleus attractive potential terms, and rotate the
coordinate into the complex plane only out of the interaction
volume by using θ. Section 4 presents several methods, which
introduce such complex electronic coordinates that avoid these
singularities. By using one of these complex electronic
coordinates, the non-Hermitian (NH) Hamiltonian, Ĥ(rθe ), is
obtained. This NH operator can be represented using a finite
matrix that is spanned by finite number of Gaussian basis
functions. The non-Hermitian Hamiltonian matrix elements
are given by

Hθ
ζ ,ζ′ � 〈Gζ |Ĥ rθe( )|Gζ′〉, (10)

where {Gζ(re)}ζ�1,2,...N represents a set of Gaussian basis
functions.

Here we are coming to a delicate point which is important
for the RVP method. Rather than computing the complex
matrix elements for a non-Hermitian Hamiltonian operator
[Ĥ(rθe )], we can calculate the complex matrix elements by
keeping the molecular Hamiltonian operator real [Ĥ(re)], as
usual, and use complex transformed Gaussian basis functions
instead. Moreover, since we want to move into the complex
plane outside the interaction volume, we can complex
transform only the diffuse Gaussians of the employed basis
set [25]. To a good approximation, these diffuse Gaussians
span the space outside the interaction volume. Therefore,
transforming only these diffuse Gaussians will transform
only the electronic coordinates outside the interaction
volume. In this case, the non-Hermitian Hamiltonian matrix
elements become

Hθ
ζ ,ζ′ � 〈 G−θ

ζ[ ]p|Ĥ re( )|G−θ
ζ′ 〉,

where the complex diffuse Gaussians are given by [26],

Gζ r−θe( ) � xe − xN( )n ye − yN( )m ze − zN( )l exp −ζη−2 re − rN( )2[ ]( ){ }
ζ�1,2,...N,

(11)
and where η = αeiθ and the electronic vector position is re = (xe, ye,
ze) centered on the nuclei RN = (xN, yN, zN). Notice that one needs
to avoid the complex conjugate in the matrix elements (the so
called c-product, see Ref. [1]) and therefore we get,

Hθ
ζ ,ζ′ � 〈G+θ

ζ |Ĥ re( )|G−θ
ζ′ 〉. (12)

Examining the NH Hamiltonian matrix elements, one can see
that going into the complex plane can be made even simpler.
From Ref. [27] we know that the Hamiltonian matrix elements,
unlike the operator itself, can be analytically dilated. Therefore,
one does not even have to use complex diffuse Gaussians to
obtain these matrix elements. Instead, one can calculate these
elements as a function of the parameter η but with θ = 0,
i.e., calculate the matrix elements as a function of α. Then,
analytically dilate this parameter into the complex plane by
substituting η = αeiθ. In other words, to simplify things further
and avoid the use of complex diffuse Gaussian basis functions,
one can use real diffuse Gaussian basis functions, which
depend on the real parameter, α, and then make this
parameter complex by taking θ ≠ 0. Doing so, one can
obtain the NH matrix elements by using real functions and
the real Hamiltonian.

Needless to say that even this kind of simplification is not
straightforward to apply and requires the modifications of the
standard (Hermitian) quantum chemistry packages, which
include variety of ab-initio methods (based on MP (Møller
Plesset perturbation theory), CI (configuration interaction),
CC (coupled cluster) and more.

Here we are coming to the new approach we developed, in
which we take one step further in the analytic continuation
direction and replace the analytic dilation of the Hamiltonian
matrix elements with that of a single eigenvalue. A proof of this
point is given in the next two sections. Obviously, there is a
great numerical advantage to analytical continuation of a
single eigenvalue over an N × N matrix elements, where N
is the number of basis functions employed. Since the Padé
approximant (see Section 2.2) is used for the analytical
continuation the method is know as Resonance via Padé
(RVP). There are additional numerical advantages to RVP.
Standard NHQM methods commonly work directly in the
complex plane in order to calculate the resonance eigenvalue
[6, 25–40]. RVP belongs to a subgroup of methods,
which move into the NHQM regime via analytical
continuation [41–44] It is based on the stabilization
technique [45–49], where the real energy levels are plotted
as a function of a parameter (α as denoted above) that
controls the diffuseness of the Gaussian basis functions (see
details in Section 2.1). The stabilization calculation, which is
computationally the most demanding step, is followed by a
very “cheap” analytical continuation step [50] (see Section 3).
Therefore, analytical-continuation methods that are based on
the stabilization technique hold two distinct advantages:
First, Matsika and co-workers showed that the computation
time required by the stabilization technique is an order of
magnitude lower than the time required by a NHQM approach
that works literally in the complex plane [43]. Second, the
versatility in generating the stabilization graph opens the door
for various applications. That is, stabilization graphs can be
calculated using any standard quantum chemistry packages,
with any existing Hermitian electronic structure method, see
for example Ref. [44].
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1.4 Proof of Concept for the Resonance via
Padé Method for Small Hamiltonian
Matrices
In this section we explain the concept behind the RVP method
and its connection to the analytical continuation of the real
Hamiltonian matrix elements (HMEs); we stated above that in
order to calculate resonances in the complex plane one can
analytically dilate the real HMEs into the complex plane. This
means that in order to calculate resonances one needs to obtain
the matrix elements as a function of a real parameter, α.
Therefore, the characteristic polynomial for this matrix will
also depend on α, and in turn the solution of this polynomial
will also depend on α. The solution of this polynomial is in fact
the eigenvalue (energy level) that we are looking for. We conclude
that if the real Hamiltonian matrix elements can be analytically
dilated into the complex plane, also the eigenvalues can be dilated
into the complex plane. Further details are given below.

Thus, one can avoid the numerical diagonalization of a non-
Hermitian complex matrix and replace it with Hermitian
electronic-structure calculations that yield real eigenvalues,
which can be dilated into to complex plane. Similarly, one can
carry out dilation into the complex plane and obtain complex
properties other than the energy, such as complex dipole
transitions and other properties that are calculated as
expectation values. This is because the eigenvectors can be
expressed as a linear combination of the HMEs, therefore we
claim that they also depend on α, and can be analytically dilated
into the complex plane. Thus, one can avoid the numerical
calculations of the eigenvectors of the non-Hermitian complex
matrix, and obtain complex energies and expectation values by
analytical continuation.

Unfortunately, closed form expressions of the eigenvalues and
eigenvectors as function of the HMEs are known only for small
Hamiltonian matrices, i.e., less than 5 × 5. Namely, such closed
form expressions are known only for Hamiltonian matrices
constructed from two, three or four basis functions.
Nevertheless, we can use the Padé approximant in order to get
closed form expressions for the eigenvalues and expectation
values for relatively large matrices, which are typically used in
electronic structure calculations. However, before going into the
procedure for large and finite analytical expressions (that are
required for actual chemical problems) we want to establish the
proof for the small dimensional matrices.

Let us show it for the simple 2 × 2 Hamiltonian matrix. The
HMEs are function of a real scaling parameter η, where we chose
η = αeiθ with θ = 0. The eigenvalues are given by

E± η( ) � H11 η( ) +H22 η( )
2

±
1
2

�������������������������������
H11 η( ) +H22 η( )( )2 + 4H12 η( )H21 η( )√

.

It is clear that if the HMEs are known analytical functions of η,
one can dilate them into the complex plane by substituting
complex values for η → αeiθ with θ ≠ 0. Then, analytically
calculate the stationary points in the complex plane (to satisfy
the complex variational principle as described in Ref. [1]). The
stationary points are associated with the resonance complex
eigenvalues, where Re[E±] are the energy positions and − 2Im

[E±] = Γ are the widths. Similarly, the real dipole transitions can
be expressed as function of a real scaling parameter,

D+,− η( ) � Ψ†
+ η( )[ ]Td η( ) Ψ− η( )[ ].

