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Lung cancer metastasis is the leading cause of poor prognosis and death for patients. Long noncoding RNAs (lncRNAs) have been validated the close correlation with lung cancer metastasis, but few comprehensive analyses have reported the specific association between lncRNA and cancer metastasis, especially via both competing endogenous RNA (ceRNA) regulatory relationships and functional regulatory networks. Here, we constructed primary and metastatic ceRNA networks, identified 12 and 3 candidate lncRNAs for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) respectively and excavated some drugs that might have potential therapeutic effects on lung cancer progression. In summary, this study systematically analyzed the competitive relationships and regulatory mechanism of the repeatedly dysregulated lncRNAs in lung cancer carcinogenesis and metastasis, and provided a new idea for screening potential therapeutic drugs for lung cancer.
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Introduction

Lung cancer is the leading cause of cancer-related mortality worldwide (1), the five-year survival rate for patients diagnosed with advanced-stage lung metastasis is only 5% (2). Therefore, lung cancer metastasis is closely related to the poor prognosis of lung cancer patients. Studies have shown that lung cancer invasion and metastasis are due to the accumulation of changes in various gene expressions, structural features and functions (3). Invasion and metastasis of lung cancer is also a multi-step, multi-factor complex process involving loss of adhesion between tumor cells, degradation of tumor extracellular matrix, enhancement of tumor cell migration, tumor neovascularization, and other cellular biological behaviors. And these specific biological behaviors are more regulated by specific genes (4). However, the current mechanism of lung cancer metastasis is still insufficiently understood.

LncRNAs involve in lung cancer carcinogenesis and metastasis directly (5–7). For example, MALAT1 was significantly highly expressed in non-small cell lung cancer(NSCLC) with bone metastasis and in NSCLC cell lines with high bone metastatic ability (8); An lncRNA, actin filament associated protein 1 antisense RNA1 (AFAP1-AS1), was the most significantly upregulated in lung cancer and associated with poor prognosis (9). Nowadays, the study that systematically identifies lncRNAs and their mechanisms of action associated with the development and metastasis of lung cancer is still rare.

In recent years, more and more studies have confirmed that lncRNAs can interact with microRNAs (miRNAs) as competitive endogenous RNA, and regulate cancer progression and metastasis by involving in the regulation of target gene expression. LncRNA RSF1-IT2 was found to function as ceRNA, sponging miR-129-5p, which targets SNAI1. Components of the HMGB1-RSF1-IT2-miR-129-5p-SNAI1 pathway may have a potential as prognostic and therapeutic targets in lung cancer (10). Thus, by identifying the competitive relationships in which lncRNAs are involved, the function of lncRNAs can be revealed and possible intervention targets are provided. On the other hand, the research and development of new drugs requires a lot of manpower and material resources, and the process is very complicated with high risks and low success rates. Developing the potential efficacy of known drugs can reduce the cost of new drug development and shorten the time of drug development. Lately, some researchers have validated that non-coding RNA can be used as a drug target for disease treatment (11).

LUAD and LUSC are the two most main cancer types of lung cancer, accounting for 50 and 30% of lung cancer, respectively, and belong to non-small cell lung cancer (NSCLC). However, there is a difference in the risk of cancer metastasis between them, and this risk of metastasis is more regulated by different genes. This study analyzed normal, primary, and metastatic lung cancer (LUAD, LUSC) samples from The Cancer Genome Atlas (TCGA) database, identified repeatedly dysregulated lncRNAs during carcinogenesis and cancer metastasis, and explored related functional changes in the process of lung cancer carcinogenesis and metastasis by constructing lncRNA-related primary and metastatic gain/loss ceRNA networks. Further we identified candidate lncRNAs and their associated competing triplets in lung cancer (LUAD, LUSC) carcinogenesis and metastasis, discovered some potential targeted drugs for the treatment of lung cancer carcinogenesis and metastasis by drug resetting, and provided a new class of molecular markers for lung cancer prediction and diagnosis.



Materials and Methods


Data Collection

For lung cancer, mRNA expression profiles were downloaded from TCGA data portal (12). LncRNA expression profiles were obtained from The Atlas of Noncoding RNAs in Cancer (TANRIC) (13). LncRNAs and mRNAs express in at least 70% samples were retained. We normalized expression values of lncRNA and mRNA by logarithmic transforming. Besides, clinical data of samples were also downloaded from TCGA which provided Ajcc staging information of lung cancer, including Ajcc tumor pathologic pt(T), Ajcc nodes pathologic pn(N), Ajcc metastasis pathologic pm(M), and Ajcc pathologic tumor stage(Stage). T, N, and M represent the size of the primary tumor, the status of regional lymph nodes metastasis and distant metastasis, respectively.



Differential Expression Analysis

Differentially expressed lncRNAs were identified via t-test and fold change (FC), based on lncRNA expression in normal, primary and metastatic samples. Here, lncRNA with a threshold of p <0.05, |FC| >1.2 was considered up-regulated and |FC| <1/1.2 was considered down-regulated.



Collection of miRNA-Target Interactions

MiRNA-target interactions (miRNA-lncRNA, miRNA-mRNA) were downloaded from a database, Starbasev2.0 (14). Furthermore, experimentally validated non-weak miRNA-mRNA interactions were derived from mirTarBase (15), human mature miRNA names were retrieved from MirBase (16), and then high-throughput HITS-CLIP and PAR-CLIP experimental miRNA-lncRNA interactions were obtained from LncBase v2.0 (17).



Identification of Competitive Pairs

Aiming at identifying potential competitive lncRNA-mRNA pairs, we evaluated the significance of the shared miRNAs between each pair by means of the hypergeometric test. Given an lncRNA A, mRNA B, their enrichment significance was calculated according to the formula:

	

Where N was the number of all target miRNAs, K and M were the number of miRNAs associated with the current A and B, and x was the number of common miRNAs shared by A and B. The significant p values were subjected to false discovery rate (FDR) correction. The pairs with FDR value less than 0.05 were considered as ceRNA pairs. Positive Pearson correlation coefficient (PCC) ranked in the top 10% with a p-value threshold of 0.05 was used to determine co-expression relationships between lncRNA and mRNA (Benjamini-Hochberg, FDR < 0.05). Briefly, lncRNA-mRNA pairs which simultaneously meet the standard of the hypergeometric test and co-expression relationship were defined as competitive pairs.



Construction of the Gain/Loss ceRNA Networks for Primary/Metastatic Lung Cancer

For competitive pairs in primary LUAD samples, the same competitive pairs in normal samples were removed and specific competitive pairs were retained to construct the primary gain ceRNA network of LUAD. After deleting the same competitive pairs in primary LUAD samples, special competitive pairs in normal samples were used to construct the primary loss ceRNA network of LUAD. Similarly, after comparing the competitive pairs between primary and metastatic LUAD samples, we constructed the metastatic gain ceRNA network of LUAD and the metastatic loss network of LUAD. Meanwhile, the process on LUSC was the same as LUAD, which means that a total of 8 networks were constructed for lung cancer. These networks were visualized by CytoScape (18) (http://cytoscape.github.io/). Gene Ontology (GO) (19) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) (20) pathway analysis were executed on DAVID bioinformatics resources (21) to determine the principal functions of the networks. Functional categories with FDR <0.01 were considered statistically significant in our analyses.



Survival Analysis

To estimate whether candidate lncRNAs can divide patients into high-risk and low-risk groups significantly, we extracted clinical information of samples and carried out univariate survival analysis for each lncRNA. Survival analysis was conducted by R package “survival” (22). Kaplan-Meier survival curves were utilized to assess overall survival time of patients. Log-rank tests were performed to evaluate the survival differences between the two curves.




Results


Classification of Lung Cancer Samples

Primary/metastatic samples were classified according to the clinical information. After analyzing TNM (Tumor Node Metastasis) and stage grouping classification information, we determined primary samples (Supplementary Table 1). Metastatic samples had lymph metastasis (N1,2) or distant metastasis (M1). Therefore, samples at Stage2 (N1, 2) or Stage3/Stage4 (T4/N1,2,3 M1) were considered as metastatic samples (Supplementary Table 1).

Because metastatic lung cancer samples usually have poorer prognosis, we compared the survival time between primary and metastatic samples. Metastatic samples tended to present higher death ratio and shorter survival time in lung cancer (Supplementary Table 2). Additionally, Univariate Cox regression analysis revealed a significant association between patient survival time and metastasis in lung cancer (Figures 1A, B). Our findings demonstrated the reliability of the primary and metastatic samples we used and the importance of studying lung cancer metastasis.




Figure 1 | Comparison between primary and metastatic lung cancer. Kaplan–Meier survival curve analysis for overall survival of LUAD (A) /LUSC (B). The number of competitive pairs in normal, primary, and metastatic LUAD (C) /LUSC (D). The number of up/down-regulated lncRNAs (normal VS. primary, primary VS. metastatic) in LUAD (E) /LUSC (F). The number of repeatedly dysregulated lncRNAs is labeled by red color.





Construction of Lung Cancer ceRNA Networks

To construct ceRNA network, we first predicted potential lncRNA-mRNA competitive pairs by means of the hypergeometric test on the basis of miRNA-lncRNA and miRNA-mRNA interactions. Secondly, the PCCs of the pairs in each status (normal/primary/metastasis) were calculated respectively to filter out lncRNA-mRNA pairs with a significant positive PCC ranked in the top 10%. Finally, lncRNA-mRNA pairs with a significant positive PCC and satisfied the significance of the hypergeometric test was referred to mutually competitive pairs (Figures 1C, D, and Supplementary Table 3).

In our perspective, changes among normal-primary-metastatic progress probably are due to the changes of some competitive relationships that some key lncRNAs involved in. More importantly, it is well known that differentially expressed lncRNAs are more likely to play key roles in the progression of carcinogenesis and cancer metastasis (23). Next, we identified differentially up/down-regulated lncRNAs in lung cancer (Supplementary Table 4) between different statuses (normal vs. primary, primary vs. metastasis), respectively. Thus, four types of lncRNAs were mined: lncRNAs were up-regulated from normal to primary status, and continuously up-regulated (up-up) or reversely down-regulated (up-down) from primary to metastatic cancer; lncRNAs were down-regulated from normal to primary, and continuously down-regulated (down-down) or reversely up-regulated (down-up) from primary to metastatic cancer (Figures 1E, F). These repeatedly dysregulated lncRNAs in cancer progression mentioned above may play a key role in carcinogenesis and influence cancer metastasis.

Moreover, we investigated competitive pairs that comprised of repeatedly dysregulated lncRNAs to find out it is “gain” or “loss” leads to carcinogenesis and cancer metastasis in cancer progression. Then, repeatedly dysregulated lncRNAs were mapped back to the corresponding gain/loss competitive pairs, and the gain/loss ceRNA networks were constructed (Supplementary Table 5), respectively.



LncRNAs Affect Cancer Functions by Competing for mRNAs

Based on mRNAs in the ceRNA network, we performed GO function and KEGG pathway enrichment analysis to explore significant biological processes and correlated pathways in the primary and metastatic gain/loss ceRNA networks.

For LUAD, the results revealed that genes in the primary gain ceRNA network were enriched for multiple categories related to cell proliferation such as intracellular signal transduction, cell cycle, cell proliferation, T cell proliferation, and cell migration (Figure 2A); However, genes in the primary loss ceRNA network were mainly enriched in processes about normal life activities, including transcription, DNA-templated, and chromatin remodeling. Comparison of the functions of the gain and loss ceRNA networks of metastatic LUAD implicated that genes in the metastatic gain ceRNA network were mainly enriched in processes regarding cancer metastasis. On the other hand, genes in the metastatic loss ceRNA network were mainly enriched in processes about normal life activities and cancer, for example positive regulation of transcription, DNA-templated, cell cycle and cell cycle arrest. The same process was carried out for LUSC (Figure 2B). These results suggested that lung cancer carcinogenesis, resulting from losing some normal functions of cells as well as gaining some cancer-related functions.




Figure 2 | GO enrichment analysis. The top 10 significantly enriched GO terms of the primary/metastatic gain/loss networks in LUAD (A) /LUSC (B).



In order to explore the association between lncRNA and cancer-related functions gained from the process of carcinogenesis and cancer metastasis, we built the primary functional regulatory gain network of LUAD (Figure 3A) using seven carcinogenesis-related functions of the primary gain network. Notably, most cancer-related functions were found regulated by a few lncRNAs. For example, “negative regulation of cell proliferation” that regulated by 16 mRNAs was one of critical functions in carcinogenesis, and eight mRNAs among them were regulated by lncRNA BZRAP1-AS1, indicating that BZRAP1-AS1 played an important role in cell proliferation. “Intracellular signal transduction” regulated by 20 mRNAs, and 13 mRNAs among them were regulated by lncRNA BZRAP1-AS1, RP13-514E23.1, and RP11-582J16.4. Thus, lncRNAs that had a higher degree and regulated more cancer-related functions may be more likely associated with carcinogenesis. Genes in the metastatic gain network of LUAD enriched in many processes, including intracellular protein transport, regulation of autophagy and DNA damage response and so on. It has been reported previously that if cancer cells metastasize, they must be detached from original tissues firstly and bind with proteins (24), while “intracellular protein transport” contributes to gaining specific proteins for cancer cells; there are also some studies documented that “regulation of autophagy”, “DNA damage response”, and “signal transduction by p53 class mediator resulting in cell cycle arrest” play significant roles in cancer metastasis (25). Thus, we built the metastatic functional regulatory network of LUAD by the use of the three cancer-related functions (Figure 3B) mentioned above. LncRNA BZRAP1-AS1 was found not only was it crucial in the primary functional regulatory network, but also it was the node with the maximum degree in the metastatic functional regulatory gain network, and was critical for cancer metastasis, influencing the three functions by means of interacting with PIP4K2A, TP53INP1, RRAGD, TBC1D9, and RBL2. Furthermore, we found six among seven lncRNAs that regulating metastasis-related functions in LUAD also regulated cancer-related functions in the primary functional regulatory network. Some lncRNAs may play different roles in different cancer statuses by competing with different mRNAs to regulate LUAD carcinogenesis and metastasis.




Figure 3 | The functional regulatory networks. The primary (A) /metastatic (B) functional regulatory gain network of LUAD. The primary (C) /metastatic (D) functional regulatory gain network of LUSC.



Likewise, for LUSC, we built the primary functional regulatory gain network by the functions “positive regulation of vasculogenesis” and “vasculogenesis”. According to the network, vasculogenesis was mainly regulated by lncRNA AC018647.3 in the process of LUSC carcinogenesis (Figure 3C). Then, we built the metastatic functional regulatory gain network using functions related to cancer metastasis. The cancer metastasis-related functions “cell adhesion” and “endothelial cell” were found regulated by lncRNA LY86-AS1, AC010226.4, RP11-286B14.1 mainly (Figure 3D). It comprehensively demonstrated that the pivotal roles that lncRNAs played in the functional networks during the process of lung cancer carcinogenesis and metastasis could be an important indicator for identifying lung cancer candidate biomarkers.



Identification of Candidate lncRNAs

Closeness is an important feature for network, and hub node is a pivotal node with an extremely high level of closeness. Nodes with degree >=5 in the gain/loss ceRNA network were defined as hub, and then we detected hubs in the ceRNA networks of LUAD. Fourteen lncRNAs among all hubs were not only associated with LUAD carcinogenesis, but also correlated with cancer metastasis. Twelve lncRNAs among the 14 were found in the primary and metastatic functional regulatory gain networks, providing that the 12 lncRNAs were important in both ceRNA networks and functional regulatory networks and could be used as candidate biomarkers for LUAD carcinogenesis and metastasis. Three lncRNAs among the 12, HOXA11-AS, RNF144A-AS1, and RP11-1246C19.1, were continuously up-regulated among normal-primary-metastatic progress; lncRNA RP11-693J15.4 was up-regulated between normal-primary while reversely down-regulated between primary-metastatic cancer, and the other eight lncRNAs were continuously down-regulated among normal-primary-metastatic progress (Figure 4). We found that HOXA11-AS was continuously up-regulated in LUAD carcinogenesis as well as metastasis and regulated the expression of E2F2 and SENP5 by way of competing for miRNAs in the primary functional regulatory network to influence cell cycle, implying that HOXA11-AS was closely related to lung cancer carcinogenesis.




Figure 4 | The expression heatmap of 12 candidate lncRNAs in LUAD.



The results of univariate survival analysis showed that lncRNA RP11-408O19.5 among 12 candidate lncRNAs could classify LUAD samples into high and low risk groups significantly. It was not only related to the survival time of primary samples (Figure 5A), but also affected the survival of metastatic samples (Figure 5B); LncRNA RP11-582J16.4 influenced the survival of metastatic samples (Figure 5C).




Figure 5 | Survival analysis. The survival analysis of RP11-408O19.5 for primary (A) and metastatic (B) LUAD. (C) The survival analysis of RP11-582J16.4 for metastatic LUAD.



For LUSC, six lncRNAs as hub nodes were identified not only in the primary network, but also in the metastatic network. AC018647.3, RP11-4O1.2, and RP11-286B14.1 among the six lncRNAs were found in the functional regulatory network of LUSC, suggesting the important roles of the three lncRNAs in LUSC metastasis.



Prediction of Potential Targeted Drugs for Lung Cancer

In recent years, new directions for RNA-targeted drug research have received more and more attention. Some studies have reported the association of HOXA11-AS and NSCLC (26–28). HOXA11-AS was continuously up-regulated in primary and metastatic LUAD (Figure 6A). HOXA11-AS gained some competitive relationships in primary cancer, and part of competitive relationships were remained to metastatic cancer, indicating that HOXA11-AS might play a significant role in the progression of LUAD. Accordingly, for HOXA11-AS, as long as we could figure out some drugs that inhibit its upregulation, it was believed that primary and metastatic LUAD would be inhibited. In primary or metastatic cancer, mRNAs IGF2BP3, HOXA9, HOXA10, CEBPG competed with HOXA11-AS mutually, and HOXA10 (Figure 6B) as well as IGF2BP3 (Figure 6C) were also continuously up-regulated among normal-primary-metastatic process with significant difference in variance analysis. Currently, some studies have demonstrated the association among HOXA10, IGF2BP3, and lung cancer (29, 30). The results further validated the importance of competitive relationships among HOXA11-AS, IGF2BP3, and HOXA10 in lung cancer progression. Besides, HOXA11-AS, IGF2BP3, and HOXA10 regulated mutually by competing for let-7 family (Figure 6D). The let-7 family has been reported the close association with lung cancer (31). No drug was found targeting at the 3 lncRNAs. However, designing anti-cancer drugs targeting miRNAs can regulate the expression of related genes at the initial stage of transcription, reduce energy and resources, and exert pharmacological effects more effectively. Thus drug information targeting miRNAs was downloaded from SM2miR (32), and 14 FDA-approved drugs upregulating expression of let-7 family were screened out. Ten drugs among them have been proved to have an effect on lung cancer, such as Etoposide and Gemcitabine have been widely used in LUAD clinical treatment (33, 34). Among the other 4 drugs, Bicalutamide is commonly used to treat prostate cancer (35); Letrozole is used to treat breast cancer (36); Enoxacin has a strong bactericidal effect (37); 17beta-estradiol (E2) promotes development of reproductive system and maintains reproductive function, with protective effects, anti-inflammatory, anti-oxidative, and anti-apoptotic effects (38). The four drugs were considered could be candidate drugs for treating lung adenocarcinoma probably.




Figure 6 | Drug prediction. (A–C) The expression difference of HOXA11-AS, HOXA10, and IGF2BP3 between normal, primary, and metastatic LUAD. (D) HOXA11-AS related drug regulation network. (E) The expression difference of RP11-408O19.5 between normal, primary, and metastatic LUAD. (F) RP11-408O19.5 related drug prediction in LUAD. (G) The expression difference of AC018647.3 between normal, primary, and metastatic LUSC. (H) AC018647.3 related drug prediction in LUSC. (I) The expression difference of RP11-286B14.1 between normal, primary, and metastatic LUSC. (J) RP11-286B14.1 related drug prediction in LUSC.



LncRNA RP11-408O19.5 was associated with the survival of primary and metastatic LUAD patients, so it was important for RP11-408O19.5 to be predicted related drugs to increase survival time of patients. It was continuously down-regulated in primary and metastatic LUAD (Figure 6E). MRNAs PRKCD, PRKAR1A, BTG2 competed with lncRNA RP11-408O19.5 for the same miRNAs (miR-15a-5p, miR-15b-5p, miR-16-5p, miR-195-5p) in primary cancer; lncRNA RP11-408O19.5 competed with GGA3 for miR-15b-5p, miR-16-5p, and miR-195-5p in metastatic cancer (Figure 6F). Interestingly, even though the competitive mRNA changed, the miRNA as a bridge was basically the same. If we only focused on the same miRNAs (miR-15b-5p, miR-16-5p, and miR-195-5p) in primary and metastatic cancer, and regulated expression of the miRNAs, the drug which has an effect on primary and metastatic LUAD would be predicted. That is, cancer metastasis would be inhibited in the process of inhibiting carcinogenesis. From SM2miR, the drugs Diethylstilbestrol, Etoposide, 5-Fluorouracil, 17beta-estradiol (E2), Dexamethasone, Temozolomide and Tamoxifen which could downregulate the three mRNAs (PRKCD, PRKAR1A, BTG2) were identified. Six drugs excluding 17beta-estradiol (E2) were validated concerning treatment for lung cancer in some studies (33, 39–42) yet 17beta-estradiol (E2) was also a targeted drug predicted by lncRNA HOXA11-AS, further indicating that 17beta-estradiol (E2) could be a candidate drug in the process of LUAD metastasis.

Similarly, we also predicted targeted drugs for LUSC. LncRNA AC018647.3 was continuously up-regulated during the primary and metastatic processes (Figure 6G). It had competitive relationships with four mRNAs (KDR, CITED2, TMEM100, and RAPGEF2, Figure 6H), KDR and CITED2 among them were reported the association with NSCLC (43, 44). Then the miRNAs (miR-15b-5p and miR-16-5p) that the lncRNA AC018647.3 competed with KDR and CITED2 in primary of LUSC were identified. Finally, five drugs (17beta-estradiol (E2), Diethylstilbestrol, Etoposide, 5-Fluorouracil, Dexamethasone) that inhibited the upregulation of these two miRNAs were identified, and Diethylstilbestrol, Etoposide, 5-Fluorouracil and Dexamethasone among them were confirmed their potential association with lung cancer based on some studies (45–48). Therefore, we believe that 17beta-estradiol (E2) may also have some potential efficacy on primary LUSC.

In the metastatic process of LUSC, “endothelial cell migration” and “cell adhesion” were regulated by lncRNA RP11-286B14.1 which were up-regulated in the primary cancer, and were reversely down-regulated in the metastatic process (Figure 6I). It competed with mRNA PRKX and ITGB8 for miR-27a-3p, miR-27b-3p (Figure 6J), and inhibiting the expression of the two miRNAs that would upregulate the expression of lncRNA RP11-286B14.1. Likewise, we found 17beta-estradiol (E2), 5-Fluorouracil, Dexamethasone, Vinblastine, 5-aza-2’-deoxycytidine (5-Aza-CdR), Tamoxifen, Budesonide, ACTH, Doxorubicin and Paclitaxel could inhibit upregulation of miR-27a-3p and miR-27b-3p. In addition to 17beta-estradiol (E2), all of those drugs were reported the correlation with lung cancer (47–55), suggesting that 17beta-estradiol (E2) might be used as a potential drug for metastatic LUSC treatment.




Discussion

Lung cancer is one of the most common malignant tumors in the world currently. Lung cancer metastasis is the main cause of death in lung cancer patients. Therefore, it is crucial to study lung cancer carcinogenesis and metastasis. In our study, LUAD and LUSC datasets, which account for 85% of lung cancer, were used to investigate critical roles of lncRNAs in lung cancer carcinogenesis and metastasis. Importantly, there are several achievements in our study. First, we identified repeatedly dysregulated lncRNAs, indicating that these lncRNAs not only played a crucial role in carcinogenesis, but also played a critical role in cancer metastasis. Next, using ceRNA regulatory interactions, we analyzed the effects of regulatory changes in the regulation of lung cancer progression by repeatedly dysregulated lncRNAs during normal-primary-metastatic progress. In addition, we performed drug resetting and then identified candidate drugs that were associated with primary and metastatic lung cancer (LUAD, LUSC) through the predicted lncRNA-related ceRNA groups.

For 12 candidate lncRNAs of LUAD identified in our study, lncRNA HOXA11-AS has been shown an effect on NSCLC. LncRNA LINC01013 enhanced invasion of human anaplastic large-cell lymphoma, while RNF144A-AS1 and LINC01013 were also highly expressed in ALCL, indicating the potential in ALCL migration (56); LncRNA CEBPA-AS1 was found that could effectively predict prognosis of LUAD (57); Wang et al. provided evidence that angiogenesis in HCC is hindered by silencing of lncRNA BZRAP1-AS1 (58); LINC00843 was validated that could be used as novel epigenetic markers for gastric cancer (59). Furthermore, the majority of mRNAs involving in the primary or metastatic functional regulatory gain network had been shown the association with cancer, such as TP53INP1 among the 14 mRNAs involving in the metastatic functional network had been shown in various studies concerning hepatocellular carcinoma and colorectal cancer (60, 61). In our functional regulatory network, TP53INP1 was regulated by lncRNA BZRAP1-AS1, which affected metastasis-related autophagy. The mRNA TP53 involving in the primary functional network regulated “cell cycle” and “proliferation” functions in the network and was regulated by lncRNA CEBPA-AS1. These studies and results indicated that these lncRNAs might play a key role in the process of LUAD metastasis.

Moreover, we found that AC01847.3 among the 12 candidate lncRNAs was identified as a candidate biomarker in LUAD and LUSC, implying that though molecular expression and mechanism might differ greatly in LUAD and LUSC, some commonality presented. Besides, in LUAD, 17beta-estradiol (E2) was determined a potential candidate drug for both primary and metastatic LUAD treatment based on drug resetting of lncRNA HOXA11-AS and RP11-408O19.5. Notably, aiming at lncRNA AC018647.3 and RP11-286B14.1, 17beta-estradiol (E2) was also predicted an impact on primary and metastatic LUSC by predictive drug resetting. These results completely confirmed therapeutic potential of 17beta-estradiol (E2) in lung cancer.

Recently, some researchers have pointed out that non-coding RNA can indeed be used as a drug target for disease treatment (62). This study found that the dysregulation of some lncRNAs that play important regulatory roles often leads to functional changes leading to cancer development or metastasis. If the drug can affect disease function by regulating the expression of the relevant lncRNA, the drug may be used as a candidate drug to treat the disease. Currently, there are limited studies focusing on targeted drugs related to lncRNA, and only a very small number of lncRNAs have targeted drugs. Consequently, we chose miRNAs regulating expression of lncRNAs as drug targets for drug resetting and screened for candidate targeted drugs having an impact on the competitive groups. Nevertheless, with the increase in research on lncRNA targeted drugs, it will be of major interests to develop drug resetting targeting lncRNA.

In conclusion, our study identified repeatedly dysregulated lncRNAs during lung cancer metastasis as well as carcinogenesis and potential therapeutic drugs that target these lncRNAs, and provided a reference for the study and clinical treatment of lung cancer pathogenesis. We reversed the dysregulation of lncRNA by drugs, thereby regulated the dysregulated pathways in cancer cells, and ultimately achieved the goal of disease treatment. This work can provide a new idea for the subsequent screening of lung cancer treatment drugs.
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Dysfunctional long non-coding RNAs (lncRNAs) have been found to have carcinogenic and/or tumor inhibitory effects in the development and progression of cancer, suggesting their potential as new independent biomarkers for cancer diagnosis and prognosis. The exploration of the relationship between lncRNAs and the overall survival (OS) of different cancers opens up new prospects for tumor diagnosis and treatment. In this study, we established a five-lncRNA signature and explored its prognostic efficiency in gastric cancer (GC) and several thoracic malignancies, including breast invasive carcinoma (BRCA), esophageal carcinoma, lung adenocarcinoma, lung squamous cell carcinoma (LUSC), and thymoma (THYM). Cox regression analysis and lasso regression were used to evaluate the relationship between lncRNA expression and survival in different cancer datasets from GEO and TCGA. Kaplan-Meier survival curves indicated that risk scores characterized by a five-lncRNA signature were significantly associated with the OS of GC, BRCA, LUSC, and THYM patients. Functional enrichment analysis showed that these five lncRNAs are involved in known biological pathways related to cancer pathology. In conclusion, the five-lncRNA signature can be used as a prognostic marker to promote the diagnosis and treatment of GC and thymic malignancies.

Keywords: long non-coding RNA, gastric cancer, overall survival, thoracic malignancy, prognosis


INTRODUCTION

Long non-coding RNAs (lncRNAs) play an important regulatory role at the transcriptional, post-transcriptional, and epigenetic levels and also participate in multiple aspects of gene regulation and a variety of biological processes (Kopp and Mendell, 2018). As a type of non-coding RNA, lncRNA, which has no protein-coding ability and is more than 200 bp in length, can be transcribed by RNA polymerase II. Abnormal lncRNA expression has also been observed in many complex human diseases, especially cancer. Cancer-related lncRNAs show abnormal expression patterns in a tissue-or cancer-specific manner, indicating their potential as new independent biomarkers for cancer diagnosis and prognosis (Wang et al., 2015; Tate et al., 2019). For example, the lncRNA MALAT1 can regulate multiple biological processes during the development of several cancers. The diagnostic and prognostic significance of MALAT1 has been demonstrated in gliomas and different cancers of the breast, lung, ovary, pancreas, and prostate (Goyal et al., 2021). The overexpression of the lncRNA GHET1 predicts unfavorable survival and clinical parameters in patients with various cancers (Jiang et al., 2019).

Gastric cancer (GC) is the fourth most common malignant tumor and the third leading cause of cancer-related death (Siegel et al., 2021). Although the treatment of GC has made great progress in recent years, the prognosis remains poor, with a 5 years survival rate of less than 40% (Allemani et al., 2018). In addition, the pathology of several thoracic malignancies, including lung cancer, esophageal cancer, and breast cancer, is found to exhibit dysregulated lncRNA expression in a variety of malignancies. Traditional classification methods are not effective, and molecular biological markers can reveal tumor progression and survival in cancer patients. Thus, identifying specific lncRNAs to predict prognosis is very important for improving patient survival.

To establish a novel risk-stratification lncRNA signature panel in different cancers, we collected lncRNA expression data and clinical information of GC and several thoracic malignancies, such as breast invasive carcinoma (BRCA), esophageal carcinoma (ESCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and thymoma (THYM) patients from different independent databases to identify and develop a novel lncRNA-based signature panel as an independent predictor of cancer prognosis. Univariate and multivariate Cox regression analyses were used to explore the prognostic efficiency of lncRNAs. Five potential lncRNA biomarkers significantly related to the survival of GC patients were identified, and a risk score model was established using the coefficients of multivariate Cox regression analysis to predict the survival of patients. Furthermore, this model was applied to several thoracic malignancies in the TCGA database. We found that this five-lncRNA signature could also divide patients into different risk groups in BRCA, LUSC, and THYM. Furthermore, the possible molecular mechanisms related to the occurrence and progression of these prognostic lncRNAs were investigated using functional analysis. In conclusion, the five-lncRNA signature panel offers a potential platform for risk stratification in patients with GC and several thoracic malignancies, which has great implications in the clinical management of patients and contributes to disease diagnosis.



MATERIALS AND METHODS


Data Collection

The gene expression profiles and corresponding clinical information of GC and several thoracic cancers used in this study were obtained from the publicly available Gene Expression Omnibus (Barrett et al., 2013) (GEO)1 database and The Cancer Genome Atlas (Tomczak et al., 2015) (TCGA)2 database. GSE62254 (n = 300) and GSE15459 (n = 192) datasets were collected from GEO. The datasets of BRCA (n = 1,089), ESCA (n = 163), LUAD (n = 515), LUSC (n = 497), and THYM (n = 119) were collected from TCGA.



Identification of Potential lncRNA Biomarkers

The GSE62254 series samples were randomly generated in a training set and a test set. Univariate Cox regression analysis was performed on the training set to evaluate the correlation between the expression level of each lncRNA and patient overall survival (OS) (Guo et al., 2019). Lasso regression (Xu et al., 2018; McEligot et al., 2020), which solves the over-fitting problem and can directly reduce some repetitive unnecessary parameters to zero in the parameter reduction process, was used to further screen the results from univariate Cox regression. The results of lasso algorithm screening were used to construct a multivariate Cox risk regression model, where OS was the dependent variable and the other clinical information was the covariate. We retained the lncRNA (p < 0.01) as the final biomarker, which is significantly related to the OS of GC patients. When using the Cox risk regression model, the PH hypothesis test (Zhang et al., 2018) was also used to test whether the data conformed to the Cox regression model. To verify the reliability of the risk score model, we used the test set as well as two other sets of data for validation.



Statistical Analysis

The Kaplan-Meier survival curve (Ranstam and Cook, 2017) was used to prove the difference in OS between the high-risk and low-risk groups, and a bilateral logarithmic rank test was used to evaluate whether the difference was statistically significant (Guyot et al., 2012). Univariate and multivariate Cox regression analyses were performed for each dataset, with OS as the dependent variable and lncRNA risk score as explanatory variables. All analyses were conducted using R (v3.4.1) software.



Functional Enrichment Analysis

Pearson correlation analysis was used to evaluate the co-expression relationship of biomarker lncRNAs related to the OS of GC patients and mRNA. We used the cor.test function in R to calculate the correlation coefficient and significance level between the lncRNA and protein-coding genes. We defined the significant correlation level as a p < 0.05 and ranked the positive and negative correlation coefficients. The top 100 protein-coding genes were used for subsequent functional analysis. Functional enrichment of the R package clusterProfiler (Yu et al., 2012) was used to analyze the functional enrichment of mRNAs co-expressed with biomarker lncRNAs to predict the biological function of these biomarkers (Zhou et al., 2019).



Combination of Biomarkers From Gastric Cancer and Prognosis of Thoracic Malignancies

The RNA-seq profiles of thoracic malignancies, including BRCA, ESCA, LUAD, LUSC, and THYM, were downloaded from TCGA. Furthermore, we used a univariate Cox risk regression model to explore the association between biomarkers discovered in GC and other thoracic malignancies.




RESULTS


Five lncRNAs Identified to Be Associated With GC Prognosis

To explore the lncRNAs related to the OS of GC patients, microarray profiles from GSE62254, which have appropriate sample abundance and clinical data, were used to construct regression models. The workflow of the analysis pipeline is shown in Figure 1A. For the GSE62254 series, we randomly divided samples into a training set (n = 150) and a test set (n = 150) with the same amount. In the training set, the expression profile of lncRNA was selected for analysis by univariate Cox regression analysis with OS, including survival time and status as the dependent variable. We found 580 lncRNAs (p < 0.05 and PH inspection p > 0.5) whose expression levels were significantly related to patient survival. Considering the large abundance of the initially screened features, lasso regression was used for a more rigorous screening (Figure 1B). We identified 12 significant candidate markers for lncRNA. Furthermore, we used the selected few candidate lncRNAs to establish a multivariate Cox regression model. When considering the interaction between lncRNAs and clinical features, only five lncRNAs (RP11_71E19.5, RP11_722E23.2, RP11_796E2.4, RP11_95O2.1, and AC004528.4) were significantly associated with patient survival (Figure 1C). At the same time, the PH hypothesis test results showed that there was no obvious correlation between the Schoenfeld residual and the rank of survival time (Figures 1D,E). We used these five biomarker lncRNAs to construct a risk score model independent of other clinical features.
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FIGURE 1. Identification of lncRNAs associating with gastric cancer prognosis. (A) The workflow of our analysis pipeline. (B) Lasso regression model screened characteristic lncRNAs. Variation curve of regression coefficient and β value. (C) Forest plot of multivariate Cox regression results, which include p-value and confidence interval of hazard ratios. (D,E) The diagram shows the results of the PH hypothesis test. The horizontal axis represents the survival time, and the vertical axis represents the Schoenfeld residual.




Evaluating the lncRNA Contribution for Risk Prediction Model

For the multivariate Cox risk prediction results, we used the nomogram method to build a more intuitive prediction model of 1 and 3 years survival time probabilities. We found that the characteristic lncRNAs that are more relevant to the patient’s survival will increase in scores under the same gene expression fluctuations (Figure 2A). To evaluate the contribution of the prediction model, we used a calibration curve to show the predicted survival probability of the prediction model for 1 and 3 years. We found that the fluctuation of the fitting results was not obvious, suggesting that the risk regression model we built was reasonable (Figure 2B). A receiver operating characteristic curve was also computed to evaluate the sensitivity and specificity of the predictive model. We found that the AUC value of the prediction model at different time points was approximately 0.8, and it had the best predictive ability (AUC = 0.82) at 19.2 months (Figure 2C). Taken together, these results suggest that the risk prediction model built with five biomarker lncRNAs has a good contribution to the prediction of the survival time of GC patients.
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FIGURE 2. Evaluating the lncRNA contribution for risk prediction model. (A) The nomogram shows the prediction model of survival probability. (B) Calibration curve of the nomogram. (C) The ROC curve reflects the performance of the Cox risk regression model in predicting the probability of survival of patients at different time nodes.




Construction of a Risk Score Model for GC

Using the coefficients obtained from the multivariate Cox regression analysis, we constructed a risk scoring model (Wang et al., 2019; Guo et al., 2020) to predict the patient’s OS, as shown below: risk score = (−10.14 ∗ expression value of RP11-71E19.5) + (−3.59 ∗ expression value of RP11-722E23.2) + (4.98 ∗ expression value of RP11-796E2.4) + (−9.868541 ∗ expression value of RP11-95O2.1) + (−7.857590 ∗ expression value of AC004528.4). Based on this model, a risk score was calculated for each patient in the training set, and patients were divided into a high-risk group (n = 75) and a low-risk group (n = 75) using the median risk score as the cut-off point. We found that there was a significant difference in the OS between the high-risk group and the low-risk group, and the p-value of the logarithmic rank test was less than 0.0001 in the Kaplan-Meier curve (Figure 3A). Univariate Cox regression analysis also revealed that risk scores constructed from five biomarker lncRNAs were significantly associated with OS (p < 0.01). We also evaluated the relationship between the risk score and the distribution of lncRNA expression in the training set. The expression of RP11-796E2.4 in the high-risk score tended to be upregulated, while the expression of the remaining four lncRNAs tended to be downregulated (Figure 3B). We also applied a risk score model to calculate the risk score of each sample in the test dataset. Similar to the result predicted by the risk score obtained in the training set, the test data set also found that patients with high-risk scores had significantly worse OS than patients with low-risk scores (Figures 3C,D).
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FIGURE 3. Survival analysis in training and testing dataset. (A) Kaplan-Meier curve reflects the difference of overall survival (OS) between high and low-risk score samples for the training set. (B) This graph reflects the expression levels of biomarkers for the training set as well as the survival status and risk scores of the patients. (C) The same as in (A) but for the test set. (D) The same as in (B) but for the test set.




Validating Risk Score Models in Multiple Expression Profiles

To further investigate the robustness and practical application of the five-lncRNA risk scoring model, GSE15459 and RNA-seq profiles of GC from TCGA were also used to validate the risk scoring model. We divided the samples from the GSE15459 series into the high-risk group (n = 96) and the low-risk group (n = 96). There was a significant difference in the OS between the two groups (Figure 4A). Univariate Cox regression analysis also showed that the risk score was significantly correlated with OS (p = 0.0309, HR = 1.000187). We found that the risk score distribution, survival status, and lncRNA expression of all patients were consistent with those observed in the training dataset (Figure 4B). In the TCGA dataset, 380 patients in the TCGA data set were divided into a high-risk group (n = 190) and a low-risk group (n = 190). The results of univariate Cox regression analysis also showed that the risk score was significantly correlated with OS (Figures 4C,D). All these results indicate that the risk score model has a better universality.
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FIGURE 4. Survival analysis in the GSE15459 and TCGA dataset. (A) Kaplan-Meier curve of risk score model based on GSE15459 data. (B) Expression pattern of lncRNA and survival status and risk score of patients based onGSE15459 data. (C) The same as in (A) but for the RNA-seq profile from TCGA. (D) The same as in (B) but for the RNA-seq profile from TCGA.




Cancer-Promoting Function of mRNA Co-expressed With Five lncRNAs

To explore the functional significance of five lncRNA biomarkers in the occurrence and development of gastric carcinoma, bioinformatics analysis was carried out to predict the function of lncRNAs. We extracted these five lncRNA expression profiles and all mRNA expression profiles from the GSE62254 dataset and calculated the Pearson correlation coefficient between each pair of lncRNAs and mRNAs. We found that the mRNAs related to these five lncRNAs had no significant intersection (Figure 5A), indicating that the five lncRNAs have independent roles in carcinogenic mechanisms.
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FIGURE 5. Cancer-promoting function of mRNA co-expressed with five lncRNAs. (A) The Venn diagram shows the intersection of mRNAs related to the expression of five biomarker lncRNAs. (B–F) The results of functional enrichment of mRNA relating to the expression of lncRNAs. Protein coding genes are on the left side of the circle diagram, and biological pathways (BP) are on the right.


Functional enrichment analysis was performed to reveal the functional mechanism of biomarker lncRNAs. We found many biological pathways (BPs) influenced by mRNAs that correlate with biomarker lncRNA. For lncRNA RP11-722E23.2, the function was mainly enriched in energy metabolism (Figure 5B). Variation in lncRNA RP11-796E2.4 and RP11-95O2.1 expression mainly affects immune regulation, which is essential for the recognition and elimination of gastric tumor cells (Figures 5C,D; Chen et al., 2007; Amedei et al., 2012). AC004528.4 was mainly involved in the epithelial-mesenchymal transition, which regulates the invasion and metastasis of cancer cells (Lamouille et al., 2014; Dongre and Weinberg, 2019; Figure 5E). RP11-71E19.5 mainly regulated the ion channels and contractile activity of gastric muscle cells (Figure 5F). These results indicate that lncRNAs can promote the occurrence and development of GC through multiple mechanisms.



Exploring the Prognostic Efficiency of Five lncRNAs in Thoracic Malignancies

Furthermore, we evaluated the prognostic performance of these five-lncRNA signatures in several thoracic cancers, including BRCA, ESCA, LUAD, LUSC, and THYM. The five-lncRNA signature was found to be significantly associated with patient survival in BRCA (HR = 1.952, 95% CI = 1.249–3.051, p = 0.003), LUSC (HR = 2.852, 95% CI = 1.402–5.799, p = 0.003), and THYM (HR = 2.509, 95% CI = 1.335–4.714, p = 0.004) (Figure 6A). Patients with different thoracic cancers were ranked and divided into two risk groups based on the median risk score. Kaplan-Meier survival analysis was performed to evaluate the prognostic significance between the two risk groups in each dataset (Figures 6B–F). We found that the OS of BRCA patients was significantly different between the high- and low-risk groups (Figure 6B). These results were consistent with previous studies that reported that breast cancer with metastasis to the gastric tissue was often mistaken for primary GC (Kim et al., 2018; Birla et al., 2019). However, the survival of patients with other thoracic malignancies did not show sensitivity to these five lncRNAs in GC (Figures 6C–F).
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FIGURE 6. Survival analysis in several thoracic cancers. (A) The forest plot demonstrates the risk ratios of five prognosis-related lncRNAs in thoracic cancer. (B–F) Kaplan-Meier curves of the five prognostic lncRNAs in thoracic cancers. Patients were divided by the median risk score. **p < 0.01.


Using the median score as a threshold may arbitrarily divide patients with continuous gene expression into different groups and fail to obtain significant survival results. We employed the minimum p-value approach for grouping patients and determined the optimal cut-off point for continuous gene expression measurement (Mizuno et al., 2009). Based on this strategy, we re-divided the patients with these thoracic cancers into different groups according to the minimum p-value (Figures 7A–E). We found that the OS of BRCA (Figure 7A), LUSC (Figure 7D), and THYM (Figure 7E) were significantly different in the high-and low-risk groups, which was consistent with the Cox regression analysis results in Figure 6A. Previous studies have also shown that advanced LUSC is often accompanied by gastric metastasis (Li et al., 2018; He et al., 2019). All these results suggest that the similarity in molecular mechanisms between GC and BRCA and LUSC may be caused by a similar localized pathological tissue origin. Taken together, the five-lncRNA signature identified in GC may be a potential prognostic marker for several thoracic malignancies, including BRCA, LUSC, and THYM, which will provide new avenues for the diagnosis and treatment of these cancers.
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FIGURE 7. Re-dividing of thoracic cancer patients and survival analysis. (A–E) Kaplan-Meier curves of the five prognostic lncRNAs in thoracic cancers. Patients were divided by the optimal cut-off identified from the minimum p-value approach.





DISCUSSION

In this study, we identified five lncRNAs related to patient survival in gastric carcinoma and established a risk score model. The reliability of the model was verified using data from other public GCs. Furthermore, these five lncRNAs were also associated with the OS of BRCA, LUSC, and THYM patients. To some extent, the model has superior performance compared to known traditional clinical parameters. These results demonstrate the potential application of lncRNA as a new independent biomarker for the diagnosis and prognosis of GC.

As one of the common malignant tumors, GC has a high mortality rate (Hartgrink et al., 2009; Smyth et al., 2020). Although treatment has made great progress, the prognosis remains poor. LncRNAs play an important regulatory role at the transcriptional, post-transcriptional, and epigenetic levels and participate in multiple aspects of gene regulation and a variety of biological processes (Batista and Chang, 2013). In recent years, lncRNAs have been found to play an important role in cancer. Therefore, our exploration of biomarkers that affect tumor progression and survival of GC patients is of great significance for the diagnosis and treatment of GC.

We collected several expression profiles and the corresponding clinical information of GC, including GSE62254, GSE15459, and RNA-seq profiles from TCGA. The GSE62254 data were randomly divided into training and test sets. We used the lasso regression-Cox mode algorithm to screen for features related to the patient’s OS. Compared with other feature filtering algorithms such as linear regression and ridge regression, the lasso algorithm solves the overfitting problem and can directly reduce some repetitive and unnecessary parameters to zero in the parameter reduction process. Lasso regression performs well in controlling the number of features (Xu et al., 2018; McEligot et al., 2020). Further, multivariate Cox regression analysis identified five lncRNAs that could independently predict the OS of patients. Subsequently, a risk-scoring model was established using the coefficients of multivariate Cox regression analysis. The training data set was divided into high-risk and low-risk groups according to the median risk score, and there was a significant difference in OS between the two groups. We found that the risk score model constructed with five lncRNAs was applicable to multiple GC datasets. We calculated the Pearson correlation coefficient between mRNA and five-lncRNA signature to explore the physiological mechanisms influenced by these biomarkers. Functional analysis suggested that these five lncRNAs play an important role in the initiation and progression of GC through association with known BPs, and further experimental verification of these five prognostic lncRNAs is necessary to understand their function in GC.

Furthermore, we evaluated the prognostic performance of the five-lncRNA signature in several thoracic cancers, including BRCA, ESCA, LUAD, LUSC, and THYM. Since the median can be used as a threshold to arbitrarily divide patients with similar gene expression levels, we used the minimum p-value method to obtain the best cut-off point for continuous gene expression (Mizuno et al., 2009). Using this method, we divided the patients with thoracic cancers into different groups according to the minimum p-value and found that the five-lncRNA signature could divide patients’ OS of BRCA, LUSC, and THYM into different risk groups. To provide a global view of the prognostic efficiency of the five-lncRNA signature in cancers as much as possible, we performed survival analysis in 27 other types of cancers in TCGA. Although the five-lncRNA signature was not a universal marker for all cancers, the results of Cox regression analysis (Supplementary Figure 1) and Kaplan-Meier survival curves (Supplementary Figure 2) revealed the potential prognostic roles in some other cancers.



CONCLUSION

To summarize, this study offers a risk score model according to research and demonstrate in multiple sets of data. Although we only considered lncRNA expression changes and simple clinical information, the prediction model is reliable after multiple verifications. In addition, the identification of lncRNA biomarkers may bring new insights into the potential molecular basis of cancers.
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Background

Triple-negative breast cancer (TNBC) is a significant cause of patient morbidity. The exactly pathobiological features of this condition has yet to be completely elucidated.



Methods

Breast cancer data obtained from The Cancer Genome Atlas (TCGA) database were evaluated for lncRNA SNHG6 expression. Normal human breast epithelial cell line (MCF-10A) and other breast cancer cell lines (BT-549, MDA-MB-231, Hs 578t, ZR-75-30, SK-BR-3, MCF-7) were also assessed for lncRNA SNHG6 expressions. Cellular proliferative ability was evaluated with colony formation and CCK-8 assays. The ability of cells to migrate was scrutinized with the wound healing and Boyden chamber cell migration assays. qRT-PCR enabled for detection of lncRNA SNHG6, miR-125b-5p and BMPR1B mRNA expressions. Protein BMPR1B expressions were further assessed using Western Blotting. Direct binding sites between transcripts were determined using dual-luciferase reporter assays. We also constructed a xenograft mouse model to further dissect the vivo implications of lncRNA SNHG6. Ki-67 and c-Caspase-3 expressions were detected using immunohistochemistry staining.



Results

Breast cancer cell lines demonstrated higher lncRNA SNHG6 expressions, particularly TNBC cell lines, in contrast to normal breast epithelial cell lines. This finding coincided with those noted on analysis of TCGA breast cancer data. lncRNA SNHG6 knockdown inhibited TNBC cell proliferation, migration, while promoted cell apoptosis. Furthermore, suppressed lncRNA SNHG6 expressions resulted in lower tumor weights and volumes in a xenograft mouse model, as evidenced by Ki-67 and c-Caspase-3 expression profiles in tumor tissues. miR-125b-5p and lncRNA SNHG6/BMPR1B both possessed direct binding sites for each other which was validated utilizing a dual-luciferase reporter assay. Decreasing lncRNA SNHG6 expression in TNBC cells upregulated miR-125b-5p expression. Another side, inhibiting miR-125b-5p upregulated BMPR1B expression in these cells. Moreover, knocking down lncRNA SNHG6 downregulated BMPR1B expression in TNBC cells, and the finding was rescued in cells which were exposed to miR-125b-5p inhibitor. Downregulating miR-125b-5p mitigated the effect of suppressing lncRNA SNHG6 on TNBC cell proliferation, migration, and apoptosis.



Conclusion

Downregulation of lncRNA SNHG6 could inhibit TNBC cell proliferative, migratory capabilities and promote apoptosis capability, likely through modulation of the miR-125b-5p/BMPR1B axis. This axis may be targeted in formulating new therapies for TNBC.





Keywords: lncRNA SNHG6, miR-125b-5p, BMPR1B, Triple-negative breast cancer (TNBC), competing endogenous RNAs (ceRNA)



Introduction

The second most frequently encountered reason of cancer-associated death in women around the world is due to breast cancer (1). Triple negative breast cancer (TNBC) is the most malignant subtype which makes up roughly 10%–20% of all diagnosis of cancer in this organ (2). Its incidence rate is nearly equal to its mortality rate, with this debilitating disease diagnosed in an increasingly younger population over the last few years. The lack of typical receptors such as human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR) and estrogen receptor (ER) on this cancer subtype precludes usage of currently available targeted therapeutic agents (3). Therefore, further research on uncovering other potential treatment targets in TNBC is much needed.

