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Oncolytic viruses (OVs) have emerged as a promising anticancer treatment. OVs  selectively 
infect, replicate in, and kill tumor cells. Oncolytic viral therapy occurs in two phases: an 
initial phase where the virus mediates direct oncolysis of tumor cells, and a second phase 
where an induced post-oncolytic immune response continues to mediate tumor destruction 
and retards progression of the disease. For a long time, the therapeutic efficacy was thought 
to depend mainly on the direct viral oncolysis based on their tumor selective replication and 
killing activities. But the post-oncolytic anti-tumor activity induced by the OV therapy is also 
a key factor for an efficient therapeutic activity. The topic adresses various strategies how to 
optimize OVs anti-tumor activity.
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Oncolytic viruses (OVs) selectively infect, replicate in, and kill
tumor cells. For a long time, the therapeutic efficacy of OVs was
thought to depend mainly on this mechanism of direct viral oncol-
ysis. Nowadays, however, the post-oncolytic anti-tumor activity
induced by the OV therapy is considered a key factor for an efficient
therapeutic activity. The research topic addresses these issues and
discusses future strategies how to further optimize OVs anti-tumor
activity.

The first two articles deal with viral oncolysis and the immune
response. Guo et al. (1) from the University of Pittsburgh Cancer
Institute (USA) point out that dying the right way is a key to elic-
iting potent anti-tumor immunity. They describe that OVs induce
mostly immunogenic cancer cell death (ICD) including immuno-
genic apoptosis, necrosis/necroptosis, pyroptosis, and autophagic
cell death. A review of recent advances in our understanding of
danger signals is followed by a discussion of potential combina-
tion strategies to target cells into specific modes of ICD. Thorne (2)
from the same Institution argues in his perspective article that the
immune response raised by an OV can also hinder optimal ther-
apeutic activity and repeat dosing. Using oncolytic vaccinia virus
(VV) as an example, Thorne summarizes approaches to enhance
the anti-tumor immune response by the introduction of immune
stimulatory transgenes. His article points our attention also toward
interesting new alternative strategies.

The next four articles review and discuss in more detail post-
oncolytic anti-tumor immune responses. Gujar and Lee (3) from
the Dalhousie University of Halifax (Canada) discuss how OV-
induced immunological events override tumor-associated antigen
(TAA) presentation impairment and promote appropriate T cell
interaction with antigen-presenting cells (APC). Woller et al. (4)
from the Medical School in Hannover (Germany) review the
role of viral oncolysis for induction of ICD including autophagy,
DAMPs and PAMPs, and the ER–stress response. Finally, they
highlight developments for exploiting the vaccinative potential
of oncolytic virotherapy. Moehler et al. (5) from the University
Medical Center in Mainz (Germany) together with Jean Romme-
laere from the DKFZ, Heidelberg (Germany) draw our attention
to oncolytic parvoviruses and review their evidence that these
can trigger maturation of dendritic cells (DCs) and induce acti-
vation of antigen-specific cytotoxic T cells. Finally, they discuss
the clinical potential of the immunovirotherapy concept and
its combination with new targeted therapies or with immune
checkpoint blocking antibodies. Janelle and Lamarre (6) from
the INRS-Institut Armand-Frappier in Quebec (Canada) dis-
cuss the question of how to assess anti-tumor immunity. They

exemplify this by reviewing experimental studies with B16 mouse
melanoma, which is treated by vesicular stomatitis virus (VSV)
variants.

How can OVs be harnessed or combined with other agents such
as antibodies to mediate stronger anti-tumor effects? This question
is discussed by the following two manuscripts. Bauzon and Her-
miston (7) from the Bayer HealthCare US Innovation Center in
San Francisco (USA) propose to merge OVs with immune check-
point blocking antibodies. Immune checkpoints refer to a number
of inhibitory pathways that play crucial roles in maintaining self-
tolerance and immune homeostasis. The discovery and targeting
of immune checkpoints has opened a new immunotherapeutic
avenue generating very promising clinical results. Arguments are
put forward to combine this strategy with an OV therapy to create
synergies between both approaches. This might result in enhanced
safety and efficacy and would be also economically advantageous.
Schirrmacher and Fournier (8) from the DKFZ, Heidelberg (Ger-
many) and from the IOZK in Cologne (Germany) put forward
in a perspective article a new concept of a multimodal cancer
therapy involving oncolytic Newcastle disease virus (NDV), autol-
ogous immune cells (activated T cells and/or polarized DC1), and
bi-specific antibodies (bsAbs). The bsAbs they created are NDV-
specific single-chain (scFv) antibodies fused with anti-CD3 or
anti-CD28 T cell activating scFvs. These reagents, upon attach-
ment to NDV infected tumor cells, are reported to have a strong
potential to activate cancer patients T cells, including TAA-specific
memory T cells and not TAA-specific naïve T cells. Such ex vivo
activated autologous T cells can be transferred back to the patient.
To increase their tumor targeting efficacy, it is suggested to pre-
activate the tumor microenvironment by low dose irradiation
or by local hyperthermia. Tumor targeting of grafted T cells is
suggested to become also improved via cell-bound tri-specific
antibodies targeting a tumor introduced viral antigen such as
HN of NDV.

Delivery of OVs is another important aspect for achievement
of optimal effects. Tai and Auer (9) from the Ottawa Hospi-
tal Research Institute, Ottawa (Canada) argue that the optimal
time point should be either pre- or post-operative to counteract
surgery induced immunosuppression and to attack post-operative
metastases. They review their preclinical surgery models, in which
pre-operative OVs prevented post-operative NK cell dysfunction
and attenuated tumor dissemination. Altomonte and Ebert (10)
from the Klinikum rechts der Isar, Munich (Germany) discuss
the particular challenges of OV therapy for hepatocellular car-
cinoma as well as some potential strategies for modulating the

Frontiers in Oncology | Tumor Immunity November 2014 | Volume 4 | Article 337 | 4

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00337/abstract
http://www.frontiersin.org/people/u/82044
http://community.frontiersin.org/people/u/81964
mailto:v.schirrmacher@web.de
http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive
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immune system and synergizing it with the hepatic microenviron-
ment. Combination strategies involving the adoptive transfer of
immune cells together with OVs are expected as an exciting new
approach.

Successful therapy using OVs will ultimately depend on effec-
tively navigating the delicate balance between the anti-viral
response and the anti-tumor immune response such as to min-
imize the former in the short term and maximize the latter in the
long term. As outlined by Forbes et al. (11) from the Ottawa Hos-
pital Research Institute, Ottawa (Canada), several approved drugs
and novel small molecules can be effective tools to dampen the
innate and adaptive anti-viral responses, increase the anti-tumor
immune response, or both. Such approaches are discussed to be
undoubtedly context dependent (e.g., tumor type and tumor site)
and OV-dependent. This topic of combining oncolytic virother-
apy with chemotherapy is further discussed by Nguyen et al.
(12) from the McMaster University, Hamilton (Canada). With
a particular focus on pharmaceutical immunomodulators they
discuss how specific therapeutic contexts may alter the effects of
these synergistic combinations and their implications for future
clinical use.

It is remarkable to what extent experts from Canada, Germany,
and the USA are in accord in this e-book by emphasizing the poten-
tial importance of OVs on systemic T cell-mediated anti-tumor
immunity.
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Oncolytic viruses (OVs) are novel immunotherapeutic agents whose anticancer effects
come from both oncolysis and elicited antitumor immunity. OVs induce mostly immuno-
genic cancer cell death (ICD), including immunogenic apoptosis, necrosis/necroptosis,
pyroptosis, and autophagic cell death, leading to exposure of calreticulin and heat-shock
proteins to the cell surface, and/or released ATP, high-mobility group box 1, uric acid, and
other damage-associated molecular patterns as well as pathogen-associated molecular pat-
terns as danger signals, along with tumor-associated antigens, to activate dendritic cells
and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive
antitumor immunity. The mode of cancer cell death may be modulated by individual OVs
and cancer cells as they often encode and express genes that inhibit/promote apoptosis,
necroptosis, or autophagic cell death.We can genetically engineer OVs with death-pathway-
modulating genes and thus skew the infected cancer cells toward certain death pathways
for the enhanced immunogenicity. Strategies combining with some standard therapeu-
tic regimens may also change the immunological consequence of cancer cell death. In
this review, we discuss recent advances in our understanding of danger signals, modes of
cancer cell death induced by OVs, the induced danger signals and functions in eliciting sub-
sequent antitumor immunity. We also discuss potential combination strategies to target
cells into specific modes of ICD and enhance cancer immunogenicity, including blockade
of immune checkpoints, in order to break immune tolerance, improve antitumor immunity,
and thus the overall therapeutic efficacy.

Keywords: immunogenic cancer cell death, DAMPs, PAMP, autophagy, tumor-associated antigen, cross-
presentation, immune tolerance, antitumor immunity

INTRODUCTION
Oncolytic viruses (OVs) have been shown to be effective in treat-
ing cancer in preclinical models and promising clinical responses
in human cancer patients (1–3). OV-mediated cancer therapeutic
includes three major mechanisms. The first is the direct infec-
tion of cancer and endothelial cells in the tumor tissue leading
to direct oncolysis of these cells. The second is necrotic/apoptotic
death of uninfected cells induced by anti-angiogenesis and vascu-
lature targeting of the OVs as shown in both animal models and
human cancer patients (4–6). The last is the activated innate and
adaptive tumor-specific immunity, which exert cytotoxicity to sur-
viving cancer and stromal cells. A number of recent studies have
demonstrated that the antitumor immunity has played an impor-
tant role in the overall efficacy of oncolytic virotherapy, which has
been shown to contribute to the efficacy of oncolytic virotherapy
(7–14). In the case of oncolytic vesicular stomatitis virus (VSV),
reovirus, and herpes simplex virus (HSV), the antitumor immune
response is very critical to the overall efficacy of oncolytic virother-
apy, sometimes even more important than that of direct oncolysis
(7, 9, 11, 14).

Oncolytic viruses provide a number of potential advantages
over conventional cancer therapies. First, OVs are tumor-selective
antitumor agent, thus providing higher cancer specificity and bet-
ter safety margin. Second, OV-mediated oncolysis not only leads

to regression of tumor size, but this process provides key sig-
nals to dendritic cells (DCs) and other antigen presenting cells
to initiate a potentially potent antitumor immune response. The
immunogenic types of cell death induced by OVs provide dan-
ger signal (signal 0) and a natural repertoire of tumor-associated
antigens (TAAs) to DCs, both required to trigger an adaptive
immunity against cancer (15–17). The danger signals include
damage-associated molecular pattern (DAMP) and pathogen-
associated molecular pattern (PAMP) molecules derived from the
OVs. Therefore, this process could provide a highly favorable
immunological backdrop for the host to respond and generate
potent adaptive antitumor immunity. However, just like other
immunotherapeutic regimens for cancer, a number of challenges
remain for OVs-mediated immunotherapy. One is that relative
inefficiency of delivering OVs to tumor nodules, viral replication
within tumor mass, and spread to distant metastases dampens
its overall efficacy. Second, most TAAs are self-antigens and thus
weakly immunogenic. As we will discuss below, OVs may enhance
tumor immunogenicity in many cases. Yet, this low immuno-
genicity still is a problem due to the highly immunosuppressive
tumor microenvironment (TME). Third, a highly immunosup-
pressive TME in late stages of cancer often suppresses the activ-
ities of tumor-infiltrated lymphocytes (TILs) generated either
spontaneously or by an immunotherapeutic regimen (18).
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In this review, we will discuss different modes of cell death
induced by various OVs, their potential effects on the subsequent
antitumor immunity. Then we discuss rationales and strategies of
inducing ideal types of cancer cell death by either genetic modifi-
cation on OVs or by combination with specific antitumor agents
that lead to specific mode of immunogenic cancer cell death (ICD).
Finally, we provide some perspective on future combination strate-
gies to improve antitumor immunity for enhanced overall efficacy
of virotherapy.

OV: TUMOR SELECTIVITY AND RELEVANCE OF ANIMAL
MODEL
Ideally, OVs selectively infect and replicate in cancer cells and
cancer-associated endothelial cells, leading to direct oncolysis and
subsequent antitumor activities without harming normal tissue
(1–3). Some OVs display intrinsic tumor tropism (naturally occur-
ring OVs), while others obtain their tumor selectivity through
natural evolution or genetic engineering. The mechanisms under-
lying the tumor selectivity may include altered signaling pathways
of ataxia telangiectasia mutated (ATM), epidermal growth factor
receptor (EGFR),p53,PKR,Ras,RB/E2F/p16,Wnt,anti-apoptosis,
or defects in cellular innate immune signaling pathways or hypoxia
conditions in the TME (1, 3, 19, 20).

Viruses display strict viral tropism, specific for a cell type, tissue,
or species. However, OVs often broaden their tropism to can-
cer cells from non-permissive species to various degrees. As an
example, human adenovirus (Ad) does not infect normal murine
cells, yet infect murine cancer cells even though the production
of infectious virus progeny is often limited. A recent study may
provide some answer to this phenomenon. McNeish et al. have
found that murine cancer cells support viral gene transcription,
mRNA processing, and genome replication of human Ad, but there
is a profound failure of viral protein synthesis, especially late struc-
tural proteins with reduced loading of late mRNA onto ribosomes.
Interestingly, in trans expression of the non-structural late protein
L4-100K increases both viral mRNA loading on ribosomes and
late protein synthesis, accompanied by reduced phosphorylation
of eIF2α and improved anticancer efficacy (21). The key point is
that some OVs display aberrant, non-productive infection in non-
native hosts such as mouse cells, leading to mode of cancer cell
death different from the mode of cell death in native host. As we
will discuss extensively later, the mode of cancer cell death dic-
tates to a significant degree the subsequent antitumor immunity.
As a consequence, the OV-elicited antitumor immunity in tumor
models of syngeneic animals might not be relevant to the situation
in human cancer patients. This is an often overlooked issue when
tumor models in animals are chosen along with OVs as therapeutic
models for human cancer.

SIGNAL 0: DAMPs AND PAMPs
PAMPs: SIGNAL 0s FROM PATHOGENS
In the late 1980s, Charles Janeway proposed that the immune sys-
tem protects the host against infectious pathogens by presenting
the molecules as signal 0s, which is what now called PAMPs, to
the antigen presenting cells (22, 23). PAMPs consist of essen-
tial components of microorganisms that direct the targeted host
cells, key components in the innate immune arm, to distinguish

“self” from “non-self,” and promote signals associated with innate
immunity (24). Major PAMPs are nucleic acids (DNA, double-
stranded RNA, single-stranded RNA, and 5′-triphosphate RNA),
proteins (lipoproteins and glycoproteins), as well as other com-
ponents of the cell surface and membrane (17, 25). Interestingly,
defective viral genomes arising in vivo are a critical danger signal
for triggering antiviral immunity in the lung (26).

This concept of PAMPs has been strongly supported by
the discovery of several classes of pattern-recognition receptors
(PRRs). These PRRs include the toll-like receptors (TLRs), retinoic
acid-inducible gene-1 (RIG-1)-like receptors (RLRs), nucleotide
oligodimerization domain (NOD)-like receptors (NLRs), AIM2-
like receptors, and the receptor for advanced glycation end prod-
ucts (RAGE) (17, 27). It is now well accepted that both DAMPs and
PAMPs stimulate the innate immune system through PRRs. DCs
express a wide repertoire of these PRRs. The binding of PAMP to
its receptors on the APC activates the DCs (28, 29).

DAMPs: SIGNAL 0s FROM HOST
Matzinger proposed what is known now as the “danger theory” in
1994 (30). In the theory, it proposed that the immune system can
distinct self from non-self and dangerous from innocuous signals.
In this model, APCs are activated by both PAMPs and DAMPs
from distressed or damaged tissues or microbes. The theory has
been well accepted in recent years, as we have learned more and
more about how dying cells alert immune system to danger (31).
Over the years, a number of endogenous danger signals have been
discovered. For examples, it was shown that uric acid functions
as a principal endogenous danger signal, which is released from
injured cells (32).

Damage-associated molecular patterns are molecules derived
from normal cells that can initiate and perpetuate immunity in
response to cell stress/tissue damage in the absence of pathogenic
infection. DAMPs vary greatly depending on the type of cell and
injured tissue. They can be proteins, DNA, RNA, or metabolic
products. Protein DAMPs include intracellular proteins, such as
high-mobility group box 1 (HMGB1),heat-shock proteins (HSPs),
and proteins in the intracellular matrix that are generated follow-
ing injury, such as hyaluronan fragments (33). HMGB1 is one
prototypic DAMP (34, 35). The protein DAMPs can be localized
within the nucleus, cytoplasm, cell membrane, and in exosomes,
the extracellular matrix, or as plasma components (17). Other
types of DAMPs may include DNA, ATP, uric acid, and heparin
sulfate. It is interesting to note that mitochondria are a rich and
unique source of DAMPs, including formyl peptides, the mito-
chondrial DNA (mtDNA)-binding proteins, transcription factor
TFAM, and mtDNA itself (36). Following interactions between
DAMPs and PRRs on the target cells, the intracellular signaling cas-
cades triggered by the interactions between DAMPs and PRRs lead
to activation of genes encoding inflammatory mediators, which
coordinate the elimination of pathogens, damaged, or infected
cells (27). In cancer, chronic inflammation and release of DAMPs
promotes cancer, while acute inflammation of release/presentation
of DAMPs may induce potent antitumor immunity and helps in
cancer therapy (35, 37). Based on the work in chemotherapy and
radiation therapy, the concept of ICD of cancer cells has been
established about 10 years ago (37, 38). As we will discuss below,
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this concept leads to development of novel strategies for cancer
therapeutics.

OVs INDUCE MOSTLY MULTIMODALITY ICD AND
RELEASE/PRESENT DANGER SIGNAL MOLECULES
Investigators have long been interested in what defines the
immunogenicity of cancer cells and how we can enhance the
immunogenicity for the purpose of immunotherapy. Pioneer-
ing work by Lindenmann and Klein almost half a century ago
demonstrated that viral oncolysis of cancer cells by influenza
virus increases immunogenicity of tumor cell antigens (39). How-
ever, it was not clear how this immunogenicity was enhanced
at the time. Over a decade ago, it was found that tumor
immunogenicity is enhanced by cell death via induced expres-
sion of HSPs (40). A few years ago, investigators working on
chemotherapy and radiation for cancer therapy have led to this
new concept as they classify the types of cancer cell death by
the immunological consequence, into “immunogenic cancer cell
death” (ICD) and “non-immunogenic cancer cell death” (NICD)
(41–43). The original concept of ICD includes only“immunogenic

apoptosis.” We and others have recently proposed that ICD
includes not only immunogenic apoptosis, but also necropto-
sis, necrosis, autophagic cell death, and pyroptosis of cancer
cells (Figure 1) (44, 45). Basically, cancer cells dying via ICD
have the following common features as summarized by Tes-
niere, Zitvogel, Kroemer, and their colleagues (46). They stated
that, “some characteristics of the plasma membrane, acquired
at pre-apoptotic stage, can alarm immune effectors to recog-
nize and then attack these pre-apoptotic tumor cells. The signals
that mediate the immunogenicity of tumor cells involve ele-
ments of the DNA damage response, elements of the endoplasmic
reticulum stress response, as well as elements of the apoptotic
response” (46). For cells undergoing pre-apoptotic phase, they
may express “danger” and “eat-me” signals on the cell surface
(calreticulin and HSPs) or can secrete/release immunostimulatory
factors (cytokines, ATP, and HMGB1) to stimulate innate immune
effectors (46). For other types of ICD, extracellular ATP, HMGB1,
uric acid, other DAMPs, and PAMPs released in the mid or late
phases functions as potent danger signals, thus making it highly
immunogenic.

FIGURE 1 | Four key modes of cancer cell death and their
immunogenicity. In classic apoptosis, the retention of plasma
membrane integrity and the formation of apoptotic bodies render it an
immunologically silent death mode, or non-immunogenic cell death.
However, recent studies have shown that cancer cells treated with
certain cytotoxic agents (some chemotherapeutic agents and oncolytic
viruses) lead to the cell surface exposure of calreticulin (ecto-CRT) and
heat-shock proteins (HSPs) prior to apoptosis, and other DAMPs

released in the later phase of apoptosis, danger signals to DCs. This is
immunogenic apoptosis. Cancer cells dying by necrosis/necroptosis or
pyroptosis secrete pro-inflammatory cytokines and release their
cytoplasmic content, including DAMPs (ATP, HMGB1, and uric acid, etc.),
into the extracellular space. Some DAMPs (such as HMGB1) can be
secreted through non-classical pathways (25). These later modes of
cancer cell death are ICD. Drawings are modified and reprinted from
Lamkanfi and Dixit (47), copyright 2010, with permission from Elsevier.
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Oncolytic viruses kill cancer and associated endothelial cell
through a variety of types of cell death as classically defined
by the morphological and ultrastructural changes of dying cells.
These include apoptosis, necrosis, necroptosis, pyroptosis, and
autophagic cell death, often with one as the predominant form
of death for a particular OV. By the new definition, cancer cell
death induced by OVs is mostly immunogenic (Table 1). Probably
all oncolytic Ads induced autophagic cell death in cancer cells (48–
51). Coxsackievirus B3 (CVB3) induces immunogenic apoptosis
in human non-small cell lung cancer cells (52). Measles virus (MV)
causes ICD in human melanoma cells, because inflammatory

cytokines and HMGB1 are released, and DCs are activated by MV-
infected cancer cells (53). HMGB1 release often happens in late
stage of apoptosis, during autophagy process and in necrotic cells
infected with OVs. We first reported in 2005 that human cancer
cells infected by an oncolytic poxvirus, led to necrotic/apoptotic
death pathways and release of HMGB1 (54). Later studies have
confirmed and extended the findings of HMGB1 release in can-
cer cells infected with Ads (12), CVB3 (52), an MV (53), vaccinia
viruses (VVs) (55–57), HSV (14, 58), and parvovirus H-1 (H-1PV)
(59). Extracellular ATP is another potent danger signal released
from OV-infected cancer cells (12, 52, 56, 60). The third danger

Table 1 | Oncolytic viruses lead to specific mode of immunogenic cell death and exposure/release of DAMPs/PAMPs.

OV DAMP/PAMP Receptor Type of cell death Immunological functions Reference

Ad5/3-D24-

GM-CSF;

CVB3; vvDD

ATP P2Y2 and

P2X7

Necrosis, autophagic cell death,

and immunogenic apoptosis

Function as a “find-me” signal, and cause

NLRP3-inflammasome-based IL-1β production

(52, 56, 60)

Ad5/3-D24-

GM-CSF;

CVB3

Ecto-CRT

(calreticulin)

CD91 Immunogenic apoptosis (either

pre-apoptotic, early or mid

apoptotic surface exposure) or

secondary necrosis

Function as an “eat-me” signal and it is a potent

mediator of tumor immunogenicity crucial for

elicidation of antitumor immunity

(52, 60)

Parvovirus H-1

(H-1PV)

HSPs: (HSP90,

HSP70,

Hsp72)

CD91, TLR2,

TLR4, SREC1,

and FEEL1

Immunogenic apoptosis

(surface exposure) or necrosis

(passively released)

Surfaced-exposed HSP90 can mediate adaptive

antitumor immunity, while secreted HSP90 can

inhibit TGF-β1 activation; Leads to TAA-specific

antitumor immunity

(65–67)

? (Not

identified)

Histones TLR9 Apoptosis (cell surface

exposure) or accidental

necrosis (passively released)

Released histones can cause initiation of

TLR9-MyD88-mediated inflammation

(68)

Many OVs: Ad;

HSV; MV; VV;

H-1PV

HMGB1 TLR2, TLR4,

RAGE ,and

TIM3

Immunogenic apoptosis;

necrosis; autophagic cell death

Activate macrophages and DCs; recruit

neutrophils; promote in vivo the production of

IFN-γ, TNF-α, IL-6, IL-12, and antigen-specific

activation of CD8+ T cells

(53, 54, 56,

57, 59, 60)

MV-eGFP IL-6 IL-6R and

GP130

Necroptosis A cell type-specific endokine DAMP with potent

pro-inflammatory activity

(53)

Telomelysin

(Ad)

Uric acid P2Y6 Autophagic cell death Stimulate the production of inflammatory

cytokines such as IL-1, TNF-α, and IL-6 and

chemotactic factors for neutrophils such as

IL-8/CXCL8 and S100A8/A9

(61, 69)

Newcastle

disease virus

(NDV)

dsRNA and

other PAMPs

TLR3; and by

the

cytoplasmic

receptors

MDA-5 and

RIG-I

Immunogenic Apoptosis;

autophagy

(1) Upregulation of HLA antigens and ICAM-1; (2)

induction of type I IFNs and chemokines (CCL5

and CXCL10); (3) activate DCs and T effector cells

but also to block Treg cells; (4) local therapy with

oncolytic NDV induces inflammatory immune

infiltrates in distant tumors, making them

susceptible to systemic therapy

(70–74)

Reovirus The virus itself

(PAMP)

Dendritic cells

(DCs)

(Cancer cell independent

mechanism)

Induce DC maturation and stimulate the

production of the pro-inflammatory cytokines

IFN-α, TNF-α, IL-12p70, and IL-6. Reovirus directly

activates human DC and that reovirus-activated

DCs stimulate innate killing by not only NK cells,

but also T cells

(75)
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signal molecule released from OV-infected cells is uric acid (61).
Some OVs may induce cell death partly through pyroptosis, a
caspase-1 dependent inflammatory form of cell death (62). Both
necrotic cells and pyroptotic cells release ATP more efficiently than
apoptotic cells do. Pyroptotic cells, just like apoptotic cells, actively
induce phagocytosis by macrophages using “eat-me” and “find-
me” signals (63). Cytolytic immune cells, elicited by OVs or other
agents, kill additional cancer cells leading to release of DAMPs
such as HMGB1 (64). In summary, most OVs induce ICD of can-
cer cells and present/release a number of potent danger signals,
and TAAs to DCs to trigger adaptive immune response (Table 1).

Cancer cell death induced by some OVs has not been exam-
ined for their direct features of ICD. However, other properties
suggest that cancer cells infected by the OV are immunogenic, or
the viruses themselves are highly immunogenic. Newcastle dis-
ease virus (NDV) is a well-studied virus for its virology and
immunostimulatory properties (76). NDV induces cancer cells
into apoptosis (70), with autophagy taking place during the
process (71). Human cancer cells infected by NDV show upregu-
lation of HLA class I and II antigens, and costimulatory molecule
ICAM-1, as well as induction of IFNs, chemokines (IP10 and
RANTES) before apoptosis (72). Moreover, the inflammatory con-
ditions and type I IFNs inhibit Treg cells (73). With these potent
immunostimulatory properties, local administration of oncolytic
NDV overcomes systemic tumor resistance to immunotherapy
by blockade of immune checkpoints (74). Another RNA virus,
reovirus, also induces cancer cells into apoptosis (77, 78), with
autophagy taking place in the process (79–81). Melanoma cells
infected with reovirus release a range of inflammatory cytokines
and chemokines while IL-10 secretion is abrogated (82). These
molecules may provide a useful danger signal to reverse the
immunologically suppressive environment of this tumor. Even
more interestingly, reovirus can also interact with DCs directly
and matured DCs activate NK and T cells (75) (Table 1). Those
activated NK and T cells exert innate killing of cancer cells.
This innate effector mechanism may complement the virus’s
direct cytotoxicity and thus induced adaptive antitumor immu-
nity, potentially enhancing the efficacy of reovirus as a therapeutic
agent (75).

OV-INDUCED AUTOPHAGY IN CANCER CELLS PROMOTES
CROSS-PRESENTATION OF TAAs AND ELICITS STRONGER
ANTITUMOR IMMUNITY
Autophagy mediates sequestration, degradation, and recycling of
cellular organelles and proteins, and intracellular pathogens. It
is not too surprising that autophagy plays roles in both innate
and adaptive immunity (17, 83). A number of OVs, such as
Ad (48–51), encephalomyocarditis virus (84), HSV (62, 85, 86),
influenza virus (87), NDV (71), reovirus (79–81), and VSV (84),
induce autophagy in infected cancer cells. Evidence shows that
autophagy may enhance tumor immunogenicity. One mechanism
is that autophagic cells selectively release DAMPs such as ATP (88,
89), HMGB1 (90), and uric acid (61). The other mechanism is
that autophagy promotes antigen cross-presentation from cancer
cells by DCs to naïve T cells. It stimulates antigen processing for
both MHC class II (91), and MHC class I pathways. These have
been demonstrated for endogenous viral antigens during HSV-1

infection (85), and for cross-presentation of TAAs from uninfected
cancer cells (92), and influenza A virus-infected tumor cells (93).
In other words, autophagy within the antigen donor cells facilitates
antigen cross-priming to generate TAA-specific or virus-specific
CD8+ T cells (92–95). This property has been explored for cancer
vaccines (96), and for enhanced OV-mediated antitumor effects in
the future (97).

VIRUSES OFTEN ENCODE SPECIFIC GENES TO MODULATE
APOPTOSIS, AUTOPHAGY, NECROPTOSIS, AND POSSIBLY
OTHER DEATH PATHWAYS
Successful viral replication requires the efficient production and
spread of progeny virus, which can be achieved through effi-
cient evasion of host defense mechanisms that limit replication
by killing infected cells. Viruses have thus evolved to encode genes
whose products function to block or delay certain cell death path-
ways until sufficient progeny have been produced (47). These
gene-encode products target a variety of strategic points in apop-
tosis, necroptosis, autophagy, or other death pathways. Table 2
lists some examples of genes encoded by viruses especially OVs
that can intervene apoptosis, autophagy, or necroptosis. The pres-
ence of these types of viral genes may skew the mode of infected
cancer cells from one to another cell death pathway(s). OVs can
be engineered genetically with deletion or insertion of such genes
so that a desired mode of ICD would happen in the virus-infected
cancer cells.

CANCER CELLS OFTEN SHOW DEFECTS IN CERTAIN CELL
DEATH PATHWAYS
Every cell in a multicellular organism has the potential to die by
apoptosis. However, cancer cells often have faulty apoptotic signal-
ing pathways evolved during carcinogenesis. This property derives
from the overexpression of anti-apoptotic genes, deficiency of pro-
apoptotic genes, or both (121). These defects not only increase
tumor mass, but also render the cancer resistant to therapy.

Evidence has also been accumulating that necroptosis can be
impaired in cancer cells. Chronic lymphocytic leukemia cells have
defects in signaling pathways involved in necroptosis regulation
such as RIP3 and the deubiquitination cylindromatosis (CYLD),
an enzyme directly regulating RIP1 ubiquitination (122). Skin can-
cer cells contain an inactivating CYLD mutation (123). Despite
the fact some cancers are resistant to necroptosis due to genetic
and epigenetic defects, necroptosis undoubtedly represents an
important death pathway induced by many anticancer regimens,
particularly important to those cancer resistant to apoptosis. In
this case, investigators have found that some compounds can cir-
cumvent cancer drug resistance by induction of a necroptotic
death (124).

The fact that cancer cells resist certain death pathways will dic-
tate to a degree which types of drugs (including OVs) to be used
in therapeutic regimens. As we stated before, a number of OVs,
such as VVs, often induces cancer cells into necroptotic cell death
(54, 56, 57), while other viruses such as oncolytic Ad often induce
cancer cells into autophagic cell death. Appropriate OVs can be
picked depending on the sensitivity of the cancer to certain death
pathways, and the immunogenic consequence if it is combined for
immunotherapy.
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Table 2 | Examples of viruses and viral genes modulating apoptosis, autophagy, and necroptosis.

Virus Gene Type of action Mechanism of action Reference

Ad E1A AS Associate with the pRb/p300 family and induce p53-dependent apoptosis (98)

E1B-19K AI Sequester pro-apoptotic Bcl-2-like proteins and p53; inhibit apoptosis triggered by

numerous stimuli

(99–101)

E1B-55K AI Bind to p53 and functionally inactivates it (102)

E3-6.7 AI Complexes with 10.4 and 14.5 resulting in downregulation of TRAIL receptors (103)

HSV ICP34.5 ATI Inhibit PKR signaling and directly bind to beclin-1 (104)

ICP34.5 AI IFN-mediated pathway; decrease elF-2α phosphorylation by PKR (105–107)

Us3 AI Ser/Thr kinase that prevents virus-induced apoptosis (108)

Us5 AI Cooperates with Us3 (108)

VV SPI-1 Serpin, inhibit cell-cell fusion (109)

SPI-2 AI Serpin, direct inhibitor of caspases (110)

F1L AI Interact with the pro-apoptotic protein Bak and inhibit Bak activation (111)

N1L AI Inhibit multiple pro-apoptotic Bcl-2-like proteins (112)

MYXV M11L AI Prevent the mitochondria from undergoing a permeability transition; inhibit apoptotic

response of macrophages and monocytes

(113, 114)

MCMV vIRA NI Target RIP1, RIP3, TRIF, and DAI; inhibit RIP3-dependent necrosis (115)

Influenza virus M2 ATI Block autophagosome fusion with lysosomes (116)

NS1 AI/ATS Inhibit apoptosis and upregulate autophagy (117)

Measles virus H AS Induce apoptosis of HeLa cells via both extrinsic and intrinsic pathways (118)

Virion ATS Binding of virus to CD46 on cell surface induces autophagy (119)

NDV V AI Inhibit IFN response and apoptosis (120)

AI, apoptosis inhibitor; AS, apoptosis stimulator; NI, necroptosis inhibitor; ATI, autophagy inhibitor; ATS, autophagy stimulator.

STRATEGIES TO MODULATE THE MODE OF CANCER CELL
DEATH FOR ENHANCED IMMUNOGENICITY
We know now that immunogenic apoptosis, necrosis/necroptosis,
and autophagic cell death are desired modes of cancer cell death
because they are ICD. Is immunogenic apoptosis (the original
form of ICD) better than other forms of ICD in the induction
of antitumor immunity? We do not know for sure. This question
needs to be addressed in the future. What we do know now is that
there are strategies that can enhance the ICD and subsequent anti-
tumor immunity. They can be classified into, genetic modification
of OV vectors, combination with ICD inducers, and combination
with specific immunostimulatory regimens.

GENETIC ENGINEERING OF VIRAL VECTORS
Cancer cells have usually accumulated a number of genetic muta-
tions and epigenetic modifications that enable them to resist
apoptosis. Based on this property, a number of OVs are built
for high tumor selectivity by deleting viral genes encoding anti-
apoptotic genes (see Table 2). These viruses can replicate in cancer
cells but lead to rapid apoptosis in normal cells. For examples, the
γ34.5 gene has been deleted in many oncolytic HSVs, including
the T-VEC that is going through a successful phase III clinical trial
(125). The adenoviral protein E1B-19K is a Bcl-2 homolog that
blocks apoptosis induction via the intrinsic and extrinsic pathways,
specifically including tumor necrosis factor (TNF)-mediated cell
death. Liu et al. have demonstrated that an E1B-19K gene deletion

mutant had TNF-enhanced cancer selectivity due to genetic blocks
in apoptosis pathways in cancer cells (126). Similarly, a tumor-
selective oncolytic vaccinia virus was constructed by deleting two
serpin genes,SPI-1 and SPI-2 (54). Due to the deletion of viral anti-
apoptosis genes, these mutant OVs display more potent oncolysis
through apoptosis pathways when combined with appropriate
apoptosis-inducing agents.

We believe that by arming OVs with necrosis and autophagy-
promoting genes, it is possible that the desired cell death pathway
can be activated in cancer cells when infected with such OVs,
leading to more ICD. More future studies with this strategy are
warranted.

COMBINATION WITH ICD INDUCER OR AUTOPHAGY INDUCER
In theory, OV in combination with an ICD inducer would pro-
vide more potent danger signals to DCs and potentially elicit
stronger antitumor immunity. Workenhe et al. demonstrated in
a recent study that such a strategy worked well indeed (127).
HSV-1 ICP0 null oncolytic vectors possess antitumor activity,
but the virus alone is insufficient to break immune tolerance.
Thus, the authors hypothesized that combination therapy with
an ICD-inducing chemotherapeutic drug might get the job done.
Indeed, the combination of HSV-1 ICP0 null oncolytic virus with
mitoxantrone, which induces ICD, provided significant survival
benefit to the Balb/C mice bearing Her2/neu TUBO-derived mam-
mary tumors. Increased infiltration of neutrophils and tumor
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antigen-specific CD8+ T cells into tumor tissues provide the pro-
tection, as depletion studies verified that CD8-, CD4-, and Ly6G-
expressing cells are essential for the enhanced efficacy. Importantly,
the combination therapy broke immune tolerance. In conclu-
sion, this study suggests that such a combination can enhance the
tumor immunogenicity, breaking immunologic tolerance estab-
lished toward the tumor antigens, thus a promising novel strategy
for cancer therapy (127).

As we stated earlier, the autophagy in antigen donor cells (can-
cer cells) promotes the cross-presentation of antigens from DCs
to T cells. The autophagy could be induced by some OVs, or its
inducer could be provided in trans. This strategy works in com-
bination with oncolytic adenoviruses that induce autophagy by
themselves (60, 128). However, it may not work with an oncolytic
vaccinia virus that does not induce autophagy by itself (our
unpublished data).

ARMED VIRUS AND COMBINATION STRATEGIES FOR BREAKING
IMMUNE TOLERANCE AND ENHANCING ANTITUMOR IMMUNITY
In order to further enhance the antitumor immunity, OVs have
been armed with TAAs, cytokines (e.g., GM-CSF), chemokines
(such as CCL5), or other innovative and artificial genes. We
have recently reviewed the promising strategies of OVs in com-
bination with other immunotherapeutic regimens (44). As we
mentioned, two OVs in the most advanced stages of clinical tri-
als, T-VEC, and Pexa-Vec, are HSV and VV armed with GM-CSF
(125, 129). An oncolytic VV expressing the 4-1BBL T cell costim-
ulatory molecule (rV-4-1BBL) showed modest tumor regression
in the poorly immunogenic B16 murine melanoma model. How-
ever, rV-4-1BBL injection with lymphodepletion promoted viral
persistence by reducing antiviral antibody titers, and promoted
MHC class I expression, and rescued effector-memory CD8+ T
cells. This significantly improved the therapeutic effectiveness of
the oncolytic virus (130). Similarly, an unarmed oncolytic virus
combined with anti-4-1BB agonist antibody elicits strong anti-
tumor immunity against established cancer (56). We have also
shown that the chemokine CCL5-expressing oncolytic VV in com-
bination with a cancer vaccine or activated T cells resulted in
better therapeutic effect in a MC38 colon cancer model (131).
Recently, our collaborators have made an oncolytic VV encoding
a secretory bispecific T cell engager consisting of two single-chain
variable fragments specific for CD3 and the tumor cell surface
antigen EphA2 [EphA2-T cell engager-armed VV (EphA2-TEA-
VV)] (132). This virus retains its normal oncolytic potency and
the secreted molecule also activates T cells. The virus plus T cells
had potent antitumor activity in a lung cancer xenograft model.
Thus, arming oncolytic VVs with T cell engagers may represent a
promising approach to improve oncolytic virotherapy. In the con-
text of OV-mediated cancer immunotherapy, it is interesting to
observe the dual effects of antiviral immunity on cancer therapy.
On one hand, the antiviral immunity may attenuate the replication
of an OV and thus diminish the effect of direct oncolysis; on the
other hand, antiviral immunity plays a key role for the therapeutic
success of oncolytic virotherapy in some cases (11, 133).

The tumor-associated immune tolerance is a big obstacle in
cancer immunotherapy. Some armed OVs (such as a GM-CSF-
armed oncolytic Ad) can break immune tolerance and generated

antitumor immunity in at least some human cancer patients (134).
In other cases, an OV alone is not enough to break the immune tol-
erance in highly immunosuppressive TME (127). In these cases, a
combination with an ICD-inducing chemotherapeutic drug may
break the immune tolerance (127). Alternatively, an OV can be
combined with an immune checkpoint inhibitor to achieve the
same effect. During the preparation of this review, a study has
just been published on such a strategy with oncolytic NDV and
systemic CTLA-4 blockade. This combination led to rejection of
pre-established distant tumors and protection from tumor rechal-
lenge in poorly immunogenic tumor models (74). It showcases the
promise of such a combination strategy.

CONCLUSION AND PERSPECTIVES
The TME in the advanced stage of disease is highly immuno-
suppressive (18). This immunological property is a double-edged
sword for OV-mediated cancer therapy: good for viral replication
but bad for the antitumor immunity. The evidence is accumulating
that OVs not only kill infected cancer cells and associated endothe-
lial cells by direct and indirect oncolysis, but also release/present
danger signals to DCs and other professional APCs to elicit both
antiviral and antitumor immunity. It has been demonstrated for a
number of OVs, that the virus-elicited antitumor immunity plays
a critical role in the overall efficacy of oncolytic virotherapy. As
we and other colleagues have realized, ICD is important to elicit
antitumor immunity (44, 45, 135).

In order to improve the potency of antitumor immunity, one
key step is the initial presentation of danger signal (signal 0)
and cross-presentation of TAAs (signal 1). Recent studies demon-
strated that ICD of cancer cells leads to potent danger signals,
and autophagy in antigen donor cells, in this case cancer cells
and associated endothelial cells, enhance the cross-presentation of
TAAs to naïve T cells by DCs. Genetic engineering and combina-
tion strategies can skew the cancer cell death into modes of ICD
and autophagy, leading to potent and sustained antitumor immu-
nity and thus enhancing the efficacy of oncolytic immunotherapy.
Which mode of ICD in the context of OVs is the most potent
way to elicit antitumor immunity needs careful investigation in
the near future. It is also important to keep in mind that oncolytic
viruses modulate cancer immunogenicity through multiple mech-
anisms (136). Other than the induced danger signals, they are out
of the scope of this review article and thus have not been dis-
cussed. Finally, we and others believe that it is important to further
test the idea that combination of OV with blockade of immune
checkpoints for potent and sustained antitumor immunity would
enhance this novel form of immunotherapy for cancer. We look
forward to more exciting development of both preclinical and
clinical studies with OVs as tools for cancer immunotherapy.
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The concept of oncolytic viral therapy was based on the hypothesis that engineering tumor-
selectivity into the replication potential of viruses would permit direct destruction of tumor
cells as a result of viral-mediated lysis, resulting in amplification of the therapy exclusively
within the tumor environment.The immune response raised by the virus was not only con-
sidered to be necessary for the safety of the approach, but also something of a hindrance to
optimal therapeutic activity and repeat dosing. However, the pre-clinical and subsequent
clinical success of several oncolytic viruses expressing selected cytokines has demon-
strated the potential for harnessing the immune response as an additional and beneficial
mechanism of therapeutic activity within the platform. Over the last few years, a variety of
novel approaches have been incorporated to try to enhance this immunotherapeutic activ-
ity. Several innovative and subtle approaches have moved far beyond the expression of a
single cytokine transgene, with the hope of optimizing anti-tumor immunity while having
minimal detrimental impact on viral oncolytic activity.