For the 2 × 2 real Hamiltonian matrix case the vectors [Ψ±(η)]
are analytically obtained as function of the real HMEs. The

components of the eigenvectors
[ψ±(η)]1[ψ±(η)]2( ) are given as

usual by,

ψ± η( )[ ]1 � H12 η( )
E± −H11 η( ) ψ± η( )[ ]2

where

ψ± η( )[ ]21 + ψ± η( )[ ]22 � 1.

Thus the complex dipole transitions can be associated with
stationary solutions in the complex plane obtained by analytic
dilation of D+,−(η) into the complex plane.

Similar expressions can be derived for the 3 × 3 and 4 × 4 cases.
However, for larger matrices we shell use the Padé
approximant in order to get closed form expressions for the
eigenvalues and dipole transitions as a function of (a real) η.
And then, carry out the analytical continuation into the
complex plane and look for stationary solutions, which are
associated with the resonance positions and widths or the
complex dipole transitions, as detailed in Section 2 and
Section 3.

1.5 Resonance via Padé for a Large and
Finite Sized Hamiltonian Matrix
In the above section we saw that complex resonance eigenvalues
and dipole transitions can be obtained by analytical continuation
from real eigenvalues and dipole transitions, which are obtained
from standard (Hermitian and real) calculations. However, this
analysis is limited to small number of basis functions (<5) for
which we have closed form analytical expressions. The extension
of this approach to large matrices, i.e., to large number of basis
functions, requires the use of a numerical scheme to describe
either {Ej(η)}j�1,2,..,N or {Dj,j′(η)}j,j′�1,2,..,N by a closed form
analytical expression. One such scheme is based on the Padé
approximant, in which the energy and dipoles are expressed as a
rational fraction of polynomials,

Ej η( ) ≈ ΣNp

p�0aj,pηp

ΣNq

q�0bj,qηq
(13)

and,

Dj,j′ η( ) ≈ ΣMp

p�0cj,j′,pηp

ΣMq

q�0dj,j′,qηq
. (14)

The main question is from where do we get the data from
which we will fit the coefficients in the above expression. The
answer to this question is that we take it from stabilization graphs,
see Section 2.1 for more details.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8540396

Landau et al. The RVP Method

177

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Other questions we need to answer are:

(Q1) How to select the initial real data points from the
stabilization graphs?

(Q2) How to select the Np, Nq or Mp, Mq parameters of the
polynomials?

(Q3) How to optimize the real approximated polynomial
expansions, i.e., the aj,p, bj,q or cj,j′,p, dj,j′,q coefficients,
to the ab-initio stabilization calculations?

(Q4) How to locate the stationary solutions in the complex
plane, which are associated with the resonance positions
and widths or with the complex transition dipoles?

These questions are answered in Section 2 (specifically
Section 2.2), which discusses the RVP formalism in details.

2 THE RESONANCE VIA PADÉ
METHOD—RESONANCE VIA PADÉ IN
PRACTICE FOR LARGE HAMILTONIAN
MATRICES

2.1 Real Stabilization Graphs
As mentioned above, our new approach to introduce non-
Hermiticity and obtain resonances is by analytic dilation of
eigenvalues from the stable part of a stabilization graph into
the complex plane. Since we use the Padé approximant as our
analytical continuation method, we call our new approach
Resonance Via Padé, RVP. This approach, unlike uniform
complex scaling, uses standard, Hermitian, calculations to
obtain the resonance position and width, and does not modify
the Hamiltonian.

In the RVP method, as a first step, the energy spectrum is
calculated using Hermitian codes as a function of a generalized box
quantization parameter, E(α) where α = η (with θ = 0 and η = αeiθ).
For example, the eigenvalues can be calculated as a function of the
number of basis functions (BFs) [45] or when finite given BFs are
scaled by a real factor [47, 48, 51]. In practice, to scale the BFs by a

real factor, one can use Gaussian base functions and divide the
exponents of the Gaussians by the real factor α (see Eq. 11).
Calculating the energy spectrum with these BFs will produce E(α).
Note that in this case, α < 1 will cause the spatial distribution of the
Gaussians to compress, and α > 1 will cause it to expand. Therefore,
we typically employ the range: 0.6 < α < 2.0.

In such calculations, when continuously increasing α, the
discrete energy levels of the quasi-continuum spectra are
highly affected (i.e., lowered). Resonance states, unlike the
delocalized quasi-continuum states are much less affected by
small variations of α [1, 52], since resonance states are typically
much more localized in the interaction region, see Figures 3.5 and
3.6 in Ref. [1]. Therefore, while quasi-continuum states
significantly change as α is varied, resonance states remain
relatively stable. This is why a graph portraying E(α) as
function of α around the resonance energy is named a
stabilization graph, as illustrated in Figure 3A.

In such a graph, an energy level crossing is expected between
the highly affected delocalized quasi-continuum states and the
stable resonance energy. However, since states with the same
symmetry cannot cross each other in the adiabatic representation,
avoided crossings are obtained in the graph. In these avoided
crossings, a transition from a localized state to a delocalized
quasi-continuum state occurs. Therefore, the avoided crossings
are associated with branch points (BPs) in the complex energy
plane (see chapter 9 in Ref. [1]). Consequently, E(α) is not an
analytic function of α.

Nevertheless, while the avoided crossings correspond to a
mixing between two functions: a localized function and a
delocalized quasi-continuum function, the stable part of the
stabilization graph, in between two avoided crossings,
corresponds to a single function, localized in the interaction
region. Therefore, the stable part of the stabilization is
expected to be locally analytic, while the avoided crossings are
expected to be non-analytic. Thus, the stable regions contain all
the relevant information for analytical continuation into the
complex plane. A numerical proof for this point is given in
Refs. [52, 53] and the figures within.

FIGURE 3 | The stabilization graph of the He**(2s2) resonance state, where the real energy level is plotted as a function of a real parameter (α) that controls the
diffuseness of the Gaussian basis functions. The plot illustrates the different steps within the automated RVP algorithm. (A)Calculated (black circles) and interpolated (red
squares) data points. (B) The interpolated stable region produced by step 1 of the automated RVP algorithm (green diamonds) that serves as input for the Padé/
Schlessinger point method.
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This is how the RVP approach avoids the non-analytic parts in
the stabilization graph. In this approach, a single energy level,
obtained from the stable part of the stabilization graph, is
analytically dilated using the Padé approximant. Namely, the
stable part of the stabilization graph, which has a smaller slope
than the unbound energies [46], is fitted as a function of a real
scaling parameter to a ratio between two polynomials (like
Eq. 13):

E α( ) � P α( )
Q α( ). (15)

where P(α) and Q(α) are polynomial functions of a real
scaling parameter, α. As the focus of the analytic continuation
scheme is not on the avoided crossing regions, but rather on the
stable part of the stabilization graph, excellent results are obtained
[50, 53].