Long non-coding RNAs (lncRNAs) are transcripts which possess more than 200 nt and have been found to interact in a myriad of biological processes and diseases, including cancer (4–6). For example, 1484 differentially expressed lncRNAs were discovered in lung cancer, of which 535 were upregulated and 949 were downregulated (7). 172 lncRNAs in endometrial carcinoma were determined to be differentially expressed in contrast to normal endometrial samples (8). Microarray analysis revealed a total of 2925 dysregulated lncRNAs in TNBC samples (9). However, the exact effects of dysregulated lncRNA expressions have yet to be fully determined. Both breast cancer cell lines and samples, especially those of TNBC, have been found to harbor high expressions of lncRNA H19, which has been implicated to increased rates of metastasis and tumorigenesis (10). Moreover, lncRNA H19 may promote breast cancer tamoxifen resistance through modulation of the SAHH/DNMT3B axis (11). The LncRNA HOX transcript antisense RNA (HOTAIR) is upregulated in breast cancer cell lines and samples, which has been associated to the progression of breast cancer due to its action on the miR-20a-5p/HMGA2 axis (12). One lncRNA of interest is the oncogenic small nucleolar RNA host gene 6 (SNHG6), which is aberrantly expressed in cancers such as glioma, hepatocellular carcinoma as well as in lung and colorectal cancers (13–16). Raised SNHG6 expressions was intricately related to poorer overall survival in cancer patients (17). There is an upregulation of lncRNA SNHG6 in high-grade and progesterone receptor-positive breast cancer tissues, which may be associated to breast cancer cell migration and epithelial-mesenchymal transition (EMT) (18). Nevertheless, the role of lncRNA SNHG6 in TNBC has yet to be discovered.

The current study uses qRT-PCR to assess quantities of lncRNA SNHG6 in breast cancer cells. SNHG6 was overexpressed in both MDA-MB-231 and BT-549 two kinds of cell lines. The CCK-8, wound healing, colony formation, cell migration and TUNEL assays along with the xenograft mouse model allowed for our study group to scrutinize the consequences of SNHG6 on TNBC cellular proliferation, migration and apoptosis. Gene transcripts were also assessed via qRT-PCR. Western Blot was utilized in detection of functional protein bone morphogenetic protein receptor type 1B (BMPR1B) expression. We also used dual-luciferase reporter assay and functional rescue assays to verify the crucial role of SNHG6 in TNBC.



Materials and Methods


Cell Culture and Transfection

The Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd (Shanghai, China) supplied MDA-MB-231 cells. The Cell Bank of the Chinese Academy of Sciences (Shanghai, China) supplied human TNBC cell line (BT-549) and normal breast epithelial cell line (MCF-10A). MDA-MB-231 cells were maintained using DMEM (Gibco, Invitrogen, CA, USA) while BT-549 cells were maintained using RPMI 1640 (Gibco, Invitrogen, CA, USA). Both cell cultures contained 100 U/mL streptomycin/penicillin and 10% fetal bovine serum (Beyotime, Shanghai, China). MEGM SingleQuots (Lonza, Walkersville, MD, USA) was used to culture MCF-10A cells. All the aforementioned cell lines were kept in a T25 tissue culture flask and incubated under 5% CO 2 at 37°C.

The siRNA sequence targeting lncRNA SNHG6 was synthesized by Ribobio (Guangzhou, China). Negative controls were designated as si-NC. miR-125b-5p expressions were inhibited by an inhibitor produced by the same company. All transfections were carried out in strict compliance to manufacturer protocols. The siRNA targeting lncRNA SNHG6 was as follows: GCGGCATGTATTGAGCATA.



Cell Counting Kit-8 (CCK-8) Assay

After a 24-hour transfection period, all cells were plated onto 96-well plates at a concentration of 4 × 103 cells per well. Cellular activity was detected at 24 h, 48h, 72h, 96h. This was done by adding a tenth of a volume of Cell Counting Kit-8 reagent (bimake, Houston, USA) into each well before the entire plate was incubated for 1 to 1.5 hours in an incubator until cell media turned color. Each group possessed a negative control well. The OD value was detected at 450 nm using an enzyme-labeled standard instrument. Proliferation curves were constructed using the average OD values. All assays were performed in triplicate.



Colony Formation Assay

TNBC cells (1000 cells per well) which were transfected for 24 hours were transferred onto a 6-well culture plate and underwent a 1 week incubation period with the culture medium replaced every three days. Colonies were then fixed using 4% histiocyte fixative (Solarbio Sciences, Beijing, China) and stained with 0.1% crystal violet methanol solution (Solarbio Sciences, Beijing, China). All colonies were counted and photographed.



Wound Healing Assay

TNBC cells which underwent a 24-hour transfection period were placed in a 6-well plate at a concentration of 7 × 105 cells per well and cultured in an incubator for one day. Pipette tips were used to create three separate wounds in each well of the 6-well plates and the wound was photographed immediately (at 0 h). The cells were rinsed and cultured for another 48 h before being photographed again. The ImageJ software was used to measure the degree of wound closure.



Transwell Assay

The upper chamber of a transwell assay was used to house transfected cells (1 × 105) in 200 μl FBS-free media. Lower chambers contained 600 μl medium mixed with 30% FBS. The system was left alone for one day. After this, cells which were found to have migrated into the bottom chamber were fixed with 4% histiocyte fixative (Solarbio Life Sciences, Beijing, China) and stained with 0.1% crystal violet methanol solution (Solarbio Life Sciences, Beijing, China).



TUNEL Assay

To analyze cell apoptosis, terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assays were performed with Tunel Apoptosis Detection Kit (Fluorescence - Green Light) (Wanleibio, Shenyang, China) according to the manufacturer’s instructions. FITC-labeled apoptotic cells were observed under the fluorescence microscope (OLYMPUS BX51, Japan).



Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The TRIzol reagent (Ambion, 15596026, CA, USA) allowed for total RNA extraction from TNBC cells according to the manufacturer instructions. cDNA was reverse transcribed using the PrimeScript RT reagent Kit (Perfect Real Time, Japan) (Takara, RR037A). qRT-PCR assay was operated using the TB Green Premix Ex Taq II (Tli RNaseH Plus) (Takara, RR820A, Japan). Each experiment was repeated in triplicate. The following qRT-PCR assay primer sequences were used: lncRNA SNHG6: CGGCATGTATTGAGCATATAGGT (forward) and CACACTTGAGGTAACGAAGCAGA (reverse); BMPR1B: CCAAAGGTCTTGCGTTGTAAA (forward) and ACCCAGAGTCATCC TCTTCTATCA (reverse). miRNA qRT-PCR Primer Sets designed by RiboBio (Guangzhou, China).



Western Blot Assay

Both MDA-MB-231 and BT-549 cells were treated with RIPA lysis buffer (Beyotime, Shanghai, China) supplemented with 1%PMSF for total protein extraction. A 10% SDS-PAGE gel was used to separate component proteins before they were immunoblotted onto a PVDF membrane (Bio-Rad, CA, USA). 5% skim milk powder was used to block endogenous reactions and the entire membrane was incubated with primary antibodies against BMPR1B (1:1000) (Affinity Biosciences, OH, USA), Bax (1:800), Bcl-2 (1:800), c-Caspase-3 cleaved (1:800) and β-actin (1:2500) (Bioss, Beijing, China) at 4°C overnight and rewarmed for an hour in the next morning. Membranes were rinsed thrice with TBST before being re-incubated with secondary antibodies (1:5000) (Bioss, Beijing, China) for 1.5h at 25°C. Three final rinses were then performed prior to examination using an Automatic Chemiluminescence Imaging Analysis System (Tanon, Shanghai, China).



Animal Experiments

The Harbin Medical University Animal Care and Use Committee reviewed approved all animal experimental protocols to ensure they were in accordance to protocols stipulated by the National Institutes of Health. Nude mice were purchased from Beijing Weitonglihua Laboratory Animal Technology Co., Ltd. (Beijing, China) and inoculated with MDA-MB-231 cells transfected with either si-SNHG6 or si-NC. Tumor volumes were assessed weekly. All mice were sacrificed at 28 days post-inoculation and tumors were dissected for further assessment.



Immunohistochemical Staining (IHC)

The IHC staining of paraffin-embedded tissues was operated following the right steps. Primary antibodies against Ki-67 and c-Caspase-3 were covered over tissues at 4°C for overnight. The next morning, secondary antibodies were covered over tissues at room temperature for 50 minutes. After adding DAB chromogenic solution, the tissues were examined under microscope.



The Prediction of RNA Binding Sites and Dual-Luciferase Reporter Assay

Sequences containing the miR-125b-5p binding site on the 3’-UTR of lncRNA SNHG6 or the 3’UTR of BMPR1B were amplified by the ABI Gene Amp PCR System 2400. The amplified products were merged into the psiCHECK™-2 Vector to construct the lncRNA SNHG6 and BMPR1B wild-type (WT) and mutant-type (MUT) reporter plasmids, respectively. A dual-luciferase reporter assay system (Promega, Fitchburg, USA) was utilized for detection of luciferase activity.



Data Analysis

All data was determined in terms of mean ± SEM. The ANOVA or Student’s t-test was used to determine differences between multiple or two groups, respectively.




Results


The Expression of lncRNA SNHG6 in Breast Cancer

We initially evaluated lncRNA SNHG6 transcription levels in breast cancer studies based on data from TCGA with the Gene Expression Profiling Interactive Analysis 2 (GEPIA 2) online tool (http://gepia2.cancer-pku.cn/). We found that SNHG6 expressions appeared to be raised in samples of breast cancer in contrast to healthy breast tissue samples (Figure 1A). Additionally, “Basal-like” samples were noted also have high expressions of SNHG6 compared to those of other types (Figure 1B). lncRNA SNHG6 expressions were then characterized in MCF-10A, BT-549, MDA-MB-231, Hs 578t, ZR-75-30, SK-BR-3 and MCF-7 cells. All breast cancer cell lines were significant for high lncRNA SNHG6 expressions in comparison to normal mammary epithelial cell line. lncRNA SNHG6 expression was also found to be elevated in TNBC cell lines (BT-549, MDA-MB-231, Hs 578t) in contrast to non-TNBC cell lines (ZR-75-30, SK-BR-3, MCF-7) (Figure 1C). TNBC cell lines (MDA-MB-231 and BT-549) with higher lncRNA SNHG6 expression were selected for additional experiments.




Figure 1 | lncRNA SNHG6 expression across breast cancer databases and cell lines (A) Levels of SNHG6 expression were detected in breast cancer and normal samples in TCGA data base. (B) Levels of SNHG6 expression were detected in different breast cancer subtypes. (C) lncRNA SNHG6 expression was raised in breast cancer cell lines in contrast to normal breast epithelial cell line. **P < 0.01, ***P < 0.001 vs. MCF-10A. n = 3.





lncRNA SNHG6 Inhibition Slowed Proliferation of TNBC Cells

SiRNA targeting lncRNA SNHG6 was used to knock down lncRNA SNHG6 expression in vitro. Three different sequences (si-SNHG6-1, si-SNHG6-2 and si-SNHG6-3) were designed and assessed for their transfection efficiency using qRT-PCR. The efficiency of si-SNHG6-2 was higher than si-SNHG6-1 and si-SNHG6-3 in MDA-MB-231 and BT-549 cells, so it was utilized for subsequent experiments (Figures 2A, B). Inhibiting lncRNA SNHG6 diminished the proliferative abilities of two kinds of cells in contrast to cells transfected with the si-NC group (Figures 2C, D). Meanwhile, inhibiting lncRNA SNHG6 resulted in reduced formation ability of both cell lines (Figures 2E, F). These findings demonstrated that the suppressing of lncRNA SNHG6 expression slowed TNBC cell proliferation.




Figure 2 | Suppression of lncRNA SNHG6 attenuated TNBC cell migration and proliferation, while promoted cell apoptosis. (A) The siRNA targeting lncRNA SNHG6 inhibited lncRNA SNHG6 expression in MDA-MB-231 cells. (B) The siRNA targeting lncRNA SNHG6 inhibited lncRNA SNHG6 expression in BT-549 cells. (C) lncRNA SNHG6 inhibition suppressed the proliferation of MDA-MB-231 cells. (D) lncRNA SNHG6 inhibition suppressed the proliferation of BT-549 cells. (E) Representative colony formation images of MDA-MB-231 and BT-549 cells. (F) lncRNA SNHG6 inhibition reduced colony-forming of both two kinds of cells. (G) Representative wound healing assay images of MDA-MB-231 and BT-549 cells. Magnification×40; Scale bar, 200 μm. (H) The inhibition of lncRNA SNHG6 suppressed migration capability of MDA-MB-231 and BT-549 cells. (I) Boyden chamber cell migration assay in MDA-MB-231 and BT-549 cells, respectively. Magnification ×100; Scale bar, 100 μm. (J) lncRNA SNHG6 inhibition diminished migration capability of both two kinds of cells. (K) TUNEL assay in MDA-MB-231 and BT-549 cells, respectively. Magnification×100; Scale bar, 100 μm. (L) lncRNA SNHG6 inhibition promoted apoptosis capability of both two kinds of cells. (M) The protein expression of Bcl-2, Bax and c-Caspase-3 in MDA-MB-231 and BT-549 cells. (N) lncRNA SNHG6 inhibition induced the protein expression level of Bcl-2 decreased while the level of Bax and c-Caspase-3 increased. *P < 0.05, **P < 0.01, *** P < 0.001 vs. si-NC; n = 3.





lncRNA SNHG6 Inhibition Suppressed the Migratory Capability of TNBC Cells

We then evaluated the impact of lncRNA SNHG6 on the migratory abilities of TNBC cells. MDA-MB-231 and BT-549 cells were found to migrate at a slower rate on wound healing assay after lncRNA SNHG6 knockdown (Figures 2G, H). Similarly, lower numbers of migrating cells were noted upon lncRNA SNHG6 knockdown (Figures 2I, J).



lncRNA SNHG6 Inhibition Promoted the Apoptosis Capability of TNBC Cells

Then we examined the effect of lncRNA SNHG6 on apoptosis ability of TNBC cells. The results showed that the number of TUNEL positive cells increased significantly after SNHG6 knock down in MDA-MB-231 and BT-549 cell lines (Figures 2K, L). Moreover, the protein expression of Bcl-2 decreased while the expression of Bax and c-Caspase-3 increased after SNHG6 knock down in two kinds of cell lines (Figures 2M, N).



Knockdown of lncRNA SNHG6 Inhibited Tumorigenicity in Xenograft Model

To further detect the effect of lncRNA SNHG6 downregulation on TNBC growth in vivo, we established a xenograft mouse model with MDA-MB-231 cells. lncRNA SNHG6 expression was artificially downregulated in MDA-MB-231 cells with siRNA sequences targeting SNHG6. Knockdown of lncRNA SNHG6 markedly diminished tumor growth as shown by lower tumor weights and volumes (Figures 3A–D). Correspondingly, the expression of Ki-67 was lower in the si-SNHG6 group in contrast to that of the si-NC group while the expression of c-Caspase-3 was higher in si-SNHG6 group (Figures 3E, F). Our observations found that lncRNA SNHG6 knockdown inhibited the progression of TNBC in a xenograft mouse model.




Figure 3 | Knockdown of lncRNA SNHG6 inhibited tumorigenicity in xenograft model. (A) Representative images of a xenograft mouse model. (B) Representative tumor images. (C) Statistical results of tumor volumes. (D) Statistical results of tumor weights. (E) Representative Ki-67 and c-Caspase-3 staining images of tumor. (F) lncRNA SNHG6 inhibition suppressed the expression of Ki-67 and promoted the expression of c-Caspase-3 in xenograft model tissues. Magnification ×200; Scale bar, 100 μm.*P < 0.05, **P < 0.01 vs. miR-NC; n = 3.





Downregulation of lncRNA SNHG6 Modulates Activity of the miR-125b-5p/BMPR1B axis in TNBC Cells

To fully characterize the molecular mechanism underlying lncRNA SNHG6, we used the RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/) program to predict potential lncRNA SNHG6 binding sites on miRNAs (19). miR-125b-5p was predicted to possess a binding site compatible with lncRNA SNHG6 (Figure 4A). The miR-125b-5p mimic was found to reduce luciferase activity of a reporter vector containing wild type SNHG6 but not those containing mutated SNHG6, as evidenced using a dual-luciferase reporter assay (Figure 4B). In addition, inhibiting lncRNA SNHG6 upregulated miR-125b-5p expression in MDA-MB-231 and BT-549 cells (Figure 4C).




Figure 4 | Downregulation of lncRNA SNHG6 regulates miR-125b-5p/BMPR1B signaling pathway in TNBC cells. (A) Predicted binding sites between lncRNA SNHG6 and miR-125b-5p. (B) Dual-luciferase reporter assay verified the presence of a direct binding site between miR-125b-5p and lncRNA SNHG6. (C) Knockdown of SNHG6 upregulated miR-125b-5p expression in MDA-MB-231 and BT-549 cells. (D) Predicted binding sites between miR-125b-5p and BMPR1B. (E) Dual-luciferase reporter assay verified the presence of a shared binding site between miR-125b-5p and BMPR1B. (F) miR-125b-5p inhibition upregulated BMPR1B mRNA expression. (G) miR-125b-5p inhibition upregulated BMPR1B protein expression. (H) miR-125b-5p inhibition attenuated the impact of lncRNA SNHG6 suppression on BMPR1B mRNA expression. (I) miR-125b-5p inhibition attenuated the impact of lncRNA SNHG6 suppression on BMPR1B protein levels. *P < 0.05, ** P < 0.01, *** P < 0.001; n = 3.



Potential miR-125b-5p associated downstream molecules were predicted using the TargetScan Human 7.1 (http://www.targetscan.org/vert_72/) (20), miRDB (http://mirdb.org/) and miRanda (http://www.microrna.org/microrna/home.do) (21). The prediction results show that BMPR1B (which encodes the BMR1B protein) may be a potential target gene of miR-125b-5p (Figure 4D). Luciferase assay also found that BMPR1B was a direct target of miR-125b-5p (Figure 4E). Further miR-125b-5p inhibition upregulated BMPR1B at both mRNA and protein expression levels in MDA-MB-231 and BT-549 cells (Figures 4F, G).

We further validated the relationship between lncRNA SNHG6, miR-125b-5p and BMPR1B. The protein and mRNA expressions of BMPR1B were downregulated after lncRNA SNHG6 knockdown in MDA-MB-231 and BT-549 cells. Whereas, co-administration with miR-125b-5p inhibitor appeared to attenuate the impact of lncRNA SNHG6 suppression on BMPR1B expression in both cell lines (Figures 4H, I). This series of investigations strengthen our hypothesis that the lncRNA SNHG6/miR-125b-5p/BMPR1B axis plays a prominent role in TNBC cells.



The Inhibition of miR-125b-5p Attenuated the Effect of lncRNA SNHG6 Knockdown on Proliferation, Migration, and Apoptosis of TNBC Cells

We then explored whether lncRNA SNHG6/miR-125b-5p/BMPR1B axis is involved in the growth of TNBC cells. The knockdown of lncRNA SNHG6 inhibited the ability of proliferation and migration, while promoted the ability of apoptosis in MDA-MB-231 and BT-549 cells. Whereas, the inhibition of miR-125b-5p attenuated the effect of lncRNA SNHG6 knockdown on proliferation, migration, apoptosis of above two kinds of cells (Figure 5). Therefore, lncRNA SNHG6/miR-125b-5p/BMPR1B pathway was involved in the growth of TNBC cells.




Figure 5 | Inhibiting miR-125b-5p attenuates the impact of lncRNA SNHG6 suppression on TNBC cells. (A) miR-125b-5p inhibition attenuated the impact of lncRNA SNHG6 suppression on the proliferation of MDA-MB-231 cells. (B) miR-125b-5p inhibition attenuated the impact of lncRNA SNHG6 suppression on the proliferation of BT-549 cells. (C) Colony formation images of MDA-MB-231 and BT-549 cells. (D) miR-125b-5p inhibition attenuated the impact of lncRNA SNHG6 suppression on colony-formation capabilities of MDA-MB-231 and BT-549 cells. (E) Representative wound healing assay images of MDA-MB-231 and BT-549 cells. Magnification×40; Scale bar, 200 μm. (F) miR-125b-5p inhibition attenuated the impact of lncRNA SNHG6 suppression on the migratory capability of both two kinds of cells. (G) Boyden chamber cell migration assay in MDA-MB-231 and BT-549 cells, respectively. Magnification×100; Scale bar, 100 μm. (H) miR-125b-5p inhibition attenuated the impact of lncRNA SNHG6 suppression on the migratory capability of both two kinds of cells. (I) TUNEL assay in MDA-MB-231 and BT-549 cells, respectively. Magnification×100; Scale bar, 100 μm. (J) miR-125b-5p inhibition attenuated the impact of lncRNA SNHG6 suppression on the apoptosis capability of both two kinds of cells. (K) The protein expression of Bcl-2, Bax and c-Caspase-3 in MDA-MB-231 and BT-549 cells. (L) miR-125b-5p inhibition attenuated protein expression level of Bcl-2, Bax and c-Caspase-3 after SNHG6 knocked down. *P < 0.05, ** P < 0.01, *** P < 0.001 vs. si-NC; n = 3.






Discussion

Breast cancer makes up approximately one-third of all cancers diagnosed in women (22). The current treatment for breast cancer, especially for TNBC, is still inadequate (23). LncRNAs may confer critical effects in breast cancer progression and development (24–26). Our study investigated the function of lncRNA SNHG6 in TNBC and explored its potential mechanism.

Previous studies found breast cancer tissues to harbor significantly higher expressions of lncRNA SNHG6 in contrast to adjacent normal breast tissues (27). Similarly, our study also found that breast cancer cell lines, particularly those of TNBC, had higher lncRNA SNHG6 expression profiles in contrast to normal breast epithelial cell line. We then observed the effect of lncRNA SNHG6 knockdown on MDA-MB-231 and BT-549 TNBC cells which were found to have higher endogenous expressions of lncRNA SNHG6. lncRNA SNHG6 knockdown suppressed the migratory and proliferative abilities, while promoted the apoptosis ability of TNBC cells. The vivo effects of lncRNA SNHG6 suppression on TNBC were also assessed. lncRNA SNHG6 downregulated resulted in lower tumor weights and volumes in a xenograft mouse model, as evidenced by lower Ki-67 and higher c-Caspase-3 expression in these tumor tissues. These findings indicate that downregulation of lncRNA SNHG6 could inhibit both in vivo and vitro growth of TNBC cells.

We further sought to predict the potential molecular mechanism of lncRNA SNHG6 using bioinformatic analyses. The prediction results showed that lncRNA SNHG6 and miR-125b-5p share similar binding sites. Both miR-125b-5p and lncRNA SNHG6 were found to directly interact, as performance by dual-luciferase reporter assays. There was elevated miR-125b-5p expression upon artificial lncRNA SNHG6 suppression. This finding is in line with previous studies which found that TNBC cells demonstrated marked downregulation of miR-125b-5p in contrast to normal breast tissues (28). Its expression was also lower in breast cancer cells (MCF-7, MDA-MB-231 and T47D) in comparison to non-tumorigenic epithelial cell line MCF-10A (29). miR-125b-5p was also postulated to function as a breast tumor suppressor (30). Breast cancer cell proliferative, migratory and invasive capabilities were suppressed upon miR-125b-5p overexpression (29). Furthermore, circulating miR-125-5p appeared to be helpful in breast cancer risk stratification (31). Therefore, the effect of lncRNA SNHG6 in breast cancer appears to be mediated by miR-125b-5p.

Further investigation found that BMPR1B may be a potential miR-125b-5p target. Raised BMPR1B expression may likely lead to enhanced MDA-MB-468 TNBC cell migration due to its effect in augmenting CYP2J2 expression (32). Genetic variations in BMPR1B binding sites have been linked to breast cancer risk (33). Moreover, the specific genetic variant involving the miR-125b—BMPR1B binding site has been found to contribute to breast cancer pathogenesis (34). We demonstrated that BMPR1B to be targeted by miR-125b-5p, with miR-125b-5p inhibition translating to raised BMPR1B expression in TNBC cells. Similarly, previous studies revealed that miR-125b promotes ovarian granulosa cell apoptosis through its action on BMPR1B (35).

Subsequently, the effect of lncRNA SNHG6 knockdown on BMPR1B expression was analyzed. Knocking down lncRNA SNHG6 resulted in decreased BMPR1B expression, however, the co-administration of a miR-125b-5p inhibitor partially reversed this finding. This highlights the fact that suppressing lncRNA SNHG6 inhibited BMPR1B expression and enhanced miR-125b-5p expression.

Finally, we detected whether lncRNA SNHG6/miR-125b-5p/BMPR1B axis was related to TNBC cell growth. The downregulation of lncRNA SNHG6 inhibited proliferation, migration and promoted apoptosis of MDA-MB-231 and BT-549 cells, which was attenuated through inhibiting miR-125b-5p.

To conclude, TNBC cells which possessed suppressed lncRNA SNHG6 levels also demonstrated attenuated migratory, proliferative, and promoted apoptosis ability and it is likely owing to the effect of miR-125b-5p/BMPR1B signal pathway modulation, with this axis representing a novel target in developing new treatments for TNBC.
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Thoracic malignancies are a common type of cancer and area major global health problem. These complex diseases, including lung cancer, esophageal cancer, and breast cancer, etc. have attracted considerable attention from researchers. Potential gene-cancer associations can be explored by demonstrating the association between clinical data and gene expression data. Emerging evidence suggests that the transcriptome plays a particularly critical role as a diagnostic biomarker in pathology and histology studies. Thus, there is an urgent need to develop a platform that allows users to perform a comprehensive prognostic analysis of thoracic cancers. Here, we developed TTSurv, which aims to correlate coding and noncoding genes with cancers by combining high-throughput data with clinical prognosis. TTSurv focuses on the application of high-throughput data to detect ncRNAs, such as lncRNAs and microRNAs, as novel diagnostic and prognostic biomarkers. For a more comprehensive analysis, a large amount of public expression profile data with clinical follow-up information have been integrated into TTSurv. TTSurv also provides flexible methods such as a minimum p-value algorithm and unsupervised clustering methods that can classify thoracic cancer samples into different risk groups. TTSurv will expand our understanding of ncRNAs in thoracic malignancies and provide new insights into their application as potential prognostic/diagnostic biomarkers.
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Introduction

Thoracic malignancies are the most common type of cancers (1, 2), and their biomarkers have been the focus of medical research. In clinical studies, numerous genes have been strongly associated with the onset and progression of cancer lesions, usually manifested by the dysregulation of genes in the functional pathways of cancer. As research progresses, noncoding RNAs are gradually transforming from nonsense transcriptional products to regulators that mediate cellular processes, including chromatin remodeling, transcription, post-transcriptional modifications, and signal transduction. The versatility of noncoding RNAs allows them to participate in multiple biological processes and influence many different molecular targets. Therefore, noncoding RNAs are considered key regulators of physiological programs during the development of disease. Mutations and the dysregulation of noncoding RNAs play a critical role in cancer (3). Based on clinical information, prognosis, as a measure of genes in cancer, is often recognized as the most critical factor (4). By combining clinical patient survival data with their gene expression data, we are able to target genes whose expression is highly correlated with survival, and many experiments have demonstrated the potential of such genes as biomarkers for cancer diagnosis in general. For example, hsa-mir-196b and Nek2 are specifically expressed in patients with pancreatic ductal adenocarcinoma (5); RP13-30A9.2, RP11-488I20.9, and other genes are specifically expressed in patients with esophageal squamous cell carcinoma and has prognostic value (6); and decreased expression of ALDH5A1 predicts prognosis in patients with ovarian cancer (7). Currently, gene expression data and survival data for related samples have been published in several public databases and this information can be downloaded by researchers. The integration and analysis of these two types of data will yield more valuable information and broaden the scope of cancer research. In addition, a more comprehensive and objective conclusion can be obtained by comparing the survival analysis results obtained for the same gene in different datasets. However, there is an urgent need for an efficient data processing platform that can effectively analyze and process the increasingly large amounts of data.

When undertaking a survival analysis, it is often necessary to group patients according to certain metrics and compare the risk differences between groups, but the different cutoff values have important implications for the outcome, and there is currently a lack of a gold standard for cutoff values. Several databases exist that can be used to conduct a survival analysis of the expression profiling data, such as Kaplan-Meier Plotter, LOGpc, and OncoLnc online tools, but there is still a need for a biologically meaningful cutoff value. Users often differentiate samples using thresholds, such as median/trichotomies/quartiles, which are merely mathematical and do not express biological properties, or they calculate the division values multiple times, which is often time-consuming and lacks a scientific basis. Classifying samples multiple times and performing the Cox test can determine the optimal grouping and find the best separation point among continuous variables. It has been shown to be useful in the analysis of tumor size (8, 9), cell cycle phase estimation measurements (10), and gene copy number (11). Most data-dependent segmentation methods (e.g., mean, median, and quartiles) may not represent the true prognostic power of the predictors. However, the minimum p-value method uses statistical methods and clinical information guidance to systematically determine an optimal grouping value after grouping the sample multiple times. Therefore, we consider the cutoff value obtained by this method to be biologically meaningful (9) so we applied this approach to analyze expression profiles. In addition, the prognostic impact of genes on cancer patients can vary depending on the differences in the datasets selected by the researchers. For example, the choice of TCGA (12) data versus GEO (13) data can also have an impact on the analysis results, so a common test of multiple sample sets is usually required to produce results with higher confidence. In the current study and analysis, plotting survival curves alone does not provide strong evidence about the impact of changes in gene expression on patient survival. This suggests that more evidence is needed to illustrate the relationship between gene expression profiles and patient survival in multiple dimensions. Therefore, while providing different classification algorithms, we also provide a variety of visualization charts to better illustrate the results for users. For example, when multiple genes are passed into the same cancer dataset, we provide a forest plot and a correlation plot to visualize the relationship between all genes and when analyzing the survival of a single gene in cancer, we provide an integrated plot of the patient’s survival time, survival status, and the expression of that gene.

In summary, we have developed TTSurv. It is a large collection of cancer-related expression profiles and their associated clinical data that can be found in public databases such as GEO and TCGA. TTSurv also provides a minimum p-value method to calculate the best cutoff value for the user while allowing the user to manually submit the separation value. In addition, we classified the samples according to the expression value of the dataset and performed unsupervised tests. By providing multiple ways to classify samples, we can uncover all possible associations between genes and cancer. In addition, we also provide integration algorithms for multi-gene analysis to integrate the target gene set, which allows the user to analyze the entire gene set as a whole. Finally, the database provides an overall assessment of the prognostic value of genes in multiple datasets, which will gives researchers more experimental opportunities and more valuable analysis results.



Materials and Methods


Data Collection and Processing

Expression profiling data and survival data were obtained from the TCGA and GEO public datasets (Figure 1A). We applied the following selection criteria to further organize the data: 1. it contains sample prognostic information, 2.it uses a large sample size (sample size > 50), and 3. the probes of the platform are annotated with public identifiers (e.g., Gene Symbol, GenBank, UniGene ID, etc.). The expression profiles were derived from the series matrix files for each GEO dataset and log2-transformed. We collected 72 datasets containing 16143 samples from 31 cancers involving 61032 genes (Tables S1 and S2). The probe-gene annotation information was derived from the GEO database, and each probe was mapped to an Ensembl-ID by querying the UniGene database for the accompanying public identifier.




Figure 1 | Global view of the TTSurv database. (A) illustrates the data sources and subsequent data processing by TTSurv; (B, C) show the user interface illustrating how the user searches for data and the results obtained; and (C) shows the results provided by TTSurv and its backend components.





Minimum P-Value Algorithm

The minimum p-value method has been validated in clinical trials (14), and this method is also supported statistically (15). Accordingly, we used the minimum p-value algorithm to obtain the best grouping by undertaking multiple grouping and a survival analysis of both groups to filter the cutoff value corresponding to the minimum log-rank p-value.

First, patients were ranked according to the expression values of a given gene. Patients were then divided into two groups (high and low) at all potential cut-off points, and the difference in risk between the two groups was estimated using the log-rank test. The best cut point that gave the most significant p-value (P-minimum) was then selected (Figure 1B).



Gene Integration Algorithm

The survival analysis, performed with multiple genes in a particular cancer, also provides a risk score model that considers the strength and the positive and negative associations between each RNA and survival probability. This means that we can assess the association between the expression of the entire set of genes and the survival of cancer patients. For each patient, the risk score was calculated by weighting the linear combination of all RNA expression values with the Cox regression coefficients.

	

where βi is the Cox regression coefficient for each RNA (denoted by Ci), n is the number of RNAs in the gene set, and Exp(Ci) is the expression value of RNA Ci in the corresponding sample. Patients were classified into high expression and low expression groups according to the different classifications (16).



Database Construction

The TTSurv online server was developed using Tomcat V7.0. We manually classified the data into miRNA expression profile data, and lncRNA and mRNA expression profile data. Each expression profile matrix was stored separately with its prognostic information in MySQL (V5.5). The data were visualized using Datatables, echart, highchart, and other plugins, and all statistical analyses were performed using the R framework (V3.6.0) (Figure 1C). TTSurv also supports the current mainstream browsers (e.g., Microsoft Edge, Google Chrome, Firefox, and Safari) and can be freely accessed at http://www.bio-server.cn/TTSurv.




Results


Diverse Pre-Result Presentation Interface

On the home page of TTSurv (Figure 2A), users can access the quick search page via the menu bar above or the quick-start button on the scroll bar of the home page (Figure 2B). The quick search only provides a matching mode for single or multiple genes (it should be noted that the maximum number of multi-gene queries is 10) with a single cancer dataset ID to query the relationship between the gene of interest and the target cancer dataset. When using the Quick Search function on the homepage, users need to click the Analyze button and then click “View Result” to return to the homepage to view the results. We have adopted three methods to display the pre-results in the result display screen. The user can click on the gene/dataset name in the ribbon diagram to see “Gene-all diseases/” or “Disease-all genes” (Figure 2C), click on the edge of the diagram to get a single gene-disease association, or click on the outer part or the edges of the graph to obtain a single gene-disease association. On the force-directed graph, the user can click on a node in a force-directed single disease and gene. On the bubble diagram, the user can click on the nodes in the bubble diagram to obtain the results of the survival analysis for the specific genes in the corresponding diseases (Figure 2D).




Figure 2 | The use process and a demonstration of the results provided by TTSurv. (A) The data source for TTSurv and the usage of QucikSearch. (B) Introduction to advanced search in the search interface. (C) Two kinds of charts in Pre-Result, where users can get the analysis results by clicking parts of the chart. (D) Schematic diagram of the data table and images in the result page.





Search Interface and Results Presentation

Users can access the search interface through “more analysis” in the home page rotation or by using the “Search” button in the upper menu where we additionally provide a multi-gene-multi-disease query (Figures 3A, B). Through this interface (Figure 3C), users can click the “Example” button to view the preset results for single disease-single gene/single disease-multiple gene/multiple disease-multiple genes, or query by clicking the dataset name in the Cancer List and entering the gene name in the RNA List. In this interface, we provide additional features for users to change the color of high/low expression lines in the survival plot and submit user-defined group cut values. Similarly, after clicking “Analyze” in the search interface, you will get the same result display interface as the home page and it can be used in the same way as the home page (Figure 3D). In the result display page, we provide the table of analysis results and three types of graphs, and users can easily access the results by using the “Copy,” “Excel” and “CSV” buttons above. In the analysis results, we provide the Gene Symbol, the Ensembl ID, the name of the disease queried, and the corresponding dataset name with the number of samples in the dataset. The results of the Cox survival analysis, including COX-P, HR values, and the COX coefficient, are also included. Users can obtain the resulting graph by clicking the “View” button on the right side of the table. In addition, users can view the results of (1) sample grouping by self-submitted cutoff values, (2) sample grouping by cutoff values calculated using the minimum p-value algorithm, and (3) sample classification by unsupervised clustering (Figure 3E).




Figure 3 | The user interfaces and results of TTSurv. (A) Home page of TTSurv. (B) Quick search interface of TTSurv. (C) Query interface of TTSurv. (D) Pre-Result interface of TTSurv. (E) The result table and figures of TTSurv. (F) The diagram display of TTSurv. (G) The KM survival curve map. (H) The P-value curve obtained after each grouping. (I) The Survival time & gene expression integration map. (J) The forest plot. (K) The gene correlation plot. (L) The heat map obtained by unsupervised clustering.





Flexible Classification

User-submitted cutoff values. Typically, users are used to grouping samples using mathematically meaningful split values (e.g., quartiles, means, and medians), and we also provide this feature to explore more possibilities (Figure 3F). Figure 3G represents the Kaplan-Meier survival analysis of the samples after grouping the sample set according to the segmentation points uploaded by the user and Figure 3H represents the p-value and the segmentation value obtained at each step when the samples are grouped step by step. Figure 3I consists of three parts. The first part is the survival time of each sample and the second part represents the gene expression of the target gene in each sample. The gene expression and risk status of the sample can be used to intuitively find whether the gene is a protective/risk factor for that type of disease. The third part shows gene expression as a heatmap, which is used to visually compare the gene expression and the survival of the patient in the first part. Figure 3J shows a forest plot drawn from the HR values of all incoming genes in a particular cancer dataset and Figure 3K shows the correlation coefficients between all genes in the same data set.

The cutoff value was obtained by the minimum p-value method. The image displayed in this result is the same as the cutoff value submitted by the user. It should be noted that the separator value of this result was calculated using the minimum p-value algorithm.

The results were obtained using unsupervised clustering for sample grouping. Unsupervised clustering can also be used to group the samples into high/low expression values based on gene expression. In this interface, we provide not only the KM curves but also a heat map of the expression profile after clustering (Figure 3L).



Example Application

As shown in the Figures 4A–I, we searched the search interface for the survival of XIST and PUSL1 in GSE42568 (breast cancer expression profile) and found that the HR value of XIST was <1, while the Cox p-value was less than 0.05. These values indicated that it was a plausible protective factor, which has been confirmed in previous experiments (17, 18). In contrast, the expression profile of the PUSL1 gene was opposite to that of the XIST gene, while a Cox-p<0.05, indicates that it is a plausible risk factor (Figure 4A). Figure 4C shows that when the samples were divided into two groups according to gene expression, the samples in the high expression group had a longer survival time and a lower mortality rate. The difference between the two groups with different expressions was more significant when the samples were divided into two parts by the minimum p-value. In Figure 4C, although more samples labeled as “dead” were clustered in the low XIST expression samples, the low expression group had a higher five-year survival rate (52.1%) relative to the XIST high expression samples (7.9%), which confirms the above results that XIST is a risk factor in this dataset. Currently, only a few studies have focused on the PUSL1 gene and our survival analysis shows that it may be linked to the prognosis for breast cancer, which will help researchers discover new biomarkers for cancer. Similarly, we can click on the “Sum” row results to see the overall impact of the gene set on the survival of the sample, and in this overall analysis we can see that the combined effect of XIST and PUSL1 can have a more detrimental effect on patients. This result allows us to determine which effect is greater when protective and risk factors act together in the same patient. Figure 4G shows the overall expression of this gene, and we can see that the samples have higher mortality and a shorter survival time when the overall gene expression trend is high, which is consistent with the results obtained from the survival time graph and the KM curve.




Figure 4 | Prognosis of XIST and PUSL1 in the sample set GSE42568. (A) shows the results of the prognostic analysis of XIST and PUSL1. (B, C) show the KM survival curves and survival time-gene expression association plots for XIST, respectively. (D, E) show KM survival and the survival time-gene expression association plots for PUSL1, respectively. (F, G) KM survival curves and survival time-gene expression association plots for the SUM group (integrated data for XIST and PUSL1), respectively.Forest plot of the two genes in the breast cancer sample set. (H) Expression correlation plot between the XIST and PUSL1 genes, which shows that the two genes affect the survival status of patients independently of each other (I).



We used another example to illustrate the single-gene multi-disease analysis function provided by TTSurv. We found that the same gene is expressed differently in different cancers and in different datasets for the same cancer in terms of prognosis (Figure 5). Previous experiments have verified that MALAT1 plays a key role in breast cancer. For example, MALAT1 inhibits breast cancer metastasis (19) and MALAT1 promotes angiogenesis in breast cancer (20). However, the results obtained after the survival analysis were different. MALAT1 did not show a correlation with breast cancer prognosis in all datasets, indicating that the selection of the dataset can have an impact on the prognostic analysis results for this gene in cancer, and demonstrates the necessity of using multiple sample sets. For example, in the TCGA-BRCA and GEO-GSE42568-BRCA datasets, the risk values for MALAT1 were different, indicating that different samples have an impact on the survival analysis. By providing multiple sets of samples, we are able to provide users with a more general analysis of whether there is an association between the target gene and a particular cancer, thus providing a more comprehensive and objective analysis.




Figure 5 | Prognostic analysis of MALAT1 in multiple data sets. MALAT1 shows different prognoses in different datasets of the same cancer, and users can use the results to make comprehensive and objective conclusions.



To demonstrate the single-gene multi-disease survival analysis function, we show the effect of the TPM2 gene on patient survival status in six cancer datasets (which were ‘TCGA-COAD’, ‘TCGA-ACC’, ‘TCGA-BLCA’, ‘TCGA-OV’, ‘TCGA-LIHC’, and ‘TCGA-KIRC’). Figure 6, shows the results of the survival analysis with survival curves for TPM2 in six cancer datasets. Similarly, TPM2 has been demonstrated in previous experiments to be a diagnostic marker for colorectal cancer and breast cancer. For example, hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognoses for breast cancer (21), and is also associated between epigenetic silencing of TPM2 and colorectal cancer (22). TPM2 has also been found to have potential as a diagnostic marker for patients with adrenocortical carcinoma as well as bladder urothelial carcinoma, and similar findings will provide guidance to researchers.




Figure 6 | Survival analysis results for TPM2 in multiple datasets. Users can analyze the survival of a gene for pancreatic cancer using the single gene-multiple disease function. “*” indicates p-value <0.05, “**” indicates p-value <0.01.






Discussion

There are already several online tools capable of performing online survival data analyses, including Kaplan-Meier Plotter (23), GENT (24) and ITTACA (25). TTSurv improves the functionality of previously published databases, which often lack more flexible grouping algorithms and a comprehensive analysis and presentation of results. For example, although the Kaplan-Meier Plotter database can automatically select the best cutoff value, it cannot provide results other than survival curves and cutoff plots. With the increasing abundance of clinical data and high-throughput data, biomarkers associated with cancer patient survival will be confirmed by more comprehensive survival analysis studies. TTSurv aims to discover biomarkers closely associated with patient survival status and provide support for the analysis results through the collection and integration of public data and analysis. The biomarkers we provide can be used to reveal individual pathologies and drive the development of precision medicine research. Most online analysis tools tend to give one-sided results (including inadequate legends and grouping) and are dependent on data volume.

In the future, we plan to collect more data samples and provide improved functionality, and we will continue to improve our database in the following areas: (i) collecting more newly released datasets for thoracic tumors; (ii) adding more visualizations: e.g., forest plots based on their HR values in single-gene multi-datasets; and (iii) improving the annotation of probes that cannot be annotated in the current dataset. We believe that TTSurv will be a useful resource for researchers at many stages from target discovery to target validation through continuous updates. We believe that through continuous updates, TTSurv will become an important online survival analysis tool and provide researchers with powerful aid in a variety of ways.



Conclusions

TTSurv is unique because it can group samples in multiple ways to find more possible associations between target genes and cancer. We provide an integration algorithm that analyzes the set of user-submitted genes as a whole for a more comprehensive analysis and more valuable conclusions. At the same time, the multiple outcome data we provide offer strong support for the augmentation of gene-cancer associations. We hope that TTSurv will be a useful resource for cancer researchers at multiple stages, from target discovery to target validation.
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Breast cancer (BRCA) is one of the most deadly cancers worldwide, with poor survival rates that could be due to its high proliferation. Human all-alpha dCTP pyrophosphatase 1 (DCTPP1) is implicated in numerous diseases, including cancers. However, its role in BRCA is unclear. In this study, we used bioinformatic analyses of the ONCOMINE, UALCAN, and GEPIA databases to determine the expression pattern of DCTPP1 in BRCA. We found that elevated DCTPP1 levels correlate with poor BRCA prognosis. DCTPP1 silencing inhibited BRCA cell proliferation and induced apoptosis in vitro, as well as in vivo. Our data show that this tumorigenic effect depends on DNA repair signaling. Moreover, we found that DCTPP1 is directly modulated by miR-378a-3p, whose downregulation is linked to BRCA progression. Our results showed down-regulation of miR-378a-3p in BRCA. Upregulation of miR-378a-3p, on the other hand, can inhibit BRCA cell growth and proliferation. This study shows that reduced miR-378a-3p level enhances DCTPP1 expression in BRCA, which promotes proliferation by activating DNA repair signaling in BRCA.
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INTRODUCTION

Breast cancer (BRCA) is estimated to be responsible for 30% of all new cancer cases in women and is the second primary cause of cancer deaths in women (1–3). The poor prognosis and high death rates of BRCA are due to abnormal cellular proliferation (4). The standard treatments for BRCA patients include surgery, radiotherapy, and chemotherapy, or a combination of multiple methods. Although the overall survival rate of breast cancer patients has recently increased, tumor relapse, therapy resistance, or far-end metastasis still occur in several BRCA patients. The complex tumorigenic mechanisms of BRCA impede its treatment. Therefore, a better understanding of its underlying mechanisms and reliable markers is needed to improve BRCA outcomes.

Human all-alpha dCTP pyrophosphatase 1 (DCTPP1) localizes in the nucleus, cytosol, and mitochondria (5). DCTPP1 is highly expressed in embryonic tissue along with proliferative tissues with expanded nucleotide pools. This enzyme is upregulated also in various human cancers (6, 7). Song et al. showed that DCTPP1 promotes BRCA cell growth and stemness by modulating 5-methyl-dCTP metabolism and global hypomethylation (6). Zhang et al. suggested that nuclear DCTPP1 in cancer cells may suffice to maintain proper DNA replication, hence promoting survival and proliferation of BRCA cells (8). However, there is no evidence showing post-transcriptional regulation of DCTPP1 in BRCA progression.

MicroRNAs (miRNAs) are short oligonucleotides made of 22–25 nucleotides. miRNAs can act as a tumor suppressor to inhibit cancer progression by modulating proliferation, apoptosis, invasion/metastasis, as well as angiogenesis (9–11). miRNAs dock to the 3′-UTR of target genes to modulate the expression of at least 30% of all protein-coding genes (12). In BRCA, they have oncogenic and anti-cancer roles depending on their target messenger RNA (mRNA) (13, 14). Numerous studies have shown that miRNAs influence BRCA cancer proliferation, apoptosis, and resistance to chemotherapy. For instance, miR-21 and miR-210 upregulation in BRCA correlates with poor prognosis (15). The miR-200 family includes miR-200a, miR-141, miR-200b, miR-429, and miR-200c. Expression of these miRNAs is lost in invasive BRCA cell lines (16). However, there is less evidence that miR-378-3p is involved in BRCA. miR-378a-3p has anti-tumor effects in glioblastoma multiforme through targeting tetraspanin 17 (17). miR-378a-3p also sensitizes ovarian cancer cells to cisplatin via MAPK1/GRB2 signaling (18). In BRCA cells, miR-378a-3p serves as a biomarker in age-related BRCA and BRCA evolution during adjuvant chemotherapy (19). However, the precise mechanisms underlying the function of miR-378a-3p in BRCA are unclear.

DNA repair is critical for genomic integrity and is activated by DNA damage, making it critical for cell survival (20). Zhang et al. suggested that nuclear DCTPP1 in cancer cells might suffice to maintain proper DNA replication, promoting survival, and proliferation of BRCA cells (21). There is no evidence of DCTPP1 involvement in DNA repair in BRCA cells.

Here, we found that DCTPP1 overexpression in BRCA cells and tissues correlates with a poor prognosis. The present study demonstrated that DCTPP1 enhanced BRCA cell proliferation and that the miR-378a-3p direct target is downregulated in BRCA. On the other hand, it repressed proliferation when upregulated. DNA repair signaling cascade is a primary signaling axis of miR-378-3P/DCTPP1 in BRCA with a poor prognosis. Our findings highlight miR-378-3P/DCTPP1 signaling as a potential therapeutic target against BRCA.



METHODS


Cell Lines and Cell Culture

Human BRCA cell lines MDA-MB-231, MDA-MB-468, MCF-7, and BT-549 as well as normal breast epithelial cells MCF-10A were purchased (22). BRCA cells were grown in complete high glucose DMEM (Wisent, USA), enriched with 10% FBS, 100 μg/ml pen/strep (Hyclone, USA). MCF10A were cultured in mammary epithelial cell basal medium (MEBM, Lonza, USA) supplemented with 100 ng/ml cholera toxin. All cells were grown at 37°C, 5% CO2 in a humidified incubator.



Lentiviral Transfection and Small Interfering RNA

DCTPP1 knockdown (shDCTPP1) or DCTPP1 overexpression (DCTPP1), and a scrambled sequence (SCR) or a negative control (NC) sequence, respectively, were used according to the manufacturer's instructions. Plasmid sequences were validated via sequencing (GenePharma, China). We cultured the cells were in 6-well plates at 30% confluence, followed by inoculation with the retroviruses. Polybrene (5 μg/ml) was used to enhance infection efficiency. Stably transfected cells (puromycin-resistant) were selected by treating with puromycin (2 μg/ml) for 2 weeks. DCTPP1-overexpressing MCF7 and MDA-MB-468 cells, and control (NC) cells were inoculated into 6-well plates and cultured overnight. Next, siRNA (GenePharma, China) and non-targeting control siRNA were transfected using lipofectamine® 3000 (Invitrogen, USA) using manufacturer instructions. The sequences of the siRNAs were: Sense 5′-gatccgcccttcaagaggagcttattcaagagataagctcctcttgaagggcttttttacgcgt g-3′ and antisense 5′-aattcacgcgtaaaaaagcccttcagaggagcttatctcttga agctcctcttgaagggcg-3′. miRNA sequences were as follows: miR-378a-3p mimic: cuggacuuggagucagaagg, mimic-NC: agugcauguuaugccuacg, miR-378a-3p inhibitor: aguucagguucugacuccu, inhibitor-NC: ugguccguguaggccuacua.



RT-qPCR Analysis

Isolation of total RNA was carried out with the Trizol reagent (TaKaRa, USA). cDNA was generated from 1 μg of RNA via reverse-transcription with the Primescript RT Reagent (TaKaRa, USA). The FastStart Universal SYBR Green Master (Roche, USA) was employed to perform RT-qPCR on a real-time PCR instrument (Applied Biosystems, USA). GAPDH and U6 were used as reference genes. The primers are indicated in Supplementary Table 1.