Keywords: oncolytic virus, cytokine, chemokine, vaccine, MDSC

BACKGROUND
Viral infections and cancer bear a variety of striking similarities,
as seen with the fact that several cancers are caused as a result
of chronic viral infection (1, 2) and the fact that the first onco-
genes were identified through their homology to viral genes (3,
4). Indeed, many of the hallmarks of cancer strongly resemble
the adaptations a virus induces in a susceptible cell during its
replication cycle (5). It is therefore unsurprising that some viral
virulence genes are redundant for replication in malignant cells or
the tumor microenvironment, meaning that their deletion results
in the production of vectors whose replication is attenuated in
normal, but not cancer cells (6). This finding was the basis for the
design and construction of the first oncolytic viral therapies (7,
8). As the name “Oncolytic” suggests, these were hypothesized to
function through the direct destruction of cancer cells, primarily
as a result of viral replication in infected cells, but also as a result
of immune recognition of these cells. Initial clinical testing of this
approach centered around strains of adenovirus (8–12), perhaps
more due to the historical use of non-replicating adenoviruses
as gene therapy vectors than because of any special attributes of
this backbone particularly appropriate for an oncolytic platform.
However, importantly these early clinical studies demonstrated
both safety and therapeutic responses (13–16). The observation
that the viral infection occurring primarily within the tumor was
cleared, leading to induction of anti-viral immunity, and implied
the agents were capable of at least transiently overcoming localized
immune suppression within the tumor.

The slow replication and limited systemic spread of the Ad5-
based vectors proved to be especial limitations (17, 18), however,
the excellent safety profile and indications of responses led inves-
tigators to examine other adenoviral serotypes and more potent
viral backbones as the basis for next generation oncolytics. In some

cases, combination with immunosuppression was investigated as a
means to enhance oncolytic activity through delaying clearance of
the therapy (19, 20). However, in general pre-clinical and clinical
testing of different viral backbones in combination with expression
of different therapeutic transgenes led to the observation that the
most effective approaches frequently incorporated rapidly repli-
cating viral backbones expressing cytokines as transgenes, notably
GM-CSF (2, 21–23). In addition, when immunocompetent pre-
clinical tumor models were available, it was frequently seen that
complete responses after viral therapy was coupled with induction
of anti-tumor immunity and the capacity to reject re-challenge
with the same tumor cell lines (24). As such considerable focus
has turned to development of approaches to enhance or optimize
this immunotherapeutic effect. However, there is clearly a fine bal-
ance to be considered as robust induction of the immune response
can lead to premature clearance of the therapy, meaning that the
oncolytic effects are lost and adaptive immunity is targeted against
the viral component only, with little or no cross-presentation of
tumor antigens.

One viral strain that has been developed as an alternative to ade-
novirus in forming the backbone of many oncolytic viral strains is
vaccinia virus (25). This enveloped DNA virus has a large genome,
with many virulence genes that target host cell cycle, apoptotic
pathways, or immune response, and whose deletion leads to viral
strains with demonstrated tumor-selective replication (26–28). In
addition, the use of this virus during the eradication of smallpox
means that its immune activating capacity is well understood. The
clinical use of a GM-CSF expressing oncolytic vaccinia virus has
also been instrumental in demonstrating the potential for enhanc-
ing the immune response induced by oncolytic viruses as a means
to enhance therapeutic activity (23, 29, 30). Oncolytic vaccinia
will therefore be used as the primary example to illustrate the
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potential for enhancing immune-mediated mechanisms in this
platform throughout the remainder of this review.

APPROACHES TO ENHANCE THE ANTI-TUMOR IMMUNE
RESPONSE INDUCED BY ONCOLYTIC VACCINIA
Several standard strategies have been routinely applied to enhance
the anti-tumor immune response induced through oncolytic viral
therapy, primarily focused on expression of either cytokines or co-
stimulatory molecules (31). Although several vaccinia and related
vectors expressing single cytokines have clearly demonstrated
therapeutic benefits in both animal models and in the clinic,
this approach typically suffers from several handicaps, including
reduced viral replication due to reduced initial infection of the
tumor or early clearance of the virus (32); in addition, the use of
a single cytokine means that typically only one step in the com-
plex kinetic process of innate to adaptive immune response can
be stimulated. The most clinically successful approach to date has
been the expression of GM-CSF (33), both from vaccinia virus
and from oncolytic HSV. The choice of GM-CSF was based on
early reports that expression of GM-CSF from mouse melanoma
cell lines resulted in failure of these cells to form tumors in syn-
geneic mice (34). It is likely that the reason for the success of
vectors expressing this cytokine is primarily based on the fact that
it has broad effects on induction of proliferation in many immune
cell subtypes, while having little or no direct anti-viral proper-
ties. However, more recently the role of GM-CSF expression in
increasing proliferation of some suppressive cells [notably mono-
cyte derived suppressor cells (MDSC)] (35) has been elucidated
meaning that some caution in the use of this cytokine might be
needed.

Several other cytokines, including IL-2, TNF, and IFN have
been used in pre-clinical vaccinia-based models but have not
been successfully translated into a clinical setting, possibly due
to their capacity to also induce more directly anti-viral effects
(32, 36, 37). Because of this limited success with cytokines other
than GM-CSF alternative immune stimulating strategies has been
explored.

For example, the expression of antibodies represents a promis-
ing strategy. The relative success of monoclonal antibody therapy
and the recent emergence of antibodies targeting immune check-
point inhibitors or that mimic co-stimulators has demonstrated
the potential of this platform. The requirements for expression
and assembly of multiple large peptides had traditionally limited
the use of antibodies as transgenes, however, more recent devel-
opment of single peptide antibodies means this is likely to be a
fruitful approach moving forward and initial reports of vaccinia
strains expressing antibodies are promising (38).

An alternative strategy to enhancing the immune effects of
oncolytic viruses is to express chemokines from the vectors that
specifically attract T-cells into the tumor (39, 40). This approach
appears to have minimal negative impacts on viral replication and
oncolytic activity, yet enhances the immunotherapeutic effects.
One of the major hurdles found with the use of therapeutic tumor
vaccines has been the limited trafficking of tumor-specific T-cells
into the tumor itself, so the combination of chemokine expressing
oncolytic viruses with vaccination against tumor antigens may be
a promising strategy.

FIGURE 1 | Selective replication of an oncolytic virus within an
infected tumor cell might be engineered in multiple ways to optimize
the kinetics, type, and level of resultant immune response. The
approaches covered in this perspective are summarized here, along with
their range of activity (local acting within the tumor, or systemic activity)
and whether immune activation or blocking of immune suppression are
involved. Ideal combination approaches would be predicted to involve
components of different quadrants in the figure.

Several other alternatives to cytokine expression have been
explored in different oncolytic backbones as a means to enhance
the immunotherapeutic effects (Figure 1), including the follow-
ing: (i) Enhancing immunogenic cell death, it has been proposed
that the route of cancer cell death after therapy may be a criti-
cal mediator of the immune response. As a result, adjusting how
an oncolytic virus destroys the infected cell may promote a more
robust anti-tumor immune response (41). (ii) Targeted inhibition
of specific components of the immune response: as an alterna-
tive to specifically activating key pathways, key mediators of less
desirable immune response pathways may be targeted for removal
or depletion. One example is the use of TGFb decoy receptors to
remove this cytokine that has been implicated in metastasis and
tumor growth and angiogenesis (42). Alternatively, direct target-
ing of B-cells or other components of the humoral response may
limit production of anti-viral neutralizing antibody, a key limit-
ing factor in repeat dosing with the same therapeutic virus (43).
(iii) Role of adjuvant: the field of vaccine development has helped
define the importance of adjuvant in eliciting a robust immune
response. Although the expectation is that the viral vectors them-
selves will provide a source of potent adjuvant, this can and has
been enhanced through expression or manipulation of the virus,
such as through the incorporation of CpG rich motifs into the
DNA sequence (44), or through combination with CpG (45).

ALTERNATIVE STRATEGIES
In addition to the expression of immune stimulatory (or
inhibitory) transgenes from the viral vectors, a variety of other
options exist that can also have direct impact on the immune
responses induced by the viral vectors.

(i) Viral mutation: large DNA viruses such as vaccinia or HSV
encode multiple virulence genes whose role is to antagonize or
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deplete specific cytokines or to disrupt steps in the immune
response. Selective deletion of specific virulence genes can
therefore have two effects; deletion of these genes often results
in tumor targeting (through attenuation of viral replication in
non-tumor tissues) while also allowing additional induction of
specific components of the immune response to be activated
(28). In this way, the immune response can be manipulated
without seriously depleting viral oncolytic activity.

(ii) Timing of immune activation: the therapeutic activity of
oncolytic viral therapy can be considered to function in two
steps, with an initial directly oncolytic phase mediated by viral
lysis of tumor cells followed by an immunotherapeutic phase,
where the host immune response clears additional infected
tumor cells and ideally results in induction of an adaptive
immune response against tumor antigens (as a result of the
release of the tumor antigens along with viral PAMPs and
host cell DAMPs). It is therefore apparent that the expression
of immune activating transgenes would be most effective if
limited to this second phase. One approach to achieve this
is to apply exogenous regulation of transgene expression or
to control the function of the protein after it is translated
(32, 37). In this way, it may be possible to achieve unhin-
dered viral replication and so full oncolytic potential during
the initial period after viral delivery and tumor infection, while
subsequent activation of immune stimulatory transgene activ-
ity would enhance the level and type of immune response
produced at later times.

(iii) Targeting immune suppression: in addition to activating the
immune response, oncolytic viral vectors can also transiently
overcome immune suppression within the tumor. However,
this effect is likely only temporary or limited and some evi-
dence exists that additional targeting of these suppressive cells
may further enhance oncolytic viral activity (46). Because mul-
tiple suppressive immune cell types (including MDSC, M2
macrophages, and regulatory T-cells) often exist within the
tumor, it may be necessary to target all these in a concerted
fashion to ensure that a robust adaptive immune response is
produced.

(iv) Combination therapies: in addition, the development of multi-
ple novel and effective immunotherapies means that the scope
for combining oncolytic viral therapies with these other ther-
apies continues to increase. There are a variety of approaches
(such as combination with alternative adjuvants or anti-
immune checkpoint inhibitors) that would be expected to
produce significant synergistic benefit, and promising initial
pre-clinical data means that these will be explored in more
detail in the future.

(v) Oncolytic viral vaccines: the fact that oncolytic viral therapies
are capable of inducing an adaptive immune response against
tumor antigens is likely to be hugely beneficial in the clear-
ance of residual disease and metastases as well as in long term
immune surveillance to prevent relapse. However, it is also
likely that any adaptive immune response that is produced
after viral therapy will primarily target antigens expressed on
the bulk tumor cells. Because the cells that mediate relapse or
metastasis often express distinct antigens to those on the bulk
tumor cells within the primary tumor, it may be necessary to

induce additional immunity against antigens on these cells. It
has been demonstrated that the expression of these antigens
as peptides or whole proteins from the oncolytic virus can
permit additional protection against subsequent relapse (47).
It is therefore possible that expression of antigens from the
virus may be further used to target other stromal cells within
the tumor or to boost the immune response against tumor
antigens and away from viral antigens.

PERSPECTIVE
Although never becoming an approved therapy outside the Chi-
nese market the ONYX-015 (Sunway H-101) virus, the first
oncolytic virus to undergo extensive clinical testing, clearly
demonstrated therapeutic responses in at least a subset of patients
treated. Researchers in the field have spent the last 15 years try-
ing to enhance the activity and deliverability of these vectors
so as to achieve more reliable and significant responses in the
clinic. Although approaches to enhance the delivery of the vec-
tors have met only limited success, recent clinical results with
T-Vec and Pexa-Vec clearly show that significant improvements
have been made in the anti-tumor activity of the vectors, espe-
cially when intratumoral delivery is employed. This has apparently
been achieved through a combination of use of a faster replicating
backbone and expression of an immune stimulating transgene.
It is felt to be unlikely that significant additional advantage will
be achieved through further enhancing replication potential with-
out safety concerns being raised. The main avenue for further
enhancing therapeutic potential may therefore be through care-
ful enhancement of the interaction of the vectors with the host
immune response. In this respect, it may be possible to learn from
the advances made recently in the fields of vaccine development
and cancer immunotherapy. However, it is also clear that sim-
ply activating immune stimulation will be unlikely to result in
improved therapeutic activity, instead leading to reduced oncolytic
activity through rapid clearance of the virus, possible with reduced
induction of anti-tumor immunity. Instead, the most promising
approaches look to redirect or subtly manipulate the immune
response. This goal is complex and relies on inducing an increased
recognition of weak tumor antigens with less targeting of typi-
cally much stronger viral antigens; increased CTL induction, with
reduced humoral response; all while having minimal effects on
viral oncolytic activity. However, recent pre-clinical data indicate
that some major advances have been made in achieving these goals
and there is renewed hope that next generation clinical vectors will
significantly improve responses in a variety of cancer patients.
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Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant sur-
veillance against possible relapse. Such an antigen-specific adaptive response begins when
tumor-specific T cells become activated. T-cell activation requires two signals on antigen
presenting cells (APCs): antigen presentation through major histocombatibility complex
(MHC) molecules and co-stimulation. In the absence of one or both these signals, T cells
remain inactivated or can even become tolerized. Cancer cells and their associated microen-
vironment strategically hinder the processing and presentation of tumor antigens and
consequently prevent the development of anti-tumor immunity. Many studies, however,
demonstrate that interventions that over-turn tumor-associated immune evasion mech-
anisms can establish anti-tumor immune responses of therapeutic potential. One such
intervention is oncolytic virus (OV)-based anti-cancer therapy. Here, we discuss how OV-
induced immunological events override tumor-associated antigen presentation impairment
and promote appropriate T cell–APC interaction. Detailed understanding of this phenom-
enon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-
cancer therapy by complementing its inherent oncolytic activities with desired anti-tumor
immune responses.
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INTRODUCTION
Anti-tumor immune response of appropriate magnitude and
specificity has become a valid indicator of good prognosis of cancer
and associated disease pathology (1–6). As such, many therapeu-
tic options are being investigated for their capacity to promote
anti-tumor immune responses. These immunotherapies, which
are based on exploiting the functions of immune cells [e.g., T
cells, dendritic cells (DCs)] or immune mediators (e.g., antibod-
ies, cytokines), represent a highly promising group of interventions
and have the potential to target a multitude of cancers. Con-
sidering the fact that the presence of tumor-specific CD8 T-cell
responses almost always correlate with positive patient outcomes
(3), the ultimate goal of most of these immunotherapies pri-
marily focuses on establishing anti-tumor T-cell immunity (3, 4,
7). Fully functional tumor-specific T cells can not only eliminate
existing cancer cells but also establish an active, ongoing, and long-
term surveillance against possibly relapsing cancer cells. Indeed,
the immunotherapy-promoted anti-tumor T-cell responses have
shown to delay the onset of pathology, reduce the severity of dis-
ease, and prolong the survival of cancer-bearing hosts in animal
experiments and in clinical settings (1–7).

Oncolytic viruses (OVs), in their naturally unmodified or
genetically engineered form, preferentially infect and lyse trans-
formed or cancerous cells in a process called oncolysis. Some of
the more prominent examples of these OVs include adenoviruses,
reovirus, herpes simplex virus (HSV), vaccinia, vesicular stomati-
tis virus (VSV), measles, maraba, and so on. In addition, every

year new candidate viruses are being proposed and investigated
for their potential oncolytic abilities (8). Thus far, OVs have been
shown to target cancers of almost every possible tissue origin
including breast, ovarian, prostate, brain, colorectal, kidney, etc.
both in vitro and in vivo. Considering the capacity of OVs to tar-
get cancer cells preferentially, many of these OVs are employed
as anti-cancer agents to target various cancers and are currently
under phase I, II, and III clinical trials internationally (8–12).

The primary mode of action for OVs is direct oncolysis. In
recent years, however, another aspect of OV-based oncotherapy
has become evident. Many reports have shown that, in addition
to their direct oncolytic activities, OVs aid in the development
of tumor-specific T-cell responses (13–20). Thus, if appropriately
managed, OV-based oncotherapies can target cancers through two
distinct mechanisms: direct oncolysis and anti-tumor immune
responses.

The induction of antigen-specific T-cell response begins when
antigen presenting cell (APC) presents an antigenic peptide to a
naïve T cell. In the absence of a successful antigen presentation
event, T cells either remain inactivated or become dysfunctional.
Hence, the process of antigen presentation is a critical step dur-
ing the initiation of T-cell response. Here, we first explain how the
components of the APC–T-cell interaction work, then discuss how
cancer cells avoid the presentation of tumor antigens, and finally
elucidate how the OV-driven immunological events influence
the tumor antigen presentation. We believe that the comprehen-
sive understanding on this aspect of OV-based oncotherapy will
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advocate the development of a clinically meaningful anti-tumor
immunity and consequently promote better cancer outcomes.

COMPONENTS OF THE NORMAL ANTIGEN PRESENTATION
PROCESS
As illustrated in Figure 1, the priming of antigen-specific T cell
occurs in lymphoid tissues and requires three signals on APCs:
antigen, co-stimulation, and cytokines. Antigenic peptides are pre-
sented through major histocombatibility complex (MHC) mole-
cules, co-stimulation is carried out by co-stimulatory molecules
such as B7 family member proteins, and cytokines such as inter-
feron (IFN)-α/β, interleukin (IL)-12, and IL-1 constitute the third
signal. Both CD8 and CD4 cells bear distinct receptors (called T-
cell receptors; TCRs) that interact with MHC class I or II molecules,
respectively (22–26). Class I and II MHC molecules have distinct
pathways through which proteins are processed and ultimately
presented to T cells. For MHC class I pathway, cytosolic proteins
go through the antigen processing and presentation machinery
(APM), which is made up of peptide transporters, chaperone
proteins, and the Golgi complex. First, proteasomes break down
designated ubiquitinated proteins into peptides of 2–25 amino
acids in length. These peptides are transported with the help of
peptide transporters (TAP1/TAP2) into the endoplasmic reticu-
lum (ER), where they are further trimmed to 8–10 amino acid
length to fit within the MHC groove (27–30). Next, chaperones
such as calnexin, calreticulin, ERp57, and tapasin aid the loading of
the trimmed peptide into the MHC groove. These MHC–peptide
complexes then migrate to the cell surface and become available
for the recognition by CD8 T cells (21, 30).

Apart from this classical pathway, extracellular antigens can
also be presented through MHC class I pathway using a special-
ized pathway called cross-presentation (21, 31). In vitro, various
APCs have shown to bear a capacity to cross-present extracel-
lular antigens; however, in vivo, the main mediators of cross-
presentation are DCs (32). There are two main pathways through

FIGURE 1 |The three signals necessary for the stimulation of
antigen-specificT cell. The priming of antigen-specific T cell requires three
signals: antigen, co-stimulation, and cytokines. Antigenic proteins undergo
antigen processing and then the peptides are presented through MHC
class I or II molecules for CD8 and CD4 T cells, respectively. The second
signal in the form of co-stimulation is provided by molecules such as B7
family member proteins such as B7.1 (CD86) and B7.2 (CD80) expressed on
APCs. These B7 proteins interact with their receptors such as CD28 on
interacting T cells. Inflammatory cytokines such as IFN-α/β, IL-12, and IL-1
constitute the third signal.

which cross-presentation can happen: cytosolic and vacuolar. In
the cytosolic pathway, first antigen processing occurs in cytosol
and then proteasome-generated peptides are fed in MHC class I
molecules. On the other hand, for vacuolar pathway, lysosomal
proteolysis contributes toward peptide generation, and antigen
processing and peptide loading occurs in endocytic compart-
ments. Together, both these pathways facilitate the presentation
of extracellular antigens, e.g., antigens from the pathogens that do
not infect DCs or self-antigens, to CD8 T cells (33–35).

The expression of MHC class II is more tightly regulated than
MHC class I and is primarily found on the surface of professional
APCs, such as DCs and macrophages (21). MHC class II antigen
processing primarily uses a lysosomal pathway that degrades pro-
teins taken up by endocytosis (extracellular antigens) or autophagy
(intracellular antigens). The newly synthesized MHC class II mol-
ecules assemble with a protein known as an invariant chain (li).
The li protein prevents the premature binding of endogenous pep-
tides or misfolded proteins in the MHC class II groove, and also
directs delivery of MHC molecules to endosomal vesicles where
the loading of the appropriate peptide happens. Once inside the
endosomal vesicle, the li is cleaved off, leaving a short class II-
associated invariant chain peptide (CLIP) fragment still bound in
the MHC groove. Finally, the release of the CLIP fragment and
the loading of the appropriate peptide are facilitated by HLA-DM
(H-2M in mouse) molecules (36). The MHC class II molecule dis-
plays the appropriate peptide and then travels to the surface to be
available for CD4 T-cell recognition (21, 34, 37, 38).

The second signal in the form of co-stimulation is induced
when molecules such as B7.1 (CD80) or B7.2 (CD86) expressed
on the same MHC–peptide bearing APC interact with its cognate
receptor such as CD28 on the interacting T cell (39–42). Other
similar co-stimulatory molecule–receptor interactions include the
dialogs between CD40L and 4-1BB (CD137) on T cells and CD40
and 4-1BB ligand (4-1BBL) on APCs, respectively. On the other
hand, molecules like CTLA-4 on T cells can also bind to B7 mole-
cules and induce inhibitory signals that are especially important in
preventing unchecked, sustained proliferation following the initia-
tion of T-cell response. Indeed, mice lacking CTLA-4 gene display
massive proliferation of lymphocytes which becomes fatal over-
time (41). Together, the balanced actions of these co-stimulatory
and co-inhibitory molecules dictate the fate of T-cell activation.

In recent times, the third signal in the form of inflammatory
cytokines has been recognized for the activation of both CD4 and
CD8 T cells (43, 44). Cumulative evidence demonstrates that IFN-
α/β and IL-12 are required as the third signal for the functional
activation of CD8 T cells (43, 45, 46), and that the absence of these
cytokines results in the development of defective CD8 T primary
and memory responses (47). For CD4 T cells, this third signal is
provided by IL-1 (43, 48).

When naïve CD8 or CD4 T cells interact with APCs expressing
both the necessary signals, they undergo clonal expansion and dif-
ferentiate into effector cells. Activated CD8 cells can kill target cells
through perforin, granzyme, or FasL-mediated mechanisms or can
produce cytotoxic cytokines such as IFN-γ or tumor necrosis fac-
tor alpha (TNF-α). On the other hand, activated CD4 cells can also
kill target cells or further provide “help” for the activation of other
immune cells including macrophages and (T and B) lymphocytes
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through the action of cytokines such as TNF-α, IFN-γ, granu-
locyte macrophage colony-stimulating factor (GM-CSF), CD40L,
IL-4, IL-5, IL-10, and transforming growth factor beta (TGF-β).
Most importantly, a fraction of primed T cells further evolves into
a memory phenotype that establishes protection against the same
immunogen in the future (23, 26, 49, 50).

TUMOR-ASSOCIATED IMPAIRMENT OF ANTIGEN
PRESENTATION
Tumors have developed various immune evasion mechanisms that
specifically target different aspects of signal 1, 2 or 3, and thus pre-
vent the initiation of functional tumor-specific T-cell response
(51, 52). More importantly, such defects in antigen presentation
and co-stimulation processes, alone or in combination with each
other, have been correlated with poor cancer outcomes (17, 30, 37).
These defects, which can occur on tumors themselves or on the
tumor-associated APCs, have been observed at the transcriptional
and/or post-transcriptional levels, and are affected by genetic and
environmental factors. For example, completely absent or aber-
rant expression of MHC class I as well as its constituent protein
β2 microglobulin (β2M) has been reported in patients with breast,
ovarian, cervical, skin, esophageal, and colorectal cancers (30, 52,
53). Furthermore, other components of the APM such as trans-
porter proteins TAP1 and TAP2, ER enzymes (ERAP1 and ERAP2),
proteasome subunits (LMP2, LMP7, and LMP10), and chaperone
proteins have been found to be defective in various cancers (4, 5,
30, 51, 54). Unlike MHC class I, the clinical significance of MHC
class II expression on tumor cells is still not clear (36). Many tumor
cells display constitutive or inducible levels of MHC class II (3, 4,
38). Breast and colorectal carcinomas express MHC class II mole-
cules on the surface; however, they often display the defects in the
expression of MHC class II pathway-associated components (55).
In contrast to healthy cells, melanoma cells do not upregulate the
expression of MHC class II following IFN-γ stimulation. Recently,
defects in MHC class II transactivator (CIITA) synthesis was asso-
ciated with impaired MHC class II expression in head and neck
cancer cells and some lymphomas (55–58). Similarly, the impaired
levels and functional attributes of HLA-DM and HLA-DO are
known to influence the presentation of tumor antigens through
MHC class II pathway (36, 55). In the context of such aberrant
MHC expression, both CD4 and CD8 cells cannot identify tumors
as targets.

Tumor-associated APCs also demonstrate defects in their anti-
gen presentation capacities and could directly contribute toward
the establishment of dysfunctional anti-tumor immune response
(52). Of note, tumor cells as well as their microenvironment
promote an immunosuppressive environment that prohibits the
generation of one or more of the three signals of antigen presenta-
tion on APCs (52, 54). For example, intra-tumoral DCs obtained
from cancer patients or cancer-bearing experimental animals dis-
play lower expression of MHC class I and II as well as CD80
and CD86 molecules (51, 52, 54, 59). Similar aberrant expres-
sion of MHC and co-stimulatory molecules can be induced on the
DCs isolated from healthy, non-cancer-bearing hosts when incu-
bated in the presence of cancer cells and supernatant from cancer
cell cultures (17). Additionally, tumor-associated DCs also express
various inhibitory molecules, such as programed death ligand-1

(PDL-1) and CTLA-4, which further contribute toward the silenc-
ing of anti-tumor T-cell response (41, 42). Finally, tumor microen-
vironment also recruits many suppressive cells [e.g., regulatory T
cells (Tregs) and myeloid-derived suppressor cells (MDSCs)] and
cytokines (e.g., TGF-β, PGE-2) which further affect the antigen
presentation function of APCs (51, 52).

CONTRIBUTION OF VIRUS-DRIVEN IMMUNE RESPONSE IN
THE ANTIGEN PRESENTATION PROCESS
Viruses are strong immunogens, and bear a capacity to induce
all three signals, i.e., antigen, co-stimulation and inflammatory
cytokines, necessary for the activation of antigen-specific T-cell
response (60). Following exposure to a virus, the immune system
recognize the virus as a “foreign” entity through conserved recep-
tors of the innate immune system known as pattern recognition
receptors (PRRs, e.g., toll-like receptors, TLRs). These receptors
on APCs can identify molecular motifs known as pathogen-
associated molecular patterns (PAMPs) and virus-associated DNA
and single- or double-stranded RNA of genomic or replicative
intermediate origin. Additionally, replicating viruses are also rec-
ognized through intracellular helicases (60, 61). The recognition of
viral PAMPs through PRRs drives the immediate innate immune
response that constitutes the production of type I interferons,
including multiple forms of IFN-α and -β (62–64). These Type
I interferons enhance the expression of MHC class I and II, CD40,
CD80, CD83, and CD86 on the surface of DCs (46, 65, 66). Such
IFN-α/β response further stimulates the production of cytokines
(e.g., IL-1β, IL-6, IL-12, TNF-α) and chemokines [e.g., IL-8, mono-
cyte chemotactic protein-1 (MCP-1)], and amplifies the initial
innate response when these cytokines act through autocrine and
paracrine fashion (67). This cytokine-driven pro-inflammatory
response is critical in driving the expression of MHC as well as
co-stimulatory molecules involved in antigen presentation. Of
note, IFN-α has been shown to enhance the proliferative capac-
ity of naïve CD8 T cells, and thus is considered as a “signal 3”
necessary for successful T-cell activation (44). Additionally, this
innate response is also known to promote the cross-presentation
of antigens (3, 68). The APCs primed in this fashion travel to
the lymphoid organs wherein they interact with naïve T cells and
prime an antigen-specific adaptive immune response (34).

OV-MEDIATED REVERSAL OF TUMOR-ASSOCIATED
IMPAIRED ANTIGEN PRESENTATION
The immune responses that accompany oncolytic virotherapy
warrant a special consideration as the circumstances under which
these responses occur are very unique to this system. It should
always be remembered that OV-driven immune responses are
strong, whereas cancers usually persist in suppressive environ-
ments. The combination of these two contrasting entities most
likely produces the immunological consequences that are unchar-
acteristic of either the tumor- or virus-driven immune response
on their own (14). Interestingly, OVs preferentially target cancer
cells for their replication, and hence attract the anti-viral immune
response in a cancer microenvironment (14, 69, 70).

The strong immune responses initiated by viruses have the
potential to over-turn the suppressive effects of tumor-associated
immune evasion mechanisms (Figure 2), including those involved
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FIGURE 2 | Oncolytic viruses facilitate the tumor antigen
presentation preceding the initiation of anti-tumor immunity.
Following its therapeutic administration, OVs enhance the expression of
MHC molecules on tumor and immune cells. At the same time,
OV-mediated direct oncolysis of tumor cells exposes tumor-associated
antigens (TAAs) for the processing by APCs. Through the combined
actions of these immunological events, OVs facilitate the display of

otherwise inaccessible tumor-specific immunogenic peptides on the
surface of APCs (generation of signal no. 1). Additionally, OV-induced
inflammatory response promotes the expression of co-stimulatory
molecules on APCs (generation of signal no. 2) and production of
inflammatory cytokines (generation of signal no. 3). Together, OV-driven
immunological events over-turn tumor-associated antigen presentation
impairments, and initiate anti-tumor immunity.

in antigen processing and presentation pathway (71–74). Expo-
sure of immune as well as cancer cells to OVs induces the
expression of type I interferons (75). Similarly, animals injected
with the OV gain elevated IFN-α mRNA and protein levels imme-
diately following the administration of the virus. Furthermore,
DCs cultured in the presence of reovirus produce IL-1α, IL-
1β, IL-6, IL-12p40/70, IL-17, CD30L, eotaxin, GM-CSF, MCP-1,
MCP-2, MCP-5, macrophage colony-stimulating factor (M-CSF),
monokine induced by gamma interferon (MIG), macrophage
inflammatory protein-1 alpha (MIP-1α), RANTES, TNF-α, vas-
cular cell adhesion protein-1 (VCAM-1), etc., and show enhanced
expression of CD80, CD86, and CD40 (71). Similar phenotype
is also observed in DCs exposed to other OVs including HSV,
vaccinia, and measles (72, 76–78). Most importantly, APCs iso-
lated from the spleens of the tumor-bearing mice injected with
a therapeutic regimen of OVs also display higher expression of
co-stimulatory molecules as compared with those isolated from
the untreated or PBS-injected tumor-bearing animals (71, 79). It
should be noted that DCs isolated from tumor-bearing mice have
lower expression of co-stimulatory molecules as compared with
their healthy counterparts. However, this lowered expression is
over-turned following OV administration (17, 71).

Most OVs are potent inducers of MHC class I pathway-related
molecules (13, 14, 18, 19, 80). Exposure of tumor cells to OVs
in vitro enhances the expression of MHC class I molecules as
compared with that observed in untreated cells (17). For exam-
ple, when mouse ovarian tumor cells (ID8), which show com-
plete absence of MHC class I protein on its surface under native

conditions, manifest significantly higher MHC class I expression
upon exposure to reovirus for 24 h in vitro (17). Furthermore,
ID8 tumors collected from reovirus-treated C57BL/6 immuno-
competent mice also displayed significantly higher expression of
mRNA transcripts encoding MHC class I, β2M and TAP1/TAP2,
molecules as compared with that of tumors from untreated
animals (17).

From a functional point of view, OVs are known to directly
enhance the antigen presentation capacity of DCs (71). When
DCs are incubated in the presence of OV-infected ova-expressing
tumor cells, they can efficiently process and present a tumor-
associated antigen (TAA) to antigen-specific CD8 T cells. This
was shown in a cancer model wherein an ovalbumin (ova) is
employed as a surrogate tumor antigen. In this model, when
bone marrow-derived dendritic cells (BMDCs) are incubated with
reovirus-infected ova-expressing mouse melanoma (B16-ova) or
lung carcinoma (Lewis lung carcinoma, LLC-ova) cells, they dis-
play the ova-specific immune-dominant epitope in the context of
MHC class I molecules on their surface. Such display of surrogate
TAA is non-existent when BMDCs are incubated with B16-ova or
LLC-ova in the presence of inactivated virus or medium alone.
Most importantly, OV-induced TAA presentation on the BMDC
surface further stimulates the activation of TAA-specific CD8 T
cells (71). These observations conclusively demonstrate that OVs
can (1) promote the antigen presentation of TAAs on APCs and
(2) endow APCs with a functional capacity to stimulate TAA-
specific CD8 T cells. Of note, the use of ova as a surrogate TAA
should be cautiously considered as it could potentially undergo
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differential antigen processing and presentation than that for
endogenous TAA.

The over-turning of the tumor-associated impaired antigen
presentation, however, is only observed following exposure to
live, but not inactivated, OVs (71, 72, 81), and is thought to be
directly associated with the process of oncolysis. It is believed
that OVs expose otherwise inaccessible tumor antigens through
oncolysis and make them available to APCs. Simultaneously, OV-
driven inflammatory response also promotes the expression of co-
stimulatory signals on these APCs that are now armed with tumor
antigen. Thus, oncolytic activities of OV coupled with virus-driven
immunological events induce the signals necessary for the acti-
vation of tumor-specific T cells and aid in the development of
anti-tumor adaptive immunity.

Nevertheless, not all OVs aid in the antigen presentation
process. Thus far, VSV has been shown to downregulate the co-
stimulatory and antigen presentation functions, along with the
survival of DCs (82). This observation bears special significance
especially in the context of the capacity of various other viruses
to subvert and manipulate antigen presentation pathways (53, 68,
83, 84). Hence, it is imperative that candidate OVs be tested exten-
sively for their respective beneficial or detrimental immunological
capacities related to the process of tumor antigen presentation.

FUTURE DIRECTIONS
As outlined in this perspective, OVs bear a comprehensive capac-
ity to over-turn TAA presentation evasion mechanisms and to
promote a functional anti-tumor T-cell response. However, avail-
able information on this phenomenon is still limited and war-
rants a detailed exploration on various molecular and func-
tional aspects of OV-driven antigen presentation. Especially, the
effect of OVs on the processing and presentation of endogenous
tumor antigens in the context of various molecular components
of MHC class I and II pathway, and in relation with resultant
anti-tumor immune response, must be thoroughly explored. It
should also be noted that OV-induced antigen presentation also
promotes the development of the anti-viral adaptive immune
response that is known to prematurely curtail the spread of
OV in cancer cells. Only in recent years, the importance of
OV-driven immunological events has been acknowledged and
given appropriate attention. However, one thing is now clear:
OV-induced immune response dictates the efficacy of OV-based
oncotherapy. In the future, appropriate immune interventions
that promote a fine balance between anti-tumor and anti-viral
immune responses will ensure the maximum anti-cancer benefits
of OV-based oncotherapies.
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Oncolytic virotherapy has shown impressive results in preclinical studies and first promis-
ing therapeutic outcomes in clinical trials as well. Since viruses are known for a long time
as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer
agents combining the aspect of lysis-dependent cytoreductive activity with concomitant
induction of antitumoral immune responses. Antitumoral immune activation by oncolytic
virus infection of tumor tissue comprises both, immediate effects of innate immunity and
also adaptive responses for long lasting antitumoral activity, which is regarded as the most
prominent challenge in clinical oncology. To date, the complex effects of a viral tumor
infection on the tumor microenvironment and the consequences for the tumor-infiltrating
immune cell compartment are poorly understood. However, there is more and more evi-
dence that a tumor infection by an oncolytic virus opens up a number of options for further
immunomodulating interventions such as systemic chemotherapy, generic immunostim-
ulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support
clinical efficacy of oncolytic virotherapy.

Keywords: oncolytic virotherapy, oncolytic virus, antitumor immunity, antitumor immune response, oncolytic
agents

INTRODUCTION
Oncolytic viruses are novel antitumor agents with the ability to
selectively replicate and lyse tumor cells while sparing healthy tis-
sue. This intriguing characteristic is either an inherent feature of
certain virus species or a result of targeted genetic engineering,
which harnesses tumor-specific molecular alterations for virus
replication and tumor cell lysis (1). The ideal and intriguing con-
cept has been that the oncolytic virus infection proceeds through-
out the whole tumor, thereby leading to effective tumor cell lysis
until the rim of malignant tissue is being reached and further infec-
tion is kept in check. Although numerous oncolytic viruses have
been generated according to this concept, first clinical trials did
not meet the high expectations that have been raised by promis-
ing preclinical developments (2). Though clinical benefit by these
first wave oncolytic agents, such as the mutated Adenovirus (Ad)
Onyx-015 has been rather modest, these studies confirmed that
oncolytic viruses can be safely administered in human patients and
may also work synergistically with systemic radio- or chemother-
apy (3). H101, a direct derivative of the E1B55k-deleted Onyx-015,
was approved in China in 2006 being the first clinically applicable
oncolytic virus (4). At the same time, many factors have been rec-
ognized, which severely impair therapeutic efficacy of oncolytic
viruses such as virus neutralization by blood components, ineffec-
tive transduction of tumor tissue, intratumoral stromal barriers
that inhibit virus spread, hypoxic conditions, interstitial pressure,
and finally, the rapid immune-mediated elimination of the virus
from the tumor tissue (5).

Apart from the cytoreductive aspect, oncolytic viruses have
been initially developed for, it has become increasingly clear
during the recent years that virotherapy exerts multiple antitu-
moral activities. These include direct effects by cytotoxic cytokines

released upon infection by tumor-resident or infiltrating immune
cells (6, 7). Also, effects on the tumor vasculature have been
demonstrated (8, 9). In contrast to the notion that the host’s
immune system limits the efficacy of virotherapy by rapid clear-
ance of infection, it has been perceived that collateral induction
of innate and adaptive immune responses against the tumor
essentially contributes to therapeutic efficacy of virotherapy (10).
Oncolytic virus-mediated destruction of tumor tissue activates
innate immune receptors once the immunogenic cell debris is
taken up and cross-presented by antigen-presenting cells. Antigen-
presenting cells are additionally activated by signals coming from
innate cells and the damaged tissue. The local inflammation of
tumor tissue during oncolytic virus infection therefore provides
suitable conditions for the triggering of tumor-directed immune
responses (11, 12). Oncolytic viruses that are currently most
advanced in clinical development have been designed to amplify
the in situ vaccinative and immunostimulatory effect of virus
infection. The GM-CSF-expressing oncolytic vaccinia virus JX-
594 has shown promising results in phase I/II clinical studies
in hepatocellular carcinoma (13). In advanced melanoma, the
GM-CSF-expressing herpes virus T-Vec led to a significant num-
ber of durable responses and improved survival in a phase III
trial in human patients, thus demonstrating clinical efficacy of
virotherapy in human cancer patients (14).

There has been evidence that virotherapy may profit from gen-
eral immunosuppression by increased intratumoral virus spread
and by delayed virus clearance (15). Apart from safety aspects,
the increased immediate tumor response due to oncolysis would
be in this case achieved at the cost of losing effective tumor-
antigen cross priming and the perspective of long-term antitu-
moral efficacy. In this review, we want to deliver a closer look on
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how oncolytic viruses induce and shape tumor-antigen directed
immune responses. First, we want to address the origin of antitu-
moral immune responses on the level of the infected tumor cell by
discussing the role of viral oncolysis for induction of immunogenic
cell death (ICD). The aspect of ICD has also been recently reviewed
in depth by Bartlett et al. providing complementary information
on how armed viruses and combination strategies work to enhance
antitumor immunity (16). In the second part of our review, we
want to shed light on the role of several immune cells popula-
tions that contribute to the tumor microenvironment. Finally, we
want to highlight some current trends and developments exploit-
ing the immunostimulatory and vaccinative potential of oncolytic
virotherapy to raise T cell responses against the tumor mutanome.

