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Small domain estimation (SDE) research outside of the United States has been centered

in Canada and Europe—both in transnational organizations, such as the European

Union, and in the national statistics offices of individual countries. Support for SDE

research is driven by government policy-makers responsible for core national statistics

across domains. Examples include demographic information about provision of health

care or education (a social domain) or business data for a manufacturing sector

(economic domain). Small area estimation (SAE) research on forest statistics has

typically studied a subset of core environmental statistics for a limited geographic

domain. The statistical design and sampling intensity of national forest inventories

(NFIs) provide population estimates of acceptable precision at the national level and

sometimes for broad sub-national regions. But forest managers responsible for smaller

areas—states/provinces, districts, counties—are facing changing market conditions,

such as emerging forest carbon markets, and budgetary pressures that limit local forest

inventories. They need better estimates of conditions and trends for small sub-sets of a

national-scale domain than can be provided at acceptable levels of precision from NFIs.

Small area estimation research is how forest biometricians at the science-policy interface

build bridges to inform decisions by forest managers, landowners, and investors.

Keywords: estimating forest conditions for small areas, using national forest inventory data at small spatial scales,

remotely sensed imagery as auxilliary data for imputation, small area estimation research in Europe, driving forces

spurring small area estimation research

INTRODUCTION

Defining Small Domain Estimation and Small Area Estimation
A study domain is a major segment of some population for which separate statistics are needed.
A domain can be defined in many ways, including a demographic characteristic (e.g., an age
stratum or an ethnic group) or an economic characteristic (e.g., a category of manufacturers) or
a geographical area (e.g., a political jurisdiction, the range of a tree species, a hydrologic basin)
(Lavrakas, 2008).

According to Brackstone (1987), small domain estimation (SDE) began several centuries
ago—in the eleventh century in England and the seventeenth century in Canada. Those were
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based on data from complete enumerations of the population’s
members, commonly called censuses. But today, even what are
called mandatory censuses rarely obtain data from all members
of the population. Further the costs and administrative burdens
of complete enumerations are no longer affordable. Therefore,
surveys based on statistical sampling designs applied to a
population have largely replaced complete enumerations as data
collection tools, and statistical estimation procedures are used to
make inferences from the sample data about the characteristics of
the entire domain’s population. The sampling and statistical plan
for the survey normally specifies the level of detail and reliability
or precision required in the estimates sought from the sample
data. But despite well-constructed sampling and statistical plans
that carefully balance users’ information needs and available
funding, demands from data users continually arise for attribute
estimates for sub-populations in sub-domains that were not
envisioned in the original plans (U.S. Census Bureau, 2021).

A clear definition of SDE and SAE can be obtained by
melding points made by three authors. Lavrakas (2008, p. 675)
distinguished between large domains or areas and small domains
or area, saying, “A domain is considered ‘large’ or ‘major’ if the
domain sample is sufficiently large so that it can provide direct
estimates of the domain parameter, for example, the mean, with
adequate precision. A domain or area is regarded as “small”
if the domain-specific sample is not large enough to produce
an estimate with reliable precision. Areas or domains with
small samples are called small areas, small domains, local areas,
subdomains, or substates.”

Pfeffermann (2013, p. 41) acknowledged and clarified
definitional confusion, “The term ‘small area estimation’ is
somewhat confusing because it’s the size of the sample from the
area that causes estimation problems, not size of the area.”

Ghosh (2020, p. 2) said that what is important in defining
small area is, “. . . the ‘smallness’ of the targeted population
within an area that constitutes the basis for SAE.” He elaborated
further that, “A domain is regarded as ‘small’ if domain-specific
sample size is not large enough to produce estimates of desired
precision.” and “A domain (area) specific estimator is ‘direct’
if it is based only on the domain-specific sample data.” In
comparison, an indirect estimator is one that requires additional
data. The additional data may come from the same geographic
area though not part of the original domain-specific sample or
it may come from related geographic areas and/or time periods.
In all cases, the additional data are used, “. . . to increase the
“effective” sample size. This is usually done through the use of
models, mostly ‘explicit’, or at least ‘implicit’ that links the related
areas and/or time periods . . . ” to the original domain-specific
sample data to yield estimates of acceptable precision.

The raison d’etre for SDE/SAE is that the data in one domain
of information is too sparse to yield acceptable precision—
root mean square error (RMSE) or other error statistic—for a
desired estimate computed from the domain’s sample data. To
improve the precision/reduce the RMSE of the desired estimate,
small area methods “borrow strength” (Ghosh and Rao, 1994)
from auxiliary data, as the quotations from Ghosh (2020) in
the previous paragraph outlined. Direct estimators, using only
plots from within the domain of interest, may also incorporate

auxiliary data for improved precision. However, the sample
within that specific domainmay not be large enough for estimates
to be made sufficiently precise, even with the assistance of
auxiliary data. This review includes methods of SAE as defined
in the Introduction, as well as closely related direct methods that
improve estimates of forest conditions.

When the definitional aspects of U.S. Census Bureau (2021),
Lavrakas (2008), Pfeffermann (2013) and Ghosh (2020) are
melded—all rooted in prior work by Ghosh and Rao (1994),
Pfeffermann (2002) and Rao (2003)—definitional clarity emerges
on two points. First, “small area” in SAE is synonymous with
“small domain,” thus SAE and SDE are identical conceptually.
Although SDE is the still the proper statistical term, when
the domain is defined spatially, it’s become common to refer
to SDE as SAE. In the January 2019 issue of The Survey
Statistician—newsletter of the International Association of
Survey Statisticians—the editors said, “Small area estimation is
one of the most popular topics in survey statistics of the 21st
century.” (Krapavickaite and Rancourt, 2019, p. 3). Following the
custom of the International Association of Survey Statisticians,
the term SAE will be used instead of SDE in the remainder of
this paper. Second and more important definitionally, “area” and
“domain” are surrogates for the fact that the defined geospatial
area or subdomain has a dataset too small to yield credible direct
estimates. Thus, indirect estimators are required where data are
few or even non-existent.

Forest Sector Interest in SAE
In forestry today, the word “area” is commonly considered a
geospatial term that describes the space enclosed by a set of arcs
(lines or boundaries to a closed polygon, defined by a set of
vertices or coordinate points). The space inside the polygon—its
“area”—is measured in units such as acres or hectares.

Whether an area with forests is considered “large” or “small”
is typically a function of the jurisdiction of the public forester
or private forest manager, landowner, or investor. To a forest
manager or landowner responsible for hundreds to several
thousand acres, “small area” might mean a specific stand,
compartment, or management unit—a small subset of a property
composed of tens to a hundred stands or compartments. To
a state/provincial forester responsible for a million hectares
or several million acres of forests, “small area” might mean a
county, municipality, or group of counties and municipalities
within their state or province. The point is the total forest
area within a jurisdiction or ownership creates meaning and
context for those responsible for the jurisdiction or ownership
about what they consider a “large area” vs. a “small area.”
This not only means that different foresters have different
notions about relative sizes regarded as “small,” but their notions
differ conceptually and fundamentally from what a “small area”
means to a forest biometrician or statistician in the context
of SAE. Consequently, there are currently misconceptions and
misunderstandings within the forestry community over what
“small area” in SAE really means. One of the purposes of this
special issue of “Frontiers in Forests and Global Change” is to
clarify conceptions and improve understanding at the science-
policy interface between forest biometricians and statisticians
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on the one hand who have made much scientific progress the
past two decades in SAE, and on the other hand, foresters,
landowners, and investors who need reliable, credible estimates
of forest conditions and trends to make well-informed resource
management and policy decisions for lands within their purview.

In the forest sector, the domain/population for a national
forest inventory (NFI)1 is typically the entire country. While the
NFI sampling design and intensity may yield credible estimates2

at the national level, often the low spatial sampling intensities for
NFI purposes may yield datasets too sparse for making estimates
with acceptable precision at state/provincial, or smaller spatial
scales. Forest managers and policy makers most commonly turn
to digital aerial photography or data from other passive or
active sensors3 as the auxiliary datasets to “borrow strength”
(Ghosh and Rao, 1994) for improving the RMSEs of desired
NFI data attributes. Through imputation models, including
both parametric (e.g., multiple regression) and non-parametric
models (e.g., k-nearest neighbor), image pixels are assigned to
classes, such as species or cover types or stand heights, or given
values, such as growing stock volume or biomass volume. Then,
after geospatial boundary files are defined for the small area, the
imputed pixel values are summarized using some algorithm to
make an SAE with acceptable RMSE.

Organizers of an SAE-focused technical session at the
2019 Forest Inventory and Analysis (FIA) Stakeholders Science
meeting4 invited the author to present a review of recent

SAE research pertaining to forests by researchers outside the

United States to provide context—both historic and current—for
SAE presentations by U.S. researchers using NFI data from the
FIA program. The invitation set the sideboards and shaped the
survey design for this systematic review of SAE research.

1National forest inventory means an inventory of all the forests in a nation, not an

inventory of just federally owned forests.
2The Forest Inventory and Analysis (FIA) program—the U.S.A.’s NFI—is based on

a three-phase sampling design, the second phase of which is an array of roughly

127,000 hexagons, each 6,000 acres in size with one permanent plot. Precision

standards for phase 2 population estimates are plus/minus 3% per million acres

of Timberland and plus/minus 5% per billion cubic feet of growing-stock volume

in the Eastern United States. See Bechtold and Patterson (2005) for more details.
3Passive sensors measure natural radiation (e.g., reflected sunlight) while active

sensors use their own energy source to emit radiation and record what’s reflected

to the sensor. The term “imagery” usually refers to data collected only by passive

sensors, often called optical sensors because they “see” reflected sunlight across

visible spectral bands or re-emitted sunlight energy across near infrared, thermal

infrared, and/or short-wave infrared bands. An example is the Thematic Mapper

(TM) sensor on LANDSAT that collects data across seven spectral bands. Passive

sensor data are often characterized on two principal ways—by spectral resolution

(the number of bands of reflected/reemitted radiation recorded) or by spatial

resolution of the recorded information [hundreds of meters (e.g., MODIS and

AVHRR), tens of meters (e.g., TM or Sentinel), or meters (e.g., IKONOS)]. In

contrast, data collected by active sensors, such as LiDAR or synthetic aperture

radar, is not usually referred to as “imagery.” Active sensor resolution is usually

characterized as a function of the radiation emitter. Some sensors are satellite-

borne, like GEDI on the International Space Station, TM on LANDSAT orMODIS

on the EOS-AM and EOS-PM satellites. Other sensors are carried by piloted

aircraft or unmanned aerial vehicles (UAVs) or terrestrial-based. See Gutman

(2010) or Canadian Centre for Remote Sensing (CCRS) (2019). See https://www.

gedi.umd.edu/mission/mission-overview for details.
4Held November 19–21, 2019, in Knoxville, Tennessee, USA.

METHODS

Defining the Survey Criteria
Recent
Small area estimation research accelerated in the mid-1990s.
There was an upsurge across many disciplines from basic
statistics to diverse applied statistics disciplines. Starting in 2000,
articles about developing SAE from NFI data began appearing in
the forestry and remote sensing literature. This review assumed
that papers published in the first decade of this century are
already well-known. Thus, 2010 was the threshold chosen for
defining “recent.” However, information is included from the
previous decade (2000–2009) to provide context for the more
recent decade.

Pertaining to Forests
Many articles have been published about SAE research across
many different disciplines. They range from pure statistical
theory to applied statistical research. Regarding applied research,
results of case studies span all domains, from social (e.g., health
care, education) and economic (e.g., poverty, marketing) to
ecological (e.g., farm crop production, meteorology, and forests).
Again, this paper ignores all the excellent work in other domains
and sub-domains to focus tightly on applied statistical research
related to making estimates of forest conditions from small
geographic areas.

Outside the United States
Early SAE research was accomplished within the pure statistics
community by statisticians outside the United States. Leading
statisticians who summarized the state-of-science at various
times were from Canada [J.N.K. Rao (Ghosh and Rao, 1994;
Rao, 2003; Rao and Molina, 2015)], the United Kingdom [Danny
Pfeffermann (Pfeffermann, 2002, 2013), Ayoub Saei and Ray
Chambers (Saei and Chambers, 2003)], and Australia [Azizur
Rahman (Rahman, 2008)]. Although their reviews included
citations of work by statisticians in the United States, many—if
not most—of the articles they reviewed were from researchers in
Europe, India, and elsewhere.

A challenge to focusing on SAE research results from
individuals and teams from outside the United States is
that Ronald McRoberts,5 was deeply involved with colleagues
from other countries in seminal SAE research pertaining
to forests. The early international collaboration emerged
from his activities within the International Union of Forest
Research Organizations (IUFRO). Beginning in the late 1990s,
McRoberts published many SAE articles with international
coauthors. Therefore, it is impossible to tease apart completely
the international SAE research progress pertaining to forests
from domestic SAE research progress because so much of
the early progress here and abroad was led or influenced
by McRoberts.

With these three survey design criteria in place, the rest
of the paper presents an overview of applied research since

5Adjunct Professor, Department of Forest Resources, University of Minnesota,

and Principal, Raspberry Ridge Analytics LLC. Formerly, USDA Forest Service,

Northern Research Station FIA program until June 2019.
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2010 about connecting national- and regional-scale forest
inventories to smaller geographic areas from researchers outside
the United States.

Designing the Review Survey
There is little evidence that auxiliary data other than spatial
information from passive or active sensors have been used
in any of the forestry disciplines in the United States. For
example, census data haven’t been used to improve SAEs
for woodland owners’ characteristics or attributes. Nor have
economic data from the Commerce Department’s Bureau
of Economic Analysis been used to improve SAEs for
forests. Therefore, the search for international SAE activities
will focus mainly on applications using remotely sensed
data as auxiliary data, and secondarily on socio-economic
census data.

The fact that remotely sensed spatial data have been the
prime source of auxiliary data guided the design of the search
for international examples down three pathways. First, a broad-
based search for SAE research and applications by scientists
from other countries was conducted using Google Scholar
and ResearchGate. Two mandatory search terms were used
(“small area estim” and “forest”) to identify journals that
had the large numbers of SAE articles related to forestry.
Second, detailed searches of the archives of the leading journals
publications were conducted. Third, additional searches were
conducted, based on literature cited in articles from the leading
journals, and international authors who had published in the
leading journals and may have published in journals less-
frequently identified in the initial searches. Finally, based
on these results, personal contacts were made with the
leading experts working in NFIs in Europe and Canada to
understand their current research programs underway and
recent progress that perhaps had not yet been published.
The experts were identified through the author’s IUFRO
network connections.

RESULTS

Google Scholar and ResearchGate Search
Engines
These two search engines take different approaches to identifying
relevant content. Google Scholar is a web crawler that provides
citations of articles that have the named search terms in their
titles, abstracts, and keywords. But for full-text articles, the
user must go to the publication’s website. ResearchGate is a
membership application whose members can upload citations
and full-text articles that are then available to other members for
downloading. Guldin (2018) contrasted these two applications
and the relative difficulties they provide to practicing foresters
searching for scientific information to use in their daily work.
ResearchGate provides greater likelihood for free access to full-
text articles.

Analysis of the initial search results showed that two journals
dominated the forest-related applied SAE niche: Remote Sensing

TABLE 1 | Authors and co-authors of articles on small area estimation published

in Remote Sensing of Environment since 2000.

Author/Co-author Number of Publications

2010–2021 2000–2009

McRoberts (USA) 8 5

Tomppo (Finland) 3 6

Magnussen (Canada) 2 2

Astrup (Norway) 3 0

Breidenbach (Norway) 3 0

Finley (USA) 2 1

Katila (Finland) 0 3

Chirici (Italy) 2 0

Næsset (Norway) 2 0

Rahlf (Norway) 2 0

Ståhl (Sweden) 1 1

Stehman (USA) 0 2

Waser (Switzerland) 2 0

Authors Mentioned Once 28 13

Total authors/Co-authors 57 33

of Environment6 andRemote Sensing.7 Therefore, the review dove
deeply into their article archives.

Remote Sensing of Environment
Leading Authors
The query of this journal’s database yielded 12 articles from 2010
to May 2021 that had a total of 57 coauthors and an additional
13 articles from 2000 to 2009 that had 335 coauthors. Several
researchers were authors or coauthors on multiple publications,
Table 1.

Looking at all 25 articles since 2000, McRoberts was an author
or coauthor on half of them (sole author on 5, lead author on
2, and coauthor on 6). Leading authors from other countries on
three or more articles included Erkki Tomppo (Finland, 9), Steen
Magnussen (Canada, 4), Rasmus Astrup (Norway 3), Johannes
Breidenbach (Norway, 3), Andrew Finley (USA 3), and Matti
Katila (Finland 3).

The data illustrate that although the number of publications
in the two time periods were roughly equivalent (12 from 2000 to
2009 vs. 13 from 2010 to 2021), manymore researchers have been
involved as coauthors in the latter period. This highlights the
recent growth in interest and a broadening of the talent studying
this issue.

From a networking perspective, Tomppo andMcRoberts were
central figures. Tomppo’s work began earlier, and his seminal
contributions were recognized with the Marcus Wallenberg
Prize in 1997.8 Tomppo and McRoberts coauthored six articles

6Published by Elsevier (https://www.journals.elsevier.com/remote-sensing-of-

environment).
7Published by MDPI (https://www.mdpi.com/journal/remotesensing).
8His citation read, in part: “. . . his unique method of integrating available

information sources into one system that is reliable and also allows accurate estimates
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together (2007, twice in 2009, 2011, and twice in 2016).
McRoberts coauthored two articles with Magnussen, two with
Gherardo Chirici, and single articles with Breidenbach, Astrup,
and Finley. Beyond publishing with McRoberts, Tomppo
published three times in this journal with Katila, twice in this
journal with Magnussen, Chirici, and Waser, and once with 12
others (all but one from Europe).

Leading Topics
The primary foci of these articles were to combine NFI
field plot data with remotely sensed data from satellite-
borne sensors [e.g., LANDSAT’s Thematic Mapper (TM)] and
aircraft-borne passive sensors (both panchromatic and infrared
digital cameras) or active sensors (e.g., LiDAR). Through non-
parametric (primarily) or parametric (secondarily) methods,
detailed forest attributes in the field plot data were imputed
to pixels in the remotely sensed data. Then the imputed pixel
attributes were aggregated to estimate forest conditions (e.g., tree
cover area, forest type) for small areas with too few field plots to
make estimates with acceptable RMSEs without the sensor-based
imputed information. Satellite-borne sensor data were used in 10
of the papers; aerial photography and LiDAR once each.

The k-Nearest-Neighbor (k-NN) algorithm was used in 6 of
the 24 papers. The k-NN approach is based on similarity in the
space of the selected auxiliary variables to impute a value to a
pixel when a value is missing. The plot observations and the
image pixels’ spectral values for the field inventory plots are the
“training data set.” An image pixel that isn’t associated with a field
inventory plot is assigned a value based on how closely its pixel
spectrum resembles the spectrum of pixels in the training data
set for plot locations in in the space of the auxiliary variables.
In summary, every pixel in an image with missing values—
pixels not associated with known forest inventory plots—can be
assigned a value by finding its closest neighbors whose spectra
closely resemble it and imputing a weighted mean of its nearest
neighbors to it. Most of the early publications about k-NN were
from the 2006–2010 era. Tomppo, McRoberts and/or Magnussen
were the lead author or coauthors in all six papers. The most
recent paper in the journal on k-NNwas a review paper by Chirici
et al. (2016).

A key factor in using the k-NN approach is the geospatial
accuracy of the field plot centers/perimeter coordinates vis a vis
the geospatial coordinates recorded by the sensor. This aspect was
examined in several papers.

The variables whose values were most frequently imputed
were the volumes of timber or growing stock and the area
and types of forest cover. Estimating changes in cover—types
of changes, their rates, and intensities—were discussed in
two articles.

For 2010 to 2019, satellite or aerial photography were the
auxiliary data used in eight of the 13 papers to study various forest

for smaller areas than the traditional field inventories. Tomppo’s system considerably

enhances the total information value of data sources used and also allows for

ecological data to be effectively assessed. In the context of national forest assessment,

it is now possible to obtain inventory data at the community and owner levels as well

– which has previously not been possible without extensive field work.” (http://www.

metla.fi/tiedotteet/1997/wallenberg-eng.htm).

attributes, including timber volume estimates (twice), tree cover
(twice) and land use change. The precision of various models and
estimators was examined in eight of the papers.

Remote Sensing
The second leading journal was the open-access MDPI journal
Remote Sensing. This journal began publication in 2009. It
classifies articles and special issues by broad sections, one
of which is “Forest Remote Sensing.” In that section, 389
articles have been published since 2009, including articles in
37 special issues related to the section (https://www.mdpi.com/
journal/remotesensing/sections/Forest_Remote_Sensing). Sixty-
two of the articles in the category Forest Remote Sensing have
“forest inventory” as a key word. Only one mentioned small
area/domain estimation.

Latifi and Heurich (2019) edited a special issue of 10 papers
titled, “Remote Sensing Based Forest Inventories from Landscape
to Global Scale.” Two of the papers discussed SAE-related
questions. Durante et al. (2019) focused on a 2.8-million-acre
region in southwestern Spain, combining Spanish NFI field
plot data, high-precision airborne laser scans (ALS), and bio-
geophysical spectral variables from MODIS.9 Novo-Fernández
et al. (2019) described estimation procedures that combined
Spanish NFI data and ALS data to predict growing stock volume
for three major commercial tree species growing in northwestern
Spain. Details for both these papers are discussed further in
the section on Spain’s NFI, below. Hill et al. (2018) reported a
case study from northwestern Germany, discussed further in the
section on Germany’s NFI, below.

Other papers having “forest inventory” as a key word had
limited relevance to the SAE issue. In general, the articles tested
ways of using NFI data to improve estimates from airborne or
terrestrial LiDAR point clouds and data from various passive
sensors. In many cases, the NFI field plot data were used to
either demonstrate the utility of new sensors or sensor-platforms
(e.g., small UAVs aka “drones”) or to improve various types of
estimates made from the remotely sensed data. Some estimates
were classification calls, such as forest cover type or forest vs.
non-forest. Other estimates focused on stand characteristics, such
as growing stock volume or above-ground biomass volume, or
stand indices, such as leaf-area-index or normalized difference
vegetation index. Some articles focused on individual tree
characteristics, such as tree species identification. The aim of
improving classification algorithms or stand estimates based on
NFI data was to make estimates and inferences with acceptable
RMSEs for larger geographic areas—regions or countries—from
wall-to-wall remotely sensed data or to create geospatial data
layers or map products. But in general, the novelty of the research
reported either arose from applying a technique developed
elsewhere to a new landscape or from showing howNFI field data
could be used to calibrate remotely sensed data and save time
and resources in developing larger spatial scale products—the
opposite of the SAE issue for which this paper was invited.

9Moderate Resolution Imaging Spectroradiometer sensor aboard the Terra and

Aqua satellites. https://modis.gsfc.nasa.gov/about/.
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Google Scholar Citations Since 2010
The first 200 “hits” returned by Google Scholar to the search
terms “small area estim” and “forest” identified 21 articles
published since 2010 within the scope of this review that were
not published in either Remote Sensing of Environment or Remote
Sensing. The Canadian Journal of Forest Research had one-third
of them, the Scandinavian Journal of Forest Research and Forest
Ecology andManagement together had another third, and the last
third were spread across six other journals.

The expanding impact of Nordic researchers in SAE is
evident in the articles published in both the Scandinavian
Journal of Forest Research and Canadian Journal of Forest
Research. The former isn’t surprising. The latter illustrates
increased collaboration among Steen Magnussen (Canada)
and researchers in Norway and Denmark. Magnussen et al.
(2014) and Magnussen and Nord-Larsen (2020) illustrate the
international collaboration on SAE that currently exists, with the
lead author being from Canada and coauthors from Norway,
Switzerland, and Denmark. The former article introduced five
facets that can improve inference in SAE: (1) model groups; (2)
test of area effects; (3) conditional EBLUPs,10 (4) model selection;
and (5) model averaging. Two contrasting case studies with data
from the Swiss and Norwegian NFIs were used to demonstrate
the five facets. The latter article used data from the Danish
forest inventory to demonstrate how spatial model strata for
post-stratification (e.g., for SAE) can be identified from design-
based model-assisted inference with either lasso or finite mixture
modeling methods.

Other articles published the past 3 years that illustrate the
Nordic and Canadian collaboration include Rahlf et al. (2021),
Strîmbu et al. (2021), Breidenbach et al. (2020), Astrup et al.
(2019), and Haakana et al. (2019a,b). Rahlf et al. (2021) found
that maps based on NFI data augmented by ALS data can be used
in lieu of maps developed from forest management inventory
(FMI) data to estimate timber volumes inmature spruce stands—
potentially saving the cost of doing an FMI. Strîmbu et al.
(2021) dealt with the issue of inconsistency that arises when one
attempts to aggregate parameter estimates for SAEs to a larger
domain and the sum differs from the directly estimated domain
parameter. Breidenbach et al. (2020) used Sentinel-211 mosaics
along with NFI data to model and map Norwegian conifer
types. The models were then used to create species-specific range
maps for smaller geographic areas, such as municipalities. Astrup
et al. (2019) described how photogrammetric point cloud data
were combined with NFI point cloud data to produce a 16 ×

16m raster map with selected modeled attributes that could
be used in FMIs. The two articles by Haakana et al. (2019a,b)
focused on using post-stratification as an alternative way to use
auxiliary information to estimate parameters for municipalities
from Finland’s NFI data.

10EBLUP is an acronym for Empirical Best Linear Unbiased Predictor.
11Sentinel-2 is a European Space Agency mission of two polar-orbiting satellites

monitoring variability in land surface conditions. Their wide swath width (290 km)

and high revisit time supports monitoring of Earth’s surface changes. https://

sentinel.esa.int/web/sentinel/missions/sentinel-2.

ResearchGate Citations Since 2010
The first 50 citations returned during a search (“small area
estima” and “forest”) had 20 articles since 2010 and 6 from 2000
to 2009 that matched the sideboards of this review. Seventeen of
the articles had been previously identified in searches of Remote
Sensing of Environment, Remote Sensing, Scandinavian Journal of
Forest Research and Canadian Journal of Forest Research. Of the
other 24 articles outside the sideboards of this review, 18 dealt
with research on North American forests and 6 with research
about forests in Asia and Oceana.

Two articles providing overviews were found in the
ResearchGate search; Kangas et al. (2018) and Jiang and Rao
(2020). Kangas and her 10 coauthors reviewed the state of
science in Nordic country NFIs and how remotely sensed
data are being used to augment NFI and FMI data and
reduce uncertainties in parameter estimates—nationally and sub-
nationally. More importantly, the article also lays out a roadmap
for future research and development work and proposes a
common research program for the Nordic countries focused
on six identified problem areas. Although not focused on
forest inventories, the overview of SAE methods by Jiang and
Rao (2020) is a good current synopsis of the current state
of statistical research. It is a good entry point for readers
desiring an organizing framework for the many different
SAE methods.

DISCUSSION

Online searches using Google Scholar and ResearchGate for
recent research pertaining to SAE of forest conditions in
countries outside the United States shed some additional light
on the state of science. There was a notable lag, often several
years, between journal publication and when the search engines
reported it. Besides Remote Sensing of Environment or Remote
Sensing, three other journals have published a growing number
of articles on SAE, notably the Canadian and Scandinavian
Journals of Forest Research and Forest Ecology and Management
(e.g., McRoberts, 2012; McRoberts et al., 2017). This suggests
that researchers desiring to follow SAE advances should focus
first on those five journals, before relying on broader search
engines to find new international research on SAE pertaining
to forests.

The emergence of journal policies to publish accepted journal
on-line prior to articles appearing in printed volumes often
results in two different years for citations. For example, Haakana
et al. (2019b) was published on-line on 10 December 2019 but
didn’t appear in print until the April 2020 issue. The citations
in this article use the on-line publication date rather than the
in-print date.

Status of Small Area Estimation in National
Forest Inventories: Global Overview
Barrett et al. (2016) summarized the operational use of remotely
sensed data in NFIs, based on the responses of 45 countries’
experts (representing 65% of global forest area) to a questionnaire
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circulated as part of the COST Action FP1001.12 They found
that remotely sensed data—from many different sensors—were
widely used to enhance estimates for many parameters but called
for further research on ways to improve uncertainty estimation
by better integrating remotely sensed data and field data.

Thirteen countries used spatial datasets (e.g., digital elevation
models, soils, and geology maps, ownership data) from other
sources beyond the NFI program to enhance forest map data
layers that were constructed from satellite-borne sensors and
field data. The most common map layers produced were land
cover/land use, forest cover type, and species group maps.

Where insufficient field data were available, nine countries
reported that imputation models were used to integrate other
spatial datasets and available field data to predict ground
attributes (from which maps can be created) and calculate
local estimates. Many different prediction techniques were
used. Eight countries used supervised parametric techniques
(maximum likelihood, discriminant analysis, and linear, non-
linear, and logistic regression). Seven countries used non-
parametric methods (k-NN) and unsupervised approaches
(neural networks, isodata, or k-means). But only 12 countries
attempted to estimate uncertainty for map attributes they
estimated or imputed, and only nine countries attempted to
include uncertainty estimates for area statistics associated with
forest area vs. non-forest area maps.

From the articles reviewed that were published in the last 5
years (2016 to 2021), it’s apparent that the focus of forest-related
SAE research outside the USA is shifting. Three major threads
have emerged:

1. Using model-based approaches and NFI data to make

estimates at smaller spatial scales—provinces, forest

management units, municipalities. The focus is on
demonstrating that existing well-funded and well-designed
NFIs can supplant less-well funded FMIs for many
regional/local purposes. While stand-level inventories
still have their place in planning management activities,
the NFI-based SAEs show promise in helping offset lack
of support and funding for FMIs. In some cases, NFI-
based models are being used to sort out priorities for
stand/compartment exams.

2. Increased focus on methods for reducing uncertainties of

estimates and improving precision of estimates. Several
articles described using simulation approaches, based on
NFI data, to explore alternative estimation procedures that
reduce uncertainties/improve precision. Creating simulations
is faster and less expensive than gathering plot data to test
alternative SAE approaches.

3. Estimating above ground biomass (AGB) volume has

become a prominent parameter of interest for SAEs,

eclipsing interest in estimating timber volumes. Recently
adopted global policies, such as greenhouse gas reporting
and REDD+, have driven this shift. Public and governmental

12COST is a European framework for improving Cooperation in Science and

Technology. COST action FP1001 focused on improving information about

potential supplies of wood.

interest in understanding better the roles of forests in
sequestering carbon and tracking forest carbon stocks and
fluxes at the sub-national level have also played a role.
Changes in the objectives of grant programs have been used
to shift the focus of SAE research.

Switzerland’s National Forest Inventory:
Overview of SAE Research Since 2010
Recent work done in Switzerland’s NFI programwas summarized
by Pulkkinen and Zell (2019).

Background
The Swiss foundation on sampling theory for forest inventory
rests upon the design-based Monte-Carlo approach, where
sampling is carried out for an infinite population of the points
within a region of interest (see Chapters 4 and 5 in Mandallaz,
2008). Target parameters are spatial means computed as tree-
population totals (sums of tree characteristics over all the trees
within the region) divided by the area of the region. The spatial
means are equal to the expectations of the local densities of the
target variables over the uniform distribution of points within
the region. The local density of a target variable is defined at each
point of the region as the ratio of theHorvitz-Thompson estimate
of the tree population total of the variable, based on a probability
sample of trees taken at the point, to the area of the region.

In the population of the points within the region, a two-
phase sampling approach is typically used. First, many uniformly
randomly located sample points are drawn independently of
each other and auxiliary information is collected at these points.
Second, a simple random sample from the first-phase points is
used to locate field plots where data are collected on the target
variables (i.e., their local densities). In a three-phase sampling
approach, there are two nested phases for collecting auxiliary
information before field plots are identified. In practice, points
are located at the intersections of systematic grids whose starting
point and orientation of the largest grid being considered are
chosen randomly. Therefore, the variance estimators derived
from the assumption of uniform random locations can be
considered generally conservative. The Swiss NFI follows this
design-based Monte Carlo paradigm with its two-phase simple
random sampling for post-stratification estimation, where the
auxiliary information is used to do the post-stratification.

The Swiss NFI is now in its fifth cycle. The methodology of
the fourth cycle (2009–2017) was detailed by Fischer and Traub
(2019). The 5th cycle continues the continuous mode adopted
for the fourth cycle by systematically measuring 1/9th of the field
plots over the whole country each year. The field plots are located
on a 1.41 × 1.41 km grid, whereas the auxiliary information,
mostly based in digital aerial images, is currently available on a
100× 100 m super-grid.

For small-area estimation, the design-based model-assisted
approach is used. Design-based inference relies on probability
samples for validity and its estimators of population parameters
are generally unbiased. Design-based inference relies on three
assumptions: a probability sample incorporating some form
of randomization is used; each population unit has one and
only one possible value; and selection of population units into
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the sample is based on positive and known probabilities of
selection (McRoberts et al., 2019). Brewer (2013) equated design-
based with randomization-based inference, and contrasted it
to model-based inference, which he equated with prediction-
based inference.

Model-assisted means that a model is used to support
estimation following probability sampling (Ståhl et al., 2016).
A prominent example of model-assisted survey sampling in a
forest inventory context was highlighted by Gregoire et al. (2016),
who described how the point cloud of airborne LiDAR height
measurements can be linked by statistical regression to estimates
of forest biomass from a ground sample of forested plots whose
trees have their heights measured and above-ground biomass
volumes computed from equations. Pulkkinen and Zell (2019)
reported that end-users and stakeholders in the Swiss NFI prefer
the design-based, model-assisted approach, albeit using digital
aerial photography rather than airborne LiDAR, over a model-
based/model-dependent approach.

Development of New Design-Based Model-Assisted

Small Area Estimators
At ETH Zurich, Mandallaz and his students have developed
new design-basedmodel-assisted estimators that involve: (i) non-
exhaustive auxiliary data (auxiliary data not available wall-to-wall
but coming from a sample); and (ii) external models of any type
(models constructed in the data that are entirely independent of
the current field plot data of the small area) or internal linear
models (linear models fitted to the data containing the current
field plot data of the small-area). The estimators consist of the
means of the: (i) model predictions over the auxiliary data points
(null/first-phase sample); and (ii) model residuals over the field
plots (second-phase sample) within the area. When using an
internal model, the idea is to fit a model “globally” in a large
region containing the area of interest, and to apply it “locally”
to the specific area. In this case, like in the classical regression
estimators developed for finite populations, the variation of the
model parameter estimates over (hypothetical) repeated samples
is considered in the variance estimators of the new small-area
estimators. Further, the uncertainty due to employing estimated
auxiliary variable means instead of (unavailable) true means is
incorporated in the variance estimators. The researchers also
present an approach where the internal linear model is extended
with the indicator variable(s) of the area(s), thus eliminating the
residual-dependent part of the estimator, which greatly simplifies
the calculation of the variance.

Mandallaz (2013) introduced the new small-area estimators
for two-phase sampling, with both exhaustive and non-
exhaustive auxiliary data and including the special case of cluster
sampling. He illustrated the estimators with a small case study
and with a simple simulation example. Mandallaz et al. (2013)
completed this work by presenting the estimators for the case
where some auxiliary variables are available exhaustively (wall-
to-wall) and others non-exhaustively. They tested the estimators
with a simulation example like the one in the earlier paper but
with a larger case study using data from the Swiss NFI. Hill
et al. (2018) applied the estimators for timber volume estimation
in forest management units of two levels (forest districts and

sub-districts) in the German state of Rhineland-Palatinate using
data from the German NFI.

Mandallaz (2014) extended the two-phase small-area
estimators with partially exhaustive auxiliary data to three-phase
sampling, where the auxiliary variable values come from nested
null- and first-phase samples. He illustrated the estimators with
a simulation example like those in the earlier papers.

Massey et al. (2014) applied these three-phase estimators
to estimate timber volumes in the five production regions
(summing up to the entire country) of the fourth Swiss NFI,
when only three annual panels (out of nine) of field plot
data were available. The reduced second-phase sample size was
compensated by using the full field plot data from the third
inventory as the first-phase auxiliary data, in addition to the
usual aerial photography used as the null-phase auxiliary data.
Steinmann et al. (2013) applied the two-phase synthetic and
difference estimators (involving external models) for forest area
and timber volume estimation in the Swiss canton of Aargau
using data from the Swiss NFI. Two doctoral theses have resulted
from this research (Massey, 2015; Hill, 2018). Hill et al. (2021)
have implemented the estimators discussed above in the R
package forestinventory.

Construction of SAE System for Swiss NFI
In an ongoing project, Pulkkinen, Lanz, and Zell are developing
an operational system for producing estimates of several target
parameters for small areas/domains in the Swiss NFI. Auxiliary
information comes from several sources, the most important
being a vegetation height model estimated from a digital
elevation model of tree canopy height and a LiDAR-based terrain
elevation model. The small-area estimators included in the
system are the design-based model-assisted estimators discussed
above, with (i) internal linear models or (ii) external models of
any type, and with estimated auxiliary variable means. When
internal models are used, they are built/fitted separately for each
small area/domain. Currently, the system estimates forest area,
total growing-stock volume, and total growing-stock biomass
above ground for the cantons, forest districts and municipalities
in Switzerland.

Norway’s National Forest Inventory: Small
Area Estimation on Multiple Scales
Breidenbach et al. (2019) presented the status of SAE research
and use in the Norwegian NFI. national forest inventory field
plot inventory data are combined with 3D remotely sensed data
to estimate forest characteristics at different spatial scales. ALS
and image matching are currently used as auxiliary information
to create the NFI’s forest resource map SR16, a raster map with
a pixel size of 16 × 16m (Astrup et al., 2019). While model-
dependent methods were used on the scale of pixels and forest
stands (Breidenbach et al., 2015), model-assisted estimators were
used on the scale of municipalities and larger area of interests
(Breidenbach and Astrup, 2012).

Developing Forest Resource Map SR16
Development of SR16 tested new methods for using ALS to
make stand-level estimates and comparing those estimates with
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independent data from a FMI. Astrup et al. (2019) described
the development and utility of the SR16 in greater detail. They
used photogrammetric point cloud data with ground plots from
the Norwegian NFI. First, an existing forest mask was updated
using object-based image analysis methods. Within the updated
forest mask, a 16×16m raster map was developed with Lorey’s
height (hL),13 volume, biomass, and tree species as attributes.
All attributes were predicted with generalized linear models that
explained about 70% of the observed variation and had relative
RMSEs of about 50%. The raster map was then segmented into
stand-like polygons that internally were relatively homogenous
with respect to tree species, volume, site index, and hL. When
SR16 was used as auxiliary information to NFI field plot data
and a model-assisted estimator, the precision was on average
2–3 times greater than estimates based on field data only.
In conclusion, SR16 was useful for improved estimates from
the Norwegian NFI at various scales. The mapped products
may be useful as additional information in forest management
Inventories (FMIs).

Applying SR16 to Small Area Estimation
One of the biggest challenges for the Norwegian NFI is satisfying
the interests of stakeholders in forest attribute information for
small sub-populations, such as municipalities or protected areas
(Breidenbach and Astrup, 2012). Auxiliary information that is
correlated with attributes of interest can improve the precision
of estimates. Two examples have been recently reported in the
literature. In the first one, Breidenbach and Astrup (2012) used
the height and volume information in SR16 to improve the
estimates of mean above-ground biomass for small areas. In the
second (Breidenbach et al., 2019), ALS and SR16 data layers were
used to improve the precision of information for FMIs. FMI
data required local adjustments to obtain the desired precision.
Mixed-effects models were fit, using fine-scale ALS data. SR16
data layers used to make SAEs were compared to FMI stand-
level estimates. The RMSD between FMI and SR16 estimates
of timber volume on stand-level ranged between 11 and 17%.
While no systematic deviation was visible for stands in mature
pine forest types, SR16 data underestimated timber volume in
mature spruce forests by 12%, especially in ALS projects where
the NFI data did not cover the full range of explanatory variables.
They concluded that the accuracy of SR16 map data layers may
be sufficient for most small-scale forest owners and for some
strata for larger forest enterprises. Accuracy can be improved, and
systematic errors removed by integrating auxiliary information
where a limited number of NFI plots do not cover the range of
explanatory variables within an ALS coverage area.

13Lorey’s height (hL) is amean height estimate that is weighted by basal area, which

allows the larger trees to contribute more to the mean. It is a commonly used mean

height estimator outside the USA. Lorey’s height is computed as the sum of tree

height multiplied by tree basal area for all trees, divided by the basal area of the

stand. Because variable radius plot sampling (Bitterlich or prism sampling) selects

trees proportional to their basal area, the mean height of trees included in one or

more prism sample counts gives an estimate of hL.

Germany/s National Forest Inventory:
Small Area Estimation at the District Level
Hill et al. (2018) described a double-sampling extension of the
GermanNFI tomake design-based SAE at the forest district level.
They used an ALS-estimated canopy height model and a tree
species classification map based on satellite data as auxiliary data
with a regression model to produce timber volume predictions.

The German NFI is based on a nationwide 4 × 4 km grid.
But some states (Rhineland-Palatinate in Hill et al., 2018) have
intensified the sample to a 2 × 2 km grid. At each grid point,
field crews collect data from a cluster of four sample plots,
arranged in a square with 150m sides. The number of actual plots
measured in a cluster can vary between one and four depending
on the forest/non-forest decisions made by the crew. At each
sample point, trees to tally are identified using a BAF 4 m2/ha
prism/relascope, and included if their DBH is >7 cm.

Wagner et al. (2017) used SAE methods to estimate
spruce timber reserves in the Rhineland-Palatinate’s forest
districts. The state forest inventory and an ALS-based canopy
height model provided the data. A new spline-based SAE
method was proposed. It provided stable estimates that met
specialized constraints. Results were compared with existing
spruce timber estimates.

Rationale for SAE Research
Rhineland-Palatinate is one of the two most densely forested
German states, with 8,400 km2 of forest comprising 42% of the
land area. Two characteristics dominate Rhineland-Palatinate
forests. Mixed forest stands dominate (82% of the forest area).
Public ownership dominates private ownership−27% are state-
owned forests and 46% are municipally owned vs. 27% that
are privately owned. The state forest agency has a mandate
to sustainably manage state and municipal forests, including
planning, harvesting, and selling wood. Therefore, the state has
been further sub-divided into 45 districts (averaging 43,777
ha), and 405 sub-districts (averaging 4,624 ha). A key question
for the state agency is where and how to gather information
suitable for managing at the state, district, and sub-district
levels. While the NFI information is helpful at the state level,
estimators at the district and sub-district level derived from the
NFI have unacceptable RMSEs for planning and implementing
management activities. Many states have solved this problem
by establishing forest district-level inventories (FDI) with much
greater sampling intensities than the NFI (e.g., the quadruple
intensification of NFI in Rhineland-Palatinate). But FDIs are
costly, and many states are facing increasing restrictions on
budgets and personnel. Therefore, states are seeking more cost-
efficient inventory methods, among them SAE methods.

Researchers from ETH Zurich and the Rhineland-Palatinate
State Forest Service partnered to test SAE approaches for cost-
efficiency. They considered three types of design-based regression
estimators suggested by Mandallaz (2013) and Mandallaz et al.
(2013): Pseudo-small, extended pseudo-synthetic, and pseudo-
synthetic. Auxiliary data were a canopy height model from
nationwide ALS and a tree species classification map to be used
for regression estimation within tree species strata. A double-
sampling approach was used, for five reasons discussed in detail
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in Hill et al. (2018). At the district level, results showed that both
the pseudo-small and the extended pseudo-synthetic estimators
led to substantial reductions in estimation error compared to
the standard one-phase estimator. But the sub-district level was
too small geographically and had too few sampling points to
achieve the same estimated error reduction as at the district
level. However, estimation errors at the sub-district level were
still smaller than the standard one-phase estimator (20 vs. 40%).
But the authors acknowledged that further research is needed
to determine whether the achieved reductions in error levels are
enough to support forest planning decisions.

A complicating factor in the case study was that the ALS data
were of various ages—some relatively recent, others a decade old.
Beyond the obvious issue of tree height growth over a decade,
a tougher challenge was that laser sensor technology advanced
rapidly over the decade, resulting in much denser point clouds
for recent years compared to older years. As older scans are
replaced by newer scans, the power of the auxiliary information
will improve—both in terms of consistent tree canopy height
models across the landscape and within the tree species strata.

The methods introduced by Hill et al. (2018) are being tested
on NFI data from other states. In 2019, data from Thuringia were
being tested and data from Mecklenburg-Pomerania was next.
The intent is to have these new estimation features operational
by 2023, at the latest, after completion of the 2021/2022
inventory cycle.14

Finland’s National Forest Inventory:
Efficiency of Post-stratification for Small
Area Estimation
Tomppo (1990, 1991) was the global pioneer in combining NFI
data, satellite data, and k-NN for making estimates. His research
formed the intellectual foundation for Finland’s NFI, and for SAE
work in many other countries, including the United States.

Haakana et al. (2019a,b) reported on recent research in
Finland, using southern Finland provinces and municipalities
within provinces as test regions both for making point estimates
(e.g., growing stock volume by tree species groups) and
evaluating variances estimated by alternative methods. They
found that post-stratification, based on remotely sensed data,
even if old and incomplete, improves efficiency in estimating
selected variables at the provincial and smaller municipality levels
when compared to results from making estimates using only
current NFI data. Work by Tomppo, McRoberts, andMagnussen
was extensively cited.

The two papers explored several options for obtaining
auxiliary information to use in post-stratification. Sweden
was cited as an example where official statistics are based
solely on field plots, but estimates are developed using
design-based post-stratification, based on k-NN maps or other
map products.

Haakana et al. (2019a) presented a case study on estimating
growing stock volumes by tree species groups. The auxiliary
information was derived from NFI volume maps available for
provinces in southern Finland. These maps were developed from

14Personal communication with Dr. Sebastian Schnell, Thünen Institute of Forest

Ecosystems, Eberswalde, Germany.

the data gathered in the previous NFI iteration (2005–2008) and
LANDSAT 5 TM imagery from 2007. Full-coverage raster maps
with 20m pixels were created by combining satellite images,
digital map data, and NFI sample plot data and then using the k-
NN method to estimate growing stock volume, by species group,
for each pixel in a forest land mask. Procedures described by
Tomppo et al. (2012) were used.

One of the challenges discussed was the use of older
volume maps from the prior NFI iteration combined with
older LANDSAT 5 TM data. The primary reason for using
older maps based on older remotely sensed data was to use
independent auxiliary data. But during the intervening time,
many forest management activities, such as thinnings and final
harvests, occurred, which reduced the correlation between the
older auxiliary data and the current NFI data. But the reduced
correlation and potential reduction in estimation efficiency
weren’t quantified—just recognized—because updating the prior
information was thought too costly for the project.

Post-stratification by mean volume improved the precision of
both area and volume estimates for forest area and growing stock
volume compared to using NFI data alone. Relative efficiencies
ranged between 2.3 and 3.5. As expected, post-stratification
resulted in a smaller decrease in mean relative standard error
for the smaller areas than for the larger areas. This result held
both for the forest area variable as well as for total growing stock
volume and volume by tree species stratum (pine, spruce, birch,
and other deciduous strata). Further, the small area estimates
from post-stratification were robust compared to the field plot
data estimates because the largest variances improved more than
the average variances.

Haakana et al. (2019b) acknowledged that the k-NN method
can provide a model-based estimator for small geographic areas,
but not a designed-unbiased estimator for RMSE. Thus, in this
article they focused specifically on municipalities to explore the
lower limits in geographic size that could still yield estimates of
forest area and growing stock volume with adequate precision.
They explored the differences in estimation efficiency and error
estimates for various sizes of areas—ranging from 5,700 to
921,600 ha—made possible by post-stratification.

The major conclusions of the two articles were that: (1)
utilizing old forest resources maps in a fully operational
approach for national level estimation improved estimates;
and (2) although post-stratification enabled forest area and
growing stock to be estimated more accurately for much
smaller geographic areas than with field plot data alone, post-
stratification should be limited to the smallest municipalities
where model-based estimation is still needed. Haakana et al.
(2019a) acknowledged that precision could be further improved
by updating maps to account for thinning, regeneration cuttings,
and final harvests; segmenting maps and remotely sensed
data into homogenous segments; and by having improved
boundary files for municipality land use classes. But overall, these
opportunities didn’t detract from the overall results.

Katila and Heikkinen (2020) reviewed the time-series of k-NN
estimates over two decades for municipalities, based in NFI data.
Their interest was in the variation among estimates from different
time periods—exceeding 10% in mean volume—which they
believed indicated a systematic error in SAEs. They combined
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NFI estimates from three points in time−2011, 2013, and 2015—
and found that multi-temporal data fusion made small but
consistent improvements in the estimates.

France’s National Forest Inventory:
Three-Dimensional Auxiliary Data
Since 2005, the French NFI has used a two-phase sampling design
on a 1 km grid. Each year, one-tenth of the plots are photo-
interpreted for land use and land cover in the first phase. Then
in a second phase, a sample is drawn as a function of land
cover types, resulting in about 6,500 plots being measured each
year nationwide.