Western Blot Assessment

Cells were lysed using RIPA buffer (Thermo Fisher, USA) enriched with 0.1% protease inhibitor, 1% phosphatase inhibitor, as well as 1% PMSF. Fractionation of the proteins was done on SDS-PAGE gel and then the proteins transfer-embedded onto NC membranes (Millipore, USA). Afterward, membranes were blocked with 5% skimmed milk in PBS for 2 h, followed by overnight incubation with anti-β-actin (Cell Signaling Technology, USA) and anti-DCTPP1 (Abgent Inc., USA) at 4°C. They were then washed thrice, 10 min each with PBST, and incubated for 1 h with indicated secondary antibodies.



Cell Counting Kit (CCK-8) Assay

Cell proliferation was examined using a CCK-8 kit (Dojindo, Japan) as per the manufacturer's protocol. 2 × 103 cells/well, in 200 μl of cell culture media, were cultured onto 96-well plates and cultured at 37°C for 4 h. The cell culture medium was then replaced with media enriched with 10% CCK8, then incubation of the cells was performed at 37°C for 2 h. Thereafter, a microplate reader was employed to determine the absorbance at 450 nm.



Ki67 Assay

Cells were seeded in 6-well plates before transfection with DCTPP1-siRNA, mimic of miR-378a-3p, or their NC control for 48 h. After that, fixation with 75% absolute ethanol was performed for 60 s, followed by rinsing twice with PBS, then staining by Giesma (Sigma, USA) for 15 min, and dried at room temperature. The colonies with ≥50 cells/well were then counted.



TUNEL Assay

Breast cancer cells (MCF-7 and MDAMB-468) were inoculated in 6-well plates before transfection with DCTPP1-siNRA or control group for 48 h. TUNEL assay kit (Roche, Germany) was used to test MCF-7 and MDA-MB-468 cell apoptosis. After that, cells fixation with 4% PFA (paraformaldehyde) for 15 min. Then, MCF7 and MDA-MB-468 were blocked in 0.1% Triton X-100 for 1 h. Cells were then treated with a TUNEL reaction mixture at room temperature for 1 h. Cell nuclei were stained by DAPI for 5 min.



Dual-Luciferase Assay

Where specified, cells were inoculated and grown in triplicates for 24 h, followed by co-transfection with DCTPP1-3′-UTR clones or mutant clones with pRL-TK Renilla plasmid and miR-378a-3p mimic. After the elapse of 48 h, the luciferase enzyme activity of transfected cells was assessed using a dual luciferase assay kit (Promega, USA) following the manufacturer's instructions.



In vivo Tumor Xenograft Model

All animal experiments adhered to guidelines by the Institutional Animal Care and Use Committee of the Harbin Medical University. We randomly split 28, 4-week old female BALB/c nude mice, weighing 18–22 g into four groups. Stable DCTPP1-siRNA, miR-378a-3p mimic, NC MCF-7 cells, or control cells (1 × 106 cells in 100 μl of PBS) were subcutaneously administered into mammary fat pads of the mice, and tumor volume measured weekly using calipers. Tumor volume was given by the formula: (tumor length × width × height)/2. After 6 weeks, we sacrificed the mice and measured the final tumor weight.



Clonogenic Survival Assay

We transfected the 8 × 102 MCF-7, and MDA-MB-468 cells with DCTPP1 siRNA, control siRNA, miR-378a-3p mimic, or mimic of miR-NC were planted into 6 cm dishes and cultured for 10 d. Staining of colonies by 0.1% crystal violet in 20% methanol was done for 15 min. Five-hundred cells as the standard for a Clonogenic. They were then imaged, and visible colonies determined.



γH2A Immunofluorescence (IF) Staining

MCF-7 and MDA-MB-468 cells were seeded onto glass coverslips and grown for 24 h to 50–60% density. They were then treated with DCTPP1 siRNA, or Control-si, for 48 h and fixed. They were then stained using anti-γH2A antibody (CST, USA) for 1 h and then incubation with secondary antibody performed for 20 min at RT. They were then counterstained with DAPI and mounted on prolong® diamond antifade (Applied biosystems, USA).



Database Analysis

To determine DCTPP1 transcription levels in breast cancer, we analyzed gene expression cohorts in the ONCOMINE (https://www.oncomine.org), UALCAN (http://ualcan.path.uab.edu/analysis.html), Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/index.html). Metascape (http://metascape.org) databases to explore the interaction and function of DCTPP1 co-expressed genes. Enrichment of GO terms including biological process, cellular component, and molecular function, and KEGG pathways was carried on using the Metascape online tools. Functional terms with p-value ≤ 0.01 and minimum count ≥3 were considered statistically significant. The most significant term within each cluster was chosen as representative of this cluster. Then, the association between the significant terms was established as a network, in which terms with similarities >0.3 were connected. Protein–protein interaction enrichment assessment was done on BioGrid, InWeb_IM, as well as OmniPath. The Molecular Complex Detection (MCODE) algorithm was used to determine the densely connected network components.



Statistical Analysis

All experiments were done three times unless otherwise indicated. Data were analyzed using the SPSS 20.0 (IBM). For continuous variables, the Students t-test was employed to establish statistically remarkable differences between groups. P < 0.05 signified statistical significance.




RESULTS


DCTPP1 Expression in BRCA

We initially evaluated DCTPP1 transcriptional expression in multiple BRCA datasets on TCGA and Gene Expression Omnibus (GEO). Figure 1A shows the DCTPP1 expression profile in 33 cancers (GEPIA). Analysis of DCTPP1 expression in three Oncomine datasets relative to normal tissues revealed DCTPP1 overexpression in BRCA tissue relative to normal breast tissue (Figures 1B–D, p ≤ 0.01). Fold differences were all >1.5. Analysis of DCTPP1 expression in BRCA tumors vs. normal tissues using UALCAN revealed that regardless of age, gender, disease stage, nodal metastasis, major subclasses, or menopause status, DCTPP1 transcription levels were remarkably elevated in BRCA patients than in healthy controls (Figure 2). Thus, DCTPP1 has diagnostic potential in BRCA.


[image: Figure 1]
FIGURE 1. DCTPP1 expression in BRCA. (A) DCTPP1 expression in pan-cancer. (B) DCTPP1 expression in TCGA breast cancer. (C) DCTPP1 expression in Curtis breast cancer. (D) DCTPP1 expression in Ma breast 4 cancer.
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FIGURE 2. DCTPP1 in BRCA patients was higher than that of healthy people. (A) DCTPP1 expression in normal breast tissues and BRCA. (B) DCTPP1 expression in I–IV stage of BRCA. (C) DCTPP1 expression in male and female of BRCA. (D) DCTPP1 in different age group of BRCA. (E) DCTPP1 expression in different lymph node metastasis of BRCA. (F) DCTPP1 expression in different menopause of BRCA. (G) DCTPP1 expression in different molecular subtypes of BRCA. **p ≤ 0.01, ***p ≤ 0.001.




DCTPP1 Has Prognostic Potential in BRCA

We then investigated if DCTPP1 expression correlates with BRCA prognosis. The impact of DCTPP1 expression on survival was evaluated using GEPIA. Notably, DCTPP1 expression significantly impacts BRCA prognosis [OS HR = 1.9, Logrank p = 0.00018, p(HR) = 0.00021; Figure 3A]. Analysis of the effects of DCTPP1 expression on the prognosis of BRCA subtypes demonstrated that high DCTPP1 expression levels were significantly linked to the prognosis of Luminal A and B subtypes [Luminal A: OS HR = 2, Logrank p = 0.011, p(HR) = 0.013, Luminal B OS HR = 2, Logrank p = 0.048, p(HR) = 0.052; Figures 3D,E]. However, DCTPP1 levels did not correlate with prognosis of basal-like and HER2+, non-luminal subtypes [basal-like/triple-negative OS HR = 2.2, Logrank p = 0.12, p(HR) = 0.13, HER2+, non-luminal OS HR = 2.8, Logrank p = 0.076, p(HR) = 0.089; Figures 3B,C].


[image: Figure 3]
FIGURE 3. Prognostic potential of DCTPP1 in BRCA. (A) Correlation of DCTPP1 expression and OS of BRCA. (B) Correlation of DCTPP1 expression and OS of Basal-like/Triple negative BRCA. (C) Correlation of DCTPP1 expression and OS of HER2+/non-luminal BRCA. (D) Correlation of DCTPP1 expression and OS of Luminal A BRCA. (E) Correlation of DCTPP1 expression and OS of Luminal B BRCA.




Silencing of DCTPP1 Suppressed MCF-7 and MDA-MB-468 Proliferation and Induced Apoptosis

To explore the role of DCTPP1 in BRCA cancer, we first test the expression of DCTPP1 in different BC cell lines include the TNBC cell line. We found that DCTPP1 is up-regulated in MCF-7 and MDA-MB-468 (Supplementary Figure 1). To assess DCTPP1 effects on proliferation, it was overexpressed or silenced in MCF-7 and MDA-MB-468. Western blot and RT-qPCR analysis verified transfection efficiency (Supplementary Figures 2A–D). CCK-8 analysis of DCTPP1 effects on cell growth revealed that DCTPP1 silencing suppressed MCF-7 and MDA-MB-468 proliferation (Figures 4A,B). The clonogenic analysis revealed that DCTPP1 knockdown suppressed BRCA tumorigenic potential (Figure 4C). Additionally, KI67 staining was used to assess the effect of DCTPP1 on BRCA proliferation and revealed that DCTPP1 silencing suppresses BRCA cell proliferation (Figure 4D). TUNEL assay was used to test the cell apoptosis after treatment with DCTPP1 inhibition. Our data showed that silencing DCTPP1 can induce MCF-7 and MDA-MB-468 cell apoptosis (Figure 4E). Together, these data indicate that DCTPP1 silencing suppresses BRCA cell proliferation in vitro.


[image: Figure 4]
FIGURE 4. Silencing of DCTPP1 suppressed MCF-7 and MDA-MB-468 proliferation and induce apoptosis. (A,B) CCK-8 analysis of BRCA cell growth after DCTPP1 knockdown or overexpression. (C) Colony formation assays were used to test BRCA cell proliferation upon DCTPP1 silencing. (D) Ki67 analysis of BRCA cell proliferation upon DCTPP1 silencing. (E) TUNEL staining of BRCA cell apoptosis treat with DCTPP1 silencing. (F) DCTPP1 expression in DCTPP1-deficient tumors. (G) Tumor weight. (H) Tumor volume. (I) Ki67 levels in tumor tissues. *p ≤ 0.05 vs. control (t-test).




DCTPP1 Repressed Tumorigenesis in vivo

To explore the impact of DCTPP1 in BRCA in vivo, DCTPP1-deficient MCF-7 and controls were transplanted into the mammary fat pads of mice. Our analysis revealed low DCTPP1 levels in DCTPP1-siRNA tumor tissue relative to control tissue (Figure 4F). Moreover, DCTPP1-siRNA tumor volume growth was slower relative to control tumors (Figure 4G). At 6 weeks, DCTPP1-siRNA tumor weights were significantly lighter than control tumors (Figure 4H). Moreover, DCTPP1-siRNA tumors expressed lower Ki67 levels relative to controls (Figure 4I). Together, these data show that DCTPP1-knockdown suppresses tumorigenesis in vivo.



DCTPP1 Silencing Activates DNA Repair Mediated Signaling Pathway

To investigate the biological role of DCTPP1 in BRCA, the top 100 genes co-expressed with DCTPP1 TCGA BRCA datasets were obtained. Metascape analysis was used to identify the pathways and processes enriched in all co-expression genes, including GO biological processes as well as reactome gene sets. Functional terms with p ≤ 0.01 and a minimum count of three were selected. Co-expressed genes, were mainly enriched in GO BP terms like DNA repair, protein localization to chromosome, and regulation of intracellular estrogen receptor signaling (Figure 5A and Table 1).


[image: Figure 5]
FIGURE 5. DCTPP1 regulates DNA repair signaling. (A) KEGG pathway analysis. (B) γ-H2A analysis of DNA damage upon DCTPP1-silencing in BRCA cells. (C) Western blot analysis revealed elevated XRCC1, PARP1, and RAD51 levels upon DCTPP1-over-expression. The assay was repeated in BRCA cells. T-test, **p ≤ 0.01, *p ≤ 0.05 in contrast with the control group.



Table 1. Functional terms enriched by DCTPP1 co-expressing genes.

[image: Table 1]

γH2A is an established marker of DNA damage (23). Relative to mock-silenced cells, DCTPP1-deficient induced BRCA cells had significantly higher γH2A levels (Figure 5B). These data indicate that DCTPP1-deficient accelerated DNA damage repair.

Regarding the functional analysis of these core modules (Figure 5A and Table 2), they are enriched in the DNA repair signaling pathway. DNA repair signaling influences cancer progression (24). Western blot analysis of the DNA repair signaling pathway factors, XRCC1, PARP1, and RAD51, revealed their elevation upon DCTPP1 upregulation in BRCA cells (Figure 5C).


Table 2. Functional terms enriched of modules in DCTPP1 co-expressing network.

[image: Table 2]



DCTPP1 Is a miR-378a-3p Direct Target in BRCA

Given that miRNAs are implicated in BRCA progression (9, 25), we screened the publicly available databases, TargetScan and PITA, for miRNAs that may modulate DCTPP1 and found that miR-378a-3p has an optional seed unit for DCTPP1 (Figures 6A,B). Relative to negative controls, RT-qPCR and western blot analyses revealed DCTPP1 suppression in all the cell lines under miR-378a-3p overexpression (Figures 6C,D). Moreover, luciferase enzyme activity was repressed by miR-378a-3p in BRCA cells transfected with wild-type DCTPP1 3′-UTR (Figure 6E).


[image: Figure 6]
FIGURE 6. DCTPP1 is directly regulated by miR-378a-3p. (A) MiR-378a-3p is potentially upstream of DCTPP1. (B) Seed unit between miR-378a-3p and DCTPP1. (C) DCTPP1 protein levels after transfection with miR-378a-3p mimic or suppressor. (D) RT-qPCR analysis of DCTPP1 expression upon transfection with miR-378a-3p mimic or suppressor. (E) Luciferase assay. All data are representative of at least three experiments. The results are presented as mean ± s.e.m. *p ≤ 0.05 was considered significant.




miR-378a-3p Upregulation Inhibits BRCA Proliferation

Evaluation of the expression of miR-378a-3p in BRCA patients' TCGA datasets revealed that it is significantly downregulated (p ≤ 0.05; Figure 7A). Moreover, we established that the expression of miR-378a-3p was dramatically lower in BRCA cell lines relative to MCF-10A (Figure 7B). To assess the function of miR-378a-3p in BRCA progression, we transfected the MCF-7 cells and MDA-MB-468 cells, which have high miR-378a-3p measures with the mimic of miR-378a-3p, and those with the lowest expression of miR-378a-3p with miR-378a-3p repressor (Supplementary Figure 2E). CCK-8 analysis revealed that the silencing of miR-378a-3p enhanced cell growth, while its overexpression markedly suppressed the growth of MCF-7 cells and MDA-MD-468 cells (Figures 7C,D). Consistent with these data, colony formation assay and ki67 staining indicated suppressed BRCA cell growth upon miR-378a-3p overexpression (Figures 7E,F). A mouse tumor xenograft revealed higher miR-378a-3p levels in miR-378a-3p mimic bearing tumors relative to the NC group (Figure 7G). The average number of harvested nodules (Figure 7H) and tumor weight (Figure 7I) were significantly lower in miR-378a-3p mimic bearing mice relative to the NC group. IHC analysis of Ki67 expression revealed lower ki67 levels in miR-378a-3p mimic bearing tumors relative to the NC group (Figure 7J). These data demonstrate that miR-378a-3p negatively modulates DCTPP1 in BRCA and that miR-378a-3p suppresses BRCA development in vitro and in vivo.


[image: Figure 7]
FIGURE 7. miR-378a-3p inhibits proliferation of BRCA cells. (A) MiR-378a-3p expression in BRCA patients TCGA datasets. (B) MiR-378a-3p expression in BRCA cells. (C,D) CCK-8 assay of BRCA cell growth upon transfection with miR-378a-3p mimic or inhibitor. (E) Colony formation assay of BRCA cells upon transfection with miR-378a-3p mimic or control. (F) Ki67 analysis of BRCA cell growth upon transfection with miR-378a-3p mimic or control. (G) MiR-378a-3p expression in tumors upon transfection with miR-378a-3p mimic. (H) tumor weight. (I) tumor volume. (J) Ki67 levels in tumors transfected with miR-378a-3p mimic. All data are representative of at least three experiments. Data are presented as mean ± SEM. *p ≤ 0.05, **p ≤ 0.01.





DISCUSSION

Although considerable progress has been made in the development of BRCA diagnostics, as well as prognostic biosignatures, our knowledge of the molecular mechanisms underlying BRCA is still lacking. The present study found that DCTPP1 is upregulated in BRCA and that its expression strongly correlates with BRCA progression. Our data demonstrate that DCTPP1 has an oncogenic role associated with DNA repair signaling in BRCA cells and that miR-378a-3p negatively modulates it.

Mounting evidence suggests that elevated DCTPP1 expression is tumorigenic (26, 27). Herein, we investigated the expression of DCTPP1 in multiple BRCA datasets on TCGA and GEO. Figure 1A shows the DCTPP1 expression profile in 33 cancers (GEPIA analysis). The UALCAN online tool analysis revealed that DCTPP1 transcription levels were remarkably different in BRCA patients with different ages, genders, disease stages, and nodal metastasis (Figure 2). Especially in different BC types, expression of DCTPP1 was higher in the Luminal type than that in other types (Figure 2G). Notably, DCTPP1 expression significantly impacts BRCA prognosis [OS HR = 1.9, Logrank p = 0.00018, p(HR) = 0.00021; Figure 3A]. Our xenograft mouse model of BRCA showed that DCTPP1 silencing suppresses tumor growth and in vitro assays confirmed that DCTPP1 silencing suppresses BRCA cell proliferation.

DCTPP1 has been reported to play an important role in DNA damage and genetic instability in both chromosomal and mitochondrial DNA in apoptosis and DNA repair (5, 27). Our data showed that DCTPP1 silencing triggers DNA damage in BRCA cells, while its upregulation up-regulated the levels of DNA repair-associated factors, XRCC1, PARP1, and RAD51. DNA repair pathways are DNA damage response mechanisms (28, 29). DNA repair pathways influence cell survival and are anti-cancer therapeutic targets of radiotherapy and cytotoxic chemotherapy (30, 31). γh2A is a major agent in DNA damage or repair (32). Our data showed that silencing DCTPP1 up-regulates γ-H2AX expression. XRCC1 is reported to be activated via DNA damage, initiating cellular signaling cascades of great importance (33, 34). Multiple studies suggest that hepatocarcinogenesis is triggered by aggregated lesions, including chromosomal aberrations and DNA damage as a result of impaired DNA damage response and dysregulated DNA damage repair (35). Further studies are needed to determine if miRNAs regulate DCTPP1, which may allude to a modulatory feedback mechanism between these two factors.

miRNAs regulate the expression of their target genes in the post-transcriptional stage (36, 37) and play crucial roles in oncogenesis and loss of tumor suppression, they are implicated in multiple human cancers (38, 39). Herein, we demonstrated that miR-378a-3p serves as an upstream modulator of DCTPP1 and, using luciferase studies, found that it directly targets DCTPP1. MiR-378a-3p is dysregulated in some cancers, where it has tumor-suppressor functions (40–42). We find that miR-378a-3p is downregulated in BRCA tissue, and its expression is negatively linked to tumor size. Moreover, we find it suppresses BRCA proliferation via DCTPP1/DNA repair signaling.

In summary, our data identify DCTPP1 as an oncogene in BRCA. miR-378a-3p as an upstream gene of DCTPP1 demonstrated the way that DCTPP1 modulates targeted genes and DNA repair cascades. Our findings that DCTPP1 controls BRCA proliferation uncover novel potential therapeutic strategies against BRCA.
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Breast cancer (BRCA) is the second leading cause of cancer-related mortality in women worldwide. However, the molecular mechanism involved in the development of BRCA is not fully understood. In this study, based on the miRNA-mediated long non-coding RNA (lncRNA)–protein coding gene (PCG) relationship and lncRNA–PCG co-expression information, we constructed and analyzed a specific dysregulated lncRNA–PCG co-expression network in BRCA. Then, we performed the random walk with restart (RWR) method to prioritize BRCA-related lncRNAs through comparing their RWR score and significance. As a result, we identified 30 risk lncRNAs for BRCA, which can distinguish normal and tumor samples. Moreover, through gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that these risk lncRNAs mainly synergistically exerted functions related to cell cycle and DNA separation and replication. At last, we developed a four-lncRNA prognostic signature (including AP000851.1, LINC01977, MAFG-DT, SIAH2-AS1) and assessed the survival accuracy of the signature by performing time-dependent receiver operating characteristic (ROC) analysis. The areas under the ROC curve for 1, 3, 5, and 10 years of survival prediction were 0.68, 0.61, 0.62, and 0.63, respectively. The multivariable Cox regression results verified that the four-lncRNA signature could be used as an independent prognostic biomarker in BRCA. In summary, these results have important reference value for the study of diagnosis, treatment, and prognosis evaluation of BRCA.

Keywords: breast cancer, risk lncRNA, competitive endogenous RNA, ceRNA network, random walk with restart, prognostic signature


INTRODUCTION

Breast cancer (BRCA) is one of the most prevalent malignancies and is the second leading cause of cancer-related mortality in women worldwide (Bray et al., 2018; DeSantis et al., 2019). Although there have been several advancements in both surgical and adjuvant therapy, BRCA remains a significant threat to female health due to high incidence and poor prognosis. There is an urgent need for novel and effective biomarkers for clarifying mechanism of early BRCA and providing therapeutic targets for BRCA patients (Chi et al., 2019).

Long non-coding RNAs (lncRNAs) are a group of RNAs with length >200 bp, which serve as key regulators in diverse cellular functions such as development, differentiation, and apoptosis (Ulitsky and Bartel, 2013; Quinn and Chang, 2016; Trovero et al., 2020). The important function of lncRNA is that it can act as a competitive endogenous RNA (ceRNA) to regulate the expression level of other transcripts especially for protein coding gene (PCG) by sponging miRNA (Quinn and Chang, 2016). Growing evidences demonstrated that lncRNAs had been indicated as important molecules in tumorigenesis (Gibb et al., 2011). Herrera-Solorio et al. (2020) showed that lncRNA SOX2-OT modulates an orchestrated resistance mechanism, promoting poor prognosis and human lung malignancy through genetic, epigenetic, and posttranslational mechanisms. Xiao et al. (2020) found that the lncRNA MAFG-AS1, which is highly expressed in bladder urothelial carcinoma, is correlated with aggressive characteristics and poor prognosis of bladder urothelial carcinoma. As for BRCA, IRNAS HOTAIR, SPRY4-IT1, GAS5, MATAR25, PANDAR, and MATAR25, new players in tumor development and prognosis, have shown owning potential clinical applications in BRCA (Soudyab et al., 2016; Nagini, 2017; Chang et al., 2020). In addition, viable ways have been considered to predict the potential BRCA lncRNAs by performing high-throughput data based on bioinformatics methods (Guo et al., 2018; Chi et al., 2019; Wang et al., 2019).

In our study, by analyzing the BRCA expression profile from The Cancer Genome Atlas (TCGA) and lncRNA-related databases, we constructed and analyzed a specific dysregulated BRCA-associated lncRNA-PCR ceRNA network and performed the random walk with restart (RWR) method to prioritize BRCA-related lncRNAs through comparing their RWR score and significance. At last, we identified 30 risk lncRNAs associated with BRCA and constructed a prognostic signature based on the TCGA expression data with clinical survival characters. This study has important reference value to accelerate the discovery of molecular biomarkers for the study of diagnosis, treatment, and prognosis evaluation of BRCA.



MATERIALS AND METHODS


Datasets Across Breast Cancer

The PCG and lncRNA expression profiles of BRCA with FPKM values were obtained from the UCSC Cancer Browser1, which provided an open-access portal to download data from TCGA. In total, we acquired 1,222 BRCA samples that were involved in 1,075 patients with complete clinical follow-up information. We performed a two-step filter for PCG and lncRNA expression profiles; the aim is to ensure detection reliability and reduce noise. First, we extracted only paired patient samples with tumor and adjacent nontumor tissue for differentially analysis. Second, lncRNAs or PCGs with an average expression value of less than 1 were removed in the tumor and adjacent nontumor tissue. Finally, we obtained 224 tumor and adjacent nontumor tissue from 112 patients, including 1,251 lncRNAs and 13,356 PCGs. Processed gene expression data and clinical data were provided in Supplementary Material. For the calculation of Pearson correlation coefficient (PCC), log2 transformation was performed to lncRNA/TF expression profiles with raw expression values.



Breast Cancer-Associated Known PCGs

We downloaded BRCA-related PCGs from DisGeNET (v7.0) (Piñero et al., 2020). DisGeNET is a discovery platform containing one of the largest publicly available collections of genes associated with human diseases, which integrates data from expert curated repositories and the scientific literature (Piñero et al., 2020). We extracted 318 PCGs associated with BRCA from DisGeNET (Supplementary Table 1).



Identification of the Differentially Expressed PCGs/LncRNAs

Fold change and statistical significance were computed for each PCG/lncRNA in expression profiles by limma package, which is a common, effective R/Bioconductor software package for differential expression analyses (Ritchie et al., 2015). The lncRNAs and PCGs with P < 0.05 or | log2 fold change| > 1 were considered to be differentially expressed (DE) lncRNAs/PCGs.



Construction of a Specific LncRNA–PCG ceRNA Network for Breast Cancer

We performed two steps to construct specific LncRNAs-PCGs ceRNA network for breast cancer (SLGCeNBC). Firstly, we calculated the correlation of co-expression between DE PCGs and lncRNAs using the PCC method. PCC can be used to measure the linear relationship between lncRNA and PCG expression (Zhang et al., 2018). In this study, we considered that the lncRNA–PCG pairs with PCC > 0.5 and P < 0.01 showed a potential expression correlation. All lncRNA–PCG pairs meeting the threshold were merged into the lncRNA–PCG co-expression network.

Secondly, we performed the hypergeometric test to identify miRNA-mediated lncRNA–PCG pairs. Previous studies proposed and demonstrated that the number of common targeting miRNAs between lncRNAs and PCGs determined the ceRNA cross-talk strength. More common targeting miRNAs could produce a more strength ceRNA cross-talk pair. Thus, we downloaded the interaction of miRNA–PCG/lncRNA from StarBase (Li et al., 2014), mirTarbase (Chou et al., 2018), TargetScan (Grimson et al., 2007), LncBase (Karagkouni et al., 2020), and MiRcode (Jeggari et al., 2012) databases. We downloaded 714,288 miRNA–PCG interaction pairs and 766,809 miRNA–lncRNA interaction pairs, including 13,295 PCGs, 13257 lncRNAs, and 2,593 miRNAs. Then, we used these data to perform the hypergeometric test (Feng et al., 2019). We considered P-value < 0.01 as statistically significant. The P-value was measured as the following:

[image: image]

where m stands for the total number of human genome miRNAs, t stands for the number of miRNAs interacting with the PCG, n stands for the number of miRNAs interacting with the lncRNAs, and r stands for the number of miRNAs shared between PCGs and lncRNAs.



Random Walking Analysis

Here, we performed RWR to determine ranking for BRCA-related lncRNAs. A random walk in network was defined as an iterative walker’s transition from its certain node to a randomly selected neighbor that started from a given node (e.g., “PCG x” was a known PCG associated with BRCA) (Zhang et al., 2018). The random walk performed had capacity of restart with probability r in every time step at node “PCG x.” The random walk with restart was defined as the following:
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where W represents the column-normalized adjacency matrix of the network, pt is a vector whose size is equivalent to the number of nodes in the network, and the i-th element holds the probability of being at node i at time step t.

The initial probability vector p0 was constructed such that 1 was assigned to the nodes representing known PCGs associated with BRCA, and other nodes with 0. We considered that the role of PCGs related to disease was equivalent in the network. Vector p would be in the steady state at time step t, where t approached infinity as a limit. The iteration would be finished till the change between pt and pt+1 falls below 10–10.

We scored for each lncRNA to prioritize lncRNAs related to BRCA by performing the RWR algorithm in a specific LncRNA–PCG ceRNA network for breast cancer (SLGCeNBC) and performed statistical significance analysis for the score of every lncRNA. The statistical significance was determined by comparing the scores of lncRNAs in the network following n iterations with SLGCeNBC perturbation. To maintain the network topological properties, random sampling without replacement was performed when doing the random disturbance. In iterations, the times that the score of every lncRNA was higher than the real one were recorded as m. The P-value for every lncRNA was the ratio of m and n. In this study, n was set at 10,000 times.



Constructing the Prognostic lncRNA Signature

To identify the best score cutoff of the selected lncRNAs for grouping patients most significantly, we employed for optimal cutoff identification by using the R package “maxstat” (Hothorn and Zeileis, 2008). The survival outcomes of the two groups were estimated by Kaplan–Meier analysis (Bland and Altman, 1998). Then, we used the survival-related lncRNAs (log-rank test P < 0.05) above to perform Cox regression analysis (Cox, 1972) and construct risk models as follows:

[image: image]

where n is the number of lncRNAs, ei is the expression value of the lncRNAi, and xi is the coefficient of lncRNAs in Cox regression analysis. Finally, we used the signature with the minimum log-rank P-value as the best prognostic marker (Guo et al., 2016). Cox regression analysis was performed to explore the predictive independence of the lncRNA signature. R software2 with R packages including timeROC, survival was used for statistical analysis, where a P-value of < 0.05 was considered statistically significant.



RESULTS


Construction of a Specific LncRNA–PCG ceRNA Network for Breast Cancer

Based on the interaction of miRNAs–PCGs/lncRNAs from the public database, we merged all miRNA–PCG pairs and miRNA–lncRNA pairs and then obtained a global PCG–miRNA–lncRNA triple network. PCG and lncRNA which shared at least one common miRNA were reserved. Then, we performed the hypergeometric test to identify PCG–lncRNA pairs with P-value < 0.01, which yielded more than candidate 800,000 lncRNA–PCG interactions. All the pairs were merged into a miRNA-mediated lncRNA–PCG network.

Second, based on the expression profile of 112 pairs of tumor and adjacent nontumor tissue, we obtained DE lncRNAs/PCGs of BRCA by limma with P < 0.05 and | log2 fold change| > 1, which produced 316 and 2,463 DE lncRNAs and PCGs, respectively. Then, we calculated the Pearson correlation between DE PCGs and lncRNAs with PCC > 0.5 and P < 0.01. All the co-expressed lncRNA–PCG pairs were merged into a co-expression network. As for the lncRNA–PCG co-expression network, it contained 307 lncRNAs, 2,105 PCGs, and 57,216 co-expression relationships. Obviously, it is specific for BRCA.

Finally, we extracted common lncRNA–PCG pairs in the above two networks to construct SLGCeNBC. We defined the PCGs or lncRNAs as the nodes of the network. The whole identification process is shown in Figure 1. In total, 259 lncRNAs, 1,384 PCGs, and 21,702 edges were included in SLGCeNBC (Figure 2A and Supplementary Table S2).


[image: image]

FIGURE 1. Schematic overview in this study. (i) LncRNA–PCG ceRNA network. PCG and lncRNA shared at least one common miRNA and considered that a P-value < 0.01 was significant by applying the hypergeometric test. (ii) LncRNA–PCG co-expression network. The correlation of co-expression between DE PCGs and lncRNAs using the PCC (PCC > 0.5 and P < 0.01). (iii) Extracted common lncRNA–PCG pairs in (i) and (ii) to structure SLGCeNBC. (iv) The BRCA-associated known PCGs (seed nodes) were mapped into the SLGCeNBC, and the RWR method was performed on this network. Finally, we the ranked candidate lncRNAs according to the steady probability of RWR.
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FIGURE 2. SLGCeNBC and three lncRNAs appeared in two dimensions. (A) SLGCeNBC. The red and blue nodes represent lncRNAs and PCGs, respectively. A lncRNA and PCG were connected by an edge if they had the ceRNA and co-expression relationships (Supplementary Table 2). (B) The true node degree distribution of SLGCeNBC; the degree distribution of all nodes followed the power law distribution approximately with a slope of –1.054 and R2 = 0.839. (C) The lncRNAs (MAGI2-AS3, MIR99AHG, and LINC00641) are ranked in the top 20 in at least two dimensions (degree, betweenness, and closeness). (D) GO enrichment analysis for lncRNAs MAGI2-AS3, MIR99AHG, and LINC00641 through their related PCGs that share at least two of three lncRNAs in SLGCeNBC. The X-axis and bubble color are the –log10 of P-value; the Y-axis is the names of the GO terms. Bubble size indicates the number of PCGs annotated to the GO term.




Topological Analysis of SLGCeNBC

The degree distribution of all nodes followed the power law distribution approximately with R2 = 0.839 (Figure 2B). A handful of nodes with a high degree in the networks were defined as hubs that linked many nodes; most nodes in networks had few interactions. We firstly analyzed the topological properties of the SLGCeNBC and calculated the degree, closeness, and betweenness of the SLGCeNBC, respectively. We ranked all the nodes’ topological features of the network and listed the top 20 nodes of degree, betweenness, and closeness, respectively (Table 1). Interestingly, we found that three lncRNAs (MAGI2-AS3, MIR99AHG, and LINC00641) appeared in at least two dimensions (Figure 2C). For the lncRNA MAGI2-AS3, we found that it significantly downregulated (log2FC = −2, P = 1.74E-38) in differential expression analysis. Some studies showed that overexpression of MAGI2-AS3 in BRCA cells MCF-7 would inhibit the Wnt/β-catenin pathway and inhibit cell proliferation and migration. MAGI2-AS3 may act as a cis-acting regulatory element downregulating the DNA methylation level of the MAGI2 promoter region (Du et al., 2019; Xu et al., 2021). Meng et al. (2020) verified that overexpression of MIR99AHG promoted gastric cancer cell proliferation and invasion via the miR577/FOXP1 axis. Other experiments have shown that MiR-577 inhibits EMT and metastasis of BRCA by targeting RAB25 (Yin et al., 2018). From these results, it suggested that MIR99AHG may have an effect on BRCA via the miR577/RAB25 axis, which provided a suggestion for further experiments. For LINC00641, Mao et al. (2020) confirmed that LINC00641 inhibits BRCA cell proliferation, migration, and invasion by sponging miR-194-5p.


TABLE 1. The top 20 lncRNAs/PCGs in degree, betweenness, and closeness.

[image: Table 1]To further explore the function of the above three lncRNAs, we performed Gene Ontology (GO) enrichment analysis for the lncRNAs through their related PCGs that shares at least two of three lncRNAs in SLGCeNBC. The result of the GO biological process contained “positive regulation of endothelial cell proliferation,” “cell adhesion,” “angiogenesis,” “regulation of small GTPase mediated signal transduction,” “positive regulation of endothelial cell migration,” “axon guidance,” “phosphatidylinositol phosphorylation,” “positive regulation of apoptotic process,” “regulation of phosphatidylinositol 3-kinase (PI3K) signaling,” and “steroid hormone mediated signaling pathway” (Figure 2D). Many researches had shown that these biological processes were closely associated with BRCA. For example, some deregulation Arf isoforms from the small GTPase subfamily induce cancer formation and progression by enhancing cell proliferation through the activation of mitogen-activated protein kinases (MAPK) and ribosomal protein S6 kinase beta-1 (p70S6K) (Davis et al., 2016; Li et al., 2017). High-level amplification of ARF1 from the Arf subfamily is associated with increased PCG expression and poor outcomes of patients with BRCA (Xie et al., 2016). Overexpression of Ras from the small GTPase subfamily has been found in more than 15% of human tumors (Goitre et al., 2014). The study indicated that Ras which is upregulated in BRCA can promote BRCA cell proliferation, migration, and invasion due to their capability to alter integrin-mediated cell adhesion (Di et al., 2015). For the biological processes, PI3K is the most common altered pathway in ER-positive BRCA and PI3K/AKT is one of the most critical signal pathways for cancer (Hamilton and Infante, 2016; Devanathan et al., 2020). These results recommended that the three lncRNAs with higher degree, betweenness, and closeness were important in the network and played a crucial role in the origin and development of BRCA.



Identifying Risk lncRNAs by Random Walk With Restart

We mapped 318 PCGs associated with BRCA from DisGeNET (v7.0) (Piñero et al., 2020) into SLGCeNBC. The result showed that there are 40 PCGs mapped into SLGCeNBC. The 40 PCGs acted as the seed nodes (Supplementary Tables 1, 3), and the method of RWR (see section “Materials and Methods”) was performed to prioritize BRCA highly related lncRNAs. The initial score of the seed nodes was set at 1, and the scores of all lncRNA node were calculated. To establish whether the lncRNA scores were significantly higher than the random case, we perturbed SLGCeNBC and performed the RWR 10,000 times. As a result, we identified 30 lncRNAs whose scores were significantly higher than those of the random case (P < 0.05, Table 2 and Supplementary Table 4). Here, because the significant results were produced by inputting known BRCA genes and 10,000 times network permutations, these genes were located in the neighbors of the disease genes and considered as the potential synergetic regulators of the disease genes. Thus, all 30 lncRNAs were considered to be risk lncRNAs of BRCA. We showed that the real scores for risk lncRNAs from RWR were higher than the scores for the non-risk lncRNAs (P = 2.266e-06, Wilcoxon rank-sum test). Thirteen of 30 risk lncRNAs have been reported to be associated with the occurrence, progression, and survival of tumor. Particularly, some studies had shown that the nine risk lncRNAs were closely related to the proliferation, metastasis, and survival of BRCA (Table 2). For instance, Zhang et al. (2017) revealed that AP000439.3 could regulate the expression of CCND1 through enhancing estrogen receptor induction of CCND1 and function as a key regulator of the cell cycle in BRCA. Ji et al. (2020) demonstrated that LINC00665 promoted BRCA progression and induced an epithelial–mesenchymal transition-like phenotype via the upregulation of LIN28B expression (Ding et al., 2020).


TABLE 2. Risk lncRNA information.

[image: Table 2]We performed bidirectional hierarchical clustering to further investigate the risk lncRNAs. In the heatmap (Figure 3A), we found that the lncRNAs classified the samples into adjacent nontumor tissue and tumor tissue, suggesting that these lncRNAs possessed potential for diagnosis and therapy of BRCA. Thereafter, we counted the amount of risk lncRNAs that interacted with each PCG. We found that the top two PCGs were ESR1 and PARD6B, which connected with 11 and 10 risk lncRNAs, respectively (Figure 3B). The evidence indicated estrogen receptor-alpha (ERalpha) binding to all identified SRC-3 genomic binding sites from E2-treated cells and confirmed the ability of SRC family coactivators to regulate the expression of one of these PCGs, PARD6B/Par6 (Labhart et al., 2005). We also counted the number of the PCGs that interacted with risk lncRNAs. We found that the top two risk lncRNAs were TYMSOS and AC092718.4, each of which connected with 103 PCGs (Figure 3C). We performed GO enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for these PCGs related to two risk lncRNAs, respectively. We found that TYMSOS and AC092718.4 were mainly enriched in the biological processes and pathways related to the cell cycle, such as “cell division” and “proliferation.” Interestingly, the result of TYMSOS was similar as that of AC092718.4 (Figure 3D and Supplementary Table 5, Jaccard similarity coefficient = 0.52). However, the similarity of PCGs which was regulated by TYMSOS and AC092718.4 was significantly lower than that of enrichment results (Figure 3C, Jaccard similarity coefficient = 0.35). These results suggest that risk lncRNAs may regulate in coordination the occurrence and development of BRCA.
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FIGURE 3. Analysis of the identified risk lncRNAs. (A) The heatmap of 30 risk lncRNAs based on their expression. The columns represented 224 samples of 112 BRCA patients, and the rows represented lncRNAs. The risk lncRNAs classified the samples into tumor tissue and adjacent nontumor tissue. (B) Top two PCGs with high lncRNA interactive relationships. Red nodes represent lncRNAs, and blue nodes represent PCGs. (C) Top two risk lncRNAs with high PCG interactive relationships. (D) GO enrichment analysis for lncRNAs TYMSOS and AC092718.4 through their related PCGs, respectively. The X-axis shows the –log10 of the P-value; the Y-axis shows the names of the GO term. The number at the top of the bar indicates the number of PCGs annotated to the GO term.




Synergistic Regulation of Risk lncRNAs

To further investigate the synergistic regulation function for risk lncRNAs, we focused on the PCGs regulated by more than three risk lncRNAs (Figure 4A) and performed GO function and KEGG pathway enrichment analysis. The results showed that the PCGs were significantly enriched to the KEGG pathway containing “Cell cycle,” “Pathways in cancer,” and “p53 signaling pathway” (Figure 4B). In more details, eight risk lncRNAs (TYMSOS, ATP2A1-AS1, AC092718.4, MAFG-DT, AC108860.2, AC006329.1, LINC00665, AC099850.3, and AFAP1.AS1) from the “Cell cycle” pathway (Figure 4C) showed a ceRNA relationship with E2F1, 2, 3 (E2F1 and E2F2), Chk1 (CHEK1), Cdc25A (CDC25A), CycA (CCNA2), ORC (ORC1 and ORC2), and Dbf4 (DBF4) in SLGCeNBC, respectively. On the other hand, TYMSOS, AC092718.4, and AC006329.1 jointly upregulated the expression of CHEK1 (Chk1) and CCNA2 (CycA), inhibited the phosphorylation of Cdc25A (CDC25A), to reduce the dephosphorylation of CDK1 and CDK2, and further improved the phosphorylation levels of Rb and Dp-1,2. Consistently, ATP2A1-AS1, MAFG-DT, AC108860.2, and LINC00665 upregulated the expression of E2F1 and E2F2 (E2F1, 2, 3). To sum up, the expression of S-phase proteins CycE was indirectly co-promoted. On the other hand, the expression of DBF4 (Dbf4) was upregulated by TYMSOS, AC092718.4, and LINC00665, which accelerated the phosphorylation of MEM, and the ORC (origin recognition complex) was upregulated by AC092718.4, AC006329.1, AC099850.3, and AFAP1.AS1, which ultimately promoted DNA biosynthesis. For the “Pathway in cancer” pathway (Figure 4D), a total of 18 risk lncRNAs synergistically regulated ER (ESR1), E2F (E2F1 and E2F2), CyclinA1 (CCND1), and Survivin (BIRC5), which indirectly leads to tumor cell proliferation. In the eight risk lncRNAs, there are clear reports that LINC00665 is related to BRCA. LINC00665, which acted as ceRNA, promoted BRCA progression and induced an epithelial–mesenchymal transition-like phenotype via the competitively upregulation of LIN28B expression (Ding et al., 2020; Ji et al., 2020).
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FIGURE 4. Synergistic regulation of the risk lncRNAs. (A) Risk lncRNA network; PCGs regulated by more than three risk lncRNAs were selected. The red and blue nodes represent lncRNAs and PCGs, respectively. (B) KEGG and GO enrichment analysis was performed using genes in the risk lncRNA network. The X-axis shows the –log10 of the P-value; the Y-axis shows the names of the pathway/term. The number at the top of the bar indicates the number of PCGs annotated to the pathway/term. (C) Risk lncRNAs regulate the cell cycle pathway (local). (D) Risk lncRNAs regulate the pathway in cancer (local).


By GO function analysis, we found that many biological processes were significant including “DNA replication,” “cell division,” “DNA repair,” “cell proliferation,” “DNA synthesis involved in DNA repair,” “regulation of cell cycle,” “DNA damage checkpoint,” “peptidyl-threonine phosphorylation,” “peptidyl-serine phosphorylation,” and “cytokinesis” (Figure 4B). Obviously, these biological processes are closely related to tumor cell proliferation differentiation and apoptosis. For the GO terms “peptidyl-threonine phosphorylation” and “peptidyl-serine phosphorylation,” Saeidi et al. (2020) have found that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 is highly overexpressed in human breast tumor tissues and H-Ras transformed human mammary epithelial (H-Ras MCF10A) and MDA-MB-231 BRCA cells.



Construction and Evaluation of Risk Prediction Model in the Training Dataset

We used the TCGA dataset to develop the risk prediction model and construct the prognostic signature, since we discovered 17 lncRNAs out of the 30 selected ones associated with the survival of BRCA patients. Then, we used the 17 prognostic lncRNAs to develop the risk prediction model and obtained 217-1 = 131,071 risk models. We performed Kaplan–Meier analysis and compared the predictive ability of 131,071 signatures. A four-lncRNA signature (AP000851.1, LINC01977, MAFG-DT, and SIAH2-AS1) was found to have the minimum log-rank P-value (Figure 5A). The regression coefficients of the four lncRNAs (AP000851.1, LINC01977, MAFG-DT, and SIAH2-AS1) were all negative, which means they were related to BRCA poor prognosis (Supplementary Table 6).
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FIGURE 5. Survival prediction performance of the four-lncRNA signature (AP000851.1, LINC01977, MAFG-DT, and SIAH2-AS1). (A) Kaplan–Meier curves for BRCA patients stratified by the four-lncRNA signature. P-values were calculated using a log-rank test. (B) ROC analysis to assess the survival accuracy of the four-lncRNA signature for 1, 3, 5, and 10 years of survival.




Survival Prediction Performance of the Four-lncRNA Signature in the TCGA Dataset

Each patient in the TCGA dataset received a risk score based on the four-lncRNA signature. Then, the patients with BRCA in the TCGA dataset were divided into high-risk (n = 537) or low-risk group (n = 538) based on the median risk score. Kaplan–Meier analysis demonstrated that patients in the low-risk group owned longer survival times than those in the high-risk group (median survival time: 11.69 vs. 9.48 years, log-rank test P < 0.001; Figure 5A). Subsequently, we performed time-dependent receiver operating characteristic (ROC) analysis to assess the survival accuracy of the four-lncRNA signature. In the TCGA dataset, the area under the ROC curve (AUC) for 1, 3, 5, and 10 years of survival were 0.68, 0.61 0.62, and 0.63, respectively (Figure 5B).

To test its prognostic independence, univariate and multivariable Cox regression analyses (Cox, 1972) were conducted. The multivariable Cox regression results in the TCGA datasets verified that the four-lncRNA signature can predict patients’ survival [high- vs. low-risk, hazard ratio (HR) training = 2.02, 95% confidence interval (CI) 1.43-2.86, P < 0.001, n = 1075; Table 3].


TABLE 3. Cox regression analysis of the signature with BRCA survival (n = 1075).
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DISCUSSION

In recent years, the role of lncRNA has become a highly studied topic in the field of tumor research. Accumulating evidence indicates that lncRNA is involved in the oncogenesis and development of BRCA (Bray et al., 2018; DeSantis et al., 2019; Ji et al., 2020). With the development of high-throughput sequencing technology, a large number of lncRNA expression data involved in the occurrence and progression of cancer are emerging. It is not hard to infer that many of the lncRNAs related to BRCA may function as a complex and organized regulatory network for BRCA (Chi et al., 2019).

In this study, SLGCeNBC was constructed based on co-expression and miRNA-mediated RNA cross talks. Therefore, we identified 30 risk lncRNAs associated with BRCA by performing RWR in SLGCeNBC. In 30 risk lncRNAs, 13 risk lncRNAs have been confirmed to be associated with several cancers and nine risk lncRNAs have demonstrated a high association with BRCA. This shows that our method is effective and practical. By means of enrichment analysis using GO and KEGG, we found that these risk lncRNAs are significantly enriched in cancer-related biological processes and pathways, which have been stated by researchers (Hamilton and Infante, 2016; Anwar et al., 2018; Devanathan et al., 2020; Saeidi et al., 2020), and we found that the regulation of risk lncRNAs on BRCA-related genes is synergistic rather than alone. As a result, we found that these 30 risk lncRNAs are highly correlated with the occurrence and development of BRCA, and they may form the network system to jointly regulate the initiation and course of BRCA. These results suggest that risk lncRNAs may serve as novel diagnostic markers and treatment targets.

Importantly, we identified a four-lncRNA prognosis signature based on ceRNA network analysis, which could be used as the key clinical biomarker in BRCA prognosis. The poor prognosis of BRCA is mainly manifested in tumor metastasis, which is the leading cause of death (Zhang et al., 2017). Tumor metastasis is difficult to detect, which is discovered only when the tumor is large enough to be observed in regular follow-up imaging examination or to cause notable symptoms resulting from a tumor mass effect. This situation may exacerbate the patient prognosis. In our study, after survival analysis, we found that a four-lncRNA signature including four lncRNAs (AP000851.1, LINC01977, MAFG-DT, and SIAH2-AS1) has the ability to predict survival in patients with BRCA, which are expected to be novel predictors that may identify early metastasis. Additionally, we also investigate prognostic independence effects of the four-lncRNA signature in the TCGA dataset. As a result, the multivariable Cox regression results in the TCGA datasets verified that the four-lncRNA signature can predict patients’ survival. This result also demonstrated the clinical potential of the four-lncRNA signature.

Our methods also show some limitations. First of all, in this study, we conducted a bioinformatics analysis to identify the crucial factors in BRCA; results indicated that some genes (PCGs or lncRNAs) might play vital roles in the subtype cancers. Bioinformatics may infer only the functions of these lncRNAs; thus, it remains necessary to confirm the biological effects of these risk lncRNAs in BRCA in experimental studies. This result also encouraged us to validate the biological function and mechanism. In a further study, we will conduct the biological experiments to investigate these potential factors. Secondly, the risk lncRNAs identified here may not be all candidate risk lncRNAs associated with BRCA because of only limitations of lncRNA data. Finally, this study is based on the DE lncRNAs in BRCA. If all lncRNAs in tumors participate in the occurrence and development of tumors in the form of a network system, then some lncRNAs with no obvious changes may slip through the net and our results range may be narrowed. However, the research results of our study could contribute to accelerating the discovery of molecular biomarkers for diagnosis, treatment, and prognosis evaluation of BRCA.
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Background

A detailed means of prognostic stratification in patients with non-small cell lung cancer (NSCLC) is urgently needed to support individualized treatment plans. Recently, microRNAs (miRNAs) have been used as biomarkers due to their previously reported prognostic roles in cancer. This study aimed to construct an immune-related miRNA signature that effectively predicts NSCLC patient prognosis.



Methods

The miRNAs and mRNA expression and mutation data of NSCLC was obtained from The Cancer Genome Atlas (TCGA). Immune-associated miRNAs were identified using immune scores calculated by the ESTIMATE algorithm. LASSO-penalized multivariate survival models were using for development of a tumor immune-related miRNA signature (TIM-Sig), which was evaluated in several public cohorts from the Gene Expression Omnibus (GEO) and the CellMiner database. The miRTarBase was used for constructing the miRNA-target interactions.



