About this Research Topic
As myofibrillogenesis proceeds, the internal membrane systems also develop. Initially, the endoplasmic reticulum (ER) differentiates into sarcoplasmic reticulum (SR) by the gradual displacement of ER proteins by SR-specific proteins, including the Ca2+-pump SERCA, the Ca2+-release channel ryanodine receptor (RyR), and the Ca2+-binding protein, calsequestrin. Docking of a patch of SR to a corresponding patch of surface membrane follows, as premyofibrils develop into nascent myofibrils. This event triggers the SR proteins to segregate into two compartments: the network SR, which contains higher amounts of SERCA, and the junctional SR (jSR), harboring RyR and calsequestrin. In parallel, primitive t-tubular elements begin to form in small vesicles, as voltage-gated Ca2+-channels, or dihydropyridine receptors (DHPR), accumulate. As nascent myofibrils develop into mature myofibrils, junctions between the jSR and t-tubules form and start to couple depolarization and Ca2+ influx to Ca2+ release. As myotubes transform to myofibers, t-tubules acquire their transverse orientation in the myoplasm, once myofibrils and SR membranes become aligned transversely.
During the last fifty years, a multitude of important advances have occurred in the field of muscle physiology and pathophysiology providing comprehensive answers concerning muscle assembly, structure and function. This was achieved with the use of highly sophisticated and innovative technologies, ranging from systems biology to single cell measurements. The wealth of this knowledge emphasizes the complexity of myofibers, and prompts researchers to interrogate their mechanics and regulation with greater scrutiny. In this Research Topic, we welcome authors to present original research and review articles that will stimulate our continuing efforts to understand the intricacies of striated muscle cells.
Potential topics include:
• Assembly and organization of the sarcomeric and extrasarcomeric cytoskeleton
• Internal membranes and excitation/contraction coupling
• Apoptosis and Ca2+ microdomains
• Muscle biomechanics
• Stem cells and muscle regeneration
• Models of muscle disease
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.