ONCOLYTIC VIRUS-MEDIATED CELL DEATH MECHANISMS
Viruses, mainly DNA viruses, need time after cell entry to com-
plete the viral life cycle and have consequently developed elaborate
strategies to hide from being detected by the host’s immune system
(17). The requirement of effective “stealth” mechanisms illustrates
that virus-mediated cell killing can be a highly immunogenic way
for cells to die. This perception has been exploited in vaccinations
for a long time since vaccines can be more potent when delivered
and expressed by viral vectors (18). Due to the fundamental rele-
vance in multiple physiological processes, enormous efforts have
been made to understand the immunological consequences of dif-
ferent kinds of cell death, which have been classified into three
major kinds: apoptosis, necrosis, and autophagy (19). Apoptosis
is mainly characterized by defined morphological changes such as
formation of apoptotic bodies and biochemical signaling such as
caspase activation and loss of mitochondrial membrane integrity.
Flipping of phosphatidylserines to the outer membrane surface
during apoptosis facilitates silent removal of apoptotic bodies by
phagocytes. This process is usually accompanied by release of anti-
inflammatory cytokines to minimize immune-mediated collateral
damage (20). The coordinated cell demise by apoptosis is essen-
tial for normal development and tissue homeostasis and has been
therefore regarded for long time as a non-immunogenic or even a
tolerogenic event. A second cell death type, necrosis, appears to be
a less coordinated process and the biochemical pathways have been
much less intensively studied. Necrosis is characterized by swelling
of organelles and cytoplasm followed by rupture of the plasma
membrane with release of cytoplasmic contents. Since necrosis is
frequently accompanied by release of proinflammatory cytokines
such as tumor necrosis factor-α (TNF-α) (21), and other immune
activating mediators, necrosis has been more or less regarded as
being immunogenic. However, the traditional perspective of non-
immunogenic/tolerogenic apoptosis and immunogenic necrosis
has been challenged by the finding of “immunogenic” apoptosis
in tumor cells, which can be induced by specific chemothera-
pies such as anthracyclines and oxaliplatin (22, 23). When mice
were treated with tumor cells that have been killed by these “ICD”
inducers, long-term immunity against a challenge with the same
tumor could be observed whereas other chemotherapeutic agents
failed to induce antitumoral immunity. Since then, several other
systemically applicable ICD inducers have been described (24).

Oncolytic virus-mediated cell death does not exactly follow
the classical schemes of apoptosis or necrosis but rather displays

specific features of both cell death modalities with some varia-
tion between different oncolytic virus types. Accordingly, terms
like programed apoptosis, necroptosis, pyroptosis, or necrosis-like
programed cell death have been used to describe cell death by dif-
ferent oncolytic virus species, trying to describe the coordinated
manner in which cells are rearranged in the course of the viral
infection cycle, and the membrane disruptive and inflammatory
release of viral progeny and cytoplasmic/nucleic contents during
lysis. Necrosis-like programed cell death has been observed using
oncolytic Ads (25). Though activity of caspases could be observed,
p53 activity and mitochondrial pathways were effectively blocked
whereby execution of cell death was essentially independent of cas-
pase activation. Likewise, programed necrosis was also observed
in cells infected with an oncolytic vaccinia virus. Though some
limited features of apoptosis and autophagy were detectable such
as phosphatidylserine exposure and LC3 lipidation, necrotic mor-
phology predominated and the necrotic process was also identified
as causative cell death modality (26).

Recently, receptor-interacting protein kinases RIP1 and RIP3
have emerged as a decisive switch from immunologically silent
apoptosis to necrotic inflammation (27). Once caspase-8 activ-
ity, located in a receptor-associated complex called necrosome, is
suppressed, e.g., by a pathogen-encoded inhibitor, RIP1 is sta-
bilized, then attracting and phosphorylating RIP3 (28). RIP3
activation phosphorylates the major downstream target mixed
lineage kinase domain-like (MLKL) by phosporylation and trimer-
ization that translocates to the plasma membrane to mediate
Ca2+ influx and initializing membrane rupture (29). RIP1/RIP3-
dependent necroptosis therefore appears to function like a backup
mechanism allowing the elimination of pathogen-infected cells
that cannot undergo apoptosis (30). Necrotic features of RIP3-
dependent cell death are necessary for induction of inflamma-
tion, improved antigen presentation and effective defense against
the pathogen. It has been demonstrated that the highly spe-
cific caspase-8 inhibitor vICA, encoded by cytomegalovirus, pre-
disposes to RIP3-dependent necrosis (31). Additionally, CrmA
related apoptosis inhibitors activate TNFR-dependent necropto-
sis in vaccinia virus infections in mice augmenting clearance of
the virus (32). Interestingly, cytomegalovirus also express a RIP3
inhibitor, vIRA, which blocks this “backup” cell death pathway
to reduce inflammatory responses (33). A downstream target of
the RIP1-RIP3-necrosome in necroptosis is JNK-1 and its sub-
strate c-Jun with a final impact on the production of reactive
oxygen species (ROS) (34). We could show that oncolytic Ad
infection in human tumor cells strongly induced JNK-1 activa-
tion, downstream phosphorylation of c-Jun, and activation of
other stress-activated kinases (35). It has further been shown that
programed necrosis by oncolytic vaccinia virus infection involved
formation of a RIP1/Caspase-8 complex (26). In this study, the rel-
evance of RIP1 in vaccinia virus-induced programed necrosis was
demonstrated by pharmacological inhibition of both RIP1 and
downstream targets including MLKL, which significantly atten-
uated necrotic cell death. Using an oncolytic influenza viruses,
armed with the antitumoral cytokine IL-24, it has been shown
that IL-24 turned cell death, mediated by a TLR3-associated, RIP-
1 containing signaling complex, into a pure apoptotic phenotype
by unleashing caspase-8 activity (36). Though enhanced tumor cell

Frontiers in Oncology | Tumor Immunity July 2014 | Volume 4 | Article 188 | 30

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Woller et al. From immunogenic cell death to antigenome-targeted vaccination

killing was observed in vitro, the consequences of this approach on
immunogenicity and antitumoral immune responses in vivo are
unclear.

In summary, the RIP1/RIP3 necrosome plays a central role
in induction of inflammation and virus-mediated ICD and is
therefore an interesting target for more detailed investigations,
and targeted modulation in oncolytic virotherapy. Again, it has
to be considered that enhanced immunogenicity of oncolytic
virus-mediated cell death will probably affect viral spread.

THE ROLE OF AUTOPHAGY IN ONCOLYTIC VIRUS-MEDIATED
ICD
Another cell death type, autophagy, is a process that leads to
self-digestion of organelles after inclusion in cytosolic lysosomes
(autophagolysosomes). Since signs of autophagy also occur as a
reversible process in the context of nutrient starvation, it is not
completely clear whether autophagy is causative for cell death
or is an epiphenomenon of other cell death triggers. However,
autophagy plays a definitive role in triggering immune responses.
Autophagic mechanisms are involved in the clearance of intra-
cellular microbial or viral pathogens not only by intracellular
digestion but also by improved processing of microbial/viral anti-
gens for antigen presentation on MHC I as known for herpes
simplex virus infections (37). Autophagy can be a part of a cel-
lular reaction to infection by oncolytic viruses, which has been
observed first in glioma treatment with oncolytic Ads (38, 39).
Induction of autophagy has also been demonstrated for New-
castle disease virus (NDV) (40). In both cases, investigations
using the autophagy inducer rapamycin suggested that autophagy
augments viral replication and propagation and may lead to
improved antitumor responses (41, 42). An interesting subtype
of autophagy, called mitophagy, has been reported recently (43).
The authors have shown that attenuated measles viruses of the
Edmonton strain exploit selective reduction of mitochondria
via SQSTM1/p62-mediated mitophagy for enhanced viral repli-
cation. Mitophagy resulted in decreased mitochondrion-bound
mitochondrial antiviral signaling protein (MAVS) thus weakening
the innate immune response mediated by RIG-I-like receptors.
In summary, cell death by oncolytic viruses displays signs of
apoptosis, autophagy, and necrosis to a variable extent. What all
oncolytic viruses have in common is the immunogenic nature
of virus-induced cell death (see also Figure 1 for an overview).
The determinants characterizing ICD are summarized in the next
chapter.

INDUCERS AND MEDIATORS OF IMMUNOGENIC CELL
DEATH: DAMPs AND PAMPs
Antigen-presenting cells such as dendritic cells (DC) fulfill a cen-
tral role in triggering effective T cell responses in case of a patho-
genic threat. Antigen-presenting cells are activated when encoun-
tering pathogen-derived structures, called PAMPs (pathogen-
associated molecular patterns), which reflect conserved compo-
nents of microbes and viruses. Classical PAMPs are microbial
DNA with unmethylated CpG, defective viral genomes that occur
during viral lysis, double stranded RNA, single stranded RNA, 5′-
triphospate RNA, lipoproteins, surface glycoproteins, and bacterial
membrane components such as LPS. PAMPs are recognized by

pattern recognition receptors (PRRs) present on innate immune
cells, antigen-presenting cells, and also on epithelial cells. PRR
include toll-like receptors, retinoid acid inducible gene I (RIG-I)-
like receptors (RLRs), AIM like receptors (ALRs), and nucleotide-
binding oligomerization domain (NOD)-like receptors (NLRs)
(44). In 1994, the “danger” hypothesis by Polly Matzinger (45)
brought up the idea that, besides the classical feature to distin-
guish between self and non-self, the immune system must be able
to adequately respond to tissue distress, and that this additional
competence requires molecular signaling coming from affected
tissue. According to this hypothesis, molecular danger signal-
ing immediately alerts innate immune cells and facilitates their
attraction to the site where ICD occurred. Furthermore, danger
signaling must activate DCs to provide for the stimulation needed
to activate antigen-specific T cells. A number of molecular fac-
tors called danger-associated molecular patterns or DAMPs have
been described functioning as such danger signals to orchestrate
attraction of innate immune cells, phagocytosis of immunogenic
cell debris, and to activate effective T cell priming. Some DAMPs
are immune activating cytokines such as TNFs or type I inter-
ferons that can be immediately emitted in response to threat.
Other factors are metabolites that create a chemotactic gradient
for innate immune cells corresponding to a “find me” signal. Fur-
ther, DAMPs already reflect signs of structural damage caused by
the infection process. Externalized proteins, more or less linked
to the membrane of the infected cell can provide an “eat me”
signal to attracted phagocytes. When cells undergo immuno-
genic apoptosis, the release of ATP is a known “find me” signal
to promote phagocytic clearance of those cells at a very early
time point (46, 47). ATP is released by Pannexin channels and
sensed by P2Y (2) purinergic receptors on monocytes to facilitate
their attraction to the site of apoptotic cell death. Additionally,
ATP acts on P2X (7) purinergic receptors on DCs, thus activat-
ing the NLRP3 inflammasome (48). ATP has also been described
being released by cells infected by oncolytic viruses (49, 50). In
induction of ICD, ATP can also act synergistically with another
DAMP, cell surface exposed calreticulin or ecto-CRT (51). Cal-
reticulin is under physiological conditions located in the lumen
of the endoplasmic reticulum (ER). However, dying cells exter-
nalize and present calreticulin on their surface where it serves as
a potent “eat me” signal to phagocytes (52). It has been shown
that calreticulin is exposed on the cell surface of lung adenocar-
cinoma cells after treatment with an oncolytic coxsackievirus B3
(50). Ecto-CRT has also been observed with several oncolytic Ads
(49, 53).

When cells succumb to necrosis, they also externalize and
release the high mobility group box 1 (HMGB1) protein into
the cellular environment, which is known for its proinflamma-
tory properties (54). The relevance of HMGB1, Ecto-CRT, and
ATP in characterizing ICD has facilitated reliable high throughput
screens for ICD-inducing agents (55). HMGB1 release has been
observed with multiple oncolytic viruses, e.g., Ad, Vv, and Mv (26,
53, 56, 57).

Further, important DAMPs are released heat shock proteins,
such as HSP70 and HSP90, and uric acid. Heat shock protein
release has been demonstrated to play a role in induction of tumor-
specific immune responses by the oncolytic parvovirus H1 (58).
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FIGURE 1 |The figure illustrates the improvedT cell priming in oncolytic
virotherapy. Viral oncolysis of tumor cell induces immunogenic cell death by
accumulation of PAMPs and accompanied by release of DAMPs. PAMPs and

DAMPs activate antigen-presenting dendritic cells that can induce
cytotoxic T cell responses against tumor-associated antigens or neoepitopes,
respectively.

Uric acid is a product of nucleic acid catabolism and constitutively
present in the cytosol of normal cells in high concentrations that
can even rise in stress situations due to increased DNA/RNA degra-
dation. Even the debris of dead cells is able to continue production
and release of uric acid providing a sustained danger signal (59).
It is believed that a chemical phase change to urate microcrys-
tals at supersaturated loci is the actual immune activating event.
Using the oncolytic Ad Telomelysin, it has been shown that infected
tumor cells produced uric acid, which in turn stimulated IFN-γ
and IL-12 secretion by DC and supported the induction of cyto-
toxic T cells (60). The DAMPs described so far represent potent
immune activators in case of immunogenic apoptosis or necro-
sis. However, also cell-intrinsic inhibitors of DAMPs exist. Recent
results showed that the cellular peptidases dipeptidylpeptidase
3 (DPP-3) and thimet oligopeptidase 1 (TOP-1) present in and
released by necrotic cells were able to provide a non-immunogenic
signal and inhib antigen cross presentation (61). Since inhibition
of the peptidases restored immunogenicity and antigen-specific
Tcell priming, interfering with these mechanisms in oncolytic

virus-mediated cell death could be a promising option to enhance
immunogenicity.

THE ROLE OF ER-STRESS IN ONCOLYTIC VIRUS-MEDIATED
ICD
A further important mechanism that provides dying cells with an
immunogenic signature is ER-stress. The ER is a central produc-
tion site for proteins and membrane components involved in the
secretory pathway. The ER is also an important sensor for ER-
stress, a physiological reaction to dysbalanced protein synthesis,
e.g., in the context of viral infections. Under homeostatic condi-
tions, the luminal ER-stress sensors IRE1α, ATF6, and PERK are
bound and silenced by the molecular chaperone Grp78/BiP. Once
unfolded proteins accumulate in the ER due to an unphysiologic
increase in protein synthesis, Grp78/BiP is competitively displaced
from the ER-stress sensors leading to their subsequent activa-
tion for downstream induction of an unfolded protein response
(UPR) (55). Whereas activation of IRE1α and ATF6 leads to
expression of compensatory acting genes, PERK/ATF activation
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facilitates phosphorylation of eIF2α to induce a general stop of
translation until ER-stress has been released. eIF2α-dependent
shutdown of translation is also an intrinsic defense reaction to
prevent that intracellular pathogens from occupying the protein
synthesis machinery for their own purposes. Consistent with this
function, ER-stress can confer a significant immunogenic signal
to dying cells, which has been demonstrated using chemothera-
peutics that are able to directly induce ER-stress (55). According
to the relevance of ER-stress as pathogen sensor, many viruses
have evolved elaborate ways to circumvent or to adopt ER-stress
pathways to their benefit and interfere with ER-stress pathways and
UPR (17). ER-stress pathways are also an interesting target to mod-
ulate the outcome of oncolytic virutherapy and to increase ICD.
Genome-wide RNAi-screens for host factors that modulate viral
oncolysis showed that ER-stress and UPR are highly important
modulators of viral oncolysis by rhabdovirus (62). To confirm the
screening results, the authors showed that inhibition of IRE1α dra-
matically improved rhabdovirus-mediated oncolysis. Accordingly,
ER-stress has been a promising mechanism for pharmacological
interference to support viral oncolysis. Bortezomib is a clinically
approved inhibitor of the 26S proteasome and leads to collat-
eral ER-stress and ICD with both apoptotic and necrotic features.
We showed that low-dose bortezomib enhanced immunogenic
tumor cell killing and antitumoral T cell responses in hepato-
cellular carcinoma models in mice (35). Another study showed
that Reovirus and bortezomib synergistically induced apoptosis
in multiple myeloma (63). In case of oncolytic herpes simplex
virus (oHSV), it could be recently demonstrated that bortezomib-
induced UPR even increased virus replication thus leading to
enhanced, synergistic tumor effects (64).

ONCOLYTIC VIRUS INFECTION DISRUPTS THE TUMOR
MICROENVIRONMENT
Immunogenic cell death is basically the first aspect in innate
and adaptive immune effects that have been recognized as a
central mode of action in virotherapy (65). The tumor microen-
vironment also essentially contributes to the triggering of anti-
tumoral immunity. Tumors not only consist of tumor cells but
also of stromal fibroblasts, endothelial cells and resistant leuko-
cytes which together with the extracellular matrix constitute the
tumor microenvironment. Intratumoral infection by an oncolytic
virus is not only a dramatic impact for tumor cells but is also
disruptive for tissue architecture and immune homeostasis within
the tumor microenvironment. The effect of the tumor stroma to
oncolysis is a most enigmatic and barely understood phenome-
non since fibroblasts are relatively resistant to virus infection and
generate important intratumoral barriers that inhibit virus dis-
tribution. To address these barriers, it has been tried to interfere
with stroma integrity by oncolytic viruses expressing collagenase
and matrix-modifying enzymes (66, 67). The activation of the
innate immune system following intratumoral virus infection
represents the first defense wave of the host reaction to tumor
lysis. Tumor-resident innate immune cells become modulated by
inflammatory cytokines that are immediately released upon con-
tact of macrophages with viral structures (68, 69). Further innate
immune cells invade the damaged tumor tissue and induce an
acute inflammation to fight the viral infection. Neutrophils invade

the oncolytic tumor and contribute to immediate antitumoral
cytotoxic effects (9, 70). Additional neutrophil-activating signals
have been used to increase this effect of oncolytic virotherapy
(71). Interestingly, in case of measles virus, it has been shown that
attenuated, oncolytic viruses can be even better neutrophil acti-
vators compared to their wild-type counterparts (72). Results of
several studies suggested that the innate immune response should
be suppressed to enhance oncolytic virus propagation and intra-
tumoral spread (73–76). It has also been shown with measles virus
that innate immune cytokines can confer resistance to tumor cells
against virus-mediated lysis (77). However, the innate immune
response is an essential interface for triggering of adaptive immune
response including long-term antitumoral T cell responses. It
could be rather promising to selectively address suppressive innate
immune cell subpopulations in oncolytic virotherapy (6). Since
the oncolysis-mediated modulation of the tumor microenvi-
ronment decisively governs the priming of adaptive immune
responses, the individual immune cell types that contribute to
the tumor microenvironment and the immediate reaction to viral
oncolysis need a more detailed description.

MYELOID CELLS
Aside of neutrophils, macrophages and monocytes belong to the
initial defense response by the innate immunity against pathogens.
These populations are highly activated after viral infections,
are capable of phagocytosis, support the professional antigen-
presenting cells, and contribute to adaptive immunity. Within an
intact tumor, secretion of immunosuppressive cytokines deter-
mines the phenotypic differentiation of these innate immune cells
to adopt an immunosuppressive status to promote tumor progres-
sion and metastases (78). Consequently, the immunosuppressive
phenotype of these cells can interfere with therapeutic antitumor
immune activities. Macrophages residing in the tumor microenvi-
ronment have been designated as tumor-associated macrophages
(TAMs) and can be divided into two groups, one showing an
inflammatory M1 phenotype and the other showing, an immune
suppressive M2 phenotype, the latter being overrepresented within
the tumor microenvironment (79). It is known that viral inflam-
mation can polarize macrophages toward an M1 phenotype (80).
This population promotes inflammatory conditions and supports
the triggering of antigen-specific immune response. It has been
shown that TAM depletion by chlodronate liposomes prevent
intratumoral virus clearance resulting in increased replication and
virus spread resulting in improved antitumoral effects (81). Like
macrophages, tumor-associated neutrophils can be either assigned
to an inflammatory N1 phenotype or an immune suppressive
N2 phenotype, respectively (82). Though invading neutrophils
belong to the first infiltrating immune populations at the site of
inflammation (9), the role of neutrophil polarization in oncolytic
virotherapies has not yet been addressed.

In recent years, myeloid-derived suppressor cells (MDSC) pop-
ulation has been described as one of the most important immuno-
suppressive within the tumor microenvironment. These cells have
been observed in primary tumors as well as in metastases of
patients (83, 84). Myeloid suppressor cells are attractive targets
for therapeutic investigations (85). Related to oncolytic virother-
apy, it was shown that the combination with gemcitabine, which is
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a chemotherapeutic agent depleting MDSC populations, increases
antitumoral immune responses (86, 87).

VIROTHERAPY IS A POTENT NK CELL ACTIVATOR
Among the cells of the innate immune system, NK cells play a
crucial role in clearing viral infection and in fighting malignant
cells. Trying to escape from adaptive immune responses by down-
regulation of MHC, virus-infected cells, and tumor cells become a
natural target of NK cells. In line with a role of NK cells in immu-
noediting of tumors, tumor-infiltrating NK cells correlate with a
favorable prognosis in humans (88). NK cells belong to the first
immune cell populations that are activated by a virus-mediated
inflammation in order to identify and directly kill virus-infected
cells (89). This suggests that NK cell inhibition will significantly
support intratumoral spread of oncolytic viruses and effective
tumor lysis. A study using oncolytic VSV showed that the replica-
tion of the virus could be enhanced by NK cell depletion resulting
in more effective tumor killing (74). The supportive effect of NK
cell inhibition was confirmed by the same group by application of
a virus encoding for UL141, which blocks CD155 on infected cells
thereby interfering with NK cell recruitment and activation (90).
Furthermore, it was shown that the NK cell natural cytotoxicity
receptors (NCR) NKp30 and NKp46 were highly activated dur-
ing oHSV resulting in effective killing of oHSV infected cells thus
impeding viral spread and oncolytic therapy (75).

On the other hand, several studies showed an antitumoral effect
of NK cells after oncolytic viral treatment. Depletion studies with
VSV in the B16 melanoma model revealed an NK cell and T cell
dependent tumor regression (91). Furthermore, the remodeling
of the immunosuppressive tumor microenvironment of prostate
cancer by the infection with oncolytic reovirus demonstrated a
strong NK cell involvement in antitumoral immune response (92).
It was also observed that the antitumoral effect of an oncolytic
parapoxvirus ovis (ORFV) was mainly NK cell-mediated (93).
Using an adenovirus expressing IFNβ for systemic NK cell acti-
vation, Suzuki et al. could show that intratumoral virus treatment
in a pancreatic cancer model resulted in strong NK cell-mediated
antitumoral cytotoxicity, when MDSC were eliminated by gemc-
itabine (86). These data illustrate that other immunosuppressive
populations within tumor microenvironment play an important
role in the establishment of antitumoral immunity, which must
be considered for the role of NK cells in oncolytic virotherapy.
Promising reports come from observations on the application as
adjuvant to surgical tumor removal. This is of particular clini-
cal relevance since surgery is still the most frequent therapeutic
option with curative intention. In a first therapeutic approach
using virotherapy as perioperative agent in a surgical stress model,
Tai et al. showed that virotherapy by vaccinia virus or ORFV can
release NK cell suppression during surgical intervention (94, 95).
Virus-mediated NK cell activation effectively inhibited the engraft-
ment of metastatic cells. This finding suggests that NK cells seem to
be in particular efficient to protect against tumorigenic cells when
an established immunosuppressive tumor microenvironment is
lacking. These observations are supported by the increased anti-
tumoral NK cell efficacy, when it is used with chemotherapeutic
approaches like gemcitabine or cyclophosphamide, which are well
known immunomodulatory agents with selective depletion effects

on immunosuppressive populations like MDSCs or regulatory T
cells (Treg), respectively (86, 96, 97). It was also demonstrated
that a novel oncolytic rhabdovirus (Maraba MG1) was able to
boost NK cell activity for the reduction of postoperative metas-
tases (98). Intriguingly, the authors revealed that the effect of NK
cell activation was mediated via virus infection of conventional
DC. This interaction refers to the important function of DC as
functional interface to innate immune effector cells for triggering
adaptive immune responses. It is known from patients treated with
cetuximab that NK cells are involved in antibody-dependent cyto-
toxicity of tumor cells and assist DCs in priming of antitumoral
T cell responses by an NK:DC crosstalk (99). This aspect could
be relevant in oncolytic virotherapy since antibody-mediated cell
killing of tumor cells has already been shown to play a yet under-
estimated role in human patients who have been treated with an
oncolytic vaccinia virus (100).

TREGS AND TREG DEPLETION DURING ONCOLYSIS: GOOD
OR BAD?
Regulatory CD4 T cells (Tregs) are an immunosuppressive cell
population that has frequently been discussed as a critical con-
tributor to the tumor microenvironment. It has been shown that
the ratio of intratumoral cytotoxic T cells and Tregs is a prognos-
tic factor for the patient’s outcome and studies using antibodies
blocking CTLA-4 (which is expressed on Tregs) for increased
immune activation have shown that Tregs can be interesting tar-
gets for immunotherapeutic approaches (101, 102). The impact
of viral infections on Tregs has been mostly studied in persistent
or chronic virus infection, such as HCV or HBV whereas the role
of Tregs during acute viral inflammations such as oncolytic virus
infections is much less investigated. Studies showed that the num-
ber of Tregs significantly drops during acute viral inflammation to
facilitate an effective antiviral immune response (103, 104).

To elicit enhanced immune stimulation, Treg depletion has
therefore been considered a supportive measure during oncolytic
virotherapy. Studies have shown that tumor preconditioning with
IL-2 and Treg depletion using a depleting antibody or low-dose
cyclophosphamide led to increased intratumoral uptake of sys-
temically delivered reovirus or vesicular stomatitis virus. IL-2 in
combination with Treg depletion generated “hyperactivated” NK
cells with enhanced antitumoral activity and secreting factors that
facilitated oncolytic virus spread throughout the tumor by dis-
rupting the tumor architecture (105, 106). Survival benefit by
this combination therapy was compromised when NK cells were
depleted. Additionally, Cheema et al. could reduce regulatory T
cell population in the tumor by arming an oHSV with the cytokine
IL12 leading to increased survival in a murine glioblastome stem
cell model. Survival benefit by additional expression of IL-12 was
absent in athymic mouse indicating that antitumoral efficacy was T
cell dependent (107). In contrast Treg depletion was demonstrated
to have even a negative therapeutic effect on VSV therapy by reliev-
ing Treg-mediated suppression of antiviral immunity resulting in
rapid clearance of the therapeutic vector (91).

However, the consequences of Treg depletion on long-term
antitumoral T cell responses that can be induced by oncolytic
virotherapy are not clear. Observations in classical infection mod-
els have shown that migratory activity of Tregs plays a central
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role in eliciting a protective immunity to viral infection (108).
Consistent with a positive function of Tregs in shaping antigen-
specific immune responses, we have observed that Treg deple-
tion abrogated the effective antitumoral T cell induction by an
oncolysis-assisted, antitumoral DC-vaccine (109). We could also
show that immunosuppressive MDSC expand in Treg-depleted
tumors, which may explain the failure of antitumoral T cell
priming. Supporting an important role of Tregs in the priming
of antigen-specific T cells, it has been described that Tregs can
undergo a conversion under acute inflammatory conditions to
adopt a T helper phenotype (110). Converted Tregs express proin-
flammatory cytokines and activate additional functions to provide
effective help for triggering T cell responses against new antigens.
These findings described above indicate that Tregs can essentially
modulate the course of tumor therapy with oncolytic viruses. A
supportive role of Treg depletion on virus spread and therapeutic
efficacy of oncolysis is still unclear and possible consequences on
induction of sustainable tumor-directed T cell responses require
further investigations.

HARNESSING ONCOLYTIC VIROTHERAPY AS
IMMUNOTHERAPY
Observations in immunocompromised xenografts have tempted
to overestimate the cytolytic effects that are achievable in human
patients. The situation in the immunocompetent host is com-
pletely different with positive and negative consequences for the
therapeutic efficacy of virotherapy. Since it is known that T cell
responses against cross-presented cellular antigens upon viral
infections trigger innate immune receptor pathways such as TLRs
and MyD88 (11, 12), investigations on corresponding antitumoral
immunity have been intensively pursued in oncolytic virus appli-
cations in immunocompetent models. The use of oncolytic VSV
in the B16-Ova model strikingly demonstrated that antitumoral
effects completely depended on Type I IFN responses, which
mediate both antiviral protection and antitumor therapy, whereas
VSV-mediated therapy was abolished in MyD88−/− mice (111).
The relevance of both innate immune activation and subsequent
triggering of adaptive responses was shown in experimental mod-
els with T cell depletion studies (10). Interesting observation have
been reported using herpes simplex virus variants with different
replicative properties. oHSV vectors that were more rapidly cleared
from the tumor but induced higher levels of DAMPs resulted in
best survival. This strongly indicates that replicative potency is
not the dominating factor as believed before but emphasizes the
impact of the initial immune induction (112), which needs to
be considered in the rational designs of novel approaches aim-
ing at increased antitumor immunity. DC are known to play a
crucial role in the generation of tumor-directed T cell responses
(113). First strategies on utilizing oncolytic virotherapy to engage
intrinsic activity of DC were performed with an ICP34.5 deleted
herpes simplex virus coding for GM-CSF (114). Tumor infec-
tion with this oncolytic virus led to regression and protected the
mice against rechallenge with tumor cells. GM-CSF-expressing
HSV then entered clinical development as OncoVexGM-CSF or
T-Vec (14, 115). Furthermore, virus-encoded GM-CSF not only
affected DCs, but also neutrophils which were shown to contribute
to antitumor effects by a GM-CSF-expressing oncolytic measles

virus in CD46 transgenic mice (70). The therapeutic benefit of
engaging dendritic cell activity in virotherapeutic applications was
confirmed using different cytokine setups. In a preclinical breast
cancer model, systemic, and intratumoral delivery of a TRAIL-
/E1A-expressing oncolytic adenovirus increased plasma levels of
TNFα, IFNγ, and MCP-1, proinflammatory cytokines acting as
maturation signals for DCs. Inclusion of FLT3L or GM-CSF-
expressing adenovirus for expansion of DCs established systemic
antitumor immunity and resulted in tumor elimination (116).
We obtained consistent results in a mouse model of lung can-
cer using intratumoral delivery of an oncolytic Ad combined
with vectors encoding FLT3L and MIP-1α. Tumor-directed T cells
were significantly increased and improved tumor responses were
obtained. However, adaptive immune responses against the viral
vector were also strongly enhanced suggesting that the balance
between tumor- and virus-directed immunity remains unaltered
instead of generating a favorable tumor-directed response (117).
Oncolytic viruses expressing cytokines for enhanced antigen cross
presentation illustrate that virotherapy can be used as a tool for a
generic in situ vaccination without the need for detailed informa-
tion about specific tumor-specific antigens. However, the approach
has limitations in shifting the predominant antiviral responses in
favor of antitumoral responses.

ONCOLYTIC VIROTHERAPY IN DC-VACCINATIONS AND
HETEROLOGOUS PRIME-BOOST SETTINGS
For focusing the immune system during virotherapy on the tumor
requires the incorporation of tumor-specific antigen targeting
approaches into the therapeutic scheme. We have investigated
this aspect by combining viral oncolysis and a tumor-directed
DC-vaccine (117). In another study, it has been shown that
a CCL5 (RANTES) expressing oncolytic vaccinia virus signif-
icantly improved the therapeutic efficacy of a tumor-directed
DC-vaccine (118). In a further study, it was demonstrated that the
application of a replicating adenovirus allowed for highly effec-
tive DC-vaccination, when the vaccine is administered exactly at
the time of apparent virus-induced tumor inflammation (109).
This approach induced potent cytotoxic T cell responses lead-
ing to significant tumor regression and complete eradication
of lung colonies in an aggressive tumor model that was oth-
erwise resistant to the DC-vaccine. A further promising direc-
tion is the development of oncolytic virus-based prime-boost
strategies that express the tumor-antigen. In a heterologous treat-
ment sequence with an adenoviral TAA-endoding vaccine and an
oncolytic VSV tumor expressing the same antigen significantly
enhanced tumor-directed CD8 T cell immune responses compared
to single treatments. Heterologous priming worked in both direc-
tions (119,120). This approach shifted the immune responses from
viral antigens to tumor-antigens and reduced viral replication in
healthy tissues thereby improving efficacy and safety. Interest-
ingly, the magnitude of tumor-specific responses after combina-
tion therapy was even higher in tumor-bearing hosts compared
to tumor-free mice indicating the need of infected tumor tis-
sue for priming antitumoral T cell reponses (120). The same
group could also demonstrate that heterologous boosting not only
resulted in higher numbers but also in functionally superior T cells
(121). A further interesting variation of prime-boost vaccinations
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comes from Brinkhoff and colleagues who elicited highest anti-
tumoral responses when the boost step by an antigen-expressing
infectious agent was preceded by a non-pathogenic prime using
antigen-loaded PLGA-microspheres (122).

TARGETING THE TUMOR ANTIGENOME AND MUTANOME BY
ONCOLYTIC VIROTHERAPY
The use of complete antigen libraries encoded by an oncolytic
virus offers a promising approach to circumvent the limitations
of antigen-specific vaccinations. In a preclinical study in prostate
cancer, VSV-based cDNA libraries from xenogeneic healthy pros-
trate tissue were used for treatment of TC2 prostrate tumors.
Application of VSVs coding for such a cDNA library [Altered Self-
antigen and Epitope Library (ASEL)] cured established tumors
after repetitive intravenous injections. The use of ASEL conferred
significantly better protection against TC2 cells than a self-antigen
library from normal mouse prostate tissue. Upon application of
ASEL, a TH17 response was detectable and TC2 rejection was
dependent on CD4 cells, but not on CD8 T cells or NK cells
(123). A subsequent study from this group demonstrated that an
approach of virus-encoded melanoma cDNA libraries can be used
to identify tumor-associated antigens that have the ability to cure
melanoma (124). Virus-expressed cDNA libraries were effective
against melanoma thereby inducing only mild signs of autoim-
munity. The xenogenic, altered self-source is a precondition for
successful tumor treatment due to additional adjuvant effects com-
pared to a library from an autologous self-source. Again, the anti-
tumoral effect was correlated with a tumor-specific IL-17 response,
which was in turn utilized to screen for cDNA-viruses that induced
IL-17 memory for identification of tumor rejection antigens. After
validation of IL-17 inducing clones, three VSV-encoded tumor-
antigens were tested to treat established B16 tumors. Intriguingly,
injection of a single VSV-clone or a pool of two VSV-clones did
not show a therapeutic response, only the combination of all three
VSV-clones cured melanoma tumors to a similar extent as the
whole melanoma-library did. Although, it remains unclear why
only all three different TAA-coding VSVs contribute to therapeu-
tic effects, this finding suggest that applications targeting multiple
antigens at the same time should be preferred in immunothera-
peutic strategies. These studies establish a rational approach to
identify novel tumor-targets for immunotherapy and establish
an effective generic virus-based ASEL-vaccine for defined tumor
entities.

To date, identification of novel tumor-antigens that can be
addressed by targeted therapeutics appears to be a crucial step
toward the establishment of clinically effective immunothera-
pies and toward induction of sustained adaptive T cell responses.
In the past, antitumoral vaccine research has focused on find-
ing non-mutated, tumor-associated antigens such as telomerase
or MAGE, which can be found either in a relevant numbers of
patients and/or across several entities to promise broad applicabil-
ity. Disappointingly, corresponding vaccination approaches have
so far delivered insufficient effects in the clinic (125). A limit-
ing factor is that non-mutated tumor-antigens may not reflect
essential molecular functions required for tumor cell survival pro-
moting the generation of escape variants (126). Furthermore, T
cell precursors against this type of antigens are subject to thymus

selection and self-tolerance mechanisms thus limiting the num-
ber of required high-affinity T cell precursors that are essential
for effective antitumoral T cell responses. In this regard, trigger-
ing T cells that recognize immunogenic neoepitopes reflecting
tumor-associated mutated proteins could be a more promising
alternative. Data from melanoma patients indicate that autolo-
gous T cell responses to tumors are predominantly directed to
neoantigens (127). In murine models as well, tumor rejection
responses were also primarily induced by altered-self antigens
(128, 129). However, this would require individualized (personal-
ized) molecular diagnosis and therapy. Individual (solid) human
cancers usually harbor about 30 to more than hundred of protein-
encoded mutations referred to as mutanome (129–131), which
can be nowadays rapidly and cost-effectively analyzed by Next
Generation Sequencing (NGS) technology. Using this method,
non-synonymous single nucleotide variants (SNV) can be iden-
tified, representing promising candidates for immunotherapies,
since single amino acid variations in corresponding epitopes can
be processed and presented by MHC to T cells.

In a pioneering study targeting the mutanome by vaccina-
tions, NGS was used for immunoepitope identification in B16F10
melanoma cells. Selected from 563 non-synonymous SNV candi-
dates, the immunogenicity of 50 validated mutations was deter-
mined using corresponding peptide immunizations in mice. The
authors showed that immune responses could be raised against
60% of these epitopes and the vaccinations against these predicted
and validated epitopes successfully raised antitumoral adaptive
immune responses and significantly slowed tumor-growth (132).
This illustrates the great potential of this method in identifica-
tion of neoepitopes. However, the observation is also astonishing
since those epitopes should be per definition of low immuno-
genic nature. In clinically manifest tumors, the remaining epitope
spectrum is the result of a dynamic process termed cancer immu-
noediting, which acts on nascent tumors via different immune cell
types to protect against cancer development and shapes the tumor
at the same time toward decreased immunogenicity (129). In the
study by Castle and colleagues, the key for successful induction
of immune responses to immunoedited tumor-epitopes by DC-
vaccination is most likely attributable to the use of adjuvants, i.e.,
poly(I:C) in the B16F10 model. Oncolytic virotherapy is likewise
a potent trigger of innate immune receptors and inflammation
and could be an interesting tool that enables identification of
inflammation induced neoepitope-directed T cell responses and to
cooperate with tailored neoepitope-directed DC-vaccines. How-
ever, it will be a challenging task to identify neoepitope-specific T
cell reactivities that are involved in tumor responses induced by
oncolytic virotherapy.

ONCOLYTIC VIROTHERAPY AND IMMUNE CHECKPOINT
BLOCKADE
The recent clinical success of immune checkpoint blockade (133)
has confirmed the curative potential of tumor immunothera-
pies. Checkpoint blockade using ipilimumab, a CTLA-4-blocking
monoclonal antibody, has shown promising results in a phase
III study (134). Remarkably, responses seemed to include even
complete cures, but only a small proportion of patients bene-
fited from therapy. In a case study which described a patient with
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FIGURE 2 |The figure provides an overview on critical components to be included in multimodale virotherapy-based therapies that work like
prime-boost strategies.

advanced melanoma experiencing tumor response under ipili-
mumab, neoepitope analysis by NGS and epitope prediction led
to identification of a single ipilimumab-responsive neoepitope-
specific CD8 T cell that increased fivefold under therapy and
remained stable for a 10-month period (135). The fact, that only
one epitope was triggered in a tumor displaying 448 potential
T cell neoepitopes is remarkable but reflects that natural and
thus immunoedited tumors are low immunogenic despite harbor-
ing a high number of mutations and may also explain why only
small subgroups of patients respond to certain immunotherapies.
Oncolytic viruses can serve as an ideal tool to augment tumor
immunogenicity and could be ideally combined with immune
checkpoint blockade. Gao and colleagues have investigated the
application of a Her2/neu targeted oncolytic VSV in combination
with a CTLA-4 antibody in mice bearing Her2/neu transgenic
murine mammary tumors. This combination achieved cure in the
majority of mice whereas the virotherapy alone only prolonged
survival (136). Additionally, it has been tried to include an expres-
sion cassette for a CTLA-4-specific antibody into the backbone
of an oncolytic Ad to enhance local concentrations and to avoid
adverse events by systemic CTLA-4 inhibition (137). Recently, it
has been reported that injection of oncolytic NDV in a preclin-
ical model of B16 melanoma under CTLA-4 antibody treatment
induces an inflammatory response in tumor tissue, leading to lym-
phocytic infiltration and antitumor effect in distant, non-virally
injected tumors (138). Effective treatment induced activated CD4
and CD8 T cell infiltration in distant tumors and was dependent
on CD8+ cells, natural killer cells, and type I IFNs. Overcoming
systemic resistance to immune checkpoint blockade by oncolytic
virotherapy moreover led to protection from tumor rechallenge in
poorly immunogenic tumors, even in a cell line refractory to NDV-
mediated lysis. An alternative to checkpoint blockade is the direct
activation of costimulation using oncolytic viruses expressing the
costimulatory CD40L (53). Further approaches used oncolytic
vaccinia viruses expressing the ligand for the costimulatory recep-
tor 4-1BB (CD137) that achieved maximum antitumoral effi-
cacy in lymphodepleted hosts (139). Strong antitumoral immune
responses were also elicited by combining oncolytic vaccinia virus
with systemic application of a 4-1BB agonistic antibody (140). An
interesting immune checkpoint that has not yet been investigated

with virotherapy is PD-1/PD-L1. PD-1/PD-L1-blocking antibod-
ies are in a very promising clinical development (141). PD-
1/PD-L1 inhibition primarily activates antigen-experienced T cell
responses in the periphery, thus providing a mechanism that could
be promising to combine with virotherapeutic treatments.

PERSPECTIVE: ONCOLYTIC VIROTHERAPY IN MULTIMODALE
THERAPIES
There is increasing evidence that oncolytic virotherapy shows
antitumoral efficacy in clinical application even as monotherapy.
However, most preclinical data suggest that virotherapy can be
ideally combined with other treatment options to raise signifi-
cant therapeutic synergies on several levels (see also an overview
in Figure 2). First of all, oncolytic virus treatment needs to be
integrated in combined tumor-treatments leading to optimized
induction of ICD. Excellent reviews already exist on this aspect (16,
142, 143). Next step should be additional measures that amplify,
and prolong antitumoral immune responses. First data obtained
in humans and in murine melanoma models suggest significant
synergies when systemic immunotherapies, such as ipilimumab
and virotherapy are combined in a well-coordinated manner (138,
144). A very promising but clinically challenging point will be the
combination of viral oncolysis with surgical removal of the tumor.
Finally, it still needs further investigations to establish follow-up
therapies that work like classical boost strategies and may also pick
up personalized approaches such as NGS of tumors, epitope pre-
diction and and immunoanalysis in treated patients. Multimodal
therapy schemes will be a clue to establish virotherapy in the clinic.
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Human tumors develop multiple strategies to evade recognition and efficient suppression
by the immune system. Therefore, a variety of immunotherapeutic strategies have been
developed to reactivate and reorganize the human immune system. The recent develop-
ment of new antibodies against immune check points may help to overcome the immune
silencing induced by human tumors. Some of these antibodies have already been approved
for treatment of various solid tumor entities. Interestingly, targeting antibodies may be
combined with standard chemotherapy or radiation protocols. Furthermore, recent evi-
dence indicates that intratumoral or intravenous injections of replicative oncolytic viruses
such as herpes simplex-, pox-, parvo-, or adenoviruses may also reactivate the human
immune system. By generating tumor cell lysates in situ, oncolytic viruses overcome cel-
lular tumor resistance mechanisms and induce immunogenic tumor cell death resulting
in the recognition of newly released tumor antigens. This is in particular the case of the
oncolytic parvovirus H-1 (H-1PV), which is able to kill human tumor cells and stimulate
an anti-tumor immune response through increased presentation of tumor-associated anti-
gens, maturation of dendritic cells, and release of pro-inflammatory cytokines. Current
research and clinical studies aim to assess the potential of oncolytic virotherapy and its
combination with immunotherapeutic agents or conventional treatments to further induce
effective antitumoral immune responses.