Results

The TIM-Sig, including 10 immune-related miRNAs, was constructed and successfully predicted overall survival (OS) in the validation cohorts. TIM-Sig score negatively correlated with CD8+ T cell infiltration, IFN-γ expression, CYT activity, and tumor mutation burden. The correlation between TIM-Sig score and genomic mutation and cancer chemotherapeutics was also evaluated. A miRNA-target network of 10 miRNAs in TIM-Sig was constructed. Further analysis revealed that these target genes showed prognostic value in both lung squamous cell carcinoma and adenocarcinoma.



Conclusions

We concluded that the immune-related miRNAs demonstrated a potential value in clinical prognosis.





Keywords: NSCLC, immune infiltration, miRNAs, prognosis, miRNA-target network



Introduction

The most malignant and most commonly encountered lung cancer subtype is non-small cell lung cancer (NSCLC) (1). The NSCLC subtype can further be classified as either lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC). Forty percent of all lung cancers are of the LUAD subtype, with LUSC reported as the second leading cause of lung malignancy-related death, resulting in an average of 400,000 deaths worldwide annually (2). Although several new treatment regimens including chemotherapeutic and biological agents have been introduced, the effectiveness of these protocols have been marred by the occurrence of drug resistance, leading to inevitably poor outcomes for patients with advanced NSCLC (3). Immune-directed therapy has, in recent years, shown better efficacy and lower toxicity rates over regular chemotherapy in NSCLC. Nevertheless, durable benefits from immunotherapy are reported in only 25–30% of patients (4). Therefore, more effective prognostic biomarkers for risk stratification in NSCLC are required.

MicroRNAs (miRNAs) represent long, non-coding RNAs of approximately 22 nucleotides in length. These molecules are central in posttranscriptional regulation (5). Both tumor initiation and metastasis have been reported to depend heavily on miRNA expression, with certain miRNAs shown to be associated with poor outcomes in NSCLC (6). A myriad of immune-related processes such as the development, activation, and effector functions of various innate and adaptive immune cells have been linked to miRNAs, which therefore appear to be directly responsible in regulating the infiltration of immune cells into tumors (7, 8). Growing evidence has depicted the key function of the tumor-infiltrating immune cell (TIIC) in tumor progression and prognosis (9, 10). Signatures associated with TIIC show promising predictive values in prognosis and responses to immunotherapy in patients with NSCLC (11, 12). Previous research showed that these signatures may be obtained by exploring the expression of certain miRNAs. In cervical cancer, miR-1468-5p was found to upregulate lymphatic PD-L1 and augment lymphangiogenesis, both of which result in dysregulated T cell immunity (13). Reduced miR-4772-3p levels were inversely related to the concentration of Tregs in malignant pleural effusion (MPE) (8). Furthermore, the miR141-CXCL1-CXCR2 pathway was found to modulate Tregs migration into MPE (7). Nevertheless, these studies were on single miRNAs only. An integrated model comprising of a variety of biomarkers has been shown to offer higher predictive capabilities in comparison to models of single biomarkers (14). Construction of multiple biomarker models using conventional Cox regression models has been problematic and often suffers from high rates of model overfitting especially in the context of a large number of biomarkers. The least absolute shrinkage and selection operator (LASSO)-penalized Cox model has been introduced to implement variable selection and has been applied successfully for creating models of several biomarkers (15). This study uses the LASSO technique to construct a multi-miRNA-based signature to provide an immune infiltration score (TIM-Sig score) which is able to stratify NSCLS patients according to their prognosis. We further systematically correlated the TIM-Sig score with available genetic and clinical features of NSCLC patients.



Materials and Methods


Dataset Preprocessing

Transcriptional profiles and clinical information for lung cancer were obtained from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) and The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov). The miRNA expression profiles were obtained from the UCSC Xena browser (GDC hub: https:/gdc.xenahubs.net). A total of 1,884 miRNAs were obtained for the following analysis. Five of the following NSCLC cohorts were also processed by log2 transformation: the TCGA-LUAD/LUSC cohort, GSE16025 cohort, GSE27435 cohort, GSE31210 cohort, and GSE3141 cohort. A brief summary of the clinical and pathological characteristics is shown in Table 1. We also downloaded somatic mutation data from TCGA as calculated by the mutect2 workflow.


Table 1 | Clinicopathological characteristics of NSCLC patients in this study.





LASSO Mixture and Cox Regression Models for Predicting Survival

Tumor purity and tumor immune scores were derived using the ESTIMATE algorithm which is a novel algorithm by Yoshihara et al. It is a method using gene expression profiles to evaluate the fraction of stromal and immune cells in tumor samples. The ESTIMATE algorithm generates three scores: stromal score, immune score, and estimate score (16). The immune score was used to selected immune-related miRNAs. The Spearman correlation coefficient between differentially expressed miRNAs (DEMs) and the immune score was calculated with significance set at (|R| > 0.2, P < 0.01). A total of 35 miRNAs significantly correlated with the immune score were identified and analyzed in the LASSO regression model. The R package “glmnet” and “survival” were used to carry out LASSO and Cox regression analyses to assess the relationship between overall NSCLS patient survival and DEG expression levels. We identified a tumor-infiltrating immune-related miRNA signature score (TIM-Sig score) with the following formula:

	

in which n represents the total number of prognostic miRNAs or genes, EXPI represents genei profile expression and coefi represents an estimate of the genei regression coefficient as identified using the multivariable Cox regression analysis or LASSO.



Approximation of Tumor-Infiltrating Immune Cells

The proportion of immune cell infiltration was estimated using the “GSVA” R package and 27 human immune cell phenotypes (17–19). In addition, factors related to tumor immunogenicity were also contrasted between high- and low-risk groups. These factors are as follows: tumor mutation burden (TMB) (17), IFN-γ expression signature (20), chromosomal instability level (HRD) (21), immune cytotoxic activity (CYT) (22–24), T cell infiltration score (TIS) (20, 25), relative antigen presentation machinery (APM) (19), and tumor-infiltrating lymphocytes (TILs) (26–29). All these factors were selected based on the status of specific biomarker genes, such as the presence of costimulatory factors or major histocompatibility complex (MHC) molecules.



Assessment of the Clinical Significance of the miRNA Signature

To determine the value of the constructed model in the clinical management of patients with lung cancer, miRNA profiles and drug sensitivity IC50 values of the NCI-60 panel of human cancer cell lines were extracted from the CellMiner database (https://discover.nci.nih.gov/cellminer/) (30). The therapeutic effects of 161 Food and Drug Administration (FDA)-approved drugs in NSCLC patients were determined. The Wilcoxon test was used to analyze the significance between differences in the IC50 Z-score between the high- and low-risk cohorts. Results are depicted in terms of box drawings plotted using the ggplot2 function of R.



MiRNA-Target Interactions

The miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.php) is a database containing over 430,000 miRNA-target interactions (MTIs) (31). All documented MTIs have been verified using next-generation sequencing, microarray, western blot, and reporter assay experiments. We obtained the target information of 10 miRNA in TIM-Sig to construct the miRNA-target network.



Functional Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool. We obtained pathway function annotations of 1,862 target genes. The statistical threshold was set as: P < 0.05.



Statistical Analysis

The R software (version 3.6.1, http://www.R-project.org) was used to derive all statistical analyses. Differentially expressed miRNAs or genes were calculated using R packages “DESeq2.” Spearman correlation between signatures were calculated by the corr. test () function in the R program. Overall survival (OS) was predicted using Kaplan-Meier survival plots. The R package “survival” function was used to assess for differences between the OS of high- and low-groups, with a p-value of less than 0.05 taken to indicate statistical significance. The Wilcoxon test allowed for inter-group comparisons. Euclidean distances and Ward’s linkage methods were used to carry out hierarchical cluster analyses. Protein-protein interaction (PPI) networks were visualized on STRING tools.



MiRNA-Targets Network

The construction of miRNA-target networks and parameter settings were completed using Cytoscape tools (version 3.6.0). A summary and oncoplot of mutation data were calculated using R package “maftools.” All statistical tests with a p-value of less than 0.05 were identified as having achieved statistical significance (*p-value < 0.05; **p-value < 0.005; ***p-value < 0.0005; ****p-value < 0.00005).




Results


Screening of Candidate Immune-Related miRNAs

Figure S1 demonstrates the workflow of this study. In order to screen potential tumor immune-related miRNA biomarkers in NSCLC, a total of 1,884 miRNAs were obtained from the TCGA LUAD/LUSC cohort. Next, we filtered the miRNAs according to the following selection criteria: (1) positive expression in more than 50% of samples; (2) are differentially expressed, with a statistical threshold of |log2FC| > 1 and p-value <0.05, including 263 DEMs (153 downregulated and 110 unregulated). Seventy-eight overlapping miRNAs were selected as candidates for subsequent analysis (Figures 1A, B and Figure S2A). The ESTIMATE algorithm was used to determine tumor purity and tumor immune scores. Spearman correlation analysis was then applied to assess the relationship between the 78 miRNAs and immune score, resulting in a total of 35 miRNAs which were significantly associated with the immune scores (|Spearman correlation| > 0.2 and P < 0.01) (Figure 1C and Table S1). Interestingly, we found that 15 miRNAs were significantly positively correlated to the stromal score also correlated positively to the immune scores. All of these miRNAs were negatively associated with tumor purity (Figure 1C and Figures S2B, C).




Figure 1 | The tumor-infiltrating immune-related miRNA signature (TIM-Sig). (A) miRNAs expressed in more than 50% of the tumor samples and are differentially expressed. (B) Volcano plot of 263 identified differential expression miRNAs. The cutoffs were set as a log2(fold-change) > 1.0 or < –1.0 and p-value < 0.05. (C) miRNAs expression associated with immune score, as shown by Spearman correlation analysis. (D, E) The LASSO regression method was carried out to identify the 10 critical miRNAs associated with tumor immune infiltration. (F) The log-rank test and univariate Cox analysis were used to process data. Patterns of miRNAs expression and proportion of high-and low-risk patients in the verification dataset.



A LASSO proportional hazards regression analysis was then performed to determine the relationship between patient OS and the expressions of the identified 35 miRNAs in the training data set (Figures 1D, E). We found a significant correlation with the OS of NSCLC patients with the following 10 miRNAs (hsa-miR-146b, hsa-miR-27b, hsa-miR-34c, hsa-miR-4420, hsa-miR-4539, hsa-miR-4635, hsa-miR-6075, hsa-miR-6740, hsa-miR-6797, and hsa-miR-7848) (Table S2). These markers were considered to function as prognostically significant immune-related miRNAs. We then implemented these 10 miRNAs in the development of a miRNA-based prognostic score that determined the degree of immune tumor infiltration (TIM-Sig score). These 10 miRNAs were weighted based on the LASSO regression coefficient as follows: TIM-Sig score = (0.2899*expression value of hsa-miR-146b) + (0.2789*expression value of hsa-miR-27b) + (0.4310*expression value of hsa-miR-34c) + (0.7648*expression value of hsa-miR-4420) + (−0.3621*expression value of hsa-miR-7848) + (−0.3577*expression value of hsa-miR-4635) + (0.0819*expression value of hsa-miR-6075) + (0.3234*expression value of hsa-miR-6740) + (−0.0322*expression value of hsa-miR-6797) + (0.5820*expression value of hsa-miR-4539). The distribution of TIM-Sig score and expression pattern of miRNAs are revealed in Figure 1F.



Prognostic Value of TIM-Sig

The GSE27435 and GSE16025 cohorts were used to verify our constructed TIM-Sig. The TIM-Sig score was determined for all subjects in the cohort, with the median values used to stratify patients as being either high- or low-risk. Patients with higher risk scores were noted to have poorer OS in contrast to those with lower risk scores (GSE16025: P = 0.0033; GSE27435: P = 0.035), as depicted in Figures 2A, B. The clinical value of the constructed 10-miRNA signature in prognosticating patients with lung cancer was verified.




Figure 2 | Predictive value of the 10-miRNA signature in NSCLC patients and heterogeneous immune infiltration in high- and low-risk groups. (A, B) Kaplan–Meier predictions of patient overall survival in those of low- or high-risk as stratified using the TIM-Sig (GSE16025 and GSE27435). The log-rank test was used to carry out statistical analysis. (C) The difference of TIM-Sig score in clinical classification (include stage and TNM classification). (D) Relative immune scores between low- and high-risk cohorts. (E) Comparison of relative tumor purity between low- and high-risk cohorts. (F) Comparison of relative CD8 T cell score based on ssGSEA between low- and high-risk cohorts. (G) Comparison of relative chromosomal instability level between low- and high-risk cohorts. (H) Comparison of relative IFN-γ expression signature between low- and high-risk cohorts. (I) Comparison of relative cytotoxic activity scores between low- and high-risk cohorts. (J) Comparison of relative antigen presentation machinery between low- and high-risk cohorts. (K) Comparison of relative tumor-infiltrating lymphocytes between low- and high-risk cohorts. (L) Comparison of relative T cell infiltration score between low- and high-risk cohorts. (M) Comparison of relative tumor mutation burden between low- and high-risk cohorts. The p-values were calculated using the Wilcoxon test.





Potential of the TIM-Sig as an Indicator of Immune and Clinical Factors

We next investigated whether the TIM-Sig score was associated with tumor TNM classification or patient gender. We found a significant difference of TIM-Sig score with tumor size, distant metastasis as well as stage (Wilcoxon test, p-value <0.05; Figure 2C and Figure S3). The difference of some immune factors such as the CYT activity, APM score, TILs score, TIS score, chromosomal instability level, tumor mutation burden, IFN-γ expression signature, and T cell infiltration score (TIS) between TIM-Sig high- and low-risk groups were also assessed. A higher immune score (Wilcoxon test, p-value = 3.9e-06; Figure 2D), CD8 T cell score (Wilcoxon test, p-value = 8.5e-06; Figure 2F), HRD (Wilcoxon test, p-value = 6.02e-06; Figure 2G), IFN-γ expression signature (Wilcoxon test, p-value = 0.00098; Figure 2H), CYT activity (Wilcoxon test, p-value = 0.0035; Figure 2I), TILs score (Wilcoxon test, p-value = 2.7e-07; Figure 2K), TIS score (Wilcoxon test, p-value = 0.00049; Figure 2L) and TMB (Wilcoxon test, p-value = 0.00016; Figure 2M) were observed in the low-risk group of NSCLC patients. On the contrary, the higher value of tumor purity (Wilcoxon test, p-value = 6.6e-05; Figure 2E) and APM (Wilcoxon test, p-value = 5.4e-07; Figure 2J) were found in high risk group. Generally, these immune factors varied significantly between high- and low-risk groups. Furthermore, we also investigated the correlation between the TIM-Sig score and above immune-related factors. We found that the majority of these immune factors were negatively correlated with the TIM-Sig score (Figure S4). Based on these results, we conclude that there exists a close relationship between TIM-Sig and immune infiltration as well as the immune escape mechanism.



Relationship Between Mutation and TIM-Sig

Figure 3A depicts identified somatic mutations in LUAD and LUSC patients. TP53 mutations were found in 58% of samples based on TCGA data, which depict the top 20 most frequently encountered gene mutations in lung cancer (Figure 3B). In addition, we compared the TIM-Sig score between the mutant and wild samples. Both groups appeared to differ significantly in terms of frequency of TP53 and CSMD3 mutations (Wilcoxon test, p-value = 0.0056 and 0.019 for TP53 and CSMD3 groups, respectively; Figure 3C). The frequency that each mutation was encountered also varied between high- and low-risk groups (Figure S5).




Figure 3 | Mutations in NSCLC samples. (A) We utilized the maftools package to visualize the mutational features in NSCLC. In summary, we classified these mutation data into different categories, where missense mutation occupied the most part, single nucleotide polymorphism (SNP) mutated the most frequently, and C>A was the top type of single nucleotide variants (SNV) in NSCLC. (B) We exhibited the top 20 mutated genes, including well-known TP53 and MUC16. (C) The difference of TIM-Sig score in mutation and wild groups of TP53 and CSMD3. The p-values were calculated using the Wilcoxon test.





TIM-Sig Could Predict Chemotherapeutics Response

We then investigated whether the TIM-Sig could predict chemosensitivity. To do this, we calculated the TIM-Sig score of NCI60 cell lines using the expression data available in a cellminer database (60 cell lines). The association between the TIM-Sig score and the inhibitory centration (IC50) value of 161 FDA-approved drugs across 60 cell lines were calculated. The result showed that Eribulin mesylate, Olaparib, Brigatinib, Bleomycin, Fulvestrant, Gemcitabine, Dromostanolone Propionate, Imiquimod, and Digoxin appeared to correlate significantly with the risk model (|Spearman correlation| > 0.2 and p < 0.01, Figure 4A). A high immune score was linked to a lower half inhibitory centration (IC50) of medications including Irinotecan (Wilcoxon test, p = 0.039, Figure 4B), Methotrexate (Wilcoxon test, p < 0.047, Figure 4C), Oxaliplatin (Wilcoxon test, p < 0.0034, Figure 4D), and Pemetrexed (Wilcoxon test, p < 0.008, Figure 4E). These findings suggest that the model was able to function as a chemosensitivity predictor.




Figure 4 | The TIM-Sig model as a potential predictor for chemosensitivity. (A) The respective IC50 value of chosen compounds in relation to the TIM-Sig score, as shown by Spearman correlation analysis. (B–E) Those with high risk-scores were found to possess lower IC50 scores for FDA-approved chemotherapeutics such as Irinotecan, Methotrexate, Oxaliplatin, and Pemetrexed. The p-values were calculated using the Wilcoxon test.





Identification of TIM-Sig Regulated Targets

To further investigate the function of the 10 miRNA components in the TIM-Sig, a total of 1,862 experimentally validated targets of the 10-miRNAs signature were extracted from the miRTarBase database (Figure 5A). KEGG pathway analysis revealed that the miRNAs were enriched in cancer, transcriptional dysregulation in cancer, the Hippo signaling pathway, cell cycle, the MAPK signaling pathway as well as other cancer signaling pathways (Top-20 results, Figure 5B). Moreover, we performed KEGG pathway analysis for the targets of each miRNA and revealed that 8 out of 10 were enriched in cancer and immune-related signaling pathways (Figure 5C), suggesting that 10 miRNAs were associated with immune function and metastasis in cancer. Next, to further explore the relationship between NSCLC patient survival and miRNA targets, differentially expressed genes (DEGs) between normal and tumor samples derived from the TCGA dataset were identified. We obtained a total of 6,914 DEGs, of which there were 403 overlaps with 1,862 targets (Figures 6A, B). We found that the TCGA cohort could be grouped into two clusters (C1 and C2) by hierarchical clustering using the 403 overlapped genes (Figure 6C). Survival analysis showed that LUAD-C2 had a good prognosis (log-rank p = 0.0014; Figure 6D). There was marked variability in survival rates in the two groups in the TCGA-LUAD cohort, although none was discovered in the  TCGA-LUSC cohort (TCGA-LUAD: log-rank p = 0.00027, TCGA-LUSC: log-rank p = 0.13; Figures 6E, F).




Figure 5 | miRNAs-targets network and KEGG enrichment analysis. (A) miRNAs-targets network. Circular node denotes miRNAs, square node denotes targets. (B, C) Results for KEGG enrichment analysis.






Figure 6 | Hierarchical clustering determined distinct sub-clusters linked to variable prognosis based on miRNA targets. (A) Volcano plot of 403 identified differential expression miRNAs. Cutoffs were set as log2(fold-change) > 1.0 or < –1.0 and p-value < 0.05. (B) Venn diagram shows that the 403 genes are targets and differentially expressed. (C) Hierarchical clustering of 1,014 patients from the TCGA cohort using 10 miRNAs and 403 gene expressions. (D) Kaplan–Meier curves for cancer-specific survival according to cluster sub-classes. (E) Kaplan-Meier analysis of overall survival based on TCGA-LUAD. (F) Kaplan-Meier analysis of overall survival according to TCGA-LUSC. The log-rank test was used to perform statistical analysis.





Construction of the TIM-Sig Targets-Based Prognostic Signature

A univariate Cox regression analysis was used to determine the relationship between the 403 overlapped target genes and overall NSCLC patient survival. A total of 49 genes were found to be related to OS in NSCLC patients (Table S3). The expression of 49 genes between the C1 and C2 group is shown in Figure 7A. Figure 7C demonstrates the interaction of miRNAs and the 49 targets. Multivariate Cox regression analysis was then carried out to determine the relationship between genes with OS. Of these, six genes demonstrated significant ability to prognosticate NSCLC (HR > 1, P < 0.05; Figure 7B and Table S4). The protein-protein interaction (PPI) network also demonstrated close interactions between VEGFC, ALDOA, and PDGFB (Figure 7H). The risk scores used for predicting prognostic values were derived as follows: RS (patient) = (0.1190*expression value of VEGFC) + (0.0339*expression value of BEST3) + (0.0351*expression value of A1CF) + (0.2608*expression value of ALDOA) + (0.0960*expression value of HOXC4) + (0.1713*expression value of PDGFB). All subjects were separated into low- or high-risk groups. Kaplan-Meier analysis identified a poorer OS in those of high-risk compared to those of low-risk groups (log-rank p < 0.0001; Figure 7D). Prognosis was good in those of LUAD-low-risk and LUSC-low-risk groups (log-rank p = 0.00021; Figure 7E). In addition, application of these formulas in our verification cohorts also found that patients with low-risk were more likely to have better OS (GSE31210: log-rank p < 0.0001, GSE3141: log-rank p = 0.0023; Figures 7F, G). GO and KEGG pathway analysis revealed that these genes were enriched in cancer and immune-related functions, such as cell motility and Glycolysis/Gluconeogenesis (Figure 7I). Finally, we compared the frequency of mutations in the six genes between the two groups (Figures 7J–L). The most commonly encountered mutation was the VEGFC mutation (23%, Figure 7K). Additionally, we compared the differences of mutation among RS genes in low- and high-risk groups. An obvious difference of mutation location of 6 risk genes between high and low groups were observed. (Wilcoxon test, p < 0.05; Figure 7L). Taken as a whole, these findings highlight the significant value of a six-gene signature in prognosticating patients.




Figure 7 | Prognostic potential of a six-gene model. (A) Hierarchical clustering of 1,014 patients from the TCGA cohort using 49 gene expressions. (B) Multivariate Cox regression analysis was used to determine the prognostic values of DEGs. (C) The miRNAs-targets sub-network, includes 49 genes and 10 miRNAs. Circular node denotes miRNAs, square node denotes targets. (D, E) Kaplan–Meier predictions of overall survival in patients of high- or low-risk groups as predicted by the RS module in the validation datasets (TCGA and TCGA LUAD/LUSC). (F, G) Kaplan–Meier approximation of overall survival in patients of high- or low-risk cohorts as predicted by the RS module in the validation dataset (GSE31210 and GSE3141). The log-rank test was used to perform statistical analysis. (H) PPI network. (I) Functional enrichment analysis of GO and KEGG for 49 genes. (J) Mutation features of 6 risk genes and distribution among high- and low-risk groups. (K) The mutation rate of 6 risk genes. (L) The difference of mutation location of 6 risk genes between high and low risk groups.






Discussion

A plethora of studies have characterized the immune microenvironment in NSCLC. Li et al. developed a robust, individualized immune signature that can estimate prognosis in patients with early-stage non-squamous NSCLC (32). Hawazin et al. characterized the molecular subtypes of NSCLC, which demonstrated important differences in immune host response (33). Also, our previous study identified different molecular subtypes of NSCLC according to the immune landscape and constructed a prognostic model (18). However, the role of non-coding RNA, especially miRNAs in the NSCLC immune microenvironment have not been well elucidated. Some immune-related miRNAs were found to be fundamental in the regulation of innate and immune responses to tumor cells. But these studies were only focused on individual immune-related miRNAs in limited samples. In this study, we identified potential tumor immune-related miRNA biomarkers from miRNA-seq profiling data in TCGA. The constructed immune-related miRNA signature was tested and found to be able to function as a means stratify the risk of NSCLC patients. Of these 10 miRNAs included in the signature, a number have previously been explored in cancer research. One example is the central role of miR-146a in the melanoma immune microenvironment (34). Combined inhibition of PD-1 and miR-146a may be able to elicit an anti-tumor immune response (34). Furthermore, miR-27b has been characterized as a biomarker for recurrent ovarian cancer (35). Our novel miRNA profile also includes yet to be reported miRNAs which may hold significant prognostic values in NSCLC. The immune-associated functions of these miRNAs were confirmed by stratifying the subjects into low- and high-risk cohorts. We found that the low-risk group had a markedly higher immune score and lower tumor purity. These observations were confirmed by the higher tumor cell aggregation in the low-risk group which was represented by TILs and TIS. This is consistent with previous reports that a high degree of immune cell infiltration was responsible for a significantly favorable prognosis in NSCLC (18). Our results also demonstrated that the low-risk group possessed raised CYT and TMB expressions, with higher degrees of CD8+ T cell infiltration. Similar findings of better outcomes in those with higher CYT levels have also been reported in cancer patients (18, 36). In patients with resected NSCLC, higher TMB scores were indicative of a more favorable prognosis (37). CD8+ T cell infiltration appeared to function as a superior predictive biomarker in response to anti-PD-1 immunotherapy (38).

Our data indicated that the TIM-Sig score was significantly higher in TP53 and CSMD3 mutation samples. Other studies have reported a higher proportion of activated immune cell infiltration in patients with TP53 mutations, resulting in a significantly prolonged progression-free survival in the LUAD cohort (39). CSMD3 mutations have been characterized as tumors with high concentrations of T cells in patients with high-grade serous ovarian carcinoma (40). In addition, the CSMD3 mutation was related to improved response to anti-PD1/PD-L1 and higher survival rates solid tumors (41, 42).

Previous studies have shown that immunogenomic-derived immune scores were indicative of chemotherapeutic benefits (43). We subsequently investigated whether the TIM-Sig could predict chemosensitivity in NSCLC. Our results suggested that the IC50 values were significantly higher in the low-risk group for some anti-cancer agents. Among these agents, irinotecan represents a widely used chemotherapeutic medication in treating solid tumors and its sensitivity has been reported to correlate with CD8+ T cell fraction in pancreatic cancer (44). CD8 effector cells have previously been reported to enhance the anti-tumor response of methotrexate, another anti-cancer agent, in breast cancer (45). However, we are unable to investigate TIM-Sig prognostic significance in regard to response to immunotherapy due to the lack of subjects who received treatment involving immune checkpoint inhibitors. This is one limitation in our study.

Functional analysis of these 10 miRNAs in TIM-Sig may further our understanding of their individual roles in NSCLC. To this end, we obtained the validated targets of these miRNAs. KEGG pathway analysis uncovered that the target genes were most enriched in cancer-related pathways. Additionally, the targets of individual miRNAs were also enriched in cancer and immune-related pathways comprising of pathways in cancer, adherens junction, the chemokine signaling pathway, and the HIF-1 signaling pathway. Dysregulation of adherens junction function is critical in modulating efficient collective invasion and migration of carcinoma cells (46). The adherens junction was also an activated pathway in breast cancer cases with low immunity (29). The classification based on HTF 1 signaling pathway profile was able to determine subgroups of prostate cancer patients who were maximally responsive to chemo- and immunotherapy (47). The components of our constructed 10-miRNA signature were strongly involved in immune function and cancer metastasis.

Next, we identified 403 differentially expressed target genes between normal lung and NSCLC samples. The expression profile of these genes revealed two distinct sample clusters with different outcomes. The two patient clusters in the TCGA-LUAD cohort had significantly different survival outcomes. However, no significant difference was observed in the TCGA-LUSC cohort. Although LUAD and LUSC are the most frequently encountered NSCLC subtypes, they vary from each other considerably (48, 49). LUSC has been found to grow at a faster rate in contrast to LUAD. LUSC was also found to possess suppressed expressions of molecules involved in the activation of the immune response, such as chemokines and MHC molecules (50). These findings might explain the different results of survival analysis between LUAD and LUSC. In efforts to improve the prognostic performance of the target genes, we identified six differentially expressed target genes which were correlated with survival: VEGFC, ALDOA, BEST3, A1CF, HOXC4, and PDGFB. Subjects in the TCGA cohort were stratified into high- or low-risk groups using the gene-based RS. Low-risk groups of both LUAD and LUSC had significantly better survival than those in the high-risk groups. Among these six genes, VEGFC, ALDOA, and PDGFB closely interacted with each other in the PPI network. It has been reported that VEGFC knockdown results in reduced PDGFB levels in melanoma cell lines. Moreover, both of them were regulated by E2F1 in angiogenesis (51). Lung cancer metastasis and metabolic reprogramming appears to be strongly dependent on ALDOA (52). Samples of lung cancer have been noted to possess an overexpression of ALDOA, which enhances epithelial-mesenchymal transition (53). Our data suggested that immune-related miRNAs regulated immune cell infiltration in NSCLC both through themselves and their target genes. In summary, our study on the identification of tumor immune-associated miRNAs provides valuable functional insights and potential clinical guidance for personalized therapy for NSCLC patients.



Conclusions

In brief, this study aimed to construct an immune-related miRNA signature that effectively predicts NSCLC patient prognosis. An immune-related miRNA signature (TIM-Sig) was constructed using LASSO-penalized multivariate survival models and was evaluated in several public cohorts from the Gene Expression Omnibus (GEO) and the CellMiner database. Further analysis on the miRNA-target network of TIM-Sig revealed that these target genes had prognostic value in both lung squamous cell carcinoma and adenocarcinoma. Our study provides valuable functional insights and potential clinical guidance for personalized therapy for NSCLC patients.
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Esophageal cancer (EC) is one of the commonest human cancers, which accompany high morbidity. MicroRNAs (miRNAs) play a pivotal role in various cancers, including EC. Our research aimed to reveal the function and mechanism of miR-135b-5p. Our research identified that miR-135b-5p was elevated in EC samples from TCGA database. Correspondingly real-time PCR assay also showed the miR-135b-5p is also higher expressed in Eca109, EC9706, KYSE150 cells than normal esophageal epithelial cells (Het-1A). CCK8, Edu, wound healing, Transwell assay, and western blot demonstrated miR-135b-5p inhibition suppresses proliferation, invasion, migration and promoted the apoptosis in Eca109 and EC9706 cells. Moreover, the miR-135b-5p inhibition also inhibited xenograft lump growth. We then predicted the complementary gene of miR-135b-5p using miRTarBase, TargetScan, and DIANA-microT. TXNIP was estimated as a complementary gene for miR-135b-5p. Luciferase report assay verified the direct binding site for miR-135b-5p and TXNIP. Real-time PCR and western blot assays showed that the inhibition of miR-135b-5p remarkably enhanced the levels of TXNIP in Eca109 and EC9706 cells. Furthermore, cisplatin (cis-diamminedichloroplatinum II, DDP) decreased miR-135b-5p expression and increased TXNIP expression. Enhanced expression of miR-135b-5p attenuated the inhibitory ability of cisplatin (cis-diamminedichloroplatinum II, DDP) in Eca109 cells, accompanied by TXNIP downregulation. In conclusion, the downregulation of miR-135b-5p suppresses the progression of EC through targeting TXNIP. MiR-135b-5p/TXNIP pathway contributes to the anti-tumor effect of DDP. These findings may provide new insight into the treatment of EC.
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Introduction

The latest statistics show that esophageal cancer (EC) is the 8th commonest cancer and the 6th commonest reason for cancer-related death worldwide (1). The EC incidence is highest in China, accounting for 54% of all cases (2). The current treatment mainly depends on surgery combined with chemoradiotherapy and immunotherapy. Cisplatin (diamminedichloroplatinum, DDP) is widely used as the first-line chemotherapy approach for different cancers (3, 4). It had been demonstrated an effective therapeutic approach for EC. Lots of researches have confirmed that a variety of miRNAs participated in the therapeutic mechanism of DDP, different miRNAs resist or enhance the therapeutic effect of cisplatin (5, 6). For patients with ESCC, whereas the rate of 5-year survival is also less than 20% (7). Thus, it is imperative to find efficient therapeutic strategies.

MicroRNAs (miRNAs) are a kind of endogenic, single-stranded non-coding RNA with about 19–23 nucleotides (8). This kind of RNA mainly exerts biofunction by binding to target genes, resulting in translational inhibition or degradation of target genes (9, 10). MiRNAs could regulate the initiation and progression of many kinds of tumors, including gastric cancer (11), colorectal cancer (12), and pancreatic cancer (13), etc. Emerging studies reported that miRNAs play a significant contribution to EC. For example, miR-31 is upregulated in esophageal squamous cell carcinoma (ESCC) tissues and serum samples, which is negatively associated with relapse-free survival of patients (14). The knockdown of miR-31 suppresses EC development by targeting Egln3 (14). Lower expression of miR-204-5p was observed in ESCC tissues and cell lines, its upregulation could inhibit proliferation, invasion, and promote apoptosis of ESCC cells (15). Meanwhile, miRNAs are also involved in the effect of chemotherapeutics. Upregulation of miR-338-5p reverses 5-Fluorouracil resistance in ESCC cells by targeting Id-1 (16). MiRNA-10b is upregulated in EC tissues and cells, which contributes to cisplatin resistance via targeting PPARγ (17).

MiR-135b-5p is an onco-miRNA. It is reported that miR-135b-5p is dysregulated, including gastric cancer cells and tissues, which promotes gastric cancer progression and metastasis through inhibiting CMTM3 expression (18). Similarly, miR-135b-5p was over-expressed in pancreatic cancer tissues, which represses lump growth by targeting phosphofructokinase-1 (19). In addition, miR-135b-5p expression is upregulated in ESCC patient samples (20). However, its exact mechanism and potential therapeutic potential in EC have not been fully clarified.

In order to investigate the role and mechanism for miR-135b-5p in EC. We confirmed it by experiments in vivo and in vitro and showed that miR-135b-5p is highly expressed in EC tissues and cells. Downregulation of miR-135b-5p suppresses EC progression by targeting TXNIP. Moreover, the miR-135b-5p/TXNIP axis also contributes to the anti-tumor effect of cisplatin in EC.



Materials and Methods


Bioinformatics Analysis

One hundred and sixty EC tissue samples and 11 normal esophageal tissue samples were collected from TCGA database (21). Kaplan-Meier Plotter (22) online tools were used to calculate the Kaplan-Meier survival analysis parameters.



Cell Culture

In this study, the human EC cell lines (Eca109, KYSE150, EC9706) and normal esophageal epithelial cells (Het-1A) were acquired from the ATCC (Manassas, VA, USA). These cells were cultured in 1640 medium (RPMI; Gibco, CA, USA) and supplemented with 10% FBS and 1% penicillin-streptomycin (Gibco, CA, USA). HEK-293T cells were maintained in DMEM (Gibco, CA, USA) and added the same ingredients as above. These cells were cultured at 37°C under 5% CO2.



Cell Transfection and Construction of Stable Cell Line

The synthesized miR-135b-5p mimics, anti-miR-135b-5p oligonucleotides (AMO-135b-5p), negative controls (miR-NC and AMO-NC) acquired from Ribo Life Science (GuangZhou, China). These syntheses and Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA) were transfected into Eca109 and EC9706 cells. To explore the involvement of miR-135-5p in the effect of cisplatin (cis-diamminedichloroplatinum II, DDP), the Eca109 cells were treated with DDP (10 μg/ml) or phosphate buffer saline (PBS) respectively. To obtain stable cell lines, Eca109 was infected with the lentivirus particles contain miR-135b-5p (GenePhagma, Suzhou, China). Twenty-four hours after treatment, Eca109 cells were selected using 2 µg/ml puromycin. This procedure was repeated three times.



Real-Time PCR

The RNA lysate (Invitrogen, Carlsbad, CA, USA) was used to obtain the total RNA from cells (Eca109, EC9706, KYSE150, Het-1A) and lump tissues (12). NanoDrop was used to measure RNA quality and quantity. RNA reversely transcribed into cDNA by using PrimeScript RT reagent kit (TOYOBO, Tokyo, Japan). A 7500 FAST real-time PCR System (Applied Biosystems, Carlsbad, CA, USA) was used to measure the amplified cDNA. The results were calculated using the 2−ΔΔCT method. All primers were designed by Ribo Life Science (Guangzhou, China). All experiments were run in triplicate.



Western Blot

Total protein from cells and tissues was extracted by RIPA (Beyotime, Shanghai, China). Protein suspension was quantified by BCA Protein Assay Kit (Beyotime, Shanghai, China). Ten percent SDS-PAGE and 12% SDS-PAGE (Beyotime, Shanghai, China) were used to separate protein lysate. And protein was then transferred to a PVDF membrane (Millipore, Boston, USA). The PVDF membrane was stained for Ponceau S and was closed with 5% skim milk powder for 2 h and incubated with antibodies against TXNIP, Bax, Bcl-2, and GAPDH (Proteintech, Wuhan, China) overnight. After washed by TBST, the PVDF membrane was incubated with the corresponding secondary antibody (Proteintech, Wuhan, China) for 2 h at room temperature and then washed again. GAPHD served as the internal control. ECL Plus by X-ray film (Millipore, Bedford, MA, USA) was analyzed the protein expression.



Immunohistochemistry (IHC)

Four percent paraformaldehyde-fixed tissues were carried out with paraffin and sliced into 4 μm thick sections. Then 0.3% TritonX-100 penetrated tissues for 30 min and immunostained for Ki67, TXNIP (Proteintech, Wuhan, China) primary antibodies at 4°C overnight and universal secondary antibodies at 37°C for 60 min. Next, tissues were visualized by using the 3‐amino‐9‐ethylcarbazole was applied for 10 min. The tissues were washed with PBS for three times and tissues were counterstained with hematoxylin, then dehydrated and coverslipped according to the protocol.



Cell Counting Kit-8 Assay (CCK-8)

The viability of Eca109 and EC9706 was assessed by the CCK8 assay (Meilun, Dalian, China). CCK- 8 assay 10 μl was joined in the 96-well plates at 0, 24, 48, 72, and 96 h after treatment, then cultured at 37°C for 1 h. The absorbance at 450 nm was measured by a microplate spectrophotometer (Bio-Rad, Hercules, CA, USA). Three independent experiments were performed.



EdU Assay

The Proliferation ability of Eca109, EC9706 cell lines was also measured using an assay kit (Ribo Life Science, GuangZhou, China). Cells with transfected AMO-135b-5p or AMO-NC were seeded in 96-well plates (1 × 103 cells/well) and incubated for 24 h. Cells were washed by PBS three times and cultured for 4 h in serum-free 1640 medium with 50 µM EdU. Then, the cells were fixed with 0.5% Triton-X-100 (Sigma-Aldrich, USA) for 30 min. After that, the cells were incubated with Apollo (Ribo life science, Guangzhou, China) staining reaction for 30 min. Finally, the Hochest was added to stain the nuclei of cells for 15 min. The percentage of Edu-positive cells was calculated by using Image-Pro-Plus software (Media Cybernetics, USA).



Wound Healing Assay

Eca109 and EC9706 cells were transfected and cultured in a six-well culture plate to achieve 80% confluence. Subsequently, a straight line across the cell monolayer was drawn by a pipette tip (20 μl). After then, wash the cells use PBS to remove the debris. Twenty-four hours later, the images were captured by inverted microscopy. Relative cell migration distance was measured using Image-Pro software.



Transwell Assay

Invasion capacity was measured with Matrigel matrix (Corning, NY, USA)–coated Transwell chambers (Corning, NY, USA). The matrigel matrix was dissolved at 4°C, then added to the upper chamber of the precooled transwell and incubated at 37°C for 2 h to solidify the matrigel matrix. Cells (1 × 105) were cultured in serum-free medium and placed in the upper chamber of transwell, and cultural
medium with 20% fetal bovine serum (FBS) was placed in the lower chamber. After cultured for 24 h, the transwell holes were penetrated by methanol solution and then staining by Crystal Violet. The images were taken at 200× magnification. The invaded cell number was counted in four random fields.



Target Prediction and Dual-Luciferase Reporter Assay

The online tools miRTarBase (23), TargetScan (24), and DIANA-microT (25) predicted the complementary gene of miR-135b-5p. The wild-type (WT) and mutant-type (MUT) TXNIP 3’-UTR oligonucleotides miR-135b-5p were cloned into the psiCHECKTM-2 vector (Promega, Madison USA), which were transfected with miR-135b-5p mimic or AMO-135b-5p into HEK293T cells by Lipofectamine 2000 (Invitrogen, CA, USA) for 24 h.



In Vivo Experiments

Six- to eight-week-old male nude BALB/c mice purchased from Animal Core Facility of Nanjing Medical University, Nanjing, China, and randomly divided into two groups (n = 5). Eca109 cells (5×106 per mice) with LV-has-miR-135b-5p-inhibitor vector (miR-135b-5p-inhibitor) or normal controls were injected into the subcutaneous back of mice. Mice body weight and tumor growth were recorded. Mice were sacrificed 4 weeks post-injection. The experiments were pre-approved by the ethics committee of the Second Affiliated Hospital of Harbin Medical University, NO. SYDW2020-067.



Statistical Analysis

These statistical outcomes were provided as mean ± SD and calculated using GraphPad Prism 8.0. Student’s t-test was used to examine differences between two groups, while one‐way analysis of variance (ANOVA) was applied to compare the differences among multigroup. P<0.05 was set to have a statistical difference.




Results


The miR-135b-5p Highly Expressed in EC Tissues and Cells

MiR-135b-5p expression was increased in EC tissues (n = 160) compared with the normal samples (n = 11) (Figure 1A). Similarly, the miR-135b-5p expression was elevated in EC cells (Eca109, EC9706, KYSE150) compared with normal esophageal epithelium cell lines (Het-1A) (Figure 1B). We then explored the biological function for miR-135b-5p by transfecting AMO-135b-5p, AMO-NC, and control groups in EC9706 and Eca109 cells, respectively. MiR-135b-5p expression was reduced in Eca9706 and Eca109 cells after AMO-135b-5p transfection by using real-time PCR (Figures 1C, D). The comparison of the AMO-NC group and control group was added (Supplementary Figure S1A). These results observed miR-135b-5p expression was upregulated in EC tissues and cells. Eca109 and EC9706 cells showed a more significant increase of miR-135b-5p, and were used in the following experiments and showed the transfection efficiency successfully.




Figure 1 | Expression of miR-135b-5p in EC tissues and EC cells. (A) MiR-135b-5p expression was higher in EC patient tissues than normal tissues. (B) MiR-135b-5p showed higher expression in Eca109, EC9706, KYSE150 cell lines than Het-1A cells. (C, D) Expression of miR-135b-5p with transfected AMO-135b-5p, AMO-NC are showed by real-time PCR. (*p < 0.05, **p < 0.01, ***p < 0.001).





Downregulated miR-135b-5p Effected EC Cell Proliferation and Apoptosis

CCK8 assay was used to evaluated EC cell viability. The administration of AMO-135b-5p suppressed cell viability in Eca109 and EC9706 cells compared to those transfected with AMO-NC (Figures 2A, B). In accordance with this result, the Edu assay showed that the number of proliferation cells in transfected AMO-135b-5p was less than the AMO-NC transfected groups in Eca109 and EC9706 cells (Figures 2C, D). Then, the expression of Bax and Bcl-2 antibodies reflected the apoptosis capacity. The results showed that the AMO-135b-5p group enhanced the expression of Bax, and decreased the expression of Bcl-2 than the AMO-NC group in Eca109 and EC9706 respectively (Figures 2E, F).




Figure 2 | Downregulation of miR-135b-5p affected viability, proliferation, and apoptosis in Eca109 and EC9706 cells in vitro. (A, B) CCK8 assay showed the cell viability after with transfected AMO-135b-5p or AMO-NC in Eca109 and EC9706 cells. (C, D) Cell proliferation was measured by Edu analysis. Edu (red), nuclear (Hoechest, blue), magnification ×200. (E, F) The expression of Bax and Bcl-2 was showed by Western blot. Statistical analyses were showed accordingly. (**p < 0.01, ***p < 0.001).





Downregulated miR-135b-5p Suppressed EC Cell Migration and Invasion

The inhibition of miR-135b-5p weakens the migration ability of Eca109 and EC9706 cells compared to those in AMO-NC groups (Figures 3A–D). Then, the transwell assay analyzed the invasion ability in downregulated miR-135b-5p. Downregulated miR-135b-5p reduced the number of invasive cells relative to the negative control groups (Figures 3E–H).




Figure 3 | Downregulation of miR-135b-5p weakened migration and invasion ability in Eca109 and EC9706 cells. (A–D) Wound healing assay confirmed that miR-135b-5p inhibition restrained cell migration in Eca109 and EC9706 cells, statistical analyses were showed accordingly, magnification ×40. (E–H) Transwell assay evaluated that decreased miR-135b-5p expression abrogated invasion of Eca109 and EC9706 cells, magnification ×200. (*p < 0.05, ***p < 0.001).





TXNIP Is the Complementary Gene of miR-135b-5p

Bioinformatics prediction software [miRTarBase (23), TargetScan (24), DIANA-microT (25)] anticipated the complementary gene of miR-135b-5p. The result showed that the 3′-untranslated regions (3′-UTR) of TXNIP contain putative miR-135b-5p binding sequences (Figure 4A). TCGA data analyzed the TXNIP expression level was lower in EC tissues (n = 160) relative to normal samples (n = 11) (Figure 4B), and TXNIP expression was related to the survival rate of EC patients from the Kaplan-Meier Plotter (22). The results confirmed that compared with patients with lower TXNIP, patients with higher TXNIP had a better prognosis (Figure 4C). The real-time PCR assay demonstrated the TXNIP expression level was downregulated in the EC cells in comparison with that of Het-1A cells (Figure 4D). The binding site between miR-135b-5p and TXNIP was validated by a dual-luciferase reporter assay. Results showed that the miR-135b-5p mimics weakened the luciferase activity of TXNIP (Figure 4E). In accordance with this result, AMO-135b-5p transfection increased TXNIP expression in Eca109 and EC9706 cells (Figures 4F, G). Comparison of AMO-NC group and control group were showed (Supplementary Figure S1B). Western blot assay also demonstrated that AMO-135b-5p transfection elevated the expression of TXNIP (Figures 4H, I).




Figure 4 | TXNIP as a complementary gene of miR-135b-5p. (A) TargetScan tool anticipated miR-135b-5p has two complementary positions with the 3’-UTR of TXNIP. (B) The expression of TXNIP in EC tissues. (C) KM plotter showed the relationship between TXNIP expression situation and the overall survival of EC patients. (D) TXNIP expression was significantly downregulated in Eca109, EC9706, KYSE150 cells than that in Het-1A cells. (E) Luciferase activities reporter assay analyzed the direct binding effect between miR-135b-5p and TXNIP. (F–l) Expression of TXNIP in with transfected AMO-135b-5p and AMO-NC, respectively (*p < 0.05, **p < 0.01, ***P < 0.001).





The miR-135b-5p Inhibition Weakened Tumorigenicity In Vivo

Nude mice were administered with Eca109 cells (miR-135b-5p low expression or normal expression). The representative mice tumor images were shown in Figure 5A. The tumor growth curve showed that tumor growth was decreased by miR-135b-5p inhibition (Figure 5B). The tumor weight statistical analyses showed that tumor growth was slower in the miR-135b-5p inhibition group than the negative control (Figure 5C). MiR-135b-5p expression was downregulated and TXNIP was upregulated in the AMO-135b-5p group (Figures 5D, E). Western blot assay also demonstrated the TXNIP upregulated accordingly (Figure 5F). Similarly, the expression of Ki67 and TXNIP was analyzed by immunohistochemical assay. The results confirmed that the expression of Ki67 in the AMO-135b-5p group was increased, and the expression of TXNIP was decreased (Figures 5G, H).




Figure 5 | MiR-135b-5p inhibition suppressed the growth of EC in vivo. (A) Xenograft mice tumor model images on the 30th day of treatment. (B) The size of the tumors was smaller in the miR-135b-5p inhibition group compared with the negative control group. (C) The tumor growth curve was recorded. (D, E) The mRNA expression level of miR-135b-5p and TXNIP in miR-135b-5p inhibition group compared with the negative control group. (F) The protein expression level of TXNIP in miR-135b-5p inhibition group compared with the negative control group. (G, H) Immunohistochemistry of TXNIP and Ki67 expression in LV-miR-135b-5p and control, magnification ×200. **P < 0.01; ***P < 0.001.





MiR-135b-5p/TXNIP Axis Participated in the Anti-tumor Effect of Cisplatin

Finally, we investigated whether miR-135b-5p/TXNIP axis is engaged in the anti-tumor effect of DDP. DDP decreased miR-135b-5p expression and enhanced TXNIP expression in Eca109 and EC9706 cells. However, miR-135b-5p mimic transfection elevated the miR-135b-5p expression and weakened the TXNIP expression in two types of cell lines (Figures 6A, B). The protein expression level of TXNIP was changed accordingly (Figure 6C). The CCK8 assay evaluated the cell viability, DDP combined miR135b-5p mimics decrease the viability of Eca109 cells compared with that treated with DDP alone (Figure 6D). Besides, the upregulation of miR-135b-5p weakened the effect of DDP on the migration capacity of Eca109 and EC9706 cells (Figures 6E, F). Next, we also conducted the Edu assay to compare the proliferation capacity in Eca109 and EC9706 cells. The results showed that DDP significantly inhibited cell growth, and after mimics-135b-5p, the ability to suppress proliferation was limited (Figures 7A, B). Transwell assay showed the effect of DDP on tumor cells invasion inhibition after transfected mimics-135b-5p. It was showed that mimics-135b-5p decreased the effect of DDP (Figures 7C, D). Similarly, we carried out a western blot experiment to detect apoptotic proteins (Bax, Bcl-2). Lastly, we found that the Bax protein with treated DDP and DDP-NC group increased and Bcl-2 protein was decreased, while the mimic-135b-5p group attenuated the apoptosis effect of DDP (Figure 7E).




Figure 6 | MiR-135b-5p/TXNIP axis contribute to the anti-tumor effect of cisplatin (DDP) for EC. (A) MiR-135b-5p expression level. (B) TXNIP mRNA expression level. (C) TXNIP protein expression level. (D) The miR-135b-5p mimics attenuated the inhibitory effect of DDP on the viability of Eca109 cells. (E, F) The miR-135b-5p mimics weakened the inhibitory effect of DDP on the migration ability of Eca109 cells. (*p < 0.05, ***P < 0.001).






Figure 7 | MiR-135b-5p/TXNIP axis contributes to the anti-tumor effect of cisplatin (DDP) for EC. (A, B) Cells proliferation was measured by Edu analysis. Edu (red), nuclear (Hoechest, blue), magnification ×200. (C, D) Transwell assay evaluated the invasion capacity after the intervention of DDP or DDP-mimics, DDP+miR-135b-5p magnification ×200. (E) Bax and Bcl-2 protein expression level and statistics were showed accordingly. (*p < 0.05, ***p < 0.001).