2.2 Resonances by Analytical Continuation
of the Padé-Schlessinger Method Into the
Complex Energy Plane
As previously explained, the stable part of the stabilization graph
is expected to be locally analytic. Yet this is not all, this stable
region is also known to contain information on the resonance
lifetime. It has already been shown by Hazi and Taylor. [46], that
the slope of the stable region is related to the width of the
resonance. That is, as the resonance width increases the slope
of the stable part increases. Furthermore, as shown in Section 3.4
in Ref. [1] (and Figures 3.4–3.8 wherein), one can even estimate
the resonance width by analysing the localized function that is
associated with the stable region’s eigenvalues. In this case, the
width is proportional to the square of the ratio between the
normalized amplitude of the function out of the interacting
region and in the interaction region. So, the stable region in a
stabilization graph contains enough information on the
resonance lifetime and all the relevant information for analytic
dilation into the complex plane.

Therefore, it is clear why this region should be used if one
wants to carry analytical continuation to the complex plane and
gain insight on the resonance lifetime. In other words, the answer
to Q1 in Section 1.5 is clear - the initial real data points from the
stabilization graphs one needs to use is the data from the stable
part of the stabilization graph.

Indeed, as a second step in the RVP method, data from the
stable region is analytically dilated into the complex plane using
the Padé approximant (Eq. 15) in order to locate stationary
points (SPs), resonances. In Ref. [53], an analytical path from the
stable region towards a complex stationary point is shown. This
path goes between the BPs and bypass them. This is an additional
proof that using Padé, one can always remain on an analytic path
in the complex plane that goes towards a stationary point. Notice
that the existence of such a path results from the use of a finite
basis set, which are always used in any electronic-structure
calculation [53].

In practice, within the RVP method, an analytic Padé function
is fitted using the Schlessinger point method [54] to data from the

stable region. The Schlessinger point method requires a set of M
data points (αi) and their corresponding eigenvalues (Ei), and
then the Schlessinger truncated continued fraction assumes the
following form:

CM α( ) � E η1( )
1 + z1 α−α1( )

1+ z2 α−α2( )
..
.
zM−1 α−αM−1( )

, (16)

where the zi coefficients need to be determined recursively such
that

CM αi( ) � E αi( ), i � 1, 2, . . . ,M. (17)
This truncated continued fraction can be transformed to a

Padé like form (Eq. 15). Thus, by choosing to use the Schlessinger
point method for the Padé approximant, one obtains
automatically from the data points, all the information on the
Padé function, namely the answers to Q2 and Q3 in Section 1.5
above. Q2 deals with the degree of the polynomials in the Padé
function, and Q3 deals with their coefficients. Clearly, both are
determined by the data set itself satisfying Eq. 17.

Once the zi coefficients are determined, and Eq. 16 is
completed, an analytic continuation into the complex plane is
performed. This is done by substituting a complex η, instead of α,
i.e. η = αeiθ with θ ≠ 0. Then, SPs, resonances, can be identified by
generating α- and θ-trajectories and looking for cusps in the
complex plane [52, 55]. Alternatively, SPs can be identified by
solving the algebraic equation dE

dη � 0 [52]. While solving an
algebraic equation is easier than looking for cusps in the
complex plane, the SPs found by solving the algebraic
equation are not necessarily associated with resonances [52].
This means that if we solve the algebraic equation some SPs
are unphysical. Therefore, to identify the resonance energy and
lifetime, we use a clusterization technique described in Ref. [50] as
the final step of the RVP method. In practice, we generate Eq. 16
for different input sets, where all sets are taken from the stable
region. This way we get a large number of SPs by solving the
algebraic equation for each set. The SPs depend on the input
points chosen for the analytical dilation, where as mentioned,
some SPs are also unphysical. The physical SPs should not
depend strongly on the variation of the input data, unlike the
unphysical ones. Therefore, we examined the SPs by statistical
distribution and look for clusters of SPs obtained from different
input data. The mean value of the cluster is reported as the
resonance complex energy. In this way, we finally answer Q4 in
Section 1.5 above: We understand that we locate the stationary
solution in the complex plane, by solving the algebraic equation
dE
dη � 0 for many input sets, and by using a statistical clusterization
technique.

To sum up, by using the RVPmethod, analytic continuation of
a single eigenvalue level into the complex plane can be employed,
provided that the input data is taken from the stable region of a
stabilization graph since it is a local analytic region. Therefore, we
can divide the RVP method to three steps. In the first step the
stable region data is fitted into a Padé/Schlessinger function and
dilated into the complex plane. An analytic path from the stable
region to the complex SPs, which avoids any of the BPs, exist
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when a finite basis set is employed. In the second step, the SPs are
located using the algebraic equation dE

dη � 0, for different input
data sets. Then, as a final step, the clusterization technique locates
the physical complex resonance values out of the total SPs.

3 AUTOMATIC CALCULATIONS OF
RESONANCES BY THE RESONANCE VIA
PADÉ METHOD: THE “PUSH OF A BUTTON
APPROACH”

Based on all the knowledge we have reviewed in this body of
work, and all the knowledge we have accumulated throughout the
years on the RVP method, recently we were able to take the next
step in implementing the RVP method, and produced an
automated RVP package (https://pypi.org/project/automatic-
rvp/). This package, given a stabilization graph from other
Hermitian computations, is able, in the click of a button, of
automatically calculating the resonance energy and width and
presenting it with the relevant statistical data. Doing so, the
package goes through three steps:

1. Recognizing the analytical part of the stabilization graph.
2. Constructing RVP approximation for different inputs.
3. Running statistics.

In the first step, the package is given a stabilization graph
produced by other Hermitian computations, and its goal is to
recognize the analytical, stable, part of the graph. Practically, the
package gets as input the α values as the x variables, and the real
energy values (E) as the y variables, f(x), (black circles in
Figure 3A).

At first, the package interpolates the data between min(α) to
max(α) through the makima interpolation [56–58], and estimates
the y values of equally distributed x values. The number of these x
values is 40% of the initial α values, and they are ranging from
min(α) to max(α). In this point, we have two sets of data: the
initial set of α and E values (black circles in Figure 3A), and the
interpolated set of x and y values (red squares in Figure 3A). The
interpolated set aim is to portray the structure of the function f(x)
in a general form, without any focus on small deviation in the
original data.

Next, the package identifies the stable region of the
stabilization graph. It does so by looking for two consecutive
data points in the interpolated set, which have the smallest
numerical slope between them. Afterwards, the slope between
this couple and all the other data points in the interpolated set is
calculated. Then the package looks for all the data points in the
interpolated set that are adjacent to the couple and have a slope
value between 70% and 130% of the original slope found. If the
number of points that meet this criterion is more than or equal to
10, the package proceed to the next stage and sets the range
between the min(x) found and the max(x) found as the x range
corresponding to the analytical, stable, part of the stabilization
graph. If the number of points is less than 10, the package looks
for two other consecutive data points in the interpolated set,

which have the second smallest numerical slope between them,
and so on.

In the next stage, the package checks the number of α values it
has in the x range it found. If the number is smaller than 25, the
package produces an error message. If not, the package estimates
through the makima interpolation, the y values of equally
distributed 25 x values in the range it found. These 25 x
points and their y values are considered as the analytical,
stable, part of the stabilization graph (see the green diamonds
in Figure 3B). The aim of this stage is to avoid overfitting of data,
therefore the data is interpolated over the range of x found in the
previous stage.

In step 2 of the package, the data is divided into all possible
subset containing between 8 and 25 consecutive data points. Each
subset is fitted to a Padé approximant, which is stored as a
symbolic function [59]. This symbolic function is later derived to
find the SPs. Convergence of the SPs is checked with respect to the
number of input points (M from Eq. 16 and 17), and the
difference between CM(η) and CM−1(η) is reported as the error
of the SP [53]. At the end of this step, all of the SPs, with their α, θ
and error values, are collected.

