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Editorial on the Research Topic

Biomarker Detection Algorithms and Tools for Medical Imaging or Omics Data

Biomarkers are characteristics that can be objectively detected and assessed and can be used as
indicators of normal biological processes, pathological processes, or pharmacological responses to
therapeutic interventions. In the clinical aspect, biomarkers play a crucial role in the early diagnosis
and classification of diseases, the judgment of disease degree, test of treatment effect, and prevention
of disease. Therefore, some biomarker detection algorithms based on statistical models and artificial
intelligence models have been constructed. However, there are still many issues in the existing
algorithms, especially the high-performance algorithms to detect biomarkers of complex disease,
such as cancer.

Traditional biomarker detection methods based on manual experimental methods are compl ex,
inefficient, and costly.With thewide application of sequencing technology and digital imaging technology
in biomarker detection, digital multi-omics data and medical images can be obtained rapidly and
massively, providing the possibility for systematically detecting the characterization of disease,
pathological causes, and data basis for algorithm-based automated biomarker detection. It is
particularly important to combine multi-omics data with medical imaging, design algorithms that
can efficiently identify biomarkers, discover more valuable biomarkers, and through the systematic
combination of these new technologies and traditional biotechnology systems, ultimately provide a
research basis for researchers, and doctors. However, how the construction of novel biomarker detection
algorithms and identification of high-performance and robust biomarkers are still challenging problems.

In order to further promote the development of biomarker detection algorithms and develop
more innovative algorithms, we proposed this Research Topic, which provided a platform for
collecting recent discoveries in new feature extraction and feature selection algorithms for machine
learning and deep learning models based on medical imaging and/or omics (genome, transcriptome,
epigenome, proteome, and metabolome) data.

In structural biology and computer science, the image processing step is to traditionally cluster 2D
cryo-electron microscopy (cryo-EM) images according to projection angle. Lei and Yang designed a
new model, cascade of denoising autoencoders (CDAE), which was an efficient cryo-EM image
denoising model. The model consisted of stacked deep neural network blocks that progressively
reduced noise. When comparing state-of-the-art image denoising methods with significantly
enhanced clustering results, they achieved a very competitive peak signal-to-noise ratio.
Furthermore, the quantification and visualization of CDAE showed good noise reduction
performance in clustered single-particle cryo-EM images.
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Conventional computed tomography (CT) is an important
imaging technique for establishing disease diagnosis. Huang and
Lu provided a case report using CT findings and histopathological
features of primary liver carcinosarcoma (PLC). CT scans and
three-stage enhanced scans were performed on the patients.
Pathological features were analyzed. They concluded that the
CT features observed in this study were very beneficial for the
diagnosis of PLCs.

In recent years, exploring the diagnostic value of CT imaging
and radiomics features in diseases has become a hotspot (Feng
et al., 2022). For the classification of lung adenocarcinomas
presenting as ground-glass nodules (GGNs) on CT, Zheng
et al. studied 312 GGNs. Univariate and multivariate logistic
regression was used to establish clinical models, minimum
redundancy maximum relevance, least absolute shrinkage, and
selection operator (LASSO) algorithms were used to select
radiomics features, and construct radiomics models. A
combined nomogram was developed based on the combined
model and evaluated using its calibration curves and concordance
indices. They found that the area under the curve (AUC) value
was higher in both models compared to the individual clinical or
radiomic models. They claimed that the nomogram served as a
non-invasive and accurate predictive tool to help judge the
aggressiveness of GGN before surgery and to help clinicians
develop personalized treatment strategies.

It is well known that ultrasonography is an important step in
ultrasound-guided diagnosis and treatment, but it is difficult to
develop an ideal segmentation method due to strong imaging
artifacts. Wu et al. proposed a novel boundary-guided multi-scale
network to improve the performance of breast lesion
segmentation in ultrasound images based on a feature pyramid
network (FPN). First, they developed a boundary-guided feature
enhancement module to enhance the feature maps of each FPN
layer by learning the boundary maps of breast lesion regions.
They then devised a multi-scale scheme to exploit information
from different image scales to deal with ultrasound artifacts. The
segmentation results were then generated by fusing the fine and
coarse segmentation maps to accurately segment the breast lesion
area from the ultrasound image and effectively remove the false
detections due to boundary feature enhancement and multi-scale
image information. Finally, they found that their results
outperformed state-of-the-art methods.

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a
complex multifactorial disease with significant public health
concerns, but its pathogenesis is still unclear. Noncoding
RNAs have been reported to be promising biomarkers for
various diseases. Among them, circular RNAs (circRNAs) are
associated with inflammatory diseases. Therefore, Yu et al.
studied the expression of circRNAs and microRNAs
(miRNAs) in the CRSwNP group and control group. The
biological functions of predicted abnormally expressed
circRNAs and miRNAs were verified by qRT-PCR using Gene
Ontology enrichment analysis and Kyoto Encyclopedia of Genes
and Genomes pathway analysis. Differentially expressed
circRNAs and miRNAs between CRSwNP and controls were
found. Among them, the altered expressions of hsa-circ-0031593
and hsa-miR-145-5p are the strongest evidence for involvement

in the occurrence and development of CRSwNP, as their AUCs
were higher than other molecules tested in this study.

In diabetic patients with and without ischemic stroke,
Abdelaleem et al. found high expression levels of LINC00657
and miR-9 in serum and significantly lower serum miR-106a in
the diabetic patients without stroke compared to the control
participants. They claimed that serum noncoding RNAs (TUG1,
LINC00657, miR-9, andmiR-106a) might serve as potential novel
biomarkers for stroke in diabetes. Their research may reveal new
therapeutic targets for treating diabetic patients with stroke.

Multi-omics data are often measured to enrich the
understanding of the biological mechanisms of certain
phenotypes. However, due to the complex relationships and
high dimensionality of multi-omics data, it is difficult to relate
omics features to certain biological features of interest. Below are
some diseases that use multi-omics data/methods for biomarker
discovery.

Hepatocellular carcinoma (HCC), the third leading cause of
cancer-related death worldwide, is a heterogeneous tumor with a
complex tumor microenvironment (TME). TME refers to the
microenvironment formed by immune cells and their products in
tumor tissues (Fu et al., 2019). Bai et al. constructed a novel risk
scoring model with prognostic value to elucidate the tumor
immune microenvironment of HCC. ESTIMATE algorithm,
single-sample gene set enrichment analysis (GSEA), and
CIBERSORT analysis were used to reveal the characteristics of
the HCC tumor immune microenvironment. After multiple
analyses, four glycolysis-related long noncoding RNAs
(lncRNAs) were obtained. The risk scores constructed with the
four lncRNAs were found to be significantly associated with the
prognosis of the patients. Besides, the risk scores were
significantly correlated with immune scores, immune-related
features, infiltrating immune cells (such as B cells), and key
immune checkpoint blockade (ICB) molecules (such as
CTLA4). Furthermore, they showed that MIR4435-2HG had a
significant effect on the overall survival of the samples and was
strongly associated with ICB treatment in HCC patients.

On the other hand, increasing evidence suggests that the
abnormal expression of autophagy-related genes (ARGs) plays
an important role in the occurrence and development of HCC.
Luo et al. studied the ARGs in HCC. They constructed ARG pairs
using ARGs extracted from the Human Autophagy Database and
Molecular Signatures Database. They then developed a
prognostic model based on ARG pairs, using LASSO Cox
regression to assess the prognosis of patients after
hepatectomy. Finally, they combined the signatures with
independent prognostic factors to construct a nomogram.
Based on ARG pair signatures, they could classify patients into
high- or low-risk groups. Survival analysis and receiver operating
characteristic (ROC) curve analysis verified the validity of the
signature (AUC: 0.786–0.828). This model has a more accurate
predictive effect than most HCC prognostic models. Their study
provides evidence for the importance of autophagy in the
occurrence and development of HCC, as well as a potential
biomarker for targeted therapy.

For the poor prognosis of HCC, the development of prognostic
prediction models is of great significance. Zhang et al. have
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identified seven gene signatures associated with pyroptosis
(BAK1, CHMP4B, GSDMC, NLRP6, NOD2, PLCG1, and
SCAF11) to predict the prognosis of HCC patients. They
constructed a novel LASSO Cox regression pyroptosis-related
gene signature that could predict the prognosis of HCC patients.
GSEA analysis further revealed novel signature-related
mechanisms of immune responses in high-risk populations.
Furthermore, they found that the expression of immune
checkpoints was enhanced in the high-risk group, while m6A-
related modifications were differentially expressed between the
low- and high-risk groups.

In addition to autophagy and pyroptosis, recent studies have
identified ferroptosis as a programmed cell death involved in
regulating tumor biological behavior. Song et al. investigated the
association between ferroptosis-related gene (FRG) expression
profile and prognosis in esophageal squamous cell carcinoma
(ESCC) patients based on The Cancer Genome Atlas and Gene
Expression Omnibus (GEO). They developed a novel signature of
FRGs, including ALOX12, ALOX12B, ANGPTL7, DRD4,
MAPK9, SLC38A1, and ZNF419. A prognostic nomogram was
then constructed combining clinical factors and risk scores. Their
study demonstrates that ferroptosis-related features are a factor
independently predicting ESCC risk and their prognostic risk
models can predict ESCC prognosis.

Breast cancer subtypes are well-defined at the molecular level
but difficult to classify using gene expression data. Jung et al.
proposed a multi-omics analysis method, called multi-omics
non-negative tensor decomposition for integrative analysis
(MONTI), which aimed to select multi-omics features that
could represent trait-specific features. They formed a three-
dimensional tensor from the multi-omics data. They found
that MONTI could well explain certain clinical attributes using
multi-omics data. Furthermore, MONTI could detect subtype-
specific genomes that were strongly regulated by certain omics,
from which correlations between omics types could be inferred.

Various technological revolutions have occurred in recent
years. Molecular assays based on transcriptome data are
developing rapidly. Clinically, distinguishing benign from
malignant thyroid nodules is challenging. Yang and Gong
combined five independent transcriptomic studies to
discover genetic signatures between benign and malignant
thyroid nodules. Hundreds of differentially expressed genes
were discovered by feature selection methods and weighted
gene co-expression network analysis was performed to
identify the modules of highly co-expressed genes.
Ultimately, they identified four key genes (ST3GAL5,
NRCAM, MT1F, and PROS1) involved in the pathogenesis
of malignant thyroid.

Single-cell RNA sequencing (scRNA-seq) is emerging as one
of the most powerful tools for uncovering disease complexity.
scRNA-seq performs high-throughput sequencing analysis of
epigenetics, transcriptomes, and genomes at the single-cell
level, with the advantages of high-throughput and high
resolution. The revelation of new cell subsets can focus disease
initiation and progression on specific biological activities of
specific cells. Regarding the complexity of the retina, Ying
et al. reviewed the novel retinal cell subtypes and some

specific gene markers discovered by scRNA-seq. Since the
batch effects in scRNA-seq data are known to remain a
hindrance when integrating disparate datasets, Zou et al.
proposed a new deep learning-based method, deep mutual
nearest neighbor (deepMNN), to correct for batch effects in
scRNA-seq data. They searched for MNN pairs across
different batches in a principal component analysis subspace.
A batch correction network was then constructed by stacking the
two residual blocks and further applied to remove batch effects.
They demonstrated that deepMNN achieved better or
comparable performance in qualitative analysis using uniform
manifold approximation and projection plots and quantitative
metrics (such as batch and cell entropy). Furthermore, deepMNN
ran much faster than other methods for large-scale datasets. With
these properties, deepMNN may be well suited for large-scale
single-cell gene expression data analysis.

Absorption contrast between the terahertz (THz) frequency
range of adipose and cancerous tissue allows the diagnosis of
cancer by THz imaging. Even without external comparisons,
Chen et al. have successfully demonstrated the ability of THz
imaging to measure the volume of small breast cancers in a
subcutaneous xenograft mouse model. They estimated the
volumetric detection limit of a fiber-based THz scanning
imaging system using a highly sensitive cryogenically operated
Schottky diode detector to be less than 1 mm3, thus showing the
potential application of this technique in early cancer diagnosis.

Pulmonary hypertension (PH) affects the normal function of
human pulmonary arteries. Peripheral blood mononuclear cells
are an ideal source for minimally invasive disease diagnosis. Liu
et al. proposed an ensemble feature selection algorithm (EnRank)
to integrate the ranking information of popular feature selection
algorithms, including T-test, chi-squared test, ridge regression,
and LASSO. Using PH patient data, the biomarkers detected by
EnRank provided useful information from these four feature
selection algorithms and achieved very good predictive
accuracy in predicting PH patients.

Epilepsy is a complex chronic neurological disorder that
affects the health of approximately 70 million patients
worldwide. About one-third of people with epilepsy develop
drug resistance. Han et al. performed bioinformatic analysis to
explore potential diagnostic markers and the mechanisms of
drug-resistant epilepsy. Weighted correlation network analysis
was applied to genes in epilepsy patients downloaded from the
GEO database to identify key modules. Genes resistant to
carbamazepine, phenytoin, and valproate were screened using
LASSO regression and support vector machine (SVM) recursive
feature elimination algorithms. Finally, ingenuity pathway
analysis (IPA) was used for disease and functional pathway
and network analysis. They found that the joint analysis
yielded 17 resistance genes to construct a three-class
classification SVM model. ROC analysis showed that the
model could accurately predict patient resistance. Protein-
protein interaction (PPI) revealed that six resistance genes
(CD247, CTSW, IL2RB, MATK, NKG7, and PRF1) might play
a central role in drug resistance in epilepsy patients. Finally, IPA
revealed that resistance genes (PRKCH and S1PR5) were involved
in CREB signaling in neurons.
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PPI networks are critical for predicting essential proteins. The
fusion of multiple biological information can reduce the impact of
false data in PPI, but inevitably generates more noisy data. Zhang
et al. proposed a new non-negative matrix tri-factorization
(NMTF)-based model to predict essential proteins. A weighted
PPI network was first built using the topological features of the
network. The NMTF technique was then performed to
reconstruct the optimized PPI network with more potential
PPIs. A final ranking score for each protein was calculated
using the PageRank algorithm, where the protein’s subcellular
localization and homology information were used to calculate the
initial score. This study demonstrates that introducing NMTF can
effectively improve the condition of PPI network and reduce the
impact of noise on predictions.

The sparse canonical correlation analysis (SCCA) model is a
well-known tool for identifying meaningful biomarkers in
imaging genetics. However, most SCCA models contain only
diagnostic status information, which poses challenges in finding
disease-specific biomarkers. To overcome this obstacle, Ke et al.
proposed a multi-task sparse canonical correlation analysis and
regression (MT-SCCAR) model to reveal disease-specific
associations between single nucleotide polymorphisms and
quantitative traits derived from multimodal neuroimaging data
in the Alzheimer’s disease (AD) Neuroimaging Initiative cohort.
MT-SCCAR used complementary information carried by multi-
perspective cognitive scores and encouraged the population
sparsity of genetic variation. This study used MT-SCCAR to
identify major genetic risk factors for AD, including rs429358.
They found some patterns of association between genetic variants
and brain regions.

Deciphering the effects of epigenetic alterations on regulatory
elements requires innovative computational approaches that can
benefit from massive epigenomic datasets, such as roadmaps or
blueprints. Wang et al. developed a software named Integrative
Ranking of Epigenetic Network of Enhancers to enable
quantitative analyses of differential epigenetic modifications
through an integrated network-based approach. The additive
effects of alterations on multiple regulatory elements of the
gene were considered. Using this tool, the authors have
successfully identified many known cancer genes from publicly
available cancer epigenome datasets.

The omics dataset has high dimensionality, and the relationship
between omics features is very complex. Yao et al. proposed a
method based on integrated swarm intelligence to identify key
biomarkers and effectively reduce the feature dimension. It was
an end-to-end method that only relied on the rules of the algorithm
itself, without presets such as the number of filtered features.
Furthermore, this method achieved good classification accuracy
without excessive consuming computational resources.

With the development of multi-omics algorithms and the
application of artificial intelligence, the automatic
identification and classification of biomarkers have made great
progress and have been widely used in biomarker detection
research (Marshall et al., 2022).
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As an emerging technology, cryo-electron microscopy (cryo-EM) has attracted more and

more research interests from both structural biology and computer science, because

many challenging computational tasks are involved in the processing of cryo-EM images.

An important image processing step is to cluster the 2D cryo-EM images according to

their projection angles, then the cluster mean images are used for the subsequent 3D

reconstruction. However, cryo-EM images are quite noisy and denoising them is not

easy, because the noise is a complicated mixture from samples and hardware. In this

study, we design an effective cryo-EM image denoising model, CDAE, i.e., a cascade

of denoising autoencoders. The new model comprises stacked blocks of deep neural

networks to reduce noise in a progressive manner. Each block contains a convolutional

autoencoder, pre-trained by simulated data of different SNRs and fine-tuned by target

data set. We assess this new model on three simulated test sets and a real data set.

CDAE achieves very competitive PSNR (peak signal-to-noise ratio) in the comparison

of the state-of-the-art image denoising methods. Moreover, the denoised images have

significantly enhanced clustering results compared to original image features or high-level

abstraction features obtained by other deep neural networks. Both quantitative and

visualized results demonstrate the good performance of CDAE for the noise reduction in

clustering single-particle cryo-EM images.

Keywords: cryo-EM, autoencoder, image denoising, clustering, deep learning

1. INTRODUCTION

Recent progress of cryo-electron microscopy (cryo-EM) has revolutionized the field of structural
biology (Cheng et al., 2015). Thanks to this technology, more and more spatial structures of bio-
molecules with nearly atomic-resolution have been solved. In order to obtain the 3D structure of
a macromolecular, a large amount of 2D projection images with various orientations are captured,
processed and averaged for reconstruction. At present, there are some softwares to realize the whole
3D reconstruction process, such as SPREAD (Xie et al., 2020). The whole pipeline involves quite a
few scientific problems with great challenges in computation and algorithms.
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During the preprocessing steps of images before 3D
reconstruction, there are some major computational tasks listed
in the following:

1. Estimation of the contrast transfer function (CTF) induced by
the underfocus issue (Penczek et al., 1997). Specialized image
processing algorithms such as phase flipping and amplitude
correction/wiener filtering can or partially correct the CTF
(Downing and Glaeser, 2008);

2. Automatic particle picking, i.e., recognizing and extraction
of the particles from micrographs. Some popular
software packages, like XMIPP (de la Rosa-Trevín et al.,
2013), provide GUI programs to help pick projection
images semi-automatically;

3. Clustering images by their projection angles. The images
within clusters are averaged for 3D reconstruction, In addition
to the common clusteringmethods such as kmeans, IterVM (Ji
et al., 2018) proposes an iterative clustering model based on
convolutional autoencoder model to solve the single particle
clustering problem in cryo electron microscopy;

4. Identification of structural heterogeneity. The raw images
often exhibit different conformations due to various reasons.
In order to obtain high-resolution structures, different
conformations should be distinguished and classified into
homogeneous groups.

Solving the last two tasks largely relies on unsupervised learning
algorithms, since in the real cryo-EM images, each particle’s
orientation is random and unknown, and the conformation
information is also absent. The clustering result has a substantial
impact on the sub-sequent reconstruction quality, as the
projection images with dissimilar angles will dramatically
decrease the qualities of class average images, which are the
reconstruction inputs. Due to the low electron dose limitation
(to prevent radiation damage), the cryo-EM images usually
have too much noise, leading to extremely low signal-to-
noise ratios (SNRs), which greatly increases the complexity of
particle picking and clustering of images. However, the existing
clustering algorithms are general-purpose methods, few of them
are designed for such low-SNR scenario. Besides, denoising is
not easy for cryo-EM images because the noise is a complicated
mixture from samples and hardware. Therefore, how to reduce
noise and improve the clustering performance has become a
crucial problem for the structure reconstruction.

In this paper, we focus on noise reduction for the clustering
of cryo-EM images. Especially, we design an image denoising
model, CDAE, which is a cascade of denoising autoencoders
to reduce noise in a progressive manner. The model comprises
3 blocks, each of which is pre-trained by a simulated data
set and fine-tuned by the target data set. We evaluate the
performance of the new model on both simulated and real data
sets. The results show that CDAE achieves much higher PSNR
(peak signal-to-noise ratio) than the state-of-the-art denoising
methods, and it significantly improves the performance of
conventional clustering methods compared with the clustering
based on original images or feature representations yielded by
other models.

To summarize, the contributions of this study are two folds:

1. In order to deal with the extremely low signal-to-ratio in
cryo-EM images, we propose a cascade architecture, which
consists of a stack of autoencoders, for denoising in a
progressive manner.

2. In order to address the unsupervised denoising problem,
we propose a two-phase learning strategy, including pre-
training using simulated data and fine-tuning using real
data. The strategy improves the denoising performance of
autoencoders effectively.

2. RELATED WORK

2.1. Autoencoders for Feature Learning
and Denoising
Autoencoder is a kind of unsupervised neural network, which
comprises two parts, namely encoder and decoder. Encoder
defines a parameterized function to extract features while
decoder attempts to reconstruct original data from encoded
features. The basic idea is to extract features through minimizing
the reconstruction error.

Till now, various variants have been proposed to regularize
the model. For instance, sparse autoencoder imposes a sparsity
penalty on the latent layer to enforce sparsity of the features (Lee
et al., 2007; Scholkopf et al., 2007). Instead of adding a penalty to
the cost function, denoising autoencoder (DAE) (Vincent et al.,
2008) attempts to reconstruct the original data from corrupted
ones, which promotes the model to learn more useful and robust
features. Following the DAE, contractive autoencoder (CAE)
(Rifai et al., 2011) adds an analytic contractive penalty, which is
a generalization of DAE. More recently, variational autoencoder
(VAE)(Kingma and Welling, 2014) and adversarial autoencoders
(AAE) (Makhzani et al., 2015) were designed to constraint
the distribution of hidden variables. Most of these models
aim to provide latent feature representations (dimensionality
reduction) for subsequent learning, and some of them have been
directly used for unsupervised clustering. For instance, GMVAE
(Dilokthanakul et al., 2016) models the latent feature distribution
as a Gaussian mixture distribution to cluster the latent vectors,
and AAE could also serve as a clustering method when modeling
the latent variables as a categorical distribution (Makhzani et al.,
2015).

Besides, autoencoders have also been introduced in the
denoising tasks. LeCun and Gallinari (Gallinari et al., 1987;
Le Cun, 1987) pioneered the studies using autoencoders for noise
reduction, and (Memisevic, 2007) designed a gated autoencoders
for denoising. Note that denoising autoencoder (DAE) (Vincent
et al., 2008) gets the name because its inputs are corrupted data,
while its training objective is obtaining robust features rather
than denoising.

2.2. Clustering of Cryo-EM Images
In recent years, various software packages for cryo-EM image
processing have been released, many of which contain the
clustering function. Some of them use k-means based clustering
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algorithm, such as XMIPP (Scheres et al., 2008). The clustering
module of XMIPP is an implementation of CL2D algorithm
(Sorzano et al., 2010), which is a modified K-means method.
CL2D uses cross-entropy as the measurement of image similarity
and proposes a new clustering criterion to address the varied SNR
issue. Another well-known package, Spider (Frank et al., 1996),
implements hierarchical clustering. These methods perform
distance calculation directly using raw images.

Besides the conventional clustering methods, new algorithms
specialized for cryo-EM images have also emerged. Relion
(Scheres, 2012) developed a maximum likelihood (ML) based
approach, aiming to find the optimal probability estimation,
which is more robust to the influence of noise than traditional
methods, but it is incompetent in differentiating subtle structural
heterogeneity. Recently, a new software package ROME (Wu
et al., 2016) was proposed, which introduces a new kind of
clustering method based on statistical manifold learning (SML).
The basic idea is to map the original data space into a
lower dimensional latent space by a non-linear transformation,
and then optimize the parameters by expectation-maximization
(EM) algorithm.

3. METHODOLOGY

3.1. Problem Description
In a basic autoencoder model, the input and target output are
the same; while our goal is noise reduction, thus the input
and target output in our model are different. Let X and Y
denote the sets of original noisy images and target clean images,
respectively. We want to find a mapping function f :X 7→ Y , as

formulated in Equation (3),

z = EC(x), (1)

y = DC(z), (2)

y = f (x) = DC(EC(x)), (3)

where x ∈ X, y ∈ Y , and z is the latent representation. EC is an
encoder, and DC is a decoder.

In a supervised learning scenario, the mapping function f
can be learned from training data, but our task is unsupervised,
because real cryo-EM images have no clean targets. In
order to address this problem, we convert the original task
into a supervised learning problem and adopt a two-phase
learning strategy as shown in Figure 1. First, we pre-train the
autoencoders with simulated paired cryo-EM data, which has the
clean target image for training, and then we fine-tune the model
with real data to transfer knowledge from simulated cryo-EM
data to real data. These two phases are described in sections 3.2,
3.3, respectively.

3.2. Pre-training
Let Xtr and Ytr denote the sets of the corrupted images and target

images of the simulated training data, respectively. And x
(i)
tr ∈ Xtr

is an input image for the encoder, where i ∈ {1, 2, . . . , n} and n
is the number of training images. The parameters, θ = {W, b}
for EC and φ = {W′, b′} for DC, are optimized to minimize the
average reconstruction error as shown in Equation (4),

θ∗,φ∗ = argmin
θ ,φ

1

n

n∑

i=1

L(y
(i)
tr ,DCφ(ECθ (x

(i)
tr ))), (4)

FIGURE 1 | Architecture of CDAE. The algorithm has two phases. In Phase 1, for each block, the autoencoder is pre-trained by using the training data. Then the

learned weights are transferred into Phase 2, where the autoencoders are fine-tuned by test data sets. Note that in Phase 1, the three blocks can be trained parallely,

while in Phase 2, they are fine-tuned sequentially.
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where L is the loss function, such as mean-square-error.

3.3. Fine-Tuning
Let Xte denote the sets of the images of test dataset, i.e., real data,

and x
(i)
te ∈ Xte, where i ∈ {1, 2, . . . ,m} and m is the number of

test images. DC′ and EC′ are pre-trained decoder and encoder,
respectively. The parameters, θ ′ of EC′ and φ′ of DC′, are further
optimized to minimize the average reconstruction error as shown
in Equation (5),

θ
′∗,φ

′∗ = argmin
θ ′,φ′

1

m

m∑

i=1

L(x
(i)
te

′
,DC′

φ′ (EC
′
θ ′ (x

(i)
te ))), (5)

x
(i)
te

′
= DC′

φ′ (EC
′
θ ′ (x

(i)
te )), (6)

where x
(i)
te

′
is the corresponding output of x

(i)
te by using EC′ and

DC′ (Equation 6), and x
(i)
te

′
is the mean image of x

(i)
te

′
averaged

over its neighborhood, which is determined by a certain similarity
metric and a threshold. Since there is no known clean data for test
data, the mean images are used as target output instead. We use
mean images as the targets because images of close orientations
or conformations have similar features, but the noises mostly due
to random events are not similar in these images. Thus the mean
images will weaken the influence of noise and it could be regarded
as a substitute for the target images without noise.

It is worth noting that we use the same data set in the fine-
tuning stage and the test stage. However, in the fine-tuning stage,
we only use the images of the test dataset, but not the targets of the
test dataset. We use the mean images averaged over each image’s
neighbors as the target for training; while in the test stage, we use
images and targets of test dataset to calculate the corresponding
quantitative metrics.

3.4. The Cascade Design
The proposed CDAE model is a cascade of denoising
autoencoders, which aims to reduce noise in a progressive
manner for the images with very low SNR. As shown in Figure 1,
CDAE has three blocks, each of which contains a convolutional
autoencoder. During the pre-training phase, the first block
learns the mapping from the images with a low SNR (SNRlow)
to images with a medium SNR (SNRmid), the second block
learns from data of SNRmid to data of SNRhigh, and the last layer
learns from data of SNRhigh to clean data. Then, we fine-tune the
blocks sequentially from Block 1 to Block 3. The outputs of the
fine-tuned blocks are fed to the next block. Finally, we make a
histogram equalization enhancement to the output images of the
last block. The procedure is described in Algorithm 1.

3.5. Architecture of the Model Components
The proposed CDAEmodel comprises three components/blocks.
Considering the advantages of convolutional neural networks
in representing image features, we build a convolutional
autoencoder in each block. The three autoencoders use the same
parameters as listed in Figure 2. The encoder consists of 3

Algorithm 1: The CDAE Algorithm

Input: The training data sets: Xtr,i(i ∈ {1, 2, 3, 4})a, and the test
data set Xte;

Output: Denoised image X∗
te;

1: Train the three blocks separately and obtain the mapping
function fj from Xtr,j to Xtr,j+1, i.e.,
fj :Xtr,j 7→ Xtr,j+1, j ∈ {1, 2, 3}

2: X1
te = Xte

3: Fine-tune Block 1 and obtain the updated mapping function
f ′1, i.e.,

f ′1 :Xte 7→ f (X1
te)

4: for j ∈ {2, 3} do

5: X
j
te = f ′j−1(X

j−1
te )

6: f ′j :X
j
te 7→ f (X

j
te) (f

′
j is initialized by fj)

7: end for

8: X∗
te = Enhance(f3

′(X3
te))

9: return X∗
te;

a Xtr,1, Xtr,2, Xtr,3 and Xtr,4 denote the training sets with SNRlow,
SNRmid, SNRhigh and no noise, respectively.

modules, each of which contains 2 convolutional layers and a
pooling layer; while the decoder consists of 4 layers, including
3 deconvolutional layers and a convolutional layer. The function
of the last convolution layer is to combine 32 channels into one
channel as output. In order to avoid overfitting, we use dropout
in the encoder and decoder and set dropout rate to 0.5.

4. EXPERIMENTAL RESULTS

4.1. Dataset and Experimental Setup
We collect molecular structure data from the Electron
Microscopy Data Bank (EMDB) at PDBe (Sameer et al.,
2016),and prepare two kinds of data, including the data
simulated by ourselves and real data downloaded from EMDB.
For the simulated data, we extract the 3D structures of 4 proteins
from the EMDB database, whose PDB IDs are 5wth, 5k0y, 5flc,
and 5gjq, and their real structures are present in Figure 3. We
simulate their 2D EM projection images by using the cryo-EM
data processing suitcase software, XMIPP (de la Rosa-Trevín
et al., 2013), which has been widely used in cryo-EM data
processing and protein reconstruction task. In our experiment,
we take the 2D images of 5flc as the training data (for pre-
training the model), and images of the other 3 proteins as the test
data. For 5flc, we simulate images with 4 different noise ratios
(SNRlow, SNRmid, SNRhigh and no noise) and 4 orientations. The
number of images with the same orientation and SNR is 1,000.
Thus, there is a total of 4 × 4 × 1, 000 = 16, 000 pictures; while
for the other 3 proteins, we only simulate the images with SNRlow

at four orientations, thus each of which has 4, 000 pictures. In
addition, the SNRlow, SNRmid and SNRhigh used for simulation
are set to 0.1, 0.4, 0.6, respectively. And, the number of closest
neighbors (k) for obtaining mean images is set to 30.
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Beside the simulated data, we also retrieve a real data set from
EMDB, the cryo-EM images of GroEL (PDB entry 10029), where
the simulation condition is 300 kV acceleration voltage. Since
there is no orientation or conformation information in the data
set, here we only show the visualized results (see section 4.5), i.e.,
the mean images from the clusters of denoised images.

4.2. Evaluation Criteria
In order to assess the new model, we provide both quantitive
results (denoising and clustering experiments) and visualized
results. The measurement of denoising performance lies in

FIGURE 2 | Parameters of the autoencoders in the three blocks of CDAE.

the similarity between reconstruction data and the clean data,
while the clustering performance is evaluated via the following
criteria, F1, Precision, and Recall. The visualized results provide
a comparison between the denoised images and ground truth
structure, which can be observed directly.

4.3. Denoising Performance
We first compare the denoising performance of the new model
with the state-of-the-art denoising methods in terms of PSNR
(peak signal-to-noise ratio), a common criterion for measuring
the denoising quality. The higher the PSNR, the better the
quality of the reconstructed image. In this experiment, we use the
simulated images of 5wth, 5gjq, and 5k0y (SNR = 0.1) as the test
datasets, and compare the PSNR scores obtained by CDAE and
the following 7 methods:

• Filter-based denoising, including NLFMT (Kumar, 2013),
BM3D (Dabov et al., 2008) and PID (Knaus and Zwicker,
2014);

• Sparse coding-based denoising, NCSR (Dong et al., 2013);
• Effective priori-based method, PCLR (Xu et al., 2017)
• Deep learning-basedmethod, DnCNN (Zhang et al., 2017) and

a single denoising autoencoder, namely single DAE, which has
the same model architecture as the autoencoder used in each
block of CDAE.

The results are listed in Table 1, and the denoised images
are shown in Supplementary Table 1. We use histogram
equalization enhancement (HEE) in our method because the
output gray values concentrate in a narrow range and the output
is sparse. Specifically, the gray values of our model outputs
concentrate in a narrow range, and HE can help remap the
gray values to a wider range. HEE is commonly used in signal
processing and does not modify the main property and features
of denoised images. In order to examine the effect of histogram
equalization enhancement, we consider two versions of the 6
existing methods, i.e., with and without HEE. Among the 8
methods, CDAE achieves the highest PSNR on 5wth, which
is the hardest one among the three proteins, because protein
5wth is small and it has no distinct structural characteristics
(as can be seen in Figure 3). For 5k0y, CDAE performs very
close to the best method, NLFMT (8.2143 vs. 8.2640); and for

FIGURE 3 | Structures of the 4 proteins used in our data sets.
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5gjq, CDAE ranks the third place. The histogram equalization
enhanced NLFMT achieves the best results on both 5k0y and
5gjq. However, its HEE version performs not stable, as the
PSNR values decreases dramatically on 5wth. For most of the
methods, HEE leads to reduced PSNRs. Overall, CDEA is a
very competative method compared with the existing image
denoising methods. Also, through the denoised images, we
find that CDAE gets more sparse images than others, thus the
specific structural features will be enhanced. Interestingly, our
cascade model outperforms the single denoising autoencoder
on all the three data sets, indicating that reducing noise
progressively would be a practical strategy for handling
very-low-SNR images.

4.4. Clustering Performance
Since our ultimate goal is to improve the clustering performance,
so as to get better mean images for 3D structure reconstruction,
we cluster the denoised images with some conventional
unsupervised algorithms, i.e., kmeans and hierarchical clustering
(HC), and compare the accuracy with 6 other methods, which fall
into two categories:

1. Traditional methods: kmeans (working on original images),
HC (working on original images), PCA+kmeans (working
on principle components of the original images) and CL2D
(implemented in XMIPP);

2. Deep model based methods: CAE+kmeans (convolutional
autoencoder with kmeans), AAE+kmeans (adversarial
autoencoder with kmeans, the generator of AAE is a
convolutional autoencoder, Makhzani et al., 2015), and
DAE+kmeans (denoising autoencoder with kmeans). For the
first two methods, latent representations extracted from the
middle layer of the convolutional autoencoder are used for
clustering, and both inputs and outputs are the original test
images; while for DAE, the mean image (averaged over 30
nearest neighbors) for each original image serves as target
output, and the outputs of decoder are used in clustering (note
that it is different from the original denoising autoencoder
proposed by Vincent et al. (2008) as there is no clean target
for test data).

TABLE 1 | Denoising result comparison for eight methods.

Method 5k0y 5wth 5gjq

PCLR 7.22/8.18 6.78/5.66 6.85/8.21

PID 6.87/5.33 6.48/4.95 6.50/5.22

NLFMT 7.15/8.26 6.89/5.64 6.74/8.55

BM3D 7.05/5.13 6.66/5.22 6.56/6.87

NCSR 7.09/5.37 6.58/4.92 6.55/5.29

DnCNN 7.02/5.38 6.58/4.99 6.52/5.32

Single DAE 7.55 6.77 6.88

CDAE 8.21 6.92 7.07

The numbers before and after “/” denote the PSNR values without and with histogram

equalization enhancement (HEE). Both single DAE and CDAE include the HEE step, thus

their PSNRs are obtained after HEE. The best values are in bold.

All the convolutional autoencoders in the compared deep models
(CAE, DAE, and the generator of AAE) have almost the same
architecture as the single blocks in our model. We use rmsprop
optimizer and train the model by 20 epochs, while in AAE we
add extra GAN training procedure to set constraints on latent
variables. We also use rmsprop optimizer and train the model by
1500 iterations.

Table 2 shows that our model outperforms other methods
at all of the three datasets, indicating that deep-models have
great potential serving as image denoising tools. The detailed
discussions are as follows.

Among the first four traditional methods, PCA obtains the
best results on both 5gjq and 5k0y. Although it is a simple linear
transformation, PCA captures the key features that are helpful for
clustering the images.

The last five methods are all based on autoencoders, while
their performance differs a lot. AAE does not perform well in

TABLE 2 | Clustering result comparison*.

Method Measure 5gjq 5wth 5k0y

kmeans

F1 0.76 0.29 0.54

Precision 0.68 0.25 0.43

Recall 0.80 0.34 0.59

HC

F1 0.79 0.29 0.56

Precision 0.74 0.27 0.51

Recall 0.84 0.33 0.65

PCA+kmeans

F1 0.76 0.29 0.72

Precision 0.67 0.26 0.63

Recall 0.78 0.34 0.72

CL2D

F1 0.30 0.28 0.29

Precision 0.29 0.27 0.27

Recall 0.34 0.33 0.30

CAE+kmeans

F1 0.77 0.3 0.54

Precision 0.7 0.26 0.42

Recall 0.8 0.39 0.59

DAE+kmeans

F1 0.40 0.34 0.59

Precision 0.36 0.32 0.47

Recall 0.45 0.37 0.75

AAE+kmeans

F1 0.4 0.29 0.46

Precision 0.26 0.26 0.41

Recall 0.32 0.35 0.47

CDAE+HC

F1 0.81 0.94 0.75

Precision 0.79 0.94 0.73

Recall 0.80 0.93 0.77

CDAE+kmeans

F1 0.76 0.95 0.76

Precision 0.76 0.95 0.75

Recall 0.78 0.95 0.77

*HC and kmeans denote hierarchical clustering and kmeans method working with the

raw images, respectively; PCA+kmeans denotes clustering of principle components

via kmeans; CAE and AAE denote the conventional convolutional autoencoder and

adversarial autoencoder, respectively; DAE denotes the convolutional autoencoder with

the original test images as input and their mean images within the neighborhood as output

(no pre-training), and CDAE denotes our model. Bold values means that they are the

maximum metrics value in this dataset.

Frontiers in Genetics | www.frontiersin.org 6 January 2021 | Volume 11 | Article 62774614

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lei and Yang CDAE

this task, mainly due to the intrinsic difficulties in the training of
the model, which restricts its applications. AAE obtains a lower
accuracy even than the traditional methods. As the latent feature
vector is a compact representation for the image withmuch lower
dimensionality, if the representation is not good, the clustering
performance may be even worse than using original images.

According to the accuracy of CAE, the latent representations
could also be useful in the clustering of cryo-EM images, but they
also try to reconstruct the noisy patterns, thus may not yield a
satisfying result.

DAE has much lower accuracy than CDAE, suggesting that
the average images of the original images may not be a good
choice for the reconstruction target. By contrast, CDAE adopts a
two-phase learning strategy and a cascade structure, which both
contribute to the good performance.

CDAE+kmeans and CDAE+HC have very close performance,
indicating the robustness of the extracted representations. An
interesting result is that our model achieves significantly better
accuracies on 5wth. We find that this molecule is relatively small
compared to two others, and presents as a denser form in the
central area of the images, which may increase the difficulty in
clustering. Except CDAE, all the other methods almost group
the images into one cluster. The results demonstrate that CDAE
captures the discriminant features rightly, thus greatly enhances
the performance.

4.5. Visualized Results
As mentioned in section 4.1, we download a data set of
protein GroEL from EMDB without corresponding clean images
or orientation information. Therefore, clustering or denoising
performance can not be evaluated, thus we present the visualized
result. Figure 4 shows some examples of the denoised images.
It can be observed that the images are consistent with the true
structure, and can differentiate between the projection angles.

FIGURE 4 | Denoised images of GroEL in different orientations. The 1st row

shows the original images, The 2nd row shows the projections of the ground

truth structure, the 3rd row shows the denoised images, and the last row

shows the denoised images processed by histogram equalization.

5. DISCUSSION

The proposed CDAE model involves both pre-training and
fine-tuning. Benefitting from the abundance of 3D structure
simulation software, it is convenient to generate projection
images from pre-defined orientations for a certain biomolecule.
Therefore, the simulated cryo-EM images could serve as a kind
of supervision in the learning algorithms. Furthermore, the
mean images can be used for fine-tuning, because the averaging
operation can effectively reduce random noisy, and many cryo-
EM data processing algorithms use it to enhance the image
features, like EMAN2 (Tang et al., 2016). We also design the
denoising model in a cascade structure based on the following
concern. The cryo-EM images often have a high noise ratio.
During the pre-training phase, if we choose a low SNR for the
simulated data, apparently the input and target output differ a
lot, and it is hard for the layers to adapt the noise; but if we
set a high SNR, although the deep network could easily learn
the noisy pattern, it does not accord with the real case, and
the quality of learning would be affected. Therefore, we want to
reduce noisy in a progressive manner and design a cascade of
denoising autoencoders to reduce the noise step by step.

The quantitative and visualized experimental results in
the previous sections demonstrate the good performance of
CDAE, which is attributed to the advantages on model design.
Comparing with the DnCNN model, our model has a deeper
network architecture, which may have greater capacity on feature
representation; and comparing with the single DAE model, our
model benefits from the cascade design, which can gradually and
smoothly guide the denoising process, thus making the denoising
process more controllable and leading to better denoising effect.

The proposed model is closely related with denoising
autoencoder (DAE) (Vincent et al., 2008) and Stacked Denoising
Autoencoders (SdA) (Vincent et al., 2010). Actually, the
components of our model, the autoencoder in each block,
has the same architecture of DAE, and both of them are
fed with corrupted images and rendered to reconstruct clean
images. However, the objectives of these two methods are
fundamentally different. Unlike our model, DAE aims to
learn robust features, and use the pre-trained autoencoder
as an initialization for subsequence supervised learning tasks.
Therefore, the DAE model is fine-tuned by training data in a
supervised manner, while our model is fine-tuned in a pseudo-
supervised manner, in which the mean images are assumed to be
the reconstruction targets.

Besides, our model also looks similar with the SdA model
(Vincent et al., 2010). However, the architecture of these two
models are very different. Our model consists of three blocks,
each block has the same component autoencoder. And for Blocks
2 and 3, they are red by the outputs (denoised images) from
previous blocks; while in SdA, it is the latent representation
rather than the output being passed to the next autoencoder.
And, SdA has the same object of DAE and also receives a
supervised fine-tuning.

Although CDAE achieves a good performance on PSNR
metric and visual results, there is still a big gap between the
denoised images and the ground truth clean images. There are
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two possible reasons. First, the added noise in simulated data
may be very different from true noise. The noise in real cryo-
EM images usually has complex sources, while the simulated
images are added with Gaussian noise or noise with single types
of distribution. Second, the neighboring images that are used
for computing mean images may be selected inaccurately, as
the images are extremely noisy and it is difficult to measure
image similarity. Therefore, our future work will focus on the
generation of noisy images to improve the pre-training process
and investigate the similarity metric of images.

6. CONCLUSION

In this study, we propose a cascade of denoising autoencoders
to reduce noise in cryo-EM images and enhance the clustering
performance. This model contains 3 denoising blocks, and each
block contains a denoising autoencoder. The 3 blocks learn
simulated images from low SNR to medium SNR, medium
SNR to high SNR, high SNR to clean data, respectively. After
the pre-training, each autoencoder is fine-tuned by using the
mean images. We provide both quantitative and visualized
results on both simulated and real data sets. In the quantitative
experiments, we compare the PSNR values with other denoising
algorithms and evaluate the clustering performance, while in
visualization evaluation, we compare the denoised images with
the ground truth protein structure. The experiments show that

our method achieves significant better performance of denoising
and clustering than the state-of-the-art methods on the highly
noisy cryo-EM images.
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Purpose: The purpose of this study was to construct a novel risk scoring model with
prognostic value that could elucidate tumor immune microenvironment of hepatocellular
carcinoma (HCC).

Samples and methods: Data were obtained through The Cancer Genome Atlas (TCGA)
database. Univariate Cox analysis, least absolute shrinkage and selection operator
(LASSO) analysis, and multivariate Cox analysis were carried out to screen for
glycolysis-related long noncoding RNAs (lncRNAs) that could provide prognostic value.
Finally, we established a risk score model to describe the characteristics of the model and
verify its prediction accuracy. The receiver operating characteristic (ROC) curves of 1, 3,
and 5 years of overall survival (OS) were depicted with risk score and some clinical features.
ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and
CIBERSORT analysis were employed to reveal the characteristics of tumor immune
microenvironment in HCC. The nomogram was drawn by screening indicators with
high prognostic accuracy. The correlation of risk signature with immune infiltration and
immune checkpoint blockade (ICB) therapy was analyzed. After enrichment of related
genes, active behaviors and pathways in high-risk groups were identified and lncRNAs
related to poor prognosis were validated in vitro. Finally, the impact of MIR4435-2HG upon
ICB treatment was uncovered.

Results: After screening through multiple steps, four glycolysis-related lncRNAs were
obtained. The risk score constructed with the four lncRNAs was found to significantly
correlate with prognosis of samples. From the ROC curve of samples with 1, 3, and 5 years
of OS, two indicators were identified with high prognostic accuracy and were used to draw
a nomogram. Besides, the risk score significantly correlated with immune score, immune-
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related signature, infiltrating immune cells (i.e. B cells, etc.), and ICB key molecules (i.e.
CTLA4,etc.). Gene enrichment analysis indicated that multiple biological behaviors and
pathways were active in the high-risk group. In vitro validation results showed that
MIR4435-2HG was highly expressed in the two cell lines, which had a significant
impact on the OS of samples. Finally, we corroborated that MIR4435-2HG had
intimate relationship with ICB therapy in hepatocellular carcinoma.

Conclusion:We elucidated the crucial role of risk signature in immune cell infiltration and
immunotherapy, which might contribute to clinical strategies and clinical outcome
prediction of HCC.

Keywords: hepatocellular carcinoma, glycolysis, prognostic model, tumor immune environment, immune
checkpoint blockade, bioinformatics analysis

INTRODUCTION

Liver cancer is one of the most common malignant tumors with a
high rate of metastasis and high mortality (Siegel et al., 2020).
With the development of modern medicine, the comprehensive
treatment strategy has greatly improved the prognosis of samples
with liver cancer (Anwanwan et al., 2020). However, due to the
high recurrence rate of liver cancer, the long-term prognosis of
samples remains poor (Dufour et al., 2013). Currently, the
administrations of immune checkpoint blockade inhibitors
have revolutionized antitumor treatment in wide range of
cancers. According to preclinical trials, about 20% of samples
were observed for objective response, indicating immune
checkpoint inhibitors may contribute novel insight into
clinical intervention and decision-making of HCC (Cheng
et al., 2019). The immune cells function as tumor inhibitor or
tumor promoter and may act as important players in the tumor
immune microenvironment (TIME) (Lei et al., 2020). Due to
characteristics of the immune contexture significantly influencing
immune therapy outcome (Zhang et al., 2019), it is worth
identifying immune indicators which could predict treatment
efficacy and prognosis. At present, the prognosis of samples is
typically judged by the grade and stage of tumors (Hu et al., 2019).
Tumor mutation burden (TMB), which represents the somatic
coding errors such as base substitutions, insertions, or deletions
across per million bases, has been termed as a promising indicator
for predicting responsiveness to ICB based on numerous
researches (Snyder et al., 2014; Rizvi et al., 2015; Chan et al.,
2019). Exploring new ways to judge prognosis and clinical
outcome is helpful to the survival evaluation and disease
treatment of samples.

Long noncoding RNAs (lncRNAs) are similar to mRNA in
structure, with a length of more than 200 nucleotides, though they
do not have the ability to encode proteins (Kopp and Mendell,
2018). Earlier views believed that lncRNAs were a byproduct of
translation and generally did not have a function. At the present
time, increasing studies have provided evidence to support that
lncRNAs act as a vital regulator in immune response, such as
immune activation and antigen release (Carpenter and Fitzgerald,
2018; Denaro et al., 2019). An independent research pointed out
that lncRNA GAS5 was downexpressed in HCC tumor compared

with normal tissue and interference of lncRNA GAS5 accelerated
tumor cell migration by reducing NK cell cytotoxicity (Fang et al.,
2019). Likewise, lncRNA TCONS_00019715 could promote
antitumor response via harnessing macrophage transformation
into the M1 phenotype (Huang et al., 2016). Some studies
reported that lncRNAs could serve as novel indicators for
disease diagnosis, treatment monitoring, and prognostic
prediction in HCC (DiStefano, 2017; Wei et al., 2019).
However, with increasing research, it has been found that
lncRNAs play an important role in cell growth, differentiation
and regulation of gene expression (Schmitt and Chang, 2016). It
has been reported that a variety of lncRNAs are stably expressed
in HCC tissues and that specific lncRNAs play a significant role in
the occurrence and development of HCC (Yuan et al., 2016).

The energy supply of human cells mainly comes from
mitochondrial oxidative phosphorylation and glycolysis (Lu
et al., 2015). Compared to normal cells, tumor cells choose
glycolysis as the main method to supply energy, even under
aerobic conditions. This abnormal energy metabolism is an
important feature of tumor tissue (Ganapathy-Kanniappan,
2018). In this study, we used a variety of statistical methods to
identify glycolysis-related lncRNAs to construct a prognostic risk
score model, which provides a novel idea for the TIME
characterization and ICB treatment of HCC, contributing to
clinical management and decision-making of samples with
liver cancer.

MATERIAL AND METHODS

Multiomic Data Collection
Gene expression profiling for HCC sample compared with
normal tissues were obtained from the TCGA-LIHC project
(Supplementary Table S6). The corresponding clinical profiles
(Supplementary Table S7) were also downloaded from the
TCGA portal as described previously. Four categories of
somatic mutation data of HCC samples were downloaded from
TCGA database (https://portal.gdc.cancer.gov/). We singled out the
mutation data files which were obtained through the “SomaticSniper
variant aggregation and masking” platform for subsequent analysis
(Supplementary Material in MAF form). We prepared the
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Mutation Annotation Format (MAF) of somatic variants and
implemented the “maftools” (Mayakonda et al., 2018) R package
which provides a multitude of analysis modules to perform the
visualization process. HCC samples were randomly divided into
the training set and verification set at a ratio of 1:1. The clinical
characteristics of samples within and across groups were similar.
All data were obtained from the TCGA public database, and
therefore, there was no need for ethics committee approval.

Patient Data and Tissue Specimens
Five pairs of HCC tissues and adjacent liver tissues were acquired
from samples that underwent surgical resection. Corresponding
adjacent tissues were harvested 3 cm from the edges of the tumor
lesion. Tissue specimens were immediately put into liquid
nitrogen postoperation. The tissues were then stored in a
−80°C refrigerator for total RNA extraction. To control the
potential confounding factors, all samples were diagnosed with
HCC by histopathological examination, while the samples that
received chemotherapy or radiotherapy were excluded from the
study. All participants have signed the written informed
consent form.

Glycolysis-Related Long Noncoding RNAs
RNA sequencing data of HCC samples were obtained from the
TCGA-LIHC project, and noncoding genes were identified
according to RefSeq IDs or Ensembl IDs. LncRNAs were
retained with reference to NetAffx Annotation files. Glycolysis-
related genes were obtained from the gene set
“HALLMARK_GLYCOLYSIS” in Molecular Signatures Database
(MsigDB) (Liberzon et al., 2015). Pearson correlation analysis was
performed on the acquired lncRNAs, as well as glycolysis-related
genes. When the correlation coefficient |R| > 0.4 and p < 0.005, the
two genes were considered to be related. The obtained lncRNA was
regarded as glycolysis-related lncRNA. Then, it was visualized using
Cytoscape. The processing flow of the data conforms to the relevant
policies of NIH TCGA human subject protection.

Prognostic Risk Score Calculation
Using the training set, we conducted a univariate Cox
proportional hazard regression analysis, LASSO regression
analysis, and two-step multivariate Cox proportional hazard
regression analysis on the glycolysis-related lncRNAs. Finally,
we selected four glycolysis-related lncRNAs for incorporation
into the risk score. The expression of lncRNAs between normal
and cancer tissues was compared. The regression coefficient β of
multivariate Cox regression model and lncRNA expression were
used to construct risk score formula as follows:

Risk score � β lncRNA1 × LncRNA1Expression + β lncRNA2

× lncRNA2Expression +/ + β lncRNA n

× lncRNA n Expression.

Prognostic Characteristics of Risk Score
Using the training set, validation set, and all samples, we sorted
the samples according to the size of the risk score. The samples
were divided into high- or low-risk groups depending on the

average risk score. Additionally, we drew the lncRNA expression
heat map, risk score distribution map, and risk score and survival
relationship map. The Kaplan–Meier method was utilized to
draw the survival curve and ROC curve of high- and low-risk
samples. In order to determine whether the risk score is an
independent prognostic factor, the univariate and multivariate
Cox regression analysis was conducted on the risk score and some
clinical indicators.

Nomograph Drawing
In order to construct a quantitative scoring system for prognostic
evaluation of HCC samples, a ROC curve was drawn with risk
score and partial clinical features. Furthermore, the appropriate
indicators were selected to construct a nomogram. Subsequently,
we analyzed the calibration curve which showed the prognostic
value of as-constructed nomogram.

Enrichment Analysis of Gene Set
Enrichment Analysis
We utilized the “h.all.v7.2. symbols.gmt [cancer hallmarks]” and
“c2. cp.kegg.v7.2. symbols.gmt [Curated]” gene sets from the
MsigDB of the GSEA (version 4.0) to analyze the risk score and
explore the possible cellular pathways.

Assessment of Correlation of Risk Score
With Tumor Immune Environment
Characterization
To distinguish TIME difference between low-/high-risk
subgroups, we employed several analyses as follows. R
package “ESTIMATE” was utilized to estimate tumor purity
and the extent and level of infiltrating cells (stromal cell and
immune cell), which reflected the characteristics of tumor
immune microenvironment. Subsequently, single-sample
gene set enrichment analysis was conducted via the R
package “GSEAbase” to elucidate the enrichment of 29
immune function–related gene sets. The subpopulation of
22 immune cells in each tumor sample was explored
through immune cell subtype identification by using
CIBERSORT (https://cibersort.stanford.edu/). Furthermore,
we compared the expression levels of 46 immune
checkpoint blockade–related genes, (i.e. CD274, etc.)
between low-risk samples and high-risk samples.

Assessment of Correlation of Signature
With Tumor Immune Infiltration
Immune infiltration information contains each tumor sample’s
immune cell fraction (i.e. B cells, CD4+T-cells, CD8+T-cells,
dendritic cells, macrophages, and neutrophils), which were
obtained from Tumor Immune Estimation Resource (TIMER)
(https://cistrome.shinyapps.io/timer/). The correlation of tumor
immune cell infiltrating with prognostic risk signature was
analyzed to explore whether risk signature could act as a novel
and reliable indicator in tumor of immune microenvironment
of HCC.
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Assessment of Role of Risk Signature in
Immune Checkpoint Blockade Treatment
Based on reported researches, immune checkpoint blockade key
targets expression level might be closely associated with clinical
outcome of immune checkpoint inhibitors (Goodman et al.,
2017). Herein, we selected six key genes of immune
checkpoint blockade–related genes: programmed death ligand
1 (PD-L1, namely CD274), programmed death ligand 2 (PD-L2,
namely PDCD1LG2), programmed death 1 (PD-1, namely
PDCD1), cytotoxic T-lymphocyte antigen 4 (CTLA-4),
indoleamine 2,3-dioxygenase 1 (IDO1), and T-cell
immunoglobulin domain and mucin domain-containing
molecule-3 (TIM-3, namely HAVCR2) in HCC (Kim et al.,
2017; Nishino et al., 2017; Zhai et al., 2018). To investigate the
potential role of lncRNA-based signature in ICB therapy of HCC,
we correlated risk signature with expression level of six immune
checkpoint blockade key targets.

Cell Lines and Culture
One human normal hepatocyte cell line (HL-7702) and two
human HCC cell lines (HepG2 and MHCC97H) were cultured
in Dulbecco’s Modified Eagle Medium (DMEM, Gibco,
United States) containing 10% fetal bovine serum (FBS, Gibco,
United States) in a humidified atmosphere at 37°C, containing
5% CO2.

Quantitative Real-Time PCR
For specific qPCR steps, please refer to previous literature (Zhang
et al., 2016). The primer sequences used in this study were as
follows: MIR4435-2HG forward, 5′-GACTCTCCTACTGGT
GCTTGGT-3′ and reverse 5′-CACTGCCTGGTGAGCCTG
TT-3′; glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
forward, 5′-CAGGAGGCATTGCTGATGAT-3′ and reverse
5′-GAAGGCTGGGGCTCATTT-3′. The relative gene
expression levels were calculated by normalizing to GAPDH.

Statistical Analysis
Statistical analysis was performed by R software (version 4.0.2; R
Foundation). Comparisons between multiple groups were
analyzed using a one-way analysis of variance (ANOVA) and
comparisons between the two groups were analyzed by Student’s
t-test. Construction of the glycolysis-related lncRNA co-
expression network was carried out with Cytoscape software
(version 3.7.2; The Cytoscape Consortium). p < 0.05 was
considered as significant difference.

RESULTS

Multiple lncRNAs Are Associated With
Glycolysis-Related Genes
Overall, 14,142 lncRNAs were identified using the TCGA-LIHC
database, and glycolysis-related genes were identified using the
Molecular Signatures Database. To identify glycolysis-related
lncRNAs, Pearson’s correlation test was performed. lncRNAs
with Pearson’s correlation coefficient with an absolute value of
>0.4 and p < 0.005 were set for further analysis. Finally,

1,699 glycolysis-related lncRNAs were obtained
(Supplementary Table S1).

LASSO Regression Analysis Was Able to
Accurately Identify Long Noncoding RNAs
With Prognostic Value
According to the process shown in Supplementary Figure
S1, 377 HCC samples were obtained using the TCGA
database, and seven samples with incomplete information
were excluded from the study. In total, 370 samples were
selected for further research. The basic clinicopathological
information of samples is shown in Table 1. A detailed
description was recorded in Supplementary Table S7. A
total of 22 glycolysis-related lncRNAs were identified using
univariate Cox analysis, with results shown in
Supplementary Table S4. In order to exclude the
overfitting, LASSO regression analysis was conducted on
22 lncRNAs, and a total of five glycolysis-related lncRNAs
were identified. The screening process and results are shown
in Figures 1A,B, and Supplementary Table S5. These five
lncRNAs were analyzed using a two-step multivariate Cox
regression analysis. Finally, four glycolysis-related lncRNAs
were found to be associated with prognosis of HCC samples
(Figure 1C). Among them, AL031985.3, AL365203.2, and
MIR4435-2HG were found to be poor prognostic factors
(hazard ratio, HR > 1), and their expression was
upregulated in HCC samples. On the other hand,
AC015908.3 was a protective factor (HR < 1), and its
expression was found to be decreased in HCC samples.
The results are shown in Figures 1D–G and Table 2. Four
lncRNAs were used to construct the co-expression network,
the results of which are shown in Supplementary Figures
S1B,C. According to expression of lncRNAs and multivariate
Cox regression coefficient, the prognosis risk score of

TABLE 1 | Baseline data of all HCC samples.

Characteristic Type n Proportion (%)

Age ≤65 235 62.33
>65 141 37.40
Unknown 1 0.27

Gender Female 122 32.36
Male 255 67.64

Grade G1-2 235 62.33
G3-4 137 36.34
Unknown 5 1.33

Stage Stage I–II 262 69.50
Stage III–IV 91 24.14
Unknown 24 6.37

T Stage T1–2 280 74.27
T3–4 94 24.93
Unknown 3 0.80

M Stage M0 272 72.15
M1 4 1.06
Unknown 101 26.79

N stage N0 257 68.17
N1 4 1.06
Unknown 116 30.77
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glycolysis-related lncRNAs was calculated as follows
(0.299987 × AL031985.3 expression) + (0.105369 ×
AL365203.2 expression) + (0.107428 × MIR4435-2HG
expression) − (0.25568×AC015908.3 expression). Samples
were equally and randomly divided into training set and
verification set, including 186 cases in the training set and
184 cases in the verification set. The results of random
grouping are shown in Supplementary Tables S2, S3.

The Risk Score Is Significantly Related to
Patient Prognosis
According to this scoring system, the prognostic risk score of
each patient was calculated and samples were arranged from
left to right according to their score level. The heat map
distribution of four lncRNAs is shown in Figure 2A. With
increasing risk score, the number of surviving samples
decreased and the amounts of dead samples increased. The
prognosis of samples in the low-risk group was significantly
better than that in the high-risk group (Figures 2B,C). The
Kaplan–Meier survival curve shows that the 5-year survival
rate of samples in the low-risk group is significantly higher

than that in the high-risk group (Figure 2D, p � 3.819e − 05).
Moreover, these four lncRNAs were used to construct a
prognosis scoring system with high accuracy (Figure 2E,
AUC � 0.763). Consistent with these results, univariate
and multivariate Cox regression analysis showed that the
increased risk score indicates the higher the risk score, the
poorer the prognosis (Figures 2F,G).

Validation of Prognostic Risk Score
The risk scoring system was validated using an internal
validation set, as well as all samples. The four lncRNAs had
similar distributions in the heat map, as well as risk score
distribution (Figures 3A,B; Supplementary Figure S2A,B).
The higher the risk score, the fewer samples survived and the
more deaths that occurred (Figure 3C; Supplementary Figure
S2C). The 5-year survival rate in the low-risk group was
significantly higher (Figure 3D; Supplementary Figure
S2D). The risk scoring system in the validation set, as well
as overall samples, has the same degree of predictive accuracy
as the training set (Figure 3E; Supplementary Figure S2E).
Consistent with results from the training set, a risk score can be
used as an independent prognostic factor to judge patient

FIGURE 1 | Four glycolysis-related lncRNAs with prognostic value in the training set. (A) Plots for LASSO expression coefficients of 22 glycolysis-related lncRNAs.
(B) Cross-validation plot for the penalty term. (C) Relationship between four glycolysis-related lncRNAs and prognosis of HCC patients (D–G) Expression of four
glycolysis-related lncRNAs in tumors and normal tissues; the data come from TCGA database, where all p values < 0.05.

TABLE 2 | Multivariate Cox results of lncRNAs based on TCGA-LIHC data.

Id Coef HR HR.95 L HR.95H p value

AL031985.3 0.299,987 1.349,841 0.991,382 1.837,909 0.05678
AL365203.2 0.105,369 1.111,121 0.987,831 1.249,799 0.079101
“MIR4435-2HG” 0.107,428 1.113,411 0.979,232 1.265,977 0.101,078
AC015908.3 -0.25568 0.774,388 0.595,609 1.006829 0.056244

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 6450845

Bai et al. A Novel Prognostic Model for HCC

22

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


prognosis. The higher the risk score, the worse the prognosis
(Figures 3F,G; Supplementary Figures S2F,G), the more
serious the tumor grade (Figure 3H).

Close Correlation of Risk Score With Tumor
Immune Environment Characterization of
Hepatocellular Carcinoma
To further uncover the potential role of prognostic risk score in
TIME of HCC, we investigated the relationship between risk
score and immune-related score (calculated with the R package
“ESTIMATE”), immune signature (via ssGSEA analysis) and
Tumorinitiating cell subtypes and level (assessed by
CIBERSORT method), and the 46 immune checkpoint
blockade–related genes expression level.

These results indicated that samples with low risk had a higher
estimate score, stromal score, immune score but lower tumor purity
comparedwith high-risk samples (Figures 4A–D). Then,we examined
whether there was distinction of immune signatures between groups
low/high risk. From the ssGSEA results, we found that the infiltrating
levels of aDCs, DCs, iDCs, macrophages, pDCs, Tfh, Th1 cells, Th2
cells, andTregswere remarkably elevated and some immune signatures
(i.e. APCcostimulation, checkpoint, parainflammation,HLAmolecule,
IFN response type II, and MCH class I) were significantly activated
with the increased risk score (Figure 4E; Supplementary Figure S3A).
Supplementary Figure S3B shows each patient immune-related
signature with corresponding immune-related scores in groups low/

high risk. The CIBERSORT analysis results pointed out that the more
the fraction of regulatory T cells, the higher the risk score (Figure 4F).
Further correlation analysis presented that 40 of 46 (i.e. CD274,
IDO1, etc.) immune check blockade–related genes expression
levels were significantly different between two risk groups
(Figure 4G). These results suggested that lncRNA-based risk
signature may contribute a novel insight into TIME feature and
immune response of HCC.

The Predictive Power of Risk Score was
Significantly Better Compared to Other
Clinical Characteristics
The prognostic risk score, combined with age, gender, and
tumor grade and stage, were used to draw ROC survival curve.
The results indicated that compared to other clinical traits,
the glycolysis-related lncRNA prognostic risk scoring system
was more accurate at predicting the 1-, 3-, and 5-year survival
rate of HCC samples (Figures 5A–C, AUC � 0.747, 0.660, and
0.656, respectively). The prognostic factors with AUC >0.6
were identified in ROC curve, and the nomogram was drawn.
The results are shown in Figure 5D. The 1-, 3-, and 5-year
survival rates were calculated quantitatively according to the
tumor stage and risk score. We corroborated that our
nomograph had great prognostic predictive performance of
1-, 2-, and 3-year survival time by employing calibrate curves
(Figures 5E–G).

FIGURE 2 | Prognostic risk score characteristics of glycolysis-associated lncRNAs in the training set. (A) Heat map of the expression of four lncRNAs in HCC
samples. The color from green to red indicates a trend from low expression to high expression. (B). Distribution of risk scores for HCC samples. (C) The relationship
between survival time and status of HCC samples and risk score. (D) Kaplan–Meier survival curve of samples in high- and low-risk groups. (E) ROC curve of risk score in
samples with HCC. (F) Univariate Cox regression analysis of clinical features and risk score in HCC samples. (G) Multivariate Cox regression analysis of clinical
features and risk score in HCC samples.
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To validate whether lncRNA risk signature remained with
excellent prognostic predictive performance in different
clinicopathological subgroups, furthermore, we performed a
stratification analysis. Regardless of young or old, the risk
signature could further distinguish low-risk group and high-
risk group with significantly distinct survival time
(Supplementary Figures S5A,B). Likewise, risk signature
presented powerful prognosis prediction ability for samples in
grade 1–2 or 3–4 (Supplementary Figures S5C,D), early stage or
late stage (Supplementary Figures S5E,F), T status one to two or
3–4 (Supplementary Figures S5G,H), N0 status (Supplementary
Figure S5I), M0 status (Supplementary Figures S5J) ,and male
gender (Supplementary Figure S5K). We found that p-value was
0.081, however, female samples’ survival time shortened with the
increase of risk score (Supplementary Figure S5L). These results
suggested that it can be an outstanding predictor in samples
with HCC.

Risk Score Affects the Results of Gene
Enrichment
Hallmark enrichment analysis indicated that apoptosis and
glycolysis were active in high-risk group, while being silent in
the low-risk group. Additionally, multiple pathways, including
IL/STAT5 and NOTCH, were active in the high-risk group and
silent in the low-risk group (Supplementary Figure S4A).

Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis suggested that bladder cancer and colorectal
cancer were active in the high-risk group but silent in the low-risk
group (Supplementary Figure S4B).

Correlation of Risk Signature With
Infiltrating Immune Cell and Immune
Checkpoint Blockade Key Molecules
To further explore the influence of lncRNA-based signature upon
TIME of HCC, we analyzed correlation of risk signature with
immune cell infiltration type and level. We observed that the risk
signature significantly correlated with infiltrating B cells (r �
0.191; p � 2.171e − 04), infiltrating CD4+T cells (r � 0.212; p �
3.918e − 05), infiltrating CD8+T cells (r � 0.305; p � 2.139e − 09),
infiltrating dendritic cells (r � 0.361; p � 8.239e − 13), infiltrating
macrophages (r � 0.411; p � 1.665e − 16), and infiltrating
neutrophils (r � 0.353; p � 2.856e − 12; Figures 6A–F). These
results suggested that prognostic risk signature was closely
correlated with immune infiltration in HCC.

Next, we singled out six key immune checkpoint inhibitor
genes (PDCD1, CD274, PDCD1LG2, CTLA-4, HAVCR2, and
IDO1) for further research (Vidyasagar, 2015; Chen et al., 2018;
Bejani and Ghatee, 2020). We performed the correlation analysis
of ICB key gene expression with risk signature to investigate the
potential role of signature in the ICB therapy of HCC

FIGURE 3 | Prognostic risk score characteristics of glycolysis-related lncRNA in the validation set. (A–C) Heat map of the expression of four glycolysis-related
lncRNAs in HCC samples, distribution map of risk score, relationship map of survival status and risk score. (D–E) Kaplan–Meier survival curve and ROC curve of high-
and low-risk group. (F–G). Univariate and multivariate Cox regression analysis of clinical features and risk score in HCC samples. (H) Relationship between tumor grade
and risk score; risk score significantly increased for advanced grade cases.
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FIGURE4 |Correlation of prognostic risk scorewith TIMEcharacterization ofHCC (A–D)Comparison of estimate score, stromal score, immune score, and tumor purity
between these two subtypes. (E) Distinction of enrichment of immune-related signatures between low- and high-risk groups. (F) Difference of infiltrating immune cell
subpopulations and levels between low-/high-risk groups. (G)Comparison of 46 immune checkpoint blockade–related genes expression levels in two risk score subgroups.

FIGURE 5 | Screening prognostic indicators and nomogram. (A–C)ROC curve of 1-, 2-, and 3-year OS for multiple prognostic indicators of HCC samples. (D) The
nomogram was drawn using tumor grade and risk score. (E) One-year nomogram calibration curves of entire TCGA cohort. (F) Two-year nomogram calibration curves
of entire TCGA cohort. (G) Three-year nomogram calibration curves of entire TCGA cohort.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 6450848

Bai et al. A Novel Prognostic Model for HCC

25

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


(Figure 6G). The analysis result pointed out that risk signature
had close relationship with CD274 (r � 0.2; p � 9.2e − 05), CTLA4
(r � 0.15; p � 0.0029), HAVCR2 (r � 0.21; p � 5.3e − 05), PDCD1
(r � 0.19; p � 0.00024), and PDCD1LG2 (r � 0.22; p � 2.1e − 05;
Figures 6H–L), indicating risk signature might exert a
nonnegligible player in ICB treatment outcome prediction
in HCC.

High Expression of MIR4435-2HG in
Hepatocellular Carcinoma Suggests Poor
Prognosis
We evaluated the expression of MIR4435-2HG in cell lines and
tissues. The results showed that in comparison to normal liver cell
lines, the expression of MIR4435-2HG in hepatoma cell lines was
significantly increased (Figure 7A, p < 0.05). Likewise, MIR4435-
2HG was upregulated in tumor tissue relative to normal samples.
Limited by number of samples, we observed no statistical
difference (Figure 7B). Consistent with the results of in vitro
experiments, the OS of samples with low expression of MIR4435-

2HG was significantly longer than that of samples with high
expression (Figure 7C, p � 0.0018), suggesting that MIR4435-2HG
is a poor prognostic factor for HCC samples. The expression level
analysis among major clinical stages shown that MIR4435-2HG
expressed significantly differently among distinct clinicopathological
stages (Figures 7D, F value � 5.48 and p � 0.0011).

MIR4435-2HG Correlates With Immune
Checkpoint Blockade Therapy Key Genes in
Hepatocellular Carcinoma
Then we analyzed the correlation between the MIR4435-2HG
and ICB-related key genes to elucidate the impact of MIR4435-
2HG on the ICB therapy of HCC. The results presented that
MIR4435-2HG was significantly positively correlated to CD274
(r � 0.12; p � 0.014), CTLA4 (r � 0.27; p � 1.4e − 08), HAVCR2
(r � 0.19; p � 6.4e − 05), IDO1 (r � 0.13; p � 0.0075), PDCD1 (r �
0.13; p � 0.0086), and PDCD1LG2 (r � 0.16; p � 0.001; Figures
7E–J), suggesting MIR4435-2HG may be a novel and potential
target in ICB treatment in HCC.

FIGURE 6 | Correlation between tumor immune infiltration and this immune-related lncRNA signature. (A) Association between this signature and B cells. (B)
Association between this signature and CD4+ T cells. (C) Association between this signature and CD8+ T cells. (D) Association between this signature and dendritic cells.
(E) Association between this signature and macrophages cells. (F) Association between this signature and neutrophil cells. (G) Association analyses between immune
checkpoint inhibitors CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1 and lncRNAs signature. (H) Association between our risk model and CD274. (I)
Association between our risk model and CTLA4. (J) Association between our risk model and HAVCR2. (K) Association between our risk model and PDCD1. (L)
Association between our risk model and PDCD1LG2.
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Role of MIR4435-2HG in Tumor Immune
Environment Characterization
To further examine whether MIR4435-2HG can act as immune
indicators, we performed the correlation analysis of MIR4435-2HG
expression level with immune infiltration. HCC samples were
classified into high/low MIR4435-2HG subtypes based on the
median MIR4435-2HG expression value. ESTIMATE results
indicated that samples with higher MIR4435-2HG expression had
a significant higher stromal score, immune score, and ESTIMATE
score but lower tumor purity relative to samples in high MIR4435-
2HG group (Figures 8A,B). Subsequently, we identified difference of
enrichment in immune-related signatures between two different
subgroups. The subjects in MIR4435-2HG high group remarked as
high infiltration of aDCs, DCs, iDCs, pDCs, macrophages, Tfh, Th1
cells, Th2 cells, and Tregs and enrichment of T cell costimulation,
APC costimulation, CCR, checkpoint, HLA, inflammation
promoting, parainflammation, and class I MHC, which suggested
immune-activated phenotype (Figure 8C). The CIBERSORT result
presented that expression level of MIR4435-2HG was positively
correlated with M0 and M2 macrophage infiltration, whereas
negatively correlated with plasma cells, CD8 T cells, and Tfhs
(Figure 8D). In summary, these results pointed out that MIR4435-
2HG may serve as a key indicator in TIME characterization and
immunological reaction in HCC.

Correlation of Mutation of TP53 With Risk
Score
Based on previous research (Ruan et al., 2016), CTSB played a
pivotal role in HCC initiation and progression. According to

results of somatic mutation data, TP53 was the genes with highest
mutation frequency (Supplementary Figure S6A). Thus, we
proposed to uncover the role of gene mutation in risk score
and analyzed the proportion of mutation gene in both low- and
high-risk groups. We observed that mutation of TP53 was
significantly correlated with risk score (Figures 8E,F;
Supplementary Figure S6B; training set, testing set, and
whole cohort, respectively), whereas mutation of CTSB was
similar between low- and high-risk groups (Supplementary
Figure S6C). These results indicated that mutation of TP53
may contribute to HCC development.

DISCUSSION

The pathogenesis of HCC is very complex as it involves cell cycle
and apoptosis, transcriptional regulation disorder (Lin et al.,
2014), and energy metabolism abnormalities (Hsu et al., 2015).
LncRNAs affect tumorigenesis and development in many ways,
including regulating cell proliferation and migration (Shen et al.,
2019), influencing epigenetic regulation (Miao et al., 2019) and
regulating energy metabolism rate-limiting enzymes. Glycolysis is
an inefficient method of energy production, but this process
produces a reduction equivalent (Terabe et al., 2019) and
biosynthetic substrate necessary for tumor cell proliferation
(Liang et al., 2019). In this study, we obtained clinical and
transcriptomic data of HCC from the TCGA database and
successively applied univariate Cox analysis, LASSO analysis,
and two-step multivariate Cox analysis to identify glycolysis-
related lncRNAs. Additionally, abnormal energy metabolism and

FIGURE 7 | High expression of MIR4435-2HG indicates poor prognosis. (A). qPCR results indicate that MIR4435-2HG is highly expressed in HepG2 and
MHCC97H cell lines, *p < 0.05. Each experiment is repeated at least three times. (B) qPCR results indicate that MIR4435-2HG is highly expressed in tumor tissue. (C)
The prognosis of samples with high or low expression of MIR4435-2HG is significantly different. (D) The expression of MIR4435-2HG had significant difference between
major pathological stages. (E) The mRNA expression between MIR4435-2HG and CD274 had more similar pattern in HCC and normal tissues. (F) The mRNA
expression between MIR4435-2HG and CTLA4 had more similar pattern in HCC and normal tissues. (G) The mRNA expression between MIR4435-2HG and HAVCR2
had more similar pattern in HCC and normal tissues. (H) The mRNA expression between MIR4435-2HG and IDO1 had more similar pattern in HCC and normal tissues.
(I) The mRNA expression between MIR4435-2HG and PDCD1 had more similar pattern in HCC and normal tissues. (J) The mRNA expression between MIR4435-2HG
and PDCD1LG2 had more similar pattern in HCC and normal tissues.
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lncRNAs were combined to construct a risk score model with
prognostic value. The model was verified across different groups
so that the prognostic judgment of HCC could be quantified and
specific and provides guidance for survival prediction of samples.

When selecting specific variables to build a model, there is
often overfitting (Dawes et al., 2019). This problem often occurs
when there are too many variables. With regard to human genes,
only 2% can encode proteins, and 98% of them are noncoding
sequences, which constitute a complex regulatory network (Boon
et al., 2016). In our study, we observe that there are still 22
lncRNAs that are related to the prognosis of samples after
screening by univariate COX analysis, and excessive lncRNAs
involved in constructing can cause the risk scoring model to lead
to overfitting. An important method to solve overfitting is
regularization (Bejani and Ghatee, 2020). LASSO regression
constructs a penalty function and adds L1 regularization after
the loss function to obtain a more accurate model with fewer
variables (Vidyasagar, 2015). After LASSO regression analysis of
22 lncRNAs, only five were found to be related to patient
prognosis. Even after two-step multivariate Cox regression,
only one lncRNA was identified. The final remaining four
lncRNAs indicated high accuracy in the validation set, as well
as overall prognosis for samples.

The ROC curves of OS of samples with liver cancer were
constructed by combining several clinical characteristics of
samples with a prognostic risk score. Indicators with AUC >0.6

were selected to draw a nomogram, which made the judgment of
survival rate of samples with liver cancer visualized and more
specific. From our results, we are able to see that the risk score
based on glycolysis-related lncRNA construction shows high
accuracy in predicting the survival rate of samples. The reason is
that abnormal energy metabolism plays an important role in
metabolomics and epigenetics of liver tumors, and glycolysis-
related pathways are significantly related to survival and
prognosis of samples (Chen et al., 2018). Furthermore, 90% of
energy in normal tissues comes from tricarboxylic acid cycle in
mitochondria (Anderson et al., 2018), while more than 50% of the
energy depends on glycolysis, which is known as the “Warburg
effect” (Pascale et al., 2020). At present, it is believed that the main
mechanisms of Warburg effect include mitochondrial dysfunction
(Riera Leal et al., 2020), tumor adaptation (Ždralević et al., 2018),
microenvironment changes (Sun et al., 2018), oncogene (Banks,
2013), and related signal pathway disorders. According to the results
of GSEA enrichment analysis, we found that Notch, p53, Wnt, and
other signaling pathways are active in the high-risk group whether
we use the Hallmark dataset or KEGG dataset. These pathways are
closely related to the recurrence of liver cancer (Invalidcitation,
2018). In addition, we found that glycolysis is active in the high-risk
group in the hallmark dataset, which is consistent with our results.

According to published works, we observed that more and more
researches focusing on TIME have revealed the potential implication
of lncRNAsupon infiltrating immune cells. Peng Lirong et al. reported

FIGURE 8 | Correlation of MIR4435-2HG in TIME characterization. (A–B) Comparison of the immune score (ESTIMATE algorithm) between MIR4435-2HG low/
high groups. (C) Difference of immune-related signatures between low and high MIR4435-2HG subgroups. (D) Distinction of infiltrating immune cell subpopulations and
levels between low/high MIR4435-2HG groups. (E) Proportion of mutation of TP53 in both low-/high-risk groups form the training set. (F) Proportion of mutation of TP53
in both low-/high-risk groups form the testing set.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 8 | Article 64508411

Bai et al. A Novel Prognostic Model for HCC

28

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


that LncRNA MIAT was significantly correlated with immune cell
infiltration and may exert an important player in the immune escape
of HCC (Peng et al., 2020). The study of Ji Jie et al. demonstrated that
Lnc-Tim3 was involved in the survival of the exhausted CD8+T cells
and facilitating CD8+T exhaustion (Ji et al., 2018). Consequently, we
speculated that the subtype of infiltrating immune cells had close
connection with lncRNAs. Herein, we corroborated that lncRNA-
based risk signature was significantly correlated with immune cell
infiltration, (i.e. macrophages, dendritic cells, neutrophils, B cells,
CD4+T cells, and CD8+T cells). ESTIMATE results presented that
risk score was negatively correlated with estimate score, stromal score,
and immune score but positively with tumor purity, suggesting risk
signature could serve as a novel immune indicator in HCC. Besides,
ssGSEA analysis pointed out that the infiltrating immune cells (i.e.
DCs, macrophages, Th1 cells, and Tregs) were significantly increased
and immune signatures (i.e. APC costimulation, checkpoint,
parainflammation, IFN response type II, and MCH class I) were
remarkably activated when risk score elevated. Finally, CIBERSORT
algorithm results showed that risk score elevated when the fraction of
regulatory T cells increased, indicating that as-constructed signature
works through regulating Tregs infiltration and might have an
undeniable role in tumor immune microenvironment of HCC.
The immune-activated condition in the high-risk group was
associated with high ICB-relevant genes expression, suggesting
samples in with low risk score might respond to immunotherapy.

With the emergence of immune checkpoint blockade (ICB)
treatment, immune checkpoint inhibitors have considerably
transformed clinical decision-making in cancer oncology (Pitt
et al., 2016; Llovet et al., 2018; Salik et al., 2020). Immune-
checkpoint blockade treatment has contributed a novel insight
into clinical management in samples with HCC(Ng et al., 2020).
Nevertheless, HCC samples obtained relatively few benefits from
ICB therapy and less than one in three samples were observed for
objective response to immune checkpoint inhibitors treatment
(Liu et al., 2020). Such biomolecules as immune checkpoint
blockade–related gene expression level and tumor mutational
burden were unable to accurately predict clinical outcome of ICB
treatment. It is therefore urgent to identify indicators that can
precisely forecast responsiveness to ICB treatment for further
individualized treatment and advance precision immunotherapy
(Nishino et al., 2017; Ng et al., 2020; Mushtaq et al., 2018).
Recently, accumulating evidences have supported that numerous
lncRNAs possess key roles in regulating immunity, such as
immune cell infiltration, antigen presentation, and so on
(Carpenter and Fitzgerald, 2018; Denaro et al., 2019). In this
study, the correlation analysis showed that PDCD1, CD274,
PDCD1LG2, CTLA-4, IDO1, and HAVCR2 were coexpressed.
Furthermore, our risk signature was significantly associated with
the ICB treatment key target genes (i.e. PDCD1LG2, PDCD1,
CD274, HAVCR2, and CTLA4), and the expression level of
immune checkpoint blockade–related genes (i.e. IDO1 and
TIGHT) increased significantly with increased risk scores. Due
to no ICB treatment dataset in HCC cohort, we were unable to
explore the correlation between risk score and ICB
immunotherapy response. These findings indicated that our
signature may possess the ability to predict clinical outcome of
ICB therapy in HCC samples.