Discussion

It is widely confirmed that miRNAs are involved in the progression of various cancers, which include bladder carcinomas, pancreatic cancer, and hepatocellular carcinomas, etc. (26, 27). Hammouz RY et al. reviewed the role of miRNAs in metastasis, angiogenesis phenotypes in bladder carcinomas (28). Recent research demonstrated that miR-1224-5p is a prognostic biomarker in colorectal cancer (12), which identified the important role of miRNA in different tumors. Some miRNA-based therapeutics have entered clinical trials (29). A miR-34a mimic (MRX34) has reached phase I clinical trials for cancers (30–32). The function and therapeutic potential of miRNAs have been identified. MiR-143 and miR-145 mimics have tumor-suppressive function in colon cancer and pancreatic cancer (31), which has entered the preclinical model. MiR-200 family has been reported with tumor-suppressive effect in solid tumors, involving breast, ovarian, and lung cancer (33–35). Several studies have reported that many kinds of miRNAs play a crucial role in the progression in EC, including miR-216a-5p and miR-488-3p, and miR-301b, etc. (36–38). These miRNAs may serve as novel therapeutic targets for EC. However, the role of aberrantly expressed miRNAs in EC has not been fully clarified.

Li W et al. found that miR-135b-5p is upregulated in ESCC tissues, which may be an indicator of shorter overall survival of patients (20). Our results evaluated miR-135b-5p is upregulated in Eca109 and EC9706 cells and its inhibition weakened proliferation, invasion, migration, and enhanced the apoptosis capacity. Our results are in accordance with previous researches. Wu Y et al. demonstrated that silencing miR-135b-5p attenuated the progression of gastric cancer (39). Zhou J et al. demonstrated miR-135b also had higher expression in pancreatic cancer stem cells and tissues. Silencing miR-135b-5p suppressed stemness of pancreatic cancer stem cells by targeting JADE-1 (40).

MiRTarBase (23), TargetScan (24), and DIANA-microT (25) predicted the complementary gene of miR-135b-5p. The prediction results showed that TXNIP could be a target of miR-135-5p. TXNIP is a kind of thioredoxin (TRX) binding protein, which mediates oxidative stress, inhibits cell proliferation, and induces apoptosis, and participated in a metabolic pathway, inflammatory pathway, and apoptotic pathway by inhibiting the function of the thioredoxin system in various diseases (41, 42). Increasing evidence demonstrated that TXNIP was a tumor suppressor and was shown a low expression in liver cancer, breast cancer, and lung cancer (41, 43). Morrison JA et al. validated that higher-expression of TXNIP significantly suppressed the growth of T238 cells and reduced metastasis of thyroid carcinoma in a mouse model (44). TXNIP overexpression weakened the progression of SMMC7221 cells by promoting ROS generation and activating MAPK pathway (45). It has been reported that TXNIP was significantly downregulated in EC cells (46). We identified that low expression of TXNIP was associated with a poor survival rate of EC patients. Besides, TXNIP expression level was lower in EC cells compared with that in normal esophageal epithelial cells. Subsequently, we explored the correlation with miR-135b-5p and TXNIP. Dual-luciferase reporter showed that miR-135b-5p binds to the 3′UTR of TXNIP directly. And, the inhibition of miR-135b-5p increased TXNIP expression.

Next, we established a subcutaneous tumor model by injection of Eca109 cells, with AMO-NC and AMO-135b-5p. The miR-135b-5p inhibition weakened tumor growth and increased the expression of TXNIP reversely. These results were in accordance with the in vitro experiments. MiR-135b-5p inhibition suppressed the progression of EC through targeting TXNIP.

Finally, we explored the therapeutic role of miR-135b-5p/TXNIP signaling in EC. Zhou J et al. observed that miR-135b-5p inhibition weakens the DDP resistance in gastric cancer cells (47). Ko M et al. discovered that a higher level of miR-135b-5p was associated with shorter median disease-free survival of patients than those with low (48). The present results implied that miR-135b-5p contributed to outcomes of DDP-treated patients. DDP inhibited miR-135b-5p expression and promoted TXNIP product in Eca109 and EC9706 cells. The enhanced expression of miR-135b-5p attenuated the inhibitory effect of DDP on the proliferation and migration of EC cells. These results proved that miR-135b-5p/TXNIP axis was engaged in the anti-tumor effect of DDP.

In conclusion, miR-135b-5p inhibition suppresses the progression of EC through targeting TXNIP. And the inhibition of miR-135b-5p/TXNIP axis might be a promising strategy to increase the anti-tumor effect of DDP. The above results could provide new insights into the investigation and treatment of EC.
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The emerging evidence has demonstrated the critical roles of long non-coding RNAs (lncRNAs) as regulators in the tumor immune microenvironment (TIME). However, the tumor immune infiltration-associated lncRNAs and their clinical significance in colon cancer have not yet been thoroughly investigated. This study performed an integrative analysis of lncRNA expression profiles and immune cell infiltration profiles and identified 258 immune infiltration-associated lncRNAs. Of them, four lncRNAs (AC008494.3, LINC00926, AC022034.1, and SNHG26) were significantly and independently associated with the patient’s overall survival. Finally, we developed a tumor immune infiltration-associated lncRNA signature (TIILncSig) comprising of these four lncRNAs, which can divide colon cancer patients of The Cancer Genome Atlas (TCGA) into high-risk and low-risk groups with a significantly different outcome [Hazard ratio (HR) = 2.718, 95% CI = 1.955–3.779, p < 0.001]. Prognostic performance of the TIILncSig was further validated in another independent colon cancer cohort (HR = 1.832, 95% CI = 1.045–3.21, p = 0.034). Results of multivariate Cox regression and stratification analysis demonstrated that the TIILncSig is an independent predictive factor from other clinical features (HR = 2.687, 95% CI = 1.912–3.776, p < 0.001 for TCGA cohort and HR = 1.837, 95% CI = 1.047–3.223, p = 0.034 for GSE17538 cohort). Literature analysis provided experimental evidence supporting roles of the TIILncSig in cancer carcinogenesis and progression and immune regulation. Summary, our study will help to understand the mechanisms of lncRNAs in immune regulation in the tumor microenvironment and provide novel biomarkers or targets for prognosis prediction and therapy decision-making for patients with colon cancer.
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INTRODUCTION

Colorectal cancer (CRC) is the most common type of gastrointestinal cancer and is the second leading cause of cancer-related death (Siegel et al., 2020a,b). CRC cases were classified into colon tumors and rectum tumors according to codes from the International Classification of Diseases for Oncology (Siegel et al., 2020a). It is estimated to be 104,610 individuals newly diagnosed with colon cancer in the United States in 2020 (Siegel et al., 2020a). The tumor, lymph node, metastasis (TNM) staging system, histological differentiation grade, and tumor sidedness have been widely used for colon cancer classification, prognosis prediction, and therapy decision-making. Surgical removal of the primary tumor followed by adjuvant chemotherapy is the main treatment for colon cancer patients. However, in clinical practice, the TNM staging system was not enough to predict prognosis and make therapeutic decisions for the patient with colon cancer patients. There is growing evidence that molecular biomarkers have become indispensable in the more personalized precision medicine era (Vacante et al., 2018; Koncina et al., 2020).

Increasing evidence has suggested that the tumor immune microenvironment (TIME) plays either tumor-promoting or tumor-suppressive roles in various cancers and profoundly influences tumor prognosis and therapy response (Chew et al., 2012; Binnewies et al., 2018). The tumor microenvironment of CRC has been characterized using different methods in several studies and highlighted its prognostic, predictive, and therapeutic implications. For example, tumor-infiltrating lymphocytes (TILs), an essential component of TIME, have been recognized as an essential histopathologic feature associated with the prognosis of patients with colorectal cancer (Idos et al., 2020). Recent studies have found that transcriptomic or epigenetic features are associated with specific immune cell subpopulations of TIME. They, therefore, could be used to infer the composition of tumor-infiltrating immune cells (Zhang et al., 2020b). Long non-coding RNAs, constituting the major class of non-coding RNAs (ncRNAs), have been recognized as an essential regulator involved in nearly all biological progress. The emerging roles of lncRNAs as essential regulators of the human immune system have been recognized in recent studies (Turner et al., 2014; Chen et al., 2017). Increasing evidence suggested that lncRNAs played vital roles in the development, differentiation, activation of different immune cells and contributed to the modulation of innate and adaptive immunity. Furthermore, lncRNAs could act as communicators and mediators between the tumor microenvironment and cancer cells, highlighting their potential as immunotherapy targets and biomarkers. For example, Sun et al. (2020) identified 57 tumor immune infiltration-associated lncRNAs in non-small cell lung cancer and found that seven of them are associated with patient’s survival and response to immune checkpoint inhibitor (ICI) immunotherapy. Zhou et al. (2020) developed a lncRNA signature of tumor-infiltrating B lymphocytes that are predictive of prognosis and immunotherapy response in bladder cancer. Although continued efforts are coming, the tumor immune infiltration-associated lncRNAs and their clinical significance in colon cancer have not yet been thoroughly investigated.

In this study, we performed an integrative analysis of lncRNA expression profiles, immune cell infiltration profiles, and clinical profiles to infer tumor immune infiltration-associated lncRNAs in colon cancer and explored their value in predicting prognosis.



MATERIALS AND METHODS


Clinical and Transcriptomic Data of Colon Cancer Patients

Clinical and transcriptomic data of 512 colon cancer patients were obtained from UCSC Xena Browser (GDC TCGA Colon Cancer cohort).1 The RNA-seq gene expression level 3 data [log2(RPKM +1) transformed] were used for this study. After removed those patients with overall survival <30 days, a total of 419 was left for further study. Clinical and transcriptomic data of 219 colon cancer patients were derived from Gene Expression Omnibus (GEO) database.2 Microarray data profiled by Affymetrix Human Genome U133 Plus 2.0 Array was used and then background correction, quantile normalization using the R package “affy.”



Acquisitions of lncRNA Expression Profiles of Colon Cancer Patients

Approved human lncRNA information was obtained from HUGO Gene Nomenclature Committee (HGNC).3 After cross-referenced and removed lncRNAs with 0 value in more than 20% of samples, a total of 3,959 lncRNAs were retained for RNA-seq data. For microarray data, a total of 5,919 lncRNAs were retained through repurposing array probes into the human genome and HGNC database. After cross-validation analysis among different cohorts based on different platforms, 2,235 overlapped lncRNA among different platforms were kept for further analysis.



Calculation of Infiltrating Immune Cell Abundance in the Tumor Microenvironment

The relative proportions of 22 types of infiltrating immune cells in the tumor microenvironment were inferred using the CIBERSORT algorithm4 with the default signature matrix at 500 permutations (Newman et al., 2015).



Statistical Analysis

The association between lncRNA expression and the abundance of infiltrating immune cells was measured using the Pearson correlation coefficient (PCC). The association between lncRNA expression and overall survival were evaluated using the univariate and multivariate Cox regression analysis. The lncRNA-based scoring model was developed using the linear combination of lncRNA biomarkers’ transformed expression values with the multivariate Cox regression coefficient as the weight. The differences in overall survival between the high-risk and low-risk groups were assessed using the Kaplan-Meier survival curves and log-rank tests. Hazard ratios (HR) and 95% CI were calculated. The time-dependent receiver operating characteristic (ROC) curve and area under the time-dependent ROC curve (AUC) was calculated for assessing the predictive performance for survival at 3- and 5-years. All statistical analyses were conducted with R software and Bio-conductor (version 3.6.3).




RESULTS


Identification of Prognostic Tumor Immune Infiltration-Associated lncRNAs in Colon Cancer

We first inferred infiltrating levels of 22 immune cell types in the tumor microenvironment through the CIBERSORT algorithm based on the RNA-seq data of patients in the TCGA cohort. Then, we measured the association of lncRNAs with different infiltrating immune cells by calculating the PCC between expression levels of each lncRNA and infiltrating abundance of each infiltrating immune cells in the TME. Finally, we identified 258 lncRNAs that are highly correlated with infiltrating abundance of at least one of 22 immune cell types (Supplementary File 1), as shown in Figure 1A. To determine the prognostic value of these 258 immune infiltration-associated lncRNAs, we performed univariate Cox regression analysis to examine the association between expression levels of these 258 immune infiltration-associated lncRNAs and overall survival of patients in the TCGA cohort, and found that 29 of 258 immune infiltration-associated lncRNAs are significantly associated with overall survival as shown in Figure 1B. To further investigate the independence of these 29 prognostic immune infiltration-associated lncRNAs in predicting overall survival, we then conducted multivariate Cox regression analysis on the expression level of 29 prognostic immune infiltration-associated lncRNAs with overall survival as a dependent variable and other individual clinical features as explanatory variables, and identified four of 29 prognostic immune infiltration-associated lncRNAs as independent prognostic factors that still maintained a significant association with overall survival after adjusted by other clinical features as shown in Figure 1C (Table 1).
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FIGURE 1. Identification of prognostic tumor immune infiltration-associated long non-coding RNAs (lncRNAs) in colon cancer. (A) Network representing the association between lncRNA and infiltrating immune cells using the Cytoscape software. (B) Forest plot representing hazard ratio (HR) and 95% CI of each prognostic lncRNAs derived from Univariate analyses with Cox proportional hazards regression. (C) Forest plot representing HR and 95% CI of each prognostic lncRNAs derived from multivariate analyses with Cox proportional hazards regression.




TABLE 1. The detailed information of four prognostic tumor immune infiltration-associated lncRNAs in colon cancer.
[image: Table1]



Development and Evaluation of a Tumor Immune Infiltration-Associated lncRNA Signature in Predicting Survival

To construct a tumor immune infiltration-associated lncRNA signature to predict overall survival, we fitted these four independent prognostic lncRNAs in a multivariate Cox regression model with overall survival as a dependent variable to measure relative contributions. We then developed a tumor immune infiltration-associated lncRNA signature (TIILncSig) by a linear combination of expression levels of these four independent prognostic lncRNAs, weighted by the corresponding coefficient derived from above multivariate analysis according to previous studies, as follows: TIILncSig = expression(AC008494.3)∗(−2.334119617)+expression(LINC00926)∗0.289309684+expression(AC022034.1)∗0.283336978+expression(SNHG26)∗0.579001809. Then patients of the TCGA cohort were assigned a risk score based on TIILncSig and subsequently were classified into high-risk groups (n = 210) and low-risk groups (n = 209) according to the median value of risk score. As shown in Figure 2A, patients in the high-risk group were observed to have significantly poor overall survival than those in the low-risk group (log-rank test p < 0.001; Figure 2A). The three- and five-survival rates of patients in the high-risk group were 73.9 and 58.1%, respectively, whereas the corresponding rates of patients in the low-risk were 86.5 and 72.9%, respectively. Furthermore, the TIILncSig achieved AUC values of 0.659 and 0.584 in predicting 3 and 5-years survival (Figure 2B). The distribution of TIILncSig-based risk score, the survival status and expression pattern of prognostic lncRNAs of patients in the TCGA cohort were plotted. As shown in Figure 2C, more deaths tended to be enriched in the high-risk group relative to the low-risk group. Moreover, AC008494.3 tended to be a protective factor whose high expression is associated with low risk. On the contrary, the other three lncRNAs (LINC00926, AC022034.1, and SNHG26) tended to be risk factors whose high expression is associated with high risk. As shown in Figure 2D, three risky lncRNAs (LINC00926, AC022034.1, and SNHG26) revealed significantly higher expression in the high-risk groups compared to in the low-risk group, and one protective lncRNA AC008494.3was observed to be expressed at low levels in the high-risk group compared to in the low-risk group (Figure 2D).
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FIGURE 2. Performance evaluation of the tumor immune infiltration-associated lncRNA signature (TIILncSig) for predicting overall survival in the TCGA cohort. (A) Kaplan-Meier survival curves of overall survival between high- and low-risk groups. (B) The time-dependent receiver operating characteristic (ROC) analysis of the sensitivity and specificity for survival prediction by the TIILncSig. (C) The risk score distribution, survival status, and expression pattern of the TIILncSig. (D) Boxplot representing expression differences of lncRNAs between high- and low-risk groups.




Independent Validation of the Prognostic Performance of the TIILncSig

To further confirm the robustness and reliability of the TIILncSig in predicting survival, we further applied the TIILncSig into another independent GEO COAD cohort (GSE17538). The TIILncSig classified 219 patients of the GSE17538 cohort into the high-risk group (n = 110) and low-risk group (n = 109) with obvious different overall survival (log-rank test p = 0.08; Figure 3A). As shown in Figure 3A, the overall survival of patients in the high-risk group patients was shorter than that of patients in the low-risk group patients. The three- and five-survival rates of patients in the high-risk group were 67.3 and 58.4%, respectively, whereas the corresponding rates of patients in the low-risk group were 77.7 and 63.0%. Furthermore, the TIILncSig achieved AUC values of 0.578 and 0.542 in predicting 3 and 5-years survival (Figure 3B). The distribution of TIILncSig-based risk score, the survival status and expression pattern of prognostic lncRNAs of patients in the independent GSE17538 cohort were similar to those observed in the TCGA cohort. As shown in Figures 3C,D, higher expression of three risky lncRNAs (LINC00926, AC022034.1, and SNHG26) and a lower expression of one protective lncRNA (AC008494.3) were observed in patients of the high-risk group compared to those in the low-risk group.
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FIGURE 3. Performance validation of the TIILncSig for predicting overall survival in the GSE17538 cohort. (A) Kaplan-Meier survival curves of overall survival between high- and low-risk groups. (B) The time-dependent ROC analysis of the sensitivity and specificity for survival prediction by the TIILncSig. (C) The risk score distribution, survival status, and expression pattern of the TIILncSig. (D) Boxplot representing expression differences of lncRNAs between high- and low-risk groups.




Independence of the TIILncSig From Other Clinical Features

Results of the univariate analysis showed that although the TIILncSig is significant with overall survival in the TCGA cohort (HR = 2.718, 95% CI = 1.955–3.779, p < 0.001) and GSE17538 cohort (HR = 1.832, 95% CI = 1.045–3.21, p = 0.034), the stage is also significant in the univariate analysis (HR = 2.518, 95% CI = 1.658–3.824, p < 0.001 for TCGA cohort HR = 3.695, 95% CI = 2.189–6.236, p < 0.001 for GSE17538 cohort; Figure 4A). Therefore, we further performed multivariate Cox regression analyses with overall survival as the dependent variable and the TIILncSig and other clinical features as explanatory variables in each cohort to investigate whether the prognostic performance of the TIILncSig is independent of other important clinical features of COAD patients. As shown in Figure 4B, the TIILncSig still had significant associations with overall survival in the TCGA cohort (HR = 2.687, 95% CI = 1.912–3.776, p < 0.001) and GSE17538 cohort (HR = 1.837, 95% CI = 1.047–3.223, p = 0.034). We further performed a stratification analysis for stage and examined the prognostic value of the TIILncSig within the early stage or late stage. All patients were classified into the early-stage group (Stage I and II) and late-stage group (Stage III and IV). When the TIILncSig was applied to patients with stage I and II, we found that the TIILncSig could effectively classify patients into a high-risk group and low-risk group with significantly different overall survival (p < 0.001, log-rank test; Figure 4C). Similar prediction results were observed for patients in the late-stage group. As shown in Figure 4D, patients with stage III and IV were separated into two risk subgroups with significantly different overall survival (p < 0.001, log-rank test; Figure 4D). These multivariate and stratification analysis results demonstrated the independence of the TIILncSig from other clinical features in predicting overall survival.
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FIGURE 4. Independence of the TIILncSig from other clinical features. (A) Univariable Cox regression analysis of the TIILncSig and other clinical features with overall survival in each cohort. (B) Multivariable Cox regression analysis of the TIILncSig and other clinical features with overall survival in each cohort. (C) Kaplan-Meier survival curves of overall survival between high- and low-risk groups for patients with stage I and II. (D) Kaplan-Meier survival curves of overall survival between high- and low-risk groups for patients with stage III and IV.





DISCUSSION

Colon cancer is a well-known heterogeneous disease characterized by distinct clinical, pathological, molecular features, prognosis, and therapy response (Linnekamp et al., 2015; Zhai et al., 2017). Various molecular characteristics have been widely observed to contribute to colon cancer heterogeneity. Different gene expression patterns have been used to define molecularly distinct subtypes with different clinical behavior (Perez-Villamil et al., 2012; Schlicker et al., 2012; Budinska et al., 2013). MicroRNA expression profiles have also been reported to show different expression patterns associated with those obtained by mRNA expression profiling; therefore, they can classify CRC tumors in the same way as mRNA (Sarver et al., 2009; Slattery et al., 2016). Recently, a new ncRNA molecule termed lncRNAs, also revealed different expression profiles associated with distinct clinical features, prognosis, and therapy response and have been used to defined lncRNA-derived molecular subtype (Chen et al., 2014; Zhou et al., 2018a).

Increasing efforts in colon cancer immunogenomics have shown that the type, density, and location of infiltrating immune cells within a tumor have a significant effect on clinical outcome and subtype classification (Zhang et al., 2018; Catalano et al., 2019; Shen et al., 2019). The functional roles and molecular mechanisms of lncRNAs involved in the regulation of tumor immune microenvironment have been reported in some studies (Zhang et al., 2020a). Some known immune-related lncRNAs have been proven to contribute to tumor initiation, growth, and metastasis and acted as potential biomarkers and targets (Zhou et al., 2017, 2018b). However, the tumor immune infiltration-associated lncRNAs and their clinical significance in colon cancer have not yet been fully investigated. Many studies have shown that cellular composition of immune infiltrates in the tumor could be quantified through traditional microscopy-based, but also could be inferred using immunoinformatics algorithms and computational approaches based on genomic, transcriptomic, or DNA methylation data, which provided a very convenient way to unraveled tumor-immune interactions (Zhang et al., 2020b). Therefore, in this study, we first inferred infiltrating profiles of 22 immune cell types in the tumor microenvironment through the CIBERSORT algorithm based on the RNA-seq data of patients in the TCGA cohort. Then, we performed an integrative analysis of lncRNA expression profiles and immune cell infiltration profiles and identified 258 immune infiltration-associated lncRNAs. Combining survival data and Cox regression analysis, four of 258 immune infiltration-associated lncRNAs was found to be independent prognostic factors associated with overall survival after adjusted by other clinical features. To facilitate clinical application, we constructed an lncRNAs-based scoring model based on the expression levels of these four lncRNAs, and applied this model to different patient cohorts. Results from different cohorts demonstrated that the TIILncSig is not only a robust and reliable prognostic factor, but also in independent of other clinical features.

Although more and more lncRNAs have been discovered and identified using the experimental or computational approaches, only a small fraction of them have well been functionally characterized. Abnormal expression of LINC00926 has been observed in several cancers. For example, Wang et al. (2018) found that overexpression of LINC00926 was observed to be associate with improved overall survival in acute myeloid leukemia. Wu and colleagues found that dysregulated expression of LINC00926 was associated with prostate cancer-related fatigue during localized radiation therapy by constructing mRNA and lncRNA regulatory networks. Functional analysis revealed the association of LINC00926 with inflammatory response and immune response-related biological processes (Ye et al., 2018). Further study of Liang et al. (2020) demonstrated the upregulated expression of LINC00926 in late relapsed Hodgkin lymphoma. Recently, Ma et al. (2020) performed a co-expression analysis of lncRNA and immune genes in breast cancer and found that LINC00926 is positively correlated with TNFRSF13C and CD19. The interaction between LINC00926 and the histone H3K4 methyltransferase, MLL1, was confirmed to lead to elevated proinflammatory cytokines and inflammatory states (Bam et al., 2019). Another lncRNAs in this TIILncSig, SNHG26, have also been associated with carcinogenesis and clinical outcome in several cancers. For example, SNHG26 has significantly upregulated in bladder urothelial carcinoma and associated with poor survival (Bao et al., 2017). Overexpression of SNHG6 was found to promote cell proliferation and metastasis in clear cell renal cell carcinoma (ccRCC) by interacting with YBX1 (Zhao et al., 2021). These existing experimental evidence further support the predicted TIILncSig in cancer carcinogenesis and progression and immune regulation. The other two lncRNAs have not been reported to associate with immune progress. Therefore they may be needed to be experimentally and functionally investigated. Although, our results uncovered TIILncSig as a potentially useful biomarker, the TIILncSig would need to be validated in a prospective immunotherapy clinical trial as a companion science trial. Furthermore, whether or not the TIILncSig would be useful in other cancers also should be tested. Finally, our study lacks a validation process for the TIILncSig. Further biological experiments should be made to elucidate the function of the TIILncSig.

In conclusion, we identified several novel lncRNAs involved in the regulation of tumor immune microenvironment associated with different patient clinical outcomes by performing integrative analysis of lncRNA expression profiles, immune cell infiltration profiles, and clinical profiles. Our study will help in understanding the mechanisms of lncRNA in immune regulation in the tumor microenvironment and provide novel biomarkers or targets for prognosis prediction and therapy decision-making for patients with colon cancer.
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Background: Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancers. This study aimed to discover the potential miRNA biomarkers for early detection of NSCLC.

Methods: Total circulating miRNAs were extracted from six patients and six volunteers and run on the miRNA chip. The differentially expressed miRNAs acquired by data mining were intersected with chip results, and qRT-PCR were carried out. Then the differentially miRNAs were validated by using a validation cohort (120 participants). ROC curves were established to evaluate the diagnostic efficacy of the differentially circulating miRNAs. The target genes of the differential miRNAs were identified using the miRTarBase database, and follow-up GO and KEGG enrichment analysis were conducted.

Results: We identified 577 miRNA which screened according to the criteria (fold change > 2 and p value < 0.05). Among them, seven circulating miRNAs passed additional filtering based on data mining. These miRNAs were further validated in the training and validation cohort. miR-492, miR-590-3p, and miR-631 were differentially expressed in the patients’ serum, and the area under the ROC curve (AUC) values of these miRNAs were 0.789, 0.792, and 0.711, respectively. When using them as a combination to discriminate healthy volunteers from patients, the AUC reached 0.828 (95% CI, 0.750–0.905, p = 0.000) with a sensitivity of 86.7% and specificity of 71.7%. The follow-up enrichment analysis showed that target genes of three miRNA were associated with tumorigenesis and progression, such as cell cycle and P53 signaling pathway.

Conclusions: The combination of miR-492, miR-590-3p, and miR-631 can be utilized to distinguish healthy individuals and early-stage NSCLC patients.

Impact: The combination of miR-492, miR-590-3p, and miR-631 might be a promising serum biomarker in patients for the early diagnosis of NSCLC.

Keywords: non-small cell lung cancer, healthy controls, microRNA, biomarkers, early diagnosis


INTRODUCTION

Lung cancer has become the leading cause of cancer-related death, in which non-small cell lung cancer (NSCLC) accounts for 85% (Chen et al., 2014; Siegel et al., 2020). Early stage (stage I and II) NSCLC patients can achieve a good prognosis after receiving treatments (Smolle-Juettner et al., 2010; Ghysen and Vansteenkiste, 2019). It was reported that the 5-year survival rate of NSCLC patients with stage I who received a lobectomy was around 45–65% (Ou et al., 2007), while for those patients who were inoperable or had refused surgical treatment, the local control rate of stereotactic radiotherapy could be over 85%, and the 3-year survival rate was about 60%(Baumann et al., 2009; Timmerman et al., 2010). Therefore, early and precise diagnosis of NSCLC is essential for reducing the mortality of NSCLC patients (Osmani et al., 2018). The clinical diagnosis of NSCLC is usually based on histopathological diagnosis, whereas the definitive results must be obtained by invasive examination, such as operation and biopsy, which are invasive and painful for the patients (Postmus et al., 2017; Duma et al., 2019). Owing to the limitation of detection technique and invasiveness of the existing histopathological examinations, molecular profiling by non-invasive detection of the tumor associated gene expression might play an important role.

Recently, microRNAs (miRNAs) are found to be closely associated with the development of cancer (Li et al., 2013; Tutar, 2014). As a non-coding single-stranded small RNA with 19-24 nucleotides, miRNAs mediate the post-transcriptional gene expression by binding to the 3’ non-coding region of the target gene (Lu and Rothenberg, 2018; Correia de Sousa et al., 2019). It is highly conservative and endogenous, and it participates in a majority of biological processes including cell proliferation, differentiation, apoptosis (Bartel, 2004; He and Hannon, 2004). More than 50% of miRNA genes are located in tumor-associated genomic regions (which were called fragile sites), which suggest that they are deeply involved in the development, metastasis, and recurrence of cancer (Calin et al., 2004). Lawrie et al. (2007) reported that a quantity of miRNA have been detected in the human serum. When compared to healthy controls, miR-155, miR-210, and miR-21 were significantly upregulated in the serum of patients who suffered from diffuse large B-cell lymphoma, implicating the potential diagnostic efficacy of these serum miRNA. In recent years, several groups have identified miRNA in NSCLC tissue samples, and a number of promising studies detected changes in circulating miRNAs in blood samples of NSCLC patients. These results could potentially lead to the application of non-invasive detection methods as well as new molecular approaches to treating NSCLC, or even to monitor the efficacy of the therapy. The sequent research (Chen et al., 2008; Mitchell et al., 2008) uncovered the application of circulating miRNA, a novel, non-invasive biomarker which existed stably in the serum. Compared with human plasma, there exists no blood cells in human serum. There are other parameters that cannot be ignored in blood cells, which could confuse the results of detection once the blood cells were disrupted. Consequently, serum miRNA is more likely to be utilized as a dependable tumor biomarker than plasma miRNA. Lv.et al studied the serum miRNA profile of early lung adenocarcinoma (Lv et al., 2017), although non-adenocarcinoma should not be ignored. Therefore, our study aims to identify and verify the differentially expressed (DE) miRNAs in serum collected from NSCLC patients in early stage and healthy controls by real-time fluorescent quantitative PCR (qRT-PCR). We discovered potential biomarkers for early diagnosis of NSCLC patients with a view to improving the diagnosis rate, promoting prognosis, and reducing mortality.



MATERIALS AND METHODS


Study Population

All the serum samples came from patients who were newly diagnosed in the department of cardiothoracic surgery of Nanfang Hospital and from healthy age- and gender-matched individuals at the Nanfang Hospital Health Checkup Center from the period of January 1, 2014 to June 1, 2016. None of the Stage I or II patients (according to the 2009 AJCC/UICC 7th Edition TNM staging) had received any anti-tumor treatments including surgery, radiotherapy, or chemotherapy. Their clinical characteristics are listed in Supplementary Tables 1–3. All patients and healthy controls were informed by the full-time nurses of the main purpose, basic procedures, potential risks, and clinical significance of this study. The written informed consent form was signed by the patients or the healthy individuals. Our experiment was reviewed and approved by the Nanfang Hospital Ethics Committee of Southern Medical University.



Sample Processing

Serum samples were collected from all the participants’ venous blood. Samples were centrifuged at 1,500 rpm for 15 min, then stored in -80°C for further analysis. The total RNA was extracted from the serum samples by using Tizol Reagent (BD Molecular Research Center, United States) according to the protocols of the manufacturers. In accordance with the instructions of the manufacturers, miRNA labeling and hybridization were conducted by using miRCURYTM Array Power Labeling kit (Exiqon, Denmark, 208032-A) and miRCURYTM Array Wash buffer kit (Exiqon, Denmark, 208021).



miRNA Chip Scanning and Data Analysis

Chip screening for fluorescence intensity was performed by using Axon GenePix 4000B Microarray scanner (Molecular Devices, United States) to convert images into digital signals. GenePix V6.0 was used to read the original fluorescence intensity of each probe in the chip. A total of 3,100 miRNAs were measured. The correction value was obtained by subtracting the background value from the original value and averaging the values of the four repeated points of each probe point on the same chip. miRNAs with significant differential expression were determined by T test with a difference ≥2 times.



miRNA Reverse Transcription Reaction and RT-PCR

Reverse transcription reaction of the candidate serum miRNA (miR-185-5p, miR-431-5p, miR-484, miR-492, miR-584-5p, miR-590-3p, and miR-631) was performed by using PrimeScriptTM RT reagent Kit (Takara, Dalian, China, RR037A) according to the manufacturer’s instructions. RT-PCR was carried out with SYBR® Premix Ex TaqTM II (Tli RNaseH Plus) (Takara, Dalian, China, RR820A) in accordance with the manufacturer’s protocols. The relative expressions of the candidate miRNA were calculated by 2–ΔΔCT. Primers of reverse transcription and RT-PCRs were acquired from Guangzhou Ribo Bio Inc (China, Guangzhou). U6 was considered as the endogenous control.



Receiver Operating Characteristic Analysis of the Differentially-Expressed miRNA

The receiver operating characteristic (ROC) curve, as a comprehensive index which reflects the sensitivity and specificity of continuous variants, can be used in the evaluation of the diagnostic value of the diagnostic test. When comparing the diagnostic value of two or more different diagnostic tests, the area under the ROC curve (AUC) of each test was calculated for direct comparison. The ROC curves of serum DE-miRNAs were drawn, respectively.



Gene Expression Omnibus Database

Gene expression data of paired NSCLC patients’ cancer tissues (tumor tissues and para-cancerous tissues) and healthy human serum were obtained from Gene Expression Omnibus (GEO)1 database, and screened for differentially expressed miRNAs with a p-value less than 0.05. Studies were regarded eligible for our analysis according to the following criteria: (1) Studies with non-small cell lung cancer tissue or serum samples, (2) Studies with information about the technology utilized, and (3) Studies with the existence of normal cohorts as the control. Based on these rules, five datasets were obtained from the GEO database, including tumor tissues from non-small lung cancer patients and adjacent tissues (GSE2109, GSE74190, and GSE63805), and serum from lung cancer patients and healthy controls (GSE64591 and GSE20189). Next, we performed the differential analysis (|Log2FC| > 2, p-value < 0.05) by comparing tumor tissues to normal tissues in the SPSS 19.0 software using student’s t-test. Subsequently, we combined the differentially expressed genes acquired from GEO and gene chips to get the shared gene signatures.



Prediction of Target Genes of the DE-miRNAs

The V7.0 miRTarBase,2 which is an online database containing plenty of experimentally validated microRNA–target interactions (Hsu et al., 2011), was applied to identify the potential target genes of the DE-miRNA. Species selects: Homo sapiens. miRNA ID was entered as “hsa-miR-590-3p/hsa-miR-492/hsa-miR-631” to obtain the gene list of predicted target genes. Since the list contains a small number of strong evidence genes, we selected all the genes in the gene list (including strong evidence and less strong evidence) for relevant pathway enrichment analysis.



GO and KEGG Pathway Analysis

The DAVID database (version 6.8),3 as a bioinformatic database that integrates biological data and analysis tools to provide systematic and comprehensive biological annotation information for large-scale gene or protein lists, was used to perform gene enrichment analysis of the collection of the potential target genes of the DE-miRNAs (Dennis Sherman et al., 2003). We have taken a collection of the predicted target genes of the three target miRNAs respectively to obtain the gene list. On the background of the human genome-wide annotation data (org.Hs.eg.db), we utilized the cluster profiler package of the R language (version: 3.6.5) to perform the enrichment analysis of GO and KEGG pathways. The p-value significance threshold is set to 0.5, and the q-value significance threshold is set to 0.2. GO functional annotation analysis and KEGG pathway analysis based on the DAVID database were conducted on the candidate target genes of the DE-miRNAs. P-value < 0.05 was regarded as statistically significant.



Statistical Analysis

Data analysis was performed by SPSS 19.0 (Chicago, IL, United States) software and measurement data was expressed by mean ± standard deviation. Two independent samples T test and χ2 Test were performed to compare differences in miRNA expression between two groups. Mann–Whitney tests were used to analyze differential expression; p-value less than 0.05 was regarded as statistically significant. ROC curves were established to analyze the diagnostic effects of serum miRNAs and the AUC calculated their specificity and sensitivity in the diagnosis of early NSCLC. In terms of prediction of diagnostic efficacy of combination of multiple serum miRNAs, the process was followed by setting up regression models by using binary logistic regression method.



RESULTS


Screening for Differentially Expressed Serum miRNAs by Chip and Bioinformatics Analysis

The serum total RNA samples were extracted from six patients with early NSCLC and six healthy controls. Each sample was made into one gene chip and then a total of 12 gene chips were screened for the differentially expressed miRNAs. It was shown that 209 serum miRNAs exhibited a differential expression of two-fold or more, of which 122 miRNAs were up-regulated and 87 miRNAs were down-regulated. Then we downloaded a data set containing information about gene expression of NSCLC patients and healthy human serum, as well as NSCLC patients and para-cancerous tissues from GEO, screening for differentially expressed miRNAs with P value less than 0.05. The expression levels of 31 miRNAs were significantly up-regulated in NSCLC patients compared to healthy individuals, meanwhile 28 miRNAs were obviously down-regulated in serum samples. As for samples from tissues, 309 miRNAs were found to express differentially in NSCLC and adjacent tissues, in which 172 miRNAs were significantly up-regulated and 137 miRNAs were down-regulated. With a view of further enhancing the reliability of the chip results, we crossed the differentially expressed miRNAs screened by gene chip with that obtained by data mining. The miR-484 and miR-590-3p were significantly up-regulated. When intersecting the data-set results from tissues and that of gene chips, five miRNAs were expressed differentially, including up-regulated miR-185-5p, miR-431-5p, and miR-492 and down-regulated miR-584-5p and miR-631 (Table 1).


TABLE 1. The differentially expressed miRNAs initially screened by gene chip and data mining.
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Candidate Serum miRNAs Screened From Clinical Serum Samples

We extracted serum total RNA from 24 cases in the training cohort, and seven candidate serum miRNAs obtained by initial screening were detected by RT-PCR. As shown in Figure 1, serum miR-492 and miR-590-3p of those who suffered early disease were significantly up-regulated compared to the healthy individuals (1.88 and 1.71 folds, P values were 0.008 and 0.0141, respectively). As shown in Figure 1, miR-631 was down-regulated 1.46 times (p = 0.0304). miR-185-5p, miR-431-5p, and miR-484 also presented differential expression without statistical difference. In addition, the Ct value of miR-584-5p was greater than 40, suggesting that the serum concentration of it is low. Serum total RNA were collected from 120 cases in the validation cohort, and RT-PCR was performed to further validate the three candidate miRNAs screen from the training cohort (Figure 2). Compared to healthy individuals, miR-492 and miR-590-3p in the patients’ serum were up-regulated 1.65 and 1.69 fold, respectively (p < 0.0001). It is suggested that the RNA expression levels of miR-492 and miR-590-3p were obviously up-regulated in early-stage NSCLC patients. The serum miR-631 was down-regulated 1.50 times (p < 0.0001).


[image: image]

FIGURE 1. Differentially expressed serum miRNAs in the training set. The miRNA levels of miR185-p, miR-431-5p, miR484, miR-492, miR-590-3p, and miR-631 were detected by RT-PCR assay. Data are presented as mean ± SD. *p < 0.05 vs. NC group, **p < 0.01 vs. NC group.



[image: image]

FIGURE 2. Differentially expressed serum miRNAs in the validation cohort. The miRNA levels of miR-492, miR-590-3p, and miR631 were detected by RT-PCR assay. Data are presented as mean ± SD. ***p < 0.001 vs. NC group.




Diagnostic Efficacy of Differential Expression of miR-492, miR-590-3p, and miR-631

The ROC curves of three serum miRNAs were drawn. The results showed that the AUC value of miR-492, miR-590-3p, and miR-631were 0.789, 0.792, and 0.711, respectively when distinguished between healthy individuals and early stage NSCLC patients. As illustrated in Figure 3, the AUC reached 0.828 (95% CI, 0.750–0.905, p = 0.000) when using these three serum miRNAs as a combination to discriminate healthy volunteers from patients.
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FIGURE 3. Receiver operating characteristic (ROC) curves of differentially expressed miRNAs between NSCLC patients and healthy controls. ROC curves of miR-492, miR-590-3p, and miR631 showed a moderate distinguishing efficiency. The combination of the three miRNAs showed a slightly higher AUC value.




The Correlation of miR-492, miR-590-3p, and miR-631 With Clinicopathological Factors

As shown in Figure 4, according to the TNM staging classification, the expression levels of serum miR-492 and miR-631 did not significantly increase with the progress of tumor TNM staging (miR-492: p = 0.385, miR-631: p = 0.265). The expression of miR-590-3p in the serum of stage II patients was notably higher than stage I patients (p = 0.042). When classified by pathological type, serum miR-492, miR-590-3p, and miR-631 did not express in a significant difference in the adenocarcinoma and squamous cell carcinoma (miR-492: p = 0.781, miR-590-3p: p = 0.572, miR-631: p = 1.000) in Figure 5.
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FIGURE 4. The relationship between miRNA expression levels in serum and with clinical stage. There were no significant differences between miR-492 or miR-631 expression levels in serum with clinical stage. The expression level of serum miR-590-3p increases with clinical stage. *p < 0.05.
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FIGURE 5. The relationship between miRNA expression levels in serum and with pathological types. Serum miR-492, miR-590-3p, and miR-631 miRNAs did not show significant differential expression in adenocarcinoma and squamous cell carcinoma.




The Target Genes of miR-492, miR-590-3p, and miR-631 Were Associated With Lung Cancer Progression

The potential target genes of the DE-miRNA, including miR-492, miR-590-3p, and miR-631, were predicted using the miRTarBase database. As shown in Supplementary Table 5, 45 target genes were predicted for miR-492, 390 genes for miR-590-3p, and 51 genes for miR-631. GO functional annotation analysis on the above-mentioned target genes was performed, as shown in Figure 6. The GO analysis of the collection of target genes of miR-492, miR-590-3p, and miR-631were enriched in the following functions, including the regulation of mRNA metabolic process, chromosomal region, ubiquitin ligase complex and chromosome, and centrometric region. Studies demonstrated that the genetic mutation of chromosomal regions were closely associated with tumorigenesis of lung cancer (Li et al., 2016). It was reported that various ubiquitin ligase complexes were related to cell stemness maintenance and cell migration of lung cancer cells (Shao et al., 2018; Gu et al., 2019). To further explore the potential enriched pathway relevant to these target genes, KEGG pathway analysis of the collection of the DE-miRNAs’ target gene was subsequently conducted using the 6.8 DAVID database. As shown in Figure 7, the differential target genes of miR-492, miR-590-3p, and miR-631 were enriched in cell cycle, FoxO signaling pathway, and P53 signaling pathway. P53 was a typical tumor suppressor gene. Several studies indicated that P53 mutation serves as a poor prognosis for NSCLC, particularly lung adenocarcinoma (Brambilla and Brambilla, 1997). Furthermore, P53 pathway provides some target for treatment of lung cancer (Mitsudomi et al., 1995). The expression of cell cycle was involved in a variety of genetic alterations in the process of pathogenesis and progression of both NSCLC and SCLC. It was reported that the forkhead box subfamily O (FOXO) pathway, which is downstream of the PI3K/AKT pathway, could promote the apoptosis of NSCLC cells.
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FIGURE 6. GO functional annotation of the collection of the potential target genes of the DE-miRNAs (miR-492, miR-590-3p, and miR-631). The functions of the target genes were mainly enriched in the regulation of mRNA metabolic process, chromosomal region, ubiquitin ligase complex and chromosome, and centrometric region. P-value < 0.05 was considered statistically significant.
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FIGURE 7. KEGG pathway analysis of the collection of the potential target genes of the DE-miRNAs (miR-492, miR-590-3p, and miR-631). The results show the enriched pathways of the target genes include cell cycle, FoxO signaling pathway, and P53 signaling pathway.




DISCUSSION

A majority of all the newly diagnosed cases were at advanced stage or had developed distant metastasis (Reck and Rabe, 2017). Therefore, it is urgent to develop an early detection assay for NSCLC patients. Compared to tissue biopsy, blood is commonly used in clinical laboratory tests with a low cost which helps to reflect the physical condition in a more all-round way. It is also a more favorable non-invasive method which could be repeatedly tested. miRNAs were found to be able to exist steadily in the circulatory system. An increasing number of scientific researchers are focusing on circulatory microRNAs (Ntoumou et al., 2017; Van Roosbroeck and Calin, 2017; Huang et al., 2019) in the hope of their utilization in tumor diagnosis, prognosis, and efficacy assessments. This study was designed to find out new serum biomarkers of miRNA for early diagnosis of non-small cell lung cancer.

High-throughput gene chip was taken advantage of to screen differentially expressed serum miRNAs in patients with early-stage NSCLC. Then methodology of bioinformatics was performed for data mining, and we ultimately screened out seven potential serum miRNAs: miR-185-5p, miR-431-5p, miR-484, miR-492, miR-584-5p, miR-590-3p, and miR-63. Then we divided 144 patients into two cohorts: the training cohort and validation cohort. miR-492, miR-590-3p, and miR-631 were finally identified as the statistically different miRNAs. The ROC curve analysis showed that the sensitivity of a collection of these three serum miRNAs can reach up to 86.7%, and the specificity was as high as 71.7%, which indicated that they could be used as potential biomarkers in the early diagnosis of NSCLC.

It was reported in several studies that miR-492 was highly expressed in many different tumors and was associated with the process of tumorigenesis, metastasis, and recurrence (von Frowein et al., 2018; Shi et al., 2019). Using the technology of gene chips, Wang et al. (2019) aimed to discover miRNA expression profiling of liver cancer and its adjacent tissues and found that miR-492 was highly expressed in liver cancer tissues. Furthermore, miR-492 was proven to be involved in the development of liver cancer by in vitro and in vivo experiments (Jiang et al., 2014). Shen et al. (2015) noted that the expression level of miR-492 was up-regulated both in breast cancer cells and tissues, which facilitates breast cancer cell proliferation and growth. Bioinformatic analysis and experimental researches show that SOX7 is a potential target gene of miR-492, and miR-492 could promote cell cycle of breast cancer cells by downregulating the expression of SOX7 (Wang et al., 2020). It was in accordance with the results of KEGG enrichment analysis indicating the target genes were enriched in cell cycle. In addition, it was reported that p53 activation is capable of upregulating miR-492 in lung cancer cells using a miRNA profiling assay (Shen et al., 2015). It was in agreement with the fact that KEGG analysis shows that target genes were enriched in P53 signaling pathway.

As far as miR-590-3p is concerned, it is not only highly expressed in lung adenocarcinoma tissues and metastatic lymph nodes, but is also expressed at a high level in lung adenocarcinoma cells. Moreover, investigators found that miR-590-3p inhibited the expression of OLFM4 protein by binding to the 3’UTR site of OLFM4, which is its downstream target gene, thus promoting invasion and metastasis of lung adenocarcinoma (Liu et al., 2017). In addition, Liu et al. found that the miR-590/Acvr2a/Terf1 signaling pathway exerts effects on modulating telomere elongation of induced pluripotent stem cells (Liu et al., 2018). And our results of GO analysis were enriched in the chromosomal region. Apart from that, relevant research demonstrated that hsa-miR-590-3p could serve as the potential regulator of COMMD10, whose target genes were dominantly enriched in Cullin-RING ubiquitin ligase complexes (Fan et al., 2020). What’s more, Shi et al. (2020) found that Hsa-MiR-590-3p could facilitate the progression of pancreatic cancer through G1/S cell cycle pathway. Abdolvahabi et al. showed that MiR-590-3p suppresses cell growth and promotes the apoptosis of breast cancer cell via deacetylation of p53 (Abdolvahabi et al., 2019). And the above-mentioned discoveries were in accordance with the results of our GO and KEGG analysis. GO functional annotation analysis using the DAVID database shows the collection of the potential target genes were enriched in ubiquitin ligase complex. KEGG enrichment analysis indicates enriched pathways in cell cycle and P53 signaling pathway.

Fu et al. (2016) detected that miR-631 was down-regulated in prostate cancer cells and tissues. Meanwhile, it was found that miR-631 was related to patients’ drug resistance to bortezomib in multiple myeloma. Xi et al. (2017) found that UbcH10 was highly expressed in bortezomib-resistant multiple myeloma, which was caused by low expression of miR-631. The results of the above basic research revealed molecular mechanisms of three miRNAs with tumorigenesis. We believe that the above miRNAs may be used as potential biomarkers with an important diagnostic significance for early diagnosis of NSCLC. Targeting these enriched pathways could contribute to the comprehension of how miR-492, miR-590-3p, and miR-631 regulate the process of pathogenesis and progression of NSCLC.

Compared to previous studies with regard to serum miRNAs, our study has several advantages. On the one hand, in the initial screening stage of the target gene, in addition to the chip technology that was often applied in high-throughput screening of hallmarks, we also adopted the popular bioinformatic method for data mining so as to enlarge sample size and enhance the reliability of our results. On the other hand, studies prior to this experiment have generally not restricted the tumor staging in the population and incorporated a considerable number of stage III or IV NSCLC. However, all subjects included in our study were early-stage NSCLC patients with a better survival prognosis. Therefore, it is more imperative for us to explore potential biomarkers for early diagnosis of these patients. What’s more, the enriched functions and pathways in GO and KEGG analysis conducted on the collections of the potential target genes could facilitate a comprehensive understanding of pathways influenced by miR-492, miR-590-3p, and miR-631.

In summary, our study identified a diagnostic biomarker consisting of three serum miRNAs (miR-492, miR-590-3p, and miR-631) for early NSCLC, which has certain clinical significance. Although the sample number is not large, the conclusion from the preliminary exploration was almost in accordance with the results of the validation set. Therefore, it is urgent to expand the sample size in the future, and further work is needed to validate these findings in a larger cohort and in the prospective setting as an actionable biomarker. Focusing on the enriched pathways such as cell cycle, FoxO signaling pathway, and P53 signaling pathway could further contribute to the understanding of the underlying mechanisms of how miR-492, miR-590-3p, and miR-631 impact on tumorigenesis and progression of lung tumor.
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Apoptosis is a coordinated cellular process that occurs in several physiological situations. Dysregulation of apoptosis has been documented in numerous pathological situations, particularly cancer. Non-coding RNAs regulate apoptosis via different mechanisms. Lung cancer is among neoplastic conditions in which the role of non-coding RNAs in the regulation of apoptosis has been investigated. Non-coding RNAs that regulate apoptosis in lung cancer have functional interactions with PI3K/Akt, PTEN, GSK-3β, NF-κB, Bcl-2, Bax, p53, mTOR and other important cancer-related pathways. Globally, over-expression of apoptosis-blocking non-coding RNAs has been associated with poor prognosis of patients, while apoptosis-promoting ones have the opposite effect. In the current paper, we describe the impact of lncRNAs and miRNAs on cell apoptosis in lung cancer.




Keywords: lncRNA, miRNA, apoptosis, lung cancer, expression



Introduction

Apoptosis is a well-organized and coordinated cellular process that happens in several physiological situations. Aberrant regulation of apoptosis has also been documented in numerous pathological situations, particularly cancer. In fact, cancer is one of the circumstances where this process is reduced, leading to evolution of malignant cells that will not perish. Apoptosis is regulated by a complex mechanism involving numerous pathways. Deficiencies in apoptotic pathways lead to malignant transformation of cells, enhancement of metastasis and induction of resistance to chemotherapy/radiotherapy. Meanwhile, apoptosis has been considered as a target of several anticancer modalities (1). Both intracellular and extracellular stimuli can regulate apoptosis. This process is described by morphological alterations in the cells including fragmentation and condensation of the nuclear compartment, permeabilization of the outer membrane of mitochondria, membrane blebbing, cell shrinkage and finally formation of apoptotic bodies (2). Two extrinsic and intrinsic pathways are involved in the induction of cell apoptosis. While the extrinsic pathway is stimulated by death receptors, namely Fas, TNF receptors and TRAILs, the intrinsic pathway is initiated by DNA damage, energy starvation and hypoxia, which can dephosphorylate and cleave pro-apoptotic proteins, resulting in their recruitment in the mitochondria (3). Both pro-apoptotic and anti-apoptotic members of the Bcl-2 family proteins regulate intrinsic apoptotic pathway (4).