In step 3 of the package, the collected SPs are first screened:
SPs with more than 25% error in their imaginary energy part are
thrown out. The number of SPs left is termed n. Later, the
collection of SPs is normalized in the real and imaginary
energy axes. This stage aims to an equal distribution of SPs
for every problem, so the next stage in the package can be
problem-independent.

In the next stage, the packages looks for clusters according to
the DBSCAN algorithm [60]. This algorithm requires two
parameters: ϵ which is the maximal distance between 2 core
points of the cluster, and minPT which is the minimum number
of points required to form a cluster. In our case, minPT is the
minimum between 100 and 8% of n, and ϵ is varied in iterations
between 0.001 and 5 in leaps of 0.001.

In every iteration, the clusters are screened, and all of the
physical clusters are evaluated and graded between 1 and 3, based
on their size and standard deviation. The higher the grade is, the
better the cluster is: We are looking for a cluster as big as possible,
with the smallest standard deviation possible. All the clusters,
together with their grades are stored. In the next iteration, ϵ is
raised, and the newly found physical clusters are graded. This
time, the clusters are compared to the stored clusters. Any cluster
that was upgraded, is deleted from the storage and is saved with
the new data and grade. Any new clusters with a grade of 1 or 2 is
also stored. All the other clusters are thrown away, and then ϵ is
raised again in iterations, until it reaches a value of 5.

At the end of this stage, the package reports all the stored
clusters with a grade 3 or 2. In addition to the cluster mean real
energy and mean imaginary energy, the package presents the
following statistical data: the cluster grade, the real energy
standard deviation, the imaginary energy standard deviation,
the imaginary energy coefficient of variance, the mean α value,
the α standard deviation, the mean θ value, the θ standard
deviation, the ϵ in which the cluster was found, the size of the
cluster and the size of the cluster in percentage relative to n.
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Of course, all of these steps are transparent to the end user, and
given the stabilization graph, one gets, at the push of a button, a list
of clusters containing the resonance mean energy and width and the
above statistical data. Additionally, the user is also presented with
the stabilization graph, on which the chosen stable part is marked.
Yet, it is important to note that the package is also modular, and the
user can change every parameter marked in bold in the above
description. Furthermore, the user can choose, if desired, to run all
the steps together or to run only some step individually.

4 THE EQUIVALENCE BETWEEN
RESONANCE VIA PADÉ AND OTHER
NON-HERMITIAN METHODS IN
CHEMISTRY

RVP belongs to the group of methods that operate within the
non-Hermitian (NH) quantum mechanics (QM) formalism [6,
25–40]. Other NH methods that are considered herein are:
complex scaling, complex basis function and reflection-free
complex absorbing potential. The equivalence between the
different methods is illustrated below by comparing the
complex electronic coordinate, which are obtained by RVP
and by the other NH methods. Notice that these complex
electronic coordinate remain real inside the interaction region
as discussed in Section 1.3 above.

The most straightforward approach for studying resonances is
complex scaling (CS) [1, 2]. In this approach the coordinates are
rotated into the complex plane, i.e., the method is associated with
a contour of integration that is rotated into the complex plane.
The scaling can be uniform or partial. Uniform scaling is
associated with a uniform complex contour (UCC), in which
�r → rη

→ � η �r for any value of | �r|, where �r is the electron coordinate
vector and η = αeiθ is the complex scaling parameter (θ and α are
the rotation and stretching real parameters). Partial scaling is
associated with a smooth exterior complex contour (SECC). In
contrary to atomic calculations, for which it is suitable to use a
UCC, in molecular calculations, the contour of integration should
take into account the singularity in the Born-Oppenheimer
Hamiltonian. A SECC avoids the singularity points in the
Coulombic potential terms of the molecular Hamiltonian (see
discussion in Section 1.3). In addition, using a SECC reduces the
number of basis functions (BFs) required for describing the
interaction region [26, 51]. The imaginary part of the SECC is
as close as one wishes to zero in the interaction region and beyond
some critical point in the coordinate space �r → η �r. The SECC
smoothly detaches from the real axis into the complex plane
around | �r| � r0; see for example Ref. [61] for an explicit
expression. The SECC is the analytical (smooth) form of the
exterior complex contour of integration. This contour can be
represented in spherical coordinated as rη

→ � �r for | �r|< r0 and
rη
→ � �r

| �r| [r0 + η(| �r| − r0)] for | �r|> r0 (regardless of the
symmetrical properties of the molecular potential, as long as r0

FIGURE 4 | (A) A schematic representation of a uniform (x0 = 0) and exterior (x0 = 6) complex contours of integration for calculating the non-Hermitian Hamiltonian
matrix elements (Reprinted from Ref. [2], Copyright (1998), with permission from Elsevier). (B) and (C) presents smooth exterior complex contours from numerical
calculations using (B) CBF (Reprinted (adapted) with permission Ref. [62]. Copyright (2016) American Chemical Society) and (C) RVP (Reprinted (adapted) with
permission Ref. [63]. Copyright (2021) American Chemical Society), as described in the text.
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is sufficiently large). Figure 4A presents such a (one-dimension
r → x) complex contours of integration for the uniform (x0 = 0)
and exterior (x0 = 6) cases.

Another approach for studying resonances is to augment the
physical Hamiltonian with a complex absorbing potential (CAP)
in order to guarantee that the asymptotes of the resonance
eigenfunctions decay to zero. However, the CAP must be a
reflection-free CAP (RF-CAP) in order to perfectly absorb and
avoid generation of reflections, which temper with the description
of the resonance wavefunction in the interior region [61]. If the
CAP is not a RF-CAP one should remove the artificial effect of the
CAP on the solutions of the time-independent Schrödeinger
equation. Note that it is challenging to remove this effect
within the framework of finite basis set calculations, however,
schemes for such a removal can be found in Refs. [6, 64, 65]. The
RF-CAP, on the contrary, is a perfectly absorbing potential, which
avoids the reflection problem by definition. Importantly, the
absorbing potential introduced within the RF-CAP method, is
derived from a complex contour of integration, specifically, using
a SECC. Therefore, the equivalence between CS and RF-CAP
emerges directly from the construction of the absorbing
potential [61].

Alternatively, it is possible to use complex basis functions
(CBFs), i.e., complex Gaussian functions [25, 26, 38, 39]. Within
the CBF approach one can carry out analytical continuation of the
Hamiltonian matrix elements (as discussed in Section 1.4), in
which the Gaussian exponential parameters are scaled by e−2iθ

(and fixing the stretching parameter α = 1). CBF can be used
uniformly, if all the Gaussian basis functions are scaled by the
complex factor, or partially, if only the diffuse basis functions are
scaled. Importantly, the CBF method is also associated with a
complex contour of integration [62, 63]. Such a complex CBF
contour can be obtained by diagonalizing the matrix of the one-
particle coordinate operator �x that is represented by the
employed basis set in the electronic-structure calculations
(whose matrix elements were continued into the complex
plane). It was shown that there is a correlation between
uniform CBF and UCC and between partial CBF and SECC
[62, 63], Figure 4B presents a partial CBF contour of integration
(i.e., a SECC). It is calculated using an even-tempered Gaussian
basis set, where the diffused functions are analytically dilated into
the complex plane. The even-tempered Gaussians basis set is
given as, {xne−ζkx2 }n�0,1, k�0,1,...,kmax

with ζk � ζ0ϵk−10 meaning, ζ0 >
ζ1 > ζ2. . .. And for ζk < ζth, ζk → ζke

−2iθ, where ζth is a threshold
parameter. Diagonalizing the �x matrix yields the eigenvalues of
the coordinate operator, {xk}k�1,2,.., which represent the grid
points that corresponds to the complex contour of integration.
The CBF complex coordinate contour in Figure 4B is obtained
using ζth = 0.1, kmax = 41, ζ0 = 1000 ϵ0 = 1.4125 and θ = 0.25.
Moreover, Eqs 10, 12 demonstrate a mathematical equivalence
between the uniform-CBF and uniform-CS methods for one-
center Gaussian functions.