Vega et al. (2021) introduced a new estimation algorithm
to balance between statistical precision and spatial scale. The
algorithm identifies the smallest possible groups of domains
satisfying prescribed sampling density and estimation error. The
research used NFI data from oak-dominated areas in the Sologne
and Orléans areas of central France, covering 157 municipalities
of varying sizes. Auxiliary data were a national forest cover type
map, a canopy height model from digital aerial photographs,
and LANDSAT imagery. The algorithm depends on the statistical
strength between the field attributes—growing stock volume and
basal area in this case—and on auxiliary variables and the spatial
heterogeneity of the forests. Results illustrate the balance between
desired precision and the spatial scale required to attain that
precision in attribute estimates.

Fortin (2020) explored the problem caused by annually
sampling only a portion of the NFI population of plots and
the impact on variance of point estimates for a geographic area
when plot data are from 1 to 10 years old. Fortin proposed
overcoming the difference in time since last remeasurement by
using an individual tree forest growth model (MATHILDE) to
update older plot measurements to account for growth since
last measurement. But this seemingly simple solution leads to a
hybrid inferential model where uncertainty arises not only from
the sample design but also from the growth model used to update
measurements (Kangas et al., 2019). Fortin tested the updating
approach on French NFI data from the Lorraine region and
concluded that under certain conditions, using a forest growth
model can increase the precision of inventory estimates.

Irulappa-Pillai-Vijayakumar et al. (2019) used three-
dimensional (3D) variables from photogrammetric-estimated
canopy height models, a forest type map, vegetation indices, and
LANDSAT 8 spectral bands as auxiliary data to lend strength
to French NFI data for a 733,500-ha region in central France
that is 48% forested. Adding complexity was the fact that much
of the forest in the region was a mixed broadleaved species
cover type that was more diverse in species composition and
therefore in form, structure, and fragmentation than the typical
conifer forest. The objective of the research was to test whether
multivariate k-NN imputations could improve the precision of
estimates for 11 forest attributes beyond the precision based
solely on NFI data.

The NFI data came from 755 plots measured from 2010
to 2014. Irulappa-Pillai-Vijayakumar et al. (2019) goes into
considerable detail about the significant effort invested and

difficulties encountered in: (1) transforming digital aerial
photography and ALS into 3D digital terrain models that could
be used to estimate canopy height models for two different time
periods (2008 and 2014); and (2) using the estimated changes in
height between 2008 and 2014 to estimate changes in other forest
attributes, such as stand density, basal area and several different
types of volume. Finally, auxiliary data for all 11 variables were
converted to a spatial resolution of 30m to conform with the
spatial resolution of the TM sensor aboard LANDSAT.

Results were that volume attributes had the greatest reduction
in errors. Using 3D change estimates contributed to the
substantial increase in precision and improved neighbor selection
within the k-NN method. The authors reported that these results
open possibilities for improving forest attribute estimation for
smaller areas. Their downscaling work continues.

Spain’s National Forest Inventory:
Integrating NFI Field Plot Data With
Airborne LiDAR Data
Four recent papers have discussed research in Spain, including
Condés and McRoberts (2017), Esteban et al. (2019), Durante
et al. (2019), and Novo-Fernández et al. (2019).

Condés and McRoberts (2017) reported new methods to
update NFI-based estimates when the year of the most recent
NFI survey doesn’t match the required year for international
reporting requirements. Their main aim was to develop an
unbiased method to update NFI estimates of mean growing
stock volume (m3/ha) using models to predict annual plot-level
volume change, and to estimate the associated uncertainties.
Because the final large area volume estimates were based on plot-
level model predictions rather than field observations, hybrid
inference was necessary to accommodate both model prediction
uncertainty and sampling variation. Specific objectives were to
compare modeling approaches, to assess the utility of Landsat
data for increasing model prediction accuracy, to select the most
accurate method, and to compare model-based and design-based
uncertainty components. For four forest types, data from the
2nd and 3rd Spanish NFI surveys together with site variables and
Landsat imagery were used to construct models to predict NFI
information for the year of the 4th NFI survey. Data from the 3rd

and 4th surveys were used to assess the accuracy of the model
predictions at both plot-level and large area spatial scales. The
most accurate method used a set of three models: one to predict
the probability of volume removals, one to predict the amount
of volume removed, and one to predict gross annual volume.
Incorporation of Landsat-based variables in the models increased
prediction accuracy. Differences between large area estimates
based on plot-level field observations for the 4th NFI survey and
estimates based on the model predictions were minimal for all
four forest types. Further, the standard errors of the estimates
based on the model predictions were only slightly greater than
standard errors based on the field observations. Thus, model
predictions of plot-level growing stock volume based on field and
satellite image data as auxiliary information can be used to update
large area NFI estimates for reporting years for which spectral
data are available, but field observations are not.
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Esteban et al. (2019) described an approach to model-assisted
inference, using a random forests (RF) approach. RF has recently
emerged as a popular approach because it’s able to select and rank
many predictor variables and it relies on an ensemble of trees as
a strategy to improve model robustness. Random forest consists
of a combination of decision trees where each decision tree
contributes a single prediction for each population unit with the
final prediction for each unit calculated as the mean over the RF
decision tree predictions. Although RF has been used by others,
little literature is available on model-based mean square error
(MSE) estimation for population parameters with this algorithm.
The study had three objectives:

1. Construct RF models to predict response variables (volume
and above-ground biomass) and changes in the response
variables for population units (ALS cells);

2. Compare multiple bootstrap estimators of the model based
MSE of the estimate of the population mean; and

3. Construct change maps and change uncertainty maps.

Two study areas were used, one in the La Rioja region of
Spain and the other in Våler municipality, southeastern Norway.
The Spanish data included plot-level volume datasets acquired
at different times for different plots as well as corresponding
multi-temporal ALS (2010–2016) and multi-spectral data. The
Norwegian data included plot-level biomass datasets for two
times for the same plots and temporally consistent ALS data
(1999, 2010). The authors concluded that RF models adequately
described the relationship between field plot measurements of
volume and biomass per unit area and remotely sensed data. They
also found that model-assisted andmodel-based estimators based
on RF predictions produced similar estimates of population
means and change estimates and smaller MSEs than expansion
estimators. Some insights into two bootstrapping approaches
were provided too.

Durante et al. (2019) focused on a 2.8-million-acre region
in Spain, combining Spanish NFI field plot data, fine-precision
ALS, and bio-geophysical spectral variables from MODIS. The
novelty of the study was testing a two-stage upscaling approach
where above-ground biomass estimates from ALS data were first
calibrated with NFI field plot data from 242 NFI field plots,
then used to train a machine-learning method that could be
applied to MODIS-estimated indices and topographic factors
to develop wall-to-wall maps of above-ground biomass for the
region. In one sense, this is the reverse of usual SAE approaches,
borrowing strength from the NFI field plot data to improve
biomass estimates made from laser point clouds and then link the
improved biomass estimates to MODIS data to create a regional
map. The authors again highlighted the difficulties created by
lack of precision in field plot center coordinates (5–15m nominal
accuracy) compared to ALS data. The biomass model was based
on four types of information: (1) 2m resolution ALS data; (2)
sketches of field plot layout; (3) high resolution ortho-imagery
from the Spanish National Plan for Aerial Orthophotography;
and (4) total height, species type, and location of each tree
in the field. Earlier work in case studies in western Finland
by Maltamo et al. (2009) and Norway by Nelson et al. (2012)
were cited.

Novo-Fernández et al. (2019) carried out similar work in
northwestern Spain. The area studied contains forest plantations
that contribute 58% of the annual national timber harvest
and thus are important to commercial enterprises producing
panelboard, sawn lumber, and pulpwood. Dominant species
are Eucalyptus globulus Labill, Pinus pinaster Ait., and Pinus
radiata D. Don. Therefore, the main objective of this study was
to generate a fine-resolution raster database with information
about key forest yield variables such as total over bark volume
(m3/ha) and total aboveground biomass (t/ha), by species.
Secondary objectives—necessary to achieve the first objective—
included: (1) development of a procedure to harmonize the
Spanish NFI and ALS data; (2) selection of the best empirical
models of relationships between field measures and ALS-derived
metrics, by comparing a parametric machine learning technique
(multiple linear regression) and several well-known non-
parametric techniques; and (3) to estimate spatially-continuous
maps of yield variables. The same methodology has been used in
Austria, Denmark, Sweden.

SUMMARY

Small Domain Estimation research in the forest sector has
focused almost entirely on spatial domains to the exclusion of
other domains, hence the term SAE has replaced SDE in the
forest inventory literature. SAE research and applications are
underway in many European countries to improve estimates—
reduce the RMSE or confidence intervals—of forest attributes
based on sample data collected on NFI field plots.

Airborne LiDAR data are becoming increasingly popular
as auxiliary data, especially where country-wide laser scanning
has replaced country-wide aerial photography as the raw
data for national topographical mapping, transportation, or
other agencies.

Design-based model-assisted SAE inference methods are
being used in several countries, but pure model-based or hybrid
inference methods are also being explored. Each methodology
has advantages in specific situations. Regardless of methodology,
the k-NN approach is the current “standard,” although with
tweaks here and there. Various two-stage or double-sampling
approaches are popular for post-stratification.

The intellectual leadership in SAE research in the forest sector
is broadening. In the 1990s and first decade of the twenty-
first century, only a few researchers—notably Erkki Tomppo
and Ronald McRoberts—had published more than two articles
on the topic. Since 2010, the forest SAE literature documents
increased trans-national collaboration by many more authors
and coauthors in advancing the use SAE. This review found
that the influence of Daniel Mandallaz and his students from
ETH-Zurich is growing.

McRoberts pointed out15 that as scientific disciplines mature,
they inevitably move through a three-step sequence of phases:

1. Descriptive studies (estimating means and variances);
2. Predictive studies (creating models and maps); to

15Personal communication, 17 Nov 2019.
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3. Inferential studies (determining confidence intervals for
population parameters, testing of hypotheses).

National forest inventoriesmoved early into the inferential phase,
but remote sensing is just now moving into that phase. The
point is that as remote sensing research and applications in the
forest sector mature, they will inevitably become more rigorous
statistically and characterized by use of more sophisticated
statistical techniques. Greater statistical sophistication will of
necessity entail greater attention to uncertainty issues in
estimates, models, and predictions. There is some evidence from
this review of international research that this progression of
phases is occurring; as it also is currently progressing in the
United States.

The increase since 2010 in research and applications of SAE
methods is being driven largely by NFI stakeholders’ needs for
information about forests at sub-national and sub-state/sub-
province spatial scales. Two driving forces stood out in the
literature reviewed. First, the costs—financial and staffing—of
forest management unit inventories are pinching the budgets
of state/provincial forest managers. They are searching for cost-
cutting measures and using NFI data to make more precise
estimates at sub-national levels is emerging as a viable solution.

Second, international carbon-accounting reporting
expectations are growing. Carbon stocks and fluxes now
need to be estimated from spatially and species-specific forest
inventory data rather than simply applying broad-based,
generalized, per-area carbon estimates to forest cover type area
estimates. Hence, greater emphasis on obtaining above-ground
forest biomass estimates specific to forest-cover-types or species
for discrete regions of a country (accounting for site differences,
such as soils, geology, topography, and land use patterns). If
smoothly functioning markets emerge that compensate forest
landowners for carbon sequestered in forests, agencies, and
landowners want to have site- and species-specific, statistically
reliable information available to support their payment contracts.

Three final points. None of the recent literature reviewed
cited the need for or use of SAE estimates to satisfy forest
certification criteria. Second, as interest in forest carbon markets
continues to grow, it will be interesting to see if SAE estimates
of forest carbon stocks and fluxes become acceptable to market
investors. The emergence of interest in estimating AGB portends
this issue. Third, although this paper focused on forest-sector
literature dominated by authors and applications outside the
United States, there is much SAE underway inside and outside
the forest sector within the United States. Researchers for the U.S.
Census Bureau (2021) can provide useful entrees to SAE outside
the forest sector, just as similar SAE research outside the forest
sector is reported by the European Union and national statistical
agencies of individual European countries.
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Stands are the primary unit for tactical and operational forest planning. Forest managers
can use remote-sensing-based forest inventories to precisely estimate attributes of
interest at the stand scale. However, remote-sensing-based inventories typically rely
on models relating remote-sensing information to forest attributes for fixed area plots
with accurate coordinates. The collection of that kind of ground data is expensive
and time-consuming. Furthermore, remote-sensing-based inventories provide precise
descriptions of the forest when the remote-sensing data were collected, but they
inevitably become outdated as the forest evolves. Fay–Herriot (FH), models can be
used with ground information from variable radius plots even if the plot coordinates
are unknown. Thus, they provide an efficient way to update old remote-sensing-based
inventories or develop new ones when fixed radius plots are unavailable. In addition,
FH models are well described in the small-area estimation literature and allow reporting
estimation uncertainties, which is key to incorporating quality controls to remote-sensing
inventories. We compared two scenarios developed in the Willamette National Forest,
OR, United States, to produce stand-level estimates of above-ground biomass (AGB),
and Volume (V) for natural and managed stands. The first, Case 1, was developed using
auxiliary data from a recent lidar acquisition. The second, Case 2, was developed to
update an old remote-sensing-based inventory. Results showed that FH models allowed
for improvements in efficiency with respect to direct stand-level estimates obtained
using only field data for both case scenarios and both typologies of stands. Average
improvements in efficiency in natural stands were 37.36% for AGB and 33.10% for
Volume for FH models from Case 1 and 20.19% for AGB and 19.25 for V for Case 2.
For managed stands, average improvements for Case 1 were 2.29 and 19.92% for AGB
and V, respectively, and for Case 2, improvements were 15.55% for AGB and 16.05%
for V.
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Frontiers in Forests and Global Change | www.frontiersin.org 1 October 2021 | Volume 4 | Article 74591620

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2021.745916
http://creativecommons.org/licenses/by/4.0/
mailto:temesgen.hailemariam@oregonstate.edu
mailto:temesgen.hailemariam@oregonstate.edu
https://doi.org/10.3389/ffgc.2021.745916
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2021.745916&domain=pdf&date_stamp=2021-10-20
https://www.frontiersin.org/articles/10.3389/ffgc.2021.745916/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-745916 October 13, 2021 Time: 15:48 # 2

Temesgen et al. Fay-Herriot Models for Stand-Level Inventories

INTRODUCTION

Stands are the primary unit for tactical–operational planning and
management. A stand is an area or polygon with a relatively
homogeneous forest structure and different from surrounding
areas in terms of structure, composition, or management
objectives. The size of a forest stand typically ranges from about
1 to 20–40 ha, and obtaining stand-level information is critical
to inform management and planning decisions (Breidenbach
et al., 2018; Mauro et al., 2019). Traditional forest inventories
produce stand-level information using field surveys or stand
exams where it is common to use variable radius plots (VRPs).
These field surveys allow obtaining estimates for different
variables of interest for the forest managers and assessing the
quality of those surveys using methods described in the forest
inventory literature.

Remote sensing inventories typically follow an area-based
approach (ABA), where fixed area plots and remote sensing data
are combined to produce maps with estimates of forest attributes
at resolutions in the range of 10–30 m (Næsset, 2002). This
methodology has been extensively used with lidar (e.g., Maltamo
et al., 2004; González-Ferreiro et al., 2012; Babcock et al., 2015;
Fekety et al., 2018), data from other sensors such as Landsat
(LeMay et al., 2008; Pflugmacher et al., 2012) or Sentinel I and II
(Forkuor et al., 2020), or different combinations of sensors (e.g.,
Vafaei et al., 2018; Forkuor et al., 2020). This methodology is
well known and produces, in a very efficient manner, estimates
in high-resolution grids (i.e., 10–30 m resolution) for a large
number of forest attributes. These estimates can be summarized
to generate stand-level maps for forest planning tasks. Besides,
several studies have conducted small area estimation analysis
showing that, with this methodology it is possible to obtain not
only stand-level estimates of forest attributes but also measures
of uncertainty for those stand-level estimates (Mauro et al., 2016,
2019; Breidenbach et al., 2018; Frank et al., 2020). Stand-level
measures of uncertainty are a desirable output of any inventory
method because they can be used as a measure of quality
control. Reported uncertainties can be used to identify stands
with more unreliable estimates that can be targeted in further field
measurements efforts, saving resources for field data collections.
Furthermore, even when additional ground measurements are
not an option, stand-level measures of uncertainty are useful
and can be incorporated in decision making processes and
sensitivity analyses.

While the ABA method has been extensively developed during
the last decade, it presents several drawbacks for operational
inventories. This methodology’s main problem is that it is
based on using fixed-radius plots with accurate coordinates. The
collection of that kind of ground information is costly on a per
plot basis or stand when stands are the sample units (Hummel
et al., 2011). Fixed-radius plot inventories are efficient at the
level of a whole landscape or project area (Hudak et al., 2014),
which is typically stratified to distribute the sample plots across
the range of stand structure conditions without regard to stand
boundaries. However, for stand-level inventory, collecting fixed-
radius plot data with highly accurate GPS coordinates requires
more resources per sampled stand than typical stand exams based

on VRP. This is because in the later, field plot coordinates are
not recorded or are obtained using less expensive low-grade GPS
equipment. Recent studies have demonstrated that it is possible to
use VRP combined with remote sensing data in several ways. One
possibility is to optimize the basal area factor (BAF) used in the
VRP to the stand structure variation (Deo et al., 2016), or to use
VRP and a constant BAF, using arbitrary but consistent support
areas for the remote sensing predictors throughout the study area
and operate as in the traditional ABA method (Grafström et al.,
2017). While these methods are very interesting for operational
inventories because they allow using VRP data, they do not
eliminate the need to obtain accurate coordinates for the VRP.
Another option that fits better with standard practices for stands
exams is the use of Fay–Herriot (FH), models (Fay and Herriot,
1979). These models are sometimes referred to as stand-level
models in forestry contexts and allow combining remote sensing
data with different ground measurements in stands, eliminating
the need for precise coordinates for ground measurements.

While traditional ABA models are developed considering
field plots as the primary modeling unit, FH models operate
at a coarser scale. FH models are developed with stands as the
primary element. This implies several departures from traditional
ABA models. One difference is that auxiliary information for
FH models needs to be associated with stands for operational
inventories (Goerndt et al., 2011; Mauro et al., 2017; Green
et al., 2019) or with larger-scale domains such as counties for
national inventories (Coulston et al., 2021). For example, stand-
level summaries of lidar variables have been used in previous
studies using FH models in stand-level forest inventories in
Europe and the United States (Magnussen et al., 2017; Mauro
et al., 2017; Ver Planck et al., 2018). But the most critical
difference between FH and traditional ABA models is that ground
information for the modeling units of FH models is typically
incomplete. Fixed radius plots used in traditional ABA models
are exhaustive and all or most of the trees within the plots are
measured. This allows treating forest attributes (i.e., response
variables) computed for the plots as known quantities. However,
in operational settings stands are never fully measured; instead,
they are sampled with many field plots that can vary between
stands. This implies that the response variables used to develop
stand-level FH models are subject to sampling errors that need
to be accounted for in the modeling stage. FH models include a
variance component to account for these sampling errors and can
be seen as measurement error models where the response used
for modeling has an inherent uncertainty because it comes from
a sample and not from a complete measurement.

The coarse resolution of stand-level FH models can be a
drawback for certain applications. However, FH models have
advantages in terms of flexibility and data requirements over
ABA methods. The most interesting properties of FH models are:
(1) that they can be developed with any ground measurement
from which it is possible to obtain unbiased estimators for stand-
level attributes and their associated variances (i.e., VRP, transects,
and sector plots) and (2) that they eliminate the need to record
precise plot coordinates in the field (Goerndt et al., 2011; Ver
Planck et al., 2018). Thus, FH models can use VRP data and plots
without accurate GPS coordinates, making them a very appealing
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alternative for operational forest inventories based on lidar or
other remote sensing auxiliary information sources. Despite their
potential, very few applications of stand-level FH models exist
in forest inventory literature and are focused on developing
a new inventory using available auxiliary information. In this
manuscript, we aim to analyze two possible scenarios where FH
models can be used to combine remote sensing data and VRP
data from stand exams. These scenarios or cases are:

1. Case 1: Developing a new stand-level inventory using
recently collected lidar auxiliary information for an area
where no fixed radius plot data is available.

2. Case 2: Updating an old remote-sensing-based inventory
combining the same ground data used in Case 1 with
remote sensing datasets developed at regional scales and
with no access restrictions. The old remote sensing-
based inventory was developed 5 years prior to the
ground data collection. The auxiliary information included
climate data, topographic variables, and spectral changes
in Landsat images. These auxiliary variables aimed at
capturing possible changes in the study area during the
years between the old-remote sensing inventory and the
updating date.

Both cases under analysis use stand exams based on VRP from
the US Forest Service Field Sampled Vegetation (FSVeg) database
but they can be directly replicated in many other areas managed
by the US Forest Service or in other regions in the world.

MATERIALS AND METHODS

Study Area
The study area comprises 31,209 ha inside the Willamette
National Forest, OR, United States covered by different remote
sensing datasets that include a recent lidar acquisition and a 30 m
resolution map with above-ground biomass (AGB) predictions
(Figure 1). Details on these datasets are provided in sections
“Case 1: Fay–Herriot Models for New Inventories” and “Case
2: Fay–Herriot Models to Update Inventories.” Elevations range
from 450 to 1700 m above sea level. Two forks of the Santiam
river cross the study area from East to West and have numerous
tributaries that form a complex drainage network where slopes do
not have a dominant orientation. Conifers dominate vegetation
with Douglas-fir, Pseudotsuga menziesii (Mirb) Franco, the most
abundant species, and other conifers such as noble fir, Abies
procera Rehder, silver fir, Abies amabilis Douglas ex J.Forbes,
western hemlock, Tsuga heterophylla (Raf.) Sarg., and western red
cedar, Thuja plicata Donn ex D.Don, as secondary species with a
much lower abundance. Hardwood species have a minor presence
with red alder, Alnus rubra Bong, and golden chinquapin,
Chrysolepis chrysophylla (Douglas ex Hook.) Hjelmq., as the most
important species in this group.

The study area contains 1616 stands with different
management goals. Stand boundaries are the result of a
continuous effort performed by forest managers in the study
area and is based on the management history, structure, and
composition of the forest. Stands are classified according to

their management objectives into “Natural” and “Managed”
(Figure 2). While the terms natural and managed can be the
subject of lengthy discussions, we will keep this terminology as it
is used in the FSVeg database. There are 696 natural stands and
920 managed stands. Natural stands occupy approximately two-
thirds of the area. They are typically of larger size (i.e., average
size = 31.04 ha, median size = 11.61 ha) than managed stands
(i.e., average size = 9.90 ha, median size = 7.94 ha) (Figure 2).
Managed stands have a past history of silviculture entry and
often include artificial regeneration. In most cases, even-aged
structures are subject to thinning and logging operations. Natural
stands are subject to less intense management and tend to have
larger dimensions and a larger internal variability in forest
structure and ages (Figure 2).

Sampled Stands and Field Sampled Vegetation
Ground Data
In total, 37 natural and 238 managed stands in the study area
were sampled in 2018 by field crews that used VRP with BAFs
that changed depending on the stand characteristics. Natural and
managed sampled stands were selected by forest managers in the
region using a randomize procedure and also expert knowledge
to ensure that most prevalent forest types were present in the
sample. The proportion of natural stands sampled (i.e., 5.31%)
was about five times smaller than the proportion of managed
stands sampled (i.e., 25.86%).This reflects the larger information
needs for the managed stands derived from their more intensive
sylviculture. VRP were randomly located within the stands by
the field crews. The number of VRP collected in the 37 sampled
natural stands was 157 and the number of plots in the 238
sampled managed stands was 943 plots. The number of field plots
in the sampled stands varied from 2 to 18, but 3, 4, and 5 were
the most frequent number of field plots per stand (Figure 3).
The field plot density, for the entire study area (i.e., including
sampled and unsampled stands), was 0.017 plots ha−1 for natural
stands (1 plot every 58.01 ha) and 0.044 plots ha−1 for managed
stands (1 plot every 22.90 ha). For each VRP, the species, diameter
at breast height (dbh), height (ht), and the live or dead status
of each selected tree were recorded. Field crews used standard
devices to measure dbh (i.e., caliper or logger’s tape) and ht
(i.e., hypsometer or laser rangefinder). Finally, the BAF used
in the plot allowed computing an expansion factor for each
tree in the plot.

Parameter of Interest
For both Case 1 and Case 2, we considered estimating, for every
stand in the study area, the total of AGB, and merchantable
volume (V), for the year 2018, both expressed on a per unit area
basis. Thus, for every stand, the unknown parameter of interest
was

µi =
1
Ai

Ni∑
t=1

AGBti (1)

when considering AGB and

µi =
1
Ai

Ni∑
t=1

Vti (2)
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FIGURE 1 | Location of the study area. In pink are stands excluded from the analysis because they were not covered by the remote sensing inventory from 2013.
Stands in green color with red outline are sampled stands; and green stands with black outline are unsampled stands.

when considering V. In equations 1, 2 AGBti and Vti are the
AGB and V of the t-th tree in the i-th stand, and Ni and Ai are,
respectively, number of trees and the area of the i-th stand. It

is important to note that while µi, AGBti, Vti, and Vti were all
unknown quantities, the stand area was known for every stand
in the study area.
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FIGURE 2 | Upper left panel displays the location of natural and managed stands. Upper right and middle right panels display the size distribution within the study
area for natural and managed stands, respectively. Bottom panel, sampled area showing the orthophoto on the western side and the CMS AGB map on the eastern
side of the image. Managed stands are labeled with the letter M, natural stands are labeled with the letter N, and special habitat areas (small size non-forested
polygons within stands) are labeled with letter S.
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FIGURE 3 | Distribution of the number of VRP per sampled stand in natural and managed stands.

Direct Above-Ground Biomass and
Volume Estimators and mse Estimators
We used the Forest Vegetation Simulator (FVS), to compute an
estimate, µ̂gij, of each parameter of interest for each VRP using
the Horvitz–Thompson (HT), estimator

µ̂gij =

nij∑
t=1

yijt

EFijt
. (3)

In equation 3, yijt represents either AGBtij or Vtij for the t-th
tree measured in j-th VRP in the i-th sampled stand and EFijt
represents their respective expansion factors. The number of
measured trees in the j-th VRP in the i-th stand is nij and the
subindex g in µ̂gij indicates that it is a direct estimate based on
the ground data.

For each sampled stand, VRP estimates µ̂gij from the ni plots
measured in the stand were averaged to produce a final direct
ground estimate µ̂gi∗ of AGB and V

µ̂gi. =
1
ni

ni∑
j=1

µ̂gij. (4)

A summary of the stand estimates based on the VRP data is
presented in Table 1.

The HT estimator is unbiased and each VRP is assumed
to provide an independent sample drawn under a sampling
design that remains constant for all VRP in the stand. Thus,
for a given stand, all µ̂gij were considered to be realizations
of a random variable with mean µi and unknown variance
σ2

ei0 . The final direct estimate for the stand, µ̂gi∗, is the
average of ni independent and identically distributed random
variables. Therefore, µ̂gi∗ is also a random variable with mean

µi and its variance, σ2
ei equals σ2

ei0
ni

. This allows establishing the
following relation, equation 5, between the stand estimate µ̂gi∗,
the unknown parameter of interest µi and the sampling error ei

µ̂gi. = µi + ei (5)

For any two stands, sampling errors are assumed to be
independent of each other. Furthermore, due to the unbiasedness
property of the HT estimator, errors are assumed to be distributed
with zero mean and variance σ2

ei. The variance σ2
ei0 is unknown,

but an unbiased estimator can be obtained pooling together the
estimates of all VRP in a given stand as

σ̂2
ei0 =

ni∑
j=1

(µ̂gij−µ̂gi ∗)
2

ni−1
. (6)

Based on equation 6 the variance and the mean square error of
µ̂gi∗ is estimated using

mse
(
µ̂gi.

)
= σ̂2

ei =
σ̂2

ei0
ni

. (7)

Estimators in equations 4, 7 are typically used in stand-level
inventories using only ground data when reporting estimates and
measures of uncertainty for sampled stands.

Stand-Level Fay–Herriot Models and
Estimators
Stand-Level Fay–Herriot Models
Stand-level FH models explicitly acknowledge that the stand-level
information on the parameter of interest is subject to sampling
errors. The first component in an FH model postulates a relation
between the true and unknown parameters of interest for stands
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TABLE 1 | Summary of stand-level estimates based on VRP data.

Variable Stand
type

Weighted
mean

Arithmetic
mean

Min Max SD

AGB (Mg ha−1) Natural 279.24 259.05 61.99 526.32 95.76

Managed 107.25 103.94 7.00 222.39 34.04

V (m3 ha−1) Natural 1016.85 944.53 195.40 1890.23 362.41

Managed 325.11 312.02 11.19 661.49 120.56

Weighted mean are the means of the stand-level estimates based on VRP data
with weights proportional to the stand area. SD is the standard deviation of the
VRP estimates of the sampled stands. AGB stands for above-ground biomass,
and V for volume, V.

and the available auxiliary information through a regression
model

µi = xt
iβ+ vi. (8)

In equation 8, vi is the model error that is assumed to be normally
distributed with mean 0 and variance σ2

v [i.e., viN(0, σ2
v)], β is a

vector of model coefficients where the first element is the model
intercept and xi is a vector of stand-level auxiliary variables where
the first element equals 1 when β includes an intercept term
(see sections “Case 1: Fay–Herriot Models for New Inventories”
and “Case 2: Fay–Herriot Models to Update Inventories” for a
description of the auxiliary variables used for Case 1 and Case 2,
respectively). These models cannot be fit because the true values
of µi are unknown. In practice, only the direct ground estimates
µ̂gi. are available, however, both, µi and µ̂gi∗ are related through
the sampling model indicated in equation 5. When the regression
model (8) and the sampling model (5) are combined, assuming
that vk and el are independent for all k and l, we obtain the basic
FH model (9)

µ̂gi. = xt
iβ+ vi + ei. (9)

Fay–Herriot models explicitly acknowledge the presence of the
sampling errors and require information on the variances σ̂2

ei of
the direct ground estimates. These variances can be estimated
from the VRP data, equation 7, and then used with the known
auxiliary information for the stands xt

i and the direct estimates
µ̂gi. to estimate the remaining model parameters, i.e., β and
σ2

v . These models are typically fit using restricted maximum
likelihood, REML, under the implicit assumption that sampling

errors are normally distributed, i.e., ei∼N(0,
σ2

ei 0
ni

).

Fay–Herriot Estimators
Once FH models are fitted, they can be used to obtain stand-
level estimates and their corresponding uncertainty metrics. For
sampled stands, estimates based on the FH model, µ̂FH,i, are
obtained using the empirical best linear unbiased predictor,
EBLUP,

µ̂FHi>1VRP = γiµ̂gi + (1−γi) xt
i β̂. (10)

For unsampled stands and stands with only one VRP, estimates,
µ̂FH,i, are obtained as synthetic estimates entirely based on the
fitted model

µ̂FHi≤1VRP = xt
i β̂. (11)

For sampled stands, the EBLUP, equation 10, is a weighted
average of the direct estimator obtained using only the ground

information and the synthetic estimator. The weight and the
degree of shrinking of µ̂FHi toward the synthetic estimator xt

i β̂,
is controlled by the parameter

γi =
σ̂2

v
σ̂2

v + σ̂2
ei

, (12)

in the following manner. For stands where the direct estimates
are reliable and have small errors compared to the unexplained
variance of the fitted models (i.e., σ̂2

v > σ̂2
ei), γi is close to 1,

and µ̂FH,i is approximately equal to the ground estimate for
the stand. That is, in stands with low sampling errors, the
direct ground estimate is “trusted” more than the model and
µ̂FHi ∼= µ̂gi∗. For stands where direct estimates are unreliable,
σ̂2

v = σ̂2
ei the parameter γi is close to 0, and most weight and

confidence will be put in the synthetic prediction µ̂FHsi ∼= xt
i β̂.

For unsampled stands or stands with only one VRP, γi cannot
be computed because it is not possible to obtain the variance
of the direct estimator, σ̂2

ei, with less than two VRP. Therefore,
for stands with less than two VRP, all weight needs to be put in
the model, and then the stand-level estimates based on the FH
model are synthetic.

For stands with two or more VRP, for models fitted using
REML, an approximately unbiased estimator of the mean square
error of µ̂FHi is

mse (µ̂FHi>1VRP) = gi 1
(̂
σ2

v
)
+ gi 2

(̂
σ2

v
)
+ 2gi 3

(̂
σ2

v
)
. (13)

This mean square error estimator has three components g1
(̂
σ2

v
)
,

g2
(̂
σ2

v
)
, and 2g3

(̂
σ2

v
)

indicated in equations 14–16:

gi 1
(̂
σ2

v
)
= γîσ

2
ei (14)

gi 2
(̂
σ2

v
)
= (1−γi)

2xt
i

∑
i:ni>2

xt
i xi

σ̂2
v + σ̂2

ei


−1

xi (15)

gi 3
(̂
σ2

v
)
= σ̂4

ei(̂σ
2
v + σ̂2

ei)
−3V (̂σ2

v). (16)

The term V
(̂
σ2

v
)

in equation 15 is the inverse of the Fisher
information matrix for the model (9). Details on V

(̂
σ2

v
)

can be
found in Rao and Molina (2015, p. 136). This estimator has a bias
whose order of magnitude is o

(
m−1), where m is the number of

sampled stands. Thus in applications where a large number of
stands are sampled it can be expected to provide almost unbiased
estimates of the mean square error of µ̂FHi. For unsampled stands
or stands with only one plot, an estimator of the mean square
error of µ̂FHi can be obtained using equation 17 (Rao and Molina,
2015, p. 139)

mse
(
µ̂FHi≤1VRP

)
= xt

i

∑
i:ni≥2

xt
i xi

σ̂2
v + σ̂2

ei


−1

xi + σ̂2
v . (17)

Note that we only use the subindexes >1VRP and ≤1VRP in
equations 10, 11, 13, 17 to explicitly state the formulas to use
depending on the number of VRP in the stand. In the remaining
sections these subindexes will be omitted to simplify the notation;
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and µ̂FHi and mse (µ̂FHi) will refer to the estimator and mse
estimator needed depending on the number of VRP in the
stand. The root mean square error, rmse, and relative root mean
square error, rrmse, for estimates based the FH models were
computed as rmse (µ̂FHi) =

√
mse (µ̂FHi) and rrmse (µFHi) =

rmse(µ̂FHi)
µ̂FHi

, respectively.

Comparisons Between Fay–Herriot Estimators and
Ground-Based Estimators
Comparisons between models for Case 1 and Case 2 for a given
variable were based on the ratio of the estimated model variances
σ̂2

v case 2/̂σ
2
v case 1. To compare the uncertainty of stand-level

estimates from the FH models, we used both rmse (µ̂FHi) and
rrmse (µFHi). Finally, improvements with respect to estimates
based only the field data were measured using the relative
efficiency. This metric was only computed for stands with two
or more VRP.

4eff i = 1−
rmse (µ̂FHi)

rmse
(
µ̂gi
) (18)

Models for Case 1 and Case 2
Case 1: Fay–Herriot Models for New Inventories
For the first case scenario, auxiliary variables were computed
from a recent lidar data collection completed in the fall of 2016.
The lidar data were acquired using a Leica ALS70-HP lidar system
mounted on a fixed-wing platform flying at an average altitude
of 1965 m above the ground level with a nominal speed of 110
knots. The scanning angle was 30◦, and the nominal pulse density
4.2 pulses per m2.

A 30 m resolution grid was cast over the study area and
lidar metrics including (1) percentiles and summaries (i.e.,
means, standard deviations, and moments) of the distribution
of elevations above the ground of the lidar returns, (2)
proportions of points in different height strata, and (3)
topographic metrics were computed for each pixel using
FUSION (Mc Gaughey, 2019). In total 134 variables were
available. For each stand, we computed the mean and standard
deviation of the pixel-level values of these metrics. The
result was a total of 268 (i.e., 134 means and 134 standard
deviations) stand-level metrics. These stand-level metrics were
considered descriptors of the stands’ structure for the FH
models for Case 1.

Case 2: Fay–Herriot Models to Update Inventories
The second case scenario consists of updating an old remote-
sensing-based inventory using VRP ground measurements and
FH models. For this case, auxiliary variables are stand-level
predictions from a previous map and Landsat-based indexes of
disturbances for the period between the old map and the date for
which updated estimates were sought.

For our analyses, we used the 30 m resolution AGB map
developed by Fekety and Hudak (2019) for 2013 as an old remote-
sensing-based inventory. This map, CMS1-AGB map hereafter,
was created in the context of the NASA Carbon Monitoring
System project described in Hudak et al. (2020) using a two-step
process. The first step consisted of using fixed radius plots from a
set of lidar acquisitions across the northwestern United States that

did not include the study area, to develop traditional ABA models
where AGB was expressed as a function of lidar, topographic, and
climate metrics. This model was developed at a regional scale
and the plots used in the training stage included forested areas
with structures and species compositions that were similar to
those observed in the study area. A sample of lidar predictions
in those lidar acquisitions was later used to develop a regional
model to predict AGB across the forested region of the northwest
United States. This regional model was primarily based on a
climate metrics and Landsat time-series and was used to generate
annual predictions of AGB for the period 2000–2016 at a 30 m
resolution (Hudak et al., 2020). Pixel level predictions from
the 2013 CMS1-AGB map were aggregated at the stand level
to produce stand-level means and standard deviations of AGB
predictions for 2013. These values are descriptors of the state
of the forest at the moment of completion of the old inventory
and are not considered to be true stand values for 2013 but
approximated ones that can be used as auxiliary variables for the
FH models for Case 2.

To account for changes between 2013 and 2018, we introduced
additional auxiliary variables potentially correlated with growth,
removals, or disturbances between 2013 and 2018 in the stands
of the study area. For every stand in the study area, we computed
changes between 2013 and 2018, for stand-level means, standard
deviations, and modes of: (1) the red, green, blue, near-infrared,
and short wave infrared one and two Landsat 8 bands, (2)
band ratios including the normalized difference vegetation index
(Rouse et al., 1974), NDVI, and normalized burn ratio index (Key
and Benson, 2006), NBR, and (3) the brightness, wetness, and
greenness tasseled cap components (Kauth and Thomas, 1976).
Landsat scenes used to compute Landsat predictors correspond
to the worldwide reference system path-rows 45–29 and 46–29.
Median values of each Landsat band for the period going from
the first of June to the 30th of September of the corresponding
year were obtained and used to compute the derived indexes for
each year. Stand-level means, standard deviations, and modes
for bands and indexes were computed and the differences
between the values obtained for 2018 and 2013 were used as
auxiliary variables for the FH models. Finally, for each stand,
we computed the number and proportion of pixels identified as
disturbed during the period 2013–2018 by the landscape change
monitoring system (LCMS) map, and the average disturbance
value of all pixels identified as disturbed within the stand. The
identification of disturbed pixels in LCMS is based on time
series analysis of Landsat images to segment spectral trajectories.
Segmentations and disturbance identification are performed with
an essemble of algorithms [i.e., LandTrendr (Kennedy et al.,
2010), VeRDET (Hughes et al., 2017), and CCDC (Zhu and
Woodcock, 2012)]. The magnitude of the disturbances were
derived as 2013–2018 changes in the relativized differenced
normalized burn ratio RdNBR (Miller and Thode, 2007). In total,
38 predictors were available for Case 2. Two were the mean and
standard deviation of the 2013 CMS1-AGB predictions, 18 were
stand level summaries of changes in Landsat bands, 15 were stand
level summaries of changes in Landsat spectral indexes and the
last three were the number, proportion, and average magnitude
of the disturbance metrics reported by LCMS.
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Model Selection
For both scenarios, the final number of auxiliary variables
available for the modeling was large (i.e., 268 for Case 1 and 38
for Case 2) and a model selection step was necessary. The model
selection was performed for each combination of case scenario
(i.e., Case 1 vs. Case 2), stand-type (i.e., natural vs. managed),
and response variable (i.e., AGB vs. V) separately. The model
selection consisted of a first step in which we used an automatic
variable selection approach using best subsets regression and
the R-package leaps (Lumley, 2020). In this step, we directly
regressed direct estimates for AGB and V against each case’s
stand-level auxiliary variables to select candidate combinations

auxiliary variables. Selected combinations of auxiliary variables
had lengths that ranged from 1 to 6 variables. For each
number of variables, the five combinations with the lowest
adjusted R2 when directly regressing against the direct ground
estimates were kept. This resulted in a list of 30 candidate
combinations of predictors for each case scenario, stand type,
and response variable. We obtained the corresponding FH
models for each candidate in these lists using the R package
sae (Molina and Marhuenda, 2015) using REML. Finally, the
modeler selected the model to use for each case scenario,
stand type and response variable, based on the estimated
model error variance, σ̂2

v , the significance of the β̂ coefficients,

FIGURE 4 | Predicted vs. residuals plots for FH models for above-ground biomass (AGB) and volume (V) for Case 1 and Case 2. Whiskers around each point with a
width of 1.96 times the standard deviation of the direct ground estimate are included to reference the uncertainty of the field estimates associated with each data
point. Residuals were computed as µ̂gi∗−xt

i β̂, with µ̂gi∗ the direct ground estimate for the stand and xt
i β̂ prediction entirely based on the model (prediction before

computing the EBLUP).
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the Bayesian information criterion, BIC, and predicted vs.
observed diagrams.

RESULTS

Selected Models
Different patterns were observed regarding the selected models
for Case 1 and Case 2 and for natural and managed stands.
Regardless of the case and variable of interest, residuals for both
cases tended to be centered around zero, and no significant
departures with respect to the model assumptions were observed.
The variability of these residuals was substantially larger for
natural stands than for managed stands. Models for Case 2 tended
to provide a shorter range of predicted values when compared
with the models for Case 1 (Figure 4). In general, models for
natural stands had a smaller number of predictors. This result was
expected. The number of sampled stands is substantially smaller
for natural stands than for managed stands, therefore estimated
model coefficients for natural stands tend to have larger standard
errors and less coefficients appeared as significant in the fitted
models. The intercepts for models for natural stands for Case 1

were not significant and were removed. For both managed and
natural stands, models for Case 1 had lower values of σ̂2

v . For
managed stands, σ̂2

v for AGB and V of the FH models for Case
2 were 26 and 42% larger than σ̂2

v for Case 1, respectively. For
natural stands, we observed a 4.14 and 3.27-fold increase in σ̂2

v for
AGB and V when comparing the values obtained for Case 2 with
those obtained for Case 1 (Tables 2, 3). This indicates FH models
based on a recent lidar acquisition explain more variance than
the models for Case 2 (Tables 2, 3). When comparing models for
managed and natural stands obtained under a given case scenario,
we observed that for Case 1, σ̂2

v for AGB and V in natural
stands was 2.35 and 3.48 times larger than in managed stands,
respectively. For Case 2, models for natural stands explained
almost no variance, and for AGB and V, σ̂2

v was 7.73 and 8.02
times larger than the one obtained in managed stands.

Stand Level Estimates
Selected models for Case 1 and Case 2 were used to obtain
stand-level estimates and their associated mean squared errors
for sampled and unsampled stands (Figure 5). For both cases
and response variables, estimates based on FH models for

TABLE 2 | Summary of selected models for Case 1 and Case 2 for above-ground biomass, AGB (Mg ha−1), and volume, V (m3 ha−1).

Stand type Variable Case Auxiliary variable β̂ std.error t-Value p-Value σ̂2
v

σ̂2
vCase2

σ̂2
vCase1

Natural AGB Case 1 Mean(Cov48to100m) 662.48 247.56 2.68 7.45E−03 1323.95 4.14

Mean(1st_elev_mode) 6.08 1.25 4.87 1.09E−06

Sd(elev_ave) 15.27 5.59 2.73 6.28E−03

Case 2 Intercept 276.34 19.91 13.88 8.63E−44 5479.22

Diff_Sd(NDVI) −3.71 1.78 −2.09 3.69E−02

Diff_Sd(Blue) 3.58 1.52 2.35 1.86E−02

V Case 1 Mean(Cov48to100m) 2266.71 947.29 2.39 1.67E−02 23339.52 3.27

Sd(elev_ave) 64.61 21.45 3.01 2.59E−03

Mean(1st_elev_mode) 20.07 4.81 4.17 3.07E−05

Case 2 (Intercept) 814.81 120.66 6.75 1.45E−11 76354.06

Diff_Mode(B)e 0.79 0.40 1.97 4.83E−02

Diff_Mode(Blue) −2.97 1.41 −2.11 3.49E−02

Managed AGB Case 1 Intercept 50.21 20.83 2.41 1.60E−02 563.33 1.26

Mean(1st_cov_ab_mean) 7.16 1.56 4.58 4.70E−06

Mean(all_1st_cov_ab_mean) −4.89 1.32 −3.69 2.21E−04

Mean(prop_6-9m) −369.68 81.16 −4.55 5.24E−06

Case 2 Intercept 171.28 10.32 16.59 8.24E−62 708.58

Sd(PRED_AGB) −0.58 0.10 −5.89 3.76E−09

Diff_Mean(W) −0.66 0.15 −4.31 1.62E−05

Diff_Mean(NDVI) −1.15 0.40 −2.85 4.39E−03

Diff_Mean(NBR) 1.92 0.50 3.85 1.19E−04

V Case 1 Intercept 143.53 60.51 2.37 1.77E−02 6699.72 1.42

Mean(1st_cov_ab_mean) 29.96 5.69 5.26 1.43E−07

Mean(all_1st_cov_ab_mean) −20.76 4.85 −4.28 1.87E−05

Mean(prop_9-12m) −1577.41 240.47 −6.56 5.39E−11

Case 2 Intercept 507.54 31.56 16.08 3.36E−58 9519.56

Diff_Sd(PRED_AGB) −1.75 0.35 −5.03 4.89E−07

Diff_Mean(swir1) 0.49 0.12 4.25 2.16E−05

Auxiliary variables were computed applying a function to rasterized layers (lidar metrics, Landsat bands, and predicted biomass) to summarize pixel level values and
produce stand level metrics. Resulting metrics are indicated using the following naming convention Function(layer). Functions and layers are described in Table 3.
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TABLE 3 | Stand-summarizing functions applied to the 30 m resolution layers of auxiliary variables and description of metrics included in the selected models.

Layers

Summarizing functions Case Acronym Description

Mean Mean of pixel level values within the
stand

Case 1 1st_cov
_ab_mean

Number of first returns above mean\total number of first returns

Sd Standard deviation of pixel level
values within the stand

all_1st_cov
_ab_mean

Number of returns above mean\total number of first returns

Cov48to100m Number of first returns with heights between 48 and 100 m\total number of first returns

Mode Mode of pixel level values within the
stand

prop_9-12m Proportion of returns between 6 and 9 m

prop_6-9m Proportion of returns between 9 and 12 m

Diff_Mean Difference between 2013 and 2018
means of pixel level values within
the stand, i.e., Diff_Mean(Layer)=
Mean(Layer-2018)-Mean(Layer-
2013)

1st_elev_mode
elev_ave

Mode of elevation of first returns
Average of elevation returns

Case 2 PRED_AGB CMS predicted biomass 2013

Diff_Sd Difference between 2013 and 2018
standard deviations of pixel level
values within the stand,
i.e.,Diff_Sd(Layer)=
Sd(Layer-2018)-Sd(Layer-2013)

NBR Normalized burn ratio

NDVI Normalized difference vegetation index

SWIR1 Band 6. Short-wave infrared, 1.57–1.65 µm

W Wetness tasseled cap index

Diff_Mode Difference between 2013 and 2018
modes of pixel level values within
the stand, i.e., Diff_Mode(Layer)=
Mode(Layer-2018)-Mode(Layer-
2013))

B Brightness tasseled cap index
Blue Band 1. Blue band, 0.441–0.514 µm

managed stands tended to be smaller than estimates for natural
stands and the same pattern was observed for the corresponding
rmse (Figure 5). When considering rrmse, managed stands
showed larger relative uncertainties. This is partly caused
by the fact that managed stands stock substantially less
AGB and V.

For both AGB and V, estimates and rrmse obtained for
Case 1 tended to agree spatially with estimates and rrmse
for Case 2 (Figure 5). For natural stands, Spearman rank
correlation between estimates for Case 1 and Case 2 was 0.22 (p-
value = 1.04 × 10−8) for AGB and 0.12 (p-value = 1.39 × 10−3)
for V. The low agreement for natural stands seems to be caused
by the low explanatory power of the models for Case 2 in natural
stands. For managed stands, Spearman rank correlation between
estimates for Case 1 and Case 2 were 0.69 (p-value < 10−6)
for AGB and 0.50 (p-value < 10−6) for V, and when each
map was grouped into 10 deciles, these categories tended to
coincide. The same occurred with the estimated rmse maps (see
Supplementary Figure 1).