Recent studies have shown that non-coding RNAs (ncRNAs) have an important regulatory role on induction of apoptosis. In fact, regulation of cell apoptosis is the main route of function of many of these transcripts in the carcinogenic events (5). This group of transcripts has several types, two of them i.e. long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have attained more attention in cancer biology. LncRNAs have typically sizes more than 200 nucleotides and are transcribed by RNA polymerase II, except for few cases do not harbor open reading frame and translation-termination region, yet, lncRNAs can be spliced, 5’-capped and get polyadenylated tails. Their specific three-dimensional conformation permits them to interact with several classes of biomolecules including proteins, DNA or RNA. These interactions are framed through base pairing or construction of network (6). LncRNAs partake in regulation of gene expression, differentiation of cells and alteration of chromatin structure (6).

miRNAs have been shown to regulate expression of a high proportion of human genes. They mainly target 3’ UTR of genes to suppress their expression or degrade the corresponding RNAs. Several aspects of cell functioning including apoptosis is regulated by miRNAs (7). Figure 1 illustrates that aberrant expression of various ncRNAs could contribute in modulation of the mitochondrial pathway of apoptosis in the context of lung cancer.




Figure 1 | A schematic representation of the role of non-coding RNAs in triggering the mitochondrial pathway of apoptosis in human lung cancer. The Bcl-2 family of proteins could play an effective role in modulating apoptosis via regulating mitochondrial cascade. The anti-apoptotic proteins Bcl-2 and Bcl-xL are located in the exterior part of mitochondrial wall and can suppress cytochrome c release. The pro-apoptotic Bcl-2 proteins Bax, Bad, Bim, and Bid could be located in the cytosol but may be transferred to mitochondria following induction of death signaling pathway, where they could elevate the release of cytochrome c (8, 9). The mitochondrial cascade of apoptosis could be considered as the most commonly deregulated form of cell death in a variety of human cancers. Furthermore, aberrant expression of various non-coding RNAs could have a crucial part in dysregulating the mitochondrial pathway of apoptosis in lung cancer.



In the current paper, we describe the impact of lncRNAs and miRNAs on cell apoptosis in lung cancer.



miRNAs and Apoptosis in Lung Cancer

Suppression of PI3K/AKT pathway in EGFR mutant lung cancer cells has led to dysregulation of 17 miRNAs among them have been members of the miR-17~ 92 cluster. These miRNAs function in a coordinated manner to increase the activity of the EGFR cascade. Suppression of miR-19b expression in EGFR mutant lung cancer cells has led to re phosphorylation of ERK, AKT and STAT and effector proteins. Consistently, it has resulted in enhancement of apoptosis, while reduction of cell cycle progression, colony formation and migration. Administration of gefitinib along with miR-19b antagonism has decreased migration and colony formation in a synergistic manner implying the cooperation between EGFR and miR-19b in the regulation of oncogenesis. PPP2R5E and BCL2L11 have been recognized as main targets of miR-19b, through their inhibition, miR-19b regulates cell proliferation and resistance to apoptosis, respectively (10). miR-21 is another miRNA that regulates apoptosis of lung cancer cells via influencing the PI3K/Akt/NF-κB signaling pathway. Inhibition of miR-21 has enhanced apoptosis via this route. ASPP2 has been recognized as the target of miR-21 in NSCLC cells. miR-21 silencing has also inhibited migration, invasion, and epithelial-mesenchymal transition (EMT). Besides, miR-21 inhibition has stimulated cell apoptosis through caspase dependent route. Taken together, miR-21 silencing can induce cell apoptosis via reducing activity of the PI3K/Akt/NF-κB signaling (11). miR-24 is another oncogenic miRNA which is up-regulated in lung cancer tissues, particularly in high grade and large-sized tumors. Consistently, higher expression of miR-21 predicts lower overall survival (OS) of patients. Functionally, miR-24 enhances the viability, proliferation and cell cycle transition, while inhibiting cell apoptosis through binding with MAPK7 (12). miR-26 is a down-regulated miRNA in lung cancer cells. Forded over-expression of miR-26 induces cell apoptosis and enhances activity of caspase-3 and caspase-9. On the other hand, miR-26 silencing has increased levels of LC3 protein and the autophagy-associated genes in lung cancer cells. Besides, miR-26 has been shown to influence apoptosis and autophagy through suppressing expression of TGF-β in a JNK dependent route. Besides, miR-26 has been reported to affect the endoplasmic reticulum stress (ERS) signaling pathway (13). Figure 2 represents the role of several ncRNAs in regulating autophagy cascade in human lung cancer.




Figure 2 | A schematic summary of the role of various non-coding RNAs in modulating the process of autophagy in human lung cancer. Several non-coding RNAs affect lung cancer progression through modulating autophagy and apoptosis cascades in human lung cancer cells. As an illustration, overexpression of lncRNA PANDAR as a tumor suppressor via directly targeting Beclin-1, LC3-I and LC3-II could activate both autophagy and apoptosis cascades, and thereby suppressing progression of lung cancer (14). In addition, lncRNA CASC2 could suppress autophagy and enhance apoptosis pathway in non-small cell lung cancer cells through modulating the miR-214/TRIM16 axis. Moreover, p62 expression level was significantly elevated but Atg-5 expression and the ratio of LC3-II/LC3-I were considerably reduced in the CASC2-overexpressing cells (15).



Table 1 shows the list of miRNAs that regulate apoptosis in lung cancer.


Table 1 | miRNAs regulating apoptosis in lung cancer.



Apoptosis-related miRNAs have been shown to influence survival of lung cancer patients. For instance, expression of miR-21 predicts lower OS of patients with NSCLC (12). Moreover, over-expression of miR-125b has been associated with poor prognosis in NSCLC (24).



LncRNAs and Apoptosis in Lung Cancer

Expression of FER1L4 has been remarkably decreased in plasma and tissue samples of patients with NSCLC as well as related cell lines. Forced over-expression of this lncRNA has reduced cell proliferation, migratory aptitude and invasiveness. FER1L4 has been shown to up-regulate PTEN and p53 expressions, suppress AKT phosphorylation expression, therefore enhancing the fraction of apoptotic cells. Functionally, these effects are mediated through the PTEN/AKT/p53 pathway (58). On the other hand, expression of PCAT1 has been increased in NSCLC tissues and cell lines. In vitro studies have shown that PCAT1 stimulates cell proliferation and invasion while suppressing cell apoptosis. In addition, PCAT1 has been shown to interact with the RNA-binding protein DKC1. PCAT1 and DKC1 exert synergistic effects in NSCLC. They enhance activity of VEGF/AKT/Bcl-2/caspase9 pathway in these cells (59). WT1-AS is a down-regulated lncRNA in NSCLC cell lines which is shown to sponge miR-494-3p. Up-regulation of WT1-AS has increased apoptosis of lung cancer cells and attenuated progression of NSCLC through up-regulation of PTEN and subsequent inactivation of PI3K/AKT pathway (60). GACAT1 is another regulator of apoptosis which has been found to be up-regulated in NSCLC tissues in association with poor survival of patients. Functionally, GACAT1 enhances proliferation and cell cycle progression and inhibits apoptosis through sponging miR-422a and increasing expression of YY1 transcription factor (61). HOXC-AS2 is another up-regulated in NSCLC samples which increases proliferation, migration, and EMT, while suppressing apoptosis. HOXC13 has been identified as functional target of HOXC-AS2. Notably, HOXC-AS2 and HOXC13 can enhance expression of each other (62). Expression of SNHG1 has been found to be increased in NSCLC parallel with up-regulation of FRAT1. SNHG1 knock down has suppressed proliferation, increased cell apoptosis and precluded migration and invasiveness of these cells. Mechanistically, SNHG1 sponges miR-361-3p and to release FRAT1 from inhibitory effects of this miRNA (63). Table 2 shows the role of lncRNAs in regulation of apoptosis in lung cancer.


Table 2 | LncRNAs regulating apoptosis in lung cancer.



Among lncRNAs which regulate apoptosis in lung cancer cells, over-expression of LINC00460, AWAPPH, SNHG20, HULC, ZEB2-AS1 and TRPM2-AS has been associated with poor prognosis of patients, while EPB41L4A-AS2 has the opposite effect (Table 3).


Table 3 | Prognostic role of apoptosis-related lncRNAs in lung cancer.





ncRNAs, Cell Apoptosis and Immunotherapy

Since immunotherapy has an emerging role in the treatment of lung cancer (98), identification of the role of ncRNAs in immune regulation and response of lung cancer to immunotherapy is important. A number of apoptosis-regulating ncRNAs have essential roles in this regard. For instance, miR-155 and miR-17~ 92 are involved in differentiation regulatory T cells (Tregs) and their function (99). miR-21 and miR-26 through down-regulation of TAP1 and reduction in expression of HLA class I antigens affect response to immunotherapies (100). miR-138, miR-155, miR-34 and miR-146a have been found to affect immune checkpoints (101). MALAT1 is an lncRNA which is possibly involved in the immunotherapy resistance through induction of immunosuppressive phenotypes in stem cells (102). NEAT1 can affect response to immunotherapy through modulation of miR-155/Tim-3 (103). The exact roles of these ncRNAs in conferring resistance to immunotherapeutic approaches have not been elucidated in lung cancer; yet based on the results obtained from similar studies in other cancer types, these ncRNAs are expected to simultaneously affect apoptosis and response to immunotherapy in lung cancer.



Discussion

Cell apoptosis, as one of the major dysregulated processes in the carcinogenesis of lung cancer has been shown to be regulated by ncRNAs. In the current review, we have explained the impact of miRNAs and lncRNAs on apoptosis in lung cancer. These ncRNAs interact with PI3K/Akt, NF-κB, Wnt/β-catenin, EGFR, TGF-β and other cancer-related pathways. Therefore, they not only regulate apoptosis, but also influence other aspects of lung carcinogenesis. Figure 3 depicts the role of ncRNAs in modulating apoptosis through Wnt/β-catenin cascade in human lung cancer.




Figure 3 | A schematic summary of the role of miRNAs and lncRNAs in regulating apoptosis cascade in lung cancer via Wnt/β-catenin pathway. Accumulating evidence has delineated that apoptotic cells are negative for β-catenin. This indicates that the Wnt/β-catenin signaling cascade could be inactive in apoptotic cells. Whilst, β-catenin is expressed in the membrane, cytoplasm, and nucleus of non-apoptotic epithelial cells around these apoptotic cells. Therefore, Wnt/β-catenin signaling cascade could be activated in non-apoptotic epithelial cells via apoptotic cells (104). As an illustration, downregulation of miR-125b could play an effective role in inhibiting expression of p-Akt, p-GSK3β, Wnt, and β-catenin, and could promote caspase-3 activity and Bax protein expression in human non-small cell lung cancer. Thereby, this could lead to suppressing the proliferation and triggering the apoptosis of tumor cells (24). Furthermore, another study have illustrated that upregulation of lncRNA SNHG20 could have a crucial part in elevating the proliferation and suppressing the apoptosis of NSCLC cells through targeting miR-197 via regulating the Wnt/β-catenin signaling cascade. Downregulation of this lncRNA could result in remarkable reduction of TCF and LEF1 expression in the Wnt/β-catenin pathway (75).



Manipulation of expression of apoptosis-regulating lncRNAs and miRNAs represent a strategy for combating carcinogenesis as well as resistance to chemo/radiotherapy. Some of the apoptosis-regulating miRNAs/lncRNAs have been shown to influence prognosis of lung cancer. The observed correlation between their expression and patients’ survival is due to their impact on disease progression as well as response of patients to EGFR inhibitors and chemotherapeutic agents. EMT is another important feature of lung cancer cells which is regulated by a number of apoptosis-regulating miRNAs/lncRNAs indicating the intercalation between cancer-related processes.

An acknowledged route of function of lncRNAs in the regulation of apoptosis in lung cancer is their impact on expression of miRNAs. In fact, they can sequester miRNAs and release miRNA targets from their inhibitory effects. WT1-AS/miR-494-3p, LEF1-AS1/miR-221, NEAT1/miR-1224, SNHG12/miR-138, LINC02418/miR-4677-3p, MEG3/miR-205-5p, LINC00857/miR-1179, LINC00472/miR-24-3p, AFAP1-AS1/miR-24-3p and NORAD/miR-30a-5p are examples of lncRNAs/miRNAs interactions with verified roles in the control of lung cancer cells apoptosis.

Based on the importance of apoptotic pathways in determination of response of lung cancer patients to conventional as well as targeted therapies, identification of the impacts of lncRNAs/miRNAs on apoptosis and prior profiling of these ncRNAs in clinical samples would help in prediction of response of patients to each therapeutic regimen and design of personalized treatment strategies. The advent of high throughput sequencing strategies has facilitated conduction of this approach in the clinical settings.

Finally, the possibility of lncRNAs/miRNAs tracing in the peripheral blood of patients has opened a new opportunity for early detection of emergence of resistance to conventional or targeted therapies and modulation of therapeutic regimens to enhance the survival of affected individuals.
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Esophageal cancer (EC) is a common malignant tumor in the digestive system which is often diagnosed at the middle and late stages. Noninvasive diagnosis using circulating miRNA as biomarkers enables accurate detection of early-stage EC to reduce mortality. We built a diagnostic signature consisting of four miRNA pairs for the early detection of EC using individualized Pairwise Analysis of Gene Expression (iPAGE). Profiling of miRNA expression identified 496 miRNA pairs with significant relative expression change. Four miRNA pairs consistently selected from LASSO were used to construct the final diagnostic model. The performance of the signature was validated using two independent datasets, yielding both AUCs and PRCs over 0.99. Furthermore, precision, recall, and F-score were also evaluated for clinical application, when a fixed threshold is given, resulting in all the scores are larger than 0.92 in the training set, test set, and two validation sets. Our results suggested that the 4-miRNA signature is a new biomarker for the early diagnosis of patients with EC. The clinical use of this signature would have improved the detection of EC for earlier therapy and more favorite prognosis.
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Introduction

Epidemiological data have indicated that esophageal cancer (EC), a common malignant tumor in the digestive system, is the sixth cause of tumor-related death, and is also accompanied by an increasing incidence and mortality worldwide (1). Every year, over 300,000 people die from EC and the number is up to 150,000 and in China (1). Despite the advances in surgical techniques and chemoradiotherapy strategies have extensively improved the prognosis of EC patients, EC remains a deadly cancer of the gastrointestinal tract. Because of its insidious onset, the diagnosis of EC is usually at an advanced stage. Therefore, finding effective biomarkers for the early diagnosis of EC has great significance.

High-throughput technologies have revolutionized non-invasive diagnosis in medical research by the parallel analysis of thousands of molecules in cells or body fluids, including proteins, microbes, coding and non-coding RNAs, etc. (2–6). Non-coding RNAs (ncRNAs) regulate gene transcription and recently are emerging as a novel therapeutic targets and promising biomarkers for disease diagnosis and prognosis (7–12). MicroRNAs (miRNAs) are a type of small and highly conserved non-coding RNAs with 18–25 nucleotides in length (13, 14). miRNAs could broadly inhibit the expression of target messenger RNAs (mRNAs) and affect the fundamental cellular and physiological functions in humans (15). In recent years, numerous studies have indicated that miRNAs play as pivotal regulators in the tumorigenesis, progression, proliferation, and metastasis of various cancers, including EC (16, 17). Despite many miRNAs potentially important to cancers are yet to be characterized, their expression patterns have shown their non-invasive diagnosis ability in detecting and monitoring cancer progression (18).

Several studies have investigated the value of circulating miRNAs as potential biomarkers for the early screening of EC (16). Notably, for the gene transcriptome data, it is usually preprocessed using a series of steps, including background correction, signal normalization, and gene summarization (19–21). For each step, several candidate algorithms are available based on different assumptions of data distribution. For instance, the quantile normalization assumes all samples have identical distribution regardless of the sample heterogeneity and conditions, such as cancer and normal (20). However, this most commonly used assumption only holds true when a small fraction of genes are dysregulated. In fact, a considerable fraction of genes are differently expressed in cancer samples due to the very different expression distribution of genes between the cancer and non-cancer samples (20, 21).

Previously we proposed a feature selection method, individualized Pairwise Analysis of Gene Expression (iPAGE) (22), to reduce the mRNA and lncRNA dimension, which is more suitable for the high dimensional miRNA data due to its high simplicity and efficiency. The relative expression change of a pair of genes are considered and only the gene pairs with significant alterations between the detecting groups are remained for further analysis, instead of the single genes with differential expression. Based on a stringent selection criterion, only a few gene pairs are refined and it benefits a lot for the subsequent step of model construction. Currently, we are using the iPAGE strategy for several directions on the forefront of genetic science to come up with more sophisticated results in terms of methylome and single-cell RNA-seq.

The iPAGE strategy fits miRNA expressions well and it is useful in machine learning where complex number systems determine what the computer “learns” or “knows” (2, 23, 24). In this study, we identified a four-miRNA pair signature for the early diagnosis of EC using iPAGE. The performance of the signature was validated using two independent datasets, and it outperformed the other state-of-art biomarkers in both ROC and PRC.



Materials and Methods


miRNA Expression Data

The miRNA expression datasets used in this study were downloaded from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database. Using the keywords “esophageal cancer” and “serum” for human miRNA dataset searching, we obtained three datasets GSE122497, GSE106817, and GSE112264 (16, 25–27). All these three datasets were detected using the 3D-Gene Human miRNA V21_1.0.0 platform (GPL21263). More detailed description for each dataset was listed in Table 1. No normalization was carried out and only the raw data were used for miRNA pair selection. For the 6-miRNA signature built by Sudo et al. using miRNA expression values (16), the data were normalized using the Robust Multichip Average (RMA) algorithm (28).


Table 1 | miRNA microarray data sets used in this study.





Detection of miRNA Pairs

The dataset GSE122497 contained 566 samples with esophageal squamous cell carcinoma and 4,965 non-cancer samples as controls. 70% of these samples were assigned as the training set and the other 30% samples were set as the test set (Figure 1A). Then, the individualized Pairwise Analysis of Gene Expression (iPAGE) strategy was used for feature selection. All possible miRNA pairs were constructed and the reverse pairs with significant relative expression changes were kept for subsequent analysis. The reverse pairs were defined as the expression abundance of the first miRNA consistently larger than the second one in at least 90% of the cancer samples and the first miRNA smaller than the second one in more than 90% of the control samples. In addition to 0.9 defined as the reverse rate, another threshold of 95% was also used for comparison in this study.




Figure 1 | Identification of miRNA pair signature. (A) Workflow of this study. (B) Binary matrix with rows represent miRNA pairs and columns represent the result of LASSO. The black grid corresponds to the selected pairs. iPAGE, individualized Pair Analysis of Gene Expression. LASSO, Least absolute shrinkage and selection operator.





Model Construction

The reverse miRNA pairs selected in the previous step served as candidate markers for the diagnostic signature. Next, these pairs were further refined using least absolute shrinkage and selection operator (LASSO), resulting in a penal of miRNA pairs with assigned coefficients or contribution weights. Hereafter, we named the penal as miRNA pair signature. Considering the results of LASSO are different when set different seeds, we performed LASSO 100 times and utilized the common miRNA pairs to construct the final diagnostic model (Figure 1A).



Performance Evaluation

We evaluated the performance of the miRNA pair signature using both Receiver Operating Characteristic (ROC) curve and Precision-Recall Curves (PRC) on the test set and two independent validation sets, GSE106817 and GSE112264. Measurements of precision, recall, and F-score were also used for evaluation, which were calculated as follows,

	

where TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, and false negatives, respectively. All the above calculations were conducted using R 4.0.3.




Results


Data Collection

Circulating miRNAs can be stably detected in serum and serve as potential biomarkers in the non-invasive diagnosis of cancers. To build an effective diagnostic model, we systematically collected the datasets containing miRNA serum samples of Esophageal Cancer (EC) from the GEO database []. Three datasets GSE122497, GSE106817, and GSE112264 were selected using the keywords “esophageal cancer” and “serum”. Using the platform of GPL21263 3D-Gene Human miRNA V21_1.0.0, these three datasets detected 2,565 miRNAs among 8,469 samples, including both EC and control normal samples. GSE122497, containing the highest number of samples (n=5531), was randomly divided into a training set (70%) and a test set (30%). The other two datasets were used as external sets for independent validation, where the larger one GSE106817 with a sample size of 2,847 was defined as validation set 1 and the smaller one GSE112264 (91 samples) was defined as validation set 2.



Identification of miRNA-Pair Signatures

For the training set, a total of 3,288,330 miRNA pairs composed of 2,565 miRNAs were constructed. We identified 496 miRNA pairs with significant relative expression change, namely, in a pair, the expression values of one miRNA are consistently larger than the other miRNA in at least 90% of the control samples and smaller than the other one in more than 90% of the cancer samples. Then, we selected the miRNA pairs contributing most to the classification using LASSO. Since the resulting pairs were different using the random computation seeds, we carried out LASSO 100 times and determined the miRNA pairs that were consistently selected (Figure 1B). Interestingly, a majority of the miRNA pairs were randomly picked up and only four pairs (red boxed) were selected in all the 100 rounds, indicating the importance of these pairs in classification.

Next, we calculated the coefficients of the four miRNA pairs using LASSO to build a risk score, miRPS, reflecting the probability of a patient having EC. The miRPS was calculated as follows: 3.903316 * (hsa-miR-6781-5p, hsa-miR-6789-5p) + 3.613282 * (hsa-miR-6893-5p, hsa-miR-1290) + 3.138672 * (hsa-miR-6784-5p, hsa-miR-5100) + 2.603476 * (hsa-miR-125a-3p, hsa-miR-221-3p) - 8.312100. For each pair, the value is assigned 1 if the expression value of the first miRNA is larger than the second one. Otherwise, it is assigned 0. No coefficient was dominated and the largest one is 3.903316 for the pair of hsa-miR-6781-5p and hsa-miR-6789-5p. The expression value of each miRNA pair was reverse between distinct states (Figure 2A). The heatmap illustrates the significant differences of the miRNAs in each pair between cancer and non-cancer samples (Figure 2B). We also provided the chromosome and sequence information of the four miRNA pairs for potential further analysis (Figures 2C, D).




Figure 2 | Summarization of the four miRNA pairs. (A) Expression values of the four identified miRNA pairs. Line represents the average expression abundance in EC and normal states for a miRNA in the training set. Two lines are intersecting when a pair of miRNAs are reversed in expression between the EC and normal state. (B) Heatmap showing the expression value of the four miRNA pairs between EC and normal samples in the training set. (C) A circos plot showing the location of the four miRNA pairs in chromosome. Curves in the circle represent the miRNA pairs. (D) The genetic information of the miRNA pairs.





Performance Evaluation

The performance of the 4-miRNA pair signature was evaluated using the internal test set and two external validation sets. The 4-miRNA pair signature in these datasets yielded extremely high AUCs, all of them are close to 1 (Figure 3). Similar results also obtained for the PRCs, with scores higher than 0.99 in all datasets. The EC samples were clearly discriminated from the normal samples when the risk score threshold was 0.5 (Figure 3, lower panel). More importantly, iPAGE facilitated the decision of the classification threshold and only a few samples were uncorrected predicted.




Figure 3 | Performance evaluation of the 4-miRNA pair signature. The first row and the second row show the ROC and PRC curves for the training set, test set, and the two validation sets. The third row illustrates the prediction probability of the EC and normal samples in the four data sets.



Recently, Sudo et al. built an EC index using 6 serum miRNAs, i.e., miR-8073, miR-6820-5p, miR-6794-5p, miR-3196, miR-744-5p, and miR-6799-5p, to accurately detect early-stage EC. Our results demonstrated that the 4-miRNA pair signature overall outperforms the 6-miRNA signature, especially in the validation set 1 (Figure 4). The AUCs of the 4-miRNA pair signature were over 0.9900, while the scores were around 0.9970 for the 6-miRNA signature in the four sets. Moreover, the PRCs of the 4-miRNA pair signature were more than 0.9990, whereas the scores were 0.9773, 0.9845, and 0.9580 for the 6-miRNA signature in the training set, test set, and validation set 1 (Figures 3, 4).




Figure 4 | Performance evaluation of the 6-miRNA signature. The first row and the second row show the ROC and PRC curves for the training set, test set, and the two validation sets. The third row illustrates the prediction probability of the EC and normal samples in the four data sets.



More importantly, it is hard to determine a consistent threshold to predict whether a sample is EC or normal for the 6-miRNA signature, resulting in a low measurement of precision and recall. When the threshold was set 0, the 6-miRNA signature demonstrated the precision of 0.9422, 0.9620, and 0.8137 in the training set, test set, and validation set 1 (Figure 5 and Table 2), respectively, while the scores were much higher for the 4-miRNA pair signature (0.9822, 0.9822, and 0.9239, respectively). The 6-miRNA signature yielded the recall of 0.9167, 0.8941, 0.9432, and 0.8200 in the training set, test set, validation set 1, and validation set 2, respectively, whereas the scores were improved to 0.9747, 0.9765, 0.9659, and 0.9200 for the 4-miRNA pair signature. The F-score of the 4-miRNA pair signature ranged from 0.9444 to 0.9794 in the four sets, which is consistently higher than that of the 6-miRNA signature (between 0.8737 and 0.9296).




Figure 5 | Comparison of the performance of the 4-miRNA pair signature and the 6-miRNA signature. Precision, recall, and F-score are used for evaluation.




Table 2 | Evaluation of the performance of three miRNA signatures.





The miRNA Pairs Are Associated With EC

In previous studies, miR-125b was reported to participate in tumor proliferation and cell cycle regulation as a suppressor regulator. Ma et al. identified a miRNA cluster including three miRNAs, i.e., miR-99b, let-7e, and miR-125a, and observed the overexpression of the miRNAs in this cluster enhanced esophageal squamous cell carcinoma cell migration and invasion in vitro and induced an experimental metastasis in vivo (29). Wang et al. found that inhibition of miR-221 in 5-FU resistant cells resulted in reduced cell proliferation, increased apoptosis, restored chemosensitivity, and led to inactivation of the Wnt/β-catenin pathway mediated by regulating DKK2 expression in esophageal adenocarcinoma (30). Mao et al. demonstrated that miR-1290 functions as a tumor oncogene by targeting NFIX to degrade its expression, which can promote proliferation, migration, and invasion during EC progression (31). The biological consequences that miR-1290 mediated by binding NFIX were also experimentally verified in vitro.

Other miRNAs such as miR-5100 and miR-6893 were also important regulators that are dysregulated in several types of cancers. The expression abundance of miR-5100 is associated with the prognosis of gastric cancer (32) and miR-6893 could restore circMTO1-regulated migration, invasion, and chemoresistance of cervical cancer cells (33). Therefore, the miRNAs in the miRNA pairs not characterized may serve as candidate regulators and therapy targets in the future clinical applications of EC.




Discussion

We identified a 4-miRNA pair signature with the ability to diagnose patients with EC and validated its efficacy in two independent datasets. In total 8,378 samples were used to build and validate the diagnostic model. The signature demonstrated both AUCs and PRCs over 0.99 in all of the training set, test set, and two validation sets, which outperformed other state-of-art single miRNA signature. We also found literature supported evidences showing that the four miRNA pairs are highly associated with EC. Our results revealed that miRNAs pairs may serve as potential biomarkers for EC diagnosis.

Previously, we observed that using the expression value of lncRNAs or coding genes directly may lead to deviation, because high-throughput platforms are sensitive to various forms of technical variations (22, 34). Moreover, the generated continuous measurements were not measurable and comparable between different states due to the global biological alteration, even though they were preprocessed by plausible normalization methods (20, 21). iPAGE quantifies the relative expression of a pair of genes instead of the expression abundance of a single gene, which is an appropriate and sophisticated strategy to address the data preprocessing problem (22). Our results revealed that the relative expression is more reliable than the absolute expression value in the EC miRNA high-throughput data, which is an extension and approval of our previous discoveries. Recently, Liu et al. used 1,231 high-throughput miRNA-profiled serum samples to develop a diagnostic model for prostate cancer based on circulating miRNAs pairs and obtained approximate 0.99 for most of the measurements in a test and a validation set (35). This study also supported that circulating miRNA pairs are able to generate a robust diagnostic model in early diagnosis of cancers.

During the step of miRNA pair selection, we defined the reverse rate of 0.9 to filter miRNA pairs with a high ability to discriminate EC from the control samples. To assess the performance of iPAGE objectively, another threshold of 0.95 was also used to identify the reverse miRNA pairs. Using this threshold, 5-miRNA pairs were determined and it demonstrated AUCs and PRCs over 0.99 except the validation set 1, which yielded a PRC of 0.9813 (Table 2). Our findings revealed that iPAGE is a powerful tool for feature selection to reduce the data dimension and obtain relevant features for the machine learning models. In addition to the four miRNA pairs in miRPS consistently identified by running LASSO multiple times, the pairs selected by a majority of simulated calculations may also contribute to the classification. The four miRNA pairs were sufficient for diagnosis with a high accuracy, so it is not necessary to add the miRNA pairs less important into the penal. However, we may also consider these important pairs to improve the signature when it is not powerful enough.

In this study, the miRNA datasets used were all from the same platform of 3D-Gene Human miRNA V21_1.0.0, which limited the generalization of iPAGE and miRPS across different platforms. With the development of high-throughput technologies, an increasing number of miRNA datasets detected using different platforms will be available, more comprehensive cross-platform studies are warranted.

Our results revealed that circulating miRNAs pairs could serve as potential biomarkers for EC early diagnosis. iPAGE facilitates the steps of data preprocessing and feature selection, which is not only for lncRNA and mRNA data, but also for the miRNA expression data.
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Background

Lung adenocarcinoma (LUAD) is the most common type of lung cancer and is a severe threat to human health. Although many therapies have been applied to LUAD, the long-term survival rate of patients remains unsatisfactory. We aim to find reliable immune microenvironment-related lncRNA biomarkers to improve LUAD prognosis.



Methods

ESTIMATE analysis was performed to evaluate the degree of immune infiltration of each patient in TAGA LUAD cohort. Correlation analysis was used to identify the immune microenvironment-related lncRNAs. Univariate cox regression analysis, LASSO analysis, and Kaplan Meier analysis were used to construct and validate the prognostic model based on microenvironment-related lncRNAs.



Results

We obtained 1,178 immune microenvironment-related lncRNAs after correlation analysis. One hundred and eighty of them are independent prognostic lncRNAs. Sixteen key lncRNAs were selected by LASSO method. This lncRNA-based model successfully predicted patients’ prognosis in validation cohort, and the risk score was related to pathological stage. Besides, we also found that TP53 had the highest frequency mutation in LUAD, and the mutation of TP53 in the high-risk group, which was identified by our survival model, has a poor prognosis. lncRNA-mRNA co-expression network further suggested that these lncRNAs play a vital role in the prognosis of LUAD.



Conclusion

Here, we filtered 16 key lncRNAs, which could predict the survival of LUAD and may be potential biomarkers and therapeutic targets.
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Introduction

The incidence of lung cancer exceeds 2 million each year, of which approximately 1.8 million ultimately die, making it the leading cause of cancer-related deaths worldwide (1). Of these, 85% of lung cancers are diagnosed as non-small cell lung cancer (NSCLC), and 60% of the patients have locoregional advance or distant metastases (2). There are two major subgroups of NSCLC, LUAD and LUSC. LUAD and LUSC are distinct at the transcriptome level and in terms of cellular control networks (3, 4). In addition, LUAD shows different genetic drivers and different prognostic profiles compared with LUSC (4, 5). Numerous therapeutic clinical trials in NSCLC have shown that LUAD patients showed different responses compared with LUSC (3, 6). This suggests that LUAD and LUSC are different at pathological and molecular levels. Therefore, the development of new and more effective subtype-specific molecules and associated targeted therapies is of great significance for NSCLC. LUAD is the most common type of lung cancer in nonsmokers, although it can occur in smokers. LUAD morphologic types include glandular alveolar, papillary, solid, micropapillary, and invasive mucinous types (7). In addition, it is more common in women than in men and is more likely to occur in younger people and to present in a more advanced stage (8). LUAD has been the most common histological subtype of lung cancer in the last few decades (9). Lung adenocarcinoma (LUAD) is a severe threat to human health, with more than 1 million deaths per year worldwide (1, 10). Although many therapies have been applied to LUAD, the long-term survival rate of patients remains unsatisfactory, with an average 5-year survival rate of 16% (11, 12).

Recently, there is a growing body of opinion that the immune cell plays an essential role in tumor (13). Cancer is often able to evade different components of the immune system, and the immune microenvironment is a critical factor associated with cancer progression (14). Moreover, many studies have shown that immune-related parameters can predict the prognosis of LUAD patients (15, 16). Therefore, we need a reliable immune microenvironment-related biomarkers to assess LUAD prognosis to guide in the therapeutic management.

LncRNAs are transcripts with non-coding potential and have more than 200 nucleotides (17). The current understanding of the function of lncRNA remains largely unclear. LncRNAs may regulate the expression level of genes by post-transcriptional regulation (18). Meanwhile, lncRNAs may further influence tumor cell migration by regulated target genes (17). However, the immune-related lncRNA signature of lung cancer is still not widely used.

Here, we obtained immune microenvironment-related lncRNAs and evaluated the prognostic efficacy through a mass of bioinformatic analysis. We obtained several lncRNAs that could predict LUAD prognosis, and we also established a lncRNA-mRNA co-expression network to investigate the mechanism of these lncRNAs in LUAD.



Materials and Methods


Gene Expression Data Sets for Lung Cancer

Data from two publicly available data sets were incorporated into our study. The gene expression data, genomic mutation data, and corresponding clinical information of samples from patients with lung adenocarcinoma (LUAD) were downloaded from the TCGA database. We randomly extracted half of the LUAD samples as training cohort, and the rest of LUAD samples as validation cohort (Table S1).

Gene expression microarray of lung cancer (GSE30219, GSE37745, and GSE31210) with corresponding overall survival (OS) data was downloaded from GEO and served as the validation data set. Gene expression data of all three data sets were normalized by Robust Multichip Average (RMA) method using “affy” package in R.



Identification of Immune-Related lncRNAs

We evaluated tumor immune infiltration of TCGA LUAD training cohort based on ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) method by R software with package “estimate” (19). Next, we used Pearson correlation analysis to identify immune-related lncRNAs based on ESTIMATE scores in TCGA LUAD training cohort. A total of 1178 immune-related lncRNAs with P < 0.001 and |cor| > 0.2 were finally identified.



Identification of Prognosis-Related lncRNAs and Prognosis Model

A univariate cox regression analysis was performed to select OS-related lncRNAs from abovementioned 1178 lncRNAs in the TCGA LUAD training cohort. A total of 180 immune- and prognosis-related lncRNAs were screened out with P < 0.05. Next, we performed the LASSO analysis to select the crucial variables and to filter potential survival model, and a model consisting of 16 lncRNAs was identified. Ultimately, the risk score of each patient based on 16 lncRNA expression was calculated by the following formula: risk score = (exp lncRNA1 × CClncRNA1) + (exp lncRNA2 × CClncRNA2) + … + (exp lncRNA16 × CClncRNA16). CC is the coefficient calculated by LASSO. Patients were divided into the high- and low-risk groups based on the median value.



Pathological, Immune, and Genomic Association Analysis for Risk Group

Wilcoxon rank-sum test was performed to calculate the risk scores’ difference between clinical pathological stage groups (TNM Classification of Malignant Tumors). The differences in ESTIMATE scores between high- and low-risk groups in LUAD training cohort were calculated by the same method. Then, we proceed the expression analysis of five immune checkpoint, including PDCD1 (code PD-1), CD274 (code PD-L1), CTLA-4, CD47, and BTLA. Wilcoxon rank-sum test was also used for exploring the risk difference of the five immune checkpoint in TCGA LUAD training cohort. We also analyzed genomic mutation status between high-risk group and low-risk group in TCGA LUAD training cohort and sorted genes according to mutation frequency.



Establish lncRNA-mRNA Co-Expression Network and Functional Analysis

Pearson correlation analysis was performed for constructing the co-expression network of the 16-lncRNAs, the co-expression relationships with P < 0.001, cor > 0.3 were retained. We calculated the degree in the network for each lncRNA. We visualized the significant co-expression relationships and retained the mRNAs, which have significant co-expression relationships with more than four lncRNAs. A total of 225 mRNAs were retained for subsequent functional analysis.

We performed pathway and process enrichment analysis for 225 mRNAs with many ontology sources, such as KEGG pathway, GO biological processes, reactome gene sets, and canonical pathways through Metascape web-based tool. Parameters are selected as P < 0.01, the terms’ minimum count is set at three, and the enrichment factor > 1.5.



Survival Analysis

Kaplan-Meier analysis was performed to calculate the difference in the survival time between high-risk and low-risk patients. Survival analysis was used to assess the difference in the survival time between the two groups. P < 0.05 was regarded as statistically significant.




Result


Identification of lncRNAs Associated With Immune Infiltration

The workflow of this study is shown in Figure S1. To explore lncRNAs, which function in tumor immune infiltration, we first used the ESTIMATE method to assess the level of immune cell infiltration in the TCGA LUAD training cohort (Figure 1A). We analyzed the correlation between ESTIMATE scores and the expression of lncRNAs and identified 1178 lncRNAs significantly associated with ESTIMATE scores. Figure 1B showed most significantly associated 52 lncRNAs with P < 0.001 and |cor| > 0.5 by Pearson correlation analysis.




Figure 1 | Identification of lncRNAs associated with Immune infiltration. (A) The distribution of ESTIMATE scores of TCGA LUAD training cohort, yellow bars mean immune scores and green bars mean stromal scores. (B) The correlation for 52 lncRNAs with P < 0.001 and |cor| > 0.5 by Pearson correlation analysis.





Identification of Prognosis-Related lncRNAs and Construction of 16-lncRNAs Prognostic Model

To explore the prognostic efficacy of selected immune-related lncRNAs, we performed univariate Cox proportional regression analysis and obtained 180 immune-related lncRNAs, which were significantly related to OS. Next, LASSO analysis was used to filter the potential survival model. A model with 16 immune- and prognosis-related lncRNAs was constructed (lnc-CHAF1B-2, lnc-NECAB3-2, lnc-PTPA-3, lnc-CHADL-1, LINC00324, lnc-RMDN2-3, lnc-SLFN12-3, lnc-UCK2-3, lnc-KIF25-1, lnc-MTBP-5, lnc-ADGRE1-1, LINC01711, LINC01480, lnc-NGFR-3, BNC2-AS1, and LINC02418) (Figures 2A, B). Then, based on the TCGA LUAD training set, we established a predictive model: risk score = (0.89 × lnc-CHAF1B-2 exp) + (−0.79 × lnc-NECAB3-2 exp) + (−0.46 × lnc-PTPA-3 exp) + (−1.93 × lnc-CHADL-1 exp) + (−0.85 × LINC00324 exp) + (−3.08 × lnc-RMDN2-3 exp) + (−1.58 × lnc-SLFN12-3 exp) + (1.43 × lnc-UCK2-3 exp) + (−0.91 × lnc-KIF25-1 exp) + (−0.29 × lnc-MTBP-5 exp) + (−5.03 × lnc-ADGRE1-1 exp) + (0.42 × LINC01711 exp) + (−1.01 × LINC01480 exp) + (−2.40 × lnc-NGFR-3 exp) + (0.84 × BNC2-AS1 exp) + (−1.17 × LINC02418 exp) (Figure 2C).




Figure 2 | Establish 16-lncRNAs prognostic model. (A) LASSO coefficient profiles of 180 immune- and prognosis-related lncRNAs. (B) Cross-validation for tuning parameter selection in the LASSO model. (C) After LASSO selection, 16 lncRNAs were chose for constructing prognostic model.





The Relationship Between Risk Scores With Clinical Pathological Features

According to the risk score of LASSO analysis, we distinguished the patients into low-risk and high-risk groups. In training cohort, patients in the high-risk group had a poor OS (Figure 3A; P = 4.09E-11; log-rank test), and there are more alive patients in the low-risk group (Figure 3B). In validation cohort, the high-risk group also had a poor prognosis (Figure 3C; P = 4.2E-02; log-rank test), and the alive patients in the high-risk group were less than the low-risk group (Figure 3D). The same observation was also found in the whole TCGA LUAD (training set and validation set) and TCGA lung cancer (LUAD and LUSC) cohorts (Figures 3E, F and Figures S2A, B; P = 6.8E-07, P = 1.2E-02; log-rank test).




Figure 3 | Prognostic model capable of distinguish patients. (A) Survival analysis between high- and low-risk samples in TCGA LUAD training cohort. (B) Distribution of survival time and risk scores, which were calculated based on the expression of 16-lncRNA prognostic model in TCGA LUAD training cohort. (C) Survival analysis in TCGA LUAD validation cohort. (D) Distribution of survival time and risk scores, which were calculated based on the expression of 16-lncRNA prognostic model in TCGA LUAD validation cohort. (E, F) Survival analysis in TCGA LUAD cohort or TCGA lung cancer (including LUAD and LUSC) cohort.



Next, further investigation was conducted to determine whether the risk scores could indicate prognosis in different subgroups of clinical features. In the gender subgroup, high-risk patients had a poor prognosis (Figures 4A, B; P < 0.05; log-rank test). Similarly, in the T subgroups (T2 and T3), M1 subgroup, N subgroups (N0 and N1), and pathological stage (stage I and stage III), high-risk score patients had a significantly poor survival (Figures 4C–H, J; P < 0.05; log-rank test), and stage II subgroup has the same trend but without statistical significance (Figure 4I; P = 9.2E-02; log-rank test).




Figure 4 | Prognostic model connected with clinical pathological features. (A–J) Survival analysis of sexual groups, T stage (T2 and T3) groups, M3 stage group, N stage (N0 and N1) groups, or clinical stage (stage I, stage II, and stage III) groups in TCGA lung cancer cohort. (K–M) Wilcoxon rank-sum test showed the risk differences between T stage groups, M stage groups, or clinical stage in TCGA lung cancer cohort.



We also analyzed the difference of risk score among tumor grade groups. The risk scores in stage T2 and T3 were significantly higher than those in stage T1, and the risk scores in stage T3 and T4 were higher than stage T2 (Figure 4K; P < 0.05). Besides, the risk scores in stage N1 and N2 were higher than stage N0 (Figure 4L; P < 0.05). Moreover, the risk scores in stage II, stage III, and stage IV were significantly higher than stage I, and the risk scores in stage III were also higher than stage II (Figure 4M; P < 0.05).



Immune Infiltration and Genomic Mutation Discrepancy in Different Risk Groups

At first, we calculated ESTIMATE scores (immune scores and stromal scores) in high-risk and low-risk groups. We found that the high-risk score group had lower immune scores, stromal scores, and ESTIMATE scores compared with the low-risk score group (Figure 5A; P < 0.05). Next, we evaluated the expression difference of five immune checkpoint between high-risk score group and low-risk score group. The expressions of BTLA (P = 2.1E-35), CD47 (P = 1.7E-07), CTLA4 (P = 1.4E-26), and PD-1 (P = 7.6E-19) in low-risk group were significantly greater than those in the high-risk group (Figure 5B), and expression of PD-L1 has the same trend but no statistical significance (Figure 5B; P = 7.0E-02).




Figure 5 | Immune infiltration discrepancy in different risk groups. (A) One-sided Wilcoxon rank-sum test showed the differences of ESTIMATE scores between high- and low-risk groups in TCGA LUAD training cohort. (B) The differences in the expression of five immune checkpoint related genes between high- and low-risk groups in TCGA LUAD training cohort.



We then explored genomic mutation status between high- and low-risk groups. Figures 6A, B showed the top 20 mutations in TCGA cohort. TP53 is the most frequent mutation gene in both groups. We next investigated relationship between the mutation of TP53 and OS in the high- and low-risk groups and found the mutation of TP53 indicated poor prognosis in the high-risk group (Figure 6C; P = 3.1E-02), but there was no distinction in the low-risk group (Figure 6D; P = 9.8E-01), and there has a trend but no statistical significance in whole TCGA LUAD cohort (Figure 6E; P = 6.3E-02).




Figure 6 | High- and low-risk groups with different distribution of mutation. (A) The distribution of top 20 genes with high frequency in high-risk group of TCGA LUAD training cohort. (B) The distribution of top 20 genes with high frequency in low-risk group of TCGA LUAD training cohort. (C–E) Log-rank test was used to assess the difference in OS between TP53 mutation and wild type samples in TCGA LUAD training cohort with high risk, TCGA LUAD training cohort with low risk, or TCGA LUAD training cohort.





Hub lncRNAs in Co-Expression Network Were Associated With Prognosis

To identify mRNAs that are associated with 16 lncRNAs in prognostic model, we constructed lncRNAs and mRNAs co-expression network. Figure 7A showed degrees of 16-lncRNAs in the co-expression network. We found that three lncRNAs were related to prognosis in top 5 degrees lncRNAs in TCGA LUAD cohort. Patients with high expression of lnc-SLFN12-3, lnc-NECAB3-2, or lnc-CHADL-1 had a significantly better OS than those in the low expression (Figures 7B–D; P < 0.05; log-rank test). We visualized mRNA-lncRNA co-expression network in Figure 7E in which mRNAs has more than four co-expressed lncRNA partners.




Figure 7 | Construct lncRNA-mRNA co-expression network and survival analysis for hub lncRNAs. (A) Degrees of 16-lncRNAs in lncRNA-mRNA co-expression network. (B–D) Log-rank test was used to assess the difference in OS between lnc-SLFN12-3, lnc-NECAB3-2, or lnc-CHADL-1 high expression and low expression samples in TCGA LUAD training cohort. (E) Significant co-expression network between 16-lncRNAs and 225 mRNAs (keep significant co-expression relationships more than quarter 16-lncRNAs). Red nodes mean lncRNAs, and yellow nodes mean mRNAs. The width of the edge represents the Pearson correlation.





The Function of mRNAs in Co-Expression Network Involved in Immune Pathways

To identify functional processes regulated by co-expression network comprehensively, we performed pathway and process enrichment analysis for 225 mRNAs by Metascape, including 10 pathway resources. Significant terms in biological processes were “lymphocyte activation,” “TYROBP Causal Network,” “leukocyte activation involved in immune response,” “immune response-regulating signaling pathway,” “regulation of cytokine production,” and so on (Figure 8A). Network plot showed the subset of enriched terms, only the terms with a similarity > 0.3 are connected by edges (Figure 8B).




Figure 8 | mRNAs in co-expression network functional analysis. (A) Enrichment analysis for 16-lncRNAs significant co-expression 225 mRNAs. The graphical representation showed top 20 enrichments with P < 0.01. P value was multi-test–adjusted in log base 10. (B) Enriched terms with a similarity > 0.3 are connected by edges. (C–F) Survival analysis showed the difference in OS between BCL2 high expression and low expression samples in TCGA LUAD, TCGA lung cancer, GSE37745, and GSE31210 cohorts.



We found that patients with mRNA BCL2 high expression had a better prognosis than low expression in TCGA LUAD, TCGA lung cancer, GSE37745, and GSE37745 cohorts (Figures 8C–F; P < 0.05). BCL2 is a member of the Bcl-2 protein family that regulates cell death (apoptosis) by inhibiting (anti-apoptotic) or inducing (pro-apoptotic) apoptosis (20, 21). It was the first apoptosis regulator identified in any organism.

In addition, patients with mRNA IKZF1 high expression had a better prognosis in TCGA LUAD, TCGA lung cancer, GSE37745, GSE37745, and GSE30219 cohorts (Figure S3A–E; P < 0.05). IKZF1 encodes the DNA-binding protein Ikaros (also known as Ikaros family zinc finger protein 1), which plays an important function in the hematopoietic system and is a regulator of early B-cell, CD4+ T-cell, and other immune cell development. It is closely associated with the development of chronic lymphocytic leukemia (22, 23).




Discussion

For the past few years, bioinformatics analysis was widely preformed in cancer research (24). The immune microenvironment has also been shown to play an essential part in various cancers. For example, in invasive breast cancer, CD2 was an immune-related prognostic biomarker regulating the tumor microenvironment (25). MNK1/2-eIF4E regulatory axis can affect immunosuppression and metastasis in breast cancer (26). LncRNAs have also been reported to influence the prognosis of many tumors. For instance, lncRNA AGAP2-AS1 can enhance lung cancer radiotherapy immunity by regulating the expression of microRNA-296 and NOTCH2 (27). LncRNA TP53TG1 inhibits hepatocellular carcinoma growth and metastasis by affecting the PRDX4/β-catenin axis (28). The lncRNA BBOX1-AS1 is closely associated with the malignant cellular phenotype of non-small cell lung cancer. It can regulate miR-27a-5p through the ceRNA network, thereby up-regulating MELK to activate the FAK signaling pathway (29). In summary, lncRNA is non-negligible in LUAD. Nevertheless, there are few studies on immune microenvironment-related lncRNAs in LUAD.

In this study, we constructed a survival model containing 16 immune microenvironment-related lncRNAs in LUAD through ESTIMATE method and other bioinformatics analysis. This method has been shown to be feasible in cancer research and has been widely used (30, 31). A model with 16 immune- and prognosis-related lncRNAs was constructed and successfully predicted patients’ OS (Figures 2, 3). Of 16 lncRNAs, lnc-CHAF1B-2, lnc-NECAB3-2, lnc-PTPA-3, lnc-CHADL-1, lnc-RMDN2-3, lnc-SLFN12-3, lnc-UCK2-3, lnc-KIF25-1, lnc-MTBP-5, lnc-ADGRE1-1, lnc-NGFR-3 have not been reported in LUAD and other cancers. They may be novel prognostic biomarkers of LUAD. LINC00324 have been reported to influence cell proliferation and invasion of several tumors and could regulate the IGF1R to affect non-small cell lung cancer cell invasion (32–34). LINC01711 also have prognostic ability in esophageal squamous cell carcinoma (35). LINC01480 is a known biomarker of endometrial cancer (36). BNC2-AS1 could influence the proliferation and invasion of gastric cancer (37). LINC02418 has also been recovered to promote colon cancer progression (38).

Next, further investigation was conducted to determine whether the risk scores could indicate prognosis in different subgroups of clinical features. We found that this survival model was able to distinguish high- and low-risk groups, irrespective of gender (Figures 4A, B). Meanwhile, patients with early stage in TNM stage and pathological stage had higher risk scores and lower survival rates (Figure 4), suggesting that our survival model may have an equivalent or better efficacy in early-stage patients. In addition, we found significant differences in the expression of five immune checkpoint-related genes among the high-risk and low-risk groups of the survival model (Figure 5), suggesting that the model we constructed could distinguish groups that are more suitable for immunotherapy.