RVP is conceptually equivalent to CBF, however here the basis
functions are scaled by a real parameter η = αeiθwith θ = 0. Again,
the scaling can be done uniformly, such that all the basis functions
are scaled, or partially, in which only the diffuse basis functions
are scaled. Calculating the RVP complex contour is done in two

steps. First, the contour is obtained in a similar fashion to CBF,
but here the contour lay on the real axis. Next, by dilating it into
the complex plane we obtain the complex RVP contour. We do it
in a similar manner to the analytical continuation employed in
RVP for the energies (see details in Section 2.2), but unlike the
energy case here we substitute into the fitted Padé function the
scaling parameters that yield the resonance energy,
i.e., ηres � αreseiθres . In Ref. [63] it was shown that partial
scaling within RVP is associated with a SECC, whereas
uniform scaling is associated with a UCC. Figure 4C presents
a partial scaling RVP radial contour of integration (i.e., a SECC).
This contour is associated with the electronic 1s22p3s1P
resonance state of beryllium. The cutoff parameter used for
the partial scaling of the employed 14s14p5d basis set is αth =
0.15. The αres = 0.873 and θres = 0.579 values that corresponds to
the resonance energy, are also used in generating the contours.

The ability to associate a complex coordinate contours for CS,
RF-CAP, CBF and RVP suggests similarities between these
NHQM methods. The rationale behind this is that all these
NHQM methods introduce, indirectly, outgoing boundary
conditions to the many-electron problem, which manifests in
a complex contour of integration.

5 RESONANCE VIA PADÉ: CALCULATIONS
OF RESONANCE POSITIONS, WIDTHS AND
COMPLEX DIPOLE TRANSITIONS FROM
STANDARD-HERMITIAN QUANTUM
CHEMISTRY PACKAGES

Belowwe present several illustrative applications of RVP for atomic
and molecular systems. Atomic helium, the triplet Van-der Walls
3He*−H2 supermolecule, and the RNA base uracil anion. Helium
was chosen as a benchmark due to the availability of extremely
accurate reference complex energies and transition dipoles.
3He*−H2 was chosen since it illustrates the remarkable
agreement of the theoretical RVP calculations with the cold-
collision experimental results. Moreover, while the excited
helium is in the 3S state (in the He(3S,1s2s) + H2 collision) the
agreement between the calculated and measured reaction rates
where not so sensitive to the accuracy of the calculated resonance
width. However, for the He(3P,1s2p) + H2 case the agreement
between theory and experiment were obtained only for accurate
calculations of the width. The agreement between the quantum
RVP calculations and the cold-chemistry measurements illustrates
the capabilities of our method. The uracil anion example illustrates
the ability of RVP in carrying out NHQM ab-initio calculations for
many-electron many-atom molecules with biological interest.

5.1 Benchmarking of the Resonance via
Padé Approach for Complex Energies as
Well as for Complex Dipole Transitions
5.1.1 Complex Energies–Positions and Widths
In previous studies RVP was benchmark by examining several
small-to medium-size chemical systems for which there exist
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reliable and accurate experimental data or theoretical values.
These systems include the doubly-excited Feshbach states of:
helium (multiple states) [50, 53], H− (2s2) [53], beryllium
(1s22p3s1P) [63] and H2 (1Σ+

g(1σ2u) at 1.4 and 2.0 Bohr) [50].

In addition the shape-type 2Π resonance state of N−
2 at the

equilibrium distance of the neutral system, RNN = 1.0975 Å
[50]. And the energy positions and decay rates of the
three lowest π* shape-type resonances of the uracil anion [66].
Finally, the reaction rates of the [He(3S,1s2s) + H2] and
[He(3P,1s2p) + H2] collisions [67, 68]. Comparison of these
RVP calculated results to available values from literature was
successful. Some of these benchmarking are presented below.

One of the best system for studying autoionization is the
doubly-excited He** atom (Eq. 2) since exact calculations
(i.e., converged non-relativistic energies) are available [69–72].
In addition, very accurate complex transition dipole values that
can be used as a reference have been reported [73]. Helium is a two

electron system, hence it is possible to calculate its resonance
positions and widths using full configuration interaction (FCI)
and complex scaling (CS) with a very large and highly optimized
one-electron basis set (ExTG5G), these CS/FCI/ExTG5G [36, 73]
energies are in perfect agreement with the exact ones [69–72]. From
the electronic structure point of view FCI involve no
approximation, therefore comparing our FCI/RVP with the
reference FCI/CS allows for a pure comparison between the two
non-Hermitian methodologies. Furthermore, there are several
doubly-excited He** resonance states, which allows examining

FIGURE 5 | The RVP complex energies (ReE+iImE) of the doubly excited
Feshbach He** states contrasted with the exact values, in mHartree. These
energies are also presented in Table 1. The RVP energies are in remarkable
agreement with the exact ones. Reprinted (adapted) with permission
Ref. [50]. Copyright (2019) American Chemical Society.

TABLE 1 |Multiple complex energies of the doubly-excited He** Feshbach states;
RVP vs. exact values. These values are also represented graphically in
Figure 5. Reprinted (adapted) with permission Ref. [50]. Copyright (2019)
American Chemical Society.

State ReE, mHartree ImE, mHartree

RVP Exact RVP Exact

12s2 −777.7858 −777.8676a −2.246 −2.271a
32s2p −760.4625 −760.4906b −0.151 −0.1495b
12p2 −701.5648 −701.946c −1.244 −1.181c
12s2p −692.8821 −693.1349d −0.698 −0.687d
12p2 −621.1877 −621.9273a −0.120 −0.108a

aRef. [70].
bRef. [72].
cRef. [69].
dRef. [71].

TABLE 2 | Complex transition dipoles of helium in milli-atomic units. The state
labels in the first column corresponds to the labels in Figure 6. The reference
values refer to a very accurate results obtained by complex scaling (CS) and full
configuration interaction (FCI) with a very large (ExTG5G) basis set [36, 75]. The
RVP transition dipoles are calculated using two type of truncated ExTG5G
basis sets, where Basis-I is larger than Basis-II. Reprinted (adapted) with
permission Ref. [74]. Copyright (2020) American Chemical Society.

Transition Reference Basis-I Basis-II

Reμ Imμ Reμ Imμ Reμ Imμ

1↔6 35.4 +12.11 34.88 +12.44 35.99 +12.99
2↔6 313.0 −3.598 313.0 −3.021 313.1 −4.136
3↔4 −123.1 −2.554 −122.8 −2.403 −125.5 −2.367
3↔5 328.8 +0.193 326.8 +0.140 321.4 +0.119
3↔7 −192.5 +0.3475 −192.4 +0.3571 −192.4 +0.2619
4↔6 1522.7 −9.73 1528.9 −10.24 1529.3 −10.79
5↔6 1705.45 −3.767 1704.42 −4.030 1693.6 −4.499
6↔7 −2161.4 −1.007 −2163.4 −1.164 −2167.5 −2.570

FIGURE 6 | A schematic representation of the atomic helium energy
levels. The singly and doubly excited states correspond to bound and
resonance states, respectively. There are three bound states (at the bottom of
the figure) and four resonance states (at the top). The left-hand side
shows the spectroscopic atomic term symbols, which are associated with the
index lables (shown on the right-hand side). The red double arrows represent
the dipole allowed transitions, these eight complex dipoles are presented in
Table 2. Reprinted (adapted) with permission Ref. [74]. Copyright (2020)
American Chemical Society.
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the performance of RVP in case of multiple resonances; that is, we
tested the reliability of the computed energy difference between
resonance states. Therefore, it is also suitable for examining the
quality of the RVP transition dipoles between resonance states.