It has been reported that MIR4435-2HG is associated with
prognosis of HCC (Kong et al., 2019). Overexpression of
MIR4435-2HG can promote proliferation of HCC cells, which
is consistent with our experimental results. However, previous
literature has only described this phenomenon. MIR4435-2HG
expression was significantly positively associated with ICB
immunotherapy key genes (i.e. CD274, CTLA4, HAVCR2,
IDO1, PDCD1LG2, and PDCD1). We also demonstrated that
MIR4435-2HG expression had close relationship with high
infiltration of immune cells (i.e. macrophages) in HCC. These
findings indicated that high MIR4435-2HG expression level was
associated with a poor prognosis that could facilitate immune
evasion and immunotherapy resistance. Our results first linked
the mechanism of MIR4435-2HG with immune infiltration and
immunotherapy, which provides a new rationale for further
research. However, our experiment lacks verification results of
clinical samples and only obtains clinical information from the
database in order to verify expression of MIR4435-2HG, which is
a limitation in our experiment.

CONCLUSION

In our study, the LASSO regressionmethod helped identify glycolysis-
related lncRNAs to construct a risk score model. This model can
quantitatively and accurately judge the prognosis of HCC samples.
Moreover, as-constructed lncRNAs signature was significantly
correlated to not only immune cell infiltration but also
responsiveness to ICB treatment key genes in HCC. Conclusively,
this research provided a promising avenue to facilitate the
individualized survival prediction and reveal landscape of tumor
immune environment of HCC, further contributing valuable
clinical applications in HCC ICB therapy. Notwithstanding, our
findings should be validated in further researches which explore
HCC tumorigenesis and progression mechanisms and the
implication of these 4 glycolysis-related lncRNAs.
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Pulmonary hypertension (PH) is a common disease that affects the normal functioning of 
the human pulmonary arteries. The peripheral blood mononuclear cells (PMBCs) served 
as an ideal source for a minimally invasive disease diagnosis. This study hypothesized 
that the transcriptional fluctuations in the PMBCs exposed to the PH arteries may stably 
reflect the disease. However, the dimension of a human transcriptome is much higher 
than the number of samples in all the existing datasets. So, an ensemble feature selection 
algorithm, EnRank, was proposed to integrate the ranking information of four popular 
feature selection algorithms, i.e., T-test (Ttest), Chi-squared test (Chi2), ridge regression 
(Ridge), and Least Absolute Shrinkage and Selection Operator (Lasso). Our results 
suggested that the EnRank-detected biomarkers provided useful information from these 
four feature selection algorithms and achieved very good prediction accuracy in predicting 
the PH patients. Many of the EnRank-detected biomarkers were also supported by 
the literature.

Keywords: EnRank, ensemble feature selection, filter, pulmonary hypertension, biomarker detection

INTRODUCTION

Pulmonary hypertension (PH) shows the symptom of high blood pressure in the lung arteries 
which impedes the delivery of blood from the heart to the lungs (Mandras et  al., 2020). PH 
is diagnosed by at least 20  mmHg (millimeter of mercury) of the rest-state mean pulmonary 
arterial pressure (mPAP) and the right-sided heart catheterization (Simonneau et  al., 2019). 
Although PH may be  caused by various factors, the PH patients painfully suffer from shortness 
of breath and increased mortality (Mandras et  al., 2020). As many as, 10% of people over 
age 65 are affected by PH, and more than half of them develop heart failure (Hoeper et  al., 
2016). Detection of novel transcriptomic biomarkers may facilitate the understanding of the 
PH molecular mechanisms and serve as candidates for investigation and prognosis of the 
disease (Jardim and Souza, 2015; Swaminathan et  al., 2015).
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The high throughput DNA sequencing technology generates 
the expression levels of all human protein-coding and non-coding 
genes (Jandl et  al., 2019; Tzimas et  al., 2019), and machine 
learning methods rely on this data (Stephens et al., 2015; Mirza 
et  al., 2019). The sequenced samples may be  lesion tissues, 
e.g., the endothelial cells or the small remodeled arteries (Jandl 
et  al., 2019; Tzimas et  al., 2019). The peripheral blood 
mononuclear cells (PBMCs) serve ideally as the targets for 
the transcriptome sequencing because it is less invasive than 
use of lesion tissue (Tzouvelekis et  al., 2018).

Transcriptome based disease prediction is often limited by 
sufficient sampling toward detection of disease features. This 
is mostly caused by the high cost of sequencing, a transcriptome 
and the difficulty in recruiting a cohort of individuals with 
and without the disease (Diao and Vidyashankar, 2013). Building 
a prediction model using all features may lead to overfitting 
and loss of applicability to a non-training data set (Schinkel 
et  al., 2019). This problem is addressed by an algorithm for 
selecting a subset of the features in building the disease prediction 
model (Schinkel et al., 2019; Shi et al., 2019; McCabe et al., 2020).

There are two main categories of feature selection algorithms, 
filter and wrapper (Ye et  al., 2017). A filter feature selection 
algorithm evaluates the association of each feature with a 
class label and then ranks features based on the significance 
of this association (Hall and Smith, 1999). These filter algorithms 
are commonly used for detection of biomarkers since their 
time complexity is linear. However, the filters ignore the 
inter-feature correlations and cannot detect the subset of low 
ranked features with good prediction performance (Ye et  al., 
2017). A wrapper feature selection algorithm heuristically 
generates the feature subsets and evaluates the prediction 
performance of a given feature subset using a user defined 
classifier (Das, 2001). The wrappers usually have higher time 
complexities than the filters and tend to deliver the feature 
subsets with better prediction performance than the filters 
(Ge et  al., 2016).

This study proposes an ensemble feature selection algorithm, 
EnRank, to take advantage of both filters and wrappers. The 
main idea of EnRank is to integrate the ranks of multiple 
feature selection algorithms and verify that the final feature 
subset is efficient for use in a prediction model. A comprehensive 
evaluation was carried out to test which classifier achieved 
the best prediction performance. Our experimental data suggested 
that different feature selection algorithms may contribute 
complementary information to each other and the orchestration 
of the features selected by these algorithms are efficient for 
use in a predictive model.

MATERIALS AND METHODS

Collection of Data
This study used the transcriptome dataset GSE33463 of pulmonary 
hypertension patients and controls (Cheadle et  al., 2012). The 
gene expression levels were profiled from the PBMCs of the 
recruited participants on the microarray platform GPL6947 
(Illumina HumanHT-12 V3.0 expression beadchip). Each sample 

had 49,576 transcriptomic features, and the feature annotations 
were retrieved from the platform definition file.

This dataset consisted of 140 samples in total. There were 
30 idiopathic pulmonary arterial hypertension (PAH) patients, 
19 patients with systemic sclerosis (SSc) without pulmonary 
hypertension, 42 scleroderma-associated PAH patients, and 
eight patients with SSc complicated by interstitial lung diseases 
and pulmonary hypertension. The remaining 41 samples were 
non-disease controls. This study investigated the binary 
classification problem between the 99 patients (positive samples) 
and 41 non-disease controls (negative samples).

Feature Selection Algorithms
Feature selection algorithms were used to find the biomarkers 
with the best disease detection performance. Each sample had 
49,576 transcriptomic features, and the overall dataset had 140 
samples in total. A classification model may have a large chance 
of overfitting for this “large p small n” situation (Keel et  al., 
2019; Ren et  al., 2020). A feature selection algorithm may 
be  used to find a subset of features for building an accurate 
and stable classification model. This would also make the model 
easier to be  interpreted along with better performance during 
the training step. The following four feature selection algorithms 
were utilized to find a good subset of features.

The Chi-squared test (Chi2) helps to test the relationships 
or dependence between two variables. Chi2 may be  used to 
remove the features without dependency on the class labels 
(Xiao et  al., 2020). In other words, these removed features 
will have a small contribution to any classification model.

The T-test (Ttest) is widely used to evaluate the statistical 
significance (p value) of the null hypothesis that a feature 
of the positive samples has the same normal distribution as 
that of the negative samples (Govindan et  al., 2019; Soh 
et  al., 2020). A feature with the value of p  <  0.05 is typically 
considered a candidate for differential expression between 
the positive and negative samples. In addition, a feature with 
a lower p value is considered to have increased power for 
binary classification.

The ridge regression (Ridge) evaluates a subset of features 
for their connections with the class labels (Gao et  al., 2020; 
Xu et al., 2020). Ridge provides a model-based trade-off between 
the fitting and complexity of the features by adding the L2 
regularization to the regression model.

The Least Absolute Shrinkage and Selection Operator 
(Lasso) algorithm adds the L1 regularization to the regression 
model along with a penalty value for number of features 
(Deshpande et  al., 2019). So, Lasso tends to select a small 
subset of features and weights them for building a robust 
regression model.

Binary Classification Methods
The models for predicting disease were trained using five 
binary classifiers.

Logistic regression (LR) is a statistics model using a 
logistic function to model a binary classification problem 
(Cuadrado-Godia et  al., 2019; Khandezamin et  al., 2020). 
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The logistic model calculates the log-odds for the class label 
by a linear combination of one or multiple predictors.

Support vector machine (SVM) is a supervised machine 
learning algorithm originally designed for binary classification 
(Jin et  al., 2019; Wang et  al., 2019). SVM searches for a 
hyperplane to separate two classes of samples with the maximal 
margins. It enriches the feature space through a kernel function 
to quantify the inter-sample similarities.

A simple algorithm K Nearest Neighbor (KNN) is a popular 
supervised machine learning framework for both classification 
and regression tasks (Wang et  al., 2020; Yuan et  al., 2020). 
KNN determines the class label of a query sample through 
the majority voting strategy of the KNNs of the query sample.

Decision tree (DT) uses a tree structure to solve the classification 
problem (Prieto-Gonzalez et  al., 2020). Each node except for 
the leaves in a DT classifier exerts a feature evaluation, and 
the evaluation result determines which sub-branch of this current 
node to follow. DT is a simple and easy-to-interpret classifier.

The adaptive boosting tree (AdaBoost) is an integrated 
machine learning technique (Qiao and Xie, 2019; Dou et  al., 
2020). The weight of a sample will be  increased if this sample 
leads to a misclassified base classifier. Each iteration will add 
new base classifiers. The final goal is to find a strong classifier 
with sufficiently small error rate.

Performance Evaluation Metrics
The supervised machine learning algorithms were evaluated 
by the following performance metrics. These metrics are essential 
to measure a prediction model from different aspects. This 
study used specificity (Sp), sensitivity (Sn), accuracy (Acc), 
and the area under the receiver operating characteristics curve 
(AUC). The number of correctly predicted positive samples 
was defined as the true positive (TP) and that of the incorrectly 
predicted positives was the false negative (FN). The true negative 
(TN) and the false positive (TP) defined the numbers of 
correctly and incorrectly predicted negative samples, respectively.

The overall accuracy is calculated as the number of all the 
correct predictions divided by the total number of samples in 
the dataset. That is to say, Acc  =  (TP  +  TN)/
(TP  +  FN  +  TN  +  FP). The value of Acc is between 0.0 and 
1.0. The two metrics Sp and Sn describe the ratios of correctly 
predicted negative and positive samples, respectively. So Sp = TN/
(TN  +  FP) and Sn  =  TP/(TP  +  FN). Both metrics are between 
0.0 and 1.0. A larger value of the three metrics Acc/Sp/Sn 
suggests a better prediction performance. The Matthews’ 
Correlation Coefficient (MCC; Matthews, 1975) was introduced 
by the biochemist Brian W. Matthews in 1975 and MCC is 
generally regarded as a balanced measurement which can be used 
even if the classes are of very different sizes. The metric AUC 
is a parameter independent metric for the prediction model 
and shows a trade-off between Sp and Sn (Shao et  al., 2020).

The Proposed Feature Ranking Algorithm, 
EnRank
This study proposed the ensemble feature selection algorithm, 
EnRank, by calculating the weighted ranks of the four feature 

selection algorithms, i.e., Ttest, Chi2, Ridge, and Lasso. 
The  two filter algorithms Ttest and Chi2 rank the features 
by their individual association values of p with the class 
labels. The two linear fitting algorithms Ridge and Lasso 
rank the features based on the absolute values of the fitted 
model’s coefficients. The values of the feature ranks start 
from 1, i.e., the best ranked feature has the rank 1. Each 
feature selection algorithm selects top-ranked pTopK  =  100 
features for further screening.

The proposed algorithm EnRank defines a weight Aimi for 
each feature selection algorithm, where i∈{Ttest, Chi2, Ridge, 
Lasso}. The pTopK features selected by each algorithm were 
loaded into the five classification algorithms, i.e., LR, SVM, 
KNN, DT, and AdaBoost. The stratified 5-fold cross validation 
(S5FCV) strategy was used to calculate the metric AUC, and 
each feature selection algorithm received five AUC values. This 
study aimed to find a feature subset with stably high AUC 
values for five classification algorithms, and defined 
Aimi  =  Avgi/Vari, where Avgi and Vari were the averaged value 
and variance of the five AUC values of the feature selection 
algorithm I, respectively.

Finally, EnRank generated an integrated rank for each feature 
f. To avoid the case of very low ranking features, the rank of 
feature Ranki(f) was redefined as the penalization rank 
pPenaltyRank  =  1,000, if Ranki(f)  >  pTopK. The integrated 
rank EnRank(f)  =  Average(Ranki(f)  ×  Aimi) was defined as 
the EnRank metric, where the function Average() is the averaged 
value, and i∈{Ttest, Chi2, Ridge, Lasso}.

Then, any filter-based feature selection frameworks, e.g., the 
incremental feature selection (IFS), may be  used to find the 
best subset of top-ranked features generated by EnRank.

Workflow of This Study
This study proposed an ensemble feature selection algorithm, 
EnRank, by integrating the feature ranks from different algorithms 
(Figure  1). The experimental data in the following section 
suggested that different feature selection algorithms performed 
differently, and it is necessary to integrate the ranking information 
calculated by different feature selection algorithms.

RESULTS AND DISCUSSION

Comparison of the Feature Ranks by Ttest 
and Chi2
Table  1 illustrated the top-ranked 10 features delivered by the 
two filter algorithms Ttest and Chi2. Firstly, the statistical 
significance p values of the two algorithms Ttest and Chi2 
were different to each other. The minimum p value of Ttest 
was 2.83e-19 while Chi2 only calculated the minimum p value 
4.08e-4 for its null hypothesis. Actually, even the rank-100 
feature ILMN_1698668 by Ttest had value of p  =  2.28e-12, 
which was much smaller than the minimum value of p = 4.08e-4 
of the algorithm Chi2.

And there was only one feature ILMN_1789074 shared among 
the top-ranked 10 features by Ttest and Chi2. The p value for 
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the Ttest null hypothesis was 5.47e-16 for feature ILMN_1789074 
(Ttest rank 10), while Chi2 recommended ILMN_1789074 as 
the rank 7 feature with p value 5.21e-3.

So, the statistical tests Ttest and Chi2 generated significantly 
different p values for the features, and we  had to integrate 
the features by their rank values.

Comparison of the Feature Ranks by 
Ridge and Lasso
Only six out of the top-10 ranked features by the absolute 
values of their model coefficients were shared by the two 
algorithms Ridge and Lasso (Table  2). This study assumed 
that both positive and negative correlations of the features 

with the class labels were important, and the absolute values 
of the model correlation coefficients of these features were 
used to rank the features in descending order. The feature 
ILMN_1697499 was the best ranked feature by Ridge, but it 
was not even within the top-10 ranked features by Lasso. 
Actually, the feature ILMN_1697499 was ranked 26 by Lasso. 
And the best ranked feature ILMN_1678859 by Lasso was 
only the ninth ranked feature by Ridge.

Venn diagram (Figure  2) shows that very few features were 
shared by these four feature selection algorithms, i.e., Ttest, 
Chi2, Lasso, and Ridge, except between Lasso and Ridge.

The data in Tables 1, 2 suggested that the top-ranked features 
by the four algorithms Ttest, Chi2, Ridge, and Lasso described 

FIGURE 1 | Workflow of this study. The proposed algorithm EnRank integrates the ranks of both feature selection algorithms and classification algorithms. The 
finally generated feature subset is further evaluated by five different classification algorithms.

TABLE 1 | The top-10 features ranked by Ttest and Chi2. The two columns “Ttest” and “Chi2” gave the names of the ranked features.

Ttest Ttest-p value Rank Chi2 Chi2-p value

ILMN_1812970 2.83E-19 1 ILMN_1806023 4.08E-04
ILMN_1875248 9.71E-19 2 ILMN_1656011 8.59E-04
ILMN_1704335 2.28E-18 3 ILMN_1702691 1.48E-03
ILMN_1794233 6.85E-18 4 ILMN_2367126 2.42E-03
ILMN_1765725 1.06E-17 5 ILMN_2339955 3.21E-03
ILMN_1758687 1.83E-17 6 ILMN_1815527 3.44E-03
ILMN_1687526 5.60E-17 7 ILMN_1789074 5.21E-03
ILMN_1767168 7.40E-17 8 ILMN_1782305 5.49E-03
ILMN_2159384 1.38E-16 9 ILMN_2088437 8.62E-03
ILMN_1789074 5.47E-16 10 ILMN_1751607 9.14E-03

Column “Rank” provided the rank values. “Ttest-p value” and “Chi2-p value” provided the statistical p values as calculated by the two algorithms Ttest and Chi2. The feature was 
highlighted in bold if it was among the top-ranked 10 features of both algorithms.
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the class correlations of the features from different aspects. 
Figure  3 evaluated different value choices of the parameter 
pTopK. Both pTopK  =  75 and 100 achieved the best averaged 
AUC  =  0.9446. In order to introduce more feature diversity, 
this study focused on the four lists of top-ranked pTopK = 100 
features by the above four algorithms, and their union consisted 
of 269 features.

Evaluation of the Four Feature Selection 
Algorithms
Figure  4A demonstrated that the classification algorithm DT 
had low performance on all four feature lists. And the other 
four classification algorithms achieved at least 0.9000  in the 
metric AUC for all four feature lists. Although the Lasso-selected 100 
features achieved the best mean AUC value 0.9571 by the five 
classification algorithms, its SD 0.0701 was larger than that 
(0.0594) of another algorithm Ridge. So the Lasso’s Aim 13.6620 

was slightly larger than that (15.9508) of Ridge, as shown in 
Figure  4B. The filter Ttest was assigned the Aim 10.6090 due 
to its largest SD 0.0877.

Distribution of the Calculated EnRank 
Metrics
The ranking metric EnRank was defined in the above subsection 
“The proposed feature ranking algorithm, EnRank.” EnRank 
used the EnRank metrics to rank the features in ascending 
order, and the features were roughly separated into four 
groups, as shown in Figure  5. The EnRank metrics of the 
ordered features were within these four ranges, i.e., [1, 1,000], 
[2,500, 3,300], [5,000, 5,700], and [7,500, 7,900]. The 
experimental data suggested that these four groups of features 
consisted of features recommended by four, three, two, and 
one feature selection algorithms, respectively. That is to say, 
a feature recommended by four feature selection algorithms 
was not penalized by the penalization rank pPenaltyRank, 
and algorithm aims were between 10 and 16. Such a feature 
had an EnRank smaller than 1,000. So the metric EnRank 
reasonably described how each feature was ranked by multiple 
feature selection algorithms.

Literature Supportive of the 
EnRank-Detected 50 Biomarkers
The metric Literature Support (LR) of a feature was defined 
by the number of PubMed (Fiorini et  al., 2017) publications 
matching the gene symbol of this feature and the key word 
“pulmonary disease” in both title and abstract. The query term 
was “term={}[tiab] AND pulmonary disease [tiab],” and the 
queried date was November 16, 2020. The cumulative LR (CLR) 
of the top-k ranked features was defined as the sum of the 
LR values of these k features.

In order to compare with the biomarkers selected by EnRank, 
we  randomly selected the same number of genes among the 
remaining genes as a control group, and then compared the metrics 
CLR and LR in the two groups. Figure  6 illustrated that the 
EnRank-detected top-ranked features were investigated for their 
roles in pulmonary diseases many more times than the randomly-
chosen features. The randomly-chosen features were supported 

TABLE 2 | The top-10 features ranked by the model coefficients of the regression models Ridge and Lasso.

Ridge RidgeCoef Rank Lasso LassoCoef

ILMN_1697499 0.0671 1 ILMN_1678859 0.1663
ILMN_2165753 0.0563 2 ILMN_1781236 0.1589
ILMN_1807491 0.0484 3 ILMN_2058782 0.1362
ILMN_1781236 0.0435 4 ILMN_2083066 0.1307
ILMN_1806023 0.0435 5 ILMN_1807491 0.1269
ILMN_2083066 0.0428 6 ILMN_1806023 0.1142
ILMN_1721113 0.0425 7 ILMN_1801216 0.1120
ILMN_2229649 0.0408 8 ILMN_1822671 0.1078
ILMN_1678859 0.0398 9 ILMN_1789074 0.1077
ILMN_2323933 0.0395 10 ILMN_2165753 0.1072

The two columns “Ridge” and “Lasso” identified the top-10 ranked features. Column “Rank” provided the rank values. The two columns “RidgeCoef” and “LassoCoef” gave the 
absolute values of the model coefficients calculated by the two algorithms Ridge and Lasso. The features were highlighted in bold if they were among the top-ranked 10 features of 
both algorithms.

FIGURE 2 | Venn diagram of the top-10 features ranked by the four feature 
selection algorithms. The feature selection algorithms were T-test (Ttest), 
Chi-squared test (Chi2), Least Absolute Shrinkage and Selection Operator 
(Lasso), and ridge regression (Ridge).
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by at most two PubMed publications, and only four out of the 
50 randomly-selected features had literature support. And the 
EnRank-detected top-ranked 50 features were more significantly 
supported by the scientific literature. Some features were supported 
by as many as nine PubMed publications, and 14 out of the 50 
features had literature support. So the EnRank-detected features 
were consistently supported by the literature.

Model Evaluation Based on the 
EnRank-Detected Biomarkers
A comparative study was carried out to evaluate whether the 
proposed algorithm EnRank recommended features with good 
prediction performance of pulmonary hypertension (Figure  7). 
The baseline models in Figure  7A showed that the classifier 
DT achieved the worst PH prediction accuracy (Acc  =  0.7545), 
while the classifier LR achieved the best Acc  =  0.9000. SVM 
achieved the same Sn = 0.9560 as LR, but much worse Sp = 0.5361 

than that (Sp  =  0.8056) of LR. So, it is necessary to find a 
subset of biomarker features with a better PH prediction accuracy.

Figure  7B showed that the 50 EnRank-detected biomarkers 
improved the prediction accuracies of all five classification 
algorithms. The largest improvement in Acc (0.1364) was 
achieved for both SVM and KNN. The classification algorithm 
LR achieved the best Acc = 0.9545 again using the 50 EnRank-
detected biomarkers. The parameter-independent metric 
AUC  =  0.9894 of LR was also the best among the five 
classification algorithms.

So this study delivered a PH prediction model using the 50 
EnRank-detected biomarkers and the LR classification algorithm.

Further Validation of the Proposed PH 
Biomarkers
Firstly, the proposed PH biomarkers were validated using 
an independent dataset GSE22356 (Risbano et  al., 2010) 

FIGURE 3 | Evaluation of the parameter pTopK of EnRank. The horizontal axis listed the five classifiers and the averaged area under the receiver operating 
characteristics curve (AUC) values by pTopK value. The five values, 50/75/100/125/150, are from EnRank.

A

B

FIGURE 4 | The model performances and the weights of the four feature selection algorithms. (A) The AUC values of the top-100 features ranked by the four 
feature ranking algorithms using the five classification algorithms. Each of the four feature ranking algorithms Ttest, Chi2, Ridge, and Lasso selected the top-ranked 
100 features. The AUC values of the feature lists were calculated by the stratified 5-fold cross validation (S5FCV) strategy of the five popular classification algorithms. 
(B) Calculation of the algorithm weight “Aim” for each of the four feature selection algorithms. The columns “Mean” and “Std” were the mean values and the SDs of 
the five classification algorithms. And the column “Aim” was defined as Mean/Std.
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from the Gene Expression Omnibus (GEO) database 
(Clough and Barrett, 2016). This dataset consists of 38 PBMC 
samples profiled by the Affymetrix Human Genome U133 
Plus 2.0 Array (GPL570), and investigates the altered immune 
phenotypes of the scleroderma-associated pulmonary 
hypertension (Risbano et  al., 2010). The normal controls 
were assumed as the negative samples, and the other samples 
were regarded as the positive ones. The 50 EnRank-
recommended features matched 236 features through 36 
unique genes in the independent dataset. The same settings 
of training and evaluation as EnRank were used. Figure  8A 
showed that four of the five classifiers achieved AUC values 
at least 0.8000. The classifier LR achieved the largest 
AUC  =  0.8433, and the largest Acc  =  0.8893. Considering 
that this independent dataset was profiled using a different 
transcriptome platform than our original dataset GSE33463, 
the independent validation results supported the robustness 
of the EnRank-recommended PH biomarkers.

We searched the literature database PubMed using the keywords 
“pulmonary hypertension” and “biomarker” in the titles, and 
only 41 publications were detected. Most of them focused on 
the protein (Wu et  al., 2020), vocal (Sara et  al., 2020), and 

imaging (Jivraj et al., 2017; Jose et al., 2020) data. So we collected 
the PH marker genes from the recently updated database 
MarkerDB (Wishart et  al., 2021). Three unique genes were 
annotated as the PH biomarkers, including Bone Morphogenetic 
Protein Receptor Type 2 (BMPR2), Activin A Receptor Like 
Type 1 (ACVRL1), and Endoglin (ENG). Four features were 
associated with these three genes. The prediction performances 
of these four biomarker features were shown in Figure  8B. 
Unfortunately, no classifiers showed larger than 0.7000 in either 
AUC or Acc using these biomarkers. This should be  due to 
that the existing biomarkers were screened for their individual 
associations with the phenotype PH, and their combined PH 
prediction performances were not investigated in the 
existing studies.

Further Evaluation of Other Feature 
Selection Combinations
The proposed algorithm EnRank is a feature selection framework 
that may integrate the ranking data of multiple feature selection 
algorithms. The above sections integrated four feature selection 
algorithms, i.e., Ttest, Chi2, Ridge, and Lasso. Figure  9A 
evaluated the proposed ensembled algorithm EnRank and its 

FIGURE 5 | The EnRank metrics of the 269 features in the union of the four lists of top-100 ranked features. The horizontal axis gave the feature ranks ordered by 
the EnRank metric, and the vertical axis gave the EnRank metrics of the top-ranked 269 features. These features were among the union of the top-100 ranked 
features recommended by the four algorithms, Ttest, Chi2, Ridge, and Lasso.

FIGURE 6 | Evaluation of the cumulative literature support LR (CLR) of the top-50 EnRank-ranked features. The horizontal axis gave the EnRank-recommended 
ranks and the vertical axis shows the metric CLR.
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four individual feature selection algorithms using the same 
training and testing settings. The parameter-independent metric 
AUC was used to compare the performances of the feature 

selection algorithms. EnRank achieved the best AUC values 
using three out of the five classifiers. The Lasso-recommended 
features achieved the best AUC  =  0.9946 while the 

A B

FIGURE 7 | Performance comparison of the five classification algorithms. The S5FCV strategy was used to train the five classification algorithms using (A) all the 
transcriptomic features, and (B) the 50 EnRank-detected biomarkers. The horizontal axis gave the performance metrics sensitivity (Sn), specificity (Sp), Matthews’ 
Correlation Coefficient (MCC), AUC, and accuracy (Acc). The vertical axis gave the values of these performance metrics.

A

B

FIGURE 8 | Evaluation of the pulmonary hypertension (PH) detection model. (A) Validation of the 50 EnRank-recommended PH biomarkers in the dataset 
GSE22356. (B) Performances of the existing PH biomarkers. The horizontal axis listed the performance metrics Sn/Sp/MCC/ROC/Acc and the five classifiers were 
given as data series. The vertical axis gave the values of the performance metrics.

39

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Liu et al. EnRank: Ensemble Feature Selection Algorithm

Frontiers in Genetics | www.frontiersin.org 9 April 2021 | Volume 12 | Article 636429

A

B

C

FIGURE 9 | Comparison of EnRank with the other feature selection algorithms and their combinations. (A) Evaluation of EnRank and its individual feature selection 
algorithms. (B) Two groups of feature selection algorithms were integrated by EnRank. The original version of EnRank was “Ttest/Chi2/Lasso/Ridge,” and the new 
version was “Variance/Anova/ExtraTree/MutualInfo.” The horizontal axis listed the classifiers and the vertical axis gave the AUC values of the evaluated models. The 
ensembled algorithm EnRank and its four individual feature selection algorithms. (C) The AUC values of different combinations of feature selection algorithms 
averaged over the five classifiers logistic regression (LR)/decision tree (DT)/support vector machine (SVM)/k nearest neighbor (KNN)/adaptive boosting tree 
(AdaBoost). The horizontal axis listed the algorithm combinations, and the vertical axis gave the AUC values.
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EnRank-recommended features achieved the second best 
AUC = 0.9894. EnRank achieved the second best AUC = 0.8283 
using the classifier DT, while Ridge-recommended features 
achieved the slightly better AUC  =  0.8790.

The original version of EnRank integrated four feature 
selection algorithms Ttest/Chi2/Lasso/Ridge, which was compared 
with the new version integrating four new feature selection 
algorithms, as shown in Figure  9B. The four new feature 
selection algorithms were Variance Threshold (Variance), Mutual 
Information (MutualInfo), Extra Trees (ExtraTree), and ANOVA 
(Anova). The same model training and testing setting were 
carried out. The original version of EnRank outperformed the 
new version for all five classifiers. The best classifier LR was 
even improved by 0.0302  in the parameter-independent 
performance metric AUC.

The EnRank’s performance relied on the including efficient 
feature selection algorithms (Figure  9C). So a comparison was 
carried out for the performances of different combinations of 
feature selection algorithms. Here, we  investigated the 
combinations of three or five algorithms. Figure  9C showed 
that the original version of EnRank achieved the best AUC 
value  =  0.9446, although a slightly worse AUC  =  0.9441 was 
achieved by removing Ttest.

Biological Involvement of the 
EnRank-Detected Biomarkers
Table  3 listed the 50 EnRank-detected biomarkers and their 
corresponding gene information. Many transcriptomic biomarkers 
are from chromosomes 19 and 2. And two biomarkers 

ILMN_1807491 and ILMN_2323933 are from the same gene 
Leukocyte Associated Immunoglobulin Like Receptor 2 (LAIR2). 
Limited knowledge was known about the roles of LAIR2  in 
the PH patients, based on the information from PubMed 
(Fiorini et  al., 2017) and MalaCards (Rappaport et  al., 2017). 
There were five transcriptomic biomarkers with unknown 
chromosomal locations.

The feature ILMN_2088437 was from the gene C-X3-C 
Motif Chemokine Receptor 1 (CX3CR1), which was known 
to be  involved in HIV proliferation (Mhandire et  al., 2014; 
Guo et  al., 2020). The absence of CX3CR1 was observed to 
provide protection from tissue destruction from chronic 
obstructive pulmonary disease (COPD; Lee, 2012). And the 
gene CX3CR1 also demonstrated differential expressions in 
the COPD patients (Huang et  al., 2019). Another feature 
ILMN_1740875 was within the gene Formyl Peptide Receptor 2 
(FPR2) encoded on chromosome 19, which was actively involved 
in the mononuclear phagocyte responses in Alzheimer disease 
(Iribarren et  al., 2005). FPR2 also demonstrated its capability 
of promoting the chemotaxis and survival of neutrophils in 
the COPD patients (Iribarren et  al., 2005).

The EnRank-recommended genes were analyzed using the 
online tool DAVID version 6.8 (Jiao et  al., 2012). The list of 
genes was annotated to cover the top  50 EnRank-recommended 
features and was screened against the human genome. The statistical 
significance p values were adjusted by the multi-test Benjamini 
corrections, and only the functional terms with the Benjamini-
corrected values of p  <  0.05 were kept for further analysis. It is 
interesting to observe that no GO terms were significantly enriched 
in PH biomarkers; while seven KEGG pathways were enriched 

TABLE 3 | Detailed information of the 50 EnRank-detected biomarkers.

Rank Feature Gene Chr Strand Rank Feature Gene Chr Strand

41 ILMN_1804350 LOC644852 1 + 39 ILMN_1711786 NFE2 12 −
1 ILMN_1806023 JUN 1 − 20 ILMN_2207291 IFNG 12 −
15 ILMN_1723912 IFI44L 1 + 25 ILMN_2388547 EPSTI1 13 −
43 ILMN_2339955 NR4A2 2 − 40 ILMN_2229649 KCTD12 13 −
11 ILMN_1782305 NR4A2 2 − 5 ILMN_2058782 IFI27 14 +
23 ILMN_1800602 GCA 2 + 38 ILMN_1763364 WHDC1 15 +
8 ILMN_1733998 DHRS9 2 + 10 ILMN_2057836 RNU2 17|NT_113932.1 −
44 ILMN_1755643 MGAT4A 2 − 12 ILMN_1772796 DYNLL2 17 +
22 ILMN_1801307 TNFSF10 3 − 47 ILMN_1742618 XAF1 17 +
3 ILMN_2088437 CX3CR1 3 − 26 ILMN_1749722 RNF213 17 +
7 ILMN_1745788 CX3CR1 3 − 24 ILMN_2413331 TMEM107 17 −
33 ILMN_1801216 S100P 4 + 18 ILMN_1775304 DNAJB1 19 −
48 ILMN_1745522 PF4V1 4 + 46 ILMN_2302757 FCGBP 19 −
49 ILMN_1710734 GZMK 5 + 16 ILMN_1751607 FOSB 19 +
42 ILMN_1779147 ENC1 5 − 6 ILMN_1740875 FPR2 19 +
9 ILMN_1702691 TNFAIP3 6 + 28 ILMN_1807491 LAIR2 19 +
32 ILMN_1721113 HLA-C 6 − 45 ILMN_2323933 LAIR2 19 +
2 ILMN_1789074 HSPA1A 6 + 17 ILMN_1664861 ID1 20 +
34 ILMN_1697499 HLA-DRB5 6 − 29 ILMN_2083066 IGLL3 22 +
4 ILMN_1748473 GIMAP4 7 + 35 ILMN_1796830 UBE2L3 22 +
14 ILMN_1799467 SAMD9L 7 − 13 ILMN_1852793 UniGene|BC067908
21 ILMN_1684982 PDK4 7 − 27 ILMN_1781236 RefSeq|XR_001116.1
37 ILMN_1716733 MYOM2 8 + 30 ILMN_1678859 RefSeq|XM_938277.1
50 ILMN_1773313 USMG5 10 − 31 ILMN_2165753 RefSeq|NM_001080840.1
19 ILMN_1674063 OAS2 12 + 36 ILMN_1822671 UniGene|BC020840

Column “Gene” gave the gene symbol for each biomarker. Some biomarkers may not reside in a protein-coding gene, and they may have no annotated gene information.
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with PH biomarkers. Many of these KEGG pathways were associated 
with antiviral immunity. The most significant KEGG pathway 
was hsa05164 (Influenza A) with the Benjamini-corrected 
p  value  =  2.80e-4. The infection of influenza A caused a patient’s 
death after 3 months of treatment with the popular drug bosentan 
for pulmonary hypertension in a clinical trial (Hoeper et  al., 
2005). As of now, no direct link was presented in the literature. 
But virus infection is known to be closely connected with pulmonary 
hypertension (Kimura et al., 2019; Miyasaka et al., 2020; Table 4).

CONCLUSION

This study proposed a novel ensemble filter feature selection 
algorithm EnRank by the weighted integration of four popular 
filter algorithms. Five classification algorithms were used to 
evaluate the filter algorithms. The EnRank-detected biomarkers 
demonstrated very good performances on the PH prediction 
problem. And most of these biomarkers also demonstrated 
close connections with the disease PH from the literature.

The proposed algorithm EnRank is a feature selection 
framework, and may integrate feature selection algorithms with 
feature weights. The main limitation of EnRank is the choices 

of feature selection algorithms to be  integrated. The parameter 
pTopK may also impact the final model performances. Others 
may want to carry out a series of comparable experiments to 
find the best parameters for their own datasets.
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Hepatocellular carcinoma (HCC) has been recognized as the third leading cause of cancer-
related deaths worldwide. There is increasing evidence that the abnormal expression of
autophagy-related genes plays an important role in the occurrence and development of
HCC. Therefore, the study of autophagy-related genes can further elucidate the genetic
drivers of cancer and provide valuable therapeutic targets for clinical treatment. In this
study, we used 232 autophagy-related genes extracted from the Human Autophagy
Database (HADb) and Molecular Signatures Database (MSigDB) to construct
1884 autophagy-related gene pairs. On this basis, we developed a prognostic model
based on autophagy-related gene pairs using least absolute shrinkage and selection
operator (LASSO) Cox regression to evaluate the prognosis of patients after liver cancer
resection. We then used 845 liver cancer samples from three different databases to test
the reliability of the risk signature through survival analysis, receiver operating characteristic
(ROC) curve analysis, univariate and multivariate analysis. To further explore the underlying
biological mechanisms, we conducted an enrichment analysis of autophagy-related
genes. Finally, we combined the signature with independent prognostic factors to
construct a nomogram. Based on the autophagy-related gene pair (ARGP) signature,
we can divide patients into high- or low-risk groups. Survival analysis and ROC curve
analysis verified the validity of the signature (AUC: 0.786—0.828). Multivariate Cox
regression showed that the risk score can be used as an independent predictor of the
clinical outcomes of liver cancer patients. Notably, this model has a more accurate
predictive effect than most prognostic models for hepatocellular carcinoma. Moreover,
our model is a powerful supplement to the HCC staging indicator, and a nomogram
comprising both indicators can provide a better prognostic effect. Based on pairs of
multiple autophagy-related genes, we proposed a prognostic model for predicting the
overall survival rate of HCC patients after surgery, which is a promising prognostic
indicator. This study confirms the importance of autophagy in the occurrence and
development of HCC, and also provides potential biomarkers for targeted treatments.
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INTRODUCTION

Hepatocellular carcinoma, the predominant primary tumor of the
liver, has been recognized as the third leading cause of cancer-
related death worldwide (Forner et al., 2018). Many patients are
diagnosed when the cancer has already metastasized and a series
of severe complications have occurred, indicating that the liver
cancer has reached an advanced stage (Cabibbo et al., 2010). In
site of recent advances in surgical resection or liver
transplantation, the 5-year survival rate of HCC patients
remains relatively low (Bosetti et al., 2014; Singal and El-Serag,
2015). Therefore, extensive analysis is urgently needed to identify
reliable prognostic biomarkers and develop therapies that can
target the major oncogenes of HCC.

Autophagy is an important intracellular selective recycling
mechanism through which cell components are transported to
lysosomes for degradation to recover materials and provide
energy (Mizushima, 2018). Due to its unique functions,
autophagy is closely related to many human diseases,
including immune diseases (Gukovskaya et al., 2017; Yang
et al., 2017), neurodegenerative diseases (Hu et al., 2017;
Moloudizargari et al., 2017) and different types of cancer
(White, 2015; Gugnoni et al., 2016). A large number of studies
have shown that autophagy has two opposite effects during the
occurrence of common cancers, especially in HCC (Czaja et al.,
2013). At the same time, there is increasing evidence that
abnormal expression of autophagy-related genes plays a
pathogenic role in the development of multiple human
diseases, including cancer (Mizushima, 2018). As autophagy
plays a key role in hepatocellular carcinoma, prognostic
signatures based on autophagy-related genes can help us
explore the genetic control mechanism of hepatocellular
carcinoma and provide valuable therapeutic targets (Lin et al.,
2018). However, few studies have used autophagy-related genes
to construct prognostic signatures for HCC.

In this study, we developed and validated a promising
prognostic model for HCC based on autophagy-related gene
pairs. First, we collected sequencing data of autophagy-related
genes from three independent groups to screen for candidate gene
pairs. We screened out nine gene pairs that are closely related to
the patients’ prognosis and used them to construct a gene-pair
model. After calculating the risk scores of the patients using the
model, we divided the patients into two groups with significant
differences in prognosis. In a series of subsequent verifications,
our model showed a good prognostic ability for HCC patients.
Our promising prognostic model confirms the important role of
autophagy in HCC and provides potential therapeutic targets.

MATERIALS AND METHODS

Data Sources
We obtained an RNA-seq dataset (n � 377), which was used as a
training set to build the model, and the corresponding clinical
information of HCC patients from The Cancer Genome Atlas
(TCGA) using the UCSC Xena browser (https://xenabrowser.net/).
The validation set was based on a second RNA-seq dataset

(n � 243) downloaded from the International Cancer Genome
Consortium (ICGC) (https://dcc.icgc.org) and amicroarray dataset
(GSE14520, n � 225) from GEO database (http://www.ncbi.nlm.
nih.gov/geo). We extracted 232 autophagy-related genes from the
Human Autophagy Database (HADb, http://www.autophagy.lu/
index.html) and 394 from the GO_AUTOPHAGY gene set in the
Molecular Signatures Database v7.1 (MSigDB, http://software.
broadinstitute.org/gsea/msigdb). Our autophagy-related gene set
was formed by the integration of these two gene sets.

Data Preprocessing
Specimens of HCC patients who survived less than one month or
whose clinical data were incomplete were not included. We
removed the data of normal tissue samples and only kept the
data of the primary tumor. When multiple specimens were taken
from the same patient, the average gene expression value was used
to represent the patient’s gene expression level. Only the
sequencing data of autophagy-related genes were retained.
When the same gene was matched by multiple probes, we
used the average expression value of multiple probes to
indicate the expression level of the gene. For the RNA-seq
data from TCGA database, we excluded HCC samples in
which more than half of the gene probe expression values
were zero. The expression profiles of common autophagy-
related genes were screened from the three data sets.

Establishment of the Prognostic Model
Based on Autophagy-Related Genes
We compared the expression values of autophagy-related
genes in each sample to obtain the score of each ARGP.
The expression values of autophagy-related genes in each
sample were compared in pairs to calculate the score of
each ARGP. In a pairwise comparison, if the previous value
is greater than the next value, the output is 1, and if it is not, the
output is 0. We excluded ARGPs that scored 0 or 1 in more
than 90% of the samples in each dataset, and the remaining
ARGPs were used to establish the prognostic model for HCC.
First, we performed univariate Cox regression analysis using
the R package “survival” to select gene pairs that are related to
the overall survival of HCC patients in TCGA. Differences with
p < 0.001 were considered statistically significant. To minimize
the risk of overfitting, we used “glmnet” R package to conduct
LASSO penalized Cox regression (3,000 iterations) to calculate
the frequency of the models. The gene pair model with the
highest frequency among the iterations was used to establish a
prognostic model. Stepwise multivariate Cox regression
analysis was performed.

Validation and Assessment of the
Autophagy-Related Gene Pair Signature
After calculating the risk score in every dataset, the patients were
classified into high-risk and low-risk groups according to the
median value of the risk score. Kaplan–Meier survival analysis
(p < 0.05) was used to analyze the over survival (OS) of the high-
risk and low-risk groups. After drawing ROC curves for 1, 3 and
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5 years, we used the area under curve (AUC) value to verify the
accuracy and sensitivity of this model. The closer the AUC value
is to 1, the better the predictive effect of the prognostic model. To
perform multivariate Cox regression analysis, available clinical
and pathological data were integrated with the ARGP signature.
Tumor stage, grade, age, and sex were regarded as continuous
variables. In addition, we selected three representative prognostic
gene models for HCC. Our model was compared with these
existing models using the 5-year multiple ROC curves. The
respective AUC values were used to estimate the prognostic
accuracy of each signature.

Gene Set Enrichment Analysis
In order to further reveal the biological mechanisms through
which the identified autophagy-related genes contribute to the
development of HCC, we used the MSigDB hallmark gene set (h.
all.v7.1.symbols.gmt) to run gene set enrichment analysis
(GSEA). We used an FDR value < 0.25, a nominal
(NOM) p < 0.05, and | NES | > 1 as the screening criteria to
identified signaling pathways that are highly related to the
model genes.

Construction of a Nomogram
Independent prognostic factors that are highly correlated with OS
in HCC patients (p < 0.05) were screened out using univariate and
multivariate Cox regression analyses. We then integrated these
independent prognostic factors using the R package “RMS” and
constructed the predictive nomogram and corresponding
calibration diagram for 1, 3, and 5 years. The calibration maps
were verified by calibration and discrimination. The expected
possibility of collinearity was plotted graphically as an observable
indicator to assess the alignment of the nomogram. The closer the

calibration curve was to the reference line (diagonal line), the
better the predictive effect of the nomogram.

Statistical Analysis
All statistical analyses were performed using R software (version
3.6.3, https://www.r-project.org/). The OS of the HCC patients in
the low- and high-risk groups was compared using the log-rank
test, and the Kaplan–Meier survival curves were drawn using the
R package “survminer” (version: 0.4.6). The gene pair prognostic
signature was established based on the LASSO Cox regression
algorithm using the R package “glmnet” (version: 3.0.2). ROC
curves andmultiple ROC curves were drawn using the R packages
“survivalROC” and “timeROC”, respectively.

RESULTS

Construction of the Autophagy-Related
Gene Pair Signature
After eliminating duplicate genes from HADb and MSigDB, an
autophagy-related gene set comprising 527 genes was obtained.
As shown in Table 1, this study included 808 HCC patients from
three cohorts. ARGPs were constructed using a total of
269 autophagy-related genes that are represented in all three
data sets.

We removed ARGPs with a score of 0 or 1 inmore than 90% of
the samples in all datasets, resulting in 1885 ARGPs. We used
univariate Cox regression analysis to screen 117 prognostic
ARGPs that were significantly associated with overall survival
(p < 0.001), and established a prognostic gene model of ARGP
using Lasso penalty score Cox regression in the TCGA dataset.
After multivariate Cox regression analysis, 9 ARGPs were selected

TABLE1 | Clinical and pathologic factors of the datasets used in this study.

TCGA(n,%) ICGC (n,%) GSE14520 (n,%)

Total 346 241 221
Age
Median age (years) 61 69 50
Mean age (years) 59.44 67.49 50.819

Gender
Female 110 (31.79%) 61 (25.31%) 30 (13.57%)
Male 236 (68.21%) 180 (74.69%) 191 (86.43%)

TNM stage
Stage I 163 (47.11%) 36 (14.94%) 93 (42.08%)
Stage II 78 (22.54%) 110 (45.64%) 77 (34.84%)
Stage III 80 (23.12%) 74 (30.71%) 49 (22.17%)
Stage IV 3 (0.87%) 21 (8.71%) 0
NA 22 (6.36%) 0 2 (0.90%)

Grade
G1 53 (15.32%)
G2 162 (46.82%)
G3 114 (32.95%)
G4 12 (3.47%)
NA 5 (1.45%)

Survival status
Alive 222 (64.16%) 199 (82.57%) 136 (61.54%)
Dead 124 (35.84%) 44 (18.26%) 85 (38.46%)
Median follow-up time (days) 632.5 780 1,569

Abbreviations: TCGA, TCGA LIHC dataset; ICGC, ICGC LIHC dataset;
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to construct the most stable prognostic signatures, and the
corresponding coefficients were used to calculate the risk score
for our datasets. Details of the 9-ARGP prognostic model are
listed in Table 2.

The 9-ARGP signature in the TCGA dataset reflected the
postoperative prognosis of patients very well (Figure 1). We
calculated the risk score of each HCC patient in TCGA according
to the prognostic characteristics of autophagy, and then divided

TABLE 2 | Univariate and multivariate analyses of prognostic factors in terms of OS.

datasets Variable Univariate Multivariate

HR (95%CI) p-value HR (95%CI) p-value

TCGA Risk score (low risk vs high risk) 4.77 (3.46–6.57) 6.16E-24 1.25 (1.19–1.31) 7.98E-18
Gender (male vs female) 0.75 (0.51–1.1) 0.141,902 0.82 (0.55–1.23) 0.338,054
Grade (G1 and G2 vs G3 and G4) 1.12 (0.86–1.45) 0.4012 1.16 (0.89–1.51) 0.271,925
Age (<60 vs ≥60) 1.01 (0.99–1.02) 0.492,155 1.01 (0.99–1.02) 0.228,735
Stage (I and II vs III and IV) 1.80 (1.46–2.22) 4.72E-08 1.59 (1.27–1.99) 6.14E-05

ICGC Risk score (low risk vs high risk) 1.11 (1.06–1.16) 1.43E-05 1.11 (1.06–1.17) 4.88E-05
Gender (male vs female) 0.46 (0.24–0.86) 0.014548 0.34 (0.17–0.65) 0.001113
Age (<70 vs ≥70) 1 (0.97–1.03) 0.914,617 0.99 (0.96–1.03) 0.764,419
Stage (I and II vs III and IV) 2 (1.38–2.91) 0.000268 2.15 (1.48–3.13) 5.49E-05

GSE14520 Risk score (low risk vs high risk) 1.05 (1.02–1.09) 0.001776 1.03 (1–1.07) 0.048104
Gender (male vs female) 1.66 (0.80–3.45) 0.172,844 1.30 (0.62–2.73) 0.487,211
Age (<50 vs ≥ 50) 0.99 (0.97–1.01) 0.356,607 1.00 (0.97–1.02) 0.741,149
Stage (I and II vs III and IV) 2.38 (1.78–3.17) 3.40E-09 2.23 (1.66–3.00) 9.76E-08

FIGURE 1 | Establishment 9-ARGP signature in the TCGA database. (A) Kaplan-Meier survival curves showed the prognostic value of the risk signature between
low-risk group (n � 263) and high-risk group (n � 262). (B) ROC curves were used to assess the efficiency of the risk signature for predicting 1-, 3- and 5-y survival. (C)
The risk scores distribution in the TCGA database. (D) The patients survival status in the TCGA database.
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the 346 cases into high- and low-risk groups based on the median
score. As shown in Figure 1A, the low-risk group had a
significantly lower mortality rate than the high-risk group
(95%CI: 8.09–21.07, p < 0.0001). We evaluated the specificity
and sensitivity of the prognostic model using time-dependent
ROC curve analysis. The AUC values for 1, 3, and 5 years after
surgery reached 0.812, 0.786, and 0.828, respectively, which
demonstrated that our ARGP prognostic signature has a
promising predictive ability (Figure 1B). The distribution of
the autophagy-related prognostic model for patients in the
TCGA data set is shown in Figure 1C,D.

Validation of the Autophagy-Related Gene
Pair Signature
In order to further verify its predictive power, we applied the
prognostic signature to the ICGC database (containing 243 HCC
cases) and the GSE14520 database (containing 225 HCC cases) for
analysis. According to the median risk value calculated using the 9-
ARGP prognostic signature, HCC patients in the two databases were
assigned into high- and low autophagy-based risk groups,

respectively. Consistent with the conclusions obtained using the
training set, the OS of the high-risk groups in the two validation
datasets was significantly lower than that of the low-risk group (p <
0.05) (Figure 2A,E). In the ICGC cohort, the AUC values of the
prognostic model were 0.842 at 1 year, 0.725 at 2 years, and 0.727 at
3 years (Figure 2B), while in theGSE14520 cohort theywere 0.625 at
1 year, 0.667 at 2 years, and 0.644 at 3 years (Figure 2F).
Figure 2C,D show the distribution of risk scores corresponding
to gene expression levels in the ICGC cohort, while Figure 2G,H
shows the corresponding data for the GSE14520 cohort. In
univariate Cox regression analysis, TNM staging and the ARGP
signature risk score were significantly related to the OS in the three
cohorts (HR > 1.00, p < 0.05). After correcting for age, gender, grade
and TMN staging in multivariate Cox regression analysis, the ARGP
signature risk score was still significantly associatedwith theOS as an
independent prognostic factor in the TCGA dataset (HR: 1.25, 95%
CI: 1.19–1.31, p < 0.0001), ICGC dataset (HR: 1.11, 95%CI:
1.06–1.17, p< 0.001) and GSE14520 dataset (HR: 1.03, 95%CI:
1–1.17, p � 0.07) (Table 2).

The gene pairs with the largest coefficients were STAM/TP53,
PLOD2/CDKN1B and NTHL1/BLCR5, since the large

FIGURE 2 | Evaluating the efficiencies of the risk signature in the ICGC and GSE14520 data sets. (A,E), Kaplan-Meier survival curves showed the prognostic value
of the risk signature in ICGC data set (A). low-risk group, n � 120; high-risk group, n � 121; p < 0.05) and GSE14520 database (E). low-risk group, n � 111; high-risk
group, n � 110; p < 0.001). (B, F), ROC curves evaluated the efficiency of the risk signature for predicting 1-, 2- and 3-y survival in ICGC data set (B) and GSE14520
database (F). (C,G), The risk scores distribution in the ICGC data set (C) and GSE14520 database (G). (D,H), The patients‘ survival status in the ICGC data set (D)
and GSE14520 database (H).
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coefficients indicate that they have the greatest influence on the
model. We examined the expression levels of these genes in a
normal liver cell line and in several common HCC cell lines. As
shown in Figure 3A, the qPCR results showed that the values of
STAM/TP53 and PLOD2/CDKN1B in the HCC cell lines HepG2
and Hep3B were significantly higher than in the normal liver cell
line HL7702, which further supported the significance of our
model. The coefficient of the gene pair NTHL1/BLCR5 was −0.52,
and was significantly lower in the HCC cell lines HepG2 and
Hep3B than in the normal liver cell line HL7702, which is also
consistent with this conclusion. At the protein level, we found
that the expression of PLOD2 in liver cancer cell lines was higher
than in normal liver cells, and it was also higher in non-invasive
liver cancer cells (Figure 3B).

Further experiments were performed on the representative
gene pair Plod2/CDKN1B. We overexpressed these genes in
MHCC97-H cells, and the protein levels of PLOD2/CDKN1B
were confirmed to be increased after transfection with pcDNA-
PLOD2 (oe-PLOD2) and pcDNA-CDKN1B (oe-CDKN1B)
(Figure 3C). The results of the transwell assay showed that
PLOD2 can promote HCC migration, while CDKN1B had the
opposite effect. Since their coefficient is greater than zero, this

experimental result was consistent with the previous conclusion
(Figure 3D).

We verified the expression levels of the representative gene
pair PLOD2 /CDKN1B in 45 liver cancer samples, and combined
with the OS and RFS of the corresponding patients, we found that
PLOD2 /CDKN1B can better predict the prognosis of the
patients. The results are shown in Figure 7. Samples were
collected from surgical biopsies of patients who underwent
radical resection of liver cancer without preoperative treatment
at Tongji Hospital inWuhan, China, between 2015 and 2018. The
Ethics Committee of Wuhan Tongji Hospital authorized this
study on patient tissues with written informed consent of the
patients.

Comparison With Representative Published
Prognostic Models for Hepatocellular
Carcinoma
Our ARGP prognostic marker was compared with three
published representative gene prognostic markers (Lin et al.,
2018; Long et al., 2018; Wang et al., 2020) using ROC curves for
5-year OS. All the data for validation were derived from TCGA.

FIGURE 3 | Validation of the gene pairs that make up the model. (A,B) Examining the expression levels of representative gene pairs with the large coefficient in
normal-liver cell line and in several common HCC cell lines. (C,D). Validate the effects of representative gene pair in HCC cell lines.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6702416

Luo et al. Autophagy Signature for Hepatocellular Carcinoma

50

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


As shown in Figure 4, the AUC value was 0.828 for our
prognostic signature, which was obviously more predictive
and accurate than the existing autophagy-related signature
(AUC � 0.628), the four-gene prognostic model (AUC �
0.688) and the nine immune-related gene model (AUC � 0.595).

Construction of a Nomogram for Predicting
the Over Survival
Multivariate Cox regression analysis showed that only TNM
stage and the ARGP signature were significant independent
prognostic factors for OS (Figure 5A). We attempted to
provide a method to more intuitively and accurately predict
the survival of HCC patient, which can aid individual
clinical decision-making and selection of treatment options.
Therefore, a predictive nomogram was constructed based on
multivariate Cox regression analysis and combined with two
independent prognostic factors (Figure 5B). The scores of
each independent prognostic factor were calculated
according to the different degree of influence of each
independent prognostic factor on the clinical outcomes of
the patients, after which the scores were summed up to
obtain the total score. Finally, the 1, 3, and 5-year survival
rates were predicted based on the functional relationship
between the total score and the survival rate. According to
the calibration curves of the 1-, 3-, and 5-year nomograms,
which were all close to the optimal prediction curve, the
predicted OS rate was highly consistent with the actual
observed values (Figure 5C–E).

Physiological Signal Channel Correlated
With the Autophagy-Related Gene Pair
Model
We performed GSEA in the high- and low-risk groups from the
TCGA cohort, divided according to the median risk value. A
total of 12 cancer hallmark gene sets were identified in the high-
risk group (Figure 6A). Some of these pathways are
“MYC_TARGETS”, “GLYCOLYSIS” and “DNA_REPAIR”,
indicating that these signaling pathways are closely related to
the progression of HCC. To make the results of enrichment
analysis more intuitive, we visualized the significance, the number
of included genes and the enrichment score in a bubble chart with
different colors, sizes and locations (Figure 6B).

DISCUSSION

Although many environmental or genetic risk factors associated
with the occurrence of HCC have been elucidated, the molecular
mechanisms underlying the metastasis and recurrence of HCC
remain unclear. Consequently, hepatocellular carcinoma remains
one of the deadliest malignancies in the world, with exceptionally
high recurrence and low survival. In recent years, the application
of high-throughput technology and the emergence of large-scale
cancer gene expression databases have deepened our
understanding of the characteristics of liver cancer and
provided the possibility for us to predict postoperative survival
rates based on the genetic phenotypes of the individual tumor.
Based on gene expression profiles, some studies have established
prognostic markers for predicting the survival after liver cancer
surgery, while others have explored molecular subtypes of liver
cancer based on multi-group analysis (Liu et al., 2020). However,
these results are far from clinical application. Due to the diversity
of data types among different databases, gene expression levels of
different sequencing platforms need to be appropriately
standardized before use, but it is still difficult to completely
overcome biological heterogeneity and eliminate the technical
bias of cross-sequencing platforms. Thus, improving the genetic
models and selecting stable specific prognostic markers is still the
main task of current liver cancer research.

In this study, we established a prognostic model for HCC based
on 9 autophagy-related gene pairs (ARGPs) and validated it across
different platforms using the independent datasets ICGC and
GSE14520. Our 9-ARGP signature proved to be a significant
and excellent predictor in a series of validation analyses,
successfully dividing patients into high and low-risk groups
with significantly different prognostic outcomes. Compared with
three other existing prognostic models for hepatocellular
carcinoma, our model showed a more accurate predictive
power. We further combined the model with selected significant
pathological features. According to the results, the 9-ARGP
signature is a powerful complement to HCC staging indicators,
and their combination provides a better prognostic performance.

ARGPs were generated based on the pairwise comparison of
gene pairs, so there is no need to consider batch differences
among different databases. Furthermore, the correlation

FIGURE 4 | Determination of the receiver operating characteristic (ROC)
for different prognostic signatures. The AUC values for the ARGP model,
Autophagy-related signature model, four prognostic lncRNA model, and nine
immune-related model were 0.828, 0.628, 0.688, and 0.595,
respectively. This result indicates that our signature possesses a higher
predictive efficacy and accuracy than the other models.
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coefficients of ARGP were calculated based on the gene
expression in the same sample, so the data does not need to
be standardized. Therefore, our prognostic signature can be used
for the individualized prediction of postoperative survival in HCC
patients, and it can be more easily applied in clinical practice.

Autophagy has been reported to play a key role in promoting
the formation of liver cancer (Czaja et al., 2013). Our 9-ARGP
signature contains 17 autophagy-related genes in total. These genes
are directly or indirectly related to the occurrence and prognosis of
HCC, which has been described in many studies. To provide

FIGURE 5 | Construction of a nomogram for predicting 1-, 3- and 5-y survival of HCC. (A), Multivariate Cox regression analyses evaluated the contribution of each
variable to HCC survival in the TCGA cohort. (B) nomogram for predicting 1-, 3- and 5-y survival rate of HCC patients was established. (C–E), Calibration curves showed
the probability of 1- (C), 3- (D) and 5-y survival (E) between the prediction and the observation in the TCGA cohort.

FIGURE 6 | Gene set enrichment analysis (GSEA) between high and low autophagy risk groups. (A), Twelve cancer hallmark gene sets are enriched in the high
autophagy risk group in patients with HCC (p < 0.05, FDR < 0.25, |NES| > 1). (B) bubble chart for visualizing the GSEA result.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6702418

Luo et al. Autophagy Signature for Hepatocellular Carcinoma

52

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


theoretical support for this statistical signature, we further explored
the genes included in the model. The following studies support a
mechanistic link between our model and HCC.

CDKN1A/p21 and CDKN1B/p27 are members of a family of
cyclin-dependent kinase inhibitors that act as tumor suppressors
and inhibit cell proliferation. CDKN1A expression is strictly
controlled by the tumor suppressor protein p53 (TP53), which
mediates G1 phase arrest in response to various stress factors.
CDKN1A can be considered as an independent factor for the
development of liver cancer, and in patients with cirrhosis, high
expression of CDKN1A may be associated with the occurrence of
liver cancer (Wagayama et al., 2002). However, CDKN1A
expression is beneficial in patients after hepatectomy and may
be an independent prognostic factor for patient survival (Kao
et al., 2007). Interruption of the P53-CDKN1A cell cycle pathway
may lead to further tumor progression (Lee et al., 2004). The
activation of CDKN1A gene expression induced by RNA may
have a significant potential for the treatment of HCC and other
cancers (Wu et al., 2011). In addition, the subcellular localization
of CDKN1A was found to contribute to the development of HCC
(Qiu et al., 2011). CDKN1B shares a limited similarity with
CDKN1A. Furthermore, reduced CDKN1B expression often
predicts poor clinical outcomes in HCC (Huang et al., 2011;
Matsuda et al., 2013), and CDKN1B silencing increases the
viability of HCC cells (Xu et al., 2019). This is consistent with
previous findings that CDKN1B potentially plays an active role as
a negative regulator in the early stages of HCC progression (Ito
et al., 1999). The risk of HCC is increased by CDKN1A
polymorphisms, alone or in combination with CDKN1B
polymorphisms (Liu et al., 2013). These studies indicate that
both CDKN1A and CDKN1B are closely related with the
occurrence of liver cancer and can be used as prognostic
biomarkers. BIRC5, a member of the inhibitor of apoptosis
(IAP) gene family, promotes cancer development by inhibiting
the apoptosis of HCC cells (Zhang et al., 2014), promoting cell
proliferation (Sun et al., 2013), enhancing chemoradiotherapy
resistance (Liu et al., 2013b) and inducing stromal angiogenesis in
the tumor (Fernandez et al., 2014). Similarly, BIRC5 was reported
to be directly associated with autophagosome formation and

contribute to the survival of HCC cells (Chang et al., 2014).
DLC-1 is a GTPase-activating protein that targets Rho (Kim et al.,
2007), and as a tumor suppressor, DLC-1 is not only involved in
hepatocarcinogenesis, but also inhibits the cancer progression
and oncogenic autophagy of hepatocellular carcinoma (Wu et al.,
2018) (Zhou et al., 2004). The protein encoded by Fas is a member
of the TNF receptor superfamily. It plays a central role in the
physiological regulation of programmed cell death and is
associated with various malignancies and immune system
diseases. Fas stimulation may contribute to the survival or
proliferation of HCC cells (Okano et al., 2003). However,
downregulation of Fas expression by HBV might inhibit the
apoptosis of HCC cells (Zou et al., 2015).

The remaining genes in the signature are also associated with liver
cancer in different ways and play a role in our signature together with
these genes in the form of gene pairs. Some of these genes may have a
more important effect on the expression imbalance than a single gene
with abnormal expression. GSEA was used to analyze the differential
expression of genes in the high- and low-risk groups. Consistent with
previous reports, the expression of genes related to a number of
signaling pathways was significantly different in the high-risk group,
including “PI3K-AKT-mTOR signaling” (Zhou et al., 2011; Wang
et al., 2017), “DNA_REPAIR” (Lin et al., 2016), “G2M checkpoint”
(Yin et al., 2017), and “GLYCOLYSIS” (Qin et al., 2018). In addition,
we also found that “UNFOLDED_PROTEIN_RESPONSE”,
“E2F_TARGETS”, “MTORC1_signaling” and other hallmarks
were also enriched in the high-risk group. As a central tumor
suppressor, p53 protects the genome by coordinating multiple
DNA damage response (DDR) mechanisms (Williams and
Schumacher, 2016). Many mechanisms of DNA repair in cells are
influenced by p53. The coordination of DNA repair is an important
process through which p53 inhibits tumor development (Janic et al.,
2018). It is therefore perhaps unsurprising that the p53 pathway was
also enriched in the high-risk group according to the GSEA analysis.
Next, we collected the information of patients with P53 mutant HCC
from the TCGA data set in the CBioPortal database. We found that
P53 mutations were present in 32% of HCC cases, and the risk score
of in the mutant group was significantly higher than that in the non-
mutant group by calculating the levels of autophagy-related genes.

FIGURE 7 | Verified the expression level of the representative PLOD2/CDKN1B in 45 liver cancer samples. Kaplan-Meier curves of (A) OS and (B) RFS for HCC
patients stratified by the signature risk groups in the Tongji cohorts.
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The corresponding results are provided in Supplementary Figure S3.
Besides, we found that β-catenin mutations were present in 26% of
HCC cases, but we were unable to draw meaningful conclusions by
calculating the levels of autophagy-related genes. The corresponding
results are provided in Supplementary Figure S4.

In spite of the exciting finding, this study also has several
limitations. First, the data were sourced from a limited number of
databases, and are not sufficiently broad to prove the universality of
the signature. Secondly, the training dataset samples used to establish
the autophagy characteristics were derived fromprevious retrospective
studies, and we also need a prospective cohort to verify the results.
Prospective studies are needed to further verify the clinical use and
biological function of the signature. Future studies will incorporate
more datasets and integrate other clinical and pathological indicators,
which may provide more useful and accurate results.

CONCLUSION

Based on multiple pairs of autophagy-related genes, we proposed
a prognostic model for predicting the overall survival of HCC
patients after surgery. The gene-air signature is a promising
prognostic indicator. The credibility of the model was verified
using two unrelated verification sets. Compared with most other
existing prognostic models, our model shows a more accurate
prediction effect. At the same time, this study further proves the
importance of autophagy in the occurrence and development of
HCC, and also provides potential therapeutic targets.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The authors are accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity of
any part of the work are appropriately investigated and resolved.
The study was approved by the ethics review board of the Tongji
Hospital, Tongji Medical College, Huazhong University of
Science and Technology and conforms to the Declaration of
Helsinki.

AUTHOR CONTRIBUTIONS

YL and FL performed the bioinformatics analysis, cell
experiments, wrote the manuscript and designed the figures.
SH, FL, YQ, XH and CZ collected the related references and
participated in discussion. HL and ZZ provided guidance and
revised this manuscript. All authors read and approved the final
manuscript.

FUNDING

Clinical medicine research plan of Tongji Hospital (No.
2019CR202); Chen Xiao-ping Foundation for the Development
of Science and Technology of Hubei province (CXPJJH11800001-
2018104); Hubei Natural Science Foundation of China (No.
2015CFB462).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2021.670241/
full#supplementary-material

REFERENCES

Bosetti, C., Turati, F., and La Vecchia, C. (2014). Hepatocellular Carcinoma
Epidemiology. Best Pract. Res. Clin. Gastroenterol. 28, 753–770. doi:10.1016/
j.bpg.2014.08.007

Cabibbo, G., Enea, M., Attanasio, M., Bruix, J., Craxì, A., and Cammà, C. (2010). A
Meta-Analysis of Survival Rates of Untreated Patients in RandomizedClinical Trials
of Hepatocellular Carcinoma. Hepatology 51, 1274–1283. doi:10.1002/hep.23485

Chang, Y.-J., Li, L.-T., Chen, H.-A., Hung, C.-S., and Wei, P.-L. (2014). Silencing
Survivin Activates Autophagy as an Alternative Survival Pathway in HCC Cells.
Tumor Biol. 35, 9957–9966. doi:10.1007/s13277-014-2257-6

Czaja, M. J., Ding, W.-X., Donohue, T. M., Jr., Friedman, S. L., Kim, J.-S., Komatsu,
M., et al. (2013). Functions of Autophagy in Normal and Diseased Liver.
Autophagy 9, 1131–1158. doi:10.4161/auto.25063

Fernandez, J. G., Rodriguez, D. A., Valenzuela, M., Calderon, C., Urzua, U.,
Munroe, D., et al. (2014). Survivin Expression Promotes VEGF-Induced
Tumor Angiogenesis via PI3K/Akt Enhanced Beta-catenin/Tcf-Lef
Dependent Transcription. Mol. Cancer 13, 209. doi:10.1186/1476-4598-13-209

Forner, A., Reig, M., and Bruix, J. (2018). Hepatocellular Carcinoma. Lancet 391,
1301–1314. doi:10.1016/S0140-6736(18)30010-2

Gugnoni, M., Sancisi, V., Manzotti, G., Gandolfi, G., and Ciarrocchi, A. (2016).
Autophagy and Epithelial-Mesenchymal Transition: an Intricate Interplay in
Cancer. Cell Death Dis 7, e2520. doi:10.1038/cddis.2016.415

Gukovskaya, A. S., Gukovsky, I., Algül, H., and Habtezion, A. (2017). Autophagy,
Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis.
Gastroenterology 153, 1212–1226. doi:10.1053/j.gastro.2017.08.071

Hu, Z. Y., Chen, B., Zhang, J. P., and Ma, Y. Y. (2017). Up-regulation of
Autophagy-Related Gene 5 (ATG5) Protects Dopaminergic Neurons in a
Zebrafish Model of Parkinson’s Disease. J. Biol. Chem. 292, 18062–18074.
doi:10.1074/jbc.M116.764795

Huang, X., Qian, X., Cheng, C., He, S., Sun, L., Ke, Q., et al. (2011). Expression of
Pirh2, a p27Kip1 Ubiquitin Ligase, in Hepatocellular Carcinoma: Correlation
with p27Kip1 and Cell Proliferation. Hum. Pathol. 42, 507–515. doi:10.1016/j.
humpath.2010.04.021

Ito, Y., Matsuura, N., Sakon, M., Miyoshi, E., Noda, K., Takeda, T., et al. (1999).
Expression and Prognostic Roles of the G1-S Modulators in Hepatocellular
Carcinoma: P27 Independently Predicts the Recurrence. Hepatology 30, 90–99.
doi:10.1002/hep.510300114

Janic, A., Valente, L. J., Wakefield, M. J., Di Stefano, L., Milla, L., Wilcox, S., et al.
(2018). DNA Repair Processes Are Critical Mediators of P53-dependent Tumor
Suppression. Nat. Med. 24, 947–953. doi:10.1038/s41591-018-0043-5

Kao, J.-T., Chuah, S.-K., Huang, C.-C., Chen, C.-L., Wang, C.-C., Hung, C.-H., et al.
(2007). P21/WAF1 Is an Independent Survival Prognostic Factor for Patients
with Hepatocellular Carcinoma after Resection. Liver Int. 27, 772–781. doi:10.
1111/j.1478-3231.2007.01499.x

Kim, T. Y., Lee, J. W., Kim, H.-P., Jong, H.-S., Kim, T.-Y., Jung, M., et al. (2007).
DLC-1, a GTPase-Activating Protein for Rho, Is Associated with Cell

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 67024110

Luo et al. Autophagy Signature for Hepatocellular Carcinoma

54

https://www.frontiersin.org/articles/10.3389/fmolb.2021.670241/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.670241/full#supplementary-material
https://doi.org/10.1016/j.bpg.2014.08.007
https://doi.org/10.1016/j.bpg.2014.08.007
https://doi.org/10.1002/hep.23485
https://doi.org/10.1007/s13277-014-2257-6
https://doi.org/10.4161/auto.25063
https://doi.org/10.1186/1476-4598-13-209
https://doi.org/10.1016/S0140-6736(18)30010-2
https://doi.org/10.1038/cddis.2016.415
https://doi.org/10.1053/j.gastro.2017.08.071
https://doi.org/10.1074/jbc.M116.764795
https://doi.org/10.1016/j.humpath.2010.04.021
https://doi.org/10.1016/j.humpath.2010.04.021
https://doi.org/10.1002/hep.510300114
https://doi.org/10.1038/s41591-018-0043-5
https://doi.org/10.1111/j.1478-3231.2007.01499.x
https://doi.org/10.1111/j.1478-3231.2007.01499.x
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Proliferation, Morphology, and Migration in Human Hepatocellular
Carcinoma. Biochem. Biophysical Res. Commun. 355, 72–77. doi:10.1016/j.
bbrc.2007.01.121

Lee, T. K., Man, K., Poon, R. T., Lo, C. M., Ng, I. O., and Fan, S. T. (2004).
Disruption of P53-p21/WAF1 Cell Cycle Pathway Contributes to Progression
and Worse Clinical Outcome of Hepatocellular Carcinoma. Oncol. Rep. 12,
25–31. doi:10.3892/or.12.1.25

Lin, P., He, R. Q., Dang, Y. W., Wen, D. Y., Ma, J., He, Y., et al. (2018). An
Autophagy-Related Gene Expression Signature for Survival Prediction in
Multiple Cohorts of Hepatocellular Carcinoma Patients. Oncotarget. Apr 3
(9), 17368–17395. doi:10.18632/oncotarget.24089

Lin, Z., Xu, S. H., Wang, H. Q., Cai, Y. J., Ying, L., Song, M., et al. (2016). Prognostic
Value of DNA Repair Based Stratification of Hepatocellular Carcinoma. Sci.
Rep. 6 (6), 25999. doi:10.1038/srep25999

Liu, F., Qin, L., Liao, Z., Song, J., Yuan, C., Liu, Y., et al. (2020). Microenvironment
Characterization and Multi-Omics Signatures Related to Prognosis and
Immunotherapy Response of Hepatocellular Carcinoma. Exp. Hematol.
Oncol. 9, 10. doi:10.1186/s40164-020-00165-3

Liu, F., Wei, Y.-G., Luo, L.-M., Wang, W.-T., Yan, L.-N., Wen, T.-F., et al. (2013a).
Genetic Variants of P21 and P27 and Hepatocellular Cancer Risk in a Chinese
Han Population: a Case-Control Study. Int. J. Cancer 132, 2056–2064. doi:10.
1002/ijc.27885

Liu, W., Zhu, F., Jiang, Y., Sun, D., Yang, B., and Yan, H. (2013b). siRNA Targeting
Survivin Inhibits the Growth and Enhances the Chemosensitivity of
Hepatocellular Carcinoma Cells. Oncol. Rep. Mar. 29, 1183–1188. doi:10.
3892/or.2012.2196

Long, J., Zhang, L., Wan, X., Lin, J., Bai, Y., Xu, W., et al. (2018). A Four-Gene-
Based Prognostic Model Predicts Overall Survival in Patients with
Hepatocellular Carcinoma. J. Cel Mol Med. 22, 5928–5938. doi:10.1111/
jcmm.13863

Matsuda, Y., Wakai, T., Hirose, Y., Osawa, M., Fujimaki, S., and Kubota, M. (2013).
p27 Is a Critical Prognostic Biomarker in Non-alcoholic Steatohepatitis-Related
Hepatocellular Carcinoma. Int. J. Mol. Sci. Nov. 29 (14), 23499–23515. doi:10.
3390/ijms141223499

Mizushima, N. (2018). A Brief History of Autophagy from Cell Biology to
Physiology and Disease. Nat. Cel Biol. 20, 521–527. doi:10.1038/s41556-018-
0092-5

Moloudizargari, M., Asghari, M. H., Ghobadi, E., Fallah, M., Rasouli, S., and
Abdollahi, M. (2017). Autophagy, its Mechanisms and Regulation: Implications
in Neurodegenerative Diseases. Ageing Res. Rev. 40, 64–74. doi:10.1016/j.arr.
2017.09.005

Okano, H., Shiraki, K., Inoue, H., Kawakita, T., Saitou, Y., Enokimura, N., et al.
(2003). Fas Stimulation Activates NF-kappaB in SK-Hep1 Hepatocellular
Carcinoma Cells. Oncol. Rep. 10, 1145–1148. doi:10.3892/or.10.5.1145

Qin, X.-Y., Suzuki, H., Honda, M., Okada, H., Kaneko, S., Inoue, I., et al. (2018).
Prevention of Hepatocellular Carcinoma by Targeting MYCN-Positive Liver
Cancer Stem Cells with Acyclic Retinoid. Proc. Natl. Acad. Sci. USA 115,
4969–4974. doi:10.1073/pnas.1802279115

Qiu, R., Wang, S., Feng, X., Chen, F., Yang, K., and He, S. (2011). Effect of
Subcellular Localization of P21 on Proliferation and Apoptosis of HepG2 Cells.
J. Huazhong Univ. Sci. Technol. [Med. Sci. 31, 756–761. doi:10.1007/s11596-
011-0672-0

Singal, A. G., and El-Serag, H. B. (2015). Hepatocellular Carcinoma from
Epidemiology to Prevention: Translating Knowledge into Practice. Clin.
Gastroenterol. Hepatol. 13, 2140–2151. doi:10.1016/j.cgh.2015.08.014

Sun, B., Xu, H., Zhang, G., Zhu, Y., Sun, H., and Hou, G. (2013). Basic Fibroblast
Growth Factor Upregulates Survivin Expression in Hepatocellular Carcinoma
Cells via a Protein Kinase B-dependent Pathway. Oncol. Rep. Jul 30, 385–390.
doi:10.3892/or.2013.2479

Wagayama, H., Shiraki, K., Sugimoto, K., Ito, T., Fujikawa, K., Yamanaka, T., et al.
(2002). High Expression of p21WAF1/CIP1 Is Correlated with Human

Hepatocellular Carcinoma in Patients with Hepatitis C Virus-Associated
Chronic Liver Diseases. Hum. Pathol. 33, 429–434. doi:10.1053/hupa.2002.
124724

Wang, S. S., Chen, Y. H., Chen, N., Wang, L. J., Chen, D. X., Weng, H. L., et al.
(2017). Hydrogen Sulfide Promotes Autophagy of Hepatocellular Carcinoma
Cells through the PI3K/Akt/mTOR Signaling Pathway. Cel Death Dis 8 (8),
e2688. doi:10.1038/cddis.2017.18

Wang, Z., Zhu, J., Liu, Y., Liu, C., Wang, W., Chen, F., et al. (2020). Development
and Validation of a Novel Immune-Related Prognostic Model in Hepatocellular
Carcinoma. J. Transl Med. 18, 67. doi:10.1186/s12967-020-02255-6

White, E. (2015). The Role for Autophagy in Cancer. J. Clin. Invest. 125, 42–46.
doi:10.1172/jci73941

Williams, A. B., and Schumacher, B. (2016). p53 in the DNA-Damage-Repair
Process. Cold Spring Harb Perspect. Med. 6, 6. doi:10.1101/cshperspect.
a026070

Wu, H.-T., Xie, C.-R., Lv, J., Qi, H.-Q., Wang, F., Zhang, S., et al. (2018). The
Tumor Suppressor DLC1 Inhibits Cancer Progression and Oncogenic
Autophagy in Hepatocellular Carcinoma. Lab. Invest. 98, 1014–1024. doi:10.
1038/s41374-018-0062-3

Wu, Z.-m., Dai, C., Huang, Y., Zheng, C.-f., Dong, Q.-z., Wang, G., et al. (2011).
Anti-cancer Effects of p21WAF1/CIP1 Transcriptional Activation Induced by
dsRNAs in Human Hepatocellular Carcinoma Cell Lines. Acta Pharmacol. Sin
32, 939–946. doi:10.1038/aps.2011.28

Xu, K., Zhang, Z., Qian, J., Wang, S., Yin, S., Xie, H., et al. (2019). LncRNA FOXD2-
AS1 Plays an Oncogenic Role in Hepatocellular Carcinoma through
Epigenetically Silencing CDKN1B(p27) via EZH2. Exp. Cel Res 380,
198–204. doi:10.1016/j.yexcr.2019.04.016

Yang, R., Zhang, Y., Wang, L., Hu, J., Wen, J., Xue, L., et al. (2017). Correction:
Increased Autophagy in Fibroblast-like Synoviocytes Leads to Immune
Enhancement Potential in Rheumatoid Arthritis. Oncotarget. Aug 22 (8),
57906. doi:10.18632/oncotarget.20371

Yin, L., Chang, C., and Xu, C. (2017). G2/M Checkpoint Plays a Vital Role at the
Early Stage of HCC by Analysis of Key Pathways and Genes.Oncotarget. Sep. 29
(8), 76305–76317. doi:10.18632/oncotarget.19351

Zhang, W., Lu, Z., Kong, G., Gao, Y., Wang, T., Wang, Q., et al. (2014). Hepatitis B
Virus X Protein Accelerates Hepatocarcinogenesis with Partner Survivin
through Modulating miR-520b and HBXIP. Mol. Cancer 13, 128. doi:10.
1186/1476-4598-13-128

Zhou, Q., Lui, V. W., and Yeo, W. (2011). Targeting the PI3K/Akt/mTOR Pathway
in Hepatocellular Carcinoma. Future Oncol. 7, 1149–1167. doi:10.2217/fon.
11.95

Zhou, X., Thorgeirsson, S. S., and Popescu, N. C. (2004). Restoration of DLC-1
Gene Expression Induces Apoptosis and Inhibits Both Cell Growth and
Tumorigenicity in Human Hepatocellular Carcinoma Cells. Oncogene 23,
1308–1313. doi:10.1038/sj.onc.1207246

Zou, C., Chen, J., Chen, K., Wang, S., Cao, Y., Zhang, J., et al. (2015). Functional
Analysis of miR-181a and Fas Involved in Hepatitis B Virus-Related
Hepatocellular Carcinoma Pathogenesis. Exp. Cel Res 331, 352–361. doi:10.
1016/j.yexcr.2014.11.007

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Luo, Liu, Han, Qi, Hu, Zhou, Liang and Zhang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 67024111

Luo et al. Autophagy Signature for Hepatocellular Carcinoma

55

https://doi.org/10.1016/j.bbrc.2007.01.121
https://doi.org/10.1016/j.bbrc.2007.01.121
https://doi.org/10.3892/or.12.1.25
https://doi.org/10.18632/oncotarget.24089
https://doi.org/10.1038/srep25999
https://doi.org/10.1186/s40164-020-00165-3
https://doi.org/10.1002/ijc.27885
https://doi.org/10.1002/ijc.27885
https://doi.org/10.3892/or.2012.2196
https://doi.org/10.3892/or.2012.2196
https://doi.org/10.1111/jcmm.13863
https://doi.org/10.1111/jcmm.13863
https://doi.org/10.3390/ijms141223499
https://doi.org/10.3390/ijms141223499
https://doi.org/10.1038/s41556-018-0092-5
https://doi.org/10.1038/s41556-018-0092-5
https://doi.org/10.1016/j.arr.2017.09.005
https://doi.org/10.1016/j.arr.2017.09.005
https://doi.org/10.3892/or.10.5.1145
https://doi.org/10.1073/pnas.1802279115
https://doi.org/10.1007/s11596-011-0672-0
https://doi.org/10.1007/s11596-011-0672-0
https://doi.org/10.1016/j.cgh.2015.08.014
https://doi.org/10.3892/or.2013.2479
https://doi.org/10.1053/hupa.2002.124724
https://doi.org/10.1053/hupa.2002.124724
https://doi.org/10.1038/cddis.2017.18
https://doi.org/10.1186/s12967-020-02255-6
https://doi.org/10.1172/jci73941
https://doi.org/10.1101/cshperspect.a026070
https://doi.org/10.1101/cshperspect.a026070
https://doi.org/10.1038/s41374-018-0062-3
https://doi.org/10.1038/s41374-018-0062-3
https://doi.org/10.1038/aps.2011.28
https://doi.org/10.1016/j.yexcr.2019.04.016
https://doi.org/10.18632/oncotarget.20371
https://doi.org/10.18632/oncotarget.19351
https://doi.org/10.1186/1476-4598-13-128
https://doi.org/10.1186/1476-4598-13-128
https://doi.org/10.2217/fon.11.95
https://doi.org/10.2217/fon.11.95
https://doi.org/10.1038/sj.onc.1207246
https://doi.org/10.1016/j.yexcr.2014.11.007
https://doi.org/10.1016/j.yexcr.2014.11.007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Gene Expression Profiles of Circular
RNAs and MicroRNAs in Chronic
Rhinosinusitis With Nasal Polyps
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1Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang,
China, 2Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Nanchang, China, 3Department of Otorhinolaryngology
Head and Neck Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, China

Introduction: Chronic rhinosinusitis (CRS) is often classified primarily on the basis of the
absence or presence of nasal polyps (NPs), that is, as CRSwith nasal polyps (CRSwNP) or
CRS without nasal polyps (CRSsNP). Additionally, according to the percentage of
eosinophils, CRSwNP can be further divided into eosinophilic CRSwNP (ECRSwNP)
and non-ECRSwNP. CRSwNP is a significant public health problem with a considerable
socioeconomic burden. Previous research reported that the pathophysiology of CRSwNP
is a complex, multifactorial disease. There have been many studies on its etiology, but its
pathogenesis remains unclear. Dysregulated expression of microRNAs (miRNAs) has been
shown in psoriasis, rheumatoid arthritis, pulmonary fibrosis, and allergic asthma. Circular
RNAs (circRNAs) are also involved in inflammatory diseases such as rheumatoid arthritis,
septic acute kidney injury, myocardial ischemia/reperfusion injury, and sepsis-induced liver
damage. The function of miRNAs in various diseases, including CRSwNP, is a research
hotspot. In contrast, there have been no studies on circRNAs in CRSwNP. Overall, little is
known about the functions of circRNAs and miRNAs in CRSwNP. This study aimed to
investigate the expression of circRNAs and miRNAs in a CRSwNP group and a control
group to determine whether these molecules are related to the occurrence and
development of CRSwNP.