We then explored genomic mutation status between high- and low-risk groups. Figures 6A, B showed the top 20 mutations in TCGA cohort. TP53 is the most frequent mutation gene in both groups. We next investigated relationship between the mutation of TP53 and OS in high- and low-risk group and found that the mutation of TP53 indicated poor prognosis in high-risk group. TP53 mutation significantly increased the expression of immune checkpoints and activated T-effector (39–41). In this study, we also explored mutation status between high- and low-risk groups and found that TP53 was the gene with the highest mutation frequency in both risk groups (Figures 6A, B). Then, we further explored the influence of TP53 mutation on patients’ survival. We found that patients with TP53 mutations had poor survival rates in the high-risk group, suggesting that the survival model also associated with TP53 mutation. Some studies indicated that TP53 mutation significantly increased the expression of immune checkpoints and activated T-effector and associated with poor survival (39–41). Meanwhile, we found lower immune infiltration in the high-risk group (Figure 5). These results indicated that patients with TP53 mutations in the high-risk group might have the potential of better immunotherapy efficacy.

Finally, our model-based co-expression network also enriched many immune-related pathways, such as immune response-regulating signaling pathway and cytokine signaling in immune system. It also suggests that lncRNAs in this model are closely related to immunity. These results showed that the biomarkers we obtained have a large research potential in LUAD.

In conclusion, we hope that the results of this study will help identify immune-related potential prognostic lncRNAs and thus provide new molecular biomarkers for improving the poor prognosis of LUAD.
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GAS6 antisense RNA 1 (GAS6-AS1) is a long non-coding RNA involved in hepatocellular carcinoma and gastric cancer. However, the functional role of GAS6-AS1 in lung adenocarcinoma (LUAD) remains unclear. In the present study, qRT-PCR was used to measure the levels of GAS6-AS1, GIMAP6 and miR-24-3p expression in LUAD samples and cell lines. CCK-8 and colony formation assays were used to determine cell proliferation. Cell migration and invasion were evaluated using wound healing and transwell assays, respectively. The potential interactions between molecules were assessed using RNA immunoprecipitation and luciferase reporter assays. Western blot analysis was used to quantify protein expression. The anti-tumor effect of over-expressed GAS6-AS1 on LUAD was also examined in vivo in xenograft tumor experiments. The expression of GAS6-AS1 was notably downregulated in LUAD samples and cell lines and associated with a poor prognosis. GAS6-AS1 overexpression inhibited the migration and invasion of A549 and H1650 cells. Down-expressed GAS6-AS1 acted as a sponge for miR-24-3p and down-regulated the expression of its target, GTPase IMAP Family Member 6. These findings suggested that GAS6-AS1 might represent a potential diagnostic biomarker for LUAD.




Keywords: GAS6-AS1, lung adenocarcinoma, GIMAP6, miR-24-3p, ceRNA



Introduction

Lung cancer has the highest incidence and mortality in China and can be divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (1). NSCLC is further categorized as lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (2). The incidence of lung adenocarcinoma has risen in recent years (3). With the development of imaging technology and the combined application of surgery, radiotherapy and chemotherapy, the survival rates of patients with LUAD are gradually improving. However, overall survival rates are still under 25% (4, 5). Therefore, it is essential to understand LUAD progression in order to identify potential therapeutic agents and diagnostic biomarkers.

Long non-coding RNA (lncRNA) molecules are a novel class of non-coding RNA with limited functional protein-coding ability (6). In humans, lncRNAs have been shown to be widely distributed and expressed in every organ (7). Previous studies have demonstrated that lncRNAs play a vital role in inhibiting oncogenes and preventing the occurrence of malignant tumors (8, 9). Several lncRNAs are aberrantly expressed in LUAD, leading to tumor inhibition or carcinogenicity depending on different mechanisms, including sponging and post-transcriptional regulation (10–13).

Growth arrest-specific 6 antisense RNA 1 (GAS6-AS1) is detectable in several types of malignant tumors, such as hepatocellular carcinoma. The increased expression of GAS6-AS1 was related to tumor size, edmondson grade and (TNM) stage of tumor-lymph node-metastasis. The overall survival time of HCC patients characterized by high expression of GAS6-AS1 was significantly shorter than that of patients with low expression. It was also proved that GAS6-AS1/miR-585/EIF5A2 pathway played an important role in the progression of hepatocellular carcinoma (14), Zhang et al. indicated that indicate that GAS6-AS1 significantly driving the aggressive phenotype in gastric cancer through activating its cognate sense gene GAS6 (15). A previous study suggested that GAS6-AS1 may be associated with LUAD, although the underlying mechanism is still unclear (16). Therefore, the aim of this study was to examine the function and potential mechanism of GAS6-AS1 in NSCLC.



Materials and Methods


Tissue Samples

In total, 74 pairs of LUAD samples and adjacent normal tissues were collected at the Affiliated Hospital of Qingdao University from patients who had not received chemotherapy or radiotherapy. This study was approved by the Ethics Committee of Affiliated Hospital of Qingdao University (QYFYWZLL-25569). All tissue samples were stored at -80°C until RNA extraction.



Cell Culture and Transfection

LUAD cell lines (A549, H1299, H157 and H1650) and a human bronchial epithelial cell line (HBE) were cultured in DMEM with 10% FBS (Gibco; Thermo Fisher Scientific, Inc., USA). All cell lines were maintained in a humidified atmosphere at 37°C with 5% CO2.

GAS6-AS1 overexpression (OE-GAS6-AS1) plasmids and control vector (Vector), microRNA (miR) negative control (miR-NC) and miR-24-3p inhibitor were synthesized by BGI (Qingdao, China). The cells were inoculated into a 6-well plate (2 × 105 cells/well), then transfected with Vector, OE-GAS6-AS1, miR-NC, miR-24-3p inhibitor either alone or in various combinations using the Polyplus-transfection® reagent (Illkirch, France).



Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from LUAD tissue samples or cells using TRIzol (Invitrogen; Thermo Fisher Scientific, Inc.). The SYBR Green PCR Kit (Takara, Dalian, China) was used for qRT-PCR analysis of lncRNA, miRNA and mRNA expression levels. Primer sequences (Tsingke, Qingdao, China) are listed in Table 1. GAPDH was used as an internal control for lncRNA and mRNA, whereas U6 was used for miRNA.


Table 1 | Primers of Gene.





Cell Proliferation and Colony Formation Assay

Cell Counting Kit-8 (CCK-8, Dojindo Molecular Technologies, Inc., Japan) was used to assess cell proliferation. At 0, 24, 48 and 72 h following transfection, the OD value at 450 nm was measured using an enzyme-labeling instrument (Biotek Instruments, Inc., USA). Approximately 0.5-1 × 103 transfected cells/well were seeded into 6-well plates for two weeks. The cells were then fixed with 75% ethanol and stained with 0.1% crystal violet. Lastly, the colonies were counted under a microscope.



Wound Healing Assay

Transfected cells were seeded into a 6-well Petri dish and cultured to 80% confluence. A 10-μl pipette tip was then used to scratch the cell layer. Images of the wound were taken at different time points (0 and 48 h) under a microscope (Nikon Corporation, China).



Apoptosis Assay

Briefly, two days following transfection, cell apoptosis was measured using an Annexin-V FITC Apoptosis Kit (BioLegend, Inc., USA). Determination of the percentage of apoptotic cells was carried out using flow cytometry (BD Biosciences, USA).



Transwell Invasion Assay

A total of 5 × 104 transfected cells were added to 300 μl serum-free medium with Matrigel. Complete DMEM was added to the lower chamber to detect the invasive ability of the cells using a transwell assay (Corning, Inc.). After 24-h incubation, the number of invasive cells was counted under a microscope (Nikon Corporation, China), fixed with paraformaldehyde and stained with crystal violet.



Cell Nuclear and Cytoplasmic RNA Isolation

The isolation of subcellular RNAs in LUAD cells was performed using a PARIS Kit (Thermo Fisher Scientific, Inc.). qRT-PCR was then used to measure the expression levels of GAS6-AS1 in the nuclear or cytoplasmic fraction. GAPDH served as a cytoplasmic control, whereas U6 was used as a nuclear marker.



Luciferase Reporter Assay

The GAS6-AS1 wild-type (Wt) and mutant (Mut) 3’-UTR covering the predicted miR-24-3p binding sequence and a Mut-GAS6-AS1 3’-UTR fragment, respectively, were amplified. The sequences were then inserted into the psiCHECK2 vector (Promega Corporation, USA) to construct the GAS6-AS1-Wt and -Mut plasmids. The GIMAP6 plasmids were generated using similar experimental steps. After two days, the cells were used for a dual luciferase reporter assay.



RNA Immunoprecipitation Assay

The Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit was used to perform a RIP assay according to the manufacturer’s instructions (Milibo, USA). Total RNA was purified and qRT-PCR was performed to detect the expression levels of GAS6-AS1 and miR-24-3p.



Western Blot Analysis

Total proteins were lysed in RIPA buffer (Beyotime, China) and quantified with a BCA protein Assay Kit (Thermo Fisher Scientific, Inc.), according to the manufacturers’ protocol. Each protein sample (50 μg) was transferred to a polyvinylidene fluoride membrane. The membrane was blocked in 5% skimmed milk at room temperature for 1 h, and incubated with the following primary antibodies: β-actin (Abcam, MA, USA) and anti-GIMAP6 (Abcam, MA, USA). The membranes were then probed with secondary antibodies for 2 h and photographed. The protein levels of β-actin served as the control. Image J was used to analyze the gray value of western blot protein bands.



Tumor Xenograft Experiment

Four-week-old nude mice were obtained from the Laboratory Animal Center of Qingdao University. A total of 2 × 107 A549 cells transfected with OE-GAS6-AS1 or vector were subcutaneously injected into the flanks of the mice (n = 3 in each group). All processes were carried out in full accordance with the ARRIVE guidelines (17).



Bioinformatics Analysis

The GEPIA database (http://gepia2.cancer-pku.cn/#index) was used to examine gene expression levels and survival rates using TCGA data. StarBase 3.0 (http://starbase.sysu.edu.cn/) was used to predict the binding sequence between GAS6-AS1, miR-24-3p and GIMAP6.



Statistical Analysis

The data were analyzed with the SPSS 26.0 software (IBM Corp., USA) and GraphPad Prism (Version 7.0). Student’s t-test was used to assess the differences between two groups. One-way ANOVA was used to compare more groups. The correlation between GAS6-AS1 and miR-24-3p or GIMAP6 was analyzed using Spearman’s correlation analysis. All procedures were repeated 3 times.




Results


Low Expression of GAS6-AS1 Is Associated With Poor Prognosis in LUAD

The GAS6-AS1 expression levels in LUAD were examined in a database and in tissues. As shown in Figure 1A, GAS6-AS1 expression was significantly downregulated in tumor samples from TCGA. qRT-PCR was also conducted to detect GAS6-AS1 mRNA expression levels in 74 pairs of LUAD tissues, which were notably decreased in the tumor group (Figure 1B). Furthermore, GAS6-AS1 expression was determined in four LUAD cell lines (A549, H1299, H157 and H1650) and a human bronchial epithelial cell line (HBE). GAS6-AS1 was significantly downregulated in all LUAD cell lines (Figure 1C).




Figure 1 | GAS6-AS1 expression levels in LUAD samples and cells. (A) The expression of GAS6-AS1 was analyzed using TCGA. Red represented tumor samples, white represented normal samples. (B) The expression of GAS6-AS1 was measured by qRT-PCR in LUAD and adjacent normal tissues (n = 74). (C) The expression of GAS6-AS1 was measured in LUAD cell lines and a normal bronchial epithelial cell line. (D) Expression levels of GAS6-AS1 according to clinical stage. (E) Overall survival analysis in LUAD samples according to GAS6-AS1 expression. *P < 0.05 and ***P < 0.001.



The clinical value of GAS6-AS1 was assessed in 74 patients with LUAD who were divided into low- or high-expression groups according to the median GAS6-AS1 expression, which is the cutoff value is 4.538. As displayed in Table 2, decreased expression of GAS6-AS1 was significantly associated with tumor size and clinical stage, which could be used to monitor the patient’s prognosis or recurrence in the future. The online GEPIA database also verified these mentioned clinical features (Figure 1D). Moreover, the overall survival rate of patients with low expression of GAS6-AS1 was poor (Figure 1E). Therefore, GAS6-AS1 is downregulated in LUAD samples and might be associated with poor prognosis.


Table 2 | Association of GAS6-AS1 expression with clinicopathologic factors of 74 LUAD patients.





GAS6-AS1 Overexpression Inhibits Cell Proliferation, Migration, Invasion and Apoptosis In Vitro

A549 and H1650 cells were transfected with vector or OE-GAS6-AS1 to evaluate the effect of GAS6-AS1 in LUAD cells. The results indicated that the expression of GAS6-AS1 in cells transfected with OE-GAS6-AS1 was significantly higher than that of cells transfected with vector (Figure 2A). The effect of GAS6-AS1 on the proliferation of LUAD cells was assessed using a CCK-8 kit. Overexpression of GAS6-AS1 decreased the proliferation of A549 and H1650 cells (Figure 2B). In addition, in a colony formation assay, A549 and H1650 cells transfected with OE-GAS6-AS1 formed significantly fewer colonies than the vector group (Figure 2C). Similarly, transwell invasion and wound healing assays were also used to assess cell invasion and migration in transfected A549 and H1650 cells. The migration and invasion abilities of LUAD cells decreased significantly following GAS6-AS1 overexpression (Figures 2D, E).




Figure 2 | OE-GAS6-AS1 inhibits cell proliferation in vitro. (A) The level of GAS6-AS1 was measured in A549 and H1650 cells transfected with Vector or OE-GAS6-AS1. (B, C) Assessment of proliferation using CCK8 (B) and colony formation assays (B) in A549 and H1650 cells transfected with Vector or OE-GAS6-AS1. (D, E) Cell invasion and migration were evaluated using transwell (D) and wound-healing assays (E) in LUAD cells transfected with Vector or OE-GAS-AS1. (F, G) The effect of GAS6-AS1 upregulation on the apoptosis of A549 and H1650 cells was determined using flow cytometry. **P < 0.01 and ***P < 0.001.



Flow cytometry demonstrated that the proportion of apoptotic cells in LUAD cells overexpressing GAS6-AS1 was higher (Figures 2F, G). These data indicated that OE-GAS6-AS1 might promote LUAD cell death in vitro.

Previous studies have suggested that GAS6 may also lead to the occurrence and development of LUAD (18, 19). Thus, OE-GAS6-AS1 was also stably transfected into LUAD cells to detect the level of GAS6 expression. However, as shown in Additional Figure 1, the expression of GAS6 did not change with changes in GAS6-AS1 in LUAD cells.



GAS6-AS1 Sponges miR-24-3p in LUAD Cells

To clarify the mechanisms underlying the function of GAS6-AS1 in LUAD, the Starbase 3.0 database was used to predict the competitive endogenous RNA (ceRNA) network of GAS6-AS1, which was found to contain five miRNAs and 176 mRNAs (Figure 3). The KEGG pathways associated with the target genes are shown in Additional Figure 2. Accumulating evidence has shown that cytoplasmic lncRNA may be part of a ceRNA network of miRNAs that negatively regulates the expression of mRNA (20, 21). Therefore, we determined the expression levels of GAS6-AS1 in the nucleus and cytoplasm of LUAD cells. GAS6-AS1 was mainly expressed in the cytoplasm of A549 and H1650 cells, suggesting that GAS6-AS1 might play a negative role in regulating miRNAs (Figure 4A). The potential miRNA targets of GAS6-AS1 were determined using StarBase 3.0. QRT-PCR was then used to determine the levels of five miRNAs (miR-151a-3p, miR-491-3p, miR-24-3p, miR-324-3p and miR-3173-5p) that were hypothesized to bind to GAS6-AS1 in LUAD cells (Figure 4B). Because miR-24-3p displayed the same changes in cells, it was selected for subsequent experiments. The results suggested that miR-24-3p might bind to GAS6-AS1 (Figure 4C). Luciferase activity was used to confirm whether there was a direct interaction between GAS6-AS1 and miR-24-3p. MiR-24-3p transfection significantly decreased luciferase activity in the GAS6-AS1-Wt group, but not in the GAS6-AS1-Mut group, indicating direct binding between miR-24-3p and GAS6-AS1 (Figure 4D). Compared with IgG, GSA6-AS1 and miR-24-3p were enriched in miRNA ribonucleoprotein complex (MiRNPs) containing Ago2, which was indicative of GAS6-AS1 binding to miR-24-3p (Figure 4E). Additionally, GAS6-AS1 overexpression decreased the levels of miR-24-3p in A549 and H1650 cells. Moreover, miR-24-3p was highly expressed in LUAD tissues and cell lines (Figures 4G, H) and negatively correlated with GAS6-AS1 expression (Figure 4I). The localization of GAS6-AS1 and miR-24-3p were localized to the cytoplasm of cells (Additional Figure 3). In conclusion, MiR-24-3p interacted with GAS6-AS1 and downregulated its expression in LUAD cells.




Figure 3 | The GAS6-AS1 associated lncRNA-miRNA-mRNA ceRNA network in LUAD. StarBase was used to predict miRNAs targeted by GAS6-AS1. Both miRbase and StarBase were used to construct the predicted mRNA-miRNA and miRNA-lncRNA associations, respectively. Cytoscape (version 3.6.1) was used to construct a visual ceRNA network. Red, lncRNA. Blue, miRNA. Green, mRNA.






Figure 4 | GAS6-AS1 sponges miR-24-3p in LUAD cells. (A) GAS6-AS1 is expressed in the cytoplasm of LUAD cells. (B) The expression levels of five putative miRNAs in LUAD cells were determined using qRT-PCR. (C) The complementary binding of miR-24-3p and wild or mutant type of GAS6-AS1. (D) Overexpression of miR-24-3p significantly decreased luciferase activity in the Wt-GAS6-AS1 group. (E) The interaction between miR-24-3p and GAS6-AS1 was analyzed in LUAD cells using RIP. (F) miR-24-3p expression levels were examined in LUAD cells transfected with Vector or OE-GAS-AS1. (G) qRT-PCR analysis of the expression of miR-24-3p in LUAD tissues and normal tissues. (H) Relative miR-24-3p expression was measured in four human LUAD cell lines (A549, H1299, H157 and H1650) and HBE. (I) The correlation between miR-24-3p and GAS6-SA1 in LUAD was analyzed. Wt, Wild-type; Mut: mutant-type. *P < 0.05, **P < 0.01 and ***P < 0.001.





GAS6-AS1 Regulates the GIMAP6 Expression via miR-24-3p

It is reported that lncRNA regulates expression and stability of mRNA by acting as a miRNA sponge (22, 23). Hypothetical targets of miR-24-3p were predicted using bioinformatics analysis. The 3’-UTR of GIMAP6 contained hypothetical binding sites for miR-24-3p (Figure 5A). GIMAP6 was reported to be associated with LUAD (24, 25) and was therefore chosen for subsequent experiments. The expression levels of GIMAP6 in LUAD and its association with survival were determined using the GEPIA database. High GIMAP6 expression levels were associated with good prognosis (Figures 5B, C). We carried out a luciferase reporter assay to determine whether the 3’-UTR of GIMAP6 mRNA was directly targeted by miR-24-3p. The inhibition of miR-24-3p expression significantly increased the luciferase activity of GIMAP6-Wt, but not GIMAP6-Mut, indicating that the Mut miR-24-3p binding site was successfully constructed (Figure 5D). GIMAP6 expression levels in LUAD samples and their relationship with miR-24-3p expression were also assessed. qRT-PCR demonstrated that the expression of GIMAP6 in LUAD tissues was significantly lower than in normal tissues (Figure 5E). Furthermore, there was a negative correlation between GIMAP6 and miR-24-3p expression (Figure 5F). In addition, following miR-24-3p inhibition, GIMAP6 mRNA and protein levels in A549 and H1650 cells decreased significantly (Figures 5G, H). These findings indicated that miR-24-3p could target GIMAP6 in LUAD cells.




Figure 5 | GIMAP6 is a direct target of miR-24-3p in LUAD cells and is positively regulated by GAS6-AS1. (A) The complementary binding of sequences of miR-24-3p and wild or mutant type of GAS6-AS1. (B) The level of GIMAP6 expression in TCGA database. (C) The overall survival associated with GIMAP6 in TCGA database. (D) miR-24-3p inhibitor significantly increased luciferase activity in Wt-GIMAP6 group. (E) The level of GIMAP6 expression in LUAD samples. (F) The correlation between GIMAP6 and GAS6-AS1 in LUAD. (G, H) The mRNA and protein levels of GIMAP6 in GAS6-AS1-overexpressing A549 and H1650 cells. (I, J) GIMAP6 mRNA and protein expression levels in LUAD cells co-transfected with OE-GAS6-AS1 and either miR-24-3p inhibitor or NC inhibitor. *P < 0.05 and ***P < 0.001.



The expression levels of GIMAP6 were measured in A549 and H1650 cells following GAS6-AS1 overexpression, in order to determine whether GAS6-AS1 could regulate GIMAP6 expression. Overexpression of GAS6-AS1 resulted in GIMAP6 upregulation in A549 and H1650 cells, both at the mRNA and protein level (Figures 5G, H). LUAD cells were co-transfected with OE-GAS6-AS1 and NC inhibitors or miR-24-3p inhibitors. Following co-transfection with miR-24-3p inhibitor, the expression of GIMAP6 in A549 and H1650 cells overexpressing GAS6-AS1 was downregulated (Figures 5I, J). Altogether, these findings suggested that GAS6-AS1 and miR-24-3p were involved in a ceRNA that positively regulated the expression of GIMAP6.



GAS6-AS1 Overexpression Suppresses LUAD Growth In Vivo

Tumor xenotransplantation experiments were carried out to determine the effect of GAS6-AS1 in vivo. A549 cells transfected with Vector or OE-GAS6-AS1 were injected into nude mice. The tumor volume was measured every five days. It was found that tumor growth was faster in the Vector group than in the OE-GAS6-AS1 group (Figure 6A). After 30 days, the tumor tissue was collected from the host. The average tumor weight in the vector group was markedly higher than in the OE-GAS6-AS1 group (Figures 6B, C). In addition, Ki-67 staining showed that there were fewer positive cells in the OE-GAS6-AS1 group than in the control group (Figure 6D). We then measured the expression levels of GAS6-AS1, miR-24-3p and GIMAP6 by qRT-PCR. Compared with the Vector group, the levels of GAS6-AS1 and GIMAP6 expression in the OE-GAS6-AS1 group were upregulated, while miR-24-3p expression was downregulated (Figures 6E–H). These results demonstrated that overexpression of GAS6-AS1 could inhibit tumor progression in vivo.




Figure 6 | GAS6-AS1 overexpression inhibits LUAD tumor growth in vivo. (A) The volume of tumor xenografts was measured every 5 days from 1 week after injection. (B) Tumors weights in the OE-GAS6-AS1 and Vector groups. (C) Tumor weight was measured. (D, E) Immunohistochemical staining of Ki-67 in the OE-GAS6-AS1 and Vector groups in xenograft tumor tissues. (F–H) qRT-PCR was used to measure the expression levels of GAS6-AS1, miR-24-3p and GIMAP6 in xenograft tissues. IHC, Immunohistochemistry. *P < 0.05, **P < 0.01 and ***P < 0.001.






Discussion

Previous studies have demonstrated that abnormal expression of lncRNA can promote or inhibit the biological function of NSCLC (7, 26). Furthermore, lncRNA is considered to be a potential therapeutic target for the treatment of NSCLC patients (27). Thus, understanding the expression profile and specific functions of cancer-related lncRNA candidates in NSCLC may provide insight into the diagnosis and treatment of NSCLC. In this study, we examined GAS6-AS1 expression levels in LUAD and its functional role and regulatory mechanism in LUAD progression. We found that downregulation of GAS6-AS1 reduced the levels of GIMAP6 by sponging miR-24-3p, which promoted the development of LUAD in vivo and in vitro.

Several studies have shown that the expression of GAS6-AS1 was dysregulated in many types of cancer, including NSCLC (14–16). Nevertheless, the functional roles and potential mechanism of GAS6-AS1 remain unclear. In this study, we demonstrated that GAS6-AS1 expression was downregulated in LUAD samples and cell lines, in accordance with the results of previous studies (16). In addition, low GAS6-AS1 expression was associated with increased tumor size, clinical stage and lower overall survival rates, indicating that GAS6-AS1 was associated with poor prognosis. Our findings also suggested that the overexpression of GAS6-AS1 could significantly inhibit the proliferation, migration and invasion of LUAD cells. In addition, xenotransplantation experiments indicated that the overexpression of GAS6-AS1 inhibited tumor growth in nude mice. Thus, low expression of GAS6-AS1 played a carcinogenic role in the progression of LUAD.

Accumulating evidence has confirmed that miRNAs regulate the occurrence and progression of various cancer types and can promote or prevent malignant tumors, including NSCLC (28, 29). lncRNA exerts its biological function by targeting miRNA (20, 21). Accordingly, we hypothesized that GAS6-AS1 could affect the occurrence and progression of LUAD through this biological mechanism. Using the online database Starbase3.0 to predict the potential miRNA targets of GAS6-AS1, we identified miR-24-3p as a potential target of GAS6-AS1. Luciferase activity and RIP analysis further indicated that GAS6-AS1 could bind to miR-24-3p in LUAD cell lines. The expression of GAS6-AS1 was negatively correlated with the expression of miR-24-3p in NSCLC samples, and the database also confirmed our conclusion (Additional Figure 4). Importantly, the overexpression of GAS6-AS1 downregulated miR-24-3p expression, which inhibited the proliferation of LUAD cell lines. These findings demonstrated that GAS6-AS1 performed its function in LUAD cell lines by sponging miR-24-3p.

Increasing evidence suggests that lncRNA can indirectly regulate target genes expression by binding to miRNA (30, 31). GIMAP6 was the predicted target of miR-24-3p and was expressed at low levels in NSCLC. GIMAP6 is a member of the GTPase immunity-associated proteins (GIMAP) family, which might play a role in the regulation of cell survival (24). Decreased expression of this gene may be associated with NSCLC. Therefore, we further examined the relationship between GAS6-AS1, miR-24-3p and GIMAP6. Overexpression of GAS6-AS1 significantly increased the expression of GIMAP6 and the addition of a miR-24-3p inhibitor attenuated this effect. In addition, GIMAP6 expression levels were positively correlated with GAS6-AS1 in LUAD, which verified the existence of a GAS6-AS1/miR-24-3p/GIMAP6 axis in LUAD. These results indicated that GAS6-AS1 could regulate GIMAP6 and promote the progression of LUAD by targeting miR-24-3p.

In conclusion, this study suggested that GAS6-AS1 was downregulated in LUAD tissues and was associated with poor prognosis in patients with LUAD. Overexpression of GAS6-AS1 inhibited the proliferation of LUAD cells in vitro and tumor growth in vivo by regulating miR-24-3p and GIMAP6. Altogether, these observations suggested that GAS6-AS1 might represent a potential therapeutic target for LUAD. GAS6-AS1 might still be involved in different mechanisms in NSCLC. In the future, we will increase the sample size to verify our conclusions.
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Lung adenocarcinoma (LUAD) is one type of the malignant tumors with high morbidity and mortality. The molecular mechanism of LUAD is still unclear. Studies demonstrate that lncRNAs play crucial roles in LUAD tumorigenesis and can be used as prognosis biomarkers. Thus, in this study, to identify more robust biomarkers of LUAD, we firstly constructed LUAD-related lncRNA-TF network and performed topological analyses for the network. Results showed that the network was a scale-free network, and some hub genes with high clinical values were identified, such as lncRNA RP11-173A16 and TF ZBTB37. Module analysis on the network revealed one close lncRNA module, which had good prognosis performance in LUAD. Furthermore, through integrating ceRNAs strategy and TF regulatory information, we identified some lncRNA-TF positive feedback loops. Prognostic analysis revealed that ELK4- and BDP1-related feedback loops were significant. Secondly, we constructed the lncRNA-m6A regulator network by merging all the high correlated lncRNA-m6A regulator pairs. Based on the network analysis results, some key m6A-related lncRNAs were identified, such as MIR497HG, FENDRR, and RP1-199J3. We also investigated the relationships between these lncRNAs and immune cell infiltration. Results showed that these m6A-related lncRNAs were high correlated with tumor immunity. All these results provide a new perspective for the diagnostic biomarker and therapeutic target identification of LUAD.
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Introduction

Lung adenocarcinoma (LUAD) is one of the key subtypes of lung cancer with high morbidity and mortality in the world (1, 2). LUAD is also the major cause of cancer-related deaths and is hard to diagnose. Nearly 15% of patients with LUAD sustained life for no more than 5 years. Despite the great efforts in cancer diagnostic and therapeutic strategies that have been made, such as PD-L1 immunotherapy, the clinical outcomes of LUAD have not substantially improved, which are induced by overdue diagnosis and tumor metastasis. Thus, it is urgent to identify the molecular mechanism to unveil the initiation and progression of LUAD. Furthermore, identification of molecular diagnosis and prognosis biomarkers from omics data is also important.

The long non-coding RNA (lncRNA) is a novel type of transcript with length more than 200 nucleotides (3, 4). Previous studies found that lncRNAs are implicated in numerous biological processes in multiple diseases, such as cancer and cardiovascular diseases (5–7). Clinically, dysregulated lncRNAs may act as diagnosis and prognosis biomarkers and therapeutic targets for cancers (8, 9). The molecular mechanisms of lncRNAs in diseases are various, such as formatting competing endogenous RNAs (ceRNAs), histone modification, and binding proteins (10, 11). In the field of LUAD, some studies have identified that lncRNAs are the crucial regulators in tumor progression. For instance, Cong et al. found that long non-coding RNA LINC00665 could function as a ceRNA to regulate AKR1B10-ERK signaling by sponging miR-98 to promote lung adenocarcinoma progression (12). Wang et al. performed a bioinformatics analysis by integrating TCGA LUAD data and revealed that lncRNA CTB-193M12.5 was a prognostic factor in lung adenocarcinoma (13). Peng et al. found a robust prognostic signature of two lncRNAs (C1orf132 and TMPO-AS1) for stage I-II LUAD patients without adjunctive therapy (14). In addition, Huang et al. found that lncRNA LINC00520 could interact with miR-3611 and target to FOXP3 to facilitate cell proliferative and migratory abilities in LUAD, while FOXP3 was also the upstream transcription factor (TF) of LINC00520. This positive feedback containing FOXP3, miR-3611, and LINC00520 provides a potential novel insight for treatment of LUAD (preprint). Furthermore, methylation of N6 adenosine (m6A) regulation is a novel proposed regulatory mechanism, which is also the most widely distributed methylation modification in eukaryotic RNAs (15, 16). Studies demonstrated that m6A methylation of lncRNAs determined the clinical outcome in LUAD. For instance, Yu et al. found that ALKBH5-mediated m6A demethylation of lncRNA RMRP plays an oncogenic role in lung adenocarcinoma. ALKBH5 manipulation mediated RMRP suppression, which may be considered as a promising therapeutic target for lung adenocarcinoma (17). Xu et al. found a risk model with 12 m6A-related lncRNAs that could be used as an independent predictor of prognoses in LUAD (18). These studies inspired us to comprehensively investigate the lncRNA-related gene crosstalks to identify more diagnosis or prognosis biomarkers and identify more novel molecular therapeutic targets in LUAD.

In this study, firstly, we proposed a novel pipeline to construct LUAD-related lncRNA-TF network and performed topological analysis on the network. Results showed that the network was a scale-free network, and some hub genes were identified. Then we performed module analysis in the network. One lncRNA-related function module was identified by MCODE. This functional module showed good prognosis performances in LUAD. Furthermore, through integrating ceRNAs strategy and TF regulatory information, we identified some lncRNA-TF positive feedback loops, which also exhibited high prognosis performances. Secondly, we constructed the lncRNA-m6A regulator network by collecting all the high correlated lncRNA-m6A regulator pairs. Based on the network analysis results, some key m6A-regulated lncRNAs were identified. We also investigated the relationships between these lncRNAs and immune cell infiltration. These results shed new light into the diagnostic biomarker and therapeutic target identification of LUAD.



Materials and Methods


Lung Adenocarcinoma-Related Expression Data and Genetic Alterations Data

TCGA lung adenocarcinoma (LUAD)-related gene expression data and follow-up clinical data were obtained from XENA (https://xenabrowser.net/hub/). All the raw data are provided in Table S1. Genes with 0 expression value in more than 70% of samples were removed. As a result, processed LUAD gene expression data and matched clinical data contain 585 samples. TCGA LUAD genetic alteration data were obtained from cBioportal for Cancer Genomics. The list of m6A regulators and TFs was obtained from other studies. Gene expression comparison analysis was performed by GEPIA (19). Independent validation cohorts were downloaded from GEO database with the accession numbers of GSE30219 and GSE3141.



Obtain ceRNA Interactions

For TF-mRNA interactions, 423,975 miRNA-mRNA interactions of starBase (including 386 miRNAs and 13,861 mRNAs) were used to identify TF-miRNA interactions by mapping the TFs into the miRNA-mRNA interactions (20). TF names were downloaded from AnimalTFDB. For lncRNA-miRNA interactions, we downloaded all lncRNA sequences from GENCODE database and the miRNAs sequences from miRbase database. Miranda algorithm (default parameters: Score S >= 140 and Energy E <= 7.0) was then used to call significant miRNA-lncRNA interactions (21).



Construction of LUAD-Related lncRNA-TF Network and Network Analysis

Previous studies have demonstrated that lncRNAs can regulate mRNA expression via targeting common miRNAs. Hypergeometric test is usually used as an effective tool to identify significant lncRNA-mRNA pairs through calculation of the number of common miRNAs. Thus, we firstly performed the hypergeometric test to call significant lncRNA-TF pairs based on the above miRNA-TF and miRNA-lncRNA interactions. The hypergeometric test formula was

	

where, m is the number of miRNAs in this study, n is the number of miRNAs that interact with a lncRNA, t is the number of miRNAs that interact with a TF, and r is the number of both-targeted miRNAs between TF and lncRNA.

Secondly, we calculated Pearson correlation coefficients (PCC) for all lncRNA-TF pairs. LncRNA-TF pairs with PCC>0.6 and P-value<0.01 were considered as significant lncRNA-TF ceRNA pairs. Here, we also performed weighted gene co-expression network analysis (WGCNA) to identify lncRNA-TF pairs and compared the results between PCC and WGCNA. The threshold of lncRNA-TF pairs was weight >0.5. Additionally, TF-mapped PPI interactions were also extracted from HPRD database. The LUAD-related lncRNA-TF network was constructed by merging all significant lncRNA-TF ceRNA pairs and TF-TF PPI pairs. Cytoscape V3.6.0 was used for network visualization. R package of “igraph” was used to perform network topological analyses, such as network degree, cluster coefficient, and average short path length. In this study, hub genes were defined as the top 10% nodes (containing both lncRNAs and TFs) with the highest degrees in the LUAD-related lncRNA-TF network.

Furthermore, we imported the LUAD-related lncRNA-TF network to the Cytoscape software and used the “MCODE” plug-in to locate functional lncRNA-TF modules (default parameters).



Identify lncRNA-TF Positive Feedback Loops

LncRNAs and TFs can competitively target miRNAs and form ceRNA pairs. Meanwhile, TFs are important transcriptional regulators and exert regulatory function by binding to promoter or enhancer regions of DNA. In the previous step, we have identified lncRNA-TF ceRNA pairs. Then we devoted to identify transregulatory pairs between lncRNAs and TFs. We downloaded the permissive enhancers and lncRNA genomic annotation data from FANTOM5 and GENCODE. Secondly, using FIMO software, we identified TF binding sites in both DNA elements (22). LncRNA promoters were defined as the +/−2,000 bps from TSS. LncRNA enhancers were defined as the elements that were located in more than +/−2,000 bps of the lncRNA TSS. For the motif analysis, we performed FIMO with a P-value <1e–4 to scan promoter and enhancer regions (23). LncRNA-TF positive feedback loops were identified by integrating TF motif binding and ceRNA relationships.



Construction of LUAD-Related lncRNA-m6A Regulators Network

We downloaded the m6A regulator list from the previous study (24). Previous studies have demonstrated that m6A regulators could bind lncRNAs and trigger their expression (25, 26). Thus, we calculated the Pearson correlation coefficients (PCC) for all lncRNAs and m6A regulators. LncRNA-m6A regulator pairs with PCC>0.6 were reserved, and the network was constructed by merging all lncRNA-m6A regulator pairs.



Survival Analysis

Hazards Ratio (HR) analysis of TFs and lncRNAs in LUAD was performed by GEPIA2 by using Mantel–Cox test. For single gene–based survival analysis, patients were classified into high-Exp group and low-Exp group based on mean expression. To evaluate the prognostic effect of multiple genes, a risk score model was used to implement survival analysis as follows:

	

Where, ri represents the Univariate Cox regression coefficient of gene i from gene set, Exp (i) represents the expression value of gene i in corresponding patient, and n represents the number of genes in gene set. The mean risk score was used to classify patients into high-risk and low-risk groups. A Kaplan-Meier survival curve was performed for different patient groups. Log-rank test (P < 0.05) was used to yield statistical significance.



Immune Cell Infiltration of lncRNAs in LUAD Patients

Infiltration estimation for all LUAD patients was downloaded from TIMER2 database (27). The potential role of lncRNAs in cell infiltration was estimated by calculating the correlation between lncRNA expression and infiltration estimation scores.




Results


Construction and Analysis of LUAD-Related lncRNA-TF Network

LncRNAs have been considered as the crucial regulators in the procession of tumorigenesis. TF-lncRNA crosstalks are also important components in lncRNA-related functional mechanisms. Here, we firstly focused on identifying potential lncRNA regulators in LUAD based on lncRNA-TF network. To do it, we downloaded the gene expression profiles from TCGA portal and processed the expression data. Additionally, we downloaded the miRNA-mRNA crosstalks from starBase and identified miRNA-lncRNA crosstalks via miRanda tools. Based on ceRNA theory, we proposed a protocol by integrating hypergeometric test and Pearson correlation coefficients to construct LUAD-related lncRNA-TF network (Figure 1). As a result, the LUAD-related lncRNA-TF network constituted 78 TF nodes, 446 lncRNA nodes, and 982 crosstalks (Figure 2A).




Figure 1 | The pipelines of network construction. Firstly, we downloaded the transcripts expression from TCGA database and separated the lncRNA/TF expression. Secondly, we integrated miRNA-RNA interactions, co-expressed lncRNA-TF pairs, and PPI network to construct LUAD-related lncRNA-TF network. Thirdly, we integrated co-expressed lncRNA-m6A regulator pairs to construct LUAD-related lncRNA-m6A regulator network.






Figure 2 | Visualization and topological features of LUAD-related lncRNA-TF network. (A) Cytoscape network visualization of LUAD-related lncRNA-TF network. LncRNA nodes are represented in orange, and TF nodes are represented in blue. Network node degrees are represented by node size. (B) Degree distributions of the LUAD-related lncRNA-TF network. (C) Cluster coefficient distributions of LUAD-related lncRNA-TF network and 1,000 times permutation networks. Cluster coefficient of LUAD-related lncRNA-TF network was larger than in permutation cases (p-value < 0.01). (D) Average short path lengths of LUAD-related lncRNA-TF network and 1,000 times permutation networks. Average short path length in real network was smaller than in permutation cases (p-value < 0.01).



Then we performed topological analyses on the LUAD-related lncRNA-TF network and identified the topologically crucial lncRNA crosstalks. Firstly, we performed degree distribution on the network and found all nodes followed power law distribution (Figure 2B, R2 = 0.83), suggesting that the LUAD-related lncRNA-TF network had scale-free characteristic. This result also suggested that in the network, a small group of genes with high degree (considered as hub genes) linked to the other most genes. Secondly, cluster coefficient of the real network and cluster coefficients of 1,000 times permutation networks were calculated. As a result, cluster coefficient of LUAD-related lncRNA-TF network was significantly larger than that of 1,000 times permutation networks (Figure 2C, p<0.01), indicating that the network had strong aggregation capability. Thirdly, we calculated average short path lengths for the real network and 1,000 times permutation networks. Results showed that short path length of the real network was significantly smaller than short path lengths of 1,000 times permutation networks (Figure 2D, p<0.01), suggesting that the lncRNA-TF network had reduced global efficiency. All these results implied that the LUAD-related lncRNA-TF network could be used to identify crucial regulators of LUAD.

In addition, we also integrated WGCNA method and hypergeometric test to identify lncRNA-TF crosstalks. As a result, 69 lncRNAs, 12 TFs, and 97 edges were consisted of the WGCNA-based lncRNA-TF network (Figure S1). In the network, some hub TFs of LUAD-related lncRNA-TF network were also identified as central regulators, such as ZNF410, ZBTB20, and MATR3. However, a TF hub named as YAF2 was considered as the novel core regulator in the WGCNA network. This result indicated that the new integrative method could help reveal more knowledge in tumorigenesis of LUAD.



Identification of Hub Genes in LUAD-Related lncRNA-TF Network

Previous studies have demonstrated that topologically crucial genes in biological networks maintained crucial functions in physiological and pathological processes. Thus, we then identified the topologically crucial genes by calculating the network degree for each node. We extracted the top 10% nodes with the highest degrees from the LUAD-related lncRNA-TF network and defined these genes as hub genes. As a result, 31 lncRNAs and 22 TFs were extracted as hub genes. We detected the expression of these hub genes in LUAD dataset, and results showed that hub lncRNAs and hub TFs showed significant expression changes in tumor and control samples (Figures 3A and S2). This result also implied that the topologically crucial regulators in the network participated in the regulatory processes of cancers. Furthermore, we also investigated the role of hub genes in classifying cancer subtypes. Results showed that hub genes had potential in malignant lesion staging (Figure 3B). Interestingly, we found that hub lncRNAs had the potential to be used as prognosis markers. For example, the high expression of hub lncRNA RP11-173A16 showed a good prognosis in TCGA cohorts (Figure 3C). Moreover, it was also considered as a robust prognosis marker in independent validation datasets (Figure 3D). Furthermore, we also used OncoVAR database for analysis of the oncogenic driver genes in LUAD. Results showed that hub TF ATM was a driver gene in LUAD (Table S2). And we also listed the ATM-associated mutations in LUAD (Figure S3) (28).




Figure 3 | Expression and clinical value of hub genes. (A) The expression patterns of one TF hubs (ZBTB37) and three lncRNA hubs (CTD-2600H12, NPTN-IT1, and RP11-173A16) with the highest degrees in TCGA LUAD cohorts. (B) Three hub genes (RP11-173A16, RP11-516C1, and ZBTB37) were selected to detect their expression in different stages of lung adenocarcinoma. (C) The prognostic effect of hub lncRNA RP11-173A16 in TCGA cohorts. (D) The prognostic effects of hub lncRNA RP11-173A16 in other two independent validation cohorts. *represents p < 0.05, tumor vs control group http://pathwax.sbc.su.se.





Identification of Functional lncRNA-TF Modules

Biological networks are often too large to interpret their certain biological functions. However, functional modules of the network may be more useful for uncovering certain regulatory mechanisms. Functional modules have also been widely used to explore the mechanism involved in many aspects, such as cancers and cardiovascular diseases (29, 30). Thus, in this study, we used “MCODE” software to locate the functional models in LUAD-related lncRNA-TF network. As a result, one functional module was identified with default parameters (Figure 4A). This module constituted 22 TFs, 31 lncRNAs, and 100 edges. Some TFs in the module have been demonstrated to involve in cancer procession, such as CHD1, NFAT5, and POU2F1. Then we focused on investigating the variations of these TFs. We called the genetic alteration information of these genes from TCGA portal. Results showed that these TFs had amplification alterations in LUAD (Figure 4B), indicating these TFs showing high expression patterns in cancer were regulated by genetic alterations. ZNF573 was the high-mutated TF with 10% alteration frequency. RNA-seq results also validated that the alteration of genes had an impact on gene expression (Figure 4C). Furthermore, we also used risk score model to detect the prognosis effect of the modules in LUAD cohorts. Results showed that this functional module had prognosis potential (Figure 4D).




Figure 4 | Module analysis of LUAD-related lncRNA-TF network. (A) Cytoscape visualization of module in LUAD-related lncRNA-TF network. (B) Genetic alteration information of TFs in modules. (C) Genetic alteration has impact on TF expression. (D) The prognosis effects of the lncRNA-related module. *represents genes were selected in the dataset.





Identification of lncRNA-TF Positive Feedback Loops

Recent studies have demonstrated that TFs and lncRNAs could form positive feedback loops to exert biological functions. Thus, to investigate the LUAD-related lncRNA-TF feedback loops, we collected the regulatory elements of all lncRNAs from GENCODE and FANTOM5. Then we used motif scanning software to calculate binding capacities between TFs and lncRNAs. As a result, we found TF binding sites in the promoters and enhancers of lncRNAs, respectively (Figures 5A, B). In detail, we found that some TFs, such as BDP1 and ELK4, had a large number of TF binding sites in these lncRNA upstream DNA elements. Additionally, some TFs, such as ZNF410 and NFAT5, were highly co-expressed with lncRNAs but had non-motif binding affinity characteristic, implying that these TFs might regulate lncRNA expression in co-factor. All these results implied the broad functions of these TFs in LUAD. Then we merged all the lncRNA-TF positive feedback loops into the network (Figure 5C). ELK4, BDP1, and ZNF410 were the hub TFs in feedback loop networks. More importantly, we also detected the clinical value of these lncRNA-TF feedback loops. Results showed that these lncRNA-TF feedback loops had good prognostic effects (Figures 5D, E).




Figure 5 | Identification of lncRNA-TF positive feedback loops. (A, B) Motif scanning results of lncRNA promoter and enhancer regions. Heatmap represents the Pearson correlation coefficients between lncRNAs and TFs. Size represents the number of motifs in DNA regions. (C) Cytoscape visualization of lncRNA-TF positive feedback loops. (D, E) The prognostic effects of ELK4-lncRNA feedback pairs and BDP1-lncRNA feedback pairs in LUAD.





Construction and Analysis of lncRNA-m6A Regulator Network

Methylation of N6 adenosine (m6A) regulation is considered as a crucial regulatory mechanism in tumorigenesis. Here, to investigate the role of m6A regulators in LUAD, we firstly called the genetic alterations of 21 m6A regulators in LUAD. Results showed that these regulators were mutated in LUAD, although the alteration frequencies were not high (Figure 6A, less than 4%). M6A modifications of lncRNAs were also demonstrated as the powerful evidences in cancer researches (31, 32). Studies also found that m6A regulators could trigger lncRNA expression. Thus, this motivated us to construct the lncRNA-m6A regulator crosstalks via calculating co-expression coefficients. As a result, we calculated the Pearson correlation coefficients between all lncRNAs and 21 m6A regulators and extracted the lncRNA-m6A regulator pairs with PCC>0.6 or PCC<−0.6 into the crosstalk network. As a result, this network consisted of 15 m6A regulators, 178 lncRNAs, and 200 edges (Figure 6B). Firstly, we calculated the degree for the network, and we could see that RBM15 and HNRNPC were the topologically central nodes, implying these two m6A regulators might participate in more biological processes in LUAD. Here, we only focused on the genes with high degree (degree >2) in the network because of the specific network characteristic. As a result, 23 genes were extracted as the key genes, which included 7 m6A regulators and 16 lncRNAs. To investigate the prognostic effects of these genes, we calculated the Hazard ratios in TCGA LUAD datasets via GEPIA2. Results showed that some lncRNAs and m6A regulators were high related to the LUAD survival, such as RBM15, FENDRR, and HNRNPC (Figure 6C). Then we used log-rank test to investigate the prognostic effects of these genes. Results also validated that m6A regulators and m6A-related lncRNAs had strong prognostic effects, indicating that m6A modification could be used as a robust biomarker in LUAD (Figures 6C, D).




Figure 6 | Identification of m6A regulator-lncRNA pairs in LUAD. (A) Genetic alteration information of m6A regulators in LUAD. (B) High-correlated m6A regulator-lncRNA pairs. Green nodes represent m6A regulators, and pink nodes represent lncRNAs. (C) Hazard ratios of 23 key genes of the lncRNA-m6A regulator network. (D) The Kaplan-Meier survival curves of key lncRNAs and m6A regulators. *represents genes were selected in the dataset.





Immune Cell Infiltration of m6A-Related lncRNAs in LUAD

Next, to uncover the potential role of m6A-related lncRNAs in tumor immunology, we collected the pan-can cell infiltration data from TIMER2 database. Based on the above protocol, we selected the lncRNAs with high degree (degree>2) in lncRNA-m6A regulator network as the potential m6A-related lncRNAs. Expression heatmap showed that some lncRNAs showed similar expression patterns in LUAD (Figure 7A). Briefly, we calculated the correlation coefficients between m6A-related lncRNAs and immune cell levels by integrating expression data and TIMER2 infiltration data. Results showed that CD8-T cell, neutrophil, macrophage, and myeloid dendritic cell were high related to these lncRNAs (Figure 7B). In lncRNA aspect, we found that four lncRNAs were positively related to immune cells than other transcripts, including RP11−251M1, RP11−473M20, LINC01272, and AC011899. And we found that B cell-enriched patients have good prognosis (Figure 7C). And lncRNA TP53TG1 showed a reverse tendency (Figure 7D). These results also implied that lncRNAs might participate in cancer regulation by controlling immune cell levels in LUAD.




Figure 7 | Immune cell infiltration of m6A-related lncRNAs in LUAD patients. (A) The expression heatmap of m6A-related lncRNAs in TCGA LUAD cohorts. (B) The correlation heatmap of correlation coefficients between m6A regulator expression and TIMER2 immune cell estimation score. (C) The Kaplan-Meier survival curves of between B cell-enriched patients and other patients. (D) Scatter plots of correlations between m6A regulator expression and TIMER2 immune cell estimation score.






Discussion

Lung adenocarcinoma is one of the malignant tumors with poor prognosis, which is also a top risk factor of death. However, the molecular mechanism of LUAD is still unknown. Thus, it is urgent to find its molecular mechanism and identify more diagnosis and prognosis biomarkers for LUAD clinical treatments. LncRNA is a type of newfound RNA that is more than 200 bp long and with non-coding capacity. Recent studies have demonstrated that lncRNAs could be used as prognosis markers in LUAD (33, 34). In addition, numerous of lncRNAs have been demonstrated to be involved in the pathological processes of LUAD, such as DANCR, LINC01512, and MALAT1 (35–37). However, there is a lack of global view to comprehensively investigate the lncRNA-related crosstalks. Here, we constructed two types of networks to identify functional lncRNA biomarkers in LUAD, including ceRNA-based TF-lncRNA network and expression correlation-based lncRNA-m6A regulator network. Based on network analysis, some novel lncRNA regulators were identified as potential prognosis markers in LUAD.