Efficiency Improvements in Sampled
Stands
For both types of stands, FH models for Case 1 and Case 2
provided improvements for direct ground estimates for AGB and
V. Estimates from Case 1 were consistently more precise than
those from Case 2 (Figure 6). This result was expected after
observing the values obtained for σ̂2

v for the different models.
In general, improvements in efficiency and differences between
cases were larger for natural stands (Figure 6). For natural stands,
improvements in efficiency for Case 1 had an average 4eff i of
37.36% for AGB and 33.10% for V (Table 4). For Case 2, the

average of 4eff i was 20.19% for AGB and 19.25% for V. For
managed stands, the average of 4eff i for Case 1 was 20.29% for
AGB and 19.91% for V, and for Case 2, the average of 4eff i
was 17.55% for AGB and 16.05% for V (Table 4). The smaller
values of 4eff i in managed stands is explained by the larger
homogeneity of this type of stands for which many of the direct
ground estimates were already precise, leaving little room for
improvements to the FH models. Differences in 4eff i between
cases for managed stands were smaller than the differences
for natural stands. This seems to be the consequence of both
the low explanatory power of the auxiliary variables for Case
2 in natural stands and the smaller room for improvements
in managed stands.

DISCUSSION

This study presents and analyzes two possible case scenarios
where FH models can be used to assist forest inventories with
remote sensing information. We compared results for different
stand typologies and case scenarios. We start this section by
discussing the differences between cases and stand typologies and
then address general issues related to the use of FH models in
forest inventories.

Differences Between Case 1 and Case 2
When both scenarios were compared, estimates for Case 1
had, in general, lower errors than estimates from Case 2. The
differences between cases were more important for natural stands
than for managed stands. Multiple studies have shown that
forest structural attributes correlate better with lidar auxiliary
information than auxiliary variables from optical sensors.
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TABLE 4 | Summary of stand-level estimates, uncertainties, and improvements in efficiency for FH models by type of stands (i.e., natural vs. managed stands), response
variable (i.e., above-ground biomass, AGB, and volume, V), and case scenario (i.e., Case 1 and Case 2).

Stand type Variable Case Sampled/
unsampled

Mean
estimate

SD estimates Mean rmse Mean rrmse
(%)

Mean4effi (%)

Natural AGB (Mg ha−1) Case 1 Sampled 248.23 75.58 31.01 6.49 37.36

Unsampled 212.56 75.47 40.35 18.73

Case 2 Sampled 250.59 67.54 44.18 8.45 20.19

Unsampled 242.96 44.10 78.70 14.90

Ground Sampled 259.05 95.76 64.52 12.67

V (m3 ha−1) Case 1 Sampled 906.90 278.28 119.22 1.88 33.10

Unsampled 778.54 265.99 166.82 6.01

Case 2 Sampled 914.56 252.84 158.80 2.29 19.25

Unsampled 933.89 188.17 298.00 4.08

Ground Sampled 944.53 362.41 230.60 3.46

Managed AGB (Mg ha−1) Case 1 Sampled 101.63 27.40 13.48 17.33 20.29

Unsampled 64.44 27.17 25.03 105.61

Case 2 Sampled 102.06 27.51 14.12 18.18 17.55

Unsampled 86.10 34.69 28.23 105.82

Ground Sampled 103.94 34.04 19.00 26.45

V (m3 ha−1) Case 1 Sampled 302.90 99.86 45.74 7.88 19.92

Unsampled 207.41 78.25 86.23 30.77

Case 2 Sampled 303.57 98.61 48.88 8.25 16.05

Unsampled 284.89 77.99 99.96 15.57

Ground Sampled 312.02 120.56 64.50 11.18

Auxiliary information for Case 1 proceeded from lidar. For
Case 2, we used a previous remote sensing-based inventory the
CMS1-AGB map, which heavily relies on metrics derived from
30-year climate normals, topographic, and Landsat variables, to
which we added proxies for disturbances directly derived from
Landsat images. This explains that Case 1 outperforms Case 2
for all response variables and stand types. Nevertheless, estimates
from Case 2 are more efficient than direct ground estimates and
regardless of the case, the rank correlations between estimates
for Case 1 and Case 2 for managed stands indicated that both
methods agree in the way the sort stands according to the
predicted AGB or V. These results indicate that Case 2 is
also useful for managed stands, and that certain management
decisions, for example, concentrating harvest activities in the 10%
of the managed stands with more volume, would tend to coincide
regardless of which map (i.e., Case 1 or Case 2) is used to inform
those decisions (see Supplementary Figure 1).

Two remarks should be made about the initial map for Case 2.
On the one hand, the CMS1-AGB map has spatial and temporal
coverage that cannot be matched by previous maps based only on
lidar. Thus, this map can be used to develop similar stand-level
inventories anywhere in the western United States. Furthermore,
the multitemporal component of this map allow for possible
applications of FH models to estimate changes and monitor
vegetation dynamics that are not an option using single date
lidar data. On the other hand, the CMS1-AGB map is expected
to provide predictions with more noise than similar maps based
on the ABA method and lidar data. This implies that results
obtained in this study for Case 2 might improve substantially
when the previous inventory is an ABA lidar-based inventory.

Many countries have developed nationwide lidar acquisitions or
are on the verge of completing such data collections, and national
forest inventories can provide the necessary fixed area plots to use
the ABA to develop maps based on lidar at national or regional
scales. The effort required to develop these maps is large, and re-
mapping is not expected to happen with a high frequency. This
indicates that a potential niche of application of FH models and
Case 2 is updating national or regional level ABA maps.

Differences Between Natural and
Managed Stands
When comparing natural and managed stands, we observed
that the former had larger estimated model variances, resulting
in stand-level estimates with larger uncertainties in absolute
terms. These differences are explained by the fact that natural
stands are inherently more complex and variable than managed
stands. Part of that complexity is not captured by predictors
computed at the stand level. Relative uncertainties (i.e., rmse)
were lower for natural stands than for managed stands. The
higher stocking levels cause that in natural stands. Improvements
in efficiency for natural stands were larger than those observed
for managed stands, especially for Case 1. Finally, the differences
in 4eff i for Case 1 and Case 2 were relatively small for managed
stands (i.e., about 3% difference between average values of 4eff i)
but large for natural stands (i.e., approximately 15% difference
between average values of4eff i). The interaction of three different
factors can explain this differentiated behavior. The first is
that managed stands are relatively homogeneous units, and
their direct ground estimates were more reliable than those
obtained in natural stands. Thus, the potential for improved
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FIGURE 5 | Stand-level predictions of above-ground biomass (AGB) and volume (V) for all stands in the study area (sampled and unsampled) and stand-level RMSE
based on the FH models for Case 1 and Case 2.

managed stands was more limited and made differences between
cases smaller. Another factor is that the larger stocking levels
are frequently associated with remote sensing predictions with
larger uncertainties (Magnussen et al., 2014; Mauro et al., 2016;
Breidenbach et al., 2018). Large uncertainties in the previous
inventory must result in a poorer characterization of the initial
state of the stands, which partially explains the performance
drop for Case 2 in natural stands. The auxiliary information
for Case 2 is primarily based on metrics derived from 30-year
climate normals to capture steep AGB (and V) gradients, which
largely compensated for signal saturation of Landsat variables
(Hudak et al., 2020), albeit without sensitivity to local variation
in stand structure. On the other hand, the lidar data used for
Case 1 neither saturates in forested areas with closed canopies
nor is insensitive to structure variation between or within stands,
thus elevating the performance of the FH models for Case 1
compared to Case 2.

General Considerations for the Use of
Fay–Herriot Models in Forest Inventories
For all cases, response variables and stand types analyzed in
this study, FH models allowed for gains in efficiency with
respect to direct ground estimates. These results are concurrent
with previous research using FH models in forest inventories

(Goerndt et al., 2011; Magnussen et al., 2017; Mauro et al., 2017;
Breidenbach et al., 2018; Ver Planck et al., 2018) and confirm
that FH models: (1) allow using ground measurements that are
easier to obtain than those used in ABA approaches and (2)
results in efficiency improvements when compared to methods
based only on ground data. Thus, while research efforts on using
FH models are still necessary, there is substantial evidence that
these models can play an essential role in operational forest
inventory applications.

To the best of our knowledge, FH models have not been used
in any operational forest inventory, and it somehow surprises
how little attention FH models have received in the literature.
While some research applications of FH models exist, the study of
this type of model has been negligible compared to applications
using conventional ABA approaches. The dominance of the
traditional ABA approach can be explained by (1) its ability
to produce high resolution maps with predictions of forest
attributes and (2) its typically better predictive performance
than FH models (Mauro et al., 2017; Breidenbach et al., 2018;
Green et al., 2019). However, developing ABA models is not
always a possibility. There are many scenarios where FH models
can be a very appealing alternative; for example, only stand-
level inventory data may be available. During the last decades,
forest inventories have been consistently less constrained by
the availability of useful auxiliary information, but the costs
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FIGURE 6 | Reduction of uncertainty achieved by Fay–Herriot models with respect to an inventory based only on ground data(4effi) for Case 1 and Case 2 for
above-ground biomass (AGB) and volume (V).

associated with ground data collection have increased, or at least
not decreased at comparable rates. Simply put, ground data are
too valuable to ignore, and FH models allow for an effective
combination of those valuable datasets with different sources of
auxiliary information.

A critical difference between traditional ABA models
and FH models is the auxiliary information used by each
technique. Workflows for preprocessing auxiliary information
for traditional ABA models are well established and documented,
with multiple tools available to implement these processing
steps (i.e., Mc Gaughey, 2019; Roussel et al., 2020); this is not
the case for FH models. In this study, we used as predictors
stand summaries of: (1) gridded products (i.e., gridmetrics
rasters) generated with FUSION (Mc Gaughey, 2019), (2)
previously mapped estimates of forest attributes, and (3)
changes in Landsat imagery from LCMS or computed using
Google earth engine (Gorelick et al., 2017). Summarizing the
entire point clouds within the stands under analysis is an
alternative used in previous studies to compute lidar-based
predictors (Ver Planck et al., 2018). Both options are valid from

a methodological perspective as they provide standardized ways
to compute auxiliary variables. Their effectiveness can differ
if one preprocessing technique provided auxiliary variables
that correlated better with the target responses than the other.
However, as far as we know, no study to date has analyzed the
differences in performance and tradeoffs of these two methods to
generate stand-level predictors for FH models. Thus, this is an
area where future research can help in establishing standardized
processing workflows for lidar-assisted forest inventories
using FH models.

This study presents two case scenarios in which basic
FH models are used with VRP and demonstrates that FH
models are a suitable alternative to use available auxiliary
information to improve the efficiency of the estimation
process. Our analysis presents a baseline for stand-level FH
models and could be improved in different ways. One way
is developing models that account for spatial correlations
like those developed by Ver Planck et al. (2018). Another
option is to use FH variants where the model variance is not
constant (Breidenbach et al., 2018). A third option is to use
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multivariate FH models where correlations between different
response variables can be considered to improve the results of
univariate models (Benavent and Morales, 2016; Frank, 2020).
In all cases, one factor that must be constantly considered is
that estimates obtained from FH models are always based on
a model (i.e., “model-based”). Thus, extrapolations entail high
risks of producing biased estimates and model validation steps
are critical to ensure that the fitted models correctly describe the
populations under study.

Based on our findings and previous results (Goerndt et al.,
2011; Breidenbach et al., 2018; Ver Planck et al., 2018), we
envision that niche of application of stand-level FH models is not
a replacement of traditional ABA methods but a complement for
situations in which the time and resources available for ground
data collection are limited or fixed radius plots with precise
locations to develop ABA models are otherwise unavailable. This
niche is larger than it might seem a priori for several reasons.
One reason is that obtaining accurate coordinates for the ground
measurements is not a constraint for FH models. For example,
only the identifier of the stand where each ground observation
was taken was necessary to develop this study using FSVeg
data. Another reason, and probably the most compelling one,
is that FH models can be applied with data from VRP or other
sampling techniques such as sector plots (Iles and Smith, 2006)
or transects (Warren and Olsen, 1964; Woodall and Monleon,
2008). This flexibility indicates numerous applications for fast
inventories and monitoring problems in which FH models can
be the preferred alternative. These applications include, but are
not limited to, annual inventories for timber sales or fast updates
of inventories after events like floods or wildland fires.

Improved AGB and V benefit both private companies and
public land management agencies. Given the extremely high
cost of establishing ground plots and the increasing demand for
accurate biomass and carbon stock assessment, the inventory
solution will require the innovative use of combined sources
of remotely sensed and other auxiliary data. FH models based
on VRP allow using remotely sensed information combined
with an operative ground truth data collection and enable cost-
effectively estimating forest attributes. In this study, the FH
models have shown to be a viable and flexible option to estimate
AGB or V and maximize the utility of both the ground inventory
and environmental datasets. Moreover, different information for
forest management planning is required at different levels or
scales. For tactical planning, reasonably precise and unbiased
estimates of forest variables for individual stands or polygons
are already obtained using VRP because of its low cost and
sampling efficiency at the stand level. Thus, FH models are an
alternative for many established inventory programs to integrate
their VRP data with lidar or other remote-sensing datasets to
obtain more efficient and better information for sustainable
forest management.

CONCLUSION

The main conclusion obtained when comparing estimates from
FH models for Case 1 and Case 2 indicated that estimates from

FH models based on a recent lidar acquisition were the most
efficient alternative. For managed stands, differences between
case scenarios were small, but in natural stands, FH models
based on data from a recent lidar data collection produced more
efficient results substantially. However, in all cases, estimates
from FH models for both case scenarios and both types of forest
stands were more efficient than direct ground estimates. Based on
this result, we conclude that FH models are a valuable alternative
for many forest inventory tasks if fixed area plots or their precise
geolocations are unavailable.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because this study was developed using data from Field
Sampled Vegetation (FSVeg) database. USDA Federal employees,
contractors, and affiliates need to follow the steps indicated in
the link below to access the data. https://www.fs.fed.us/nrm/
documents/fsveg/cse_user_guides/FSVegQuickGuide.pdf.

AUTHOR CONTRIBUTIONS

HT wrote some parts of the manuscript, verified the analytical
methods, critically reviewed the manuscript, and supervised the
findings of this work. FM conceived of the presented idea,
performed the computations, and wrote the first version of the
manuscript. AH, BF, and VM critically reviewed the manuscript
and provided critical feedback. PF, MP, and TB contributed to the
final version of the manuscript. All authors discussed the results
and contributed to the final manuscript.

FUNDING

This work was supported by Challenge Cost Share Agreement
20-CS-11062754-066 between Oregon State University and the
USDA Forest Service, Pacific Northwest Region and by a NASA
Carbon Monitoring System Program award (80HQTR20T0002)
through a Joint Venture Agreement (20-JV-11221633-112)
between the USDA Forest Service, Rocky Mountain Research
Station and Oregon State University.

ACKNOWLEDGMENTS

We would like to acknowledge Cheryl Friesen, James Rudisill, and
Karin Wolken that were an active part in discussions that led to
the ideas presented in this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/ffgc.2021.
745916/full#supplementary-material

Frontiers in Forests and Global Change | www.frontiersin.org 15 October 2021 | Volume 4 | Article 74591634

https://www.fs.fed.us/nrm/documents/fsveg/cse_user_guides/FSVegQuickGuide.pdf
https://www.fs.fed.us/nrm/documents/fsveg/cse_user_guides/FSVegQuickGuide.pdf
https://www.frontiersin.org/articles/10.3389/ffgc.2021.745916/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/ffgc.2021.745916/full#supplementary-material
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-745916 October 13, 2021 Time: 15:48 # 16

Temesgen et al. Fay-Herriot Models for Stand-Level Inventories

REFERENCES
Babcock, C., Finley, A. O., Bradford, J. B., Kolka, R., Birdsey, R., and Ryan, M. G.

(2015). LiDAR based prediction of forest biomass using hierarchical models
with spatially varying coefficients. Remote Sens. Environ. 169, 113–127. doi:
10.1016/j.rse.2015.07.028

Benavent, R., and Morales, D. (2016). Multivariate Fay–Herriot models for small
area estimation. Comput. Stat. Data Anal. 94, 372–390. doi: 10.1016/j.csda.2015.
07.013

Breidenbach, J., Magnussen, S., Rahlf, J., and Astrup, R. (2018). Unit-level and
area-level small area estimation under heteroscedasticity using digital aerial
photogrammetry data. Remote Sens. Environ. 212, 199–211. doi: 10.1016/j.rse.
2018.04.028

Coulston, J. W., Green, P. C., Radtke, P. J., Prisley, S. P., Brooks, E. B., Thomas,
V. A., et al. (2021). Enhancing the precision of broad-scale forestland removals
estimates with small area estimation techniques. Forestry 94, 427–441. doi:
10.1093/forestry/cpaa045

Deo, R. K., Froese, R. E., Falkowski, M. J., and Hudak, A. T. (2016). Optimizing
variable radius plot size and LiDAR resolution to model standing volume in
conifer forests. Can. J. Remote Sens. 42, 428–442.

Fay, R. E., and Herriot, R. A. (1979). Estimates of income for small places: an
application of james-stein procedures to census data. J. Am. Stat. Assoc. 74,
269–277. doi: 10.2307/2286322

Fekety, P. A., Falkowski, M. J., Hudak, A. T., Jain, T. B., and Evans, J. S. (2018).
Transferability of lidar-derived basal area and stem density models within a
Northern Idaho Ecoregion. Can. J. Remote Sens. 44, 131–143. doi: 10.1080/
07038992.2018.1461557

Fekety, P. A., and Hudak, A. T. (2019). Annual Aboveground Biomass Maps
for Forests in the Northwestern USA, 2000-2016. Oak Ridge, TN: National
Laboratory Distributed Active Archive Center, doi: 10.3334/ORNLDAAC/1719

Forkuor, G., Benewinde Zoungrana, J.-B., Dimobe, K., Ouattara, B., Vadrevu, K. P.,
and Tondoh, J. E. (2020). Above-ground biomass mapping in West African
dryland forest using sentinel-1 and 2 datasets - a case study. Remote Sens.
Environ. 236, 111496. doi: 10.1016/j.rse.2019.111496

Frank, B. M. (2020). Aerial Laser Scanning for Forest Inventories: Estimation
and Uncertainty at Multiple Scales. Ph.D. thesis. Corvallis, OR: Oregon State
University.

Frank, B., Mauro, F., and Temesgen, H. (2020). Model-based estimation of
forest inventory attributes using lidar: a comparison of the area-based and
semi-individual tree crown approaches. Remote Sens. 12:2525. doi: 10.3390/
rs12162525

Goerndt, M. E., Monleon, V. J., and Temesgen, H. (2011). A comparison of
small-area estimation techniques to estimate selected stand attributes using
LiDAR-derived auxiliary variables. Can. J. For. Res. 41, 1189–1201.

González-Ferreiro, E., Diéguez-Aranda, U., and Miranda, D. (2012). Estimation of
stand variables in Pinus radiata D. don plantations using different LiDAR pulse
densities. Forestry 85, 281–292. doi: 10.1093/forestry/cps002

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.
(2017). Google earth engine: planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. 202, 18–27. doi: 10.1016/j.rse.2017.06.031

Grafström, A., Schnell, S., Saarela, S., Hubbell, S. P., and Condit, R. (2017). The
continuous population approach to forest inventories and use of information
in the design. Environmetrics 28:e2480. doi: 10.1002/env.2480

Green, P. C., Burkhart, H. E., Coulston, J. W., and Radtke, P. J. (2019). A novel
application of small area estimation in loblolly pine forest inventory. Forestry
93, 444–457. doi: 10.1093/forestry/cpz073

Hudak, A. T., Fekety, P. A., Kane, V. R., Kenedy, R. E., Filipelli, S. K., Falkowski,
M. J., et al. (2020). A carbon monitoring system for mapping regional,
annual aboveground biomass across the northwestern USA. Environ. Res. Lett.
15:095003.

Hudak, A. T., Haren, A. T., Crookston, N. L., Liebermann, R. J., and Ohmann, J. L.
(2014). Imputing forest structure attributes from stand inventory and remotely
sensed data in western Oregon, USA. For. Sci. 60, 253–269.

Hughes, M. J., Kaylor, S. D., and Hayes, D. J. (2017). Patch-based forest change
detection from landsat time series. Forests 8:166. doi: 10.3390/f8050166

Hummel, S., Hudak, A., Uebler, E., Falkowski, M., and Megown, K. (2011).
A comparison of accuracy and cost of LiDAR versus stand exam data for
landscape management on the Malheur National Forest. J. For. 109, 267–273.

Iles, K., and Smith, N. J. (2006). A new type of sample plot that is particularly
useful for sampling small clusters of objects. For. Sci. 52, 148–154. doi: 10.1093/
forestscience/52.2.148

Kauth, R. J., and Thomas, G. (1976). “The tasselled cap–a graphic description of
the spectral-temporal development of agricultural crops as seen by Landsat,” in
Proceedings of the Machine Processing of Remotely Sensed Data, (West Lafayette,
IN: Purdue University).

Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest
disturbance and recovery using yearly landsat time series: 1. landtrendr —
temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910. doi:
10.1016/j.rse.2010.07.008

Key, C. H., and Benson, N. C. (2006). “Landscape assessment (LA),” in FIREMON:
Fire Effects Monitoring and Inventory System, eds D. C. Lutes, R. E. Keane,
J. F. Caratti, C. H. Key, N. C. Benson, S. Sutherland, et al. (Ogden, UT: US
Department of Agriculture, Forest Service, Rocky Mountain Research Station),
1–55.

LeMay, V., Maedel, J., and Coops, N. C. (2008). Estimating stand structural details
using nearest neighbor analyses to link ground data, forest cover maps, and
Landsat imagery. Remote Sens. Environ. 112, 2578–2591. doi: 10.1016/j.rse.
2007.12.007

Lumley, T. (2020). Leaps: Regression Subset Selection. Available online at: http:
//CRAN.R-project.org/package=leaps. (accessed October 6, 2021).

Magnussen, S., Mandallaz, D., Breidenbach, J., Lanz, A., and Ginzler, C. (2014).
National forest inventories in the service of small area estimation of stem
volume. Can. J. For. Res. 44, 1079–1090. doi: 10.1139/cjfr-2013-0448

Magnussen, S., Mauro, F., Breidenbach, J., Lanz, A., and Kändler, G. (2017). Area-
level analysis of forest inventory variables. Eur. J. For. Res. 136, 839–855. doi:
10.1007/s10342-017-1074-z

Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J., and Vehmas, M. (2004).
Estimation of timber volume and stem density based on scanning laser altimetry
and expected tree size distribution functions. Remote Sens. Environ. 90, 319–
330.

Mauro, F., Molina, I., García-Abril, A., Valbuena, R., and Ayuga-Téllez, E. (2016).
Remote sensing estimates and measures of uncertainty for forest variables at
different aggregation levels. Environmetrics 27, 225–238. doi: 10.1002/env.2387

Mauro, F., Monleon, V. J., Temesgen, H., and Ford, K. R. (2017). Analysis of
area level and unit level models for small area estimation in forest inventories
assisted with LiDAR auxiliary information. PLoS One 12:e0189401. doi: 10.
1371/journal.pone.0189401

Mauro, F., Ritchie, M., Wing, B., Frank, B., Monleon, V., Temesgen, H., et al.
(2019). Estimation of changes of forest structural attributes at three different
spatial aggregation levels in northern California using multitemporal LiDAR.
Remote Sens. 11:923. doi: 10.3390/rs11080923

Mc Gaughey, R. J. (2019). FUSION\LDV: Software for LIDAR Data Analysis and
Visualization. Washington, D.C: USDA Forest Service.

Miller, J. D., and Thode, A. E. (2007). Quantifying burn severity in a heterogeneous
landscape with a relative version of the delta Normalized Burn Ratio (dNBR).
Remote Sens. Environ. 109, 66–80. doi: 10.1016/j.rse.2006.12.006

Molina, I., and Marhuenda, Y. (2015). sae: an R package for small area estimation.
R J. 7, 81–98.

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning
laser using a practical two-stage procedure and field data. Remote Sens. Environ.
80, 88–99.

Pflugmacher, D., Cohen, W. B., and Kennedy, R. E. (2012). Using landsat-derived
disturbance history (1972–2010) to predict current forest structure. Remote
Sens. Environ. 122, 146–165. doi: 10.1016/j.rse.2011.09.025

Rao, J. N. K., and Molina, I. (2015). “Empirical best linear unbiased prediction
(EBLUP): basic area level model,” in Small Area Estimation, ed. P. Lahiri
(Hoboken, NJ: John Wiley & Sons, Inc), 123–172.

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring
vegetation systems in the Great Plains with ERTS. NASA special publication 351,
309.

Roussel, J.-R., Coops, N. C., Tompalski, P., Goodbody, T. R. H., Meador, A. S.,
Bourdon, J.-F., et al. (2020). lidR: an R package for analysis of airborne laser
scanning (ALS) data. Remote Sens. Environ. 251:112061. doi: 10.1016/j.rse.2020.
112061

Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., et al.
(2018). Improving accuracy estimation of forest aboveground biomass based

Frontiers in Forests and Global Change | www.frontiersin.org 16 October 2021 | Volume 4 | Article 74591635

https://doi.org/10.1016/j.rse.2015.07.028
https://doi.org/10.1016/j.rse.2015.07.028
https://doi.org/10.1016/j.csda.2015.07.013
https://doi.org/10.1016/j.csda.2015.07.013
https://doi.org/10.1016/j.rse.2018.04.028
https://doi.org/10.1016/j.rse.2018.04.028
https://doi.org/10.1093/forestry/cpaa045
https://doi.org/10.1093/forestry/cpaa045
https://doi.org/10.2307/2286322
https://doi.org/10.1080/07038992.2018.1461557
https://doi.org/10.1080/07038992.2018.1461557
https://doi.org/10.3334/ORNLDAAC/1719
https://doi.org/10.1016/j.rse.2019.111496
https://doi.org/10.3390/rs12162525
https://doi.org/10.3390/rs12162525
https://doi.org/10.1093/forestry/cps002
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1002/env.2480
https://doi.org/10.1093/forestry/cpz073
https://doi.org/10.3390/f8050166
https://doi.org/10.1093/forestscience/52.2.148
https://doi.org/10.1093/forestscience/52.2.148
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1016/j.rse.2007.12.007
https://doi.org/10.1016/j.rse.2007.12.007
http://CRAN.R-project.org/package=leaps
http://CRAN.R-project.org/package=leaps
https://doi.org/10.1139/cjfr-2013-0448
https://doi.org/10.1007/s10342-017-1074-z
https://doi.org/10.1007/s10342-017-1074-z
https://doi.org/10.1002/env.2387
https://doi.org/10.1371/journal.pone.0189401
https://doi.org/10.1371/journal.pone.0189401
https://doi.org/10.3390/rs11080923
https://doi.org/10.1016/j.rse.2006.12.006
https://doi.org/10.1016/j.rse.2011.09.025
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.1016/j.rse.2020.112061
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-745916 October 13, 2021 Time: 15:48 # 17

Temesgen et al. Fay-Herriot Models for Stand-Level Inventories

on incorporation of ALOS-2 PALSAR-2 and sentinel-2A imagery and machine
learning: a case study of the hyrcanian forest area (Iran). Remote Sens. 10:172.
doi: 10.3390/rs10020172

Ver Planck, N. R., Finley, A. O., Kershaw, J. A., Weiskittel, A. R., and Kress,
M. C. (2018). Hierarchical Bayesian models for small area estimation of forest
variables using LiDAR. Remote Sens. Environ. 204, 287–295. doi: 10.1016/j.rse.
2017.10.024

Warren, W. G., and Olsen, P. F. (1964). A line intersect technique for
assessing logging waste. For. Sci. 10, 267–276. doi: 10.1093/forestscience/10
.3.267

Woodall, C., and Monleon, V. (2008). Sampling Protocol, Estimation,
and Analysis Procedures for the Down Woody Materials Indicator
of the FIA Program. Newtown Square, PA: Northern
Research Station.

Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow
detection in landsat imagery. Remote Sens. Environ. 118, 83–94. doi: 10.1016/
j.rse.2011.10.028

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Temesgen, Mauro, Hudak, Frank, Monleon, Fekety, Palmer and
Bryant. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Forests and Global Change | www.frontiersin.org 17 October 2021 | Volume 4 | Article 74591636

https://doi.org/10.3390/rs10020172
https://doi.org/10.1016/j.rse.2017.10.024
https://doi.org/10.1016/j.rse.2017.10.024
https://doi.org/10.1093/forestscience/10.3.267
https://doi.org/10.1093/forestscience/10.3.267
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2011.10.028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-746439 November 6, 2021 Time: 12:24 # 1

PERSPECTIVE
published: 11 November 2021

doi: 10.3389/ffgc.2021.746439

Edited by:
Aaron Weiskittel,

University of Maine, United States

Reviewed by:
John Paul McTague,

University of Georgia, United States
Roque Rodríguez-Soalleiro,

University of Santiago
de Compostela, Spain

Ben Rice,
Midgard Natural Resources,

United States

*Correspondence:
Steve Prisley

sprisley@ncasi.org

Specialty section:
This article was submitted to

Forest Management,
a section of the journal

Frontiers in Forests and Global
Change

Received: 23 July 2021
Accepted: 20 October 2021

Published: 11 November 2021

Citation:
Prisley S, Bradley J, Clutter M,

Friedman S, Kempka D, Rakestraw J
and Sonne Hall E (2021) Needs for

Small Area Estimation: Perspectives
From the US Private Forest Sector.

Front. For. Glob. Change 4:746439.
doi: 10.3389/ffgc.2021.746439

Needs for Small Area Estimation:
Perspectives From the US Private
Forest Sector
Steve Prisley1* , Jeff Bradley2, Mike Clutter3, Suzy Friedman4, Dick Kempka5,
Jim Rakestraw6 and Edie Sonne Hall7

1 National Council for Air and Stream Improvement, Roanoke, VA, United States, 2 American Forest & Paper Association,
Washington, DC, United States, 3 Forest Investment Associates, Atlanta, GA, United States, 4 National Alliance of Forest
Owners, Washington, DC, United States, 5 Molpus Woodlands Group, LLC, Jackson, MS, United States, 6 International
Paper, Statesboro, GA, United States, 7 Three Trees Consulting, Seattle, WA, United States

The commercial forest sector in the US includes forest landowners and forest
products manufacturers, as well as numerous service providers along the supply
chain. Landowners (and contractors working for them) manage forestland in part
for roundwood production, and manufacturers purchase roundwood as raw material
for forest products including building products, paper products, wood pellets, and
others. Both types of organizations need forest resource data for applications such
as strategic planning, support for certification of sustainable forestry, analysis of timber
supply, and assessment of forest carbon, biodiversity, or other ecosystem services. The
geographic areas of interest vary widely but typically focus upon ownership blocks or
manufacturing facilities and are frequently small enough that estimates from national
forest inventory data have insufficient precision. Small area estimation (SAE) has proven
potential to combine field data from the national forest inventory with abundant sources
of remotely sensed or other resource data to provide needed information with improved
precision. Successful implementation of SAE by this sector will require cooperation and
collaboration among federal and state government agencies and academic institutions
and will require increased funding to improve data collection, data accessibility, and
further develop and implement the needed technologies.

Keywords: landowner, manufacturer, sustainability, markets, carbon, precision

INTRODUCTION

Our purpose here is to articulate the needs of the US private forest sector for enhanced forest
resource information that might be possible through the application of small area estimation
(SAE), combining plot data from the national forest inventory with supplemental data from remote
sensing or other geospatial sources. We use the term “small area estimation” to refer to a suite of
statistical approaches to improve the precision of forest inventory estimates for small geographic
areas or categories by incorporating additional data beyond the plot measurements themselves.

The private forest sector is a dominant contributor to many aspects of forestry in the US. In
this article, we use the term “private forest sector” to include manufacturers of forest products and
private timberland owners. The term “working forests” has been used widely to refer to forests that
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are managed to provide a steady supply of wood to forest
products markets while providing other ecosystem benefits.
However, there are no publicly available data that can distinguish
forest areas based on management intent of private owners.
We therefore use the term “private timberlands” as the closest
approximation to “working forests.” We adopt the definition of
“timberland” from the national forest inventory, which defines it
as forest land capable of producing at least 20 cubic feet of wood
per acre per year and not reserved from harvest.

Private timberland owners (organizations and families) own
nearly 60% of forest land, provide nearly 90% of wood
harvested for products, and account for more than 80% of
forest volume growth (Oswalt et al., 2019). Forest products
manufacturers account for approximately four percent of the
total US manufacturing GDP, produce nearly $300 billion
in products annually and employ approximately 1 million
people. The industry meets a payroll of approximately $60
billion annually and is among the top 10 manufacturing sector
employers in 45 states.

The private forest sector is also a primary contributor to
natural climate solutions. Private timberlands store more than
half of the forest carbon in the US, and account for nearly 75%
of annual gross sequestration. Sustainable harvest of wood for
products has led to increasing forest carbon stocks and increasing
carbon storage in harvested wood products. Numerous studies
confirm that active markets for wood provide an incentive for
landowners to maintain or increase forest area and productivity
(Lubowski et al., 2008; Abt et al., 2010, 2014; Costanza et al., 2016;
Dale et al., 2017; Jefferies and Leslie, 2017; Birdsey et al., 2018;
Kim et al., 2018).

The private sector is an extensive user of information
from the national forest inventory, housed in the Forest
Inventory and Analysis (FIA) program of US Forest Service
Research. The FIA program conducts annual field inventory
across all ownerships in the US, as well as surveys on mill
production (through the Timber Product Output program)
and forest owners (through the National Woodland Owner
Survey). The field inventory is conducted on permanent plots
across all ownerships at a sampling intensity of one plot per
2,400 hectares (5,937 acres). A subset of plots in all states
is remeasured annually such that all plots in the eastern US
are remeasured every 5–7 years, and plots in the west are
remeasured every 10 years.

National forest inventory data is also widely used by carbon
credit programs to assess baseline forest carbon levels. For
example, the California Cap and Trade Program, the largest
carbon market for private investors and companies in the US,
uses FIA data to determine forest carbon project baselines and
the associated volume of credits generated each year. The Family
Forest Carbon Program1 of the American Forest Foundation
and The Nature Conservancy also uses FIA data to establish
baseline carbon levels and to measure the performance of forest
management practices.

Many users of FIA data have expressed expanding needs
for more detailed information on smaller spatial domains

1www.forestfoundation.org/family-forest-carbon-program

while maintaining the core field measurement program (Guldin,
2020a,b). The FIA program has responded with increased
research activity in SAE (for example, Brooks et al., 2016;
Nagle et al., 2019; Green et al., 2020; Coulston et al., 2021).
These efforts have shown that precision can be improved using
SAE with plot data combined with ancillary data. While such
studies have demonstrated the promise of SAE, none have led to
operational production of national datasets.

While FIA is budget-constrained and is currently challenged
to maintain even the present level of sample intensity
(geographically and temporally), there are abundant remote
sensing and geospatial data that could lend increased precision
to inventory-based estimates of forest resources. Many of
these ancillary data layers and sources may already be used
by organizations in the forest sector: soils data, satellite
and aerial imagery, canopy heights from LIDAR or aerial
photogrammetry, topography, hydrography, land cover,
and numerous others. The pressing needs of the private
sector for higher-precision resource information argue for
further research in SAE methods and delivery of tools to
apply these methods.

In the following sections, we will first provide examples of
reasons why the private forest sector is facing increasing needs
for reliable forest resource information. Then we discuss the
specific estimates from FIA data that can meet these needs, with
examples of current levels of precision of these estimates. Finally,
we highlight opportunities for improvements that would enhance
the value of FIA data for the private forest sector as well as
many other users.

EXAMPLES OF WHY INFORMATION IS
NEEDED

Assessment of Forest and Carbon
Sustainability
Sustainability certification and reporting are critical
for forest sector companies to document their
performance against sustainability standards. Forest
sector organizations are increasingly investing time
and effort in reporting Environmental, Social, and
Governance (ESG) indicators to communicate to customers
and investors that sustainability is embedded in their
business practices.

For manufacturers certifying the sustainability of their
supply chain, this reporting leads to an increased need for
resource data from the geographic regions in which they
operate, which is often met using data from FIA. For example,
both the Sustainable Forestry Initiative (SFI) and Forest
Stewardship Council (FSC) certification standards include
requirements that companies avoid the use of wood that may
come from forests that have been converted to non-forest
use (deforestation). This requires regular monitoring of forest
land use changes within operating regions. Unfortunately,
FIA-based estimates of forest area change for smaller
regions (e.g., small states or woodbaskets) may fail to reach
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precision targets defined by certification standards, such as
demonstrating with statistical significance that forest area
is not declining.

For private timberland owners with detailed data on their own
holdings, FIA data may be used to obtain factors for tree species
in a region to convert inventory volumes to carbon stocks, and
to estimate carbon in pools other than live trees. Furthermore,
trade associations representing segments of the forest sector make
extensive use of FIA data to communicate the sustainability of
forests and their contributions to meeting environmental goals.

Other certification requirements involve attention to
the quantity of wood harvested relative to the quantity
grown. Such growth/drain analyses are common, but
require estimates of change over time. Because harvest is
a relatively rare event across large landscapes, the sample
size for estimates of harvest are small, leading to higher
uncertainties. Demonstrating that growth exceeds removals with
statistical significance is often difficult for some areas using FIA
plot data alone.

New guidelines are being developed for companies to
report on value chain effects of their products on terrestrial
carbon dynamics. One proposed metric involves carbon stock
changes on lands from which they obtain raw materials. In a
forestry context, this would require carbon stock estimates at a
regional or woodshed level from two successive inventories and
expressing that stock change relative to the quantity of wood
harvested. Without employing SAE approaches, such estimates
have high uncertainties.

Wood Markets
Landowners and manufacturers are engaged in markets for
roundwood from forests, as sellers and buyers, respectively. For
both, it is essential to understand the market dynamics in their
operating regions to plan effectively. This entails knowing the
relationship between forest area change, forest growth, mortality,
and harvest within a geographic area. These dynamics are critical
to evaluating long-term resource availability and sustainability.

Land use change is a longer-term driver of wood markets and
can affect the availability and cost of wood in rapidly developing
areas. Similarly, economic disruptions to local wood markets
can occur when established mills cease or reduce operations, or
when new mills begin operations. Catastrophic events such as
fire, hurricanes, or drought can quickly and dramatically alter
local resource availability. Therefore, companies must monitor
wood market conditions within their operating areas, requiring
information on harvest levels, mortality, land ownership changes,
forest area changes, and forest growth rates.

Forest Carbon Markets
The potential for forests in the US to contribute to natural climate
solutions has spawned interest and activity in forest carbon offset
markets. Such markets are designed to incentivize forest owners
to increase average forest carbon stocks through payments for
carbon offsets. To produce real climate benefits, forest carbon
offset markets need to account for (a) carbon stored in products
as well as forests, (b) additionality (benefits above and beyond
business-as-usual behavior), (c) leakage (emissions that occur

due to increased harvests outside a project that compensate for
reduced harvests within a project), and (d) substitution (higher
emissions resulting from the use of carbon-intensive substitute
products such as concrete or steel in place of wood-based
building products). Addressing these considerations requires
data on initial forest carbon stocks for project areas, forest
growth rates, levels of harvest associated with a “business-as-
usual” or “standard practice” baseline, eventual use of harvested
wood within the region (proportion of harvest going to lumber,
panels, paper, fuel, etc.), and market factors related to leakage and
substitution (such as supply and demand elasticities). National
forest inventory data can meet some of these information needs
for large areas, but some estimates will lack needed precision for
smaller geographic areas.

Biodiversity at Landscape Scale
Private timberland owners and manufacturers recognize the
importance of conducting forest management activities in a way
that conserves habitat for species of conservation concern. A first
step in doing so is understanding the geographic distribution of
forest conditions associated with individual species.

Forest inventory data can be used to assess the relative quality
of habitat for some species by quantifying relevant aspects of
stand structure. For example, in a protocol developed to assess
quality of open-canopy pine forests for species of concern in the
US South (Nordman et al., 2016), metrics include proportion
of basal area in pine trees (of certain species) in specified
diameter ranges, proportion of basal area in hardwood trees,
percent canopy cover from pine species, and stand density index.
Similarly, Davis et al. (2015) describe an old-growth structure
index (OGSI) for the Pacific Northwest derived from inventory
metrics such as density of live trees above a diameter threshold,
density of standing dead trees above a diameter threshold, percent
cover by down dead wood of certain size, and an index of tree
diameter diversity.

While protocols and indices such as these can be applied
to FIA data and be extremely useful in broad-scale monitoring
of structural diversity at a landscape scale, the categorical
domains can be very narrow (e.g., trees per hectare greater
than 100 cm diameter). Obtaining estimates of uncertainty
for indices involving multiple metrics can quickly become
intractable, and uncertainties will almost certainly be high even
across large geographical areas. Davis et al. (2015) noted sources
of uncertainties but were not able to quantify general levels of
uncertainty in results.

If suitable ancillary data are available (from FIA or other
publicly accessible sources) to lend strength to some of the
estimates needed for these indices, then SAE approaches may
prove valuable in quantifying uncertainties and improving
precision of estimates related to biodiversity.

TYPE OF FOREST RESOURCES DATA
NEEDED

Clearly, the forest sector needs current, reliable data on the
forest resources they manage or depend on for raw materials.
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Data needs include forest area and change over time, estimates
of relevant resource quantities (e.g., wood volume, biomass,
carbon) and the current rates of change of those quantities.
These rates of change include categories such as forest growth,
mortality, and harvest. Information regarding the geographic
distribution of resources is important, especially as it relates
to transportation networks, manufacturing facilities, population
centers, and features that affect management practices, such as
steep slopes, soil erodibility, wetlands, and habitat for species of
conservation concern.

Typically, resource information needs are limited
geographically to the operating regions for individual
organizations. For timberland owners, it would be the areas
in and around their forest holdings. For manufacturers, it would
be areas within a sourcing region for each of their facilities.
These regions are often small enough that there are insufficient
numbers of FIA samples to provide inventory-based estimates
with reasonable precision in categories of interest.

To illustrate the levels of uncertainty of commonly used
estimates available from FIA plot data for typical operating
areas, we developed estimates for an 80 km (50 mile) and
160 km (100 mile) radius around an arbitrary location in
the US South near the Georgia-Alabama border (Table 1).
In this example, we consider either a landowner or a
manufacturer interested in softwood sawtimber available from
private timberlands in the operating area. Therefore, relevant
information would include area in pine forest types, pine forest
area by age class (for modeling future supplies), softwood
sawtimber growing stock volumes, and growth and removals
of softwood sawtimber. For all variables, we retrieved summary
information using the USFS EVALIDator tool (USDA Forest
Service, 2021) accessing 2019 inventories for Georgia and
Alabama.

Ninety-percent confidence intervals on softwood sawtimber
volumes on private lands are ± 12.7% and ± 6.6% for the 80
and 160 km radius areas, respectively. Note that the sample
size for harvest removals is only 23–25% of the sample size for
private pine timberland area. Samples with harvests represent

plots on which harvest occurred at some point during a 5–
7 year period between plot measurements. This relative rarity
of harvest activity leads to far greater uncertainty in estimates:
90% confidence intervals for annual harvest removals are ± 29.3
and ± 16.9% for the 80 and 160 km radius areas, respectively.

DISCUSSION

Precision Targets
If confidence intervals for needed estimates (Table 1) are
considered low or inadequate, it is reasonable to ask what
levels of precision for specific estimates are needed? Is there
a threshold at which a confidence interval would be deemed
“acceptable”? Unfortunately, it is extremely difficult in most cases
to specify a target confidence interval that is needed. Resource
information from inventory data is just one factor among
many that affect private sector decisions. Managers frequently
face decisions involving financial variables such as taxes and
interest rates, market variables such as anticipated demand and
supply, international and regional competition for raw materials,
and restrictions on other key resources. Few, if any, of these
factors carry estimates of uncertainty, so it is unlikely managers
could specify a threshold for needed precision of resource data.
Furthermore, decisions frequently must be made within a limited
time; there is little room to wait for “better information” before
deciding. Often, the best that can be done is to put estimated
levels of uncertainty into context with other decision variables
and consider risks related to uncertainty.

A possible exception is when statements about rates of change
must be made with some level of confidence. For example, it may
be important for certification or reporting purposes to be able to
state that forest area or forest carbon stocks are not decreasing
within an operating area. This implies that measured change in
forest area or carbon stocks can be shown to be increasing or
stable (changing at a rate not significantly different from zero),
with a specified confidence. In such cases, though, the precision

TABLE 1 | Example of variables of interest, sample size, and 90% confidence interval for FIA plot-based estimates for 80 and 160 km radii around an arbitrary location.

Variables of interest 80 km radius 160 km radius

Estimate Sample size
(plots)

Conf. interval
(%)

Estimate Sample size
(plots)

Conf. interval
(%)

Area of private timberland (ha) 1,347,355 629 6.2 4,943,146 2,317 2.5

Area in pine forest types (ha) 657,714 346 9.0 2,236,049 1,188 2.5

Pine forest area by age class (ha)a

0–5 years 48,962 25 34.5 208,381 112 16.5

6–10 years 66,524 33 29.7 210,478 118 16.4

11–15 years 53,468 29 33.2 241,033 133 15.3

Softwood sawtimber volume (k m3) 58,983 283 12.7 171,898 914 6.6

Annual softwood sawtimber growth (k m3/yr) 4,517 302 12.3 13,764 987 6.4

Annual softwood sawtimber harvest (k m3/yr) 1,481 87 29.3 4,441 273 16.9

All estimates pertain to private timberland only.
aOnly three age classes listed for brevity.
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target will depend on the underlying rate of resource change, so it
will differ in different geographic areas.

Privacy Concerns
The US private forestry sector has valued privacy of information
and regulations that protect confidentiality of business
information. Therefore, some might expect concerns within
the private sector about public access to fine-grain resource
information developed through SAE. However, this issue was
never raised in an FIA User Group meeting on SAE attended by
74 participants, including representatives of private timberland
owners (Guldin, 2020b). Furthermore, several of the authors
of this manuscript work for private timberland owners or
associations, and none have expressed such concerns. With
widespread public access to high-resolution imagery, public
records of land ownership, and numerous interpretive maps
such as forest biomass distribution, it is clear that the risk of loss
of privacy is outweighed by the gains possible through broader
adoption of SAE applied to forest resource data.

Moving Forward
The FIA program is the logical place for expanding research and
development of SAE applied to forest resource data. However,
meeting the private sector resource information needs will
require partnership, concerted effort, and increased investment.

The private sector is already partnering with the FIA program
in a variety of ways: cooperative funding of research into SAE,
cooperating with FIA by allowing access to private lands for
field inventory, and responding to Timber Products Output and
National Woodland Owner Survey questionnaires. The private
sector also has been a strong supporter of the FIA program
by advocating for increased funding for the program. The FIA
program, in turn, has proven responsive to needs expressed by
the private sector through Blue Ribbon Panels on FIA and annual
FIA user group meetings.

There are several opportunities that could benefit not only the
private forest sector, but many public and academic users of FIA
data as well. These may be categorized as improving the quality
and consistency of data, making data more accessible to users,
and making better use of technology and ancillary datasets.

Improving the quality and consistency of data:

• Organizations within the private sector may be able to help
FIA validate research products using proprietary resource
data, such as assessment of accuracy of SAE products using
fine-scale company inventory data;

• FIA and other units within USFS Research can focus
on closing substantial data and knowledge gaps related
to belowground and dead wood carbon dynamics,
forest management effects on carbon cycles, soil carbon
sequestration in forest ecosystems, and storage of carbon in
harvested wood products;

• FIA program leadership can work to improve the
nationwide consistency of field protocols and analytical
approaches that will ensure credible, consistent, and timely
data on forest carbon stocks and fluxes.

Making data more accessible to users:

• The FIA program could benefit from external expertise
to improve the design and delivery of online tools for
analysis and dissemination of data to significantly enhance
accessibility and usability;

• Early engagement with the user community in the design of
tools for delivery of SAE estimates would help ensure that
resulting products meet user needs.

Making better use of technology and ancillary datasets:

• Because land use change is such a critical factor in forest
carbon fluxes, FIA can build on successes using remote
sensing-based programs such as the Landscape Change
Monitoring System (LCMS) and Image-based Change
Estimation (ICE) to arrive at a reliable, annually updated
source of information on nationwide forest area change;

• FIA scientists can move from a research to an
implementation phase for SAE applications to national
forest inventory data, which will require deciding on
specific ancillary datasets (such as remote sensing
products) and methods that show the greatest promise.

Improvement of resource data delivery with SAE builds on
the foundation of the FIA phase 2 field inventory. None of the
advances recommended here should come at the expense of the
core program of field inventory. This means that advances are
dependent on additional funding. At every opportunity, private
sector organizations should advocate for full and increased
funding for the FIA program to meet these objectives.