Methods:Nine nasal mucosa samples were collected, namely, three ECRSwNP samples,
three non-ECRSwNP samples, and three control samples, for genomic microarray
analysis of circRNA and microRNA expression. All of the tissue samples were from
patients who were undergoing functional endoscopic sinus surgery in our department.
Then we selected some differentially expressed miRNAs and circRNAs for qPCR
verification. Meanwhile, GO enrichment analysis and KEGG pathway analysis were
applied to predict the biological functions of aberrantly expressed circRNAs and
miRNAs based on the GO and KEGG databases. Receiver operating characteristic
(ROC) curve analysis and principal component analysis (PCA) were performed to
confirm these molecules are involved in the occurrence and development of CRSwNP.

Results: In total, 2,875 circRNAs showed significant differential expression in the
CRSwNP group. Specifically, 1794 circRNAs were downregulated and 1,081 circRNAs
were upregulated. In the CRSwNP group, the expression of 192 miRNAs was significantly
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downregulated, and none of the miRNAs were significantly upregulated. GO and KEGG
analysis showed differential circRNAs and miRNAs were enriched in “amoebiasis,”
“salivary secretion,” “pathways in cancer,” and “endocytosis.” Through qRT-PCR
verification, the expression profiles of hsa-circ-0031593, hsa-circ-0031594, hsa-miR-
132-3p, hsa-miR-145-5p, hsa-miR-146a-5p, and hsa-miR-27b-3p were shown to have
statistical differences. In addition, ROC curve analysis showed that the molecules with the
two highest AUCs were hsa-circ-0031593 with AUC 0.8353 and hsa-miR-145-5p with
AUC 0.8690. Through PCA with the six ncRNAs, the first principal component explained
variance ratio was 98.87%. The AUC of the six ncRNAs was 0.8657.

Conclusion: In our study, the expression profiles of ECRSwNP and non-ECRSwNP had
no statistical differences. The differentially expressed circRNAs and miRNAs between
CRSwNP and control may play important roles in the pathogenesis of CRSwNP. Altered
expression of hsa-circ-0031593 and hsa-miR-145-5p have the strongest evidence for
involvement in the occurrence and development of CRSwNP because their AUCs are
higher than the other molecules tested in this study.

Keywords: chronic rhinosinusitis with nasal polyps, circular RNA, micro RNA, microarray analysis, gene express
profile

INTRODUCTION

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a
significant public health problem with a considerable
socioeconomic burden. Chronic rhinosinusitis (CRS), which is
characterized by persistent mucosa inflammation of the sinuses,
is one of the most common chronic diseases, and its
pathophysiology remains unclear (AI-Sayed et al., 2017).

According to whether nasal polyps exist or not, CRS is often
classified as CRSwNP or CRS without nasal polyps (CRSsNP)
(Cho et al., 2017). CRSwNP remains a challenging clinical
problem due to its propensity for recurrence. According to the
percentage of eosinophils, CRSwNP can be classified as
eosinophilic CRSwNP (ECRSwNP), with an eosinophil count
≥10%, and non-eosinophilic CRSwNP (non-ECRSwNP), with an
eosinophil count <10%. There are differences between the two
subtypes of CRSwNP (Cao et al., 2009). Compared with non-
ECRSwNP, ECRSwNP is characterized by more eosinophils
infiltrating the nasal mucosa, and it has a worse prognosis and
higher recurrence rate (Shi et al., 2013). ECRSwNP and non-
ECRSwNP have different clinical symptoms, recurrence rates,
and responses to drugs and endoscopic surgery (Lou et al., 2015).
ECRSwNP is a hard-to-treat subtype of CRS.

To discover the pathogenesis of and better treatment for
CRSwNP, more research is needed to further explore the
different molecular and cytological mechanisms of the
subtypes that lead to the different clinical and
pathophysiological characteristics between the two subtypes.

With advancements in genomic microarray technology, a
revolutionary change has taken place in the field of genetic
analysis, that makes it possible to quantify thousands of gene
expressions simultaneously. Studies have shown that the human
genome can be widely transcribed into a large amount of non-
coding RNAs (ncRNAs) that are closely related to the initiation as

well as progression of diseases (Beermann et al., 2016). Genomic
microarray technology has been widely used in the field of
biomedicine to explore the occurrence and development of
human diseases, including CRSwNP, at the genetic level
(Plager et al., 2010; Yao et al., 2019).

CircRNAs (circular RNAs) are a type of ncRNA with
important functions that have tissue specificity and disease
specificity (Xia et al., 2017). Unlike linear RNAs (containing 5′
and 3′ ends), circRNAs are closed continuous loops that are free
from exonuclease-mediated degradation and are more stable than
most linear RNAs (Jeck et al., 2013). It has been found that
circRNAs, acting as miRNA sponges, are rich in miRNA binding
sites and increase the expression of target genes by mitigating the
inhibition of miRNAs on their target genes (Kulcheski et al.,
2016). CircRNAs represent a class of naturally occurring
endogenous ncRNAs that have recently been recognized as
important regulators of gene expression networks (Oude
Voshaar et al., 2019). In recent years, researchers have
explored the expression profiles of circRNAs in different
diseases. For example, one study showed that oxidized low-
density lipoprotein accelerates the injury of endothelial cells
via the circ-USP36/miR-98-5p/VCAM1 axis (Peng et al.,
2021). Another study found that circRNA_09505 aggravates
inflammation and joint damage in RA via the miR-6089/
AKT1/NF-κB axis (Yang et al., 2020).

MiRNAs (microRNAs) are another group of ncRNAs that are
involved in many pathologic and physiological processes, such as
proliferation, differentiation, and tumorigenesis (Zhang X.-H.
et al., 2012; Ferreira et al., 2018; Martínez-Rivera et al., 2018).
Research has shown that the expression of miR-125 b is increased
in ECRSwNP, whichmay lead tomucosal eosinophilia (Zhang Y.-
N. et al., 2012). In addition, miR-1 can regulate the transport of
eosinophils in CRS. Overexpression of miR-1 inhibits the increase
of airway eosinophils and inhibits the binding of eosinophils and
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endothelial cells induced by IL-13 (Korde et al., 2020). The
interaction between circRNAs and miRNAs plays an
important role in inflammation and immune responses. In
psoriasis, circRNA-0061012 enhances GAB1 expression
through spongy miR-194-5p, thereby promoting the
proliferation, migration, and invasion of keratinocytes induced
by IL-22 (He et al., 2021). CircRNA-WBSCR17 aggravates the
inflammatory response of human renal tubular epithelial cells
induced by high glucose by targeting the miR-185-5p/SOX6 axis
(Li et al., 2020). In osteoarthritis, circRNA-9119 blocks the miR-
26a/PTEN axis to protect IL-1β-treated chondrocytes from
apoptosis (Chen et al., 2020). These reports show that
circRNAs and miRNAs are related to inflammation.

To date, dysregulated expression of miRNAs has been shown
in psoriasis, rheumatoid arthritis, pulmonary fibrosis, and allergic
asthma. CircRNA is also involved in inflammatory diseases, but
there is no research of circRNA in CRSwNP (Zhang Y.-N. et al.,
2012). In our study, we aimed to compare the microarray
expression profiles of miRNAs and circRNAs in nasal polyps
of CRSwNP and normal nasal mucosa from control subjects.
However, the results of RNA-seq genomic microarray analysis of
ECRSwNP and non-ECRSwNP had no statistical differences, so,
we combined ECRSwNP and non-ECRSwNP into a single group
denoted as CRSwNP. Then, we validated the abnormally
expressed circRNAs and miRNAs by qRT-PCR
(quantitative real time polymerase chain reaction). In
particular, we explored the potentially biological functions
and involved signaling pathways of these ncRNAs by using
the GO and KEGG databases. We concluded that the
differentially expressed circRNAs and miRNAs may play
important roles in the pathogenesis of CRSwNP. Based on
ROC (receiver operating characteristic) curve analysis and
principal component analysis (PCA), the altered expressions
of hsa-circ-0031593, and hsa-miR-145-5p have the most
evidence supporting their involvement in the occurrence
and development of CRSwNP.

MATERIALS AND METHODS

Subjects and Samples
Nasal polyp specimens were collected from CRSwNP patients
undergoing functional endoscopic sinus surgery. The middle
turbinate mucosae of the control group were obtained
from patients undergoing optic nerve decompression and
nasal bone fracture surgery. Controls with nasal
inflammation or upper respiratory tract infection were
excluded. Subjects using corticosteroids or other immune-
modulating drugs within 1 month, and subjects with
antrochoanal polyps or fungal sinusitis were excluded. All
of the participants were enrolled from the Department of
Otorhinolaryngology Head and Neck Surgery, The First
Affiliated Hospital of Nanchang University, Nanchang,
China in 2017 (detailed information is shown in
Supplementary Table S1). The study was approved by the
Medical Research Ethics Committee of The First Affiliated
Hospital of Nanchang University (2017080).

Study Process
The quantity of eosinophils in each specimen was observed by
hematoxylin-eosin staining in three random microscopic high
power fields (HPFs, ×400 magnification). CRSwNP patients were
classified according to the percentage of eosinophils in nasal
polys. Nasal polyps from three ECRSwNP, three non-ECRSwNP,
and three control individuals were collected for total RNA
extraction and microarray analysis. We found that ECRSwNP
and non-ECRSwNP tissues shared similar expression patterns of
circRNAs and miRNAs. Therefore, we combined ECRSwNP and
non-ECRSwNP into a single group denoted as CRSwNP. Then,
the aberrant circRNAs and miRNAs with fold change > ± 2.5 and
p < 0.05 were validated in an independent cohort (control group,
n � 5; CRSwNP, n � 5) by qRT-PCR. Next, we expanded the
sample size (control group, n � 25; CRSwNP group, n � 29) to
conduct further research on the quantitative expression of the
selected ncRNAs in the third cohort.

Hematoxylin-Eosin Staining for Eosinophils
The quantity of eosinophils was analyzed by hematoxylin-eosin
staining. Specimens of nasal polyps were fixed in 10%
formaldehyde and placed in low to high concentration alcohol
to remove water from the tissues. Then the specimens were
embedded in paraffin wax, sliced by a microtome into sections
no more than 0.5 μm thick, and deparaffinized to yield tissue
sections. After rehydration, the tissue sections were stained with
hematoxylin for 10 min and eosin for 3 min. In order to classify
CRSwNP into ECRSwNP and non-ECRSwNP, we calculated the
percentage of eosinophils in all of the inflammatory cells through
five random high-power fields. Specimens with eosinophils ≥10%
were defined as ECRSwNP, and those with eosinophils <10% as
non-ECRSwNP (AI-Sayed et al., 2017).

CircRNA Microarray Analysis
The total RNAs were extracted from the subjects for microarray
analysis. The purity and concentration of RNA were determined
by the OD260/280 readings of a spectrophotometer (NanoDrop
ND-1000). The integrity of RNAs was detected by standard
denaturing agarose gel electrophoresis (Bioanalyzer 2100,
Agilent Technologies, United States). The results are shown in
Supplementary Figure S1. The digestion, amplification, and
labeling of RNAs were performed based on the protocol
provided by the manufacturer. The labeled RNAs were
hybridized onto the microarray (Agilent-084217) after
purification. The circRNA array data were analyzed by
GeneSpring software V13.0 (Agilent). In order to select the
differential expression of circRNAs, we used the threshold ≥
±2.5 fold change and p < 0.05.

MiRNA Microarray Analysis
MiRNA expression profile microarrays of these specimens were
performed by CapitalBio. Procedures are described in detail on
the CapitalBio website (http://www.capitalbio.com). Briefly, the
procedure included total RNA extraction, quality control,
miRNA isolation, FlashTag biotin labeling of miRNAs,
hybridization to an Affymetrix GeneChip microarray
(Affymetrix miRNA 4.0), and microarray washing, staining,
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and scanning. If the miRNAs expression changed by at least ±2.5-
fold (p < 0.05), this was considered a significant difference.

Correlation and Co-Expression Analysis
CircRNAs bind with miRNAs competitively, which inhibits the
negative regulation of miRNAs on target genes and leads to the
increase of the functional activity and expression of target genes
(Fokkens et al., 2012). We constructed co-expression networks to
predict the target genes of circRNAs and miRNAs of CRSwNP.
The co-expression analysis was based on miRanda-3.3 software,
with entropy values below 20. The top 40 circRNA-miRNA
networks, p < 0.05, were selected for analysis. In the network
analysis, each point represents a gene, and two points connected
by a line represent two closely related genes.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Analyses
We identified functional categories that were significantly
enriched relative to the background reference by GO
enrichment analysis. The related pathways and gene
interactions associated with the abnormal expression of
circRNA and microRNAs were found based on the latest
KEGG pathway enrichment database. The significant GO

terms and pathways were determined by Fisher’s exact test,
and the false discovery rate was utilized to correct the p-values.

Quantitative Real-Time Polymerase Chain
Reaction for Validation of circRNAs and
miRNAs
The significant differential expression of circRNAs and miRNAs
was quantified by qRT-PCR. Total RNA was isolated from nasal
polyps with TRIzol reagent. The cDNAs were synthesized by
reverse transcription with a PrimeScript RT reagent kit with
random primers. Then, qRT-PCR was conducted by SYBR
Premix Ex Taq II (Tli RNaseH Plus; TaKaRa). Primers for
selected ncRNAs and house-keeping genes were synthesized by
Sangon Biotech (Shanghai, China). The primers used are shown
in Supplementary Tables S2, S3.

Statistical Analysis
SPSS 22.0 was used in this study. The Mann-Whitney U-test was
used to calculate the differences of the expression of circRNAs
and miRNAs between groups, and p < 0.05 was considered to be
statistically significant. The functional values of the selected
circRNAs and miRNAs for CRSwNP were evaluated by
conducting ROC curve analysis and PCA.

FIGURE 1 | Hematoxylin-eosin staining of control, ECRSwNP, and non-ECRSwNP groups, and differential expression of circRNAs and miRNAs in the three
groups. (A) Representative images of hematoxylin-eosin staining. The scale bar represents 100 μm. (B) Hierarchical clustering analysis heat map showing significantly
changed of circRNAs and (C) of miRNAs with fold change ≥2.0 (p < 0.05) in the three groups (ECRSwNP, non-ECRSwNP, and control). The expressions of circRNAs
andmiRNAs were significantly different between CRSwNP and control groups, but ECRSwNP and non-ECRSwNP groups shared similar gene expression profiles.
Then, they were combined as the CRSwNP group. Hierarchical clustering analysis heat map showing significantly changed of circRNAs (D) and of miRNAs (E)with fold
change ≥2.0 (p < 0.05) in the two groups (CRSwNP and control).
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RESULTS

ECRSwNP and Non-ECRSwNP Patients
Shared Similar Gene Expression Profiles
In this study, we used hematoxylin-eosin staining for eosinophil
counts (Figure 1A). Hierarchical clustering analysis was used for
evaluating gene expression differences among groups. As shown
in Figures 1B,C, the ECRSwNP and non-ECRSwNP groups
shared similar gene expression profiles, so we could not
distinguish ECRSwNP from non-ECRSwNP by hierarchical
clustering analysis. Then, we combined the ECRSwNP group
and non-ECRSwNP group into the CRSwNP group. The results
showed that the expression profiles of circRNAs (Figure 1D) and
miRNAs (Figure 1E) were significantly different between the
CRSwNP and control groups.

Differential Expression of circRNAs and
miRNAs in CRSwNP
Volcano plots were used to assess the locations of circRNAs
(Figure 2A) and miRNAs (Figure 2B). These ncRNAs were
widely distributed in all of the chromosomes. Circos plots
and scatter plots were also applied to analyze the gene
expression differences between the CRSwNP and control
groups (Supplementary Figures S2, S3). CircRNAs and
miRNAs downregulated or upregulated with fold change
≥ ± 2.5 (p < 0.05) in both the ECRSwNP group and non-
ECRSwNP group were considered to have significant

differential expression and were selected for further
research. A total of 2,875 circRNAs showed significant
differential expression in the CRSwNP group, including
1,794 downregulated circRNAs and 1,081 upregulated
circRNAs. Additionally, 192 miRNAs were significantly
downregulated and no miRNAs were significantly
upregulated in the CRSwNP group.

Co-Expression Network in CRSwNP
From gene co-expression network analysis, we found that
there was a difference in the co-expression of circRNAs and
miRNAs between the CRSwNP group and control group,
which revealed the underlying molecular mechanism of the
pathogenesis of CRSwNP. We selected 40 circRNAs
differentially expressed between the CRSwNP and control
groups. The top 40 circRNAs-miRNAs networks are shown
in Figure 3. Hsa-circ-0031593, hsa-circ-0031594, and hsa-
miR-27b-3p are present in Figure 3. One circRNA can be
associated with multiple miRNAs, and one miRNA can be
related to multiple circRNAs, resulting in complex
functional connections. In Figure 3, the darker and larger
nodes indicate the higher fold change of circRNAs, purple
indicates upregulation, and blue indicates downregulation.
There were many regulatory relationships between the
circRNAs and miRNAs in the networks, which further
indicated that the networks of regulatory relationships
were ubiquitous.

FIGURE 2 | Different expressions of circRNAs and miRNAs shown in volcano plots. The circRNAs and miRNAs were widely distributed in all chromosomes. Each
column corresponds to a circRNA or a miRNA, the green column toward the center represents significantly downregulated and the red one toward the outside means
upregulated. (A) Differential expression of circRNAs. (B) Differential expression of miRNAs.
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Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Analyses
We predicted the biological functions of aberrantly expressed
circRNAs and miRNAs through GO enrichment analysis and
KEGG pathway analysis. The enriched GO terms (p < 0.05) could
reflect the function of aberrantly expressed circRNAs and
miRNAs. Each plot represents a specific biological function,
and a larger size means a larger gene number. For circRNAs,
compared with the normal control subjects, the significantly
over-presented terms were mainly involved in cell adhesion,
membrane, and receptor activity. In contrast, miRNAs were
mainly involved in cellular component organization,
intracellular parts, protein binding, and so on. The details of
the top 10 significantly enriched GO terms of circRNAs are

presented in Figure 4. According to GO analysis of circRNAs
in the biological process (BP) category, the differentially
expressed circRNAs were chiefly enriched in “single-organism
process” and “single-organism cell process” (Figure 4). GO
analysis related to cellular components (CC) showed that they
were mainly enriched in “membrane” and “membrane part”
(Figure 4). GO analysis related to molecular functions (MF)
demonstrated that they were involved in “molecular transducer
activity” and “receptor activity” (Figure 4). The GO analysis of
miRNAs is shown in Figure 5. The biological process category
was enriched in “positive regulation of biological process” and
“anatomical structure development” (Figure 5). Cellular
components (CC) were mostly enriched in “intracellular” and
“intracellular part” (Figure 5). Molecular functions (MF) were
involved in “binding” and “protein binding” (Figure 5). In

FIGURE 3 | Top 40 circRNA-miRNA co-expression networks. Co-expression networks were analyzed by miRanda-3.3 software, combined with entropy values
below 20. Stars represent circRNAs; squares represent miRNA; lines represent correlative relationships. Different sizes and colors represent the corresponding (up/
down) relationship.
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FIGURE 4 | Top 10 significant enriched GO terms analysis of circRNAs. Differentially expressed circRNAs were mainly involved in biological process, cellular
component, andmolecular function. Each plot represents a specific biological function, and the larger the size, the stronger the circRNAs expression. Compared with the
normal subjects, the significantly over-presented circRNAs in the CRSwNP group were mainly involved in cell adhesion, membrane, and receptor activity.

FIGURE 5 | Top 10 significant enriched GO terms analysis of miRNAs. Differentially expressed miRNAs were mainly involved in biological process, cellular
component, andmolecular function. Compared with the normal subjects, the significantly over-presentedmiRNAs in the CRSwNP group were mainly involved in positive
regulation of biological process, intracellular part, and binding.
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addition, from KEGG pathway analysis, we found that
differentially expressed circRNAs were annotated to amebiasis,
salivary secretion, and others (Figure 6A); and miRNAs were
annotated to pathways in cancer, endocytosis, and so on
(Figure 6B).

Confirmation of the Expression of circRNAs
and miRNAs Using RNA-Sequencing and
Quantitative Real-Time Polymerase Chain
Reaction
The results of RNA-seq analysis showed that hsa-circ-0031593
and hsa-circ-0031594 were expressed to a significantly higher
degree in the CRSwNP group than in the control group. Hsa-circ-
0109623, hsa-circ-0000736, hsa-miR-125a-5p, hsa-miR-132-3p,
hsa-miR-145-5p, hsa-miR-146a-5p, and hsa-miR-27b-3p were to
a significantly lower degree in the CRSwNP group than in the
control group (Figure 7A). To confirm the reliability of the

microarray results, circRNAs and miRNAs downregulated and
upregulated with fold change ≥ ± 2.5 (p < 0.05) in five CRSwNP
subjects and five control subjects were selected for qRT-PCR in
order to analyze the expression levels of these ncRNAs. The
results showed that hsa-circ-0031593 and hsa-circ-0031594 were
expressed significantly more in the CRSwNP group than in the
control group. Hsa-miR-132-3p, hsa-miR-145-5p, hsa-miR-
146a-5p, and hsa-miR-27b-3p were expressed significantly less
in the CRSwNP group than in the control group. There were no
statistical differences among the expressions of hsa-circ-0109623,
hsa-circ-0000736, or hsa-miR-125a-5p (Figure 7B).

After that, more samples (29 CRSwNP subjects and 25 control
subjects) were used for further research of the quantitative
expressions of these circRNAs and miRNAs. The detailed
expression levels of these ncRNAs are shown in Figure 8. The
results in Figure 8 are in accordance with the results in Figure 7B.
The expressions of hsa-circ-0031593 and hsa-circ-0031594 in the
CRSwNP group were significantly higher than those in the

FIGURE 6 | KEGG pathway analysis of circRNAs and miRNAs. Biological roles of the differentially expressed circRNAs (A) and miRNAs (B). Biological roles of the
differentially expressed circRNAs include amebiasis, salivary secretion, cell adhesionmolecules (CAMs), and so on. Biological roles of the differentially expressedmiRNAs
include pathways in cancer, endocytosis, thyroid hormone signaling pathway, and so on.
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control group. The expressions of hsa-miR-132-3p, hsa-miR-145-
5p, hsa-miR-146a-5p, and hsa-miR-27b-3p in the CRSwNP
group were significantly lower than those in the control group.
There were no statistical differences among the expressions of
hsa-circ-0109623, hsa-circ-0000736, or hsa-miR-125a-5p.

ROC Curve Analysis and PCA of Selected
circRNAs and miRNAs
ROC curve analysis was carried out to estimate the functional
values of the selected circRNAs and miRNAs in the occurrence
and development of CRSwNP (Figure 9). The sensitivity and
specificity for the values of CRSwNP are shown in Table 1. The
PCA method was used in this research. The data of PCA with
combinations of hsa-circ-0031593, hsa-circ-0031594, hsa-miR-
132-3p, hsa-miR-145-5p, hsa-miR-146a-5p, and hsa-miR-27b-3p
are displayed in Table 2. The first principal component explained
variance ratio was 98.87%.We used the first principal component
1 of these six ncRNAs to carry out ROC curve analysis, and the
AUC was 0.8657, indicating a good significance for the
pathogenesis of CRSwNP. The AUCs of hsa-circ-0031593 and
hsa-miR-145-5p were 0.8353 [(0.7291–0.9415), p < 0.0001] and
0.8690 [(0.76–0.978), p < 0.0001]. Hsa-circ-0031593 and hsa-
miR-145-5p had the strongest evidence supporting their
involvement in the occurrence and development of CRSwNP
since they had higher AUCs than others and had p values < 0.05.

DISCUSSION

CRSwNP is a significant public health problem with a considerable
socioeconomic burden. Previous studies have reported that CRSwNP
is a complex, multifactorial disease. There have beenmany studies on
its etiology, but its pathogenesis remains unclear. Dysregulated
expression of miRNAs has been shown in psoriasis, rheumatoid
arthritis, pulmonary fibrosis, and allergic asthma. CircRNA is also
involved in inflammatory diseases, but there has been no research on
the role of circRNA in CRSwNP. Although numerous researchers
have attempted to clarify the pathogenesis of CRSwNP, the detailed
mechanisms remain unclear. Overall, little is known on the role of
ncRNAs in the pathogenesis of CRSwNP. Further understanding of
the genetic level of pathogenesis is essential for developing new
techniques for effective prevention and therapy to improve prognosis.
Researchers have found that ncRNAs, such as circRNAs and
miRNAs, play essential roles in the occurrence and development
of many diseases, which is contrary to the traditional view that genes
are mainly regulated by protein coding (Wu et al., 2019; Yang et al.,
2019). To explore the functions of circRNAs and miRNAs in
CRSwNP, we performed gene microarray analysis of circRNAs
and miRNAs in a CRSwNP group and a control group.
Functional enrichment analysis and prediction of differentially
expressed genes were carried out by using public databases. In
addition, we performed qRT-PCR to validate the reliability of
RNA-seq analysis, and we confirmed that hsa-circ-0031593 and

FIGURE 7 | Confirmation of the expression of circRNAs and miRNAs using RNA-sequencing and quantitative real-time polymerase chain reaction (qRT-PCR).
CircRNAs and miRNAs were validated by RNA-sequencing (CRSwNP(n � 6); control subjects (n � 3) (A); and qRT-PCR in an independent cohort of five CRSwNP
subjects and five control subjects (B). Each sample was detected in triplicate. GAPDH was used as the reference gene for circRNAs, and hsa-miR-16 was used as the
reference gene for miRNAs. The relative expression levels of hsa-circ-0031593, hsa-circ-0031594, hsa-circ-0109623, hsa-circ-0000736, hsa-miR-132-3p, hsa-
miR-145-5p, hsa-miR-146a-5p, hsa-miR-125a-5p, and hsa-miR-27b-3p by qRT-PCR. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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hsa-miR-145-5p had the strongest evidence supporting their
involvement in the occurrence and development of CRSwNP by
ROC curve analysis and PCA. In conclusion, our findings revealed a
network potentially involved in CRSwNP pathogenesis, in which
circRNAs and microRNAs play significant roles.

ECRSwNP differs greatly from non-ECRSwNP in many aspects
(Shah et al., 2016; Lou et al., 2018), such as pathogenesis,
development, prognosis, and CT scan images. Our original
intention was to explore the functions of miRNA and circRNA in
different CRSwNP subtypes, in order to help postoperative
treatments like determining the eosinophil count. In addition,
some researchers have found that ECRSwNP is difficult to treat
and has a high recurrence rate, leading to poor clinical outcomes.
However, in our study, the expressions of circRNA and miRNA

between ECRSwNP and non-ECRSwNP had no statistical
differences. It is possible that individual differences of the samples
or the regulation of the next biological process has changed, resulting
in different types of polyps. The development process of CRSwNP is
complex and diverse (Schleimer, 2017). Meanwhile, the classification
between ECRSwNP and non-ECRSwNP is limited. First, there is no
unified view on the determination of ECRSwNP throughout the
world. Second, the count of eosinophils is objective. Therefore, we
combined ECRSwNP and non-ECRSwNP into the CRSwNP group.

After analyzing the different expressions of circRNAs and
miRNAs between the CRSwNP and control groups, we found that
1794 circRNAs were significantly downregulated and 1,081 were
significantly upregulated in the CRSwNP group. Additionally,
192 miRNAs showed significant downregulation in the CRSwNP

FIGURE 8 | Confirmation of the expression of circRNAs and miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR). Sample numbers were
expanded to perform qRT-PCR (CRSwNP (n � 29); control subjects (n � 25). GAPDH was used as the reference gene for circRNAs, and hsa-miR-16 was used as the
reference gene for miRNAs. The heights of columns represent the fold changes of CRSwNP compared with the control group. The relative expression levels of hsa-circ-
0031593, hsa-circ-0031594, hsa-circ-0109623, hsa-circ-0000736, hsa-miR-132-3p, hsa-miR-145-5p, hsa-miR-146a-5p, hsa-miR-125a-5p and hsa-miR-27b-
3p by qRT-PCR. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 9 | Functional value of circRNAs and miRNAs. The receiver operating characteristic (ROC) curve analysis for the function of CRSwNP. The ROC curve
analysis of hsa-circ-0031593, hsa-circ-0031594, hsa-miR-132-3p, hsa-miR-145-5p, hsa-miR-146a-5p, and hsa-miR-27b-3p and principal component 1 of these six
ncRNAs for the significance in the occurrence and development of CRSwNP. The AUC (area under curves) values are given on the graphs.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 64350411

Yu et al. Non-Coding RNA in Chronic Rhinosinusitis

66

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


group and none showed upregulation. The different expressions
of circRNAs and miRNAs between these two groups may be
involved in the pathogenesis of CRSwNP.

Studies have shown that one of the important functions of
circRNAs is to act as “miRNA sponges” and competitively bind
miRNAs to regulate post-transcriptional activity (Ergun and
Oztuzcu, 2015). Co-expression networks have been constructed to
obtain the relationship between circRNAs and miRNAs. Figure 3
shows that a single circRNA is associated withmultiple miRNAs, and
a single miRNA is associated with multiple circRNAs. Little is known
about the relationship between circRNAs and miRNAs in CRSwNP.
In fact, the present study is the first to detect circRNA in CRSwNP.

Without functional analysis, the huge quantity of data on gene
expression is unintelligible. Hence, functional enrichment analysis
and prediction of differentially expressed genes were carried out using
public databases, such as GO enrichment analysis and KEGG
pathway analysis, and we found that differential expressions of
circRNAs between the CRNwNP and control groups were related
to “amoebiasis,” “salivary secretion,” “cell adhesion molecules
(CAMs),” “cAMP signaling pathway,” “focal adhesion”, “adherens
junction,” “TNF signaling pathway,” and others. The differential
expressions of miRNAs between the CRSwNP and control groups
were enriched in “pathways in cancer,” “endocytosis,” “thyroid
hormone signaling pathway,” “salivary secretion,” “regulation of
actin cytoskeleton,” “insulin secretion,” and so on. Based on the
functional analysis, the most significantly enriched pathway was
CAMs, which was consistent with previous research (Milonski
et al., 2015; Xu et al., 2017). The pathological characteristics of
CRSwNP include inflammatory cells migrating to and infiltrating
the nasal mucosa. During different stages of the progression of
CRSwNP, the expressions of CAMs are various, which stimulate
eosinophil and mast cell aggregation and contribute to Th2 skewing
(Oyer et al., 2013). Compared to normal nasal mucosa, CRSwNPwas
shown to be more sensitive to IL-32 through lipopolysaccharides
acting at the cAMP signaling pathway (Cho et al., 2016). Further, a
study found that thromboxane A2 is involved in platelet aggregation
and tissue inflammation in CRS, and cAMP regulates the expression
of the thromboxane-prostanoid receptor and cxcl1/8, which
participates in the pathogenesis of CRS (Elion et al., 2018). TNF,
a complex and important inflammatory factor, induces local
production of IgA and stimulates eosinophils, and it plays an
important role in the pathogenesis of CRSwNP (Kato et al., 2008;
Cho et al., 2015; Shimizu et al., 2016). The integrity of the airway
epithelium is a prerequisite for its good barrier function, which
depends on the intercellular junctions, including tight junctions

and adhesion junctions (Suzuki et al., 2016; Jiao et al., 2018).
Studies have shown that the breakdown of tight junctions and
adhesion junctions of CRS and the decrease of protein component
expression are major factors leading to the occurrence of CRS (Kim
et al., 2018; Tian et al., 2018). Studies on the key genes and pathways
in CRSwNP showed that salivary secretion was the most significantly
enriched pathway for downregulated genes, which was consistent
with our findings (Yao et al., 2019). Above all, our findings confirmed
the validity of previous research and showed high reliability. Little is
known about the regulation of the actin cytoskeleton and insulin
secretion in CRSwNP. Studies have shown that the actin cytoskeleton
is associated with several inflammatory diseases and is involved in
leukocyte transendothelial migration (Schnoor, 2015; Ao et al., 2016;
Lechuga and Ivanov, 2017). Besides, numerous studies have shown
that the actin cytoskeleton plays an important role in regulating
insulin secretion (Martínez-García et al., 2015; Sorrenson et al., 2016;
Deyev et al., 2017). However, the functions of the actin cytoskeleton
and insulin secretion in CRSwNP need to be further explored.

The heterogeneity of CRSwNP is gradually being recognized,
prompting the discovery of novel biomarkers to describe specific
endotypes and determine optimized treatment (Dennis et al., 2016;
Kuhar et al., 2017). Recent studies on potential biomarkers in
CRSwNP mainly focused on eosinophils, exhaled gas
components, and inflammatory cells in nasal secretions, nasal
tissues, and peripheral blood (Drake et al., 2016; Tsybikov et al.,
2016; Asano et al., 2017; Chen et al., 2017). Yan indicated that miR-
145-5p negatively regulates the proliferation and chemokine
secretion of NHEKs by targeting MLK3, and the downregulation
of miR-145-5p contributes to skin inflammation in psoriasis lesions
(Yan et al., 2019). Dihydroquercetin attenuates lipopolysaccharide-
induced acute lung injury by modulating FOXO3-mediated NF-κB
signaling via miR-132–3p (Liu J.-H. et al., 2020). Human neutrophil
elastase induces MUC5AC overexpression in chronic rhinosinusitis
through miR-146a (Yan et al., 2020). Furthermore, miR-27b-3p,
miR-181a-1-3p, and miR-326-5p are involved in the inhibition of
macrophage activation in chronic liver injury (Li et al., 2017).
Circ_0134111 knockdown relieves IL-1β-induced apoptosis,
inflammation, and extracellular matrix degradation in human
chondrocytes through the circ_0134111-miR-515-5p-SOCS1
network (Wu et al., 2021). An inducible circular RNA circKcnt2
inhibits ILC3 activation to facilitate colitis resolution (Liu B. et al.,
2020). These studies show that circRNA and miRNA play vital
functions in the process of inflammation. In the present study, ROC
curve analysis and PCA indicated that aberrantly expressed
circRNAs and miRNAs may be related to biological dysfunction

TABLE 1 | Validation of the selected circRNAs and miRNAS by quantitative real-time polymerase chain reaction and the data of ROC curve analysis.

AUC 95% CI p value Sensitivity Specificity

Hsa-circ-0031593 0.8353 0.7291–0.9415 <0.0001 0.8235 0.80
Hsa-circ-0031594 0.8176 0.7047–0.9306 <0.0001 0.7059 0.88
Hsa-miR-132-3p 0.6897 0.5438–0.8355 0.0171 0.8966 0.48
Hsa-miR-145-5p 0.8690 0.76–0.978 <0.0001 0.8276 0.88
Hsa-miR-146a-5p 0.7821 0.6579–0.9063 0.0004 0.7586 0.76
Hsa-miR-27b-3p 0.7655 0.6332–0.8979 0.0008 0.7586 0.72
Principal component 1 of six RNAs 0.8657 0.7547–0.9768 <0.0001 0.8214 0.88

AUC, area under curves.
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and play important roles in the pathogenesis of CRSwNP.
Furthermore, hsa-circ-0031593 and hsa-miR-145-5p were more
likely to correlate with the occurrence and development of CRSwNP.

There are still some limitations in our study. First, individual
differences of the samples may have led to the lack of statistical
differences between the ECRSwNP and non-ECRSwNP groups,

although our findings were consistent with previous research (Cho
et al., 2016; Suzuki et al., 2016; Xu et al., 2017; Kim et al., 2018; Yao
et al., 2019). Second, all patients’ data were from The First Affiliated
Hospital of Nanchang University, and all patient were from Jiangxi
Province. Althoughmost of the Chinese population isHan, given that
ethnic and regional variations may be involved in the development of
CRSwNP,wewill consider these variables in future studies. Third, our
findings were only based on gene chip analysis, database comparison
and prediction, and tissue experiment verification. Experiments in
vivo and in vitro should be carried out to further explore the function
of these aberrant genes in CRSwNP.

CONCLUSION

In our study, the expression profiles of ECRSwNP and non-ECRSwNP
hadno statistical differences. The differentially expressed circRNAs and
miRNAs between the CRSwNP and control groups may play
important roles in the pathogenesis of CRSwNP. Altered expression
of hsa-circ-0031593 and hsa-miR-145-5p had the strongest evidence
for involvement in the occurrence and development of CRSwNP.
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Regulation of gene expression through multiple epigenetic components is a highly

combinatorial process. Alterations in any of these layers, as is commonly found in

cancer diseases, can lead to a cascade of downstream effects on tumor suppressor

or oncogenes. Hence, deciphering the effects of epigenetic alterations on regulatory

elements requires innovative computational approaches that can benefit from the huge

amounts of epigenomic datasets that are available from multiple consortia, such as

Roadmap or BluePrint. We developed a software tool named IRENE (Integrative Ranking

of Epigenetic Network of Enhancers), which performs quantitative analyses on differential

epigenetic modifications through an integrated, network-based approach. The method

takes into account the additive effect of alterations on multiple regulatory elements of

a gene. Applying this tool to well-characterized test cases, it successfully found many

known cancer genes from publicly available cancer epigenome datasets.

Keywords: enhancer, epigenetics, histone modification, chromatin interaction, network analysis

INTRODUCTION

Epigenetic alterations are frequent in many cancers. In particular, DNA methylation and histone
modifications are two main mechanisms that allow cancer cells to alter transcription without
changing the DNA sequences, and lead to many abnormalities such as persistent activation of
cell cycle control genes or deactivation of DNA repair genes. For example, promoter DNA hypo-
methylation accompanied by histone hyper-acetylation is frequently observed in the activation of
oncogenes in cancer. Besides, aberrant activation of distal regulatory elements is often associated
with the up-regulation of cancer-promoting genes. Interestingly, epigenetic modifications at
proximal and distal regulatory elements often appear to be earlier events than the gene expression
(Hartley et al., 2013; Ziller et al., 2014), and can hence serve as potential early markers in
cancer diagnosis.

Various histone modifications on promoters have been categorized into either activation or
repression effects on gene expression. Such effects can bemeasured by comparing histone alteration
levels between tumor and their corresponding normal tissues using ChIP-Seq (Karlic et al., 2010).
A number of tools, such as ChIPComp (Chen et al., 2015), ChIPDiff (Xu et al., 2008), ChIPnorm
(Nair et al., 2012), csaw (Lun and Smyth, 2015), DBChIP (Liang and Keles, 2012), DiffBind (Stark
and Brown, 2011), MAnorm (Shao et al., 2012), RSEG (Song and Smith, 2011) have demonstrated
their usefulness in cancer studies by comparing the histone intensities between two conditions (see
Steinhauser et al., 2016 for a review of these tools). However, they are limited to the comparison
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of a single histone mark. Furthermore, many tools such
as jMOSAiCS (Zeng et al., 2013), IDEAS (Zhang et al., 2016),
and ChromHMM (Ernst and Kellis, 2012) are able to perform
integrative analyses across multiple epigenetic marks. However,
while these tools provide an integrated description of the
epigenetic characteristics at individual genome loci, they do
not take into account the combined effects of these changes at
multiple regulatory elements controlling a gene.

As previously mentioned, many histone modifications that
potentially regulate gene expression also occur in other
genomic regions besides promoters. Enhancers are distal
regulatory elements that interact with gene promoters through
chromosomal loops to regulate gene transcription. Most of the
enhancers are located within ±1 Mb of the transcription start
site (TSS) of their target genes (Maston et al., 2006). Enhancer
activity is regulated through epigenetic modifications (Zentner
et al., 2011), including positive regulation from histone marks,
such as H3K27ac (Creyghton et al., 2010; Stasevich et al., 2014)
andH3K4me1 (Heintzman et al., 2007; Calo andWysocka, 2013),
and negative regulation by H3K27me3 (Charlet et al., 2016) and
H3K9me3 (Zhu et al., 2012).

Given the complexity of epigenetic regulation, novel tools
are required to combine this information, and create a
comprehensive overview of the differential epigenetic landscape,
integrating multiple data layers. The method we developed,
named IRENE (Integrative ranking with an epigenetic network
of enhancers), combines a quantitative analysis on multiple
differential epigenetic modifications with an integrated, network-
based approach, in which we integrated two levels of epigenetic
information: the signal intensity of each epigenetic mark, and the
relationships between promoters and distal regulatory elements
known as enhancers (Figure 1). In this paper, we describe the
method and present the test cases. In our benchmarking tests on
cancer datasets, the IRENE ranked lists have higher relevance to
cancer marker genes (CMGs) than the other approaches. Being
implemented as an R package, IRENE is an easy to use method
allowing gene ranking between two conditions and highlighting
potential cancer biomarkers.

RESULTS

IRENE: Epigenetic Ranking With an
Epigenetic Network of Enhancers
IRENE analyzes epigenetic changes between two biological
conditions (e.g., ChIP-seq data for histone modifications or
whole-genome bisulfite sequencing for DNA methylation), and
translates the differential signals at multiple regulatory elements
into a unique score (Figure 1). Hence, IRENE performs a
double integration, both across multiple epigenetic datasets and
across different regulatory regions linked to a gene. To integrate
multiple datasets, we use dPCA, which captures the directions
of the greatest differential variance comparing two conditions,
at each regulatory element (see section Materials and Methods)
(Ji et al., 2013). As the goal of our method is to capture the
differential signal at proximal and distal regulatory elements,
we performed a dPCA analysis both at gene promoters and

distal regulatory elements, which we call promoter interacting
regions (PIRs) extracted from the 4DGenome database (Teng
et al., 2015). Similar to standard PCA, differential PCA captures
the directions of the greatest differential variance along several
differential principal components (dPCs). We selected the first
two dPCs, which appear to capture the differential signal both
from activating and repressive epigenetic marks. The sum of the
absolute values of dPC1 and dPC2 at each regulatory element was
used as a score for this element. These scores are summarized
as a weighted network relating regulatory elements to their
target genes. The network consists of promoters and connected
PIRs. Oriented edges from PIRs to promoters indicate a 3D
interaction between these regulatory elements. Despite being in
principle a bipartite graph (with nodes being either PIRs or
promoters), we do not make a distinction between these two
types of regulatory elements. A random walk based method then
assigns a score to the corresponding gene. The output of the
method is a ranked list of genes from the most to the least
affected one, which incorporates both promoter and enhancer
alterations. As a comparison, we also generated ranked lists
based only on the promoter score (named promoter ranked lists
in the following), discarding the contributions from distal PIR
elements. This approach can be applied whenever two conditions
are to be compared, for example, normal/tumor tissue, various
tumor subtypes, or different developmental stages. More details
are given in the Materials and Methods section. In order to
benchmark our method, we used seven test cases consisting
of tumor samples for seven different tumor types and normal
matching samples. For each of these test cases, we compiled
a list of CMGs (Supplementary Table 2) from the literature,
and considered tissue-specific genes (TSGs) obtained from the
ArchS4 database (Lachmann et al., 2018) as controls.

Cancer Marker Genes Are Scored Higher
by Incorporating Enhancer in the Ranking
In our analysis, we determined that taking into account the first
two dPCs is able to capture most of the differential variance
for both activating and repressive epigenetic modifications
(Figures 2A,B). After comparing the dPC1+dPC2 values
between the CMGs and TSGs in each test case, we found that
the scores from CMGs are generally higher than the scores of
the TSGs for the enhancers, whereas the situation is less clear
at promoters. This might indicate that most of the differential
signal between tumor and normal occurs at distal regulatory
regions. (Figure 2C).

Using the ranked gene lists generated by IRENE, we further
computed the area under the curve (AUC) for the empirical
cumulative density function (ECDF) of the high-confidence
CMG ranks as a benchmarking approach, as described in
the methods. First, we examined the IRENE ranks computed
using the dPC1+dPC2 on gene promoters and their targeting
enhancers, and found that the marker genes are ranked higher
than TSGs in every test case, indicating that our approach
captures the specific differential epigenetic signals at CMGs
(Figure 3A). Moreover, both for CMGs and TSGs, the IRENE
AUC values are higher than the AUC values computed using the
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FIGURE 1 | Overview of the method. General overview of the input/output of the IRENE method; user defined input is indicated in red, while input provided by the

method (e.g., regulatory loci and interactions) are displayed in gray. Step 1: Regulatory elements are scored using all epigenetic modifications, and related to the target

gene. Step 2: Epigenetic alterations are scored using the first dPC and combined using PageRank into an integrated meta-gene score. Step 3: Ranked gene lists

based on the score are converted to eCDF curves showing the enrichment of a given gene set within the top-ranked genes, and corresponding area under the curve

(AUC) values are computed.

dPC1+dPC2 of gene promoters only (Figure 3A). The fact that
the genes ranked higher in IRENE suggests that a significant part
of the altered epigenetic alteration arises from distal enhancer
regions. We then validated these findings on the larger CMG
and TSG gene sets, and we found the AUCs of CMGs are
all significantly higher (one-tailed t-test p-value<0.01) than the
AUCs of TSGs (Figure 3B).

Some genes have a much high number of linked enhancers
than others. To test whether this might bias the ranks of
these genes, we performed 1,000 degree-preserving random
perturbations, which completely rewired the enhancer–promoter
graph but maintaining the degree distribution. We used the
high-confidence CMGs in the benchmarking, and the AUCs
with randomly assigned enhancers dropped 5–10% on average,
indicating that the higher ranks of CMGs are not explained by
their higher connectivity (Figure 4).

We compared the target gene assignment provided by the
4DGenome database, which is based on experimental evidence,
with the simpler nearest-gene assignment. As can be observed

in Figure 4, both approaches lead to comparable results, in line
with recent reports indicating that the nearest gene assignment
is reasonably effective in linking enhancers with target genes
(Moore et al., 2020).

As mentioned in the Introduction, several other methods
have been developed to integrate multiple epigenetic marks over
genomic regions. Most of these methods provide qualitative
analysis in the form of discrete chromatin states. To our
knowledge, none of these methods apply a network-based
integration as in IRENE to summarize regulatory elements
related to the same gene. In order to provide a comparison, we
focused on one of the mostly used such method, ChromHMM,
which integrates various histone marks into discrete chromatin
states (Ernst and Kellis, 2012). We combined ChromHMM with
the Chromswitch method (Jessa and Kleinman, 2018), which
computes a differential score between two groups of samples
over specific regions. Applying this scoring approach to promoter
regions, we compared the ranked lists obtained by IRENE at
promoter regions with the ChromHMM-based ranks for the
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FIGURE 2 | Differential principal components. (A) Contributions of the six histone marks to each differential principal component (dPC). (B) Variances accounted for

each dPC in the seven test cases. (C) Values of dPC1+dPC2 in the seven test cases, comparing cancer marker genes (CMGs) with TSGs, both for enhancers (top),

and promoters (bottom).
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FIGURE 3 | (A) Empirical cumulative density function (ECDF) curves regarding the cancer marker genes and tissue-specific genes in seven test cases. The marker

gene ranks using IRENE scores (red) are compared against their ranks using the promoter scores (cyan). (B) Distribution of the area under the curve (AUC) values

using the cancer marker gene (CMG) sets from CancerMine in the seven test cases, compared to randomly picked tissue-specific genes to define equal size sets.

Glioma/normal brain test case, and found that the AUC values
of the CMGs related to Glioma are significantly higher for the
IRENE method (Supplementary Figure 2).

Network Analyses Characterized the
Highly Ranked Genes in the IRENE and
Promoter List
We downloaded 184 KEGG pathways in KGML format and
loaded them as directed graphs using KEGGgraph (Zhang and
Wiemann, 2009). Then we took the top 15% genes from the
IRENE and promoter rank lists in each one of the seven test
cases, and mapped the genes to the KEGG cancer signaling
pathway (hsa05200). In total, the reference pathway contains
531 genes and 1989 interactions, and on average 208 of the 531
genes are found in the IRENE rank lists, while only 152 genes
are found in the promoter rank lists. In addition, the IRENE-
ranked genes differ from promoter-ranked genes in both in-
degrees and out-degrees of the nodes (Table 1). As the IRENE
nodes generally have higher in-degrees than out-degrees in the
graph presentation of the reference pathway, implying the IRENE
genes are more often targeted by the other regulatory genes on
their enhancers as they harbor more differential enhancers. We
further examined the glioma signaling pathway (hsa05214) and
found 19 genes from the IRENE rank list and 10 genes from
the promoter rank list in the glioma test case (Figure 5). One
common gene, EGFR, is in both lists and has been reported
to undergo tight control through epigenetic regulation on both

promoters and enhancers (McInerney et al., 2000; Liu et al., 2015;
Jameson et al., 2019). Moreover, nine genes are present only in
the IRENE rank list, such as CCND1, which has been reported to
be regulated by an estrogen-mediated enhancer (Eeckhoute et al.,
2006). In conclusion, this analysis shows that the IRENEmethods
provide a ranked gene list, which is enriched for high-ranking,
cancer-relevant genes.

DISCUSSION

From the above benchmarking on seven cancer test case
studies, we showed that IRENE is a more comprehensive
approach comparing to the current frequently used approaches
such as separate ranking gene promoters and enhancers. This
highlights the importance of epigenetic regulation through
distant enhancer regions. Using IRENE, users cannot only
discover the genes which show significantly epigenetic alterations
on their promoters, but also the ones that are connected with
strong epigenetic modifications on distal interacting enhancers,
which facilitates the discovery of potential epigenetic marker
genes. On the other hand, by interpreting the higher ranked
genes mapped to the existing pathways, the user may also
find the enhancers of interests from their differential epigenetic
modifications. For example, we found the PAX5 gene to have
a significantly higher rank in the IRENE list compared to the
promoter-only list in the two CLL case studies, which implies
that PAX5 is extensively regulated by enhancers. PAX5 is a key
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FIGURE 4 | Area under the curves (AUCs) of empirical cumulative density function (ECDF) curves of dPC1+dPC2 ranks from randomized promoter–enhancer

interactions. The boxplots indicate the 25–75% quantile ranges from benchmarking each cancer marker gene set with 1,000 different rewired promoter–enhancer

networks, whereas the red lines show the AUCs with the original promoter–enhancer interactions from IRENE using experimentally detected interactions (red), and

interactions assigned by the nearest promoters (blue), and only promoters (green) rank lists.

TABLE 1 | Graph properties in respect of the nodes from the IRENE and promoter rank lists.

Node number Median in-degree Median out-degree

IRENE Promoter IRENE Promoter IRENE Promoter

CLL 214 167 2 2 1 3

Glioma 193 133 2 1 1 1

CRC 219 168 2 0 1 3

B-ALL 180 124 1 1 1 0

mCLL 211 168 2 0 1 3

MM 219 165 2 1 1 1

PTC 219 137 2 1 1 3

transcription factor in B-cell development, and its promoters
have no significant epigenetic alterations in the CLL case studies.
However, this gene is associated with several hyperacetylated and
hypomethylated distal enhancers, one of which is located at 330
kilobases (kb) upstream of the PAX5TSS, and has been also found
as extensively mutated in CLL (Puente et al., 2015) (Figure 6).
The deletion of this enhancer resulted in a 40% reduction in
the expression of PAX5 expression and chromatin interaction
of this enhancer and PAX5 has been proven from chromosome

conformation capture sequencing (4C-Seq) analysis (Puente
et al., 2015). Themain difficulty of this study is obtaining cell type
specific enhancer–promoter interactions, as the high-resolution
chromatin interaction map for the cancer cells is currently not
available.We have tested two alternative approaches in this study,
using either the experimentally validated chromatin interaction
or distance-based interactions. The performance of the above two
approaches are similar (Figure 4). We believe better performance
can be achieved when cell type specific enhancer–promoter
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FIGURE 5 | The top 25% genes from the IRENE and promoter rank list are highlighted on the KEGG glioma signaling pathway. Pink, genes from the IRENE list;

yellow, genes from the promoter list; cyan, genes from both lists.

interactions are available in the future, and using IRENE, user
can replace the interaction map with a more specific one
when applicable. Being a differential approach comparing two
conditions, it might be affected by the possible heterogeneity
of the groups being compared. If the heterogeneity is due to
biological reasons (for example, different subtypes in the disease
group), the comparison will be affected by the greater variance
within one group. However, if the heterogeneity is of technical
nature, then this noise will likely be buffered by the fact that our
method integrates multiple regions to score the genes.

CONCLUSIONS

Genome-wide integrative epigenetic analysis is challenging and
essential in many comparative studies. As far as we know, IRENE
is the first tool that integrates quantitative and genome context
information in the differential epigenetic analysis. Applying
this tool to well-characterized test cases, it detects a number
of candidate genes with significant epigenetic alterations, and
comprehensive benchmarking validated these findings in cancer
studies. As epigenomic datasets accumulate, the computational

approaches employed in this study would be highly relevant
in both comparative and integrative analysis of the epigenetic
landscape. The discovery of novel epigenetic targets in cancers
not only unfolds the fundamental mechanisms in tumorigenesis
and development but also serves as an emerging resource for
molecular diagnosis and treatment.

MATERIALS AND METHODS

Data Preparation
Retrieving Epigenetic Modification and Chromatin

Interaction Datasets
Genome-wide ChIP-seq data are downloaded in BigWig format
from NIH Roadmap Epigenomics (Bernstein et al., 2010),
Blueprint (Adams et al., 2012), and the International Human
Epigenome Consortium (IHEC) (Stunnenberg et al., 2016).
We selected the six most frequently studied histone marks:
H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, and
H3K9me3. These resources allow us to investigate the histone
modification differences between tumor and normal tissues
(Supplementary Table 1). For restricting the comparisons to
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FIGURE 6 | A known PAX5 enhancer (chr9:37,370,916-37,371, and 635) in CLL exhibits hyperacetylation and hypomethylation [analysis of variance (ANOVA) p-value
<0.05]. (A) PAX5 enhancer positions in each track are surrounded by two black solid lines. (B) H3K27ac and (C) DNA methylation levels between CLL and healthy

samples.

the genomic loci of interests (promoters and enhancers), we
downloaded the GRCh37 and GRCh38 coordinates of promoters
from the eukaryotic promoter database (EPD) (Dreos et al.,
2013), and the promoter interacting regions (PIRs) from the
4DGenome database (Teng et al., 2015). We treated the PIRs
as potential enhancer regions, and filtered for tissue-specific
enhancers by requiring the presence of H3K4me1 or H3K27ac
peaks (peak calls provided in the Supplementary Table 1) in
at least two samples from either tumor or normal tissues.
By doing this, we enrich for cell type specific PIRs, which
show a tissue-driven clustering (Supplementary Figure 1). The
promoter coordinates were extended to±1000 base pairs around
the original coordinates. The sum of the numeric values from the
BigWig blocks which overlap with the promoter and interacting
regions are available from our project homepage. To build the
relationships between and enhancers and promoters, we also
download all the experimentally validated chromatin interaction
datasets in various human tissues from 4DGenome.

Defining Disease and Control Datasets
We used histone modification datasets from seven cancer types
in this study, i.e., B-ALL, CRC, glioma, MM, PTC, CLL, and
mCLL from the Blueprint and IHEC consortia. For each cancer
dataset, we paired it with the available dataset from the healthy

tissue from which the cancer is most likely originated from. For
example, the B-ALL, CLL, andMMwere all compared against the
healthy B cells in our design (see Supplementary Table 1 for the
pairs of normal/tumors used).

Definition of Cancer Marker Genes and

Tissue-Specific Genes
We evaluated our algorithm on a small set of high-confidence
CMGs, which is based on the tier-1 genes of the corresponding
tissues from the Cancer Gene Consensus (CGC-t1) (Sondka
et al., 2018) (Supplementary Table 2). As a negative control, we
compiled a list of tissue-specific genes (TSGs) related to the
tissues of interest for the tumor cases from ARCHS4_Tissues
(https://maayanlab.cloud/archs4/). There are 2,318 genes for
every tissue in the list. To validate our findings on independent,
larger datasets of CMGs and TSGs, we compiled additional
CMG lists containing 4,212 CMGs from 90 different cancer
types from CancerMine (Lever et al., 2019), which incorporates
the manual curated lists including the Cancer Gene Consensus
(Sondka et al., 2018) and IntOGen (Gonzalez-Perez et al., 2013).

Data Processing Procedures
Combining Histone Marks
The epigenetic intensities on regulatory elements were
summarized on a 1 kb scale, then power-transformed and
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quantile normalized. We use the dPCA (Ji et al., 2013) to
decompose the matrix D representing the difference between M
epigenetic datasets at G genomic loci comparing two groups of
samples, into matrices B and V (1)

DG×M = BG×RVR×M + E (1)

where E is the random sampling noise.
We use the first k dPCs to represent the major changes

between two conditions.We implemented an Rwrapper function
for dPCA in our tool, which takes the mean differences of the
normalized ChIP-Seq signals in each genomic locus between
two biological conditions as input, and returns the dPCs from
dPCA. The definition of dPCs varies between the test cases
(Figure 2A). The largest variances of the positive and negative
histone mark components are captured by dPC1 and dPC2 in
our test case studies (Figure 2B). Therefore, we selected the sum
of the absolute values of the first two dPCs for representing the
overall differences of these epigenetic marks.

Promoter–Enhancer Interaction Analyses
In our approach, the enhancer–promoter relationships are
described as a weighted bipartite graph, in which both enhancers
and promoters are represented as vertices, and edges are directed
from enhancers to their target promoters (Figure 1 Step 1). The
weights of the vertices are defined as the sum of the absolute
values of the first two dPCs when combining multiple epigenetic
marks, or the absolute value of the difference if a single epigenetic
mark is considered. We adopt an algorithm called “PageRank,”
which is originally designed for evaluating the importance of
web pages (Brin and Page, 1998), for ranking the magnitude of
epigenetic alterations in each gene. We use the “personalized”
PageRank implemented in igraph (Rye et al., 2011) to summarize
the weights of one promoter and its connected enhancers into a
unique meta-gene score (Figure 1 Step 2). Since our enhancer–
promoter network is a directed graph, all the enhancer weights
will eventually be attributed to their target promoter using
PageRank, yielding a unified score for each gene, which can be
used to rank the genes. Overall, there are ∼ 251, 000 promoter
interacting fragments in the promoter–enhancer interaction
networks in our case studies, which is 8.5 times the number
of promoters in the networks. The number of the interacting
fragments targeting a gene varies from none to 227, and on
average, 21 interacting fragments are targeting a promoter in
the networks.

Scoring Ranked Lists
Using the gene ranks computed as described in the previous
section, we can now evaluate the enrichment of a specific gene
set G in the ranked list by computing the empirical cumulative
distribution function (ECDF) obtained ranking the genes in
decreasing order based on the previously described rank, and
summing the indicator function

eCDFG(k) =

k∑

i=1

δi wi th δi =

{
1 i f gi ∈ G

0 i f gi /∈ G
(2)

We use the area under the curve (AUC) as a measure of the
enrichment of the gene set G, with AUC = 0.5 corresponding
to a random distribution of the genes in G inside the
ranked list.

Comparison With ChromHMM
We applied the ChromHMM method (version v1.22) to
the Glioma and the healthy brain control samples (see
Supplementary Table 1). The 6 histone marks were integrated
into 10 chromatin states, of which 2 correspond to active
promoter regions and one to active enhancer regions
(Supplementary Figure 2B). The chromswitch package (Jessa
and Kleinman, 2018) (v. 1.12.0) from Bioconductor was applied
to the promoter and PIR regions linked to promoters for
specific chromatin states. The chromswitch method determines
a consensus score between changes occurring in chromatin
state within a group of sample, and the labels of these samples.
Hence, a maximal consensus score for a region of interest
would correspond to changes in a chromatin state within the
region of interest occurring only in the samples of one of the
two groups. A minimal consensus score would on the opposite
correspond to changes in chromatin states in the region of
interest occurring in samples, which are randomly distributed
over the two groups. For each gene, we compute a score by
averaging the consensus score of all regulatory elements related
to this gene, and use this score to rank the genes, as a comparison
to the IRENE ranking.
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Objectives: The aim of the present study was to describe the computed tomography

(CT) characteristics of primary liver carcinosarcoma (PLCS) and to explore the

pathological basis for the diagnosis of primary hepatocellular carcinoma sarcoma.

Methods: Three male patients with PLCS were included in the present retrospective

research, and the age was ranged from 52 to 63 years. The plain CT scan and third-stage

enhancement scan were performed on patients. The pathological characteristics were

analyzed. Stomachache was the main clinical symptoms of the three patients. Cirrhosis

background was confirmed in one patients, and chronic Hepatitis B background was

confirmed in other two patients.

Results: According to the results of CT, the inner diameter of the tumors ranged from

8.6 to 27.0 cm. The fibrous pseudocapsule around the tumor tissues was observed in

two patients. Tumor tissues from all three patients were composed of sarcomatous and

carcinomatous components. For carcinomatous components, hepatocellular carcinoma

was observed in one patient and cholangiocarcinoma was observed in the other two

patients. For sarcomatous components, angiosarcoma was observed in two patients

and malignant fibrous histiocytoma was observed in another one patient. The tumor

tissues were visualized as heterogeneous low density with large sheets of necrotic

cystic lesions or thick-walled areas of multilocular cystic lesions using the plain CT scan.

Edge-to-center filling and strengthening lesions, mild tomoderate enhanced parenchyma

at the arterial phase, and isodensity between the tumor parenchyma and the surrounding

liver parenchyma at the portal vein phase or delayed phase were observed using the

third-stage enhancement scan.

Conclusions: CT characteristics observed in the present study were of great benefit

for the diagnosis of PLCS.

Keywords: liver, tumora, tomography, x-ray computed, diagnosis
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INTRODUCTION

Primary liver carcinosarcoma (PLCS) is defined as a malignant
tumor concomitantly composed of a mixture of sarcomatous
and carcinomatous by the World Health Organization (WHO),
which is either hepatocyte-derived or cholangiocyte-derived or
mixed. Currently, the pathological mechanism underlying PLCS
is unclear (Xiang et al., 2015). PLCS is a type of rare and complex
hepatic malignant tumor with aggressive growth characteristics,
propensity for recurrence, and a poor prognosis (Li et al., 2016).
Preoperative diagnosis of PLCS is typically challenging, which
relies on the postoperative pathological examination (Shu et al.,
2010). Both epithelial and mesenchymal sarcoma components
can be observed on PLCS tumor tissues using a microscope,
and immunohistochemical assay plays an important role for the
further diagnosis of PLCS (Lao et al., 2007). In the present case-
series report, three patients diagnosed with PLCS using surgical
pathology in our hospital were included. The purpose of the
present study was to describe the clinical, histopathological, and
imaging characteristics of PLCS and to document the associated
imaging presentations and results.

MATERIALS AND METHODS

The present retrospective research was authorized by the
institutional research ethics committee of The First Affiliated
Hospital of Guangxi Medical University. Informed consent was
not applicable. The image data from all the three patients
diagnosed with PLCS from January 2011 and February 2018 were
analyzed. Two pathologists confirmed the pathological diagnosis
of the cases. Themedical records were consulted to determine the
clinical manifestation, treatment, and outcome of the cases.

Three patients underwent the plain CT scan and third-
stage enhancement scan (64 MDCT TK LIGHT SPEED GE
Medical System). The scanning parameters were shown as
the following: slice thickness: 5mm; pitch: 1.375; bed speed:
5.5 mm/s; tube voltage: 120 kV; and tube current: 100mA.
Multi-planar recombination (MPR) was used for post-processing
of images. Enhanced scanning was performed using a high-
pressure syringe. The contrast agent administered was iopromide
(includes 300 mg/mL of iodine) for a total of 70–85mL with a
flow rate of 3 mL/s.

Imaging results were reviewed independently by two
abdominal imaging radiologists with 15 and 16 years of working
experience, which were cross-checked by another radiologist
to obtain the consistent conclusion. In the present study,
the characteristics of the results of CT scans on tumors were
evaluated, including position, size, relationship with hepatic

TABLE 1 | Clinical features of three patients with PLCS.

Case age (years) Sex Main clinical symptoms Liver disease CA125 CA199 CEA AFP Prothrombin

1 52 male Upper abdominal pain Chronic hepatitis B - - - - -

2 42 male Right upper quadrant pain Cirrhosis - + - + +

3 63 male Right upper quadrant pain Chronic hepatitis B - + - - -

envelope, edge, uniformity of density, and presence of adipose
tissue, hemorrhage, cystic components, calcification, and
vascular tumor.

RESULTS

Clinical Characteristics
Three male patients (52–63 years old) with PLCS who were
treated at our hospital between January 2011 and February 2018
were included in the present study. All three patients were
admitted to the hospital due to abdominal pain and a space-
occupying lesion in the liver tissues. Two patients had a history
of chronic hepatitis B, and one patient had a history of cirrhosis.
A significant elevated level of carcinoembryonic antigen 199
(CA199) was observed in two patients, and an elevated level of
alpha-fetoprotein (AFP) was observed in another one patients.
All three patients had normal levels of carcinoembryonic antigen
(CEA) (Table 1).

Pathological Characteristics
Two experienced abdominal pathologists individually analyzed
the pathological data, which were cross-checked by another
experienced abdominal pathologist. The maximum diameter of
the lesion was ranged from 8.6 to 27.0 cm. The tangent plane of
the lesions from all three patients was grayish white. A pseudo-
envelope of fibrous tissue around the tumor was observed in two
of the patients.

PLCS Consisted of Cancerous and
Sarcoma Components
Tumor tissues composed of both cancerous and sarcomatous
components interspersed with each other were observed in all
three patients. For carcinomatous components, hepatocellular
carcinoma was observed in one patient and cholangiocarcinoma
was observed in the other two patients. For sarcomatous
components, angiosarcoma was observed in two patients and
malignant fibrous histiocytoma was observed in another one
patient Figures 1F, 2D, 3D. Immunohistochemical results were
shown as follows: Hep-1 (+) (one patient), AFP (+) (one
patient), CK (+) (one patient), CK19 (+) (two patients), Vim
(+) (two patients), CD34 (+) (two patients), and CD68 (+)
(two patient), which were consistent with the diagnosis of
PLCS Table 2.

CT Imaging Findings
Two experienced abdominal radiologists independently analyzed
the imaging data, which were cross-checked by another
experienced abdominal pathologist. All three patients had a
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FIGURE 1 | Case 1: A 52-year-old man presented with upper abdominal pain

since 3 months. (A) CT scan showed heterogeneously hypo-dense lesions

(red arrow). (B) A large exogenous mass in the S3 segment of the liver was

observed with irregular thick-walled areas inside the lesion (red arrow). (C)

Contrast-enhanced CT in the arterial phase showed uneven mild to moderate

enhancement of the lesion with intratumoral vessels and that the tumor has

invaded the anterior abdominal wall (red arrow). (D) CT scan in the portal-vein

phase showed gradual filling of the lesion from the edge to the center (red

arrow). (E) CT scan in the prolongation phase showed gradual filling of the

lesion from the edge to the center (red arrow). (F) Histopathological

examination of surgical specimen: the carcinomatous component

(cholangiocarcinoma) is interspersed with the sarcomatous component

(angiosarcoma).

single lesion in the liver, and CT scan showed an uneven
and low-density zone (Figure 1A). An irregular and exogenous
shaped tumor lesion was found to be located in the left lobe of
the liver of case 1 (Figure 1B), while a pseudo-envelope with a
clear boundary was formed around the tumor lesion in case 2 and
case 2 (Figures 2A,B, 3A,B). The tumor boundary was blurred,
and there was no pseudo-envelope formation in case 1.Moreover,
all three lesions showed mixed density and irregular thick-walled
separation changes in the cystic zone (Figures 1B, 2A–C, 3A–C).
No sign of calcification or intratumoral bleeding was observed in
any of the patients.

According to the results of enhanced CT scan, the tumor
margins in lesions from all patients were gradually filled
and intensified toward the center (Figures 1C–E, 2A–C,
3A–C). Uneven and mildly enhanced tumor parenchyma
and enriched tortuous tumor vessels were observed in the
arterial phase (Figures 1C, 2A, 3A). Isodensity with hepatic
parenchyma was observed in the portal vein and lag phase
(Figures 1D,E, 2B,C, 3B,C). Invasion into the left branch of the

FIGURE 2 | Case 2: A 42-year-old man had abdominal pain in the right upper

quadrant since 1 month. (A) A round mass in the S5 segment of the liver was

observed. CT scan in the arterial phase showed uneven, mild to moderate

enhancement (red arrow). (B) CT scan in the portal-vein phase showed gradual

filling of the lesion from the edge to the center, with irregular thick-walled

sac-variable regions (red arrow). (C) CT scan in the prolongation phase

showed gradual filling of the lesion from the edge to the center, with irregular

thick-walled sac-variable regions (red arrow). The tumor was surrounded by a

pseudocapsule. (D) Histopathological examination of the surgical specimen

shows PLCS. The carcinomatous component (cholangiocarcinoma) was

interspersed with the sarcomatous component (angiosarcoma).

FIGURE 3 | Case 3: A 63-year-old man presented with pain in the right upper

quadrant since 1 month. (A) A round mass in the S5 segment of the liver. CT

scan in the arterial phase showed uneven, mild to moderate enhancement of

the lesion. Tumor vessels were visible in the tumor. Irregular thick-walled

sac-variable regions (red arrows) were seen in the lesion. (B) CT scan in the

portal-vein phase showed gradual filling of the lesion from the edge to the

center, with irregular thick-walled sac-variable regions (red arrow). (C) CT scan

in the prolongation phase showed gradual filling of the lesion from the edge to

the center, with irregular thick-walled sac-variable regions (red arrow). The

tumor was surrounded by a pseudocapsule. (D) Histopathological examination

of surgical specimen showing PLCS. Cancerous tissue (cholangiocarcinoma)

was interspersed with sarcomatous tissue (malignant fibrous tissue).

portal vein and established tumor thrombus were observed in
case 1, in which one lesion broke through the hepatic liver capsule
into adjacent tissues. Tumor recurrence and distant metastasis
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TABLE 2 | Pathological features of three cases with PLCS.

Item Case 1 Case 2 Case 3

Pathology One large liver mass, inner diameter:

27 cm, grayish cut surface, large

necrotic area, and old bleeding

One large liver mass, inner diameter: 15 cm, grayish

cut surface, some areas accompanied by

hemorrhage and necrosis, and fibrous tissue

wrapping around the tumor

One large liver mass, inner diameter: 8.6 cm, grayish

cut surface, large necrotic area and old bleeding,

and fibrous tissue wrapping around the tumor

Microscopy The cancer tissue and the sarcoma

tissue arranged in a mixed manner;

cholangiocarcinoma in the cancer tissue,

and angiosarcoma in the sarcoma.

Immunohistochemistry CK19, Vim,

CD34 (+)

The cancer tissue and the sarcoma tissue arranged

in a mixed manner; hepatocellular carcinoma in the

cancer tissue and angiosarcoma in the sarcoma.

The sarcoma is an angiosarcoma, and the fibrous

tissue is surrounded around the tumor.

Immunohistochemistry AFP, Hep-, CK, CD34(+)

The cancer tissue and the sarcoma tissue arranged

in a mixed manner; cholangiocarcinoma in the

cancer tissue; malignant fibrous tissue tumor in the

sarcoma; Immunohistochemistry CK19,CD68/34,

Vim(+)

were observed in case 2 and case 2 within 3 months after
operation (Table 3).

DISCUSSION

In 1989, Craig et al. proposed the definition of PLCS, which refers
to primary liver malignant tumor containing both hepatocellular
carcinoma and sarcoma. Subsequently, PLCS is further defined
by the World Health Organization as a complex malignant
liver tumor composed of a mixture of hepatocellular carcinoma
or cholangiocarcinoma components and sarcoma components
(Seifert et al., 1990). PLCS is a rare malignant tumor with rare
reports (Celikbilek et al., 2011; Liu et al., 2012; Yamamoto et al.,
2014; Xiang et al., 2015; Yu, 2015; Li et al., 2018a), and the specific
clinical symptoms of PLCS are uncertain. Abdominal pain and
abdominal distension are regarded as the main complaints of
PLCS. Approximately 80% of PLCS patients possess a history
of chronic liver disease, and a significantly elevated serum alpha
fetoprotein (AFP) level is observed in about 27.6% PLCS patients
(Li et al., 2018a,b). In the present study, all three patients were
middle-aged men with a history of chronic liver disease, which
suggests that middle-aged men and chronic liver disease might
be risk factors for PLCS. Among the three patients, the serum
CA199 level was increased in two patients, while the serum AFP
level was increased in one patient. All three patients were CEA-
negative, and abnormal prothrombin level was found in one
patient. These observations might be associated with the number
and type of tumor cell components, which was similar to those
previously reported (Li et al., 2018b). Lung and lymph nodes,
peritoneum, gallbladder, omentum, stomach, diaphragm, and
adrenal gland are common metastatic positions. These clinical
features indicate that PLCS has high levels of aggression and is
metastatic (Celikbilek et al., 2011; Yasutake et al., 2014; Gu et al.,
2015; Xiang et al., 2015).

The pathogenesis of PLCS is unclear. Current evidence
(Lao et al., 2007; Celikbilek et al., 2011; Yasutake et al., 2014;
Gu et al., 2015) supports the theory that carcinosarcoma is
monoclonal in origin. In previous studies, most PLCSs were
developed in normal livers with no cirrhosis background,
which indicated that tumors develop from pluripotent liver
progenitor cells or stem cells. The imaging characteristics of
PLCS are currently unclear due to its low incidence, which
makes it difficult for radiologists to make accurate preoperative

imaging diagnosis. In the present study, all three patients were
misdiagnosed preoperatively as hepatocellular carcinoma. The
PLCS tumor was huge, irregularly shaped, and with unclear
boundaries, which was consistent with the reports described
previously (Lin et al., 2013; Gu et al., 2015; Xiang et al.,
2015).

Computed tomography (CT) is the most commonly used
imaging method for PLCS. However, currently few reports
have described the CT findings of PLCS. Previous reports have
described liver cancer sarcoma as generally large and irregular
low-density masses, which tends to grow across the liver segment.
The boundary of tumor is blurred, and the tumor directly invades
into the surrounding tissues. Necrotic cystic degeneration is
commonly observed in the central part of PLCS tumor tissues.
Mild to moderate intensity is reported on PLCS using enhanced
CT scan (Celikbilek et al., 2011; Liu et al., 2012; Xiang et al.,
2015). In the present study, the size of PLCS tumor in all
three patients was relatively large, which was irregular in one
patient and nearly round in the other two patients. In one
patient, the tumor had broken through the liver capsule and
invaded into the surrounding tissues, which were supposed to
be related to the high degree of malignancy and rapid growth
of liver cancer sarcoma. These observations were consistent
with previous reports, in which the pseudocapsule was rarely
formed in hepatocarcinoma sarcoma (Celikbilek et al., 2011; Liu
et al., 2012; Xiang et al., 2015; Li et al., 2018a,b). However,
in the present study, the fibrous pseudocapsule was found in
two patients, which might be related to massive proliferation of
liver parenchymal fibrous tissue around the tumor induced by
chronic liver diseases. In all three cases, irregular thick-walled
multi-segmental cystic changes were observed, which might be
related to the degree of necrosis in the lesion. Moreover, in all
three cases, the tumors were gradually filled and enhanced from
the margin to the center in the third-stage enhancement scan.
Unevenness and mild-to-moderate enhancement were observed
in the arterial phase, with several distorted tumor vessels. The
parenchyma density of PLCS tumor was slightly higher than that
of the adjacent liver parenchyma. The parenchymal enhancement
in the portal vein or delayed phase showed an equal density
change. These CT imaging characteristics have not been reported
in previous literature (Celikbilek et al., 2011; Liu et al., 2012;
Lin et al., 2013; Yamamoto et al., 2014; Xiang et al., 2015; Li
et al., 2018a,b), which indicated that the isodense area in the
portal vein or delayed phase of the tumor might be related to
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TABLE 3 | CT features of three cases with PLCS.

Item Location Number of

lesions
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the abundant fibrous components or vascular components in the
tumor parenchyma.

As described previously, calcification and bone tissue are
observed in some tumors that contain the components of
chondrosarcoma and osteosarcoma, which are suggested to be
important CT signs for the diagnosis of PLCS (Lai et al.,
2011). However, no signs of calcification or bone tissue were
observed in any of the three patients in the present study, as
chondrosarcoma and osteosarcoma were not included in the
sarcomatous components of the tumors. In addition, tumor
recurrence and distant metastasis were observed in two patients,
indicating a poor prognosis of patients with PLCS.

Currently, the diagnosis of PLCS mainly depends on
pathological results. As it is difficult to distinguish PLCS with
other liver malignancies, such as hepatocellular carcinoma
and cholangiocarcinoma, the imaging diagnosis for PLCS
is difficult. Hepatocellular carcinoma is the most common
primary malignancy of the liver, which is generally derived
from chronic liver disease and commonly diagnosed in the
elderly population (McEvoy et al., 2013). In the CT images
of hepatocellular carcinoma, a low-density mass, varying in
size, and significant enhancement are regularly presented,
accompanied by satellite lesions and portal vein thrombosis.
Capsules on the margin were commonly observed in well-
differentiated hepatocellular carcinoma. Cholangiocarcinoma
occurs in the bile duct epithelium and is usually located in
the left hepatic lobe. Cholangiocarcinoma is found mostly in
older men with a cirrhosis background. Typical imaging features
of cholangiocarcinoma include more homogeneous low-density
lesions, irregular appearance, gradual centripetal enhancement,
contraction of adjacent hepatic envelope, and peripheral bile duct
dilatation (Lewis et al., 2010). Compared to PLCS, less extensive
necrosis, cystic degeneration, or isodensity changes were
observed in hepatocellular carcinoma and cholangiocarcinoma.

Shortcomings of the Present Study
The number of cases included in the present retrospective
analysis is small. The results obtained in the present study need
to be further verified by more cases. In the present study, based
on data collected from 2011 to 2018, the conditions of tumor

recurrence and distant metastasis of patients were recorded.
However, how tumor CT characteristics evolved over time was
not explored yet, which will be explored in more cases in our
future work.

CONCLUSIONS

Specific CT characteristics, such as huge tumor size, large-
scale cystic and necrotizing degeneration, edge-to-center filling
enhancement in the enhanced CT scan, and isodensity between
the tumor parenchyma and the surrounding liver parenchyma at
the portal vein phase or delayed phase, may help to distinguish
PLCS from other malignancies. PLCS needs to be treated
by surgical resection and careful CT follow-up due to their
invasiveness and poor prognosis.
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A Novel Ferroptosis-Related
Biomarker Signature to Predict Overall
Survival of Esophageal Squamous Cell
Carcinoma
Jiahang Song1,2†, Yanhu Liu1†, Xiang Guan1†, Xun Zhang1, Wenda Yu1* and Qingguo Li1,3*

1Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China, 2Department of Radiation
Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 3Department of Cardiovascular Surgery, The
Affiliated Hospital of Qinghai University, Xining, China

Esophageal squamous cell carcinoma (ESCC) accounts for the main esophageal cancer
(ESCA) type, which is also associated with the greatest malignant grade and low survival
rates worldwide. Ferroptosis is recently discovered as a kind of programmed cell death,
which is indicated in various reports to be involved in the regulation of tumor biological
behaviors. This work focused on the comprehensive evaluation of the association between
ferroptosis-related gene (FRG) expression profiles and prognosis in ESCC patients based
on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). ALOX12,
ALOX12B, ANGPTL7, DRD4, MAPK9, SLC38A1, and ZNF419 were selected to develop a
novel ferroptosis-related gene signature for GEO and TCGA cohorts. The prognostic risk
model exactly classified patients who had diverse survival outcomes. In addition, this study
identified the ferroptosis-related signature as a factor to independently predict the risk of
ESCC. Thereafter, we also constructed the prognosis nomogram by incorporating clinical
factors and risk score, and the calibration plots illustrated good prognostic performance.
Moreover, the association of the risk score with immune checkpoints was observed.
Collectively, the proposed ferroptosis-related gene signature in our study is effective and
has a potential clinical application to predict the prognosis of ESCC.

Keywords: esophageal squamous cell carcinoma, ferroptosis, prognosis, gene signature, TCGA, GEO

INTRODUCTION

Esophageal cancer (ESCA), a global malignancy, ranks sixth and eighth in terms of tumor-related
mortality and morbidity of all tumors, respectively. ESCA is associated with a dismal prognostic
outcome, and its five-year survival rate has been reported to be 15–25%. Esophageal squamous cell
carcinoma (ESCC) accounts for a major ESCA subtype, which is predominant in eastern Asia
(Matsushima et al., 2010). The poor outcome of ESCC is associated with its insidious initial
symptoms, susceptibility to metastasis, resistance to radiotherapy, and tumor recurrence (Pennathur
et al., 2013). Over the past few years, multidisciplinary and surgical treatments have been developed,
but the median survival of ESCC cases is only 10 months (Wang et al., 2020a). Moreover, considering
the limited prediction of prognosis for ESCC patients, there is an urgent need for the exploration of
novel biomarkers.