Previous studies proposed that TF-lncRNA positive feedback loops have strong prognostic effects in multiple cancers, such as sarcoma and glioma (38, 39). In the field of lung adenocarcinoma, Huang et al. found that FOXP3/lncRNA LINC00520 positive feedback loops facilitated cell proliferative and migratory abilities in LUAD through interaction with miR-3611. Based on these theories, we constructed the LUAD-related TF-lncRNA feedback loop network by integrating gene expression and motif binding. Results showed that core TF-lncRNA feedback loops have strong prognostic effects, such as ELK4 and BDP1 and their lncRNA neighbors. Furthermore, we also found some crucial factors with important clinical values in the positive feedback loops, such as hub TFs CREB1, NFAT5, and POU2F1. CREB1 has been confirmed as the important therapeutic target in lung adenocarcinoma. Jin et al. found the inhibitory role of RBM10 on cell proliferation of lung adenocarcinoma via RAP1/AKT/CREB signaling pathway (40). Wang et al. demonstrated that CREB could stimulate GPX4 transcription and inhibit ferroptosis in lung adenocarcinoma (41). Linnerth et al. found that CREB and its associated proteins function in lung adenocarcinoma, and IGF-II induce CREB phosphorylation via the Erk5 signaling pathway (42). NFTA5 and POU2F1 were also demonstrated to participate in cancer regulation (43, 44). These results indicated the clinical potentials of these genes in our results. More importantly, we found that the binding sites of TFs on lncRNAs of these TF-lncRNA pairs occurred in both promoter regions and enhancer regions, suggesting the strong regulatory effects between TFs and lncRNAs. Because of the characteristic positive feedback loops, these robust TF-lncRNA pairs could be used for therapeutic targets.

Furthermore, some studies found that m6A modifications of lncRNAs have big impacts on tumor progression (26). Here, we collected 21 m6A regulators to identify lncRNA-m6A regulator crosstalks by expression correlation. As a result, we found that some m6A regulators were good prognostic markers of LUAD, such as RBM15, HNRNPC, and HNRNPA2B1. LncRNA-m6A regulator pairs also exhibited good prognostic ability in LUAD. Moreover, we also investigated the relationships between m6A-related lncRNAs and immune cell infiltration. Results showed that a small subset of lncRNAs was high related to the immune cell purities. For example, LINC01272 was high related to the contents of neutrophil, macrophage, and myeloid dendritic cell, implying the potential immunotherapy for LUAD clinically. We also found that 52 lncRNAs were considered as potential targets in both ceRNA-based network and m6A-based network (Figure S4), which indicated that these lncRNAs had important research value in the treatment of LUAD.

In summary, in this study, we constructed LUAD-related lncRNA-TF network and lncRNA-m6A regulator network to identify functional lncRNAs based on gene expression. Firstly, in lncRNA-TF network, network topological analysis revealed some hub lncRNAs and TFs that might control the phenotype of cancers. Module analysis revealed one close lncRNA-related function module, which also exhibited good prognostic performance in LUAD. Furthermore, through integrating ceRNAs strategy and TF motif binding information, we identified some lncRNA-TF positive feedback loops, which could be used as robust prognostic markers and therapeutic targets. Secondly, in lncRNA-m6A network, based on the network analysis results, some key m6A-regulated lncRNAs were identified. We also investigated the relationships between these lncRNAs and immune cell infiltration. All these results provide a new perspective for LUAD prognosis and clinical treatment.

However, our study still has some flaws. Firstly, this study was not focused on subtypes of lung adenocarcinoma. We will investigate the potential role of lncRNAs in subtypes of LUAD to yield more convincing data. Secondly, we used MCODE algorithm to find network modules, which depended on network density. Some modules that were located in the border of network were ignored. Thirdly, in this study, we conducted an integrative bioinformatics analysis to identify the lncRNA-related crosstalks in lung adenocarcinoma, and results indicated that some genes (TFs or lncRNAs) might play vital roles in the subtype cancers. This result also encouraged us to validate the biological function and mechanism. This result also encouraged us to validate the biological function and mechanism of lncRNA-TF mediated regulatory axes. In further studies, we will perform biological experiments to validate and investigate the regulatory mechanism of these factors.
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Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
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Introduction

Breast cancer is a major public health dilemma on a global scale. Inherited and acquired genetic as well as epigenetic alterations have been extensively demonstrated as the driving events of breast cancer (1). Breast cancer is a heterogeneous entity, and different subtypes exhibit distinctive histological and biological features, treatment responses and prognostic patterns (2). Despite substantial advancement in early detection and management, breast cancer remains the second-leading cause of cancer-related death among women worldwide (3). Moreover, advanced or metastatic breast cancer is almost incurable by current systemic treatment options (4). As such, one key challenge in breast cancer therapy is to identify novel reliable diagnostic and prognostic biomarkers.

Only approximately 2% of the human genome is composed of protein-coding transcripts, indicating that the majority of transcripts are non-coding RNAs (ncRNAs) (5). NcRNAs are broadly divided into small ncRNAs (20~200 nucleotides) and long ncRNAs (lncRNAs, >200 nucleotides) (6). LncRNAs were previously considered “transcriptional noise” due to the lack of a significant open reading frame (7). However, increasing evidence indicates that lncRNAs are involved in different biological and pathological processes, including cell apoptosis, differentiation and autophagy (8). Over the last decade, high-throughput and next-generation sequencing technologies have allowed the study of RNAs in an unbiased manner. These technological advances contribute to an explosion of genomic information and increase the ability to identify novel lncRNAs.

More importantly, accumulating evidence suggests that lncRNAs are involved in various human cancers, including breast cancer. Approximately 1,900 lncRNAs are dysregulated in breast cancer (9), and their levels may be associated with distinct clinical outcomes. Dysregulated lncRNAs can act as oncogenes or tumor suppressors to control breast cancer pathophysiology and should be investigated to obtain a better understanding of their roles in breast cancer biology and determine their suitability as diagnostic and prognostic biomarkers. Therefore, this study aims to review the current knowledge about lncRNAs and evaluate their potential roles as molecular markers in breast cancer.



Breast Cancer

Breast cancer is the most common cancer among women worldwide, excluding non-melanoma skin cancer (10). In 2018, approximately 2.1 million cases of breast cancer were newly diagnosed, and approximately 626,679 patients died that same year (10). The well-established risk factors for breast cancer are race, family history of cancer, genetic susceptibility, modifiable exposures, environmental factors and unhealthy lifestyles (11). The incidence of breast cancer varies worldwide and is higher in high-income countries than in low-income countries. However, the death rate in lower-income regions is higher due to the lack of early diagnosis and limited access to treatment (12).

Breast cancer is a complex, heterogeneous disease, and different subtypes have distinct clinical presentations and therapeutic responses. Breast cancer is defined into 3 clinically relevant subtypes according to estrogen receptor (ER) expression, progesterone receptor (PR) expression and human epidermal growth factor 2 (ERBB2; formerly HER2) gene amplification: ER-positive/PR-positive, HER2/ERBB2-positive, and triple-negative (lacking expression of all three molecular markers) (2). Triple-negative breast cancer is an aggressive subtype and accounts for 15% of breast tumors (13). It has been well established that triple-negative tumors have a relatively high mitotic activation index, prominent lymphocytic infiltrate, high incidence of distant relapse, and poor clinical outcomes (14). Breast cancer is staged I-IV, and stage IV has distant metastases at diagnosis. Metastatic breast cancer remains essentially incurable, and the therapeutic goals are symptom palliation and prolonging life. The median overall survival (OS) of stage IV breast cancer patients for the triple-negative and HER2/ERBB2-positive subtypes was approximately 1 year and 5 years, respectively (15). As such, detecting breast cancer at an early stage is of paramount importance.



Discovery, Classification, and Function of LNCRNAS

LncRNAs are commonly defined as RNA transcripts larger than 200 nucleotides. Once considered junk DNA, lncRNAs have recently attracted wide attention as crucial regulators in a diverse array of biological processes. Over the past decade, technical advancements in high-throughput sequencing have greatly streamlined the process of identifying all forms of RNAs. To date, more than 58,000 lncRNAs have been identified, and approximately 30,000 lncRNA transcripts have been curated in GENCODE v29 (16).

Like other RNAs, lncRNAs mainly consist of four core nucleotides (17). LncRNAs exhibit the same characteristics as mRNA transcripts, i.e., they are RNA polymerase II–transcribed, 5nscribedrase II–aracteristics as mR (18). Almost all lncRNAs are localized in the cell nucleus, but some lncRNAs can be exported to the cytoplasm (19). With respect to their genomic location, lncRNAs can be classified into intronic, intergenic, sense, antisense and bidirectional loci (6). Unlike the well-studied miRNAs, lncRNA homologs exhibit weak or untraceable primary sequence conservation (20). Importantly, lncRNAs have evolutionarily conserved promoters, suggesting the importance of lncRNA regulation. Furthermore, compared to small ncRNAs, lncRNAs have highly conserved secondary and tertiary structures, which are considered their major functional units (21).

LncRNAs have been identified as indispensable regulatory elements in multiple cell processes, such as chromatin modification and transcriptional and post-transcriptional regulation (22). There is accumulating evidence that the biological functions of lncRNAs depend strictly on their subcellular location (23). Nuclear lncRNAs can function as cis- and trans-acting elements to modulate chromatin remodeling (24). Some lncRNAs may recruit DNA or chromatin regulatory complexes to regulate the epigenetic silencing or activation of target loci by altering histone modifications or DNA methylation patterns (25) (Figure 1A). Intriguingly, lncRNAs have dynamic and flexible biophysical structures, which confer lncRNAs the ability to serve as scaffolds and allow the assembly of various proteins (26) (Figure 1B). Besides, nuclear lncRNAs can also modulate messenger RNA (mRNA) alternative spicing (27) (Figure 1C). In the cytoplasm, lncRNAs may act as miRNA sponges or competitive endogenous RNAs (ceRNAs) to prevent miRNA binding with target mRNAs, hence regulating the expression of downstream target genes at the post-transcriptional level (28) (Figure 1D). Recent studies have shown that lncRNAs interact with some proteins to regulate their stability and posttranslational modifications (29) (Figure 1E). Furthermore, cytoplasmic lncRNAs transcribed from enhancer regions can stabilize mRNAs by recruiting specific proteins (30) (Figure 1F). More interestingly, some lncRNAs even hold the potential to encode functional small peptides (31) (Figure 1G). Collectively, lncRNAs exert regulatory roles by directly or indirectly interacting with DNA, RNA, or proteins, and the functions of lncRNAs are still under investigation.




Figure 1 | Molecular mechanisms of lncRNAs. (A) LncRNAs modulate histone modification and chromatin remodeling. (B) LncRNAs serve as scaffolds for various proteins. (C) Nuclear lncRNAs participate in mRNA processing. (D) LncRNAs act as miRNA sponges or ceRNAs in regulating miRNAs. (E) LncRNAs regulate the stability and posttranslational modifications of some proteins. (F) lncRNAs stabilize mRNAs. (G) lncRNAs encode functional small peptides.



Recent studies have shed light on the regulatory effects of lncRNAs in human cancers. Importantly, some aberrant lncRNAs hold the promise to serve as ideal biomarkers in certain cancers. Here, main lncRNAs with diagnostic and prognostic values in breast cancer are summarized in Table 1.


Table 1 | Summary of breast cancer-associated lncRNAs.





Oncogenic LNCRNAS


Metastasis-Associated Lung Adenocarcinoma Transcript 1

MALAT1, located in the nucleus, is approximately 8,000 nucleotides in length. MALAT1 is among the most conserved and extremely abundant lncRNAs in different tissues, suggesting that it may have vital biological functions (32, 33). MALAT1 was initially identified as a tumor promoter in non-small cell lung cancer (34). To date, MALAT1 overexpression has been shown in multiple human cancers, such as ovarian, bladder and colorectal cancers (35–37). It has been demonstrated that serum MALAT1 levels in breast cancer patients are markedly higher than those in patients with benign breast disease (38). Huang et al. indicated that the expression of MALAT1 was elevated in breast cancer patients compared to healthy cases. Moreover, silencing of MALAT1 significantly hindered angiogenesis via upregulation of miR-145 expression (39). It has also been found that MALAT1 promotes epithelial-mesenchymal transition (EMT) mainly by regulating the miR-204/ZEB2 axis (40). Another study demonstrated that MALAT1 could enhance the proliferation and invasion of breast cancer cells by altering the histone 3 lysine 4 (H3K4) epigenotype to activate the EEF1A1 promoter. Downregulation of MALAT1 expression may significantly reduce the promoter activity of EEF1A1, suggesting a novel MALAT1-mediated epigenetic mechanism of EEF1A1 regulation (41). Zhao et al. indicated that a high concentration of 17β-estradiol inhibited the proliferation, invasion and metastasis of breast cells via downregulation of MALAT1 expression (42). In breast cancer, early postoperative fever indicates unfavorable clinical outcomes. Li et al. demonstrated that overexpression of MALAT1 in breast cancer patients with early postoperative fever was significantly related to inflammatory responses and lung metastasis (43). In addition, Wang et al. indicated that elevated MALAT1 levels were inversely correlated with OS in invasive ductal carcinoma (44). Furthermore, a meta-analysis showed that high expression of MALAT1 in breast cancer is correlated with unfavorable disease-free survival (DFS) and recurrence-free survival (RFS) (45). In recent years, accumulating evidence has shown that the aberrant expression of MALAT1, especially in serum/plasma, may serve as a suitable biomarker in various human cancer entities (46, 47).



Nuclear Enriched Abundant Transcript 1

NEAT1 has two variants (NEAT1-1 and NEAT1-2), and it is indispensable for paraspeckle integrity (150). In the last few years, several studies indicating the involvement of NEAT1 in breast cancer have been published, and NEAT1 is closely related to different miRNAs. Jiang et al. indicated that high levels of NEAT1 in diverse breast cancer cell lines were linked to aggressive progression and unfavorable prognosis. They also found that miR-448, an inhibitor of cancer cell growth, was inhibited by NEAT1 and consequently led to increased expression of zinc-finger E-box binding protein 1 (ZEB1), an oncogene (48). Zhang et al. demonstrated that ectopic expression of NEAT1 was related to tumor volume and lymph node metastasis, while silencing of NEAT1 expression resulted in decreased proliferation and migration in breast cancer cell lines (49). In addition, overexpression of NEAT1 leads to the downregulated expression of miR-133b, which is a known inhibitor of tumorigenesis, consequently resulting in enhanced migration and invasion (50). Ke et al. indicated that downregulation of NEAT1 expression by miR-548 could abrogate proliferation and induce apoptosis in breast cancer. They also found that fused in sarcoma (FUS), a nuclear RNA binding protein, directly interacted with NEAT1, and the role of NEAT1 in cancer cell survival was mediated by FUS (51). Enhancer of zest homolog 2 (EZH2), known as a molecular marker of aggressive malignancies, is a target of miR-101. Qian et al. showed that NEAT1 promoted the growth of breast cancer cells via miR-101-dependent EZH2 regulation (52). In addition, NEAT1 could increase the expression of high mobility group AT-hook 2 (HMGA2) by sponging miR-211, thereby enhancing the invasiveness of breast cancer cells (53). High levels of NEAT1, miR-21, and RRM2 have been observed in different breast cancer cell lines, and their elevated levels correlate with poor clinical outcomes, suggesting that the NEAT1/miR-21-RRM2 signaling axis contributes to breast cancer development (54). Moreover, NEAT1 acts as a sponge for 146b-5p to promote the proliferation, migration, and metastasis of breast cancer cells (55). Zhou et al. showed that NEAT1 could coordinate various miRNAs in different breast cancer subtypes and thus exert diverse regulatory functions (56). In conclusion, these data revealed various mechanisms of NEAT1 in the regulation of breast cancer and suggested that NEAT1 might function as a potential biomarker in breast cancer.



H19

H19, an imprinted gene, is located on chromosome 11p15.5 (151). H19 is abundantly expressed during embryogenesis, and the expression of H19 is repressed upon birth, except for basal expression in adult tissues, such as lung, skeletal muscle and mammary gland (152). The first evidence that H19 has a pivotal role in breast cancer was provided by Adriaenssens et al., who found that H19 overexpression was significantly associated with ER/PR status and tumor progression (57). Matouk et al. found that H19 suppressed the expression of E-cadherin, a representative inhibitor of EMT, and promoted metastasis via regulation of Slug in breast cancer (58). H19 functions as a molecular sponge of miR‐152 to upregulate the expression of the DNA methyltransferase DNMT1, thus facilitating the proliferation and invasiveness of breast cancer cells (59). It has also been demonstrated that H19 can sponge miR-200b/c and let-7b differently to enhance EMT and mesenchymal-epithelial transition (MET) (60). Additionally, downregulation of H19 expression could result in S-phase arrest of breast cancer cells, suggesting its role in regulating cell cycle progression (61). H19 could serve as a precursor for miR-675, which is encoded by the exon of H19. Vennin et al. found that high expression of H19 upregulated miR-675 expression, negatively regulating E3 ubiquitin ligases (c-Cbl and Cbl-b) to enhance the aggressiveness of breast cancer cells (62). Zhang et al. showed that high plasma H19 levels were correlated with ER/PR status and lymph node metastasis (63). Moreover, elevated levels of H19 have been significantly associated with unfavorable OS and DFS, particularly in the triple-negative subtype (64). A meta-analysis showed that dysregulated H19 expression correlated with poor differentiation, high tumor stage, early distant metastasis, and lymph node involvement in multiple cancers (153). In sum, current evidence establishes H19 as a potential breast cancer biomarker.



Actin Filament Associated Protein 1 Antisense RNA1

AFAP1-AS1 is 6,810 bp long and is located on human chromosome 4p16.1 (154). Further studies have shown that AFAP1-AS1 expression is markedly upregulated in breast cancer tissues and cell lines and predicts poor clinical outcomes (65). In addition, AFAP1-AS1 overexpression in cancers correlates with greater tumor volume, advanced tumor-node-metastasis (TNM) staging, lymph node metastasis and distant metastasis (65). Intriguingly, elevated levels of AFAP1-AS1 are more common in triple-negative breast cancer (66). Previous experiments suggested that AFAP1-AS1 could promote tumorigenesis by interfering with AFAP1 expression (67). However, Dianatpour et al. demonstrated that high levels of AFAP1-AS1 had no regulatory effect on AFAP1 expression in breast cancer patients (68). Consistent with this study, Ma et al. indicated that silencing of AFAP1-AS1 exerted no effects on AFAP1 expression or actin filament integrity (69). Such discrepancies among different cancers need to be further elucidated. Ki-67, a nuclear antigen, is not expressed in quiescent cells (70). Downregulation of AFAP1-AS1 expression was detected in all of the Ki-67-negative samples, suggesting that AFAP1-AS1 might be implicated in cell proliferation (68). Moreover, AFAP1-AS1 regulates the wnt/β-catenin pathway, facilitating the expression of c-Myc and EMT-associated transcription factors to promote tumorigenesis and induce EMT (66). Furthermore, AFAP1-AS1 directly binds to miR-497-5p to upregulate the expression of Septin 2, a well-known oncogene. Depletion of AFAP1-AS1 inhibits proliferation and migration and induces apoptosis in breast cancer (71). In triple-negative breast cancer, AFAP1-AS1 sponges miR-154 to coordinate the expression of MutT homolog-1, which in turn induces cellular proliferation and invasion (72). Hence, the dysregulated expression of AFAP1-AS1 and its molecular mechanisms identify it as a putative biomarker and actionable target in breast cancer.



HOX Transcript Antisense RNA

HOTAIR is a 2,158-bp lncRNA located on human chromosome 12q13.13 between the HOXC11 and HOXC12 genes (155). Ectopic HOTAIR expression has been implicated in a variety of cancers, such as pancreatic, colorectal and non-small-cell lung cancers (156–158). HOTAIR expression seems to be elevated in cancer tissues compared to paired non-cancerous tissues, and high expression of HOTAIR has been associated with an enhanced proliferation rate, advanced tumor stage, elevated risk of metastasis, and unfavorable prognosis (73, 74). Gupta et al. indicated that HOTAIR expression was upregulated in primary breast tumors and metastases and that dysregulation of HOTAIR in primary tumors correlated with metastasis and poor prognosis (75). On the other hand, treatment with transforming growth factor-β1 (TGF-β1) upregulates the expression of HOTAIR and contributes to EMT. TGF-β1-induced EMT is reversed by HOTAIR knockdown, suggesting that the effect of TGF-β1 on EMT is, at least partly, mediated through HOTAIR (76). Mechanistically, depletion of HOTAIR inhibits the growth, invasion and migration of breast cancer cells through downregulation of p53 expression (77). In addition, HOTAIR sequesters miR-206 to enhance the expression of Bcl-w, an anti-apoptotic protein, thereby promoting the proliferation of breast cancer cells (78). Moreover, HOTAIR could recruit polycomb repressive complex 2 (PRC2), known as a transcriptional corepressor, to facilitate epigenetic gene silencing (75). However, another study demonstrated that the oncogenic role of HOTAIR in breast cancer cells may be independent of PRC2. Instead, the recruitment of PRC2 seemed to be a consequence of gene silencing (79). These contradictory findings on HOTAIR have caused confusion about its role in breast cancer. Hence, further studies are needed to elucidate the interaction between HOTAIR and PRC2. Overall, the involvement of HOTAIR in these signaling pathways contributes to the progression of breast cancer, and HOTAIR might be utilized as a new predictive and prognostic biomarker in breast cancer.



Regulator of Reprogramming

ROR is a 2.6-kb intergenic transcript located on chromosome 18q21.31 (159). ROR was initially discovered as a promoter of the reprogramming process, and it was shown to contribute to the maintenance of pluripotent and embryonic stem cells via inhibition of cellular stress signaling pathways (159). Elevated ROR expression has been detected across cancer cell lines (160). Recent studies have shown that ROR promotes EMT in various cancers (161, 162). Accordingly, ROR overexpression induces EMT and promotes cell growth, migration and invasiveness in breast cancer (80–82). Functionally, ROR regulates the TGF-β pathway to promote breast cancer progression, whereas suppression of ROR inhibits tumor growth (80). In addition, ROR acts as a ceRNA for miR-205 to upregulate the expression of a miR-205 target gene, the EMT inducer ZEB2 (81). Zhou et al. showed that ROR sponged miR-194-3p and upregulated the expression of a miR-194-3p target, the methyl-CpG-binding protein 2 (MECP2) gene, to decrease the sensitivity of breast cancer cells to rapamycin (82). Moreover, ROR activated the MAPK/ERK pathway and upregulated the expression of dual specificity phosphatase 7 (DUSP7), an ERK-specific phosphatase, thereby facilitating estrogen-independent proliferation of breast cancer cells (83). Furthermore, silencing ROR reversed gemcitabine-induced apoptosis and autophagy in MDA-MB-231 cell lines. Mechanistically, ROR decreased acetylated histone H3 at the miR-34a promoter and resulted in increased expression of autophagy-related genes and decreased expression of p62 (84). ROR polymorphisms could influence cancer susceptibility. For instance, Luo et al. indicated that the TT genotype of ROR rs4801078 correlated with elevated ROR mRNA levels and an increased risk of breast cancer (85). In summary, these studies identified ROR as an oncogene in human cancers and established it as a potential cancer biomarker.



Antisense Non-Coding RNA in the INK4 Locus

ANRIL is a 3.8-kb-long transcript consisting of 19 exons (163). It is located on the human chromosome 9p21 locus, which contains three genes: CDKN2A (encoding p14ARF and p16INK4a) and CDKN2B (encoding p15INK4b) (164). ANRIL was initially discovered in the hereditary cutaneous melanoma-neural system tumor syndrome family with a large germline deletion of the entire CDKN2A and CDKN2B gene cluster (163). ANRIL expression has been reported to be upregulated in many malignancies, such as colorectal (165), gastric (166), and brain cancers (167). Some studies have shown that the ectopic expression of ANRIL is associated with increased tumor size, advanced TNM stage, and poor clinical outcomes (168). Elevated ANRIL expression has been found in breast cancer, particularly in triple-negative breast cancer (86, 87). ANRIL was also included in a three-ncRNA signature, which was proposed to distinguish triple-negative breast cancer from other subtypes (87). ANRIL promotes tumorigenesis in triple-negative breast cancer by directly binding to miR-199a (88). In breast cancer, ANRIL was found to be predominantly located in the nucleus, and nuclear ANRIL positively correlated with periostin expression, suggesting that the subcellular localization of ANRIL impacts cancer progression (89). Moreover, ANRIL coordinates the expression of adjacent tumor-associated genes to promote carcinogenesis. ANRIL could bind to and recruit PRC2 to attenuate the expression of p15INK4b (169). Furthermore, 9p21 polymorphisms have been implicated in cancer susceptibility. In breast cancer patients, the rs11515 CG genotype was more common and correlated with increased ANRIL expression and decreased p16INK4a expression (90). Another study showed that ANRIL was linked to breast cancer susceptibility at the haplotype level and that haplotype analysis was more efficient than single nucleotide polymorphism (SNP) analyses (91). Hence, targeting ANRIL could provide novel insight into breast cancer treatment.



Brain Cytoplasmic 200

BC200 is a 200-nucleotide-long transcript that is also known as brain cytoplasmic RNA 1 (BCYRN1) (170). BC200 is expressed exclusively to the nervous system, where it acts as a translational modulator (171). In 1997, abnormal expression of BC200 was found in diverse human cancers, such as breast, cervix, lung and ovary cancers (172). BC200 is overexpressed in proliferating cultured cells regardless of their origin. Knockdown of BC200 leads to decreased cell viability through regulation of growth arrest and induction of apoptosis (173). In non-small-cell lung cancer, BC200 increased the expression of matrix metalloproteases (MMPs), MMP-9 and MMP-13, resulting in enhanced invasion and migration (174). In addition, BC200 increased the expression of MMP-9 in colon cancer (175). In cervical cancer, BC200 competitively binds with miRNA-138, which leads to the enhancement of cell proliferation and metastasis (176). Moreover, elevated expression of BC200 has also been detected in luminal and triple-negative breast cancer cell lines. High BC200 levels could lead to increased cell viability, growth, migration, and invasion in vitro as well as to increased tumor size in vivo (177). Intriguingly, the expression of BC200 in ER-positive tumors was higher than that in ER-negative tumors. Mechanistically, BC200 binds to B-cell leukemia/lymphoma-x (Bcl-x) pre-mRNA to coordinate its alternative splicing, which results in suppressed expression of Bcl-xS and overexpression of Bcl-xL (92). Furthermore, BC200 RNA was reported to be significantly expressed in invasive breast cancer tissues but was not detectable in benign tumor tissues (93). Lacoangeli et al. also showed that plasma BC200 RNA levels were markedly elevated in invasive breast cancer patients compared to healthy subjects (94, 174), indicating that BC200 is a noninvasive molecular marker for invasive breast cancer detection.



SPRY4 Intronic Transcript 1

SPRY4-IT1 is a 708-bp transcript located on chromosome 5 (95). It has specific secondary structures, which are possibly related to its functional properties (178). SPRY4-IT1 was initially identified as an oncogene in melanoma (178). To date, dysregulation of SPRY4-IT1 has been detected in multiple cancers, such as colorectal (179), non-small-cell lung (180), and breast cancers (96). Some studies have shown that upregulated SPRY4-IT1 expression decreased apoptosis and increased proliferation and migration (97). Expression profile analysis of breast cancer samples revealed that the expression of SPRY4-IT1 was upregulated, and SPRY4-IT1 had a good specificity value (96). Interestingly, the expression level of SPRY4-IT1 in ER‐negative tumors is higher than that in ER‐positive tumors, suggesting that estradiol expression may inversely correlate with SPRY4-IT1 expression (98). Functionally, deletion of SPRY4-IT1 induced G0/G1 cell cycle arrest and apoptosis of breast cancer cells by downregulating the expression of the oncogene zinc finger 703 (ZNF703) (98). Moreover, an N-terminal polypeptide derived from vMIP-II (NT21MP) downregulated SPRY4-IT1 expression, and the oncogenic role of SPRY4-IT1 was compromised by depletion of SKA2, suggesting that the antitumor activity of NT21MP was, at least partly, mediated through the SPRY4-IT1/SKA2 signaling pathway (99). Xiang et al. indicated that high SPRY4-IT1 levels correlated with increased tumor size, high TNM stage, lymph node metastasis and unfavorable clinical outcomes (181). The aforementioned findings indicate that SPRY4-IT1 may serve as a potential biomarker for the diagnosis and prognosis of breast cancer.



Urothelial Carcinoma Associated 1

UCA1 is a 1,442-bp transcript located on chromosome 19p13.12 (182, 183). UCA1 was first identified in bladder cancer and is considered a novel oncogenic lncRNA (184). UCA1 is ubiquitously expressed in embryonic tissues but not in normal adult tissues except for the heart and spleen (185). UCA1 expression is significantly upregulated in many types of cancers, and high levels of UCA1 are associated with enhanced cell proliferation, invasion and metastasis (186). For instance, UCA1 was shown to promote both the proliferation and migration of lung cancer cells by targeting the miR-193a/HMGB1 axis (187). In addition, Luo et al. confirmed that UCA1 enhanced invasion and EMT by suppressing the expression of miR-143 in bladder cancer (188). Li et al. examined the strong association between UCA1 and protein tyrosine phosphatase 1B (PTP1B). Their results showed that the regulation of PTP1B by UCA1 was involved in the proliferation of breast cancer cells (100). Moreover, high expression of UCA1 activated the wnt/β‐catenin signaling pathway, enhanced the nuclear translocation of β‐catenin and promoted invasion in breast cancer. In addition, knockdown of UCA1 inhibited the EMT process by downregulating the expression of β‐catenin and its downstream targets MMP‐7 and cyclin D1 (101). It has also been shown that the lncRNA AC026904 and UCA1 cooperatively increase Slug expression at both the transcriptional and post-transcriptional levels, thereby inducing EMT and metastasis in breast cancer (102). Furthermore, it has been demonstrated that higher levels of UCA1 are associated with shorter OS and increased lymph node metastasis in multiple human cancers (103, 104).



Activated by Transforming Growth Factor β

ATB is a 2,446-bp non-polyadenylated lncRNA located on human chromosome 14 (189). Numerous studies have evaluated the function of ATB in tumorigenesis. ATB was initially discovered as an oncogene in hepatocellular carcinoma, and high levels of ATB were associated with poor clinical outcomes (189). As a mediator of TGF‐β, ATB can regulate different transcription factors to induce the invasion-metastasis cascade. ATB was reported to be highly expressed in breast cancer tissues compared with non-cancerous tissues and the investigated cell lines, and this increase in ATB levels was associated with more nodal metastasis, advanced clinical stage and unfavorable prognosis (105, 106). In addition, the serum level of ATB was significantly elevated in breast cancer patients and could serve as a novel diagnostic biomarker for stage I-II breast cancer patients (107). Functionally, ATB increased the expression of Twist by sponging the miR‐200 family, consequently inducing EMT (105). Furthermore, downregulation of ATB expression could promote E-cadherin expression and suppress EMT by targeting miR-141-3p (106). Moreover, highly expressed ATB could act as a ceRNA for miR-200c and upregulate the expression of the miR-200c target genes ZEB1 and ZNF-217 to promote invasiveness and trastuzumab resistance in HER2-positive breast cancer (108). Intriguingly, the oncogenic role of ATB has been disputed by conflicting studies. For instance, ATB acts as a tumor suppressor in pancreatic cancer (190). Similarly, Nikpayam et al. showed that ATB expression was significantly downregulated in most breast cancer tissues compared with adjacent non-cancerous tissues (109). Both upregulation and downregulation of ATB expression have been indicated to contribute to tumorigenesis, suggesting that ATB might play distinct roles in different cancers or even different cancer subtypes. Further mechanistic studies should be focused on elucidating the role of ATB in cancer pathology.



Plasmacytoma Variant Translocation 1

PVT1, an intergenic lncRNA, is located on chromosome 8q24.21 adjacent to c-Myc (191). PVT1 is highly expressed in cancer tissues compared with non-cancerous tissues and in cancer cell lines (192, 193). Co-amplification of adjacent PVT1 and Myc has been found in many human cancers. PVT1 increases Myc protein levels in 8q24-gain cancers, while either Myc or PVT1 fails to measurably promote cancer (194). Moreover, depletion of PVT1 resulted in decreased c-Myc expression and increased apoptosis of cancer cells (195). PVT1 could also enhance the stability of Kruppel-like factor 5 (KLF5) and increase the expression of β-catenin, an important downstream effector of KLF5, to promote tumorigenesis in triple-negative breast cancer (110). Several studies have shown the connection between PVT1 and different miRNAs in breast cancer. PVT1 functions as a sponge to regulate miR-543 (111), which is a known tumor suppressor miRNA in breast cancer (112). The tumorigenic potency of PVT1 could be abrogated by miR-543 overexpression, and loss of PVT1 is associated with inhibition of growth, increased apoptosis, and decreased tumor size (111). A cluster of oncogenes (miR-1204, 1205, 1206, 1207-3p, 1207-5p, 1208) at the 8q24.21 locus is regulated by PVT1 (193). For instance, PVT1 upregulates the expression of miR-1207-5p to repress the expression of signal transducer and activator of transcription 6 (STAT6) and cyclin inhibitors, thus enhancing cell proliferation and colony formation in breast cancer (113). Additionally, miR-1204 overexpression contributes to the proliferation, invasion and EMT of breast cancer cells both in vitro and in vivo (114). Furthermore, a meta-analysis carried out by Lu et al. indicated that high PVT1 expression correlated with more lymph node metastasis, increased distant metastasis, advanced TNM stage, poor differentiation grade and unfavorable prognosis but not with tumor volume (115). Thus, PVT1 could act as a useful molecular marker for breast cancer.



Colon Cancer Associated Transcript 1

CCAT1, initially identified in colon cancer, is mapped to the 8q.24.2 locus and is ~2,628 nucleotides long (196). The 8q.24.2 locus contains only a few protein-coding genes and is often referred to as a ‘gene desert’ (197). CCAT1 expression is consistently upregulated in multiple types of cancers and correlates with poor prognosis (198). Han et al. found that CCAT1 was overexpressed in triple-negative breast cancer tissues compared to adjacent normal tissues and in a panel of triple-negative breast cancer cell lines in comparison to normal breast epithelial cell lines (116). CCAT1 has been shown to act as a decoy to inhibit the expression of several miRNAs. Loss of CCAT1 resulted in the upregulation of miR-218 expression and the simultaneous inhibition of a miR-218 target gene, zinc finger protein ZFX, resulting in inhibited cell proliferation, migration, and invasion. Moreover, silencing of miR-218, in turn, can block the tumor suppressive effect of CCAT1 knockdown, suggesting that CCAT1 may promote breast carcinogenesis through regulation of the miR-218/ZFX axis (116). Another study showed that the expression of CCAT1 was higher in radioresistant breast cancer tissues than in radiosensitive breast cancer tissues. Depletion of CCAT1 dramatically decreased the colony formation rate and promoted apoptosis by directly interacting with miR-148b. The authors concluded that loss of CCAT1 might enhance the radiosensitivity of breast cancer cells by downregulating miR-148b expression (117). CCAT1 could function as a regulator of wnt/β-catenin signaling pathway in cervical cancer (199) and non-small-cell lung cancer (200). Consistent with these studies, Tang et al. indicated that CCAT1 coordinated miR-204/211, miR-148a/152 and annexin A2 to hyperactivate the wnt/β-catenin signaling pathway, consequently promoting the proliferation and metastasis of breast cancer stem cells (118). Overexpression of CCAT1 in breast cancer has been related to histological grade, TNM staging and lymph metastasis, and it is also an independent predictor of OS and progression-free survival (PFS) (119). The ubiquitous nature of CCAT1 upregulation in cancers shows promise for future discovery of diagnostic biomarkers and pharmaceutical targets for cancer control.



Colon Cancer Associated Transcript 2

CCAT2 is 1,752 bp in length and is located within the chromosome 8q24.21 gene desert adjacent to Myc (201). Amplification of the oncogenes in the 8q24.21 region has been found in numerous human cancers. High CCAT2 levels positively correlated with Myc levels in colon and colorectal cancer (202, 203). Accordingly, CCAT2 could upregulate the expression of Myc in breast cancer, suggesting that the amplification of CCAT2 and Myc might occur simultaneously (120). Huang et al. explored the expression of CCAT2 in 33 cancer types and 13,285 tumor patients. The study revealed that CCAT2 was substantially overexpressed in cancer tissues compared to paired normal tissues, and this increase in CCAT2 levels correlated with a greater tumor volume, higher TNM grades, advanced clinical stage and a poor OS in patients. In addition, CCAT2 expression was mainly upregulated in stage II tumor pathology, followed by stage III, indicating that CCAT2 could be used for the early detection of cancers (121). Moreover, CCAT2 expression levels in metastatic breast cancer were higher than those in non-metastatic breast cancer. Downregulation of CCAT2 expression significantly inhibited the expression of TGF-β, Smad2 and α-SMA, thereby inducing apoptosis and G0/G1 cell cycle arrest (122). Deng et al. indicated that CCAT2 knockdown suppressed the expression of cell cycle-related proteins and G0/G1 phase arrest in breast cancer cells (204). They also found that CCAT2 interacted with EZH2, a marker of aggressive breast cancer (123) and abrogated the expression of P15 (204). It has been shown that Notch signaling could be activated and upregulated in breast cancer (205). Xu et al. demonstrated the strong association between CCAT2 and Notch 2 in triple-negative breast cancer (124). Functionally, CCAT2 promoted the growth, invasion and migration of breast cancer stem cells by sponging miR-205, which targets Notch 2 (124). Overall, accumulating evidence suggests that CCAT2 is an oncogene and could serve as a useful biomarker and therapeutic target for breast cancer treatment.



Tissue Differentiation-Induced Non-Coding RNA

TINCR is highly expressed in keratinocytes and is essential for normal epidermal differentiation (206). It is a 3,733-nucleotide long transcript located on chromosome 19p13 (207). Aberrant TINCR expression has been implicated in multiple human cancers. TINCR expression is upregulated in gastric, gladder and breast cancer but downregulated in glioma and prostate cancer (208). In recent years, several studies have been performed on the contribution of TINCR to breast cancer. Liu et al. indicated that TINCR was activated by transcription factor specificity protein 1 (SP1) in breast cancer (125). Consistent with this observation, Xu et al. showed that SP1 could bind to the putative GC-rich motifs of TINCR to upregulate the expression of TINCR in gastric cancer (209). In addition, TINCR overexpression competed with miR-7 and facilitated KLF4 expression, which in turn regulated cell proliferation, migration, and invasion in breast cancer (125). Insulin-like growth factor receptor 1 (IGFR-1), a tyrosine kinase cell surface receptor, is involved in the development and progression of breast cancer (210). Guo et al. showed that TINCR played an oncogenic role in breast cancer through regulation of the miR-589-3p/IGF1R axis (126). Moreover, the expression of TINCR was higher in trastuzumab-resistant tissues than in sensitive tissues owing to enhanced histone acetylation of the TINCR promoter. Functionally, TINCR promoted the expression of HER-2 by sponging miR-125b, consequently conferring trastuzumab resistance (127). Moreover, TINCR promoted EMT via downregulation of Snail-1 expression, while enhanced Snail-1 expression reversed EMT suppression induced by TINCR silencing in trastuzumab-resistant cell lines (127). Furthermore, Kaplan-Meier survival curves showed that high levels of tissue TINCR correlated with unfavorable prognosis in breast cancer (126). Wang et al. found that circulating TINCR was dramatically elevated in breast cancer, particularly in the aggressive triple-negative subtype. The authors further noted that serum TINCR levels were associated with unfavorable prognosis, suggesting that TINCR could serve as a novel biomarker for breast cancer therapy (128).




Tumor Suppressor LNCRNAS


Maternally Expressed Gene 3

MEG3 is an imprinted gene from the maternal allele mapped to the human chromosome 14q32.3 region (211). The transcript contains 10 exons and approximately 12 alternative splicing isoforms, some of which are expressed in a tissue- or cell-type-specific manner (211). MEG3 was the first lncRNA to be identified as a tumor suppressor in the inhibition of cancer cell growth (212). A loss of MEG3 expression has been found across human cancer cell lines, and decreased MEG3 levels significantly correlate with TNM stage, lymph node metastasis and differentiation grade (129, 130). Loss of MEG3 expression also predicts shorter OS, PFS, distant metastasis-free survival (DMFS), and disease-specific survival (DSS) (130–132). Zhang et al. showed that ectopic MEG3 overexpression promoted breast cancer progression by upregulating the expression of the endoplasmic reticulum stress-related proteins NF−κB and p53 (133). Mechanistically, MEG3 can bind directly to the p53 promoter and increase the transcriptional activity of p53, thus regulating the expression of p53 target genes (134). In addition, MEG3 deactivated the AKT/mTOR signaling pathway by sponging miR-21, while miR-21 overexpression partially abolished the tumor suppressive function of MEG3 in breast cancer cells (135). Moreover, elevated expression of MEG3 can inhibit cell invasion, proliferation, and apoptosis induction (213, 214), indicating that MEG3 might be a novel therapeutic target for cancers. SNPs mainly refer to a set of DNA sequence polymorphisms based on single nucleotide variations at the genomic level (215). It has been reported that SNPs are linked to genetic susceptibility to cancer (216). Ali et al. indicated that MEG3 rs7158663 G > A with the mutant A allele correlated with decreased serum MEG3 expression and unfavorable clinical outcomes in an Egyptian population (136). Additionally, the GG genotype of rs3087918 could influence the secondary structure of MEG3 and decrease the susceptibility to breast cancer risk in Chinese women (137). Hence, MEG3 could be a suitable biomarker candidate for clinical cancer management.



X-Inactive Specific Transcript

XIST, 17 kb in length, is located at the X-inactivation center (217). During primary embryogenesis, XIST recruits multiple factors to orchestrate X chromosome inactivation (218). Recent studies have identified associations between aberrant XIST expression and breast cancer. Zheng et al. indicated that XIST expression was drastically downregulated in breast cancer tissues and cell lines. The authors also found that XIST sponged miR-155, which in turn upregulated the expression of caudal-type homeobox 1 (CDX1) and inhibited the progression of breast cancer (138). In addition, Liu et al. also found that XIST functioned as a ceRNA for miR-362-5p and thus inhibited its repressive effect on ubiquitin-associated protein 1 (UBAP1), consequently inhibiting breast cancer progression (139). BRCA1 is a high-penetrance gene in which loss-of-function mutations predispose patients to breast and ovarian cancers (140, 141). Sirchia et al. indicated that BRCA1 participates in XIST regulation on the active X chromosome as well as XIST dysregulation and drives tumorigenesis in breast cancer. Mechanistically, BRCA1 knockdown resulted in enhanced XIST expression, promoter demethylation and X chromosome inactivation (142). However, another study suggested the potential oncogenic role of XIST in breast cancer. Zong et al. showed that XIST knockdown dramatically reduced characteristics associated with breast cancer, such as cell proliferation, anti-apoptosis, invasion, and migration activities. Functionally, XIST induced sponging of miR-125b-5p and removed the inhibitory effect of this miRNA on NLRC5, a breast cancer promotor, thus promoting the malignancy of breast cancer cells (143). In addition, a meta-analysis carried out by Zhu et al. demonstrated that XIST was overexpressed in multiple cancers and that elevated XIST levels correlated with larger tumor volume, increased lymphatic metastasis, advanced tumor stage and unfavorable clinical outcomes (144). XIST could serve as an oncogene or tumor suppressor, and further studies are still needed to elucidate the roles of XIST in cancer biology.



Growth Arrest−Specific Transcript 5

GAS5, a well-known tumor suppressor, is located on chromosome 1q25 (219). Abnormal expression levels of GAS5 have been reported in different cancer types (220–222). For example, GAS5 has been shown to promote proliferation by regulating miR-22 and its downstream target transcripts in gastric cancer (223). GAS5 can also promote cell invasion and migration by targeting miR-196a and the PI3K/Akt/mTOR signaling pathway in oesophageal squamous cell carcinoma (224, 225). In ovarian cancer, loss of GAS5 is related to increased tumor volume and advanced tumor stage (226, 227). In addition, the expression of GAS5 is significantly downregulated in breast cancer tissues compared with adjacent non-cancerous tissues (228). Larger tumor volume, advanced lymph node metastasis, and estrogen receptor negativity in breast cancer cells are the outcomes of GAS5 downregulation (229). In HER2-positive breast cancer, silencing of GAS5 contributes to trastuzumab resistance. Mechanistically, GAS5 serves as a molecular sponge of miR-21 to increase the expression of phosphatase and tensin homologs (PTEN) and alleviate trastuzumab resistance (230). Zhang et al. demonstrated the reciprocal inhibition between miR-21 and GAS5 in breast cancer. MiR-21 downregulated GAS5 expression, while silencing of GAS5 increased miR-21 expression (231). Jing et al. found that GAS5 expression was significantly downregulated by Notch‐1 and that decreased GAS5 levels were involved in the proliferation of breast cancer (232). Thus, these studies demonstrate that GAS5 could be an attractive biomarker candidate in cancer therapy.



Phosphatase and Tensin Homolog Pseudogene 1

As a pseudogene of PTEN, PTENP1 has a highly homologous region upstream of the 3′UTR of PTEN (233). To date, aberrant expression of PTENP1 has been found in various malignancies, including breast cancer (73). Low levels of PTENP1 have been shown to be associated with increased proliferation, migration, invasion and colony formation, as well as decreased apoptosis, in breast cancer (73, 145, 146). PTENP1 has been implicated in the regulation of the PI3K/Akt signaling pathway, which plays a pivotal role in tumorigenesis and tumor development, particularly in breast cancer (147). Chen et al. indicated that PTENP1 suppressed breast cancer cell proliferation and migration via regulation of Akt and cell cycle-related proteins (145). In addition, PTENP1-induced sponging of miR-19b resulted in increased expression of PTEN (73, 146) and decreased expression of p-PI3K, PI3K and p-Akt, thereby inhibiting cell proliferation and migration (73). Moreover, the regulatory effect of PTENP1 on the PI3K/Akt signaling pathway can be reversed by the overexpression of miR-19b (73). Furthermore, Gao et al. showed that PTENP1 inversely correlated with miR-20, a known oncogenic mRNA. PTENP1 acts as a decoy for miR-20 to derepress its inhibitory effect on PTEN, ultimately attenuating the activation of the PI3K/Akt pathway (148). They also found that low expression of PTENP1 and PTEN was associated with advanced TNM stage and worse OS (148). Interestingly, the involvement of PTENP1 in breast cancer biology may depend on the hormone receptor status. PTENP1 overexpression was linked to decreased PTEN expression and increased proliferation in ER-positive cells, while increased PTEN expression and inhibited tumorigenesis were observed in ER-negative cells (149). Hence, PTEN may represent a promising biomarker for breast cancer.




Circulating LNCRNAS as Biomarkers in Cancer

Biomarker is defined as “a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes or pharmacologic responses to a therapeutic intervention” by the US NIH’s Biomarkers Definition Working Group and the Biomarkers Consortium (1). A tumor marker is any specific molecule indicating the presence or progression of human cancers. Tumor biomarkers can be either found in body fluids or tumor tissues. Biomarkers in body fluids (especially those in blood serum) are readily measured, and their diagnostic performances have been confirmed in multiple cancers. Carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA15-3) in serum have been approved by the US Food and Drug Administration (FDA) as biomarkers for breast cancer. Notwithstanding CEA and CA15-3 are widely used in diagnosis of breast cancer, they bear some limitations, mainly regarding to low sensitivity and specificity. Therefore, it is critical to discover novel molecular markers with improved diagnostic value.

Dysregulated lncRNAs in primary tumor tissues could be mirrored in different body fluids, such as blood plasma, urine and saliva (234–236). Many studies have revealed that lncRNAs remain stable while circulating in body fluids even under extreme conditions, further enhancing their competitive advantage of being good diagnostic tools. In recent years, several circulating lncRNAs have been proved as suitable diagnostic and prognostic markers in various cancer types, such as prostate cancer antigen 3 (PCA3) and MALAT1. lncRNA PCA3 in urine samples has received the approval of the FDA as a diagnostic molecule for prostate cancer. Intriguingly, lncRNA PCA3 is much more specific and sensitive than prostate-specific antigen, the conventional gold standard for prostate cancer. A meta-analysis carried out by Xue et al. has determined the diagnostic value of PCA3 for the detection of prostate cancer, with sensitivity and specificity of 62% and 75%, respectively (235). Also, plasma H19 holds great potential as an independent biomarker for gastric cancer due to its high diagnostic performance (sensitivity 82.9%; specificity 72.9%) (234). In addition, serum MALAT1 has proven its diagnostic value for breast cancer (sensitivity 83.7%; specificity 81.2%) (237). More importantly, lncRNA-based detection method is noninvasive, convenient and inexpensive when compared to the traditional biopsies.



Prospects and Challenges

Since lncRNAs are dysregulated in cancers, the functional lncRNAs may be targeted to halt the process of carcinogenesis. LncRNAs targeting strategies can be achieved by antisense oligonucleotides (ASOs), RNA interference (RNAi) and clustered regularly-interspaced, CRISPR-Cas9, etc. It was suggested that ASOs mainly targeted the lncRNAs retaining in the nucleus, whereas RNAi predominantly targeted the lncRNAs in the cytoplasm (238). CRISPR-Cas9, a precise versatile toolkit, could target lncRNAs at high throughput, representing a major technology breakthrough in gene editing (239).

Although lncRNAs hold potential to serve as ideal diagnostic biomarkers and therapeutic targets, some challenges need to be addressed and resolved in the future. First, the poor consequence conversation of lncRNAs has complicated the pre-clinical studies across different species. In addition, lncRNAs have secondary and tertiary structures, which could lead to ineffectiveness of the lncRNAs targeting therapeutics. Secondly, the lncRNA-based treatment may perturb other genes. Thus, there is a risk of off-target effects and new strategies should be developed to maximize the on-target efficacy. Thirdly, the concentration of circulating lncRNAs may be below the detection limit of the existing equipment, such as NanoDrop spectrophotometer. It is expected that in the near future, more sensitive detection instruments will open a new window for lncRNA quantification. Fourthly, a single lncRNA may not be feasible for cancer diagnosis. Xie et al. suggested that a diagnostic panel for NSCLC possessed higher specificity (79.2%) and sensitivity (77.1%) when compared to any single molecular marker, such as CEA and lncRNA ANRIL (240). Indeed, biomarkers in a panel can complement each other, contributing to enhanced diagnostic performance.



Concluding Remarks

As indicated in this review, lncRNAs have gained considerable attention as pivotal regulators in various physiological and pathophysiological events. Altered expression levels of lncRNAs have been reported in multiple human cancers, including breast cancer. It has become clear that lncRNAs with dysregulated expression drive the initiation and progression of cancers via interactions with other types of RNA molecules, DNA and proteins. Intriguingly, lncRNAs are differentially regulated in diverse cancers or even cancer subtypes and show a significant association with pathological features and clinical prognosis. Regarding the aberrant expression of lncRNAs and the underlying mechanisms, lncRNAs may act as suitable diagnostic and prognostic biomarkers in breast cancer. Furthermore, lncRNAs could be targeted to reverse the process of carcinogenesis and represent valuable therapeutic targets for cancer treatment. LncRNA-based tests and therapy are promising strategies that deserve extensive research and thorough exploration in the future.
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