Keywords: immunotherapy, autonomous parvovirus, H-1PV, talimogene laherparepvec, T-VEC, JX-594, dendritic
cells, CTLA-4

INTRODUCTION
Human tumors develop complex strategies to circumvent the
human immune system and to become resistant to classical ther-
apies like radiotherapy or chemotherapy (1). Besides the low
immunogenicity of tumors, tumor-induced dysregulation of the
immune response leads to loss of effective immune defense
and uncontrolled tumor growth. Even though many classical
chemotherapy or radiation strategies induce some extent of tumor
surveillance (1), new approaches should be tested to overcome
early tumor resistance and recurrence. Thus, the basic challenge
of molecular immune targeting is to conquer local regulatory
mechanisms in order to re-introduce tumor immune recogni-
tion and promote tumor cell apoptosis and immunogenic cell
death (ICD) (2). Recently, loss of immune defense has been
shown to be caused by expression of different immune suppres-
sive receptors also called immune checkpoint pathways, such as
cytotoxic T-lymphocyte antigen-4 (CTLA-4) (3). Its ligation is
crucial to preventing immune overreaction by inhibiting T-cell
activation (4). The inhibitory CTLA-4 antibody ipilimumab [Yer-
voy, Bristol Myers Squibb (BMS)], approved for the treatment
of metastatic melanoma patients, blocks this negative immune
stimulatory receptor, thereby preventing downregulation of T-cell
activation (5).

Oncolytic virotherapy represents an emerging therapeutic
modality that has achieved tumor regression in several pre-clinical
models and in clinical trials (6). Preferential depletion of cancer
cells by oncolytic viruses (OV) is based on the fact that more
aggressive tumor cells show both impaired antiviral responses and
higher permissiveness for virus replication. Therefore, these agents
open up new horizons for the treatment of cancer types that com-
monly display poor prognosis (7, 8). Cancer virotherapy is an old
concept that arose from observations of unexpected tumor regres-
sions coinciding with virus infections. This can be exemplified by
a report on Newcastle disease virus (NDV) in gastric cancer dating
back to 1971 (9). It should be stated that viruses with natural or
engineered effects on the immune system are highly potent candi-
dates for cancer therapy (Table 1). Herein, oncolytic viruses can be
engineered to deliver therapeutic transgenes to cancer cells, caus-
ing additional anti-tumor effects through cytokine secretion and
induction of anti-tumor immune responses (10–14). For example,
the oncolytic vaccinia virus pexastimogene devacirepvec (Jen-
nerex, Inc., and Transgene SA; Pexa-Vec, JX-594) and herpes sim-
plex virus (HSV) talimogene laherparepvec (T-VEC, Amgen) were
“armed” with GM-CSF-expressing genes (15, 16) to initiate local
and systemic immune responses. Recently a randomized, Phase
III trial of talimogene laherparepvec or GM-CSF in patients (pts)
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with unresectable melanoma with regional or distant metastases
(OPTiM) met its primary endpoint by improving durable response
rates versus GM-CSF alone, and showed a tolerable safety profile
(17). A Phase II study of Pexa-Vec in primarily first-line liver cancer
(HCC) patients demonstrated survival improvement in patients
receiving intratumoral (it) injections of high-dose Pexa-Vec (18).
The following randomized Phase IIb study in second-line HCC
patients did not meet its primary endpoint of survival improve-
ment for Pexa-Vec compared to best supportive care (BSC) (19).
However, this trial was comprised primarily of patients with end-
stage disease and significant comorbidities such as liver cirrhosis,
therefore likely not the optimal population for successful OV ther-
apy. Therefore, further studies of Pexa-Vec in a less advanced HCC
population as well as other indications are warranted. Besides
above-mentioned agents, various other viruses were shown to have
oncolytic and/or immunostimulating properties, and are presently
used in clinical trials. These include Parvovirus, Adenovirus,Vesic-
ular Stomatitis Virus, Reovirus, NDV, Measles Virus, Seneca Valley
Virus, Poliovirus, and Coxsackie Virus (Table 1).

The aim of this article is to provide an overview of upcoming
oncolytic viruses and their potential immunogenic therapeutic
effects. A first insight into this issue is provided through our
pioneer studies showing that infection with the autonomous par-
vovirus H-1 (H-1PV) generated immunogenic tumor cell lysates
(TCLs) (14). H-1PV-infected TCLS proved able to induce mat-
uration of dendritic cells (DCs), release of pro-inflammatory
cytokines, tumor-associated antigens (TAA) cross-presentation,
and T-cell stimulation in an ex vivo human melanoma model
(see Figures 1 and 2) (7, 14, 55, 56). On the basis of these
observations, we present the prospects of H-1PV and other OVs
activating the human immune system either alone or in com-
bination with immunomodulators, such as antibodies blocking
immune suppressive receptors.

METHODS
The human ex vivo melanoma model (Figure 2) represents a sys-
tem that mimics the in vivo situation (14). Thus, it was used to
investigate effects of H-1PV-infected or tremelimumab-treated
tumor cells on immune activation. The human melanoma cells
MZ7-Mel, SK29-Mel-1, and SK29-Mel-1.22 used were a gift from
T. Woelfel (Mainz, Germany) (57). The SK29-Mel-1.22 cell line
(A2−) is an in vitro selected HLA-A2-loss variant of HLA-A2-
positive SK29-Mel-1 (A2+) line (58, 59). The cytotoxic T-cell
clones CTL2/9 and CTL IVSB recognize different antigens of
SK29-Mel-1 cells in association with HLA-A2 (57, 58), lyse SK29-
Mel cells, and release interferon γ (IFNγ) upon specific recognition
of SK29-Mel-specific TAA (58).

Peripheral blood mononuclear cells (PBMCs) were derived
from buffy coats of healthy blood donors. Monocytes were isolated
via adherence, and differentiation into immature DCs (iDCs) was
achieved by stimulation with GM-CSF and interleukin-4. Matured
DCs (mDCs) were generated by stimulation with a cytokine cock-
tail for 2 days (60). For coculture experiments, melanoma cells
were kept in FCS-free medium. For induction of maturation and
phagocytosis, tumor cells were co-cultured with iDCs at a ratio
of 1:3 for 2 days. CTL-Coculture with DC was performed at 1:10
ratio (60).

RESULTS: ONCOLYTIC VIRUSES ARE ABLE NOT ONLY TO KILL
HUMAN TUMOR CELLS BUT ALSO TO STIMULATE
ANTI-TUMOR IMMUNE RESPONSES: THE CASE OF
PARVOVIRUS H-1PV
Over the last years, OV therapy has shown promising results in
both pre-clinical and clinical studies against various solid tumors
(61). It is worth noting that besides their own anti-tumor effi-
ciency, OVs can resensitize resistant tumors to chemotherapeutics,
thereby highlighting the potential of OVs in multimodal treat-
ments (12, 13). We were particularly interested in the oncolytic
parvovirus H-1PV [for reviews, see Ref. (20, 62)]. The mode of
action of H-1PV involves both direct oncolytic and immune-
mediated components, making this virus an attractive candidate
for inclusion in the cancer immunotherapy armamentarium (60).
H-1PV is a small nuclear-replicating DNA virus, which prefer-
entially multiplies in oncogene-transformed and tumor-derived
cells (7). This oncotropism results at least in part from the depen-
dence of H-1PV on proliferation and differentiation factors that
are dysregulated in neoplastic cells (20). In consequence, H-
1PV exerts oncolytic effects, which were documented in human
cells from various tumor entities including melanoma, pancreatic
(PDAC), hepatocellular (HCC), colorectal or gastric carcinomas,
sarcoma, glioma, and other neuroectodermal tumors (7, 20, 21,
62–64). Most interestingly, the death mechanisms activated by
parvoviruses allow them to overcome resistance of tumor cells to
conventional cytotoxic agents (22, 65). Another intriguing aspect
of H-1PV-mediated OV lies in the possibility of combining H-1PV
with conventional cytotoxic drugs to achieve synergistic tumor cell
killing effects, as demonstrated for instance in the PDAC system
(13, 21, 22, 66).

Though not or poorly infectious for humans under natural con-
ditions, H-1PV can be administered experimentally to patients,
resulting in viremia and seroconversion (67). Infections with H-
1PV appear to be clinically silent (68). It should also be stated
that recombinant parvoviruses can be constructed, for example to
transduce immunostimulatory cytokines (62). This arming strat-
egy was found to increase the anti-tumor effects of parvoviruses
in certain models (69–71).

BRINGING H-1PV FROM THE BENCH TO THE BEDSIDE
Recent work using an immunocompetent rat glioma model
showed that H-1PV was able to efficiently cure gliomas, while
raising an anti-tumor memory immune response. This oncosup-
pressive effect appears to rely on both the direct oncolytic activity
of H-1PV and its handover to the host immune system (23).
These pre-clinical data led to the current clinical evaluation of
H-1PV it and intravenous (iv) administration to patients with
recurrent resectable GBM progressing in spite of conventional
therapies (27).

H-1PV-INDUCED TUMOR CELL LYSATES TRIGGER MATURATION OF iDCs
AND EXERT IMMUNOSTIMULATING EFFECTS
H-1PV had little direct killing activity on human immune cells
in vitro, in particular APCs and CTLs. Interestingly, the analy-
sis of infected PBMCs revealed the induction of markers of
both macrophage and Th1cell activation (Table 2). This Th1
bias is indicative of a possible direct immunostimulating capacity
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Table 1 | Oncolytic viruses.

Oncolytic virus Family Pre-clinical data Clinical trial Selected reference

Parvovirus H-1 Parvoviridae Oncotoxicity of the viral protein NS1 Phase I/IIa glioblastoma

multiforme (ParvOryx01)

Clinical: NCT01301430

(27)ss DNA

Icosahedral capsid

Virus replication-associated

cytopathic/lytic effects

Activation of immune responses

Transgene expression

(cyto/chemokines)

Inhibition of neo-angiogenesis

Ref. (12–14, 20–26)

Vaccinia/poxvirus Poxviridae

ds DNA

Enveloped

Pexastimogene devacirepvec

(Pexa-Vec; JX-594): engineered

from Wyeth vaccine strain

GLV-1h68 (GL-ONC1): engineered

from vaccinia virus Lister strain

Cell lysis caused by viral replication Phase IIB, hepatocellular

carcinoma, Pexa-Vec

Clinical: NCT01387555;

NCT01394939;

NCT01766739;

NCT01443260

Thymidine kinase (TK) gene-inactivated,

selective replication

Phase II, colorectal cancer,

Pexa-Vec

Transgene expression (GM-CSF) (28) Phase II renal cell

carcinoma, Pexa-Vec

Disruption of tumor-associated

vasculature (29)

Phase I and II, malignant

pleural effusion, peritoneal

carcinomatosis (GL-ONC1)

Induction of antibody-mediated

complement-dependent cancer cell

lysis (30)

HSV-1 Herpesviridae Cell lysis caused by viral replication Phase III complete,

malignant melanoma

(talimogene laherparepvec)

Clinical: NCT00769704

(32, 33)ds DNA ICP34.5 functional deletion

(neurovirulence factor)

Icosahedral capsid ICP47 deletion

Enveloped Activation of anti-tumor immunity

Talimogene laherparepvec:

engineered from JS1 strain

Transgene expression (GM-CSF) (31)

Adenovirus Adenoviridae Cell lysis caused by viral replication Phase II and III, bladder

cancer (CG0070)

Clinical: NCT01438112

(37, 38)

ds DNA Activation of anti-tumor immunity Approved therapeutic

(China), head and neck

cancer (Oncorine)
Oncorine based on H101-virus Cytotoxicity by viral proteins (E4ORF4)

(34)

Transgene expression (GM-CSF by

CG0070) (35, 36)

Vesicular

stomatitis

virus (VSIV,

often VSV)

Rhabdoviridae

ss RNA

Expression of IFN-β (39, 40) Phase I, liver cancer (IFN-β

expressing VSV)

Clinical: NCT01628640

Reovirus Reoviridae Cytopathic effect Phase I-III, several entities,

e.g., head and neck cancer,

non-small cell lung cancer,

prostate cancer, colorectal

cancer (Reolysin)

Clinical: NCT01166542;

NCT01708993;

NCT01619813;

NCT01622543

ds RNA Activation of immune response (41)

Icosahedral capsid

Newcastle

disease virus

Paramyxoviridae Activation of anti-tumor immunity

(42–47)

Phase I and II study in

glioblastoma, sarcoma and

neuroblastoma

Clinical: NCT01174537

ssRNA

(Continued)
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Table 1 | Continued

Oncolytic virus Family Pre-clinical data Clinical trial Selected reference

Measles virus Paramyxoviridae

ss RNA

Cytopathic effect (48)

Anti-tumor activity (49)

Phase I study in malignant

solid tumor, breast cancer,

malignant tumor of colon,

GIST, ovarian cancer

Clinical: NCT01376505;

NCT00450814;

NCT01846091;

NCT01503177;

NCT00390299;

NCT02068794 (50–52)

Phase I study in multiple

myeloma and plasma cell

neoplasm

Phase I study in metastatic

squamous cell carcinoma

of the head and neck

cancer

Phase I in malignant

pleural mesothelioma

Phase I in brain and central

nervous system tumors

Phase I in ovarian cancer,

peritoneal cavity cancer

Phase I and II study in

recurrent ovarian cancer

Seneca valley

virus

Picornaviridae

ss RNA

Antineoplastic activity (53) Phase I safety study, solid

tumors with

neuroendocrine features

Clinical: NCT00314925;

NCT01017601;

NCT01048892 (54)

Phase II after

chemotherapy in small cell

lung cancer

Phase II with

cyclophosphamide in

neuroblastoma,

rhabdomyosarcoma

Cavatak virus

(Coxsackie

virus A21)

Picornaviridae

ss RNA

Capsid

Phase I study in non-small

cell lung cancer, castrate

resistant prostate cancer,

and melanoma and bladder

cancer

Clinical: NCT02043665;

NCT00636558;

NCT00438009;

NCT00832559;

NCT01227551;

NCT01636882Phase I study in

melanoma, breast, and

prostate cancer

Phase I study in melanoma

Phase I study in head and

neck cancer

Phase II study, malignant

melanoma

Oncolytic viruses in clinical trials (ds, double stranded; ss, single stranded).

of the parvovirus. Nevertheless, a major impact of H-1PV on
the immune system appears to be indirect, i.e., mediated by
infected tumor cells, as discussed in the following sections. H-
1PV caused the death of human melanoma cells in culture,
including the above-mentioned SK29-Mel-1 and SK29-Mel-1.22
lines. The extent of cell killing varied between tested lines,
was dependent on the multiplicity of infection (MOI) and

correlated with expression of the replicative viral non-structural
protein NS1. In this system, H-1PV induced an apoptotic cell
death, which was accompanied with the release of immunogenic
HSP72 (63).

In further experiments it was shown that H-1PV-infected
melanoma TCLs were phagocytosed by iDCs and induced their
maturation, in particular the secretion of pro-inflammatory
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FIGURE 1 | Oncolytic viruses and their possible function in tumor therapy [changed after Ref. (14)].
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FIGURE 2 |The ex vivo human melanoma model.

cytokines such as TNFα and IL-6 (13, 63). Lysates of infected
SK29-Mel-1.22 and MZ7-Mel cells were both competent for
inducing DC maturation, although the former were more potent
than the latter in this regard (13, 14). Primary immune cells were
not permissive for H-1PV infection. Little direct killing effect, no

apoptosis, and no progeny virus production could be detected
in infected lymphocytes, monocytes, immature, and mature DCs
(Table 2) (63).

We also demonstrated that human DCs coincubated with
H-1PV-induced melanoma TCLs showed enhanced expression
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Table 2 | Direct immunostimulating effects of parvovirus H-1PV.

of TLR3, TLR9, and other maturation markers. This suggested
that virus-induced TCLs contained molecular patterns triggering
TLR signaling in DCs, as further evidenced by increased NF-
κB levels and production of pro-inflammatory cytokines (12).
Some of these immunostimulating patterns may consist of viral
constituents, given the known ability of TLR3 and TLR9 for
sensing viral determinants.

Combination of the oncolytic virus with cytostatic (cisplatin,
vincristine) or targeted (sunitinib) drugs resulted in a further
increase in melanoma cell apoptosis but failed to strengthen
maturation of DCs. It was verified that the cytotoxic or tar-
geted drug regimen used did not interfere with H-1PV infec-
tion (13). Interestingly, the interleukin profile of DCs was
altered upon exposure to H-1PV plus sunitinib-cotreated TCLs.
It therefore appears that H-1PV combination with this anti-
angiogenic drug may reinforce its capacity not only for jeopar-
dizing tumor cell survival but also for modulating the immune
system.

H-1PV INDUCE ACTIVATION OF ANTIGEN-SPECIFIC CYTOTOXIC T-CELLS
AND OTHER ANTI-TUMOR IMMUNE EFFECTORS
To further assess whether phagocytosis of H-1-infected TCLs
by DCs induces cross-presentation of TAAs to antigen-specific
CTLs in an HLA-class I-restricted manner, the above-mentioned
human melanoma in vitro model was used (58, 72). Both
melanoma-specific CTL clones tested were found to release
increased levels of IFNγ after being co-cultured with DCs
preincubated with H-1PV-infected SK29-Mel-1 or HLA-negative
SK29-Mel-1.22 cells (14). Thus, H-1PV-induced TCLs stimulated
cross-presentation of TAAs by DCs. This effect may contribute
to reinforce the anti-tumor immune response by generating
tumor-specific CTLs (14). In addition, several H-1PV-infected

tumor cells were recently found to acquire an enhanced
capacity for activating NK cells and getting killed by these
cells (73, 74). The adjuvant effect of H-1PV was also evi-
denced in vivo by the virus-enhanced efficacy of an autolo-
gous tumor cell vaccine (24) and the adoptive transfer of anti-
tumor immune cells from animals undergoing oncolytic H-1PV
therapy (75).

ONCOLYTIC H-1PV VIROTHERAPY CAN BE COMBINED WITH
IMMUNOTHERAPEUTIC AGENTS TO ENHANCE TREATMENT EFFICACY
Recent evidence for the expression of the immunosuppressing
molecule CTLA-4 on regulatory T-cells (Tregs) and tumors gen-
erated widespread interest in the role of CTLA-4 in tumor escape
and peripheral tolerance (3, 58). In particular, the human colon
adenocarcinoma line SW480 was found to express CTLA-4 on
the cell surface. This prompted us to extend the analysis of H-
1PV anti-tumor effects to the SW480 system in combination
with the anti-CTLA-4 antibody tremelimumab. When applied
alone, this antibody had no detectable effect on SW480 cell via-
bility and DC maturation. On the other hand, H-1PV alone
was able to kill SW480 cells in a MOI-dependent manner. H-
1PV-induced SW480 TCLs triggered iDC maturation in coculture
experiments, as revealed in particular by increased release of the
pro-inflammatory cytokines IFNγ, TNFα, and IL-6 (64). The
secretion of IFNγ was stimulated to a low extent by treatment
of the coculture with tremelimumab, recommend the use of the
H-1PV/tremelimumab combination treatment to enhance tumor
immunogenicity through both DC activation and CTLA-4 mask-
ing. It should also be stated that other (immuno)modulators,
namely IFNγ (75) and HDAC inhibitors (76), were recently
reported to cooperate with H-1PV for tumor suppression in
human carcinoma animal models.
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CLINICAL EVIDENCE OF OV-MEDIATED ACTIVATION OF
IMMUNE RESPONSES IN HUMANS
Extensive analyses were performed to evaluate mechanisms-of-
action of the oncolytic and immunotherapeutic vaccinia virus
Pexa-Vec in patients. These include oncolysis (15, 77, 78),
acute vascular disruption (29) as well as anti-tumor immune
response induction. Pexa-Vec was engineered to express GM-
CSF to stimulate white blood cell production and activate DCs.
Detectable concentrations of GM-CSF in plasma were measured
4–15 days after treatment and associated with increased neu-
trophil, monocyte, and eosinophil production in patients receiv-
ing iv or it iPexa-Vec (77, 78). Inflammatory cell recruitment to
tumors was confirmed on biopsy following Pexa-Vec adminis-
tration in patients with melanoma (79, 80). Furthermore, func-
tional anti-cancer immunity of Pexa-Vec treatment was demon-
strated in patients by measuring induction of antibody-mediated
complement-dependent cytotoxicity (CDC) utilizing a panel of
tumor cell lines of different histologies (30). Low concentrations
of serum ex vivo incubated with tumor cells resulted in a dramatic
reduction in tumor cell viability; when normal cells did not exhibit
decreased viability. This activity was shown to be dependent on
both active complement as well as IgG antibody. Reproducible
CDC activity was also observed in a Phase II study in HCC patient
(18). Furthermore, T-cell responses to β-galactosidase peptides
were detected in HCC patients treated with Pexa-Vec, as shown
by ELISPOT analysis. In that way, the proof-of-concept provides
that T-cell responses can be induced to transgenes encoded by
oncolytic vaccinia viruses (18).

Talimogene laherparepvec is an oncolytic immunotherapy
comprising a modified HSV type 1 engineered to selectively
replicate in tumor cells and to express the immune-stimulating
cytokine GM-CSF, while retaining sensitivity to antiherpetic
agents (16). Local effects after intralesional injection include
selective lysis of tumor cells and subsequent release of tumor
antigen, as well as secretion of GM-CSF into the local environ-
ment, which results in the stimulation and maturation of DCs
(32, 81). Antigen presentation by stimulated DCs to CD4+ and
CD8+ cells may induce an adaptive systemic immune response
(16, 82, 83). Recently a randomized, Phase III trial of talimo-
gene laherparepvec in patients (pts) with unresected melanoma
with regional or distant metastases (OPTiM) met its primary
endpoint, demonstrating a significant improvement in durable
response rate (defined as partial or complete responses that were
maintained for≥6 months starting within 12 months) versus GM-
CSF alone (16 versus 2%, p < 0.0001) (17). Overall response rate
was also higher in the talimogene laherparepvec arm (26.4 versus
5.7%, p < 0.0001). Subjects treated with talimogene laherparepvec
showed a tolerable safety profile with the only grade 3/4 adverse
event that occurred in >2% of patients being cellulitis (2.1%).
A trend toward improved overall survival was seen based on a
planned interim analysis (17). The primary overall survival results
are pending. Evidence of durable responses together with the
safety profile of talimogene laherparepvec supports evaluation of
combinations with other immunotherapies, such as high-dose IL-
2 or immune checkpoint blockade and with radiation therapy,
chemotherapy, and/or targeted therapies that might amplify the
anti-tumor response generated by talimogene laherparepvec (32).

DISCUSSION: POTENTIAL OF THE IMMUNOVIROTHERAPY
CONCEPT
Despite recent improvements in surgical, locoregional, and sys-
temic therapies, the prognosis of patients with gastrointestinal,
hepatobiliary, and pancreatic cancers remains dismal, and treat-
ment is limited to palliation in the majority of patients. These limi-
tations indicate an urgent need for novel therapeutic strategies (13,
64, 66, 84). Combinations of oncolytic viruses with new targeted
therapies draw much attention. It is however necessary to pro-
ceed with caution, as these therapies may interfere with pathways,
which are needed for replication of genetically modified viruses.
It was demonstrated that by interacting with the EGFR/RAS/RAF
pathway, sorafenib inhibits replication of Pexa-Vec in liver cancer,
when applied in combination. This is not surprising as Pexa-Vec
replication is in part dependent on the EGFR/RAS/RAF pathway
(85). Nevertheless, sequential therapy with Pexa-Vec followed by
sorafenib resulted in decreased tumor perfusion and was associ-
ated with objective tumor responses for HCC (85). It is noteworthy
that some oncolytic viruses such as parvovirus H-1PV also have
potential to inhibit neo-angiogenesis. Therefore, OV-based com-
bination treatments targeting both tumor cell proliferation and
tumor angiogenesis represent a promising strategy for impeding
the growth of various cancers (25).

Besides their low expression of TAA and low immunogenic-
ity, tumors can induce an immune tolerance milieu by releasing
anti-inflammatory cytokines such as IL-10 or TGF-β or recruit-
ing Tregs to their microenvironment (86). T-cell activation relies
on both, recognition of major histocompatibility complex (MHC)
molecules by the T-cell receptor (TCR), and on costimulatory sig-
nals. Depending on the type of costimulatory receptor, T-cells
can be activated or become anergic. For example, T-cell acti-
vation was prevented by engagement of CTLA-4 receptors with
CD80 or CD86. In contrast, engagement of CD80 or CD86 with
CD28 induced T-cell activation, often with a low affinity (87).
Thus, a promising therapeutic option to achieve strong anti-tumor
immune responses is the use of monoclonal antibodies against
CTLA-4 and PD-1 alone or in combination. Herein, the constitu-
tive expression of CTLA-4 and PD-1 on Tregs may play a crucial
role in inhibiting anti-tumor T-cell responses. Tregs are often
found in the peripheral blood of cancer patients and in the tumor
microenvironment. These cells suppress an optimal anti-tumor
immune response by preventing infiltrating CD8+ T-cells from
proliferating and producing cytolytic granules (88). BMS devel-
oped an anti-CTLA-4 monoclonal antibody named ipilimumab
and an anti-PD-1 monoclonal antibody named nivolumab. Both
antibodies were already tested in Phase III trials and found to
achieve clinically significant benefits in median overall survival
(89, 90). First pre-clinical studies of the combination of these
antibodies to achieve blockade of both CTLA-4 and PD-1 showed
increased tumor infiltration by CD4+ and CD8+ T-cells, enhanced
IFNγ and TNFα production, and reduced amounts of Tregs (91).
A Phase I study of nivolumab and ipilimumab combination in
advanced melanoma patients showed an outstanding activity in
65% of patients with an objective response rate of 40% (92). As
part of their further development and mechanistic understand-
ing, these antibodies against immune check points would certainly
deserve to be combined with OV in order to optimize anti-tumor
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immune responses. Preliminary data from a Phase Ib trial com-
bining talimogene laherparepvec with ipilimumab indicated that
the combination was tolerable and devoid of unexpected toxicities
(93). Exploiting these combinations represents a promising strat-
egy to bring oncolytic viruses from bench to bedside and to estab-
lish oncolytic virotherapy as a new effective immunotherapeutic
approach.

KEY CONCEPTS
• Key concept1: There is a consistent need for immunotherapies

in the treatment of human cancer.
• Key concept2: Oncolytic viruses reduce tumor burden and show

first clinical results in humans.
• Key concept3: Oncolytic viruses, such as parvovirus H-1PV,

induce effective anti-tumor immune responses.
• Key concept4: Combinations of oncolytic viruses with

immunotherapeutics are likely to achieve enhanced immune
activation.
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A commentary on

The strength of the T cell response against
a surrogate tumor antigen (TA) induced
by oncolytic vesicular stomatitis virus
(VSV) therapy does not correlate with
tumor control
by Janelle V, Langlois M-P, Lapierre P, Char-
pentier T, Poliquin L, Lamarre A. Mol Ther
(2014). doi: 10.1038/mt.2014.34

The last decade has seen the develop-
ment of numerous antitumor therapeutic
approaches. Concomitantly, the interest for
using oncolytic viruses (OV) against can-
cer has grown tremendously and a number
of promising candidates are now in pre-
clinical and clinical studies. Tumor regres-
sion in vivo following viral infection has
been shown to be a multifactorial process
(1). The reductionist view of viruses sim-
ply causing direct lysis of infected can-
cer cells has now been replaced by a view
including the complex interplay between
viruses and the tumor environment. The
important role of the immune response in
either limiting or enhancing OV therapy is
also now well recognized (2, 3). The pro-
totypic Rhabdoviridae VSV has generated
encouraging results in various experimen-
tal tumor models and is now used in a phase
I clinical trial in patients with liver cancer
(www.clinicaltrials.gov; #NCT01628640).
VSV possesses intrinsic oncolytic proper-
ties as it replicates more efficiently in type-I
interferon (IFN)-defective cells, a pathway
frequently impaired during tumorigenesis
(4). Cancer therapy using VSV has been
shown to generate a variety of immune

responses including tumor-specific CD8+

T cells that are induced following the
release of TA by infected cells (5). How-
ever, the tumor-specific immune response
generated following VSV treatment is usu-
ally weak and often only leads to tran-
sient tumor control. Experimental tumor
models expressing various surrogate non-
self-TA have been developed over the years
to more easily assess the magnitude and
quality of immune responses generated
against tumors. However, whether these
responses are always representative of phys-
iological antitumor immune responses is
unclear.

Recently, our group characterized vari-
ous VSV glycoprotein (G) mutants capa-
ble of interfering with host cell metab-
olism by inhibiting cellular transcription
and translation in a kinetic similar to WT
VSV as opposed to the prototypic matrix
(M) mutant (MM51R) that is slightly atten-
uated in vitro (6). Furthermore, VSV G
mutants proved to be more cytolytic for
B16 melanoma cells in vitro than the M
mutant. To analyze their oncolytic poten-
tial in vivo, we used an immunocompetent
mouse model implanted with B16 tumors
transfected with a DNA minigene encoding
the immunodominant CD8+ T cell epitope
of the lymphocytic choriomeningitis virus
(glycoprotein aa 33–41) (7) as a surro-
gate non-self-TA (B16gp33) (8). Mice were
injected subcutaneously into the flank with
B16gp33 cells and when tumors reached a
palpable size (day 7), animals were treated
intratumorally every second day with three
doses (days 7, 9, and 11) of WT VSV
or of the G or M mutants. Tetramer

and intracellular cytokine staining analy-
sis revealed that CD8+ T cells harvested
from mice treated with WT VSV or the G
mutants developed a polyfunctional gp33-
specific immune response. Surprisingly
however, the strength of the gp33-specific
immune response generated did not corre-
late with the ability of a particular strain
of VSV to slow down parental B16 growth
and improve mice survival. Treatment with
WT VSV was the poorest at controlling B16
tumor progression even though it induced
a strong CTL response against gp33. On
the other hand, MM51R was more efficient
than WT VSV at slowing down B16 growth
despite the fact that this virus induced
the lowest gp33-specific T cell response.
We therefore determined whether CD8+ T
cell responses directed against endogenous
self-TA were involved in limiting tumor
progression. CTL responses against self-
TA, such as TRP-1 and gp100, were barely
detectable ex vivo when analyzed sepa-
rately. However, adoptive transfer of puri-
fied CD8+ T cells harvested from MM51R-
treated B16gp33 melanoma-bearing mice
into naive mice provided better protec-
tion against parental B16 tumor implan-
tation compared to CTLs taken from WT
or G mutant-treated mice. These results
suggest that the M mutant, despite being
the weakest at inducing a T cell response
against the surrogate non-self-TA gp33,
induces the broadest antitumoral CTL
response.

B16 melanoma is a highly aggressive
tumor model in part because major his-
tocompatibility complex class I (MHC-I)
surface expression is very low on these
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FIGURE 1 | Induction of a functional tumor-specific immune response is
achieved through diverse mechanisms for different VSV strains:
proposed model. VSV is quickly cleared from tumor tissue by the rapid
induction of innate antiviral defense mechanisms and neutralizing antibodies.
Nonetheless, the proinflammatory milieu generated in response to infection
promotes leukocyte infiltration. Infection can result in tumor cell lysis either
directly as a result of virus replication or indirectly through the action of innate
immune cells generating a pool of tumor-associated antigens that may be
taken-up by antigen-presenting cells such as dendritic cells and lead to T
lymphocyte activation. Infection with WT VSV or glycoprotein (G) mutants

induces a strong CD8+ cytotoxic T lymphocyte (CTL) response against a
surrogate non-self antigen (gp33) correlating with their ability to limit tumor
growth (left panel). In contrast, the matrix mutant of VSV (MM51R), although
inefficient at inducing gp33-specific CTLs, is highly effective at slowing down
tumor progression, likely through its capacity to induce the upregulation of
MHC-I surface expression on cancer cells allowing for the induction of a
broader CTL response (right panel). CTLs, cytotoxic T lymphocytes; DC,
dendritic cells; MDSC, myeloid-derived suppressor cell; MHC-I, major
histocompatibility complex class I; NK, natural killer; VSV, vesicular stomatitis
virus.

cells. Strikingly, B16 infection with VSV M
mutant induced the upregulation of sur-
face MHC-I both in vitro and in vivo, a
phenomenon that was not observed for
WT VSV of the G mutants (8). The matrix
protein of VSV was previously shown to
alter trafficking of a molecule structurally
similar to MHC-I, namely CD1d (9, 10).
This leads to inhibition of antigen pre-
sentation to natural killer T (NKT) cells
(11). Thus, VSV matrix protein could
participate in the retention of MHC-
I molecules within infected cells while
the mutated protein in MM51R may lack
this ability. Thus, surface MHC-I upreg-
ulation following MM51R treatment likely
explains the significantly improved CD8+

T cell-dependent survival despite the
poor gp33-specific CTL response induced
by this mutant. This may subsequently
lead to presentation of a broader pool
of B16 TA proportionally reducing the
response against gp33 (see Figure 1 for
model).

In a recent study, Pedersen et al.
compared vaccine-induced CD8+ T cell
responses directed against self and non-
self-TA and showed that vaccination with

adenoviral vectors encoding endogenous
TA had little or no effect on the growth
of B16 melanomas whereas vaccination
with a similar vector construct express-
ing a surrogate non-self-TA induced effi-
cient tumor control (12). Although vacci-
nation against both self and non-self-TA
induced comparable CD8+ T cell responses
in terms of cell numbers and effector func-
tions, CTLs directed against self-TA were
of lower functional avidity. These results
are in agreement with our study and pro-
vide a potential mechanism explaining why
T cell responses against self and non-
self-TA are different and might not be
induced at proportional levels during OV
therapy.

Taken together, these results highlight
a considerable limitation of many exper-
imental systems used to assess antitu-
mor immunity and warrant caution when
extrapolating responses against surrogate
TA to the overall antitumoral immune
response. This may prove critical for the
development of novel or improved OV,
which may be biased by incorrectly esti-
mating immune response correlates using
such experimental systems. Therefore,

great efforts will need to be made to develop
improved methods for analyzing the anti-
tumoral immune response induced by OVs
against a broader array of TA in order
to better appreciate their full therapeutic
potential.
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For the past 150 years cancer immunotherapy has been largely a theoretical hope that
recently has begun to show potential as a highly impactful treatment for various cancers.
In particular, the identification and targeting of immune checkpoints have given rise to
exciting data suggesting that this strategy has the potential to activate sustained antitu-
mor immunity. It is likely that this approach, like other anti-cancer strategies before it, will
benefit from co-administration with an additional therapeutic and that it is this combination
therapy that may generate the greatest clinical outcome for the patient. In this regard,
oncolytic viruses are a therapeutic moiety that is well suited to deliver and augment these
immune-modulating therapies in a highly targeted and economically advantageous way
over current treatment. In this review, we discuss the blockade of immune checkpoints,
how oncolytic viruses complement and extend these therapies, and speculate on how this
combination will uniquely impact the future of cancer immunotherapy.

Keywords: oncolytic virus, cancer immunotherapy, immune-checkpoint inhibitors, CTLA-4, PD1, PDL1, PDL2,
blockade of checkpoint inhibitors

INTRODUCTION
Tumors are difficult to treat and in many instances lethal. The
treatment challenge is not surprising as they are genetically unsta-
ble and complex biological systems with an ability to adapt to
and thrive in often harsh and changing environments. Further-
more, this plasticity increases the probability that subpopulations
will acquire resistance to any one therapy. Thus one could argue
that a disease with such a complex etiology must be met with
an equally complex therapeutic approach. Appropriately, oncol-
ogists have for some time combined chemotherapy, radiation
and surgery and complemented these strategies with more tar-
geted approaches such as tumor selective antibodies and/or small
molecule kinase inhibitors (1). More recently, two alternative ther-
apeutic approaches, cancer immunotherapy and oncolytic viruses,
have begun to show promise that should further complement the
oncologist’s repertoire of anti-cancer agents.

The area of cancer immunotherapy has had a long and complex
history (2, 3). The idea that a patient’s own immune system could
remove a tumor in much the same way it so efficiently removes
invading microbes has been around for more than a century.
Through the years, however, this concept of immunosurveillance
has fallen in and out of favor perhaps appropriately given the
complex and dynamic role, it is now believed to play in cancer,
acting anywhere from anti to pro-tumorigenic (4–6). Research is
beginning to elucidate the mechanisms by which tumors evade
the immune system and in some instances how tumors use it to
their advantage. From this research several promising immune-
checkpoint inhibitor targets that are now translating into exciting
clinical trial results have emerged (7–9).

Like cancer immunotherapy, the concept of oncolytic viruses
is not new dating back to at least the beginning of the twen-
tieth century when it was observed that on occasion tumor

regression would follow a viral infection (10, 11). Although over
100 years have passed since these initial observations, the idea of
using a replicating virus to selectively infect and kill tumor cells
remains understandably appealing. Theoretically, either naturally
or through genetic engineering, such an agent would spare normal
neighboring cells while killing cancer cells by viral lysis. Further-
more, the progeny released from the lysed cancer cells would result
in a self-perpetuating and amplifying therapy. Adding to their
appeal is the ability of such agents to deliver exogenous genetic
material whose product or products could augment the oncolytic
viral treatment (12–14). Despite their theoretical promise, the
reality is that oncolytic viruses have had limited clinical success
as monotherapies perhaps due to an imbalanced focus on safety
over potency. Recently however, there are several late-stage clin-
ical trials showing promise which may eventually lead to clinical
acceptance (15, 16).

Here, we suggest merging immune-checkpoint blockers with
oncolytic viruses. We will discuss not only how these approaches
could complement one another biologically for increased thera-
peutic benefit, but also how they may represent a unique opportu-
nity to employ alternative biological formats not normally utilized
commercially (e.g., Fabs, scFv) to increase both the safety and ther-
apeutic profile of these agents. Finally we will touch upon how,
together, these attributes might translate into a more economi-
cally appealing and clinically active therapy resulting in a truly
new and disruptive treatment for malignancies.

CANCER IMMUNOTHERAPY-BLOCKADE OF IMMUNE
CHECKPOINTS
Immunotherapy works to direct the extensive repertoire of the
host immune system to fight cancer. This approach strives to stim-
ulate tumor suppression by (a) boosting the patient’s immune
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system, (b) decreasing the cancer-induced immunosuppression,
and/or (c) increasing the immunogenicity of the tumor itself. If
the immune system’s ability to rapidly respond to and clear invad-
ing microorganisms could be extended to malignant cells then
a powerful therapeutic may be realized. Such an approach may
hold greater potential than current treatment approaches as it may
prove to be more potent, benefit many more cancer types, offer
long-lasting protection against the disease, and come with fewer
off-target effects. Advances in cellular and molecular immunol-
ogy have provided enormous insight into the inter-play between
tumors and immune cells and from this research have come strate-
gies by which the immune system might be harnessed to fight
cancer (7).

The blockade of immune checkpoints is a more recent approach
taken to decrease cancer-induced immunosuppression. Immune
checkpoints refer to a number of inhibitory pathways that play
crucial roles in maintaining self-tolerance and immune homeosta-
sis. Their function is to down-regulate T-cell signaling in order
to prevent uncontrolled T-cell proliferation thereby protecting
tissues from auto-immune damage while maintaining tolerance
to self-antigens. It is becoming increasingly clear that tumors
commandeer certain immune-checkpoint pathways particularly
against T cells that are specific for tumor antigens. Preclinical and
clinical data have demonstrated that this is a major mechanism
utilized by the tumor to evade the immune system. If this could
be reversed, the resulting amplification of T cells and their activity
would be highly beneficial to the patient given the central role T
cells play in cell-mediated immunity. The immune checkpoints are
controlled by ligand–receptor interactions, which can be readily
blocked by antibodies or disrupted by recombinant forms of lig-
ands or receptors making them appealing therapeutic targets. For a
list of immune-checkpoint targeting antibodies that are currently
in clinical trial see Table 1.

The inhibitory receptor, Cytotoxic T-lymphocyte-associated
antigen 4 (CTLA-4), was the first checkpoint receptor to be exten-
sively and successfully pursued as an anti-cancer target (32). The
primary function of CTLA-4 is to regulate the magnitude of T-
cell activation. It is expressed solely on T cells where it offsets the
actions of CD28, a T-cell co-stimulatory receptor. Because CTLA-
4 has a higher affinity for the CD28 ligands B7.1 and B7.2 it,
in effect, out-competes CD28 for ligand binding resulting in an
attenuated T-cell response (33–37). The lethal systemic immune
hyperactivation phenotype of Ctla4-knockout mice clearly shows
the importance of CTLA-4 and the need to keep T cells in check
(38, 39). In 2011, an antibody against CTLA-4 (ipilimumab) was
given FDA approval for the treatment of metastatic melanoma (20,
40–42). In a pivotal phase III randomized three-arm clinical trial,
melanoma patients were treated with a glycoprotein 100 (gp100)
peptide vaccine alone, ipilimumab alone, or the gp100 peptide and
ipilimumab. Both ipilimumab groups demonstrated an increased
survival of 3.5 months compared with the group receiving the
gp100 peptide alone. Moreover, long-term survival was greatly
increased with 18% of patients receiving ipilimumab surviving
for greater than 2 years as compared with only 5% for the gp100
peptide alone cohort (17). Although ipilimumab treatment was
relatively brief, spanning only 3 months, the finding of long-term
progression-free survival supports the idea that immune-based

Table 1 |The most advanced clinically evaluated immune-checkpoint

blocking antibodies.