SUMMARY

The US forest sector is highly dependent on the contributions
made by private timberland owners and manufacturers.
Private sector stakeholders are facing increasing demands
for resource information, which could be met in part
by data from the national forest inventory. Improved
precision in estimates from FIA can be achieved using SAE
approaches and leveraging additional datasets. Additional
federal investment in research, aided by partnership
efforts with the private sector, states, and educational
institutions will be necessary to meet private sector
information needs.
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Small Area Estimation of Postfire
Tree Density Using Continuous
Forest Inventory Data
George C. Gaines III* and David L. R. Affleck

Department of Forest Management, University of Montana, Missoula, MT, United States

Wildfire activity in the western United States is expanding and many western forests

are struggling to regenerate postfire. Accurate estimates of forest regeneration following

wildfire are critical for postfire forest management planning and monitoring forest

dynamics. National or regional forest inventory programs can provide vegetation data

for direct spatiotemporal domain estimation of postfire tree density, but samples within

domains of administrative utility may be small (or empty). Indirect domain expansion

estimators, which borrow extra-domain sample data to increase precision of domain

estimates, offer a possible alternative. This research evaluates domain sample sizes and

direct estimates in domains spanning large geographic extents and ranging from 1 to

10 years in temporal scope. In aggregate, domain sample sizes prove too small and

standard errors of direct estimates too high. We subsequently compare two indirect

estimators—one generated by averaging over observations that are proximate in space,

the other by averaging over observations that are proximate in time—on the basis of

estimated standard error. We also present a new estimator of the mean squared error

(MSE) of indirect domain estimators which accounts for covariance between direct and

indirect domain estimates. Borrowing sample data from within the geographic extents of

our domains, but from an expanded set of measurement years, proves to be the superior

strategy for augmenting domain sample sizes to reduce domain standard errors in this

application. However, MSE estimates prove too frequently negative and highly variable for

operational utility in this context, even when averaged over multiple proximate domains.

Keywords: forest inventory, wildland fire, forest regeneration, bias estimation, forest inventory and analysis,

monitoring trends in burn severity

INTRODUCTION

Wildfires in the western USA are increasing in frequency, size and severity and many western
forests are struggling to regenerate postfire (Stevens-Rumann et al., 2017). Hot, dry climatic
conditions fueled a 2020 wildfire season of unprecedented dimension, with over 1.5 million ha
burned in California alone (Higuera and Abatzoglou, 2021). In the USA, securing regeneration
of burned forest areas can be important for compliance with federal legislation, atmospheric CO2

sequestration, and perpetuation of forest products availability. Accurate estimates of residual tree
cover and new seedling recruitment following wildfire are thus critical for understanding postfire
forest dynamics and maximizing the impact of limited resources for postfire management activities
like tree planting.
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Many countries now monitor forest resources using a
network of sample locations distributed at a nationwide or
broad, regional level. In the USA, the sample plot network
administered by the United States Forest Service (USFS) Forest
Inventory and Analysis (FIA) program provides nationwide
ground observations of vegetation attributes, including tree
regeneration (Bechtold and Patterson, 2005). In addition,
the Monitoring Trends in Burn Severity (MTBS) program
provides fire perimeters and burn severities for all large
wildfire events from 1984 to 2018 (Eidenshink et al., 2007).
Together these two sources of information provide a means
of estimating postfire forest characteristics. Yet the spatial
and temporal resolution of the FIA sample relative to the
spatiotemporal frequency of wildland fires is expected to
render traditional estimation techniques unreliable for domains
defined by individual fire perimeters or collections thereof.
Here we investigate the viability of direct domain estimators
of postfire tree density across various domain resolutions, and
compare them to indirect estimators. Indirect estimators, a
class of small area estimation (SAE) techniques, borrow sample
observations from proximate domains to increase effective
sample sizes for domains requiring more precise estimation, or
small areas.

Applications of SAE techniques have proliferated in the
forestry literature, reflective of the need in public and private
sectors alike to increase the spatiotemporal resolution of
estimates of forest attributes without major investments in
additional data collection. Examples include approaches to
estimation proceeding from design-based (e.g., Breidenbach and
Astrup, 2012; Hill et al., 2018), model-based (e.g., Breidenbach
and Astrup, 2012; McRoberts, 2012; Coulston et al., 2021) and
hybrid (e.g., Magnussen et al., 2014b) inferential paradigms.
For detailed contrasts of differing inferential frameworks see
Gregoire (1998) and Ståhl et al. (2016).

Breidenbach and Astrup (2012) evaluated alternative
approaches to domain estimation of above-ground forest
biomass using Norwegian National Forest Inventory (NFI) data.
Domains consisted of 14 municipalities forming an exhaustive
partition of the study area. They compared domain sample
means with synthetic and generalized regression (GREG)
domain estimators, as well as with empirical best linear unbiased
predictor (EBLUP) composite domain estimators. The GREG
and EBLUP estimators both leveraged remotely-sensed canopy
height data. Both also resulted in more accurate estimates than
domain sample averages, as indicated by smaller estimated
variances in the case of GREG and by smaller estimated mean
squared errors (MSEs) in the case of EBLUP. Notably, the MSEs
estimated for the domain EBLUPs were of an unconditional
nature (Datta et al., 2011), being averaged over an explicit
(Gaussian) model of domain heterogeneity.

McRoberts (2012) presented model-based nearest neighbor
(NN) techniques for SAE, illustrated using USFS FIA data and
Landsat-derived attributes. The NN domain estimates of volume
(Mg ha−1) proposed were synthetic in the sense that observations
from the complete population were eligible to serve as neighbors
for any given location within a domain. Evaluation of the
relationship between observations and NN predictions of volume

for lack of fit was suggested in the model-based context as a
means of assessing the presence of domain-level estimation bias.

Adopting a design-based approach, Hill et al. (2018) evaluated
(two-stage) domain-level GREG estimators for application with
German NFI data. They related timber volume at a plot
level to LiDAR-derived variables and a species classification
map, and compared a weighted domain sample average with
approximately design-unbiased GREG estimators incorporating
domain-specific intercepts. The GREG estimators reduced
estimated variances of domain sample means by 43% in larger
geographic domains and 23% in smaller domains.

Coulston et al. (2021) compared post-stratified estimators
with model-based estimators of domain-level forest removals
across the southeastern US. They related FIA ground data
to Landsat-based tree cover loss and sawmill survey data at
the area level. The model-based SAE strategies they developed
for domain-level forest removals provided smaller estimated
(unconditional) MSEs relative to the estimated variances of post-
stratified domain estimators, at both county and multi-county
domain resolutions.

More generally, several themes can be identified from the
literature on small area estimation in forest inventory. The first is
that most applications consider only domains with fixed spatial
delineation, defined for example by administrative/political
boundaries (e.g., Breidenbach and Astrup, 2012; McRoberts,
2012; Hill et al., 2018). As described below, domains of interest
that arise from forest disturbances have spatial and temporal
bounds that are important—both in defining the parameters
of interest and in determining what measurements are within
or outside the domains. Second, there are often asymmetries
in how data from spatially-proximate vs. temporally-proximate
(but potentially spatially-coincident) domains are used in
domain estimation. Numerous studies evaluated the use of data
drawn only from spatially-proximate domains, perhaps because
data from other years were unavailable. Other studies have
drawn on inventory data from multiple years, but only while
correspondingly broadening the definition of the target estimand
from an attribute specific to a point in time to one averaged
over a (multi-year) period. In each of the four studies cited
above, measurements spanning a multi-year period are used
in a “temporally indifferent” sense (Bechtold and Patterson,
2005) to form domain estimates that explicitly or implicitly
encompass a multi-year extent. A third theme is that most
previous applications (including all of those cited above) leverage
relationships between ground observations of the target attribute
and one or more auxiliary variables. That is, they evaluate gains
in accuracy that might be achieved through the incorporation
of extra-domain data and of statistical relationships between the
attribute of interest and other data products.

An additional theme that emerges from the SAE literature
is that estimation of the bias or MSE of indirect domain
estimators is challenging. Under a design-based approach, the
ability to estimate the bias of domain estimators is hindered
by the same constraint that motivates indirect estimation in
the first place, namely a lack of sufficient data. As such, both
Hill et al. (2018) and Breidenbach and Astrup (2012) eschew
synthetic regression domain estimation; they focus instead on
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approximately unbiased regression estimators, precluding the
need for bias orMSE estimation. Under a model-based approach,
domain differences are incorporated into an explicit probabilistic
model. This elevates a need for model validation strategies (see
e.g., McRoberts, 2012), but also allows for derivation of MSEs
and of estimators thereof. Datta et al. (2011) describe alternative
MSEs that can be pursued under the model-based approach,
but suggest that the conditional MSE of interest under the
design-based approach is least readily estimated. In line with
this, many SAE studies adopting EBLUP domain estimation
have employed estimators of unconditional MSEs characterizing
average performance over a distribution of possible domain
effects (e.g., Breidenbach and Astrup, 2012; Coulston et al., 2021).

In this study, we investigate two methods for augmenting
domain samples for indirect estimation of tree attributes in
disturbed areas: one method borrows explicitly in space; the
other in time. Also, inasmuch as indirect estimation necessarily
introduces bias, with different strategies incorporating different
sources of bias, we also evaluate estimators of the MSE and bias
of the indirect domain estimators. Overall, our objectives are
to i) advance a framework for defining wildfire-origin domains
and estimating forest attributes at specified postfire intervals;
ii) evaluate the feasibility of direct estimation of postfire tree
regeneration across varying domain extents using FIA data;
iii) determine the advantages and limitations associated with
alternative strategies for incorporating FIA data from proximate
spatial and temporal domains into indirect estimators; and, iv)
investigate the utility of estimators of the MSE and bias of
indirect estimators. Our approach is developed in the next section
and then exemplified using fire perimeters from the western
coterminous US and field data from the FIA program.

FRAMEWORK FOR DOMAIN DELINEATION
AND ESTIMATION

We assume that interest lies in resources distributed across a
population defined over both spatial X and temporal T extents.
Also, we assume the resources are monitored via a probability-
based sample design that selects a finite number of locations in
space x ∈ X and designates each for measurement at a time
t ∈ T. Our research then focuses on the estimation of resource
parameters over (small) domains of the population.

Domains of interest in forest management may persist over
time and be defined only by their spatial extents. For example,
a domain may be defined administratively, such as the State
of Wyoming or the Shoshone National Forest (WY). However,
the domains of interest here are those that are created by a
disturbance event (or complex of disturbance events) and that
thus also have a temporal component. For example, a domain
may consist of all lands burned by a particular wildfire event in
1990. Such a domain has a spatial extent defined by the 1990 burn
perimeter and a temporal extent running from 1990 forward.
Generalizing, a domainmay instead consist of all lands within the
Shoshone National Forest burned by wildfires in 1990, or all lands
withinWyoming that burned in wildfires between 1990 and 1999.
In the latter example, the spatial extents of the constituent fires

may overlap (e.g., a subset of the area burned in 1990 could burn
again in 1999). This could be handled in various ways depending
on research or management interests, but in the subsequent we
attribute any such overlap to the most recent burn and effectively
clip it from the spatial extent of the earlier burn. Thus, a domain
defined by a 1990 wildfire event may have a spatial extent that is
constant from 1990 to 1998, and a reduced spatial extent from
1999 onwards owing to a partial reburn event in 1999. Notably,
such domains are not likely to form an exhaustive partition of the
population in any given year, and in any given year not all existing
disturbance-generated domains will have persisted over the same
time interval.

Owing both to the potential for the spatial extent of a domain
to change over time and to the fact that the resources of interest
are dynamic, domain properties are referenced by a domain
index d (d = 1, 2, . . .) and a temporal index l (l = 0, 1, 2, . . .).
The latter index measures time (numbers of years) elapsed since
the defining disturbance event(s). Define A(d, l) ⊆ A(d, 0)
as the spatial extent of domain d at l years post-disturbance,
corresponding to the original spatial extent of the disturbance
less any regions subsequently disturbed within l years. Interest
centers on the spatial density of a resource attribute y at given
points in time, or

λ(d, l) =
1

|A(d, l)|

∫

A(d,l)
y(x, l)dx (1)

where |A(d, l)| is the area of the domain d after a lag of l years,
and y(x, l) is the resource value at spatial coordinate x as it exists
l years after the domain-defining disturbance event. That is, we
adopt a continuous population perspective (see e.g., Grafström
et al., 2017) and focus on y(x, l) as defining the number of live
trees per unit area at location x in year l, which in practice
necessitates counting live trees over a fixed support area, such as
a circular plot. Thus, for example, if the domain d corresponds
to a particular 1990 wildfire, then interest may lie in the number
of live trees per unit area that are standing in 1995 [= λ(d, 5)] or
that are standing in 2000 [= λ(d, 10)]. In either case, it must be
recognized that the spatial extent of the domain could be different
in 2000, 1995, and 1990 owing to subsequent disturbance [i.e.,
A(d, 10) ⊆ A(d, 5) ⊆ A(d, 0)]. Moreover, if the domain d
corresponds to all lands burned by wildfires inWyoming between
1990 and 1999, then λ(d, 5) still defines the density of the resource
5 years post-disturbance. In this case, the parameter integrates
regeneration density in 1995 over areas burned in 1990 as well
as regeneration density in 1999 over areas that burned in 1994.
That is, as defined here, the lag index l does not denote a period
of time initiating at the oldest (or most recent) disturbance event
subsumed within a domain of interest, but rather a fixed interval
allowed to elapse over all disturbances within a domain.

In the small area estimation terminology of Rao and Molina
(2015), a direct estimator of λ(d, l) would draw only on the set
s(d, l) of sample observations yk = y(xk, lk) located in domain
d and observed after a lag of l years. The size of s(d, l), denoted
n(d, l), is assumed to be a random variable because A(d, l) is not
an independently sampled stratum of the population. One direct
estimator applicable to equal-probability inventory designs is the
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domain sample mean

ȳ(d, l) =
1

n(d, l)

∑

k∈s(d,l)

yk (2)

Under simple random sampling (SRS), ȳ(d, l) is a conditionally
unbiased estimator of λ(d, l) provided n(d, l) > 0 (see
Appendix A). However, this result does not hold for other equal
probability sampling designs; bias of the domain sample mean
accrues from variability in n(d, l) and generally decreases only as
n(d, l) increases (Särndal et al., 2003, pp. 176–177).

For small domains, the domain samplemean (Equation 2) and
other direct estimators are expected to have high variance owing
to small and variable sample sizes. Thus, we also consider indirect
estimators of λ(d, l) that utilize data from an augmented sample
set s̃(d, l) ⊇ s(d, l) of observations coming from within and
beyond the spatiotemporal domain A(d, l). For example, s̃(d, l)
may supplement s(d, l) with observations drawn from another
domain d′ but made at the same time-since-disturbance [i.e.,
by borrowing data from A(d′, l)], or from the same domain
but at different lags-since-disturbance l′ [from A(d, l′)], or from
a combination of these extensions. Denoting the size of the
augmented sample by ñ(d, l), a simple indirect domain estimator
that might be applied under equal probability sampling is the
augmented sample mean

ˆ̄y(d, l) =
1

ñ(d, l)

∑

k∈s̃(d,l)

yk (3)

Implicit in the use of this estimator is the assumption that the
spatial density of the attribute of interest differs little within
the domain vs. over the region from which data are borrowed.
Generally, this assumption becomes less tenable as that extra-
domain region is expanded in space or time but, regardless,
Equation (3) is a biased estimator of λ(d, l), even under SRS.
Its bias under SRS will depend on the relative size of the region
from which data are borrowed and on the extent to which the
spatial density of y differs over that region relative to λ(d, l)
(see Appendix B). At the same time, the variance of an indirect
estimator such as ˆ̄y(d, l) is expected to be lower than that of ȳ(d, l)
owing to the augmented sample size.

Inasmuch as indirect domain estimators are generally biased,
MSE should provide a more informative statistical summary
than variance. Unfortunately, useful analytical expressions (or
estimators) of the MSE of an indirect domain estimator are
difficult to obtain. Building on Rao and Molina (2015, p. 43) and
suppressing the domain and lag indices (d and l) for brevity, the
MSE of an indirect estimator λ̂i can be written as

MSE

[
λ̂i

]
= E

[
λ̂i − λ

]2
= E

[
λ̂i − λ̂u

]2
− V

[
λ̂u

]

+2C
[
λ̂i, λ̂u

]
(4)

where λ̂u is an unbiased estimator of the domain parameter,

V

[
λ̂u

]
is its variance, and C

[
λ̂i, λ̂u

]
is its covariance with λ̂i.

Going further, from the basic definition of MSE (i.e., variance

plus squared bias), Equation (4) can be re-arranged to provide
an expression for the squared bias K of an indirect domain
estimator, viz.

K

[
λ̂

]
=

(
E

[
λ̂i

]
− λ

)2
= E

[
λ̂i − λ̂u

]2
− V

[
λ̂u

]
− V

[
λ̂i

]

+2C
[
λ̂i, λ̂u

]
(5)

The above expressions for MSE and squared bias have been used
to derive several estimators for indirect domain estimation (e.g.,
Gonzalez and Waksberg, 1973, pp. 6; Marker, 1995, pp. 67–
71; Rao and Molina, 2015, pp. 44–45). Commonly however,
the covariance term in expresssions (Equations 4, 5) has been
ignored. Dropping the covariance term may be justified in
applications where the indirect estimator draws on a considerably
larger sample than the direct estimator—for then the two
estimators can be expected to have low correlation. Yet in settings
where the domain sample size is an appreciable component of the
data used by the indirect estimator, the covariance term cannot
be expected to be negligible. Instead, it is expected to be positive,

tending to V

[
λ̂u

]
as ñ approaches the domain sample size and

tending to 0 only as ñ becomes much larger than n.

METHODS

Forest Inventory Data
This study utilizes data from the USFS annualized Phase 2 (P2)
plot network spanning all lands (forested and non-forested, all
ownerships) in the 11 contiguous states of the western USA
(Figure 1). The plot network is based on an equal-intensity
sampling design that began with tessellation of the landbase
into approximately 2,400 ha hexagons, followed by the selection
of 1 plot location per hexagon (Bechtold and Patterson, 2005).
Implementation of the annualized FIA program in the western
states involves the remeasurement of one of 10 interpenetrating
panels of plots each year, yielding a nominal sampling intensity
of approx. one plot measurement per 24,000 ha per year.

At the time this research was undertaken, FIA plot data were
publicly available for measurements taken in 2018 back through
the year of initial implementation (which varied by state). All
FIA plots are assessed for condition (e.g., forested vs. non-
forested) and the attributes measured on forested conditions
permit computation of live tree density over a range of age and
size classes (seedlings, saplings, and larger trees) for each of the
4 subplots comprising an FIA plot (see Bechtold and Patterson
2005). Such data also exist for some regionally intensified
FIA plot grids and regional post-fire FIA plot remeasurement
designs, but these were not included in the analysis as they
have variable spatial and temporal measurement intensities. For
various reasons (e.g., presence of seasonal water, hazardous
field conditions), vegetation data are not available for every
subplot; such subplots were necessarily excluded from the
analysis dataset and not utilized in averaging tree densities to a
plot level. However, NFI subplot condition mapping procedures
permitted the incorporation of data from subplots that were only
partially measurable. The numbers of measurements of (at least)
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FIGURE 1 | Study area spanning 11 states in the western USA. Areas spanned by MTBS burn polygons 1984–2018 are shown in red where they overlap USFS

National Forest System (NFS) lands and in orange otherwise; unburned NFS lands are shown in gray.

partially-forested FIA plots by state and year are summarized in
Supplementary Figure 1.

Domains
This research centers on estimating post-fire tree density in
forested areas of the western US experiencing wildland fire
events. Thus, domains were defined using 1984–2018 burn
perimeters obtained from the MTBS program (Eidenshink
et al., 2007), which maps all wildland fires ≥404 ha in
the western US. Also, in order to facilitate a focus on
forested areas, where maintaining or re-establishing forest
cover is a management objective, domains were restricted
to the intersection of MTBS burn perimeters and USFS
National Forest System (NFS) lands (excluding grasslands or
other non-forest land designations, see Figure 1). Burned areas
outside of these lands and burned areas on non-forested lands

more generally were not considered parts of the domains
of interest. Finally, US state boundaries were overlaid over
the burn perimeters. This was done in part to account for
differential sampling intensities over time across states (see
Supplementary Figure 1), as well as to allow for estimation at a
state-level resolution.

Given these constraints, the most finely resolved domains
considered here consist of a complex of NFS lands within an
individual westernUS state that are spanned byMTBS perimeters
of a specific burn year. But also considered are aggregates of
these domains taken over different time spans. Thus, allowing
for a 2-year burn period, a domain can consist of NFS lands
within a western US state spanned by MTBS perimeters from
a given biennium; a 10-year burn period allows for domains
consisting of NFS lands within an individual state spanned by
MTBS perimeters from a given decade. In these instances, only
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non-overlapping time spans are considered; that is, in the 10-
year case, we consider decadal domain burn periods ranging from
1990–1999 to 2000–2009.

The parameters of interest for each domain are taken as the
mean tree densities at specified post-burn intervals. That is, as
λ(d, l) defined by Equation (1) with y(x, l) denoting tree density
(numbers of trees per ha) at location x at a temporal lag of l years
post-fire. Below we consider only lags of 2 years or greater owing
to the fact that data on first year germinants are not collected on
FIA plots.

Domain Estimation
The FIA sample is distributed across all lands, while the domains
of interest here span only burned, forested lands under NFS
ownership. Therefore, the full FIA sample was first subset to
plots falling withinMTBS perimeters and within the states shown
in Figure 1. The geographic coordinates of these plots and the
standard cluster configuration were then used to determine the
burned status of subplots. Data for subplots outside the bounds
of any MTBS perimeters dating back to 1984 were dropped;
measurement data for all remaining subplots were tied to the
most recent MTBS burn and an associated fire-measurement
lag computed. FIA condition mapping procedures then enabled
elimination of subplots or portions of subplots classified to non-
forest conditions (e.g., rangeland condition). Notably, subsetting
to forested subplot data did not eliminate any plot measurements
from our analysis set, it changed only the subplot support of those
FIA plot measurements spanning multiple conditions. Finally,
subplot measurement data were associated with the domains
described above or with none of those domains (e.g., because
a subplot was not located on NFS lands); data from the same
domain and having the same lag were then aggregated to the
plot level. All geospatial operations were undertaken in R (R Core
Team, 2021).

Sample sizes available for direct estimation n(d, l) were
determined from the number of FIA plot measurements falling
within the domain d of interest and at the lag l of interest. In this,
and in the subsequent estimators, plot-level records were treated
the same irrespective of potentially differing numbers of subplots
(e.g., because some subplots were outside the domain of interest
or measured at a different lag). Plot-level compilations of trees
per ha (all size classes, all species) were used for direct estimation
of λ(d, l) via estimator (Equation 2). This domain sample mean
ȳ(d, l) is not an unbiased (or conditionally unbiased) estimator
of λ(d, l) under the FIA design. For instance, consider a domain
known to completely encompass 10 hexagons comprising a 10-
year remeasurement panel (see Bechtold and Patterson 2005) as
well as portions of neighboring hexagons. Then, conditioning
on a domain sample size of 1 also means conditioning on the
location of the singular plot measurement coming from within
one of the 10 completely spanned hexagons (and not from any of
the incompletely spanned hexagons), meaning that the domain
sample mean cannot be conditionally unbiased in general. Still,
as with other ratio-type estimators the bias will decrease with
increasing sample size. As an aside, we note that the domain
sample mean (Equation 2) differs from the ratio estimation
approach adopted by the FIA program. In this application, a

yk in Equation (2) is the number of trees on burned, partially-
forested subplots of an FIA plot divided by the aggregate area of
those burned, partially-forested subplots. The strategy advanced
by Bechtold and Patterson (2005) is to instead (i) average the
numbers of trees on burned forest land per unit plot area; (ii)
average the areas of burned forest land per unit plot area; (iii)
form a ratio of these two averages. Williams (2001) describes
some of the key differences between these ratio estimators.

The standard error of ȳ(d, l) was estimated using

SE
[
ȳ(d, l)

]
=

σ̂y(d, l)
√
n(d, l)

(6)

where

σ̂ 2
y (d, l) =

1

n(d, l)− 1

∑

k∈s(d,l)

[
yk − ȳ(d, l)

]2
(7)

is an estimator of the within-domain sample variance.
Direct estimates of λ(d, l) [where n(d, l) ≥ 1] and associated

standard errors [where n(d, l) ≥ 2] were computed for all
domains and all feasible lags. Tree density could not be estimated
for all possible lags on all domains, however, because the
annualized FIA program began only in 2001 (and only then
for some states; see Supplementary Figure 1). Also, at the time
of this research measurements were available only through
2018. Thus, for example, mean tree densities at the 5- and 10-
year lags are estimable for the domain defined as NFS lands
burned in California in 2000, but only at the 5-year lag for
the domain defined as NFS lands burned in California in 2010.
Variability in the numbers of domains for which tree density
can be estimated by burn period and lag is summarized in
Supplementary Figure 2 for domains of various burn interval
lengths. It’s also worth noting that for multi-year domains, lag
remains constant and the applicable plot measurement years vary
over theMTBS perimeters. For example in the case of the domain
d comprised of NFS lands in ID burned in 2006 or 2007, the direct
estimator of λ(d, l) for l = 10 uses only 2016 plot measurements
for areas burned in 2006 fires and only 2017 measurements over
the 2007 burns. This preserves the length of time elapsed between
burns and corresponding plot observations.

Every direct domain and lag estimate was compared against
two types of indirect estimates. The first type augmented the
domain sample size by borrowing data from a broader spatial
extent. Specifically, for a given domain d and lag l, all FIA
plot measurements with the same lag l and falling within
MTBS perimeters intersected by a spatial buffer extended around
domain A(d, l) were drawn into s̃(d, l). Buffer distances ranging
from 25 to 250 km were implemented in R (R Core Team, 2021).
Note that under this procedure the augmented sample s̃(d, l) can
include plot data that are not within any domain of interest (i.e.,
in MTBS perimeters but outside the administrative state and/or
NFS delineation), but only if the plot measurements were taken l
years post-fire.

The second type of indirect estimate was obtained from
augmented samples formed by borrowing data from a broader
temporal extent. For a given domain d and lag l of interest, any
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FIA plot measurements made within the spatial extent A(d, l)
and at l ± δ years post-fire were drawn into s̃(d, l). With this
approach the augmented sample s̃(d, l) can include only plot data
from the same domain of interest [same MTBS perimeter(s)] but
measurements taken prior or subsequently to the lag of interest.
Thus, for a domain d defined as all 2010 MTBS burns on NFS
lands in Montana and a lag of interest of l = 5 years, s(d, l) would
consist only of plot data measured in 2015 within A(d, 5); but
s̃(d, l) would consist also of plot data measured in 2015±δ within
the spatial extent A(d, 5) (provided 2015 − δ ≥ 2012 because
only l ≥ 2 year data are considered, and provided 2015 + δ ≤

2018 because FIA measurements from 2019 or later were not
available). Lag buffers δ ranging from 1 to 7 years were evaluated.

With both sample augmentation strategies, the indirect
estimator (Equation 3) was applied. Furthermore, estimates of
standard error were obtained similarly to direct estimation as

ŜE

[
ˆ̄y(d, l)

]
=

ˆ̂σ y(d, l)
√
ñ(d, l)

(8)

where

ˆ̂σ
2
y(d, l) =

1

ñ(d, l)− 1

∑

k∈s̃(d,l)

[
yk − ˆ̄y(d, l)

]2
(9)

Thus, the estimated standard error for the indirect estimator is
a function of both a potentially larger sample size and of the
variability within that larger sample. Relative standard error was
obtained by relating ŜE to estimated tree density.

MSE Estimation
Equation (8) can be used to estimate the precision of the indirect
estimator, but makes no attempt to account for its inherent bias;
a useful indicator of this estimator’s accuracy would account
for both. Equation (4) led to two estimators of the MSE of the
indirect domain estimators (see Appendix B for details). The
simplest, again suppressing the domain and lag indices d and l
for brevity, takes the form

M̂SE

[
ˆ̄y
]
1
=

(
ˆ̄y− ȳ

)2
−

σ̂ 2
y

n
(10)

This MSE estimator is based on an approximation suggested by
Rao and Molina (2015, p. 44) but employs ȳ in place of a strictly
unbiased domain estimator. It does not attempt to account for the
covariance between the direct and indirect domain estimators.
As such, it can be expected to be more appropriate in contexts
where augmented sample sizes are consistently much larger than
domain sample sizes. The other estimator evaluated here takes
the form

M̂SE

[
ˆ̄y
]
2
=

(
ˆ̄y− ȳ

)2
−

σ̂ 2
y

n

[
1− 2

n

ñ

]
(11)

In this estimator the factor
[
1− 2 n

ñ

]
results from the inclusion

of an estimated covariance between ˆ̄y and ȳ. We note that

M̂SE

[
ˆ̄y
]
2
≥ M̂SE

[
ˆ̄y
]
1
(though neither estimator is guaranteed

to be positive) and expect that M̂SE

[
ˆ̄y
]
2
will be more accurate

when augmented samples are not substantially larger than the
corresponding domain samples. Finally, as suggested by Marker
(1995) we computed estimated squared bias as of the indirect
domain estimator as

K̂

[
ˆ̄y
]
= M̂SE

[
ˆ̄y
]
q
− ˆ̂σ

2
y(d, l) (12)

for q = 1, 2.
Estimates of MSE and squared bias were computed for each
domain and lag individually, and also averaged over groups
of proximate domains. The latter strategy was suggested by
Gonzalez and Waksberg (1973) to reduce instability in MSE
or squared bias estimates. In this study, we averaged MSE and
squared bias estimates over all domains within the same state
and having the same burn period length (e.g., any biennium
for domains with 2-year burn periods), as well as over all
estimation lags.

RESULTS

Over the 11 states of the western USA shown in Figure 1,
there were 4,778 FIA P2 plot locations falling at least partially
within MTBS burn perimeters dating from 1984 to 2018. These
locations provided 5,946 plot measurements from burned areas
with measurement lags ranging from 2 to 35 years post-fire.

The distribution of domain sample sizes for domains of
different temporal extents is shown in Figure 2. For domains
spanning only a single burn year (e.g., all NFS lands burned in
OR in 2000), sample sizes are almost so small as to prohibit direct
estimation: in only 6% of cases (domains × lags) did the sample
size exceed 5 observations. Even for domains spanning 4-years
(e.g., all NFS lands burned in OR between 2000 and 2003), the
median sample size is only 2 observations. This rises to 7 in
the case of decadal domains (e.g., all NFS lands burned in OR
between 2000–2009), the lowest temporal resolution considered
to be of administrative utility.

Though small, and inherently random, these domain sample
sizes are governed in part by the FIA sampling intensity of
approximately 1 plot measurement per 2,400 ha per decade. That
nominal intensity is shown as the dotted line in Figure 2; realized
intensities are captured by the solid lines that consistently fall
short of the approximately 1:24,000 nominal rate.

Figure 2 also highlights two distinct domains for reference.
Shown in red is the domain comprising OR NFS lands burned
between 2000 and 2009 (lags 2–9 year). At lag 2 year, this domain
spanned an areal extent of 605,690 ha, but with partial reburns the
extent dropped to 550,806 ha at lag 9 year. Sample sizes ranged
from 15 (lag 6 year) to 28 (lag 4 year), reflecting the generally
high inter-annual variation in domain sample sizes. In blue is
the domain comprising ID NFS lands burned between 1990 and
1999 (lags 14–19 years). This domain spanned an area of 332,272
ha at lag 14 year and captured sample sizes ranging from 6 to
15 observations.

Restricting attention to decadal domains, the relationship
between area and estimated standard error of the domain sample
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FIGURE 2 | Domain sample sizes and areas for annual, quadrennial, and decadal domains, showing data for all lags. Dotted line is the nominal FIA sampling intensity;

solid lines are linear regressions for particular lag buffers. Red symbols denote various lags for the OR 2000–2009 domain; blue symbols denote estimable lags for the

ID 1990–1999 domain.

means is shown in Figure 3. Domains with larger areal extents
generally had larger sizes (see Figure 2) and smaller standard
errors (Figure 3, left panel), though there is substantial variation
around the latter trend.Moreover, standard errors could not even
be computed for 15% of cases owing to domain sample sizes less
than 2; over the remaining cases the median relative standard
error was 47%. Figure 3 also shows the relationship between
estimated standard errors (where these could be computed) and
domain sample means. On the natural logarithm scale, there is a
strong linear association between the domain sample mean and
its estimate standard error.

Borrowing data from an extended spatial extent generally
augments the sample sizes available for indirect domain
estimation (Figure 4). The dotted lines in Figure 4 correspond
to the same nominal sampling intensity as in Figure 4, while the
solid lines now show the realized augmented sampling intensities.
As expected, the larger the spatial buffer and the larger the
initial domain extent, the greater the increase in sample size.
However, the spatial buffering operation yields erratic results
at the domain level. For the domain spanning OR NFS lands
burned between 2000 and 2009 (red symbols), spatial buffering
greatly and consistently increases the sample sizes available for
estimation. Yet the effect is much less pronounced for the domain
spanning ID NFS lands burned between 1990 and 1999.

The distribution of estimated standard errors for indirect
estimates borrowing proximate spatial data, relative to those
for direct estimates, is shown in Figure 5 for 10-year domains.
Although the relative standard errors of indirect estimates are

larger than those for the corresponding direct estimates in some
cases (even with 200 km buffers), spatially augmented samples
tend to reduce relative standard errors. The extent of the shift in
the distribution of standard errors is a function of the magnitude
of the spatial buffer, as expected. However, the magnitude of
the shift is not pronounced and the median relative standard
error using a 200 km buffer is still 38%. In addition, even at a
200 km buffer, 5% of cases (10-year domains × estimable lags)
have augmented sample sizes less than 2 and thus do not permit
estimation of standard errors.

Relative to spatial buffering, borrowing data from an
expanded temporal extent augments domain sample sizes at
a consistent rate (Figure 6). The dashed lines in Figure 6

represent the nominal sampling intensity of a domain augmented
according to the expanded temporal range of measurements.
Specifically, one would expect approximately 1 FIA plot
measurement at a given lag l within a domain of 24,000 ha; by
extension, in allowing for plot measurement lags of l ± δ one
would expect to collect 1+2δ plot measurements for a domain of
that size. Mean augmented sample sizes (solid lines in Figure 6)
fall short of the expected augmented sample sizes, but the sample
augmentation effect is more consistent across domains than with
spatial buffering. That is, with an expanded temporal extent
there is less variability in the proportionate increases in sample
sizes across domains, as indicated for the highlighted OR and
ID domains.

Corresponding to the more consistent sample augmentation
of temporal buffering, the impacts on the distribution of
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FIGURE 3 | Relationships between estimated relative standard errors of domain sample means and domain areas (left) and between estimated standard errors and

domain sample means (right; log scale). Only results for 10-year domains (any lags) and domain sample sizes above 2 are shown.

FIGURE 4 | Augmented sample sizes and domain areas for 10-year domains (all lags) and different spatial buffers (50, 100, and 200 km). Dotted line is the nominal

FIA sampling intensity; solid lines are linear regressions for particular spatial buffers.

estimated standard errors of indirect estimates were larger and
more consistent (Figure 7). Comparison to Figure 5 also shows
that relative standard errors of indirect estimates under l ± δ

borrowing are generally lower than under space borrowing. At
the least intensive lag-borrowing level (δ = 1 yr), they exceed

the corresponding standard errors of the direct estimator much
less frequently than under space borrowing, at even the largest
buffer distance (200 km). Also, unlike under space borrowing
(Figure 5). Figure 7 shows substantial reductions in relative
standard errors of both domains represented by red and blue
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FIGURE 5 | Estimated relative standard errors of augmented sample means for 10-year domains (all lags) under for different spatial buffers; domains and lags are

ordered according to relative standard errors of domain means (as represented by the black curve). Horizontal axis labels are individual domain and lag identities and

have been suppressed for clarity.

FIGURE 6 | Augmented sample sizes and domain areas for 10-year domains (all lags) and different lag buffers (δ =1, 2, 4 year). Dotted line is the nominal FIA

sampling intensity r ≈ 1 :24, 000; dashed lines are augmented intensities (2δ + 1)r; solid lines are linear regressions for particular burn intervals.
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FIGURE 7 | Estimated relative standard errors of augmented sample means for 10-year domains (all lags) under for different temporal buffers; domains and lags are

ordered according to relative standard errors of domain means (represented by the black curve). Horizontal axis labels are individual domain and lag identities and

have been suppressed for clarity.

points, which consistently decline with increasing δ until they are
approximately equal across lags for both domains at δ = 4 yr.

Turning to MSE and bias estimation, for the decadal
domains considered above MSE of the indirect estimators
couldn’t be estimated in 14% of cases (19 of 132 domains
× lag combinations) regardless of temporal or spatial buffers
employed. This was a result of domain sample sizes less than 2,

which precluded estimation of σ̂ 2(d, l) and thus of M̂SE

[
ˆ̄y
]
1
or

M̂SE

[
ˆ̄y
]
2
. Even setting aside such cases, both MSE estimators

frequently produced negative estimates when applied at the
domain level. For example, for the indirect estimates employing

data with a lag buffer of δ = 1 year, M̂SE

[
ˆ̄y
]
2
was negative in

41% of cases (domains × lags) while M̂SE

[
ˆ̄y
]
1
was negative in

71% of cases. As δ increased, the frequency of negative M̂SE

[
ˆ̄y
]
1

declined (though never fell below 50%), but the frequencies of

negative M̂SE

[
ˆ̄y
]
2
increased to converge with those of M̂SE

[
ˆ̄y
]
1
.

Figure 8 shows estimated relative MSE (%) for the indirect
domain estimator with δ = 2 year plotted against domain
area (ha), computed individually for each 10 year domain ×

lag combination, using Equation (11). While variability declined
with domain area, it is clear that both MSE estimators are too
variable across domains and within domains across lags to be of
operational utility at the domain level.

Furthermore, both MSE estimators were still negative when
averaged over proximate domains. Specifically, across different

FIGURE 8 | Estimated relative MSE (%) for the indirect domain estimator with

δ = 2 plotted against domain area (ha), computed individually for each 10 year

domain × lag combination using Equation (11).

temporal buffers δ, M̂SE

[
ˆ̄y
]
2
yielded negative estimates for 20–

40% of groups and M̂SE

[
ˆ̄y
]
1
for 50–90% of groups. Squared bias
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as estimated by Equation (12), which subtracts the variance of
the indirect estimator from a corresponding MSE estimate, was
necessarily negative even more often than either MSE estimator
taken alone.

DISCUSSION

The framework for indirect domain estimation we propose
could be generalized to any probability sample of a target
forest attribute (e.g., mean forest biomass density, total
merchantable timber volume) distributed across spatiotemporal
domains. Domains may span any time periods (for which
requisite inventory data are available) and be comprised of
contiguous or disjoint spatial polygons. It’s worth remarking
on the inherently complex nature of spatiotemporal domains
comprised of burn perimeters intersecting a specific ownership
category. Polygons are disjoint, often intersecting (reburns),
and irregularly distributed in time and space according to
neighborhood fire legacies.

When we expand domain delineations in space or time, the
number of FIA P2 plot measurements will increase at a pace
just below the nominal rate of approximately 1 measurement
per 24,000 additional hectare-years (Figure 2). As we expand
domains, however, they gradually lose administrative utility.
For example, estimates of post-fire regeneration in areas
burned over a reasonably narrow burn period length but
extending over a vast geographic region (e.g., multiple states),
or alternatively over a reasonably small geographic area but
extending between 1984 and 2004 (20-year burn year window),
would provide information of little utility to managers trying to
optimize limited post-fire management resources for maximal
regeneration impact.

Domain samples fluctuate around their anticipated sizes
(given the nominal FIA sampling intensity and domain areas)
owing in part to how the stratified random spatial distribution
of plots intersects historic burn patterns. However, that the
relationship between realized domain sample sizes and areas
consistently falls short of its expectation must be due in large
part to the fact that tree data are available only for FIA plots
that are classified as partially forested. It may also be due in
part to a tendency to fall short of annual plot remeasurement
targets (see e.g., Roesch 2018). It is important to note that
the consistent 1 observation per additional 24,000 ha−1 yr−1

burned area sample augmentation rate can only be expected
to reliably emerge in years following the implementation
of FIA’s annualized inventory measurement protocols. This
wasn’t until 2001 at the earliest, 2011 in Wyoming, and with
irregularities due to inconsistencies in funding in the interim
(Supplementary Figure 1).

Our analysis of domain and augmented sample sizes and
associated standard errors showed 10-year state-level domains
to be the smallest spatiotemporal domains of administrative or
management utility feasible for estimation of post-fire forest
density using the domain estimators evaluated. As a general
approach to estimation, direct FIA-based domain expansion
estimation is unfeasible due to insufficiently small domain

sample sizes and resultant high domain-level standard errors,
even in 10-year domains. We note as well that we didn’t
account for the effects of retained plot size (e.g., only burned
subplots) as implemented here on variance estimates. Hill et al.
(2018) describe a methodology for incorporating differential plot
sizes. Finally, though it wasn’t an objective of this research,
experimentation with other means of estimating the variance
of domain estimates may be warranted (e.g., through the use
of generalized variance functions as described by Wolter 2007,
Chapter 7). A strong relationship between direct domain tree
density estimates and their relative standard errors (Figure 3,
right panel) was observed, as has been noted in other studies (e.g.,
Breidenbach et al. 2018).

Indirect estimators may offer an alternative. They are
attractive in their potential to decrease domain-level standard
errors. However, they rely on an implicit model that has the
density of the attribute of interest changing slowly beyond
the domain, at least relative to the variance of the attribute.
We considered two strategies for borrowing data to augment
domain samples for indirect estimation: borrowing in time (lag
borrowing) and borrowing in space (space borrowing).

Under space borrowing, the rate of increase of the augmented
sample size is dependent on the neighborhood fire legacy,
the neighborhood land use patterns, and the overall sampling
intensity. If many nearby forested hectares burned in the time
range of interest, the augmented sample size will increase
more quickly when data are drawn from a region only slightly
expanded in space. Conversely, in areas with lower levels of
nearby historic fire activity or lower levels of nearby forest
land, one would need to expand further in space to obtain
comparable increases in sample size. Yet borrowing extra-
domain sample data in this way necessarily introduces bias to
domain estimates. As plot observations from further away are
selected for inclusion in the augmented domain sample, the biotic
and abiotic environmental conditions of disparate forests may
resemble those of the focal domain to a lesser extent. For example,
borrowing in space can (and was observed to) draw on plot
observations from distinct ecological conditions.

Another means of borrowing data that are proximate in
space is to restrict the augmented sample to measurements (with
appropriate postfire lag) from the same or similar ecological
domains, regions or subsections (e.g., as delineated by Cleland
et al. 1997). Nationwide availability of ecoregion designations of
varied resolution would permit such restrictions. The capacity to
augment the domain sample at a consistent rate, however, would
still be governed by regional fire perimeter distributions in time
and space. It would also then be impacted by regional landscape
heterogeneity as exemplified by, for instance, varied ecoregions
in mountainous terrain (with distinct forest and wildfire fuel type
changes occurring over relatively short distances). An alternative
approach wherein the augmented sample sizes could be fixed
would be to borrow from the ideas underlying coarsened exact
matching (see e.g., Van Deusen and Roesch 2013). That is,
an initial spatial and/or ecological buffer could be evaluated
and then, for domains still having an insufficient augmented
sample size, the spatial buffer could be extended or the ecological
classification coarsened. More generally, drawing data from
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outside the domain of interest but from regions that share other
characteristics (e.g., ecological subsection) has parallels in the
ideas underlying post-stratification. Yet post-stratified estimation
is most commonly implemented as a strictly direct estimation
approach (e.g., Haakana et al. 2020) without drawing on data
from strata that extend beyond the domain of interest.

The spatial buffering algorithm utilized here can also be
related to nearest neighbor techniques (e.g., McRoberts 2012) in
that both define a neighborhood from which to borrow data.
However, nearest neighbor techniques select a fixed number
of observations using a neighborhood defined in a broader
auxiliary space (typically not restricted to or even dependent on
geographic variables), while under space borrowing the number
of observations selected into the augmented sample is a random
function of neighborhood fire legacy. For domains where few
additional observations are obtained under space borrowing
even with large buffer distances, nearest neighbor techniques
may need to reach very far in geographic space to obtain
the specified fixed number of neighbors, with the potential to
increase estimation bias.

Adoption of the temporal buffering algorithm allows for the
use of plot observations from the same geographic extent as the
domain of interest but measured at differing lengths of time-
since-disturbance. Though data from additional plot locations
falling within that extent are introduced, this method borrows
only in time. Other SAE applications in forest inventory have
pooled data from multiple years to generate domain estimates
for domains with fixed spatial extents and (usually implicit)
multi-year temporal extents (e.g., Breidenbach and Astrup, 2012;
McRoberts, 2012; Hill et al., 2018). Here, we explicitly borrow
sample observations with measurement years other than those
denoted by the spatiotemporal domain parameters and target
estimation lag. Spatiotemporal disturbance domains require a
high degree of specificity in domain definition, and by extension
in the definition of the temporal component of the target
attribute. This specificity led to the determination that to include
observations with measurement years other than those specified
by the relevant disturbance lag is to operate in the realm
of indirect estimation. Thus, the general estimation strategy
employed by Breidenbach and Astrup (2012) that integrates data
measured between 2005 and 2010 to estimate a periodic mean
is distinct from our lag-borrowing indirect estimation strategy.
With δ = 2 year, the latter would draw on observations from
2005 to 2009 to indirectly estimate a target attribute in 2007, but
on observations from 2006 to 2010 to indirectly estimate a target
attribute in 2008.

Even in areas exhibiting highly unfavorable conditions for
post-fire forest regeneration, some seeds will germinate, some
seedlings will establish, and some patches of forest will eventually
begin to regenerate over time. Thus, to include plots with
measurement years earlier than specified by d and l in s̃(d, l) is
to include observations which may not capture the full extent of
forest stand development in the focal domain, leading to negative
bias. Conversely, to include plots with later measurement years
is to include observations which may exaggerate the extent of
true forest stand development in the focal domain, leading to
positive bias.

As implemented in this study, lag borrowing augmented
domain samples (Figure 6) and decreased relative domain
standard errors (Figure 7) to a greater extent, and in a faster,
more consistent manner, than space borrowing (Figures 4, 5).
The smaller increases in precision of the indirect estimator
achieved via space borrowing relative to lag borrowing largely
reflect instances where few additional plots were obtained by
space borrowing (e.g., as in the case of the domain represented
by blue points in Figure 4). This could also result from instances
where plots from adjacent ecoregions with markedly different
regeneration conditions were selected, adding to within-sample
variability. Space borrowing has been shown to be effective
in domains whose spatiotemporal neighborhoods yield more
observations available for sample augmentation, for instance the
estimation of an attribute over a single time period distributed
across most or all adjacent forested area (e.g., Breidenbach and
Astrup, 2012; Magnussen et al., 2014a).

As methods for borrowing increase in complexity, so do their
associated sources, and likely magnitudes, of bias. For this reason
we evaluated explicit space and lag borrowing only. Overall,
lag borrowing exhibited greater magnitude and consistency of
increases in both augmented samples and precision of estimates
relative to space borrowing. These facts combine to suggest
lag borrowing to be a superior borrowing strategy to space-
borrowing for indirect expansion estimation of post-fire tree
density in western US-wide spatiotemporal domains with respect
to domain-level standard errors. That said, estimation of the
bias of indirect domain estimators remains a challenge. An
obstacle in formulating estimators of the MSE or squared bias
of an indirect domain estimator from Equations (4) to (5) is
the difficultly of reliably estimating the variance of an unbiased
domain estimator—for the absence of a precise direct estimator
is generally what motivates indirect estimation in the first place.
The MSE estimators proposed by Rao and Molina (2015) and
Gonzalez and Waksberg (1973), and squared bias estimator
proposed by Marker (1995), can be negative and yield widely
disparate MSE estimates for a single domain at lags separated
by just one or several years, as occurred in our application.
This resulted from subtraction of the unstable and often large
estimated variance of the direct domain estimator.

The MSE estimator we proposed, which accounts for the
covariance between direct and indirect domain estimates,
constituted some improvement but was still unstable and
frequently negative (Figure 8). It was also very high in some
domains, and in fact is necessarily larger than the other estimator
investigated. As suggested by Gonzalez and Waksberg (1973)

and Rao and Molina (2015), we also averaged M̂SE

[
ˆ̄y
]
1
and

M̂SE

[
ˆ̄y
]
2
over proximate domains to improve stability, but this

yielded only marginal improvements.
Indirect FIA-based expansion estimation of post-fire tree

regeneration in US state-level domains is probably most feasible
in domains with burn year periods of 10 years, owing to small
augmented sample sizes in many domains of shorter burn period
lengths. By δ = 2 yr, the vast majority of standard errors
of indirect lag-borrowed estimates are substantially lower than
their direct counterparts (Figure 7), suggesting δ = 2 or 3 as a
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potential starting point for operational domain estimation. This
is with the understanding that we were unable to effectively
characterize the bias of indirect estimates. Composite estimators
(Rao and Molina, 2015) seek to balance the instability of an
unbiased (or approximately unbiased) direct estimator with the
bias of a more precise indirect estimator. Weights controlling
the relative contributions of the component estimators are
typically constructed using either domain sample sizes or their
relative MSEs. Owing to our unreliable estimates of the MSE
of the indirect estimator, we could not have constructed a
composite estimator based on MSE. Though we could have
devised weights using domain sample sizes, we did not expect
the resultant composite estimates to be more precise than
the indirect estimates based on lag borrowing alone, and in
any case did not expect MSE estimation techniques to apply
successfully to the composite estimator for the same reasons
discussed above. These results point to the need for exploration
of model-assisted or model-based SAE strategies that could draw
on systematic associations (or effective post-stratifications) of
postfire tree density as a function of auxiliary variables available
across the population.