Ferroptosis, the novel regulated cell death (RCD) type that is different from necrosis, apoptosis,
and autophagy, is featured by lipid hydroperoxide accumulation till the lethal dose (Dixon et al.,
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2012). As revealed by more and more studies, ferroptosis exerts
an important part in tumor progression and treatment (Stockwell
et al., 2017; Shen et al., 2018; Gan, 2019). Besides, various tumor
types such as adrenocortical carcinoma, hepatocellular
carcinoma, and ovarian cancer have been demonstrated to be
sensitive to ferroptosis (Yang et al., 2014; Belavgeni et al., 2019;
Carbone and Melino, 2019). Numerous reports have indicated
that ferroptosis-related genes (FRGs) are involved in the
regulation of tumor initiation and progression (Junttila and
Evan, 2009; Arrigo and Gibert, 2012; Liu et al., 2018; Enz
et al., 2019). ALOX12 exhibits a context-dependent role in
mediating lipid peroxidation, resulting in PUFA oxidation
which promotes cell ferroptosis. An outstanding report was
performed by Chu et al., who uncovered that ALOX12 is
essential for p53-mediated tumor ferroptosis through the
ACSL4-independent pathway (Chu et al., 2019). Recent studies
confirmed that ANGPTL7 and DRD4 were inhibited by
ferroptotic erastin, indicating the potential role of being
ferroptosis markers (Yang et al., 2014; Wang et al., 2016). Gao
et al. proved that repression of glutamine metabolism could
reduce cell ferroptosis, which revealed a novel function of
SLC38A1 in regulated cell death (Gao et al., 2015). However,
the relationship between these FRGs and prognostic outcomes for
ESCC cases remains to be further examined.

This study downloaded ESCC patient samples and
corresponding clinical information from GEO and TCGA
public databases. Afterward, we successfully established the
prognosis risk signature that incorporated seven FRGs based on
the GEO training set and validated it in the GEO test set, entire
GEO set, and TCGA dataset. Ultimately, we initially explored the
oncogenic effect of SLC38A1 through in vitro studies. This work
develops a novel FRG prognostic signature to improve the
prediction of the clinical outcomes of ESCC patients.

MATERIALS AND METHODS

Data Collection
Expression RNA-seq data together with associated clinical data from
ESCC cases were acquired from The CancerGenome Atlas (TCGA)
data portal (https://tcga-data.nci.nih.gov/tcga/) and the Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)
database, which defined the entire GSE53625 set (n � 179) and
TCGA set (n � 81), respectively. A total of 255 FRGs were extracted
from the FerrDb website (http://www.zhounan.org/ferrdb).

Identification of Ferroptosis-Related Gene
Prognostic Signature
Firstly, the entire GSE53625 set (n � 179) was randomized as the
training set together with the internal test set in the 1:1 ratio.
Then, we performed univariate Cox regression analysis for
identifying prognostic FRGs (p < 0.05) in the training cohort.
To remove the potential overfitting genes, the “glmnet” package
was adopted for least absolute shrinkage and selection operator
(LASSO) regression. At last, the optimal prognosis model based
on FRGs was constructed by multivariate Cox regression. To be

specific, we determined the risk score for ESCC cases by the
following formula: risk score � (Gene 1 expression × coefficient)
+ (Gene 2 expression × coefficient) + . . . + (Gene n expression ×
coefficient). Meanwhile, the cases were separated into high- or
low-risk groups based on the median score. In addition, the test
set, entire set, and TCGA set were used to validate our signature.

Nomogram Establishment and Validation
For predicting the clinical outcomes of ESCC patients, we utilized
the R package “rms” to construct the nomogram which
incorporated clinical factors and risk signature. Additionally,
the nomogram performance and prediction accuracy were
determined to plot the calibration curves.

Gene Set Enrichment Analysis
GSEA was employed to detect biological functions as well as
related signaling pathways in the high-risk group. The expression
of genes in both the high- and low-risk groups, together with the
collection of Hallmark and KEGG gene sets in Molecular
Signatures Database v7.1, was analyzed by GSEA software.
Gene sets conforming to | NES |> 1 and NOM p < 0.05 were
deemed significant based on the GSEA User Guide.

Validation of Protein Expressions of
Signature Genes by the HPA Database
Immunohistochemistry (IHC) helps to uncover relative protein
distribution and expression according to particular binding of
antigens with antibodies. IHC was conducted to determine the
prognostic FRG expression in ESCC and non-carcinoma samples
from the Human Protein Atlas (HPA, https://www.proteinatlas.
org/) database at the protein level.

Cell Culture and Cell Transfection
ESCC cell lines (Eca109 and KYSE-150), together with the normal
human esophageal epithelial cells (HEECs), were cultivated within
the RPMI-1640 medium containing 10% fetal bovine serum (FBS,
Gibco Company) and 10% streptomycin–penicillin (Sigma-Aldrich)
and incubated in an incubator under 37°C and 5%CO2 conditions. In
addition, si-SLC38A1 and siRNA negative control (si-NC) were
prepared via Ribobio (Guangzhou, China). The sense sequence of
si-SLC38A1 was 5′-GUUACCUUCAAUUCAAAGATT-3′. Later,
Lipofectamine 3000 reagent (Invitrogen) was employed to
transfect siRNAs to specific cells in line with specific protocols.
After transfection for 48 h, we harvested cells to conduct later
experiments.

Quantitative Reverse Transcription
Polymerase Chain Reaction
We utilized Trizol reagent (Vazyme Biotech, Nanjing, China) to
isolate the total cellular RNA from ESCC cells. All extraction steps
were performed in line with specific protocols. The BioSpec-nano
spectrophotometer (Shimadzu, Japan) was used to measure the
extracted RNA content. We deemed RNA samples that had the
A260/A280 ratio of 1.8–2 as suitable samples. We then reverse
transcribed the RNA using Prime Script RT Master Mix reagent
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(Takara Bio, Dalian, China) for obtaining cDNA. The PCR
system was prepared to utilize TB Green® Premix Ex Taq™
(Takara Bio, Dalian, China). We performed qRT-PCR on the
Applied Biosystems StepOnePlus real-time PCR system (Thermo
Fisher Scientific). In addition, the 2−ΔΔCT approach was applied in
calculating the relative gene level. The SLC38A1 level was
analyzed by the following primers: 5′-GATGGGTGATGGTGA
TAGGG-3′ (forward) and 5′-TACTGGTCTAGGGGCCACAC-
3′ (reverse). GAPDH was used as a reference gene.

Western Blot Analysis
Western blot analysis was conducted for determining SLC38A1
and GAPDH levels. The SLC38A1 (#36057, 1:1,000) and GAPDH
(#5174, 1:1,000) antibodies were provided by Cell Signaling
Technology (CST, Danvers, MA, United States).

Cell Counting Kit-8 Assay
We used the CCK-8 kit (Beyotime, Shanghai, China) for
determining cell proliferation following specific protocols. The
cells (2000/well) were inoculated into the 96-well plates and
cultured within RPMI-1640 that contained 10% FBS. At a
fixed time of day, we added CCK-8 solution into each well to
incubate cells under 37°C for additional 2 h. The absorbance
(OD) value was detected at 450 nm.

Colony Formation Assay
The cells (250/well) after transfection were inoculated to six-well
plates in the colony formation assay and cultured within the
RPMI-1640 medium that contained 10% FBS for a period of
10 days. Later, 1% formaldehyde was used to fix the growing
colonies, whereas 1% crystal violet was utilized to stain the
colonies. After taking images, we counted the colony number.

Transwell Assay
The Transwell chamber (pore size, 8 μm; Corning Costar Corp,
United States) was utilized to examine cell migration. In brief,
after suspending the stably transfected ESCC cells into the serum-
free RPMI-1640medium (200 μL), the upper chamber was loaded
with cell suspension. Afterward, the RPMI-1640 medium
(500 μL) that contained 10% FBS was placed into the lower
chamber, followed by 24 h of cell incubation under 37°C.
Later, 1% crystal violet was used to stain cells for 20 min, and
then cotton swabs were used to remove cells on the upper
membrane surface. A microscope (Olympus) was used to take
photographs of cells on the bottom membrane surface, and four
random fields were utilized to count the migration cells.

Statistical Analysis
R software (3.6.3) and GraphPad (8.0) were employed for all
statistical data analyses. The log-rank test and Kaplan–Meier
analysis were adopted for evaluating different OS between high-
and low-risk groups. Besides, univariate and multivariate Cox
regression was applied in identifying those independent factors
for predicting prognosis. Time-dependent receiver operating
characteristic (ROC) curves were used to evaluate our risk
model for its prediction performance. A difference of p < 0.05
indicated statistical significance.

RESULTS

Construction and Verification of the
Ferroptosis-Related Gene Prognostic
Signature
A total of 179 ESCCpatients fromGSE53625were randomized in a 1:
1 ratio into a training cohort (90 samples) and an internal validation
cohort (89 samples). LASSO regression and multivariate Cox
regression were performed in the training set to identify seven
ferroptosis-related genes (ALOX12, ALOX12B, ANGPTL7, DRD4,
MAPK9, SLC38A1, and ZNF419) for constructing a novel prognostic
signature (Figure 1). The formula is shown as follows: Risk score �
[ALOX12 expression× (−0.097)] + [ALOX12B expression×
(−0.147)] + [ANGPTL7 expression× (0.326)] + [DRD4 expression
× (−0.254)] + [MAPK9 expression × (0.288)] + [SLC38A1
expression× (−0.904)] + [ZNF419 expression × (0.782)]. We
classified the ESCC cases into low- and high-risk groups based on
the median risk score. The predictive performance of our seven-
FRG–based risk model to predict patient OS can be observed in
Figure 2A. As suggested through the Kaplan–Meier curve plotted
according to the log-rank test, high-risk patients had poor OS
compared with low-risk patients (p < 0.05, Figure 2B). For
evaluating the credibility of our constructed model in predicting
prognosis, we conducted ROC curve analysis. According to
Figure 2C, area under the curve (AUC) values for the one-,
three-, and five-year survival were determined to be 0.656, 0.765,
and 0.788, respectively, for the GEO training set. The same analysis
was conducted in the GEO validation cohort, and the AUC values for
one-, three-, and five-year survival were 0.609, 0.697, and 0.647,
respectively (Figure 2C). Moreover, we observed similar results in
TCGA and the entire GEO sets, which proved the strong predictive
potential of our risk model (Figure 2).

Subgroup Analysis for the
Ferroptosis-Related Gene Prognostic
Signature
This study determined the predictive performance of the
prognostic signature for OS of patients who had diverse
clinical parameters. As a result, subgroups were categorized
according to age (≤65 vs. >65 years), gender (male vs. female),
clinical stage (I-II vs. III), T stage (T1 + T2 vs. T3 + T4), and N
stage (N0 vs. N1–N3). Based on age, gender, clinical stage, T
stage, and N stage, high-risk patients had markedly poor five-year
OS rates compared with low-risk patients (Figure 3).

Prognostic Nomogram Establishment and
Validation
For investigating the possibility of using the as-constructed
prognosis nomogram as the factor to independently predict
the prognosis for ESCC cases, univariate together with
multivariate Cox regression was carried out. As revealed by
univariate analysis, age (p � 0.009), risk score (p < 0.001), N
stage (p < 0.001), and clinical stage (p < 0.001) predicted the
dismal OS (Figure 4A). In addition, according to multivariate
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Cox regression, the risk score (HR � 2.009, 95% CI �
1.559–2.589, p < 0.001) and age (HR � 1.034, 95% CI �
1.010–1.059, p � 0.005) were identified as the independent
prognostic factors that predicted the poor OS for ESCC cases
(Figure 4B). Subsequently, we incorporated the risk score and
other clinicopathologic characteristics to establish a novel
nomogram to predict the one-, three-, and five-year OS
rates of ESCC patients (Figure 4C). Every individual
patient would acquire a corresponding score, and a higher
total point demonstrates a poorer outcome for the patient.
Moreover, the one-, three-, and five-year survival calibration
curves well fitted our constructed nomogram in the GEO
entire cohort (Figures 4D–F).

Gene Set Enrichment Analysis With the
Ferroptosis-Related Gene Prognostic
Signature
We also conducted GSEA for clarifying the possible
biological functions and signal transduction pathways

among high-risk patients. As shown in Figure 5, a higher
risk score was correlated with adhesion molecules,
chemokine signaling pathway, KRAS signaling, and IL-2/
STAT5 signaling, indicating that the patients with these
pathways might be more prone to a worse clinical outcome.

Difference of Immune Checkpoints
Between the High-Risk and Low-Risk
Groups
To further explore the relationship between the immune
checkpoints and two risk groups, we performed
differentiation analysis for the expression of 22 immune
checkpoints, including the TNF superfamily (BTLA, CD27,
CD40LG, CD40, CD70, TNFRSF18, TNFRSF9, and TNFSF9)
and B7-CD28 family (CD274, CD276, CTLA4, HHLA2, ICOS,
ICOSLG, PDCD1, PDCD1LG2, and VTCN1), along with
additional immune checkpoints (IDO1, HAVCR2, VSIR,
LAG3, and NCR3). As shown in Figure 6, BTLA, CD40,
CD40LG, CTLA4, and HAVCR2 were significantly

FIGURE 1 | Construction of the seven-ferroptosis-gene signature. (A) Cross-validation for tuning parameter screening upon LASSO regression analysis. (B)
LASSO coefficient profiles for those intersected genes. (C) Forest plot of hazard ratios exhibiting the prognostic worth of seven FRGs.
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upregulated in the high-risk group, while HHLA2 was
enriched in the low-risk group.

Validation of the Expression Patterns and
Protein Expression of Prognostic Signature
Genes
We confirmed the expression levels of the seven signature genes
(ALOX12, ALOX12B, ANGPTL7, DRD4, MAPK9, SLC38A1,
and ZNF419) among the patients from GSE53625. The results
showed that ALOX12, ANGPTL7, DRD4, and MAPK9
remarkably decreased within ESCC samples relative to non-
carcinoma samples, whereas SLC38A1 and ZNF419 were
highly expressed. Only ALOX12B expression showed no
significant difference in tumor samples compared with normal
samples (Figure 7). Consistent with the above results, the HPA
database showed that ALOX12 andMAPK9 in ESCC tissues were
lowly expressed, while SLC38A1 and ZNF419 were upregulated
relative to normal samples. But DRD4 and ANGPTL7 protein
expressions were not measured in the database (Figure 8).

Inhibition of SLC38A1 Decreased
Esophageal Squamous Cell Carcinoma Cell
Proliferation and Migration
Finally, we used the SLC38A1 gene to further explore the
underlying role of our model in ESCC. First, the qRT-PCR
assay and western blot analysis were performed to verify the
differential expression between normal esophageal epithelial cells
and ESCC cells (Figure 9A). As a result, SLC38A1 expression
increased within ESCC cells relative to normal esophageal
epithelial cells. Next, the siRNAs were applied to knock down
the SLC38A1 levels within Eca109 and KYSE-150 cells, and both
the qRT-PCR assay and western blot analysis confirmed the
efficacy (Figure 9B). The CCK-8 proliferation assay and
colony formation assay showed that downregulation of
SLC38A1 can markedly reduce Eca109 and KYSE-150 cell
proliferation (Figures 9C–E). Moreover, migration of Eca109
and KYSE-150 cells transfected with siRNA was inhibited
(Figure 9F). These results suggest that SLC38A1 possibly
promotes tumorigenesis of ESCC, yet the possible mechanism
should be further explored.

FIGURE 2 | Risk score of the prognostic signature that comprises seven FRGs for OS in four cohorts. (A) Risk score distribution and survival status of high- and
low-risk patients. (B) Kaplan–Meier analysis on high- and low-risk patients. (C) Time-dependent ROC curve analyses on the GEO training set, GEO validation set, entire
GEO set, and TCGA validation set.
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DISCUSSION

ESCC is still a progressive and challenging disease with high
morbidity and poor prognosis. Presently, the TNM staging
system is still a crucial prognostic factor for assessing the
prognosis of cancer patients, but it has limitation in
elucidation of genetic variations, and those at the identical
stage present a powerful heterogeneity for prognostic outcome.
Selectively inducing the death of cancer cells may account for an
efficient way to treat cancer. Mounting evidence indicated that
ferroptosis plays a significant role in tumorigenesis and treatment
for cancer (Yang et al., 2014; Stockwell et al., 2017; Liu et al., 2018;
Carbone and Melino, 2019; Hassannia et al., 2019; Liang et al.,
2019; Tesfay et al., 2019). However, there has not yet been much
systematic analysis in the context of ferroptosis in ESCC, and the
underlying mechanism of ESCC remains poorly illustrated.

This work concentrated on ferroptosis-related gene signatures
with the prognosis value of ESCC patients. In the GEO training set,
we first identified prognostic ferroptosis-related genes and then built
the predictive model comprising seven FRGs through integration of
LASSO regression and Cox regression analysis. According to
Kaplan–Meier curve analysis, high-risk cases were associated with
dismal OS compared with low-risk counterparts. Meanwhile, the
ROC curve illustrated good performance of ourmodel. The AUCs of
ROC plots for five-year OS in the GEO cohort and TCGA cohort

were 0.788 and 0.848, respectively. Furthermore, ROC curves were
utilized to compare the prediction capability of our proposed model
with that of other signatures. As a result, our risk signature achieved
consistently excellent predictive value, compared with other
published risk prognostic signatures in ESCC (Wang et al.,
2020b; Gao et al., 2021; Zhao et al., 2021). The constructed
prognostic signature was also verified in the GEO test set, entire
GEO set, and TCGA set. Next, the seven ferroptosis-related genes’
signature predicted the dismal OS for ESCC cases after subgroup
analysis according to age, gender, clinical stage, T stage, and N stage.
The results of Cox regression analysis showed that the as-
constructed risk model might serve as an independent risk factor
for ESCC. Moreover, the nomogram was established and the
calibration plots were used to examine whether our nomogram
was accurate in the prediction of one-, three-, and five-year OS. All
these results revealed that the ferroptosis-related signature could be a
superior predictor compared with the traditional clinical indicator.

Our proposed ferroptotic signature was composed of seven
ferroptosis-related genes (ALOX12, ALOX12B, ANGPTL7,
DRD4, MAPK9, SLC38A1, and ZNF419). Among the seven
genes, ANGPTL7, MAPK9, and ZNF419 are latent hazardous
genes and ALOX12, ALOX12B, DRD4, and SLC38A1 are
potential protective genes. All these genes were shown to
participate in the initiation and development of various
cancers. ALOX12 belongs to a family of lipoxygenases (LOXs)

FIGURE 3 | Subgroup analyses based on different clinical features of ESCC cases: (A) age ≤65, (B) age >65, (C)male, (D) female, (E) stage I-II, (F) stage III, (G) T1-
T2, (H) T3-T4, (I) N0, and (J) N1–N3.
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with a reported role in the promotion of the oxidation activity of
polyunsaturated fatty acids (Yoshimoto et al., 1992). The
ALOX12 protein could foster the biosynthesis of 12-
hydroxyeicosatetraenoic acid by specifically metabolizing
arachidonic acid (Honn et al., 1994). It has been confirmed
that ALOX12 has the capability of mediating inflammation,
cell migration, apoptosis, and tumor cell proliferation (Zheng
et al., 2020). Yang et al. found that ALOX12 was downregulated in
recurrence of hepatocellular carcinoma and regulated the

ALOX12–12HETE–GPR31 signaling pathway (Yang et al.,
2019). In lung cancer, overexpression of ALOX12 facilitated
cell growth and migration by promoting RhoA and NF-κB
activity (Chen et al., 2020). ALOX12B protein, another
isoform of arachidonic acid 12-lipoxygenase, mainly catalyzes
arachidonic acid to 12R-hydroxyeicosatetraenoic acid (Zheng
et al., 2011). Jiang et al. revealed that the inhibition of
ALOX12B could restrain cervical cancer cell proliferation and
growth through suppressing the PI3K/ERK1 pathway, suggesting

FIGURE 4 | Prognostic signature in combination with clinical parameters for predicting prognostic outcomes for ESCC cases. (A) Univariate analysis and (B)
multivariate analysis containing the risk score and clinical factors. (C) Nomogram for predicting one-, three-, and five-year OS. (D–F) Calibration curves of nomogram on
consistency between predicted and observed one-, three-, and five-year survival.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6751937

Song et al. Ferroptosis-Related Gene Signature

95

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


that it can be taken as a good biomarker to provide new
therapeutic strategies for cervical cancer patients (Jiang et al.,
2020). In addition, Chu et al. reported that ALOX12 could
oxygenate polyunsaturated fatty acids, which in turn induce
p53-mediated tumor cell ferroptosis (Chu et al., 2019).
Consistent with previous studies, our results indicate a
negative correlation between ALOX12 and the poor prognosis
of patients.

ANGPTL7, a member of the angiopoietin-like protein
(ANGPTL) family, consists of an N-terminal coiled-coil
domain and a C-terminal fibrinogen-like domain. The same
structural domain as angiopoietin ensures ANGPTL7 to
promote angiogenesis (Carbone et al., 2018). For instance,

Parri et al. gave us a hint that hypoxia induced ANGPTL7
expression in tumor cells, which exert a vital part in pro-
angiogenetic development (Parri et al., 2014). It was reported
that ferroptosis induced by erastin or RSL3 could downregulate
ANGPTL7, which might be involved in the onset of ferroptosis in
cancer cells (Yang et al., 2014). The higher expression level of
ANGPTL7 was also observed in colorectal cancer based on the
gene profile analysis (Liu and Zhang, 2017). Our results are in line
with these research studies, pointing out that ANGPTL7 is a risky
gene (HR > 1) in ESCC. The DRD4 gene encodes the
G-protein–coupled receptor which could suppress the activity
of adenylyl cyclase. In glioblastoma, DRD4 could promote
proliferation and autophagic flux and enhance survival of

FIGURE 5 | GSEA in high- and low-risk patients: (A) adhesion molecules, (B) chemokine signaling pathway, (C) KRAS signaling, and (D) IL-2/STAT5 signaling.
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glioblastoma stem cells (Dolma et al., 2016). Wang et al.
demonstrated that ferroptotic erastin contributed to degradation
of DRD4 protein and anti-ferroptotic dopamine impeded DRD4
protein declination (Wang et al., 2016). MAPK9 could phosphorylate
a series of transcription factors, which subsequently regulates cell
proliferation, migration, and programmed cell death. Li et al.
discovered that MEG3 and MIAT may foster the progression of
lung adenocarcinoma through interacting with miR-106, thus
regulating the involvement of MAPK9 in the MAPK signal
transduction pathways (Li et al., 2016). SLC38A1, also known as

amino acid transporter system A1, was initially identified as a crucial
transporter of glutamine (Gu et al., 2001). SLC38A1 has been proved
to be a potential oncogene in colorectal cancer and gastric cancer (Xie
et al., 2014; Zhou et al., 2017). As a transcriptional regulator, ZNF419
polymorphism at the splice donor site might result in novel minor
histocompatibility antigen ZAPHIR related to renal cell carcinoma
(Broen et al., 2011).

Immune checkpoints could exert tumor immunosuppressive
effects, which in turn prevent tumors from immune attack. BTLA
was a member of the TNF superfamily, and its expression was

FIGURE 6 | Immune checkpoint analysis. (A–B) Heatmap of immune checkpoints between high- and low-risk patients in GSE53625 and TCGA datasets.
Differential expression of immune checkpoints in high- vs. low-risk patients: (C) BTLA, (D) CTLA4, (E) CD40, (F) CD40LG, (G) TIM-3, and (H) HHLA2.
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FIGURE 7 | Differentiation analysis of the signature genes among ESCCs and normal tissues based on GSE53625 dataset.

FIGURE 8 | Protein expression of signature genes in HPA database. (A) protein expression of ALOX12. (B) protein expression of ALOX12B. (C) protein expression
of MAPK9. (D) protein expression of SLC38A1. (E) protein expression of ZNF419.
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associated with cancer aggressiveness (Wang et al., 2020c). TIM-
3, also known as HAVCR2, was predominantly located on NK
cells and macrophages, inhibiting the activation of anti-tumor
immunity (Datar et al., 2019). Matsumura et al. indicated that
CD40 expression in ESCC is closely correlated with
tumorigenesis and lymph node metastasis (Matsumura et al.,
2016). In our results, most of immune checkpoints were related to
the high-risk group, which verify the reliability of the signature in
evaluating the prognosis of patients. Notably, some of the
signature genes also have intricate connection with immune
checkpoints. For example, MAPK9, also known as JNK2, was
confirmed to be involved in the regulation of B7.1 (CD80) which
could interact with CTLA-4 to mediate the development of
immune responses. Lim et al. found that the expression of
B7.1 induced by LPS was significantly suppressed by siJNK2
RNAs (Lim et al., 2005). It is reasonable to speculate that the
downregulation of MAPK9 in ESCC might facilitate
carcinogenesis through inhibiting B7.1-mediated activation of
immune responses. In addition, restriction of glutamine
utilization could enhance anti-programmed death ligand-1
(PD-L1) levels in tumor, which promote the effectiveness of
PD-L1 antibody (Byun et al., 2020). Therefore, we
hypothesized that SLC38A1, a key transporter of glutamine,
might block the effectiveness of PD-L1 antibody by
stimulating glutamine metabolism in ESCC.

Finally, we sought to detect the relationship between SLC38A1
and ESCC progression. The results showed that inhibiting
SLC38A1 suppressed the cell viability and migration of Eca109

and KYSE-150 cells, which further proved the carcinogenic role
of SLC38A1 in digestive-system neoplasms.

There are several limitations of this study. First, the data analyzed
in the present workmight be acquired from the public database. The
clinical effectiveness and credibility of the as-constructed signature
should be further verified by more practical data. Second, the
functional mechanisms of signature need to be explicated
through more profound in vivo and in vitro experiments.

To sum up, this work first identifies a new FRG-based prognostic
signature, which predicts the OS of ESCC and mirrors the immune
status. This constructed signature will provide new options for
individualized treatment.
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Automatic and accurate segmentation of breast lesion regions from ultrasonography is an
essential step for ultrasound-guided diagnosis and treatment. However, developing a
desirable segmentation method is very difficult due to strong imaging artifacts e.g., speckle
noise, low contrast and intensity inhomogeneity, in breast ultrasound images. To solve this
problem, this paper proposes a novel boundary-guided multiscale network (BGM-Net) to
boost the performance of breast lesion segmentation from ultrasound images based on
the feature pyramid network (FPN). First, we develop a boundary-guided feature
enhancement (BGFE) module to enhance the feature map for each FPN layer by
learning a boundary map of breast lesion regions. The BGFE module improves the
boundary detection capability of the FPN framework so that weak boundaries in
ambiguous regions can be correctly identified. Second, we design a multiscale
scheme to leverage the information from different image scales in order to tackle
ultrasound artifacts. Specifically, we downsample each testing image into a coarse
counterpart, and both the testing image and its coarse counterpart are input into
BGM-Net to predict a fine and a coarse segmentation maps, respectively. The
segmentation result is then produced by fusing the fine and the coarse segmentation
maps so that breast lesion regions are accurately segmented from ultrasound images and
false detections are effectively removed attributing to boundary feature enhancement and
multiscale image information. We validate the performance of the proposed approach on
two challenging breast ultrasound datasets, and experimental results demonstrate that our
approach outperforms state-of-the-art methods.

Keywords: breast lesion segmentation, boundary-guided feature enhancement, multiscale image analysis,
ultrasound image segmentation, deep learning
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1 INTRODUCTION

Breast cancer is the most commonly occurring cancer in women
and is also the second leading cause of cancer death Siegel et al.
(2017). Ultrasonography has been an attractive imaging modality
for the detection and analysis of breast lesions because of its
various advantages, e.g., safety, flexibility and versatility Stavros
et al. (1995). However, clinical diagnosis of breast lesions based
on ultrasound imaging generally requires well-trained and
experienced radiologists as ultrasound images are hard to
interpret and quantitative measurements of breast lesion
regions are tedious and difficult tasks. Thus, automatic
localization of breast lesion regions will facilitate the process
of clinical detection and analysis, making the diagnosis more
efficient, as well as achieving higher sensitivity and specificity Yap
et al. (2018). Unfortunately, accurate breast lesion segmentation
from ultrasound images is very challenging due to strong imaging
artifacts, e.g., speckle noise, low contrast and intensity
inhomogeneity. Please refer to Figure 1 for some ultrasound
samples.

To solve this problem, we propose a boundary-guided
multiscale network (BGM-Net) to boost the performance of
breast lesion segmentation from ultrasound images based on
the feature pyramid network (FPN) Lin et al. (2017). Specifically,
we first develop a boundary-guided feature enhancement (BGFE)
module to enhance the feature map for each FPN layer by
learning a boundary map of breast lesion regions. This step is
particularly important for the performance of the proposed
network because it improves the capability of the FPN
framework to detect the boundaries of breast lesion regions in
low contrast ultrasound images, eliminating boundary leakages in
ambiguous regions. Then, we design a multiscale scheme to
leverage the information from different image scales in order
to tackle ultrsound artifacts, where the segmentation result is
produced by fusing a fine and a coarse segmentation maps
predicted from the testing image and its coarse counterpart,
respectively. The multiscale scheme can effectively remove
false detections that result from strong imaging artifacts. We
demonstrate the superiority of the proposed network over state-
of-the-art methods on two challenging breast ultrasound datasets.

2 RELATED WORK

In the literature, algorithms for breast lesion segmentation from
ultrasound images have been extensively studied. Early methods
Boukerroui et al. (1998), Madabhushi and Metaxas (2002),
Madabhushi and Metaxas (2003), Shan et al. (2008), Shan
et al. (2012), Xian et al. (2015), Gómez-Flores and Ruiz-
Ortega (2016) mainly exploit hand-crafted features to
construct segmentation models to infer the boundaries of
breast lesion regions, and can be divided into three categories
according to Xian et al. (2018), including region growing methods
Kwak et al. (2005), Shan et al. (2008), Shan et al. (2012)
deformable models Yezzi et al. (1997), Chen et al. (2002),
Chang et al. (2003), Madabhushi and Metaxas (2003), Gao

et al. (2012), and graph models Ashton and Parker (1995),
Chiang et al. (2010), Xian et al. (2015).

Region growing methods start the segmentation from a set of
manual or automatic selected seeds, which gradually expand to
capture the boundaries of target regions according to the
predefined growing criteria. Shan et al. Shan et al. (2012)
developed an efficient mehtod to automatically generate
region-of-interest (ROI) for breast lesion segmentation, while
Kwak et al. Kwak et al. (2005) utilized common contour
smoothness and region similarity (mean intensity and size) to
define the growing criteria.

Deformable models first construct an initial model and then
deform the model to reach object boundaries according to
internal and external energies. Madabhushi et al. Madabhushi
and Metaxas (2003) initialized the deformable model using
boundary points and employed balloon forces to define the
extern energy, while Chang et al. Chang et al. (2003) applied
the stick filter to reduce speckle noise in ultrasound images before
deforming the model to segment breast lesion regions.

Graph models perform breast lesion segmentation with
efficient energy optimization by using Markov random field or
graph cut framework. Chiang et al. Chiang et al. (2010) employed
a pre-trained Probabilistic Boosting Tree (PBT) classifier to
determine the data term of the graph cut energy, while Xian
et al. Xian et al. (2015) formulated the energy function by
modeling the information from both frequency and space
domains. Although many a priori models haved been designed
to assist breast lesion segmentation, these methods have limited
capability to capture high-level semantic features in order to
identify weak boundaries in ambiguous regions, leading to
boundary leakages in low contrast ultrasound images.

In contrast, Learning-based methods utilize a set of manually
designed features to train the classifier for segmentation tasks
Huang et al. (2008), Lo et al. (2014), Moon et al. (2014), Othman
and Tizhoosh (2011). Liu et al. Liu et al. (2010) extracted 18 local
image features to train a SVM classifier to segment breast lesion
regions, and Jiang et al. Jiang et al. (2012) utilized 24 Harr-like
features and trained Adaboost classifier for breast tumor
segmentation. Recently, convolution neural networks (CNNs)
have been demonstrated to achieve excellent performance in a lot
of medical applications by building a series of deep convolutional
layers to learn high-level semantic features from labeled data.
Inspired from this, several CNN frameworks Yap et al. (2018), Xu
et al. (2019) have been developed to segment breast lesion regions
from ultrasound images. For example, Yap et al. Yap et al. (2017)
investigated the performance of three networks: a Patch-based
LeNet, a U-Net, and a transfer learning approach with a
pretrained FCN-AlexNet, for breast lesion detection. Lei et al.
Lei et al. (2018) proposed a deep convolutional encoder-decoder
network equipped with deep boundary supervision and adaptive
domain transfer for the segmentation of breast anatomical layers.
Hu et al. Hu et al. (2019) combined a dilated fully convolutional
network with an active contour model to segment breast tumors.
Although CNN-based methods improve the performance of
breast lesion segmentation in low contrast ultrasound images,
they still suffer from strong artifacts of speckle noise and intensity
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inhomogeneity, which typically occur in clinical scenarios, and
tend to generate inaccurate segmentation results.

3 OUR APPROACH

3.1 Overview
Figure 2 illustrates the architecture of the proposed approach.
Given a testing breast ultrasound image I, we first downsample I
into a coarse counterpart J, and then input both I and J into the
feature pyramid network to obtain a set of feature maps with
different spatial resolutions. After that, a boundary-guided
feature enhancement module is developed to enhance the
feature map for each FPN layer by learning a boundary map
of breast lesion regions. All of the refined feature maps are then
upsampled and concatenated to predict a fine SI and a coarse SJ
segmentation maps for I and J, respectively. Finally, the
segmentation result Sf is produced by fusing SI and SJ so as to
leverage the information from different image scales. By
combining enhanced boundary features and multiscale image
information into a unified framework, our approach precisely
segments the breast lesion regions from ultrasound images and
effectively removes false detections resulting from various
imaging artifacts.

3.2 Boundary-Guided Feature Enhancement
The FPN framework first uses a convolutional neural network to
extract a set of feature maps with different spatial resolutions and
then iteratively merges two adjacent layers from the last layer to
the first layer. Although FPN improves the performance of breast
lesion segmentation, it still suffers from the inaccuracy of
boundary detection because of strong ultrasound artifacts. To
solve this problem, we develop a boundary-guided feature
enhancement module to improve the boundary detection
capability of the feature map for each FPN layer by learning a
boundary map of breast lesion regions.

Figure 3 shows the flowchart of the BGFE module. Given a
feature map F, we first apply a 3×3 convolutional layer on F to
obtain the first intermediate image X, followed by a 1×1
convolutional layer to obtain the second intermediate image Y,
which will be used to learn a boundary map B of breast lesion
regions. Then, we apply a 3×3 convolutional layer on Y to obtain
the third intermediate image Z, and multiply each channel of Z
with B in an element-wise manner. Finally, we concatenate X and

Z, followed by a 1×1 convolutional layer, to obtain the enhanced
feature map F̂. Mathematically, the cth channel of F̂ is
computed as:

F̂c � fconv(concate((Zc × B),X)) , (1)

where fconv is the 1×1 convolutional parameter; Zc is the cth
channel of Z; and concate is the concatenation operation on the
feature map.

3.3 Multiscale Scheme
After the BGFE module, all of the refined feature maps will be
upsampled and concatenated to predict the segmentation map of
the input image. To account for various ultrasound artifacts, we
design a multiscale scheme to produce the final segmentation
result by fusing the information from different image scales.
Specifically, for each testing breast ultrasound image, we first
downsample it into a coarse counterpart with the resolution of
320×320. In our experiment, the training images are all resized to
the resolution of 416×416 according to previous experience, and
thus the testing image is also resized to the same resolution. Then,
both the testing image and its coarse counterpart are input into
the proposed network to predict a fine and a coarse segmentation
maps, respectively. Finally, the segmentation result is produced
by fusing the fine and the coarse segmentation maps so that false
detections from the fine scale can be counteracted by the
information from the coarse scale, leading to an accurate
segmentation of breast lesion regions.

3.4 Loss Fuction
In our study, there is an annotated mask of breast lesion regions
for each training image, which will serve as the ground true for
breast lesion segmentation. In addition, we employ a canny
detector Canny (1986) on the annotated mask to obtain a
boundary map of breast lesion regions, which will serve as the
ground true for boundary detection. Based on the two ground
truths, we combine a segmentation loss and a boundary detection
loss to compute the total loss function L as following:

L � Dseg + αDedge , (2)

where Dseg andDedge are the segmentation loss and the boundary
detection loss, respectively. α is used to balance Dseg and Dedge,
and is empirically set to 0.1. The definitions of Dseg and Dedge are
given by:

FIGURE 1 | Examples of breast ultrasound images. (A–C) Ambiguous boundaries due to similar appearance between lesion and non-lesion regions. (D–F)
Intensity inhomogeneity inside lesion regions. Note that the green arrows are marked by radiologists.
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Dseg � Φ̂ (SI ,Gs) + Φ̂(SJ ,Gs) + Φ̂(Sf ,Gs) , and

Dedge � ∑
k�1

3

Φ̂(Bk,Ge) , (3)

where Gs and Ge are the ground truths for breast lesion
segmentation and boundary detection, respectively. SI and SJ
are the segmentation maps of I and J, respectively, and Sf is the
final segmentation result. Bk is the predicted boundary map of
breast lesion regions at the kth BGFE module. The function Φ̂
includes a dice loss and a cross entropy loss, and is defined as:

Φ̂ � ΦCE + βΦdice , (4)

where ΦCE and Φdice are the functions of the cross entropy loss
and the dice loss, respectively. β is used to balance ΦCE and Φdice,
and is empirically set to 0.5.

3.5 Training and Testing Strategies
Training Parameters
We initialize the parameters of the basic convolutional neural
network by a pre-trained DenseNet-121 Huang et al. (2017)
on ImageNet while the others are trained from scratch noise.

The breast ultrasound images in our training dataset are
randomly rotated, cropped, and horizontally flipped for data
augmentation. We use Adam optimizer to train the whole
framework by 10, 000 iterations. The learning rate is
initialized as 0.0001 and reduced to 0.00001 after 5, 000
iterations. We implement our BGM-Net on Keras and run it
on a single GPU with a mini-batch size of 8.

Inference
We take Sf as the final segmentation result for each testing image.

4 EXPERIMENTS

This section conducts extensive experiments, as well as an
ablation study, to evaluate the performance of the proposed
approach for breast lesion segmentation from ultrasound
images.

4.1 Dataset
Two challenging breast ultrasound datasets are utilized for the
evaluation. The first dataset (i.e., Al-Dhabyani et al., 2020) is from

FIGURE 3 | Flowchart of the BGFE module. F and F̂ are the feature map and the refined feature map, respectively. Best viewed in color.

FIGURE 2 | Schematic illustration of the proposed approach for breast lesion segmentation from ultrasound images. Please refer to Figure 3 for BGFE module.
Best viewed in color.
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the Baheya Hospital for Early Detection and Treatment of
Womenś Cancer (Cairo, Egypt). BUSI includes 780 tumor
images from 600 patients. We randomly select 661 images as
the training dataset and the remaining 119 images serve as the
testing dataset. The second dataset includes 632 breast ultrasound
images (denoted as BUSZPH), collected from Shenzhen People’s
Hospital where informed consent is obtained from all patients.
We randomly select 500 images as the training dataset and the
remaining 132 images serve as the testing dataset. The breast
lesion regions in all the images are manually segmented by
experienced radiologies, and each annotation result is
confirmed by three clinicians.

4.2 Evaluation Metric
We adopt five widely used metrics for quantitative comparison,
including Dice Similarity Coefficient (Dice), Average Distance
between Boundaries (ADB, in pixel), Jaccard, Precision, and
Recall. Please refer to Chang et al. (2009), Wang et al. (2018)
for more details about these metrics. Dice and Jaccard measure
the similarity between the segmentation result and the ground
truth. ADBmeasures the pixel distance between the boundaries of
the segmentation result and the ground truth. Precision and
Recall compute pixel-wise classification accuracy to evaluate the
segmentation result. Overall, a good segmentation result shall
have a low ADB value, but high values for the other four metrics.

4.3 Segmentation Performance
Comparison Methods
We validate the proposed approach by comparing it with five
state-of-the-art methods, including U-Net Ronneberger et al.
(2015), U-Net++ Zhou et al. (2018), feature pyramid network
(FPN) Lin et al. (2017), DeeplabV3+ Chen et al. (2018) and
ConvEDNet Lei et al. (2018). For consistent comparison, we
obtain the segmentation results of the five methods by the public
code (if available) or by our implementation, which is tuned for
the best result.

Quantitative Comparison
Tables 1, 2 present the measurement results of different
segmentation methods on the two datasets, respectively.
Apparently, our approach achieves higher values on Dice, Jaccard,
Precision and Recall measurements, and lower value on ADB
measurement, demenstrating the high accuracy of the proposed
approach for breast lesion segmentation from ultrasound images.

Visual Comparison
Figure 4 visually compares the segmentation results obtained by
our approach and the other five segmentation methods. As shown
in the figure, our approach precisely segments the breast lesion
regions from ultrasound images despite of sevious artifacts, while
the other methods tend to generate over or under-segmentation
results as they wrongly classify some non-lesion regions or miss
parts of lesion regions. In the first and second rows where high
speckle noise is presented, our result shows the highest similarity
against the ground true. This is because the boundary detection
loss in our loss function explicitly regularizes the boundary shape
of the detected regions using the boundary information in the
ground true. In addition, non-lesion regions are greatly removed
even though there are ambiguous regions with weak boundaries,
see the third and fourth rows, since the multiscale shceme in our
approach effectively fuses the information from different image
scales. Moreover, our approach accurately locate the boundaries of
breast lesion regions in inhomogeneous ultrasound images
attributing to the boundary feature enhancement of the BGFE
module, see the fifth and sixth rows. In contrast, segmentation
results from the other methods are inferior as these methods have
limited capability to cope with strong ultrasound artifacts.

4.4 Ablation Study
Network Design
We conduct an ablation study to evaluate the key components of
the proposed approach. Specifically, three baseline networks are
considered and their quantitative results on the two datasets are

TABLE 1 | Measurement results of different segmentation methods on the BUSZPH dataset. Our results are highlighted in bold.

Method Dice ADB Jaccard Precision Recall

U-Net Ronneberger et al. (2015) 0.7819 15.6556 0.6990 0.8055 0.8429
U-Net++ Zhou et al. (2018) 0.7895 11.3389 0.7092 0.8408 0.8029
FPN Lin et al. (2017) 0.8597 5.6913 0.7829 0.9001 0.8518
DeeplabV3+ Chen et al. (2018) 0.8418 6.6364 0.7583 0.8870 0.8289
ConvEDNet Lei et al. (2018) 0.8368 5.7943 0.7540 0.8987 0.8249
Our approach 0.8688 4.7966 0.7961 0.9080 0.8603

TABLE 2 | Measurement results of different segmentation methods on the BUSI dataset. Our results are highlighted in bold.

Method Dice ADB Jaccard Precision Recall

U-Net Ronneberger et al. (2015) 0.7696 33.4737 0.6777 0.8451 0.7833
U-Net++ Zhou et al. (2018) 0.7622 30.6443 0.6685 0.8222 0.7861
FPN Lin et al. (2017) 0.8267 16.6268 0.7409 0.8479 0.8539
DeeplabV3+ Chen et al. (2018) 0.8268 16.2611 0.7348 0.8720 0.8337
ConvEDNet Lei et al. (2018) 0.8270 17.3333 0.7357 0.8490 0.8551
Our approach 0.8397 12.5637 0.7597 0.8931 0.8345
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reported in comparison with our approach. The first baseline
network (denoted as “Basic”) removes both the BGFE modules
and multiscale scheme from our approach, meaning that both
boundary feature enhancement andmultiscale fusing are disabled
and the proposed approach degrades to the FPN framework. The
second baseline network (denoted as “Basic + Multiscale”)
removes the BGFE modules from our approach, meaning that
boundary feature enhancement is disabled while multiscale fusing
is enabled. The third baseline network (denoted as “Basic +
BGFE”) removes the multiscale scheme from our approach,
meaning that multiscale fusing is disabled while boundary
feature enhancement is enabled.

Quantitative Comparison
Tables 3, 4 present the measurement results of different baseline
networks on the two datasets, respectively. As shown in the table,
both “Basic + BGFE” and “Basic + Multiscale” perform better
than “Basic” by showing higher values on Dice, Jaccard, Precision
and Recall measurements, but a lower value on ADB
measurement. This clearly demonstrates the benifits from the
FPN module and the multiscale scheme. In addition, our
approach achieves the best result compared with the three
baseline networks, which validates the superiority of the
proposed approach by combining boundary feature
enhancement and multiscale fusing into a unified framework.

FIGURE 4 | Comparison of breast lesion segmentation among different methods. (A) Testing images. (B) Ground truth (denoted as GT). (C–H): Segmentation
results obtained by our approach (BGM-Net), ConvEDNet Lei et al. (2018), DeeplabV3+ Chen et al. (2018), FPN Lin et al. (2017), U-Net++ Zhou et al. (2018), and U-Net
Ronneberger et al. (2015), respectively. Note that the images in first three rows are from BUSZPH, while the images in last three rows are from BUSI.

TABLE 3 | Measurement results of different baseline networks on the BUSZPH
dataset. Our results are highlighted in bold.

Method Dice ADB Jaccard Precision Recall

Basic 0.8496 6.9231 0.7665 0.8840 0.8553
Basic + Multiscale 0.8578 6.3899 0.7816 0.8853 0.8600
Basic + BGFE 0.8619 6.1084 0.7855 0.9006 0.8602
Our approach 0.8688 4.7966 0.7961 0.9080 0.8603

TABLE 4 | Measurement results of different baseline networks on the BUSI
dataset. Our results are highlighted in bold.

Method Dice ADB Jaccard Precision Recall

Basic 0.8158 13.9902 0.7325 0.8641 0.8253
Basic + Multiscale 0.8246 16.6773 0.7385 0.8831 0.8117
Basic + BGFE 0.8300 12.4873 0.7503 0.8669 0.8329
Our approach 0.8397 12.5637 0.7597 0.8931 0.8345
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Visual Comparison
Figure 5 visually compares the segmentation results obtained by
our approach and the three baseline networks. Apparently, our
approach better segments breast lesion regions than the three
baseline networks. False detections resulted from speckle noise
are observed in the result of “Basic + BGFE”, while “Basic +
Multiscale” wrongly classifies a large part of non-lesion regions
due to unclear boundaries in ambiguous regions. In contrast, our
approach accurately locates the boundaries of breast lesion
regions by learning an enhanced boundary map using the
BGFE module. Moreover, false detections are effectively
removed attributing to the multiscale scheme. Thus, our result
achieves the highest similarity against the ground true.

5 CONCLUSION

This paper proposes a novel boundary-guided multiscale
network to boost the performance of breast lesion
segmentation from ultrasound images based on the FPN
framework. By combining boundary feature enhancement
and multiscale image information into a unified framework,
the boundary detection capability of the FPN framework is
greatly improved so that weak boundaries in ambiguous
regions can be correctly identified. In addition, the
segmentation accuracy is notably increased as false
detections resulted from strong ultrasound artifacts are
effectively removed attributing to the multiscale scheme.
Experimental results on two challenging breast ultrasound
datasets demonstrate the superiority of our approach
compared with state-of-the-art methods. However, similar
to previous work, our approach also relies on labeled
data to train the network, which limits its applications in
scenarios where unlabeled data is presented. Thus, the
future work will consider the adaptation from labeled data

to unlabeled data in order to improve the generalization of the
proposed approach.
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The retina is composed of 11 types of cells, including neurons, glial cells and vascular bed
cells. It contains five types of neurons, each with specific physiological, morphological, and
molecular definitions. Currently, single-cell RNA sequencing (sRNA-seq) is emerging as one of
the most powerful tools to reveal the complexity of the retina. The continuous discovery of
retina-related gene targets plays an important role in helping us understand the nature of
diseases. The revelation of new cell subpopulations can focus the occurrence and
development of diseases on specific biological activities of specific cells. In addition,
sRNA-seq performs high-throughput sequencing analysis of epigenetics, transcriptome
and genome at the single-cell level, with the advantages of high-throughput and high-
resolution. In this paper, we systematically review the development history of sRNA-seq
technology, and summarize the new subtypes of retinal cells and some specific gene markers
discovered by this technology. The progress in the diagnosis of retinal related diseases is also
discussed.

Keywords: single-cell RNA sequencing, ScRNA-seq, retina, gene, retinal disease

INTRODUCTION

With the development of high-throughput sequencing technology, humans can already analyze
genomes and their products on a large scale, including DNA sequences, chromatin structure, RNA
transcripts, proteins and metabolites (Botond, 2018). Traditional high-throughput sequencing
requires sufficient DNA samples to be obtained from a large number of cells. However, the
accuracy of high-throughput sequencing is quite low, and the result of sequencing should be
corrected. Single-cell RNA sequencing (scRNA-seq) refers to the technology of high-throughput
sequencing analysis of the genome, transcriptome and epigenetic genome at the single cell level.
Currently, scRNA-seq technology is commonly used in the fields such as development of stem cell,
embryo and tumor. For example, in the study of tumor tissues, researchers classify subgroups based
on single-cell transcription maps (Masland, 2012; Wang et al., 2014), and based on the gene
expression profiles, they can study the mechanism of cancer cell metastasis (Zheng et al., 2017) and
discover new targets for immunotherapy (Pauly et al., 2019).
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In the field of ophthalmology, single-cell RNA sequencing
research has been mostly applied to retina, from cell subtypes to
targeted treatments for related diseases. Both humans and monkeys
have fovea and macula, but mice are nocturnal dichromats and
humans are diurnal trichromats. Therefore, studies on subtypes of
retinal cells in humans and primates should ideally be published
separately (Pauly et al., 2019). This review summarizes and discusses
the latest progress and applications of scRNA-seq technology in the
field of retina. So far, scRNA-Seq has been used in mouse, primate,
human embryo and adult retinal tissue cell subtype research, as well
as the pathogenic gene pathway research of various retinal-related
diseases. In this review, we systematically reviewed the rapid
progress of single-cell technology (Figure 1) and summarized the
current challenges and unanswered questions in the field of retinal
development and disease.

DEVELOPMENT OF SINGLE-CELL RNA
SEQUENCING TECHNOLOGY

Single-cell transcriptome sequencing technology (scRNA-seq) is
to analyze the expression profile of the cell transcriptome from
the single cell level to identify cell-specific markers, discover rare
cell types, cell subtypes, and reveal differences between cells
expression (Zerti et al., 2020). The basic technical principles of
scRNA-seq technology include: 1) separation technology, such as
micromanipulation, laser capture microdissection, fluorescence
activated cell sorting, 2) single-cell transcriptome amplification
and sequencing library construction. Cells are the basic structural
and functional units of organisms (Zerti et al., 2020). During their
growth and development, due to different cell states and
environmental stimuli, changes in transcriptome information

show diversified manifestations. scRNA-seq can study the
differential expression of RNA from a single cell level. Since
the Tang team first applied scRNA-seq technology in 2009,
scRNA-seq technology has received more research and
development (Table 1). Besides, single-cell sequencing
technology has been used to study stem cell differentiation,
embryonic organ development, tumor tissue, immune tissue,
nervous tissue, and other fields in recent years (Picelli, 2017). In
the field of ophthalmology, it is mainly used to study the gene
expression of normal retinal tissues and common retinal diseases,
such as age-related macular degeneration and diabetic retinopathy.

APPLICATION OF SCRNA-SEQ IN NORMAL
RETINAL TISSUE

In the field of ophthalmology, the single-cell RNA sequencing
research in the past 5 years has mainly focused on the retina, and
most of the research focuses on the exploration of cell subtypes,
related genes and pathway. In particular, many researchers choose
amacrine cells, bipolar cells and microglia cells for study. Among
them, amacrine cells are the most diverse neurons, and most of
them lack obvious molecular markers (Grunert andMartin, 1991),
which has stimulated curiosity of various researchers in recent
years. The retina is a highly heterogeneous tissue, and it is
estimated that there are more than 100 nerve cell subtypes.

Primates (including humans) have a fovea on the retina, which
is a small central area responsible for high vision and most color
vision. However, the retina of mice does not have a fovea. This
difference also limits some experimental studies. The distribution
and number of primate and mouse retinal cells have a certain
difference between the fovea and the periphery. Yi-Rong Peng
et al. (Peng et al., 2019) used 165,000 single-cell RNA sequence
maps to perform a comprehensive cell classification of the central
fovea and peripheral retina of rhesus monkeys, of which 64 fovea
(3 PRs, 2 HC, 12 BC, 27 AC, 16 RGC and four non-neurons) and
71 peripherals (2 PR, 2 HC, 11 BC, 34 AC, 18 RGC and four non-
neurons) clusters. Comparison with the mouse retina type shows
that the middle neuron type is tightly conserved, but the type and
procedure of the projection neuron are different.

Based on the previous study, Wen-jun Yan et al. (Yan et al.,
2020) compared the gene expression characteristics of human
and cynomolgus monkey and fascicular monkey cell types.
Besides, they identified five types of neurons (9,070
photoreceptors, 2,868 horizontal cells, 25,908 bipolar cells,
13,607 amacrine cells and 11,404 RGCs) and four types of
non-neuronal cells. By comparing the retinal cell types of
human and rhesus monkeys, the differentially expressed genes
are summarized: the genes that are highly expressed in rhesus
monkey retinal tissues are EPHX2, DB1 andDB6. GPATCH1 and
CRHBP genes are highly expressed in human retinal tissues. In
addition, by comparing retinal foveal cells with surrounding cells,
they found that: 1) EPB41L2 and VTN are expressed by the fovea
instead of the peripheral cone. 2) expression level of TTR in the
fovea is higher than that of the surrounding bipolar types of DB3b
and DB4. 3)TULP1 is expressed by peripheral but not foveal
bipolar FMB and DB2. Besides, the transcriptome of
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approximately 85,000 cells from the fovea and surrounding
retinas of seven adult donors was analyzed by Wen-jun Yan
et al. (Yan W et al., 2020) using single-cell RNA sequencing
(sRNA-seq) in 2020. The results showed that FOXP2+, FOXP1-,
FOXP2+, FOXP1+, and F-RGCs were highly expressed in RGCS
cell clusters. In addition, the comparison showed that more than

90% of the human types were transcriptionally consistent with
those previously identified in macaques, and that the expression
of disease-related genes was highly conserved between the two
species. These results confirm the usefulness of macaques in
simulating blinding diseases and provide a basis for
investigating the molecular mechanisms of visual processing.

TABLE 1 | Principal characteristics of the most widely used scRNA-seq methods.

Name Transcript
coverage

Year First discovery Positional
bias

Strand
specificity

References

Tang method Nearly full length 2013 Surani et al. Strongly 3′ No Gao, (2018)
STRT-seq 5′ only 2013 Sten linnarssons

et al.
5′ only No Islam et al. (2012)

Smart-seq Full length 2014 Sandberg et al. Medium 3′ No Valdes-Mora et al. (2018)
Smart-seq2 Full length 2014 Sandberg et al. Weakly 3′ No Valdes-Mora et al. (2018)
CEL-seq 3′ only 2014 Hashimshony et al. 3′ only Yes Hashimshony et al. (2012)
CEL-seq2 3′ only 2014 Hashimshony et al. 3′ only Yes Hashimshony et al. (2012)
MARS-seq 3′ only 2014 Hashimshony et al. 3′ only Yes Jaitin et al. (2014)
CytoSeq Predefined genes

only
2015 Pollen AA et al. 3′ only Yes Islam et al. (2014)

Drop-seq/InDrop 3′ only 2016 Cracknell JA et al. 3′ only Yes Pollen et al. (2014)
DroNC-seq 3′ only 2017 Habib et al. 3′ only Yes Habib et al. (2017)
Sci-RNA-seq 3′ only 2017 Cao et al. 3′ only Yes Cao et al. (2017)
Seq-well 3′ only 2017 Gierahn et al. 3′ only Yes Gierahn et al. (2017)
SPLiT-seq 3′ only 2018 Rosenberg et al. 3′ only Yes Rosenberg et al. (2018)
Quartz-Seq2 3′ only 2018 Sasagawa et al. 3′ only Yes Sasagawa Y et al. (2018)
Single-cell multimodal
omics

Full length 2019 Christopher et al. 3′ only Yes Author Anonymous (2020); Moncada et al.,
2020)

FIGURE 1 | Summary of the development of Single-cell RNA sequecing technology.
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Regarding the study of fovea and peripheral cells, Sharon et al.
(Banin et al., 2015) have reported 20 highly expressed genes in the
macular region (such as SLC17A6, SNCG, NEFL, NET1, STMN2,
YWHAH, UCHL1, DPYSL2, APP, NDRG4, TUBA1B,MDH1,
EEF2) and 23 highly expressed genes in the peripheral region of
the retina (SAG, RCVRN, UNC119, GPX3, PDE6G, ROM1,
ABCA4, DDC, PDE6B, GNB1, NRL); based on bulk RNA Seq,
Li et al. (Li et al., 2004) reported 1,239 The macular area is highly
expressed and the 812 peripheral areas are highly expressed.
These related studies provide a basic framework for single-cell
analysis of species and across tissue regions.

In addition, scRNA-seq can be used to further study genetic
markers and typing of specific optic nerve tissues and retinal cells.
Macosko et al. (Macosko et al., 2015) analyzed the transcripts of
44,808 mouse retinal cells and identified 39 different transcribed
cell populations, establishing a molecular map of gene expression
for known retinal cell types and new candidate cell subtypes.
Among them, 21 clusters of amacrine cells were mainly studied.
12 were identified as GABAergic (Gad1 and/or Gad2 positive), and
the other five were glycine (Glcine transporter Slc6a9 positive).
Ebf3 is a transcription factor found in SEG-glycine and nGnG-
amacrine proteins and is specific for clusters 17 and 20.

To further study the gene expression of bipolar cells, Shekhar
et al. (Shekhar et al., 2016) used mouse retinal bipolar cells (BCs)
as the research object through DROP-SEQ and classified them by

two different criteria. Firstly, according to whether the RBC is
marked or not, a rod-shaped or cone-shaped BC is divided;
secondly, according to the bipolar mark Isl1 and/or Grm6, the
cone BC cluster can be further divided into on (3–6, 13, 15) and
off (7–10, 12, 14) BC type. It is also worth mentioning that on the
basis of the predecessors, the team further divided four types of
BC5 (BC5A-BC5D), specifically BC5A (Sox6+) and BC5B
(Chrm2+), BC5C (Slitrk5+), BC5D (Lrrtm1+).

On the basis of previous studies, O’Koren team (O’Koren et al.,
2019) used single-cell sequencing to reveal the unique
transcriptome-related genes of microglia in photoreceptor
degeneration, such as Lsp1, asApoe, Ppiaf4, and Alox5ap,
which were temporarily induced in the middle of the
trajectory; Fabp5, Lgals3, Cd63, Lpl, Cybb, Mmp12, and Spp1
are adjusted up late in the trajectory.

The developmental pathways of mouse neural retina (NR) and
retinal pigment epithelium (RPE) have been extensively revealed.
However, the molecular mechanism of human NR and RPE
formation and the interaction between these two tissues have
not been well elucidated (Dulken et al., 2017). In recent years,
some studies have used scRNA-seq technology to conduct
experimental design with retinal multifunctional stem cells
(RPCs) as the research object. RPCs are located in the inner
layer of the optic cup (Oppikofer et al., 2017). They produced six
types of neurons in retinal cells. The processes that retinal

TABLE 2 | New discoveries of genes and cell subtypes related to retina.

Study name Methodology Sample source Number of
cells

sequenced

Year of
publication

Molecules/pathways identified References

Evan Z macosko
et al.

Drop-seq Mouse retinal cells 44,808 2015 Found 39 different cell populations Macosko et al. (2015)

Shekhar et al. Drop-seq Mouse retinal bipolar cells 4 clusters 2016 Divided four types of BC5 (BC5A-BC5D) Shekhar et al. (2016)
Yi-rong peng
et al.

scRNA-seq Macaque fovea and
peripheral retina

165,000 2019 Fovea and peripheral retina contain
more than 65 cell types

Peng et al. (2019)

Emily G O’Koren
et al.

scRNA-seq Mouse retina 4 clusters 2019 Found two types of microglia O’Koren et al. (2019)

Sharon et al. scRNA-seq Mouse retina 6 clusters 2019 Reported reported 20 highly expressed
genes in the macular region and 23
highly expressed genes in the peripheral
region

Banin et al. (2015)

Li et al. RNA-seq 10 non-proliferative DR
patients and 11 non-DR
T2DM patients

2051 2019 Found 1,239 areas the macular area is
highly expressed and the 812 peripheral
areas

Li et al. (2004)

Xiying mao et al. scRNA-seq Human embryonic stem
cell (hESC)-derived 3D
retinal organoids

16,348 2019 Found the RPC specific markers VSX2
and PAX6

Mao et al. (2019)

Yuqiong hu et al. scRNA-seq Human fetal NR and RPE 13,000 2019 Identified the main cell types of human
fetal retina

Trimarchi et al. (2009)

The mariona
esquerdo-
barragán team

ChiP-seq Mouse retina 87 2019 Found TOPORS, KLHL7, PRPF8,
USP45, and Usp-20 were expressed at
low levels in the retina

Esquerdo-Barragán
et al. (2019)

Wen-Junyan
et al. (2020)

scRNA-seq Adult human donors 62,857 2020 Identified 5 types of neurons and 4 types
of non-neuronal cells

Yan et al. (2020)

Wen-Junyan
et al. (2020)

scRNA-seq Adult human donors 85,000 2020 FOXP2+, FOXP1-, FOXP2+, FOXP1+,
and F-RGCs were highly expressed in
RGCS cell clusters

Yan W et al. (2020)

Masahito
yamagata et al.

scRNA-seq Chicken retinas 4,000 2021 VSX2 (CHX10) in the basal cells,
TFAP2A in the central retinal cells, and
RBPMS2 in retinal ganglion cells

Yamagata M and
Sanes, (2021)
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development needs to go through: RPC proliferation, cell fate
determination, and specific neuronal differentiation (Gordon
et al., 2013).

Yuqiong Hu et al. (Trimarchi et al., 2009) identified the main
cell types of human fetal retina, which are RGC expressing
γ-synuclein (SNCG), NEFL, ATOH7 and EBF3; HCs express
ONECUT1/2/3; ACs express MEIS2, GAD1 and GAD2; BCs
express VSX1 and VSX2; PCs express PDC, PDE6G, SAG, CRX
and NRL; microglia express CX3CR1, C1QA, C1QB and C1QC;
fibroblasts express COL3A1 and COL1A1.

According to the report, Xiying Mao et al. (Mao et al., 2019)
found that the RPC specific markers VSX2 and PAX6 were co-
expressed 28 days ago; after 28 days, the expression of VSX2
began to disappear on the central basal side of the retina,
expressing the retinal ganglion cell (RGC) marker ELAVL3/
The cells of four began to appear simultaneously, and the
number of ELAVL3/4 positive cells gradually increased
thereafter. HES1 and HES5 are briefly activated in RPC
(Lukaszewicz and Anderson, 2011) and then suppressed in
terminally differentiated neurons, and HES6 continues to be
up-regulated after the lineage bifurcation point.

Based on the previous evidence, Brian S. Clark et al. (Clark
et al., 2019) used single-cell RNA sequencing to describe ten
developmental stages covering the entire process of retinal
neurogenesis, our results indicate that NFI transcription
factors (NFIA, NFIB, and NFIX) are selectively expressed in
late RPCs and indicate that they regulate the fate of bipolar
interneurons and Miller glial cells and promote proliferation and
imactivation. Besides, Mariona Esquerdo-Barragán team
(Esquerdo-Barragán et al., 2019) found that TOPORS, KLHL7,
PRPF8, USP45, and Usp-20 were expressed at low levels in the
retina through scRNA-seq. Josd1, Pan2, Usp11, Usp14, Usp15,
Usp10, Usp22, Usp39 and cone cells Compared to the expression
of rod differentiation, the expression of three genes (Otud7b,
Usp46, and Usp48) increased in late cone cells; the expression of
Usp45, Usp53, and Usp54 was limited to the photosensitive layer;
Usp28, Usp37, or Otub1 is highly expressed in the embryonic
period, but expression is stopped after birth; Usp12, Zranb1 or
Usp32, its expression is extremely low in the embryonic period,
but significantly increased before and after birth (Hojo et al.,
2000). These genes are related to the ubiquitin proteasome system
(UPS), which has important research significance for retinal
precursor cell differentiation.

In order to further explain the tissue structure and cell
subtypes of the chicken retina, based on previous studies,
this year Masahito Yamagata et al. (Yamagata M and Sanes,
2021)used single-cell RNA sequencing (sRNA-seq) to generate a
cellular atlas of chicken retinas (40,000 single-cell
transcriptome), 136 cell types plus 14 sites or developmental
intermediates were identified. The team mapped genes
expressed in the majority of three types of retinal cells,
namely VSX2 (CHX10) in the basal cells, TFAP2A in the
central retinal cells, and RBPMS2 in retinal ganglion cells.
The results provide new insights into the structure and
evolution of the retina and lay the foundation for the study
of the anatomy, physiology and development of the retina
in birds.

For the past few years, the continuous application and
development of scRNA-seq technology has been improved.
The study of normal retinal cells in animals and human eyes
can redefine the cluster of cells based on the marker gene
(Table 2). It also enables a deeper understanding of tissue
cells and subsequently the cluster of cells. Carrying out a more
in-depth classification of cells helps to understand the
heterogeneity of cells well, and also brings along a new
perspective for our subsequent diagnosis and treatment of
disease.

APPLICATION OF SCRNA-SEQ IN RETINAL
DISEASES

scRNA-Seq in the Research of Targeted
Therapy of Ocular Tumors Application
Different cells change differently at seperate stages of the disease.
The transcriptome of many cell subtypes in the retina, especially
rare cells, is usually obscured by a large number of RNA
sequences. Therefore, understanding the transcriptome at the
cell type or single cell level will expand research related to disease.

Single-cell RNA-seq can be used for targeted therapy of eye tumors
(Kawaguchi et al., 2008). It is well established that the molecular and
cellular characteristics of tumors can indicate the origin of tumor cells
and provide a basis for targeted therapy. Retinoblastoma is a
malignant tumor in infants and young children. In recent years,
researchers have used single-cell sequencing technology to study the
pathogenetic gene pathway and treatment of it.

Mcevoy et al. (McEvoy et al., 2011) performed single-cell gene
expression array analysis on tumor cells of retinoblastoma
patients and mouse models, showing that multiple cell types
are specifically expressed in a single retinoblastoma cell. The
results showed that human retinoblastoma expressed high levels
of MDMX gene and MDMX protein. Some monoamine/
catecholamine receptors in mice include serotonin receptors
(HTR3A, HTR1E), dopamine receptors (DRD5) and histamine
receptors (HRH3) Expression levels in retinoblastoma It is equal
to or higher than the normal human retina.

Based on the previous study, Joseph Collin et al. (Collin et al.,
2021) used nine human embryonic and fetal retinal tissues by
sRNA-seq and ATAC sequence method. The results showed that
Glu137Ter and Tyr655Ter were highly expressed in 4 month old
embryonic tumor tissues. However, the Rb1c.763C and
Arg255TER genes were overexpressed in embryonic tumor
tissue at 34 months. In addition, CCNE1, CCNE2, CCNB2,
CCNA2, and CDK1 genes were highly expressed in fetal
tumor tissues. In addition, this study provides evidence of the
heterogeneity of RB tumors and defines molecular pathways and
new targeted therapeutic strategies.

scRNA-Seq on the Pathogenesis of
Age-Related Macular Degeneration and
Treatment Research
In addition, single-cell sequencing technology also aids the study
and treatment of retinal degenerative and vision loss diseases by
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analyzing the pathogenesis of related diseases and discovering
new biological targets and markers.

Radeke et al. (Newman et al., 2012) discovered new age-related
macular degeneration (AMD) biomarkers and gene expression
characteristics of AMD pathogenesis. These findings indicate that
the cell-based inflammatory response in the RPE choroid is a core
feature of AMD. All AMD phenotypes in the RPE choroid are
associated with high expression of all or a subset of the following
chemokines, namely CXCL1, CXCL2, CXCL9, CXCL10,
CXCL11, CCL2 and CCL8. AMD expression in retinal
pigment epithelium Related bases and chemokines are
C10orf18, ARL9, CXCL10, FZD10, CTSL2, CXCL. AMD may
be a single disease with a common immune response process. The
genes that regulate these immune activities, as well as many other
genes found, represent promising new targets for the treatment
and diagnosis of AMD.

On the basis of the previous research, Madhvi Menon et al.
(Menon M et al., 2019) retinal cells were isolated and sequenced
from six postmortem human retinal macular and surrounding
panretinal suspension using droplet based microfluidic
(20,091 cells) and nanopore based Seq Well (3,248 cells) to
investigate cell types associated with age-related macular
degeneration. The results showed that CFI, TIMP3, VEGFA
and COL4A3 genes were highly expressed in AMD retinal cells.

Besides, Jones et al. (Jones et al., 2016) used human brain-
derived neural precursor cells (hNPCs) to treat retinal
degenerative lesions. The results showed that the top five

genes with the greatest changes included Mir671, Lcn2, Cd74,
Gfap, and Cebpd; Lcn2, Cd74, Gfap, and Cebpd (Hughes et al.,
2003). All show that as retinal degeneration increases, Mir671,
Lcn2, Cd74, and Cebpd play a role in the immune response of
macrophages and/or microglia, suggesting that the activity of
macrophages/microglia increases as the retina degenerates
(Lawson et al., 1990).

scRNA-Seq on the Pathogenesis of Diabetic
Retinopathy and Treatment Research
In recent years, a series of studies on Diabetic Retinopathy (DR)
have suggested that vision loss in DR patients is no longer
considered to be a simple microvascular complication, also
known as neurodegenerative disease (Kamalden et al., 2017).
Different retinal cells, trophic factors, neurotransmitters, and
inflammatory factors play an important role in the
pathogenesis of diabetic retinopathy (Kamalden et al., 2017).
Moreover, there are not many studies on diabetic retinopathy by
single cell histology (Pastukh et al., 2019).

Xian Zhang et al. (Zhang et al., 2019) found that overexpression
of AK077216 in DR patients resulted in downregulation of miR-
383, but overexpression of miR-383 had no significant effect on the
expression of AK077216; overexpression of AK077216 inhibited
apoptosis of ARPE-19 cells (Ru et al., 2014), miROverexpression of
-383 plays the opposite role and attenuates the overexpression of
AK077216; therefore it is concluded that AK077216 is down-

TABLE 3 | Studies of gene expression in retina diseases.

Study
name

Methodology Sample
source

Diseases Number of
cells

sequenced

Year of
publication

Molecules/pathways identified References

Justina
McEvoy
et al.

Single-cell gene
expression array
analysis

Human and
mouse retina

Retinoblastoma 120 2011 Showed that there are multiple cell
type-specific expressions in a single
retinoblastoma cell

McEvoy et al.
(2011)

Melissa K
jones et al.

scRNA-seq Rat retina AMD 11,215 2016 Used human brain-derived neural
precursor cells to treat retinal
degenerative lesions

Jones et al.
(2016)

Jacob S
heng et al.

scRNA-seq Rat retina Autoimmune
uveitis retinitis

64,196 2019 Defined the main immune effector cell
types

Heng et al.
(2019)

Nicholas M.
Tran et al.

scRNA-seq Mouse retinal
ganglion cells

Optic nerve crush 46 2019 Generate a comprehensive molecular
map of the 46RGC type in the adult
retina

Tran et al.
(2019)

Radeke
et al.

scRNA-seq Mouse retina AMD 118 2019 Discovered new age-related macular
degeneration (AMD) biomarkers and
gene expression characteristics of
AMD pathogenesis

Newman et al.
(2012)

Xian Zhang
et al.

RNA-seq 60 diabetic
retinopathy
patients

DR 383 2019 Found that overexpression of
AK077216 in DR patients resulted in
downregulation of miR-383

Zhang et al.
(2019)

Madhvi
menon et al.

scRNA-seq Human retina AMD 23,339 2019 CFI, TIMP3, VEGFA and COL4A3
genes were highly expressed in AMD
retinal cells

Menon M et al.
(2019)

Wen-
Junyan et al.
(2020)

scRNA-seq Human retina Retinitis
pigmentosa

1756 2020 Used cell atlas to evaluate the retinal
expression of 1756 disease-related
genes

Yan W. et al.
(2020)

Joseph
collin et al.

scRNA-seq Human retina Retinoblastoma 655 2021 CCNE1, CCNE2, CCNB2, CCNA2,
and CDK1 genes were highly
expressed in fetal tumor tissues

Collin et al.
(2021)
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regulated in diabetic retinopathy, and inhibits ARPE-19 cell apoptosis
by down-regulating miR-383. Zimeng Li et al. found that miR-4448,
miR-338-3p, miR-190a-5p, miR-485-5p and miR-9-5p are highly
expressed in the serum of DR patients (Shaker et al., 2019).

Application of scRNA-Seq Studies in Other
Retinal Diseases
The types of neurons in the central nervous system are significantly
different in terms of resilience to injuries or other injuries (Della
Santina et al., 2013). In recent years, some researchers have
provided a systematic framework to analyze the specific types of
injuries through single-cell sequencing technology. Sexual
response, and demonstrate that differential gene expression can
be used to reveal the molecular targets of intervention.

Nicholas Tran et al. (Tran et al., 2019) first used single-cell
RNA-seq (scRNA-seq) to generate a comprehensive molecular
map of the 46RGC type in the adult retina. By tracking their
survival after ONC (Optic Nerve Crush), the transcription and
morphological changes before degradation were described, and
each type of selectively expressed genes was determined. Among
them, Igf1 (7/7 resRGCs), Opn4 (5/7) and Spp1 (3/7)/OE-Ucn,
Ucn protein, OE-Timp2, KO-Crhbp, and KOMmp9 all promoted
significant overall regeneration of the optic nerve.

Another experimental study, using single-cell sequencing
technology, determined whether multiple explosion exposures
caused greater damage to RGC than single explosion exposures
(Hong et al., 2015). The results show that Cd40, Mrpl34, Kmo,
Lmcd1, BC030870, I830077J02Rik, andMs4a14 (Kim et al., 2008)
are related genes that mediate neuroprotection.

scRNA-seq has been used as a comprehensive and fair method to
study cell types and gene expression patterns in the retina of
spontaneous, chronic and progressive autoimmune uveitis. Jacob
et al. (Heng et al., 2019) used Aire−/− mice to establish a model
of autoimmune uveitis retinitis. Mouse models offer a unique
opportunity to study the mechanisms of autoimmune uveiretinitis,
which is an important cause of vision loss. The team characterized
64,196 isolated retinal cells from eight samples using a droplet based
sRNA-seq platform (10×genomics). The results showed that
experimental uveiretinitis is a T-cell-driven disease, and the highly
expressed genes in the following types of cells were: Th1 cells (T-bet+,
IFNG+, CXCR6+, CD4+, CD8a, KLRA1), CD8a + T cells (CD8a+,
CD4−, KLRA1), T follicular helper cells (BCL6+, CXCR5+, CD4+,
CD8a) and regulatory T cells (Foxp3+, CD4+, IL10+). In addition,
TGFb2 is the main TGF-β family member expressed in Aire mouse
retina, mainly in the inner layer (INL). In conclusion, this study
supports a similar central role of Th1 cells in Aire/uveoretitis, which
has important implications for clinical treatment.

Besides, Wen-junYan et al. (Yu-Wai-Man et al., 2010) used
cell atlas to evaluate the retinal expression of 1756 disease-related
genes. Studies have shown that among the genes associated with
retinitis pigmentosa (RP), RPGR and TOPORS, SLC25A46,
SLC7A14 and RP9 are highly expressed in RGC (Delettre et al.,
2002). In addition, RGR and RLBP1 are highly expressed inMüller
glial cells. CRX, RAX2, GNAT2, PDE6H genes are highly expressed
in rods and cones. RHO,NRL andNR2E3, all show the enrichment
of the fovea (Miller et al., 2019). Lebers congenital amaurosis (LCA)

is a group of severe hereditary retinal dystrophy, which is
characterized by nystagmus, delayed or missing pupil light
reflection, and blindness. Experimental results show that CEP290,
GUCY2D and CRB1 genes are highly expressed in RGC (Anguita
et al., 2021). In studies related to congenital quiescent night
blindness (CSNB), it was found that GNAT1 and SLC24A1 were
highly expressed in rod cells, while GRM6 and TRPM1 were highly
expressed in bipolar cells (Clemons et al., 2013).

It can be seen that sc RNA-seq research can provide
differentiated gene expression of cells for retinal diseases,
transcription factor prediction, and the network communication
interaction of each cell in the process of disease progression, which
can provide new targets for the diagnosis and treatment of disease
prediction. Using this technology, we can discover new cell
subtypes and identify genetic markers of individual retinal
subtype cells to help study and locate targets related to specific
visual functions, thereby gaining a deeper understanding of cell
function and cell heterogeneity explore the establishment of genetic
networks that maintain cell diversity (Table 3).

CONCLUSION

Single-cell sequencing has opened up a new field to study
different cell subtypes and genetic markers, and reveal the
development mechanism and therapeutic targets of retinal-
related diseases, and established itself as a valuable and unique
tool to further study retinal tissue at the cellular level.

Single-cell sequencing can be used to study the classification of cell
types and subtypes in the retina at the transcriptome level, and can
help solve the heterogeneity and molecular complexity of the retina.
An ideal scRNA-seq method can be used to analyze all coding and
efficient non-coding cell transcripts, and even reveal subtle changes in
gene expression. The past decade has witnessed significant
technological development ever since the first scRNA-seq protocol
was published in 2009 (Baden et al., 2016). With the steady decline in
sequencing costs and the introduction of methods to significantly
increase production every year, the genome, transcriptome,
epigenome, and proteome of millions of cells can be sequenced
simultaneously in the near future (Benowitz et al., 2017).

The main remaining problem is the challenge of efficiently
separating individual cells from biological samples and analyzing
large amounts of sequencing data. The close combination of scRNA-
seq and bioinformatics technology can provide a powerful detection
method to reveal the gene regulatory networks during cell
development and differentiation. At present, the application of
scrNA-seq in ophthalmic research is still limited. With the
continuous progress of the technology, it may be rapidly
expanded to the research of ocular diseases in the next few years.
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Imaging genetics combines neuroimaging and genetics to assess the relationships
between genetic variants and changes in brain structure and metabolism. Sparse
canonical correlation analysis (SCCA) models are well-known tools for identifying
meaningful biomarkers in imaging genetics. However, most SCCA models incorporate
only diagnostic status information, which poses challenges for finding disease-specific
biomarkers. In this study, we proposed a multi-task sparse canonical correlation
analysis and regression (MT-SCCAR) model to reveal disease-specific associations
between single nucleotide polymorphisms and quantitative traits derived from multi-
modal neuroimaging data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort. MT-SCCAR uses complementary information carried by multiple-perspective
cognitive scores and encourages group sparsity on genetic variants. In contrast
with two other multi-modal SCCA models, MT-SCCAR embedded more accurate
neuropsychological assessment information through linear regression and enhanced
the correlation coefficients, leading to increased identification of high-risk brain regions.
Furthermore, MT-SCCAR identified primary genetic risk factors for Alzheimer’s disease
(AD), including rs429358, and found some association patterns between genetic
variants and brain regions. Thus, MT-SCCAR contributes to deciphering genetic risk
factors of brain structural and metabolic changes by identifying potential risk biomarkers.

Keywords: imaging genetics, sparse canonical correlation analysis, magnetic resonance imaging, positron
emission tomography, single nucleotide polymorphisms, multi-task learning

INTRODUCTION

Imaging genetics has recently emerged as a method for investigating imaging and genetic
biomarkers related to diseases such as Alzheimer’s disease (AD) (Bogdan et al., 2017). Identified
neuroimaging and genetics biomarkers can provide a complementary understanding of the brain’s
structure and metabolism (Zhang et al., 2011). Moreover, the vast amounts of diagnostic and
neuropsychological information from various perspectives enable the discovery of disease-specific
biomarkers. Therefore, it is essential to simultaneously analyze multiple neuroimaging techniques,
such as magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography
(FDG-PET), genotyping, and clinical diagnostic data. In this study, we aimed to build a model to
identify disease-specific biomarkers across multiple imaging modalities, which can be used as an
effective clue for disease diagnosis and targeted therapy.
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Numerous studies have attempted to identify the associations
between genotypic data such as single nucleotide polymorphisms
(SNPs) and neuroimaging quantitative traits (QTs) (Rasetti and
Weinberger, 2011). Because genotypic data and imaging QTs
are multivariate, several bi-multivariate methods have been
proposed to better characterize their associations. Liu et al.
explored parallel independent component analysis (PICA) to
detect the associations between brain function and genetic
variants. However, this method cannot restore meaningful SNPs
and regions of interest (ROIs), which has led to a lack of
reasonable biomarker interpretation (Liu et al., 2009). Sparse
canonical correlation analysis (SCCA) has a strong capability
for bi-multivariate association identification and interpretable
variable selection. Accordingly, many efforts have attempted to
apply SCCA to neuroimaging genetics. Boutte et al. introduced
an SCCA model with least absolute shrinkage and selection
operator (LASSO) constraints on neuroimaging genetics data
fusion (Boutte and Liu, 2010). Hao et al. presented a multi-view
SCCA model to establish associations between SNPs, QTs, and
cognitive outcomes (Hao et al., 2017). However, these multi-
view SCCA models are a simple extension to conventional SCCA
models. The requirement that SNP canonical weight vectors
associate with all modal data is too strict, and could result in
not making full use of all modal information. To address this
limitation, Du et al. developed a multi-task SCCA model that
could be used to jointly analyze SNPs and multiple neuroimaging
data by treating each association as an individual learning task
(Du et al., 2021). However, this model’s neglect of diagnostic
information means that biomarkers identified by these multiple-
data models may not be sufficiently disease-specific.

To detect more complex and meaningful associations, studies
to date have applied diagnostic information into SCCA methods
(Yan et al., 2018; Du et al., 2020). Yan et al. proposed an outcome-
relevant SCCA model based on a subject similarity matrix (Yan
et al., 2018). Du et al. integrated multi-task SCCA and logistic
regression in a sophisticated model to identify robust disease-
related imaging and genetic patterns by incorporating diagnostic
status information (Du et al., 2020). Classified diagnostic
information, such as AD, mild cognitive impairment (MCI),
and healthy control (HC), facilitates the association between
SNPs and QTs; however, roughly dividing the disease stages does
not provide any more accurate information than do continuous
neuropsychological assessments measured from different angles.

To address the above problems, we proposed a novel SCCA
model with the capacity to extract disease-specific biomarkers
across multiple neuroimaging modalities. The proposed multi-
task sparse canonical correlation analysis and regression (MT-
SCCAR) model integrates multi-task SCCA and multi-task linear
regression in a fused model and uses multiple cognitive scores
(CSs) as auxiliary information to induce associations between
SNPs and QTs. Multi-task sparse canonical correlation analysis
and regression considers the relationships within subjects from
different disease courses and can find disease-specific biomarkers.
We also considered underlying hierarchical information among
SNPs by modeling structural relationships as divided by gene
or by linkage disequilibrium (LD) in a group sparsity penalty.
To evaluate MT-SCCAR’s effectiveness, we performed extensive

experiments to find associations between SNPs and two imaging
QTs, including gray matter density and standard uptake value
ratio (SUVR) extracted from MRI and positron emission
tomography (PET), respectively. Compared with the other two
multi-modal SCCA models that used real Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort data, MT-SCCAR not
only outperformed these models in its ability to identify genetic
AD risk factors, but also detected robust AD brain risk regions
across multiple neuroimaging modalities. Thus, our proposed
model has the potential to understand disease mechanisms from
both structural and metabolic perspectives.