The five lowest doubly-excited resonance states of He** are
calculated and compared with the exact values [69–72].
Clearly, from Figure 5 and Table 1 the RVP energies are in
remarkable agreement with the exact ones. Notice that this
agreement is further improved by increasing the size of the
basis set used within the RVP calculations, as presented in
Ref. [74].

5.1.2 Complex Transitions Dipole
Table 2 presents the complex dipole transitions between different
electronic states of helium. The transitions shown on the left
column correspond to the labeling presented in Figure 6. Since
these dipoles involve transitions from bound or resonance states
always into a resonance state they become complex in accordance
with the non-Hermitian theory. The reference values in Table 2
corresponds to very accurate theoretical values obtained by a CS/
FCI with a very large ExTG5G basis set, see Refs. [36, 75] for
details. These values can be regarded as exact since ExTG5G is
highly-extended and optimised even for treating highly excited
helium Rydberg states. In order to calculate the RVP transition
dipoles we use two different basis sets, Basis-I and Basis-II. They
are obtained by truncating the ExTG5G basis set, i.e., by omitting
the most diffuse basis functions (which are essential for studying
highly excited Rydberg states). Basis-I is a more extended basis set
than Basis-II. Both basis sets yield good agreement with the
reference CS values. For the real part of the transition dipoles,
Reμ, RVP is converged since the difference between Basis-I and
Basis-II is very small, nevertheless the agreement of Basis-I
with the reference values is better than that of Basis-II. For
the imaginary part of the transition dipoles, Imμ, Basis-I
clearly works better than Basis-II. Seven out of the total
eight transitions calculated with Basis-I are in better
agreement with the reference values than the Basis-II
results. For the eighth transition, from the 2nd to the 6th
states, both Basis-I and Basis-II give the same error with
respect to the reference value. Since the RVP complex
transition dipoles are in agreement with the very accurate
FCI/CS/ExTG5G dipoles and since the trend of the results with
respect to the size of the basis set behave as expected, we

conclude that the RVP approach is suitable for calculating
electronic properties other than energies.

5.2 Complex Potential Energy Surfaces for
3He*−H2 Penning Ionization Reaction
The calculated RVP complex potential energy surfaces (CPESs)
that are presented below play a crucial role in the interpretation
and analysis of the reaction rates (RRs) measured in cold
molecular collision.

5.2.1 He(3S,1s2s) + H2

Herein, we present investigation of the following molecular
reaction:

He(3S,1s2s) + H2 → [He*−H2] → He(1S,1s2) + H+
2 + e−,

which allows direct comparison with the experimental results.
Thus, it can be considered as an additional benchmarking of RVP.
This particular Penning ionization process was studied
experimentally at very low temperatures [76]. That is,
experimental cold-chemistry RRs are available. RR calculations
require the CPES of the He*−H2 supermolecule, which is
obtained from the RVP complex eigenvalues as a function of
the geometrical configuration of this system. The sensitivity of

FIGURE 7 | Schematic representation of the He*−H2 supermolecule.
Reprinted (adapted) with permission Ref. [67]. Copyright (2017) American
Chemical Society.

FIGURE 8 | Potential energy curves of the neutral-excited (He(3S,1s2s) +
H2, in blue) and cation (He(1S,1s2) + H+

2, in green) systems at ϕ = π/2. Energies
are in Hartrees and the intermolecular separation in angstroms. The excited
(blue) state is approximated as bound state in the continuum, i.e., using
standard Hermitian formalism. In addition, decay rates are presented
schematically by red arrows (according to the RVP results presented below).
The intensity of the red color reflects the decay rate from the neutral-excited
state to the cation state, where stronger intensities indicate higher decay
rates. Enlarging the region around 6 �A, see inset, reveals a shallow well. The
experimental observation of the autoionization process is associated with this
region [81]. Reprinted (adapted) with permission Ref. [67]. Copyright (2017)
American Chemical Society.
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such a quantum process to the CPES structure poses a challenge
to any state-of-the-art ab-initio calculations since autoionization
becomes more pronounced as the temperature decline.

The computational details are: the real PES and the
stabilization graphs are calculated with the equation-of-motion
coupled cluster (EOM-CC) method with singles, doubles, and
perturbative triples corrections [EOM-CCSD(dT)] [77]. The 1S
ground state of He–H2 is the reference configuration used to
calculate the target 3S resonance state. For the basis set we use the
primitive 5ZP set [78]. The hydrogenmolecule is treated as a rigid
rotor with a fixed distance, r0 = 0.74085 Å. The distance R varied
over a wide range, while the angle is restricted to ϕ = 0 and ϕ = π/
2. See Figure 7 for the definition of these parameters. Using these
two angles we can expressed the CPES, E(R, ϕ), as a power series
(in cosϕ). See Ref. [67] for additional details.

Figure 8 displays the real potential curve (blue) for the He* −
H2 supermolecule at ϕ = π/2 (T-shape). In addition, it shows a
schematic representation of the RVP decay rates using red arrows
(the actual RVP calculations are presented below), where a darker
shade corresponds to a faster decay, and a lighter shade to a
slower decay. The autoionization state decays into the potential
energy curve of the cation ground state of the supermolecule
(green). The cation surface represents the ionization threshold for
this autoionization process. The area of interest, in which the
autoionization was observed experimentally [76], is shown as
inset in Figure 8. A shallow potential well is exposed, which could
be overlooked on larger scale, see the black rectangle on the blue
curve in Figure 8. The depth of the well for the T-shape and linear
(not shown here) geometries is around 2.87 × 10–5 and 5.012 ×
10–5 Hartree (6.3 and 11 cm−1), respectively, which emphasizes
the need for a highly accurate CPES.

The CPES is obtained by recalculating the RVP complex
energies at each molecular configuration. That is, calculating
at different distances, R at for both T-shape and linear

geometries. The position [ReE(R, ϕ)] and decay rate [Γ(R, ϕ) =
−2ImE(R, ϕ)], for the T-shape geometry of He*−H2 are presented
in Figures 9A,B, respectively. From Figure 9A it is clearly seen
that the depth of the potential well remains unchanged after
analytic continuation. Thus, the approximation of the resonance
as bound state in the continuum is justified, however this
approximation does not provide the decay rate of the
resonance state. The calculated RVP decay rate, Figure 9B, is
fitted into a single exponential curve (or linear in logarithmic
scale, see inset). The Penning ionization decay rate is associated
with a single exponential function [79]. Therefore, we conclude
that the autoionization process under study corresponds to a
Penning ionization. A similar behavior was also observed for the
complex potential of the linear geometry (not shown).

Next, the ab-initio RVP CPES was used to compute the RRs
for the above collision with ortho- and para-hydrogen
molecules. The CPES is represented as a truncated
interaction potential [E(R, ϕ) → V(R, ϕ)], which is expressed
as a power series (in cos ϕ) [67]. Then, we solve the nuclear
time-independent Schrödeinger equation with V(R, ϕ) for the
metastable and cationic product. The nuclear eigenvalues and
eigenfunctions of the metastable state and product state were
integrated into the scattering theory to compute the RRs. The
computing of the RRs were done by using the non-Hermitian
time independent scattering theory (see derivation given in
Chapter 8 of Ref. [1] and references therein) within the
framework of the adiabatic approximation first derived for
cold molecular collisions in Ref. [80].