CONCLUSION

Direct FIA-based estimation of postfire tree density at
particular times-since-disturbance is deemed unfeasible
due to insufficiently small domain sample sizes. Indirect domain
ratio estimators that borrow sample observations from outside a
focal domain are alternatives to auxiliary-assisted methods and
have the potential to consistently and rapidly augment decrease
domain level standard errors. Borrowing in time proved to
augment domain samples more consistently than borrowing in
space. On the basis of relative standard errors alone, indirect
estimation of postfire tree regeneration in 10-year state-level
domains with δ = 2 or 3 presents a promising alternative to
direct estimation.

As indirect estimators necessarily add bias to domain
estimates, reliable estimators of MSE are required. MSE

estimators of indirect domain estimators have been proposed
and evaluated in the literature, and we evaluate a new MSE
estimator that accounts for the covariance between direct
and synthetic domain estimates. However, none of the MSE
estimators evaluated performed adequately.

Our results highlight the difficulties of estimating MSE and
squared bias, and point to the need for further experimentation
with methods for estimating MSE, including potentially
modeling MSE using appropriate covariates. Alternatively,
unbiased SAE techniques that preclude the need for bias
estimation, and that leverage auxiliary data, warrant inquiry in
this context.
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APPENDIX

Appendix A: Mean & Variance of the Direct
Estimator
Adopting the continuous population framework of Cordy (1993),
we consider equal probability sampling designs that can be
described by specifying a constant inclusion density function
π(x, t) = π(t) for all possible measurements locations over
a land surface in a given year t. For such designs, the direct
domain estimator (2) can be formulated as a ratio of the two
Horvitz-Thompson domain estimators

τ̂π (d, l) =
∑

k∈s(d,l)

yk

π(l)
=

∑
k∈s(d,l) yk

π(l)
(A1a)

Âπ (d, l) =
∑

k∈s(d,l)

1

π(l)
=

n(d, l)

π(l)
(A1b)

where π(l) is the inclusion density function at l years following
the defining disturbance event. Estimators (A1) are unbiased for
the total of y over A(d, l) at year l from disturbance, and for the
total area of A(d, l), respectively. Yet the nonlinear combination
of these estimators is generally biased for λ(d, l). The domain
sample mean (2) can be described as “approximately unbiased” in
the sense that its bias diminishes with increasing expected n(d, l)
(see Särndal et al., 2003, p. 185), though this is of limited utility in
a small area estimation context where we anticipate small n(d, l).

Cordy (1993) provides a number of general results concerning
the bias and variance of estimators such as ȳ(d, l). In particular,
his results allow that if the conditional inclusion density function
πn(x, l) given n(d, l) is positive for all measurement locations
withinA(d, l), then

E
[
ȳ(d, l)

∣∣ n(d, l)
]
= λ(d, l) (A2)

provided n(d, l) > 0. This conditional unbiasedness result
holds for SRS because under that design

πn(x, l) =
n(d, l)

|A(d, l)|
(A3)

for all x ∈ A(d, l). However, conditional unbiasedness does not
extend to all equal probability designs. For example, conditional
on the hexagonal tessellation employed by the FIA’s unaligned
systematic design it is possible to have πn(x, l) = 0 for some
x ∈ A(d, l) given n(d, l). In particular, suppose A(d, l) spans
one entire FIA phase 1 hexagon (see Bechtold and Patterson,
2005) slated for measurement in year l as well as portions
of several other phase 1 hexagons; if n(d, l) = 1 then the
conditional inclusion density function will be positive over the
completely subsumed hexagon but must be 0 over the other
intersected hexagons. This will generally result in bias. The
above also assumes that yk = y(xk, lk) is a point-measurement
(or a measurement employing protocols suitably adjusted for
boundary overlap) and that one can thus ignore any boundary
overlap effects (see e.g., Gregoire, 1998).

The variance of ȳ(d, l) for random n(d, l) has no analytically
tractable form as it is a function of the variability of both
estimators in (A1). From Cordy (1993), under SRS the
conditional variance of ȳ(d, l) given n(d, l) can be written in the
familiar form

V
[
ȳ(d, l)

∣∣n(d, l)
]
=

1

n(d, l) |A(d, l)|

∫

A(d,l)

[
y(x, l)− λ(d, l)

]2

dx =

σ 2
y (d, l)

n(d, l)
(A4)

Furthermore, that variance can be (conditionally) unbiasedly
estimated using

V̂
[
ȳ(d, l)

]
=

1

n(d, l) [n(d, l)− 1]

∑

k∈s(d,l)

[
yk − ȳ(d, l)

]2
=

σ̂ 2
y (d, l)

n(d, l)

(A5)

For spatially structured designs such as the USFS FIA, the
variance will be a function of more complex pairwise inclusion
density functions (see Cordy, 1993). Moreover, it may not be
possible to derive (conditionally) unbiased variance estimators
because the pairwise inclusion density function can be 0 for sets
of proximate locations. In such settings, estimator (A5) has been
recommended as a conservative variance estimator in the sense
that it is expected to overestimate variability in cases where the
spatial design effectively reduces sampling error (e.g., Baffetta
et al., 2009; see also Wolter, 2007, pp. 47–48). Alternatively,
variance estimation strategies developed for systematic designs
(e.g., Frank and Monleon, 2021) could be evaluated.

Appendix B: Mean, Variance, & MSE of the
Indirect Estimator
Certain properties of the indirect domain estimator (3) follow
directly from the results of Appendix A. These are extended
below suppressing the parenthetical domain and lag dependence
notation (d, l) unless necessary.

Under SRS the conditional expectation of ˆ̄y is a function of
the distribution of y over the expanded spatiotemporal region
Ã = Ã(d, l), i.e.,

E

[
ˆ̄y
∣∣∣ñ

]
=

1

|Ã|

∫

˜A

y(x, l) dx =
|A|

|Ã|
λ +

|Ã| − |A|

|Ã|

◦

λ = λ̃

where λ̃ is the density of y over Ã and
◦

λ is the density of y
over only the extra-domain region supplying additional data. The
conditional bias of (3) as an estimator of λ will therefore be a
function of the extent to which the density of y over the “small
area” A differs from that over the “large area” Ã. Additionally,
under SRS the conditional variance of ˆ̄y can be written as

V

[
ˆ̄y
∣∣∣ñ

]
=

1

ñ |Ã|

∫

˜A

[
y(x, l)− λ̃

]2
dx =

σ̃ 2
y

ñ
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where σ̃ 2
y is the variance in y over Ã. This conditional variance

can be unbiasedly estimated using

V̂

[
ˆ̄y
]
=

1

ñ [ñ− 1]

∑

k∈s̃

[
yk − ˆ̄y

]2
(A6)

conditional on the realized sample size ñ. As for the direct sample
mean (2) these results do not extend generally to other (equal or
unequal probability) spatial designs, but equation (A6) can again
be applied as a conservative estimator of variance.

To describe the MSE of ˆ̄y, it is useful to note that it can be
broken down much like its expectation above

ˆ̄y =
1

ñ

∑

k∈s̃

yk =
1

ñ




∑

k∈s

yk +
∑

k∈s̃
k/∈s

yk


 =

n

ñ
ȳ+

ñ− n

ñ
¨̄y (A7)

where ¨̄y = ¨̄y(d, t) is the mean of the observations in
s̃ but not in s (i.e., of the observations that have been
borrowed from outside the domain of interest). Then, adopting
the approach used by Rao and Molina (2015, p. 43), write
the conditional MSE of the indirect estimator (3) given
n as

MSE

[
ˆ̄y
∣∣∣n

]
= E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
+ E

[(
ȳ− λ

)2∣∣∣n
]

+ 2E
[(

ˆ̄y− ȳ
) (

ȳ− λ
)∣∣∣n

]

= E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
+ E

[(
ȳ− λ

)2∣∣∣n
]

− 2E
[
ȳ
(
ȳ− λ

)∣∣n
]
+ 2E

[
ˆ̄y
(
ȳ− λ

)∣∣∣n
]

(A8)

The second and third terms on the right hand

side of (A8) relate to the variability of ȳ(d, t) while
the last term connects to the association between
ȳ(d, t) and ˆ̄y(d, t). Indeed, under SRS, (A8) can be
simplified to

MSE

[
ˆ̄y
∣∣∣n

]
= E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
− V

[
ȳ
∣∣n

]
+ 2C

[
ˆ̄y, ȳ

∣∣∣n
]

(A9)

where C

[
ˆ̄y, ȳ

∣∣∣n
]

denotes (conditional) covariance. Further

simplification is possible under SRS by focusing on the
covariance term

C

[
ˆ̄y, ȳ

∣∣∣n
]
= E

[
ˆ̄y
(
ȳ− λ

)∣∣∣n
]

= E

{
E

[
ˆ̄y
(
ȳ− λ

)∣∣∣n, ñ, s
]∣∣∣n

}

= E

{(
ȳ− λ

)
E

[
ˆ̄y
∣∣∣n, ñ, s

]∣∣∣n
}

(A10)

Substituting (A7), the inner expectation of (A10) becomes

E

[
ˆ̄y
∣∣∣n, ñ, s

]
=

n

ñ
ȳ+

ñ− n

ñ
E

[
¨̄y
∣∣n, ñ, s

]
=

n

ñ
ȳ+

ñ− n

ñ

◦

λ

Thus,

C

[
ˆ̄y, ȳ

∣∣∣n
]
= E

{(
ȳ− λ

) n
ñ
ȳ+

(
ȳ− λ

) ñ− n

ñ

◦

λ

∣∣∣∣n
}

= E

{n
ñ

∣∣∣n
}
E

{(
ȳ− λ

)
ȳ
∣∣n

}
+

◦

λE

{
ñ− n

ñ

(
ȳ− λ

)∣∣∣∣n
}

= E

{n
ñ

∣∣∣n
}
V

[
ȳ
∣∣n

]

Finally, substituting this last result into (A9) gives

MSE

[
ˆ̄y
∣∣∣n

]
= E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
− V

[
ȳ
∣∣n

] [
1− 2E

{n
ñ

∣∣∣n
}]

(A11)

Note that if ñ = n so that no observations are borrowed and that
therefore ˆ̄y = ȳ, thenMSE

[
ˆ̄y
∣∣∣n

]
collapses to simply V

[
ȳ
∣∣n

]
, as it

should. However, if data are drawn from a much larger area such

that ñ≫ n then MSE

[
ˆ̄y
∣∣∣n

]
tends to E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
− V

[
ȳ
∣∣n

]
.

The latter expression is suggested as an approximation by Rao
and Molina (2015, p. 44), but will be too small unless data
are drawn from a substantially larger area than the domain of
interest. Finally, note again that this expression applies in the case
of SRS, but not more generally.

Expression (A11) suggests a simple sample-based estimator of
the conditional MSE

M̂SE

[
ˆ̄y
∣∣∣n

]
=

(
ˆ̄y− ȳ

)2
−

σ̂ 2
y

n

[
1− 2

n

ñ

]
(A12)

This estimator differs from the framework suggested by Rao and
Molina (2015, p. 44) only by the factor

[
1− 2 n

ñ

]
; this factor

guarantees larger estimates of MSE, but still cannot guarantee
non-negative estimates. We are unaware of any investigation of
its sampling properties, however.
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Mara L. Alexander1, David Anderson6, Emrys Treasure3, Joanne Baggs3 and
Ray Sheffield7

1 Ecosystem Management Coordination, USDA Forest Service, Washington, DC, United States, 2 Northern Region, USDA
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Service, Portland, OR, United States, 6 Southwestern Region, USDA Forest Service, Albuquerque, NM, United States,
7 Retired, USDA Forest Service, Hendersonville, NC, United States

Forest Inventory and Analysis (FIA) data provides robust information for the United States
Forest Service’s (USFS) mid-to-broad-scale planning and assessments, but ecological
challenges (i.e., climate change, wildfire) necessitate increasingly strategic information
without significantly increasing field sampling. Small area estimation (SAE) techniques
could provide more precision supported by a rapidly growing suite of landscape-scale
datasets. We present three Regional case studies demonstrating current FIA uses, how
SAE techniques could enhance existing uses, and steps FIA could take to enable SAE
applications that are user-friendly, comprehensive, and statistically appropriate. The
Northern Region uses FIA data for planning and assessments, but SAE techniques
could provide more specificity to guide vegetation management activities. State and
transition simulation models (STSM) are run with FIA data in the Southwestern Region to
predict effects of treatments and disturbances, but SAE could support model validation
and more precision to identify treatable areas. The Southern Region used FIA to identify
existing longleaf pine stands and evaluate condition, but SAE techniques within FIA tools
would streamline analyses. Each case study demonstrates a desire to have FIA data on
non-forested conditions and non-tree variables. Additional tools to measure statistical
confidence would help maximize utility. FIA’s SAE techniques could add value to a widely
used data set, if FIA can support key supplements to basic data and functionality.

Keywords: small area estimation (SAE), Forest Inventory and Analysis (FIA), United States Forest Service, forest
planning, forest assessment, National Forest System, forest management

INTRODUCTION

The United States Forest Service’s (USFS) National Forest System (NFS) manages 78 million
hectares of National Forests and Grasslands. NFS is legally bound to a multiple-use mandate
(i.e., timber, recreation, watersheds, and wildlife), which creates complex decision-making
environments and diverse information needs. With a vast land base challenged by climate change
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and increasing wildfire intensity, and a proportionally limited
ability to actively manage forest area, collect vegetation data, and
analyze and interpret data due to budget and staffing constraints,
NFS has a critical need for strategic information that can support
adaptive management at the scale of the challenge without greatly
increasing data collection and analyses.

Small area estimation (SAE) is a statistical technique used to
enhance data in a specific area (i.e., geographic, demographic)
with data not confined to that area (Rao, 2003; Jiang and
Rao, 2020). SAE borrows strength from larger areas and
uses auxiliary information to establish relationships with the
response. With National Forest Inventories (NFIs), SAE can
integrate auxiliary data (i.e., remote sensing, climate layers, and
landscape-scale geospatial data) with field-sampled data. For
example, NFIs in Scandinavia were combined with satellite and
other geospatial data to parameterize image data and perform
pre-processing, enabling enhancement of various monitoring
applications (Tomppo et al., 2008). Models improve with
more highly correlated auxiliary information and response
data, and with higher resolution auxiliary information. For
more information on SAE, see Ghosh and Rao (1994); Rao
(2003), Pfeffermann (2013); Jiang and Rao (2020). Given NFS’
limited capacity for additional field sampled vegetation data and
increased availability of landscape scale data, SAE using NFI data
could support land management planning for NFS.

The Forest Inventory and Analysis (FIA) program (the
NFI for NFS) is the most comprehensive and consistent
national vegetation data set for the agency, delivering a unique
set of field-measured data and accompanying analysis tools
that provide baseline information and the ability to monitor
current vegetation conditions through repeated measurement of
permanent plots. FIA operates across all United States land the
program defines as “forested” (generally, 10% tree canopy cover)
(USFS, 2021b) and uses an annualized, repeated sampling system
designed to make estimates of forested land vegetation conditions
across multiple scales. FIA plots are on a semisystematic sampling
grid. Locations are unbiased geographically, with approximately
one plot per 2,428 hectares of forested land, and plot data
are collected according to the FIA protocol (USFS, 2021b) in
a largely nationally consistent way (Bechtold and Patterson,
2005). FIA forest-plot data are remeasured every 10 years in the
western United States, and every 7 or 5 years in the eastern and
southern United States (McRoberts et al., 2005). Data about trees
and associated characteristics are collected on all inventoried
plots (with some differences in tree data among the four FIA
units (USFS, 2021c). Additional information about down-woody
material, understory vegetation, and noxious weeds may be
collected depending upon FIA unit.

Forest Inventory and Analysis data are useful for NFS to
assess vegetation conditions at the national to Regional scale. NFS
contains nine Regions that each manage approximately 9 to 14
million hectares (USFS, 2020). At this scale, with approximately
1 plot per 2,428 hectares of forested land, plot numbers are
sufficient for estimates to have small errors, even when broken
into multiple sub-categories (such as forest land area, with large
trees present, by forest type). Most individual National Forests
or Grasslands (hereafter referred to as Units) are at least 100

thousand hectares, with most western Units over 300 thousand
hectares, and up to 1.7 million hectares (USFS, 2020). Statistical
analysis suggest that estimates are unbiased when there are 10
forested plots per land ownership type, such as on NFS land with
over 24 thousand forested hectares (Westfall et al., 2011). At the
Unit scale, plot numbers are usually sufficient (Units with 100
thousand forested hectares should have about 40 plots) for small
errors and confident estimates, particularly for uncomplicated
queries (i.e., total forest land area, forest land area by major
forest type), but errors increase for more complicated queries.
If users can interpret and judge levels of uncertainty acceptable
around estimates, FIA data are appropriate for a variety of mid-
to broad-scale needs for Regional and Unit monitoring, Forest
Plan revision, and assessments. Core FIA data using standard
estimation procedures are sufficient for many information needs,
though data users may require increased precision (more plots)
for certain estimates and scales, where SAE could assist.

Forest Inventory and Analysis SAE techniques are under
development and not used programmatically by NFS. However,
opportunities exist to enhance NFS’ ability to monitor ecosystems
with SAE, particularly by integrating remote sensing data (Lister
et al., 2020). SAE techniques would expand the utility of FIA
information for NFS, and could in certain circumstances replace
the need for adding FIA plots within a geographic area (known as
intensification), by providing better estimates at smaller scales.
Having reliable estimates with precision information, that are
spatially and temporally appropriate for management questions,
would help land managers understand current condition and
monitor trends. SAE techniques would expand the ability of
NFS to make informed decisions on where, for example, specific
wildlife habitat is located, the condition of the habitat, and
habitat changes through time. SAE could provide estimates
based on NFS classifications or algorithms about specific small
areas with smaller error than currently possible using FIA’s plot
data, which would support Regional and Unit-based monitoring
and allow FIA data application with enhanced confidence to
inform management.

Because NFS SAE techniques are under development, we
provide three Regional case studies of FIA uses without
SAE, which demonstrate varied data applications and analysis
techniques. Case studies include descriptions of how SAE could
improve these applications and how specific enhancements
to FIA data could better support SAE from the perspective
of NFS FIA users.

CASE STUDIES

Northern Region (R1): Using Forest
Inventory and Analysis Data for Land
Management Assessments and Biennial
Monitoring
Forest Inventory and Analysis data are used for assessments,
planning and implementation of management, and monitoring
extensively in R1. To evaluate current vegetation condition, R1
developed a hierarchical existing vegetation classification system

Frontiers in Forests and Global Change | www.frontiersin.org 2 December 2021 | Volume 4 | Article 76348761

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-763487 November 30, 2021 Time: 15:33 # 3

Wiener et al. SAE for USFS: Examples and Needs

FIGURE 1 | Comparison of existing condition to desired conditions
(rectangles) for ponderosa pine (PP), western larch (WL), and
spruce-subalpine fir (AF-ES) Dominance Type Groups for the Flathead
National Forest. Existing condition (diamond) and the 90% confidence interval
(whiskers) of estimates of Dominance Types using Forest Inventory and
Analysis (FIA) inventory data.

(R1 ExVeg Classification; Barber et al., 2011) to attribute lifeform,
alliance, cover type, and dominance types groups (DTG) from
FIA data. This system aligns with USFS technical guidance
through the Existing Vegetation Classification, Mapping, and
Inventory Technical Guide (Nelson et al., 2015). Applying
the R1 ExVeg Classification algorithms to FIA data allows
Units to derive estimates, with confidence intervals, of DTG
distribution to understand vegetation composition across a Unit.
Current condition can then be compared to natural ranges of
variability to develop desired conditions for ecological integrity
and guide vegetation management. Figure 1 displays estimates
of Dominance Types for the 970-thousand-hectare Flathead
National Forest from the Unit’s most recent Land Management
Plan, compared to desired conditions. The Flathead National
Forest seeks to increase ponderosa pine (PP) and western larch
(WL) DTGs while decreasing spruce-subalpine fir. Since FIA
plots are remeasured every 10-years in R1, Dominance Type
algorithms will be applied longitudinally to monitor progress
toward desired conditions.

R1 partnered with FIA to collect information across the entire
FIA plot footprint, not just the “forested condition” portion to
enable expanding Dominance Type classifications and algorithms
for non-tree dominated systems. Having consistent sampling
protocols across the entire plot allows estimates and confidence
intervals to be derived regardless of the presence of trees. This
allows R1 to use FIA data to inform assessments, analysis, and
monitoring across all NFS land types managed by the Region.

Small area estimation techniques could enhance use of FIA
data in R1 for assessments and planning activities by deriving
more precise estimates of DTGs within the biophysical setting
and geographic areas used for goals and objectives in Forest
Plans. Estimates of DTGs could also be monitored at a finer
geographic scale, allowing the Unit to better understand current
condition, prioritize vegetation management, and monitor
trends. Using SAE, these goals could be accomplished by relying
more on remote sensing and other auxiliary data and less
on costly field data collection. For SAE to be meaningful to

NFS, Existing Vegetation Classification algorithms should be
used in SAE techniques, and all data collected nationally by
FIA (i.e., including non-forested condition and non-tree data)
should be utilized in the estimates. This would allow more
accurate estimates and monitoring of attributes derived from
FIA data such as distribution of old growth, large-tree and snag
densities, and wildlife species habitat models. Precise estimates
for smaller geographic areas could alleviate the need for plot
intensification but cannot entirely replace field data collection
within project areas.

To enable monitoring trends within non-forested areas, all
data that is consistently collected by FIA across the Unit
should be available within FIA products and tools and utilized
for SAE techniques, including non-tree centric protocols that
support algorithms for non-tree dominated systems. This would
allow Units to understand vegetation composition as it changes
over time, and monitor the extent of sagebrush cover, fuel
loadings, potential fire behavior, and tree encroachment onto
non-forested areas.

Finally, for SAE to be useful to R1, we also desire information
on when the reliability of the estimates deteriorates. NFS should
work with FIA to explore which attributes can be estimated at
which resolution.

Southwestern Region (R3): Using Forest
Inventory and Analysis Data to Estimate
State and Transition Model Parameters
and Inform Vegetation Mapping
R3 has used FIA data for nearly two decades to inform forest
planning decisions. Around 2005 R3 began to revise the Region’s
eleven Forest Plans due to concerns about Mexican Spotted
Owl and Northern Goshawk habitat sustainability. To ease the
analytical burden on national forest staff, be regionally consistent,
and utilize the best available scientific information, R3 uses state
and transition simulation models (STSM; Daniel et al., 2016) to
assess future vegetation conditions under a range of management
actions. STSM’s classify a landscape into a set of distinct states.
Probabilistic transitions describe the change from one state
to another due to succession and disturbance, both human
and natural. FIA data was a primary source to parameterize
the STSMs. Parameters consist of a set of probabilities that
describe the transition from one state to another for natural
successional processes and a suite of disturbance regimes such
as wildfire, insect and disease, silvicultural prescriptions, and
prescribed burning.

Regionally consistent vegetation modeling processes require
all models to start with the same initial vegetation conditions. In
cooperation with the Oregon State Institute of Natural Resources,
R3 completed a mid-scale vegetation database covering Arizona
and New Mexico. Gradient nearest neighbor (GNN) techniques
(Ohmann and Gregory, 2002) and random forest classification
were used for attribute imputation. Forest attributes came from
FIA plots. Additional processing of FIA plot data using the Forest
Vegetation Simulator (FVS, a forest growth simulation model)
(USFS, 2021d) to produce the stand-level outputs provided
additional information for forested polygons. GNN techniques
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used several auxiliary geospatial datasets to assign FIA plots
to landscape location, including National Elevation Data, soils
data, and texture metrics derived from National Agriculture
Imagery Program data.

Forest Inventory and Analysis plots were stratified into states
by potential vegetation type, size class, canopy cover percentage,
and number of stories. After stratification FIA plots were used
as the tree list inputs into FVS. FVS outputs were classified
into states using the stratification criteria. The number of
FIA plots that changed from one state to a different state
in each time step divided by the number of plots in the
initial state determined the transition probabilities, which help
determine which management activities will steer the forest
toward desired conditions. For a complete description of the
analytical techniques consult Weisz et al. (2010) or Weisz and
Vandendriesche (2012).

With the imminent completion of all eleven Forest Plans,
the analytical framework developed using FIA data with
FVS processing is being adapted to run landscape level
vegetation management projects at the 40 thousand-hectare scale.
Preliminary work is favorable for the continued use of FIA data
at this project size.

Small area estimation could enhance these techniques with
more precise estimates of delineations for identifying short-term
treatable areas, particularly Northern Goshawk and Mexican
Spotted Owl habitat. SAE shows promise in modeling wildlife
habitat more precisely than regional models (Wilson et al., 2009),
but more research is needed to support these applications. SAE
could also support identifying locations and quantities for old
growth forest and large trees, which are preferred by these two
species. Finally, STSM validation could utilize SAE by examining
effects of small treatment areas and small disturbances to
determine if treatment effectiveness and direction of disturbance
levels align with model output.

Providing data that is more readily accessible for automated
analyses would facilitate SAE applications. About seventy distinct
ecosystem types occur in R3 (USFS, 2014) ranging from
semi-desert grasslands to alpine tundra. Having FIA data
on these ecosystem types, and integrating these data with
similar data collected by the Natural Resources Conservation
Service and Bureau of Land Management, would support more
comprehensive analyses. Providing those data in a format
compatible with the Range Vegetation Simulator [RVS; Reeves
(2016)], similar to the FVS ready data currently provided with
FIA databases, would simplify processes.

Southern Region (R8): Evaluating
Existing Longleaf Pine Ecosystem
Condition With Forest Inventory and
Analysis
Longleaf pine ecosystems in the Southern Region have declined
to 3% of their original distribution (America’s Longleaf Regional
Working Group, 2009). There is high interest from the USFS
and partners in maintaining and restoring these forest types
due to their high biological diversity and importance as wildlife
habitat. Understanding location and current condition of these

ecosystems is vital to restoration efforts. Estimates of existing
area of longleaf pine ecosystems derived from FIA frequently
rely on composition criteria (forest type) that do not capture key
characteristics of these ecosystems, particularly forest structure.

The Range-Wide Conservation Plan for Longleaf Pine
(America’s Longleaf Regional Working Group, 2009) established
condition-based restoration goals for 2025. When the Plan was
published, analysis techniques for estimating condition classes
were not available. The 2009 estimate of 1.4 million existing
hectares came from a combination of FIA data for non-NFS
lands and local inventory data for NFS lands. The latter primarily
came from the FSVeg (USFS, 2021a) database, which contains
the agency’s Common Stand Exam data. The split between “good
condition/maintain” and “poor condition/restore” was based on
professional judgment, informed by understanding local fire
regimes with limited field sampling. Recently, NatureServe (a
non-profit organization that assembles data on species and
ecosystems) led an interagency effort to develop improved
definitions of condition classes for longleaf pine ecosystems
(NatureServe, 2016; Nordman et al., 2016). There are 13 Open
Pine Metrics: 5 canopy, 4 midstory/shrub, and 4 ground layer.
Each Metric has designated thresholds for each condition class
(excellent, good, fair, or poor), which are combined to produce
an overall condition score. A simplified version of the Open
Pine Metrics was adopted in R8’s strategic direction regarding
longleaf restoration.

To advance our understanding of existing longleaf pine
ecosystem conditions across R8, we applied the Open Pine
Metrics to FIA data. We selected all FIA plots that contained
at least one longleaf pine, and used the relevant FIA plot
measurements (height, species, basal area, etc.) to assign a score.
Note that the FIA protocols (USFS, 2021b) for R8 only collect
sufficient data to score 7 of the 13 metrics. We also scored factors
such as fire tolerance, that are not included in the FIA protocols.

Figure 2 shows preliminary results. This approach allowed
us to assess longleaf extent and condition regardless of assigned
forest type, and we estimated considerably more area occupied
by longleaf pine ecosystems than previous estimates derived
from FIA based on forest-type alone. Note that the current
method is likely overestimating area in each condition class by
including plots where moving toward longleaf pine-dominated
systems is not desired. Also, because this analysis was conducted
by a contractor outside of standard FIA analysis tools that
provide statistical error information, and it was not part of the
contract request, statistical confidence intervals were not part
of this analysis.

Still, this preliminary analysis shows promising results in
characterizing existing condition. Results have strategic value,
are firmly rooted in current best available science, and use
the most robust inventory data available (FIA). However, the
challenges with calculating measures of statistical confidence
using this methodology are a hindrance, especially when the
estimates are calculated for smaller scales. If SAE techniques
were integrated within existing FIA tools that include integrated
calculations of statistical confidence, these types of analyses could
be simplified, streamlined, and performed consistently across
R8 and the agency.
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FIGURE 2 | Longleaf pine estimates for Southern Region (R8) National Forests. Longleaf extent based on forest type [FIA/ field sampled vegetation (FSVeg)] does
not include any measure for condition and may miss areas that have a longleaf component but were not classified as a longleaf forest type. FIA plot-based condition
estimates include any FIA plot that contained at least a single longleaf pine, and therefore may overestimate the extent of longleaf ecosystems in places where
longleaf is a minor ecosystem component.

The addition of non-tree variables such as shrub, grass, forb,
and invasive plant cover would enable a more accurate analysis
with all 13 Open Pine Metrics. The ability to easily combine
FIA data with local inventory data, including using metrics that
span scales and inventory systems, could further enhance these
analyses. Finally, enhanced functionality of FIA tools would
simplify similar analyses – R8 had to hire a contractor with
specialized skills to implement the longleaf condition assessment
outside of standard FIA analysis tools.

RECOMMENDATIONS AND
CONCLUSION

These three case studies demonstrate how SAE techniques could
enhance and expand existing applications of FIA data for NFS
users to meet planning and management information needs.
SAE using FIA data, coupled with auxiliary data such as remote
sensing, would improve the ability to monitor key ecosystem
components spatially while providing consistent confidence
intervals to accompany estimates. More precise, comprehensive,
and consistent vegetation information will support more strategic
decision making by providing land managers information on
current condition and trends over time. This enables tactically
targeting areas for management actions, restoration strategies,
and more intensive monitoring. In the face of climate change,
understanding the impact of management activities is imperative
to practicing adaptive management, and SAE with FIA data can
improve our understanding without greatly increasing costly field
data collection.

For FIA to most effectively support SAE techniques for
NFS needs, baseline FIA data should comprehensively and

consistently support the assessment of diverse forest and non-
forest ecosystems managed by the agency and its multiple-use
mandate. SAE techniques could ultimately reduce some of the
need for field-sampled vegetation to meet information needs of
NFS, but some initial expansions in the variables and locations
of FIA data collected would best support widespread use of SAE.
The data expansions proposed below would enable SAE across
all NFS lands, supporting a multitude of information needs with
improved consistency and scientific integrity.

Specifically, NFS desires information collected across the
entire FIA plot, and not only on those portions that meet
FIA’s definition of forested. This would allow monitoring of
vegetation conditions across their entire land base. Without
data from non-forest areas, it is difficult to disentangle FIA
“forested” land definition changes from actual changes in tree
densities and ecosystem shifts, such as those that may be
occurring due to climate change. This is particularly important
in the Western United States where non-forest land cover is
common inside NFS boundaries. Standard FIA protocols for
the “All Condition Inventory” (ACI) are available, and are
collected on all plots with “non-forest” condition on certain
NFS lands, including in Regions 1, 4, 6, and 10 (i.e., USFS,
2011). The ability to use “ACI” data should be available to
all NFS Regions and available for analysis in the NFS analysis
tools, allowing NFS classifications (i.e., wildlife habitat models
and existing vegetation classifications) to be applied, stored,
and used in estimations for all NFS land. This functionality
would enable SAE applications within existing workflows
and reduce training and workload required for NFS staff to
apply SAE techniques.

Finally, NFS will desire information on the scale at which FIA-
derived estimates become unreliable (and some estimates will be
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more robust than others given inherent variability in the attribute
and modeling techniques). Reliability of SAE will vary depending
upon how common or rare the attribute of interest is, and
this potential limitation should be considered prior to reporting
these estimates (Moisen et al., 2004). Guidance and assistance
are also needed to integrate finer-scale spatial datasets in SAE
products. Ultimately, FIA’s SAE techniques will not replace site-
specific stand exam data, but will help NFS be more targeted
in selecting sites for field reconnaissance and collection of site-
specific information, further expanding the uses of FIA data.

Small area estimation techniques could broaden the
applicability of a data set that is widely used by the NFS, and
with certain additions and enhancements to FIA data and
tools, NFS users can be more precise, accurate, consistent,
and comprehensive in their analytical capabilities to inform
good forest management across a complex 78-million-
hectare land base.
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Forest information is requested at many levels and for many purposes. Sampling-
based national forest inventories (NFIs) can provide reliable estimates on national and
regional levels. By combining expensive field plot data with different sources of remotely
sensed information, from airplanes and/or satellite platforms, the precision in estimators
of forest variables can be improved. This paper focuses on the design-based model-
assisted approach to using NFI data together with remotely sensed data to estimate
forest variables for small areas, where the variables studied are total growing stock
volume, volume of Norway spruce (Picea abies), and volume of broad-leaved trees.
Remote sensing variables may be highly correlated with one another and some may
have poor predictive ability for target forest variables, and therefore model selection
and/or coefficient shrinkage may be appropriate to improve the efficiency of model-
assisted estimators of forest variables. For this purpose, one can use modern shrinkage
estimators based on lasso, ridge, and elastic net regression methods. In a simulation
study using real NFI data, Sentinel 2 remote-sensing data, and a national airborne laser
scanning (ALS) campaign, we show that shrinkage estimators offer advantages over
the (weighted) ordinary least-squares (OLS) estimator in a model-assisted setting. For
example, for a sample size n of about 900 and with 72 auxiliary variables, the RMSE was
up to 41% larger when based on OLS. We propose a data-driven method for finding
suitable transformations of auxiliary variables, and show that it can improve estimators
of forest variables. For example, when estimating volume of Norway spruce, using a
smaller expert selection of auxiliary variables, transformations reduced the RMSE by
up to 10%. The overall best results in terms of RMSE were obtained using shrinkage
estimators and a larger set of 72 auxiliary variables. However, for this larger set of
variables, the use of transformations yielded at most small improvements of RMSE,
and at worst large increases of RMSE, except in combination with ridge and elastic
net regression.

Keywords: model-assisted estimation, generalized regression estimators, data-driven transformations, lasso,
ridge, elastic net, forest inventory, remote sensing
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INTRODUCTION

Information about forests is needed for many purposes and at
various geographical levels. Large area sampling-based national
forest inventories (NFIs) provide reliable estimates of mean
values or totals on a national and regional level (Tomppo et al.,
2011; Fridman et al., 2014). These estimates are used, for example,
to form national forest policies, sustainability assessment, and
reporting to international conventions. However, terrestrial
inventory systems such as NFIs are typically designed to provide
reliable estimates on a national and regional scale and may not
provide sufficiently precise estimates for small areas without
including auxiliary information, for example remote sensing data
(McRoberts et al., 2014).

The availability of airborne laser scanning (ALS) data, and
spectral data from Sentinel 2 and Landsat 8 satellites that are
freely available, offers new possibilities for NFIs to produce more
precise statistical estimates than by using field data alone. In
order to utilize the full potential of auxiliary remote sensing
data for statistical estimates, comprehensive remote sensing
data can be combined with sample-based field measurements
utilizing sampling theory (Gregoire et al., 2011). An important
category of sample-based estimators that can be used for this
purpose are known as design-based model-assisted estimators
(Särndal et al., 1992). Such estimators use models and auxiliary
data to improve the efficiency, while maintaining design-based
properties of asymptotic design-unbiasedness and consistency
(Breidt and Opsomer, 2016). Thus, model-assisted estimators
are asymptotically design-unbiased irrespective of whether the
assigned model is correct or not, where design-unbiasedness
means that the estimator is unbiased over repeated sampling of
field data. In contrast, model-based estimators, which do not
utilize the sampling design for the inference, do not share these
desirable properties (Kangas et al., 2016; Ståhl et al., 2016). When
models are correctly assigned, model-based estimators can be
very efficient, but model misspecifications easily result in severely
biased estimators (Chambers et al., 2006).

The range of prediction techniques that can be used in a
model-assisted estimator has dramatically increased during the
last couple of decades. The main reason for this is the rapid
development in the field of statistical learning and its very close
cousin machine learning (Hastie et al., 2009, 2015; Berk, 2016).
Breidt and Opsomer (2016) provide a review of such techniques
in a model-assisted context. With a machine learning or statistical
learning perspective, model-assisted methods are judged on their
ability to produce precise estimates rather than on their ability to
build interpretable models (McConville et al., 2020).

The model-assisted framework has gained an increasing
popularity in forest inventory, and various prediction techniques
have been utilized within this framework. Breidt et al. (2005)
considered penalized spline regression together with auxiliary
information such as GIS data. Opsomer et al. (2007) applied
generalized additive models (GAMs), using three sources of
auxiliary data, digital elevation models, Landsat TM imagery,
and spatial coordinates. Baffetta et al. (2009, 2010) developed
an estimator using k-nearest neighbor regression, and used
Landsat 7 ETM+ imagery as auxiliary data. Chirici et al. (2016)

compared the performance of k-nearest neighbor regression
with linear regression, using auxiliary ALS based metrics.
Kangas et al. (2016) considered three different predictions
techniques, linear regression (where no transformations were
carried out to linearize the relationship), GAM regression,
and kernel regression, and used ALS data as auxiliary data.
Moser et al. (2017) used non-linear regression and auxiliary
ALS data, and explored variable selection techniques based on
genetic algorithms and random forests. McConville et al. (2017)
considered various lasso regression methods, using auxiliary
variables from a national land cover database and Landsat 5
TM imagery, and comparisons were made with other predictions
techniques such as linear regression and ridge regression. Further
studies on lasso regression and its close cousins ridge regression
and elastic net regression were made in McConville et al.
(2020), using auxiliary data from Landsat imagery, forest maps,
and a digital elevation model, and comparisons were made
with standard prediction techniques, including linear regression
(for continuous target variables) and logistic regression (for
categorical target variables).

Remote sensing data or data that originates from remotely
sensed data are used as auxiliary data in many forest inventory
applications. This often means that the auxiliary data are known
for the entire finite population under consideration, and that the
number of potential auxiliary variables is large. As in Moser et al.
(2017), methods for variable selection can be used for selecting
a “best” set of auxiliary variables. Ridge, lasso, and elastic net
regression shrink coefficient estimates toward zero, relative to
least-squares estimates in a standard multiple linear regression.
In the case of lasso and elastic net, coefficient estimates can be
forced to be exactly zero. Consequently, these methods can also
perform variable selection.

In this paper, we consider ridge, lasso, and elastic net
regression in a model-assisted framework. Since the relationship
between the target variable y and an auxiliary variable x can
be non-linear, transformations of x may be needed. The key
step is the identification of an appropriate transformation. In
many applications, the form of transformation is suggested by
prior experience. Unfortunately, in many cases, prior knowledge
or theory may not suggest a suitable transformation to be
used. In such situations, it would be convenient to determine
the transformation adaptively, using a data-driven method for
selecting appropriate transformations. This is especially useful
when the number of auxiliary variables is large. For this reason,
we suggest and investigate the performance of a data-driven
method for finding suitable transformations in a model-assisted
framework, where the method used is based on fractional
polynomials (Royston and Altman, 1994).

The objective of this study was to evaluate ridge, lasso, and
elastic net regression for prediction of volume per hectare of
total growing stock, Norway spruce (Picea abies), and broad-
leaved trees in a model-assisted setting, with or without data-
driven transformations of auxiliary variables. The evaluation
includes comparisons with the most well-known model-assisted
estimator, the generalized regression estimator based on a
multiple regression model, and is based on Monte Carlo
simulations using real data, from the Swedish NFI, Sentinel-2,
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FIGURE 1 | Test area (A), scanner brand (B), and scanning season (C). Three of the strata used in the Swedish NFI are shown in (A) (strata 3, 4, and 5). These
strata roughly correspond to the vegetation zones: (3) southern-middle boreal; (4) mainly hemiboreal; and (5) temperate. Copyright Lantmäteriet.

and a national laser scanning campaign. Also, an expert’s a priori
selection of a smaller set of auxiliary variables is compared to
using a full set of variables. The influence of outliers is discussed.

MATERIALS AND METHODS

Data
Test Area
In this study, we used a combination of data from a national
ALS campaign, Sentinel 2, and the Swedish NFI to estimate
volume per hectare of total growing stock, Norway spruce,
and broad-leaved trees. Our test area is in southern Sweden
and covers an area of approximately 6.0 million ha for which
Sentinel 2 images and Leica ALS data registered during leaf-
off conditions were available (Figure 1). The test area was
restricted to areas mapped as land in the Swedish National
Land Cover Database (NMD; Naturvårdsverket, 2020), except
buildings (class 51 in NMD). Coniferous forest dominates the
landscape within the test area, and the proportion of tree
species are 28, 47, and 25% for Scots pine (Pinus sylvestris),
Norway spruce (Picea abies), and broad-leaved trees, respectively,
according to the Swedish NFI.

National Forest Inventory Data
The Swedish NFI provides information about forests for regional,
national and international policy, planning, and reporting
(Fridman et al., 2014). It has been operating since 1923 and
at present more than 200 variables are recorded. The NFI
covers all forests in Sweden (55–69◦N) and the design includes
both geographical stratification and clustering of sample plots
into square-formed tracts with a side length that varies from
300 to 1,800 m among regions. There are two independent
samples, one permanent and one temporary, where trees are
measured on concentric sample plots with different radii

depending on tree diameter at breast height (Fridman et al.,
2014). On both temporary and permanent plots, trees with a
diameter less than 4 cm are measured on two 1 m radius
plots, and trees with a diameter between 4 and 10 cm are
measured on a 3.5 m radius plot (Figure 2). If the diameter
is 10 cm or more, the trees are measured on plots with
7 m or 10 m radius for temporary and permanent plots,
respectively. Sample plots located on boundaries between forest
stands or different land use classes are split and each part is
described separately.

The NFI began positioning sample plots using GPS receivers
in 1996. As of 2021, Garmin GPSMAP 64 receivers are used
for the positioning that give a horizontal positional accuracy of
approximately 5–10 m.

FIGURE 2 | Sample plot design used in the Swedish NFI.
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In this study, we used NFI data from 2012 to 2016. Split plots
were merged and volume per ha of total growing stock, Norway
spruce, and broad-leaved trees were calculated for the merged
plots (the rest of the growing stock volume was mainly Scots
pine). In total, there were 9008 NFI plots within the test area,
located in three different geographic strata (Table 1).

Airborne Laser Scanning Data
The first national ALS campaign in Sweden started in 2009 and
ended in 2019. During the campaign, the National Mapping
Agency (Lantmäteriet) collected data from flying heights between
1,700 and 2,300 m and with a point density of 0.5–1.0 pulses/m2.
A maximum scanning angle of 20◦ from nadir with a 20% overlap
between adjacent scanning strips was used. For practical reasons,
the campaign was divided into 397 blocks with a normal size
of 25 km by 50 km. A block was always scanned using one
scanner, but the scanner used varied between blocks. In total, 13
different scanners from Leica, Optech, Riegl and Trimble were
used. As mentioned above, the study was restricted to areas where
ALS data had been acquired with Leica scanners during leaf-off
conditions (Figure 1A). All blocks within the test area were laser
scanned between 2009 and 2013.

A national DEM (2 m × 2 m grid cell size), derived from
the national ALS dataset by the National Mapping Agency, was
used to calculate height above ground (normalized height) for all
returns. A set of ALS metrics were calculated for each NFI plot
using CloudMetrics (McGaughey, 2020) and used together with
Sentinel 2 spectral data as auxiliary variables (Table 2).

Satellite Data
A mosaic of Sentinel-2 data from 2015 to 2017 with top-of-the-
atmosphere (TOA) reflectance from bands 4, 5, 7, 8, 8a, 11, and
12 were used. About 95% of the test area was covered by images
registered on May 27 and July 6, 2017 (Table 3). Additional
images from 2015 to 2016 were used to cover the remaining parts
of the test area, resulting in an almost cloud free mosaic. All image
bands were resampled to 12.5 × 12.5 m pixel size and spectral
data from all seven bands were extracted for the NFI plots using
nearest neighbor interpolation. Sentinel-2 data were missing for
208 of the 9008 NFI plots due to clouds or cloud shadows. For
these plots, spectral values were imputed based on all ALS metrics
(Table 2), the sum of all daily mean temperature values exceeding
5◦ C◦ (Tsum), altitude, and plot coordinates (x and y) using

TABLE 1 | Mean volume per hectare of total growing stock, Norway spruce, and
broad-leaved trees, and number of plots by stratum.

Volume (m3/ha)

Stratum All species Norway
spruce

Broad-leaved
trees

No. plots

3 131 (143) 63 (115) 20 (41) 819

4 114 (140) 52 (98) 24 (61) 5,692

5 110 (148) 51 (114) 45 (96) 2,497

Total 114 (142) 52 (105) 29 (71) 9,008

Standard deviations are given within parentheses.

TABLE 2 | Auxiliary variables used in the study.

Variable Description

x, y Plot coordinates in SWEREF 99 TM

Altitude Height above sea level (m)

TSUM Sum of all daily mean temperature values exceeding 5 C

N Total number of laser returns

N150 Total number of laser returns above 1.5 m

Nmean Total number of laser returns above mean

Nmode Total number of laser returns above mode

NFirst Total number of first laser returns

NFirst,150 Total number of first laser returns above 1.5 m

NFirst,mean Total number of first laser returns above mean

NFirst,mode Total number of first laser returns above mode

ReturnCounti Number of first, second, . . ., fifth laser returns above 1.5 m

Min, Max,
Mean, Mode

Min, max, mean and mode for all laser returns above 1.5 m

Stddeva, CV,
IQ, Skewness,
Kurtosis

Standard deviation, coefficient of variation (CV), interquartile
distance, skewness and kurtosis for all laser returns above
1.5 m

Pi The ith height percentile for laser returns above 1.5 m, i= 1,
5, 10, 20, . . ., 90a, 95b, 99

CRR Canopy relief ratio [(Mean–Min)/(Max–Min)]

QMean, CMean Quadratic mean and cubic mean for all laser returns above
1.5 m

Propb Proportion of all laser returns above 1.5 m

PropMean Proportion of all laser returns above mean

PropMode Proportion of all laser returns above mode

PropFirst Proportion of first laser returns above 1.5 m

PropFirst,Mean Proportion of first laser returns above mean

PropFirst,Mode Proportion of first laser returns above mode

PropAll Number of returns above 1.5 m/number of first returns *
100

PropAll,Mean Number of returns above mean/number of first returns *
100

PropAll,Mode Number of returns above mode/number of first returns *
100

AAD Average of the absolute deviations of laser returns from the
overall mean.

MADMedian Median of the absolute deviations of laser returns from the
overall median

MADMode Median of the absolute deviations of laser returns from the
overall mode

L1, L2, L3, L4 L-moments (Hosking, 1990)

LCV , Lskewness,
Lkur tosis

L-moment ratios corresponding to coefficient of variation,
skewness, and kurtosis

P90Vra The 90th height percentile * Prop. of all returns above 1.5 m

Bandi
b Sentinel 2, band i, i= 4, 5, 7, 8, 8a, 11, and 12

a Included in the expert’s selection of auxiliary variables for estimation of volume of
all tree species.
b Included in the expert’s selection of auxiliary variables for estimation volume of
Spruce and volume of broad-leaved trees.

the knnImputation function (k = 3) in the R package DMwR
(Torgo, 2010).

Final Auxiliary Data
Three different datasets were defined from the variables in
Table 2. The first dataset consisted of all 72 variables in the table

Frontiers in Forests and Global Change | www.frontiersin.org 4 December 2021 | Volume 4 | Article 76449570

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-764495 December 9, 2021 Time: 17:17 # 5

Ekström and Nilsson A Comparison of Model-Assisted Estimators

TABLE 3 | Registration dates for Sentinel-2 images used in the study and the area
covered at each registration date.

Registration date Area cover in image mosaic, ha

August 19, 2015 20,600

June 14, 2016 167,600

July 21, 2016 23,800

May 23, 2017 37,200

May 27, 2017 3,947,100

July 6, 2017 1,736,500

August 11, 2017 22,500

and will be referred to as “all available auxiliary variables.” The
two other datasets were subsets of the variables in Table 2, and
will be referred to as “expert’s selections of auxiliary variables.”
The first subset was used to estimate total growing stock volume
and included 90th (P90) ALS height percentile for all laser returns
above 1.5 m, proportion of all laser returns above 1.5 m multiplied
by P90 (P90Prop), and standard deviation for all laser returns
above 1.5 m (Stddev). These variables were chosen because
they previously were used to predict the total growing stock
volume in the production of a nationwide raster database of
forest variables using data from the first national ALS campaign
(Nilsson et al., 2017). The second subset was used to estimate
volume for Norway spruce and broad-leaved trees and included
95th height percentile for all laser returns above 1.5 m (P95), the
proportion of all laser returns above 1.5 m (Prop), and Sentinel-
2 bands 4, 5, 7, 8, 8a, 11, and 12. The metrics were selected
based on experiences from an ongoing project with the aim to
predict standing volume by tree species from a combination of
ALS metrics and Sentinel 2 data.