Target Antibody in

development

Current clinical status Reference

CTLA-4 Ipilimumab

(MDX-010)

Approved for melanoma 2012.

Multiple cancers (phase I, II, III)

(17–19)

Tremelimumab

(CP-675,206)

Multiple cancers (phase I, II) (20–22)

PD1 Nivolumab

(BMS-936558

or MDX1106)

Multiple cancers (phase I, II)

Melanoma (recruiting phase III)

(23–25)

CT-011 Multiple cancers (phase I, II) (26, 27)

MK-3475 Multiple cancers (phase I, II, III) (28, 29)

PDL1 MDX-1105

(BMS-936559)

Multiple cancers (phase I) (29)

MPDL3280A Multiple cancers (phase I, II) (30)

MSB0010718C Multiple cancers (phase I)

PDL2 rHIgM12B7 Melanoma (phase I)

B7-H3 MGA271 Multiple cancers (phase I) (31)

Melanoma (phase I)

LAG3 BMS-986016 Multiple cancers (phase I)

Above trial information from ClinicalTrials.gov.

therapies may actually result in a reprogramed immune system
which can confer long-term antitumor immunity. Clinical tri-
als are on-going evaluating the use of anti CTLA-4 antibodies
in other cancer indications including lung, colorectal, renal, and
ovarian (43).

The immune-checkpoint receptor, programed cell death 1
(PD1) and its ligands PDL1 and PLD2, are also emerging as
promising targets. PD1 like CTLA-4 plays a role in regulating
and maintaining the balance between T-cell activation and tol-
erance (44, 45). However, unlike CTLA-4, PD1 is more broadly
expressed and can be found on other activated non-T-lymphocyte
subsets including B cells and natural killer (NK) cells. Additionally
while CTLA-4 primarily regulates T-cell activation, PD1 princi-
pally controls T-cell activity (46). The ligands PDL1 and PDL2 are
commonly upregulated on the surface of many different human
tumors with PDL1 being the predominant PD1 ligand on solid
tumors. High expression levels of PDL1 have been shown on
melanoma, lung, ovarian, and other human cancers (47, 48). PDL1
is also expressed on myeloid cells in the tumor microenviron-
ment. Pdl, Pdl1, and Pdl2-knockout mice demonstrate a milder
auto-immune phenotype than Ctla4-knockout mice (49–52). Pre-
clinical studies have shown that blocking PD1 or its ligand PDL1
enhances immunity in vitro and mediates antitumor activity in
preclinical models (53–55). Although the development of PD1 tar-
geting antibodies is not as mature as that of CTLA-4 antibodies,
preliminary clinical results look encouraging. In phase I trials of an
anti-PD1 antibody (nivolumab), objective responses (complete or
partial responses) were observed in those with non-small-cell lung
cancer, melanoma, or renal-cell cancer with cumulative response
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rates ranging from 18 to 28%. Responses were durable with 20
of 31 responses lasting 1 year or more (56). In a separate phase
I trial of patients with various advanced cancers, an anti-PDL1
antibody (MDX-1105) also induced durable tumor regression
(objective response rate, 6–17%) and prolonged stabilization of
disease (12–41% at 24 week) (57).

Beyond CTLA-4 and PD1, molecular immunology has begun
to reveal additional receptors and ligands that serve an inhibitory
immune function. These include B and T-lymphocyte attenuator
(BTLA), T-cell membrane protein 3 (TIM3), Lymphocyte acti-
vation gene 3 (LAG3), adenosine A2a receptor (A2aR), and the
B7 family of inhibitory ligands (58–66). Each has been associated
with the inhibition of lymphocyte activity in preclinical models
and consequently antibodies against a number of these targets
are being actively pursued (58–66). Additionally, because multiple
inhibitory ligands and receptors contribute to the tumor’s evasion
of the immune system and appear to be non-redundant, there
remains the possibility of further enhancing antitumor immu-
nity by blocking multiple immune checkpoints. Currently several
preclinical and clinical studies are on-going testing the effects
of blocking a combination of immune checkpoints (Table 2)
(67–73). In fact, a recently published phase I study in patients
with melanoma that combined anti-CTLA-4 (ipilimumab) and
anti-PD1(nivolumab) mAbs resulted in a rapid and deep tumor
regression in a substantial proportion of patients (53% of patients
had an objective response, all with tumor reduction of 80% or
more) (74). These objective response rates exceeded the previously
reported results with either mAb alone (17, 56).

ONCOLYTIC VIRUSES AS (IMMUNO)THERAPIES
Oncolytic viruses can be RNA or DNA based and derived from
human (e.g., herpes simplex virus, adenovirus, measles virus) or
animal [e.g., vesicular stomatitis virus (VSV), Newcastle disease
virus, myxoma virus] viruses. By definition they selectively repli-
cate in, and kill cancer cells. This selectivity can be a natural
property of the virus or an engineered trait (75–81). Oncolytic
viruses can also be genetically armed to improve or generate more
tumor selective cell killing. For example, cell death can be induced
by delivering tumor-suppressors (e.g., p53, p16), pro-apoptotic
proteins (e.g., TRAIL, IL-24), or small hairpin RNA targeting cell
survival or proliferation factors (e.g., hTERT, survivin) (82–87).
Arming can also sensitize the tumor to chemo or radiotherapy
(Prodrug enzymes, NIS) (88–90).

Although direct oncolysis was envisioned as the primary desired
outcome of this therapeutic approach, research and clinical data
is supporting the assertion that these productive tumor-specific
infections can elicit additional antitumor effects. For example
there is evidence that oncolytic viral therapy can induce tumor
vasculature shutdown resulting in tumor necrosis (91, 92). Data
also suggests that because oncolytic viruses result in highly pro-
inflammatory and immunogenic events (tumor cell death and the
release of tumor-specific antigens) (93–95) they can elicit a tumor-
specific immune response (96). Additionally, viruses encode prod-
ucts that can be recognized by immune and non-immune cells
as Pathogen-associated molecular patterns (PAMPs) and can also
cause the release of Damage-associated molecular pattern mol-
ecules (DAMPs) (97). PAMPs are structural motifs which serve

Table 2 |The current clinical development of combined

immune-checkpoint targeting agents.

Stage of clinical

development

Targets Antibodies in

development

Target disease

Phase III CTLA-4/PD-1 Ipilimumab +

Nivolumab

Metastatic

melanoma

Phase II CTLA-4/PD-1 Ipilimumab +

Nivolumab

Metastatic

melanoma

Phase I CTLA-4/PD-1 Ipilimumab +

Nivolumab

Metastatic

renal-cell carcinoma

CTLA-4/PD-1 Ipilimumab +

Nivolumab

Malignant

melanoma

CTLA-4/PD-1 Ipilimumab +

Nivolumab

Non-small-cell lung

cancer

LAG3/PD-1 BMS-986016 +

Nivolumab

Multiple cancers

Above trial information from ClinicalTrials.gov.

as “danger” signals to the host indicating the presence of virus
that trigger host defenses. These danger signals can be structural
proteins and glycolipids but are mainly nucleic acids including
double-stranded RNA (dsRNA), viral single-stranded RNA, and
CpG DNA (98, 99). DAMPs are host nuclear or cytosolic pro-
teins with defined intracellular function that activate effector cells
from the innate immune system when they are released out-
side the cell (100). Virus-induced changes such as an increase
in pro-inflammatory cytokines and chemokines, a decrease in
immunosuppressive cytokines, and the release of PAMPs and
DAMPs at the site of the tumor may diminish or reverse the
established immunosuppressive microenvironment and initiate
antitumor immunity.

Several oncolytic virus classes are currently in late-stage clinical
trials (Table 3). The most advance of these, Talimogene laher-
parepvec (T-VEC, formerly OncoVex or JS1/ICP34.5-/ICP47-
/GM-CSF; an HSV isolate selected for its potency over laboratory
strains, it is deleted in both the ICP34.5 and ICP47 genes to further
increase viral replication and tumor cell killing, it also expresses
human GM-CSF for immune stimulation) has demonstrated some
very promising clinical data. From recently announced results of
a phase III trial in unresectable stage IIIB-IV melanoma receiv-
ing either T-VEC injected into the lesion or GM-CSF adminis-
tered subcutaneously, the overall durable response rate (DRR)
was 16.3% for T-VEC treated patients as compared to 2.1% for
GM-CSF treated individuals (101). The objective overall response
rate (ORR) was 26.4% for the T-VEC group (including 10.8%
complete responders) compared to an ORR of 5.7% and a com-
plete response rate of 0.7% in the GM-CSF alone group (101).
Importantly, in a phase II trial, tumor shrinkage was noted in
non-injected lesions, demonstrating that systemic immunity was
induced (102). In addition, and across a number of viruses, studies
have shown that both innate and adaptive immune responses are
generated following viral tumor lysis (92, 103–111). This antitu-
mor immunity is an important outcome of oncolytic viral therapy
as it would lead to the destruction of tumor cells that escaped the
initial viral lysis.
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Table 3 |The most advanced clinically evaluated oncolytic viruses.

Virus Name Cancer type Reference

Adenovirus ONYX-015 H101 SCCHN (112–114)

Glioma

Ovarian

CGTG-102 Solid tumors (115)

CG0070 Bladder (116, 117)

ICOVIR-5 Solid tumors (118–120)

ColoAd1 Colorectal (121)

Vaccinia virus GL-ONC1 Solid tumors (122–124)

JX-594 Liver tumors (125, 126)

Solid tumors IV

Herpesvirus G207 Glioma (127–129)

NV1020 Liver tumors IA (130, 131)

T-Vec Breast (132, 133)

SCCHN

Melanoma IT

Liver tumors

Reovirus Reolysin SCCHN IT (134–136)

Solid tumors IV

Measles virus MV-CEA Ovarian IP (137, 138)

MV-NIS Ovarian IP (139–141)

Glioma IT

Myeloma IV

Mesothelioma

NDV PV701 Solid tumors (142, 143)

Above trial information from ClinicalTrials.gov.

MERGING ONCOLYTIC VIRUSES AND IMMUNE-CHECKPOINT
BLOCKING
The realization that oncolytic viral therapy can itself be an
immunotherapy has in many ways reinvigorated the field and
expanded the possible approaches that can be taken to treat cancer.
Similarly, the discovery and targeting of immune checkpoints has
opened a new immuotherapeutic avenue generating very promis-
ing clinical results. The potential to combine oncolytic viruses with
a blockade of immune checkpoints is a very exciting strategy that
may be beneficial on many levels and help overcome current short-
comings associated with either approach alone. To date, there have
been only a few preclinical studies combining oncolytic viruses
and immune-checkpoint blockers (anti-CTLA-4 mAb) (144, 145).
However, results have been promising with one study showing
that replication competent VSV in combination with anti-CTLA-4
mAb resulted in the elimination of macroscopic tumor implants in
the majority of test animals, an outcome that could not be achieved
by either treatment alone (145). The study went on to show that the
response was CD4 and CD8 T-cell mediated (145). When combin-
ing these two approaches, the exact virus/checkpoint combination
will likely need to be determined empirically with many factors
including indication and immune status of patient playing a role.
However, in general an argument can be made that the greatest
synergies between these strategies would be realized by delivering

Table 4 |The benefits of using an oncolytic virus to deliver

immune-checkpoint blockers.

Viral attribute Benefit

Safety Potency Economic

Immuno-stimulatory x

Targeted delivery x x x

Delivery of alternative Ab formats x x x

Multi-gene delivery x x x

the immune-checkpoint therapy directly from the oncolytic virus
(Table 4).

INCREASED PRIMING AND GREATER IMMUNE POTENCY
Preclinical studies have shown that in mice bearing partially
immunogenic tumors, treatment with CTLA-4 antibodies could
elicit significant antitumor responses whereas poorly immuno-
genic tumors were refractory to anti-CTLA-4 administration (32,
146). However, these refractory tumors could be made more
responsive by administering granulocyte-macrophage colony-
stimulating factor (GM-CSF) in combination with the anti-
CTLA-4 (146). These findings suggested that a CTLA-4 block-
ade enhances an already existing endogenous antitumor response
resulting in tumor regression. But when the tumor is poorly
immunogenic and does not induce a robust enough immune
response the anti-immune checkpoint is not as efficacious. Sim-
ilar results have been found in the clinic where analysis of
pre-treatment tumors indicated that patients with high baseline
expression levels of immune-related genes were more likely to
respond favorably to ipilimumab (147). Just as the GM-CSF is
used to help boost the initial innate immune response, oncolytic
viruses could have a similar effect as it is clear that the oncolytic
viral infection has pro-inflammatory properties, eliciting both an
innate and adaptive immune response.

ENHANCED SAFETY AND EFFICACY BY EXPRESSING
IMMUNE-CHECKPOINT BLOCKERS FROM THE ONCOLYTIC VIRUS
The oncolytic virus and the immune-checkpoint blocker could
be administered as two separate therapeutics but one of the most
appealing aspects of the oncolytic viral approach is that it is local-
ized to the tumor. This localization confers several advantages
for both safety and potency. Clinical and preclinical data strongly
suggest that a blockade of immune checkpoints is a very potent
antitumor therapy. However, there are, in some cases, unwanted
side effects. Given the importance of the immune checkpoints in
maintaining immune homeostasis there is concern that a blockade
of these receptors and/or ligands could lead to a break in immune
self-tolerance resulting in autoimmune/autoinflammatory side
effects (148). Blocking CTLA-4 as a therapy was initially ques-
tioned given its crucial role in the regulation of T-cell ampli-
fication. The phenotype of Ctla4-knockout mice also hinted at
the possibility of a high number of unwanted immune-related
effects. In the pivotal phase III trial of ipilimumab, Grade 3 or
Grade 4 immune-related adverse events (including rash, colitis,
hepatitis, and endocrinopathies) occurred in 10–15% of patients
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treated with the anti-CTLA-4 antibody as compared to 3% of those
treated with gp100 alone. During this trial, there were 14 deaths
related to ipilimumab (2.1%), 7 of which were due to immune-
related adverse events (17). Delivering the immune-checkpoint
blocker (Ab,Ab derivative or modified ligand or receptor) from the
oncolytic virus would localize the treatment and mitigate the risks
inherent in systemic delivery. In preclinical studies of a replica-
tion competent adenovirus armed with the coding region of a full
length CTLA-4 antibody a 43-fold higher antibody concentration
in the tumor as compared to the plasma was noted (144). More-
over, plasma levels in treated mice remained below the reported
human safety threshold (144).

It is also possible to make expression of these immune-
checkpoint blockers contingent upon a productive viral infection
(i.e., selective replication that is restricted to the tumor cell) fur-
ther increasing the safety of the therapeutic. This can be done
by utilizing endogenous late viral promoters that are dependent
upon the uptake and replication within the target tumor cell to
express exogenous genes and has been described for human ade-
novirus (12, 13, 149). In the normal cell, this expression would be
blocked as replication would not be achieved consequently con-
fining expression to target cancer cells. Potency, like safety also
benefits from this localized delivery, concentrating the therapeutic
to the tumor and its microenvironment. Accumulation of virally
delivered transgenes (including reporter genes, prodrug convert-
ing enzyme, anti-angiogenic factors, immunostimulatory factors)
at the site of the infected tumor has been shown in numerous stud-
ies (97, 115, 132, 150–153). For example, PET imaging experiments
have dramatically demonstrated the tumor localized expression of
thymide kinase following infection with an oncolytic virus armed
with the enzyme (154, 155). This accumulation was translated into
efficacy upon administration of the prodrug Ganciclovir (154).
Additionally, the self-perpetuating nature of an oncolytic infection
results in sustained transgene expression (156) that will continue
until tumor regression is complete and the virus is eliminated from
the tumor site by the immune system (157). Therefore the amount
of material produced would be directly related, in theory, to the
tumor load, personalizing the respective dose to the individual
and their tumor burden. It is also appealing to consider that this
may eliminate peaks and valleys associated with the intravenous
administration of the therapeutic as the virus expressed mole-
cule would be generated on a more constant basis that might also
benefit the patient.

ENABLEMENT OF ALTERNATIVE THERAPEUTICS
Although viruses can be used to deliver an intact IgG, their focused
delivery to the tumor site and their self-perpetuating nature allow
for the use of alternative antibody formats such as diabodies,
Fabs, and scFvs (144, 158). This could have a profound impact
on any mAb-based antitumor therapeutic particulary immune-
checkpoint blockers. From a safety standpoint, the use of these
alternative Ab formats could be beneficial because IgGs, due to
their size (150 kDa), have prolonged serum half-lives (>10 days)
and are therefore more likely to have associated toxicities. If these
alternative formats were to escape the tumor site their faster clear-
ance reduces the risk for off-target events. For immune-checkpoint
blockers, this could help to decrease the immune-related adverse

events that have been associated with this therapeutic approach
(148, 159). Additionally, smaller formats would potentially pen-
etrate the tumor to a greater extent than a full length antibody.
Studies have shown that an intact IgG molecule takes 54 h to
move 1 mm into a solid tumor, whereas a Fab fragment travels
the same distance in only 16 h (160). This enhanced penetration
could increase overall efficacy. The diabodies in particular have
been shown to provide rapid tissue penetration, high target reten-
tion, and rapid blood clearance presumably as a result of their
multi-valent nature and intermediate size (55 kDa) (161). The use
of alternative antibody formats also opens up the possibility of
delivering multiple therapies from one oncolytic virus. This may
have broad implications for the blockade of immune-checkpoint
approach as studies are beginning to show that targeting multiple
checkpoints may be more efficacious (67–71, 74). Without local-
ized delivery, the use of these alternative formats would likely not
be feasible as they would clear too rapidly (on the order of a few
hours or minutes dependent upon the format) (162). This may
necessitate the need for higher input doses or multiple injections
of the Ab, which could potentially be cost prohibitive. Having
localized delivery via the virus would avoid the need for full length
Abs and make the smaller, faster-clearing formats viable therapies
that are still capable of efficacious outcomes.

ECONOMICALLY ADVANTAGEOUS
Expression of immune-checkpoint blockers from an Oncolytic
virus is economically appealing. If one assumes that the initial
promising results seen with combination checkpoint blockers are
maintained in larger phase II and III trials, the delivery of a combi-
nation of blockers from a virus would eliminate the need to com-
mercially manufacture the molecules separately. This approach
utilizes a single entity (the virus) to exploit the natural machinery
of the virus and the tumor cell to continuously produce the thera-
peutic agents so long as the tumor cells continue to exist. Moreover,
it has been demonstrated that multiple exogenous proteins can be
delivered from a single virus (149). Due to their tumor selec-
tive localization, as mentioned previously, they would not need to
express a full length antibody, making this approach potentially
attractive and novel for delivering multiple-checkpoint inhibitors
to the site. In addition, this therapy would have the potential added
benefit of increased immunogenicity and/or direct tumor cell lysis
offered by the oncolytic virus. Thus expressing a single biologi-
cal agent with the ability to deliver multiple-checkpoint inhibitors
that itself has anti-cancer activity is an interesting possibility. How-
ever, it should be kept in mind that the commercial manufacture
of oncolytic viruses is behind that of antibodies and thus may
be only a true economic advantage in the future with additional
optimization.

CONCLUSION
In the fight against cancer, no single magic bullet has emerged.
Despite several improvements in diagnostics and therapies nearly
7 million cancer-related deaths still occur every year worldwide
(163). One reason is that cancer is complex and can evolve to
thrive under harsh conditions and to evade the body’s natural
defenses. Two promising therapeutic strategies have emerged; the
blockade of immune checkpoints and oncolytic viruses and we
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Table 5 |The pros and cons of oncolytic viral, immune-checkpoint inhibition and combination therapy.

Therapeutic approach Pros Cons

Oncolytic virus Selective for cancer cells Selectivity is potentially cancer-type dependent

Self-amplifying therapy Suboptimal potency as a monotherapy

Tumor burden dependent Pro-inflammatory/immunogenic

Pro-inflammatory/immunogenic Manufacturing challenges

Endogenous gene delivery

Immune-checkpoint inhibitor Potential to be non-cancer-type specific Potential for adverse immunological events

Potent/lasting tumor immunity Dependent on immune status of patient

Amendable to current biologics (antibodies,

recombinant ligands, receptors)

Oncolytic virus + immune-checkpoint inhibitor Selective for cancer cells Selectivity is potentially cancer-type dependent

Self-amplifying therapy Manufacturing challenges

Tumor burden dependent

Pro-inflammatory/immunogenic

Endogenous gene delivery

Potent/lasting tumor immunity

believe that an argument can be made that the greatest poten-
tial for both of these therapies lies in the synergies that would
be realized by delivering the immune-checkpoint therapy directly
from the oncolytic virus (Table 5). We look forward to the con-
tinued evolution of these agents and to the exciting years ahead
as we begin to see these agents come forward pre-clinically and
clinically.
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This paper focuses on oncolytic Newcastle disease virus (NDV). This paper summarizes (i)
the peculiarities of this virus as an anti-cancer and immune stimulatory agent and (ii) the
approaches to further harness this virus as a vector to combat cancer. Special emphasis
is given on combining virus therapy with cell therapy and on improving tumor targeting.
The review will include some of the authors work on NDV, bi-specific antibodies, and cell
therapy as building blocks for a new perspective of multimodal cancer therapy. The broad
anti-tumor immune reactivation includes innate and adaptive, tumor antigen (TA) specific
and TA independent activities
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INTRODUCTION
Paramyxoviruses are a family of viruses that infect a diverse
range of hosts. Animal pathogens, such as Newcastle disease virus
(NDV), SV-5, and Sendai virus (SV), have been major subjects for
basic research by virologists, immunologists, and molecular biol-
ogists. Previously, genetic manipulation of paramyxoviruses was
not possible because the genome is not infectious alone and RNA
recombination is essentially non-existent. During the last 15 years,
methods of producing infectious paramyxoviruses from c-DNA
clones (reverse genetics) have been developed. This review will
focus on NDV, an avian paramyxovirus, because this has a num-
ber of very interesting anti-neoplastic and immune stimulating
properties in mammalian cells, including human being, because it
has a high safety profile for clinical application and because it can
be harnessed by therapeutic transgenes.

NEWCASTLE DISEASE VIRUS, TRANSGENES, AND
BI-SPECIFIC ANTIBODIES
ONCOLYTIC PROPERTIES OF NATURAL STRAINS OF NDV
Vaccine strains of paramyxoviruses such as mumps virus (MuV),
measles virus (MV), and NDV efficiently infect and kill cancer cells
and are consequently being investigated as novel cancer therapies
(oncolytic virotherapy) (1). NDV wildtype (wt NDV) virus shows
naturally tumor selective replication behavior (2). An abortive
replication cycle by lentogenic strains leads eventually to tumor cell
death. A lytic replication cycle by mesogenic or velogenic strains
leads to fast tumor cell death (oncolysis) and further spread of the
virus in the tumor tissue. The strong interferon (IFN) response
of normal cells (2) prevents virus replication and cell death thus
explaining the high safety record of NDV in cancer patients (3).

There are additional properties that make NDV a particularly
interesting anti-neoplastic agent. It replicates and destroys in par-
ticular cancer cells that are resistant to certain types of chemother-
apy (4–6) and apoptosis-resistant tumor cells from hypoxic tumor

tissue (7). The oncogenic protein Rac1 was reported as a link
between tumorigenesis and sensitivity of cells to oncolytic NDV
(8). Furthermore, NDV triggers autophagy in glioma cells (9) and
promotes Bax redistribution to mitochondria and cell death in
HeLa cells (10). A time-course analysis revealed that NDV-induced
apoptosis involved an early extrinsic pathway with TRAIL expres-
sion (peak at 24 h p.i.) and a later intrinsic mitochondrial pathway
(peak at 48 h p.i.) (11).

NDV was reported to repress the activation of human hepatic
stellate cells and reverse the development of hepatic fibrosis in
mice (12). Liver fibrosis is a major health problem and the 12th
most common cause of death in the United States (13).

HARNESSING NDV BY TRANSGENES AND BI-SPECIFIC ANTIBODIES
Recombinant NDV strains (rNDV) could be harnessed by trans-
genes to show enhanced oncolytic potential. This was achieved
by F gene mutations (14, 15) or by addition of the NS1 (16) or
Apoptin (17) gene. It could also be harnessed by genes coding for
cytokines, such as IL-2 (18), GM-CSF (19), IL-15 (20), or IFN-γ
(21) to express enhanced immune stimulatory properties. Other
transgenes conferred resistance to complement (22). NDV was also
capable of incorporating two transgenes, one coding for the light
chain and the other for the heavy chain of a monoclonal antibody
interacting with angiogenesis (23). The transfer of a gene coding
for a tumor antigen (TA) created a vector with which the immune
response could be targeted to a specific TA in order to compete with
the usually stronger response to viral antigens (VA) (24). A recom-
binant oncolytic MV (MV-AC133) could be targeted to CD133+

cancer-initiating cells causing their specific elimination (25).
To augment the immune stimulatory properties of NDV

infected tumor cells, another elegant approach was successful. It
consists of the attachment of single-chain variable fragment (scFv)
bi-specific antibodies (bsAbs). These attach with one arm to a VA
and with the other arm to a target on immune cells. In case of
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T-cells, such targets were CD3 (26), CD25 (27), and CD28 (28).
The VAs of NDV were either HN or F. These served as universal
anchor molecules through which T-cell co-stimulatory molecules
could be attached to any type of tumor cell infectable by NDV (29).

In the following paragraph, we will present a perspective how
such bsAbs can be further used in a multimodal approach for
improvements of cancer therapy.

FUTURE PERSPECTIVE: COMBINING NDV WITH bsAbs AND
WITH ADOPTIVE CELLULAR THERAPY
TUMOR TARGETING OF NDV
A major problem with the clinical application of oncolytic viruses
is a proper targeting of tumor tissue. This can be achieved by intra-
tumoral application (30) but metastases are often not accessible
by this approach. Nevertheless, localized oncolytic virotherapy
was reported to overcome systemic tumor resistance to immune
checkpoint blockade immunotherapy (31).

Locoregional application (e.g., via the hepatic vain) was
reported to be superior to systemic tail vain inoculation (32).
Locoregional virotherapy was effective even against oncolysis-
resistant tumor cells, thus suggesting that the anti-tumor effect
was host mediated (32). Inhalation is another way of locore-
gional application. Inhalation of oncolytic NDV was applied to
33 advanced chemorefractory patients in a Phase II clinical study
in Hungary as a means to affect their lung metastases (33).
Virus inoculation into body cavities in case of tumor ascites is
another way of locoregional application. For instance, intraperi-
toneal NDV virotherapy was effective against peritoneal carcino-
matosis from human gastric cancer in a xenograft model (34)
and intrapleural NDV virotherapy induced sustained remission of
malignant pleural mesothelioma in an orthotopic model (14).

Upon systemic administration of NDV, its binding to normal
cells could prevent it from reaching the tumor tissue and could
cause undesired side effects. Since efficient distribution at the
tumor site may be a very critical parameter for tumor selective
gene delivery and for anti-tumor efficacy of oncolytic virotherapy
(35), we have developed adaptor molecules that redirect the virus
to tumor tissue (36). The targeting molecule used, anti-HN-IL-2,
contains a scFv antibody cloned from a neutralizing HN specific
hybridoma linked to the human gene for the cytokine IL-2. Selec-
tive virus entry was observed in vitro in a mixture of IL-2 receptor
positive and negative human tumor cells (37). Retargeted virus
infection of tumor cells required specific binding via the bi-specific
fusion protein and membrane fusion via the viral F-protein. After
systemic virus inoculation into tumor-bearing mice, the modifi-
cation of NDV by the adaptor protein did not compromise the
efficiency of gene delivery into target positive tumors but greatly
reduced viral gene expression in target negative tumors and in
normal tissues thereby reducing side effects (38).

UNIVERSAL ACTIVATION OF CANCER PATIENTS T-CELLS (NAÏVE AND
MEMORY) VIA TUMOR CELL-BOUND BI-SPECIFIC ANTIBODIES
Infection of tumor cells by NDV leads to increase in tumor
cell immunogenicity (39). A prospective, randomized, controlled
clinical study of post-operative immunization with the autol-
ogous tumor vaccine ATV-NDV revealed evidence for clini-
cal effectivity and long-term survival for colon cancer patients

(40). Further augmentation of T-cell stimulatory capacity of
the ATV-NDV vaccine was achieved by attachment of specifi-
cally designed bsAbs binding to viral HN or F on the infected
tumor cells and to CD3 or CD28 on T-cells (41). The opti-
mized vaccine ATV-NDV/bsHNxCD3/bsHNxCD28 appeared to
be able to revert unresponsiveness of partially anergized TA-
specific T-cells (42). It was also capable of de novo activation
of anti-tumor activity from naïve T-cells, independent of TA
recognition (Figure 1A) (42). The strongest potentiation of the
T-cell stimulatory capacity of the ATV-NDV vaccine was observed
upon attachment of a suboptimal amount of bsHNCD3 together

FIGURE 1 | Activation of naïve humanT-cells by co-incubation with
NDV infected irradiated tumor cells modified with bi-specific or
tri-specific antibodies. (A) Time course of the induction of T-cell activation
and proliferation by a stimulatory cell (NDV infected and y-irradiated tumor
cells) optimized for co-stimulation by attachment of the bi-specific fusion
proteins anti-CD3 (anti-HNxanti-CD3) and anti-CD28 (anti-HNxantiCD28).
Purified and CFSE-labeled naïve human T-cells were cocultivated for 5 or
7 days with the stimulatory cells. The CFSE signal intensities were
compared with unstimulated cells by FACS analysis. We also followed by
the FACS analysis the expression of the IL-2 receptor α chain (CD25) and of
the memory marker CD45RO. (B) Diagram of the components of a tumor
vaccine infected by NDV and modified by a bi-specific antibody
(anti-HNxanti-CD3, suboptimal amount for signal 1) and a tri-specific
immunocytokine (anti-HNxIL-2xanti-CD28, for delivery of two T-cell
co-stimulatory signals via CD28 and CD25).
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with the tri-specific (ts) fusion protein tsHNxIL-2xCD28. The lat-
ter delivers two co-stimulatory signals to T-cells, one via CD28
and the other via CD25 (26). Figure 1B illustrates the modu-
lar concept of the tumor vaccine infected by NDV and modified
by bsAbs.

We suggest to use T-cell activation one universal GMP tumor
cell line for patients. This will be modified by infection with NDV
and by attachment of the above bsAbs and tsAbs. This universal
T-cell stimulatory cell can be applied for non-specific activation
of anti-tumor activity of T-cells from any type of cancer patient
and is independent from a TA.

PROGRAMING OF CANCER PATIENTS DENDRITIC CELLS TOWARD DC1
VIA INFECTION BY NDV
We reported on polarization of human monocyte-derived DCs
to DC1 by in vitro stimulation with NDV (43). Also, murine
DCs upon infection by NDV differentiate into the immunogenic
phenotype DC1 characterized by secretion of pro-inflammatory
cytokines, in particular IL-12 and IFN-α and -β (44). Two receptor-
initiated signaling cascades were involved: the first one is induced
by triggering and upregulation of the intra-cellular cytoplas-
mic receptor RIG-1 upon recognition of viral non-capped RNA
as ligand (45). The second signal cascade involves cell-surface
expressed type I IFN receptor (IFNAR), which initiates a feed-
back loop cell activation upon interaction with extra-cellular type
I IFN as ligand (31, 44). RIG-1/RNA ligand interaction not only
activates type I IFN, but also induces inflammasome activation
for IL-1β production (46). Type I IFN and IL-12 are critical
mediators of cross-priming and Th1 polarization of CD8 T-cell
responses (47) while IL-1β is critical for Th1 polarization of CD4
T-cells (48).

DCs can also be pulsed with NDV oncolysate. Such cells
were superior in stimulating patients T-cells in ELISPOT assays
compared to DCs pulsed with tumor lysate without NDV (49).

GRAFTING OF AUTOLOGOUS ACTIVATED T-CELLS AND DC1 BACK TO
THE PATIENT
Our proposal for a multimodal cancer therapy involves the transfer
of immune T-cells and of DC1 as professional antigen-presenting
cells back to the patient. Activation of the tumor microenviron-
ment by low dose irradiation (LDI) (50) or by local hyperthermia
(LHT) (51) should improve tumor targeting of virus, T-cells,
and DCs (52). Tumor destruction by the activated T-cells should
release TAs, which would be taken up by co-injected DC1 to be
then cross-presented to naïve or memory T-cells.

HITCHHIKING OF NDV ON ACTIVATED T-CELLS: COMBINING CELL
THERAPY WITH VIRUS THERAPY
One way of further enhancement of the efficacy of this multimodal
therapy concept consists in the loading of the activated T-cells
with oncolytic NDV before grafting the cells back to the patient.
In a tumor neutralization assay in vitro, monolayers of human
tumor cells could be completely and effectively destroyed by the
addition of polyclonally activated human T-cells loaded with
oncolytic NDV (53). In this process, synergistic effects between
cytotoxic T-cells and oncolytic virus in the tumor contact zone
were apparent (53).

If activated T-cells are not available, a multimodal therapy could
also consist of the combination of LHT, systemic application of
oncolytic NDV and of DC1. Such approach resulted in long-term
remission of metastatic prostate cancer (52).

TARGETING AN INTRODUCED VIRAL ANTIGEN IN TUMOR TISSUE BY
GRAFTED T-CELLS AND DCs VIA CELL-BOUND TRI-SPECIFIC
ANTIBODIES
Table 1 summarizes five steps that are essential for a new adoptive
cellular cancer therapy strategy. Oncolytic NDV can be introduced
into tumor tissue of the patient by various means as discussed
before. The patients T-cells and DCs would be activated and polar-
ized also as discussed before. The tsAbs have three different binding
sites, each of which is only monovalent. To increase the avidity and
stability of the cell surface attached ts fusion protein, we propose
that two of the binding sites should bind to well-defined targets
on T-cells or DCs. The addendum of the table lists some of the
potential targets.

This approach is only meant as a perspective for the future
and has not been tested experimentally or clinically. There should
be a proper timing between virus-pretargeting of tumor tissue
(including metastases) and the cell therapy. We envisage that 24–
48 h after virus inoculation should be a good time period for
grafting the cells for a VA targeted therapy. Excessive virus should

Table 1 | Adoptive cellular cancer therapy: targeting a viral antigen

(e.g., HN) by graftedT-cells and DCs via cell-bound tri-specific

antibodies.

Step 1 Pre-conditioning of the tumor microenvironment in the patient

Step 2 Local or systemic application of oncolytic NDV for introduction

of the viral target antigen HN within the tumor tissue

Step 3 Universal activation ex vivo of the patients T-cells and loading

with tri-specific antibodies thus exposing multiple anti-HN

binding sites

Step 4 Generation of polarized DCs from the patient via infection by

NDV or pulsing with NDV oncolysate; loading of the DC1 with

tri-specific antibodies thus exposing multiple anti-HN binding

sites

Step 5 Grafting the T-cells and/or DCs to the pre-conditioned patient

Addendum:The tri-specific single-chain antibodies should bind with two

arms to targets on T cells or targets on DCs and expose the third arm

anti-HN

PotentialT-cell targets Potential DC targets

CD3 CD11c

CD28 CD205

CD25 CD40

CD2 CD80

CD44 CD16a

CD45 CD83

CD69 CD116

CXCR4 IFNAR

CD107a CD119
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be cleared by then and the tumor tissue should be infected and
expressing cell-bound VAs.

CONCLUDING REMARKS
We propose a multimodal approach for effective cancer therapy
because previous monomodal approaches of chemo- or radio-
therapy faced problems of tumor resistance mechanisms. Specific
immunotherapies targeted to specific TA faced similar problems of
tumor escape and resistance mechanism. There may be a long way
to get a multimodal therapy such as the one proposed and estab-
lished but we believe it is important to propose a viable perspective
for future orientation. Oncolytic viruses, T-cells, dendritic cells,
and bi-specific antibodies are all promising biologics whose intel-
ligent combination holds a lot of promise for future cancer therapy.
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Surgical resection of solid primary malignancies is a mainstay of therapy for cancer patients.
Despite being the most effective treatment for these tumors, cancer surgery has been
associated with impaired metastatic clearance due to immunosuppression. In preclinical
surgery models and human cancer patients, we and others have demonstrated a profound
suppression of both natural killer (NK) andT cell function in the postoperative period and this
plays a major role in the enhanced development of metastases following surgery. Oncolytic
viruses (OV) were originally designed to selectively infect and replicate in tumors, with the
primary objective of directly lysing cancer cells. It is becoming increasingly clear, however,
that OV infection results in a profound inflammatory reaction within the tumor, initiating
innate and adaptive immune responses against it that is critical for its therapeutic bene-
fit. This anti-tumor immunity appears to be mediated predominantly by NK and cytotoxic
T cells. In preclinical models, we found that preoperative OV prevents postoperative NK
cell dysfunction and attenuates tumor dissemination. Due to theoretical safety concerns of
administering live virus prior to surgery in cancer patients, we characterized safe, attenu-
ated versions of OV, and viral vaccines that could stimulate NK cells and reduce metastases
when administered in the perioperative period. In cancer patients, we observed that in vivo
infusion with oncolytic vaccinia virus and ex vivo stimulation with viral vaccines promote
NK cell activation.These preclinical studies provide a novel and clinically relevant setting for
OV therapy. Our challenge is to identify safe and promising OV therapies that will activate
NK andT cells in the perioperative period preventing the establishment of micrometastatic
disease in cancer patients.

Keywords: metastasis, postoperative period, oncolytic viruses, viral vaccines, cancer, perioperative immunostimu-
lation, natural killer cells, surgical stress

SURGICAL STRESS PROMOTES THE FORMATION
OF METASTASES
Surgical resection is the mainstay of therapy for most solid malig-
nancies but, even with complete resection, many patients harbor
microscopic residual disease and ultimately die of a recurrence
(1). Our group (2, 3) and others have clearly demonstrated, using
different animal and tumor models, that surgery promotes the for-
mation of metastatic disease (4–11) and the number of metastatic
deposits is directly proportional to the magnitude of surgical stress
(6, 12). In clinical studies, a complicated postoperative course
correlates with inferior cancer survival and increased incidence
of metastases (13, 14). A number of perioperative changes have
been proposed to explain the promotion of metastases forma-
tion following surgery including (1) dissemination of tumor cells
during the surgical procedure (15–20), (2) local and systemic
release of growth factors, such as vascular endothelial growth fac-
tor (VEGF) (21, 22), and (3) cellular immune suppression. The
cellular immune suppression following major surgery appears to
peak at 3 days (23) following surgery but may persist for weeks
(7, 23–25). It is hypothesized to be mediated by secretion of stress
hormones, such as glucocorticoids (26, 27), catecholamines (27–
29), and prostaglandins (26). It is characterized by both plasma
cytokine changes [a decrease in IL-2 (30), IL-12 (31) and an

increase IL-6 (27,30,32,33), IL-10 (34)] and a decrease in the num-
ber and function of circulating lymphocytes [cytotoxic T cells (35),
dendritic cells (DC) (36) and natural killer (NK) cells (2, 3, 37)].

The postoperative stress response represents a diverse set of
physiological changes that have evolved to ensure that the host
can heal following major tissue trauma. These changes, however,
involve pathways and mediators that can be exploited by cancer
cells to facilitate metastatic spread. While a number of correl-
ative studies have demonstrated an association between some of
these changes and the enhanced formation of metastases following
surgery, few mechanistic studies have been undertaken to under-
stand it. This review will focus on the importance of both innate
and adaptive postoperative cellular immune suppression, specifi-
cally NK and cytotoxic T cell postoperative dysfunction and make
the case for the use of preoperative oncolytic viruses (OV) and viral
vaccines to prevent the promotion of cancer metastases following
surgery.

SURGICAL STRESS INHIBITS NK CELL FUNCTION AND
ANTIGEN-SPECIFIC CD8+ T CELL FUNCTION
Both the innate and adaptive immune system play a significant
role in anti-tumor immunity. As integral members of the innate
immune system, NK cells are involved in the direct killing of cells
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displaying abnormalities linked to infection, malignancy, or trans-
plantation (38, 39). Immunosurveillance of the host by NK cells
for malignant cells results in direct cytotoxicity and the production
of cytokines to enhance the immune response (39).

Natural killer cell dysfunction following surgery, as measured
in a standard [51-Cr]-release assay, has been documented in both
human patients (3, 25, 40–42) and animal models (3, 5, 7, 40, 41,
43). Postoperative NK cell suppression correlates with increased
metastases in animal models of spontaneous (3, 9) and implanted
(3, 10, 11) metastases, while in human studies low NK activity
during the perioperative period is associated with a higher rate
of cancer recurrence and mortality in a number of different can-
cer types (44–46). Despite the large number of studies that have
documented postoperative NK cell dysfunction, very few studies
have thoroughly characterized and directly explored the mecha-
nism of this suppression (9, 11, 47). Our laboratory has clearly
defined a role for NK cells in the development of postopera-
tive metastases (2). Using several reproducible mouse models of
surgical stress, including B16 melanoma, CT26 colon cancer and
4T1 breast cancer, our laboratory has demonstrated a consistent
and significant (two- to fourfold) increase in the formation of
experimental and spontaneous pulmonary metastases following
surgery. In these experimental models, surgery markedly reduced
NK cell total numbers in the spleen and affected NK cell migra-
tion. Further, ex vivo and in vivo tumor cell killing by NK cells
were significantly reduced in surgically stressed mice. To estab-
lish that NK cells play the crucial mediating role in clearing tumor
metastases following surgery, we transferred surgically stressed NK
cells into NK-deficient mice (IL-2γR-knock out) and observed
enhanced lung metastases in tumor-bearing mice compared to
mice who received untreated NK cells (3). Transfer of NK cells
labeled with the NK specific marker DX5 from surgically stressed
and no surgery control donors into naive recipient mice represents
the first in vivo evidence that links surgery to the spread of cancers
via NK cells (3). In human studies, we have also confirmed that
postoperative cancer surgery patients had markedly reduced NK
cell cytotoxicity (3).