Figure 10 presents the RRs calculated with the RVP CPES and
measured by the cold-chemistry experiment. The experimental
curves is in blue and our theoretical findings in red, we observe
excellent agreement for both the para-H2 and ortho-H2 cases.
Notice that our results are within the experimental uncertainty,
see Ref. [67] for details. In addition, the theoretical RRs are

FIGURE 9 | The RVP complex potential energy surface in T-shape (ϕ = π/2) geometry of He(3S,1s2s) + H2. The real part is presented in panel (A), where the inset
zooms into the shallow well. The orange curve (the real part (ReE(R)) of the complex RVP curve) and the black curve (the approximated Hermitian calculations) are in
agreement. The imaginary part, i.e., the decay rate (Γ(R) = −2ImE(R)), is presented in panel (B). The decay rate fits into a single exponential curve (see inset in logarithmic
scale), which confirms that this autoionization is a Penning ionization [79]. Reprinted (adapted) with permission Ref. [67]. Copyright (2017) American Chemical
Society.
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calculated in an ab-initio fashion without any fitting parameters,
where only the Planck’s constant, charges, and masses of the
electrons and nuclei were used as input parameters. It
demonstrate the accuracy of the calculated CPES, which allows
interpretation of the observed resonance phenomena. Finally, it
illustrates the universality of the RVP approach in calculating
CPESs and reaction rates for any many-atom system in any decay
process.

The RVP reaction rate [67], in red, is in excellent agreement
with the experimental one [81], in blue. The theoretical results are
computed using the RVP ab-initio complex potential energy
surface, without using any fitting parameter. Adopted from
Ref. [67].

5.2.2 He(3P,1s2p) + H2

In an additional cold chemistry experiment, structures in the
measured RRs, associated with resonances, were reported in a
collision between the ground-state hydrogen isotopologues (H2/
HD) with helium atoms, but now, in an excited triplet
P-state [82]. That is:

He(3P,1s2p) + H2 → [He*−H2] → He(1S,1s2) + H+
2 + e−.

A theoretical explanation of the appearance of these
structures was not given. However, in Ref. [68] we presented
a quantum ab-initio calculation that interpreted this
experiment. This emphasis the need for proper CPESs, in
which the real and imaginary parts are computed at the
same level of theory.

The RVP CPESs were calculated using the two of the most
symmetric orientations of the supermolecule, ϕ = 0 and ϕ = π/2,
i.e., with H2 perpendicular and parallel to the collision trajectory.
The computational details are similar to the ones given in the 3S
case. The linear configuration give rise to one Σ and one Π states
since He is in a P state. Whereas, the T-shape configuration
display the C2v point group symmetry and give rise to three
potentials with A1, B1, and B2 symmetries. Therefore, five
different potential curves are obtained. Figure 11 present these
complex potentials, where the real parts (ReE(R)) are presented in
Figure 11A, showing three attractive and two repulsive curves.
The imaginary part is shown in Figure 11B, where each decay
rate curve fits into a single exponential curve (or liner in
logarithmic scale). This suggests that this autoionizations are
Penning ionizations [79]. B1, which has the most attractive
potential (with about 4800 K depth at 2Å) and also has the

FIGURE 10 | The reaction rates for the He(3S,1s2s) + H2 collision. Panel (A) for H2 in its rotational ground state (para) and (B) in its first excited state (ortho). The
peaks are associated with nuclear resonances of the He*−H2 supermolecule. Reprinted (adapted) with permission Ref. [67]. Copyright (2017) American Chemical
Society.

FIGURE 11 | The RVP complex potential energy surface of He(3P,1s2p) + H2 in T-shape and linear geometries. The real part (ReE(R)) is presented in panel (A). The
decay rate (Γ(R) = −2ImE(R)) is presented in panel (B) in logarithmic scale. Reprinted (adapted) with permission Ref. [68]. Copyright (2019) American Chemical Society.
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highest decay rate (in black), is the dominated potential in the
reaction rate calculations, as discussed below.

Next we identify these CPESs as the interaction potentials in the
nuclear Hamiltonian [E(R, ϕ) → V(R, ϕ)], again, expressed as a
power series (in cosϕ), see Ref. [68] for details. The RRs were
calculated using the solutions of the nuclear time-independent
Schrödeinger equation. The experimentally measured RRs found
that the Penning ionization product weight is 90% at all collision
energies [82]. Therefore, we assumed that Penning ionization
dominated the whole process. The theoretical Penning-ionization
RR obtained for the He(23P) + H2 system is shown in Figure 12.
Notice that H2 is in the ground (J = 0) para state of the rotational
levels. It is possible to recover pure para-hydrogen in a cold-collision
experiment, which makes the para-H2 an exciting molecular species
to study. The figure compares the theoretical RR (in blue) with the
experimental one (in black) for the temperature range of 0.01–100 K.
In addition, we also report the RR for the He(23P) + HD(J = 0) case,
it is behavior is nearly identical to the He(23P) + H2(J = 0) case.
Finally, the Langevin power law is shown (in red dashed line), which
scales as E1/6. The Langevin power law was calculated with a
coefficient value of 122a.u. [82]. Notice that the RVP calculations
do not include any external scaling or fitting parameter. Our results
are in good agreement with the experimental RRs over the entire
temperature range. The theoretical reaction rate reproduces the
experimental structure also below 1 K. At this temperature a
transition from the classical to the quantum domain occurs.

In the experimental work [82], the authors had related their
theoretical reaction rate on the long range Van der-Waal’s
interaction, where the potential scales as 1/R6. Moreover, they

claimed that the entire reaction rate would be controlled by the
classical Langevin power law. However, based on our ab-initio
quantum calculations, a clear transition from this “classical” regime
to the quantum region is observed. Specifically, the RR of He(23P) +
para-H2 behaves as the power law at the asymptote for relatively
high temperatures. However quantum effects become dominant
below 1 K. This can be seen very clearly in Figure 12 as a sharp
drop in the RR coefficient. Above 1 K (i.e., above this drop) the
classical power law can be used in order to predict the RR. But
below 1 K, the classical explanation completely fails and the RR
coefficients are governed by quantum laws.

Notice that the RR can be reproduce using only the T-shape B1
potential but to achieve a quantitative agreement with experimental
date the entire CPESs need to be considered. The asymptote (R→
∞) of the collision coordinate is the entry channel of the reactants.
At the asymptote all the five potential are degenerate, therefore we
expect that all states will contribute. However, the B1 state alone
dominated the collision process. The B1 potential is the most
symmetric, it has the deepest well, i.e., lowest in energy, and it
has the fastest decay rate, see Figure 11. Thus, the majority of the
reactants will populate B1 and the collision is along this particular
adiabatic surface, see Ref. [68] for additional details.

5.3 Resonances of Uracil Anion
5.3.1 Complex Energies–Position and Width
Resonance (metastable) states can be generated, for example, by
an absorption of slow electrons by neutral nucleobases in their
ground state. It was suggested that such resonance states play a
key-role in DNA or RNA damage [83]. In this section, we present
an ab-initio investigation, using RVP, of the uracil anion. We
present, for its three low lying shape-type resonance states the
positions and decay rates. We also present the calculation of the
complex transition dipoles between these metastable states. These
electronic properties are a prerequisite for a future ab-initio light-
matter interaction study. Notice that this is the first application of
RVP to a medium-size system.