MATERIALS AND METHODS

Data Sources and Preprocessing
Real neuroimaging and genetic data used in this study were
obtained from the ADNI1 database. A total of 305 non-Hispanic
Caucasian subjects with genotype, neuroimaging, and cognitive
assessment data at the ADNI1 baseline were downloaded from
the LONI website,1 including 83 HC, 148 MCI, and 74 AD
subjects. The Mini-Mental State Examination (MMSE) is a
numeric scale to test cognitive functions, including attention,
calculation, and responsiveness to simple commands (Tombaugh
and McIntyre, 1992). The Functional Activities Questionnaire
(FAQ) evaluates instrumental activities of daily life, such as
financial management and meal preparation (Teng et al., 2010).
The Alzheimer’s Disease Assessment Scale Cognitive Subscale
(ADAS-Cog) mainly measures cognitive ability such as word
recall, comprehension of spoken language, and orientation (Cano
et al., 2010). Table 1 shows the characteristics of the subjects.

Genotyping Data and Processing
Genotypes for 305 subjects were performed using the Illumina
HumanHap610-Quad BeadChips from the ADNI1 database. The
SNP data were lifted to hg19 build using lift over tool (Kent et al.,
2002). To get pure SNP data, we used a genetic analysis tool
PLINK (Purcell et al., 2007) to filter the SNPs using the following
quality control criteria: gender check, sibling pair identification,
call rate check (<90%) per subject and SNP marker, the Hardy-
Weinberg Equilibrium (HWE p < 10–6), and marker removal
by the minor allele frequency (MAF < 0.05), SNP data were
further imputed using Michigan imputation server to estimate

1http://adni.loni.usc.edu/

TABLE 1 | Characteristics of the subjects.

Subjects HC MCI AD

Number 83 148 74

Gender(M/F) 50/33 98/50 39/35

Age(mean ± std) 77.76 ± 4.59 76.62 ± 6.92 76.96 ± 6.91

Education(mean ± std) 15.68 ± 3.09 15.88 ± 2.77 14.27 ± 3.37

MMSE (mean ± std) 29.18 ± 1.11 26.09 ± 3.14 20.57 ± 3.20

FAQ (mean ± std) 0.54 ± 1.25 6.62 ± 8.96 19.75 ± 3.50

ADAS-Cog(mean ± std) 6.00 ± 2.89 13.72 ± 3.03 26.09 ± 11.64
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FIGURE 1 | The numbers of SNPs belonging to each AD risk gene used in this study.

FIGURE 2 | Schematic illustration of MT-SCCAR.
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the missing genotypes based on the HRC r1.1 2016 panel (Das
et al., 2016). The post-imputation quality control used the
rsq > 0.3 and MAF of 0.1 (Li et al., 2010).

Since our study focused on the top 20 AD risk genes
listed on the AlzGene database2 and references (Tanzi et al.,
2007; Wang et al., 2012a). After imputation, we selected all
the SNPs within ± 5k base pairs of the gene boundary using
the ANNOVAR annotation (Wang et al., 2010). The above
procedures yielded 3793 SNPs belonging to the top 20 risk genes.
Figure 1 presents the AD risk genes and the number of pre-
selected SNPs. Moreover, considering the structural relationship
among SNPs, we used Haploview (Barrett et al., 2004) to divide
the LD block using the LD-Spline algorithm with D

′

> 0.8,
resulting in 209 blocks containing 3770 SNPs. A total of 894 tag
SNPs were also assigned by Haploview in pairwise mode and an
r2 threshold was set to 0.8. These tagged SNPs represented the
genetic variation across a particular region and could facilitate
the association study (Montpetit et al., 2006). Furthermore, each
SNP value was coded in an additive fashion to reflect the number
of minor alleles.

Neuroimaging Data and Processing
The baseline 1.5T MRI scans were aligned to the standard
Montreal Neurological Institute (MNI) space, resampled to
2 × 2 × 2 mm3 voxels, registered by SPM software package
(Ashburner and Friston, 2007). Then, we extracted the gray
matter tissue from the MRI scans and calculated mean gray
matter densities of 116 ROIs based on MarsBar AAL atlas
(Tzourio-Mazoyer et al., 2002). After removing 26 ROIs of the
cerebellum, mean gray matter densities of 90 ROIs were used as
QTs in our study.

The FDG-PET scans were co-registered to each subject’s same
visit MRI scans and normalized to MNI space by SPM tool.
We further excluded white matter regions by masking the PET
with gray matter masks obtained by the segmentation of the
same subject’s co-registered MRI. Then, the PET scans were
normalized into the cerebellar gray matter reference region
defined on the AAL atlas to generate SUVR images. After this,
we used SUVR of 90 ROIs as QTs in our study by removing the
26 ROIs of cerebellum. Moreover, all the QTs were adjusted to
exclude the influence of gender, age, and education.

Methods
In this paper, we denote lowercase letters as vectors, uppercase
letters as matrices. ||x||2 denotes the Euclidean norm, ||X||2,1
denotes the sum of the Euclidean norms of the rows of X,
and ||X||1,1 denotes the absolute sum of all elements of X.

The CS-Related Features Selection Model for
Imaging Genetics
Assuming that there are n subjects with pSNPs, qROIs from
M imaging modalities, and G different cognitive outcomes.
We used X ∈ Rn × p,Ym ∈ Rn × q (m = 1, ..., M), and
zg ∈ Rn × 1 (g = 1, ..., G

)
to represent genetic data, multiple

imaging data, and cognitive scores, respectively. The basic

2www.alzgene.org

principle of MT-SCCAR is to find U ∈ Rp × M and V ∈ Rq × M

to maximize the correlation between Xum and Ymum,
where uim indicates the weight of the ith SNP for the mth
modality, and vjm indicates the weight of the jth ROI for the
mth modality. To identify imaging genetic biomarkers that
are relevant to CS and disease, the multi-task linear regression
objective was combined with the multi-task SCCA (MTSCCA)
objective, which can be formulated as:

min
U,V

LR (V)+ LSCCA (U,V)+� (U)+� (V) . (1)

The above model consists of four parts, LR (V) detects
disease-relevant imaging QTs. LSCCA (U,V) captures the bi-
multivariate associations between SNPs and multiple imaging
QTs. � (U) and � (V) are the regularization terms to enforce
sparsity of U and V , so only a small number of interpretable
variables can be selected. This model integrates the advantages
of MTSCCA and linear regression, which has a certain
superiority in using complementary cognitive information.
Figure 2 provides a schematic overview of MT-SCCAR. SNPs
were classified into the same group by either gene or LD.
Accordingly, SNPs with gene or LD information and tagSNPs
were input to the SCCA component separately, which was
used to establish the relationships between genetic data and
multiple imaging data. The linear regression component was
used to introduce CSs into the SCCA part. The multi-task
modeling method guaranteed the ability to process multiple
imaging and CS data. Unlike conventional unsupervised SCCA
models, MT-SCCAR is a supervised SCCA model, which
considers the relationships within subjects from different
disease courses.

The Linear Regression Model for CS-QT Associations
In the proposed model, the associations between CSs and
multi-modal neuroimaging QTs were established by multi-task
regression. For each task, we built a regression model for
revealing CS-related neuroimaging QTs:

LR (V) =
∑M

m = 1

∑C

c = 1

∑n

l = 1

∣∣∣∣∣∣vT
my

l
m − zlc

∣∣∣∣∣∣2
2
, (2)

TABLE 2 | Specific procedure of MT-SCCAR algorithm.

Algorithm: MT-SCCAR algorithm

Input: The genetic data X ∈ Rn × p, the neuroimaging data
Y ∈ Rn × q of M modalities, and the CS data Z ∈ Rn × C.
λu1, λu2, λu3, λv1, λv2, γu, andγv.

Ensure: canonical weights Vand U

1: While not converged regarding toV, U do

2:Update the diagonal matrix Dv1 and Dv2;

3:Solve vmaccording to Equation (12);

4:Normalize vm so that ||Yvm||
2
2 = 1;

5:Update the diagonal matrix Du1, Du2 and Du3;

6:Solve U according to Equation (15);

7:Normalize um so that ||Xum||
2
2 = 1;

8: End while
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where M is the number of neuroimaging modalities, C is the
number of cognitive assessments, and n is the total amount
of subjects. vm is the canonical weight of QTs for the mth
modalities,ylm is the neuroimaging data vector of the lth subjects
for the mth modalities, and zlc is the score of the lth subjects for
the cth cognitive assessments. This multi-task regression model
can jointly utilize neuropsychological assessments from different
complementary perspectives.

The MTSCCA Model for SNP-QT Associations
Unlike conventional multi-view SCCA models, MTSCCA learns
multiple SCCA tasks together by treating each imaging modality
association model as a task. This model was proposed by Du et al.
(2021) and can be defined as:

min
um,vm

∑M

m = 1
−uT

mX
TYmvm s.t. ||Xum||22 = 1, ||Ymvm||22

= 1, ∀m. (3)

For canonical weights U and V , each column um and vm
represents an individual learning task for different modalities.
The main advantage of this multi-task strategy is that SNP
canonical weight vectors do not need to be associated with
all imaging modalities simultaneously. Each task focuses
on identifying SNPs that are associated with only one
imaging modality.

The Regularization Terms
Multiple neuroimaging modalities can provide more
comprehensive information in terms of both structural and
functional perspectives. In our model, two principal tasks
corresponded to two neuroimaging modalities. MT-SCCAR
should be able to identify neuroimaging QTs shared among
multiple modalities and to enforce individual level sparsity.
Hence, � (V) was composed of two parts, which can be defined
as:

� (V) = λv1||V||2,1 + λv2||V||1,1, (4)

where λv1 and λv2 are positive parameters and can be tuned via
cross-validation.

The first penalty was defined as:

||V||2,1 =
∑q

i = 1

√∑M

m = 1
V2
i,j =

∑q

i = 1

∣∣∣∣V i,:
∣∣∣∣

2, (5)

This term aims to enforce task-consistent (modality-consistent)
sparsity on V , which encourages multi-modal imaging QTs to
share similar canonical weights.

The second penalty was defined as:

||V||1,1 =
∑q

j = 1

∑M

m = 1

∣∣vjm∣∣, (6)

This term indicates the absolute sum of all elements of V , which
helps to screen the entire ROIs to find the relevant ROIs.

Similarly, the regularization terms of U also include the above
two penalties, which can help discover SNPs that may affect
multiple brain regions. It is common knowledge that some
SNPs located in the same gene or LD block often have similar

functions and are jointly related to specific ROIs. It is essential
to model underlying hierarchical information among SNPs by
adding an extra penalty. Therefore, we defined � (U) as follows:

� (U) = λu1||U||2,1 + λu2||U||1,1 + λu3||U||G, (7)

where λu1, λu2, and λu3 are positive parameters, the
third penalty (Wang et al., 2012a) can be formulated as:

||U||G =
∑K

k = 1

√∑
i∈gk

∑M

j = 1
u2
ij, (8)

where K denotes the number of groups divided by
gene or LD. This penalty penalizes canonical weights
as a whole for each task and thus can fully use the
structural information.

The Optimization Algorithm
In order to address the problem defined in Equation (1),
according to the method that has been well studied previously
(Du et al., 2021), we can rewrite Equation (1):

min
U,V

∑M

m = 1

∑C

c = 1

∑n

l = 1

∣∣∣∣∣∣vT
my

l
m − zlc

∣∣∣∣∣∣2
2
+

∑M

m = 1
||Xum−Ymvm||22+

λv1||V||2,1 + λv2||V||1,1 + λu1||U||2,1 + λu2||U||1,1+

λu3||U||G s.t. ||Xum||22 = 1, ||Yvm||22 = 1, ∀m. (9)

We then use the Lagrange multiplier to solve this problem
by taking the partial derivatives of Equation (9) regarding um
andvm separately, which can change the formula from non-
convex to convex.

First, we treat U as constant, the Lagrange multiplier of
Equation (9) can be simplified as:∑M

m = 1

∑C

c = 1

∑n

l = 1

∣∣∣∣∣∣vT
my

l
m − zlc

∣∣∣∣∣∣2
2
+∑M

m = 1
||Xum−Ymvm||22+

λv1||V||2,1 + λv2||V||1,1 + γv
∑M

m = 1
||Ymvm||22 (10)

by dropping the constant terms, and γv is a positive parameter.
For each vm, We further take the partial derivatives of Equation
(10) and let the result be zero:

YT
mYmvm −

∑C

c = 1
YT
mzc − YT

mXum + λv1Dv1vm + λv2Dv2vm

+ (γv + 1)YT
mYmvm = 0, (11)

where Dv1 is a diagonal matrix with the ith element as 1
2||vi,:||2

(i ∈[
1, q

]
), and Dv2 is a diagonal matrix with ith element as

1
2||vim||2

(i ∈
[
1, q

]
, and m ∈ [1,M]). Obviously, we can take an
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iterative rule to solve this problem since both Dv1 and Dv2 are
rely on canonical weights V . This rule can be formulated as:

vm =
(
YT
mYm + λv1Dv1 + λv2Dv2 + (γv + 1)YT

mYm

)−1

(∑C

c = 1
YT
mzc+Y

T
mXum

)
. (12)

Then, we treat V as a constant, the Lagrange multiplier of
Equation (9) can be simplified as:∑M

m = 1
||Xum−Ymvm||22+λu1||U||2,1 + λu2||U||1,1+

λu3||U||G + γu ||Xu||22 (13)

by dropping the constant terms, and γu is also a positive
parameter. Similar to vm, for U , we let the partial derivatives of
Equation (13) to be zero:

−XTY+ λu1Du1U + λu2Du2U + λu3Du3U + γuXTXU = 0,
(14)

whereDu1 is a diagonal matrix with the ith element as 1
2||ui,:||2

(i ∈[
1, p

]
), Du2 is a diagonal matrix with ith element as 1

2||uim||2
(i ∈[

1, p
]
, and m ∈ [1,M]), Du3 is a block diagonal matrix with

element as 1
2||Uk,:||F

Ik(k ∈ [1,K]), Ik is an identity matrix of the

same size with kth SNP groups, and Y = [Y1v1Y2v2...Ymvm].
Hence, the iterative rules can be formulated as:

U = (λu1Du1 + λu2Du2 + λu3Du3 + (γu + 1)XTX)
−1

XTY.
(15)

Based on the above analysis, the optimization algorithm of the
proposed method is shown in Table 2. We can update V and U
alternatively in each iteration until the predefined convergence
criterion is satisfied.

RESULTS AND DISCUSSION

Experimental Settings
To comprehensively evaluate the effectiveness of our proposed
MT-SCCAR model, two similar models that can analyze multi-
modal data were compared with MT-SCCAR. They are three-
view SCCA (TSCCA) and MTSCCA. Three-view SCCA can
process neuroimaging, genetics, and cognitive scores data by
extending conventional two-view association to three data types.
MTSCCA was used to evaluate the regression part of our
proposed model performance.

There are seven parameters in our model. Tuning all
these parameters will pay a high cost. In our experiment,
we fixed γu and γv to 1 since they mainly control the
amplitude of V and U (Chen and Liu, 2011). To tune these

FIGURE 3 | Comparison of CCCs under various noise levels for three models.

Frontiers in Genetics | www.frontiersin.org 6 August 2021 | Volume 12 | Article 706986124

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-706986 July 31, 2021 Time: 12:54 # 7

Ke et al. Identification of Imaging Genetics Biomarkers

FIGURE 4 | Comparison of canonical weights on synthetic data with the high noise level. (A) The ground truth canonical weights. (B) The estimated canonical
weights of TSCCA. (C) The estimated canonical weights of MTSCCA. (D) The estimated canonical weights of the proposed model.

parameters to appropriate values, we adopted a nested five-
fold cross-validation strategy. Specifically, we tuned them
in the range of

{
10−3, 10−2, 10−1, 1, 10, 102, 103} until

the highest mean testing canonical correlation coefficients
(CCCs) was generated in the inner loop. CCC was defined
as the Pearson correlation coefficient between Xu and
Yv, and can be used as a quantitative measure of SCCA
model performance (Hao et al., 2017). For multi-task
learning, CCC can be calculated by corr (Xmum,Ymvm)

for mth task. Also, we terminated the iteration when
both max

∣∣∣u(t+1)
i − uti

∣∣∣ ≤ 10−5 and max
∣∣∣v(t+1)

j − vtj
∣∣∣ ≤ 10−5

were satisfied. All models in our experiment have taken the same
parameter adjustment steps.

Results on Synthetic Data
We generated ten synthetic datasets with the same ground truth
of loading vectors but different noise levels. Assuming that X ∈
Rn × p,Y ∈ Rn × q, and Z ∈ Rn × q denote SNP, MRI, and PET
for all synthetic data sets, respectively. X was generated by
X = ul+ e,Y was generated byY = vl+ e, andZ was generated
by Z = wl + e, where u, v, and ware known loading vectors, l
is a latent vector with a 3-component Gaussian distribution to

simulate the disease course (Yan et al., 2018), and e is derived
from the Gaussian distribution N

(
0, σ2

e
)

with σ2
e as the noise

variance. In our study, n, p, and q were set to 90, 100, and 90,
respectively. All the 90 samples were classed into three groups
with centers -5, 0, 5. For neuropsychological assessment data, c
was generated by c = l + e. To assess the model performance
at various noise levels, we tested different noise variances ranging
from 1 to 10, with a step size of 1. The five-fold cross-validation
results are shown in Figures 3, 4.

Figure 3 plots the testing CCC for three models with
changing noise levels. Higher CCC indicates better performance
in identifying underlying associations. As expected, the
performance decreased with increased noise levels for all models.
All three models performed similarly well at low noise levels.
Models with the multi-task framework (MTSCCA, MT-SCCAR)
performed better than TSCCA at medium noise levels. Then MT-
SCCAR outperformed the other two models as the noise level
was further increased, suggesting that MT-SCCAR had a strong
ability to resist noise. Figure 4 shows the true signal of canonical
weights and canonical weights estimated by three models with
a noise level of 10. Important features were highlighted in the
heatmaps displaying ground truth. We could clearly observe
that the weight u estimated by MTSCCA was ambiguous. It was
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therefore difficult to recognize important features. TSCCA did
not identify complete important features. MT-SCCAR estimated
the best canonical weights that were consistent with the ground
truths. These results implied that the proposed model had the
potential to extract important features in real neuroimaging
genetics studies.

Results on Neuroimaging and Genetics
Data
In real neuroimaging genetics data application, all subjects with
SNP, MRI, PET, and three different cognitive information data
were inputted into MT-SCCAR.A total of 3793 SNPs with
LD or gene group information and 894 tag SNPs were used
separately. The group sparsity penalty treated each tagSNP as
an individual group. We then averaged the CCCs based on five-
fold cross-validation, representing the mean strength of identified
associations between SNPs and two imaging QTs.

As illustrated in Table 3, TSCCA achieved the highest training
CCCs but performed poorly in testing CCCs. These unreasonable
results may be caused by overfitting (Du et al., 2021). Multi-
task sparse canonical correlation analysis and regression achieved
the highest testing CCCs on both MRI and PET. Specifically,

TABLE 3 | Comparison of canonical correlation coefficients (mean ± std) in terms
of each model.

Training CCCs Testing CCCs

SNP-MRI SNP-PET SNP-MRI SNP-PET

TSCCA 0.82 ± 0.01 0.82 ± 0.01 0.21 ± 0.05 0.23 ± 0.03

MTSCCA 0.55 ± 0.05 0.46 ± 0.11 0.21 ± 0.03 0.30 ± 0.06

Proposed (LD) 0.55 ± 0.01 0.48 ± 0.01 0.34 ± 0.04 0.36 ± 0.05

Proposed(gene) 0.56 ± 0.02 0.47 ± 0.01 0.22 ± 0.02 0.39 ± 0.03

Proposed(tagSNP) 0.60 ± 0.03 0.52 ± 0.01 0.26 ± 0.05 0.27 ± 0.04

The best correlation coefficients are shown in boldface.

MT-SCCAR (LD) and MT-SCCAR (gene) achieved the highest
testing CCC on SNP-MRI association and SNP-PET association,
respectively. Notably, MT-SCCAR (gene) achieved relatively
small testing CCC on SNP-MRI association; MT-SCCAR (LD)
achieved a more balanced result than those of MT-SCCAR
(gene), which indicates that using LD group information is
more beneficial than using gene group information. The training
CCCs of MT-SCCAR with tagSNP were higher than those of
MT-SCCAR with group information since the different numbers

FIGURE 5 | Comparison of estimated canonical weights of imaging QTs. Each row represents: (1) TSCCA; (2) MTSCCA; (3) Proposed (LD); (4) Proposed (gene); (5)
Proposed (tagSNP). Within each row, there are two parts represent two imaging modalities.
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TABLE 4 | The top ten selected ROIs by the proposed model.

MRI PET

Hippocampus_R Cingulum_Post_R

Amygdala_R Angular_R

Caudate_R Hippocampus_R

Angular_R Hippocampus_L

ParaHippocampal_R Caudate_R

Lingual_R Caudate_L

Cingulum_Post_L Cingulum_Post_L

Cuneus_L Frontal_Inf_Oper_L

Hippocampus_L Thalamus_L

Frontal_Inf_Oper_L ParaHippocampal_R

The jointly selected ROIs are shown in boldface.

of SNPs were used. Moreover, MTSCCA also performed better
than TSCCA, which means the superiority of multi-task models
when dealing with multiple imaging QTs and genetic data.

The Top Selected ROIs
In addition to the CCCs, the canonical weights were also one of
the focuses of our study since they can help us find brain regions
being highly related to AD. Figure 5 shows the comparison of
mean canonical weights of two imaging QTs based on five-fold
cross-validation trials. Each row represents an SCCA model. The

heatmap color represents the estimated weight of each model, so
the selected QTs were highlighted in Figure 5. We can clearly
observe that several brain regions were selected by both MRI and
PET scans, such as the right hippocampal and the right angular
gyrus, indicating that these regions may be modality-consistent.
Additionally, TSCCA identified only modality-consistent QTs
but failed to identify modality-specific QTs. This was due to
the nature of its modeling strategy and may have resulted
in crucial biomarkers being ignored. Multi-task models can
identify modality-specific and modality-consistent QTs, which
also implied the limitations of conventional multi-view SCCA
models. In order to more accurately analyze the identified brain
regions, using the proposed model with LD group information,
the top ten ROIs of each modality were selected and sorted
according to the absolute values of canonical weights.

As shown in Table 4, ROIs that were jointly selected by two
imaging modalities are shown in boldface, all of which are known
to be closely related to the pathogenesis of AD according to
previous research. The hippocampus is essential for forming new
memories and was reported as one of the earliest affected brain
regions in AD and MCI (Moreno-Jimenez et al., 2019). Both left
and right caudate nucleus have been reported that their volume is
significantly different between AD and normal control (Cho et al.,
2014; Botzung et al., 2019). The right angular gyrus is considered
to be closely related to language ability, and patients with angular
gyrus syndrome are often found to have damage in this brain

FIGURE 6 | (A) Comparison of the classification accuracy of the selected imaging QTs by support vector machine (SVM). (B) Comparison of the classification
accuracy of the selected imaging QTs by random forest (RF).
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TABLE 5 | The top ten selected SNPs.

TSCCA MTSCCA Proposed (LD) Proposed (gene) Proposed (tagSNP)

rs735780 rs769449 rs769449 rs7256200 rs117641527

rs405509 rs7256200 rs7256200 rs10414043 rs8012948

rs578506 rs10414043 rs10414043 rs769449 rs1884910

rs4904901 rs4904901 rs4901317 rs7157639 rs78015388

rs7157639 rs61975596 rs429358 rs405509 rs2598123

rs429358 rs7794735 rs4904901 rs4904901 rs4335936

rs4257390 rs55636820 rs7157639 rs429358 rs59325138

rs7412 rs77640937 rs449647 rs75773078 rs439401

rs7794735 rs34273097 rs11629428 rs11629428 rs112097633

rs10256195 rs9972149 rs3829947 rs4901317 rs429358

FIGURE 7 | Comparison of the RMSE with respect to different numbers of SNPs from 100 to 1000. (A) QT of left hippocampus based on MRI scan. (B) QT of right
hippocampus based on MRI scan. (C) QT of left hippocampus based on PET scan. (D) QT of right hippocampus based on PET scan.

area (Horwitz et al., 1998). The right parahippocampal gyrus
affects the encoding and maintenance of bound information
related to working memory (Luck et al., 2010). The metabolic
reduction in the posterior cingulate gyrus is a very early sign in
AD (Minoshima et al., 1997). Notably, all the remaining brain
regions have also been reported to be associated with AD in
published literature. These satisfactory results were due to the
inclusion of cognitive information into the linear regression to
adjust weighting.

In order to further thoroughly verify that the neuroimaging
biomarkers found by the proposed model are more disease-
related than those found by the other two models. Selecting
the top ten QTs as input features, support vector machine

(SVM) with Gaussian radial basis function (RBF) kernel and
random forest (RF) were adopted as classification methods. The
parameters were tuned with five-fold cross-validation based on
the training sets. Figure 6 presents the classification accuracies
of the two classifiers. The testing classification results showed
that the classifier using the features selected by MT-SCCAR
achieved the highest accuracies, thus indicating the superiority of
MT-SCCAR in identifying disease-related biomarkers. Notably,
the testing classification accuracies were relatively low for both
SVM and RF, probably due to inevitable noise during the
feature extraction process of brain imaging. These results were
also consistent with previous studies (Wang et al., 2012b;
Adeli et al., 2017).
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FIGURE 8 | (A) The heatmap of pairwise correlations between SNPs and ROIs of MRI scan. (B) The heatmap of pairwise correlations between SNPs and ROIs of
PET scan.

TABLE 6 | The correlation coefficients and p-values of eight SNP-ROI pairs.

SNP-ROI pairs Correlation coefficient p-value

rs4904901-Angular_R(MRI) −0.189 0.002

rs4904901- Angular_R(PET) 0.180 0.003

rs7157639-Hippocampus_R(MRI) 0.176 0.003

rs7157639-Cingulum_Post_R(PET) 0.204 0.001

rs11629428-Hippocampus_L(MRI) 0.218 0.0003

rs11629428- Cingulum_Post_R(PET) 0.171 0.004

rs3829947- Angular_R(MRI) 0.078 0.067

rs3829947- Hippocampus_L(PET) 0.135 0.025

The Top Selected SNPs
In addition to neuroimaging biomarkers, SCCA models can also
identify genetic biomarkers. We averaged the SNP canonical
weights into a single vector and selected the top ten SNPs. As
illustrated in Table 5, the proposed model with LD or gene
group information yielded meaningful results. For example,
rs769449 (APOE) is located in promoter and enhancer areas
for multiple brain tissues and is associated with AD (Liu
et al., 2018). Moreover, the well-known AD risk biomarker
rs429358 (APOE) was also identified by the proposed model,
demonstrating its strong correlation ability. The remaining five
SNPs of the proposed model, i.e., rs7256200 (3.3 kb of APOE),
rs10414043 (3kb of APOE), rs4901317 (FERMT2), rs449647 (0.5
kb of APOE), and rs405509 (0.2 kb of APOE), have also been
documented to increase the risk of AD in previous studies
(Lin et al., 2017; Xiao et al., 2017). However, four selected
SNPs have not yet been reported to be related to AD. They
still need further research to confirm in the future. Next, we
compared the top ten SNPs identified by MT-SCCAR (LD
and gene) with the 894 tagSNPs. Interestingly, MT-SCCAR
(LD) identified six tagSNPs (rs7256200, rs4901317, rs429358,
rs7157639, rs449647, and rs3829947). Multi-task sparse canonical
correlation analysis and regression (gene) identified five tagSNPs
(rs7256200, rs7157639, rs405509, rs429358, and rs4901317). This
implied that using tagSNP will reduce the number of SNPs
that need to be analyzed and facilitate identifying significant

SNPs. The proposed model with tagSNP also identified some
significant SNPs. For example, rs59325138 (3.6 kb of APOE) has
been reported to modify the cerebrospinal fluid apolipoprotein
E protein levels (Cervantes et al., 2011). The Beta-Amyloid (1-
42), an AD biomarker, is associated with rs439401 (1.8kb of
APOE) (Xu et al., 2014). The TSCCA identified the rs4292358
and three other SNPs (rs405509, rs7412, and rs7794735) that have
been reported previously (Arking et al., 2008; Ma et al., 2016;
Zhen et al., 2017). The MTSCCA also identified four SNPs
(rs769449, rs7256200, rs10414043, and rs7794735) but cannot
identify rs429358. In summary, the proposed model was more
accurate for identifying disease-specific genetic biomarkers than
the other two models.

Alzheimer’s disease (AD) usually first affects the hippocampus,
resulting in cognitive decline and memory loss (Moreno-Jimenez
et al., 2019). Therefore, when selecting the same number of
features, the predictive effect of the QTs of the hippocampus
can be used to evaluate model performance. Based on this
analysis, we built a regression model to predict the QTs of
the hippocampus from MRI and PET scans. Different numbers
of SNPs were selected from 100 to 1000 with a step of 100.
Using a support vector machine (SVR) with RBF kernel, we
calculated the average root mean squared error (RMSE) for each
model based on five-fold cross-validation. For a fair comparison,
we only compared TSCCA, MTSCCA, MT-SCCAR (gene), and
MT-SCCAR(LD) since MT-SCCAR (tagSNP) used only 894
tagSNPs. Figure 7 shows the testing RMSE of the left and right
hippocampus obtained by different imaging techniques. Smaller
RMSE indicates that the selected SNPs are more related to AD.
According to Figure 7, the prediction errors were lowest for the
proposed model. These results suggested that the proposed model
outperformed the other two models on four imaging QTs.

Pairwise Correlation Analyses
Based on the top ten selected ROIs and SNPs obtained by the
proposed model with LD group information, we drew heatmaps
of pairwise correlation coefficients between SNPs and two
imaging QTs. As illustrated in Figure 8, it is clearly observed that

Frontiers in Genetics | www.frontiersin.org 11 August 2021 | Volume 12 | Article 706986129

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-706986 July 31, 2021 Time: 12:54 # 12

Ke et al. Identification of Imaging Genetics Biomarkers

the selected SNPs were mainly located in and around the APOE
region. APOE is the major genetic risk factor for AD (Munoz
et al., 2019). Moreover, the association patterns of SNPs and ROIs
selected by MRI and PET were very similar, which indicated the
ability of our model to identify modality-consistent biomarkers.

To gain more insight, we further analyzed four undocumented
SNPs (rs4904901, rs7157639, rs11629428, and rs3829947)
identified by MT-SCCAR with LD group information. The
imaging QTs which had the strongest association with these
four SNPs were singled out. Consequently, a total of eight SNP-
ROI pairs were generated to validate the proposed model. These
associations can also allow us to explore relationships from
the microscopic molecular level to the macroscopic brain level.
Table 6 shows the Pearson correlation coefficients and p-values
of eight SNP-ROI pairs. The p-values of all eight pairs were
small, indicating a significant correlation within each pair. For
rs4904901,it was correlated strongest with the same brain region
across both imaging modalities, which suggests it is a modality-
consistent association pattern. For the rest of the SNPs, the
heterogeneous association patterns may have great potential to
help us understand how changes in molecular level influence
brain structure and metabolic.

CONCLUSION

In this paper, we proposed the MT-SCCAR model to investigate
potential neuroimaging and genetic biomarkers. Compared with
TSCCA and MTSCCA, the proposed model integrated genotype,
multiple neuroimaging, and neuropsychological assessments into
a single model to analyze multi-modal information. We tested
our model on synthetic and ADNI data sets and compared its
association results with those of TSCCA and MTSCCA. We
found that our model demonstrated higher CCCs of 0.34 ± 0.04
(LD) and 0.39± 0.03 (gene) compared with the CCCs of TSCCA
(0.23 ± 0.03) and MTSCCA (0.30 ± 0.06). Moreover, MT-
SCCAR identified a small number of SNPs from enormous SNPs
that were related to AD, wherein all of the top ten selected ROIs
were AD brain risk regions. These satisfactory results show that
MT-SCCAR outperforms TSCCA and MT-SCCA in detecting
disease-specific biomarkers on multi-modal data.

The proposed model incorporates SNPs, neuroimaging
measurements, and cognitive scores. However, there are a

number of biological pathways that correlate with structural
changes in the brain. Therefore, future efforts should aim to
integrate data across more levels (i.e., gene expression, cell, and
DNA methylation) for a more sophisticated understanding of the
biological pathways leading from gene to disease.
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Identification of essential proteins is very important for understanding the basic
requirements to sustain a living organism. In recent years, there has been an increasing
interest in using computational methods to predict essential proteins based on protein–
protein interaction (PPI) networks or fusing multiple biological information. However, it
has been observed that existing PPI data have false-negative and false-positive data.
The fusion of multiple biological information can reduce the influence of false data
in PPI, but inevitably more noise data will be produced at the same time. In this
article, we proposed a novel non-negative matrix tri-factorization (NMTF)-based model
(NTMEP) to predict essential proteins. Firstly, a weighted PPI network is established
only using the topology features of the network, so as to avoid more noise. To
reduce the influence of false data (existing in PPI network) on performance of identify
essential proteins, the NMTF technique, as a widely used recommendation algorithm,
is performed to reconstruct a most optimized PPI network with more potential protein–
protein interactions. Then, we use the PageRank algorithm to compute the final ranking
score of each protein, in which subcellular localization and homologous information of
proteins were used to calculate the initial scores. In addition, extensive experiments are
performed on the publicly available datasets and the results indicate that our NTMEP
model has better performance in predicting essential proteins against the start-of-the-
art method. In this investigation, we demonstrated that the introduction of non-negative
matrix tri-factorization technology can effectively improve the condition of the protein–
protein interaction network, so as to reduce the negative impact of noise on the
prediction. At the same time, this finding provides a more novel angle of view for other
applications based on protein–protein interaction networks.

Keywords: non-negative matrix factorization, protein-protein interaction, essential protein, PageRank, network
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INTRODUCTION

Essential proteins play an indispensable role in the survival
of organisms, and the criticality of proteins is mainly
determined by their biological functions. Studies have shown
that essential proteins have abundant functions such as
translation, transcription, and replication (Glass et al., 2009).
The prediction of essential proteins can apply the important
reference information of biology and medicine, which has a
wide application prospect in the fields of disease diagnosis and
drug design. Currently, researchers have proposed a variety
of biological methods to identify essential proteins, such as
single-gene knockout (Kobayashi et al., 2003). However, these
experimental methods have some limitations such as high cost
and long time consumption. Therefore, it is urgent to improve
the prediction performance of the computational method to
identify essential proteins.

In recent years, researchers have proposed many
computational methods to identify essential proteins relying
on different ideas and technologies. Researchers have proposed
many classic algorithms for predicting essential proteins based
on PPI network topological characteristics, such as degree
centrality (DC) (Hahn and Kern, 2005), information centrality
(IC) (Björnsdottir, 2001), closeness centrality (CC) (Wuchty and
Stadler, 2003), betweenness centrality (BC) (Joy et al., 2014),
subgraph centrality (SC) (Estrada and Rodríguez-Velázquez,
2005), and sum of edge clustering coefficient centrality (NC)
(Wang et al., 2012). Li et al. (2018) found that in the PPI network,
the frequency of essential proteins in triangular structures is
significantly higher than that of non-essential proteins. Based
on this research discovery, they proposed a new measure of
pure Centrality-Neighborhood Closeness Centrality (NCC).
Although this type of approach allows direct identification of
essential proteins in the absence of known essential proteins,
there are limitations to these approaches. First, the existing PPI
data are incomplete with a large number of false positives and
false negatives, affecting the accuracy of predicting essential
proteins. Second, most of these methods just use the topological
properties of the network while ignoring other properties of
essential proteins.

In order to make up for the limitations of incomplete protein
interaction networks, many research groups have combined PPI
networks with other biological information in recent years to
improve the accuracy of essential protein identification. Tew
et al. (2007) proposed a novel method called NFC, which defines
the functional similarity between two proteins based on the GO
term similarity and scores the protein based on the sum of the
functional similarity between the protein and its neighboring
proteins. Zhang et al. (2018) proposed an essential protein
prediction method named TEO by combining the network
topology characteristics, gene expression information, and GO
annotation information. A weighted protein interaction network
was established by calculating the Edge Clustering Coefficient
(ECC), Pearson Correlation Coefficient (PCC), and functional
similarity, so as to realize essential protein recognition. Lei
et al. (2019) proposed an essential protein identification method
called RWEP. Firstly, a weighted PPI network was established

using network topology, gene expression, and GO annotations;
then, each protein in the network was identified according to
subcellular localization and protein complexes. Finally, the restart
random walk algorithm is used to iteratively calculate the protein
score in the weighted network. Due to the strong clustering of
essential proteins, Ren et al. (2011) proposed a new centrality
method that combines PPI network topology and protein
complex information to identify essential proteins. By fusing
the topological feature of PPI networks and gene expression
information, Zhang et al. (2013) and Li et al. (2012) proposed
two different models to predict essential proteins, called CoEWC
and PeC, respectively. Based on the modular characteristics of
essential proteins, Zhao et al. (2014) proposed an essential protein
identification method called POEM. Based on the network
topological characteristics and gene expression information, a
highly reliable weighted network was established, and on this
basis, overlapping functional modules with high cohesion and
low coupling were dug. Finally, scores were calculated according
to the weighted density of the modules to which the proteins
belong, so as to realize the identification of essential proteins.
Peng et al. (2012) considered that essential proteins were more
conservative than non-essential proteins and often combined
with each other. They proposed an iterative method ION that
combines direct homology and PPI networks to predict essential
proteins. The probability transfer matrix was established by using
the edge clustering coefficient (ECC) and interaction network,
and the initial score vector of protein was established by using
homology information. According to the similarities of active
PPI networks of each time, Peng et al. (Zhang et al., 2019)
established a novel PPI network. Then, based on this network and
orthologous information of protein, they developed a dynamic
protein–protein interaction network-based model called FDP.
Zhong et al. (2021) proposed a new measure method called
JDC, which offers a dynamic threshold method to binarize gene
expression data and combines Jaccard similarity index and degree
centrality to predict essential proteins. However, the methods
based on multisource data are relatively simple. It not only will
conceal the complex relationship between the multisource data
but also may introduce artificial noise.

In this article, we utilize non-negative matrix tri-factorization
(NMTF) to deal with the challenges introduced above and
propose a novel method named NTMEP for identifying essential
proteins. NTMEP focuses on the following three important
aspects. First, it is well known that the multiple kinds of biological
data about proteins can be integrated to construct a weighted PPI
network with similar functions. As a result, the more different
types of data are used, the more artificial noise is produced
inevitably. Considering this problem, NTMEP constructs the
weighted PPI by using original protein–protein interaction
information merely. Second, the NMTF algorithm is extensively
used for many applications in pattern recognition, text mining,
DNA gene expressions, and so on. This is also extended to
community detection and the recommendation system. Hence,
to mine more potential protein–protein associations, the NMTF
algorithm is introduced in our progress. It takes the internal
possibility of associations between proteins into account, which
contributes to generation of a more reliable prediction model
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that excludes the noisy candidates. Third, distinct from previous
approaches, we employ homologous and subcellular localization
information in the course of ranking proteins, which can improve
the accuracy of predicting essential proteins effectively.

MATERIALS AND METHODS

Our purpose is to develop a novel method which can improve the
accuracy of predicting essential proteins. We firstly constructed
a weighted PPI network to represent the complex relationships
between proteins. Moreover, a novel prediction method based
on NMTF was proposed specifically for the network to
find the potential associations between proteins. Finally, the
PageRank algorithm was performed to identify the essential
protein candidates by integrating subcellular localization and
homologous information.

Let G(V, E) be the PPI network that contains node set
V = (p1, p2,. . ., pn) (n is the number of proteins) and edge
set E = [(p1, p2, w1), (p2, p3, w2), . . ., (pi, pj, wm)] where
(pi, pj, wm) is the interaction between protein pi and pj with
weighted value wm which was set to 1 in original protein–protein
interaction information.

Protein Association Measurement
In this subsection, a weighted PPI network was constructed in
which the association value of two proteins would be calculated
based on their topological characteristics. In analyzing the
topological characteristics of PPI networks, researchers have
found that the PPI networks are one kind of small-world and
scale-free network. Therefore, the topological features of the PPI
network can be used to predict essential proteins. In recent years,
the item of common neighbors of two proteins in the PPI network
has been used in many prediction algorithms to realize the task
of predicting essential proteins. They demonstrate that the more
common neighbors exist between two proteins, the more deeply
is the association they have with other. In this article, if proteins
pi and pj share at least one common neighbor, we assume that pi
and pj are interacting. This kind of connection between proteins
is called the co-neighbor (CoN) relationships and calculated as
follows:

PCoN(i, j) ={ ∣∣SNei(i)
⋂

SNei(j)
∣∣2

(|SNei(i)| − 1) ∗ (
∣∣SNei(j)

∣∣− 1)

if |SNei(i)| > 1 and∣∣SNei(j)
∣∣ > 1

0 otherwise (1)

where SNei(i) and SNei(j) present the neighborhood sets of pi
and pj, respectively. As can be seen from the above equation,
the value of the CoN relationships of the two-protein range is
between 0 and 1.

Reconstruction of the Weighted PPI
Network Based on NMTF
Non-negative matrix tri-factorization as a general technology
takes or compresses a data matrix into a compact latent space.

It has been used to model topics in text data (Hua et al., 2011),
to predict cancer driver genes from clinical data (Xi et al., 2018),
and to detect disease–disease associations (Žitnik et al., 2013).
It is an efficient data representation technique, which has been
widely used in recommender systems (Hernando et al., 2016; Luo
et al., 2016). This new understanding should help to improve
prediction accuracy of the essential proteins.

To take full advantage of NMTF, we perform it on the weighted
PPI network (PCoN) to mine the potential interactions of proteins.
In contrast to classic non-negative matrix factorization (Lee
and Seung, 1999) where the input matrix is separated into two
parts, NMTF resolves the input matrix into three latent matrices.
Here, we consider that the input adjacency matrix PCoN ∈ Rn∗n

has missing records, that is to say, the interactions between
proteins have not been discovered. By using NMTF, a new matrix
Y ∈ Rn∗n containing some new records would be constructed,
as follows:

PCoN ≈ Y = FSGT (2)

Here, NMTF is designed to describe the matrix PCoN ∈ Rn∗n

with a product of three non-negative potential matricesF ∈ Rn∗k ,
S ∈ Rk∗k , and G ∈ Rn∗k , while parameter k denotes factorization
ranks and represents the number of potential vectors which form
the column and row column space. For a given non-negative
data matrix PCoN , the issue can be solved as the following
optimization problem:

D = min J (F, S, G) =
∣∣∣∣∣∣PCoN − FSGT

∣∣∣∣∣∣2
F

(3)

where || · ||F is the Frobenius norm. Since the objective function
in Eq. (3) is a joint non-convex problem, we employ the rule of
multiplicative iteration to solve the objective function on the basis
of using auxiliary functions. The squared Frobenius norm can be
written as | | X| | 2 = Tr(XTX); therefore, Eq. (3) equals to:

D = Tr
(

PT
CoNPCoN − 2PT

CoNFSGT
+ GSTFTFSGT

)
(4)

Its partial derivative equations for factor F, S, and G are as follows,
respectively:

∂D
∂F
= 2FSGTGST

− 2PCoNGST

∂D
∂S
= 2FTFSGTG− 2FTPCoNG

∂D
∂G
= 2GSTFTFS− 2PT

CoNFS (5)

It is well known that the static point can be detected using the
Karush–Kuhn–Tucker (KKT) complementarity conditions. The
KKT condition for factor F is as follows:

∂D
∂Fik

Fik = 0 (6)

Frontiers in Genetics | www.frontiersin.org 3 August 2021 | Volume 12 | Article 709660134

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-709660 August 2, 2021 Time: 14:8 # 4

Zhang et al. Method for Identifying Essential Proteins

In this connection, the conditions are assumed to be functional if
the derivative is zero:(

FSGTGST
− PCoNGST

)
iu

Fiu = 0

Fiu = Fiu

(
PCoNGST)

iu(
FSGTGST

)
iu

(7)

Similarly, the updating rules for G and S can be derived as follows:

Giu = Giu

(
PT

CoNFS
)

iu(
GSTFFST

)
iu

Siu = Siu

(
FTPCoNG

)
iu(

FTFSGTG
)

iu
(8)

The multiplication iteration rules are shown as follows:

Fiu ← Fiu

(
PCoNGST)

iu(
FSGTGST

)
iu

Giu ← Giu

(
PT

CoNFS
)

iu(
GSTFFST

)
iu

Siu ← Siu

(
FTPCoNG

)
iu(

FTFSGTG
)

iu
(9)

From the above Eq. (9), the optimal matrix Y, which is closest to
PCoN , can be computed. Finally, to recover the symmetry of the
protein–protein interactions, we transformed the matrix Y to a
symmetrical transition probability matrix P∗CoN , as follows:

P∗CoN(i, j) =

{
max

(
Yij, Yji

)∑N
k=0 Yik

,

N∑
k=0

Yik 6= 0

0, else (10)

The NMTF-Based Model for Identifying
Essential Proteins
Through the description of the above algorithm, based on the
information of the original PPI network, an optimized weighted
PPI network can be established. Therefore, we can use an iterative
method to rank protein scores. This method mainly includes two
parts: the calculation of the initial score and the calculation of the
ranking score, as detailed below.

Computation of Initial Scores
In this part, we will initially score each protein in the PPI network
using homologous and subcellular localization information.
Taking the Saccharomyces cerevisiae PPI network as an example,
Tang et al. (2018) analyzed whether all the proteins in this
network had direct homologous proteins in 99 reference species.
They concluded that the more homologous a protein has in the
reference species, the more likely it is to become a required
protein. In order to obtain the given protein pi in the PPI network
G = (V, E), we mainly use the homology information to calculate
the homology score (SH) of the protein. Among them, SH (pi)

refers to the conservative score of pi, and the calculation formula
is as follows:

SH(pi) =
H(pi)

max
1≤j≤|V|

(H(pj))
(11)

Among them, H(pi) refers to the number of times that the protein
pi has direct homologous proteins in the reference species.

We know that an important feature of proteins is subcellular
localization. By studying the characteristics of protein subcellular
localization, researchers (Li et al., 2016; Zhao et al., 2016; Lei et al.,
2018) found that essential proteins are more likely to appear in
specific subcellular locations. Based on this, we calculated the
subcellular localization score (SL) of the protein based on the
subcellular localization information. If the protein pi exists in the
final subcellular localization dataset R, then the frequency of each
subcellular location r can be calculated by the following formula:

OF(r) =
|SN(r)|

max
1≤k≤n

(
∣∣SN(k)

∣∣) (12)

where SN represents the relationship between the protein and
the subcellular location data set, SN(r) refers to the number of
proteins corresponding to the subcellular location r, and n is the
number of subcellular locations.

Based on a fixed protein pi, the subcellular localization score
SL (pi) refers to the highest score for all subcellular locations.

SL(pi) = max
r∈C(pi)

(OF(r)) (13)

where C(pi) represents the subcellular location corresponding to
the protein pi.

Finally, according to Eq. (11–13), the unique initial score
SL(pi) of protein pi is expressed as follows:

SI(pi) = SH(pi)× SL(pi) (14)

Computation of Ranking Scores
The ranking of protein pi is called SF(pi), and∑

pj∈SCoN (i) P∗CoN(pi, pj)SF(pj) refers to the neighbor induction
score. Based on this, the ranking score of each protein in the PPI
network can be calculated by Eq. (15), as shown below:

SF(pi) = α
∑

pj∈SCoN (i)

P∗CoN(pi, pj)SF(pj)+ (1− α)SI(pi) (15)

Among them, the function of the parameter α (0 ≤ α < 1) is
to adjust the weight of the two scores in the final ranking score.
Based on the above analysis, the protein ranking score is a linear
combination of its initial score and the neighborhood correlation
score at the edge of the network. Therefore, formula (15) can be
rewritten in matrix vector format as follows:

SF = α ∗ P∗CoN ∗ SF + (1− α) ∗ SI (16)

In our study, the Jacobi iterative method is used to solve Eq. (16),
as shown below:

St
F = α ∗ P∗CoN ∗ St−1

F + (1− α) ∗ SI (17)
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Algorithm 1 | NTMEP
Input: A PPI network G, subcellular localization information, homologous proteins information, stopping error ε, parameters k, α, and K
Output: Top K proteins sorted by SF in descending order
Step 1: Calculate adjacency matrix PCoN of the weighted PPI network according to Eq. (1)
Step 2: Reconstruct matrix PCoN to P∗CoN by Eq. (2)–(10)
Step 3: Initialize initial vector SI with SF

0 = SI and t = 0
Step 4: Compute SF

t according Eq. (17)
Step 5. If | | SF

t – SF
t−1 | | < ε, then PR SF = SF

t and terminate the algorithm. Otherwise, let t = t+1 and repeat Step 4
Step 6. Sort proteins by the value of SF in the descending order
Step 7. Output top K of sorted proteins

where St
F is the protein’s scores obtained in the tth iteration.

Through the above analysis, we conclude that the overall
framework of the NMTF-based model for the identification
of essential protein (NTMEP) can be referred to as the
following Algorithm 1.

RESULTS AND DISCUSSION

Experimental Data
In the experiments, we use four data sets including protein–
protein interaction set, experimentally verified essential protein
set, subcellular location set, and homologous protein information
set. We downloaded the relationships among proteins from
the DIP database (Xenarios et al., 2002), which includes 1,167
essential proteins and a total of 24,743 interactions between
5,093 proteins after removing self-interactions and duplicate
interactions. Also, these data are adopted to construct the
weighted protein network based on the topological structures.
The experimentally verified essential protein dataset with 1,285
essential proteins are derived from MIPS (Mewes et al., 2006),
SGD (Cherry et al., 1998), DEG (Zhang and Lin, 2009),
and SGDP (Saccharomyces Genome Deletion Project, 2012).
From the COMPARTMENTS (Binder et al., 2014) database,
we obtained the subcellular location data, which cover 11
categories (Endoplasmic, Nucleus, Cytoskeleton, Golgi, Cytosol,
Vacuole, Plasma, Mitochondrion, Endosome, Peroxisome, and
Extracellular) (Peng et al., 2015). The homologous protein
information is collected come from the seventh edition of
the InParanoid database (Ostlund et al., 2010) including
paired comparisons of 100 whole genomes (99 eukaryotes and
one prokaryote).

Parameter α Sensitivity Analysis
In the NTMEP, the parameter α in Eq. (16), which used to
weigh up the contribution of neighbor-induced score and initial
score, was set to 0, 0.1, 0.2,..., and 1. While considering only the
neighbor-induced score, α was set to 1. On the other hand, α

was set to 0 when considering only the initial score. The impact
of the parameter α to the performance of NTMEP is presented
in Table 1. After the ranking scores of proteins were calculated
with the different value of parameter α, we get the number of
true essential proteins in the top 100, 200, 300, 400, 500, and
600 candidates, respectively. Table 1 shows that the performance
of the NTMEP is very poor when α was set to 0 or 1. It can
be seen from the data in Table 1 that the 0.1 and 0.2 groups

have better prediction results. Especially, the best performance
was achieved in the top 100 candidates when α was set to 0.1.
Consequently, α was set to 0.2 in this article to make the NTMEP
obtain good performance.

Comprehensive Comparison With Other
Methods
To comparatively study the performance of NTMEP in predicting
essential proteins, we also implement 10 types of representative
essential proteins prediction methods, like DC (Joy et al., 2014),
IC (Estrada and Rodríguez-Velázquez, 2005), CC (Wang et al.,
2012), BC (Li et al., 2018), SC (Tew et al., 2007), NC (Zhang
et al., 2018), PeC (Li et al., 2012), CoEWC (Zhang et al., 2013),
POEM (Zhao et al., 2014), and JDC (Zhong et al., 2021), which
are state-of-the-art prediction methods for the well essential
protein prediction.

The higher number of essential proteins within the top
k of the ranking list means the more real essential proteins
are predicted successfully. Parameter k, which is set to 100,
200, 300, 400, 500, and 600, denotes the number of essential
protein candidates selected. The number of real essential
proteins within top k candidates is shown in Figure 1. NTMEP
consistently outperformed the other competitive methods at
various k cutoffs and ranked 92, 85.5, 78.7, 73.8, 69.4, and
65.2% of positive samples in top 100, 200, 300, 400, 500, and
600, respectively. Especially, as for the top 100 of essential
protein candidates, NTMEP has higher predict accuracy 46,
48, 55, 48, 51, 37, 18, 19, 11, and 12% than that obtained
from DC, IC, CC, BC, SC, NC, PeC, CoEWC, POEM, and

TABLE 1 | The impact of parameter α to the performance of NTMEP.

Top 100 Top 200 Top 300 Top 400 Top 500 Top 600

0 78 154 221 289 335 378

0.1 94 167 232 293 341 390

0.2 92 171 236 295 347 391

0.3 90 167 234 293 347 391

0.4 88 164 230 290 349 396

0.5 85 161 224 286 339 393

0.6 83 155 221 275 321 378

0.7 83 152 214 263 315 371

0.8 79 151 206 257 307 357

0.9 79 147 197 249 299 346

1 80 140 194 241 281 321
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FIGURE 1 | Number of actual essential proteins identified by NTMEP and other ten previously competitive methods at various k values. (A) Top 100 ranked proteins;
(B) Top 200 ranked proteins; (C) Top 300 ranked proteins; (D) Top 400 ranked proteins; (E) Top 500 ranked proteins; (F) Top 600 ranked proteins.

JDC, respectively. In those competitive methods, JDC had
the best accuracy and ranked 80, 76.5, 74.7, 66.8, 63, and
59.2% in the top 100–600, respectively. Compared with JDC,

NTMEP improved by 15% in top 100, 11.8% in top 200,
5.4% in top 300, 10.5% in top 400, 10.2% in top 500, and
10.1% in top 600.
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FIGURE 2 | Performance comparison between NTMEP and other ten methods in terms of PR curves. (A) PR curves of DC, IC, SC, BC, CC, NC, and NTMEP;
(B) PR curves of PeC, CoEWC, POEM, JDC, and NTMEP.

Validated by Precision–Recall Curves
To obtain a fair and convincing comparison, the precision–
recall (PR) curve is used to evaluate the prediction performance
for essential proteins of our method and other state-of-the-art
methods. The value of cutoffs, presented as k, is ranged from 1
to 5,093. We compute the scores of all proteins by using each
algorithm and sorted it in descending order, respectively. The top
k proteins are selected as a positive set, namely, essential protein
candidates, and others as the negative set, namely, non-essential
protein candidates. Figure 2 compares the results obtained from
the different methods. As shown in Figure 2A, compared with
DC, IC, BC, CC, SC, and NC, the PR curves of NTMEP reported
significantly higher capability for identifying essential proteins.
The results obtained from our method and PeC, CoEWC, POEM,
and JDC are presented in Figure 2B. Looking at Figure 2B, in the
first part of the PR curve, it is apparent that the precision of our
method has the best performance compared to those methods. In
order to give quantitative comparison results, the area under the
curve (AUC) values of the PR curve were computed, respectively,
as shown in Table 2. As a whole, the NTMEP dramatically
outperformed those competitive methods.

Validated by Jackknife Methodology
In this subsection, we employ the jackknife curves to assess
the performance of our NTMEP method and other existing
methods (DC, BC, CC, SC, IC, NC, PeC, CoEWC, POEM,
and JDC), the various top number of ranked proteins as

TABLE 2 | The AUC values of the PR curve obtained from NTMEP and other 10
competitive methods.

Method NTMEP DC IC SC BC CC

AUC value of
PR curve

0.549 0.359 0.357 0.331 0.319 0.326

NC PeC CoEWC POEM JDC

0.425 0.492 0.463 0.439 0.417

candidates. The jackknife curves of all the methods are displayed
in Figure 3, where the horizontal axis denotes the number
of proteins ranked at the top in descending order with each
corresponding method, and the vertical axis is the accumulative
quantity of the real essential proteins within the ranked proteins.
Figures 3A,B illustrate the jackknife curves of all the competitive
methods compared with NTMEP, respectively. As is seen from
Figure 3A, the curve of NTMEP reported a higher number
of real essential proteins than other existing centrality measure
methods, such as DC, BC, CC, SC, IC, and NC. As shown in
Figure 3B, NTMEP is also better than PeC, CoEWC, POEM,
and JDC. To give quantitative comparison results, the AUC
values of jackknife curve were computed, respectively, as shown
in Table 3. From Figure 3 and Table 3, it is clear that the
NTMEP method outperforms the other 10 essential protein
prediction methods.

In summary, these results demonstrated the powerful ability
of NTMEP in identifying essential proteins. This finding is
reasonable because our method adopts NMTF to find the
potential interactions between proteins, which could provide
additional interaction information and help to improve the
prediction results by a large margin.

Analysis of the Differences Between
NTMEP and Other 10 Competitive
Prediction Methods
This subsection will analyze the difference between NTMEP and
other prediction methods through experimental results. Firstly,
11 protein sets were constructed by NTMEP and other 10
prediction methods (DC, IC, CC, BC, SC, NC, PeC, CoEWC,
POEM, and JDC), and each protein set contains the top 100
essential proteins predicted by each prediction method. The
number of proteins that overlap between the NTMEP method
and other methods and the number of proteins that differ are
shown in Table 4.

In Table 4, Mi refers to one of the 10 prediction methods
(DC, IC, CC, BC, SC, NC, PeC, CoEWC, POEM, and JDC);
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FIGURE 3 | Performance comparison between NTMEP and other ten methods in terms of Jackknife curves. (A) Jackknife curves of DC, IC, SC, BC, CC, NC, and
NTMEP; (B) Jackknife curves of PeC, CoEWC, POEM, JDC, and NTMEP.

TABLE 3 | The AUC values of jackknife curve obtained from NTMEP and
other 10 methods.

Method NTMEP DC IC SC BC CC

AUC value of
jackknife curve

0.697 0.640 0.628 0.607 0.601 0.600

NC PeC CoEWC POEM JDC

0.670 0.603 0.618 0.635 0.684

|Mi∩NTMEP| represents the number of common proteins
predicted by both Mi and NTMEP in the top 100 ranked proteins.
{Mi-NTMEP} refers to the difference set in the top 100 ranked
proteins, while proteins were selected as essential proteins by
Mi but not by NTMEP. Moreover, | Mi-NTMEP| represents the
number of proteins in the difference set. Similarly, {NTMEP-Mi}
denotes the difference set constituted by the proteins belonging
to NTMEP but not to Mi, and the number is denoted by
|NTMEP-Mi|.

As shown in Table 4, the second row of the table shows that 85
essential protein candidates out of the top 100 essential protein
candidates predicted by DC are different from those predicted

by NTMEP, while 32 of these 85 predicted essential protein
candidates are true essential proteins; thus, the percentage of
essential proteins in the difference set is 37.6%. Among the
top 100 essential protein candidates predicted by NTMEP, 85
essential protein candidates were different from those predicted
by DC, but 78 of them were accurate; thus, the percentage of
essential proteins in the difference set was 91.8%. From this
line of data, it can be seen that most of the top 100 essential
protein candidates predicted by NTMEP are different from those
candidates predicted by DC. Moreover, NTMEP predicts far
more true key proteins than DC. This indicates that NTMEP not
only is a different method from DC but also shows that NTMEP
is much better than DC in distinguishing essential proteins from
common proteins. Similarly, it can be seen from the other rows
of the table that NTMEP maintains this advantage over all other
prediction methods.

CONCLUSION

In reviewing the literature, previous studies developed many
computational methods to predict essential proteins effectively.

TABLE 4 | Comparison of the overlap and difference of the top 100 proteins identified by NTMEP and other 10 methods.

Methods (Mi) | Mi∩NTMEP| | NTMEP-Mi| and
| Mi-NTMEP|

Number of
essential proteins

in {Mi-NTMEP}

Number of
essential proteins

in {NTMEP-Mi }

Percentage of
essential proteins

in {Mi-NTMEP}

Percentage of
essential proteins

in {NTMEP-Mi }

DC 15 85 32 78 37.6% 91.8%

IC 15 85 30 78 35.3% 91.8%

SC 12 88 25 80 28.4% 90.9%

BC 11 89 34 82 38.2% 92.1%

CC 13 87 29 80 33.3% 92.0%

NC 33 67 25 62 37.3% 92.5%

PeC 44 56 33 50 58.9% 91.1%

CoEWC 46 54 30 49 55.6% 90.7%

POEM 49 51 35 46 68.6% 90.2%

JDC 40 60 42 54 70.0% 90.0%
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However, these methods do not take full account of the false-
positive and -negative noise generated from high-throughput
experimentation and the process of the weighted PPI network
construction. To get the utmost out of the complex association
between proteins, NMTF is introduced into our proposed
method. Moreover, subcellular localization and homologous
protein information are used in the final scoring stage instead
of the stage of establishing the weighted network. Also,
a comprehensive experiment is carried out and the results
show that our new method can obtain a better performance
compared with other methods. A possible explanation for
these results might be that there are deep relationships
between proteins which are not founded by high-throughput
experimentation, and fusion of multiple data raises the cost
and reduces the overall efficiency of the process. These
results add to the rapidly expanding field of computational
methods for predicting essential proteins. It is unfortunate
that the study did not solve the problem of noise generated
by multisource data fusion. This is an important issue for
future research.
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It is well recognized that batch effect in single-cell RNA sequencing (scRNA-seq)
data remains a big challenge when integrating different datasets. Here, we proposed
deepMNN, a novel deep learning-based method to correct batch effect in scRNA-seq
data. We first searched mutual nearest neighbor (MNN) pairs across different batches
in a principal component analysis (PCA) subspace. Subsequently, a batch correction
network was constructed by stacking two residual blocks and further applied for the
removal of batch effects. The loss function of deepMNN was defined as the sum of a
batch loss and a weighted regularization loss. The batch loss was used to compute the
distance between cells in MNN pairs in the PCA subspace, while the regularization
loss was to make the output of the network similar to the input. The experiment
results showed that deepMNN can successfully remove batch effects across datasets
with identical cell types, datasets with non-identical cell types, datasets with multiple
batches, and large-scale datasets as well. We compared the performance of deepMNN
with state-of-the-art batch correction methods, including the widely used methods of
Harmony, Scanorama, and Seurat V4 as well as the recently developed deep learning-
based methods of MMD-ResNet and scGen. The results demonstrated that deepMNN
achieved a better or comparable performance in terms of both qualitative analysis using
uniform manifold approximation and projection (UMAP) plots and quantitative metrics
such as batch and cell entropies, ARI F1 score, and ASW F1 score under various
scenarios. Additionally, deepMNN allowed for integrating scRNA-seq datasets with
multiple batches in one step. Furthermore, deepMNN ran much faster than the other
methods for large-scale datasets. These characteristics of deepMNN made it have the
potential to be a new choice for large-scale single-cell gene expression data analysis.

Keywords: scRNA-seq data integration, batch effect correction, residual network, mutual nearest neighbor, deep
learning

Abbreviations: MNN, mutual nearest neighbor; ARI, adjusted rand index; ASW, average silhouette width; PCA, principal
component analysis; UMAP, uniform manifold approximation and projection; RAM, random access memory; GPU, graphics
processing unit.
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INTRODUCTION

High-throughput single-cell RNA sequencing (scRNA-seq) has
enabled the gene expression profiling of a large number of
individual cells at a single-cell resolution, offering unprecedented
insights into the transcriptomic characterization of cell
heterogeneity and dynamics (Stegle et al., 2015; Consortium,
2018; Han et al., 2018; Svensson et al., 2018). Considerable efforts
have been made over the past decade to promote the rapid
development of this technology, leading to massive single-cell
gene expression data compiled from different experiments at
different times and even with various sequencing platforms.
However, like other sequencing technologies, these differences
inevitably cause an unexpected batch effect due to the technical
or biologically irrelevant variations across batches (Goh et al.,
2017; Tran et al., 2020). The batch effect in the scRNA-seq data
has been plaguing downstream analysis as it may interrupt the
gene expression patterns. Consequently, the issue of batch effect
may lead to a spurious conclusion when jointly investigating
the comprehensive biological process of cells on the basis of
integrating multiple datasets. Hence, batch effect correction is
crucial for analyzing scRNA-seq data, allowing investigators to
capture the intrinsically biological features across batches.

Currently, a myriad of batch effect correction algorithms
has been proposed to tackle the problem (Tran et al., 2020).
MNNCorrect (Haghverdi et al., 2018) assumed the orthogonality
of batch effect to the biological manifold and corrected batch
effect by calculating average difference in the high-dimensional
gene expression space between similar cells across batch pairs
(called mutual nearest neighbors, MNNs). Yet due to its high
consumption of memory usage and CPU runtime, a number of
methods were further developed to enhance the performance,
for example, fastMNN (Haghverdi et al., 2018) and Seurat
Integration (Seurat V3) (Stuart et al., 2019) followed the MNN
scheme to carry out MNN search in a subspace by applying
principal component analysis (PCA) and canonical correlation
analysis (CCA), respectively. Scanorama (Hie et al., 2019)
performed a faster approximate nearest neighbor search in the
low-dimensional space computed by the randomized singular
value decomposition. BBKNN (Polański et al., 2020) found
MNNs in a low-dimensional, reduced space by computing k
nearest neighbors and transformed the neighbor information
into connectivity to construct a graph that linked all cells
across batches. Harmony (Korsunsky et al., 2019) projected
cells across different batches into a PCA space, followed by
iteratively grouping similar cells into multiple clustering while
simultaneously maximizing the diversity of batches within each
cluster. LIGER (Welch et al., 2019) employed integrative non-
negative matrix factorization to reduce the dimension and
identified shared and batch-specific features across datasets. It
then detected joint clusters and normalized the factor loading
quantiles to perform batch correction. scMerge (Lin et al., 2019)
constructed a graph connecting mutual nearest clusters between
batches to remove batch effects.

Deep learning-based methods for single-cell analysis have
experienced a tremendous progress in recent years and were
already applied to remove batch effects in scRNA-seq data, for

instance, MMD-ResNet (Shaham et al., 2017) has attempted
to remove batch effect by minimizing the maximum mean
discrepancy (MMD) using residual neural networks. BERMUDA
(Wang et al., 2019) sought to remove batch effect locally based
on MMD loss between similar cell clusters using an autoencoder
structure. scGen (Lotfollahi et al., 2019) corrected batch effect
based on the distributions of the cells that were inferenced
from a reference dataset using a variational autoencoder model.
However, scGen was a supervised method that required cell types
in advance. scGAN (Bahrami et al., 2020) labeled multiple batches
of the input cells that were represented in latent embedding space
using a generative adversarial network model.

Although several batch correction methods are available,
most of them struggle with excessive running time or resource
requirements, which are likely to be further exacerbated as the
cell numbers of scRNA-seq experiments continue growing. In
this study, we propose deepMNN, a deep learning-based scRNA-
seq batch correction model using MNN. We first identified
MNN pairs among batches in a PCA subspace. A residual-based
batch correction network was then constructed and employed
to remove batch effects based on these MNN pairs. The overall
loss of deepMNN was designed as the sum of a batch loss and a
weighted regularization loss. The batch loss was used to compute
the distance between cells in MNN pairs in the PCA subspace,
while the regularization loss was to make the output of the
network similar to the input. We compared the performance
of deepMNN with state-of-the-art batch correction methods,
including the widely used methods of Harmony, Scanorama,
and Seurat V4, as well as the recently developed deep learning-
based methods of MMD-ResNet and scGen. To comprehensively
investigate the performance of these methods, we employed
different scRNA-seq datasets under various scenarios, such as
datasets with non-identical cell types, datasets with multiple
batches, and large-scale datasets. In addition to qualitative
analysis using uniform manifold approximation and projection
(UMAP) plots, we calculated three metrics to quantitatively
compare their performance on batch correction, including batch
and cell type entropies, adjusted rand index (ARI) F1 score,
and average silhouette width (ASW) F1 score. The experiment
results showed that, in comparison to other correction methods,
deepMNN not only reached a better or comparable performance
in terms of the quantitative metrics and running time but
also allowed for integrating scRNA-seq datasets with multiple
batches in one step.

MATERIALS AND METHODS

Architecture of deepMNN
The deepMNN encompassed two main steps: pre-processing and
batch correction (Figure 1A). The pre-processing step followed
the standard workflow for scRNA-seq data analysis in Scanpy
(Wolf et al., 2018), such as quality control (QC), filtering,
normalization, identification of highly variable genes, scaling,
and linear dimensional reduction using PCA. The dimensional-
reduced data Xpca was used to find MNN pairs among the
different batches. In the batch correction step, the scaled data
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was fed into the batch correction network, and the output was
further transformed into the PCA subspace. Here, the batch
correction network was formed by the stack of two residual
blocks. Each residual block received an input x and computed
output y = x + δ(x), where δ(x) was the output of the
residual block (Figure 1B). The batch loss measured the distance
between cells in MNN pairs in the PCA subspace. We also used
a regularization loss to make the output of batch correction
network resemble the input.

Data Pre-processing
The steps of data pre-processing for scRNA-seq data included (1)
QC and filtering, which was performed to remove the unwanted
cells based on user-defined criteria, (2) normalization, the gene
expression measurements for each cell were normalized by the
total expression, followed by multiplication of a scale factor of
10,000, and (3) log-transformation, the normalized data was
processed using log-transformation. Subsequently, 2,000 highly
variable genes (HVGs, i.e., genes exhibiting high cell-to-cell
variation in the dataset) were identified. We then scaled the data
by calculating the z-score for each gene expression to have zero
mean and unit variance. It should be noted that the z-score values
exceeding the standard deviation of 10 were clipped. Next, we
applied PCA on the scaled data and reduced the dimension using
the first 50 principal components (PCs) empirically. The resulting
matrix Xpca was further used to find MNN pairs across different
batches. In addition, the first 50 PCs were also used to reduce the
dimension of the outputs from the batch correction network as
well (Figure 1A).

Searching for MNN Pairs Among Batches
To find MNN pairs across batches, deepMNN searched 20
nearest neighbors for every cell in one batch from the remaining

other batches in the dimensional-reduced PCA subspace. After
repeating this process for all batches, we identified MNN pairs
where a cell in one batch is the nearest neighbor of a cell
in another batch and vice versa. Since the computational load
of nearest neighbor queries was exponential in the size of
the dataset, we improved the efficiency of our method using
an approximate nearest neighbor searching algorithm that was
implemented in the Annoy package1.

Batch Correction Network
Inspired by the well-known residual network, the batch
correction network was formed by the stack of two residual
blocks. A residual block received an input x (or the output of
the previous block) and computed output y = x + δ(x), where
δ(x) is a residual term resulting from two sequences of three
consecutive layers: weight layer, batch normalization layer, and
PReLU activation layer (Figure 1B). The first weight layer in a
residual block had 2 × d nodes, while the second weight layer
had d nodes, where d is the input dimension of the residual block.

In our work, the initial input into the batch correction network
was the scaled data with 2,000 selected HVGs. Consequently, the
number of nodes in the first and the second weight layers of the
first residual block was 4,000 and 2,000, respectively. The number
of nodes in the two weight layers of the second residual block
was correspondingly the same as that in the first residual block.
Therefore, the number of nodes in the output layer of the batch
correct network was 2,000.

Loss Function
There were two types of losses in this study: (1) the batch loss that
was the sum of the Euclidean distances between cells in the MNN

1https://github.com/spotify/annoy

FIGURE 1 | Overview of the deepMNN framework. (A) Illustration of the deepMNN workflow that was comprised of data pre-processing, principal component
analysis transformation, mutual nearest neighbor pair search, batch correction network with a stack of two residual blocks, and calculation of batch loss and
regularization loss. (B) Residual block comprised of two sequences of three consecutive layers, including the weight layer, batch normalization layer, and PReLU
activation layer.
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pairs and (2) the regularization loss aimed to make the output of
the network similar to the input.

To compute the batch loss, we first calculated the dimensional-
reduced vector Ypca

i for cell i as follows:

Ypca
i = Yi · PCs

where Yi is the output of the batch correction network for cell i;
PCs are the first 50 principal components as described in section
“Data Pre-processing.” Suppose two cells i and j were in the MNN
pair k and, thus, denoted as Ypca

ik and Ypca
jk , respectively. Then, the

batch loss Lb can be written as follows:

Lb =
∑
k

∣∣∣∣Ypca
ik − Ypca

jk

∣∣∣∣
2

where
∣∣∣∣Ypca

ik − Ypca
jk

∣∣∣∣
2

represents the Euclidian distance between
cells i and j in the MNN pair k, k = 1,2,3,. . ., K, and K is the total
number of MNN pairs.

We hypothesized that the cells in an MNN pair had the same
cell type, their distance should be small when no batch effect
existed, and hence the batch loss was used to remove the batch
effect between different batches. However, if the batch correction
network had a zero vector output, the batch loss should have been
zero, which was not our expectation. As such, we further utilized
a regularization loss to make the output of the network not far
away from the input.

The regularization loss Lr was defined as the sum of the
Euclidian distances between the output and the input of the batch
correction network.

Lr =
∑
i

∣∣∣∣Yi − Xi
∣∣∣∣

2

where Yi is the output of the batch correction network of cell i,
and Xi is the cell i in the scaled data with 2,000 HVGs.

Finally, the overall loss of deepMNN was defined as the
combination of a batch loss and a weighted regularization loss:

L = Lb + α · Lr

The value of α was set as 0.001 in our experiments.

Hyperparameters for Training deepMNN
We trained the deepMNN batch correction network de novo
with default initialization of weights as provided by the PyTorch
library (version 1.6.0). We employed the Adam optimizer
(Kingma and Ba, 2014) with default parameters β1 = 0.9 and
β2 = 0.999 and a batch size of 1,024 for all experiments. The
maximum number of epochs was set as 200. The training
procedure would stop early when the total loss did not decrease
for 10 consecutive epochs. The learning rate (LR) was initialized
as 0.1 and decayed by 0.8 every 20 epochs. In general, the
hyperparameters of the network were manually optimized. We
searched primarily over the residual block structure, empirically
chose the number of the residual blocks, and manually tuned the
LR to obtain optimal performance.

Batch Correction Through Other
Methods
Three widely used methods of Harmony, Scanorama, and Seurat
V4 and two deep learning-based methods of MMD-ResNet
and scGen were used to compare the performance on batch
correction with deepMNN.

We first applied the same data pre-processing as described in
section “Data Pre-processing” for all these methods, including
QC and filtering, normalization, and log-transformation. For
Harmony, the first 50 PCs were determined by applying
PCA on the pre-processed data, followed by utilization of
the RunHarmony function in its R package (version 0.1.0) to
conduct the batch correction experiments. The parameters of
maximum clusters and maximum iterations were set as 50
and 100, respectively. For Scanorama, we first identified 2,000
HVGs after data pre-processing and then employed its Python
implementation (version 1.7.1) to perform the experiments with
default parameter settings. For Seurat V4, we followed the
Seurat integration workflow recommended by the Seurat package
(version 4.0.3). Briefly, we first selected 2,000 HVGs from the
pre-processed data and then computed the anchors using the
FindIntegrationAnchors function, followed by integration of the
batches using the IntegrateData function to accomplish the
experiments. For MMD-ResNet, the PyTorch implementation2

was used to perform the experiments. After data pre-processing
and dimension reduction using PCA, we selected the first 50 PCs
to train the MMD-ResNet model with default hyperparameters
but with a batch size of 256. The training stopped when the
loss did not decrease for five consecutive epochs. For scGen, we
used the PyTorch implementation (version 2.0.0) to carry out the
experiments in our work. We selected the top 7,000 HVGs by
default from the pre-processed data to train the scGen model
with default hyperparameters except for epochs of 100 and a
batch size of 32.

To assess the performance of each method including
deepMNN, the top 50 PC vectors extracted from the batch-
corrected expression matrix were used for the calculation of
evaluation metrics and visualization.

Datasets
Human Peripheral Blood Mononuclear Cell
The data included two batches of human peripheral blood
mononuclear cells (PBMCs) from two healthy donors, which
were generated by the 3′ and 5′ Genomics protocols, respectively
(Zheng et al., 2017). The data and the cell type annotated by
Polański et al. (2020) were downloaded from ftp://ngs.sanger.
ac.uk/production/teichmann/BBKNN/PBMC.merged.h5ad. We
excluded cells without annotation and only retained common
genes, resulting in nine different cell types for a total of 8,098
cells in the 3′ batch and 7,378 cells in the 5′ batch, each
with 17,430 genes.

Human Pancreas
The data consisted of five published pancreas datasets:
Baron (GSE84133) (Baron et al., 2016), Muraro (GSE85241)

2https://github.com/ushaham/batchEffectRemoval2020
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(Muraro et al., 2016), Segerstolpe (E-MTAB-5061) (Segerstolpe
et al., 2016), Wang (GSE83139) (Wang et al., 2016), and Xin
(GSE81608) (Xin et al., 2016), generated using inDrop, CEL-Seq2,
SMART-Seq2, SMARTer, and SMARTer protocols, respectively.
The data batches and annotations were downloaded from https:
//hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/.
We removed the cells annotated with unknown cell types and
only retained the genes detected in all batches. As a result,
there were 15 different cell types for a total of 14,767 cells, each
with 15,558 genes.

Human Cell Atlas
The Human Cell Atlas (HCA) dataset was downloaded
from https://github.com/immunogenomics/harmony2019/tree/
master/data/figure3, processed by Korsunsky et al. (2019). This
data had two batches, including 275,264 bone marrow cells
and 253,024 cord blood cells, respectively (Li et al., 2018). 10×
Genomics protocol was used to generate the data, and 24,823
genes were acquired for each cell. We removed the cell types
whose number of cells was less than 200, resulting in 22 different
cell types for a total of 528,014 cells.

Evaluation Metrics for Batch Correction
To assess the batch correction performance of deepMNN and
other methods as described above, we calculated three types of
metrics, batch and cell type entropies (Chazarra-Gil et al., 2021),
ARI F1 score (Hubert and Arabie, 1985; Tran et al., 2020), and
ASW F1 score (Rousseeuw, 1987; Tran et al., 2020).

Batch and Cell Type Entropies
The entropies of batch and cell type can be used to measure batch
mixing and cell type separation. To compute the batch and cell
type entropies, we first constructed a KNN graph where each cell
was a node and connected to its 20 nearest neighbors. Then, the
batch entropy Eb

i and cell type entropy Ec
i for cell i were calculated

as follows:

Pib =
Nib

Ni

Eb
i = −

1
B

∑
b

Piblog (Pib)

Pic =
Nic

Ni

Ec
i = −

1
C

∑
c

Piclog (Pic)

where Ni is the number of neighbors of cell i (Ni = 20 for each
cell i), Nib is the number of neighbors of cell i with batch b,
Nic is the number of neighbors of cell i with cell type c, and B
and C are the number of batches and the number of cell types,
respectively. A high batch entropy indicates a homogeneous
mixture of different batches, while a low cell type entropy suggests
that the cell types remain separate.

Adjusted Rand Index F1 Score
The rand index (RI) measures the similarity of results between
two clustering methods. It is useful to compare the true label

distribution with the clustering prediction and, therefore, can also
be applied to measure batch mixing and cell type separation. The
RI is defined as:

RI =
a + b( n

2
)

where a is the number of pairs of cells with the same true label that
belongs to the same cluster, b is the number of pairs of cells with a
different true label that are assigned to different clusters, and

( n
2
)

is the number of unordered pairs in a set of n cells. To ensure a
value close to 0 for random labeling, the RI score is “adjusted for
chance,” which gives the ARI:

ARI =
RI−E(RI)

max (RI)−E(RI)

where E(RI) and max(RI) are the expectation and maximum of
RI, respectively. The ARI score ranges from −1 to 1. A positive
high ARI score suggests that the result of clustering prediction is
much consistent with the true label distribution.

To obtain the ARI score, we first applied the k-means
algorithm to generate cluster labels for comparison against batch
labels and cell type labels. We then randomly selected 80% of
cells and calculated the ARI scores for batch and cell type. This
procedure was repeated 20 times to ensure stability. The batch
ARI score and cell type ARI score were further normalized
into an interval of [0, 1], which were denoted as ARIbatch_norm
and ARIcelltype_norm, respectively. Finally, the ARI F1 score was
defined as:

F1ARI =
2(1−ARIbatch_norm)(ARIcelltype_norm)

1−ARIbatch_norm + ARIcelltype_norm

The ARI F1 score is the harmonic mean of the ARI batch score
and the ARI cell type score. As a combined measurement of batch
mixing and cell type separation, a higher ARI F1 score indicates a
better performance of the batch correction method.

Average Silhouette Width F1 Score
The silhouette score measures how well a cell lies within its own
cluster in comparison with other clusters. It is defined as:

si =
(bi−ai)

max (ai, bi)

where ai is the average distance between cell i and other cells in its
cluster, and bi is the average distance between cell i and the cells
in its nearest cluster. The silhouette score is between −1 and 1.
A positive high silhouette score suggests that the cell is close to its
own cluster but discrepant to other clusters. The ASW score over
the entire dataset is then given by:

ASW =
1
n

∑
i

si

where n is the total number of cells in the dataset. The ASW
score indicates whether the clusters are well separated and,
hence, can also be used to evaluate the performance of the batch
correction methods.
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Like the calculation of the ARI score, we randomly selected
80% of cells to compute the ASW batch score and the ASW cell
type score and repeated this procedure 20 times. We normalized
the ASW batch score and the ASW cell type score into an interval
[0, 1]. The ASW F1 score was then obtained by calculating the
harmonic mean of the normalized ASW batch score and the
normalized ASW cell type score as follows:

F1ASW =
2(1−ASWbatch_norm)(ASWcelltype_norm)

1−ASWbatch_norm + ASWcelltype_norm

The ASW F1 score is a combined metric to assess batch
mixing and cell type separation. A higher ASW F1 score indicates
better performance.

Statistical Test and Visualization
The Mann–Whitney U-test with the Benjamini–Hochberg
correction was applied to the ARI F1 scores and the ASW F1
scores to compare the performance on batch correction between
deepMNN and other methods.

We used UMAP (Becht et al., 2019) implemented in the
Scanpy library (version 1.6.0) to visualize our batch correction
results with default parameters.

RESULTS

We utilized the three datasets of PBMCs with two batches,
pancreas cells with five batches, and HCA cells with two batches
(Table 1) to evaluate all batch correction methods under four
different scenarios: identical cell types, non-identical cell types,
multiple batches, and large datasets.

The experiments were carried out on a workstation with four
NVIDIA GeForce GTX 1080 Ti graphics cards, two Intel Xeon
E5-2620 v4 CPUs, and 64G random access memory (RAM). We
performed experiments for all methods in the CPU environment
except the deep learning-based methods of deepMNN, scGen,
and MMD-ResNet, for which a single GPU card was used.