The adaptive immune system and more specifically CD8+ T
cells responses have received the majority of the attention from
the cancer immunity field. Of recent interest in our lab is the
impact of surgical stress on the development and maintenance
of an acquired T cell-mediated anti-tumor immune response. A
global reduction in T cell numbers and function post-surgery has
been documented in preclinical studies and cancer patients (35).
However, the effects of tumor-associated antigen (TAA)-specific
T cells have not been evaluated and represent a current focus of
research interest in our lab.

POSTOPERATIVE CELLULAR IMMUNE SUPPRESSION
IS REVERSIBLE
Fortunately postoperative immune suppression is reversible, so
while the postoperative period provides a window of opportunity
for cancer cells to metastasize and grow, it also provides a window
of opportunity to intervene, by supporting or further stimulating
the immune system, and, in doing so, attenuate the development of
cancer recurrences (48, 49). Based on promising preclinical results
(8, 50, 51), clinical trials of preoperative non-specific immune

stimulation with low-dose recombinant IFNα (52) or IL-2 (53–
58) have demonstrated less NK and T cell suppression following
surgery. In two randomized studies of patients undergoing resec-
tion of colorectal cancer (CRC) primary tumors (58) and hepatic
metastases (57), preoperative low-dose subcutaneous (s.c.) IL-2
was associated with an improved prognosis. In the first study, 86
CRC patients with stage II or III disease were randomized to receive
low-dose IL-2 twice a day for 3 consecutive days prior to surgery or
no preoperative treatment. At a median follow-up of 54 months,
there were significantly few recurrences in the IL-2 group (21.4
vs. 43.1%, p= 0.03) and a trend toward improved overall survival
(OS). In the second study, 50 CRC patients with Stage IV disease,
undergoing curative or palliative surgery, were randomized to the
same two treatment arms. The median progression-free survival
(PFS) and OS were significantly longer in the preoperative IL-2
group. While these studies were not designed to evaluate cancer
outcomes, a Phase II trial in 120 patients undergoing resection
for renal-cell carcinoma has demonstrated a significant improve-
ment in 5-year PFS with preoperative IL-2 (74 vs. 62%, p= 0.02)
(54). Moreover, in all of these studies, preoperative IL-2 was safe
and well tolerated with adverse events limited to pyrexia (Grade I–
III). A few other non-conventional immunomodulators have been
evaluated for their ability to boost cellular immunity in the periop-
erative period including cimetidine (59, 60), mistletoe extract (61,
62), and granulocyte colony-stimulating factor (GMCSF) (63).
Despite the paucity, the data are promising and perioperative
treatment strategies, aimed at stimulating the cellular immune
system warrants further study. As outlined in the remainder of
this review, OV are an attractive agent to reverse perioperative
immune suppression.

WHY USE PERIOPERATIVE ONCOLYTIC VIRUSES FOR
IMMUNE STIMULATION? A MULTIPRONGED APPROACH
FOR A MULTIFACTORIAL PROBLEM
Oncolytic viruses are not considered a “traditional” immunother-
apy but their multiple mechanisms of action provide several
advantages over traditional cytokine immune stimulants in the
complex postoperative period. First, the immune stimulation pro-
vided by an OV is a more “physiological” immune stimulus,
engaging and maturing DC, which in turn activates NK and T
cells. The multitude of cytokines and chemokines, stimulate the
appropriate picomolar concentration, by a systemic virus infec-
tion would be impossible to replicate even with the most carefully
designed cytokine cocktail. Second, the OV will selectively replicate
in and kill residual cancer cells, providing a direct cytolytic effect
to remaining micrometastases, but also delivering the immune
response to the tumor selectively. Finally, there is strong rationale
to hypothesize that OV could infect and replicate better in the
postoperative state because of the surge of growth factors such as
VEGF, providing a therapeutic advantage for OV in postoperative
cancer patients.

PRECLINICAL EVIDENCE FOR NK CELL ACTIVATION
WITH PERIOPERATIVE ONCOLYTIC VIRUSES
Viruses, in general, are known to activate NK cells (64, 65) and
OV are no exception. One of the first reports to support the
anti-tumor activation of NK cells in response to OV therapy was
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reported by Diaz et al. in which depletion experiments were per-
formed to demonstrate that B16 melanoma tumor regression was
achieved in a CD8+ T and NK cell-dependent manner follow-
ing vesicular stomatitis virus (VSV) intratumoral (i.t.) injection
(66). Supporting these findings, oncolytic Reovirus treatment of
prostate cancer produced an anti-tumor CD8+ T cell response
along with prominent NK cell infiltration (67, 68). Miller et al.
also observed that i.t. therapy with oncolytic herpes simplex virus
(HSV) for B16 melanoma was abrogated in syngeneic models
lacking NK and T cell subsets (69). In mechanistic studies with
oncolytic new castle disease virus (NDV), Jarahian et al. demon-
strated enhanced NK cytotoxicity against human tumor cell lines
infected with NDV. Further, soluble receptor binding and blocking
assays suggest that NKp44 and NKp46 recognition of viral lig-
and hemagglutinin-neuraminidase on NDV infected tumor cells
mediated NK anti-tumor activity (70). We have demonstrated that
oncolytic ORF virus (ORFV) has a profound effect on NK cells
following i.v. delivery and that this NK cell activation is the main
mechanism by which ORFV exerts its anti-tumor effect (71). It
is very likely that stimulation of NK cells play an important role
in the therapeutic effect of many OV, not only by enhancing NK
cell-mediated killing of tumor target cells but also by triggering a
robust, T cell-mediated, anti-tumor immune response (72).

Given that surgery suppresses NK cell activity and OV activate
NK cells, we explored the ability of preoperative OV to pre-
vent postoperative NK cell suppression, and in turn prevent the
development of postoperative metastases. Using our established
murine model of surgical stress, we demonstrated that perioper-
ative administration of novel oncolytic ORF and vaccinia viruses
can reverse NK cell suppression following surgery and this corre-
lates with a reduction in the postoperative formation of metastases
(3). Similar effects were observed in 4T1-tumor bearing surgically
stressed mice treated with perioperative OV. When NK cells were
depleted, the effect was no longer present, suggesting that sup-
pression of tumor metastases in a surgical stress model is mainly
mediated through OV activation of NK cells and subsequent NK
cell-mediated tumor lysis (3).

We demonstrated a similar effect with the novel oncolytic
rhabdovirus, Maraba (MG1) and used this model to explore the
mechanism of NK cell activation further. MG1 is a double mutant
rhabdovirus with deletion in the G and M proteins (73). It is a clin-
ical candidate OV that is scheduled to begin a Phase I clinical trial
in 2014. MG1 infection in immune competent mice resulted in an
immediate (24 h) and intense activation of NK cells, as evidenced
by significantly increased NK cell cytotoxicity and cytokine secre-
tion. Moreover, preoperative i.v. administration of MG1 overcame
surgery-induced NK suppression and attenuated the development
of postoperative metastases in the B16lacZ model of implanted
lung metastases, as well as in the breast 4T1 model of spontaneous
lung metastases (74).

Mechanistically, we demonstrated that MG1 activates NK cells
through conventional DC (cDC) (Figure 1). Using an ex vivo
NK:DC co-culture system, we showed lack of NK infection,
activation, and cytotoxicity in the absence of cDC. Further, in
cDC ablated mice (CD11c-Diphtheria Toxin Receptor Transgenic
mice), NK cell cytotoxicity was significantly reduced following
MG1 administration (74). While we demonstrated that MG1 does

not directly infect or activate NK cells, this is not the case for other
OV. For instance, vaccinia virus has been shown to interact directly
with NK cells through Toll-like-receptor-(TLR)-2 (75).

As the interplay between OV and immune cells in the perioper-
ative period is critically important for the eradication of tumors,
we further explored these interactions in our preclinical models of
tumor and surgical stress. In both B16 melanoma and 4T1 breast
tumor models, we observed postoperative expansion of myeloid-
derived suppressor cells (MDSC) (3), which are known regulatory
cells that have been shown to expand following various patholo-
gies to suppress innate and adaptive immunity (76–80). The role of
MDSC on surgery-induced dysfunction of NK cells and antigen-
specific T cells and its potential interaction with OV is part of
ongoing research in our lab (Figure 1).

PRECLINICAL EVIDENCE OF TAA-SPECIFIC T CELL
ACTIVATION WITH PERIOPERATIVE ONCOLYTIC VACCINE
Oncolytic vaccines (OVax) are OV that express TAA that can
direct the host immune response toward the TAA while simulta-
neously performing viral oncolysis and creating an inflammatory
tumor microenvironment (81, 82). Dr. Brian Lichty has pioneered
this prime-boost OVax platform and demonstrated remarkable
efficacy in the B16 model (82–86). B16 cells express the TAA,
dopachrome tautomerase (DCT), which is a protein involved
in melanogenesis and is present in normal melanocytes and
melanoma. As previous studies have demonstrated, Ad-DCT is
able to prime a DCT specific T cell immune response and protect
mice from a B16 tumor challenge or tumor re-growth (87, 88), but
has limited efficacy in a therapeutic model of lung metastases (89).
Dr. Lichty’s group engineered MG1, to express DCT upon produc-
tive infection and used these two viruses in a prime-boost strategy
in tumor-bearing animals. They found that when Ad-DCT was
allowed to prime an immune response, followed 9 days later by an
MG1-hDCT boost, the results were remarkable, leading to a sig-
nificant reduction in lung metastases with durable cures in >20%
of mice, something not seen when MG1 expressing an irrelevant
transgene (MG1-GFP, green-fluorescent protein) was used. Strik-
ingly, ~27% of CD8+ T cells were directed against DCT. Selective
depletion of cytotoxic T lymphocytes (CTL) at the time of the
boost abrogates the therapeutic efficacy, underscoring their cen-
tral role. In the near and longer term, we will focus on using OVax,
such as MG1-DCT in preclinical mouse tumor models of surgical
stress to perioperative boost adaptive immune functions.

CLINICAL EXPERIENCE WITH PERIOPERATIVE OV IN CANCER
SURGERY PATIENTS
The compelling preclinical and clinical data with oncolytic vac-
cinia virus, in particular the evidence that it can stimulate a potent
anti-tumor immune response (90) led us to hypothesize that peri-
operative treatment with this OV could improve recurrence-free
survival following surgical resection. We designed a single center
Phase II clinical trial where patients with metastatic colorectal
tumors within the liver were treated with a single i.v. dose of
oncolytic vaccinia virus prior to surgical resection (91). This trial
explored the mechanisms of action of oncolytic vaccinia virus
through a series of correlative blood and tissue studies collected
from patients pre- and post-OV treatment and surgery. In this
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FIGURE 1 | Preoperative delivery of live/attenuated OV, viral vaccines,
and oncolytic vaccines enhances innate and adaptive immune cell
function to reduce postoperative metastatic disease. Preoperative
administration of the live or attenuated OV results in NK cell activation via
cDC; preoperative delivery of viral vaccines results in IFNα production (likely
through cDC), which results in NK cell activation, thereby preventing

surgery-induced dysfunction and removal of tumor cell emboli and
micrometastases in the postoperative period. Postoperative MDSC
expansion contributes to NK cell dysfunction and OV may reverse the
suppressive effects of MDSC. Preoperative oncolytic vaccines may activate
tumor antigen-specific CD8+ T cells and reduce tumor burden and increase
survival.

study, we confirmed that NK cell cytotoxicity improved in the set-
ting of pre-operative oncolytic vaccinia virus compared to baseline
control blood (3). Further, we detected genome copies of vaccinia
virus in the tumors of patients following resection (unpublished
data), which suggests that viral targeting of the tumor by i.v.
injection may elicit an immune response in the tumor. These
results demonstrated for the first time that oncolytic vaccinia virus
markedly increases NK activity in cancer surgery patients.

In the same patient population of CRC, systemic delivery of
oncolytic reovirus prior to planned surgical resection of liver
metastases was undertaken by researchers in the UK (92) In this
“window of opportunity” trial of 10 patients, Adair et al. was able
to recover live reovirus from the blood cells, but not from plasma
removed from these patients. In addition, reovirus protein was
identified preferentially in resected tumor tissue, but not in nor-
mal liver tissue. Their results suggest that immune cells in the

blood may protect virus from neutralizing antibodies, thus provid-
ing targeted delivery of OV to tumors. Importantly, preoperative
treatment with oncolytic reovirus was well tolerated, with the most
common side effects being flu-like symptoms and no reported
grade 3 or 4 toxicities in any patients (92). In a study of periopera-
tive oncolytic HSV delivery, virus was injected intratumorally pre-
and post-surgical resection into patients with recurrent glioblas-
toma multiforme (93). Evidence of immune cell infiltration and
viral replication in the resected tumors was reported by the
authors. Notably, no patients developed HSV related encephali-
tis or required antiviral treatment (93). In a series of clinical
trials using NDV-modified autologous tumor cell vaccine (NDV-
ATV) for treatment of colorectal, renal cell, and glioblastoma
cancer patients, researchers detected a significantly improved sur-
vival advantage compared to unvaccinated and historical controls.
However, NDV-ATV was mostly administered postoperatively and
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not preoperatively to prevent surgery-induced immunosuppres-
sion, which might further improve upon the survival advantage.
Similar to the above studies, NDV-ATV was well tolerated, with the
most common side effects being mild-fever/headache and no asso-
ciated autoimmunity (70, 94–99). These reports demonstrate the
feasibility of perioperative OV administration into cancer surgery
patients.

THE IMPORTANCE OF TIMING FOR OV ADMINISTRATION
IN THE PERIOPERATIVE PERIOD
While the postoperative period provides a window of opportunity
for cancer cells to metastasize and grow, it also provides a win-
dow of opportunity to intervene, by strengthening the immune
system and reducing recurrence of cancer following surgery in
cancer patients. In our preclinical perioperative vaccine studies,
we hypothesized that neoadjuvant delivery of vaccine immedi-
ately prior to surgery will allow for maximal NK cell stimulation
to counteract surgery-induced NK cell suppression (100, 101).
Indeed, we observed that influenza vaccine administered on the
same day, immediately prior to surgery, reduced metastases most
effectively. The results from NK cells isolated from cancer surgery
patients also confirm that the timing of influenza administration is
critical for its effect. In four out of four cancer surgery patients, NK
cells isolated prior to surgical resection demonstrated enhanced
cytotoxicity and IFNγ secretion following ex vivo pulsing with
influenza vaccine, while in only one of these patients was simi-
lar activation demonstrated in NK cells isolated 1 day following
surgery, suggesting that surgery-induced NK cell dysfunction can
be prevented but not reversed by influenza. In humans receiving
a flu shot as part of a vaccination campaign, NK cell activation
peaked at 1–2 days following immunization (101). Based on this,
it appears that a cancer vaccination strategy is probably best deliv-
ered the day before cancer surgery, in order to allow sufficient time
to maximally activate NK cells prior to surgical stress.

Equally important for a replicating virus is the growth advan-
tage that the postoperative state may provide, increasing oncolysis,
viral replication, and spreading. Surgical stress results in a surge
of VEGF with resulting angiogenesis to facilitate wound healing
(21). Kottke et al. (102, 103) have previously demonstrated that
a VEGF surge improved viral replication, viral cell lysis, and an
innate immune mediated attack, in particular by NK cells, by
allowing tumor-associated endothelial cells to transiently support
viral replication during the VEGF surge. The sequential combi-
nation of oncolytic vaccinia virus and the small molecule B-raf
and VEGF inhibitor, sorafenib, has also demonstrated efficacy in
preclinical models and a few patients (104), further supporting the
concept that OV and VEGF may act synergistically if the timing of
viral administration is considered.

BARRIERS TO PERIOPERATIVE OV THERAPY
AND STRATEGIES TO OVERCOME THEM
While these data are exciting, the perioperative use of OV is in
preclinical and early stages of clinical investigation. In the design
of our preoperative OV trial, we were confronted with multiple
concerns associated with the use of a live virus immediately prior
to surgery in cancer patients. In particular, concerns were raised
about the potential for an overwhelming postoperative systemic

inflammatory response, the risk of spread to members of the oper-
ating room team, and risk of meningitis with epidural analgesia.
These safety concerns present real barriers to the development of
perioperative OV. In their recent publication, Adair et al. demon-
strated the feasibility and safety of perioperative live reovirus
infusion prior to surgery in CRC patients. However, OV infusion
was administered 6–28 days prior to surgery and not immedi-
ately before surgery. Further, three patients received fewer than
their planned five doses of reovirus. In one patient, this was due
to a decline in white blood cell count, while the remaining two
patients opted to not receive their last doses of OV prior to surgery
because of their own concerns that flu-like symptoms might inter-
fere with the planned surgery, highlighting a strongly held belief
that remains a theoretic barrier to immediate preoperative delivery
of a replicating virus (92).

Given these very real concerns surrounding live perioperative
delivery of OV, we subsequently focused on generating non-
replicating MG1 viruses to characterize their ability to activate NK
cells and attenuate metastases in a model of experimental (B16)
and spontaneous (4T1) metastases following surgical stress. To
accomplish this, we constructed a replication incompetent MG1 –
MG1-Gless-eGFP, that is only capable of one infectious life cycle,
thus offering a safe in vivo profile. Next, we compared these varia-
tions of MG1: (1) live MG1-productive infection and replication;
(2) a G-less version (MG1-Gless) – capable of a single-replication
cycle of virus; (3) MG1 exposed to ultraviolet (UV) for 2 min to
2 h – replication incompetent confirmed by plaque assay. MG1,
MG1-Gless, and MG1-UV2 min exhibited significantly higher NK
cell function compared to PBS control, and they effectively atten-
uated in vivo B16lacZ lung metastases to near identical levels
at high viral doses (1× 108 PFU). However, at all lower doses
studied (1× 105–7 PFU), live MG1 demonstrated better efficacy
than attenuated MG1. Furthermore, we characterized this panel
of MG1 viruses in terms of virus morphological structure and
cell associated interaction via Electron Microscopy, qRT-PCR, and
western blot and found that MG1-UV2 min remains an intact virus
particle (virus proteins, genetic materials) with cell-associated
interactions, corresponding to the highest NK cell activation and
least lung metastases, among MG1-UV viruses. Importantly, we
demonstrated that preoperative i.v. administration of equivalent
high doses (1× 108 PFU) of live and attenuated MG1 (MG1-Gless
or MG1-UV2 min) overcame surgery-induced NK cell suppres-
sion and reduced the development of postoperative metastases
in the B16lacZ implanted lung metastases, as well as in the breast
4T1 model of spontaneous lung metastases. Taken together, these
results suggest that the intact viral particle and cellular recogni-
tion, along with viral proteins and genomic RNA are essential for
NK cell-mediated anti-tumor responses. Non-replicating forms of
MG1, including MG1-UV2 min, are novel cancer therapies that can
be safely used in the immediate preoperative period to prevent the
formation of metastatic disease (74).

Parallel to our perioperative attenuated OV studies, we
assessed a wide range of potential agents to provide periop-
erative non-specific immunostimulation including TLR ligands
and inactivated vaccines against infectious disease. Firstly, we
assessed a panel of routinely used immunizations, including
vaccines against influenza, meningitis, measles/mumps/rubella,
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diphtheria/tetanus/pertussis/polio, pneumonia, and influenza for
their ability to activate (CD69 expression) and enhance NK cell
function (cytotoxicity and IFNγ secretion). When directly com-
pared, influenza was the most potent NK cell activator among
the prophylactic vaccines, although, not unexpectedly, inoculating
mice with live replicating viruses (such as vaccinia virus) induced
higher levels of NK cell cytotoxicity. Using our mouse models of
experimental (B16 melanoma) and spontaneous (4T1) metastases
and surgical stress, we subsequently demonstrated that preoper-
ative delivery of a single dose of influenza resulted in a dramatic
reduction in lung metastases (101). In order to confirm that NK
cells play a mediating role in preventing postoperative metastases
following influenza treatment, we pharmacologically depleted NK
cells and observed a complete abrogation of the therapeutic effect
of influenza vaccination. Furthermore, we discovered that IFNα

had the most dramatic increase following influenza vaccination
after assessing a panel of serum cytokines following influenza
administration. We also observed that low-dose preoperative IFNα

was able to rescue surgery-induced NK cell dysfunction and metas-
tases to the same degree as influenza vaccination. The central role
for IFNα was underscored by demonstrating that influenza vac-
cination was not able to increase postoperative NK cell activity
or attenuate postoperative metastases in IFNα receptor-deficient
mice. In PBMC isolated from human donors, Type I IFN block-
ing antibody prevented influenza from activating NK cells (101).
While our study did not explore the role of DC in the produc-
tion of IFNα following influenza vaccination, it is very likely that
they represent the primary source, resulting in secondary NK cell
stimulation (see Figure 1).

CLINICAL IMPLICATIONS AND FUTURE DIRECTIONS
Surgical resection is the mainstay of therapy for patients with
localized solid malignancies. Even with complete resection, many
patients develop a metastatic recurrence and ultimately die of their
disease. The immediate postoperative period provides an ideal
environment for the formation of cancer metastases. Despite this,
it remains a therapeutic window that is largely ignored. There are
currently no standard perioperative anti-cancer therapies aimed
at preventing postoperative metastases. We have demonstrated
in preclinical models that perioperative OV therapy can activate
both the innate and adaptive immune responses and attenuate
metastatic disease. Early clinical trials confirm the feasibility of
this strategy but these therapies must be rigorously character-
ized for safety and efficacy and then translated into thoughtfully
designed clinical trials. This research supports the concept that
neoadjuvant (preoperative) OV treatments can reverse postop-
erative immune dysfunction, while directly infecting and killing
tumor cells and creating a favorable immune microenvironment.
This treatment strategy has the potential to impact countless can-
cer patients who undergo surgical resection of their solid tumor
every year.
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Oncolytic viral therapies have recently found their way into clinical application for hepa-
tocellular carcinoma (HCC), a disease with limited treatment options and poor prognosis.
Adding to the many intrinsic challenges of in vivo oncolytic viral therapy, is the complex
microenvironment of the liver, which imposes unique limitations to the successful deliv-
ery and propagation of the virus. The normal liver milieu is characterized by an intricate
network of hepatocytes and non-parenchymal cells including Kupffer cells, stellate cells,
and sinusoidal endothelial cells, which can secrete anti-viral cytokines, provide a platform
for non-specific uptake, and form a barrier to efficient viral spread. In addition, natural killer
cells are greatly enriched in the liver, contributing to the innate defense against viruses.The
situation is further complicated when HCC arises in the setting of underlying hepatitis virus
infection and/or hepatic cirrhosis, which occurs in more than 90% of clinical cases. These
conditions pose further inhibitory effects on oncolytic virus (OV) therapy due to the pres-
ence of chronic inflammation, constitutive cytokine expression, altered hepatic blood flow,
and extracellular matrix deposition. In addition, OVs can modulate the hepatic microenvi-
ronment, resulting in a complex interplay between virus and host. The immune system
undoubtedly plays a substantial role in the outcome of OV therapy, both as an inhibitor of
viral replication, and as a potent mechanism of virus-mediated tumor cell killing.This review
will discuss the particular challenges of oncolytic viral therapy for HCC, as well as some
potential strategies for modulating the immune system and synergizing with the hepatic
microenvironment to improve therapeutic outcome.

Keywords: oncolytic virus, hepatocellular carcinoma, liver microenvironment, immunotherapy, viral engineering

INTRODUCTION
Hepatocellular carcinoma (HCC), representing over 90% of all
cases of primary liver cancer, is the sixth most common form
of cancer and the third leading cause of cancer-related mortal-
ity worldwide (1, 2). Due to the advanced stage at which most
patients are diagnosed, only a small percentage are eligible for
potentially curative resection, local ablation, or liver transplan-
tation (3). HCC is highly refractory to chemotherapy and other
systemic treatments, and local regional therapies such as transar-
terial chemoembolization (TACE) or selective internal radiation
therapy (SIRT) are largely palliative. Recently, the multi-kinase
inhibitor, sorafenib, was found to be effective in patients with
advanced HCC and is currently the standard of care in these
patients; however the prolongation of survival associated with
sorafenib therapy is under 3 months (4), and the median sur-
vival for patients with advanced stage, unresectable HCC is less
than 1 year (3). The lack of effective treatment options for HCC
underlines the need for novel alternative therapies such as those
employing oncolytic viruses (OVs).

We have previously demonstrated in a preclinical rat model
that oncolytic vesicular stomatitis virus (VSV) and Newcastle
disease virus (NDV) both replicate well and cause significant

tumor-specific cell lysis in orthotopic HCC, leading to substan-
tial survival prolongation (5–7). Based on preclinical data such as
these, OVs have been applied in various clinical trials in cancer
patients. However, as more and more data are accumulated from
clinical trials, it is becoming evident that the significant efficacy
reported for OVs in preclinical animal models is not readily trans-
latable to the clinic, due to the vast complexities of spontaneous
malignant transformation in the immune-competent setting in
patients.

Although these challenges are universal to OVs regardless of the
tumor target, the dynamic setting of the liver presents a unique set
of hurdles, which viruses must surpass in order to exert their ther-
apeutic effects against HCC. The liver microenvironment consists
of a complex network of hepatocytes, stromal cells, inflammatory
cells, and extracellular matrix (ECM). HCC is an inflammation-
driven cancer (8), and the chronic inflammatory state, character-
ized by the recruitment of inflammatory cells and high levels of
cytokine expression, not only promotes tumorigenesis (9), but it
also serves to provide a basis for innate immunity against OVs.
Although it may seem contradictory that hepatotropic viruses
manage to escape immune surveillance and establish chronic
infections in the liver, this paradox can be attributed to intrinsic
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differences among viruses,whereby the hepatitis viruses are known
to possess various mechanisms for evading or interfering with the
immune system (10, 11). Whether or not the well-characterized
feature of immune tolerance in the liver actually plays a role in pro-
moting OV replication in liver tumors is not known; however, OVs
are extremely sensitive to the anti-viral actions of type I interferon
(IFN), and this is most likely the primary mechanism by which the
replication of OVs is limited in vivo.

When HCC arises as a consequence of chronic hepatitis virus
infection and in the setting of hepatic fibrosis, the liver milieu
is distorted and provides a platform for dynamic interactions
between OVs and the liver microenvironment. In Greek mythol-
ogy, Pandora’s box was actually a large and beautiful jar, which
contained all the evils of the world. At first glance, the diseased
liver can resemble a Pandora’s box of sorts, filled with a variety of
“evils” that present unique challenges to conventional therapies.
As we learn more about the pathogenesis of liver disease, we can
actually exploit the unique features of the local microenvironment
to synergize with OV therapy and thereby transform Pandora’s box
from a vessel of evil into a platform of hope for new therapeutic
targets. In this review, we will discuss the complex interactions
between OVs and the liver milieu and present novel strategies for
improving the therapeutic outcome.

THE COMPLEX LIVER MILIEU AND ITS IMPACT ON OV
THERAPY OF HCC
The liver is arguably one of the most vital organs of the body, due
to its diverse roles in metabolism, nutrient uptake, detoxification,
and immune modulation. Because of the complexity of functions,
the liver architecture is composed of an intricate network of cells
and ECM to ensure that each task can be performed efficiently.
Although this system is crucial for the proper functioning of the
liver, it poses various barriers to the ability of OVs to infect and
replicate well in hepatic tumors. In this section, the various aspects
of the liver microenvironment, which challenge the fate of OVs in
HCC therapy (summarized in Figure 1), as well as the unique
interactions between OVs and the liver milieu, will be discussed.

THE HEALTHY LIVER SETTING
Although the majority of HCCs arise in the context of underly-
ing chronic liver disease, a small percentage can develop in the
absence of advanced hepatic fibrosis, or even in a healthy liver
setting (12). Hepatocytes constitute the majority of the liver vol-
ume (approximately 80%), and they are protected from invading
organisms in the bloodstream by non-parenchymal cells lining the
liver sinusoids. The major sinusoidal components are Kupffer cells
(KCs), liver sinusoidal endothelial cells (LSECs), hepatic stellate
cells (HSCs), and natural killer (NK) cells. A unique microvascu-
lature, including the fenestration of sinusoidal endothelial cells,
acts as a filtration system to trap pathogens, waste products, and
circulating tumor cells, making the liver a common site for tumor
metastases. KCs are resident macrophages of the liver and are con-
sidered to be scavenger cells, playing a major role in removing
foreign material from portal circulation (13). Together with NK
cells and dendritic cells (DCs), KCs are important components of
the innate immune system, providing a rapid first line of defense
against invading pathogens and protecting the liver from bacterial

and viral infections (14). Despite the crucial protective function of
KCs in the liver, hepatic sequestration and destruction of viruses
is a universal limitation to all systemically applied OVs, and they
can pose a particular challenge to viral therapies targeting HCC
cells, due to their close proximity. Following uptake, the KC, as
well as engulfed viruses, are rapidly degraded, greatly reducing
the bioavailability of the virus (15, 16). It is well established that
therapeutic doses of adenovirus must first saturate the KC pop-
ulation before their effects can be seen in target cells (17, 18).
To illustrate this point, it was demonstrated for adenovirus type
5 that up to 90% of injected viral particles are sequestered from
the blood by KCs (19), and depletion of KCs via predosing with
adenovirus or pretreatment with clodronate results in improved
bioavailability and anti-tumor efficacy of adenovirus therapy (20,
21). In addition, activated KCs are potent producers of nitric oxide
and cytokines such as IFN, TNF-α, IL-6, and IL-10 (13, 22, 23),
all of which have potent anti-viral functions (24, 25) and likely
contribute to the local control of OV replication in HCCs.

In addition to KCs, the LSECs, which are specialized endothe-
lial cells lining the liver sinusoid, belong to the reticuloendothelial
system and play a role in clearing materials from the bloodstream.
They have been shown to be important in eliminating circulating
adenovirus particles (15, 26) via scavenger receptors expressed on
the cell surface (18). Although less information is available regard-
ing the role of KCs and LSECs in the depletion of other OVs from
the blood, it is speculated that the same mechanism identified for
adenovirus applies to these viruses as well (27–29).

Natural killer or “pit cells,” and NKT cells are enriched and
constitutively activated in the sinusoid of normal, healthy liv-
ers, and are key players in innate immune surveillance (30, 31).
These cells represent a distinct subset of the cytotoxic lymphocyte
population and are crucial in the early defense against invading
viruses (32), prior to the launch of adaptive immune responses
(33–35). It is speculated that bone marrow-derived peripheral
NK cells migrate to the liver (36), where they are stimulated by
hepatic cells, such as KCs (37), causing them to differentiate and
become activated and express DC markers (38). Liver-specific NK
cells are immunologically, morphologically, and functionally dif-
ferent from peripheral NK cells, expressing higher levels of TRAIL,
performin, and granzyme B, and having a higher percentage of
activated populations, presumably contributing to the increased
cytotoxicity of liver NK cells (30, 39). Upon activation, NK cells
mediate the direct lysis of target cells by releasing copious amounts
of cytokines and cytotoxic granules, or by induction of apoptosis
(40, 41). As crucial components of the cellular response to viral
infections, it is not surprising that NK cells also have an inhibitory
effect on OVs. To illustrate this point, it was demonstrated in vitro
that NK cells rapidly and specifically lyse tumor cells at an early
stage of infection with herpes simplex type 1 or vaccinia virus and
prevent viral propagation and spread to neighboring cells (35). We
have observed a significant intratumoral accumulation of NK and
NKT cells in orthotopic, syngeneic HCC in immune-competent
rats within 24 h of treatment with oncolytic VSV and have demon-
strated that these cells play a major role in the rapid clearance of the
virus (42). We believe that this rapid innate response is at least par-
tially mediated by the large number of resident NK and NKT cells
which are present in the liver and can immediately infiltrate areas
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FIGURE 1 | Features of the hepatic microenvironment which challenge
the fate of OVs. The innate immune response in the liver consists of
scavenger Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs)
and resident NK and NKT cells, which are efficient at clearing invading
oncolytic viruses from the liver. KCs and NK/NKT cells secrete a variety of
antiviral cytokines in response to infection, which substantially limit the
replication of OVs in hepatocellular carcinoma (HCC). Material from dying
virus-infected cells mediates cross-priming of T-cell responses by dendritic

cells (DCs) and thereby induces an adaptive immune response against the
virus. Hepatic stellate cells, which reside in the space of Disse, become
activated during tumorigenesis causing them to migrate and secrete
copious amounts of extracellular matrix (ECM) components, which hinder
intratumoral cell-to-cell spread of OVs. Infected hepatocytes enter an
anti-viral state and secrete type I interferons (IFNs), which protect the
neighboring liver cells from infection and could also infer protection to HCC
cells that are partially sensitive to IFN.

of VSV infection to prevent productive replication and spread of
the virus and thereby inhibit the therapeutic effect.

THE DISEASED LIVER
In nearly 90% of HCC patients, tumors arise as a consequence of
chronic liver injury, which provides an ideal setting for carcino-
genesis to occur (43, 44). Liver disease, caused by persistent viral,
toxic, autoimmune, metabolic, or cholestatic impairments, results
in a chronic inflammatory response marked by the secretion of a
cocktail of cytokines and chemokines by infiltrating immune cells

and the resident non-parenchymal cells. As a result, the hepatic
architecture becomes disrupted, as evidenced by hepatocyte pro-
liferation, the extensive deposition of ECM, nodule formation, and
the increased risk of HCC.

When HCC occurs in the midst of a chronically injured liver, the
already limited treatment options become even further restricted.
Although the application of OVs is an attractive alternative to the
palliative treatment options available to patients with advanced
liver disease, the fate of therapeutic viruses administered in this
complex setting is further challenged. Viral vectors targeting HCC
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in a diseased liver face many unfavorable conditions, including
accumulation of immune cells, constitutively activated cytokines,
dense ECM, and altered blood flow.

During the fibrogenic wound-healing process, HSCs differen-
tiate from the quiescent to the activated form with a myofibroblast
phenotype, which is marked by the loss of intracellular vitamin
A-rich fat droplets and expression of α-smooth muscle actin (α-
SMA). These transdifferentiated HSCs promote ECM remodeling
by deregulating the balance of matrix metalloproteinases (MMPs)
and tissue inhibitors of matrix metalloproteinases (TIMPs) and
resulting in the degradation of the normal basement membrane
and replacement with interstitial collagen (primarily type I and
III) and scar matrix. In addition, HSCs migrate and proliferate
in response to a variety of cytokines and growth factors elicited
during hepatic injury to further promote the progression of fibro-
sis, resulting in the distortion of the normal liver architecture and
leading to decompensated liver function.

The implication of the presence of hepatic fibrosis on the out-
come of OV therapy for HCC is complex, due to the multifaceted
nature of the interactions between OVs and the microenviron-
ment of the chronically injured liver. The presence of fibrotic tissue
throughout the liver likely provides a physical barrier to trap OVs
and prevent efficient delivery of viruses to tumor beds, and altered
patterns of blood flow limit the ability of systemically applied
viruses to reach their tumor targets. The aberrant microenviron-
ment within HCC, consisting of activated HSCs, inflammatory
cells, and extensive ECM deposition, not only further promotes
HCC growth, invasion, and metastasis, but also challenges viral
infection and spread among HCC cells. Although HCC is not
conventionally considered to be a fibrotic cancer, evidence has
shown a correlation between poor differentiation of HCC and
degree of ECM remodeling (45). Furthermore, the predominant
components of the ECM of HCC are the fibril-forming colla-
gens type I and III (46, 47), which are also dominant in hepatic
fibrosis tissue. Although we have not yet specifically investigated
this issue, it is likely that this intratumoral deposition of colla-
gen plays a role in containing viral spread and leading to the
well-defined foci of VSV replication that we observe in HCC
lesions (6).

The inflammatory milieu associated with chronic liver injury,
most often induced by hepatitis B or C virus infection, not only
contributes to the pathogenesis of fibrosis and HCC, but it also
threatens the ability of OVs to replicate and destroy tumor cells.
The acute response to liver injury involves the activation of resident
liver immune cells, followed by the recruitment of non-resident
immune cells to launch a potent cytokine response in the liver in
an attempt to lyse the infected or injured cells (48, 49). Hepati-
tis B virus (HBV) infection causes induction of NK cells and
cytotoxic T-cells (CD8+), which then secrete anti-viral cytokines,
such as IFN-γ and TNF-α (50, 51). Upon infection, the host rec-
ognizes the pathogen-associated molecular patterns (PAMPs) of
viral products via pathogen recognition receptor (PRR) proteins,
such as toll-like receptor 2 (TLR2). Activation of PRRs by HBV
leads to induction of transcription factors, such as NF-κB, and
the release of pro-inflammatory and anti-viral cytokines, such
as TNF-α, IL-6, and IL-10 (51, 52), all of which can inhibit OV
replication. Hepatitis C virus (HCV) infection causes an immune

response characterized by cytokines and non-specific lymphocyte
recruitment, which can also have inhibitory effects on OVs.

In addition to the potentially limited efficacy of oncolytic viral
therapy for HCC in the context of liver injury, there are valid
safety concerns associated with such a therapeutic approach. The
local cytokine induction following OV application in an already
inflamed liver could potentially cause a highly toxic “cytokine
storm” and hepatotoxicity, strongly contraindicating this strat-
egy. Furthermore, due to a lack of appropriate rodent models, the
interaction of an OV with an underlying hepatic viral infection
remains unclear. However, recent findings indicate that adminis-
tration of OVs could potentially provide a therapeutic benefit in
decreasing HBV load (53–55). In studies using inactivated Para-
poxvirus ovis (Orf virus), it was shown that viral therapy inhibited
human HBV and HCV, as well as herpes simplex virus infection,
without any signs of toxicity, in preclinical mouse models (53,
54). In these studies, it was demonstrated that inactivated Orf
virus-mediated induction of IFN-γ was a key mechanism in the
anti-viral activity, and the absence of hepatotoxicity was associated
with a down-regulation of antigen cross-presentation in LSECs. To
further illustrate this phenomenon, it was recently demonstrated
in a clinical trial in patients with HCC that, in addition to the anti-
tumoral and anti-vascular activities of oncolytic poxvirus JX-594,
virotherapy led to a suppression of underlying HBV replication
and caused a transient decrease in viral load (55).

Along similar lines, an exciting new body of research has
demonstrated antifibrotic effects mediated by OV therapy. It was
first reported in 2009 that NDV replicates selectively in activated
HSCs and causes reversal of hepatic fibrogenesis in mice (56).
Our own work similarly demonstrated the antifibrotic proper-
ties of oncolytic VSV, via replication and subsequent apoptosis of
activated HSCs, induction of NK cell infiltration, and gene modu-
lation in favor of fibrotic regression (57). Furthermore, in addition
to anti-viral activities, inactivated Orf virus has also been shown to
elicit antifibrotic effects in two preclinical models of liver fibrosis
(53, 58). These studies indicate that OV therapy in the context of
underlying hepatic injury is not only safe, but also could provide
additional therapeutic benefits to resolve liver disease.

Additionally, in light of these new findings, we may reevaluate
our classical view of tumor stroma as being a barrier to OV therapy.
Activated HSCs infiltrate the stroma of HCC and localize around
tumor sinusoids, capsules, and fibrous septa (59), and increasing
intratumoral density of activated HSCs is correlated with poor
prognosis (60). Data demonstrating the ability of OVs to replicate
specifically in activated HSCs imply that they may also replicate
within HCC-infiltrated HSCs.

STRATEGIES TO IMPROVE OV THERAPY FOR HCC
Although the potential of OV therapy for HCC has been demon-
strated, it is clear that novel strategies must be utilized in order
to enhance viral replication and/or virus-mediated anti-tumor
immune responses to improve therapeutic outcomes in the unique
and complex setting of the liver. A prominent theme in OV devel-
opment is the ongoing debate regarding the complex and contra-
dictory roles of the immune system, which can be considered both
inhibitory, in terms of the host’s anti-viral immune response, or
complementary, with respect to anti-tumoral immune responses
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Table 1 | Barriers to intrahepatic OV therapy and potential strategies

for overcoming them.

Barrier Strategy Reference

Non-specific uptake by

Kupffer cells

Predosing with OV (20)
Kupffer cell depletion (20, 21)

Viral shielding (64–67)

Innate anti-viral

response

Kupffer cell depletion (20, 21)
OV-mediated expression of

vCKBP

(42, 68, 69)

Poor viral replication

and/or spread

Combination therapies (62, 63, 70–72)
OV as immunotherapeutic (73–86)

Hepatic fibrosis Utilization of antifibrotic OVs (53, 56–58)

Underlying hepatic viral

infection

Utilization of anti-viral OVs (53–55)

which are crucial in clearing uninfected tumor cells and chal-
lenging tumor relapse. Although it remains to be seen whether
inhibition or augmentation of the immune response is the more
powerful therapeutic strategy, the ideal approach would undoubt-
edly involve selective inhibition of anti-viral immune components,
while simultaneously inducing a strong anti-tumoral immune
response. A comprehensive discussion of the competing roles
of the immune response in the efficacy of OV therapy, as well
as strategies to modulate the immune system to synergize with
OV therapy has been thoroughly reviewed elsewhere (61–63),
and therefore will not be recapitulated here. In this section, we
will review the general approaches for improving viral-mediated
oncolysis and/or modulating the immune system for optimization
of oncolytic viral therapy, with an emphasis on strategies that have
been employed specifically for treatment of HCC. These strategies
are summarized in Table 1.

COMBINATION THERAPIES
The rational design of combination therapies involving OVs and
existing clinical agents is a valuable strategy for improving thera-
peutic outcomes by employing synergistic mechanisms. Success
with several combination therapies for HCC has already been
reported. In an in vitro study, it was demonstrated that treat-
ment with parvovirus could sensitize p53-negative HCC cells to
the cytotoxic effects of cisplatin, and combination therapy resulted
in increased HCC cell death in comparison to either individual
therapy (70). Similarly, combination of adenovirus with the DNA-
intercalating drug, doxorubicin, resulted in synergistic cytotoxic
effects in vitro and significant inhibition of in vivo tumor growth
in preclinical HCC models (71). These results were confirmed by
an additional study in HCC, where it was shown that oncolytic
adenovirus sensitizes tumors to chemotherapy, and combinations
of adenovirus with 5-FU, doxorubicin, and paclitaxel all resulted
in enhanced efficacy in killing of HCC cells (72). A telomerase-
dependent replicating adenovirus (hTert-Ad) was also extremely
effective at sensitizing resistant HCC tumors to chemotherapy
via down-regulation of Mcl-1 expression, resulting in substan-
tial tumor responses in mice treated with virochemotherapy (87).