A correlation matrix was calculated for the 72 auxiliary
variables in Table 2, containing 2556 unique correlation
coefficients. The absolute values of these were larger than 0.5 in
1209 cases. In 212 cases they were larger than 0.9, and in 39
cases larger than 0.99. The largest absolute correlation coefficient
between growing stock volume and an auxiliary variable was 0.75.
For volume of Norway spruce and volume of broad-leaved trees,
the corresponding values were 0.55 and 0.35, respectively.

Methods
To construct estimators of forest variables, the area of interest
was tessellated into a finite number of population units, labeled
by {1, 2, ...,N}, where the set was denoted by U. In our setting,
a square tessellation was used, given by the 12.5 × 12.5 m
raster cells in the wall-to-wall auxiliary data. The objective was
to estimate the population mean, Y = N−1 ∑

i∈U yi, where yi
denotes value of the target forest variable for the ith unit.

A sample s of units is selected with a view to obtain
information about the whole population. In large-area surveys
like NFIs and vegetation monitoring programs, samples are
usually taken using complex probability sampling designs that
include, for example, geographical stratification (Ekström et al.,
2018). In these designs, each population unit i typically has a
non-zero probability πi of getting included in the sample.

Design-based estimators incorporate sample design
characteristics into their formulae, typically to achieve desirable
properties such as unbiasedness. The Horvitz and Thompson
(1952) estimator (HT) of the population mean, Y , incorporates
design information through inverse-probability weighting,

Ŷ =
1
N

∑
i∈s

yi
πi

. (1)

The HT is a design-unbiased estimator, which means that the
mean of the estimator, taken over all possible samples under the
sampling design, is equal to Y . The estimator of the variance of Ŷ
in (1), suggested by Horvitz and Thompson (1952), is

V̂ =
1
N2

∑
i∈s

∑
j∈s

πij − πiπj

πij

yi
πi

yj
πj

, (2)

where πij is the probability that both units i and j are included in
the sample s, and πii = πi for all i.

Model-Assisted Estimators
One possible approach to improving the efficiency of estimators
is to incorporate auxiliary information, and model-assisted
estimation is a form of design-based estimation that incorporates
both design information (through the inclusion probabilities
πi) and auxiliary information (through a model). Many super-
population models for this purpose can be written in the form

yi = µ (xi)+ εi, (3)

with random, zero-mean εi, and a vector of auxiliary variables
for unit i, xi = (1, xi1, ..., xip). The predictor function µ ( · ) is
typically unknown, but can be estimated using the sample data.
Denoting the estimated predictor by µ̂ ( · ), a general class of
model-assisted estimators of the population mean, known as
generalized regression estimators (GREG), can be defined as

Ŷ =
1
N

∑
i∈U

µ̂ (xi)+
1
N

∑
i∈s

yi − µ̂ (xi)
πi

. (4)

It should be noted that the estimator (4) depends on the
sampling design, the form of the model, and the method used
for estimating the predictor function µ ( · ). The estimator (4)
consists of two parts, the mean of the predicted values over the
population and the design bias adjustment consisting of inverse
probability-weighted “residuals” (yi − µ̂ (xi)). This adjustment
term protects against model misspecification, and makes the
estimator approximately design-unbiased for many commonly
used prediction methods (see, e.g., Breidt and Opsomer (2016)
and the references therein).

To estimate the variance for (4) we use a common variance
estimator approach based on (2) but replacing the “raw” yi values
with the “residuals” (yi − µ̂ (xi)) (cf. Breidt and Opsomer, 2016).
Provided that the residuals have smaller variation than the raw
values, we can expect GREG to have a smaller variance than HT.

Under a multiple linear regression model with µ (x) = xTβ,
the parameter vector β = (β0, β1, ..., βp) can be estimated using
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weighted least-squares. This approach gives the predictor µ̂ (x) =
xT β̂, where

β̂ = arg min
β

∑
i∈s

(
yi − xTi β

)2

πi
=

(∑
i∈s

xixTi
πi

)−1 ∑
i∈s

xiyi
πi

,

where arg min means the value of β which minimizes the sum
of design-weighted squared residuals. With µ̂ (xi) = xTi β̂ plugged
into (4), we refer to (4) as the regression estimator (REG).

For our analyses, β̂ is computed using the glm function in R
(R Core Team, 2020). If some auxiliary variables are perfectly or
nearly perfectly collinear, the glm function automatically excludes
at least one of them and sets the corresponding coefficients to NA
(not available). For this reason, we investigate the following two
variants for handling this problem:

(i) calculate pairwise correlations among the variables in the
sample and, among each pair of variables correlated above
a given threshold, exclude the variable least correlated with
the target variable;

(ii) if a coefficient is NA, then simply set it to 0.

If, for example, the second variant is used, we refer to (4) as
REGii. A benefit of the first variant is that it decreases the danger
of multicollinearity, but as argued in Vaughan and Berry (2005),
multicollinearity is “not quite as damning” when linear modeling
is used for prediction rather than explanation. That is, in case of
(severe) multicollinearity, coefficient estimates and their standard
errors can become (very) sensitive to small changes in the model,
but this usually has little effect on the prediction capability of the
model. However, if the fitted model is used to predict values for
new data, and the pattern of multicollinearity in the new data
differs from that in the data that was fitted, this may introduce
large errors in the predictions (Chatterjee et al., 2012).

Another possibility is to estimate the parameter vector β using
penalized weighted least squares. Elastic net regression (Zou and
Hastie, 2005; McConville et al., 2020), introduced as compromise
between lasso and ridge regression, is an approach that uses a
penalty. Here, the parameter vector is estimated by

β̂α = arg min
β

∑
i∈s

(
yi − xTi β

)2

πi
+ λ

p∑
j=1

{(1− α)β2
j + α|βj|}

,

(5)

where 0 ≤ α ≤ 1. When α = 0, elastic net regression becomes
ridge regression, and when α = 1 it becomes lasso regression.
Ridge regression tends to give similar coefficient values to
highly correlated auxiliary variables, whereas lasso regression
tend to give quite different coefficient values to highly correlated
variables. Unlike ridge regression, lasso regression performs
variable selection by forcing some of the coefficient estimates to
be exactly equal to zero (this happens if the “tuning parameter” λ

is sufficiently large). Elastic net regression, with α equal to a value
between 0 and 1, shrinks together the coefficients of correlated
auxiliary variables like ridge, and performs variable selection like
the lasso (Zou and Hastie, 2005). Thus, the α value in (5) is the
“mixing proportion” that toggles between a pure lasso penalty

(when α = 1) and a pure ridge penalty (α = 0). The parameter
λ controls the total amount of penalization. Both penalties
shrink the coefficient estimates toward zero, relative to the usual
(weighted) least-squares estimates, and the more so the larger
λ is. As λ increases, the shrinkage of the coefficient estimates
reduces the variance of the predictions, at the expense of an
increase in bias (James et al., 2021). Selecting a good value for
λ is therefore critical for finding a good balance between variance
and bias, and cross-validation is commonly used for this purpose.

With the estimator function µ̂ (xi) set to the generalized
penalized estimator xTi β̂α, we refer to (4) as RIDGE, ELNET,
and LASSO, for α = 0, 0.5, and 1, respectively. These three are
available through the R package mase (McConville et al., 2018),
which uses cross-validation to choose the tuning parameter λ. If
there are issues with multicollinearity, McConville et al. (2020)
recommend using RIDGE or ELNET rather than REG or LASSO.

In our study and for a given set of auxiliary variables, the
parameter vector β is estimated using all data from a sample s.
In Supplementary Material, results are presented also for the
case where outliers in the sample s are removed before β is
estimated. The identified outliers are those where field measured
tree height and the 95th height percentile in the ALS data
deviate more than 7 m.

Data-Driven Choices of Transformations
A model with µ (xi) = xTi β assumes a linear relationship between
the expected value of the target variable yi in (3) and each
auxiliary variable (when the other auxiliary variables are held
fixed). If linearity fails to hold, it is sometimes possible to
transform the auxiliary variables in the model to improve the
linearity. Examples of a non-linear transformation of variable
xij are the square root or the reciprocal of xij. Suitable
transformations can be found through studies of residual plots,
but this is tedious work when the number of variables is large.
For this reason, we investigate the performance of a data-driven
method for finding suitable transformations. The method is based
on fractional polynomials (FPs; Royston and Altman, 1994). FP
is an approach that uses a function selection procedure to check
whether a non-linear function fits the data significantly better
than a linear function. We use the level of significance 5% for
the function selection. To reduce the computational burden, the
function selection is done for one auxiliary variable at a time.

The class of FP functions is an extension of power
transformations of a variable, and in this study the attention is
restricted to FPs of the first degree. That is, the powers are selected
from the collection {−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3}, where
0 denotes the log transformation, using the sample data and the
fp and mfp functions in the R package mfp (Ambler and Banner,
2015). FPs are defined only for positive auxiliary variables, but
real data may contain non-positive observations. Therefore, at
population level, if non-positive values are encountered (or the
range of values of the auxiliary variables is unreasonably large),
the auxiliary variables are shifted (and rescaled). The method for
doing this is adopted from the mfp algorithm (Sauerbrei et al.,
2006; Sabanés Bové and Held, 2011).

In our study, outliers in the sample data are not used in
the selection procedure of transformations. Again, the identified
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outliers are those where field measured tree height and the 95th
height percentile in the ALS data deviate more than 7 meters. (In
Supplementary Material, results are presented also for the case
where transformations are selected based on all sample data).

Evaluation of the Estimators
The performances of estimators were compared using Monte
Carlo simulations. The population units were defined by the 9008
pixels that we matched with the corresponding plots given in
Table 1. Three strata were defined according to Table 1, and
Monte Carlo simulations were implemented with a stratified
simple random sampling design. With this design, a simple
random sample without replacement is drawn from each strata,
the drawings being made independently in different strata. In
comparison with the Swedish NFI, the main difference is that
we ignored that plots are grouped into tracts. The number of
sampled units in each stratum was proportional to the size of the
stratum. Two sample sizes were considered in the simulations,
n = 901 and n = 2703. In the former case, the sample sizes in
the three NFI strata within the study area (Figure 1A) were
82, 569, and 250, and in the latter case, 246, 1708, and 749,
respectively. For each forest variable to be estimated and for each
estimator considered, we used the same set of samples of size
n = 901 or n = 2703. In total, m = 10000 samples of each sample
size were drawn.

The estimators of the population mean were evaluated with
respect to root mean square error (RMSE), standard deviation
(SD; also commonly referred to as the standard error), and
bias, obtained with the m = 10000 repeated samples under the
aforementioned stratified simple random sampling design. With
Ŷ denoting an estimator of a population mean Y , and Ŷ i denoting
an estimate based on the ith sample, these quantities were
computed as

b̂ias(Ŷ) =
1
m

m∑
i=1

Ŷ i − true value,

ŜD(Ŷ) =

√√√√√ 1
m− 1

m∑
i=1

Ŷ i −
1
m

m∑
j=1

Ŷ j

2

,

and

R̂MSE(Ŷ) =

√
ŜD(Ŷ)

2
+ b̂ias(Ŷ)

2
.

For the ease of comparisons across variables, all values of bias, SD,
and RMSE are presented as percentages of Y . That is, as

b̂ias% = 100
b̂ias(Ŷ)

Y
, ŜD% = 100

ŜD(Ŷ)

Y
,

and R̂MSE% = 100
R̂MSE(Ŷ)

Y
.

Likewise, let V̂i denote an estimate of the variance of
Ŷ based on the ith sample. For example, in the case

of the HT estimator, V̂i is computed using formula (2).
Then

ŜD%, i = 100

√
V̂i

Y

is the value of an estimated standard deviation, using data
from the ith sample, and presented as a percentage of the
corresponding population mean. Let

ave
(
ŜD%,i

)
=

1
m

m∑
i=1

ŜD%,i,

where “ave′′ denotes average. If ave
(
ŜD%,i

)
is approximately

equal to ŜD%, then this suggests that the estimator of the standard
deviation of Ŷ is nearly unbiased.

For comparing the RMSE of one estimator (with auxiliary
variables in their original scale) to the RMSE of another estimator
(with power transformed auxiliary variables), the basic bootstrap
confidence interval (e.g., Davison and Hinkley, 1997) for their
difference is applied. Let Ŷ1,i and Ŷ2,i denote the two estimates
based on sample i, where the first is based on auxiliary variables
in the original scale while the other uses power transformed
auxiliary variables. A bootstrap sample

{
(Ŷ
∗

1,i,Ŷ
∗

2,i)
}m
i=1

is taken

as a random sample with replacement from
{
(Ŷ1,i,Ŷ2,i)

}m
i=1

.
Based on the bootstrap sample, bootstrap replicates of the
two estimated RMSEs are computed. Based on R = 9999 such
bootstrap replicates, a basic bootstrap 95% confidence interval for
the difference of the two RMSEs is computed using the boot.ci
function in the R package boot (Davison and Hinkley, 1997). In
these computations, all RMSEs are expressed as percentages of
the corresponding population means. A 95% confidence interval
that does not cover zero means that the use of power transformed
auxiliary variables significantly changes the efficiency of the
estimator at the 5% significance level. If the interval contains
only positive values, the conclusion is that the transformations
significantly improves the efficiency of the estimator at the
5% level. Thus, as in, for example, Samuels et al. (2012), if
we find significant evidence for a change, our conclusion can
be directional. Some authors prefer not to draw a directional
conclusion in these cases (Samuels et al., 2012).

RESULTS

The results for HT are presented in Table 4, i.e., the results for
the case where no auxiliary data were used in the estimation.
Since the HT estimator is unbiased, as expected, the values of
(estimated) bias in Table 4 were close to zero. In addition, and
also as expected, the values of ave

(
ŜD%, i

)
were all close to the

corresponding values of ŜD%, suggesting that the estimator of
the standard deviation of Ŷ [i.e., the square root of the variance
estimator (2)] is nearly unbiased.

When comparing the RMSEs in Table 4 with the RMSEs
in Table 5 for the various model-assisted estimators based on
an expert selection of auxiliary variables, notice that the use
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TABLE 4 | Monte Carlo results for the Horvitz and Thompson estimator (HT).

Forest variable b̂ias% ŜD% ave
(

ŜD%, i

)
R̂MSE%

(a) n = 2703

Volume (m3/ha) of total growing stock 0.020 2.017 2.002 2.017

Volume (m3/ha) of Norway spruce 0.011 3.223 3.206 3.223

Volume (m3/ha) of broad-leaved trees 0.037 3.904 3.863 3.904

(b) n = 901

Volume (m3/ha) of total growing stock 0.097 3.958 3.935 3.959

Volume (m3/ha) of Norway spruce 0.118 6.311 6.300 6.313

Volume (m3/ha) of broad-leaved trees 0.143 7.615 7.577 7.618

Estimated values of bias, SD, and RMSE (b̂ias%, ŜD%, and R̂MSE%) are given as
percentages of the corresponding population mean, and are based on m = 10000
stratified samples of size n = 2703 or 901 from the population. For each sample,
an estimate of standard deviation of the HT was computed, and ave

(
ŜD%, i

)
is the

average of these estimates.

of assisting models and auxiliary information improved the
efficiency of estimation. For volume of total growing stock,
the reduction in RMSE was larger than 40% for each model-
assisted estimator used and for both sample sizes considered.
Moreover, the confidence intervals in Table 5 show that the use
of data-driven choices of transformations of auxiliary variables
significantly improved the RMSEs of the estimators. However, the
improvements were quite small, except for Norway spruce, with
reductions of RMSE by 7.7–10.0%. The performances of REG,
LASSO, RIDGE, and ELNET were very similar.

The results when all 72 available auxiliary variables in Table 2
were used are shown in Table 6. For REGi and the larger sample
size, results are presented for the case where we excluded auxiliary
variables with correlations above thresholds ± 0.90 and ± 0.95.
When we tried± 0.99 as threshold, then for many of the samples
not all model coefficients could be estimated. For many samples
of the smaller size (n = 901), this was the case even if the
threshold was as low as ± 0.70. Therefore, no results for REGi

were presented for the smaller sample size.
For the larger sample size (n = 2703), the estimators based

on auxiliary data in their original scale in Table 6 had lower
RMSEs than the corresponding estimators based on the smaller
selection of auxiliary variables in Table 5. For example, for
Norway spruce the RMSEs were about 15% lower and for broad-
leaved trees about 7% lower, except for RIDGE where the gain
was somewhat smaller. For the smaller sample size (n = 901)
and LASSO, RIDGE, and ELNET, the corresponding reductions
of RMSEs were 11% or larger for Norway spruce. For total
growing stock and broad-leaved trees, the reduction was only 2
and 4%, respectively, for RIDGE, and even smaller than that for
LASSO and ELNET. For the smaller sample size, REGii based
on all the 72 auxiliary variables had RMSEs 22–34% larger than
when using REG and a small expert selection of variables. For
volume of broad-leaved trees, its performance was worse than the
Horvitz-Thompson estimator.

The results for the larger sample size in Table 6 show that
the estimators based on all available auxiliary variables in their
original scale had about the same performance in terms of RMSE.

The corresponding results for the smaller sample size show that
LASSO, RIDGE, and ELNET were very close in terms of RMSE,
and that they performed much better than REGii. More precisely,
the latter estimator had RMSEs 34–41% larger than those for
LASSO, RIDGE, and ELNET.

When for example estimating total growing stock volume
(both sample sizes) or volume of Norway spruce (the larger
sample size), the confidence intervals in Table 6 show that
the use of data-driven choices of transformations of auxiliary
variables significantly improved the RMSEs of LASSO, RIDGE,
and ELNET. Although there were significant improvements
when using transformations, the improvements in Table 6 were
never larger than 5%. When estimating volume of broad-leaved
trees using a large number of auxiliary variables, the data-driven
method for selecting transformations did not perform well. For
REGii and LASSO, the use of transformations sometimes resulted
in extreme and unreasonable estimates of volume of broad-leaved
trees, which in turn resulted in very large values of RMSE. This
was also the case for the REGii estimator of total growing stock
and volume of Norway spruce when using the smaller sample
size. In comparison, RIDGE was quite robust against poor choices
of transformations, and to a lesser degree, ELNET.

In Tables 5, 6, each value of ave
(
ŜD%, i

)
is smaller than the

corresponding value of ŜD%. This implies that the estimated
standard deviations, ŜD%, i, i = 1, . . . , n, were somewhat too
small, on average, which is quite typical in model-assisted
estimation (cf. Kangas et al., 2016). As suggested by simulation
results in McConville et al. (2020), it is better to estimate
standard deviations (or variances) of model-assisted estimators
by using a bootstrap method, especially as the number of
explanatory variables grows. However, because of the additional
computational burden generated by bootstrapping, we did not
use this estimator in our study.

In summary for the larger sample size, when estimating total
growing stock volume or volume of Norway spruce, the best
results in terms of RMSE were obtained when using all available
auxiliary variables. Here, for LASSO, RIDGE, and ELNET, the use
of data-driven choices of transformations significantly improved
the RMSEs, but the improvements were small. For volume of
broad-leaved trees, LASSO, ELNET, and REGii based on all
available auxiliary variables in their original scale produced the
best results, and were slightly better than the corresponding REGi

(with threshold± 0.95) and RIDGE estimators. Finally, the use of
data-driven choices of transformations was most successful when
estimating volume of Norway spruce, using an expert selection
of auxiliary variables. Here, the transformations reduced the
RMSEs by up to 10%.

In summary for the smaller sample size, when estimating
total growing stock volume or volume of Norway spruce,
LASSO, RIDGE, and ELNET, with or without the use of data-
driven choices of transformations, performed the best and
were close in terms of RMSE. For volume of broad-leaved
trees, LASSO, RIDGE, and ELNET with auxiliary variables
in their original scale showed the best results. For all target
variables, REGii based on all available auxiliary variables in
their original scale had 34–41% higher RMSEs than the
corresponding LASSO, RIDGE, and ELNET estimators, and
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TABLE 5 | Monte Carlo results for REG, LASSO, RIDGE, and ELNET, when based on an expert selection of auxiliary variables.

Auxiliary variables in original scale Power transformed auxiliary variables

Estimator b̂ias% ŜD% ave
(

ŜD%, i

)
R̂MSE% b̂ias% ŜD% ave

(
ŜD%, i

)
R̂MSE% LCL UCL

(a) Volume (m3/ha) of total growing stock; n = 2703

REG −0.005 1.167 1.155 1.167 0.000 1.160 1.148 1.160 0.004 0.010

LASSO −0.005 1.167 1.155 1.167 −0.001 1.160 1.148 1.160 0.004 0.010

RIDGE −0.002 1.186 1.173 1.186 0.001 1.177 1.165 1.177 0.006 0.012

ELNET −0.005 1.167 1.155 1.167 0.000 1.160 1.148 1.160 0.004 0.010

(b) Volume (m3/ha) of Norway spruce; n = 2703

REG 0.009 2.637 2.621 2.637 0.086 2.375 2.359 2.376 0.242 0.277

LASSO 0.009 2.637 2.621 2.637 0.075 2.376 2.362 2.377 0.243 0.277

RIDGE −0.010 2.644 2.630 2.644 0.029 2.381 2.374 2.381 0.248 0.279

ELNET 0.009 2.637 2.621 2.637 0.074 2.376 2.362 2.377 0.243 0.277

(c) Volume (m3/ha) of broad-leaved trees; n = 2703

REG −0.016 3.515 3.462 3.515 −0.092 3.444 3.389 3.445 0.053 0.086

LASSO −0.013 3.514 3.463 3.514 −0.099 3.444 3.391 3.446 0.053 0.084

RIDGE 0.000 3.515 3.465 3.515 −0.050 3.448 3.396 3.449 0.052 0.081

ELNET −0.013 3.513 3.463 3.513 −0.098 3.444 3.391 3.445 0.053 0.084

(d) Volume (m3/ha) of total growing stock; n = 901

REG 0.034 2.281 2.262 2.281 0.046 2.275 2.252 2.275 0.000 0.012

LASSO 0.034 2.284 2.263 2.284 0.047 2.276 2.252 2.277 0.001 0.013

RIDGE 0.049 2.319 2.300 2.319 0.056 2.307 2.286 2.307 0.007 0.017

ELNET 0.035 2.283 2.263 2.283 0.048 2.275 2.252 2.276 0.002 0.013

(e) Volume (m3/ha) of Norway spruce; n = 901

REG 0.098 5.151 5.133 5.152 0.476 4.732 4.610 4.755 0.356 0.436

LASSO 0.092 5.153 5.136 5.153 0.385 4.729 4.630 4.745 0.372 0.445

RIDGE 0.047 5.154 5.154 5.155 0.269 4.692 4.652 4.700 0.424 0.485

ELNET 0.093 5.152 5.136 5.153 0.382 4.726 4.629 4.742 0.375 0.447

(f) Volume (m3/ha) of broad-leaved trees; n = 901

REG 0.032 6.924 6.766 6.924 −0.231 6.812 6.627 6.816 0.074 0.143

LASSO 0.050 6.909 6.772 6.909 −0.190 6.811 6.642 6.814 0.063 0.129

RIDGE 0.077 6.905 6.778 6.905 −0.121 6.807 6.662 6.809 0.068 0.126

ELNET 0.049 6.908 6.772 6.909 −0.192 6.806 6.642 6.808 0.068 0.133

Estimated values of bias, SD, and RMSE (b̂ias%, ŜD%, and R̂MSE%) are given as percentages of the corresponding population mean, and are based on m = 10000
stratified samples of size n = 2703 or 901 from the population. For each sample, an estimate of SD was computed, and ave

(
ŜD%, i

)
is the average of these estimates.

The values of LCL and UCL denote the lower and upper confidence limits of the 95% confidence interval for the difference in RMSE between the estimators based on
auxiliary variables in original scale and power transformed auxiliary variables, respectively. If the interval contains only positive values, it suggests that the use of power
transformed auxiliary variables improves the efficiency of the estimator.

performed worse in terms of RMSE than using REG and
an expert selection of variables. For REGi it was often not
possible to estimate the model coefficients. Data-driven choices
of transformations reduced the RMSEs by about 8% for Norway
spruce when using an expert selection of auxiliary variables. For
all other cases, the transformations resulted in at best minor
improvements of RMSE, and at worst very large increases of
RMSE. Of the estimators considered, RIDGE, and to a lesser
extent, ELNET, were found robust against poor choices of
transformations.

Remark: In our population, 18% of the units (raster cells) had
a height difference larger than 7 m between the field measured
tree height and the 95th height percentile in the ALS data. We
may consider these units as outliers, and we may ask ourselves:
(i) Is it better to perform data-driven choices of transformations
of auxiliary variables with these outliers present in the sample?
(ii) Is it better to estimate the parameter vector β (after possible
transformations of auxiliary variables) with these outliers present
in the sample? In order to find out, we performed Monte Carlo
simulations for each of the four possible combinations of answers
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TABLE 6 | Monte Carlo results for REGi , REGii , LASSO, RIDGE, and ELNET, when based on all auxiliary variables.

Auxiliary variables in original scale Power transformed auxiliary variables

Estimator Threshold b̂ias% ŜD% ave
(

ŜD%, i

)
R̂MSE% b̂ias% ŜD% ave

(
ŜD%, i

)
R̂MSE% LCL UCL

(a) Volume (m3/ha) of total growing stock; n = 2703

REGi
± 0.95 −0.033 1.149 1.126 1.150 0.023 1.152 1.096 1.153 −0.030 0.043

REGi
± 0.90 −0.026 1.153 1.134 1.154 0.002 1.183 1.119 1.183 −0.062 0.018

REGii 0.025 1.148 1.094 1.148 0.069 1.191 1.072 1.193 −0.103 0.053

LASSO −0.028 1.143 1.112 1.144 0.023 1.116 1.089 1.116 0.021 0.033

RIDGE −0.038 1.151 1.133 1.152 0.007 1.118 1.100 1.118 0.029 0.039

ELNET −0.027 1.143 1.112 1.143 0.023 1.116 1.089 1.116 0.020 0.033

(b) Volume (m3/ha) of Norway spruce; n = 2703

REGi
± 0.95 −0.045 2.236 2.215 2.236 0.156 2.241 2.162 2.246 −0.044 0.034

REGi
± 0.90 −0.072 2.335 2.312 2.337 0.083 2.290 2.222 2.291 0.003 0.099

REGii
−0.007 2.229 2.153 2.229 0.148 2.297 2.074 2.301 −0.205 0.135

LASSO −0.013 2.227 2.177 2.227 0.193 2.166 2.090 2.174 0.035 0.071

RIDGE −0.067 2.316 2.294 2.317 0.123 2.214 2.186 2.218 0.085 0.114

ELNET −.014 2.227 2.177 2.227 0.195 2.167 2.091 2.176 0.033 0.068

(c) Volume (m3/ha) of broad-leaved trees; n = 2703

REGi
± 0.95 −0.107 3.315 3.171 3.317 8.338 25.026 3.191 26.378 −25.20 −20.75

REGi
± 0.90 −0.074 3.387 3.262 3.388 9.292 25.019 3.242 26.688 −25.39 −21.07

REGii
−0.082 3.248 3.017 3.249 9.279 36.230 3.002 37.399 −36.37 −31.88

LASSO −0.107 3.248 3.067 3.250 1.385 10.75 3.078 10.839 −8.715 −6.466

RIDGE −0.047 3.306 3.189 3.306 −0.056 3.324 3.206 3.324 −0.036 −0.001

ELNET −0.104 3.250 3.067 3.251 0.508 3.968 3.083 4.001 −0.833 −0.665

(d) Volume (m3/ha) of total growing stock; n = 901

REGii 0.035 3.061 2.055 3.062 4.015 195.081 2.011 195.123 −307.1 −100.8

LASSO −0.065 2.285 2.169 2.286 0.111 2.215 2.118 2.218 0.054 0.082

RIDGE −0.069 2.272 2.195 2.273 0.084 2.209 2.134 2.211 0.052 0.073

ELNET −0.070 2.278 2.170 2.279 0.108 2.212 2.119 2.214 0.051 0.078

(e) Volume (m3/ha) of Norway spruce; n = 901

REGii
−0.057 6.309 4.074 6.309 1.571 30.957 3.91 30.997 −29.70 −19.65

LASSO −0.190 4.457 4.237 4.461 0.734 4.450 4.081 4.510 −0.099 0.005

RIDGE −0.170 4.548 4.439 4.551 0.547 4.417 4.224 4.451 0.066 0.135

ELNET −0.214 4.461 4.232 4.466 0.731 4.440 4.084 4.500 −0.079 0.011

(f) Volume (m3/ha) of broad-leaved trees; n = 901

REGii
−0.508 9.136 5.594 9.150 119.412 5273.475 5.567 5274.827 −8776 −2318

LASSO −0.397 6.696 5.977 6.707 1.501 19.866 5.994 19.923 −15.27 −11.18

RIDGE −0.206 6.604 6.164 6.607 −0.285 6.667 6.233 6.673 −0.102 −0.029

ELNET −0.378 6.706 5.978 6.716 −0.068 7.500 6.011 7.500 −0.931 −0.629

Estimated values of bias, SD, and RMSE (b̂ias%, ŜD%, and R̂MSE%) are given as percentages of the corresponding population mean, and are based on m = 10000
stratified samples of size n = 2703 or 901 from the population. For each sample, an estimate of SD was computed, and ave

(
ŜD%, i

)
is the average of these estimates.

The values of LCL and UCL denote the lower and upper confidence limits of the 95% confidence interval for the difference in RMSE between the estimators based on
auxiliary variables in original scale and power transformed auxiliary variables, respectively. If the interval contains only positive values, it suggests that the use of power
transformed auxiliary variables improves the efficiency of the estimator. In Table 6, no results are presented for the REGi estimator when n = 901. The reason is that for
many of the samples, not all model coefficients could be estimated (not even if the threshold was as low as ± 0.70).

to questions i and ii (No-No, Yes-No, Yes-Yes, or No-Yes), and
for both the sample sizes, n = 2703 and n = 901. The case No-
Yes is presented in Tables 5, 6. Results for all other possible cases
are given in Supplementary Material. For each sample size and

in terms of RMSE, it turned out that it was generally better to
remove the outliers in the sample prior to performing data-driven
choices of transformations, but to estimate the parameter vector β

without removing the outliers in the sample of auxiliary variable
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data values (where variables may have been transformed before
the estimation is performed). For auxiliary variables in their
original scale, the following increases of RMSEs were obtained
if outliers were removed before the parameter vector β was
estimated: (a) 0.5–1.7% when the models were based on an
expert selection of auxiliary variables; (b) 0.9–6.0% when using
all available auxiliary variables and n = 2703; and (c) 1.4–68%
when using all available auxiliary variables and n = 901. In (c),
the increases of RMSEs were in the range 35–68% for REGii, but
less than 9% for LASSO, RIDGE, and ELNET.

DISCUSSION

In this paper, we have compared the performances of the
Horvitz-Thompson estimator and several model-assisted
estimators, using Monte Carlo simulations and real data,
from the Swedish NFI, Sentinel-2, and a national laser
scanning campaign. The model-assisted estimators were
based either on modern prediction techniques (lasso, ridge, and
elastic net regression), or on a traditional working model of
multiple regression.

When based on an expert selection of a rather small set
of auxiliary variables, the performances of the model-assisted
estimators were quite similar in terms of RMSE. Our proposed
data-driven method for finding suitable transformations of
auxiliary variables was shown to improve the efficiency of these
estimators. For Norway spruce, improvements by up to 10% were
obtained. Rather than using an expert selection of a smaller set of
auxiliary variables, it can be tempting to use auxiliary information
contained in a larger set of variables. In such cases, a standard use
of REG often fails due to (near) collinearity, and some auxiliary
variables may need to be excluded before the estimate can be
computed. We considered two different approaches of excluding
“problematic” auxiliary variables, and the variant of the REG
estimator that excluded as few variables as possible (the REGii

estimator) provided the best results (with a few exceptions).
The simulations showed that the efficiency in terms of RMSE
improved when using the large set of auxiliary variables for
LASSO, RIDGE, and ELNET, but that this was not necessarily
the case for REG estimators. When estimating, for example, total
growing stock volume (for both sample sizes considered) or
volume of Norway spruce (for the larger sample size), the data-
driven method for selecting transformations of auxiliary variables
further improved the efficiency of LASSO, RIDGE, and ELNET.
Although these improvements were statistically significant at the
5% level, they were all small.

When estimating total growing stock volume or volume of
Norway spruce, LASSO, RIDGE, and ELNET based on the large
set of auxiliary variables were the best in terms of RMSE. For
the smaller sample size, they performed much better than the
corresponding REGii estimator. For volume of broad-leaved
trees, LASSO, RIDGE, and ELNET based on the large set
of auxiliary variables in their original scale showed the best
performance. Here, for the smaller sample size, they performed
much better than REGii, which in this case had an RMSE even
larger than the Horvitz-Thompson estimator.

The suggested data-driven choices of transformations
performed the best when estimating volume of Norway spruce,
using an expert selection of auxiliary variables, where they
reduced the RMSEs by 7–10%. Although the transformations
resulted in statistically significant reductions of RMSE in many
other cases, too, these improvements cannot be regarded as
practically significant. In addition, for the smaller sample size,
the data-driven choices of transformations sometimes resulted
in huge increases of RMSE, in particular when combined with
REGii, and to a lesser degree with LASSO. In comparison,
RIDGE (and to some extent also ELNET) was found to be
quite robust against poor choices of transformations. Thus,
the data-driven method for selecting transformations has not
been proven promising enough to be recommended for the
type of applications considered in this paper, except possibly in
combination with RIDGE and ELNET.

Cook’s distance is a commonly used metric to indicate the
influence of a data point when performing a multiple regression
analysis. In an attempt to make the data-driven method more
robust and in an additional simulation study not presented
here, we disallowed transformations that caused an excessive
increase in Cook’s distance. This improved the performance of
the estimators of volume of broad-leaved trees, but it was still
found that for broad-leaved trees it is better to use auxiliary
variables in their original scale.

In our proposed data-driven method for finding suitable
transformations, the transformation selection was done for one
auxiliary variable at a time. To improve the method, and the
efficiency of the resulting model-assisted estimators, one can
use multivariable fractional polynomials, which simultaneously
determine a functional form for continuous auxiliary variables
and delete uninfluential auxiliary variables (Sauerbrei et al., 2006;
Sauerbrei and Royston, 2017). For our simulation study, however,
the additional computational burden of using multivariable
fractional polynomials was considered too high. Another topic
for further studies is the inclusion of interaction terms in
the models. Except for one interaction term in the model for
total growing stock volume based on an expert selection of
auxiliary variables, only main effects were included in our models.
Potentially, many interactions can be used. To avoid overfitting,
and not only for models with interactions, a possibility is to use an
information criterion, such as the Akaike information criterion
(Akaike, 1974).

Although the methods might be further improved, our results
indicate that model-assisted methods like LASSO, RIDGE, and
ELNET could be used by the Swedish NFI to provide reliable
estimates for smaller areas than possible using field data alone.
Today, counties are the smallest unit for which the NFI present
reliable estimates. The smallest area for which reliable results can
be presented depends in large part on how the model-assisted
estimators perform when using smaller sample sizes than the ones
used in this study (n < 901). Thus, it remains to be investigated
how small areas can be to produce reliable estimates of different
forest variables with a sufficiently low RMSE.

A relatively large proportion of the units (raster cells) in
our population (18%) had a difference between P95 and field
measured tree height that was greater than 7 m. These units
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were considered as outliers. Many of them were units that were
clear felled after the field survey, but before the laser scanning
took place. The large proportion of outliers could also be a
consequence of using merged split-plots for which the linkage
with laser data is more sensitive to plot location errors compared
to un-split plots. In the Monte Carlo study, it was found better to
perform the data-driven choices of transformationswithout using
these outliers in a sample, but to estimate model parameters with
the outliers in a sample of auxiliary variable data values (where
variables may have been transformed before the estimation is
done). In addition to these outliers, there were additional units
in the population with an unusual relationship between field data
and laser metrics. This could be, for example, due to thinning
cuttings, wind-thrown trees, and other changes. It was noticed
that the proportion of such units was higher for plots with
a high proportion of broad-leaved trees. To some extent, this
can be an effect of using laser data acquired during leaf-off
conditions, which gives lower laser density metrics for broad-
leaved forests than using data acquired during leaf-on conditions
(White et al., 2013). Although the number of such units was
relatively low, they might have a large influence on the selection
of transformations, and may explain why the use of data-driven
choices of transformations was not successful when estimating
volume of broad-leaved trees.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article are
available from the Dryad Digital Repository: doi: 10.5061/dryad.
s4mw6m97k.

AUTHOR CONTRIBUTIONS

ME conceived the study, was in charge of overall direction and
planning, and carried out the Monte Carlo simulations. MN
retrieved all data and contributed to the analysis with expertise
in remote sensing. ME wrote the first draft of the manuscript,
except for section “Materials and Methods,” written by MN. Both
authors contributed to manuscript revision, read, and approved
the submitted version. Both authors involved the participatory
research process.

FUNDING

This research was financially supported by a research grant from
the Swedish National Space Board.

ACKNOWLEDGMENTS

We acknowledge the Swedish National Forest Inventory for
providing field data. We thank Håkan Olsson, Anton Grafström,
guest associate editor BW, and two referees for their comments
on the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/ffgc.2021.
764495/full#supplementary-material

REFERENCES
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.

Automat. Control 19, 716–723. doi: 10.1109/TAC.1974.1100705
Ambler, G., and Banner, A. (2015). MFP: Multivariable Fractional Polynomials. R

package version 1.5.2.
Baffetta, F., Corona, P., and Fattorini, L. (2010). Design-based diagnostics for k-nn

estimators of forest resources. Can. J. For. Res. 41, 59–72. doi: 10.1139/X10-157
Baffetta, F., Fattorini, L., Franceschi, S., and Corona, P. (2009). Design-based

approach to k-nearest neighbours technique for coupling field and remotely
sensed data in forest surveys. Remote Sens. Environ. 113, 463–475. doi: 10.1016/
j.rse.2008.06.014

Berk, R. A. (2016). Statistical Learning from a Regression Perspective, 2nd Edn.
Cham: Springer International Publishing. doi: 10.1007/978-3-319-44048-4

Breidt, F. J., and Opsomer, J. D. (2016). Model-assisted survey estimation with
modern prediction techniques. Stat. Sci. 32, 190–205. doi: 10.1214/16-STS589

Breidt, F. J., Claeskens, G., and Opsomer, J. D. (2005). Model-assisted estimation
for complex surveys using penalised splines. Biometrika 92, 831–846. doi: 10.
1093/biomet/92.4.831

Chambers, R., van den Brakel, J., Hedlin, D., Lehtonen, R., and Zhang, L.-C. (2006).
Future challenges of small area estimation. Stat. Transit. 7, 759–769.

Chatterjee, S., Hadi, A. S., and Price, B. (2012). Regression Analysis by Example, 5th
Edn. Hoboken, NJ: Wiley.

Chirici, G., McRoberts, R. E., Fattorini, L., Mura, M., and Marchetti, M. (2016).
Comparing echo-based and canopy height model-based metrics for enhancing
estimation of forest aboveground biomass in a model-assisted framework.
Remote Sens. Environ. 174, 1–9. doi: 10.1016/j.rse.2015.11.010

Davison, A. C., and Hinkley, D. V. (1997). Bootstrap Methods and Their
Application. Cambridge: University Press. doi: 10.1017/CBO9780511802843

Ekström, M., Esseen, P.-A., Westerlund, B., Grafström, A., Jonsson, B. G., and
Ståhl, G. (2018). Logistic regression for clustered data from environmental
monitoring programs. Ecol. Informatics 43, 165–173. doi: 10.1016/j.ecoinf.2017.
10.006

Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., and Ståhl, G. (2014).
Adapting national forest inventories to changing requirements – the case of the
Swedish National Forest Inventory at the turn of the 20th century. Silva Fenn.
48:1095. doi: 10.14214/sf.1095

Gregoire, T., Ståhl, G., Næsset, E., Gobakken, T., Nelson, R., and Holm, S. (2011).
Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark
county, Norway. Can. J. For. Res. 41, 83–95. doi: 10.1139/X10-195

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference and Prediction, 2nd Edn. New York, NY:
Springer. doi: 10.1007/978-0-387-84858-7

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with
Sparsity: The Lasso and Generalizations. Boca Raton, FL: CRC Press. doi: 10.
1201/b18401

Horvitz, D. G., and Thompson, D. J. (1952). A generalization of sampling without
replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685. doi: 10.1080/
01621459.1952.10483446

Hosking, J. R. M. (1990). L-moments: analysis and estimation of distributions
using linear combinations of order statistics. J. R. Stat. Soc. Ser. B 52, 105–124.
doi: 10.1111/j.2517-6161.1990.tb01775.x

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). An Introduction to
Statistical Learning, 2nd Edn. New York, NY: Springer. doi: 10.1007/978-1-
0716-1418-1

Kangas, A., Myllymäki, M., Gobakken, T., and Næsset, E. (2016). Model-assisted
forest inventory with parametric, semiparametric, and nonparametric models.
Can. J. For. Res. 46, 855–868. doi: 10.1139/cjfr-2015-0504

Frontiers in Forests and Global Change | www.frontiersin.org 12 December 2021 | Volume 4 | Article 76449578

https://doi.org/10.5061/dryad.s4mw6m97k
https://doi.org/10.5061/dryad.s4mw6m97k
https://www.frontiersin.org/articles/10.3389/ffgc.2021.764495/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/ffgc.2021.764495/full#supplementary-material
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1139/X10-157
https://doi.org/10.1016/j.rse.2008.06.014
https://doi.org/10.1016/j.rse.2008.06.014
https://doi.org/10.1007/978-3-319-44048-4
https://doi.org/10.1214/16-STS589
https://doi.org/10.1093/biomet/92.4.831
https://doi.org/10.1093/biomet/92.4.831
https://doi.org/10.1016/j.rse.2015.11.010
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1016/j.ecoinf.2017.10.006
https://doi.org/10.1016/j.ecoinf.2017.10.006
https://doi.org/10.14214/sf.1095
https://doi.org/10.1139/X10-195
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1201/b18401
https://doi.org/10.1201/b18401
https://doi.org/10.1080/01621459.1952.10483446
https://doi.org/10.1080/01621459.1952.10483446
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1139/cjfr-2015-0504
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-764495 December 9, 2021 Time: 17:17 # 13

Ekström and Nilsson A Comparison of Model-Assisted Estimators

McConville, K. S., Breidt, F. J., Lee, T. C. M., and Moisen, G. G. (2017). Model-
assisted survey regression estimation with the lasso. J. Surv. Stat. Methodol. 5,
131–158. doi: 10.1093/jssam/smw041

McConville, K. S., Moisen, G. G., and Frescino, T. S. (2020). A tutorial on model-
assisted estimation with application to forest inventory. Forests 11:244. doi:
10.3390/f11020244

McConville, K., Tang, B., Zhu, G., Cheung, S., and Li, S. (2018). Mase: Model-
Assisted Survey Estimation. R package version 0.1.2.

McGaughey, R. J. (2020). FUSION/LDV: Software For LIDAR Data Analysis
and Visualization. Available online at: http://forsys.cfr.washington.edu/fusion/
(accessed January 18, 2021).

McRoberts, R. E., Liknes, G., and Domke, G. M. (2014). Using a remote sensing-
based, percent tree cover map to enhance forest inventory estimation. For. Ecol.
Manag. 331, 12–18. doi: 10.1016/j.foreco.2014.07.025

Moser, P., Vibrans, A. C., McRoberts, R. E., Næsset, E., Gobakken, T., Chirici,
G., et al. (2017). Methods for variable selection in LiDAR-assisted forest
inventories. Forestry 90, 112–124. doi: 10.1093/forestry/cpw041

Naturvårdsverket (2020). Nationella Marktäckedata 2018, Basskikt –
Produktbeskrivning. Utgåva 2.2, Naturvårdsverket. Available online at:
http://gpt.vic-metria.nu/data/land/NMD/NMD_Produktbeskrivning_
NMD2018Basskikt_v2_2.pdf (accessed November 26, 2021).

Nilsson, M., Nordkvist, K., Jonzén, J., Lindgren, N., Axensten, P., Wallerman, J.,
et al. (2017). A nationwide forest attribute map of Sweden predicted using
airborne laser scanning data and field data from the National Forest Inventory.
Remote Sens. Environ. 194, 447–454. doi: 10.1016/j.rse.2016.10.022

Opsomer, J. D., Breidt, F. J., Moisen, G. G., and Kauermann, G. (2007).
Model-assisted estimation of forest resources with generalized additive
models (with discussion). J. Am. Stat. Assoc. 102, 400–416. doi: 10.1198/
016214506000001491

R Core Team (2020). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Royston, P., and Altman, D. G. (1994). Regression using fractional polynomials of
continuous covariates: Parsimonious parametric modelling. J. R. Stat. Soc. Ser.
C 43, 429–467. doi: 10.2307/2986270

Sabanés Bové, D., and Held, L. (2011). Bayesian fractional polynomials. Stat.
Comput. 21, 309–324. doi: 10.1007/s11222-010-9170-7

Samuels, M. L., Witmer, J. A., and Schaffner, A. A. (2012). Statistics for the Life
Sciences, 4th Edn. Boston, FL: Prentice Hall.

Särndal, C.-E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey
Sampling. New York, NY: Springer. doi: 10.1007/978-1-4612-4378-6

Sauerbrei, W., and Royston, P. (2017). “The multivariable fractional polynomial
approach, with thoughts about opportunities and challenges in big data,” in
Big Data Clustering: Data Preprocessing, Variable Selection, And Dimension

Reduction. WIAS Report 29, ed. H.-J. Mucha (Berlin: Weierstraß-Institut für
Angewandte Analysis und Stochastik), 36–54.

Sauerbrei, W., Meier-Hirmer, C., Benner, A., and Royston, P. (2006). Multivariable
regression model building by using fractional polynomials: description of SAS,
STATA and R programs. Comput. Stat. Data Anal. 50, 3464–3485. doi: 10.1016/
j.csda.2005.07.015

Ståhl, G., Saarela, S., Schnell, S., Holm, S., Breidenbach, J., Healey, S. P., et al.
(2016). Use of models in large-area forest surveys: comparing model-assisted,
model-based and hybrid estimation. For. Ecosyst. 3:5.

Tomppo, E., Heikkinen, J., Henttonen, H. M., Ihalainen, A., Katila, M., Mäkelä,
H., et al. (2011). “Designing and conducting a forest inventory – case:
9th national forest inventory of finland,” in Managing Forest Ecosystems,
Vol. 22, ed. K. von Gadow (Dordrecht: Springer). doi: 10.1007/978-94-007-
1652-0

Torgo, L. (2010). Data MiningWith R: LearningWith Case Studies. Boca Raton, FL:
Chapman and Hall/CRC. doi: 10.1201/b10328

Vaughan, T. S., and Berry, K. E. (2005). Using Monte Carlo techniques to
demonstrate the meaning and implications of multicollinearity. J. Stat. Educ.
13, 1–9. doi: 10.1080/10691898.2005.11910640

White, J. C., Wulder, M. A., Vastaranta, M., Coops, N. C., Pitt, D.,
and Woods, M. (2013). The utility of image-based point clouds for
forest inventory: a comparison with airborne laser scanning. Forests 4,
518–536.