Scenario 1: Identical Cell Types
We first used the PBMC dataset to evaluate the batch correction
methods. This dataset was comprised of nine identical cell types

TABLE 1 | Single-cell RNA sequencing datasets used for evaluating deepMNN.

Dataset Batch Protocol Number of cells

PBMC 10× 3′ 10× Chromium Single Cell 3′ v2
chemistry

8,098

10× 5′ 10× Chromium Single Cell 5′

paired-end chemistry
7,378

Pancreas Baron inDrops 8,569

Muraro CelSeq2 2,122

Segerstolpe SMART-seq2 2,127

Wang SMARTer 457

Xin SMARTer 1,492

HCA Bone Marrow 10× 275,264

Cord blood 10× 253,024

and possessed a similar proportion of cells for each cell type
between the two batches (Figure 2A). The UMAP plots depicted
that all methods except MMD-ResNet successfully merged the
common cells (Figure 3A). The deepMNN, Harmony, and Seurat
V4 produced a distinct megakaryocyte cluster from other cell type
clusters. By comparison, most megakaryocyte cells were mixed up
with monocyte CD14 cells by Scanorama and scGen. Moreover,
the CD8 cells located much closer within the compact clusters
that resulted from deepMNN and Seurat V4. However, these cells
scattered around the CD4 T cells in the clusters generated by
Harmony, Scanorama, and scGen.

With regards to the batch and cell type entropies (Figure 3B),
deepMNN achieved a comparable or a slightly lower batch
entropy than Harmony, scGen, and Seurat v4, but higher than
MMD-ResNet and Scanorama. A lower cell type entropy was
reached by deepMNN compared to other methods except for
Harmony and Seurat V4. As for the ASW F1 score (Figure 3C),
deepMNN was significantly higher than the other methods
(p < 0.00001). Furthermore, the results of the ARI F1 scores
(Figure 3D) showed that the performance of deepMNN was
comparable with that of Harmony and Seurat V4 and significantly
better than all the other methods (p < 0.00001).

Scenario 2: Non-identical Cell Types
To evaluate deepMNN under the scenario where batches had
non-identical cell types, we downsampled the PBMC dataset
using the following criteria: (1) the CD8 and B cells were removed
from the 10× 3′ batch and (2) the monocyte CD14 and NK
cells were removed from the 10× 5′ batch. As a result, the two
batches had different cell types except for CD4, megakaryocyte,
and monocyte FCGR3A cells (Figure 2B). Similar to the
results from scenario 1, we observed that all the methods,
except MMD-ResNet, merged the two batches (Figure 4A). The
deepMNN, Harmony, scGen, and Seurat V4 produced well-
separated clusters for megakaryocyte cells that, however, were
mixed up with monocyte CD14 cells using Scanorama. Moreover,
it was observed that the methods of Harmony, Scanorama, and
Seurat V4 mixed up some CD8 T cells with CD4 T cells, some
other CD8 T cells with NK cells, and some monocyte FCGR3A
cells with monocyte CD14 cells. In contrast, all cell types were
clearly distinguished by deepMNN except that only a few of CD8
T cells were mixed up with NK cells.

Regarding the batch and cell type entropies, deepMNN was
one of the methods that obtained the lowest cell entropy
(Figure 4B). It had a lower batch entropy than Harmony, scGen,
and Seurat v4 did. The ASW F1 score of deepMNN was lower
than scGen but significantly higher than all other methods
(p < 0.00001) (Figure 4C). No significant difference in the ARI
F1 scores was observed between deepMNN and the methods of
Harmony, scGen, and Seurat V4. However, deepMNN reached
a significantly higher ARI F1 score than MMD-ResNet and
Scanorama (p < 0.00001) (Figure 4D).

Scenario 3: Multiple Batches
To assess the performance of deepMNN on a dataset with
multiple batches, we employed the dataset of human pancreatic
cells that consisted of five batches. The dataset had different
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FIGURE 2 | The number of cells per cell type across batches in different datasets. (A) The human peripheral blood mononuclear cell (PBMC) full dataset,
corresponding to the scenario of identical cell types. (B) The PBMC subset dataset, corresponding to the scenario of non-identical cell types. (C) The pancreas
dataset, corresponding to the scenario of multiple batches. (D) The human cell atlas dataset, corresponding to the scenario of large-scale datasets.

numbers of cells and non-identical cell types between batches
(Figure 2C). The UMAP plots demonstrated that Harmony,
scGen, and Seurat v4 can merge all batches, while deepMNN and
Scanorama were more likely to make cell-specific clusters close
together (Figure 5A). Interestingly, all methods appeared to have
maintained a relatively good cell type separation.

For the evaluation metrics, deepMNN obtained a lower batch
entropy than Harmony, scGen, and Seurat V4 and was one of
the methods that achieved the lowest cell entropy (Figure 5B).
It reached a significantly higher ASW F1 score compared to the
other methods (p< 0.00001) (Figure 5C). The ARI F1 score from

deepMNN was also significantly higher than that from Harmony
(p < 0.05), Scanorama (p < 0.00001), and scGen (p < 0.001)
except for Seurat V4 (p > 0.05) (Figure 5D). Due to the bad
performance of MMD-ResNet in the experiments using two-
batch datasets as shown above, we did not evaluate the method
of MMD-ResNet under this multiple-batch scenario.

Scenario 4: Large-Scale Dataset
We further evaluated the batch correction methods using the
large-scale HCA dataset that was comprised of two batches,
where one batch had 275,184 bone marrow cells, while another
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A

B C D

FIGURE 3 | Comparison of batch effect correction methods for the human peripheral blood mononuclear cell dataset of identical cell types with two batches.
(A) Qualitative evaluation of the raw data, Harmony, MMD-ResNet, Scanorama, scGen, Seurat V4, and deepMNN using UMAP. The cells were colored by batches
on the top row and colored by cell type on the bottom row. (B) The batch and cell type entropies resulting from the batch correction methods. The plots show the
median (line within box), 25th and 75th percentiles (box), 5th and 95th percentiles (whiskers), and outliers (diamond points). (C) The ASW F1 score resulting from
different batch correction methods. (D) The ARI F1 scores resulting from different batch correction methods. ∗∗∗∗p ≤ 0.0001.

had 252,830 cord blood cells (Li et al., 2018; Figure 2D). Seurat
V4 and scGen were not capable of running successfully on our
server with 64GB RAM due to the exceedingly huge size of the
dataset. The deepMNN took approximately 17 min to complete
the process of batch effect correction, which was significantly
faster than Harmony (∼35 min) and Scanorama (∼77 min). Since

the computation of batch and cell type entropies required more
than 1 TB RAM and the calculation of the ASW F1 score was
unable to be completed within 48 h on our server, we did not
provide the results of the quantitative metrics. However, it was
observed that deepMNN, Harmony, and Scanorama were able to
bring cell-specific clusters close together (Figure 6).
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FIGURE 4 | Comparison of batch effect correction methods for the human peripheral blood mononuclear cell dataset of non-identical cell types with two batches.
(A) Qualitative evaluation of the raw data, Harmony, MMD-ResNet, Scanorama, scGen, Seurat V4, and deepMNN using UMAP. The cells were colored by batches
on the top row and colored by cell type on the bottom row. (B) The batch and cell type entropies resulting from the batch correction methods. The plots show the
median (line within box), 25th and 75th percentiles (box), 5th and 95th percentiles (whiskers), and outliers (diamond points). (C) The ASW F1 score resulting from
different batch correction methods. (D) The ARI F1 scores resulting from different batch correction methods. ∗∗∗∗p ≤ 0.0001.
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B C D

FIGURE 5 | Comparison of batch effect correction methods for the pancreas datasets with five batches. (A) Qualitative evaluation of the raw data, Harmony,
Scanorama, scGen, Seurat V4, and deepMNN using UMAP. The cells were colored by batches on the top row and colored by cell type on the bottom row. (B) The
batch and cell type entropies resulting from the batch correction methods. The plots show the median (line within box), 25th and 75th percentiles (box), 5th and 95th
percentiles (whiskers), and outliers (diamond points). (C) The ASW F1 score resulting from different batch correction methods. (D) The ARI F1 scores resulting from
different batch correction methods. ∗0.01 < p ≤ 0.05, ∗∗0.001 < p ≤ 0.01, ∗∗∗∗p ≤ 0.0001.
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FIGURE 6 | Evaluation of raw data, Harmony, MMD-ResNet, Scanorama, scGen, and deepMNN on the large-scale HCA dataset with 528,014 cells. The cells were
colored by batches on the top row and colored by cell type on the bottom row.

DISCUSSION

Batch effect poses a big challenge in scRNA-seq data analysis.
In this study, we proposed deepMNN, a novel deep learning-
based scRNA-seq batch correction method. The deepMNN
was constructed by a residual-based batch correction network
in conjunction with MNN pairs to remove batch effects in
scRNA-seq data. The experiment results showed that deepMNN
can successfully align different datasets under four scenarios

such as identical cell types, non-identical cell types, multiple
batches, and large-scale datasets. We compared the performance
of deepMNN with state-of-the-art batch correction methods,
including Harmony, Scanorama, and Seurat V4 as well as MMD-
ResNet and scGen. The results demonstrated that deepMNN
achieved a better or comparable performance in terms of both
qualitative analysis using UMAP plots and quantitative metrics
such as batch and cell entropies, ARI F1 score, and ASW F1 score
as well as running time. Two review papers (Tran et al., 2020;
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Chazarra-Gil et al., 2021) reported that Harmony and Seurat
were the best batch correction methods in most scenarios,
which, in turn, suggested the high efficiency of deepMNN to
correct batch effect.

The cell types and their proportions may be considerably
different across batches. For MNN-based batch correction
methods, such as MNNCorrect, Scanorama, and deepMNN, the
MNN pairs across batches need to be computed first. When
two cells from two datasets were identified in an MNN pair,
they were likely the same cell type. To remove the batch effect,
traditional methods usually calculated reference vectors based on
the identified MNN pairs and mapped one dataset to the space
obtained from the reference dataset. By comparison, deepMNN
applied a batch correction network that was formed by the stack
of two residual blocks for batch removal. Since the residual
block contained a residual term δ(x) and an identity term
x, deepMNN can easily learn a representation similar to the
identity term. In addition, the distributions of the same cell types
from different batches were theoretically close to each other,
and the discrepancy may be introduced by the batch effect.
Thus, the residual structure of deepMNN attempted to learn a
representation for the identity term, and the residual term can be
regarded as the batch effect.

Methods like Scanorama and Seurat V4 merged only two
datasets at once and iterated the same procedure to accomplish
the integration of multiple datasets. To our best knowledge,
deepMNN was the first method to integrate multiple batches of
scRNA-seq data in one step. After identifying MNN pairs among
batches, we minimized the batch loss that measured the distance
between cells in the MNN pairs, which can promote the network
removing the multiple-batch effect simultaneously. It should be
noted that the batch loss was not directly based on the output
of the batch correction network. We applied the PCA instead to
reduce the dimension of the output first and then calculated the
distance between cells in the MNN pairs.

Compared to the state-of-the-art batch correction methods,
deepMNN achieved almost significantly high ARI F1 scores and
ASW F1 scores under the scenarios of identical cell types, non-
identical cell types, and multiple batches. The scGen reached
a higher ASW F1 score than deepMNN under the scenario of
non-identical cell types. This was partially due to the feature of
scGen that was a supervised learning method and required cell
type labels. As for computation time, deepMNN was comparable
with other methods when the dataset was small. However, it
was significantly fast when dealing with large-scale datasets – for
example, deepMNN spent around 17 min on batch correction for
the 528k HCA dataset, while Harmony and Scanorama needed
about 35 and 77 min, respectively. Korsunsky et al. (2019)
compared the runtimes for different batch correction methods
and reported Harmony as one of the fastest batch correction
methods, which took 68 min on 500,000 cells. One reason for
the ability of quick batch correction by deepMNN was likely
that it removed batch effect in one step. Another reason might
probably be that deepMNN converged fast and can complete
batch correction within tens of epochs. In our experiments,
deepMNN only required 50 to 100 epochs to accomplish the
removal of batch effect. The last reason was partially due to the
deep learning-based method of deepMNN that used GPU to
speed up the computation. Seurat V4 and scGen cannot run on
our 64GB server for the 528k HCA dataset due to their high
RAM requirement.

The overall loss of deepMNN was the sum of a batch loss
and a weighted regularization loss that was controlled by the
tradeoff parameter α. The use of regularization loss was to make
the output of the network similar to the input and to prevent the
output from being zero when no batches existed in a dataset. We
investigated the effect of α on the batch correction performance of
deepMNN in terms of the ARI F1 score and ASW F1 score under
three different scenarios. Generally, the ASW F1 score tended to
rise first and then declined with the decrease of α, and it reached

FIGURE 7 | The effect of value changes in α on the batch correction performance of deepMNN under three scenarios of identical cell types, non-identical cell types,
and multiple batches. (A) The ASW F1 scores versus various α values under different scenarios. (B) The ARI F1 scores versus various α values under different
scenarios.
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almost the highest value when α was 0.001 under each of the
three scenarios (Figure 7A). Although the ARI F1 score exhibited
much fluctuation with the change of α, it can also have the highest
value with α of 0.001 under the scenario of identical cell types
(Figure 7B). Therefore, we chose 0.001 as the optimal value of
parameter α .

One key limitation of our method was that deepMNN
depended heavily on the identified MNN pairs. Only a small
number of MNN pairs can be found when a handful of cells
represented a shared biological state across batches, which was
not sufficient to remove batch effects in the entire datasets
effectively. On the other hand, even though a large number of
MNN pairs have been identified but a low percentage of them
have had the same cell types, deepMNN would result in a poor
performance on batch correction. In our experiments, about 80–
90% of MNN pairs had the same cell types. In the future, more
reliable schemes of searching MNN pairs will be investigated.
Another aspect of limitation in this study was related to
the dimension reduction method. In this study, deepMNN
used the PCA to project raw single-cell gene expression data
into low-dimensional space. However, a previous study (Butler
et al., 2018) demonstrated that PCA could intrinsically identify
biologically irrelevant variations caused by technical effects.
Other data embedding methods like CCA (Butler et al., 2018)
and autoencoder (Li et al., 2020) would be further considered to
improve the batch correction performance of deepMNN.
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Multi-omics data is frequently measured to enrich the comprehension of biological

mechanisms underlying certain phenotypes. However, due to the complex relations and

high dimension of multi-omics data, it is difficult to associate omics features to certain

biological traits of interest. For example, the clinically valuable breast cancer subtypes

are well-defined at the molecular level, but are poorly classified using gene expression

data. Here, we propose a multi-omics analysis method called MONTI (Multi-Omics

Non-negative Tensor decomposition for Integrative analysis), which goal is to select

multi-omics features that are able to represent trait specific characteristics. Here, we

demonstrate the strength of multi-omics integrated analysis in terms of cancer subtyping.

The multi-omics data are first integrated in a biologically meaningful manner to form

a three dimensional tensor, which is then decomposed using a non-negative tensor

decomposition method. From the result, MONTI selects highly informative subtype

specific multi-omics features. MONTI was applied to three case studies of 597 breast

cancer, 314 colon cancer, and 305 stomach cancer cohorts. For all the case studies,

we found that the subtype classification accuracy significantly improved when utilizing

all available multi-omics data. MONTI was able to detect subtype specific gene sets

that showed to be strongly regulated by certain omics, from which correlation between

omics types could be inferred. Furthermore, various clinical attributes of nine cancer types

were analyzed using MONTI, which showed that some clinical attributes could be well

explained using multi-omics data. We demonstrated that integrating multi-omics data in

a gene centric manner improves detecting cancer subtype specific features and other

clinical features, which may be used to further understand the molecular characteristics

of interest. The software and data used in this study are available at: https://github.com/

inukj/MONTI.

Keywords: feature selection, tensor decomposition, cancer, multi-omics, integrative analysis

1. INTRODUCTION

Genes are among the most important building blocks of all organisms. Their transcription and
translation are essential for maintaining fundamental cellular mechanisms. Genes are continuously
and precisely regulated by a wide variety of mechanisms, including transcription factors, miRNAs,
methylation, and mutations, which are often cumulatively referred to as multi-omics. When
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investigating a biological mechanism, each omics can only
provide a single perspective. By matching multi-omics data
sampled from a common subject, a multiple-perspective view
can be generated for an enhanced understanding of the complex
dynamics of biology in the subject. For each additionally
integrated omics data type, a new relationship can be mined
between a gene and the newly added, which increases the ability
to represent complex relationships across multi-omics data types,
as shown in Figure 1. However, due to their heterogeneous
nature, it is difficult to integrate such different omics data types
within a common data structure and even more difficult to
analyze them in a combinedmanner due to their high dimension.

A number of initiative projects have made great effort to
collect and publicly provide large amounts of multi-omics data,
such as TCGA (Weinstein et al., 2013), GTEx (Carithers et al.,
2015), ENCODE (The ENCODE Project Consortium, 2012),
and HFGP (Li et al., 2016). These databases provide more
than 10,000 high-throughput sequencing data sets generated
using various platforms and collected from cancer patients,
normal human tissues and model organisms. Compared to the
availability of such large amounts of multi-omics data, the
development of analytic methods that can encompass such large-
scale heterogeneous data is just recently gaining interest (Hasin
et al., 2017).

It is well understood that more data can improve the accuracy
of data mining. However, this is true only if the data are precisely
understood and, more importantly, correctly integrated. Omics
data are generated on different platforms, which implies unique
measurement scales, data formats, as well as different emphasis
on molecular domains and relationships among molecular
entities. Hence, normalization, pre-processing, as well as how
to evaluate associations with genes or other entities must be
carefully taken into account for each omics data set. Finally, the
data must be analyzed in an integrative manner in order to data
mine inter-relationships across the multi-omics domains.

While the aforementioned initiative projects are focused on
providing large-scale multi-omics data, other databases have

FIGURE 1 | The possible number of relations that a gene can have across omics layers (GE, gene expression; ME, methylation; MI, miRNA) increases exponentially

with each omics data type added to the integration. Here, n indicates the number of genes within a single omics layer.

gathered and processed these large data sets to allow statistical
queries. The LinkedOmics project (Vasaikar et al., 2017) collected
multi-omics data from TCGA that includes 32 cancer types,
surpassing 1 billion data points in total. Using simple correlation
methods (i.e., Pearson, Spearman), a user may search for genes
that are significantly correlated with the query gene. Here, the
correlation is in the context of multi-omics. In addition to issues
around data collection and analysis, methods for visualizing
multi-omics data is important. With an increasing number of
omics comes increased difficulty in visualizing the relationships
between multiple omics. PaintOmics3 (Hernández-de Diego
et al., 2018) is a web-based visualization tool that allows users
to observe multi-omics relationships in a graphical manner. It
supports nearly every sequencing technology platform, including
proteomics and region-based omics data, such as ATAC
(Buenrostro et al., 2015) or ChIP-seq (Park, 2009) data.

To date, studies sought to analyze high-throughput multi-
omics sequencing data, with the majority reporting results
using a single or a pair of omics (e.g, mRNA-miRNA, mRNA-
methylation). In addition, the majority of such studies focus
on identifying genes showing significant correlation with a
certain omics type using statistical methods, such as Pearson’s
correlation or cosine similarity. Furthermore, such approaches
tend to focus on finding a matching omics relation for a single
gene with each iteration of the analysis rather than analyzing
all genes and omics data in a combined manner. This is mainly
due to the heavy computation load and requirements of multiple
testing, which makes statistical analysis difficult.

A number of studies have reviewed multi-omics integration
methods. A recent study (Huang et al., 2017) grouped multi-
omics integration methods into four categories: (1) Matrix
factorization methods, (2) Bayesian methods, (3) Network-based
methods, and (4) Multiple step-analysis. In addition to those
categories, the recently popular deep learning technique has
been applied to predict genes that yield significant survival
results in liver cancer (Chaudhary et al., 2017). Such multi-
omics integration methods can also be categorized as supervised
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FIGURE 2 | Two prevalently used multi-omics integration methods. The multi-staged (top), or gene-centric, method encodes all omics measurement values in a per

gene basis. Hence, the number of genes (g) and samples (or patients p) in each omics matrix are required to have equal dimensions. The multi-dimensional (bottom)

integration method is less restrictive in the dimensions and makes use of each omics data as is.

and unsupervised by making use of labels that represent the
phenotype of the data, such as normal vs tumor sample. Tools
such as jNMF (Zhang et al., 2012), MOFA (Argelaguet et al.,
2018), and PARADIGM (Vaske et al., 2010) are unsupervised
methods that mine gene clusters or modules associated with
a phenotype of interest. Also, a network based multi-omics
clustering method, SNF (Similarity Network Fusion) (Wang
et al., 2014), was proposed that integrates multiple omics
networks by weighted similarity of cluster samples.

More importantly, the aspect of the result greatly depends
on how the multiple omics data are integrated. Two studies
well-categorized and defined two important integrationmethods,
which are the meta-dimensional and multi-staged integration
approaches (Ritchie et al., 2015; Sathyanarayanan et al., 2020).
The multi-staged integration method focuses on identifying
omics factors that effect gene expression level, which is expected
to find the causal relationship of a certain phenotype of interest.
Hence, the omics data are integrated in a gene-centric manner
and requires that each omics data have the same dimensions in
sample and gene numbers as shown in Figure 2 (top). Here, g
and p refers to the gene and patient (or sample) indices i and
m, respectively. Such gene-level multi-omics integration can be
advantageous in assessing the flow of information from omics to
genes. For example, gene-level analysis of mRNA, methylation,
and miRNA omics data can discover strong relationships across
the three omics layers in means to explain the dynamics of
gene expression (Subramanian et al., 2020). However, with
limited number of omics data, the landscape of gene expression
modulation may not be fully explained. Also, the selection
of omics data need to be focused on the assumption that

they influence the gene expression regulation. In the other
hand, the multi-dimensional integration method makes us of
each omics data as is. Thus, the number of entities in each
omics matrix may differ. The two integration methods both
assume a matched multi-omics, that is, multi-omics data are
retrieved from the same subject and therefore have the same
number of samples. Such assumption is also referred to as
multi-modal data. Such omics-level integration may capture the
bigger dynamics underlying a phenotype since the entire data
is analyzed as is (Sathyanarayanan et al., 2020). However, to
analyze relationships across the omics layers, post-processing
of the result is required, which can become very complex with
larger number of omics data since the combinations of omics
exponentially increase.

Utilizing multi-omics data, we can identify important
biomarkers and also identify multi-omics features specific to
a given sample or phenotype. In the context of cancer, multi-
omics features specific to cancer subtypes can be identified,
which can serve as valuable information for constructing
highly accurate subtype classification models. This approach will
eventually facilitate enhanced identification of subtype-specific
genes. Delineation between cancer and normal tissues or across
different cancer types have long been a popular problem (Furey
et al., 2000; Ramaswamy et al., 2001; Sotiriou et al., 2003), with
a classification accuracy reaching 85% (Gevaert et al., 2006).
However, classifying cancer subtypes (Network et al., 2012;
Shen et al., 2012; Paquet and Hallett, 2015) is more difficult
than distinguishing tumor and normal samples. For example,
classification accuracy for predicting breast cancer subtypes is
low, ranging from 56.7 to 75% (Wu et al., 2017; Tao et al., 2019).
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FIGURE 3 | The workflow of the MONTI framework. (A) Each omics data (gene expression, methylation, miRNA expression) is pre-processed as a two-dimensional

gene-centric matrix comprised of genes and samples. (B) The omics matrices are then stacked to form a three-dimensional tensor structure (genes, samples, omics)

all sharing the same genes and samples. (C) Using the PARAFAC approach, the tensor is decomposed into two-dimensional gene, patient and omics components.

Here, the components share the rank features. (D) The patient component is used to select subtype-specific features using subtype-specific L1 classifiers. The

selected subtype-specific features are used to build a subtype classifier model using MLP (Multi-layer perceptron). Genes associated to the subtype-specific features

are then selected for biological function analysis.

In this study, we developed MONTI (Multi-Omics Non-
negative Tensor Decomposition Integration) that learns hidden
features through tensor decomposition for the integration of
multi-omics data. MONTI is based on the gene-level integration
method, which we find to be more helpful in understanding the
results. The objective of MONTI is to extract feature genes that
well explain some clinical attribute of interest in large multi-
omics data. Being able to extract such a genes list with significant
relation to clinical attributes can serve as a source that can
naturally be used for simpler downstream analysis, such as, gene
set enrichment of pathway analysis. Also, MONTI constraints the
multi-omics data to be subject matched, where each omics data
are collected from a common subject (i.e., patient). Such design
may avoid omics variance within a same group, thus, amplifying
the signals of hidden features.

In experiments with TCGA multi-omics data sets from
breast, colon and stomach cancer samples, MONTI achieved
significantly higher cancer subtype classification accuracy than
existing multi-omics analysis methods. For the downstream
analysis, genes associated with subtype-specific features were
identified for biological interpretation.

2. MATERIALS AND METHODS

2.1. MONTI Framework Overview
The MONTI workflow operates in two phases. In the first
phase, the multi-omics data are integrated and decomposed
using non-negative tensor decomposition. In the second phase,
subtype-specific features and genes associated with them are
selected using L1 regularization, and these features are then
used to generate a subtype classifier using the multi-layer

perceptron (MLP) neural network. The overall workflow is
depicted in Figure 3.

2.2. Data Preparation and Preprocessing of
Multi-Omics Data
Samples withmatched gene expression, methylation, andmiRNA
expression data sets were collected for three case studies from
TCGA: (1) 597 breast cancer samples, (2) 314 colon cancer,
and (3) 305 stomach cancer samples. Only primary tumor
samples with all three matching omics data sets were selected
for the analysis. The pre-quantified gene and miRNA expression
values from TCGA were used as provided. For the methylation
data, we used the HumanMethylation450 BeadChip-based data
and further selected probes located within the gene promoter
regions (i.e., 2 Kb upstream of a gene’s transcription start site).
Subtype information were acquired from the original studies. The
partially missing subtype information of the breast cancer case
study was taken from Lim et al. (2018), which were generated
by the PAM50 classification method (Parker et al., 2009). Sample
case IDs and annotated cancer subtypes of the samples used in
this study are in Supplementary Table 1.

Because we aim to discover gene regulatory multi-omics
features, each omics data is individually processed to form a gene-
centric two-dimensional sample(patient)-genematrix. The values
in each omics matrix are computed and assigned with respect to
each gene. The tensor structure requires all slices to be of the same
size. Thus, while each omics matrix is independently processed,
they share the same set of genes and samples.

The gene expression values were preprocessed according
to the provided TCGA level 3 gene expression data, which
were subject to log2 quantile normalization across samples. For
miRNA, they were first bundled per target gene, such that
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the number of bundles matched the number of genes. The
geometric mean of miRNA expression per bundle was assigned
to each corresponding gene. The expression values were then log2
quantile normalized. For methylation data, probes located within
the transcription start site and 2 Kb upstream of gene promoter
regions were grouped per gene. The averagemethylation level per
gene was further quantile normalized.

Due to the nature of tensor decomposition, the omics value
in each matrix need to be scaled within a common range. If
not, an omics matrix with comparably large values, such as
gene expression, would have a diminishing effect on other omics
matrices with relatively lower values. Hence, normalizedmatrices
are further scaled within the range of 0–1. Finally, the omics
matrices were stacked on an orthogonal axis to form a three
dimensional tensor structure.

2.3. Tensor Decomposition
There are several ways to decompose a tensor. PARAFAC (Carroll
and Chang, 1970; Harshman, 1970) (a.k.a CANDECOMP-
canonical decomposition) and TUCKER3 (Kroonenberg, 1983)
are the most widely used methods. Both are multi- or bi-linear
decomposition methods, which decompose the array into sets
of scores and loadings. The decomposed scores and loadings
describe the original data in a more compressed form. PARAFAC
is based on factorization, whereas TUCKER3 utilizes principal
component analysis. The resulting decomposition structure
also differs between the two. PARAFAC decomposes a tensor
into three two-dimensional components or matrices, while
TUCKER3 generates three two-dimensional components along
with an additional core matrix that is shared by the components.
Due to the core matrix, interpreting data with the TUCKER3
model is more complicated (due to the increased number of
parameters) than PARAFAC (Bro, 1997). Hence, here we used the
PARAFAC method to decompose the multi-omics tensor.

A PARAFACmodel of a three-way arrayT with elements xijk is
given by three loading matrices, Cg , Cp, and Co with elements gif ,
pjf , and okf . Here, we refer to Cg , Cp, and Co as the gene, patient
and omics components, respectively. The tensorT is decomposed
using a predefined number of ranks R, which we will refer to as
features f = 1, . . . ,R.

Due to the non-negative constraint, the interpretation of the
feature values are much easier, since they are cumulative and do
not negate themselves. Thus, a larger value will imply a strong
signal of the feature. Furthermore, since omics data aremost non-
negative, the non-negative constraint can be naturally applied.

The trilinear model minimizes the sum of squares of the
residuals, eijk in the model

xijk =

R∑

f=1

gif pjf okf + eijk, (1)

which can also be written as

T =

R∑

f=1

gf ⊗ pf ⊗ of (2)

An illustration of the PARAFAC model using gene expression,
methylation level and miRNA expression data is in Figure 4.
Here, gn(n = 0, ...,N) refers to the genes, ok(k = 0, ...,K)
indicates the type of omics and pm(m = 0, ...,M) refers to patient
samples. N, M and O indicate the number of genes, samples,
and omics types, respectively. Three omics types are used in this
illustration; thus, K = 2.

2.4. Feature Selection
Subtype-associated tensor features, a subset of features selected
from the tensor decomposition result, significantly improved
subtype classification accuracy. To select such subtype-specific
features, L1 regularization was used for each subtype and applied
to the (Cp) component (i.e., patient component) with the
following equation,

min

M∑

i=1

(yi −

R∑

f=1

zifwf )
2 + α

R∑

f=1

∣∣wf

∣∣ . (3)

Here, M refers to the number of patient samples and R the
number of features, or columns, in Cp. yi refers to the target
subtype value. Because an L1 model is built for each subtype, the
target value is set to 1 for the corresponding subtype and 0 for the
other subtype samples. For example, for the breast cancer case
study, four L1 models were generated, one for each subtype of
Luminal A, Luminal B, Her2, and Basal. z refers to the values of
each feature in Cp. wf (f = 1, ...,R) refers to the weight of each
feature to be inferred. The α value is the weight of the penalty
term. Larger α values yields greater penalty, which will result in
more features having zero weight and causing fewer features to
be selected. We found that the L1 regularization achieved greater
performance compared to the L2 regularization (Figure 5).

The feature selection performance using L1 and L2 were
measured using the BRCA, COAD, and STAD data with varying
ranks. As show in Figure 5, L1 showed better feature selection
performance in terms of subtype classification accuracy in the
three cancer types.

2.5. Selecting Feature Associated Genes
Based on the L1 selected features from Cp, feature genes were
further selected from Cg . This procedure outputs a sparse set of
genes, where each gene has a membership to a single feature.
The association of a gene g to a feature is decided by gf =

max(g0,R), where the weight is maximum at the corresponding
feature index f .

2.6. Cancer Subtype Classification Analysis
The significance of the selected feature genes was measured by
their power of subtype classification accuracy. The classification
accuracy was measured using a multi-layer perceptron (MLP)
classifier with 10-fold cross validation. Here, values of the feature
genes from Cg were given as input to build the MLP classifier.
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FIGURE 4 | An illustration of the non-negative tensor decomposition (PARAFAC) using three types of omics. The tensor T is decomposed into three components:

gene, sample (patient), and omics. Each component corresponds to one axis in tensor T. Each component is a two-dimensional matrix where one axis embeds the

rank features fi (i = 0, ..., r) for the entities in each component (i.e., genes, samples, and omics), similar to the traditional matrix factorization method.

FIGURE 5 | The cancer subtype classification accuracy of BRCA, COAD, and STAD was measured using features selected by the L1 and L2 method with

different ranks.

3. RESULTS

3.1. Three Case Studies
MONTI was applied to three cancer types: breast cancer (BRCA),
colorectal cancer (COAD), and stomach cancer (STAD). The
cancer types were chosen based on the number of samples
that had matched multi-omics data from the same patient.
There were 597, 314, and 305 matched omics data for BRCA,
COAD, and STAD, respectively. To avoid an overly sparse
tensor, genes that do not have any methylation probes located
within their promoter and 2 Kb upstream of transcription start
site (TSS) regions were discarded, which resulted in 14,513

genes with 60,707 methylation probes in total. The average

methylation beta values were taken and assigned per gene.

Similarly, miRNA expression values were grouped per target gene

and the arithmetic mean of miRNA expression values in a group
was assigned to its target gene. The multi-omics data items were
used to produce gene centric omics matrices, which were then
combined to form a three dimensional tensor of each cancer type,
i.e., genes×multi-omics×patient samples.

3.2. Subtype Classification Results
Before deriving cancer subtype-specific features through tensor
decomposition, a pre-defined rank R value for decomposing
the tensor were needed to be chosen. In addition, a penalty
strength, α value needed to be set for L1 regularization. Both were
empirically chosen over a range of values by testing the subtype
classification accuracy.

First, we evaluated the subtype classification accuracy using
the feature in Cp over different ranks. The subtype classification
accuracy for BRCA, COAD, and STAD was the highest with
ranks 450, 150, and 100, respectively. The α value for L1
regularization determines the strength of the penalty for the
features. The larger the α is the smaller number of features and
genes be selected. Subtype classification performance was further
investigated using α values ranging from 0 to 0.1. To further
select informative features, the non-zero weight features were
ranked by their absolute coefficient value from which top 20%
features were chosen.

The subtype classification accuracy was the highest when α =

0.01 (Figure 6). As a result, 26, 31, and 37 features from Cp were
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FIGURE 6 | The classification accuracy with varying α values. The

classification accuracy was the highest with α = 0.01.

selected for subtype classification from the BRCA, COAD, and
STAD tensors, respectively.

The multi-omics tensors for the three cancer case studies
were decomposed with the optimal rank numbers and α values
that were chosen as explained above. We then investigated how
much contributions feature genes (i.e., from Cg) made to the
improvement in subtype classification accuracy.

Our primary interest in this study was whether the selected
features would better represent the underlying biological
mechanism when using multiple omics data compared to single
or a smaller subset of omics data. As shown in Figure 7A, subtype
classification the accuracy was the highest when all available
multi-omics data were used and combined by the tensor features,
which are labeled as GE, ME, and MI for gene expression,
methylation, and miRNA expression respectively.

Here, we find that such accuracy reflects how much the
subtypes are explainable by the selected features and their
associated genes in multi-omics manner.

The number of features and their associated genes are shown
in Table 1. Since a feature can be associated with multiple
subtypes, the sum of features in the St-Features columnmay
be larger than the number of selected features. Here, Features
and Genes refer to the total number of genes and the number
of features in each cancer case study and St-Features and
St-Genes to the number of genes and the number of features
in each subtype St, respectively. A total of 2,385 genes, 3,831
genes, and 5,461 genes were found to be associated with BRCA,
COAD, and STAD subtypes, respectively. The majority of genes
were exclusively assigned to a certain subtype in all three cancer
data sets (Figure 7B). This was more intuitive in the tSNE plot
in Figure 7C. While the number of features was the largest in
BRCA, the total number of genes did not necessarily differ with
the other cancer types.

The 10-fold cross validated F1 scores of MONTI were 0.844,
0.9, and 0.91 for BRCA, COAD, and STAD, respectively. As
far as we are aware of, the classification accuracy are highest
among classification results reported in the literature so far and,
in our experiments, MONTI outperformed existing methods

such as MOFA2, iCluster, and SNF. For BRCA and COAD,
the classification accuracy increased significantly when at least
two omics data were used involving gene expression omics
(GE). Improvement in classification accuracy was dramatic for
COAD where use of single omics resulted in poor performance.
Interestingly, methylation showed to be more influential in
STAD, where ME alone achieved high classification accuracy.
The CpG island methylator phenotype (CIMP) information
can be used to characterize distinct subtypes of gastric cancer
well and it is known that specific methylation patterns and
clinicopathological features are associated (Network et al., 2014;
Tahara and Arisawa, 2015) with it. While the majority of feature
genes were associated with a single subtype (Figure 7B), some
had membership to multiple. For example, the Venn diagram
of BRCA shows that Luminal A and Luminal B subtypes share
265 genes while Her2 and Basal shared 53, which is true in
the biological concept. Luminal A and Luminal B are hormone-
receptor positive subtypes whereas Her2 and Basal are hormone-
receptor negative subtypes, which also reflects the aggressiveness
of the cancer (i.e., hormone-receptor negative cancers grow
faster). Such characteristics are well-observed in the tSNE plots
in Figure 7C.

3.3. Performance Evaluation
While few tools are available for multi-omics analysis with the
goal of classifying cancer subtypes, all such tools aim to discover
genes that have a strong correlation with one or more omics.
In other words, such relational information is expected to differ
between the cancer subtypes, which information is used to
build classifiers or to mine subtype-specific data on genes or
features. We compared the BRCA, COAD, and STAD subtype
classification accuracy of five methods, which are MONTI, SNF
(Wang et al., 2014), MOFA2 (Multi-Omics Factor Analysis)
(Argelaguet et al., 2020), iCluster (Shen et al., 2009), and PCA.

The three cancer data sets consist of four subtypes. In BRCA,
the number of samples per subtype were 220, 152, 91, and 132 for
Luminal A, Luminal B, Her2, and Basal, respectively. In COAD,
the number of samples per subtype are 43, 125, 48, 99 for CMS1,
CMS2, CMS3, and CMS4, respectively. In STAD, the number of
samples per subtype are 188, 26, 42, and 49 for CIN, EBV, GS, and
MSI, respectively.

The genes used for analysis were chosen by two criteria. First,
only protein coding genes were selected. Second, genes where
the methylation values in the TSS 2 k upstream region was
missing in more than 80% of the samples were filtered out. The
miRNA data was used as is and the target gene information was
acquired frommirDB (Chen andWang, 2020). As a result, 14,514
genes were selected based on the BRCA, COAD, and STAD
data sets. Methylation probes with missing values in all samples
were dropped, resulting in 62,070 probes. Similarly, miRNAs
with zero expression in all samples were excluded, resulting in
1,882 miRNAs. Each omics data were normalized as described
in section 2.

The optimal number of ranks for MONTI were selected using
the nmfEstimateRank function in the R preprocessCore
package. For each gene-level omics data the optimal number of
ranks were investigated based on the dispersion metric, from
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FIGURE 7 | The MONTI analysis results of BRCA, COAD, and STAD subtypes are shown. (A) The subtype classification accuracy was the highest when using all

three omics data for all three cancer types. (B) The cancer subtype specific genes. Here, the genes are shared by at most two different subtypes. (C) tSNE plots that

were drawn using the selected features from Cp of each cancer type.

which we chose an appropriate rank number based on the elbow
method. As a result, 120 ranks were chosen for BRCA, COAD
and STAD. As an example, the dispersion plot of BRCA omics
data are shown in Figure 8. The feature genes omics values were
used for measuring the F1 score.

SNF (Similarity Network Fusion) integrates multi-omics
data by constructing networks for each omics data in terms
of the sample similarity using the omics data and then fusing
the networks iteratively using the message-passing method.
The principle is to keep edges between samples that are consistent
across the different omics networks and to remove that are
inconsistent and of low similarity. The optimal hyper parameters
K, the number of neighbors in K-nearest neighbor, and T, the

number of iterations for the diffusion process, where determined
via the parameter grid search. The (K, T) parameters were set as
(10, 30), (10, 10), and (5, 20) for BRCA, COAD, and STAD data
sets, respectively. The output of SNF is the sample clusters, which
was used to measure the F1 score.

MOFA2 utilizes matrix decomposition with the purpose of
identifying sources of heterogeneity in multi-omics data sets.
It decomposes multiple two-dimensional matrices, where each
matrix represents an omics data type comprised of genes
and samples. The decomposition yields feature matrices, each
associated to one of the input omics matrices, and an additional
factor matrix, which represents the activation values of each
feature per sample. Thus, if three omics data are given as input,
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TABLE 1 | The number of selected features and genes in BRCA, COAD, and STAD.

Case study Ranks Features Genes Subtypes St-Features St-Genes

BRCA 120 26 2,385

Luminal A 10 879

Luminal B 9 732

Her2 11 1,080

Basal 8 665

COAD 120 31 3,831

CMS1 7 1,129

CMS2 9 1,403

CMS3 11 1,473

CMS4 10 704

STAD 120 37 5,461

CIN 9 1,234

GS 9 1,007

MSI 9 839

EBV 8 652

FIGURE 8 | The dispersion plot using different ranks using BRCA omics data for estimating optimal NMF ranks.

they will be decomposed into four matrices (i.e., three feature
and one factor matrices). MOFA2 allows to chose the number
of factors or features from the decomposed factor matrix, where
we utilized as many as possible for each dataset. The maximum
features that could be used was 10 for BRCA, COAD, and STAD,
respectively. The output of MOFA was the Z sample factor
matrix, which was used for measuring the F1 score.

iCluster adopts a joint latent variable model for integrative
clustering of multi-omics data. iCluster aims to data
mine significant associations between different omics data
types through likelihood-inference using the Expectation-
Maximization algorithm. iCluster supports a omics optimal
weight estimation function, which we used for each data set for
clustering. The output of iCluster is the sample clusters, which
was used to measure the F1 score.

At last, sample PCA features were extracted and used for
classifying the cancer subtypes. For each cancer and omics data,
optimal number of PCA features were selected based on the
classification accuracy via a parameter grid search. For BRCA, 10,
6, and 10 PCs were selected from gene, methylation, and miRNA
data, respectively. Similarly, 8, 5, and 2 PCs for COAD and 20,
2, and 18 PCs for STAD were selected from gene, methylation,
and miRNA data, respectively. The selected PCs were stacked

and given as input to the random forest classifier to measure the
F1 score.

The average F1 score was measured via 10-cross validation
for each tool with configurations described above. The train and
test data were split before any normalization or feature selection
in each BRCA, COAD, and STAD data set. The same train and
test data sets were used to measure the F1 score in each method.
Furthermore, the input data were both prepared in gene-level
(i.e., multi-staged) and omics-level (i.e., multi-dimension) format
to observe the difference between the two integration methods.
Thus, each method, except MONTI, was subject to two types of
input data and were tested for classification accuracy accordingly.
The tools measured with gene-level input data are labeled as
SNF_g, MOFA2_g, iCluster_g, and PCA_g.

The comparison results are shown in Figure 9. The F1 score
was the highest in MONTI for all cancer subtypes, followed by
iCluster and SNF. We observed that the gene-level input data
yielded lower F1 scores in MOFA2, while it remained relatively
similar in SNF, iCluster, and PCA methods. The significant drop
of F1 score in MOFA2_g may be due to its feature extraction
method. While the omics-level input data matrix is very dense,
the gene-level matrix is relatively sparse, especially for the
miRNAdata. Hence, the latent factors associated with themiRNA
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FIGURE 9 | The F1 scores of five tools using gene-level and omics-level data sets of BRCA, COAD, and STAD subtypes.

data will loose information. Furthermore, while MONTI utilizes
larger number of rank features, MOFA2 utilized 10 features,
which may have reduced the dimension too much, thus, loosing
more information accordingly.

3.4. Analysis of Pan-Cancer Clinical
Features
The relatively high classification accuracy of the cancer subtypes
above implies that they may be explained using the feature
extracted genes in terms of multi-omics. Thus, we further
investigated whether clinical attributes, other than cancer
subtypes, such as gender, mutation groups or metastasis can
be explained using multi-omics data. Among the many clinical
attributes, categorical attributes with <5 groups were used. Also,
clinical attributes with high sample bias were excluded. As a
result, a total of nine cancer types and 95 clinical attributes
were analyzed using mRNA, methylation and miRNA data. For
example, the “Pathologic M” feature of STAD, which is the TNM
staging of metastasis, has three classes, which are M0, M1, and
MX. If the cancer has spread, the sample is labeled as M0, and
if not it is labeled as M1. If metastasis cannot be measured, it is
labeled as MX. Thus, similar to the cancer subtype classification,
we measured the classification accuracy of each of the categorical
clinical attributes that were selected by the criteria described
above. The details of the data set and clinical attributes are
provided in Supplementary Table 2.

MONTI was executed on each cancer type and each clinical
feature as described in section 2. The classification accuracy of
the cancer clinical attributes are shown in Figure 10. Here, we
observed that some clinical attributes were well classified while
others showed poor classification.

All cancer subtypes showed relatively high accuracy in BRCA,
COAD, STAD, and PRAD (Prostate adenocarcinoma), which
hints that the multi-omics profile is highly correlated with cancer
molecular subtypes. Also, while mutation data was not utilized,
the BRAF and RAS mutation classes were well distinguished in

THCA (Thyroid carcinoma). From such result, we may infer
that at least mRNA, methylation and miRNA omics have causal
relationship with BRAF and RAS mutations, which was also
reported in Agrawal et al. (2014). In case of HNSC (Head
and Neck squamous cell carcinoma), the gender attribute was
classified with almost perfect accuracy, which was also reported
in Yuan et al. (2016).

The Pan-cancer analysis results show that some clinical
attributes are able to be explained using mRNA, methylation
and miRNA data while others need further investigation using
other omics or clinical data. Collectively, we find that such results
may help selecting omics when performing research on clinical
features in a cancer cohort.

4. DISCUSSION

While not shown in this study, the subtype classification accuracy
decreased when involving certain omics types, particularly with
the use of mutation profile data. For BRCA data, the accuracy
dropped below 0.75 when SNP data were included in the
tensor. The first short-coming of the SNP data was its extreme
sparseness (i.e., 0.5% genes with SNP). We further attempted to
impute the remaining missing values using the network-based
stratification method for tumor mutations (Hofree et al., 2013).
Unfortunately, the accuracy further decreased, which may be due
to the introduction of additional uncertainty arising from large
number of predictions. For sparse data, integration methods that
are not gene-centric may be more advantageous, such as SNF.
Such result implies that no single method may be universally
applicable for incorporating all types of omics data, and that
omics data must be well understood and integrated in a manner
specific to the characteristics of each omics. Similar arguments
have been discussed previously (Zhang et al., 2018).

Clustering of the selected sample features from the Cp

component of the BRCA analysis result shows us that the Basal
samples are well clustered together, whereas the Luminal A and
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FIGURE 10 | The radar chart showing classification results of nine cancers and their clinical attributes.

Luminal B subtypes are relatively more mixed (Figure 11A).
Similarly, the clustering of selected feature genes from the Cg

component showed the feature activity of genes (Figure 11B).
Here, the top color bars represent the maximum omics type of
each feature. The feature four related genes had strong relation
with methylation. Genes with high values in multiple features
that are related with different omics types indicate that the gene
has relationship across the two different omics types.

Furthermore, the selected features in all three case studies
captured correlation among different omics data types. As shown
in Figure 12, EXOC6 was most affected by DNA methylation in
Basal subtype of BRCA. EXOC6 is reported to be an important
respondent gene when the effects of a combination of the
histone deacetylase inhibitor suberoylanilide hydroxamic acid
(SAHA) and taxanes were tested for cytotoxicity using human
breast cancer cell lines (Chang et al., 2011). Also, EXOC6 was
found to be one out of five genes that was able to asses breast
cancer risk with high accuracy (Winham et al., 2017). While
EXOC6 was observed to have distinct methylation profiles in

brain tissues (Farlik et al., 2016; Hira and Gillies, 2016), it
was not actively investigated in breast cancer Basal subtype
samples in terms of multi-omics correlation. The OLFML2B
gene was found to be negatively correlated with miRNA in the
CMS4 subtype in COAD. We found that the miRNA OLFML2B
targetingmiRNA,miR-30b, is a well-known oncogene suppressor
miRNA in colorectal cancer (Liao et al., 2014), whichmay explain
the omics relationship here. At last, the MAPK15 has been
reported to be a regulator for redioresistance in nasopharyngeal
carcinoma cells, which is tightly linked to the Epstein-Barr
virus (EBV) infection (Li et al., 2018), which may relate to
the EBV subtype of STAD. Collectively, we may induce that
the MAPK15’s expression is down-regulated by methylation,
which was not the case in other STAD subtypes. Other than the
selected genes, well known multi-omics correlated genes related
to certain cancer subtypes were also detected. Although data
not shown, the ESPL1, detected by MONTI, showed significant
regulatory relationship between gene expression andmethylation
specific to Luminal A and Luminal B subtypes in BRCA, which
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FIGURE 11 | (A) The cluster heatmap of sample features (Cp) and (B) the cluster heatmap of the feature genes (Cg) from the breast cancer result. The left color bars

in (A) refer to the BRCA subtypes. The top color bars in (B) refer to the omics with the largest feature value in Co.

FIGURE 12 | Three genes were selected to show correlation between different types of omics data across patient samples. EXOC6 was associated with the Basal

subtype of BRCA, OLFML2B was associated with CMS4 subtype of COAD and MAPK15 was associated with the EBV subtype of STAD.

was previously reported in Finetti et al. (2014) and Li and Li
(2020).

OLFML2B was most affected by miRNA in CMS4 subtype of
COAD. MAPK15 also showed strong gene expression regulation
by methylation in EBV subtype of STAD. This kind of result
by MONTI may suggest cancer subtype specific gene regulation
mechanisms, which can help discover subtype-specific gene
markers for further biological and clinical investigations.

The genes were further examined to see if they captured
known signals of cancer subtype specific pathways by applying
the Subsystem Activation Scoring (SAS) method (Lim et al.,
2016). SAS is used to decompose molecular pathways into
sub-pathways (named subsystems) and measure the activation
levels of them in terms of gene expression. We expanded

it to multi-omics levels to evaluate the association of each
subsystem with each cancer subtype by constructing random
forest classifiers using its SAS score. The detailed method and
results are described in Supplementary Table 3. The detected
pathway subsystems were highly specific to each cancer type.
For example, the top 10 ranked pathways for the three case
studies were all supported by previous studies. For example, the
“Fanconi anemia” pathway was the top ranked pathway for the
BRCA data, which is known to be a rare chromosomal instability
disorder that is susceptible to cancer (Alan and D’Andrea, 2010).
The “HIF-1 signaling” pathway was top ranked in STAD with
association to miRNA. The study (He et al., 2017) suggests
that miR-224 promotes cell growth migration and invasion by
targeting the RASSF8 gene in STAD. Similarly, the top ranked
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“Vascular smooth muscle contraction” pathway by SAS was also
reported to be induced by colorectal cancer (Li et al., 2017).

The application of MONTI was demonstrated on cancer
subtype multi-omics data. However, MONTI is not tailored
to cancer subtype analysis but can be utilized to identify any
categorical clinical features, such as gender, mutation groups,
tumor grade, or age. Thus, the advantage of MONTI is that it is
able to identify clinical feature associated genes in terms of multi-
omics. Furthermore, the omics component Co can be further
used to investigate which omics are currently active and take part
in gene expression regulation.
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In vivo Estimation of Breast Cancer
Tissue Volume in Subcutaneous
Xenotransplantation Mouse Models
by Using a High-Sensitivity
Fiber-Based Terahertz Scanning
Imaging System
Hua Chen1* , Juan Han1, Dan Wang1, Yu Zhang1, Xiao Li2 and Xiaofeng Chen2

1 School of Physics, Southeast University, Nanjing, China, 2 The First Affiliated Hospital of Nanjing Medical University, Nanjing,
China

Absorption contrast between the terahertz (THz) frequency range of fatty and cancer
tissues allows cancer diagnosis by THz imaging. We successfully demonstrated the
ability of THz imaging to measure small breast cancer volume in the subcutaneous
xenotransplantation mouse models even without external comparison. We estimated
the volume detection limitation of the fiber-based THz scanning imaging system using a
highly sensitive cryogenic-temperature-operated Schottky diode detector to be smaller
than 1 mm3, thus showing the potential application of this technique in preliminary early
cancer diagnosis.

Keywords: THz, imaging, mouse model, breast cancer, caner volume

INTRODUCTION

Terahertz (THz) wavelength is from 0.003 to 3.0 mm, which is longer than far-infrared and light
wave, so the scattering in a biological tissue is greatly reduced and no harmful photoionization
occurs for the low photon energy (Kindt and Schmuttenmaer, 1996). Meanwhile, THz waves are
very sensitive to polar substances (Pedersen and Keiding, 1992; Wang et al., 2010; Yamada et al.,
2014) and can provide better contrast for the biological tissue than x-ray. So far, researchers have
detected various human cancers by using THz wave. For example, skin cancer has been the focus
of THz imaging research in recent years. It has been confirmed by in vivo and in vitro models that
THz has a high diagnostic rate for the boundary and depth of invasion of skin cancer (Woodward
et al., 2002; Rahman et al., 2016). Pickwell et al. (2005) measured the THz refractive index and
absorptivity of normal tissues and cancer tissues of 10 patients with basal cell carcinoma and showed
that the absorption characteristics of cancer tissues were significantly different from those of healthy
tissues; this contrast between the two tissues proved that THz imaging can be used as a non-invasive
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diagnostic tool for skin cancer. Fitzgerald et al. (2006) analyzed
the THz images of isolated breast cancer tissues and compared
the imaging edge with pathological examination results. Reese
(Reid et al., 2011) and other researchers have studied the THz
images of freshly resected colorectal cancer tissues and found that
normal tissues have a good contrast with cancer tissues and it is
possible to detect cancer in esophagus, colon, bladder, prostate,
and other deep tissues by THz endoscopic imaging equipment
(Wang and Mittleman, 2004).

Breast cancer is the second most common cancer affecting
women and accounts for 23% of all cancer cases. Moreover,
it is also the main cause of cancer death for females, and the
mortality rate is 14% of the all cancer deaths (Jemal et al.,
2011). Recently, several preliminary clinical studies have reported
that the THz absorption contrast method could be used to
diagnose breast tumors from normal tissues (Fitzgerald et al.,
2006; Ashworth et al., 2009; Chen et al., 2011a,b; Bowman
et al., 2017a,b, 2018; Chavez et al., 2018), and the contrast is
induced by water content and cancer-induced structure change
(Ashworth et al., 2009; Chen et al., 2011a,b). In our previous
study, we not only demonstrated that THz wave can clearly
identify breast cancer tissue without any other H&E staining
(Bowman et al., 2017b), but also realize early detection breast
cancer in the nude mice (Chen et al., 2011a). However, the
detection capability is limited to tissues thinner than 5 mm (Chen
et al., 2011a), which is too thin compared to the thickness of
an actual female breast under magnetic resonance imaging or
x-ray (>5 cm), thus limiting further clinical applications. In
this study, the capability was improved to 8 cm by applying
a high-sensitive cryogenic-temperature-operated Schottky diode
detector to the fiber-based THz scanning imaging system. Using
this technique, we realized in vivo early breast cancer detection in
a subcutaneous xenotransplantation mouse model without any
external comparison, and even estimated the detection limit of
the THz imaging system to be smaller than 1 mm3, which is a
great advantage compared to the current detection limit of x-ray
mammography (2 mm diameter).

EXPERIMENTAL

Setup of the Terahertz Imaging System
The results of ex vivo THz spectroscopy of thin breast tissue
sections (Fitzgerald et al., 2006; Bowman et al., 2017b) revealed
that high tissue absorption leads to low penetration depth,
which makes transmission imaging difficult. However, the THz
absorption of the breast tissue decreases at lower frequency, so we
use 108 GHz frequency for in vivo imaging. A schematic picture
of the fiber-based THz imaging system used in this study is shown
in Figure 1. The parameters of polyethylene (PE) fibers (Chen
et al., 2006, 2007; Lu et al., 2008) and the working principle of the
system remains unchanged from those described in our previous
system (Chen et al., 2011a). Briefly, the THz wave is radiated
from a YIG oscillator module, and then the THz wave is collected
by a pair of off-axis parabolic mirrors and focused into the PE
sub-wavelength fiber with a diameter of 600 µm and a length
of 45 cm (Chen et al., 2011a). Finally, the THz wave coupling

by TE fiber is focused by a PE lens onto the sample and then
the transmitted power is detected by the detector. To improve
detection sensitivity, we introduced a cryogenic-temperature-
operated Schottky diode detector with a working temperature of
approximately 4 K. Cooling the Schottky diode detector reduces
noise significantly, thus enhancing the sensitivity to 10−13 W/Hz
with the same dynamic range and response time. Finally, a lock-in
amplifier will analyze the collected signals. The image is obtained
by two-dimensional (X–Y) direct scanning of the output end of
the fiber with an imaging time of less than 1 min. The results show
the signal-to-noise ratio of the imaging system to be about 108:1,
which is improved about 103 times compared to our previous
imaging system (Chen et al., 2011a).

Mouse Treatment
This work is approved by the Institutional Animal Care and
Use Committee of Southeast University and Nanjing Medical
University (No. 3207027381). We purchased 4- to 6-month-
old female BALB/cAnN.Cg-Foxnlnu/CrlNarl mice, an immune
inhibited laboratory mouse strain unable to reject breast cancer
cell injection and fatty tissue xenograft from another species,
from Slac Laboratory Animal, Shanghai, China.

To induce breast cancer, we directly implanted 0.3 ml of MDA
MB 231 breast cancer cells into the dermis layer of the mouse
skin. The cancer cells were cultivated in L-15 with 10% fetal
bovine serum and 1% antibiotics to a cell concentration of 5 × 107

per milliliter of culture media. After injecting the cancer cells,
we immediately marked the injection area, kept the mice warm
around 36◦C, and restored them to health. On the seventh day,
we implanted mouse fatty tissue to embed the breast cancer cells.
The implanted or ex vivo measured fatty tissue was aspirated
from 12-week-old female B6.V-Lepob/J mice and rinsed thrice
in the transport medium [NaCl 0.9% (w/v), glucose 56 mM,
HEPES 25 mM, and PSA 10 ml (pH 7.4)]. The cancer cells and
fatty tissue implantations as well as in vivo THz imaging were
conducted after anesthetizing the mice by injecting ketamine-
xylazine (50 + 15 mg/kg) intraperitoneally. THz imaging was
conducted 7 days after fatty tissue implantation.

THz Absorption Spectra of Mouse
Tissues
We first in vivo measured the mouse skin, fatty tissue, and
breast cancer tissue by THz absorption spectroscopy at 108–
143 GHz. To extract the properties of the constituent tissue
types, THz absorbance (α) was averaged linearly by assuming
that any reflections and scattering caused by heterogeneities
within samples were negligible. The absorbance was calculated
according to the Beer-Lambert law α = ln(Is/Ib)/d, where Is
is the transmitted power of the THz wave through samples,
Ib is the background (transmission power of THz wave
through the cover glass), and d is the thickness of tissues.
As shown in Figure 2A, after anesthetizing the mouse, we
sandwiched the embedded dorsal area with two cover glasses.
Then, the THz absorption spectra were measured by the YIG
oscillator module and Schottky diode detector mentioned in
section “Setup of THz Imaging System.” The corresponding
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FIGURE 1 | Schematic picture of the imaging system. Fiber parameters: diameter: 600 µm; length: 40 cm; attenuation coefficient: 10−3 cm−1.

FIGURE 2 | (A) Photos of a mouse processing. (B) Absorption spectra of mouse skin and fatty and breast cancer tissues (black, blue, and red solid circles,
respectively). The error bars represent the standard deviation of the mean; n = 20.
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FIGURE 3 | THz images of breast cancer in three mice. (A) The cancer in mouse is about 0.480 mm3. (B) The cancer in mouse is about 0.853 mm3. (C) The cancer
in mouse is about 0.704 mm3.

absorption coefficients were calculated from the measurements
in 20 mice, which is shown in Figure 2B. It has been
clearly found that THz absorption spectra can differentiate
between fatty and cancer tissues and the absorption coefficients
of cancer tissues are much higher than those of the fatty
tissues. As the water content of breast cancer tissues is higher
than normal tissues, we believe that the water content in
tissues may be the most related and dominant factor for the
absorption contrast (Chen et al., 2015). Meanwhile, we found
that the absorption coefficients of skin and cancer tissue were
similar. Considering that skin thickness is relatively uniform
and will not vary with time significantly, we calibrated the
attenuation due to skin as a uniform and position-independent
attenuation background. Moreover, considering the sensitivity
of the cryogenic-temperature-operated detection system and
absorption coefficients of mouse skin and fatty and breast cancer
tissues, we estimated that the penetration capability of our system
can be improved to 8 cm, which is similar to the average breast
thickness in Asian females.

RESULTS

After the cancer cell injection, on the 7th day, we anesthetized
the mouse and implanted mouse fatty tissue to embed the
cancer cells. Starting from the 14th day, we measured the cancer
implanted area (marked as red area in the picture of Figure 3) by
THz imaging daily. The mouse was anesthetized and the dorsal
cancer area was sandwiched by two cover glasses. Finally, once
the scanning completed, mice were monitored, kept warm to
36◦C, and allowed to wake up naturally. For further studies on
estimating the breast cancer size in the mouse model, we first
tested the sensitivity of the THz imaging system with 10 mice,
and the limitation was investigated in three mice.

Figure 3 shows the 10 × 10 mm2 THz images of
three mice acquired on the 14th day after cancer cell
implantation. During the imaging process, each mouse was
scanned three times and the images were presented in the
form of the mean absorption coefficient (α). We calibrated the
attenuation due to skin as a uniform and position-independent
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attenuation background. The scanned images show that the
high absorption of breast cancer tissue provides endogenous
contrast under THz imaging, making it easy to distinguish
from the background absorption. We defined the color bar by
absorption coefficient α from 1.400 mm−1 to 1.600 mm−1.
The background of the image, shown as blue color, is defined
as 1.400 mm−1 < α < 1.450 mm−1, corresponding to the
absorption coefficient of fatty tissue (according to Figure 2). The
absorption coefficients of the sandwiched tissues induced with
early cancer development is 1.450 mm−1 < α < 1.600 mm−1,
while 1.600 mm−1 is the maximum absorption coefficient and
is shown as red color. Since early cancer development differs
individually, the absorption change 1α will be different for each
individual, and the absorption change 1α for these three tested
mice was 0.090, 0.160, and 0.132 mm−1, respectively.

According to the concept of cell absorption cross (σ), we
estimated tumor volume in these three mice. σ is defined as:
σ = α/N = α × Vcell, where N is the number of absorbing cells
per unit volume and Vcell is the volume of a single cancer cell.
The development of cancer cells embedded in fat then induced
1α and the corresponding cancer cell density N’ was described
as N’ = 1α/σ = 1α/(α × Vcell). Finally, the volume of the
total cancer tissue V was evaluated. Through the THz absorption
spectra shown in Figure 3, we calibrated the value of σ. As
shown in Figure 3, the measured absorption changes 0.090, 0.160,
and 0.132 mm−1 in the three mice correspond to V = 0.480,
0.853, and 0.704 mm3, respectively, while the sensitivity of x-ray
mammography depends on breast density (Nass et al., 2001)
and the detection limitation is as small as 2 mm in diameter
(Onuigbo et al., 2001) currently.

DISCUSSION

According to our previous study on human breast cancer, we
proved that THz imaging can clearly diagnose breast cancer
tissues (Chen et al., 2011b) and detect cancer volume (Chen
et al., 2011a). However, the detection capability of the imaging
system is far from clinical application, for the reason that the
detection thickness of the former system is smaller than 5 mm
(Chen et al., 2011a). In this study, we successfully improved
the capability to 8 cm and clinical application would become
possible compared to the thickness of an actual female breast.
In order to further demonstrate the potential clinical application
of THz imaging in the detection of small breast cancer tissue
volume, we conducted this study in mouse models. The results
show that THz imaging has high sensitivity and potential for
non-invasive early cancer detection without exogenous contrast.
In this work, we did not consider human breast fibrous tissue

because the available subcutaneous xenotransplantation animal
models prevent us from implanting fibrous tissue to simulate real
females breast conditions. However, the THz absorption spectra
can distinguish breast cancer tissue from fibrous tissue very well
(Fitzgerald et al., 2006; Ashworth et al., 2009; Bowman et al.,
2017b). The future potential, specificity, and penetration ability
for in vivo imaging in humans needs to be studied.

CONCLUSION

The fiber-based THz scanning imaging system based on
cryogenic detection system was used to study human breast
cancer tissue volume in the mouse model. Results show that
THz imaging can not only monitor cancer development in real
time but also identify small cancer tissue volume, and all the
measurements are conducted without the need of exogenous
contrast. Through calculation, we found that this method may be
used to detect cancer tissue volume smaller than 1 mm3, which
is highly advantageous compared to the current detection limit
(2 mm) of x-ray mammography. This non-invasive and non-
ionizing imaging method has a potential application to breast
cancer volume detection.
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Background: Epilepsy is a complex chronic disease of the nervous system which
influences the health of approximately 70 million patients worldwide. In the past few
decades, despite the development of novel antiepileptic drugs, around one-third of
patients with epilepsy have developed drug-resistant epilepsy. We performed a
bioinformatic analysis to explore the underlying diagnostic markers and mechanisms of
drug-resistant epilepsy.

Methods: Weighted correlation network analysis (WGCNA) was applied to genes in
epilepsy samples downloaded from the Gene Expression Omnibus database to determine
key modules. The least absolute shrinkage and selection operator (LASSO) regression and
support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to
screen the genes resistant to carbamazepine, phenytoin, and valproate, and sensitivity of
the three-class classification SVM model was verified through the receiver operator
characteristic (ROC) curve. A protein–protein interaction (PPI) network was utilized to
analyze the protein interaction relationship. Finally, ingenuity pathway analysis (IPA) was
adopted to conduct disease and function pathway and network analysis.

Results: Through WGCNA, 72 genes stood out from the key modules related to drug
resistance and were identified as candidate resistance genes. Intersection analysis of the
results of the LASSO and SVM-RFE algorithms selected 11, 4, and 5 drug-resistant genes
for carbamazepine, phenytoin, and valproate, respectively. Subsequent union analysis
obtained 17 hub resistance genes to construct a three-class classification SVM model.
ROC showed that the model could accurately predict patient resistance. Expression of 17
hub resistance genes in healthy subjects and patients was significantly different. The PPI
showed that there are six resistance genes (CD247, CTSW, IL2RB, MATK, NKG7, and
PRF1) that may play a central role in the resistance of epilepsy patients. Finally, IPA
revealed that resistance genes (PRKCH and S1PR5) were involved in “CREB signaling in
Neurons.”
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Conclusion: We obtained a three-class SVM model that can accurately predict the drug
resistance of patients with epilepsy, which provides a new theoretical basis for research
and treatment in the field of drug-resistant epilepsy. Moreover, resistance genes PRKCH
and S1PR5 may cooperate with other resistance genes to exhibit resistance effects by
regulation of the cAMP-response element-binding protein (CREB) signaling pathway.

Keywords: epilepsy, drug-resistant epilepsy, bioinformatics analysis, CREB signaling pathway, resistance gene

1 INTRODUCTION

Epilepsy is a complex chronic neurological disease characterized
by the recurrence of unprovoked seizures and has numerous
neurobiological, cognitive, and psychosocial consequences
(Fisher et al., 2014). It affects the health of over 70 million
people worldwide (Thijs et al., 2019). Epilepsy has complex
etiologies, diverse clinical symptoms and phenotypes, and high
heterogeneity, which interfere with its diagnosis as well as
treatment (Rawat et al., 2020). Moreover, approximately a
third of patients with epilepsy are refractory to antiepileptic
drugs (AEDs) when they are employed singly or even in
various combinations (Lerche, 2020). There is thus an urgent
need to find new diagnostic markers of refractory epilepsy to
ameliorate the current situation of epilepsy diagnosis and
treatment.

There are multitypes of AEDs for epilepsy treatment, among
which carbamazepine (CBZ), phenytoin (PHT), and valproate
(VPA) are the most widely used first-line drugs (Schmidt and
Schachter, 2014). CBZ is a first-line treatment for partial and
generalized convulsive seizures, trigeminal pain, and bipolar
disorder, which functions as a Na+ channel blocker (Harper and
Topol, 2012). CBZ remains the most efficacious drug for focal
and generalized seizures with focal onset (Baulac et al., 2012;
Baulac et al., 2017). PHT is also speculated to work as a Na+

channel blocker; it exhibits similar efficacy to CBZ and is the
first-line drug for focal seizures and generalized seizures with
focal onset. Unusually, PHT is mainly administered
intravenously (Mattson et al., 1985). As the first-line and
most effective intravenous drug for focal and generalized
seizures in current clinical treatment, VPA performs multiple
functions, including GABA potentiation, glutamate inhibition,
and sodium channel and T-type calcium channel blockade
(Tomson et al., 2016).

In 2009, the International League Against Epilepsy (ILAE)
defined drug-resistant epilepsy as “failure of adequate trials of two
tolerated, appropriately chosen and used AED schedules” (Kwan
et al., 2010). Patients with drug-resistant epilepsy have a
significantly increased risk of psychiatric and somatic
comorbidities and adverse effects from AEDs. Furthermore,
their seizures are not well controlled and recurrent, especially
generally tonic–clonic seizures, which is the best-recognized risk
factor for sudden unexplained death in epilepsy (Ryvlin et al.,
2019). Recent research has demonstrated that after the failure of
two well-tolerated AED schedules appropriately chosen for the
seizure types, patients under long-term treatment for epilepsy
have a progressively less likely chance of success with further drug

treatment (Chen et al., 2018). Therefore, early-stage identification
of AED resistance is crucial to patient treatment outcomes.

In our study, we used weighted correlation network analysis
(WGCNA), the least absolute shrinkage and selection operator
(LASSO) algorithm, and the support vector machine-recursive
feature elimination (SVM-RFE) algorithm to analyze and select
resistance genes. All genes in epilepsy patient samples were
downloaded from the Gene Expression Omnibus (GEO)
database. We constructed a novel three-class classification
SVM model to accurately predict patient resistance, which
may provide a new strategy for the treatment and research of
drug-resistant epilepsy and also revealed that the resistance genes
PRKCH and S1PR5 may cooperate with other resistance genes
through regulation of the cAMP-response element-binding
protein (CREB) signaling pathway. The workflow is shown in
Figure 1.

2 MATERIALS AND METHODS

2.1 Data Source
The original dataset of the whole gene expression profiles was
downloaded from the GEO database. The accession number was
GSE143272, which was based on GPL10558 (Illumina
HumanHT-12 V4.0 expression beadchip). Gene sequences of a
total of 34 drug-naïve patients with epilepsy and 57 followed-up
patients showing differential response to AED monotherapy,
along with 50 healthy subjects as a control group, were
included in the study. The AED-treatment group included the
CBZ-drug-treatment group (tolerance: 9; intolerance: 10), the
PHT-drug-treatment group (tolerance: 6; intolerance: 7), and the
VPA-drug-treatment group (tolerance: 9; intolerance: 16).

2.2 Definitions of Candidate Resistance
Genes by WGCNA
In this study, we used the “WGCNA” R software package to
construct modules related to clinical features in the epilepsy
sample dataset (GSE143272) and identify candidate genes
(Langfelder and Horvath, 2008). The clinical features were
divided into eight categories: normal (health), unmedicated
epilepsy (case), CBZ tolerance, CBZ intolerance, PHT
tolerance, PHT intolerance, VPA tolerance, and VPA
intolerance. The overall clustering of the GSE143272 dataset
was found to be of relatively high quality, so no sample
removal processing was performed (Supplementary Figure
S1A). The traits of the samples are shown in Supplementary
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Figure S1B. The adjacency matrix was converted to a topological
overlap matrix (TOM) (Li et al., 2019). According to the degree of
TOM similarity, genes were divided into multiple gene modules
(Supplementary Figures S1C,D). In this analysis, the soft
threshold was set to 7 (scale-free R2 � 0.85), and the

minimum module size was 30. The correlations between the
characteristic gene of each module and clinical characteristics
were calculated. The screening of key modules was achieved by
calculating the correlation between the module genes and clinical
features. Moreover, a gene with |gene significance (GS)| >0.2 and |

FIGURE 1 | Workflow of the study.
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module membership (MM)| > 0.8 in the key modules was
considered as a candidate resistance gene.

2.3 Feature Selections by LASSO and
SVM-RFE Algorithms
LASSO logistic regression and SVM-RFE were performed on the
candidate resistance genes obtained in WGCNA to screen
characteristic genes. LASSO is a regression analysis algorithm
that uses regularization to improve the prediction accuracy. The
penalty parameter (λ) of the LASSO regression model was
determined by following a 10-fold cross-validation of the
minimum criterion (i.e., the value of λ corresponding to the
lowest partial likelihood deviation). The LASSO regression
algorithm using the “glmnet” package (Friedman et al., 2010)
in R was performed to identify genes significantly associated
with the distinctions between CBZ-resistant and PHT + VPA-
resistant samples, PHT-resistant and CBZ + VPA-resistant
samples, and VPA-resistant and CBZ + PHT-resistant
samples. Furthermore, SVM-RFE is an effective feature
selection technique that finds the best variables by deleting
the feature vector generated by SVM (Wang and Liu, 2015).
In this study, the SVM-RFE algorithm screened the best
variables based on a minimum 10 × CV error value. The
performances of CBZ/PHT/VPA resistance LASSO and SVM
models are shown in Supplementary Table S1. For each drug,
resistance genes were defined as the common genes identified by
the LASSO and SVM-RFE algorithms. Ultimately, we combined
the resistance genes of CBZ, PHT, and VPA as hub resistance
genes for further analysis. A three-class classification SVM
module was established using the “e1071” software package
in R (Supplementary Figure S2) (Cinelli et al., 2017), and
the receiver operating characteristic (ROC) curve was used to
further determine the diagnostic value of the hub resistance
genes in epilepsy.

2.4 Construction of the Protein–Protein
Interaction Network
To interpret the molecular mechanisms of hub resistance genes in
epilepsy, the online tool, the Search Tool for the Retrieval of
Interacting Genes (STRING) database, was used to construct the
protein–protein interaction (PPI) network of 72 modular genes
(Szklarczyk et al., 2015). The PPI was visualized with a confidence
score >0.15 (Assenov et al., 2008).

2.5 Ingenuity Pathway Analysis for the
Identification of Diseases and Function
Pathways Involved
Ingenuity pathway analysis (IPA) is a web-based bioinformatic
application for functional analysis, aggregation, and further
understanding of data analysis results (Khan et al., 2016).
Briefly, IPA was performed to identify diseases and functions
and gene networks that were most significant to hub resistance
genes. The Z-scores of significantly involved diseases and
function pathways were also determined.

2.6 Statistical Analysis
All statistical analyses were performed using R version 3.4.1.
The Wilcox test was used to analyze the relationship between
drug resistance and clinicopathological characteristics. Pearson
correlation analysis was adopted to understand the relevance
of the 17 hub resistance genes. The area under the curve
(AUC) was calculated to evaluate the property of the
models. p < 0.05 was envisaged to indicate a statistically
significant difference.

3 RESULTS

3.1 Determination of the Most Relevant
Module Genes for Drug Tolerance in
Epilepsy Treatment
We first clustered all the samples in the GSE143272 dataset to
ensure the accuracy of the analysis (Supplementary Figure
S1A). The coexpression network was constructed through
coexpression analysis. A total of 27 modules (including gray
modules) were identified via the average linkage hierarchical
clustering. To ensure that the interaction between genes in the
coexpression network could conform to the scale-free
distribution to the greatest extent, the power of β � 7 was
selected; to merge the highly similar modules, we chose a cutoff
<0.25 and a minimum module size of 30 using the dynamic
hybrid tree cut method. In this study, we focused on the drug-
resistant traits of disease samples. Therefore, we included the
two traits of the case and drug tolerance as reference factors to
screen key modules. It was found that the MElightcyan module
had the highest correlation with CBZ-tolerance traits (module-
trait relationships � −0.27 and −0.12, respectively) and VPA-
tolerance traits (module-trait relationships � −0.27 and 0.2,
respectively) of cases. The MEyellow module (module-trait
relationships � −0.19 and −0.12, respectively) was found to
have the highest association with the PHT-tolerance status of
the case (Figure 2). Hence, 1,016 genes in the two modules
(MElightcyan: 206 and MEyellow: 810) were considered to be
significant module genes for further intramodular analysis.
Based on the candidate gene screening criteria in the key
module (|GS| > 0.2 and |MM| > 0.8), a total of 72 candidate
genes from the MElightcyan (25 genes) and MEyellow (47
genes) modules were chosen for further analysis (Figures
2E,F; Supplementary Tables S2, S3).

3.2 Identification of Hub Resistance Genes
in Patients With Epilepsy
In this study, two distinct algorithms, LASSO and SVM-RFE,
were utilized for screening potential resistance genes against CBZ,
PHT, and VPA. For each drug, resistance genes were defined by
the common signature genes identified by LASSO and SVM-RFE.
Ultimately, the resistance genes of all three drugs were collectively
termed as hub resistance genes in our research.

For the identification of potential resistance genes to CBZ, we
built classifiers capable of distinguishing between CBZ-resistant
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FIGURE 2 | Weighted gene co-expression network analysis of the potential resistance genes. (A) Weighted value β of scale-free networks. The relationship
between the soft threshold and scale-free R2 is exhibited on the left. On the right, the relationship between the soft threshold and mean connectivity is shown. (B)Cluster
dendrogram. Each branch in the figure represents the genes, which are divided into module colors based on the cluster analysis results. The oligogenics are assigned in
the gray module. (C) Heatmap of the correlation analysis between modules and clinical characteristics. The vertical axis represents the different modules; the
horizontal axis represents the different traits. The number in each cell represents the correlation coefficient and significance (p-value) between a module and a trait. (D,E)
Scatter diagrams of MElightcyan andMEyellowmodules. Using the criteria |GS| > 0.2 and |MM| > 0.8, we selected the key genes of eachmodule in the upper right corner
of the figure. Twenty-five key genes were screened from the MElightcyan module, a resistance module common to both CBZ and VPA drugs.
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FIGURE 3 | LASSO and SVM-RFE algorithms were used for characteristic gene selection. (A, C, E) LASSO algorithm. Using the LASSO algorithm, we identified 12
potential resistance genes in the CBZ-resistance gene set, 4 in the PHT-resistance gene set, and 6 in the VPA-resistance gene set. (B, D, F) SVM-RFE algorithm. SVM-
RFE algorithm separately indicated the resistance genes most closely corresponding with the lowest error rates in patients treated with CBZ (B), PHT (D), and VPA (F).
(G–I) Venn diagram of the characteristic genes for CBZ (G), PHT (H), and VPA (I), which were selected from the LASSO or SVM-RFE algorithms. (J)We unified the
LASSO + SVM characteristic resistance genes of CBZ, PHT, and VPA and obtained 17 characteristic genes.
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FIGURE 4 | Assessment of the predictive value of the three-class classification SVMmodel. (A)Boxplot shows the expression patterns of 17 drug resistance genes
in case and control samples from the GSE143272 dataset. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (B)ROC curve based on every two drugs in the model.
Blue represents CBZ vs. PHT, green represents CBZ vs. VPA, and red represents PHT vs. VPA. Since all AUCs are 1.000, only one color is shown in the figure (other
ROC curves are covered). (C,D) By using the Wilcox test, we analyzed the correlation between three clinical traits (age, gender, and pathological classification) and
drug resistance. A heatmap of resistance genes and clinical traits is plotted (C). Clinical traits and drug resistance were significantly correlated (p < 0.05) (D).

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 6830327

Han et al. Drug-Resistant Epilepsy Model Construction

183

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


samples (n � 9) and PHT + VPA-resistant samples (n � 15) using
the LASSO and SVM-RFE algorithms. Specifically, the LASSO
regression was performed to remove candidate genes that were
related to each other to prevent overfitting of the model
(Figure 3A). A total of 12 LASSO signature genes were
obtained at λ min � 0.0116; they were CCDC102A, CEP78,
CLDND2, FGFBP2, GPR56, KLRD1, NCALD, PRKCH, RUNX3,
S1PR5, SBK1, and SKAP1. Meanwhile, based on the SVM-RFE
algorithm (Figure 3B), 18 SVM-RFE signature genes were
identified at a minimum 10-fold CV error (0.153), namely,
NCALD, FGFBP2, CCDC102A, KLRD1, S1PR5, SKAP1, TTC38,
CLDND2, PRKCH, SBK1, CD247, RUNX3, ENPP4, TSEN54,
NKG7, PRR5, GPR56, and HOPX. Subsequently, a total of 11
genes (CCDC102A, CLDND2, FGFBP2, GPR56, KLRD1, NCALD,
PRKCH, RUNX3, S1PR5, SBK1, and SKAP1) were identified by
overlap analysis as common to both the LASSO signature gene set
and the SVM-RFE signature gene set; these genes were defined as
resistance genes for CBZ (Figure 3G).

Before identifying potential resistance genes to PHT, we
divided all drug-resistant samples into PHT-resistant (n � 6)
and CBZ + VPA-resistant (n � 18) groups. The 72 candidate
genes previously identified were narrowed down using the
LASSO regression algorithm, resulting in the identification of
four variables (LOC388621, LOC441154, LOC645157, and
LOC649548) as potential resistance genes for PHT at λ min �
0.0784 (Figure 3C). Based on the best point (10 × CV error �
0.171), the SVM-RFE algorithm obtained 41 eigenvalues
(Figure 3D; Supplementary Table S4). By overlapping the
genes from the two algorithms, we identified the four genes
(LOC388621, LOC441154, LOC645157, and LOC649548) as
resistance genes in patients treated with PHT (Figure 3H).

Based on 9 VPA-resistant samples and 15 CBZ + PHT-
resistant samples, the LASSO regression algorithm identified
IL2RB, NCALD, PRKCH, PRR5, PRSS23, and RUNX3 as
potential resistance genes to VPA based on λ min � 0.0272
from 72 candidate genes (Figure 3E). A subset of 16 features
among the candidate genes was determined using the SVM-RFE
algorithm (10 × CV error � 0.199; Figure 3F). The five
overlapping features (NCALD, PRKCH, PRR5, PRSS23, and
RUNX3) between these two algorithms were ultimately
selected as the resistance genes in patients treated with VPA
(Figure 3I).

Collectively, we obtained a total of 11 CBZ-resistant genes,
4 PHT-resistant genes, and 5 VPA-resistant genes
(Supplementary Table S5). Overlap analysis revealed that
NCALD, RUNX3, and PRKCH were the common resistance
genes for CBZ and VPA (Figure 3J). Thus, a total of 17 hub
resistance genes were obtained and included for further analysis.

3.3 Evaluation of the Three-Class
Classification SVM Model
The 17 resistance genes were significantly different in control
and case samples; i.e., compared with the control group, their
expression in case samples was generally lower (Figure 4A).
Then, the library (“e1071”) package was used in the R software
to construct a three-class classification SVM model for the 17

hub resistance genes obtained from the above analysis, and its
prediction performance was evaluated in the GSE143272
dataset. The ROC curve was drawn based on the true and
predicted values of each two drugs in the model. The results
demonstrated that the three-class classification SVM
model could distinguish the patient’s tolerance to the three
drugs (all AUC � 1.000), indicating that the resistance genes
may be clinically useful (Figure 4B). We then compared the
clinical characteristics of the three subgroups, namely, CBZ
tolerance, PHT tolerance, and VPA tolerance. Subgroup
analysis of clinical characteristics showed that the
cryptogenic epilepsy type was characterized by significant
differences (Figures 4C,D). Other clinical characteristics like
gender, age, and idiopathic epilepsy type had no statistical
significance.