The presented results are converged with respect to the size of
the one-electron basis set. Since polarized basis functions appear
to be essential we consider the Dunning’s basis sets. We find that
it is necessary to employ the triple-ζ basis set, cc-pVTZ. However,
additional diffuse functions are mandatory, by systematically
adding these on top of the cc-pVTZ basis set we conclude that
cc-pVTZ+2s2p2d is the optimal basis set. Where two diffuse
functions with s, p and d angular momentum are added to the cc-
pVTZ set of each atom, while for the hydrogens we use aug-cc-
pVTZ. The stabilization graphs of the three uracil anion shape-
type resonance states, at the EOM-EA-CCSD/cc-pvTZ+2s2p2d
level, are presented in Figure 13.

Table 3 presents the converged RVP results compared with the
most recent theoretical results. These studies include the Generalized
Padé Approximation (GPA) approach that is also based on the
stabilization technique [42, 43], and complex absorbing potential
(CAP) added to the symmetry-adapted cluster-configuration
interaction (SAC-CI) approach [84]. We observe the same trend
for all the recent theoretical results (presented in Table 3). This is
encouraging since earlier studies [85–88] presented a wide range of
values for the positions and widths.

FIGURE 12 | The reaction rates for the He(3P,1s2p) + H2 collision. The
theoretical reaction rate is shown in blue and the experimental one in black
dots with error bars over a temperature range of 0.01 K till 100 K (For the
isotopic collision we use cyan and gray for the theoretical and
experimental rates, respectively.) The ab-initio theoretical results (based on the
RVP complex surfaces) are in agreement with the experimental reaction rates
also in the low temperature region (< 1 K). The red dashed line is the
theoretical Langevin power law (E1/6). The power law matches well with the
reaction rate till 0.8K, below this temperature it fails and cannot explain the
observed drop. Reprinted (adapted) with permission Ref. [68]. Copyright
(2019) American Chemical Society.
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5.3.2 Complex Transition Dipoles Between the Uracil
Anion Resonances
Complex dipole transitions between the lowest shape-type
metastable states are computed using the energy-converged,
cc-pVTZ+2s2p2d, basis set. The RVP procedure for calculating
complex dipole transitions is illustrated in Figure 14 for the 1π*

↔ 2π* case, i.e., between the 1st and 2nd shape-type states. The
energy stabilization graph for these states is presented in
Figure 14A. We highlight (in black) an area for which there is
an overlap between the two stable regions. This overlap region in
parameter space corresponds to a “macroscopic stability” in the
dipole transition graph, Figure 14B. It is an analytic region, in
which the change in the values is relatively small, in the current
case less than 10% of the dipole value itself. The “macroscopic
stability” idea was defined for situations in which the variational
principle does not hold [92]. In such cases and, unlike the case of
energy stabilization graphs, the behaviour of the continuum
states that are scaled by a parameter is not well defined. In the
energy stabilization graphs case, the energy of a continuum state
will always decrease as α (the real scaling parameter) increases,
i.e., as the space spanned by the basis set is increased. Contrary,
in transition dipole calculations the dipole can either decrease
or increase. Therefore, in the dipole transition case one obtains
different shapes of stabilization graphs, as in Figure 14B,
additional dipole stabilization plots can be found in the
supporting information in Refs. [66, 74].

FIGURE 13 | (A) Stabilization (energy) graphs for the uracil anion. This is an EOM-EA-CCSD/cc-pVTZ+2s2p2d calculation. Circles represent the input data for the
RVP method, which is taken from the stable region. (B–D) zoom into the stable part that corresponds to the 1π*, 2π* and 3π* states, respectively. Reprinted from Ref.
[66], with the permission of AIP Publishing.

TABLE 3 | Energy positions (Er) and widths (Γ, in parenthesis) of the lowest three
shape-type resonances of uracil anion calculated using RVP and compared
with other theoretical works. Adopted from Ref. [66].

Er(Γ), eV

1πa 2πa 3πa

RVPb 0.597 (0.014) 2.183 (0.140) 4.858 (0.657)
GPAa 0.61 (0.02) 2.28 (0.07) 4.98 (0.34)
CAPc 0.57 (0.05) 2.21 (0.10) 4.82 (0.58)

this work, EOM-EA-CCSD/cc-pVTZ+2s2p2d.
aEOM-EA-CCSD/aug-cc-pVDZ+1s1p1d [89, 90].
bthis work, EOM-EA-CCSD/cc-pVTZ+2s2p2d.
cSAC-CI/cc-pVDZ+2s5p2d [91].
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Technically, the complex dipole transitions are calculated in a
similar manner to the procedure for calculating the complex
resonance energies [74]. Input data for fitting a Padé
polynomial function are taken as the points marked in black in
Figure 14B. Once in possession of a Padé function, analytical
dilation into the complex plane is allowed. Next, one search for SPs
clusters, i.e., complex dipoles are identified using the clusterization
technique [50]. The results, i.e., the complex dipole transitions
between the three low-laying resonance states, are given inTable 4.
Notice that the real part dominant the three dipole transitions,
where the imaginary part corresponds to about 1% of it or less.

6 SUMMARY

The RVP (Resonance via Padé) method and its applications have
been described. The method enables the calculations of complex
eigenvalues and energy surfaces associated with resonance states
with finite lifetimes, also know as metastable states. Moreover, RVP
allows calculations of other complex electronic properties, such as
complex dipole transitions and moments. As illustrative numerical
applications we present the calculations of: multiple doubly excited
helium resonance states and the transitions between them, the
3He*−H2 cold collision, and uracil anion (an RNA nuclear base).

Since RVP is based on the stabilization technique, the complex
properties are computed from real eigenvalues and real dipole
transitions obtained from standard (Hermitian) quantum

chemistry packages. The transition from the real axis into the
complex plane is done by analytical continuation, specifically
using the Padé approximant. The rational, mathematical logic
and the methodology of RVP are presented here.

The ability to calculate ab-initio energies and lifetimes for
small to medium-size systems (even with biological relevant)
opens the door for investigating reactions of such molecules
in which autoionization takes place. While the ability to also
compute their complex dipole transitions enables
investigating photo induced dynamics of such biological
molecules.

Moreover, we describe an open-source code, which can
be used as a “black box” to calculate complex physical
properties from real input data with the RVP method. For the
automatic code see (https://pypi.org/project/automatic-rvp/).
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FIGURE 14 | (A) Stabilization (energy) graphs for the 1π* and 2π* resonance states of the uracil anion. The black squares represent the overlap region (in the energy)
between the two electronic resonance states. (B) Stabilization (dipole transitions) graphs for 1π*↔ 2π*. The black points corresponds to a stable part on the graph, which
has the same α-range as the overlap (energy) region. These points are used as input within RVP. This is n EOM-EA-CCSD/cc-pVTZ+2s2p2d calculation. Reprinted from
Ref. [66], with the permission of AIP Publishing.

TABLE 4 | Complex dipole transitions (in a.u.) between the three lowest shape-type resonances of the uracil anion calculated with RVP. Electronic-structure method: EOM-
EA-CCSD. Basis set: cc-pVTZ+2s2p2d. Reprinted from Ref. [66], with the permission of AIP Publishing.

Reμ Imμ Reμ Imμ Reμ Imμ

1π* ↔ 2π* 1π* ↔ 3π* 2π* ↔ 3π*

5.089e-01 −3.599e-03 8.782e-01 −6.017e-03 8.204e-01 −1.628e-02
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