In another study using hTert-Ad, it was demonstrated that pro-
teasome inhibition with bortezomib led to endoplasmic reticu-
lum (ER) stress-induced apoptosis and improved anti-tumoral
immunity, leading to improved oncolysis of HCC (88). It was
further shown in this study that bortezomib inhibited anti-
viral immune responses in immunocompetent mice, allowing
enhanced viral kinetics of hTert-Ad, and indicating a dual benefit
of the combination therapy (88).

As an alternative to combination therapies involving
chemotherapy, we investigated the potential of applying a clin-
ical embolization agent together with oncolytic VSV to treat
HCC in an orthotopic rat model (89). In this study, we demon-
strated significantly enhanced tumor necrosis and prolongation
of survival in HCC-bearing rats treated by transarterial viroem-
bolization, as compared to monotherapy, and we attributed this
therapeutic effect to multiple mechanisms, including apoptosis,
anti-angiogenesis, and induction of anti-tumor immunity (89).

INHIBITION OR EVASION OF INFLAMMATORY RESPONSES
The direct cytopathic effect elicited by OVs is dependent on
their ability to evade immune surveillance long enough to allow
viral propagation to high titers and efficient spread of the vector
throughout the tumor mass. Because of the numerous physio-
logical and immunological barriers to oncolytic viral therapy in
the liver, several attempts were made to selectively block aspects
of the anti-viral response to improve and prolong viral repli-
cation prior to the launch of an adaptive immune response.
Although systemic suppression of immune responses has been
successful in promoting enhanced OV replication and intratu-
moral spread in various tumor models, there have been concerns
associated with the safety of such approaches (62). By incorporat-
ing genes encoding anti-inflammatory proteins directly into the
virus, we speculated that the suppression of immune responses
would be limited to the local area of virus replication within
the tumor, thereby dampening safety concerns. In nature, many
viruses have adapted themselves in various ways to counteract
or evade anti-viral immune responses to promote their own sur-
vival (68). One such mechanism involves the viral production of
chemokine-binding proteins (CKBPs), which are secreted pro-
teins that competitively bind to and/or inhibit the interactions
of immunomodulatory chemokines with their cognate receptors,
to block the chemotaxis of inflammatory cells (69). Based on
our observation that host inflammatory responses to VSV infec-
tion play a detrimental role in suppression of intratumoral viral
replication in HCC, we exploited several heterologously expressed
vCKBPs in order to enhance the oncolytic potency of VSV for the
treatment of HCC. Specifically, we engineered recombinant VSV
vectors encoding for the equine herpes virus-1 glycoprotein G and
the M3 gene from murine gammaherpesvirus-68, both of which
are broad range and high affinity vCKBPs (42, 90). Both recom-
binant vectors mediated the suppression of anti-viral NK cell and
neutrophil infiltration, which resulted in prolonged kinetics of
intratumoral VSV replication and significant survival prolonga-
tion in immune-competent, orthotopic liver tumor-bearing rats.
In order to specifically target the NK cell population, we incor-
porated the UL141 gene from human cytomegalovirus into VSV,
which specifically inhibits the NK cell-activating ligand CD155,
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resulting in enhanced virus propagation and tumor responses cor-
responding to inhibition of NK and NKT cell migration to infected
tumor sites (91). Importantly, none of these recombinant vectors
resulted in any observable signs of toxicity to the host, indicat-
ing that this strategy has potential for clinical translation in HCC
patients.

BOOSTING ANTI-TUMOR IMMUNITY
Due to the resistance of HCC to chemotherapy, and indica-
tions that immune responses have a direct effect on the clinical
course of the disease (92), HCC has become an attractive target
for immunotherapy. A variety of immunotherapeutics have been
tested in clinical trials for HCC patients, including cytokines,adop-
tive immune cells, and antibody-based therapies, and the resulting
data have indicated that these therapies are safe, even in the con-
text of underlying hepatic cirrhosis and HBV infection (93, 94).
Recent studies showing promising results involve adoptive DC
therapy, targeting of glypican-3, which is a tumor-associated anti-
gen (TAA) expressed by a high percentage of HCCs, or breaking
immune tolerance via antibody-mediated inhibition of cytotoxic
T-lymphocyte antigen 4 (CTLA4) (95, 96).

In addition to the direct cytopathic effect on tumor cells that
is induced by OVs, the stimulation of the host’s immune system
to launch an attack against cancer cells is a potent mechanism of
action that can be exploited by OV therapy. Particularly in tumors
where conditions are unfavorable to virus replication, due to fac-
tors such as IFN sensitivity, inflammation, or a high degree of
stroma and ECM, the effect of OV therapy can be rescued by uti-
lizing the vector as a cancer vaccine rather than as a direct oncolytic
agent. Although tumor cells express a variety of TAAs, a multitude
of mechanisms allow tumors to evade rejection from the host
immune system. The liver is a highly tolerogenic organ, due to fea-
tures of the microenvironment which induce immune tolerance
against foreign antigens (73), as evidenced by its susceptibility to
infection by hepatic viruses and to carcinogenesis and metastases.
OVs can serve to break the tolerance and enhance the immuno-
genicity of the tumor microenvironment as a potent therapeutic
mechanism. Viral oncolysis is associated with the local release of
TAAs, which can then be taken up by DCs. In addition, the release
of intrinsic cell factors, such as uric acid, can be recognized as a
danger signal to activate DCs (97). DCs are important compo-
nents of the innate immune response, and are key players in the
generation of adaptive immune responses via antigen presentation
and priming of T-cells. Virus-infected cells are highly effective in
delivering antigens for cross-presentation and cross-priming of
adaptive immune responses (98). Therefore, harnessing the inher-
ent ability of OVs to stimulate anti-tumoral immune responses is
a logical approach, and several such strategies have been employed
for HCC therapy.

Granulocyte–macrophage colony-stimulating factor (GM-
CSF) is a cytokine with strong immunostimulatory properties
that is secreted by macrophages, T-cells, fibroblasts, mast cells,
and endothelial cells. GM-CSF promotes progenitor cell differ-
entiation into DCs and can generate tumor-reactive CTL (74).
Gene transfer of GM-CSF to tumor cells augments tumor anti-
gen presentation by recruited DCs and macrophages to mediate
protective immunity against tumors (74, 75). To date, reports

of recombinant vaccinia virus, adenovirus, HSV, measles virus,
and NDV engineered to express GM-CSF have demonstrated
improved therapeutic outcomes due to enhanced anti-tumor
immune responses (76–80). In the context of HCC therapy, JX-
594, a thymidine kinase-deleted oncolytic vaccinia virus armed
with GM-CSF, resulted in partial responses with evidence of
efficacy in non-injected tumors, indicating that viral-mediated
immune stimulation played a role, in a phase I trial for therapy of
primary and secondary liver tumors (81). JX-594 was then applied
to a phase II clinical trial in patients with advanced HCC, where a
median survival of 14.1 months with high dose therapy compared
to 6.7 months for the low dose, was reported, implicating JX-594
as a highly promising vector for HCC therapy (82).

Along the same lines, other cytokines, such as IL-12, IL-24,
IL-2, and IFN-β (83–85, 99, 100) have been incorporated into
OVs. It has been hypothesized that virus-mediated expression of
IFN-β would improve tumor specificity by inhibiting viral repli-
cation in normal tissues while permitting propagation in tumors,
which possess various defects in type I IFN signaling. In addi-
tion, IFN-β can provide antiangiogenic effects (86) and thera-
peutic immune modulation via the induction of tumor-specific
cytotoxic T-lymphocyte responses (101). A recombinant VSV
expressing IFN-β was shown to enhance inflammatory cytokine
production and NK cell activation, leading to enhanced bystander
killing of tumor cells (100). Based on these results, rVSV-IFN-
β entered a phase I clinical trial for sorafenib-refractory HCC
in 2012 (NCT01628640). In a preclinical study, a conditionally
replicative adenovirus (CRAd) was engineered to express IFN-γ,
resulting in significant regression of HCC in mice through the
combined effects of viral-mediated oncolysis, anti-angiogenesis,
and anti-tumor immune responses (102).

Combination strategies involving the adoptive transfer of
immune cells together with OVs are an exciting new approach
which has shown striking efficacy in several models (103–105).
Although this strategy has not been extensively explored for HCC,
one study showed that a specific and strong immune response
against HCC cells could be elicited in vitro via patient-derived
DCs that were transduced with an adenoviral vector encoding
α-fetoprotein, a TAA often expressed in HCC, and co-cultured
with autologous cytokine-induced killer (CIK) cells (106). Strate-
gies involving engineering OVs to express a TAA to prime T-cell
responses have shown promise in other tumor models, such as
an engineered VSV vector expressing a TAA that resulted in an
antigen-specific CD8+ T-cell response in a murine melanoma
model (107), and will likely be explored further for HCC therapy
in the future.

OUTLOOK
Because of the rapid clearance of viruses in immune-competent
hosts, the therapeutic window during which OVs have the oppor-
tunity to replicate and cause their cytopathic effect in tumor cells
is relatively short. In the context of the liver microenvironment,
where myriad other barriers to OV propagation exist, we believe
that the immune system represents an essential tool, which must be
harnessed in order to destroy the remaining tumor cells that have
escaped viral infection. The combination of viral-mediated cytol-
ysis with tumor-directed immune stimulation creates a potent
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arsenal against hepatic tumors. Although two immunotherapeutic
OVs are already in clinical trials for HCC, there are many other
strategies for utilizing OVs to break immune tolerance and/or
stimulate anti-tumor immune responses, which have shown effi-
cacy in other tumor models but have not yet been tested in the
context of HCC.

One such strategy involves the exciting new concept of incor-
porating new molecules called “T-cell engagers” into oncolytic
viral vectors (108). In this approach, a secretory bispecific T-
cell engager, consisting of antibodies directed against CD3 and a
tumor cell-specific antigen, EphA2, was expressed by an oncolytic
vaccinia virus, and resulted in improved anti-tumor efficacy via
activation of T-cells within tumors and bystander cell killing
(109). Another innovative approach involves the systemic applica-
tion of oncolytic NDV, followed by intradermal vaccinations with
DCs pulsed with viral oncolysate, to prime naïve T-cells against
the patient’s TAAs and establish a long-lasting memory T-cell
repertoire (110). These novel strategies, which combine oncolytic
virotherapy with immunotherapy have the potential to produce
potent anti-tumor responses.

Alternatively, a prime-boost approach has been investigated, in
which two different recombinant OVs are sequentially adminis-
tered, the first one priming the immune response through expres-
sion of a TAA, followed by a boosted secondary response produced
by a subsequent TAA-encoding virus, leading to a robust tumor-
specific immunity (64, 111). A cDNA library has also been utilized
to present a broad range of TAAs by a recombinant VSV vector,
resulting in dramatic tumor regressions (112). These TAA-based
approaches lead to significant tumor responses via complementary
cell death mechanisms induced by the direct viral-mediated oncol-
ysis in combination with TAA-specific CD8+ T-cell-mediated
killing, causing additional TAAs to be released and presented by
DCs to T-cells and resulting in further activation of tumor-specific
immune responses, thereby conferring a potent arsenal against
systemic metastases.

A ubiquitous problem in the field of OV therapy is the rela-
tive inefficiency of systemic application, due to virus inactivation
by blood components, non-specific uptake by off-target cells, and
sequestration by the liver and spleen. To address this issue, var-
ious approaches using synthetic polymers or cell carrier systems
for viral shielding have been investigated (113). The innate abil-
ity of immune cells to home to tumors is a convenient feature,
which affords them the opportunity to serve as OV cell carriers
for the dual benefit of virus delivery and stimulation of anti-
tumor immune responses. To this end, VSV has been loaded
onto antigen-specific T-cells to simultaneously enhance adoptive
T-cell therapy, while providing a vehicle for OV delivery to the
tumor site (114). In similar studies, it was demonstrated that T-
cells, mature DCs, and CIK cells could efficiently deliver OVs to
their tumor targets to improve viral-mediated tumor oncolysis and
prime anti-tumor immune responses (65, 66). The application of
these approaches to HCC therapy will likely produce similar ben-
efits, and are undoubtedly already under investigation by several
groups.

As an alternative to the cell carrier approach for virus deliv-
ery, strategies involving the surface modification of OVs using

synthetic polymers have been developed to shield oncolytic vec-
tors from inactivation and non-specific uptake. VSV shielding via
covalent modification with polyethylene glycol (PEG) has resulted
in increased circulation times and a reduction of neutralizing
antibody responses (115). Polymer shielding of adenovirus has
been demonstrated to allow immune escape and a reduction of
liver sequestration by increasing the diameter above the size of
the hepatic sinusoidal fenestrae and by lowering KC uptake (67,
116). PEGylation of Ad5 with high molecular weight PEG (20 kD)
resulted in improved efficacy of intravenously applied therapy for
HCC, with reduced transduction of hepatocytes and KCs and
a reduction of hepatotoxicity (117), making this an attractive
approach for improving the specificity of OV therapies targeted to
liver tumors.

CONCLUDING REMARKS
The complex liver milieu underlying HCC presents innumerable
challenges to the development of effective therapeutic agents to
produce significant tumor responses and prolongation of patient
survival. However, by gaining a greater understanding of the
dynamic roles of the hepatic microenvironment and the patho-
genesis of liver disease and carcinogenesis, we can actually exploit
the properties of the local liver setting to synergize with ther-
apeutic agents. Because OVs exert their therapeutic effects via
multiple mechanisms, including direct cytopathic effects, anti-
angiogenesis, and anti-tumor immune stimulation, they represent
ideal agents for contending with the liver microenvironment.
This is evidenced by recent reports, which demonstrate that OVs
not only provide potent anti-tumor effects, but they also possess
antifibrotic and anti-viral properties, allowing them to provide
therapeutic benefits against the underlying liver injury. Therefore,
by discerning the complexities of the liver microenvironment and
their roles in the pathogenesis of HCC, Pandora’s box of evil is
converted to a vessel of hope, for which OVs will surely play an
important role in providing synergistic therapeutic outcomes.
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Oncolytic viruses (OVs) not only kill cancer cells by direct lysis but also generate a signif-
icant anti-tumor immune response that allows for prolonged cancer control and in some
cases cures. How to best stimulate this effect is a subject of intense investigation in the OV
field. While pharmacological manipulation of the cellular innate anti-viral immune response
has been shown by several groups to improve viral oncolysis and spread, it is increasingly
clear that pharmacological agents can also impact the anti-tumor immune response gener-
ated by OVs and related tumor vaccination strategies. This review covers recent progress
in using pharmacological agents to improve the activity of OVs and their ability to generate
robust anti-tumor immune responses.
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chemotherapy, immuno-modulatory therapy

INTRODUCTION: ONCOLYTIC VIRUSES: MULTI-MECHANISTIC
BIOTHERAPEUTICS AGAINST CANCER
Oncolytic viruses (OVs) are self-amplifying biotherapeutics that
have been selected or engineered to preferentially infect and
kill cancer cells. Generated from a multitude of viral species,
OVs exploit cancer-associated cellular defects arising from genetic
perturbations including mutations and epigenetic reprograming
[reviewed in Ref. (1)]. Among others, these cellular defects lead to
dysfunctional anti-viral responses and immune evasion, increased
cell proliferation and metabolism, and leaky tumor vasculature
(2). These characteristics in turn provide a fertile ground for viral
replication and subsequent lysis of tumor cells and permit the
growth of genetically attenuated OVs that are otherwise harmless
to normal cells.

In addition to the direct killing of cancer cells, OVs can also
trigger a potent anti-tumor immune response. Infected tumor
cells induce the release of pro-inflammatory cytokines and expose
both viral and tumor-associated antigens to patrolling immune
cells, promoting the differentiation of antigen-presenting cells and
T-cell activation (3–5). How much tumor infection and lysis are
necessary to trigger these responses remains a topic of debate;
however, it is clear that the combination of direct oncolysis and
activation of anti-tumor immunity can lead to durable cures in
pre-clinical mouse models of cancer.

A number of OVs are currently being evaluated in clinical
trials to treat a range of cancer types. For a more compre-
hensive overview, the reader is invited to consult an excellent
review by Russell et al. (6). Of particular note, herpes simplex
virus-1 (HSV-1), vaccinia virus, reovirus, and adenovirus-based
OV strains have made the most progress toward approval (7–
10). Shanghai Sunway Biotech’s oncolytic adenovirus (H101),
deleted for the viral E1B gene and thought to target p53 defi-
cient cancer cells, was the first approved OV in China as early
as 2005, indicated for head and neck cancers. (11). Profound

tumor regression is common following treatment with OVs;
for example, durable objective responses were observed in 3/14
patients (hepatocarcinoma, lung cancer, and melanoma) follow-
ing treatment with vaccinia virus JX-594 in a phase I trial (7).
This virus has been deleted for viral thymidine kinase (TK),
making it dependent on cellular TK that is overexpressed in
cancer cells (7). In addition to the TK deletion that provides
tumor selectivity, the virus also expresses granulocyte macrophage
colony-stimulating factor (GM-CSF) to stimulate anti-tumor
immunity. Most recently, Amgen’s HSV-1-based talimogene laher-
parepvec (T-VEC) led to 16% durable response in a phase
III clinical trial for late-stage melanoma, and it is expected
that the company will file for FDA approval in North Amer-
ica in the coming year (12, 13). Like JX-594, T-VEC expresses
GM-CSF but has deletions in viral genes ICP34.5 and ICP47
that confer tumor selectivity and promote antigen presentation,
respectively (14).

While widespread approval and clinical implementation of
oncolytic virotherapy are in the foreseeable future, heterogene-
ity in clinical response to OVs remains a significant challenge as
evidenced from a number of early and late-stage human clinical
trials (6, 15, 16). This heterogeneity in response can be attributed to
factors that impact OV delivery and spread within tumors, such as
pre-existing immunity and remnant tumor anti-viral responses, as
well as to a variably immunosuppressive tumor microenvironment
that can prevent the generation of an effective anti-tumor immune
response. To overcome these challenges, it has been long recog-
nized in the OV field that improvements to therapeutic efficacy
either through viral engineering or through combination thera-
pies will be critical (6, 17). In the current review, we will focus
on advances in therapeutic strategies employing small-molecule
pharmacological agents that ameliorate OV treatment in vivo by
manipulating the innate and/or adaptive immune response to
virus and tumor (summarized in Table 1).
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Table 1 | Combinations of pharmacological and oncolytic therapies with demonstrated improvements in in vivo treatment efficacy.

Drug Mechanism of

action/molecular

target

Reported immunomodulatory

effect (systemic immunomodula-

tion or specific modulation of

anti-viral response

Oncolytic

virus

Reference

CLASSIC CHEMOTHERAPY AGENTS

Cyclophosphamide DNA alkylation Systemic immunomodulation HSV Ikeda et al. (20), Ikeda et al. (21),

Wakimoto et al. (22), and Currier et al. (24)

Adenovirus Thomas et al. (25), Dhar et al. (26), Cerullo

et al. (27), and Hasegawa et al. (28)

Vaccinia Lun et al. (29)

Reovirus Qiao et al. (30) and Kottke et al. (34)

Measles Ungerechts et al. (31) and Ungerechts

et al. (32)

Gemcitabine Nucleoside substitution

and inhibition of DNA

replication,

ribonucleotide

reductase inhibitor

Systemic immunomodulation Adenovirus Leitner et al. (38), Liu et al. (39), Onimaru

et al. (40), Bhattacharyya et al. (41),

Cherubini et al. (42), Wang et al. (43), and

Kangasniemi et al. (44)
Parvovirus Angelova et al. (45)

Reovirus Gujar et al. (48)

VSV Hastie et al. (49)

HSV Watanabe et al. (50) and Esaki et al. (51)

Vaccinia Yu et al. (52)

Myxoma Wennier et al. (53)

Bortezomib Proteasome inhibition Systemic immunomodulation VSV (VSV-mIFNβ) Yarde et al. (61)

Reovirus Carew et al. (62)

Adenovirus

(hTERT-Ad)

Boozari et al. (63)

Mitoxantrone Type II topoisomerase

inhibition

Systemic immunomodulation HSV Workenhe et al. (69)

Irinotecan Type I topoisomerase

inhibition

systemic immunomodulation HSV Tyminski et al. (74)
Sindbis Granot and Meruelo (75)

Temozolomide DNA alkylation Systemic immunomodulation Adenovirus Alonso et al. (80), Holzmuller et al. (81),

Liikanen et al. (82), and Tobias et al. (83)

HSV Aghi et al. (84) and Kanai et al. (85)

EPIGENETIC MODULATORS

Valproic acid Histone deacetylase

inhibition

Specific modulation of anti-viral

response

HSV Otsuki et al. (106)

Trichostatin A Histone deacetylase

inhibition

Specific modulation of anti-viral

response

HSV Liu et al. (105)
Vaccinia MacTavish et al. (108)

Entinostat (MS-275) Histone deacetylase

inhibition

Both VSV Nguyen et al. (99) and Bridle et al. (109)

5-Azacitidine DNA methyltransferase

inhibition

Specific modulation of anti-viral

response

HSV Okemoto et al. (111)

PI3K/Akt/mTOR PATHWAY INHIBITORS

LY294002 PI3K inhibition Specific modulation of anti-viral

response

HSV Kanai et al. (116)

(Continued)
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Table 1 | Continued

Drug Mechanism of

action/molecular

target

Reported immunomodulatory

effect (systemic immunomodula-

tion or specific modulation of

anti-viral response

Oncolytic

virus

Reference

Rapamycin mTORC1 and mTORC2

inhibition

Both Adenovirus Jiang et al. (120)
HSV Fu et al. (121)

VSV Alain et al. (122)

Everolimus

(RAD001)

mTORC1 inhibition Both Adenovirus Lukashev et al. (119)

OTHER

Viral sensitizer 1

(VSe1)

Unknown Specific modulation of anti-viral

response

VSV Diallo et al. (125)

Triptolide Global transcription

inhibition via RNA pol II

inhibition

Specific modulation of anti-viral

response

VSV Ben Yebdri et al. (130)

Sunitinib Receptor tyrosine

kinase inhibition

Specific modulation of anti-viral

response

VSV Kottke et al. (87) and Jha et al. (88)
Reovirus Kottke et al. (87)

Vaccinia Hou et al. (89)

Ipilimumab CTLA-4 inhibition Systemic immunomodulation NDV Zamarin et al. (138)

Numerous studies have shown that combining oncolytic virotherapy and pharmacological therapy leads to improved outcomes in vivo. This table summarizes these

reports, presenting the small molecule used in the study, its main mechanism of action or molecular target, its reported immuno-modulatory effect(s), and type of

oncolytic virus used. Abbreviations: HSV, herpes simplex virus; VSV, vesicular stomatitis virus; mIFNβ, murine interferon beta; hTERT-Ad, human telomerase reverse

transcriptase promoter-regulated adenovirus; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; mTORC1, mammalian target of rapamycin

complex 1; mTORC2, mammalian target of rapamycin complex 2; CTLA-4, cytotoxic T-lymphocyte antigen 4.

STANDARD CHEMOTHERAPEUTIC DRUGS THAT BOOST OV
ACTIVITY THROUGH SYSTEMIC EFFECTS ON IMMUNE CELLS
AND THE IMMUNE RESPONSE
Most cancer patients with advanced disease will be subjected to
some form of chemotherapy. This will largely depend on the
type of cancer and other salient pathophysiological characteris-
tics. Given that most patients enrolled in clinical trials to test
the efficacy of OVs suffer from advanced disease (7), a natural
trend in the OV field has been to test OVs in combination with
chemotherapeutics that are currently the standard of care. Classic
chemotherapy drugs typically capitalize on the fact that cancer cells
are continuously replicating unlike most normal cells (18). How-
ever, some normal cell types have higher replication rates, leading
to significant off-target effects. Hematopoietic cells among others
can be affected and this can lead to systemic immunosuppres-
sion (discussed below). While the evaluation of chemotherapeutic
drugs in the context of OV therapy has been fairly empirical
for the most part, their immunosuppressive effects can inher-
ently complement OV activity by increasing OV spread within
tumor beds and/or increasing anti-tumor immune responses. The
following sections provide an overview of classic chemotherapy
drugs that have been evaluated in combination with OVs focusing
on their anti-cancer mechanism of action, examples of OVs with
which they have been tested, and the mechanism by which these
agents suppress immunity and co-operate with OVs to improve
therapeutic outcomes.

CYCLOPHOSPHAMIDE
Cyclophosphamide (CPA) is a nitrogen mustard alkylating agent
that leads to cross-linking of nucleotides. Its active metabo-
lite, phosphoramide mustard, interferes with DNA replication
by forming guanine-to-guanine intra-strand and inter-strand
crosslinks (19). Aldehyde dehydrogenase (ALDH) catalyzes the
conversion of the immediate precursor of phosphoramide mus-
tard, aldophosphamide, to an inactive metabolite. Normal cells,
for example intestinal epithelial cells and bone marrow stem cells,
have a high level of ALDH, protecting them from the effects
of CPA’s toxic metabolites. In contrast, some lymphocytes have
a lower level of ALDH, which makes them more susceptible to
the effects of CPA. CPA has been used in combination with sev-
eral OVs including HSV-1 (20–24), adenovirus (25–28), vaccinia
(29), reovirus (30), measles (31–33), and vesicular stomatitis virus
(VSV) (33), leading to improved anti-tumor activity in vivo. Sev-
eral studies suggest that CPA can be efficacious in combination
with OVs by preventing immune-mediated viral neutralization
through inhibiting or delaying the rise of neutralizing antibod-
ies and depleting anti-viral immune cells including natural killer
(NK) cells, monocytes, macrophages, and lymphocytes (20, 22, 23,
25, 26). For example, one study showed that CPA inhibits tumor
infiltration of innate phagocytes (macrophages, microglia, and NK
cells) following HSV treatment in a syngeneic rat glioma model,
leading to increased viral persistence and improved overall efficacy
(23). Other studies suggest CPA can also enhance the generation of
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anti-tumor immunity by inhibiting regulatory T-cells (Tregs) (27,
34). Results from a first in-human clinical trial using Ad-GM-CSF
(CGTG-102) to treat solid tumors suggest that metronomic dos-
ing of CPA decreases Tregs without compromising the induction of
anti-tumor T-cell responses. This was found to be associated with
increased cytotoxic T-cell responses and the induction of Th1 type
immunity in most patients. The best progression-free survival and
overall patient survival rates were seen with the combination of
metronomic CPA and intratumoral infection of adenovirus (27).

GEMCITABINE
Gemcitabine is a fluorinated deoxycytidine nucleoside analog.
Incorporation of this analog into DNA prevents further addi-
tion of nucleosides during DNA polymerization and thereby halts
DNA replication and cell division. Gemcitabine also binds irre-
versibly to the active site of ribonucleotide reductase. As a result,
nucleotide production is halted and DNA replication ceases, lead-
ing to apoptosis in rapidly dividing cells [reviewed in Ref. (35)].
While gemcitabine can decrease neutralizing antibodies similar to
CPA (36), it is thought to promote anti-tumor immune responses
by off-target elimination of myeloid derived stem cells (MDSCs),
which suppress T-cell responses. Gemcitabine treatment thereby
increases the activity of CD4+ and CD8+ T-cells that recog-
nize tumor antigens (37). This drug has been shown to increase
the anti-tumor activity of a wide array of OVs including aden-
ovirus (38–44), parvovirus (45, 46), reovirus (47, 48), VSV (49),
HSV (50, 51), vaccinia (52), and myxoma virus (53). In the lat-
ter example, the anti-cancer activity of oncolytic myxoma virus
was improved using gemcitabine in disseminated pancreatic can-
cer murine models (53). Interestingly, no sensitization occurred
in immunocompromised mice, supporting the requirement for
a virus-triggered anti-tumor immune response in mediating the
combination effect. The combination of gemcitabine and reovirus
was recently evaluated in a phase I clinical trial and while anti-
tumor immune responses were not measured, neutralizing anti-
bodies against reovirus were decreased by gemcitabine treatment.
In this study, 80% of evaluable patients showed either partial
response or stable disease (36).

BORTEZOMIB
Bortezomib is a proteasome inhibitor approved to treat multiple
myeloma and mantle cell lymphoma. It reversibly binds the cat-
alytic site of the 26S proteasome with high affinity and specificity
(54). Bortezomib has been shown to inhibit NF-κB by preventing
degradation of IκB-α in some cell types (55) although the opposite
effect has also been observed (56). Other mechanisms of action by
which bortezomib may kill cancer cells are through ER-stress and
activation of the unfolded protein response (UPR) (57) and trig-
gering apoptosis by preventing the degradation of pro-apoptotic
proteins (56, 58). Some studies have shown that treatment of can-
cer cells using bortezomib increases surface expression of Hsp90
and Hsp60 in cancer cells leading to their more effective phago-
cytosis by dendritic cells (DCs), improving tumor vaccine effects
(59). Bortezomib-treated mice also exhibit increased DC matu-
ration and phagocytic potential (59). On the other hand, one
study found that bortezomib treatment leads to apoptosis of

allo-reactive CD4+ T-cells. Thus the net result on anti-cancer and
anti-viral immune responses is likely context-dependent (60).

Bortezomib has been tested in combination with oncolytic
VSV (61), reovirus (62), and adenovirus (63). Using VSV-mIFNβ,
combined treatment with bortezomib was inhibitory to virus
replication in myeloma cells in vitro but led to improved thera-
peutic efficacy compared to single treatments in syngeneic murine
myeloma models (61). Given no observed effect on tumor viral
load, this suggests bortezomib likely increases virus-induced cell
death and/or potentiates the anti-tumor response mediated by the
virus. Supporting the former, in combination with the oncolytic
adenovirus hTERT-Ad, bortezomib enhanced infection-induced
ER-stress and activated the UPR and UPR-associated apoptotic
cell death in vitro (63). In subcutaneous hepatocellular carci-
noma (HCC) mouse models, bortezomib refocused the immune
response toward tumor-associated antigens by inhibiting immune
recognition of the virus. This allowed for a reduction in viral dose
in the combination therapy while maintaining similar efficacy. It
was further demonstrated that bortezomib’s efficacy is dependent
upon a functional CD8+ T-cell response, as no response was seen
in vivo upon depletion of CD8+ T-cells.

MITOXANTRONE
Mitoxantrone is a type II topoisomerase inhibitor and a DNA
intercalating agent. Thus, it disrupts DNA synthesis and DNA
repair in both healthy cells and cancer cells (64). Mitoxantrone
was initially developed for treatment of cancer and has been
notably approved to treat leukemia and prostate cancer. How-
ever, due to its immunosuppressive effects, mitoxantrone was also
approved for the treatment of multiple sclerosis over a decade ago.
Similar to other immunosuppressive chemotherapies, its activ-
ity can be attributed to its effects on proliferating immune cells,
but it also has additional effects on antigen-presenting cells and
enhances suppressor T-cell functions. Mitoxantrone treatment
notably reduces the secretion of pro-inflammatory cytokines such
as IL-2, interferon-γ (IFN-γ), and tumor necrosis factor alpha
(65–68). This drug has been tested in combination with oncolytic
HSV-1 in syngeneic murine breast tumor models (69) but only
in vitro with adenovirus in prostate cancer cells (70–72). In the
case of the HSV-1 ICP0 null OV KM100, mitoxantrone was found
to induce immunogenic cell death and whereas no enhanced cell
killing was observed in vitro, the combination treatment improved
survival compared to single treatments in a Her2/neu TUBO-
derived syngeneic murine tumor model. This effect was associated
with increased intratumoral infiltration of neutrophils and tumor
antigen-specific CD8+ T-cells. It was also observed that CD8+
and CD4+ T-cells as well as Ly6G+ neutrophils were important
in mediating the improved anti-tumor efficacy.

IRINOTECAN
Irinotecan or more accurately its active metabolite SN-38 inhibits
topoisomerase I leading to a blockade in DNA replication and
transcription. It is mainly used in colon cancer as part of a reg-
imen known as FOLFIRI, which also includes folinic acid and
5-fluorouracil. This course of therapy has been found to reduce the
number of Tregs in colorectal cancer patients with minimal impact
on total lymphocyte and CD4+ T-cells counts (73). Few studies
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have used irinotecan in combination with OVs in vivo. One study
showed that HSV-1 expressing CYP2B1, which converts irinote-
can into SN-38, leads to improved survival in combination with
irinotecan as compared to virus or drug alone in an immunode-
ficient mouse glioma model (74). While potential immunological
effects were not assessed, a likely contributor to the effect of com-
bination therapy is the increased conversion of irinotecan to active
SN-38 due to the expression of CYP2B1 by the virus. Another study
used oncolytic Sindbis to treat immunodeficient mice bearing
human ovarian tumors (75). In this model irinotecan improved
the oncolytic efficacy of Sindbis and this effect required NK cells.

TEMOZOLOMIDE
Temozolomide (TMZ) is an alkylating agent that leads to alkyla-
tion/methylation of DNA and has demonstrated clinical benefits
in patients with glioblastoma (GBM) (76) and advanced metasta-
tic melanoma (77). At higher doses, TMZ can be myeloablative
and in these conditions, CD4+ and CD8+ T-cells, as well as
Tregs are markedly reduced. Vaccination using an anti-tumor
peptide vaccine following TMZ-induced myeloablation leads to
improved CD8+ T-cell anti-tumor responses and prolongs sur-
vival in a murine model of established intracerebral tumors (78).
However, Treg depletion has also been observed following low-
dose TMZ in rats (79). Oncolytic adenovirus (80–83) and HSV
(84, 85) have been tested in vivo in combination with TMZ,
albeit immune effects have not been systematically explored. In
one study with Ad5/3-D24-GM-CSF± low-dose CPA (to reduce
Tregs), treatment with TMZ increased tumor cell autophagy,
anti-tumor immunity, and ultimately reduced tumor burden in
murine models of xenogeneic prostate cancer (82). When used in
chemotherapy-refractory patients, adenovirus infusion followed
by TMZ treatment was found to increase tumor-specific T-cells
and immunogenic cell death as well as overall survival compared
to adenovirus treatment alone.

SUNITINIB
Sunitinib is an oral, small-molecule, and multi-targeted receptor
tyrosine kinase (RTK) inhibitor that was approved by the FDA for
the treatment of metastatic renal cell carcinoma (RCC) and gas-
trointestinal stromal tumors (GIST) in 2006. Since then it has also
been approved for use in neuroendocrine pancreatic cancer. Suni-
tinib inhibits cellular signaling by targeting multiple RTKs. These
include platelet-derived growth factor receptors (PDGF-R) and
vascular endothelial growth factor receptors (VEGF-R). Sunitinib
also inhibits KIT (CD117), the RTK that drives the majority of
GISTs. In addition, sunitinib inhibits other RTKs including RET,
CSF-1R, and FLT3. Sunitinib has been recently shown to have
additional off-target effects that block effector proteins of the IFN
signaling pathway such as RNaseL and PKR (86).

Sunitinib has been evaluated in combination with VSV (87,
88), reovirus (87), and vaccinia virus (89). In the context of VSV
oncovirotherapy, sunitinib decreased phosphorylation of the PKR
substrate eIF2-α, leading to increased viral titers in vitro. Quite
remarkably, combination therapy resulted in complete and sus-
tained tumor regression in several immunodeficient and immuno-
competent mouse tumor models (88). However, sunitinib may
have additional effects on the infectivity of tumor vasculature.

One study used sunitinib to transiently inhibit VEGF signaling,
creating a “VEGF burst” upon treatment recovery. In combina-
tion with oncolytic VSV and reovirus, this led to increased viral
infection and endothelial cell lysis as well as virus spread from
blood vessels to cancerous tissues (87). A recent study looked at
the combined effect of sunitinib and oncolytic vaccinia virus in
syngeneic kidney and breast cancer mouse models, and found the
combined treatment led to the most dramatic tumor reduction.
Infection of tumors with oncolytic vaccinia as a monotherapy led
to decreased VEGF expression (89), in line with the observation
that vaccinia induces tumor vascular shutdown in both murine
tumor models and in patients (90–92). Thereby, the combination
effect in this study was attributed to enhanced tumor devascular-
ization, although other potential effects of sunitinib on the cellular
anti-viral response cannot be ruled out.

DRUGS THAT EPIGENETICALLY REPROGRAM IMMUNE
RESPONSES TO ENHANCE OV THERAPY
Epigenetic changes in gene regulation and expression can lead to
phenotypic heterogeneity in genetically identical cell populations.
Through reversible modifications to DNA and chromatin struc-
tures by enzymes targeting DNA, histones, and the distribution
pattern of nucleosomes, the ability of transcriptional factors to
access their respective promoters can be deeply altered (93). Not
surprisingly, many enzymes that are involved in epigenetic regu-
lation are deregulated in cancer and manipulation of the cancer
epigenome using small molecules has been explored successfully
as a treatment modality for cancer. As will be discussed in the
following sub-sections, modification of the cancer epigenome has
also proven beneficial to improve oncolytic virotherapy through
effects on the cellular anti-viral response, the anti-tumor immune
response, and even viral gene expression [for a more extensive
review, refer to Ref. (1)].

HDAC INHIBITORS
Transformed cells often have defective IFN signaling pathways
due to the cytokine’s ability to suppress cellular proliferation
and stimulate immune responses, both of which cancer cells
must bypass in order to evolve to full-blown malignancies (94–
96). Indeed, it has been estimated that roughly three quarters
of tumor cell lines within the NCI60 panel have defective IFN
responses (97). Numerous reports have attributed dysfunctional
IFN pathways in tumors to epigenetic silencing including DNA
promoter hypermethylation and transcriptionally suppressive his-
tone modifications [reviewed in Ref. (1)]. The extent to which
interferon-stimulated genes (ISGs), the effector arsenal of the IFN-
mediated anti-viral response, are epigenetically silenced can lead
to differences in the sensitivity to virus infection (98–102). Impor-
tantly, transcriptional activation of ISGs has been shown to require
histone deacetylase (HDAC) activity (103), which has spawned
the evaluation of HDAC inhibitors (HDIs) in combination with
several OVs.

HDAC inhibitors including valproic acid (VPA), trichostatin
A (TSA), suberoylanilide hydroxamic acid (SAHA), and MS-275
have all been used in the context of OV therapy to effectively
“reprogram” IFN-responsive tumors to become permissive to OV
infection. HDIs such as VPA and TSA were found to enhance
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HSV oncolysis in oral squamous carcinoma cells (SCC) (104) and
glioma tumors (105–107). In one report, this was attributed to an
inhibition of virally induced ISG expression, even in the presence
of exogenously added IFNβ (106). The result of HDI/HSV combi-
nation therapy led to prolonged survival in several murine tumor
models (105, 106). TSA also enhanced the oncolytic capacity of
vaccinia virus, where the two agents synergistically increased cell
killing in vitro in several cancer cell lines and the combination ther-
apy led to improved survival responses in syngeneic lung metasta-
sis and subcutaneous colorectal carcinoma mouse models (108).

Similarly, MS-275 (entinostat), SAHA (vorinostat), and other
HDIs robustly sensitized resistant cells to VSV-mediated oncol-
ysis by suppressing transcription of IFNβ and ISGs, increasing
viral titers, and increasing cancer cell death. This potent synergy
was cancer cell-specific and led to delayed tumor progression in
xenograft models and improved viral spread within tumors in a
syngeneic metastatic breast cancer model (99). While only evalu-
ated in vitro in this study, HDI treatment of several cancer cell lines
increased spreading of vaccinia and Semliki Forest viruses as well.
This activity was ultimately linked to HDI-elicited dampening of
the response to IFN (99).

In addition to the effects of HDIs on the response to IFN, evi-
dence suggests HDIs can have additional immuno-modulatory
properties. Particularly striking effects of HDIs have been observed
in the context of a heterologous oncolytic prime-boost strat-
egy, where mice with syngeneic B16 melanoma brain tumors
were first primed with an oncolytic adenovirus expressing the
tumor-associated antigen dopachrome tautomerase (hDCT, over-
expressed in B16) then treated with oncolytic VSV expressing
hDCT. MS-275 given along with VSV-hDCT potentiated the anti-
tumor response to hDCT while suppressing the adaptive anti-viral
response, ultimately redirecting the immune response toward the
tumor. As a result, efficacy was dramatically improved, where the
majority of mice given MS-275 in the prime-boost regime experi-
enced long-lasting (>200 day) cures, compared to 100% mortality
before day 50 in the mice given the same therapy minus MS-275
(109). In this study, it was also shown that MS-275 reduced virus
neutralizing antibodies and memory CD8+ T-cells while main-
taining prime-induced levels of humoral and cellular immunity
against the tumor antigen (109).

5-AZA
DNA methylation and histone modifications are highly inter-
dependent epigenetic processes (110). In addition to histone
acetylation-mediated gene silencing, ISGs and other genes implicit
in the IFN-mediated anti-viral response are often silenced in
cancers by DNA hypermethylation at CpG islands in their pro-
moter region [reviewed in Ref. (1)]. In addition to cellular genes,
viral genomes can also be susceptible to direct epigenetic silenc-
ing. For example, oncolytic HSV rQNestin34.5 is transcriptionally
silenced upon infection of glioma cells, due to increased DNA
methylation levels at the virally encoded mammalian Nestin pro-
moter (111). As such, some groups have investigated using OVs
in combination with 5-AZA-2′-deoxycytidine (5-AZA): a DNA
methyltransferase inhibitor that prevents DNA methylation and
allows silenced DNA to regain accessibility to transcription fac-
tors. In the case of oncolytic HSV rQNestin34.5, treatment with

5-AZA was sufficient to de-repress transcription under control of
the Nestin promoter, allowing viral gene expression, increased viral
replication, and HSV-mediated glioma cell killing. This translated
to increased survival in glioma bearing mice treated with both
5-AZA and the OV, compared to either treatment administered
alone (111). However, it is interesting to mention that in the same
study, VPA an HDAC inhibitor was sufficient to drive down DNA
methylation at the Nestin promoter in vitro in infected glioma cells,
highlighting the closely interrelated impact of DNA methylation
and histone modification (111).