3.4 Correlation Analysis of Resistance
Genes
Pearson analysis was used to explore the correlation between 17
resistance genes. Studies have shown that all resistance genes have
a strong positive correlation; as shown in Figure 5A, SKAP1 has
the highest correlation with SBK1 and NCALD (r � 0.88). The
relationship between some other resistance genes does not seem
to be as close. For example, the correlation between LOC645157
and PRR5/S1PR5 (r � 0.13 and r � 0.18, respectively) and the
correlation between GPR56 and LOC441154 were not
considerable (r � 0.18).

Next, we used the STRING online tool to construct a PPI
network for 72 modular genes. This was to show the maximum
possible additional modular genes that interacted with the 17
resistance genes. We set the confidence level to 0.15. After
removing discrete proteins, we obtained a PPI network with 23
proteins. The PPI network is illustrated in Figure 5B. The
results showed that 6 of the 17 resistance genes were at the
center of the network, indicating that they were associated with
a higher number of genes. Therefore, we speculated that these
genes played a major role in the corresponding drug-tolerance
modules. Judging from the analysis of the degree of binding
(combined score), we found that CD247-IL3RB-PRF1-NKG7/
KLRD1/CD274 may form a complete closed loop of tolerance
and promote the patient’s body to develop resistance. Also,
although RPL14, RPS28, and FBL were out of the core of the
PPI, these three resistance genes could form a complete closed
chain of action and exert a powerful resistance effect
(Supplementary Table S6). Regardless of the fact that only
10 resistance genes were displayed in the network, the
remaining 7 resistance genes seem to have a unique
relationship network that was not yet known to play their
corresponding roles.

3.5 IPA of the Hub Resistance Genes
The complete list of enriched disease and function pathway
analysis is included in Supplementary Table S7. A total of 27
enriched disease and function pathways were identified by
applying the −log (p-value) > 1.3 threshold. All the 27
representative pathways that were found to associate tightly
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with the tolerance module genes and resistance genes are shown
in Figure 6A, ranked according to their −log (p-value). The “Th1
and Th2 activation pathway” was the highest-ranking signaling
pathway with a −log (p-value) of 5.71. Although none of the
detected signaling pathways had a Z-score > 2 (significant
activation), one of the enriched signaling pathways, “CREB
signaling in neurons,” had a Z-score � −2. Of note, the
involvement of CREB in the occurrence and development of
epilepsy is well recognized (Sharma et al., 2019). These results
suggest that these resistance genes (PRKCH and S1PR5) may
induce resistance in patients with drug-treated epilepsy by
regulation of the CREB pathway. Moreover, Figure 6B shows
the interaction network between 72modular genes. Among them,
we found that RUNX3 could directly interact with S1PR5 and
PPR5 by acting on Akt. However, CCD102A, FGFBP2, NCALD,
PRSS23, and SRSS23 were intertwined into an intricate network
through their direct or indirect interaction with beta-estradiol.

4 DISCUSSION

Epilepsy is one of the most common chronic diseases of the
nervous system and extensively affects people of all ages, genders,
and races worldwide (Fiest et al., 2017; Devinsky et al., 2018).
Pharmacological treatment is widely recognized as the mainstay
of the therapy approach for people with epilepsy. However,
previous studies have indicated that more than one-third of
the patients are likely to develop refractory epilepsy in the
process of AED treatment (Kwan and Brodie, 2000; Löscher
et al., 2020). The complex resistance mechanisms of AEDs are still
not entirely clear. Recent studies have demonstrated that the
application of bioinformatic analysis could provide a chance to

explore the underlying mechanisms of drug resistance (Zhang
et al., 2019; Zhu et al., 2019). Therefore, we utilized bioinformatic
analysis techniques to construct a three-class SVM model to
precisely predict the drug resistance of patients with epilepsy and
explored the potential mechanisms of drug-resistant epilepsy.

In this study, we included 50 healthy patients, 34 patients with
epilepsy untreated by medication, and 57 patients with epilepsy
with three different AED treatments (CBZ, PHT, or VPA) from
the GEO database (GSE143272 dataset). Then, 72 candidate
resistance genes were identified by WGCNA. IPA revealed a
total of 27 disease and functional associations of candidate
resistance genes. The highest-ranked signaling pathway was
the Th1 and Th2 activation pathway, indicating that candidate
resistance genes were potentially involved in the regulation of
immune response in patients. Subsequently, by employing the
LASSO + SVM-RFE algorithm, we constructed a three-class
classification SVM model based on 17 hub resistance genes
(CCDC102A, CLDND2, FGFBP2, GPR56, KLRD1, NCALD,
PRKCH, PRR5, PRSS23, RUNX3, S1PR5, SBK1, SKAP1,
LOC388621, LOC441154, LOC645157, and LOC649548) from
CBZ-resistant, PHT-resistant, and VPA-resistant gene sets.
The model possessed a strong ability to predict drug tolerance
in patients (AUC � 1.000). Furthermore, these genes displayed a
significant Pearson correlation with each other. The PPI network
analysis revealed that CD247, CTSW, IL2RB, MATK, NKG7, and
PRF1 were at the center of the network and may play essential
roles in the development of drug resistance.

Our study screened 17 novel resistance genes and built a highly
effective model to accurately predict the drug resistance of
patients with epilepsy. Among the 17 hub resistance genes, we
found that NCALD and GPR56 were verified to be directly
relevant to epilepsy in previous studies. Recent studies have

FIGURE 5 |Correlation analysis of resistance genes and the PPI network. (A)Correlation matrix of 17 resistance genes. The upper right half is the correlation score,
where red represents positive correlation and purple indicates negative correlation. The lower left section shows scattered plots of correlations between each of the two
genes. (B) PPI network. The red proteins are resistance genes, while the blue proteins are the remaining module genes. Based on the combined score, the lines
represented the interaction between them, and the degree of thickness represented the degree of their combination.
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reported that intellectual disability and epilepsy were detected in
patients withNCALD deletion, indicating thatNCALD could be a
crucial gene in epilepsy (Kuechler et al., 2011; Kuroda et al., 2014).
Additionally, studies have demonstrated that GPR56 mutations
may cause malformations of cortical development, which could
further result in epileptogenesis (Guerrini and Dobyns, 2014;
Kuzniecky, 2015). However, the underlying mechanisms of
NCALD and GPR56 in AED resistance have not yet been
reported and left a wide scope for further research.

Considering the above result of the IPA, we found that the
CREB signaling pathway in neurons appeared to be closely
associated with the tolerance module and resistance genes.
Recent research has demonstrated that the CREB signaling
pathway plays an essential role in mossy fiber sprouting, which
is generally known to be a pathological result of recurrent epilepsy.
CREB upregulation boosts the transcription of its target genes,

which results in the enhancement of mossy fiber sprouting and an
increase in the number of dysfunctional synapses in neural circuits,
resulting in poor AED treatment outcomes for patients with
epilepsy and ultimately developing into refractory epilepsy
(Redmond et al., 2002; Finsterwald et al., 2010). Additionally,
according to our results, two hub resistance genes (PRKCH and
S1PR5) were closely involved in the CREB pathway, which is
consistent with previous research. PRKCH encodes a protein
kinase subtype, which is widely involved in brain functions
(Boehm et al., 2006; Schwenk et al., 2013). Through pathway
analysis on the identified single-nucleotide polymorphism
component, researchers have found that PRKCH is strongly
associated with the CREB signaling pathway (Chen et al., 2015).
S1PR5 encodes a G-protein-coupled receptor which is reported to
be highly relevant to CREB activation (Rivera et al., 2008; Wang
et al., 2020). Moreover, PRKCH was proved to be the joint gene

FIGURE 6 | IPA of module genes. (A) Diseases and functional pathway analysis of module genes. While the Y-axis is the pathway terms, the X-axis is the log
(p-value). (B) Interaction network was constructed between modules of genes and the chemical/drug and other substances by using IPA. Green represents resistance
genes, including KLRD1, PRR5, RUNX3, S1PR5, SKAP1, CCDC102A, FGFBP2, NCALD, PRSS23, and SBK1. Solid lines of the arrows indicate direct interactions
between genes, while dotted lines indicate indirect interactions.
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among CBZ-resistant and VPA-resistant gene sets in our findings.
Integrating this evidence, we speculate that PRKCH and S1PR5
may induce resistance in patients with drug-treated epilepsy
through the CREB pathway.

Intriguingly, emerging evidence has demonstrated that PRKCH
and PPR5 are associated with the mTOR signaling pathway. The
mTOR pathway regulates a variety of neuronal functions, including
cell proliferation, survival, growth, metabolism, and plasticity.
Compelling evidence has indicated that abnormal activity of the
mTOR pathway plays an irreplaceable role in epileptogenesis (Lim
et al., 2015; Curatolo et al., 2018). Moreover, recent studies have
further confirmed the substantial therapeutic potential of targeting
themTOR signaling pathway in drug-resistant epilepsy (Hodges and
Lugo, 2020). This implies that PRKCH and PPR5 could be potential
targets for the treatment of refractory epilepsy.

Additionally, other than the 5 hub genes mentioned above, we
also identified 12 novel drug resistance genes, herein first reported
to be related to refractory epilepsy. According to the correlation
analysis, all 17 resistance genes have a strong positive relation, and
SKAP1 has the highest correlation, with SBK1 and NCALD.
Moreover, among the 12 novel resistance genes, CCDC102A,
FGFBP2, RUNX3, SKAP1, KLRD1, and PRSS23 were intertwined
into a complex PPI network. LOC388621, LOC441154, LOC645157,
and LOC649548 were first screened out to be PHT-resistant genes,
and their structure and function deserve to be further studied.
Integrating the results above, we inferred that the 17 hub genes have
intricate direct or indirect interactions in drug-resistant epilepsy.

Nevertheless, there were several limitations in this study. First,
our research is based on a publicly available dataset. Prospective
real-world data should be incorporated to validate the clinical
utility of our model. Subsequently, further in vitro and in vivo
experiments should be performed to confirm the mechanisms of
the 17 hub genes in drug-resistant epilepsy.

5 CONCLUSION

Through this study, we have offered novel insights into the
research and treatment of drug-resistant epilepsy and created a
novel three-class SVM model with high prediction values. This is
also the first study that has elucidated that the resistance genes
PRKCH and S1PR5 may work in coordination with other
resistance genes to exhibit their resistance effects through
regulation of the CREB signaling pathway.
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The Pyroptosis-Related Gene
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Objective: Hepatocellular carcinoma (HCC) is a genetically and phenotypically
heterogeneous tumor, and the prediction of its prognosis remains a challenge. In the
past decade, studies elucidating the mechanisms that induce tumor cell pyroptosis has
rapidly increased. The elucidation of their mechanisms is essential for the clinical
development optimal application of anti-hepatocellular carcinoma therapeutics.

Methods: Based on the different expression profiles of pyroptosis-related genes in HCC,
we constructed a LASSO Cox regression pyroptosis-related genes signature that could
more accurately predict the prognosis of HCC patients.

Results: We identified seven pyroptosis-related genes signature (BAK1, CHMP4B,
GSDMC, NLRP6, NOD2, PLCG1, SCAF11) in predicting the prognosis of HCC
patients. Kaplan Meier survival analysis showed that the pyroptosis-related high-risk
gene signature was associated with poor prognosis HCC patients. Moreover, the
pyroptosis-related genes signature performed well in the survival analysis and ICGC
validation group. The hybrid nomogram and calibration curve further demonstrated
their feasibility and accuracy for predicting the prognosis of HCC patients. Meanwhile,
the evaluation revealed that our novel signature predicted the prognosis of HCC patients
more accurately than traditional clinicopathological features. GSEA analysis further
revealed the novel signature associated mechanisms of immunity response in high-risk
groups. Moreover, analysis of immune cell subsets with relevant functions revealed
significant differences in aDCs, APC co-stimulation, CCR, check-point, iDCs,
Macrophages, MHC class-I, Treg, and type II INF response between high- and low-
risk groups. Finally, the expression of Immune checkpoints was enhanced in high-risk
group, and m6A-related modifications were expressed differently between low- and high-
risk groups.

Conclusion: The novel pyroptosis-related genes signature can predict the prognosis of
patients with HCC and insight into new cell death targeted therapies.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the third most aggressive and
lethal disease, accounting for approximately 75% of liver cancer
cases, and is a highly genetically and phenotypically
heterogeneous malignancy with 830,000 deaths in 2020
(Petrick et al., 2016; Moon and Ro, 2021). Alcohol abuse,
obesity, diabetes, and metabolic syndromes are significant risk
factors for HCC progression, and inflammation caused by these
risk factors promotes liver fibrosis, leading to cirrhosis and
ultimately HCC(Mittal and El-Serag, 2013; Kim and Viatour,
2020). Patients with HCC are asymptomatic at the early stage,
which seriously delays timely diagnosis. Patients diagnosed at the
late stage of HCC are not suitable for radical surgery, resulting in
minimal availability and effectiveness of therapeutic options
(Llovet et al., 2008). Thus, novel biomarkers that can
discriminate patients at high risk for HCC are urgently needed
to improve personalized HCC prognostic prediction accuracy
and treatment.

In the past decade, studies elucidating the mechanisms that
induce tumor cell pyroptosis has rapidly increased (Derangere
et al., 2014; Jiang et al., 2017;Wang Y et al., 2018). Pyroptosis is an
inflammatory caspase-dependent cell death type characterized by
pore formation, cell swelling and rupture of the plasma
membrane, and release of intracellular contents (Ruan et al.,
2020). Pyroptosis therapies are increasing as opportunities to
inhibit cancer development. Meanwhile, pyroptosis promotes
inflammatory cell death and inhibits cancer cell proliferation
and migration, and decreased expression of some pyroptotic
inflammasomes has been found in cancer cells (Fang et al.,
2020). Apoptosis is widely studied as a major form of
regulated cell death underlying tumor pathogenesis and
therapy. Still, cancer-associated defects in apoptosis induction
and execution contribute to a significant proportion of treatment
failures (Ng et al., 2012; Holohan et al., 2013; Hata et al., 2014).
The clear molecular pathways mediating necrotic types of cell
death have recently been uncovered, the long-standing view of
apoptosis as a standard regulating mechanism of death programs
has changed (Vanden Berghe et al., 2014; Conrad et al., 2016;
Wallach et al., 2016). The previously unknown mechanism of
pyroptosis as a molecularly targeted pathway to eradicate
oncogene addicted tumor cells may have important
implications for the clinical development and optimal
application of anticancer therapeutics (Lu et al., 2018).

However, studies on the functions and mechanisms of
pyroptosis-related genes in HCC progression remain scarce. A
systematic evaluation of pyroptosis-related gene prognostic
signatures and their correlation with HCC patients may
further our understanding of HCC mechanisms and provide
new applications for a rapid, effective, and specific diagnosis
and effective therapy.

A novel pyroptosis-related prognostic signature of
differentially expressed genes in HCC was established in our
study. Then we studied their role in the prognosis of HCC
patients and the associated immune response and the effect of
N6- methylation on adenosine (m6A) modification.

METHODS

Data Collection
We extracted RNA sequencing (50 normal and 374 tumors) data
of 377 patients from the TCGA-LIHC (https://portal.gdc.cancer.
gov/repository) dataset, and RNA sequencing (273 tumors) data
of 261 patients from the ICGC-LIRI-JP (https://dcc.icgc.org/
releases/current/Projects/LIRI-JP) dataset. Clinical
characteristics of HCC patients in the TCGA and ICGC
dataset was shown in Supplementary Table S1. The
corresponding pyroptosis-related genes in Supplementary
Table S2 were identified from the previous studies of multiple
regulatory mechanisms of pyroptosis in the tumor
microenvironment (Xia et al., 2019; Shao et al., 2021; Ye et al.,
2021) and Molecular Signatures database (http://www.gsea-
msigdb.org/gsea/login.jsp) (Liberzon et al., 2015). Before
comparison, normalization of the expression data in both
datasets values was performed using fragment per kilobase
million (FPKM) values. The association between pyroptosis-
related genes and HCC was assessed using the “limma” R
package, and the correlation was considered significant if the
p-value was <0.05. The protein-protein interaction (PPI) network
of the pyroptosis-related differentially expressed genes (DEGs)
was developed by STRING (Szklarczyk et al., 2021), version 11.5
(https://string-db.org/).

Functional Enrichment Analysis
First, the biological process (BP), cellular component (CC), and
molecular function (MF) of the pyroptosis-related DEGs were
investigated using Gene Ontology (GO). Then the biological
pathway functions of DEGs were further analyzed by Kyoto
Encyclopedia of Genes and Genomes (KEGG) based data in R
software version 4.0.5.

Development of the Pyroptosis-Related
Genes Prognostic Signature
To construct an accurate and reliable prognostic prediction
signature for HCC patients, we first screened the resulting
pyroptosis-related DEGs for those with predictive value using
univariate Cox regression analysis and then further processed
using LASSO regression analysis prevent the fitting of risk
models. Finally, the pyroptosis-related genes signature was
constructed and stratified according to the risk score
(esum(each genes’ expression×corresponing cofficient) ). Finally, HCC
patients were divided into high-risk (≥median) and low-risk
(<median) groups according to the median value of the risk
score of the established prognostic model.

The Predictive Nomogram and Calibration
Curves
To create a clinically practical approach in predicting the 1, 3, and
5-year overall survival rate of HCC patients, we developed a
hybrid nomogram model incorporating independent prognostic
factor including risk score signature, gender, age, TMN, stage,
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and grade. We then validated the accuracy of the nomogram
model for judging the prognosis situation of HCC patients using
the degree of fit of the calibration curve to the actual observed
values.

Immune Profile Analysis
Meanwhile, immune cell infiltration levels of the seven
pyroptosis-related genes signatutre in individual samples in
two risk groups were quantified by single-sample gene set
enrichment analysis (ssGSEA) (Rooney et al., 2015). The
cellular immune responses of the pyroptosis-related genes
signature between subgroups were then evaluated by
comparing the results of CIBERSORT(Newman et al., 2015;
Charoentong et al., 2017), CIBERSORT−ABS (Wang L et al.,
2020), QUANTISEQ (Plattner et al., 2020), MCPCOUNTER (Shi
et al., 2020), XCELL (Aran et al., 2017), EPIC(Racle et al., 2017),
and TIMER (Li et al., 2017) algorithms. In addition, we evaluated
differences in immune function expression by tumor-infiltrating
immune cell subsets in the two risk groups. Finally, we analyzed
the status of m6A methylation modification in high and low-risk
groups to explore the possible impact of the seven pyroptosis-
related genes on the activities of methyltransferases,
demethylases, and methylated reader proteins in HCC.

Independent Prognostic Validation of the
Prognostic Signature
Information on clinical characteristics, including gender, age and
staging data, of HCC patients in the TCGA dataset and HCC
patients in the ICGC dataset was extracted. These clinical
variables in combination with our risk score prognostic
signature was analyzed by univariate and multivariate Cox
regression.

Statistical Analysis
We used Bioconductor packages including “limma,” “survival,”
“survminer” in Rstudio software (Version 1.4.1106) for analyzing
data. Wilcoxon test and unpaired Student’s t-test were used to
comparing non-normal and normal distribution expression
variables. Based on the false discovery rate, the different
expression of genes was corrected by the Benjamin Hochberg
method to control the elevated false-positive rate. Kaplan Meier
(KM) survival analysis was performed to evaluate the feasibility of
pyroptosis-related genes signature for predicting the overall
survival of HCC patients. Time-dependent receiver operator
characteristic curve (ROC) and decision curve analysis (DCA)
(Vickers et al., 2008) was used to validate the reliability of the
predictive model and to compare the accuracy of the novel
pyroptosis related gene signature with traditional
clinicopathological features in predicting the prognosis of
HCC patients. Furthermore, Fisher’s exact test was used to
analyze pyroptosis-related gene expression profiles among the
clinicopathological features. To analyze the pyroptosis-related
DEGs associated immune status in each sample in the TCGA-
LIHC cohort, the relative infiltration of 20 immune cell types in
the tumor microenvironment was calculated via ssGSEA with the
application of the “GSVA” package in R. p < 0.05 in the results of

all analyses was considered statistically significant. The flow-
process diagram of this study is shown in Figure 1.

RESULTS

Identification of Pyroptosis-Related DEGs
42 pyroptosis-related DEGs among HCC and normal liver tissues
in the TCGA-LIHC dataset were identified using the limma R
package (Supplementary Table S3). The expression level of these
genes was presented as a heatmap in Figure 2A. Further by PPI
analysis, we explored the interactions among these DEGs
(Figure 2B). With the minimum required interaction score of
0.9 (the highest confidence) in the PPI analysis, we determined
NLRP3, CHMP4A, CASP8, CASP3, TP53, PYCARD, CHMP2A,
and IL1B were hub genes. The correlation network of the
pyroptosis-related DEGs is shown in Figure 2C.

Pyroptosis-Related DEGs-Based HCC
Classification Pattern
To explore the connections between the expression of the
42 pyroptosis-related DEGs and HCC subtypes, we performed
a consensus clustering analysis with all 377 HCC patients in the
TCGA-LIHC cohort. By increasing the clustering variable (k)
from 2 to 9, we found that when k � 2, the intragroup correlations
were the highest and the intergroup correlations were low,
indicating that the 377 HCC patients could be well divided
into two clusters based on the 42 DEGs (Figure 3A). The
DEGs expression profile and the clinicopathological
characteristics were presented in the heatmap (Figure 3B). We
also compared the survival advantage between the two clusters,
and the KM overall survival curves showed that the survival
probability of cluster 1 was higher than cluster 2 (Figure 3C).

Enrichment Analysis of Pyroptosis-Related
DEGs
Gene Ontology (GO) function and KEGG pathways enrichment
analyses of the DEGs were performed. Enriched biological
process (BP), including regulation of interleukin−1 production,
midbody abscission, and mitotic cytokinetic process. Meanwhile,
phospholipid binding, cytokine receptor binding, and
cysteine−type endopeptidase activity were the regular
molecular function (MF). Cellular component (CC) mainly
comprised the ESCRT complex, multivesicular body, late
endosome, and inflammasome complex (Figure 4A).
Moreover, KEGG pathways analysis demonstrated that
necroptosis, NOD−like receptor signaling pathway, apoptosis,
hepatitis, P53 signaling pathway, MAPK signaling pathway, and
MicroRNAs in cancer were markedly enriched (Figure 4B).

Development of Pyroptosis-Related Gene
Prognostic Signature
First, ten HCC prognosis related pyroptosis genes were screened
out from the DEGs by univariate Cox analysis (Figure 5A). Next,
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FIGURE 1 | Workflow diagram.

FIGURE 2 | Expression of the 42 pyroptosis-related DEGs and their interactions. (A) Heatmap of the pyroptosis-related DEGs between the normal and the tumor
samples (blue: low expression level; red: high expression level). p values were presented as: *p < 0.05; **p < 0.01; ***p < 0.001. (B) The PPI network showed the
interactions among the pyroptosis-related DEGs. (C) The correlation network of the pyroptosis-related DEGs (blue lines: negative correlations; red lines: positive
correlations. The color depth reflected the strength of their relevance).
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FIGURE 3 | HCC classification pattern based on the pyroptosis-related DEGs. (A) 377 HCC patients were divided into two groups when k � 2 in the TCGA cohort.
(B) Heatmap of the clinicopathological characteristics between the two clusters classified by the DEGs. (C) KM overall survival curves of the two clusters.

FIGURE 4 | Gene Ontology and KEGG enrichment analysis of the pyroptosis-related DEGs. (A) GO analysis. (B) KEGG analysis.
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the ten pyroptosis-related genes were penalized by LASSO Cox
regression (Figures 5B,C). Finally, the pyroptosis-related genes
signature was constructed based on the risk score�
(0.07486*BAK1 exp.) + (0.14487 *CHMP4B exp.) +
(0.15165*GSDMC exp.) + (−0.309234*NLRP6 exp.) + (0.27176
*NOD2 exp.) + (0.00979 *PLCG1 exp.) + (0.20830 *SCAF11 exp.).

Survival Results and Multivariate External
Examination
KM analysis confirmed that the TCGA and ICGC cohorts HCC
patients in the high-risk group were associated with worse OS
(Figures 6A,D). At the same time, we could see from the hazard
survival status plots of the high-risk groups that high expression
of the novel predictive model is correlated with poor survival of
HCC patients (Figures 6B–F). Besides, PCA analysis and t-SNE
analysis presented that HCC patients in different risk groups were
distributed in two directions (Figures 6G–J). Then, we performed
ROC analysis using the timeROC package in R. The prognostic
prediction power (AUC) of the seven pyroptosis-related genes
signature in the TCGA-LIHC cohort was 0.753(1 year),
0.616(3 years), and 0.639 (5 years) (Figure 7A). Furthermore,
the AUC of the seven pyroptosis-related genes signature in the
IGCG validation cohort was 0.663(1 year), 0.643(3 years), and
0.638 (5 years) (Figure 7C). The clinical characteristics of ROC
analysis revealed that compared with the traditional pathological
characteristics, the risk score model could more accurately predict

the prognosis of HCC patients in the TCGA cohort (AUC �
0.743, Figure 7B) and ICGC cohort (AUC � 0.772, Figure 7D).

Independent Prognostic Value Validation of
the Risk Signature
Univariate and multivariate cox analyses were conducted to
verify whether the novel pyroptosis-related genes risk score
signature was an independent prognostic factor for overall
survival of HCC patients. The risk score model in the TCGA
and ICGC cohorts were significantly associated with overall
survival of HCC patients in the univariate Cox analysis (TCGA
cohort: HR � 4.385, 95% CI � 2.303–8.350, p < 0.001; ICGC
cohort: HR � 3.468, 95% CI � 1.363–8.821, p � 0.009) (Figures
8A,C). After correcting for other confounders, the multivariate
Cox analysis confirmed that the risk score signature remained
an independent predictor of overall survival for HCC patients.
(TCGA cohort: HR � 3.837, 95% CI � 2.008–7.329, p < 0.001;
ICGC cohort: HR � 2.674, 95% CI � 1.114–6.418, p � 0.028)
(Figures 8B,D). The clinical heatmap presented the
relationship between the novel signature and traditional
clinicopathological manifestations in Figure 8E. The fitting
degree of calibration curve verified the accuracy of the
nomogram model in predicting the prognosis of patients
with HCC. (Figures 9A,B). Meanwhile, the net benefit of
the risk score signature in the DCA was superior to
traditional clinical and pathological characteristics in

FIGURE 5 | Development of seven pyroptosis-related genes prognostic signature. (A) Univariate Cox regression revealed 10 pyroptosis-related genes associated
with prognosis. (B) 10 pyroptosis-related genes were penalized by LASSOCox regression analysis. (C) 10-fold cross-validation for the optimal parameter selection in the
LASSO Cox regression.
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predicting the prognosis of HCC patients (Figure 9C).
Therefore, this nomogram could be used in predicting the
prognostic of HCC patients.

Gene Set Enrichment Analysis
The potential pathways, mechanisms, and bioprocess of the
pyroptosis-related genes signature were analyzed based on
GSEA, which revealed those genes regulated both the tumor
development and immune response, centrally including NOD-
like receptor signaling pathway, T-cell receptor signaling
pathway, WNT signaling pathway, regulation of autophagy,
MAPK signaling pathway, spliceosome, VEGF signaling
pathway and pathways in cancer (Figure 10; Supplementary
Table S4).

Immunological Reaction and Immune
Checkpoints Expression
The Heatmap showed that the expression of the immune cell
infiltration responses of the novel pyroptosis-related genes
signature was significantly upregulated in HCC under the
QUANTISEQ, CIBERSORT, CIBERSORT-ABS,

MCPCOUNTER, XCELL, TIMER, and EPIC algorithms
(Figure 11A; Supplementary Table S5). Single-sample gene
set enrichment analysis based on TCGA-LIHC data showed
expression of immune cell subsets and relevant functions,
significantly different between the two risk groups. p values
were presented as: *p < 0.05; **p < 0.01; ***p < 0.001. The
high-risk group’s most prominent up-regulated immune
functions were aDCs, APC co-stimulation, CCR, check-point,
iDCs, Macrophages, MHC class-I, Treg. In contrast, type II INF
response was down-regulated in the high-risk group, implying
one of the main causes that suppression of the production and
release of IFNs leads to loss of control over HCC growth
(Figure 11B). Given the importance of immunotherapy based
on checkpoint inhibitors for HCC, we further investigated the
expressions of immune checkpoints in the two risk groups. The
results showed that most immunological checkpoints were more
active in high-risk groups in Figure 11C. The analysis of the effect
of the pyroptosis-related genes signature on m6A-related
modification showed the methylation expression level of
YTHDF1, YTHDF2, WTAP, YTHDC1, YTHDF2, FTO,
HNRNPC, ALKBH5, RBM15, YTHDC2, and METTL3 in the
high-risk group was higher. (Figure 11D).

FIGURE 6 | Survival analysis of the seven pyroptosis-related genes signature in the TCGA-LIHC cohort and ICGC-LIRI-JP cohort. TCGA-LIHC cohort (A–C,G,H),
ICGC-LIRI-JP cohort (D–F, I,J). (A,D) KM survival analysis result. (B,C,E,F) Survival status and the risk score distribution of HCC patients. (G,I) PCA plot. (H,J) t-SNE
analysis.
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DISCUSSION

Cell death is one of the most fundamental problems of life and
plays a crucial role in organismal development, homeostasis, and
cancer pathogenesis (Hanahan and Weinberg, 2011). As a model
of programmed cell death, pyroptosis, although capable of
suppressing tumor cell proliferation, can also create a
microenvironment suitable for tumor cell growth and
promotion (Minton, 2020; Yu et al., 2021), and thus has
received increasing attention. Meanwhile, many recent studies
have demonstrated that pyroptosis is closely related to developing
liver diseases such as liver damage (Lebeaupin et al., 2015), fatty
lesions (Miura et al., 2010), inflammation (Wei et al., 2019), and
fibrosis (Wree et al., 2014). However, little is currently known
about the role of pyroptosis in liver cancer development, and our
study was undertaken to elucidate this role. In this study, we first
analyzed 42 pyroptosis DEGs in HCC. Based on the pyroptosis

-related DEGs, we determined two molecular subtypes using the
consensus clustering algorithm. It was found that the survival
probability of C2 was much worse than C1 in overall survival.
Functional and KEGG pathways analysis further discovered that
these DEGs in subtypes primarily participated in necroptosis,
NOD−like receptor signaling pathway, apoptosis, hepatitis, P53
signaling pathway, and MAPK signaling pathway. Some recent
studies showed that Caspase/granzyme-induced apoptosis could
be switched to pyroptosis by the expression of GSDMs, appears to
contribute to the killing of tumor cells by cytotoxic lymphocytes,
and reprogram the tumor microenvironment to an
immunostimulatory state (Van Opdenbosch and Lamkanfi,
2019; Tsuchiya, 2020; Tsuchiya, 2021). Zhang et al. (2019)
reported that overexpression of p53 in human lung cancer
alveolar basal epithelial cells significantly reduced tumor
growth and mortality by increasing pyroptotic levels in an in
vivo assay. Therefore, appropriate guiding the pyroptosis of

FIGURE 7 | The ROC curve analysis of the seven pyroptosis-related genes signature in the two cohorts. (A,C) Time-dependent ROC analysis for HCC patients.
(B, D) The ROC analysis for clinical features and risk score signature.
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hepatocellular carcinoma cells may inspire an advanced therapy
strategy of HCC patients.

Next, our study identified seven differently expressed
pyroptosis-related gene markers from DEGs as independent
prognostic factors for HCC. Among the seven pyroptosis-
related genes signature, BAK1 is a vital cell death regulator
that can initiate mitochondria-mediated apoptosis by
interacting with proteins (Wang et al., 2013). The
protection of BAK1 by exosomal circ-0051443 through
sponging mir-331-3p can inhibit the malignant biological
behaviors of HCC(Chen et al., 2020). And silencing
CHMP4B can promote epithelial-mesenchymal transition in
HCC(Han et al., 2019). GSDMC is the only one of the human
gasdermin family members whose biological function has not
been determined (Kovacs and Miao, 2017). GSDMC was
significantly associated with poorer prognosis liver cancer
patients in our study, indicating that it acts as a tumor-
promoting gene. Interestingly, the current study revealed
that TNF α - activated caspase-8 switched apoptosis to
pyroptosis in the presence of hypoxia-activated GSDMC and
nPD-L1, leading to tumor necrosis in hypoxic regions (Hou
et al., 2020; Du et al., 2021). Therefore, the effect of activating
GSDMC in different environments on liver cancer is worthy of
further exploration. Wang Q et al. (2018) reported that NLRP6
inhibits gastric cancer cell proliferation, migration, and
invasion by regulating the STAT3 signaling pathway, and its
down-regulation is closely associated with poor patient
prognosis. Similarly, down-regulation of NLRP6 was
associated with poorer prognosis in HCC patients in our
study, suggesting that NLRP6 may play a tumor suppressor
role in HCC development. Meanwhile, hepatic NOD2
promotes hepatocarcinogenesis through a RIP2 mediated
proinflammatory response and novel nuclear autophagy-
mediated DNA damage mechanism, and its high expression

is closely associated with poor prognosis in HCC patients
(Zhou et al., 2021). Furthermore, increased PLCG1
expression in tumor tissues was significantly associated with
adverse clinical features of HCC, which may be a role played by
PLCG1 through activation of mitogen-activated protein kinase
and NF-kB signaling pathways (Tang et al., 2019). To date,
there are few studies on the regulation of pyroptosis by SCAF11
in cancer (Xu et al., 2021; Ye et al., 2021). In our study, high
expression of SCAF11 was associated with poor prognosis in
liver cancer, reflecting that it may be a liver cancer-promoting
factor associated with positively regulating the pyroptosis
pathway and inhibition of SCAF11 should be considered as
a target for the treatment of HCC. Based on the median value
of the risk score of pyroptosis-related genes signature, HCC
patients were divided into high-risk and low-risk group. The
survival analyses indicated that the pyroptosis-related high-
risk genes were positively related with worse prognosis HCC
patients. Moreover, the pyroptosis-related genes signature
performed well in the ROC and DCA validation. Finally,
their reliability and applicability in predicting HCC
prognosis were demonstrated in the nomogram and
calibration curve and indicated that our novel risk signature
outperformed traditional clinicopathological characteristics.

Pyroptosis serves as a bridge between the immune system and
the tumor (Li et al., 2021). Its activation in immune cells and
cancer cells will cause the release of inflammatory chemokines
and subsequent immune cell infiltration, activating the tumor
microenvironment and improving the tumor’s efficiency of
immunotherapy (Xia et al., 2019; Vietri et al., 2020). On the
other hand, the chronic inflammatory response resulting from
pyroptosis triggered inflammasomes, and produced cytokines can
help tumor cells escape from immune system surveillance and
promote the development of tumors (Cookson and Brennan,
2001; Wang Q et al., 2020). In GSEA analysis, the significant

FIGURE 8 | Assessment of the clinical prognostic value of the risk score model in HCC patients by univariate and multivariate COX analyses. (A) Univariate
independent Cox analysis for TCGA cohort. (B) Multivariate independent Cox analysis for TCGA cohort. (C) Univariate independent Cox analysis for ICGC cohort. (D)
Multivariate independent Cox analysis for ICGC cohort. (E) Heatmap of the pyroptosis-related genes prognosis signature and clinicopathological manifestations.
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enrichment of immune and tumor-related pathways among
individuals in the high-risk group indicated two sides of the
effect of pyroptosis on tumor cell survival, progression, and
apoptosis. Furthermore, relevant functional analysis of
immune cell subsets revealed that aDCs, APC co-stimulation,
CCR, check-point, iDCs, Macrophages, MHC class-I, and Treg of
pyroptosis-related genes signature were significantly attenuated
in HCC high-risk group, suggesting that reduced levels of
antitumor immunity may lead to poor prognosis. Therefore,
promoting antitumor immune response is essential to prevent
HCC at early stage from further development and generate
effective clinical treatments. Moreover, the expression of
Immune checkpoints such as PDCD1, PDCDLG2, TIGIT,

LAG3, and TNFRSF4 was enhanced in the high-risk group.
The PD-1 pathway is a central pathway of
immunosuppression in the human tumor microenvironment.
Inhibition of PD-1 and PD-L1 can generate endogenous
antitumor immunity to inhibit cancer development (Garg and
Agostinis, 2017). However, the response rate may be low since
inflammation in the cancer-immune microenvironment is
ineffective for efficient infiltration and activation of immune
cells. The efficiency of anti-PD-1 or PD-L1 therapy can be
improved under pyroptosis-induced inflammation in the
tumor microenvironment by chemotherapy, radiotherapy, and
other therapeutic regimens (Bergsbaken et al., 2009; Reck et al.,
2019). Published clinical trials have shown that antibiotic

FIGURE 9 | The nomogrammodel and calibration curves developed based on the risk score signature and prognosis-related clinicopathological indicators. (A) The
predictive nomogram. (B) The calibration curves of the nomogram. (C) The decision curve analyses plot.
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FIGURE 10 | GSEA for the seven pyroptosis-related genes signature.

FIGURE 11 | The relationship between prognostic signature and immune response and m6A modification. (A) The immune cell infiltration profile of the novel
pyroptosis-related genes signature. (B) Relevant functional analysis of immune cell subsets. (C) Analyses of immune checkpoints between the two HCC risk groups. (D)
Analyses of m6A modification expression between low and high HCC risk groups.
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chemotherapeutics can promote the combination of STAT3 and
PD-L1 to upregulateGSDMCmediated pyroptosis under hypoxia
(Blasco and Gomis, 2020), which may improve HCC patient
survival compared to patients received only a single type of
treatment to improve the efficiency of PD-L1 inhibitors.
TIGIT, similar to LAG3, belongs to the immunoglobulin
superfamily and is exclusively expressed on lymphocytes,
including CD8 + T cells, memory, and regulatory CD4 +
T cells, follicular CD4 + T cells, and NK cells (Stanietsky
et al., 2009; Ge et al., 2021). In HCC tumor-bearing mice
treated with anti-PD-1, concurrent anti-TIGIT treatment
resulted in a combined blockade effect that expanded the
effector memory CD8 + T cell population and increased the
cytotoxic T cell to Treg ratio in the tumor, thereby suppressing
tumor growth and prolonging survival (Li et al., 2018; Chiu et al.,
2020; Lepletier et al., 2020), indicating that TIGIT can be used as a
rational target to further improve the efficacy of anti-PD-1
therapy in HCC. Unlike standard immune checkpoint blockers
that block surface receptors in tumors and T cells responsible for
inhibiting antitumor immune responses, drugs that target
TNFRSF4 work by directly activating and modulating the
immune response (Alves Costa Silva et al., 2020). Upon
treatment of tumor models with an anti-TNFRSF4 monoclonal
antibody, IL-10 production by tumor-infiltrating Treg cells is
reduced, allowing the maturation of dendritic cells (Burocchi
et al., 2011; Zhang et al., 2018), creating a permissive immune
state that allows for the maturation of dendritic accumulation of
myeloid cells and development of innate and adaptive immunity
(Piconese et al., 2008; Bulliard et al., 2014), opening an additional
avenue for cancer therapy.

Although we verified two subtypes of HCC and validated the
reliability of the novel predictive risk score model of seven
pyroptosis genes and analyzed their functions in HCC
progression, our study has serval limitations. This
bioinformatic study needs to be tested further by experimental
validation. Therefore, further laboratory experiments are
required, including larger sample multicenter studies,
especially studying the relationship between pyroptosis-related
genes signature and immune activity. Compared with other

traditional clinical characteristics, our risk score model is a
better independent prognostic indicator. Thus, this novel risk
model could serve as the prognostic predictor and provide clues
for personalized immunotherapy for HCC patients.

CONCLUSION

The novel pyroptosis-related genes signature can predict the
prognosis of patients with HCC and insight into new cell
death targeted therapies.
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Invasive Prediction of Ground Glass
Nodule Based on Clinical
Characteristics and Radiomics
Feature
Hui Zheng, Hanfei Zhang, Shan Wang, Feng Xiao* and Meiyan Liao*

Zhongnan Hospital, Wuhan University, Wuhan, China

Objective: To explore the diagnostic value of CT radiographic images and radiomics
features for invasive classification of lung adenocarcinoma manifesting as ground-glass
nodules (GGNs) in computer tomography (CT).

Methods: A total of 312 GGNs were enrolled in this retrospective study. All GGNs were
randomly divided into training set (n � 219) and test set (n � 93). Univariate and multivariate
logistic regressions were used to establish a clinical model, while the minimum redundancy
maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO)
algorithm were used to select the radiomics features and construct the radiomics model. A
combined model was finally built by combining these two models. The performance of
these models was assessed in both training and test set. A combined nomogram was
developed based on the combined model and evaluated with its calibration curves and
C-index.

Results: Diameter [odds ratio (OR), 1.159; p＜ 0.001], lobulation (OR, 2.953; p � 0.002),
and vascular changes (OR, 3.431; p＜ 0.001) were retained as independent predictors of
the invasive adenocarcinoma (IAC) group. Eleven radiomics features were selected by
mRMR and LASSO method to established radiomics model. The clinical model and
radiomics mode showed good predictive ability in both training set and test set. When two
models were combined, the diagnostic area under the curve (AUC) value was higher than
the single clinical or radiomics model (training set: 0.86 vs. 0.83 vs. 0.82; test set: 0.80 vs.
0.78 vs. 0.79). The constructed combined nomogram could effectively quantify the risk
degree of 3 image features and Rad score with a C-index of 0.855 (95%: 0.805∼0.905).

Conclusion: Radiographic and radiomics features show high accuracy in the invasive
diagnosis of GGNs, and their combined analysis can improve the diagnostic efficacy of IAC
manifesting as GGNs. The nomogram, serving as a noninvasive and accurate predictive
tool, can help judge the invasiveness of GGNs prior to surgery and assist clinicians in
creating personalized treatment strategies.
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INTRODUCTION

Lung cancer is the major cancer leading in cancer-related deaths,
and imaging played an important role in diagnosis and treatment.
With the popularity of computed tomography (CT) and artificial
intelligence (AI), the discovery of lung cancer manifesting as
ground-glass nodules (GGNs) increased sequentially during the
process of CT screening. Early detection, follow-up, and timely
intervention were of positive significance for GGNs. No doubt,
these findings deserved the attention of society, medical
professionals, and the general public.

GGNs could be divided into pure ground-glass nodules (pGGNs)
and mixed ground-glass nodules (mGGNs) according to the
presence of the solid composition. At present, the development
mechanism of GGNs was not clear. GGNs may exist in various
pathological entities, including tumor, inflammation, focal
hemorrhage, and focal interstitial fibrosis (Park et al., 2007).
Although GGN was in nonspecific radiologic findings, persistent
GGN was more likely to be malignant. Studies had shown that 20%
of pGGNs and 40% ofmGGNs increase gradually or show a trend of
increasing solid composition (Kobayashi et al., 2018). However, the
GGN growth was slow and the process of deterioration may take
several years, which was why multiple current guidelines
recommend longer follow-up times.

Surgical resection was the most effective method for GGN
treatment. Preinvasive lesions and minimally invasive
adenocarcinoma (MIA) could also be well treated by
lobectomy (wedge resection or segmental resection), with a 5-
year disease-free survival rate of 100%. It was necessary to analyze
the imaging characteristics of each pathological subtype before
operation and to judge the infiltrability of the GGN.

Earlier studies had paidmore attention to GGN imaging features,
such as size, consolidation, and morphological characteristics.
Medical imaging technology had been developing in recent years,
and its use in clinical oncology had expanded from the initial

diagnostic tools to personalized treatment and management tools.
Artificial intelligence and radiomics diagnosis were widely
concerned. Radiomics referred to the automatic extraction of a
large number of quantitative features from medical images by
computer software and the use of statistical methods to screen
and establish diagnosis related to the results. The radiomics model
showed good sensitivity and specificity in tumor pathological type
discrimination and invasive judgment.

The aim of this study was to explore the diagnostic value of
imaging features and radiomics features in the invasive diagnosis
of lung adenocarcinoma manifested as GGN, so as to assist
clinical diagnosis and treatment.

MATERIALS AND METHODS

Patients
This retrospective study was approved by the corresponding
institutional review board (grant: 2021057), and the patients’
informed consent was waived. Clinical data and chest CT image
of resected GGN between July 2017 and December 2020 at
Zhongnan Hospital of Wuhan University were retrospectively
collected. A total of 291 patients with 312 GGNs were enrolled in
this retrospective study. The inclusion criteria were as follows: (1)
the nodules showed as GGN at lung window setting (width 1500
HU; level is –700 HU), image thickness ≤1.25 mm; 2) maximum
diameter of nodules measured on lung windows <30 mm; 3)
accurate surgical and pathological results must be obtained.
Exclusion criteria were as follows: 1) incomplete chest CT
image, heavy artifacts or poor quality; 2) GGN who have no
pathological results or perform only a biopsy without surgery.

Data Flowchart
As seen in Figure 1, the data processing of this study could be
divided into three parts. The first (Figure 1A) is the clinical

FIGURE 1 | Flowchart of clinical and radiomics feature analysis.
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characteristic analysis and modeling. Clinical characteristic
analysis contained univariate logistic regression and
multivariate logistic regression step by step; two types of
characteristics (demographics and traditional imaging
features) were considered in this part. The second
(Figure 1B) is the image analysis and radiomics modeling,
which contained image acquisition, image segmentation,
radiomics feature extraction, and modeling step by step. In
this study, several most used machine learning models and a
deep learning (DL) method were tried and compared, then the
most suitable model was selected for radiomics modeling. After
the analysis of these two parts, the screened clinical risk factors
and constructed radiomics model were combined to construct
the combined model and radiomics + clinical nomogram
(Figure 1C).

All data sets were divided into a training set and a test set
according to a 7:3 ratio using the stratified random sampling
method, in which the samples were stratified according to
different groups of IAC, and then randomly sampled; feature
analysis and modeling were performed based on the training set,

and the performance of constructed models was validated based
on both training and test set.

Clinical Characteristics Analysis and
Clinical Modeling
Clinical characteristics contained two types: three demographics
(patient sex, age, and operation mode) and 14 traditional imaging
features, which were extracted from CT images, including
diameter, volume, ratio of consolidation, mean CT value,
mass, location, margin, shape, pleural indentation sign,
bubble-like lucency, air bronchus sign, vascular change,
speculation, and lobulation. A large number of studies (Yang
et al., 2018) have confirmed that traditional imaging features play
crucial roles in the diagnosis and pathological classification of
GGN. The selection of these traditional imaging features was
referred to these studies (Yang et al., 2018).

Diameter, mean CT value, volume, and ratio of consolidation
were obtained by automatic cutting and calculation according to
the Intelligent 4D Imaging System for Chest CT 6.8 (Hangzhou
YITU Healthcare Technology Co., Ltd., Hangzhou, China). Mass
was an important sign of tumor growth, which could reflect the
change of tumor volume and the difference of cell density (Qi
et al., 2020). Calculation formula Mass � volume×1000+(meanCT value)

1000 .
Count data were defined as follows. Location: divided into left

upper lobe (LUL), left lower lobe (LLL), right upper lobe (RUL), right
middle lobe (RML), and right lower lobe (RLL). Margin: a clear
demarcation between the lesions and the surrounding lung
parenchyma range, more than 75% of the perimeter was defined
as clear, otherwise defined as blurred. Pleural indentation sign: linear
or small patch between the nodules and the local pleural. Bubble-like
lucency: boundary-clear air density or cavity within the nodules. Air
bronchus sign: the bronchial shadow was seen in the increased
density area. Vascular change: morphological changes of the
vessels when passing through the GGN, such as dilatation,
stiffness, correction, distortion. Spiculation: fine lines around the
nodules point to the lung. Lobulation: the outline of the nodules was
raised in multiple arc due to different growth speed.

Two experienced chest radiologists blinded evaluated these CT
traditional imaging features independently and resolve the
differences through discussion.

Image Processing and Radiomics Modeling
Chest CT scans were performed using a GE Discovery 750HD
scanner (GE Medical Systems, Milwaukee, WI, USA) and/or a

TABLE 1 | Summary of radiomics features used in this study.

Feature classes No. of features 3 representative features

Histogram 42 FrequencySize, MaxIntensity, MeanValue,. . .
GLCM 144 ClusterProminence, ClusterShade, Correlation,. . .
GLSZM 11 SizeZoneVariability, HighIntensityEmphasis, IntensityVariability,. . .
RLM 180 GreyLevelNonuniformity, HighGreyLevelRunEmphasis, LongRunEmphasis,. . .
Formfactor 15 Compactness1, Maximum3DDiameter, Sphericity,. . .
Haralick 10 HaraEntroy, contrast, differenceEntropy,. . .
Total 402

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; RLM, gray-level run-length matrix.

TABLE 2 | Clinical characteristics of GGNs.

Characteristics Number

Sex
Male 103 (33.0%)
Female 209 (67.0%)
Age, year 58 (50–65)

Pathological subtype
Benign 25 (8.0%)
AAH 12 (3.8%)
AIS 20 (6.4%)
MIA 74 (23.7%)
IAC 181 (58.0%)

EGFR mutation (n � 30)
Mutation in exon 21 12 (40.0%)
Mutation in exon 19 10 (33.3%)
Wild type 8 (26.7%)

Preoperative position (n � 75)
Pneumothorax 29 (38.6%)
Hemorrhage 32 (42.7%)
Without complications 14 (18.7%)

Interoperative biopsy (n � 197)
Misdiagnosis 7 (3.6%)
Underestimate the infiltration 20 (10.1%)

AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally
invasive adenocarcinoma; IAC, invasive adenocarcinoma.
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SOMATOM Definition scanner (Siemens Healthineers,
Forchheim, Germany), with a reconstruction slice thickness �
1.25 mm, slice interval � 1.25 mm, matrix size � 512 × 512, tube
voltage � 120 kV, and tube current 100–350 mA. All images were

then transmitted to the workstation and PACS for post-
processing.

Before image analysis, all images were first resampled into the
same sampling size (1 mm × 1 mm×1 mm) using the linear

TABLE 3 | Univariate analysis of clinical and imaging features in the training and test sets.

Characteristic Training set (219) p Test set (93) p

Non-IAC
group (n = 86)

IAC group (n = 133) Non-IAC
group (n = 43)

IAC group (n = 50)

Male 63 (71.6%) 86 (65.6%) 0.355 26 (60.5%) 34 (68.0%) 0.449
Age, year 57 (49–62) 61 (52–66) 0.009 55 (46–60) 60 (54–65) 0.027
Diameter, mm 11 (8–14) 17 (13–20) ＜0.001 11 (8–15) 17 (14–21) ＜0.001
Volume, mm³ 509 (238–1,047) 1,351 (796–2,639) ＜0.001 552 (248–1,184) 1,517 (816–3,104) ＜0.001
Ratio of consolidation 0.04 (0–0.22) 0.24 (0.10–0.45) ＜0.001 0.04 (0–0.14) 0.28 (0.13–0.54) ＜0.001
Mean CT value, HU −588 (−660–489) −442 (−566–361) ＜0.001 −593 (−675–530) −445 (−553–322) ＜0.001
Mass, mg 199 (104–393) 775 (322–1,352) ＜0.001 256 (101–520) 755 (420–1725) ＜0.001
Location 0.201 0.411
RUL 30 (34.1%) 51 (38.9%) 12 (27.9%) 22 (44.0%)
RML 2 (2.3%) 10 (7.6%) 4 (9.3%) 3 (6.0%)
RLL 20 (22.7%) 20 (15.3%) 5 (11.6%) 8 (16.0%)
LUL 26 (29.5%) 41 (31.3%) 15 (34.9%) 11 (22.0%)
LLL 10 (11.4%) 9 (6.9%) 7 (16.3%) 6 (12.0%)
pGGN 47 (53.4%) 32 (24.4%) ＜0.001 24 (55.8%) 9 (18.0%) ＜0.001
Margin 0.106 0.377
Clear 30 (34.1%) 59 (45.0%) 22 (51.2%) 21 (42.0%)
Unclear 58 (65.9%) 72 (55.0%) 21 (48.8%) 29 (58.0%)
Shape ＜0.001 0.008
Round or oval 60 (68.2%) 54 (41.2%) 29 (67.4%) 20 (40.0%)
Irregular 28 (31.8%) 81 (58.8%) 14 (32.6%) 30 (60.0%)
Pleural indentation sign 27 (30.7%) 74 (56.5%) ＜0.001 15 (34.9%) 22 (44.0%) 0.371
Bubble-like lucency 21 (23.9%) 34 (26.0%) 0.727 6 (14.0%) 14 (28.0%) 0.1
Air bronchus sign 15 (17.0%) 66 (50.4%) ＜0.001 14 (32.6%) 31 (62.0%) 0.005
Spiculation 33 (37.5%) 72 (55.0%) 0.011 13 (30.2%) 28 (56.0%) 0.013
Lobulation 24 (27.3%) 89 (67.9%) ＜0.001 14 (32.6%) 27 (54.0%) 0.038
Vascular change 31 (35.2%) 97 (74.0%) ＜0.001 17 (39.5%) 37 (74.0%) 0.001

LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe.

FIGURE 2 | The comparison of the ROC analysis among the machine learning models in the training set and test set.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7833914

Zheng et al. Invasive Ground Glass Nodule Prediction

206

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


interpolation method. Then, the open-source image analysis
software ITK-SNAP (Version 3.6; http://www.itksnap.org) was
used for manual segmentation and radiomics analysis was applied
to the CT images using in-house software (Artificial Intelligence
Kit; GE Healthcare, Chicago, IL, USA). A total of 402 imaging
texture features from the category of histogram, the gray-level co-
occurrence matrix (GLCM), the gray-level size zone matrix
(GLSZM), the gray-level run-length matrix (RLM), and shape-
and size-based features were finally extracted from one single
image (Table 1). The details of each radiomics features are shown
in the Appendix.

Another physician repeated the above segmentation and
feature extraction steps for the test of feature reliability and
reproducibility. The differences between the features generated
by reader one and those by reader two (interobserver reliability),
as well as the differences between the twice-generated features by
reader 1 (intraobserver reproducibility), were all evaluated. Inter-
and intraclass correlation coefficients (ICCs) were used to
evaluate the agreement of feature extraction. A good
agreement was reached when the ICC was greater than 0.8 in
this study.

Minimum redundancy maximum relevance (mRMR) was
used for feature reduction. Then, several machine learning
models and a DL method (detailed in supplemental methods)
were tried and compared in the radiomics modeling. The most
suitable model was selected as the mathematical model of the
radiomics model.

The combined model was constructed using multivariate
logistic regression by combining the clinical risk factors with
the radiomics model, which was used as an independent risk
factor in the combined model. The radiomics + clinical
nomogram transformed the combined model into a simple
and visual graph, making the results of the prediction model
more prominent and of higher clinical use value.

Model Validation
The receiver operating characteristic (ROC) curve-related
metrics were employed for the evaluation of model
diagnostic abilities. The area under the curve (AUC) and
Delong’s test were used to evaluate and compare the
diagnosis abilities among different machine learning models
and the DL method. Six ROC-related metrics, AUC, accuracy,
sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (PPV) were used to assess the
constructed radiomics and combined models. The
relationship between nomogram-predicted probability and
actual probability was evaluated by the calibration curve
and C-index.

Statistical Analysis
All statistical analyses were performed with SPSS (version 23.0,
IBM) and R software (version 4.0.1, Vienna, Austria). Continuous
variables with normal distribution were presented as mean ± SD
and test by Student’s t test. Continuous variables with non-
normal distribution were presented as median (interquartile
range, IQR) and tested by Mann–Whitney U test. The
differences of count data between two groups were analyzed
by the chi-square test.

RESULTS

Patients Characteristics
A total of 297 patients with 312 GGNs were included in the
study; of these, 103 (33%) were male and 209 (67%) were
female, and the median age was 58 (IQR: 50–65) years. There
were 181 nodules in the IAC group and 131 nodules in the
non-IAC group (25 benign lesions, 12 AAH, 20 AIS, 74 MIA).
Detailed clinical information of patients is summarized in
Table 2.

Clinical Analysis and Modeling
In the training set, the univariate analysis showed that multiple
clinical parameters were larger in IAC groups (Table 3),
including diameter (17 vs. 11 mm, p < 0.001), volume (1,351
vs. 509 mm³, p < 0.001), ratio of consolidation (0.24 vs. 0.04, p <
0.001), mean CT value (−442 vs. −588 HU, p < 0.001), and mass
(775 vs. 199 mg, p < 0.001). The IAC group had less pGGN and
was easier to exhibit an irregular shape, pleural indentation sign,
air bronchus sign, spiculation, lobulation, and vascular changes
(p < 0.05).

The clinical model was built using multivariable logistic
regression, where diameter [odds ratio (OR), 1.159; p＜0.001],
lobulation (OR, 2.953; p � 0.002), and vascular changes (OR,
3.431; p＜0.001) were identified as independent risk factors. The
AUC of the clinical model in the training set and the test set was
0.83 and 0.78, respectively.

Comparison of Diagnosis Efficacy for
Different Methods
As shown in Figure 2 and Table 4, we found that for both
training and test sets, DL models showed the best diagnostic
performance. However, the difference between it and other
models was not significant, except for the GBDT model
(obvious overfitting). The diagnostic ability of LASSO was the
second highest in the test set, but similarly their difference was
not significant. The LASSOmodel was a linear regression method
using L1 regularization, which could make the learned weights of
some features 0, so as to achieve the purpose of feature sparseness

TABLE 4 | Results of the ROC analysis for different machine learning methods.

Training set Test set

AUC [0.025 0.975] AUC [0.025 0.975]

Logistic 0.806 0.748 0.864 0.776 0.683 0.869
SVM 0.836 0.781 0.891 0.750 0.651 0.849
Bernoulli naive Bayes 0.780 0.718 0.843 0.778 0.685 0.870
Ridge 0.833 0.780 0.887 0.773 0.678 0.867
GBDT 1.000 NaN NaN 0.702 0.596 0.808
LASSO 0.819 0.763 0.874 0.793 0.702 0.885
DL 0.830 0.776 0.884 0.819 0.732 0.905

SVM, support vector machine; GBDT, gradient boosting decision tree; LASSO, least
absolute shrinkage and selection operator; DL, deep learning.
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and selection. Considering that its model structure is simple and
not easy to overfit with a strong clinical interpretability, we
choose LASSO as the mathematical model of the radiomics
model for this study.

Radiomics Analysis and Modeling
After ICC analysis, 217 variables were retained and included in
mRMR and LASSO analysis. Finally, 11 optimal features with
nonzero coefficients were selected to establish a radiomics model
(Figure 3 and Table 5). The radiomics model had AUC values of
0.82 and 0.79 in the training set and the test set, respectively.

Nomogram and Calibration Curve of IAC
Manifested as GGNs
A logistic regression analysis identified the diameter, lobulation,
vascular change, and Rad score as independent predictors, which
were incorporated to develop an individualized prediction
nomogram (Figure 4). The calibration curve showed a high
consistency between predicted probability and observed
probability, and a c-index of 0.855 (95%: 0.805–0.905).

Clinical Use of the Nomogram
Figure 5 and Figure 6 showed the important value of the nomogram
for GGN diagnosis. The total score was calculated based on Rad
score and the imaging performance of the lesion including diameter,
presence of lobulation, and vascular change. Finally, the
corresponding total score indicated the probability of IAC. In
Figure 5, the nodule showed a low IAC risk probability of 0.249,
and the final pathological was confirmed as AAH. Figure 6 showed a
GGNwith high IAC risk probability of 0.943, and the final pathology
result was consistent with the prediction of the nomogram.

Comparison of Diagnosis Efficiency
Between Clinical Model and Radiomics
Model
Delong’s tests showed that the performance of the combined model
was significantly better than that of a single clinical or radiomics
model in the training set (clinical vs. combined, 0.83 vs. 0.86, p �
0.032; radiomics vs. combined, 0.82 vs. 0.86, p� 0.031). In the test set,
there were no significant differences in ROC analysis for the three
models. The diagnostic performances of the clinical model, radiomics
model, and combined model are shown in Table 6 and Figure 7.

DISCUSSION

In this study, we established a clinical model and radiomics
models by analyzing the imaging and radiomics characteristics
of GGN and compared the diagnostic values of different models
to provide a highly effective GGN diagnostic tool for the clinical
diagnosis. The results showed that the diagnostic accuracy of the
clinical model and the radiomics model was similar to the
combined model, but the AUC value increased when the
clinical and radiomics models were combined. This suggested
that radiomics analysis could also be a tool for clinical diagnosis.

FIGURE 3 | Feature selection for the LASSO logistic regression. The selection of the tuning parameter (λ) using a 10-fold cross-validation. At minimal value of the
mean square error of the classification, the dotted vertical line (λ � 0.033) was drawn, including 11 optimal features with nonzero coefficients. The histogram of 11
radiomics features was presented.

TABLE 5 | 11 features selected by the LASSO method.

Index Coefficients

InverseDifferenceMoment_AllDirection_offset1_SD 0.145
ShortRunEmphasis_angle135_offset1 0.119
GLCMEnergy_angle0_offset4 −0.102
MinorAxisLength 0.218
ShortRunHighGreyLevelEmphasis_angle45_offset7 0.533
RunLengthNonuniformity_AllDirection_offset1_SD −0.016
kurtosis −0.053
GLCMEntropy_angle45_offset7 0.406
Percentile35 0.028
HighIntensityEmphasis 0.061
HaralickCorrelation_angle45_offset1 0.149
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FIGURE 4 | A radiomics-based nomogramwas developed in the training set. The radiomics-based nomogramwas developed in the training set, and the diameter,
lobulation, vascular change, and Rad score were incorporated. The total score was calculated by adding the score for each risk factor, and then the probability of IAC
was predicted on the risk axis.
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Not surprisingly in the selection process of different machine
learning and DL models, the DL method obtained the highest
diagnostic efficacy, which was due to its deep excavation of
information of many high-dimensional and complex image
features. Highly intelligent and automated processing data
using the DL network were the mainstream direction of

artificial intelligence in the future, and medical image analysis
is its important application field. However, how to combine them
organically is still a problem. For example, in this study, to
conduct a personalized evaluation with strong clinical
interpretability and high availability, we hope that the model
is simple with easily understood image features. At the same time,

FIGURE 5 | Female, 57 years old; CT showed a pGGN of 11 mm in the right upper lobe, with no significant lobulation and vascular change, and the Rad score of
pGGN was 0.491. Interactive nomogram showing that the IAC risk probability of this nodule was 0.249. The case was confirmed as AAH.

FIGURE 6 | Female, 62 years old. CT showed a mGGN of 18 mm in the right upper lobe, with significant lobulation and vascular change, and the Rad score of
pGGN was 0.864. The interactive nomogram showing the IAC risk probability of this nodule was 0.943. The case was confirmed as IAC.
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we hope that the diagnostic efficacy of the model can be as high as
possible. This is a contradiction in the modeling process, which is
why we finally chose LASSO as the mathematical model.

Traditional imaging feature analysis found that diameter,
lobulation, and vascular changes were independent risk factors
for predicting IAC. In previous studies, several imaging
characteristics were related to GGN. A meta-analysis (Dai
et al., 2018) showed the limited diagnostic efficacy of single-
image features of GGN, with a sensitivity range of 0.41–0.52,
specificity range of 0.56–0.63, and AUC range of 0.60–0.67.
Zhang et al. (Zhan et al., 2019) analyzed for GGN of
5–10 mm and found that GGNs larger than 8.12 mm and with
attenuation greater than −449.52 HU were more likely to be IAC.
Lobulation was another important independent risk predictor
(Lee et al., 2013). Morphological changes such as lobulation
justified the possibility of high invasiveness of small GGNs.
Vascular changes were of important significance for the
invasive judgment of GGN less than 10 mm. The IAC group

was more likely to show vascular stiffness, distortion, expansion,
or correction (Gao et al., 2019).

Size was a vital parameter for assessing the invasiveness of
GGNs. Previous studies showed that the cutoff value of 10 mm
was an optimal predictor for invasive lesions in pGGNs and
14 mm was an optimal predictor for invasive lesions in mGGNs
(Lee et al., 2013). Another study showed a size difference between
noninvasive and invasive group pGGN (0.74 vs. 0.90 cm, p＜
0.001) (Sun et al., 2020).

The consolidation had the potential to identify the infiltration
of the GGN. The consolidation/tumor ratio (CTR) was
commonly used to assess the proportion of consolidation
(Kobayashi et al., 2018). However, the ratio of consolidation in
this study was not an independent risk factor of IAC, which may
be related to different measurement methods. In 2013, Fleischner
Society proposed that the consolidation should be evaluated in
the mediastinal window and its size should be evaluated based on
the average of the measured long and short diameters (Naidich
et al., 2013). One study noted that the average diameter of
consolidation in the mediastinum may not be the most
suitable to assess mGGN progress (Kakinuma et al., 2015).
Now most researchers observed and measured the
consolidation of nodules on the lung window (Lee et al., 2014;
Zhang et al., 2014). In addition, the size of the consolidation in the
mediastinal window does not equal to the size of the infiltration
focal point in the pathological specimen. Since part of the alveolar
collapse, inflammatory, and fibrosis changes also appear as high
density, the size of consolidation on the CT image may be larger
than the actual range of pathological invasiveness.

Radiomics analysis provides a method to quantify and monitor
changes in the treatment process (Aerts et al., 2014). Latest
developments in image acquisition, standardization, and analysis
promote an objective and accurate quantitative analysis that can

TABLE 6 | Comparison of diagnosis efficiency between clinical model and
radiomics model.

AUC Sensitivity Specificity PPV NPV Accuracy

Training set
Clinical 0.83 0.76 0.83 0.87 0.70 0.79
Radiomics 0.82 0.77 0.75 0.82 0.69 0.76
Combined 0.86 0.81 0.77 0.84 0.73 0.79

Test set
Clinical 0.78 0.72 0.79 0.80 0.71 0.75
Radiomics 0.79 0.64 0.88 0.86 0.68 0.75
Combined 0.80 0.68 0.84 0.83 0.69 0.75

AUC, area under the curve; PPV, positive predictive value; NPV, negative
predictive value.

FIGURE 7 | ROC analysis of clinical model, radiomics model, and combined model in the training set and test set.
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be used as a non-invasive diagnostic prediction method. Zhang et al.
(2019) used histogram information and morphological features to
construct invasive diagnostic models, with a sensitivity and specificity
of 79.4% and 91.4%, respectively. Sun et al. (2020) found that the
AUC of the combined model was higher than that of a single clinical
model or radiomics model (training group: 0.8 vs. 0.75 vs. 0.73;
validation group: 0.77 vs. 0.71 vs. 0.72). In addition to studying the
tumor’s own characteristics, radiomics can also further analyze the
lung changes around the tumor by obtaining ROI in the peripheral
region of nodules (Huang et al., 2018).

In terms of treatment, Ginsberg and Rubinstein (1995) had
suggested that the long-term effect of lobectomy was better than
sublobar resection. Recent studies have proposed sublobar resection
rather than traditional lobectomy for AIS or pGGN manifesting as
pGGN less than 20mm (Watanabe et al., 2002; Yoshida et al., 2005).
Surgical indications of GGN have not been uniform, and surgery is
usually recommended for GGN with increased diameter or
increased solid composition (Gould et al., 2013). Intraoperative
freezing biopsy of early lung adenocarcinoma plays an important
role in determining the surgical strategy. In this study, the diagnostic
accuracy of frozen biopsy was high (benign/malignant diagnosis
accuracy of 96.5%; pathological subtype diagnosis accuracy of
83.2%) and could help in diagnosis and classification and guide
surgical treatment. When intraoperative frozen biopsy could not
provide a timely diagnosis, radiomics may serve as a reliable
reference for predicting pathological classification (Wang et al.,
2020). In this study, the diagnostic accuracy of the clinical and
radiomics models was lower than that of intraoperative freezing
biopsy. The models still need further optimization in order to be
more suitable for clinical diagnosis.

However, there are several limitations in the present study. First,
this study is a retrospective research, conducted in a single center
with a relatively smaller sample size. Larger sample size increases the
statistical power of the diagnostic analysis which is necessary in the
future, and thus a prospective cohort study should be conducted to
validate these findings. More prospective data at different
institutions should be analyzed to validate the clinical utility of
the study results. Second, the repeatability of manual or
semiautomatic tumor segmentation is an unsolved problem. Parts
of GGN are close to the pleural or attached to blood vessels, which
are more difficult to accurately segment and showed low
repeatability (Kumar et al., 2012). Researchers propose new
approaches to solve the segmentation problems of GGNs such as
boundary leakage and small volume over-segmentation (Li et al.,
2016). A review analysis shows that machine learning-based
methods are useful for detecting and quantifying GGN (Mansoor
et al., 2015). However, lung segmentation methods have not been
amalgamated into single approaches or unified platforms using a
single-user interface. Currently, the lung GGN segmentation is

finished manually by experienced radiologists. This study will
attempt to explore automated segmentation techniques to
improve the efficiency of segmentation in future work.

CONCLUSION

Clinical and radiomics features have high accuracy in the invasive
diagnosis of GGNs. Combined analysis can improve the
diagnostic efficacy of IAC manifesting as GGNs. The
nomogram serves as a noninvasive and accurate predictive
tool to determine the invasiveness of GGNs prior to surgery
and assist clinicians in creating personalized treatment strategies.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Medical Ethics Committee, Zhongnan
Hospital of Wuhan University. Written informed consent
for participation was not required for this study in
accordance with the national legislation and the
institutional requirements. Written informed consent was
not obtained from the individual(s) for the publication of
any potentially identifiable images or data included in this
article.

AUTHOR CONTRIBUTIONS

ML and HZ conceived ideas and designed the study. HZ and
FX were responsible for the data collection, drafting of the
manuscript, data analysis, and interpretation of the data. HZ
and SW contributed to discussion. ML and FX have
contributed equally to this work and share correspondence
authorship.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.783391/
full#supplementary-material

REFERENCES

Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P.,
Carvalho, S., et al. (2014). Decoding Tumour Phenotype by Noninvasive
Imaging Using a Quantitative Radiomics Approach. Nat. Commun. 5, 4006.
doi:10.1038/ncomms5006

Dai, J., Yu, G., and Yu, J. (2018). Can CT Imaging Features of Ground-Glass
Opacity Predict Invasiveness? A Meta-Analysis. Thorac. Cancer 9 (4), 452–458.
doi:10.1111/1759-7714.12604

Gao, F., Sun, Y., Zhang, G., Zheng, X., Li, M., and Hua, Y. (2019). CT
Characterization of Different Pathological Types of Subcentimeter
Pulmonary Ground-Glass Nodular Lesions. Bjr 92 (1094), 20180204.
doi:10.1259/bjr.20180204

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 78339110

Zheng et al. Invasive Ground Glass Nodule Prediction

212

https://www.frontiersin.org/articles/10.3389/fgene.2021.783391/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.783391/full#supplementary-material
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1111/1759-7714.12604
https://doi.org/10.1259/bjr.20180204
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ginsberg, R. J., and Rubinstein, L. V. (1995). Randomized Trial of Lobectomy
versus Limited Resection for T1 N0 Non-small Cell Lung Cancer. Ann. Thorac.
Surg. 60 (3), 615–622. doi:10.1016/0003-4975(95)00537-u

Gould, M. K., Donington, J., Lynch, W. R., Mazzone, P. J., Midthun, D. E.,
Naidich, D. P., et al. (2013). Evaluation of Individuals with Pulmonary
Nodules: when Is it Lung Cancer? Diagnosis and Management of Lung
Cancer, 3rd Ed: American College of Chest Physicians Evidence-Based
Clinical Practice Guidelines. Chest 143 (5 Suppl. l), e93S–e120S.
doi:10.1378/chest.12-2351

Huang, P., Park, S., Yan, R., Lee, J., Chu, L. C., Lin, C. T., et al. (2018). Added Value
of Computer-Aided CT Image Features for Early Lung Cancer Diagnosis with
Small Pulmonary Nodules: A Matched Case-Control Study. Radiology 286 (1),
286–295. doi:10.1148/radiol.2017162725

Kakinuma, R., Muramatsu, Y., Kusumoto, M., Tsuchida, T., Tsuta, K., Maeshima,
A. M., et al. (2015). Solitary Pure Ground-Glass Nodules 5 Mm or Smaller:
Frequency of Growth. Radiology 276 (3), 873–882. doi:10.1148/
radiol.2015141071

Kobayashi, Y., Ambrogio, C., and Mitsudomi, T. (2018). Ground-glass Nodules of
the Lung in Never-Smokers and Smokers: Clinical and Genetic Insights. Transl.
Lung Cancer Res. 7 (4), 487–497. doi:10.21037/tlcr.2018.07.04

Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., et al.
(2012). Radiomics: the Process and the Challenges. Magn. Reson. Imaging 30
(9), 1234–1248. doi:10.1016/j.mri.2012.06.010

Lee, K. H., Goo, J. M., Park, S. J., Wi, J. Y., Chung, D. H., Go, H., et al. (2014).
Correlation between the Size of the Solid Component on Thin-Section CT and
the Invasive Component on Pathology in Small Lung Adenocarcinomas
Manifesting as Ground-Glass Nodules. J. Thorac. Oncol. 9 (1), 74–82.
doi:10.1097/jto.0000000000000019

Lee, S. M., Park, C. M., Goo, J. M., Lee, H.-J., Wi, J. Y., and Kang, C. H. (2013).
Invasive Pulmonary Adenocarcinomas versus Preinvasive Lesions Appearing as
Ground-Glass Nodules: Differentiation by Using CT Features. Radiology 268
(1), 265–273. doi:10.1148/radiol.13120949

Li, B., Chen, Q., Peng, G., Guo, Y., Chen, K., Tian, L., et al. (2016). Segmentation of
Pulmonary Nodules Using Adaptive Local Region Energy with Probability
Density Function-Based Similarity Distance and Multi-Features Clustering.
Biomed. Eng. Online 15 (1), 49. doi:10.1186/s12938-016-0164-3

Mansoor, A., Bagci, U., Foster, B., Xu, Z., Papadakis, G. Z., Folio, L. R., et al. (2015).
Segmentation and Image Analysis of Abnormal Lungs at CT: Current
Approaches, Challenges, and Future Trends. RadioGraphics 35 (4),
1056–1076. doi:10.1148/rg.2015140232

Naidich, D. P., Bankier, A. A., MacMahon, H., Schaefer-Prokop, C. M., Pistolesi,
M., Goo, J. M., et al. (2013). Recommendations for the Management of Subsolid
Pulmonary Nodules Detected at CT: A Statement from the Fleischner Society.
Radiology 266 (1), 304–317. doi:10.1148/radiol.12120628

Park, C. M., Goo, J. M., Lee, H. J., Lee, C. H., Chun, E. J., and Im, J.-G. (2007).
Nodular Ground-Glass Opacity at Thin-Section CT: Histologic Correlation and
Evaluation of Change at Follow-Up. Radiographics 27 (2), 391–408.
doi:10.1148/rg.272065061

Qi, L.-L., Wu, B.-T., Tang, W., Zhou, L.-N., Huang, Y., Zhao, S.-J., et al. (2020).
Long-term Follow-Up of Persistent Pulmonary Pure Ground-Glass Nodules
with Deep Learning-Assisted Nodule Segmentation. Eur. Radiol. 30 (2),
744–755. doi:10.1007/s00330-019-06344-z

Sun, Y., Li, C., Jin, L., Gao, P., Zhao, W., Ma, W., et al. (2020). Radiomics for Lung
Adenocarcinoma Manifesting as Pure Ground-Glass Nodules: Invasive
Prediction. Eur. Radiol. 30 (7), 3650–3659. doi:10.1007/s00330-020-06776-y

Wang, B., Tang, Y., Chen, Y., Hamal, P., Zhu, Y., Wang, T., et al. (2020). Joint Use
of the Radiomics Method and Frozen Sections Should Be Considered in the
Prediction of the Final Classification of Peripheral Lung Adenocarcinoma
Manifesting as Ground-Glass Nodules. Lung Cancer 139, 103–110.
doi:10.1016/j.lungcan.2019.10.031

Watanabe, S.-i., Watanabe, T., Arai, K., Kasai, T., Haratake, J., and Urayama, H.
(2002). Results of Wedge Resection for Focal Bronchioloalveolar Carcinoma
Showing Pure Ground-Glass Attenuation on Computed Tomography. Ann.
Thorac. Surg. 73 (4), 1071–1075. doi:10.1016/s0003-4975(01)03623-2

Yang, J., Wang, H., Geng, C., Dai, Y., and Ji, J. (2018). Advances in Intelligent
Diagnosis Methods for Pulmonary Ground-Glass Opacity Nodules. Biomed.
Eng. Online 17 (1), 20. doi:10.1186/s12938-018-0435-2

Yoshida, J., Nagai, K., Yokose, T., Nishimura, M., Kakinuma, R., Ohmatsu, H., et al.
(2005). Limited Resection Trial for Pulmonary Ground-Glass Opacity Nodules:
Fifty-Case Experience. J. Thorac. Cardiovasc. Surg. 129 (5), 991–996.
doi:10.1016/j.jtcvs.2004.07.038

Zhan, Y., Peng, X., Shan, F., Feng, M., Shi, Y., Liu, L., et al. (2019). Attenuation and
Morphologic Characteristics Distinguishing a Ground-Glass Nodule
Measuring 5-10 Mm in Diameter as Invasive Lung Adenocarcinoma on
Thin-Slice CT. Am. J. Roentgenology 213 (4), W162–w170. doi:10.2214/
ajr.18.21008

Zhang, T., Pu, X.-H., Yuan, M., Zhong, Y., Li, H., Wu, J.-F., et al. (2019).
Histogram Analysis Combined with Morphological Characteristics to
Discriminate Adenocarcinoma In Situ or Minimally Invasive
Adenocarcinoma from Invasive Adenocarcinoma Appearing as Pure
Ground-Glass Nodule. Eur. J. Radiol. 113, 238–244. doi:10.1016/
j.ejrad.2019.02.034

Zhang, Y., Qiang, J. W., Ye, J. D., Ye, X. D., and Zhang, J. (2014). High Resolution
CT in Differentiating Minimally Invasive Component in Early Lung
Adenocarcinoma. Lung Cancer 84 (3), 236–241. doi:10.1016/
j.lungcan.2014.02.008

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zheng, Zhang,Wang, Xiao and Liao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 78339111

Zheng et al. Invasive Ground Glass Nodule Prediction

213

https://doi.org/10.1016/0003-4975(95)00537-u
https://doi.org/10.1378/chest.12-2351
https://doi.org/10.1148/radiol.2017162725
https://doi.org/10.1148/radiol.2015141071
https://doi.org/10.1148/radiol.2015141071
https://doi.org/10.21037/tlcr.2018.07.04
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1097/jto.0000000000000019
https://doi.org/10.1148/radiol.13120949
https://doi.org/10.1186/s12938-016-0164-3
https://doi.org/10.1148/rg.2015140232
https://doi.org/10.1148/radiol.12120628
https://doi.org/10.1148/rg.272065061
https://doi.org/10.1007/s00330-019-06344-z
https://doi.org/10.1007/s00330-020-06776-y
https://doi.org/10.1016/j.lungcan.2019.10.031
https://doi.org/10.1016/s0003-4975(01)03623-2
https://doi.org/10.1186/s12938-018-0435-2
https://doi.org/10.1016/j.jtcvs.2004.07.038
https://doi.org/10.2214/ajr.18.21008
https://doi.org/10.2214/ajr.18.21008
https://doi.org/10.1016/j.ejrad.2019.02.034
https://doi.org/10.1016/j.ejrad.2019.02.034
https://doi.org/10.1016/j.lungcan.2014.02.008
https://doi.org/10.1016/j.lungcan.2014.02.008
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Construction of the Classification
Model Using Key Genes Identified
Between Benign and Malignant
Thyroid Nodules FromComprehensive
Transcriptomic Data
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Thyroid nodules are present in upto 50% of the population worldwide, and thyroid
malignancy occurs in only 5–15% of nodules. Until now, fine-needle biopsy with
cytologic evaluation remains the diagnostic choice to determine the risk of malignancy,
yet it fails to discriminate as benign or malignant in one-third of cases. In order to improve
the diagnostic accuracy and reliability, molecular testing based on transcriptomic data has
developed rapidly. However, gene signatures of thyroid nodules identified in a plenty of
transcriptomic studies are highly inconsistent and extremely difficult to be applied in clinical
application. Therefore, it is highly necessary to identify consistent signatures to
discriminate benign or malignant thyroid nodules. In this study, five independent
transcriptomic studies were combined to discover the gene signature between benign
and malignant thyroid nodules. This combined dataset comprises 150 malignant and 93
benign thyroid samples. Then, there were 279 differentially expressed genes (DEGs)
discovered by the feature selection method (Student’s t test and fold change). And the
weighted gene co-expression network analysis (WGCNA) was performed to identify the
modules of highly co-expressed genes, and 454 genes in the gray module were
discovered as the hub genes. The intersection between DEGs by the feature selection
method and hub genes in the WGCNA model was identified as the key genes for thyroid
nodules. Finally, four key genes (ST3GAL5, NRCAM, MT1F, and PROS1) participated in
the pathogenesis of malignant thyroid nodules were validated using an independent
dataset. Moreover, a high-performance classification model for discriminating thyroid
nodules was constructed using these key genes. All in all, this study might provide a
new insight into the key differentiation of benign and malignant thyroid nodules.
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INTRODUCTION

Thyroid nodules are regarded as common clinical problems
worldwide, and nearly 50% of the population harbor thyroid
nodules (Burman and Wartofsky, 2015; Jasim et al., 2020). For
benign thyroid nodules, there is no need to perform any medical
treatment if it does not keep growing or cause other problems
(Durante et al., 2015). Indeed, less than 10% of patients’ thyroid
nodules demonstrate disease progression after a median follow-
up of 6 years (Ito et al., 2014). But the thyroid malignancy
occurring in only 5–15% of thyroid nodules needed to be
treated surgically (Wong et al., 2018). Therefore, to improve
treatment efficiency, the main challenge is on how to differentiate
the malignant nodules from the majority of benign ones reliably
using the diagnostic methods (Cho et al., 2020; Singh Ospina
et al., 2020).

Until now, to determine the risk of malignancy, fine-needle
aspiration (FNA) with cytologic evaluation remains the
diagnostic choice for ≥1.0 cm nodules (Heider et al., 2020).
But one-third of thyroid nodules could not be discriminated
as benign or malignant correctly (Cibas and Ali, 2009). Over the
past decade, molecular testing has developed rapidly to improve
the diagnostic accuracy as well as minimize cost and unnecessary
testing for indeterminate cases (Roth et al., 2018). Moreover,
transcript profiling is a widely used technique to discover the
molecular changes. Transcriptomics could obtain information
simultaneously based on the abundance of multiple mRNA
transcripts for the biological sample (Knyazeva et al., 2020;
Moncada et al., 2020). So, the gene signatures based on
transcriptomic data could be used to distinguish benign from
malignant thyroid nodules efficiently.

Recently, there have been a lot of transcriptomic studies to
identify the gene signatures associated with thyroid nodules. For
example, Giordano et al. found the three genes (PPARG, AQP7,
and ENO3) implicated for the neoplastic mechanism of thyroid
follicular carcinomas (Giordano et al., 2006). Wojtas et al.
confirmed differential expression of seven genes (CPQ, PLVAP,
TFF3, ACVRL1, ZFYVE21, FAM189A2, and CLEC3B) between
malignant and benign follicular thyroid tumors (Wojtas et al.,
2017). Schulten et al. revealed 55 transcripts (GABBR2,
NRCAM, ECM1, HS6ST2, RXRG, etc.) differentially expressed
between follicular variant of papillary thyroid carcinomas and
follicular adenomas of the thyroid (Schulten et al., 2015). Hinsch
et al. detected that QPRT was a potential marker for the
immunohistochemical screening of follicular thyroid nodules
(Hinsch et al., 2009). Although there were various signatures
identified in different studies, it was reported that they were
difficult to be applied in clinical diagnosis because of the
inconsistency and unreliability (Singh Ospina et al., 2020).