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the
elastic net. J. R. Stat. Soc. Ser. B 67, 301–320. doi: 10.1111/j.1467-9868.2005.
00503.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ekström and Nilsson. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Forests and Global Change | www.frontiersin.org 13 December 2021 | Volume 4 | Article 76449579

https://doi.org/10.1093/jssam/smw041
https://doi.org/10.3390/f11020244
https://doi.org/10.3390/f11020244
http://forsys.cfr.washington.edu/fusion/
https://doi.org/10.1016/j.foreco.2014.07.025
https://doi.org/10.1093/forestry/cpw041
http://gpt.vic-metria.nu/data/land/NMD/NMD_Produktbeskrivning_NMD2018Basskikt_v2_2.pdf
http://gpt.vic-metria.nu/data/land/NMD/NMD_Produktbeskrivning_NMD2018Basskikt_v2_2.pdf
https://doi.org/10.1016/j.rse.2016.10.022
https://doi.org/10.1198/016214506000001491
https://doi.org/10.1198/016214506000001491
https://doi.org/10.2307/2986270
https://doi.org/10.1007/s11222-010-9170-7
https://doi.org/10.1007/978-1-4612-4378-6
https://doi.org/10.1016/j.csda.2005.07.015
https://doi.org/10.1016/j.csda.2005.07.015
https://doi.org/10.1007/978-94-007-1652-0
https://doi.org/10.1007/978-94-007-1652-0
https://doi.org/10.1201/b10328
https://doi.org/10.1080/10691898.2005.11910640
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-745840 December 9, 2021 Time: 15:16 # 1

ORIGINAL RESEARCH
published: 15 December 2021

doi: 10.3389/ffgc.2021.745840

Edited by:
Philip Radtke,

Virginia Tech, United States

Reviewed by:
Steve Prisley,

National Council for Air and Stream
Improvement, Inc., (NCASI),

United States
Garret Dettmann,

Virginia Tech, United States

*Correspondence:
Vance Harris

vharris@umass.edu
Brett J. Butler

brett.butler2@usda.gov

Specialty section:
This article was submitted to

Forest Management,
a section of the journal

Frontiers in Forests and Global
Change

Received: 22 July 2021
Accepted: 16 November 2021
Published: 15 December 2021

Citation:
Harris V, Caputo J, Finley A,

Butler BJ, Bowlick F and Catanzaro P
(2021) Small-Area Estimation for the

USDA Forest Service, National
Woodland Owner Survey: Creating

a Fine-Scale Land Cover
and Ownership Layer to Support

County-Level Population Estimates.
Front. For. Glob. Change 4:745840.

doi: 10.3389/ffgc.2021.745840

Small-Area Estimation for the USDA
Forest Service, National Woodland
Owner Survey: Creating a Fine-Scale
Land Cover and Ownership Layer to
Support County-Level Population
Estimates
Vance Harris1* , Jesse Caputo1,2, Andrew Finley3, Brett J. Butler1,2* , Forrest Bowlick1 and
Paul Catanzaro1

1 Department of Environmental Conservation, Family Forest Research Center, University of Massachusetts Amherst,
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Small area estimation is a powerful modeling technique in which ancillary data can
be utilized to “borrow” additional information, effectively increasing sample sizes in
small spatial, temporal, or categorical domains. Though more commonly applied to
biophysical variables within the study of forest inventory analyses, small area estimation
can also be implemented in the context of understanding social values, behaviors, and
trends among types of forest landowners within small domains. Here, we demonstrate
a method for deriving a continuous fine-scale land cover and ownership layer for the
state of Delaware, United States, and an application of that ancillary layer to facilitate
small-area estimation of several variables from the USDA Forest Service’s National
Woodland Owner Survey. Utilizing a proprietary parcel layer alongside the National Land
Cover Database, we constructed a continuous layer with 10-meter resolution depicting
land cover and land ownership classes. We found that the National Woodland Owner
Survey state-level estimations of total acreage and total ownerships by ownership class
were generally within one standard error of the population values calculated from the
raster layer, which supported the direct calculation of several population-level summary
variables at the county levels. Subsequently, we compare design-based and model-
based methods of predicting commercial harvesting by family forest ownerships in
Delaware in which forest ownership acreage, taken from the parcel map, was utilized to
inform the model-based approach. Results show general agreement between the two
modes, indicating that a small area estimation approach can be utilized successfully
in this context and shows promise for other variables, especially if additional variables,
e.g., United States Census Bureau data, are also incorporated.

Keywords: private forest land, family forest ownerships, commercial forest harvesting, small area estimation,
model-based estimations
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INTRODUCTION

Of the approximate 816 million acres of forestland in the
United States, private land ownership accounts for an estimated
56% (Butler et al., 2021). Therefore, understanding private land
ownership attitudes and behaviors is fundamental to successfully
cultivating socially positive land stewardship practices (Kumer
and Štrumbelj, 2017; Mozgeris et al., 2017; Sotirov et al.,
2019; Butler et al., 2021). Private forest landowners consist of
“forest industry companies, other businesses or corporations,
partnerships, tribes, families, and individuals” (Butler and
Leatherberry, 2004) according to the National Woodland Owner
Survey (NWOS). However, dynamic heterogeneity in attitudes
and behaviors, both within and between private ownership
classes, require robust datasets and appropriate models to
accurately differentiate trends in ownership typologies (Kumer
and Štrumbelj, 2017; Sotirov et al., 2019). Efforts to conduct high
resolution ownership analyses have historically been thwarted
due to a lack of sufficient data (Sotirov et al., 2019). Low sampling
sizes generated from the results of these surveys cause problems
such as low statistical power, inflated effect estimations and
poor replicability. Low sample sizes also require that population
estimates be calculated within relatively large spatial domains
(nationwide, regional or state-level) in order to ensure sufficient
levels of precision.

Traditional mechanisms for understanding forest ownership
behavior are through social surveys via mail, phone, or the
internet (Kumer and Štrumbelj, 2017; Sotirov et al., 2019; Butler
et al., 2021). In the United States, the NWOS, a product of
the United States Department of Agriculture, Forest Service
Forest Inventory and Analysis (FIA) Program, is the official
survey aimed at increasing understanding regarding private
forest owners (Butler et al., 2021). The target sample size for
the NWOS is 250 responses per geographic unit, based on a
target coefficient of variation of 5% (Butler and Caputo, 2021).
In practice, however, the NWOS reporting protocol allows for
published estimates for geographic regions with at least 100
responses. This lower target is always met at the regional level and
for most states (Butler et al., 2021), but rarely at the sub-state or
county level. This level of analysis is not always sufficient to make
programmatic or policy decisions, such as for forestry assistance
programs, at the county or sub-state scale.

To compensate for the low sample size at the sub-state
level and to allow for accurate, precise estimation of NWOS
attributes at finer scales, this pilot effort focuses on the
development of a parcel-level land cover and ownership layer
for use in small area estimation. Small area estimation (SAE)
refers generally to approaches for making population-level
estimates within small domains for which sample sizes are
deemed inadequate to produce estimates of acceptable precision
using traditional design-based techniques. This umbrella term
refers to a number of methods that rely on ancillary data
sources in order to “borrow” additional information, increasing
the effective sample size – and consequently, the precision
of the estimates – for the selected domain. In particular,
model-based small area estimation techniques can deliver rich
inference – especially when compared to traditional design-based
approaches. Design-based and model-based modes of inference

have long been contrasted in survey research (Little, 2004).
Design-based inference automatically accounts for the survey
design but has limited ability to leverage ancillary information
and deliver precise estimates for small sample sizes (i.e., small
area estimates). On the other hand, model-based inference
must explicitly consider the design and data jointly, but can
use ancillary information and borrow from the rich modeling
literature to deliver robust inference for small samples sizes.
Within the model-based realm, Bayesian methods provide
additional flexibility in model specification and inference (Ghosh
and Meeden, 1997; Rao, 2011; Chen et al., 2017). Small area
estimation is an increasingly important tool for forest inventory
analyses (Breidenbach et al., 2020). To date, however, most efforts
have focused on estimation of biophysical variables (Breidenbach
and Astrup, 2012; Goerndt et al., 2019; Green et al., 2020). An
equal need, however, exists for precise estimates of ownership
attributes within small domains, especially small (i.e., sub-state)
spatial domains.

As part of the NWOS efforts, forest ownership spatial
products have been periodically released (Hewes et al., 2014;
Sass et al., 2020). Updates to these map layers have incorporated
newer information and increasing resolution of forest ownership
categories. These spatial products have used a Thiessen polygon
approach based on FIA plot and ancillary data to produce wall-
to-wall coverage of forest ownership across the conterminous
United States (Butler et al., 2014). This technique is acceptable
for strategical level analyses and visualization of broad ownership
patterns, but it cannot be used for tactical level analyses or any
applications where a high level of spatial precision is required.
Although spatial layers such as these are potentially rich sources
of ancillary data for small area estimation efforts, the current suite
of NWOS-derived spatial products do not have the needed level
of accuracy or resolution for this purpose.

There are two primary goals in this pilot study: (1) to
produce a spatial layer that accurately depicts land cover and
ownership classes that are compatible with FIA land classes at
a fine resolution (i.e., at the parcel scale), and which result in
summary statistics compatible with FIA and NWOS results, and
(2) demonstrate the utility of the ownership layer as an input in
model-based estimation to produce small domain (e.g., county-
level) estimates of the proportion of ownerships engaging in
commercial harvesting as good as or better than those produced
using the standard NWOS methodology. For the focus of this
initial pilot, we decided for operational efficiency to focus on
a state that is small and has complete DMP coverage. For
that reason, we confined our analysis to the state of Delaware,
United States. Although Delaware is not state in which forests
and forestry are traditionally seen as important, more than 50%
of the state is forested and more than 40% of family forest
landowners have harvested sawlogs, firewood, or other forest
products (Butler et al., 2021).

MATERIALS AND METHODS

Land Cover and Ownership Layer
To date, NWOS results have primarily been reported for family
forest ownerships (FFOs) – families, trusts, individuals, estates,
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and family partnerships which own forestland (Butler et al.,
2021). Ownerships are defined as groups of one or more owners
that jointly own one or more forested parcels. FFOs are defined as
ownerships owning at least one acre of forest, with forest defined
as forested “...land that has at least 10 percent crown cover by
live tally trees of any size or has had at least 10 percent canopy
cover of live tally species in the past, based on the presence of
stumps, snags, or other evidence.” (USDA Forest Service, 2016).
For comparison’s sake, the primary emphasis of this study will
also be on FFOs. Summary results include estimates of number
of ownerships, acreage, and size of holdings. Figure 1 illustrates
the approach taken to generate these estimates and is further
described in this section. However, an additional goal of this
study is to generate these estimates for all ownership classes in
addition to FFOs, including public, corporate, and other private
ownerships. This is possible due to the application of a secondary
dataset developed by Digital Map Products LightboxTM (DMP)
[Digital Map Products (DMP), 2021]. This proprietary data
includes ownership information at the parcel scale across the
United States, including parcel boundaries and owner name and
address information. This data is aggregated from individual
sources at the state, county, and local levels and represents
a standardized continuous vector layer for analysis. Although
several state agencies publish parcel-level landcover maps, no
non-proprietary layers exist nationwide. Within the scope of this
work, both address and name data can be utilized to classify
individual parcels to the FIA ownership classes. For this study, we
used data for the state of Delaware, nominally current as of 2020.

To calculate the number of unique ownerships within the
DMP data, multiple instances of the same ownership associated
with two or more parcels needed to be identified. Ownerships
were identified and matched utilizing name and address data.
Names were transformed into a standardized format to reduce
effects such as misspellings, additional/missing name elements
and similar erroneous influences. To account for differences
in reporting practices, consideration for the type of owners
was needed. Individual/family ownerships were isolated and
processed differently than those of other legal ownership entities.
This was primarily done to enhance the individual/family
ownership matches by incorporating home address data, whereas
another legal entity (such as a corporate owner) might have
multiple mailing addresses associated with local/regional offices
of the same company and were therefore matched on name alone.
In order to prevent parents and children with similar names
living at the same address from being erroneously identified as the
same individual, generational suffixes (e.g., Jr, II, etc.) were used
to split otherwise very similar names and ensure identification of
multiple unique ownerships.

The primary tool used to match records by ownerships names
was utilizing a reference table populated with every record
and a phonetic code associated with the ownership names.
The phonetic codes were generated via the Python package
DoubleMetaphone (Philips et al., 2007). Utilizing this package,
the text-based name data were converted to their phonetic
spelling and reduced to their key phonetic elements.1 Each

1For example, the name VANCE HARRIS ALLEN JR would hypothetically
be split into component words and associated with the following phonetic

record’s code was written into a reference table, in which all
records with the same phonetic spelling were linked. In the case
of the individual/family owners, the dataset was first grouped into
records with the same home address. From there the names were
coded into internal reference tables to match names only within
the subgrouping. Once unique IDs were generated, ownership
data can be associated with all their relevant parcels. In this
manner, for example, total size of forest holdings could be
calculated at the ownership level.

The next phase of the analysis was to determine the
ownership classes according to the FIA ownership typology
(Family, Corporate, Other Private, and Public and Tribal). Both
logical classification criteria and a machine learning model
(hereto referred as the classification model) were implemented
to build upon previously established FIA manual classification
methodologies. As a training set, we used a portion of the
sample from the 2018 iteration of the NWOS (Butler et al.,
2021). All records (n = 8,862) used originally came from the
same commercial vendor (DMP lightbox) as the data for the
current study and were therefore in a very similar format. All
records had been manually classified using the FIA classification.
This training set was also preprocessed through the same
name standardization methods mentioned earlier, in order to
preserve consistency.

The logical classification stage was used to affix ownership
classes if known conditions were met, thereby capitalizing on
known elements within the ownership names. Primarily these
conditions included the presence of keywords or language
associated with the FIA ownership classes (e.g., “Revocable trust”
or “Living trust” for family owners; “Authority” or “Maintenance”
for corporate, etc.). Additionally, keyword searches were
implemented in a ordered manner in which searches were
given different levels of priority. If records were classified in
one search, then they would not be classified in subsequent
searches. Delaware has no tribal reservations, and the tribal
category was therefore omitted from this analysis. After the
logical classification, the remaining unclassified records were
then isolated and passed through a classification model.

The classification model was fit to the training set, and
implemented using Python’s scikit-learn package (Pedregosa
et al., 2011) and similarly utilized individual elements in the
ownership names as opposed to the name in its entirety. The
metric Term Frequency-Inverse Document Frequency (TF-IDF)
was utilized to score every name element in the training set
to determine every word’s association with all other words in
the dataset. Identifying impactful (i.e., highly associated) words
allows for more robust data to be utilized in the training of the
ML model. A random forest classification model was selected for
its computational speed and its predictive accuracy.

Before passing the unclassified dataset through the resulting
model, this data needed to undergo the same TF-IDF
computations as the training set. The full, unclassified dataset
was substantially larger than the training set and contained
more unique words, therefore, only the words which appeared
in the training set were selected as independent variables. The

standardizations: ALNRSRRFNS, ALNRSFNS, ALNJRRFNS, HRSRRFNS, and
ALNRSRR.
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FIGURE 1 | Logic flow chart illustrating the process of creating a land cover and ownership spatial layer, from NLCD and a parcel ownership polygon layer.

unclassified records were then passed through the classification
model and FIA ownership class assignments were then available
for all records. In these procedures, we attempted to replicate as
closely as possible the guidelines that are used for deduplication
and classification of the NWOS sample (Butler et al., 2021).

The next phase was to determine the land cover types
associated with each parcel. The National Land Cover Database
(NLCD) (Dewitz, 2019) 30-meter land cover raster data was
utilized here. In order to efficiently join the two data types,
the vector-based DMP parcels were converted to a raster with
a 10-meter resolution based on the unique Parcel ID field
ranging from 1 to 423051. 10 meters allowed for the joining
of the two rasters without dropping the smaller parcels. The
NLCD data was resampled to a 10-meter resolution. The
original 15 land cover classes were reclassified to a numeric
label ranging from 100,000,000 (Open Water) to 900,000,000
(Mixed Forest). The larger integer classification allows the
Parcel ID values to be appended and preserve both pieces
of information in an aspatial format (i.e., parcel[420000] +
Deciduous Forest[700000000] = 700420000).

Once achieved, the unique Parcel IDs were utilized to
aggregate all pixels and their associated land cover types to
each parcel. Total occurrences of each NLCD land cover class
within a parcel were divided by the total parcel pixels to
determine the percent coverage of each land cover class. We also
merged the NLCD classes into a simplified three-class typology,
to correspond to the FIA land use classification. Of the 15
original NLCD classes, four (Deciduous Forest, Evergreen Forest,
Mixed Forest, and Woody Wetlands) are representative of the
FIA-defined “forest” class, one corresponded to "open water",
and the remaining 10 corresponded to “non-forest”. Although,
strictly speaking, FIA is measured and reported in terms of land
use instead of land cover, these four NLCD classes have been
determined to correspond adequately to the FIA definition of
forest use (Nelson et al., 2020).

The final products include a raster layer in which both
ownership and land cover are encoded at the level of the
individual pixel, and an enhanced parcel table in which each row
represents a single parcel, with parcels assigned ownership IDs

allowing for aggregation across ownerships. This last product
includes the calculated values for total acreage and acreage
by land cover type. By aggregating across this table, we can
directly calculate several population-level summary variables
at the state or county levels, including the number of forest
acres, ownerships, and parcels. In this paper, we focused on
forest ownerships owning one or more acres – and in particular
on family forest ownerships owning one or more acres. This
corresponds to one of the primary strata/domains used for
reporting NWOS results (Butler et al., 2021).

Custom National Woodland Owner
Survey Estimates
Using the standard NWOS methodology for deriving population-
level estimates (Butler and Caputo, 2021; Butler et al., 2021),
we estimated statewide and county-level estimates of the total
number of FFOs, total FFO acreage, mean size-of-holdings,
and total acreage owned by ownerships who have undertaken
commercial harvest in the past 5 years (all at the 1+ acre domain).
These estimates provide a benchmark comparison to summary
variables calculated either directly or indirectly (i.e., through
estimation) from the parcel table. It is important to note that there
is a small temporal scale mismatch between the DMP data (which
are nominally current as of 2020) and the NWOS data (which
were collected in 2017/2018), but this magnitude of this mismatch
is assumed to be negligible relative to the rate of change inherent
to land ownership.

Small Area Estimation
To illustrate the utility of model-based inference, we first
developed state- and county-level estimates of a simulated, non-
specific response variable, derived for each of the population units
(i.e., ownerships) enumerated in the parcel map. We limited our
population to FFOs within Delaware holding at least one acre of
forest land. The simulated response variable is binary and non-
specific, and can be thought of as representing a hypothetical
binary attribute of interest (such as, for example, do landowners
have forest management plans? Or do landowners hunt on their
land?). We help inform these estimates using the county in
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FIGURE 2 | Distribution of ownership classes by forest/non-forest land cover. Delaware, United States, 2020.
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TABLE 1 | Total number of ownerships, total acreage, mean size of forest holdings, and mean number of forested parcels, by Ownership Class, statewide and by
counties, as derived from a state-wide ownership and land use map.

State Ownership class Thousand acres Thousand ownerships Mean forested size-of-holdings Mean number of parcels

DE Corporate 94.64 3.12 32.54 3.50

DE Family 192.06 17.68 10.87 1.41

DE Other private 13.71 0.15 97.39 2.14

DE Public 73.96 0.24 314.42 9.30

County

Kent Corporate 21.90 0.83 46.17 4.17

Kent Family 62.75 4.83 14.34 1.68

Kent Other private 1.71 0.03 57.40 2.18

Kent Public 15.24 0.08 658.28 15.68

New castle Corporate 20.29 1.24 27.69 3.72

New castle Family 23.21 3.83 6.87 1.59

New castle Other private 1.34 0.08 142.14 2.78

New castle Public 17.77 0.09 552.29 17.25

Sussex Corporate 52.45 1.63 38.27 4.28

Sussex Family 106.10 9.53 11.73 1.52

Sussex Other private 10.66 0.07 175.33 2.71

Sussex Public 40.95 0.11 550.72 13.13

Delaware, United States, 2020.

which an ownership is situated as well as an ownership’s size-
of-holdings, defined as the total acreage of forested land owned
by the ownership within the state (as derived from the parcel
layer). We first undertook a simple simulation exercise, in which
a simple random sample of ownerships was taken from the
parcel layer and the simulated response variable was simulated
for each. This simulation exercise allows us to compare model-
based and design-based estimation methods against a known
population, in order to demonstrate their utility and justify their
subsequent use in making small-area estimates using NWOS
data

Model-based inference about a finite population based on
a probability sample can be viewed as a prediction problem.
Parameters in the posited model are estimated using sample

TABLE 2 | Simulated data parameters (True) and candidate models’ posterior
distribution median and lower and upper 95% credible intervals in parentheses.

Parameter True Sub model Full model

β01 −1.31 0.83 (0.22, 1.51) −1.24 (−2.44, 0.06)

β02 −0.91 0.07 (−0.67, 0.83) −1.09 (−2.13, 0.07)

β03 −1.42 −0.97 (−1.45, −0.52) −1.68 (−2.35, −1.07)

µ0 −1 −0.03 (−7.67, 7.30) −1.38 (−6.26, 3.73)

σ2
0 0.5 2.00 (0.53, 26.75) 0.94 (0.05, 19.20)

βx1 0.78 0.64 (0.22, 1.21)

βx2 0.40 0.31 (0.05, 0.71)

βx3 0.05 0.07 (0.03, 0.11)

µx 0.3 0.33 (−2.18, 3.04)

σ2
x 0.3 0.62 (0.12, 10.10)

WAIC 209.14 178.4

Pw 3.07 5.66

The last two rows hold model WAIC goodness of fit and complexity penalty
term. Subscript terms 1, 2, and 3 correspond to Kent, New Castle, and Sussex
Counties, respectively.

data and subsequently used to predict the response for the
unobserved population units (i.e., those not included in the
sample). Following Bayesian methods, we estimated the posterior
distribution of model parameters and posterior predictive
distribution for unobserved population units. The survey
design used to select sampling units determines if and how
the design is acknowledged in the posited model. Here, we
assume a stratified simple random sampling (SRS) design that
allows design components to be ignored in the modeling (see,
e.g., Gelman et al., 2013).

Given the binary response, availability of covariates from the
parcel map, and focus on county-level estimates, a natural model
would be a logistic regression with county specific intercept
and regression coefficients. We modeled the non-specific, binary
response variable yij, where i and j index ownership and
county, respectively, using a Bernoulli distribution and logit link
function as

logit
(
pij

)
= β0j + xijβj,

yij ∼ Bern
(
pij

)
where, pij is the probability of the non-specific response variable
being true for an ownership, xij is the total size-of-forest-holdings
owned by that ownership, β0j is the county-specific intercept, and
βj is the regression coefficient. To pool sample information, we
modeled the normally distributed coefficients as

β0j ∼ N
(
µ0,σ

2
0
)

βj ∼ N(µx,σ
2
x)

with means µ and variances σ2. To complete the Bayesian
specification, we assigned noninformative prior distributions
to all model parameters. We refer to this as the full model.
For comparison, we also consider a sub model that includes
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TABLE 3 | County and state-wide proportions of family forest landowners in
Delaware, United States, associated with a simulated, non-specific attribute.

Model-based

Parameter True Design-based Sub model Full model

Kent 0.78 0.70 (0.56, 0.84) 0.69 (0.55, 0.82) 0.74 (0.64, 0.84)

New castle 0.60 0.52 (0.32, 0.72) 0.52 (0.33, 0.70) 0.52 (0.36, 0.69)

Sussex 0.30 0.27 (0.18, 0.36) 0.28 (0.19, 0.37) 0.28 (0.20, 0.36)

Statewide 0.49 0.44 (0.37, 0.51) 0.44 (0.37, 0.51) 0.45 (0.39, 0.51)

The table compares the true (i.e., simulated) values with design-based and model-
based estimates. Design-based estimates are proportions with 95% confidence
interval, model-based estimates are proportions with 95% credible interval.

only the county-varying intercept without the forest ownership
acreage covariate.

The simulation exercise compares design- and model-based
inference for data similar to that collected in the NWOS. The
study generated a realization of yij’s for all population units using
the full model and parameter values provided in Table 2. From
this population we drew a simple random sample of size n = 167
(which is the sample size of the most recent NWOS survey of
Delaware). The number of sampling units within each county was
proportional to the number of population units in that county.
Given this sample, county and state estimates were generated
using the sub model, full model, and design-based stratified
estimator. The design-based estimator for proportions, given a
stratified simple random sample, is defined in Lohr (1999). The
sub and full models were compared using the widely applicable
information criterion (WAIC; Watanabe, 2010). This criterion
favors models with better fit to observed data while penalizing
models by their effective number of parameters (Pw). Models with

lower values WAIC have better fit to the observed data and should
yield better out-of-sample prediction, see Gelman et al. (2013),
Vehtari et al. (2017), or Green et al. (2020) for more details.

After assessing the results of the simulation exercise and
affirming the suitability of model-based estimation in this case,
we fit additional models (equivalents of both the full and
sub models) to the actual 2018 NWOS sample for Delaware
(Butler et al., 2021) in place of the simulated sample. The
observational units of the NWOS are individual ownerships and
survey responses apply to all parcels owned by each ownership.
Survey responses include measurements of ownerships’ size-of-
holdings as well as the measured response variable, occurrence
of commercial harvest. This variable is binary, coded one if
harvest occurred on an ownership’s holdings within the past
5 years and 0 otherwise. We then estimated the proportion of
family forest ownerships (1+ acres) who undertook commercial
harvests, by using these models to predict harvest occurrence
for each of the unobserved parcels in the complete parcel layer.
We then compared these estimates to estimates produced using
the standard NWOS methodology and the same raw data. These
estimates were used as a point-of-comparison in place of the SRS
that was used for that purpose in the simulation exercise, as the
NWOS sample does not use an SRS design (Butler et al., 2021).
All estimation was done using R (R Core Team, 2019).

RESULTS AND DISCUSSION

Land Use and Ownership Layer
Per the intent of the first goal of this study, Figure 2 represents
the layer for the state of Delaware United States that accurately

FIGURE 3 | Predicted probability of commercial forest harvest (previous 5 years) by family forest ownerships, by county and size-of-forest-holdings in Delaware,
United States. Lines represent posterior median and bands show 95% credible intervals.
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depicts land cover and ownership classes that are compatible with
FIA land classes at a 10-meter resolution.

A cross-validation approach was utilized to assess the
Ownership Classification model accuracy. The training dataset
was split into a fitting set (80%, n = 7090) and a testing
set (20%, n = 1772). The model was trained using the fitting
set and was applied to the testing set in order to generate a
predictive classification. The testing set’s actual classification was
compared to the predicted classification and yielded a measure of
weighted accuracy of approximately 96%. This error metric only
accounts for the specific variability introduced in this ownership
classification phase and does not address the accuracy of the
entire study as a whole.

At a 10-meter resolution, the final layer had a total of 48.6
million pixels. Forested pixels make up 32.3% of the total
area, with family forest being the largest share – 17.1% of the
total pixels. The other 67.7% consists of non-forest including
developed land, agriculture, barren land, shrubland and the like.
Public roads and open water are represented by null values. Most
non-forest land is family (36.0%) or corporate (22.2%), followed
by public (8.4%) and other private2 (1.1%).

Among forest ownerships with one or more acres, the
predominant type of ownership is family, accounting for 192.1
thousand acres (Table 1). The published NWOS estimate of this
value (198 thousand acres, SE = 13; Butler et al., 2021) is within
one standard error of the “true” value represented by the parcel
table. Likewise, the published estimates of the acreages owned by
public and other private entities are within one standard error
of the true population values. The largest discrepancy is with
corporate ownerships; the published estimate of 68 thousand
acres (SE = 13) is more than two standard errors less than the true
population value, 94.6 thousand acres. Delaware’s family forests
are owned by 17.7 thousand unique family forest ownerships.
Family forest owners own on average a mean of 1.4 parcels
and a mean of 10.9 acres of forest land. Standard estimates
of the total number of ownerships and mean size-of-forest-
holdings calculated using the published NWOS methodology
(18.4 thousand total ownerships, SE = 2.9; mean size-of-forest-
holdings = 10.7 acres, SE = 2.0) are within one standard error of
the population values.

The greatest proportion of FFO acreage and ownerships is
found in Sussex County, followed by Kent and New Castle
Counties (Table 1). Total FFO acreage ranges from 23.2 to 10.6
thousand acres, and in all cases the standard estimates are within
one standard error of the true population values. Total numbers
of FFOs range from 3.8 to 9.5 thousand ownerships. In Kent
and New Castle Counties, the estimates are within one standard
error of the population totals. In Sussex County, they are not.
The mean size-of-forest-holdings ranged from 6.9 acres in New
Castle County to 14.3 acres in Kent County. In all but Sussex
County, the standard estimates are within one standard error
of the population level. Given the smaller sample sizes, it is
not surprising that the county-level standard estimates are less
accurate relative to the population levels as compared with the

2Other private consists of conservation organizations, NPOs, community groups,
and unincorporated private entities.

state-wide estimates. All counties have a sample size of less than
100, a standard adopted in NWOS reporting as an indicator of
reliability (Butler et al., 2021).

Small Area Estimation
The true parameter values used to generate the simulated
population along with their associated estimates from the sub
and full models are provided in Table 2. Given the full model is
the model used to generate the population data, it is reassuring
that all posterior 95% credible intervals capture their respective
True parameter values. Further, the WAIC given in the second to
last row in Table 2 correctly identifies the full model as the most
plausible for the given data.

The true values and estimates for the proportion of ownerships
associated with the simulated response variable are given in
Table 3. The values in this table show negligible differences
among design-based and model-based estimates. Also, while
the interpretation of the design-based confidence interval
and Bayesian model-based credible intervals is fundamentally

FIGURE 4 | Predicted probability of commercial forest harvest by family forest
ownerships across Delaware, United States. (A) Shows the probability of
commercial harvest in the previous 5 years. (B) Shows the width of the 95%
credible interval. Null values are represented in gray and correspond to public
ownerships, corporate ownerships, other non-family private ownerships, and
family ownerships owning less than one acre of forest. Values at the scale of
the individual pixel reflect harvest probabilities across the entire parcel,
regardless of whether the specific pixel is forest or non-forest.
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FIGURE 5 | Proportion of family forest ownerships (1+ ac) who have conducted commercial harvests in the past 5 years, by county. Delaware, United States,
2018–2020. Comparison of NWOS standard estimates and model-based estimates. Error bars are 95% confidence intervals for the NWOS estimates and 95%
credible intervals for the model-based estimates.

different, they both reflect approximately the same level of
uncertainty. Theoretically, given some conditions and parameter
prior specifications, the sub model can be shown to replicate
the design-based estimate (Ghosh and Meeden, 1997), and it is
therefore not surprising their parameter estimates are so similar.
Compared with the design-based and sub model, the full model
yields slightly narrower credible interval estimates, reflecting the
additional information provided by the covariate.

Based on the results of the simulation exercise, we feel
confident that the model-based estimators are sufficiently
accurate, precise, and unbiased for use in making estimates of
NWOS attributes at the county-level. Consequently, we adopted
the full model as the preferred model for making estimates
of the measured response variable, commercial harvest. While
population parameter estimates at various levels are our main
interest, the model-based approach does offer additional insights
into the relationship between the response and covariates. For
example, Figure 3 summarizes the county-level relationship
between commercial harvest variable and the number of acres
owned by an ownership as predicted by the full model. In all three
counties, the probability of commercial harvest sharply increases
with the total amount of forested land owned by an ownership.
This probability approaches 1.0 at about 1,000 acres in both Kent
and New Castle Counties, but not until ∼2500 acres in Sussex
County. Such information can be useful when designing further
survey instruments and guiding outreach/policy efforts.

In addition to county- and state-level estimates, the models
provide individual population unit level posterior predictive
distributions which can be summarized and mapped at the level

of the individual parcel or pixel. As can be seen in Figure 4,
commercial harvest is relatively improbable across the bulk of
family forest land (median = 7.5%), with probability increased
on larger parcels. Only a few of the largest parcels are both
highly probable and highly certain (i.e., they have a narrow
95% credible interval) to conduct commercial harvest. Overall,
the width of the intervals for individual parcels ranges from
0.4 to 96.7%. Information such as this is potentially valuable
for targeting regions (or even individual parcels) for programs
and interventions.

At the county-level, the full model estimates of the proportion
of family forest ownerships with one or more acres having had
commercial harvest in the previous 5 years range from 3.7% in
New Castle County to 7.2% in Sussex County (Figure 5). In
all cases, the error bars of the NWOS standard estimates (95%
confidence intervals) overlapped with those of the model-based
estimates (95% credible intervals). The complete code and output
for both the full and sub commercial harvest models is available
in Supplement 1.

CONCLUSION AND FUTURE
DIRECTIONS

Using parcel level ownership data in tandem with the National
Land Cover Database was more than sufficient for the creation
of a continuous land cover and ownership class surface across
the state of Delaware, United States. The models created
were successful in the classification of ownership classes based
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on ownership name data with an accuracy estimate of 96%.
Furthermore, the final layer resulted in aggregated values of
acreage and ownerships that agreed strongly with the published
NWOS estimates. Future iterations of this work are going to
include optimizing and expanding the application across the
United States with a more rigorous focus on quantifying the
error of uncertainty at each stage of the process. For ancillary
products such as the NLCD, published error rates, ranging from
71 to 97% (Dewitz, 2019), can be utilized, but the uncertainties
and inconsistencies in the underlying parcel data and errors in
our classification models resist easy quantification. The goal is
to obtain a continuous layer coverage, as well as county and
sub-state scale estimates for a wide suite of NWOS attributes
for every state accompanied with reflective error metrics for
each spatial extent.

Future efforts will also need to address some operational
hurdles that were not fully resolved within the context of
this pilot study. Firstly, Delaware lacks any tribal reservations.
However, other states will include that ownership class. Plans
are to incorporate identification of tribal ownerships with a
spatial overlay of tribal land boundaries at the end of the
classification stage. This will render the tribal ownership class
with the highest priority, thereby ensuring its preservation
within the analysis. Additionally, Delaware had continuous parcel
coverage in the DMP Lightbox’sTM dataset. Other states will have
gaps in coverages, which will impact distribution estimates of
ownerships. Faulty estimates will degrade the agreement with
the NWOS estimates, and therefore will need to be addressed.
Finally, quantifying the null values for the public road network
and open water is necessary in order to make the raster product
truly continuous.

The results of our simulation exercise, comparing estimates of
a simulated variable against a known population, demonstrated
that model-assisted estimation using our land cover and
ownership layer as a primary input had the potential to produce
precise, unbiased estimates. Using the same approach with the
actual NWOS data for the state of Delaware, we estimated that
3.7 to 7.2% of ownerships conducted commercial harvest in the
past 5 years – estimates that agreed closely with those made using
the standard NWOS methodology. This supports the claim that
an SAE approach to estimating ownership attributes at sub-state
scales is appropriate. In order to increase precision and reduce
error estimates, future efforts will likely rely on more optimized
models with additional predictor variables. Additional ancillary
datasets, such as the Census data, would likely be useful in this
regard. This additional data will "lend" even more strength (and
consequently precision) to the estimates that are produced.

Ultimately, a small area estimation approach to modeling
the social attributes of forest landowners is both feasible and

productive. The insights and understanding it can provide within
small spatial domains offer many opportunities for research
as well as to aid in the efficient implementation of forest
management and landowner assistance programs at small scale.
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The U.S. Forest Inventory and Analysis Program (FIA) collects inventory data on and

computes estimates for many forest attributes to monitor the status and trends of the

nation’s forests. Increasingly, FIA needs to produce estimates in small geographic and

temporal regions. In this application, we implement area level hierarchical Bayesian (HB)

small area estimators of several forest attributes for ecosubsections in the Interior West

of the US. We use a remotely-sensed auxiliary variable, percent tree canopy cover,

to predict response variables derived from ground-collected data such as basal area,

biomass, tree count, and volume. We implement four area level HB estimators that

borrow strength across ecological provinces and sections and consider prior information

on the between-area variation of the response variables. We compare the performance

of these HB estimators to the area level empirical best linear unbiased prediction (EBLUP)

estimator and to the industry-standard post-stratified (PS) direct estimator. Results

suggest that when borrowing strength to areas which are believed to be homogeneous

(such as the ecosection level) and a weakly informative prior distribution is placed on

the between-area variation parameter, we can reduce variance substantially compared

the analogous EBLUP estimator and the PS estimator. Explorations of bias introduced

with the HB estimators through comparison with the PS estimator indicates little to no

addition of bias. These results illustrate the applicability and benefit of performing small

area estimation of forest attributes in a HB framework, as they allow for more precise

inference at the ecosubsection level.

Keywords: forest inventory, empirical best linear unbiased prediction, remote sensing, post-stratification, indirect

estimation, probabilistic graphical model, weakly informative priors, ecoregion

1. INTRODUCTION

The USDA Forest Service Forest Inventory and Analysis Program (FIA) collects a sample of
inventory data nationwide to monitor status and trends in forested ecosystems at scales relevant for
strategic-level planning. Increasingly, this network of valuable inventory plots is being called upon
to answer questions relevant to forest land management which is below the spatial and temporal
scales for which the sample was originally designed. Information is needed on resources lost and
recovery rates within disturbance boundaries, on significant change in carbon sources and sinks, as
well as on the state of the forests within individual counties, districts, or other small management
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units. There is strong interest in exploring methods to integrate
extant inventory data with remotely sensed data through models
that expand the capacity to estimate forest attributes over smaller
domains in space and time.

A standard estimator that combines inventory data with
remotely sensed data is the generalized regression estimator
(Cassel et al., 1976) in which the inventory data are modeled
and predicted over the domain of interest and then the observed
data and predictions are aggregated to construct an estimator.
Post-stratification (PS), a common estimation technique for
national forest inventories (NFI) such as FIA, is a special
case of the generalized regression estimator that incorporates a
single, categorical auxiliary variable into the estimator (Särndal
et al., 1992). Since the generalized regression estimator only
makes use of data within the domain of interest, it is called a
direct estimator. And, although leveraging auxiliary data typically
improves the precision of a direct estimator, it tends to still
not achieve adequate levels of precision when the sample size
of the inventory data in the domain is small (Rao and Molina,
2015). Therefore, we consider here indirect estimators with their
defining characteristic of borrowing strength from data outside
the domain of interest. These domains are often classified as
small areas and we will use the terms domain and small area
interchangeably. When the indirect estimator explicitly relies on
a model to link the data in the desired small area with data
in other related small areas it is called a small area estimator.
These linking models can be built either at the area level or unit
(i.e., plot) level, depending on data availability and the strength of
the relationships between the inventory data and remote sensing
data at these two resolutions. We study area level models here
because the inventory and remotely-sensed data we consider
have strong linear trends at the area level and violate normality
assumptions at the unit level. These estimators are constructed
under either a frequentist framework where the quantities of
interest are fixed, unknown values or a Bayesian framework
where they are considered random variables. Key advantages
of the Bayesian approach are that it allows the modeler to
directly consider uncertainty between the small areas and to
obtain distributions, not just point estimates and standard error
estimates, for the parameters of interest.

A frequently utilized, and frequentist-based, indirect
estimator is the empirical best linear unbiased prediction
(EBLUP) estimator, which uses a linking model with random
area-specific effects to borrow strength from related areas (Rao
and Molina, 2015). The suitability of area and unit level EBLUP
estimators to the small area applications found in NFIs have
been studied extensively (Goerndt et al., 2011; Breidenbach
and Astrup, 2012; Magnussen et al., 2017; Mauro et al., 2017;
Coulston et al., 2021). This paper considers the Bayesian analog
to the EBLUP, a hierarchical Bayesian (HB) estimator. These
HB estimators are not commonly used in forest inventory
research; however, they have been applied in a variety of other
application areas ranging from poverty mapping to agriculture
to transportation to employment (You et al., 2003; Vaish et al.,
2010; Wang et al., 2012; Molina et al., 2014) to name a few.
Within the NFI literature, Ver Planck et al. (2018) explored an
area level HB estimator for estimating forest attributes and did

find improvements in precision over the Horvitz-Thompson
(HT) direct estimator.

In this paper, we explore the performance of the PS, the area
level EBLUP, and the area level HB estimators at estimating
the mean value of four response variables: basal area (m2 per
hectare), count of trees per hectare, above-ground biomass (kg
per hectare), and net volume of trees (m3 per hectare), excluding
rotten or form defects, across the Interior West (IW) of the
US. We generate estimates within the subregion (ecosubsection)
of a hierarchical system of ecological divisions. For both the
EBLUP andHB approaches, we consider the impact of borrowing
strength from two resolutions from upper hierarchical levels:
ecosection and ecoprovince, at scales of thousands of acres and
millions of acres, respectively. Leveraging the flexibility of the
HB, we study the impacts of varying how prior information
on the homogeneity of the modeled small areas is incorporated
into the estimator. We find that when borrowing strength to
the ecosection level and including weakly informative prior
information about small area homogeneity with the area level
HB estimator we can reduce variance substantially compared to
other common estimators. Explorations of potential bias through
comparison with the post-stratified estimator display almost no
introduction of bias with this estimator. However, since we do not
know the true mean of the response variable of interest, caution
is warranted when making strong conclusions about bias.

2. METHODS

2.1. Region of Study and FIA Data
This manuscript focuses on estimating the mean of several key
forest attributes for the ecosubsections in the IW region of
the United States (Figure 1), which encompasses the states of
Arizona, Colorado, Idaho, Montana, Nevada, NewMexico, Utah,
and Wyoming. The inventory data were collected by FIA using
a geographically-based systematic sampling design, where each
plot represents about 2,500 ha of land (Bechtold and Patterson,
2005) and cover a 10 year measurement cycle from 2007 to
2017. This sample of 86,065 inventory plots were downloaded on
February 6, 2019 from the FIA database, version FIADB_1.8.9.99
(last updated Dec 3, 2018). Our analyses include the use of
four variables from the FIA database as response variables: basal
area (m2 per hectare), count of trees per hectare, above-ground
biomass (kg per hectare), and net volume (m3 per hectare). For
remotely-sensed auxiliary variables, we consider a forest/non-
forest classification used for post-stratifying in the IW (Blackard
et al., 2008) and the 2016 National Land Cover Database percent
tree canopy cover map (Yang et al., 2018), which has a spatial
resolution of 30m. Although each FIA plot consists of 4 subplots,
response variables represent the aggregation of information at
the plot level, and just the FIA plot center was intersected with
the two auxiliary data layers. As input to the area-level estimators
described below, both the percent canopy cover and proportions
of forest and non-forest classes are averaged to the small area level
for the IW. FIA data retrievals and processing of auxiliary data
were done through the R package FIESTA (Frescino et al., 2015).

Borrowing strength in small area applications often occurs
using political boundaries, such as counties within a state. But in
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FIGURE 1 | To illustrate borrowing strategies, assume our target areas of

interest are the ecosubsections within the IW-RMRS. Additional ecosections

can be borrowed for those ecosubsections at the ecosectional level (shaded

with the same color and denoted by the same letter) or borrowed at the

ecoprovincial level (shaded with the same color). In the case of ecosectional

borrowing, separate models are fit for the targeted ecosubsections. In the

case of ecoprovincial borrowing, only one model is fit for these same

ecosubsections.

order to borrow from “similar” domains, there is an opportunity
to use any one of many classification systems that exist in the US
to help guide borrowing in a more ecologically sensible fashion.
As one prominent example, Cleland et al. (2007) delineated
ecological units across the conterminous US using biological
and physical information such as potential natural vegetation,
geology, soils, climate, and hydrology. These ecological units
were developed in a nested hierarchical structure. Ecoprovinces
identifymajor vegetation cover types and land forms. Ecosections
delineate more homogeneous areas within the ecoprovinces
based on more detailed physical and biological components of
the environment. Ecosubsections provide another step toward
homogeneity at an even finer scale, with the number of FIA plots
in each ecosubsection ranging from 1 to 2,200 in the Interior
West. Figure 1 illustrates how the nested hierarchical structure
of this ecological classification system facilitates borrowing
at different ecological scales. We investigate how borrowing
strategies affect the performance of the indirect estimators by
comparing estimates and standard errors of the area level
estimators applied to ecosubsections when borrowing occurs at
the ecoprovincial vs. ecosectional levels.

2.2. Estimators
We consider the PS estimator, which is a direct estimator, and
two indirect estimation approaches, the EBLUP and HB, based
on an area level, linear mixed model. For the HB method, we

explore four different estimators, which vary based on how prior
knowledge is incorporated to see how that impacts the estimator’s
precision and bias. All data analysis is conducted using the
statistical software package R (R Core Team, 2020). In particular,
the PS estimator is fit with the mase package (McConville et al.,
2018), the EBLUP estimators are fit with sae (Molina and
Marhuenda, 2015), and the HB estimators are fit with mcmcsae
(Boonstra, 2021).

In order to explore these estimators in depth, we now
introduce relevant notation. First, suppose we have m small
areas we wish to estimate. Next, the indices are as follows: i
indexes over units sampled; j indexes over small areas (in our
case, ecosubsections); and k indexes over post-strata. Now, recall
the goal of producing estimates of the mean of some response
variable y, such as trees per hectare, in a small area. So, let µyj

be the population mean of the study variable in ecosubsection
j in the IW. To denote the estimator produced for µyj we use
µ̂yj with a superscript denoting which estimator is being used.

We also use V̂(µ̂yj ) to denote the estimator of the variance
of µ̂yj . The set sj of size nj includes all units sampled within
ecosubsection j. We use the shorthand “iid” when referring to
independent and identically distributed random variables and
“ind” for independent random variables.

2.2.1. Direct Estimation via Post-stratification

We implement the PS estimator, which is commonly used by FIA
and other NFIs, and is considered a direct estimator ofµyj since it
only uses the inventory and auxiliary data within ecosubsection j.
With the set of weights, {wjk}

K
k=1

, representing the proportion of
pixels in each post-stratum for ecosubsection j, the PS estimator
of µyj is represented as follows:

µ̂PS
yj

=

K∑

k=1

wjkµ̂
HT
yjk

(1)

and is a weighted average of the post-strata HT estimators, given
by µ̂HT

yjk
= n−1

jk

∑
i∈sjk

yi where sjk is the subset of the sample

in ecosubsection j that falls in post-stratum k and njk is the
corresponding sample size (Särndal et al., 1992). Since we have
equal probability sampling, the post-strata HT estimators equal
the post-strata sample means. For the IW, ignoring adjustments
for non-response, the post-strata classes are forest and non-forest
so K = 2. Post-stratification can certainly be conducted using
more than 2 classes (e.g., Rintoul et al., 2020) but here we applied
post-strata consistent with that used in the IW production
inventory processes.

The variance estimator for µ̂PS
yj

is given by:

V̂
(
µ̂PS
yj

)
=

1

nj

(
K∑

k=1

wjknjkV̂
(
µ̂HT
yjk

)
+

K∑

k=1

(1− wjk)
njk

nj
V̂
(
µ̂HT
yjk

))

(2)

(Equation 7.6.6 in Särndal et al., 1992 without the finite
population correction) where the HT variance estimator of µ̂HT

yjk

is given by
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V̂
(
µ̂HT
yjk

)
=

1

njk(njk − 1)

∑

i∈sjk

(
yi − µ̂HT

yjk

)2
. (3)

Since the number of pixels for the post-strata map is significantly
larger than the sample size, the finite population correction
would be negligible and is therefore omitted from the variance
estimator calculation. For the IW, the PS estimator is typically
more efficient than the HT estimator since many of the desired
response variables are more homogeneous within the forest/non-
forest post-strata. [For the forest/non-forest used here, Blackard
et al. (2008) report an accuracy of 91% correctly classified
based on an independent test set, with errors of omission and
commission for forest at 17 and 18%, respectively, and for non-
forest at 7 and 6%, respectively]. Therefore, we use the PS
estimator in the subsequent indirect estimators when a direct
estimator is needed.

2.2.2. Indirect Estimation via Small Area Models

When the sample sizes in the domains of interest are small, direct
estimation techniques often do not provide sufficiently small
variances, evenwith the use of auxiliary data, tomake informative
inferences. Indirect estimators increase the effective sample size
by borrowing strength from data outside, with greater gainsmade
when the larger area has the same characteristics, in terms of the
response variables and their relationships with the auxiliary data,
as the small areas of interest.

One common technique for borrowing strength is to explicitly
use a linkingmodel with a random-area specific effect, in addition
to the sampling model which describes the data generation.
Combining the linking model and the sampling model results in
a mixed model approach to estimating the parameters of interest
in the small areas. We consider a linear mixed model, which
can be estimated using the EBLUP or using HB when additional
assumptions are made on model parameters.

2.2.2.1. The Area Level EBLUP Estimator
For our parameters of interest, µyj , we assume the following
linking model:

µyj = βo + β1X̄j + νj (4)

where X̄j is the average percent tree canopy cover for
ecosubsection j and the area-specific random effects satisfy the
following conditions:

νj
iid
∼ N(0, σ 2

ν ).

And, we assume the PS estimators were generated from the
following data generation model:

µ̂PS
yj

= µyj + ǫj (5)

where ǫj
ind
∼ N(0, σ 2

j ). Inserting Equation (4) into Equation (5)

gives the following area level mixed model, also known as the
Fay-Herriot model (Fay and Herriot, 1979):

µ̂PS
yj

= βo + β1X̄j + νj + ej (6)

where

νj
iid
∼ N(0, σ 2

ν ), ej
ind
∼ N(0, σ 2

j ), and νj ⊥⊥ ej.

To obtain an estimator of µyj from this model, we use an EBLUP
approach. This requires estimating the within-area and between
area variances and the model coefficients. For j = 1, 2, . . . ,m,

the within-area variations, σ 2
j are set to V̂

(
µ̂PS
yj

)
, the estimated

variances of the PS estimates. The between-area variation, σ 2
ν , is

estimated using a method of moments estimator (Ch 6.1.2 in Rao
and Molina, 2015) and the estimated model coefficients β̂o and
β̂1 are the EBLUPs of βo and β1, respectively. The equation for
the variance estimator of the EBLUP estimator of µyj is given in
the Appendix.

The EBLUP estimator of µyj can be expressed as a weighted
average of the direct estimator and an area level regression-
synthetic estimator:

µ̂EBLUP
yj

= γ̂jµ̂
PS
yj

+ (1− γ̂j)(β̂o + β̂1X̄j) (7)

where

γ̂j =
σ̂ 2

ν

V̂
(
µ̂PS
yj

)
+ σ̂ 2

ν

. (8)

Notice that the EBLUP estimator is a composite of an indirect
and a direct estimator where the weighting term accounts for
local variation. In particular, γ̂ is the ratio of between-area
variation and total variation. When the small areas are fairly
heterogeneous, the EBLUP will rely more heavily on the direct,
PS estimator, which only relies on data within the small area of
interest. The estimator leans more on outside information when
the variance estimator of the PS estimator is large compared to
the variability between the small areas. In this case, it relies on the
fixed effect component of the estimated regression line, which is
called a regression-synthetic estimator.