PI3K/Akt/mTOR PATHWAY INHIBITORS
The phosphoinositide 3-kinase (PI3K) pathway is critical to cell
survival/apoptosis signaling in response to stress. Genetic muta-
tions in the P13K pathway frequently occur in cancers resulting
in dysfunctional apoptotic responses and pro-survival signaling
(112). Various growth hormones and stress signals including IFN-
α activate PI3K, which triggers a signaling cascade leading to Akt
phosphorylation (112, 113). This activates the kinase, which then
phosphorylates a number of cellular factors involved in cell sur-
vival and proliferation such as NF-κB, which is also involved in
inducing the type I IFN cascade.

Several PI3K pathway inhibitors including GDC-0941 and
NVP-BEZ235 are currently being clinically evaluated for the treat-
ment of cancer (114). Both GDC-0941 and LY294002, a common
PI3K inhibitor chemical probe, inhibit PI3K activity via competi-
tive inhibition of an ATP binding site on the p85α subunit (115).
The PI3K inhibitors LY294002, GDC-0941, BEZ235, as well as the
Akt inhibitor tricibine, acted synergistically with oncolytic HSV
MG18L to induce apoptosis in glioma cell lines in vitro in a cancer
cell-specific manner. Remarkably, combination therapy resulted
in durable cures in mice bearing glioblastoma multiforme (GBM)
tumors, surpassing the efficacy of either therapy administered
alone (116). Recent findings also indicated LY294002 increased
killing of multiple myeloma cells in vitro triggered by the oncolytic
adenovirus ZD55-TRAIL (117).

Mammalian target of rapamycin (mTOR), a master regulator
of cellular translation, is downstream of PI3K and Akt signal-
ing. Indeed, both GDC-0941 and NVP-BEZ235, a PI3K inhibitor
developed by Novartis, have been reported to inhibit mTOR as
well as PI3K (114). While mTOR controls translation of a host of
cellular mRNAs and can also impact translation of viral proteins,
evidence suggests it can control the anti-viral response by regulat-
ing translation of IFN and other key mediators of the anti-viral
response such as IRF-7 (118). The mTOR inhibitor rapamycin,
a well-known immunosuppressant, has been tested in combina-
tion with several OVs including oncolytic adenovirus (119, 120),
HSV (121), VSV (122), and myxoma (123, 124). Treatment with
rapamycin or closely related mTOR inhibitors such as everolimus
(RAD001) has been reported to suppress the adaptive immune
response to OVs by reducing levels of antibodies generated against
the viruses (120), improving OV activity in several rodent models
of cancer (119–121). In one study, enhancement of OV activity was
also observed in vitro following treatment with rapamycin (121).
This may be due to the impact of rapamycin on the IFN response
as determined from another study where rapamycin was shown to
reduce levels of VSV-induced IFN in rats, improving VSV efficacy
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in an aggressive rat glioma model (122). Interestingly, oncolytic
myxoma is enhanced by rapamycin in normally resistant human
tumor cells in vitro; however, the mechanism by which this occurs
is thought to be due to rapamycin-induced increases in Akt kinase
levels optimal for sustaining myxoma replication (123).

OTHER PROMISING IMMUNO-MODULATORY
OV-ENHANCING DRUGS
NOVEL VIRAL SENSITIZERS
The paragraphs above have shown countless examples of empir-
ically or rationally selected combination therapeutic approaches
aiming to improve the activity of OVs using well-characterized
chemotherapeutics and signaling pathway inhibitors. A high-
throughput screen was performed in an effort to expand this
approach in an unbiased manner to identify previously unchar-
acterized small molecules that enhance OV activity. This screen
was performed using oncolytic VSV∆M51 in the resistant murine
breast cancer cell line 4T1 (125). Several molecules were identified
as novel “viral sensitizers” (VSes) that were capable of boosting
VSV replication and spread in vitro. One of these compounds,
VSe1, boosted VSV∆M51 replication by up to 1000-fold, and was
found to synergistically increase tumor cell killing. The mode
of action of VSe1 is not fully understood but at a minimum it
involves disruption of the IFN response. More specifically, ISGs
typically triggered upon VSV infection remained silenced in cells
pre-treated with VSe1 (125). When used as a combination therapy
to treat an aggressive mouse colon carcinoma model refractory to
VSV∆M51,VSe1 potentiated OV activity leading to delayed tumor
progression in the context of the combination treatment, while
either VSV∆M51 or VSe1 alone had no appreciable anti-cancer
effects (125).

TRIPTOLIDE
Triptolide (TPL) is a naturally derived component of the Chinese
herb Tripterygium wilfordii and has been used for centuries as
an anti-inflammatory remedy that has also been found to have
anti-cancer properties (126–128). TPL is known to be a global
transcription inhibitor and has multiple effects including the inhi-
bition of RNA polymerase II and the expression of genes involved
in apoptosis and NFκB signaling (129). A recent report found
that TPL also suppresses IFN signaling downstream of IRF3 (130).
When combined with oncolytic VSV both in vitro in VSV-resistant
tumor cells and in vivo in an aggressive mouse GBM tumor
model, the two therapies synergistically improved tumor-specific
virus replication leading prolonged survival and delayed tumor
progression compared to either therapy given alone (130).

JAK KINASE INHIBITORS
Ruxolitinib (Jakafi) is a Jak1/2 kinase inhibitor (131) approved in
2011 for the treatment of myelofibrosis (132). Patients with myelo-
proliferative neoplasms often possess an activating mutation in
the gene encoding Jak2 (133), resulting in aberrant inflammatory
cytokine release and splenomegaly. Treatment with ruxolitinib,
while not targeting the genetic determinant of the neoplasm, led
to profound resolution of severe symptoms in human trials to
treat myelofibrosis (splenomegaly, weight loss, fatigue), and this
clinical efficacy was associated with a potent reduction in inflam-
matory cytokine levels (134). Given that Jak1 is required for type

I IFN signaling and induction of ISGs, Jak1 inhibitors have the
potential to benefit OV therapy in IFN-responsive tumors. Both
ruxolitinib and Jak inhibitor 1 were sufficient to sensitize VSV-
resistant squamous cell carcinoma cells in vitro to VSV infection,
and this sensitization was associated with marked decreases in
ISG expression (135). Pre-treatment with the Jak inhibitor 1 also
sensitized sarcoma and bladder carcinoma cells to VSV infection
in vitro (136).

CHECKPOINT INHIBITORS
Targeting T-cell inhibitory check point molecules, including the T-
cell inhibitory receptor cytotoxic T-lymphocyte antigen 4 (CTLA-
4) and programed cell death 1 (PD1), is a relatively new therapeutic
approach to cancer therapy. During normal immune responses,
T-cell checkpoint receptors such as PD1 and CTLA-4 prevent over-
active T-cell responses, which can lead to harmful tissue damage.
However in cancers, tumor infiltrating T-cells are often inhibited
by both PD1 and CTLA-4 stimulation. As a result, T-cell anergy is a
major barrier to immune-mediated tumor recognition and clear-
ance. Given the ability of OVs to stimulate an anti-tumor immune
response, combining OV with checkpoint inhibitors has emerged
as a logical combination approach. While several groups are cur-
rently working on this approach, published studies to date have
focused on ipilimumab, an anti-CTLA-4 antibody approved to
treat melanoma in 2011. By targeting CTLA-4, ipilimumab blocks
interaction with its ligands, CD80/CD86, leading to increases in T-
cell mediated anti-tumor responses. Anti-CTLA-4 antibodies have
been used in combination with oncolytic parvovirus in vitro (137)
and Newcastle disease virus (NDV) in vivo to treat murine B16
melanoma (138). Remarkably, the combination therapy of NDV
and anti-CTLA-4 led to nearly 70% cures in a B16 melanoma
mouse model compared to 20% cures for anti-CTLA-4 antibody
alone and no effect of the OV on its own (138). Notably, NDV com-
plemented with anti-CTLA-4 led to an increase in the infiltration
of activated CD8+ and CD4+ T-cells and a reduction in Tregs.

CONCLUSION
Successful therapy using OVs will ultimately depend on effectively
navigating the delicate balance between the anti-viral response
and the anti-tumor immune response such as to minimize the for-
mer in the short term and maximize the latter in the long term.
As outlined above, several approved drugs and novel small mol-
ecules can be effective tools to dampen the innate and adaptive
anti-viral responses, increase the anti-tumor immune response, or
both. However, given the close interplay between the cellular anti-
viral response and the adaptive immune response that is required
for prolonged tumor control, OV/drug scheduling is likely to be
critical. To this end, it is probable that the combination of some of
the agents described above may allow for additional flexibility and
more effective therapy. For example, one can easily foresee first
using a drug that specifically dampens the cellular antiviral to per-
mit robust OV replication followed with another that promotes
the generation of an anti-tumor response. However, given the effi-
cacy of each approach is undoubtedly both context-dependent
(e.g., tumor type and tumor site) and OV-dependent, more pre-
clinical and clinical studies will be necessary to identify winning
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combinations that can maximize the potential for curing cancers
in a clinical context.

While many studies demonstrate therapeutic benefit of com-
bination therapies at least in animal models, we can perceive
a deficit in regards to systematic head-to-head comparisons of
different combination therapies coupling OVs and the immune-
modulatory drugs reviewed above. While such a feat may prove
daunting experimentally, this exercise seems warranted and neces-
sary to delineate a more educated choice of combination therapies
to push forward into clinical trials. One clear trend overall is
that evaluation of promising combination therapies with novel
immuno-modulatory agents seems to stop at the pre-clinical level.
There are likely several factors that contribute to this. For exam-
ple, companies developing novel small molecules may be reluctant
to explore combinations with OVs that are still relatively novel
themselves. Similarly, novel small molecules need to be validated
clinically, which complicates clinical trial design and adds addi-
tional risk from the perspective of those spearheading clinical
translation of OVs. This is particularly challenging for novel small
molecules such as VSe1, which have been selected for the sole
purpose of enhancing OV activity (125). This type of small-
molecule/OV co-development can only be reasonably achieved
by pharmaceutical companies that have experience in developing
both small-molecule and biological therapies separately. Hence,
from a clinical perspective, it is likely that the combination of OV
therapy with a chemotherapy drug that is part of current standard
of care would be the easiest to implement as demonstrated with the
combination of oncolytic adenovirus and CPA (27). With promis-
ing results emerging from the clinic showing benefits combining
OVs with traditional chemotherapy drugs, and as pharmaceuti-
cal companies such as Amgen begin to take heed of the potential
of OV therapy for the treatment of cancer, clinical evaluation of
some of the more novel OV-synergizing compounds seems likely
in the near future as a means to overcome heterogeneity in clinical
response.
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Cancer is a traitorous archenemy that threatens our survival. Its ability to evade detec-
tion and adapt to various cancer therapies means that it is a moving target that becomes
increasingly difficult to attack. Through technological advancements, we have developed
sophisticated weapons to fight off tumor growth and invasion. However, if we are to stand
a chance in this war against cancer, advanced tactics will be required to maximize the
use of our available resources. Oncolytic viruses (OVs) are multi-functional cancer-fighters
that can be engineered to suit many different strategies; in particular, their retooling can
facilitate increased capacity for direct tumor killing (oncolytic virotherapy) and elicit adap-
tive antitumor immune responses (oncolytic immunotherapy). However, administration of
these modified OVs alone, rarely induces successful regression of established tumors.This
may be attributed to host antiviral immunity that acts to eliminate viral particles, as well as
the capacity for tumors to adapt to therapeutic selective pressure. It has been shown that
various chemotherapeutic drugs with distinct functional properties can potentiate the anti-
tumor efficacy of OVs. In this review, we summarize the chemotherapeutic combinatorial
strategies used to optimize virally induced destruction of tumors. With a particular focus
on pharmaceutical immunomodulators, we discuss how specific therapeutic contexts may
alter the effects of these synergistic combinations and their implications for future clinical
use.

Keywords: oncolytic virotherapy, cancer immunotherapy, cancer vaccines, combination therapy, drug therapy,
combination, oncolytic viruses

Do not repeat the tactics, which have gained you one victory,
but let your methods be regulated by the infinite variety of
circumstances.

–Sun Tzu, The Art of War

INTRODUCTION
Oncolytic viruses (OVs) can selectively infect, replicate in, and
kill tumor cells with minimal impact on normal tissue. These
tumor-specific properties, called oncotropism, is dependent on the
expression of surface receptors that allow viral binding and entry,
as well as, the permissiveness of the tumor cell toward viral repli-
cation. Genetic manipulation of the viral genome aims to improve
the inherent therapeutic value of OVs by enhancing their capacity
for targeted tumor killing (1, 2). Through transgene insertion, OVs
can serve as directed gene-delivery vehicles, and thus accommo-
date a diverse array of therapeutic strategies. Arming OVs with
additional weaponry, such as pro-apoptotic genes, tumor sup-
pressors, or genes stimulating antitumor immunity, can enhance
their killing capacity. With a broad arsenal, modified-OVs have the
potential to target a wide spectrum of different cancer types. How-
ever, administration of OVs as a monotherapy has demonstrated
varying degrees of success in clinical trials (3–5). This is likely
due to host antiviral immune-mediated mechanisms that limit
OV dissemination and promotes pre-mature viral clearance. Over
an extended period, selective pressure on heterogeneous tumor
populations can also lead to therapeutic resistance to OVs via

receptor loss or mutation of essential signaling pathways required
for viral replication (6). To overcome these barriers,many clinically
established and novel chemotherapeutics have been used in com-
bination with oncolytic virotherapy, showing synergistic effects
that potentiate tumor killing (7–9). In this review, we summarize
how immunomodulatory chemotherapeutic combinatorial strate-
gies have been used to optimize virally induced destruction of
tumors and discuss their implications for future directions and
clinical use.

MECHANISMS OF ONCOLYTIC VIRUSES
TUMOR TROPISM AND ONCOLYSIS
The oncotropism of viruses is guided by cell surface receptors
that enable viral binding and entry, and the permissiveness of the
infected cell to viral replication. Surface receptors that are recog-
nized by different types of viruses can be specific to neoplastic
cells. These viruses target receptors characteristic of malignant
phenotypes, such as Poliovirus that binds CD-155 that is almost
exclusively present in high grade glioma cells (10, 11), and Sindbis
virus that recognizes high-affinity laminin receptor overexpressed
in many cancers (12). Other viruses, such as vesicular stomatitis
virus (VSV) exhibit a remarkably robust and pantropic selectiv-
ity by binding to the ubiquitously expressed LDL receptor (13).
Therefore, instead of relying on receptor specificity, tumor tropism
of VSV is dependent on the permissiveness of malignant cells to
viral infection. VSV belongs to a class of interferon (IFN)-sensitive
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viruses, which preferentially infects tissues exhibiting reduced
or absent IFN responsiveness (14–17). This is a typical feature
of tumors, which often acquire defects in pathways involved in
innate antiviral immunity, such as the IFN pathway, as a mecha-
nism for immune escape. In fact, many of the biological pathways
altered by viral infection are similar to cellular changes acquired
during carcinogenesis. For instance, mutated oncogenes such as
BRAF or Cyclin A, increases the infectivity of VSV and parvovirus,
respectively (18, 19). As well, impaired apoptotic ability typically
observed in neoplastic cells provides an opportunity for OVs to
enhance their replicative capacity (20).

Selective retargeting of viruses to tumor cells can also be gen-
erated in viruses without innate oncolytic abilities. Adenovirus
(Ad)-based vectors are a good demonstration of this approach,
since they possess a wide tropism, but a lytic life cycle that
can be exploited for oncolytic virotherapy (21). One method to
restrict viral replication to tumor cells is the modification of E1A
and E1B genes that results in conditionally replicative Ad. As a
result, selective replication occurs in cells defective in p53 or Rb
tumor suppressor pathways; a characteristic observed in 50% of
human cancers (22). Alternatively, various transductional retar-
geting strategies exist that largely involve fusing tumor targeting
ligands to the Ad fiber knob domain, summarized in Ref. (23).

Viral oncolysis directly destroys tumor cells through either their
lytic replication cycle or the expression of endogenous cytotoxic
gene products (24). To further enhance their oncolytic effects,
transgenes encoding pro-apoptotic proteins are inserted into OVs
to subvert cell death machinery. These proteins include various
death-inducing ligands such as TNF-related apoptosis-inducing
ligand (TRAIL) (25, 26), Fas ligand (FasL) (27), and tumor sup-
pressor genes (e.g., p53, p16) (28, 29). Alternatively, small hairpin
RNA targeting factors can be inserted to silence genes involved in
cell survival or proliferation, including hTERT and ki67 (30) or
MYCN oncogene (31). Oncolytic viral infection can also induce
autophagy, a conserved catabolic process crucial in maintaining
cellular homeostasis (32). Cellular autophagy machinery is dis-
rupted by certain viruses to facilitate its own replication (33, 34)
and enhance oncolysis (35, 36). By engineering viruses to express
autophagy-inducing genes, such as Beclin-1 (37) and mTOR path-
way regulators (38, 39), improved therapeutic outcomes can be
achieved. This approach may be particularly useful for treating
apoptosis-resistant types of cancer, thus warranting further devel-
opment toward clinical application. Lastly, some OVs can exert
indirect mechanisms of tumor killing, including tumor vascu-
lar shutdown (40, 41) and the induction of antitumor immune
responses, the latter of which is described in further detail in the
following section.

INDUCTION OF ANTITUMOR IMMUNE RESPONSES
The various mechanisms through which OVs are capable of
lysing cancer cells result in the release of tumor associated anti-
gens (TAAs), proinflammatory cytokines, chemokines, and other
danger signals, which facilitates immune cell recruitment and
activation within tumors. In particular, activation and matura-
tion of dendritic cells (DCs) and other antigen presenting cells
(APCs) allow for efficient cross-presentation to T cells, and sub-
sequent initiation of antitumor and antiviral immune responses

(42, 43). However, OVs induce only weak tumor-specific immune
responses, due to premature viral clearance and immunosuppres-
sive regulatory factors within the tumor.

To potentiate their immunogenic effects, genetic engineering
strategies have been used to encode OVs with various cytokines,
immunomodulators, and TAAs (44, 45). Evaluation of the anti-
tumor efficacy of OVs expressing cytokines, such as IL-12, IL-2,
IL-4, IL-18, IL-24, and TNFα, has shown improved therapeu-
tic effects (46–49). One of the most promising cytokines tested
within the OV platform to date, is the granulocyte-macrophage
colony-stimulating factor (GM-CSF), which promotes DC matu-
ration and induces tumor antigen-specific cytotoxic T cells. Three
major viral vectors, Ad, VV, and HSV, armed with GM-CSF have
been demonstrated to enhance antitumor immunity and cytotox-
icity in several clinical trials (50–57). In particular, Talimogene
laherparepvec (T-VEC), a GM-CSF-expressing oHSV-1 that has
recently completed phase III trials in melanoma and head and neck
cancer, are the first to demonstrate efficacy of OV immunother-
apy, with an approximately 30% response rate against systemic
disease, following local injection into accessible tumors (52, 53).
Similar to GM-CSF, Fms-like tyrosine kinase-3 ligand (FLT3L) is
a potent growth factor capable of recruiting and expanding DCs
in vivo (58). OVs expressing FLT3L trigger DC and T cell infiltra-
tion into the tumor and enhance both antitumoral and antiviral
immune responses (42, 59, 60), implicating potential benefits of
using FLT3L as an adjuvant to cancer vaccination. Another strategy
to boost the antitumor response involves genetically engineering
OVs to express inflammatory chemokines, and thus increasing the
number of tumor-infiltrating immune cells. Expression of CCL5,
CCL3, and CCL19 by OVs enhances chemotaxis of immune cells
within the tumor and improves overall therapeutic benefits in vivo
(61–64). Interestingly, distinct effects on virus activity were also
observed, in which VV expressing CCL5 or CCL19 resulted in
increased persistence within the tumor and more rapid clearance
from non-tumor tissues, respectively (61, 65, 66). Finally, cross-
presentation of TAA to T cells through DC activation can also be
achieved by arming OVs with co-stimulatory molecules such as
CD40L (67, 68) and heat shock proteins (69).

A more direct approach to engage antigen-specific T cells is
to engineer OVs to express TAAs, termed oncolytic vaccines (70).
As such, TAAs are overexpressed in the tumor during viral repli-
cation, thus increasing the opportunity for immune responses
to be generated toward tumor-specific antigens. However, suc-
cessful antitumor activity has only been reported using model
tumor antigens such as OVA or LacZ (71, 72) and the same
approach was poorly effective against a self-TAA of low immuno-
genicity (70, 73). Altogether, these results suggest that overex-
pression of a TAA is insufficient to overcome immunosuppres-
sion in the tumor or immunodominant responses against viral
antigens. Therefore, additional approaches are required to boost
TAA-specific responses beyond these barriers. Indeed, significantly
improved therapeutic efficacy can be achieved by adoptive trans-
fer of TAA-specific transgenic T cells (74) or priming the host
with a heterologous vector expressing the TAA (70), prior to
oncolytic vaccination. Both approaches have been demonstrated
to increase TAA-specific T cell frequency, by redirecting the focus
of immune responses to the TAA, rather than the viral vector. Such
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OV-based cancer immunotherapies show promise by harnessing
both oncolytic and antitumor immune-mediated attacks. Clini-
cal evaluation of adoptive T cell transfer and OVs are currently
underway as monotherapies (4, 75), however their success as a
combination therapy has yet to be determined in human cancers.

CHALLENGES OF ONCOLYTIC VIRUS MONOTHERAPY
Oncolytic viruses as a standalone therapeutic intervention have
rarely been shown to induce complete, long-term regression of
established tumors in vivo (76, 77). Tumors can develop multi-
ple barriers to various anticancer therapies, including oncolytic
virotherapy. Here, we detail several mechanisms that may hinder
the therapeutic efficacy of OVs and the challenges they pose to the
development of improved cancer virotherapies.

IMMUNOLOGICAL BARRIERS
The first line of defense against viral infection is the innate immune
cells that patrol,detect, and rapidly eliminate foreign invaders. DCs
express pattern recognition receptors that allow for the detection
and subsequent uptake of viral particles. These activated DCs then
migrate to draining lymph nodes to initiate the development of
adaptive immune responses and to trigger NK cell activation. NK
cells have a predominant role in impeding the early spread of
viruses by directly lysing virally infected cells. Together, DCs and
NK cells produce a range of cytokines that promotes T helper
1 (Th1) cell activity and potent cytotoxic T lymphocyte (CTL)
responses that are necessary for clearing virus-infected cells (78).
Additionally, humoral immune responses, namely the production
of neutralizing antibodies by B cells and plasma cells, provide
several lines of antiviral defense (79). Plasma cells derived from
B1 cells imparts early defense against viral infection by produc-
ing polyspecific antibodies. CD4+ T helper cells then stimulate
naive B cells at later stages, in order to generate memory B cells
and long-lived plasma cells that produce high amounts of spe-
cific neutralizing IgG antibodies. Finally, the complement system,
composed of soluble factors and cell surface receptors, blocks
viral infection by acting on both the innate and adaptive immune
responses. These mechanisms include, enhancing humoral immu-
nity, regulating antibody effector mechanisms, and modulating T
cell function (80).

Altogether, these immunological barriers pose a particular
problem for repeat administration of OVs, by further promot-
ing the development of adaptive antiviral immunity and reducing
of its oncolytic effects. Moreover, a large fraction of the population
has previously been exposed to the naturally occurring viruses that
are commonly employed for generating therapeutic strains. There-
fore, the infectious potential of recognized OVs (e.g., Ad, HSV)
becomes limited by high levels of neutralizing antibodies (81, 82).
These circulating antibodies can limit viruses from ever reaching
the tumor site, especially since some viral particles, including HSV-
1- and murine leukemia virus-derived viruses, are particularly
prone to inactivation by the complement system (83, 84).

TUMOR ENVIRONMENT
Tumors are a heterogeneous assortment of cells, composed of can-
cer cells, stromal cells, and infiltrating leukocytes, which promote
tumor growth and maintain an immunosuppressive environment

(85). Tumor-infiltrating leukocytes (TILs) can negatively regulate
immune responses within the tumor, which include regulatory
T cells (Tregs), myeloid derived suppressor cells (MDSC), and
type 2 macrophages (M2). Their immunosuppressive functions
can be exerted by secretion of cytokines (e.g., IL-10 and TGF-β),
through inhibitory receptors (e.g., CTLA-4 and PD-L1) via cell
contact, and secretion of amino-acid depleting enzymes (arginase
and IDO) in the tumor microenvironment. Tumor cells themselves
also have mechanisms to suppress antitumor immunity, such as
the shedding of NKG2D ligands, MICA/B that blocks NK cell and
T cell function (86) and facilitates the expansion of immunosup-
pressive CD4+ T cells (87). Soluble mediators released by tumor
cells can directly inhibit CTLs, which include TGFβ, IL-10, PGE2,
histamine, hydrogen peroxide, and adenosine (88), in addition
to the hypoxic conditions and low extracellular pH that char-
acterize the tumor environment (89, 90). Therefore, antitumor
immune responses induced by modified-OVs may not be suffi-
cient to combat a highly immunosuppressive tumor environment,
unless additional therapeutic regimens are employed.

Preclinical and clinical evidence indicates that OVs often infect
neoplastic lesions in a heterogeneous and incomplete fashion,
irrespective of administration route and whether viruses are
replication-competent or not (91–93). Physicochemical barriers
to infection, including tumor size (94), the layers of dense intra-
tumoral connective tissue (95), the elevated interstitial pressure
(96), the poorly permissive vasculature (97), and the large areas
of necrosis/calcification (98) play a prominent role in determin-
ing viral dissemination. As a result, oncolytic virotherapy may
result in incomplete eradication of the primary tumor mass or
possibly even promote metastasis of the tumor cells and eventu-
ally leading to recurrence of disease. Similar to what is observed
in chemotherapy and radiotherapy regimens, malignant cells are
also prone to become resistant to oncolytic virotherapy over time.
This is presumably linked to the intrinsic nature of cancers to
exhibit genomic instability and the propensity for accumulating
mutations (99–101).

COMBINING IMMUNOMODULATORY CHEMOTHERAPY WITH
ONCOLYTIC VIROTHERAPY
Chemotherapeutic drugs used in combination with OVs can
potentiate their cytotoxic mechanisms (9), but may also act to
remove barriers to successful oncolytic virotherapy. Counteract-
ing immunological barriers can improve the persistence of viruses
and/or weaken the immunosuppressive forces within the tumor
microenvironment. In this section, we summarize how pharma-
ceutical immunomodulators may be used to promote adaptive
antitumor immune responses induced by OVs.

EVADING ANTIVIRAL IMMUNE RESPONSES
Histone-deacetylase inhibitors (HDACi) are anti-inflammatory
agents that can modulate immune responses to viral infection.
By impeding the type I IFN response, a major component of
the cellular innate antiviral response, HDACi’s can enhance the
spread and antitumor effects of OVs (102). In addition, HDACi’s
may also enhance OV efficacy through initial suppression of
immune cell recruitment and inhibition of inflammatory cell
pathways within NK cells (65). Similarly, a high throughput

www.frontiersin.org June 2014 | Volume 4 | Article 145 | 103

http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


Nguyen et al. Future perspectives of chemoviral oncotherapy

screen of pharmaceutical agents identified a novel drug (Vse1)
that could enhance oncolytic virotherapy by disrupting the IFN-
induced antiviral response and repressing antiviral gene tran-
scripts (103). Another drug that can be used for immune sup-
pression is cyclosphorine A, which markedly increased and pro-
longed the therapeutic effect of reovirus therapy of metastatic
cancer (104, 105). However, the most common immunosup-
pressant drug used in the context of oncolytic virotherapy is
cyclophosphamide (CPA); a chemotherapeutic alkylating agent
that also induces apoptotic cell death. CPA has complex immune-
modulating effects, affecting humoral and cellular mediators of
both the innate and acquired immune responses. These immuno-
suppressive functions have been shown to enhance viral oncolysis
and improve antitumor efficacy of HSV (83, 106, 107), Ad (108),
measles virus (109), reovirus (110, 111), and VV (112). More
specifically, at high doses, CPA has been shown to limit neutral-
izing antibody titers below the limit of detection during herpes
virus hrR3 infection (106). Furthermore, in vivo depletion of com-
plement significantly improved survival of HSV and CPA treated
tumor-bearing rats (83). Global immunosuppression has also been
reported to occur as a result of CPA therapy, including significant
decreases in total white blood cell, lymphocyte, neutrophil, and
monocyte counts in tumor-bearing mice. This was accompanied
by significantly improved survival and decreased tumor volume
in mice treated with both Ad and CPA relative to treatment with
either therapy alone (108). Host lymphodepletion can enhance
the therapeutic efficacy of OVs, as demonstrated by the reduction
of antiviral antibody titers and subsequent promotion of viral
persistence (113).

COUNTERACTING THE IMMUNOSUPPRESSIVE TUMOR ENVIRONMENT
Regulatory T cells and MDSC are TIL populations that are a
major component of the immunosuppressive tumor environment.
Most pharmaceutical strategies that counteract immune resis-
tance mechanisms within the tumor are aimed at depleting these
inhibitory immune cell populations. Reduction of Tregs in cancer
patients has been demonstrated to occur following treatment with
fludarabine and paclitaxel (118, 119). Other chemotherapeutic
drugs shown to decrease Tregs and inhibit their suppressive ability
include CPA, paclitaxel, and temozolomide and cisplatin treat-
ment, which enhances antigen-specific CD8+ T cells in murine
tumor models (114–117). In particular, CPA, paclitaxel, and temo-
zolomide can successfully reduce Treg activity (120–122) when
delivered as metronomic doses (i.e., repetitive, low doses). In the
case of CPA, metronomic doses serve to minimize toxicity and
avoid global immunosuppression resulting from administering
a single, high dose. Comparison of metronomic and maximum
tolerated doses of CPA revealed that deletion of proliferating
tumor-specific CTLs occurred in both dosing schedules. How-
ever, at metronomic doses, slower kinetics of deletion and survival
of cells with a CD43lo “memory” phenotype was observed, result-
ing in potent restimulatory capacity (122). This is supported by
clinical evidence, in which metronomic CPA can deplete Tregs
and restore T and NK cell effector function in advanced cancer
patients (123). In the context of oncolytic virotherapy, precondi-
tioning of mice with either CPA or anti-CD25 mAb to deplete Tregs
enhances therapeutic benefits of oncolytic reovirus and VSV (111,

124). Furthermore, early clinical evaluation of metronomic CPA
and oncolytic Ad combination treatment demonstrates improved
antitumor efficacy, resulting from increased cytotoxic T cells and
induced Th1 type immunity (125).

In healthy tissues, MDSCs play a protective role during inflam-
mation to maintain homeostasis of pathogenic immune responses.
However, accumulation of MDSCs in the tumor environment is
also capable of promoting tumor growth by inhibiting antitumor
effector T cell responses. They exert their effects through multiple
immunomodulatory roles, such as upregulating the production of
immune-suppressive factors (e.g., nitric oxide and reactive oxygen
species), overexpressing anti-inflammatory cytokines (e.g., TGF-
β and IL-10), suppressing proliferation and cytokine production
by T cells and NK cells, and inducing apoptosis of CD8+ T cells
(126). Furthermore, MDSCs can mediate the expansion of other
immunosuppressive Treg and M2 populations (127–129). Numer-
ous chemotherapeutic drugs have been used to deplete MDSCs,
including gemcitabine, sunitinib, 5-FU, docetaxel, and retinoic
acid (130–134). Combinations of OVs with various MDSC deplet-
ing drugs have been investigated at length, overall demonstrating
improved survival in preclinical studies. The therapeutic ben-
efits of using these OV-drug combinations depend on several
factors, including the type of OV-drug combination used, the
timing, frequency, and dosage of drug administration, and the
cancer type targeted. However, given that these immunomodula-
tory drugs have other antitumoral effects, few studies have directly
assessed their ability to deplete MDSCs in each context (135, 136).
Notably, use of these drugs to deplete MDSCs can also positively
or negatively affect oncolytic virotherapy. For instance, metro-
nomic treatment of either gemcitabine or 5-Fu with oncolytic Ad,
increases viral uptake by upregulating the expression of internal-
ization receptors (137). Moreover, sunitinib negatively regulates
the antiviral OAS-RNase L pathway, thus enhancing viral replica-
tion of VSV in tumors (138). In contrast, concurrent therapy of
5-Fu with HSV-1 inhibits virus replication and oncolysis (139).
Therefore, optimization of these OV-drug combination strategies
to benefit both the oncolytic and antitumor immune effects of
OVs requires further investigation.

Given that chemotherapies have non-specific effects, some
drugs can also modulate tumor cell immunogenicity to bene-
fit oncolytic virotherapy. For example, paclitaxel can upregulate
MHC class I expression and antigen-processing machinery com-
ponents (140). 5′-aza-2′-deoxycytidine and 5-Fu have been shown
to enhance tumor antigen expression (141–143), while Ara-C
(cytosine arabinoside) treatment results in the induction of co-
stimulatory molecules that provide a greater chance of effective
immune activation (144, 145). Furthermore, both doxorubicin
and Ara-C decreases the expression of immune checkpoint mol-
ecules, such as PD-L1, blocking their inhibitory effects on infil-
trating T cells (146, 147). Some drugs, namely CPA, 5-Fu, and
Dacarbazine, can sensitize tumor cells to CD8+ T cell-mediated
apoptosis (148, 149), and thus may serve as ideal candidates for
therapeutic combinations with various cancer immunotherapies.

EVALUATING THE LANDSCAPE OF OV-DRUG COMBINATIONS
Tumor cell heterogeneity as a result of DNA instability promotes
the natural selection of tumor progeny with greater proliferative
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capacity and invasive potential (150, 151). As a result, treatment
methods that address a singular therapeutic strategy may be insuf-
ficient to completely eliminate tumor growth. OV-drug combi-
natorial strategies present countless different permutations, and
consequently, numerous possibilities to mobilize multiple and
simultaneous therapeutic approaches. However, previous stud-
ies that report synergistic outcomes from combining OVs with
chemotherapy largely focus on a single therapeutic aspect, such
as their effect on viral spread and persistence, cytotoxicity, or
immunomodulation. As we become more familiar with how var-
ious chemotherapeutic drugs function, it is increasingly apparent
that many drugs act in a multi-mechanistic fashion. In other
words, chemotherapeutic agents can impact multiple biological
processes, which in turn can further potentiate OV-drug interac-
tions. For instance, rapamycin and its analogs have been shown
to alter mTOR signaling to increase the tropism of OVs (152),
inhibit angiogenesis (153), induce autophagy (32), and inhibit the
function of M2 macrophages (154). HDACis such as Trichostatin
A alter chromatin structure and regulate gene expression on an
epigenetic level, leading to a wide range of biological effects like
promoting tumor antigen presentation (155), improving tumor
susceptibility to OVs (156–158), down-regulating the antiviral
response (159), and targeting tumors and tumor vasculature (160).
Lastly, receptor tyrosine kinase inhibitor sunitinib can down-
regulate antiviral pathways (138), deplete MDSCs (131), inhibit
M2 macrophages (161), and reduce tumor vascularization (162).
Therefore, rather than evaluating individual therapeutic strategies
that are complementary to oncolytic viral activity, combinatorial
strategies using chemotherapeutic drugs should take into account
of their entire functional repertoire, in order to determine the best
overall approach. However,given the complex, interconnected bio-
logical pathways that regulate viral infection and tumor growth,
assessing OV-drug combinations is not a simple task.

CHALLENGES OF COMBINATION THERAPY
As previously mentioned, the biological pathways that OVs manip-
ulate to support their replication are similar to those utilized by
cancer cells to become increasingly malignant (e.g., defects in the
IFN pathway, apoptotic-resistance, immune suppression). In fact,
targeting certain pathways with chemotherapy will also, by asso-
ciation, compromise the replicative capacity of OVs. As a result,
discernable conflicts between virus-enabled therapeutic strategies
and drug-enabled therapeutic strategies may limit the extent to
which the two can be combined. For example, viruses require
actively dividing cells to maximize their replicative efficiency, while
many anticancer agents are either cytotoxic or cytostatic with
death-inducing or anti-proliferative effects, respectively (9). Fur-
thermore, studies suggest that the leaky vasculature of tumors
is exploited by viruses to successfully extravasate into the tumor
site (163, 164). Some OVs can actually stimulate angiogenesis
to increase vascular permeability in tumors (165). Thus, anti-
angiogenic therapy may thus adversely affect the localization of
OVs to the tumor microenvironment. Finally, modulation of the
host immune response through chemotherapy may conflict with
the therapeutic function of the oncolytic virus. For instance, low
dose CPA may remove immunosuppressive cells such as Tregs to
improve vaccine-induced adaptive antitumor immune responses;

however, it also promotes the antiviral immune response, leading
to early viral clearance (166). Conversely, high dose CPA may
enhance viral oncolysis through wide-spread immunosuppres-
sion of the innate and adaptive antiviral immune response, but
also completely abrogate the antitumor immune response (167).
These conflicting mechanisms (apoptosis vs. viral replication,anti-
angiogenesis vs. viral trafficking, antiviral immune responses vs.
antitumor immune responses) are further compounded when
we consider that drugs often regulate multiple biological host
processes. Nevertheless, OV-drug combinations that demonstrate
therapeutic incompatibility are still efficacious in some models.
In these cases, it is likely that the number of beneficial interac-
tions between OVs and drugs outweigh the number of detrimental
effects, resulting in an overall enhanced therapeutic outcome.
While current combinatorial strategies have been able to iden-
tify unique synergistic OV-drug platforms, the challenge going
forward is to obtain a greater understanding of OV-drug inter-
actions. Based on these exploratory findings, we will be able to
identify optimal treatment conditions that minimize therapeutic
trade-offs.

SUCCESSFUL COMBINATION THERAPY IS CONTEXT-DEPENDENT
As previously mentioned, seemingly incompatible OV-drug com-
binations have shown therapeutic efficacy because their positive
effects outweigh their negative effects. Based on these initial stud-
ies, it is also apparent that some factors can tip the OV-drug
dynamic in favor of enhanced cancer therapy in one context, but
also have the reverse effects in another. For instance, concurrent
administration of 5-FU has been shown to inhibit the replication
of wild-type HSV-1 strain KOS (139); however, the same drug has
been shown to actually enhance viral replication of NV1066 (HSV-
1 with a single copy of ICP0, ICP4, and γ134.5 deleted) in pancre-
atic cancer cell lines (168). Interestingly, growth arrest and DNA
damage as a result of 5-FU administration upregulates the expres-
sion of DNA damage-inducible protein GADD34, which bears
significant homology with the deleted γ134.5. As a consequence,
GADD34 can functionally replace γ134.5, prevent premature shut-
off of protein synthesis, and thus enhance viral replication (169).
Another factor that is demonstrated to be context-dependent
is the schedule and dosage of drug delivery given during OV-
drug combination therapy. However, if their costs and benefits to
oncolytic virotherapy are clear, we may adjust these variables for
an optimized therapeutic outcome. For example, VEGF blockade
through a variety of small-molecule chemotherapeutics decreases
the tumor uptake of systemic oncolytic HSV, but can actually
improve the treatment of sarcoma-bearing mice if anti-angiogenic
therapy is given subsequent to virus administration (170).

Overall, specific strategies to optimize OV-drug combinations
depend on the circumstances of the model system. To this point,
we have previously shown that systemic vaccination with recom-
binant VSV encoding the xenogeneic TAA, human dopachrome
tautomerase (hDCT), was unable to induce robust tumor-specific
immunity because the host immune response was predominantly
redirected toward viral antigens expressed on the vector. There-
fore,by adopting a heterologous prime-boost system whereby mice
were initially primed with recombinant Ad-hDCT and boosted
with VSV-hDCT, substantive immunity was generated against the
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tumor, while the antiviral response to VSV was dampened (70).
The HDACi, MS-275, is an ideal candidate for combination ther-
apy with this prime-boost system because it has previously been
shown to decrease IFN responsiveness in tumors, thus augment-
ing viral oncolysis. However, MS-275 is also immunosuppressive
and resulted in abrogation of the priming response if given con-
currently with Ad-hDCT. Alternatively, if drug treatment was
given concurrently with VSV-hDCT, the boosting response was
unaffected and over 60% of mice challenged with intracranial
melanoma were cured (171). Since MS-275 is an HDACi; an epige-
netic modifier that can modify the expression of numerous genes,
its range of effects have not yet been fully elucidated. As such,
many unknown functional properties may still exist, especially in
the context of oncolytic virotherapy.

CONCLUDING REMARKS
War strategy dictates methods in which to arrange and maneu-
ver military forces during armed conflicts. Using the available
resources and landscape to your advantage is a key aspect to defeat-
ing the enemy. The analogy of OVs as fighters, “targeting” cancer
cells and being “armed” with various genes, is commonplace in
the literature. Its ability to induce antitumor immune responses
is akin to the call for air support, bringing in additional fighters
that can help to identify and target enemy forces. The introduc-
tion of chemotherapeutic drugs to the battlefield is then, chemical
warfare; a wide-spread, indiscriminate weapon. With our various
forces at hand, how do we determine the best strategy to defeat
our opponents? As with any war strategy game, finding the best
approach begins with knowing the enemy (type of cancer), know-
ing our forces (viruses, drugs, and immune cells), their strengths
and weaknesses (function), and finally how they interact with each
other on the battlefield (combination therapy). Before you make
a move, you postulate various scenarios in which your opponent
may attack, but also how you can take the advantage. In a similar
fashion, to identify the most suitable approach to OV-drug com-
bination therapies, we should adopt a broader perspective to the
treatment of cancer. Then and only then, will we not only win
some battles, but we may also win the war.
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