The inconsistency among gene signatures from different
studies might result from many sources, such as limited
number of samples (Schwalbe et al., 2017; Osborn et al.,
2018). It is understood that these transcriptomic studies were
performed using dozens of samples of thyroid nodules. If the
multiple independent studies could be combined as one
comprehensive dataset, the sample size could be enlarged and
the stability of the gene signatures could be enhanced significantly

(Mistry et al., 2013). Moreover, weighted gene co-expression
network analysis (WGCNA) could be used to identify the
modules of co-expressed genes highly associated with the
biological mechanism (He et al., 2019). WGCNA has been
widely used to explore biomarkers and therapeutic targets of
various diseases (Niemira et al., 2019; Chen et al., 2020).
Therefore, it was highly needed to identify key genes between
malignant and benign thyroid nodules by WGCNA from a
comprehensive dataset.

In this work, five independent transcriptomic studies comprising
150 malignant and 93 benign thyroid nodule samples were
combined to discover the gene signatures of thyroid nodules.
First, 279 differentially expressed genes (DEGs) were identified
by the feature selection method (Student’s t test and fold change)
after data preprocessing and batch effect removal. And various
biological process terms (such as hormone metabolic process,
platelet degranulation, and thyroid hormone generation) were
enriched using these DEGs. Second, the WGCNA model was
constructed to identify significant modules of highly co-expressed
genes, and 454 hub genes in the gray module were identified. Third,
the intersection between DEGs identified by the feature selection
method and the hub genes using the WGCNA model was
discovered as the key genes. In order to perform the systematic
validation, four key genes participated in the pathogenesis of
malignant thyroid nodules were validated by an independent
dataset. Finally, a high-performance classification model for
discriminating benign and malignant thyroid nodules was
constructed using these key genes. All in all, this study might
provide a useful classification model for discriminating benign
and malignant thyroid nodules.

MATERIALS AND METHODS

Collection of Transcriptomic Data From
Multiple Studies
A variety of microarray studies based on thyroid tissue were
collected by searching the key word “thyroid nodules” in the Gene
Expression Omnibus (GEO) database (Barrett et al., 2013). These
collected datasets should meet the following criteria (Yang et al.,
2020b): 1) the gene expression profiling was conducted using
cDNA microarray for “Homo Sapiens”; 2) the tissues analyzed
were thyroid nodules; 3) raw data could be available for further
analysis; and 4) the collected datasets should consist of one group
of malignant samples and another group of benign ones. As a
result, five independent transcriptomic datasets were collected,
and each comprised both benign and malignant thyroid nodules.
The detailed information of these five collected datasets is
provided in Table 1, including dataset ID, number of samples,
microarray platform, and tissue indicated in the original
publication and references.

Data Preprocessing and Batch Effect
Removal
To enhance the consistency and classification capacity, all
datasets in this study (Table 1) were combined to discover the
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key genes of thyroid nodules. The combination of multiple
datasets was carried out in R environment (v3.4.3, http://www.
r-project.org) (Sepulveda, 2020). The raw data (CEL file) of all
datasets were read, log-transformed, and normalized using the
corresponding R package, and all parameters were set as
default. All probe sets were then mapped to their
corresponding gene names using Bioconductor (Tippmann,
2015). The average expression value was retained if one gene
was mapped to multiple probes (Yang et al., 2020c). To remove
batch effects among five independent datasets, Z-score
transformation was used to adjust the gene expression levels
in each dataset (Yang Q et al., 2019b; Yang et al., 2020a).
Z-score transformation for each gene could be computed by
subtracting the mean of all genes and dividing the difference by
the standard deviation of all genes in one experiment. After data

transformation, the mean value for each experiment became
zero with standard deviation equaling one.

Differentially Expressed Genes Discovered
Between Benign and Malignant Thyroid
Nodules
In this study, there were five collected datasets integrated as a
comprehensive dataset for discovering signatures. This
comprehensive dataset consisted of 150 malignant and 93 benign
samples of thyroid nodules. To the best of one’s knowledge, this
integrated dataset was the largest transcriptomic dataset in the
analysis of thyroid nodules. Based on this comprehensive dataset,
theDEGswere discovered using feature selectionmethods including
Student’s t test and fold change (FC). For Student’s t test, multtest

TABLE 1 | Datasets collected from five independent microarray studies of thyroid nodules (sorted by sample size). Each dataset contained one cohort of malignant and
another cohort of another group of benign samples.

Id No. of samples
(malignant: benign)

Platform Tissue References

GSE27155 95 (78:17) HG-U133A Thyroid tissue Clin Cancer Res
12 (7): 1983–93, 2006

GSE29315 71 (31:40) HG-U95Av2 Thyroid tissue Tomas G, et al.
unpublished, 2012

GSE82208 52 (27:25) HG-U133 Plus 2 Thyroid tissue Int J Mol Sci
18 (6): 1,184, 2017

GSE54958 13 (6:7) HuGene-1.0 ST Thyroid tissue BMC Genomics
16 (S1): S7, 2015

GSE15045 12 (8:4) ABI Human Genome Survey Microarray v.2 Thyroid tissue BMC Cancer
9: 93, 2009

FIGURE 1 | Volcanomap of differentially expressed genes in malignant samples compared with benign samples. The horizon line was the cutoff (adjusted p-value <
0.05) of Student’s t test. The vertical line was the cutoff (logFC >0.58 or logFC < -0.58) of the fold change method. The blue and red dots indicated the downregulated
and upregulated genes, respectively.
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package of R language was applied, and the adjusted p-value < 0.05
was selected as the cutoff (Yan et al., 2019). The fold changewas used
to compare the mean expression of each gene between malignant
and benign thyroid nodules (Yu et al., 2020). The cutoff level of FC
was set to logFC >0.58 (FC > 1.5) or logFC < -0.58 (FC < 0.67). The
equation of FC was shown below (as shown in Eq. (1)).

logFC � mean(log 2(Malignant Group))
−mean(log 2(Benign Group)). (Eq.1)

The volcano plot was applied to visualize and demonstrate the
DEGs using ggplot2 package. Then the analysis of gene ontology
(GO) enrichment was performed to identify the key biological
processes for thyroid nodules (Yang et al., 2019a). Moreover,
GOplot and clusterProfiler packages were used for visualizing the
biological processes (BP) of GO enrichment (Yu et al., 2012; Yang
et al., 2021). The raw p-value < 0.05 of GO terms was considered
statistically significant.

Hub Genes Identified Using Weighted Gene
Co-Expression Network Analysis
TheWGCNA package was applied to establish the scale-free weight
gene co-expression networks for thyroid nodules (Langfelder and
Horvath, 2008). The unqualified genes were screened out, and the
matrix of genes’ similarity by Pearson’s correlation analysis was
created. Appropriate soft threshold power (β) was applied to
strengthen this matrix to a scale-free co-expression network
(Yang et al., 2020b). The lowest power was chosen, so the scale-
free topology fit index curve flattened out upon reaching a high
value. The highly correlated genes were assigned into the same
module. As a result, the intersection was obtained between DEGs
identified by the feature selection method and hub genes in a key
module using the WGCNA model. These genes in the intersection
were regarded as the key genes for further validation.

Validation of the Key Genes Based on the
Independent Dataset
A systematic validation was conducted by evaluating the upregulated
and downregulated genes based on the independent dataset
(GSE34289) (Alexander et al., 2012). This validation dataset
consisted of two independent datasets from two different platforms.
The first independent dataset was detected based on GPL5175
platform (Affymetrix Human Exon 1.0 ST Array). In this dataset,
there were 23 malignant and 26 benign thyroid nodules. The second
independent dataset was detected based on GPL14961 platform
(Afirma-T Human Custom Array). There were 120 malignant and
198 benign samples in this second independent dataset. In this study,
the boxplot was used to demonstrate the differential expression of
these key genes between malignant and benign thyroid nodules.

Construction of the High-Performance
Classification Model Using the Key Genes
To construct a classification model for thyroid nodules, four
powerful classifiers, namely, support vector machine, linear
discriminate analysis, partial least squares, and random forest
algorithm, were applied in this study (Orru et al., 2012). The
key genes between malignant and benign thyroid nodules were
used to discriminate different samples. In the first step, the five-fold
cross validation of the comprehensive dataset (Table 1) was
performed to validate the performance of this classification

TABLE 2 | Top 25 up- and downregulated DEGs identified by Student’s t test and
fold change method (logFC >0.58 or logFC < -0.58 and adjusted p-value <
0.05) combining all five datasets in Table 1.

ID Entrez ID Gene symbol Adjusted p-value logFC

Table A. The top 25 upregulated genes
1 9,324 HMGN3 0.035423 1.999879
2 515 ATP5F1 0.02562 1.907751
3 5,800 PTPRO 0.010352 1.767712
4 23576 DDAH1 0.003481 1.626399
5 9,782 MATR3 0.000342 1.498593
6 11167 FSTL1 0.000987 1.408146
7 4,435 CITED1 2.04E-08 1.328755
8 301 ANXA1 5.86E-09 1.273075
9 1803 DPP4 1.81E-15 1.166173
10 55885 LMO3 9.26E-05 1.162304
11 10944 C11orf58 0.00016 1.162246
12 1,001 CDH3 4.16E-14 1.155315
13 722 C4BPA 0.000938 1.154525
14 10178 TENM1 6.51E-07 1.15377
15 439,921 MXRA7 0.001287 1.117048
16 159 ADSS 0.000106 1.113014
17 5,627 PROS1 5.72E-10 1.104001
18 6,447 SCG5 3.80E-06 1.081727
19 7,360 UGP2 7.51E-05 1.076941
20 25797 QPCT 5.05E-09 1.068464
21 1,622 DBI 0.009991 1.065552
22 5,906 RAP1A 6.06E-05 1.055333
23 7,991 TUSC3 7.96E-11 1.05345
24 7,498 XDH 1.86E-05 1.04801
25 10981 RAB32 0.000299 1.046273

Table B. The top 25 downregulated genes
26 4,703 NEB 3.90E-06 −0.8582
27 432 ASGR1 2.01E-05 −0.89599
28 1805 DPT 0.00018 −0.8994
29 4,494 MT1F 4.58E-09 −0.91087
30 219,333 USP12 0.047108 −0.9167
31 2,117 ETV3 0.000167 -0.93059
32 6,722 SRF 0.003049 −0.94275
33 1,381 CRABP1 1.48E-06 −0.95542
34 6,921 TCEB1 0.004592 -0.98698
35 2,323 FLT3LG 0.009582 −0.98782
36 1,299 COL9A3 8.03E-05 -1.00485
37 4,713 NDUFB7 0.000215 −1.00738
38 4,495 MT1G 1.39E-07 -1.05177
39 9,265 CYTH3 7.71E-05 −1.07064
40 8,458 TTF2 0.030282 −1.09564
41 968 CD68 0.007163 −1.11098
42 6,624 FSCN1 0.003741 −1.12761
43 4,920 ROR2 3.74E-05 −1.19808
44 2,167 FABP4 8.24E-10 −1.24181
45 744 MPPED2 1.02E-13 −1.25312
46 3,292 HSD17B1 1.63E-05 -1.28357
47 1,014 CDH16 3.65E-16 −1.33575
48 1,733 DIO1 8.64E-07 −1.42927
49 7,173 TPO 3.90E-15 −1.49917
50 9,351 SLC9A3R2 0.00174 −1.61953
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model. The accuracy of five-fold cross validation could reflect the
quality of the model. In the second step, the comprehensive dataset
was set as the training set, and the two independent datasets from
GSE34289 were set as the test sets. The performance of the
independent test set could accurately reflect the classification
ability of the model. This high-performance classification model
based on machine learning was constructed for discriminating
benign and malignant thyroid nodules.

RESULTS AND DISCUSSION

Collection of Multiple Transcriptomic Data
for Thyroid Nodules
A variety of microarray studies based on thyroid tissue were collected
by searching the keyword “thyroid nodules” in theGEOdatabase. As a

result, five independent transcriptomic studies were obtained, and each
comprised a cohort ofmalignant samples and another cohort of benign
samples. The detailed information of these independent datasets is
provided in Table 1. Among these studies, the five datasets including
150 malignant and 93 benign thyroid nodules were combined as a
comprehensive dataset. The boxplots of five datasets before and after
batch effect removal are shown in Supplementary Figure S1. The
intensity of all samples before batch effect removal was distributed in
the range of 4–15 and fluctuated greatly. After batch effect removal,
the intensity of all samples was roughly distributed in the range of
-1–1. The stable distribution indicated that the batch effects were
well removed in the combined dataset by Z-score transformation.
After data preprocessing and batch effect removal, the
comprehensive dataset with 7,265 genes from five independent
studies was applied to discover the key genes of thyroid nodules.

FIGURE 2 |Chord diagram of BP (biological process) of GO enrichment to explain the relationship between BP terms and DEGs in malignant versus benign thyroid
nodules.
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DEGs of Thyroid Nodules Identified Using
the Combined Dataset
Based on this comprehensive dataset, the DEGs were discovered
using feature selection methods (both Student’s t test and fold
change). The volcano plot (as shown in Figure 1) illuminated
the variation of DEGs in malignant versus benign thyroid
nodules. The horizon line was the cutoff (adjusted p-value <
0.05) of Student’s t test. The cutoff levels for the vertical line were
set to logFC >0.58 (FC > 1.5) or logFC < -0.58 (FC < 0.67) of fold
change. The blue and red dots were used to indicate the
upregulated (logFC >0.58) and downregulated (logFC < -0.58)
genes, respectively. In this study, 279DEGswere finally identified by
both Student’s t test and fold change. The total number of
upregulated genes (172 genes) was larger than that of the
downregulated ones (107 genes). The top 25 upregulated and
downregulated DEGs are shown in Table 2, including the
information of entrez ID, gene symbol, adjusted p-value, and fold
change for each gene. The information of all DEGs is shown in
Supplementary Table S1.

GO Enrichment Analysis Using DEGs of
Thyroid Nodules
GO enrichment analysis is ubiquitously used for interpreting high
throughput molecular data and underlying biological phenomena
of experiments (Tomczak et al., 2018). For a set of genes, an
enrichment analysis will find which GO terms are overrepresented
using annotations for the gene set. GO enrichment analysis for the
DEGs was performed in this study. Using the DEGs between
malignant and benign thyroid nodules, the enrichment analysis
included the BP (biological process), MF (molecular function), and
CC (cell component) terms. The detailed information of GO ID,
description, p-value, name, and the number of genes is shown in
Supplementary Table S2.

Particularly, multiple biological processes were enriched to
interpret the biological mechanism of malignant thyroid
nodules. The chord diagram of BP enrichment (as interpreted
in Figure 2) was applied to explain the relationship between DEGs
and BP terms. It was reported that these BP terms were associated
with the biological mechanism of thyroid nodules. For example,

FIGURE 3 | Weighted gene co-expression network analysis of gene expression between malignant and benign thyroid nodules. (A) Analysis of the scale-free
topology fit index and the mean connectivity for various soft threshold powers (β) for the genes, (B) dendrogram of all expressed genes clustered based on a dissimilarity
measure, (C) heatmap of module–trait relationships depicting correlations between module eigengenes and phenotypic traits (the label of malignant and benign thyroid
nodules). Numbers correspond to the correlation and the p-value in parentheses. The degree of correlation is illustrated with the color legend, and (D) identification
of hub genes using the scatterplot of module eigengenes in the gray co-expression module.
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there were 15 DEGs enriched in the hormone metabolic process,
and the association with thyroid cancer has been reported (Han
et al., 2018). The platelet degranulation enriched by 10 DEGs was
discovered in papillary thyroid carcinoma using the biomarkers
(Wu et al., 2018). The concentration of the vascular endothelial
growth factor was increased and stimulated endothelial cell
proliferation in the cyst fluid of enlarging and recurrent thyroid
nodules (Sato et al., 1997). It was reported that patients with spotty
skin pigmentation had a predisposition toward the development of
thyroid abnormalities (Courcoutsakis et al., 2009). It was found
that low thyroid hormones might have implications for
reproductive health, so the reproductive structure development
and reproductive system development might be affected in thyroid
nodules (Medda et al., 2017). The thyroid hormone generation
reported that the significant biologic process was involved in
thyroid cancers (Durante et al., 2018).

Construction of the WGCNA Network and
Identification of the Gene Co-Expression
Module
TheWGCNA network was constructed to identify the gene co-
expression module (as shown in Figure 3). The value of power

(10) was selected as the soft-threshold power to ensure scale-
free (R2 � 0.8) networks using the WGCNA package
(Figure 3A) because it reached the plateau at power 10
from the scale-free topology plot and mean connectivity
plot. Genes with similar expression patterns were clustered
into co-expression modules. Different modules were shown in
different colors, and 13 modules were identified totally
(Figure 3B). The heatmap of module–trait relationships was
applied for depicting correlations between module eigengenes
and phenotypic traits (the label of malignant and benign
thyroid nodules). As shown in Figure 3C, the numbers
correspond to the correlation, and the p-values were set in
parentheses. Moreover, the degree of correlation was
illustrated with the color legend. Here, the gray module was
the most correlated one with malignant thyroid nodules (R �
0.32, p-value � 2 × 10–5). Hence, the gray module was used for
the identification of the hub genes. Hub genes in the co-
expression network were characterized by high intra-
modular connectivity measured by the value of gene
significance and module membership. The scatterplot of
module eigengenes related to malignant thyroid nodules in
the gray co-expression module (R � 0.29, p-value � 3 × 10–10) is
shown in Figure 3D. As a result, 454 genes in the gray module

FIGURE 4 | Validation of key genes identified by both DEGs identified by the feature selectionmethod and hub genes in the graymodule usingWGCNA. The boxplots of
these key genes between malignant and benign thyroid nodules were validated in the independent dataset detected by (A) GPL5175 and (B) GPL14961 platforms.
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highly correlated with gene significance were identified as hub
genes using WGCNA.

Validation of the Key Genes Using the
Independent Datasets
In this study, there were 19 overlapping genes in the
intersection between 279 DEGs identified by the feature
selection method and 454 hub genes in the gray module

totally. To validate these overlapping genes, two independent
datasets from GSE34289 were applied to perform the systematic
validation (Alexander et al., 2012). In this validation dataset,
there were 23 malignant with 26 benign samples and 120
malignant with 198 benign samples form GPL5175 and
GPL14961 platforms, respectively. The boxplots (as shown in
Figure 4) were used to demonstrate the key genes between
malignant and benign thyroid nodules. Among the 19
overlapping genes, there were four key genes expressed in the

FIGURE 5 | Classification model constructed for discriminating malignant from benign thyroid nodules using four different machine learning methods. The four
methods referred to support vector machine, linear discriminate analysis, partial least squares, and random forest algorithm from top to bottom. The ROC curves and
AUC values for the five-fold cross validation were shown in (A1–D1) for the comprehensive dataset using the four methods. The ROC curves and AUC values for the first
independent test set were shown in (A2–D2). The ROC curves and AUC values for the second independent test set were shown in (A3–D3).
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independent dataset, and the dysregulation of these key genes was
validated. As shown in Figure 4, the significant differences of three
upregulated genes (ST3GAL5, NRCAM, and MT1F) and one
downregulated gene (PROS1) were indicated in these boxplots
obviously for the independent data detected from GPL5175
(Figure 4A) and GPL14961 platforms (Figure 4B), respectively.

As a result, these four key genes were effectively validated as
the important ones participated in the pathogenesis of thyroid
nodules. It was reported that the specific genetic variants of
ST3GAL5 in patients with thyroid-associated ophthalmopathy
were discovered (Park et al., 2017). Górka et al. provided the first
evidence that NRCAM is overexpressed in papillary thyroid
carcinomas, and the upregulation of NRCAM was implicated
in the pathogenesis and behavior of papillary thyroid cancers
(Gorka et al., 2007). It was reported that MT1F might contribute
to thyroid carcinogenesis and potentially serve as a diagnostic
marker in distinguishing benign from malignant lesions (Kim
et al., 2010; Wojtczak et al., 2017). In the previous studies, PROS1
was reported as the biomarker significantly related to thyroid
nodules’malignancy (Griffith et al., 2006; Wu et al., 2020). In this
study, these four key genes (ST3GAL5, NRCAM, MT1F, and
PROS1) were discovered for distinguishing malignant from
benign thyroid nodules.

Construction of the High-Performance
Classification Model Using the Key Genes
To distinguish malignant from benign thyroid nodules, four
popular machine learning methods were applied to construct
the classification model in this study. These methods included
support vector machine, linear discriminate analysis, partial
least squares, and random forest algorithm. The key genes
between benign and malignant thyroid nodules were used to
discriminate different samples. For the comprehensive dataset
in Table 1, the five-fold cross validation was first performed to
validate the performance of this classification model. As shown
in Figure 5A1, 5B1, 5C1, and 5D1, the values of area under the
ROC curve (AUC) were 0.83, 0.82, 0.82, and 0.78 for the five-
fold cross validation using four different machine learning
methods, respectively. Moreover, the high performance of the
independent test sets could accurately reflect the ability of the
classification model. The comprehensive dataset was set as the
training set, and the test sets consisted of two parts detected by
GPL5175 and GPL14961 platforms from the independent
dataset (GSE34289). As displayed in Figure 5A2, 5B2, 5C2,
and 5D2, the AUC values of the ROC curve for the first
independent test set were 0.83, 0.67, 0.74, and 0.74 by four
machine learning methods, respectively. As shown in
Figure 5A3, 5B3, 5C3, and 5D3, the AUC values for the
second independent test set were 0.81, 0.60, 0.69, and 0.77 by
four machine learning methods, respectively.

As shown in Figure 5, for the five-fold cross validation, the
performances (AUC >0.8) of the classification model were
outstanding using support vector machine, linear discriminate
analysis, and partial least squares. However, the classification
models of support vector machine and random forest (AUC >0.7)
have shown more excellent performances than the other methods

for the two independent test sets. Therefore, the high-
performance classification model using support vector
machine was recommended for discriminating malignant from
benign thyroid nodules based on both five-fold cross validation
and independent test.

Until now, it fails to discriminate as benign or malignant in
one-third of thyroid nodules using FNA with cytologic
evaluation. To save medical costs and improve the diagnostic
accuracy, the high-performance classification model
constructed in this study could be applied before FNA. For
the thyroid nodule patients, the expression of four key genes
could be detected. Then, this sample could be classified as
benign or malignant thyroid nodules based on the
classification model. If the patient was classified as a
malignant thyroid sample, it was highly necessary to make a
definite diagnosis using FNA with cytologic evaluation. If the
patient was classified as a benign sample based on the
classification model, the necessity of the FNA could be
determined depending on the specific conditions. In the
future, selection method, the high-performance classification
model is expected to be applied for clinical diagnosis and
management for malignant and benign thyroid nodules.

CONCLUSION

In this study, a comprehensive dataset including 150
malignant and 93 benign samples was collected to discover
the gene signature of thyroid nodules. Then, 279 DEGs were
identified by the feature selection method (Student’s t test and
fold change). Then, the WGCNA network was performed to
identify modules of highly co-expressed genes, and 454 genes
were discovered as the hub genes. As a result, the intersection
between the DEGs and the hub genes was identified as the key
genes. Using the independent dataset, three upregulated genes
(ST3GAL5, NRCAM, and MT1F) and one downregulated gene
(PROS1) were effectively validated. Moreover, the high-
performance classification model was constructed for
discriminating malignant from benign thyroid nodules.
However, certain limitations still exist in this study. The
number of samples for identifying and validating key genes
was still needed to be increased. In the future, the key genes
and classification model could be further verified based on the
experimental data.
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Background: Ischemic stroke is one of the serious complications of diabetes. Non-
coding RNAs are established as promising biomarkers for diabetes and its complications.
The present research investigated the expression profiles of serum TUG1, LINC00657,
miR-9, and miR-106a in diabetic patients with and without stroke.

Methods: A total of 75 diabetic patients without stroke, 77 patients with stroke, and 71
healthy controls were recruited in the current study. The serum expression levels of TUG1,
LINC00657, miR-9, and miR-106a were assessed using quantitative real-time polymerase
chain reaction assays.

Results: We observed significant high expression levels of LINC00657 and miR-9 in the
serum of diabetic patients without stroke compared to control participants. At the same
time, we found marked increases of serum TUG1, LINC00657, and miR-9 and a marked
decrease of serum miR-106a in diabetic patients who had stroke relative to those without
stroke. Also, we revealed positive correlations between each of TUG1, LINC00657, and
miR-9 and the National Institutes of Health Stroke Scale (NIHSS). However, there was a
negative correlation between miR-106a and NIHSS. Finally, we demonstrated a negative
correlation between LINC00657 and miR-106a in diabetic patients with stroke.

Conclusion: Serum non-coding RNAs, TUG1, LINC00657, miR-9, and miR-106a
displayed potential as novel molecular biomarkers for diabetes complicated with
stroke, suggesting that they might be new therapeutic targets for the treatment of
diabetic patients with stroke.

Keywords: TUG1, LINC00657, miR-9, miR-106a, stroke

Edited by:
Jie Li,

Harbin Institute of Technology, China

Reviewed by:
Yinan Jiang,

University of Pittsburgh, United States
Vikram Dalal,

Washington University in St. Louis,
United States

*Correspondence:
Omayma O Abdelaleem
dr.omayma@yahoo.com

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 14 August 2021
Accepted: 24 December 2021
Published: 14 February 2022

Citation:
Abdelaleem OO, Shaker OG,

Mohamed MM, Ahmed TI,
Elkhateeb AF, Abdelghaffar NK,

Ahmed NA, Khalefa AA, Hemeda NF
and Mahmoud RH (2022) Differential

Expression of Serum TUG1,
LINC00657, miR-9, and miR-106a in
Diabetic Patients With and Without

Ischemic Stroke.
Front. Mol. Biosci. 8:758742.

doi: 10.3389/fmolb.2021.758742

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 8 | Article 7587421

ORIGINAL RESEARCH
published: 14 February 2022

doi: 10.3389/fmolb.2021.758742

225

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.758742&domain=pdf&date_stamp=2022-02-14
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758742/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758742/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758742/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.758742/full
http://creativecommons.org/licenses/by/4.0/
mailto:dr.omayma@yahoo.com
https://doi.org/10.3389/fmolb.2021.758742
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.758742


INTRODUCTION

Diabetes mellitus (DM) is a complex, multisystem disease and is
one of the risk factors of stroke. Oxidative stress occurs due to an
elevated blood glucose level, which is associated with increased
glycated end products, resulting in endothelial dysfunction,
cerebrovascular atherosclerosis, and thrombosis, which are the
main causes of ischemic stroke in diabetic patients that is
associated with high mortality and poor prognosis (Nakagami
et al., 2005; Ferreiro et al., 2010).

It is important to understand the molecular mechanisms of
cerebral stoke associated with DM to facilitate the development of
new effective potential biomarkers and therapeutic targets for
diabetic patients with stroke.

Non-coding RNAs, including microRNAs (miRNAs) and long
non-coding RNAs (lncRNAs), have been proven to have
necessary roles in regulating gene expression (Kitagawa et al.,
2013; Iyengar et al., 2014; Khoshnam et al., 2017). LncRNAs are
an important group of non-coding RNAs that are of long
transcripts (>200 bp). Numerous studies have elucidated the
significant roles of lncRNAs in various diseases, including
ischemic stroke (Mercer and Mattick, 2013; Bao et al., 2018a).

Taurine-upregulated gene 1 (TUG1), a lncRNA, has been
shown to be related to the pathogenesis of many diseases.
Recently, TUG1 has gained significant attention in ischemic
injuries (Long et al., 2016; Chen et al., 2017; Wang et al.,
2017), although little has been identified regarding its role in
DM complicated with stroke.

LINC00657 is a lncRNA that is highly conserved and profusely
expressed in endothelial cells (Michalik et al., 2014).
Accumulating evidence has demonstrated that LINC00657
might play an oncogenic role, and it is upregulated in many
cancers (Liu H. et al., 2016; Liu S. et al., 2016). However, its role in
DM or diabetes-related complications has not been
investigated yet.

MicroRNAs (miRNAs) are tiny non-coding RNAs (20–25
nucleotides long). Recently, promising research studies have
explained the importance of miRNAs in the pathogenesis of
diabetes and its cardiovascular complications (Meng et al., 2012;
Koutsis et al., 2013). However, the expressions of miR-9 and miR-
106a in diabetic patientswith ischemic stroke have not been examined.

Bioinformatics has reported that TUG1 has complementary
sequences of miR-9. Additionally, LINC00657 contains binding
sites for miR-106a (Li et al., 2014). However, a study of their
relationship in DM complicated with cerebral stroke remains to
be conducted.

In this study, we aimed to assess the serum expression levels of
TUG1, LINC00657, miR-9, and miR-106a in diabetic patients
who had stroke and those without cerebral stroke and to explore
any association between these non-coding RNAs and clinico-
laboratory data.

Subjects and Methods
Study Population
A total of 152 diabetic patients (with type 2 diabetes) were
recruited among those admitted to the outpatient and
inpatient clinics of the Internal Medicine and Intensive Care

Unit, Fayoum University Hospital, Fayoum, in the period from
November 2019 to December 2020. Diabetic patients were
selected based on the American Diabetes Association 2015
diagnostic criteria (Pinsker et al., 2015). Diabetic patients were
divided into two groups: diabetic patients with stroke (30females
and 47males, with a mean = 57.08 ± 16.31 years) and diabetic
patients without stroke (26 females and 49 males, mean
age = 53.19 ± 17.78 years) (Figure 1).

Ischemic stroke diagnosis was assessed according to clinical
symptoms and physical examinations, and this diagnosis was
confirmed by computed tomography (CT) or magnetic resonance
imaging (MRI). The National Institutes of Health Stroke Scale
(NIHSS) was used by experienced neurologists to evaluate the
neurological deficits.

All patients with brain tumors, intracerebral hemorrhage,
recurrent stroke, history of hypertension, recent head injuries,
immune system disorders, liver or renal diseases, blood diseases,
acute infectious diseases, or a family history of stroke were
excluded from the study. Furthermore, 71 healthy individuals
(age and sex matched to the patients) who did not have systemic
or neurologic diseases were considered as the control group in
this study.

Written informed consent was signed by all enrolled
participants after a detailed explanation of the study. The
study protocol was performed in agreement with the
Declaration of Helsinki. The Ethics Committee of the Faculty
of Medicine, FayoumUniversity, approved this research protocol.

Serum Collection
From each participant, 5 ml of venous blood was collected into
plain tubes using a Vacutainer system following a 12-h fast.
Serum separator tubes were used to collect the samples that
were left for 15 min to clot. Centrifugation at 4,000 × g for
10 min was performed, separating the serum that was stored at
−80°C until the time of use. An extra blood sample was taken
2 h after a meal (2 h post-prandial, 2hPP) into tubes containing
fluoride.

Fasting blood glucose (FBG), 2hPP blood glucose, cholesterol,
triglycerides, HbA1C, creatinine, and low-density lipoprotein
(LDL) were assessed using standard methods on cobas c311
(Roche, Mannheim, Germany) in accordance with the
instructions in the kit. Serum samples were used for the
quantification of TUG1, LINC00657, miR-9, and miR-106a
using real-time PCR.

LncRNA andmiRNA Extraction and Reverse
Transcription
According to the manufacturer’s protocol, total RNA (including
lncRNAs and miRNAs) was extracted from serum samples using
the miRNeasy extraction kit (Qiagen, Hilden, Germany) after
adding the QIAzol lysis reagent. Quantitation and the purity of
the RNA samples were assessed using the NanoDrop® (ND)-1000
spectrophotometer (NanoDrop Technologies, Inc., Wilmington,
DE, USA).

Complementary DNA (cDNA) was generated from the
extracted RNA in a total volume of 20 μl/reaction using the
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RT2 First Strand Kit (Qiagen, Germantown, MD, USA) according to
the manufacturer’s protocol for lncRNA expression analysis.
Moreover, the miScript II RT Kit (Qiagen, Valencia, CA, US) was
used for miRNA expression analysis in a 20-μl reverse transcription
(RT) reaction according to the instructions in the pamphlet.

LncRNA and miRNA Expression by
Real-Time Quantitative PCR
Real-time PCR amplification reactions were performed using the
RT2 SYBR Green PCR Kit (Qiagen, Germantown, MD, USA) for
the detection of lncRNA. However, the miScript SYBR Green
PCR Kit (Qiagen, Valencia, CA, USA) was used in the
quantification of miRNAs with the aid of the Rotor-Gene Q
System (Qiagen).

The RefSeq accession no. of TUG1 was NR_002323.2 and that
of LINC00657was NR_027451.1. GAPDH was used as an
endogenous control for the evaluation of TUG1 and LINC00657
according to the manufacturer’s instructions. Numerous studies
have used GAPDH as an internal reference for serum lncRNAs
(Duan et al., 2016; Shaker et al., 2019). The primer sequences of
GAPDH were as follows: forward: 5′-CCCTTCATTGACCTCAAC
TA-3′; reverse: 5-′TGGAAGATGGTGATGGGATT-3′.

Moreover, the catalog number of miR-9 was MS00010752 and
that of miR-106a was MS00008393. SNORD68 was used as the
internal reference for the evaluation of the gene expression levels
of miR-9 and miR-106a. The catalog number of SNORD68 was
MS00033712.

The PCR cycling program for the quantification of lncRNAs
consists of an initial incubation at 95°C for 10 min, followed by 40

FIGURE 1 | Schematic diagram of the outline of the work performed in this study.

TABLE 1 | Baseline characteristics of the enrolled groups

Control (n = 71) Diabetes p-valuea p-valueb

Without stroke (n = 75) With stroke (n = 77)

Sex, n (%)
Female 25 (35.21%) 26 (34.67%) 30 (38.96%) 0.441 0.352
Male 56 (64.79%) 49 (65.33%) 47 (61.04%) 0.553 0.907
Age (years) 54.58 ± 18.75 53.19 ± 17.78 57.08 ± 16.31 0.894 0.559
BMI (kg/m2) 29.37 ± 1.82 30.07 ± 2.46 31.89 ± 2.09 0.389 0.604
FBG (mg/dl) 83.25 ± 8.97 154.58 ± 28.11 185.41 ± 40.85 <0.001* 0.04*
2hPP (mg/dl) 111.85 ± 10.24 255.75 ± 47.08 309.15 ± 53.29 <0.001* 0.04*
HbA1c (%) 4.27 ± 1.65 7.87 ± 2.34 9.07 ± 3.12 <0.001* 0.02*
ALT (IU/L) 18.74 ± 3.89 37.25 ± 9.27 40.09 ± 8.97 <0.001* 0.07
AST (IU/L) 17.92 ± 8.17 32.25 ± 6.87 35.51 ± 8.71 0.002* 0.425
Urea (mg/dl) 24.71 ± 8.74 55.19 ± 11.31 58.18 ± 9.47 <0.001* 0.108
Creatinine (mg/dl) 0.70 ± 0.19 2.72 ± 0.34 3.09 ± 0.17 0.02* 0.094
Hb (gm/dl) 12.13 ± 3.24 11.89 ± 2.98 12.01 ± 3.07 0.498 0.571
MCV 33.12 ± 2.19 33.09 ± 2.01 32.97 ± 2.05 0.608 0.580
MCH 28.11 ± 2.31 27.98 ± 3.07 29.01 ± 2.13 0.333 0.231
Cholesterol (mg/dl) 138.15 ± 23.19 168.25 ± 18.52 198.16 ± 34.08 0.008* 0.06
LDL (mg/dl) 49.57 ± 19.87 86.17 ± 15.79 101.71 ± 25.55 <0.001* 0.03*
HDL (mg/dl) 41.22 ± 8.99 35.12 ± 7.58 30.09 ± 8.88 0.03* 0.064
Triglycerides (mg/dl) 65.13 ± 9.13 137.32 ± 35.62 149.85 ± 44.73 <0.001* 0.091
NIHSS – – 11.38 ± 5.12 – –

Disease duration (years) – 13.35 ± 1.87 15.729 ± 1.97 – 0.09

Data are shown as the mean ± ( SD, median (range), or n (%).
BMI, body mass index; FBG, fasting blood glucose; 2hPP, 2 h post-prandial; HbA1c, glycated hemoglobin A1c; ALT, alanine transaminase; AST, aspartate transaminase; Hb,
hemoglobin; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NIHSS, National Institutes of Health
Stroke Scale
*Significant at p < 0.05
aComparison of diabetic patients (with and without stroke) versus the healthy control group
bComparison of diabetic patients with stroke versus diabetic patients without stroke
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cycles at 95°C for 15 s and 60°C for 60 s. That for the detection of
miRNAs consists of 95°C for 30 min, followed by 40 cycles at 94°C
for 15 s, 55°C for 30 s, and 70°C for 30 s.

The relative expression levels of TUG1, LINC00657, miR-9,
and miR-106a were calculated using 2−ΔΔCt. Fold change (FC)
values less than 1 indicated downregulation, while values more
than 1 indicated upregulation of non-coding RNAs (Livak and
Schmittgen, 2001). Control FC values were set as 1.

Statistical Analyses
Statistical analysis was performed using Statistical Package for
Social Sciences (SPSS) version 24. The mean, standard deviation
(SD), median, and interquartile range (IQR) were utilized to
represent quantitative data. A chi-square test was performed for
categorical data. However, the Mann–Whitney U test was used
for continuous variables, which were presented as median
(interquartile range). To determine the relation of the
expressions of non-coding RNAs with the study parameters,
Spearman’s correlation was run. A multivariate stepwise
logistic regression was constructed to identify the significant
predictors of cerebral stroke among the four markers.

Analyses of the receiver operating characteristic (ROC) curves
were conducted to determine the sensitivity and specificity of
TUG1, LINC00657, miR-9, and miR-106a as predictors in
differentiating between different groups. Statistical significance
was considered at a p-value <0.05. Adjusted p-values for multiple
comparisons of the studied groups were estimated using the
Bonferroni correction method. The p-value (of 0.05) was
divided by the number of comparisons, i.e., 3 (0.05/3).
Therefore, the test results were considered to be statistically
significant at p-values <0.017.

RESULTS

Clinical and Laboratory Features of the
Enrolled Participants
A total of 75 diabetic patients without stroke, 77 diabetic patients
with stroke, and 71 healthy individuals were included in the
current study.

There were marked differences between the total diabetic
patients (with and without stroke) and the healthy group

regarding FBG, 2hPP, HbAIc, alanine transaminase (ALT),
aspartate transaminase (AST), urea, creatinine, cholesterol,
LDL, high-density lipoprotein (HDL), and triglycerides (all p <
0.05). However, no significant differences in age, sex, and other
clinical and laboratory data were observed between all diabetic
patients and control participants (p > 0.05) (Table 1). Moreover,
there were significant differences concerning FBG, 2hPP, HbAIc,
and LDL when comparing diabetic patients with stroke to those
without stroke (all p < 0.05). On the other hand, there were no
marked differences regarding age, sex, and all other data when
comparing diabetic patients with stroke to those without stroke
(p > 0.05) (Table 1).

Comparison of the Serum Expression
Levels of TUG1, LINC00657, miR-9, and
miR-106a in the Different Studied Groups
As clarified in Table 2, the serum expression levels of LINC00657
and miR-9 were increased significantly in diabetic patients
without stroke when compared to healthy individuals (p =
0.001 for LINC00657 and miR-9).

We next compared the expressions of TUG1, LINC00657,
miR-9, and miR-106a in the sera of diabetic patients with
stroke relative to healthy controls. The results showed
significant upregulation of TUG1, LINC00657, and miR-9
(p < 0.001 for TUG1, LINC00657, and miR-9). In contrast,
the level of miR-106a in serum was markedly decreased in
diabetic patients who had stroke relative to the control subjects
(p < 0.001).

Furthermore, we revealed a marked elevation of the serum
expressions of TUG1, LINC00657, and miR-9 in diabetic patients
with stroke relative to those without stroke (p < 0.001 for TUG1
and LINC00657; p = 0.003 for miR-9). Meanwhile, a non-
significant decrease of miR-106a was detected between diabetic
patients with stroke and those without stroke (p = 0.05).

Correlation of TUG1, LINC00657, miR-9, and
miR-106a With Stroke Severity and Clinical
Characteristics
NIHSS scoring was performed to evaluate stroke severity. We
used Spearman’s analysis to assess the correlation between the

TABLE 2 | Expression levels of serum TUG1, LINC00657, miR-9, and miR-106a in all groups

Variables Diabetes without stroke (n = 75) Diabetes with stroke (n = 77) p-value

Median (intraquartile range)

TUG1 0.71 (0.01–1.97) 2.90 (0.31–13.25) 0.125a < 0.001*b,c

LINC00657 3.18 (0.87–20.98) 11.85 (0.50–53.85) 0.001*a < 0.001*b,c

miR-9 1.45 (0.12–8.07) 4.40 (0.35–12.25) 0.001*a < 0.001*b0.003*c

miR-106a 0.760 (0.13–1.62) 0.03 (0.01–0.41) 0.09a < 0.001*b0.05c

Fold change levels represent non-coding RNA expression relative to controls that were calculated using 2−ΔΔCT. Control fold change levels are equivalent to 1. Data are expressed as the
median and intraquartile range. Adjusted p-values for multiple comparisons of the studied groups were estimated using the Bonferroni correction method.
*Significant at p < 0.017
aComparison of diabetes without stroke versus healthy controls
bComparison of diabetes with stroke versus healthy controls
cComparison of diabetes with stroke versus diabetes without stroke
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aforementioned ncRNAs and stroke severity, as well as clinical
and laboratory data.

As demonstrated in Table 3, TUG1, LINC00657, and miR-9
were positively correlated with NIHSS (r = 0.802, p < 0.001; r =
0.709, p < 0.001; and r = 0.681, p < 0.001, respectively). At the
same time, a negative correlation was shown between miR-106a
and NIHSS (r = −0.569, p = 0.001). In addition, TUG1,
LINC00657, and miR-9 were positively correlated with disease
duration (r = 0.754, p < 0.001; r = 0.720, p < 0.001; and r = 0.675,
p < 0.001, respectively). On the other hand, a negative correlation
was observed between miR-106a and years since the occurrence
of DM (r = −0.600, p < 0.001).

However, no significant correlation was detected between
TUG1, LINC00657, miR-9, and miR-106a and the laboratory
parameters in the present study (all p > 0.05).

Correlation of TUG1 With miR-9 and of
LINC00657 With miR-106a
Interestingly, the current results reported a negative correlation
between LINC00657 and miR-106a (r = −0.507, p = 0.002) in
diabetic patients with stroke. However, no significant correlation
was shown between the serum levels of TUG1 and miR-9 (r =
0.251, p = 0.10).

ROC Analysis to Determine the Diagnostic
Performance of Serum TUG1, LINC00657,
miR-9, and miR-106a in Distinguishing
Diabetic Patients With Stroke From Control
Subjects
An ROC curve was assembled to estimate the diagnostic value
of TUG1, LINC00657, miR-9, and miR-106a as novel biomarkers for
DM with stroke relative to healthy subjects. For TUG1, the AUC was
0.758 (95% CI = 0.669–0.846, p < 0.001), with a sensitivity of 48.50%
and a specificity of 100%. Moreover, the AUC of LINC00657 was

0.892 (95% CI = 0.834–0.950, p < 0.001), with a sensitivity of 73.50%
and a specificity of 100%. Also, the AUC of miR-9 was 0.755 (95% CI
= 0.677–0.834, p < 0.001), with a sensitivity of 39.5% and a specificity
of 100%. Regarding miR-106a, its AUC was 0.674 (95% CI =
0.583–0.765, p < 0.001), and the sensitivity and specificity were
38.4% and 100%, respectively. On the other hand, the AUC of
LDL was 0.979 (95% CI = 0.962–0.996, p < 0.001), with sensitivity
of 87.5% and specificity of 45.8% (Table 4 and Figure 2).

ROC curve analysis revealed that serum TUG1, LINC00657, miR-
9, and miR-106a have good value as prognostic markers in
discriminating diabetic patients with stroke from those without stroke.

The current results demonstrated that using TUG1 to diagnose
diabetes with stroke yielded an AUC of 0.954 (95% CI = 0.915–0.994,
p < 0.001), with a sensitivity of 87.9% and a specificity of 98.5%. In
addition, the AUC value for LINC00657 was 0.902 (95% CI =
0.847–0.957, p < 0.001), with a sensitivity of 35.1% and a
specificity of 98.5%. Also, miR-9 had an AUC of 0.661 (95% CI =
0.571–0.752, p < 0.001) and sensitivity and specificity values of 39.0%
and 93.5%, respectively. For miR-106a, the AUCwas 0.747 (95%CI =
0.661–0.832, p = 0.01), with a sensitivity of 39.0% and a specificity of
100%, while the AUC of LDL was 0.736 (95% CI = 0.654–0.819, p <
0.001) and the sensitivity and specificity were 20% and 90.2%,
respectively (Table 5 and Figure 3).

Multiple Logistic Regression Analysis
Multivariate regression analysis (considering NIHSS as the
dependent variable) confirmed that TUG1 and LINC00657
were independent predictors for diabetes with stroke (p = 0.04
and p = 0.01, respectively) (Table 6).

DISCUSSION

Type 2 diabetes mellitus (T2DM) has emerged as a cause of
serious concern worldwide and has been established as a risk
factor for ischemic stroke (Nakagami et al., 2005). It is important

TABLE 3 | Correlation between the expression levels of serum non-coding RNAs and clinical parameters in diabetic patients with stroke

Variables TUG1 LINC00657 miR-9 miR-106a

Disease duration 0.754 (<0.001)* 0.720 (<0.001)* 0.675 (<0.001)* −0.600 (<0.001)*
NIHSS 0.802 (<0.001)* 0.709 (<0.001)* 0.681 (<0.001)* −0.569 (0.001)*
Age 0.097 (0.821) −0.074 (0.893) 0.107 (0.275) −0.197 (0.104)
BMI 0.099 (0.752) 0.055 (0.708) 0.122 (0.564) −0.189 (0.262)
FBG 0.017 (0.920) 0.213 (0.206) 0.109 (0.523) 0.269 (0.107)
2hPP 0.094 (0.578) 0.172 (0.310) 0.102 (0.548) 0.114 (0.501)
HbA1c −0.014 (0.779) 0.098 (0.587) 0.073 (0.669) −0.107 (0.527)
AST 0.034 (0.839) 0.098 (0.565) 0.013 (0.941) 0.277 (0.096)
ALT −0.123 (0.467) −0.187 (0.267) −0.085 (0.618) −0.264 (0.114)
Urea −0.076 (0.653) −0.146 (0.388) −0.123 (0.467) −0.138 (0.416)
Creatinine −0.127 (0.454) −0.115 (0.499) −0.125 (0.460) 0.069 (0.686)
Cholesterol 0.101 (0.552) 0.136 (0.421) 0.187 (0.268) −0.131 (0.441)
LDL 0.037 (0.830) −0.053 (0.755) −0.052 (0.684) 0.171 (0.244)
HDL −0.012 (0.890) 0.113 (0.474) 0.124 (0.466) −0.165 (0.328)
Triglycerides 0.051 (0.765) 0.011 (0.872) 0.029 (0.865) −0.097 (0.524)

BMI, body mass index; FBG, fasting blood glucose; 2hPP, 2 h post-prandial; HbA1c, glycated hemoglobin A1c; ALT, alanine transaminase; AST, aspartate transaminase; Hb,
hemoglobin; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NIHSS, National Institutes of Health Stroke Scale
*Significant at p < 0.05
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to discover new sensitive and easily detected biomarkers for the
diagnosis and prognosis of T2DM and its related complications.

Recently, it has been shown that non-coding RNAs (including
lncRNAs and microRNAs) may be used as probable biomarkers
for T2DM and its associated complications due to their stability
and differential expression in a variety of body fluids, such as
plasma and serum (Mastropasqua et al., 2014; Shaker et al., 2019).
However, no previous reports have investigated the role of TUG1,
LINC00657, miR-9, and miR-106a in stroke associated with DM.
Thus, in this article, we assessed the serum expression levels of
TUG1, LINC00657, miR-9, and miR-106a in diabetic patients
with and without stroke.

We observed low TUG1 and miR-106a and significantly high
LINC00657 and miR-9 expression levels in the serum of diabetic
patients without stroke compared to control participants. At the
same time, we verified marked increases of serum TUG1,
LINC00657, and miR-9 and a marked decrease of serum miR-
106a in diabetic patients who had stroke relative to those without
stroke. Previous studies reported that the expression of TUG1was
decreased in rats with diabetes and in mesangial cells induced
with high-level glucose through inhibition of the PI3K/AKT
pathway (Zang et al., 2019). Furthermore, Wang et al. showed
that TUG1 was downregulated in NRK-52E cells (high-glucose-

stimulated) in mice via targeting miR-21 (Wang et al., 2019).
Similarly, Li et al. documented a low expression level of TUG1 in
high-glucose-stimulated podocytes by hindering the expression
of miR-27a-3p (Li et al., 2019).

Our results regarding the upregulation of TUG1 in diabetic
patients who had stroke are in line with recent studies showing
that TUG1 was overexpressed in ischemic stroke by regulating
miR-9 and decreasing Bcl-2-like 11 protein [25]. Also, in
atherosclerosis, the elevated expression level of TUG1
increased endothelial cell apoptosis through miR-26a sponging
(Chen et al., 2016). Similarly, many recent studies have discussed
the role of TUG1 in atherosclerosis. For example, Li et al. found
that TUG1, via regulating the miR-21/PTEN axis, increased the
proliferation of vascular smooth muscle (Li et al., 2018). In
addition, Yan et al. documented the role of TUG1 in the
migration and proliferation of endothelial cells by the Wnt
pathway (Yan et al., 2018). Moreover, Zhang et al. reported
that TUG1 knockdown ameliorated atherosclerotic lesion and
inhibited inflammation and hyperlipidemia via the
upregulation of fibroblast growth factor 1 (Zhang et al.,
2018). Besides, Yang et al. noted an increased expression
level of TUG1 in ischemic heart exposed to oxidative stress
via increasing cardiomyocyte apoptosis (Yang et al., 2019).

TABLE 4 | Receiver operating characteristics (ROC) curve analysis using serum TUG1, LINC00657, miR-9, miR-106a, and LDL for discriminating diabetic patients with
stroke from control subjects

Variable AUC (95% CI) p-value Sensitivity (%) Specificity (%) Total accuracy

TUG1 0.758 (0.669–0.846) <0.001* 48.50 100 74.25
LINC00657 0.892 (0.834–0.950) <0.001* 73.50 100 86.75
miR-9 0.755 (0.677–0.834) <0.001* 39.5 100 69.75
miR-106a 0.674 (0.583–0.765) <0.001* 38.4 100 69.20
LDL 0.979 (0.962–0.996) <0.001* 87.5 45.8 66.65

AUC, area under the curve; CI, confidence interval; LDL, low-density lipoprotein
*Significant at p < 0.05.

FIGURE 2 | (ROC) curve analysis of serum TUG1, LINC00657, miR-9, and miR-106a for distinguishing diabetic patients without stroke from control subjects.
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However, there are no reports on the relation between TUG1
and stoke associated with DM.

Regarding LINC00657 (NORAD), our results are in line with a
study which found that LINC00657, which is expressed in
vascular endothelial cells, induced angiogenesis during
atherosclerosis through the upregulation of VEGF, MMP-2,
and MMP-9 (Wan et al., 2020). Also, Michalik et al. revealed
that LINC00657 was markedly elevated during hypoxia (Michalik
et al., 2014). Of note is that Bao et al. reported that oxidized LDL
(oxLDL) treatment, which promotes oxidative stress and is
implicated in atherosclerosis, resulted in the overexpression of
LINC00657 (Bao et al., 2018b). Since hypoxia and atherosclerosis
are predisposing factors of ischemic stroke, we therefore assumed
that LINC00657 might contribute to the pathogenesis of stroke.

In the current research, we assessed the expression level of
miR-9, which is a target gene of TUG1 and miR-106a, which are
target genes of LINC00657. It was revealed in previous studies
that the serum expression level of miR-9 increased significantly in
T2DM (Kong et al., 2011), which is in accordance with our

results. Furthermore, miR-9 was found to decrease insulin
secretion via targeting syntaxin-binding protein 1, Onecut 2,
and sirtuin 1 (Sirt1) (Plaisance et al., 2006; Ramachandran
et al., 2011; Hu et al., 2018). However, Jiménez-Lucena et al.
reported a low plasma level of miR-9 in patients at risk of T2DM
(Jiménez-Lucena et al., 2018).

More importantly, previous studies also demonstrated the role
of miR-9 in ischemic stroke, such as Ji et al. who found that miR-9
was upregulated in the serum exosomes of patients with acute
ischemic stroke and was strongly associated with interleukin 6
(IL-6) production (Ji et al., 2016). In addition, the serum expression
level of miR-9 was verified to be elevated significantly in acute
ischemic stroke patients and was positively correlated with
inflammatory markers, infarct volume, and the NIHSS score (Ji
et al., 2016). Besides, another study has considered miR-9 to be a
new biomarker of neurotoxicity and neural damage (Xue et al.,
2018). At the same time, an increasing number of studies have
explained the role of miR-9 in neuronal apoptosis after ischemic
stroke (Wei et al., 2016).

TABLE 5 | Receiver operating characteristics (ROC) curve analysis using serum TUG1, LINC00657, miR-9, and miR-106a for discriminating diabetic patients with stroke
from diabetic patients without stroke

Variable AUC (95% CI) p-value Sensitivity (%) Specificity (%) Total accuracy

TUG1 0.954 (0.915–0.994) <0.001* 87.9 98.5 93.2
LINC00657 0.902 (0.847–0.957) <0.001* 35.1 98.5 66.8
miR-9 0.661 (0.571–0.752) 0.001* 39.0 93.5 51.25
miR-106a 0.747 (0.661–0.832) <0.001* 39.0 100 69.5
LDL 0.736 (0.654–0.819) <0.001* 20 90.2 55.1

AUC, area under the curve; CI, confidence interval; LDL, low-density lipoprotein
*Significant at p < 0.05.

FIGURE 3 | (ROC) curve analysis of serum TUG1, LINC00657, miR-9, and miR-106a for discriminating diabetic patients with stroke from those without stroke.
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Concerning miR-106a, our findings are in line with the study
by Wu et al., which determined that miR-106a was decreased in
diabetic peripheral neuropathy via the regulation of 12/15-
lipoxygenase of oxidative/nitrative stress (Wu et al., 2017).
Previous findings demonstrated the role of miR-106a in
numerous risk factors of ischemic stroke. For example, under
oxidative stress, miR-106-5p was documented to be decreased,
causing premature senescence by suppressing the G1/S-phase
transition of the cell cycle through modulating the expression of
E2F1 (Tai et al., 2020). Similarly, increased levels of reactive
oxygen species (ROS) resulted to the decreased expression of
miR-106a (Wang et al., 2010). On the other hand, elevated levels
of miR-106a prevented oxidative stress injury and inflammation
in hepatic mouse with gestational hypertension (Wang Z. et al.,
2019), resulting to repression of the expressions of HIF1-α and
VEGF in diabetic retina (Ling et al., 2013). In addition, miR-106a
has been associated with macrophage activation, suggesting its
involvement in inflammation (Zhu et al., 2013).

In the present work, it was interesting to find a negative
correlation between LINC00657 and miR-106a in diabetic
patients who had stroke. A number of recent studies have
hypothesized that lncRNAs could affect the progression of
diseases through regulating miRNAs. It was reported that
LINC00657 could influence tumorigenesis in hepatocellular
carcinoma by regulating miR-106a (Hu et al., 2017).

Notably, an ROC curve was constructed in our study. The
results implied that serum TUG1, LINC00657, miR-9, and miR-
106a could discriminate diabetic patients without stroke from
healthy subjects. More importantly, the aforementioned non-

coding RNAs may be used to differentiate diabetic patients with
stroke from those without stroke.

Some limitations of this work should be addressed. First is the
relatively small sample size. Therefore, furtherworkswith larger sample
sizes in various populations are needed.Moreover, further experiments
are necessary to explain the detailed mechanisms of the role of these
non-coding RNAs in diabetic patients with and without stroke.

CONCLUSION

The current study, for the first time, revealed that serum TUG1,
LINC00657, miR-9, and miR-106a may serve as novel potential
indicators of stroke associated with diabetes and correlated
significantly with NIHSS. Furthermore, they might be used as
new targets of treatment for diabetic patients with stroke.
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OMIC datasets have high dimensions, and the connection among OMIC features is very
complicated. It is difficult to establish linkages among these features and certain biological
traits of significance. The proposed ensemble swarm intelligence-based approaches can
identify key biomarkers and reduce feature dimension efficiently. It is an end-to-end
method that only relies on the rules of the algorithm itself, without presets such as the
number of filtering features. Additionally, this method achieves good classification
accuracy without excessive consumption of computing resources.

Keywords: swarm intelligence (SI), feature selection (FS), transcriptome data, methylation data, intersection and
union combination

1 INTRODUCTION

The OMIC data includes genomes, transcriptomes, metabolomes, and proteomes. (Karczewski and
Snyder 2018). Its quantity and quality have been improved significantly during the rapid
development and continuous innovation of high-throughput sequencing and mass spectrum
technologies (Margolis et al., 2014). Generally, biomedical data has the characteristics of “large p
and small n,” that is, the species of features is far larger than the species of samples (Liao and Chin
2007). Thus, it is necessary for biomedical dataset dimension reduction to protect against potential
dimension disaster.

Feature selection has been proven with excellent performance in data preprocessing, especially for
high dimensional data (Dash and Liu 1997; Bolón-Canedo, Sánchez-Maroño, and Alonso-Betanzos
2015). Its goals consist of cleaning out understandable and analyzable data, constructing simple and
efficient models, and improving the efficiency of data mining (Li et al., 2017). It has achieved
prominent results in the bioinformation field (Fu et al., 2018; Qiu, Ching, and Zou 2021). Swarm
intelligence (SI) is the decentralized self-organizing collective behavior at the collective level (Hu
et al., 2021b). It usually consists of a group of simple agents that interact with each other locally and
with their environment. The agents follow very simple rules, and there is no centralized control
structure to specify the behavior of a single agent. However, the interaction among these agents will
lead to the emergence of “intelligent” global behavior (Hu et al., 2021a). Therefore, the whole
problem-solving process will not be affected by the failure of one or several agents, so this method has
good robustness and potential global search ability. Additionally, SI can transmit and coordinate
information through indirect communication. With the increase in the number of individuals, the
increase in communication overhead is small. Thus, it also has good scalability. Because of these
advantages, SI is widely used in feature selection; its combination with machine learning has
especially proven to be able to obtain outstanding results. Through the research and development of

Edited by:
Lin Hua,

Capital Medical University, China

Reviewed by:
Yushan Qiu,

Shenzhen University, China
Collins Leke,

University of Johannesburg, South
Africa

Nebojsa Bacanin,
Singidunum University, Serbia

*Correspondence:
Zhiguo Wang

wangzhiguo5778@163.com

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 12 October 2021
Accepted: 22 December 2021

Published: 08 March 2022

Citation:
Yao Z, Zhu G, Too J, Duan M and
Wang Z (2022) Feature Selection of

OMIC Data by Ensemble Swarm
Intelligence Based Approaches.

Front. Genet. 12:793629.
doi: 10.3389/fgene.2021.793629

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 12 | Article 7936291

ORIGINAL RESEARCH
published: 08 March 2022

doi: 10.3389/fgene.2021.793629

235

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.793629&domain=pdf&date_stamp=2022-03-08
https://www.frontiersin.org/articles/10.3389/fgene.2021.793629/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.793629/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.793629/full
http://creativecommons.org/licenses/by/4.0/
mailto:wangzhiguo5778@163.com
https://doi.org/10.3389/fgene.2021.793629
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.793629


the genetic algorithm (Malakar et al., 2019) and the firefly
algorithm (Bacanin et al., 2021), the features extracted from
each handwritten word image have been significantly
optimized so that the performance of the handwritten word
recognition technique has been increased visibly.

Various computational feature selection models have been
proposed to reduce the dimension of OMIC datasets (Ge et al.,
2016; Liu et al., 2017; Yuanyuan, Lan, and Fengfeng 2021).
However, these algorithms need to design the number of
features in advance as an intervention. Meanwhile, the heuristic
rules applied are almost mathematical principles. Thus, this study
was intended to investigate the performance of the features screened
based on biological or natural rules, instead of traditional
mathematical principles, and manually specify the number.

This article is organized as follows: details of the datasets and
overview of the methods are described in Section 2. Experimental
results and a corresponding analysis of these results are presented
in Section 3. Finally, a brief conclusion is drawn in Section 4.

2 MATERIALS AND METHODS

As shown in Figure 1, this study involved six major stages:
Dataset curation, data preprocessing, feature selection, model
training and validation, feature intersection and union
combination, and prediction. First, a large number of OMIC
datasets are collected, including transcriptome datasets (Dataset
1) and methylation datasets (Dataset 2). Then, all the features
with missing values in the collected datasets will be deleted. Next,
all the transcriptome datasets will have features extracted by
twelve advanced swarm intelligent algorithms, and then these
features will be input into five different representative classifiers
and finally classification performance will be obtained. According

to these results, the best classifier and the top three algorithms
that use this classifier to get the best results will be selected to
apply to methylation datasets. Later, these subsets will generate
different combinations through union and intersection. Finally,
the classification performance of these combinations will be
evaluated by the best classifiers. The details of each process are
described in the following sections.

2.1 Summary of Datasets
This study concentrated on binary classification and analyzed the
relevant publicly available OMIC databases. As shown in
Supplementary Table S1, these data include 17 transcriptome
datasets and 10 methylation datasets. Methylation is an
important modification of proteins and nucleic acids; it reveals
the influence of genetic and environmental factors on the
occurrence and development of complex diseases (Barros and
Offenbacher 2009). Compared with transcriptome data,
methylation data usually have more feature dimension and are
more challenging in classification.

First, all transcriptome datasets (Dataset 1) were used to test
the performance of the algorithm. As shown in Supplementary
Table S1, they were DLBCL (Shipp et al., 2002), Pros (Aalinkeel
et al., 2004), Colon (Alon et al., 1999), Leuk (Golub et al., 1999),
Mye (Tian et al., 2003), All (All1/All2/All3/All4) (Chiaretti et al.,
2004), CNS (Pomeroy et al., 2002), Lym (Alizadeh et al., 2000),
Adeno (Notterman et al., 2001), Gas (Wu et al., 2013), Gas1/Gas2
(Wang et al., 2013) , T1D (Levy et al., 2012), and Stroke (Krug
et al., 2012). These datasets were obtained and preprocessed as
similar in Mctwo (Ge et al., 2016).

Additionally, tenmethylation datasets (Dataset 2) were used to
demonstrate the binary classification performances, as shown in
Supplementary Table S1. The dataset GSE74845 profiled 110
Fimbria and 106 proximal tubal DNA samples of fallopian tube

FIGURE 1 | Overview of the proposed methodology.
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fimbriae in BRCA mutation carriers (Bartlett et al., 2016). The
dataset GSE80970 provided the methylomes of 148 Alzheimer’s
disease samples and 138 controls (Smith et al., 2018). The dataset
GSE103186 illustrated 130 gastric light or mild intestinal
metaplasia and 61 gastric normal samples (Huang et al., 2017).
The dataset GSE139032 investigated 77 lung adenocarcinomas and
77 matched non-malignant lung samples (Enfield et al., 2019). The
dataset GSE139404 compared 40 low-grade adenoma and high-
grade adenoma in colorectal and 20 normal tissues (Fan et al.,
2020). The dataset GSE144910 collected a total of 88 genomic DNA
samples taken from the postmortem superior temporal gyrus of the
human brain with 44 schizophrenia and paired non-psychiatric
controls (Mckinney et al., 2020). The dataset GSE164269 generated
33 discovery and 46 independent validation cohorts of malignant
pleural mesothelioma samples (Bertero et al., 2021). The dataset
GSE166787 contrasted DNA methylation data throughout human
muscle cell differentiation in 28 individuals with type 2 diabetes
and 28 controls (Davegårdh et al., 2021). The dataset GSE173330
supplied DNA methylation data from several tissues in toothed
whales (N = 254) and dolphin (N = 291) (Robeck et al., 2021). The
last dataset GSE174613 analyzed samples of non-malignancy
obtained from prostatectomy specimens (n = 12) and of bone
metastasis tissue samples obtained from separate prostate cancer
patients (n = 70) (Ylitalo et al., 2021).

2.2 Data Preprocessing
Due to various experimental reasons, gene expression data
universally suffer from the missing value problem. The features
withmissing values can adversely affect the classifiers (Varsha et al.,
2016). Considering the number of features with missing values in
the datasets accounts for less than 0.1% of the total number of
features, direct removal also has little impact on the overall
datasets. Thus, these features affected by missing values are
removed directly. For example, for a feature X, the value of X is
missing in only one sample, but there is a definite value in all other
samples. The X must be removed from all samples.

2.3 Summary of Swarm Intelligence
Methods in Feature Selection
Twelve swarm intelligence methods are used in the study,
including ten state-of-the-art methods from the last 2 years and
two classic methods. The methods are briefly described below.

2.3.1 Marine Predators Algorithm
Marine predator algorithm (MPA) is a natural heuristic
optimization algorithm. It follows the rule of natural
dominance in the optimal foraging strategy and encounters
the rate strategy between predator and prey in the marine
ecosystem. This algorithm is inspired by the predator–prey
strategy in nature and considers that the top predator has the
greatest search ability, that is, the decision of a top predator is a
solution of the problem (Faramarzi et al., 2020a).

2.3.2 Generalized Normal Distribution Optimization
Generalized normal distribution optimization (GNDO) is a novel
metaheuristic algorithm inspired by normal distribution theory.

It can solve optimization problems by natural phenomenon
distribution and fitting minimum standard variance of the
positions of all individuals. Generally speaking, GNDO
consists of two main strategies: local exploitation and global
exploration. The former focuses on building the generalized
distribution model while the latter explores the search region
based on three randomly selected individuals (Zhang et al., 2020).

2.3.3 Slime Mould Algorithm
Slime mould algorithm (SMA) is based on the diffusion and
foraging behavior of slime mould in nature. It calculates the
optimal path by simulating the relationship between
morphological changes and contraction patterns of slime
mould during foraging. SMA performs the search relying on
three stages: Find approach, wrap food, and oscillation (Li et al.,
2020).

2.3.4 Manta Ray Foraging Optimization
Manta ray foraging optimization (MRFO) mathematically
models and mimics three unique foraging strategies of manta
rays, including chain foraging, cyclone foraging, and somersault
foraging, for solving global optimization problems. In chain
foraging, the manta rays update their solutions by following
the best solution and the solution in front of it. For cyclone
foraging, the manta rays move toward the global optima along a
spiral path. Last, in somersault foraging, the manta rays tend to
update their position around the best solution in the population
(Zhao et al., 2020).

2.3.5 Equilibrium Optimizer
Equilibrium optimizer (EO) is inspired by a physical phenomenon
of controlling volume mass balance. It simulates the physical
process of mass entering, leaving, and generating in the control
volume to finally reach the equilibrium state as optimal results. In
EO, there is an equilibrium pool that used to store the current four
best-so-far solutions. Iteratively, these stored solutions will be
applied to enhance the quality of solutions in the population.
Additionally, EO integrates the particle memory saving to benefit
the exploitation capability (Faramarzi et al., 2020b).

2.3.6 Atom Search Optimization
Atom search optimization (ASO) is a novel algorithm based on a
basic molecular dynamics model. In a molecular system, there are
interaction forces between neighboring atoms, and the globally
optimal atoms constrain other atoms. Gravitation makes atoms
explore the whole search space extensively, and repulsion makes
them develop the potential region effectively. It simulates this
phenomenon to find the global optimal solution (Zhao et al.,
2019).

2.3.7 Henry Gas Solubility Optimization
Henry gas solubility optimization (HGSO) is a novel
metaheuristic algorithm; it imitates the huddling behavior of
gas described in Henry’s law to balance the exploitation ability
and the exploration ability of the algorithm for searching the
global optimum and avoid trapping into local optima (Hashim
et al., 2019).
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2.3.8 Harris Hawks Optimization
Harris hawks optimization (HHO) is a novel population-based,
natural heuristic optimization. Its main inspiration comes from
Harris’s eagle’s cooperative behavior and pursuit in nature. It is
unique because it has a unique cooperative foraging activity with
other family members in the group. Because of this, it is very
suitable to simulate the unique predatory behavior of Harris’s hawk
as a swarm intelligence optimization process (Heidari et al., 2019).

2.3.9 Path Finder Algorithm
Path finder algorithm (PFA) is inspired by the hunting behavior
of group animals. The algorithm realizes the optimization process
through the communication between pathfinder and follower
from the population in the process of the population searching for
food. Naturally, PFA stores the best-so-far solution (pathfinder),
in which the pathfinder is used to enhance the exploitation and
exploration capability (Yapici and Cetinkaya 2019).

2.3.10 Poor and Rich Optimization
Poor and rich optimization (PRO) is developed based on the real
social phenomenon, that is, the attempt of the rich and the poor to
improve their economic conditions. This social behavior can be
regarded as a solution for complex optimization problems. In PRO,
a mutation operator is designed to improve the compound
population. Even though PRO is a promising algorithm, it
suffers from the high computational complexity (Moosavi and
Bardsiri 2019).

2.3.11 Ant Colony Optimization
Ant colony algorithm is inspired by the foraging behavior of ants in
nature. In the process of ant foraging, an ant colony can always find
an optimal path between the ant nest and food source. This is
because the ants in the ant colony can transmit information through
some information mechanism. After further research, it is found
that ants will release a substance called “pheromone” on their path.
Ants in the ant colony have the ability to perceive the “pheromone.”
They will walk along the path with high concentration of
“pheromone,” and each passing ant will leave “pheromone” on
the road, which forms a mechanism similar to positive feedback; in
this way, after a period of time, the whole ant colony will reach the
food source along the shortest path (Dorigo et al., 2006).

2.3.12 Particle Swarm Optimization
Particle swarm optimization is inspired by the study of bird
predation behavior. Specifically, birds find the optimal
destination through collective information sharing. In PSO,
the potential solution of each optimization problem is a bird
in the search space, which is called a particle. All particles have a
fitness value determined by the optimized function, and each
particle also has a speed to determine their flying direction and
distance. Then the particles follow the current optimal particle to
search in the solution space (Kennedy and Eberhart 1995).

2.4 Model Training and Validation
2.4.1 Random 5-Fold Cross-Validation Strategy
K-fold cross-validation is one of themost commonly used evaluation
strategies. This experimental procedure is performed by the 5-fold

cross-validation, that is, the baseline dataset is randomly divided into
five equal parts (the number and distribution of samples are the
same) and the test processes are repeated five times; for each cross-
validation test, one subset is used for testing while the remains are
used for training the model. The final performance is represented by
the average of five experimental results.

2.4.2 Leave-One-Out Cross-Validation Strategy
Leave one method cross-validation is to treat each data sample as
an independent dataset, use one sample each time as the test set,
and use all the remaining samples as the training set. The result
obtained using this method is closest to the expected value of the
whole test set, but the computing cost is excessively expensive.

2.4.3 Performance Evaluation of Various Classifiers
Higher classification accuracy and fewer features are the
objectives of generating models; however, it is difficult to
achieve both at the same time. Here, the first consideration in
this study is the classification accuracy. For achieving a more
comprehensive and stable performance, five widely used
classifiers are applied to the models, that is, support vector
machine (SVM), K-Nearest Neighbor (KNN), discriminant
analysis (DA), ensemble of learners (EoL), and naive Bayes
(NB). This study evaluates a feature subset through the best
classification performance of multiple classifiers. Generally,
prediction accuracy is defined as follows:

ACC � TP + TN
TP + FP + TN + FN

where TP, FP, TN, and FN represent the value of true positives, false
positives, true negatives, and false negatives, respectively.

2.5 Feature Intersection and Union
Combination
Intersection and union combination approaches were employed
to ensemble the selected features. As shown in Figure 2, two or
three different feature selection results were combined into eight
subsets for performance comparison.

3 RESULTS AND DISCUSSIONS

3.1 The Result on Transcriptome Datasets
This study used these transcriptome datasets for testing the
performance of baseline swarm intelligence algorithms and
classifiers. Enough iterations are used to satisfy the fitness value.
Here, the random 5-fold cross-validation and leave-one-out cross-
validation are used to evaluate the performance, respectively. The
results are shown in Supplementary Tables S2, S3. Both of the
tables show that KNN can make most datasets achieve the best
classification effect in most algorithms. Additionally, in the other
three algorithms, where KNN cannot achieve the best results, the
gap between KNN and the best classifier in the number of datasets
for best performance is small, only one to three datasets.

Through the information combination of two tables, when
using KNN, the number of best results obtained by PFA and SMA
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is 12 and 8, respectively, ranking first and second. ASO, GNDO,
PSO, and HGSO all get 7 best results, and the number is equal. As
shown in Supplementary Table S4, considering the average
number of features used on each dataset, HGSO is chosen as
the last algorithm to be applied to the next stage.

Because there is little performance difference between 5-fold
cross-validation and leave-one-out cross-validation in these
transcriptome datasets and the computing cost of leave-one-
out cross-validation is relatively high, the subsequent
evaluation is only based on the random 5-fold cross-validation.

3.2 Convergence of Top Three Swarm
Intelligence Algorithms
In the FS phase, a fitness function is adopted to evaluate the
quality of the initial and newly generated solutions. This study
evaluates the solutions by considering the minimum
classification error and minimum size of features (Emary
et al., 2016a). Mathematically, the fitness function is defined
as follows:

Fit � βER + (1 − β)( |SF|
|AF|)

where ER is the classification error rate computed by the
k-nearest neighbor classifier (KNN, k-value = 5), |SF| is the
number of the selected features, |AF| is the total number of
features, and β is the weight factor between 0 and 1. This study
adopts β = 0.99 since the classification performance is the most
importance measurement (Emary, Zawbaa, and Hassanien
2016b; Mafarja et al., 2019). In the fitness evaluation stage,
the dataset is partitioned into training and validation sets using
the k-fold cross-validation method. Consequently, the dataset is
divided into 5 folds, in which k-1 folds are used to build the
training set while the rest is kept for accessing the selected
features.

The T1D dataset is used as an example to show the
convergence of the top three algorithms. As shown in

Figure 3, PFA and HGSO converge in about 22 iterations,
while SMA converges faster, and the convergence can be
completed in about 10 iterations.

3.3 The Result of Top Three Swarm
Intelligence Algorithms on Methylation
Datasets
This section evaluated the performance of SMA, PFA, and HGSO
on the methylation datasets, and the classifier is KNN.

Although methylome datasets may be a challenge for many
feature selection algorithms, the swarm intelligence algorithm has
achieved good results on many datasets. As shown in Figure 4,
PFA achieves more than 90% accuracy on four datasets.
Meanwhile, SMA obtains about 90% accuracy on the
GSE139032 and GSE139404, where PFA does not get good
results. In addition, the consumption of computing resources
and time is also within an acceptable range; the average time
consumption (CPU: i9-11900H) of SMA, PFA, and HGSO are
101.83, 415.21, and 312.31 s, respectively.

3.4 Other Evaluation Indexes of Top Three
Swarm Intelligence Algorithms on
Methylation Datasets
Besides accuracy, other evaluation indicators are also very
important. They can reveal the characteristics of the algorithm
in other aspects. Therefore, another four commonly used
indicators for classification evaluation (precision, recall, F1-
score, and AUC ROC) have also been tested, and the results
are shown in the Supplementary Table S5. It can be seen from
the results that there is little difference between precision and
recall of most models. However, the precision of PFA reaches
100% but the corresponding recall just obtains about 12% on
GSE164269. It may be caused by the insensitivity of the dataset to
the algorithm, that is, the algorithm cannot filter the core features
of the dataset. Thus, many positive samples are identified as
negative samples.

FIGURE 2 | Feature subsets combination. M1, M2, and M3 represent the feature subsets extracted by three different methods, respectively. The green part and
yellow part represent the combination results obtained by intersection and union.
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3.5 Statistical Tests of Obtained Results
Statistical tests on the results obtained using the three methods
were performed. The statistics are described in Table 1. The
result of Wilcoxon signed ranks test are shown in Table 2.
Through the nonparametric test of paired samples, the p-values
are greater than the significance level, indicating that there is no
difference in the measurement accuracy of these 10 samples
after three methods. Additionally, the Friedman test was also
applied, and the chi-squared, df, and p-value are 0.2, 2, and
0.906, respectively. It also proved that there was no significant
difference in accuracy.

3.6 The Result of Feature Intersection and
Union Combination on Methylation
Datasets
Generally, for a given dataset, the feature subsets for different
feature selection are individually somewhat different due to the
different theories. So, their different combinations will be more
diverse. These subsets are evaluated in this section. What is more,
there is no duplicate selection of the same features by different
methods.

Figure 5 shows the classification performance obtained
by intersection and union combination-based feature subset

FIGURE 3 | The convergence speed of top three swarm intelligence algorithms on T1D.

FIGURE 4 | Performance of three swarm intelligence algorithms on methylation datasets.
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ensemble methods. In some feature subset combinations, no
classification accuracy is available because there is no repeat
selection of the same features by the applied methods. As we
can see, the performance of the union combination method with
PFA is not obvious. The reason may be that PFA selects too many
features, which is over 2000 times that of SMA and about
200 times that of HGSO. Additionally, the performance of
union combination between SMA and HGSO is always better
than just using HGSO but not always better than just using SMA.
The reason may be that the number of features used by HGSO is
ten times than that of SMA. Therefore, the characteristics of SMA
can only be used for auxiliary adjustment. What is more, the
performance of some intersection methods does not decrease so
much. This may be because the features selected by all these
algorithms are the core features of the datasets.

3.7 The Feature Selection Rates on
Methylation Datasets
Table 3 shows the feature selection rates of single and different
combination swarm intelligence methods on methylation
datasets. Note that the feature selection rate is the percentage
of the features that are extracted from the original features.

As we can see, SMA produces the lowest feature reduction
rate in a single model, that is, the average is 0.0238%. This
means that applying SMA as the embedded feature selection
method may cause “over selection,” with too many informative
features filtered out. On the other hand, PFA not only allows
selection of the most informative features but also avoids the
risk of over selection. However, using the intersection
combination with HGSO and PFA not only can reduce the
number of features further but also not reduce the accuracy in
many datasets. The results indicate that intersection
combination method-based ensemble feature selection is
likely to play a positive role in filtering out information
redundancy among the feature selection methods that retain
too much information after use.

In addition, using the combination among feature subsets with
widely different feature numbers will not lead to excessive
changes in classification performance, and most of the
classification results will be the result of the feature subset

with the highest number of features, because its feature
distribution has not changed.

3.8 The Results of Multi-Classification on
GSE103186
The internal metaplasia samples contained in GSE103186 can
also be more finely divided into classic and mild. Therefore,
GSE103186 is regarded as a three-category dataset for testing the
multi-classification performance. The performance of SMA, PFA,
and HGSO is 81.69, 80.63, and 83.78%, respectively. Although the
proposed method mainly focuses on binary classification
problems, the results show that it still has the potential to be
used in multi-classification problems.

3.9 Biological Function Analysis of Selected
Features on GSE144910
The dataset GSE144910 collected DNA samples from the superior
temporal gyrus of the human brain for researching schizophrenia.
The features detected by the union combination of SMA and
HGSO as the classification biomarkers and these methylation
features are related to 18 genes, which are C1orf168, CAMLG,
SMOX, KCNIP4, MIR658, CENPA, ASRGL1, PISD, HNRNPL,
EEF2K, GMDS, MPPED1, ANKRD54, PLEK2, ADA, RNF121,
KRT6A, and EPHA2. In order to explore the biological functions
of the selected genes, pathway analysis was conducted. Figure 6
showed the mainly obtained four biological process pathways
(GO: 0033627, 072657, 00488872, and 0044089). We found that
schizophrenia may be related to the function of cell adhesion.

4 CONCLUSION

This study focuses on examining the binary classification
performance of swarm intelligence algorithms on OMIC
datasets. The experimental results suggest that swarm
intelligence algorithms can achieve high accuracy on the
collected OMIC datasets, significantly reduce feature
dimensions, and identify key features. Meanwhile, this study
finds some rules to improve ensemble feature subset
performance through intersection and union combination
methods. However, there are still some limitations in the
proposed study. For example, the methodology framework has
not been improved, and there is no methodological fusion of
different swarm intelligence algorithms. Our future research will
focus on combining machine learning and swarm intelligence
approaches for reducing the feature dimension and improve the
accuracy further in OMIC data and other biological data.

TABLE 1 | Descriptive statistics of the results on methylation datasets.

Methods Sample number Average (%) Standard deviation Min (%) Max (%)

SMA 10 80.44 11.62 65.91 98.72
PFA 10 80.30 15.98 60.13 100.00
HGSO 10 81.55 14.17 56.73 98.90

TABLE 2 | Wilcoxon signed ranks test.

Comparison R+ R− p-value

PFA versus SMA 4 6 0.721
HGSO versus SMA 5 5 0.959
HGSO versus PFA 5 5 0.878
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TABLE 3 | Feature selection rates of all used feature subsets on methylation datasets.

Data Solo Intersection Union

SMA (%) PFA (%) HGSO
(%)

SMA and
PFA

SMA and
HGSO

PFA and
HGSO
(%)

SMA and
PFA and
HGSO

SMA and
PFA (%)

SMA and
HGSO
(%)

PFA and
HGSO
(%)

SMA and
PFA and
HGSO
(%)

GSE103186 0.0338 49.7048 0.6381 0.0154% 0.0002% 0.3184 0.0002% 49.7232 0.6716 50.0245 50.0428
GSE139032 0.0218 49.8948 0.0181 0.0145% — 0.0109 — 49.9021 0.0399 49.9021 49.9093
GSE139404 0.0009 49.7509 0.0328 0.0004% — 0.0149 — 49.7513 0.0336 49.7688 49.7692
GSE144910 0.0004 49.9814 0.0046 0.0001% — 0.0018 — 49.9816 0.0049 49.9841 49.9844
GSE164269 0.0044 49.9655 0.7131 0.0022% — 0.3630 — 49.9677 0.7175 50.3156 50.3178
GSE166787 0.0017 49.6841 0.0111 0.0009% — 0.0059 — 49.6849 0.0129 49.6893 49.6902
GSE173330 0.0160 48.7964 0.3728 0.0107% — 0.1651 — 48.8017 0.3888 49.0041 49.0094
GSE174613 0.0008 49.4005 0.0066 — — 0.0049 — 49.4014 0.0074 49.4022 49.4030
GSE74845 0.0023 49.9412 0.1849 0.0011% — 0.0933 — 49.9425 0.1873 50.0328 50.0341
GSE80970 0.1564 49.9624 0.6070 0.0871% 0.0007% 0.3080 0.0005% 50.0317 0.7626 50.2614 50.3304
Average 0.0238 49.7082 0.2589 0.0147% 0.0005% 0.1286 0.0004% 49.7188 0.2827 49.8385 49.8491

FIGURE 5 | Performance of feature intersection and union combination on methylation datasets.

FIGURE 6 | Performance of feature intersection and union combination on methylation datasets.
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