Nitriles play a key role as molecular precursors in prebiotic experiments based on the RNA-world scenario for the origin of life. These chemical compounds could have been partially delivered to the young Earth from extraterrestrial objects, stressing the importance of establishing the reservoir of nitriles in the interstellar medium. We report here the detection towards the molecular cloud G+0.693−0.027 of several nitriles, including cyanic acid (HOCN), and three C4H3N isomers (cyanoallene, CH2CCHCN; propargyl cyanide, HCCCH2CN; and cyanopropyne (CH3CCCN), and the tentative detections of cyanoformaldehyde (HCOCN), and glycolonitrile (HOCH2CN). We have also performed the first interstellar search of cyanoacetaldehyde (HCOCH2CN), which was not detected. Based on the derived molecular abundances of the different nitriles in G+0.693−0.027 and other interstellar sources, we have discussed their formation mechanisms in the ISM. We propose that the observed HOCN abundance in G+0.693−0.027 is mainly due to surface chemistry and subsequent shock-induced desorption, while HCOCN might be mainly formed through gas-phase chemistry. In the case of HOCH2CN, several grain-surface routes from abundant precursors could produce it. The derived abundances of the three C4H3N isomers in G+0.693−0.027 are very similar, and also similar to those previously reported in the dark cold cloud TMC-1. This suggests that the three isomers are likely formed through gas-phase chemistry from common precursors, possibly unsaturated hydrocarbons (CH3CCH and CH2CCH2) that react with the cyanide radical (CN). The rich nitrile feedstock found towards G+0.693−0.027 confirms that interstellar chemistry is able to synthesize in space molecular species that could drive the prebiotic chemistry of the RNA-world.
Although first considered as too diluted for the formation of molecules in-situ and too harsh an environment for their survival, the interstellar medium has turned out to host a rich palette of molecular species: to date, 256 species, not counting isotopologues, have been identified. The last decade, and more particularly the last 2 years, have seen an explosion of new detections, including those of a number of complex organic species, which may be dubbed as prebiotic. Organic molecules have been discovered not just in interstellar clouds from the Solar neighbourhood, but also throughout the Milky-Way, as well as in nearby galaxies, or some of the most distant quasars. These discoveries were made possible by the completion of large sub-millimetre and radio facilities. Equipped with new generation receivers, those instruments have provided the orders of magnitude leap in sensitivity required to detect the vanishingly weak rotational lines that allowed the molecule identifications. Last 2 years, 30 prebiotic molecules have been detected in TMC-1, a dust-enshrouded gaseous cloud located at 400 light-years from the Sun in the Taurus constellation. Ten new molecular species, have been identified in the arm of a spiral galaxy seven billion light-yr distant, and 12 molecular species observed in a quasar at 11 billion light-yr. We present the latest spectral observations of this outlying quasar and discuss the implications of those detections in these 3 archetypal sources. The basic ingredients involved in the Miller-Urey experiment and related experiments (H2, H2O, CH4, NH3, CO, H2S, … ) appeared early after the formation of the first galaxies and are widespread throughout the Universe. The chemical composition of the gas in distant galaxies seems not much different from that in the nearby interstellar clouds. It presumably comprises, like for TMC-1, aromatic rings and complex organic molecules putative precursors of the RNA nucleobases, except the lines of such complex species are too weak to be detected that far.