2.2.2.2. The Area Level Hierarchical Bayesian Estimator
So far, we have explored common frequentist approaches to small
area estimation. However, the primary focus of this paper is
to study the performance of the HB for small area estimation.
Under the Bayesian paradigm, the parameter of interest, µyj ,
and other model parameters, are treated as random variables
instead of fixed, unknown values. Leveraging Bayes’ Theorem,
this technique synthesizes information gained from the data via a
likelihood function with prior knowledge about the parameter of
interest and model parameters to obtain a posterior distribution
for the parameters:

P(µyj ,βo,β1, σ
2
ν | data) ∝ P(data | µyj ,βo,β1, σ

2
ν ) · P(µyj ,βo,β1, σ

2
ν )

(9)

A marginal posterior distribution for µyj is found by integrating
out the model parameters or by Markov chain Monte
Carlo (MCMC) methods. Typically the posterior mean of
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the distribution, E
[
µyj | data

]
, serves as the estimator of the

parameter, with precision provided by the posterior variance,
Var

[
µyj | data

]
.

For the area level HB estimator, we start with Equation (6),
as was done for the area level frequentist EBLUP, and apply a
HB approach. This transformation involves rewriting the data
generation model, also referred to as the likelihood function, as
a conditional normal distribution where we condition on the
parameter of interest and model parameters:

µ̂PS
yj

| µyj , βo, β1, σ 2
ν ∼ N

(
µyj , V̂

(
µ̂PS
yj

))

and the distribution of µyj as a conditional normal distribution
where we condition on the model parameters:

µyj | βo, β1, σ 2
ν ∼ N(βo + X̄jβ1, σ 2

ν ).

The HB approach also requires specifying prior distributions for
βo, β1, and σ 2

ν . For the model coefficients, we assume a flat prior:

f (βo,β1) ∝ 1.

For the between-area variation parameter, we consider two prior
distributions, an uninformative improper uniform distribution:

f (σ 2
ν ) ∝ 1

and a unit-scale half-Cauchy distribution:

σν ∼ half-Cauchy(scale = 1).

Note that the half-Cauchy distribution is applied to the between-
area standard deviation, not the between-area variance. Lastly,
we assume the model parameters are independent, namely,
f (βo,β1, σ

2
ν ) = f (βo)f (β1)f (σ

2
ν ).

Now that the HB model has been specified, we can attain the
small area estimator and variance estimator. For the estimator in
ecosubsection j, the Bayes estimator for µyj is:

µ̂HB
yj

= E[µyj | µ̂
PS
yj
]. (10)

For the variance in ecosubsection j, the variance of the posterior
distribution is used:

V̂(µ̂HB
yj

) = V(µyj | µ̂
PS
yj
). (11)

The estimator and variance estimator are obtained through
MCMCmethods with the mcmcsae R package (Boonstra, 2021).
Using MCMC methods allow for posterior distributions to be
well-approximated by sampling from a probability distribution.
We use 1,000 sampling iterations (the length of each Markov
Chain), 3 Markov Chains, and a burn-in period length of 250 to
obtain the results of each HB model we fit.

Figure 2 represents the area level HB estimator as a
probabilistic graphical model (PGM). This diagrammatic view
can be helpful in understanding the relationships between the
parameter of interest, the data, model parameters, and other key

FIGURE 2 | The area level HB estimator depicted as a PGM, which helps us

understand the relationships between the data, model parameters, parameter

of interest, and other key random variables. Quantities in yellow circles

represent observed (known) variables. The quantity in red represents the

quantity we would like to estimate. In this diagram, the quantity we would like

to estimate is the mean of the response variable in the first ecosubsection. The

seafoam dotted line represents the division between ecosubsection 1 and

ecosubsection 2. Quantities on this dotted line represent random variables

that effect both ecosubsections. The arrows represent marginal and

conditional distributions of random variables.

random variables included in the model. For example, the arrows
in Figure 2 can give us the distribution for µ̂PS

yj
and show us

that it depends on the parameter of interest (µyj ) and model

parameters (βo, β1, and σ 2
ν ). Not only can we quickly see how

distributions are conditioned through the use of a PGM, we can
also less formally view how variables are related to each other
and gain a deeper understanding of how strength is borrowed
for this area level HB estimator. If we remove the formality of
some parameters representing random variables, we can even use
Figure 2 to visualize how strength is borrowed with the area level
EBLUP. Recall that the area level EBLUP is specified with the
same linking model and thus strength is borrowed from the same
places. Thus, Figure 2 not only depicts the components of the
area level HBmodel, but also the area level EBLUP, albeit in a less
formal way.

2.3. Methods Summary
We use seven estimators–the PS estimator, two area level
EBLUPs, and four area level HB estimators–to produce estimates
for the average of basal area (m2 per hectare), tree count per
hectare, above-ground biomass (kg per hectare), and net volume
(m3 per hectare). The EBLUPs and HB estimators use one
explanatory variable, the average percent tree canopy cover of
the ecosubsection, to produce estimates. Estimation occurs at
the ecosubsection level, and thus we have produced 11,928
estimates (seven estimators, four response variables, and 426
ecosubsections). The model-based estimators are fit either within
an ecoprovince or an ecosection, and hence each ecosubsection
only borrows strength out to either the ecoprovince or ecosection
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level, not the entire IW region. In order to assess the quality of
these estimators, we summarize the findings over the entire study
region and for particular regions.

The data span the entire IW; however, we are forced to exclude
a small portion of ecosubsections from our analyses. These
ecosubsections contain either no or very close to no sampled
areas with non-zero values for the variables of interest: that is,
areas which are in extremely non-forested areas. These areas have
to be excluded due to their within-area variance being zero or so
close to zero that the software does not recognize that the number
was positive.

3. RESULTS

3.1. Estimator Performance
The indirect estimators that we implement perform similarly,
on average, to the PS estimator. Figure 3 displays each indirect
estimator’s estimate on the y-axis and the PS estimate on the x-
axis for the basal area response variable and Figure 4 does so
for the count per hectare response variable. Notably, Figure 3
shows a strong linear relationship between the indirect and
direct estimates (which is also observed for volume and biomass)
whereas in Figure 4 this linear relationship begins to deteriorate
for larger values of average canopy cover. This is due to the
relationship between the explanatory variable (average canopy
cover) and the PS estimator of the average tree count per hectare
exhibiting more variability for those larger values, violating
the model assumption of homoskedasticity. Figure 5 displays
this larger variability for the tree count per hectare variable

and showcases that the PS estimates consistently fall below the
regression line for the largest average canopy cover values. This
violation of the homoskedasticity assumption seems to have
introduced bias into our indirect estimates. This represents a
good cautionary tale that while indirect estimators can provide
significant reductions in variance, they can be biased when the
model is incorrectly specified. For the remainder of the paper, we
focus on basal area, where the linear model specification seems
most appropriate.

Figures 3, 4 also display that the flat prior HB estimator
produces very similar estimates to the EBLUP for both the
estimators that borrow strength out to the ecosection level and
to the ecoprovince level. Figure 6 displays this relationship in
further detail. Notably, the flat prior HB estimates and standard
errors are very similar to the EBLUP. This is expected as we add
no prior information to the flat prior HB estimators. By adding
no information and specifying the same model we should and do
see extremely similar results.

While it is reassuring for the flat prior HB estimator to
reinforce the results of the EBLUP, the full benefits of the HB
estimators are not gained without careful thought into how
prior information is incorporated. In our case, we specify a half-
Cauchy prior with scale of one, which is considered a weakly
informative prior, on the between-area variation parameter.
This distribution places more probability mass over smaller
values for our between-area variation, signifying that we expect
the between-area variation to be low. This prior is commonly
used for the between-area standard deviation parameter in
hierarchical models, especially when the number of small areas

FIGURE 3 | The six indirect estimators compared to the PS direct estimator. Each point represents two estimates of basal area for an ecosubsection, its y-coordinate

representing the indirect estimate of basal area for that ecosubsection and its x-coordinate representing the PS direct estimate of basal area. The blue line is the

identity line.
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FIGURE 4 | The six indirect estimators compared to the PS direct estimator. Each point represents two estimates of tree count per hectare for an ecosubsection, its

y-coordinate representing the indirect estimate of tree count per hectare for that ecosubsection and its x-coordinate representing the PS direct estimate of tree count

per hectare. The blue line is the identity line.

FIGURE 5 | The relationship between the response variables and the explanatory variable (average canopy cover) for each response variable at the ecosubsection

level across the IW. The x-coordinate represents the population value of average canopy cover based on remotely sensed data in a given ecosubsection, and the

y-coordinate represents the post-stratified estimate of a response variable in a given ecosubsection. The blue line is the ordinary least squares regression line.

is small and so the data provide little information about the
group-level variance (Gelman, 2006). Further, we know that
ecosections should be more homogeneous than ecoprovinces

and this prior information should reinforce the homogeneity
we see in the data. We still chose to place a half-Cauchy
prior on the between-area variation when borrowing out to the
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FIGURE 6 | The flat prior HB estimators compared with the EBLUP estimators at each level of strength. The top left plot displays the estimates for each estimator at

the ecoprovince level, the top right plot displays the estimates for each estimator at the ecosection level, the bottom left plot displays the standard errors for each

estimator at the ecoprovince level, and the bottom right plot displays the standard errors for each estimator at the ecosection level. Each plot contains either estimates

or standard errors for the basal area response variable. The blue line in each plot is the identity line.

ecoprovince level, as these regions are defined by ecologists as
more homogeneous than the rest of the study region (McNab
et al., 2007).

Figure 7 displays the reduction in variance when we change
the prior on the between-area variation from flat to half-Cauchy
in both the ecosection and ecoprovince approaches. The variance
is reduced much more significantly when we use a half-Cauchy
prior for estimators that borrow strength to the ecosection level
because the number of small areas is smaller. In particular, one
can observe that most areas where variance is reduced a large
amount have less ecosubsections that they borrow strength from
(light purple dots).

Outside of this graphical representation, we can look
numerically at the mean and median percent reduction in
variance when moving from a flat prior HB estimator to one
with the half-Cauchy prior. Table 1 displays both the mean
and median percent reduction in variance of basal area for
the ecosection and ecoprovince level HB estimators. Borrowing
to the more homogeneous ecosection level with the half-
Cauchy prior on the between-area variation leads to the greater
reductions in variance. While this reduction in variance is
compelling, it is possible that the weakly informative prior
introduced bias to the estimator.

To understand where bias may be introduced in our estimates,
Figure 8 displays the estimates made by the HB estimators with a
half-Cauchy prior compared to those made by the PS estimator,

an estimator that is unbiased under resampling regardless of
model accuracy. Here, we see a high level of agreement between
the two estimators, which suggests the HB estimators are not
systematically biased. However, it is important to note that it
is the PS estimator, under resampling, that is unbiased, not a
given PS estimate. We also saw strong agreement between the
estimators from the half-Cauchy prior and those from the flat
prior, signifying a robustness to the choice of prior distribution
for the between-area variation.

We can also investigate indications of bias numerically, with
the percent relative difference (PRD) metric. The PRD between
two estimators is defined as followed:

PRD(µ̂1, µ̂2) =
µ̂1 − µ̂2

µ̂2
· 100%.

When we examine the PRD between the PS estimator and the
half-Cauchy prior HB estimator for the basal area response
variable we see that the average PRDs are −0.007% and 0.756%
at the ecoprovince and ecosection level, respectively. The median
PRDs between for these estimators are −0.12% and −0.225% at
the ecoprovince and ecosection level, respectively. The low PRD
values provide additional evidence that we are not introducing
much systematic bias with the use of the auxiliary data and prior
on the between-area variation parameter.
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FIGURE 7 | Basal area standard errors for each HB estimator. The x-coordinate of each dot represents the standard error when a half-Cauchy prior is placed on

between-area variation, and the y-coordinate represents the standard error when a flat prior is placed on between-area variation. The color of the dot represents the

number of ecosubsections that strength was borrowed out to for the given dot. The black line is the identity line. The plot on the right shows the estimators that

borrow strength to the ecosection level, while the plot on the left shows the ecoprovince level estimators.

TABLE 1 | Percent reduction in variance of basal area estimates from flat prior to

half-cauchy.

Strength Metric Percent reduction

Ecosection
Mean 14.580

Median 7.313

Ecoprovince
Mean 3.384

Median 2.792

3.2. Case Study: The South Central
Highlands (M331G) and the Utah High
Plateau (M341C)
We now explore the effects of adding prior information to the HB
estimators at a micro level: by examining two ecosections. The
South Central Highlands and the Utah High Plateau ecosections
both exist in mountainous ecoprovinces in the IW. Figure 9
displays both ecosections. These two ecosections are located
relatively close to each other in the IW, yet the addition of the
half-Cauchy prior when we borrow strength to the ecosection
level has a very different effect within each ecosection. To
understand how the estimators perform differently across these
two ecosections, we explore the mean estimates for basal area,
and corresponding standard errors, within these two ecosections.

Figure 10 displays the HB estimates and illustrates that, for
both ecosections, the basal area estimate is about the same for

both priors on the between-area variation parameter. This again
showcases a robustness to how the prior information is specified
for between-area variation.

While the estimate values show high agreement, it should be
noted that the standard error estimates changed more drastically
when we changed the prior on between-area variation, as seen
in Figure 11. Interestingly, the standard errors in eocsection
M331G are reduced significantly when the half-Cauchy prior
is used compared to the flat prior, while the standard errors
in ecosection M341C hardly change. This is likely due to a
couple of factors. First of all, the estimated variance of the
PS estimates in ecosection M331G is lower than the estimated
variance of the PS estimates in M341C (32.044 and 44.384,
respectively). That is, based on the data, there is less between-
area variation in ecosection M331G. By placing a prior which
has high probability density for small values of σ 2

ν we have
reinforced the pattern seen in the data. Additionally, M331G is
borrowing from less small areas and therefore will lean more on
the weakly informative prior which preferences smaller values for
the between-area variation.

4. DISCUSSION

We consider six indirect, area level small area estimators and
one direct estimator across the IW region of the United States.
The two HB estimators with flat priors on between-area variation
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FIGURE 8 | Basal area estimates for the half-Cauchy HB estimator and post-stratified estimator. The x-coordinate of each dot represents the estimate when a

half-Cauchy prior is placed on between-area variation, and the y-coordinate represents the post-stratified estimate. The color of the dot represents the number of

ecosubsections that strength was borrowed out to for the given dot. The black line is the identity line. The dashed yellow line is the ordinary least squares regression

line. The plot on the right shows the estimators that borrow strength to the ecosection level, while the plot on the left shows the ecoprovince level estimators.

FIGURE 9 | The South Central Highlands (M331G) and the Utah High Plateau

(M341C) ecosections on a map of the three states that they collectively

occupy. The purple area represents the Utah High Plateau and the green area

represents the South Central Highlands. The black lines divide the

ecosubsection within each ecosection.

mimic the two analogous area level EBLUP estimators in both
estimates and variances. When supplying the HB estimators with
a half-Cauchy prior for the between-area variation parameter,
we see a reduction in variance when borrowing strength out to
both the ecoprovince and ecosection level, with more reduction
observed at the latter level of strength.

Table 2 displays the relative efficiency of each estimator
implemented in this article compared the standard HT direct
estimator for the basal area response variable. We define relative
efficiency of a given estimator as the variance estimator of
that estimator divided by the variance estimator of a direct
estimator. The first column of Table 2 makes it clear that
incorporating informative auxiliary data into a direct estimator,
the PS estimator in this case, does improve its efficiency. These
improvements mimic FIA’s production process with just 2 post
strata assigned at the plot level, not at the subplot level. However,
greater gains can be had by moving to an indirect estimator.
In particular, the HB estimator with a half-Cauchy prior on
between-area variation borrowing strength to the ecosection level
has the highest mean and median relative efficiency. Notably,
the ecosection-level, half-Cauchy prior, HB estimators relative
efficiency is greater than the ecoprovince-level, half-Cauchy
prior, HB estimators relative efficiency. This gain in relative
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FIGURE 10 | Estimates for each HB estimator. The x-coordinate of each dot represents the estimate when a half-Cauchy prior is placed on between-area variation,

and the y-coordinate represents the estimate when a flat prior is placed on between-area variation. The color of the dot represents the ecosection that a given

ecosubsection is in. The black line is the identity line.

FIGURE 11 | Standard errors for each HB estimator. The x-coordinate of each dot represents the estimate when a half-Cauchy prior is placed on between-area

variation, and the y-coordinate represents the estimate when a flat prior is placed on between-area variation. The color of the dot represents the ecosection that a

given ecosubsection is in. The black line is the identity line.

efficiency is likely due to the half-Cauchy prior being a reasonable
depiction of the between-area variation of ecosubsections within
a given ecosection in the IW.

Figure 12 shows the relative efficiency of basal area estimates
for both the ecosection- and ecoprovince-level half-Cauchy

prior HB estimators compared to the PS direct estimator (as
opposed to the Horvitz Thompson in Table 2). We can see
more drastic improvements in relative efficiency in the more
forested Northern parts of the IW, and the relative efficiency is
sometimes below the PS estimator in extremely unforested areas.
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TABLE 2 | Relative efficiency of each estimator compared to the Horvitz-Thompson (basal area response).

Metric Post-strat HB cauchy:

ecosection

HB cauchy:

ecoprovince

HB flat:

ecosection

HB flat:

ecoprovince

EBLUP:

ecosection

EBLUP:

ecoprovince

Mean 1.40 1.87 1.86 1.63 1.80 1.38 1.78

10% quantile 2.00 5.45 3.64 2.65 3.24 3.41 3.03

Median 1.31 1.80 1.74 1.55 1.70 1.59 1.67

90% quantile 1.01 1.10 1.17 1.07 1.15 0.99 1.13

FIGURE 12 | The relative efficiency of basal area estimates from the HB estimators with a half-Cauchy prior on between-area variation compared to the PS direct

estimator. On the left, we have the HB estimator that borrows strength out to the ecosection level, and on the right, we have the HB estimator that borrows strength

out to the ecoprovince level. Darker orange areas correspond to higher relative efficiency. The gray areas are ecosubsections where we were unable to obtain HB

estimates.

This might be due to artificially low variance estimates for the
PS estimator, which can occur when almost all sampled units
in an ecosubsection have values of 0 for the response variables.
In the case of an estimator that borrows strength, such as the
HB estimators, we will likely borrow strength to some areas that
have larger direct estimates of response variables, giving us a
larger variance.

The efficiency gains of the HB estimators with informative
priors on between-area variation over the more common EBLUP
and PS (see Table 2 and Figure 12) imply that these estimators
can attain the same level of precision but with less sampled
plots. However, the benefits of a HB approach do not stop there.
Conveniently, the Bayesian paradigm allows for more intuitive
inferential statements than provided by frequentist methods.
Since the Bayesian methods provide a distribution for our
parameter of interest, we canmake probabilistic statements about
the location of the parameter, whereas the frequentist approach
only allows us to talk about the behavior of our method under
repeated sampling.

Considering the performance and all the characteristics of
these estimators, the results of this work provide some guidance
on when to consider which of these estimators. If one only has

a small number of areas that they borrow strength out to, and
those areas are believed to have a good amount of homogeneity
between them, a HB estimator with a half-Cauchy prior on the
between-area variation might be preferred. On the other hand,
if one has the ability to borrow strength to a large number of
groups that may not be too homogeneous, keeping a flat prior
on between-area variation should be considered. This suggests
that the HB estimator that borrows to the ecosection level and
uses the half-Cauchy prior on between-area variation may be
a viable estimator for FIA applications. Further testing with
alternative responses and auxiliary data in other parts of the
country is warranted.

Further work will include investigations of the unit level HB
estimator, particularly with an eye to handling non-Gaussian
data. Researchers have explored unit level modeling of non-
Gaussian data types, such as zero-inflated data (Krieg et al., 2016)
and other non-Gaussian data (Parker et al., 2020a). In particular,
Parker et al. (2020b) discusses the benefits of unit level models,
both in terms of potential efficiency gains and incorporating
various levels of spatial aggregations. We hope to investigate the
utility of these unit level models in a forest inventory setting. At
both the area and unit level we will also explore extensions to
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the HB estimators through spatially structured variance models.
Ver Planck et al. (2018) explores area level HB estimators
with conditional autoregressive random effects and conditional
autoregressive random effects with smoothed sampling variance
and found that these spatially structured variance models can
help reduce the variance of the estimator. We hope to explore
these spatially structured variance models further and investigate
how they perform with different prior information supplied.
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A. APPENDIX

A.1. Area Level EBLUP Variance Estimator
The variance of the Area level EBLUP is expressed by the
following equation (Molina and Marhuenda, 2015; Rao and
Molina, 2015):

V̂(µ̂EBLUP
j ) = g1j + g2j + 2g3j − b (A1)

where

g1j = γ̂jV̂
(
µ̂PS
yj

)
,

g2j = σ̂ 2
ν

(
1− γ̂j

)2
z′j


∑

j

γ̂jzjz
′

j




−1

zj,

g3j = 2m
(
V̂
(
µ̂PS
yj

))2 (
σ̂ 2
ν + V̂

(
µ̂PS
yj

))−3


∑

j

(
σ̂ 2
ν + V̂

(
µ̂PS
yj

))−1



−2

,

b = 2mσ̂ 2
ν


∑

j

(
γ̂j
)2

−


∑

j

γ̂j




2


∑

j

γ̂j




−3

(
1− γ̂j

)

where

zj =

[
1

Xj

]
.

One can intuitively think about each g#j as follows: g1j accounts
for within-area variation, g2j accounts for variation in estimating
the regression parameter β , and g3j accounts for model-variance
estimation (Hidiroglou and You, 2016).

Frontiers in Forests and Global Change | www.frontiersin.org 15 December 2021 | Volume 4 | Article 752911105

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


ORIGINAL RESEARCH
published: 18 January 2022

doi: 10.3389/ffgc.2021.763414

Frontiers in Forests and Global Change | www.frontiersin.org 1 January 2022 | Volume 4 | Article 763414

Edited by:

Paolo Giordani,

University of Genoa, Italy

Reviewed by:

Stephen Stehman,

SUNY College of Environmental

Science and Forestry, United States

Nicholas Nagle,

The University of Tennessee,

Knoxville, United States

*Correspondence:

Kelly S. McConville

mcconville@reed.edu

Specialty section:

This article was submitted to

Forest Management,

a section of the journal

Frontiers in Forests and Global

Change

Received: 23 August 2021

Accepted: 23 December 2021

Published: 18 January 2022

Citation:

Wojcik OC, Olson SD, Nguyen P-HV,

McConville KS, Moisen GG and

Frescino TS (2022) GREGORY: A

Modified Generalized Regression

Estimator Approach to Estimating

Forest Attributes in the Interior

Western US.

Front. For. Glob. Change 4:763414.

doi: 10.3389/ffgc.2021.763414

GREGORY: A Modified Generalized
Regression Estimator Approach to
Estimating Forest Attributes in the
Interior Western US
Olek C. Wojcik 1, Samuel D. Olson 1, Paul-Hieu V. Nguyen 1, Kelly S. McConville 1*,

Gretchen G. Moisen 2 and Tracey S. Frescino 2

1Department of Mathematics, Reed College, Portland, OR, United States, 2 Rocky Mountain Research Station, USDA Forest

Service, Ogden, UT, United States

The national forest inventory within the US has been experiencing a greater need

to estimate forest attributes over smaller geographic areas than the inventory was

originally designed for. Producing reliable estimates for these areas may require the

use of estimation methods beyond post-stratification. Staying within the dominant

design-based paradigm, this research explores how model-assisted estimation is

impacted by leveraging data outside the area of interest. In particular, we compare

the performance of the post-stratified estimator, the generalized regression estimator

(GREG), and a modified GREG. Typically the assisting model of the modified GREG is

fit over a sample comprising all of the areas of interest. Here we introduce a modified

GREG, denoted as GREGORY, which gives the practitioner a high degree of flexibility

in selecting the sample subset for constructing the assisting model. We use these

estimators to produce county level estimates of the mean of four forest attributes in the

Interior Western US. Comparing the relative efficiencies of the estimators, we find that

the more complex estimators, GREG and GREGORY, generally improve the precision of

the estimates, especially in regions with a high degree of forested land. When using all

the data from a 10-year measurement, fitting the model over a larger region does not

lead to efficiency gains. To explore the impact of smaller sample sizes, we conduct a

simulation study and find that as the sampling intensity decreases, the GREGORY tends

to produce more efficient estimates than the GREG, and its variance estimator exhibits

less negative bias. The GREG and GREGORY can easily be computed and compared

using a new R package, gregRy, available on CRAN.

Keywords: generalized regression (GREG) estimator, post-stratification, model-assisted estimation, ecoregions,

improved precision, domain estimation

1. INTRODUCTION

The US Forest Inventory and Analysis Program (FIA) is responsible for monitoring forest
ecosystems across the United States. Established in 1930, the initial focus of this program was
to estimate the extent and volume of merchantable trees for harvest. But today the extensive
data collected nationwide are valuable for assessing biomass and carbon storage, fuels and fire
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risk, wildlife habitat, effects of insect and disease outbreaks,
forest health and trends in forest conditions. Along with these
new uses, FIA is experiencing a greater demand for estimates
of forest attributes over smaller geographic areas. Specifically,
the “Agricultural Act of 2014” (U.S. Department of Agriculture,
2014) calls for FIA to implement procedures to improve
precision in sub-state estimates, pushing the inventory to provide
information at scales beyond which it was originally intended.
Producing reliable estimates for these smaller areas requires
considering additional data sources and new estimation methods
beyond FIA’s current techniques.

One standard estimation approach is the generalized
regression estimator (GREG), which has the capacity of
combining inventory data and remote-sensing data using a wide
range of predictive modeling techniques (Särndal et al., 1992;
Breidt and Opsomer, 2017). The GREG is a direct estimator, since
it only uses data within the domain of interest and is design-based
in that randomness comes solely from sample selection. The
GREG is asymptotically unbiased, regardless of how well the
model captures the true relationship between the inventory
and auxiliary data. This useful feature is why the estimator is
classified asmodel-assisted and notmodel-based.

Using a variety of assistingmodels, the GREG has been applied
and studied rather extensively in the forest inventory literature
(Baffetta et al., 2009; McRoberts, 2010; Gregoire et al., 2011;
Moser et al., 2017; McConville et al., 2020). A thorough summary
of forest inventory estimators that utilize models, including
model-assisted estimators like the GREG, can be found in Ståhl
et al. (2016). Most of the focus in these articles is on large areas
with adequate sample sizes within the domain of interest. For
areas with few sampled ground plots, the model estimates may
not capture the true relationship well and may be highly variable.
A solution is to leverage sample data outside the domain of
interest to estimate the GREG’s assisting model, resulting in what
is sometimes referred to as a modified GREG (Rao and Molina,
2015). Most commonly the entire sample across all domains of
interest is used to fit the model for the modified GREG. Here we
consider estimating the models over large homogeneous regions
and then combining the model predictions within the domain
of interest. We call this estimator GREGORY for GREG Over
Resolutions of Y , where Y stands for the inventory data, to
emphasize that the additional regions leveraged should depend
on their homogeneity with the inventory data in the domain of
interest. Although the GREGORY leverages data from outside
the domain of interest, Rao and Molina (2015) still classify it as a
direct estimator, since it only applies model parameter estimates
to the plot data within the domain of interest and is still design-
based in that randomness comes solely from sample selection. As
with the GREG, the GREGORY is model-assisted, an important
feature to national statistical agencies.

While the modified GREG, or GREGORY, has been proposed
in the survey statistics literature (section 2.5 in Woodruff, 1966;
Rao and Molina, 2015), it does not, to the best of our knowledge,
appear to have been investigated deeply in the forest inventory
literature. In this article, we hope to provide some insights into
the utility of the GREGORY for forest estimation. Through a
case study focused on estimating county level means of forest
attributes in the US Interior West (IW), we attempt to measure

how the estimator precision changes when the model-estimating
now leverages additional data outside the domain of interest.
Additionally, we investigate how precision gains from estimating
the model over these broader samples change and the bias of the
standard variance estimator as the sample size decreases.

We focus on a design-based, model-assisted approach for
small domain estimation and consider only direct estimators
in this article. Although a wide range of model-based methods
and indirect estimators (Empirical Best Linear Unbiased
Prediction, Hierarchical Bayes) exist, the design-based approach
to estimation is still the prevailing choice for many national forest
inventories because of its freedom from model assumptions.
Therefore, it is important to understand the viability of a model-
assisted estimator when the sample size is small and how
leveraging more data impacts the performance of the estimator
when compared to post-stratification, the standard estimation
technique for larger regions.

2. METHODS

In this article, our domains of interest are counties in the IW
and we focus on estimating the county level mean of four forest
inventory variables: basal area (square-foot per acre), count of
trees per acre, above-ground biomass (pounds per acre), and
net volume (cubic-foot per acre). These inventory variables are
all strongly and positively correlated with one another (with
Pearson correlation coefficients between 0.42 and 0.6 with count
of trees per acre and 0.85 and above for all other combinations of
variables). Let Ud denote the spatial domain of county d, which
has been discretized into Nd units based on the resolution of
the auxiliary data and is enumerated by {1, 2, . . . ,Nd}. We write
the true, unknown mean of Ud for a given inventory variable,
y, as µyd = Nd

−1
∑

i∈Ud
yi. Our goal is to estimate µyd for

d = 1, 2, . . . ,D where D equals the 280 counties with plots in
the IW.

2.1. Data Sources
Computing the estimators requires data on the response
variables, any predictor layers for estimating the assisting models
(via GREG or GREGORY), a post-stratification layer for the PS
estimator, and a layer depicting ecologically similar regions for
leveraging data for the GREGORY. For county d, the set of
sample plots is given by sd, which is a subset of Ud, and the
sample size is denoted by nd. Field plot data were collected by
FIA on a quasi-systematic sample of ground plots over a 10 year
period (2007–2017). FIA data in the western US are collected
on a 10-year measurement cycle. Specifically, plot data are
collected under an annual, non-overlapping panel design, where
each panel consists of one-tenth of the sample plots distributed
roughly equidistant throughout the population (Reams et al.,
2005). After 10 years, data on all plots have been collected and
re-measurement of plots resumes in the first panel. With a base
sampling intensity of one plot per every 6,000 acres, our IW
sample represents one 10-year measurement cycle and includes
data from 86,057 field plots. The plot data include our four
response variables: basal area, count of trees per acre, above-
ground biomass, and net volume, along with the RMRS-FIA
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post-strata classifications and weights. The current IW post-
stratification scheme is a forest/non-forest classification based
on a forest probability map (Blackard et al., 2008). This layer is
no longer being maintained or updated, hence being phased out
of FIA estimation processes. So this variable is not considered
as potential auxiliary data in the GREG or GREGORY. The
inventory data were downloaded on February 6, 2019 from the
FIA database, version FIADB_1.8.9.99 (last updated Dec 3, 2018).

Our predictor variable comes from the 2016 National Land
Cover Database (NLCD) Tree Canopy Cover (TCC) map, which
provides estimates of the percent tree canopy cover for the entire
IW at a resolution of 30 by 30 meters2 (Yang et al., 2018).
Therefore, the discretization of county d is done at a 30-m
resolution and the population size, Nd, is given by the number
of pixels from the NLCD TCC map in county d. In addition to
the unit level pixel TCC data, denoted by {xi}i∈Ud

, we extract the
subset, {xi}i∈sd where unit i is the pixel that is spatially closest to
the center of field plot i.

Since the GREGORY allows the assisting model to leverage
data outside the domain of interest, we must also determine
what subset of s should be used for each county. While the
model could be estimated using s, the entire IW sample, we
focus on estimating themodel over the ecological provinces given
by Cleland et al. (2007) since they delineate the landscape into
ecological units across the conterminous US based on major
vegetation cover types and land forms. See Figure 1 for the
eco-provinces in the IW.

FIA data retrievals and processing of auxiliary data were
done through the R package FIESTA (Frescino et al., 2020). In
summary, we have the following data for each county d and each
response variable:

• {yi, xi, zi, fi}i∈sd where the data for plot i includes yi, the value
of the forest inventory/response variable, xi, the TCC value, zi,
the eco-province, and fi, the post-strata classification.

• {xi}i∈Ud
, the TCC values for each unit in county d.

• {wpl}
14
l=1

, a set of weights where each weight represents the
proportion of county d in a given eco-province.

• {wsl}
2
l=1

, a set of weights where each weight represents the
proportion county d in a given post-stratum.

2.2. Estimators
In this section, we formally introduce the GREG and its
extension, the GREGORY. We also present the post-stratified
estimator (PS), which is featured in our analyses since it is
the standard estimator used in FIA’s production processes.
Additionally, we address variance estimation and provide two
variance estimators. All data analysis was done in the statistical
software package R (R Core Team, 2020) and the estimators were
computed using the gregRy package (Olson andWojcik, 2021).

2.2.1. The Generalized Regression Estimator
The GREG for µyd is given by

µ̂yd ,GREG =
1

nd

∑

i∈sd

(
yi − m̂(xi)

)
+

1

Nd

∑

i∈Ud

m̂(xi) (1)

where for county d, m̂(xi) is the model prediction for unit i based
on the predictor vector xTi = (1, xi). When we assume a linear

regression assisting model, then m̂(xi) = x
T
i β̂ with estimated

least squares regression coefficients, β̂
T
= (β̂0, β̂1), given by

β̂ = argminβ

∑

i∈sd

(
yi − x

T
i β
)2

.

In Equation (1), the first term, the average residuals component,
ensures that the estimator is asymptotically unbiased since it
compensates for any under- or overestimation caused by the
second term, which provides the average predicted value. This
second term is commonly called the synthetic estimator (Rao and
Molina, 2015). Notice that the GREG is only constructed using
data within the domain of interest, Ud, and in particular that
the estimated regression coefficients are computed using only
sd. When nd is small, the variance of the estimated coefficients
may be large, which in turn increases the variance of µ̂yd ,GREG.
Another potential concern is bias. If nd is small, the property of
asymptotic unbiasedness of the estimator may no longer hold.
The GREGORY attempts to overcome these issues by fitting
the model using not just sd but also using ecologically similar
sample data.

2.2.2. The Generalized Regression Estimator Over

Resolutions of Y
For the GREGORY, the estimator form is still given in Equation
(1) but now the models are estimated over a larger region.
To differentiate between the different data sources, we call the
sample data used in estimation, sd, the estimation sample while
that used in modeling is called the modeling sample. For our
data application, the resolution of the modeling samples are eco-
provinces and so the estimated model prediction for unit i is
given by a weighted sum of regression models,

m̂(xi) = x
T
i

(
P∑

l=1

wplβ̂ l

)
,

where the estimated regression coefficient vector for province
l come from

β̂ l = argminβ

∑

i∈s

(
yi − x

T
i β
)2

I(zi = l).

Recall that zi specifies the eco-province of unit i. By separating
the estimation and modeling samples, we are able to estimate the
models using larger sample sizes and eco-province samples that
are likely more ecologically homogeneous than those created by
the arbitrary political boundaries of counties. If an estimation
sample is nested in a modeling sample, then m̂(xi) reduces
to a single regression equation. While we focus on weighting
simple linear regression models here, more nuanced correlation
structures that allow for spatial and/or temporal autocorrelation
could be incorporated through a mixed-model approach.
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FIGURE 1 | A map of counties in the Interior West, colored by eco-provinces.

2.2.3. Post-stratification
The PS is a special case of a GREG where a single categorical
predictor is used in the regression assisting model. In this
case, the estimator of µyd simplifies to a weighted sum of
post-strata means,

µ̂yd ,PS =

2∑

j=1

wsjȳj,

where ȳj = n−1
dj

∑
i∈sd

yiI(fi = j), the sample mean of y for post-

stratum j and ndj is the number of sampled plots in post-stratum
j for county d. Recall that wsj is the proportion of county d in
post-stratum j.

2.2.4. Variance Estimation
Särndal et al. (1992) provide the standard variance estimator of
the GREG,

V̂(µ̂yd ) =

(
1−

nd

Nd

)
1

nd

1

nd − 1

∑

i∈sd

(
yi − m̂(xi)

)2
, (2)

which can also be used to estimate the variance of the
GREGORY. However, the form of the variance estimator relies
on large sample approximations and does not account for model
estimation variation. Note that the model coefficients of the
GREG are chosen to minimize the sum of the squared errors
over sd. Therefore, equation (2) will always report a smaller

value for GREG than GREGORY, by construction. However,
the true variance of the GREGORY may in fact be smaller
than the variance of the GREG since its modeling sample is
typically larger and therefore its model estimation variance is
likely smaller. To compare the efficiency of the estimators, we
want a variance estimator that accounts for both the variability
in the residuals and the variability induced by fitting the model.
Therefore, in our data application we estimate the variance of
the estimators not using Equation (2) but using the following
bootstrap variance estimator

V̂B(µ̂yd ) =

(
nd

nd − 1

)(
Nd − nd

Nd − 1

)
1

B− 1

B∑

b=1

(µ̂(b)
yd

− ¯̂µyd )
2

where µ̂
(b)
yd is the bth bootstrap estimate and ¯̂µyd =

B−1
∑B

b=1 µ̂
(b)
yd is the average of the bootstrapped estimates. See

Mashreghi et al. (2016) for more details on using bootstrap
methods in survey estimation.

Returning to the standard variance estimator, it is important
to understand the degree of its negative bias since it is commonly
used in practice. For simple models and moderately large
sample sizes where model estimation variability accounts for
little of the overall variance, the standard variance estimator
tends to be slightly negatively biased. For more complex models,
Kangas et al. (2016) found that this variance estimator can
significantly underestimate the true variance. In the simulation
study, we explore and compare the bias of the standard variance
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FIGURE 2 | A map of the relative efficiencies of the PS to the GREGORY when estimating the average trees per acre for each county in the Interior West. Values

above 1 indicate that the GREGORY is more efficient. Values greater than 2 were truncated to 2 to increase the readability of the map. A county is gray if the RE is 0,

due to all plots containing values of 0 trees per acre.

FIGURE 3 | A map of the relative efficiencies of the GREG to the GREGORY when estimating the average trees per acre for each county in the Interior West. Values

above 1 indicate that the GREGORY is more efficient. Values greater than 2 were truncated to 2 to increase the readability of the map. A county is gray if the RE is 0,

due to all plots containing values of 0 trees per acre.

estimator for both the GREG and the GREGORY across a
range of sampling fractions. This allows us to study how the
size of the modeling sample impacts the biasedness of the
variance estimator.

3. RESULTS

In the data application and simulation study, we compare how
county level models vs. eco-province level models impact the
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FIGURE 4 | A map of the relative efficiencies of the modified GREG to the GREGORY when estimating the average trees per acre for each county in the Interior West.

Values above 1 indicate that the GREGORY is more efficient. Values greater than 2 were truncated to 2 to increase the readability of the map.

FIGURE 5 | Map (A) contains the estimated slopes of the linear regression model of trees per acre based on TCC for each county in the GREG when the models are

fit at the county level. Map (B) contains the estimated slopes for each county in the GREGORY when the models are fit at the province level.

model-assisted estimator, especially as we vary the sampling
intensity within the counties. While we considered four response
variables, we present the results for estimating the average trees
per acre in this section. We found similar patterns for the other
three response variables.

3.1. Case Study
Our data application investigates the impact of leveraging more
data when estimating the model for a modified GREG. We focus
on producing county level estimates of the mean trees per acre

for the IW and compare the performance of the PS and GREG,
which uses only data within the domain, to the GREGORY,
which uses additional data from outside the domain. We also
consider the modified GREG which uses the entire IW sample
for model fitting.

The first step is to determine the resolution of the model
samples for the GREGORY, which could range from using just
the sampled plots in the county of interest to the entire set of
sampled plots in the IW to something in between. Using just the
sampled plots, as the GREG does, runs the risk of high variance
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in its estimates, especially for small sample sizes. On the other
hand, using the entire sample, as the modified GREG does, could
also be ill-advised if it means lumping together heterogeneous
landscapes where the relationship between TCC and trees per
acre may vary. And, though GREG is asymptotically unbiased,
concerns of bias arise from the small sample sizes of areas being
estimated. To reduce the bias of the eventual estimate in finite
samples, it would be ideal to estimate GREGORY’s model using
plot data from areas that have a similar relationship between
TCC and trees per acre as that found in the county of interest.
Keeping this in mind, we constructed modeling samples based
on ecology, in particular, the eco-provinces given by Cleland
et al. (2007). When considering at what level to estimate our
models, we were motivated to utilize the eco-province level
after considering the different levels of ecologies used by FIA.
The principal map unit design criterion for eco-provinces is
the dominant potential natural vegetation, compared to more
granular levels such as eco-sections, which are delineated by the
physical and biological components of an ecology such as climate,
physiography, lithology, soils, and potential natural communities
(McNab et al., 2007).

Figures 2–4 allow for a spatial look at how the relative
efficiencies of the estimators, given by the ratio of the estimated
bootstrapped variances, compare to one another when estimating
the average count of trees per acre for each county. A county is
gray if all county plots had a response value of 0 and therefore a
variance estimate of 0 for PS or GREG. GREGORY and modified
GREG circumvent this issue by using data from outside of these
problematic counties. As seen in Figure 2, the GREGORY has
a lower variance estimate than the PS for most counties (71%).
This trend was similar when comparing GREG to PS. However,
we see from Figure 3 that GREG and GREGORY are roughly
matched in the number of counties in which one outperforms
the other (with GREGORY outperforming 53% of the time). This
implies that constructing the model over a larger resolution did
not, generally, reduce the variance of the estimates.

We can expand the modeling sample even further, as the
modified GREG does, and compare that to the GREGORY,
as seen in Figure 4. While GREGORY only outperformed
the modified GREG 54% of the time, the precision gains
were rather large for some counties and the precision losses
were not as extreme. On average, the estimated variance
of the modified GREG is 1.14 times the estimated variance
of the GREGORY, suggesting that building the model over
ecologically homogeneous samples can improve the efficiency of
the estimator.

It should be noted that we did see a higher degree of variability
in the estimated slopes (β̂1) for the county level models than
the eco-province level models (see Figure 5). We conjecture
that this extra variability did not translate into higher variance
estimates because the predictive accuracy of the estimated model
is a much more dominant component of the variance. This
actually provides justification for the standard variance estimator,
given in Equation (2), only being a function of the prediction
errors and not accounting for model estimation variability. In the
next section, we conduct a simulation study to more concretely

TABLE 1 | Table of the counties included as domains in the simulation.

County State Number of plots

Beaverhead county Montana 597

Bonner county Idaho 202

Catron county New Mexico 507

Clearwater county Idaho 215

Custer county Idaho 493

Duchesne county Utah 250

Eureka county Nevada 403

Flathead county Montana 542

Gallatin county Montana 279

Garfield county Colorado 292

Grand county Colorado 201

Grant county New Mexico 258

Gunnison county Colorado 340

Idaho county Idaho 810

Lander county Nevada 456

Lemhi county Idaho 479

Lewis and Clark county Montana 274

Lincoln county Montana 381

Madison county Montana 377

Meagher county Montana 235

Missoula county Montana 264

Park county Wyoming 343

Park county Montana 282

Park county Colorado 230

Powell county Montana 231

Ravalli county Montana 242

Rio blanco county Colorado 289

Routt county Colorado 225

Saguache county Colorado 226

San Miguel county New Mexico 215

Sanders county Montana 278

Sevier county Utah 205

Shoshone county Idaho 274

Teton county Wyoming 304

Uintah county Utah 270

Valley county Idaho 389

White Pine county Nevada 929

Also listed are the number of plots from the county that are used. Only plots within

provinces M313, M331, M332, M333, and M341 were included.

compare the variability and bias of the estimators as the sample
size shrinks.

3.2. Simulation Study
The application in the previous section compares estimated
variances and so observed differences may be due to random
variability and are not necessarily indicating that one estimator
is truly more precise than another in a given county. To better
understand how themodeling sample size impacts the estimator’s
bias and precision, we conducted a simulation study. We treated
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FIGURE 6 | Boxplots of the percent relative bias of the county estimates of average trees per acre across the sampling intensities. The average percent relative bias is

denoted by the stars.

part of the IW as the true, finite population and drew 1000Monte
Carlo samples from the population. By using the plot data as
the population, we know the true mean trees per acre for each
county and therefore can obtain both the percent relative bias and
the empirical mean squared error for the estimators, along with
the percent relative bias of the standard variance estimator, by
averaging across the samples. Due to the computational intensity
of the bootstrap variance estimator, we only measure the bias
of the standard variance estimator, given by Equation (2), in
this study.

To ensure we had enough data and sampling variability, we
selected for the population the 5 IW Mountain eco-provinces
which each had at least 3,000 plots. Within these 5 eco-provinces,
we selected the counties which had at least 200 plots and where a
majority of the county plots were in the selected eco-provinces.
It should be noted that we did not include plots from outside
these 5 eco-provinces, even if they were in one of the selected
counties. Table 1 contains information on the 37 counties that
comprised the finite population. For each replicate sample, we
randomly sampled p% of each county. To explore the effect of
sampling intensity, we varied p from 2 to 10 in 0.5 increments.

While the GREG and GREGORY are asymptotically unbiased,
the estimators are applied in practice to samples with finite
sample sizes. Therefore, it is important to study the degree of
bias in the estimators and their variance estimators, especially as a
function of sample size. Figures 6, 7 capture the percent relative
bias of the estimators across the sampling fractions and sample
sizes. Both estimators exhibit little bias for the moderate to large

sampling intensities but for the smallest intensities the GREG’s
percentage relative bias across the 37 counties is rather variable,
more so than the GREGORY’s.

Figures 8, 9 compare the mean square error of the GREGORY
and the GREG across the sampling fractions and sample sizes.
For the lower sampling fractions, the GREGMSE ismore variable
and larger, on average, than the MSE of the GREGORY. From
Figure 8, we see that the GREGORY is typically more efficient
than the GREG for smaller sample sizes and then the estimators
perform similarly once a county has at least 30–40 sampled plots.
This result demonstrates an advantage to using GREGORY in
settings where data are sparse.

The distributions of the percent relative bias of the
standard variance estimator, given in Equation (2), are
displayed in Figures 10, 11. The variance estimators for
both the GREG and GREGORY are negatively biased for
the smaller sampling intensities but the GREGORY is
less so. And by a sampling fraction of around 6.5%, or a
sample size of at least 20, the variance estimator of the
GREGORY exhibits little bias, while the GREG variance
maintains some amount of negative bias, even for the largest
sample sizes.

4. CONCLUSION

This paper considers how the variability of a direct
estimator is impacted when the assisting model is built
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FIGURE 7 | The percent relative bias of the county estimates of average trees per acre by sample size across the following sampling intensities: (A,B) 2%, (C,D) 4%,

(E,F) 6%, and (G,H) 8%.

using data from a larger region, some of which falls
outside the domain of interest. We found that efficiency
gains are achieved from these larger modeling samples
when the sample size within the domain of interest
is small.

A key interest for a practitioner is under what conditions
to use GREGORY instead of GREG. We believe this primarily
comes down to four questions. First, does survey data exist
beyond the domains of interest that samples similar domains?
Here, we used eco-province boundaries to identify similar areas
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FIGURE 8 | Boxplots of the mean squared error of the county estimates of average trees per acre across the sampling intensities. The average mean squared error is

denoted by the stars.

FIGURE 9 | The MSE ratio of the GREG to the GREGORY when estimating the average trees per acre at the county level by sample size across the following

sampling intensities: (A) 2%, (B) 4%, (C) 6%, and (D) 8%. A loess smoother is included.
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FIGURE 10 | Boxplots of the percent relative bias of the standard variance estimator when estimating the average trees per acre across the sampling intensities. The

average percent relative bias is denoted by the stars.

that resulted in less variable estimates and avoided the problem of
introducing bias caused by modeling from completely different
populations. If the entire sample region is ecologically similar,
then the modified GREG, which utilizes all the sample data to
fit the model, should be considered. Second, does borrowing
over this larger region result in diverse models? In our case,
adjacent eco-provinces in the Interior Western US are often
dramatically different due to topography, but borrowing over a
larger area that is quite homogeneous could have little impact
on the performance of estimators. Third, are there domains
of interest with small sample sizes? In our application in the
Interior West, enough data were available and the GREG was
adequate for the situation. However, our simulation results show
that GREGORY generally produced less biased estimates and
better relative precision than GREG as sample size decreased.
And fourth, how will the uncertainty of the estimates be
calculated? We found that the standard variance estimator
exhibited less negative bias for the GREGORY and eventually
showed little bias for moderate sample sizes. On the other hand,
the standard variance estimator of the GREG continued to exhibit
negative bias across all sampling intensities. Lastly, we’d note
that for very small sample sizes, a practitioner should consider
model-based methods which more directly leverage information
from outside the domain as these methods are likely to be
more efficient.

Whether fitting a GREG or a GREGORY, there are additional
considerations for a practitioner about what assisting model

to employ and what auxiliary data to incorporate. These
choices should be guided by extensive exploratory data
analyses and visualizations. For the GREGORY, we fit
separate linear models for each eco-province and then for
each county, weighted the eco-province estimated model
coefficients by the proportion of the eco-province in the
county. There are many other potential approaches, such
as building a single model with eco-province indicator
functions or taking a mixed-model approach with eco-
province random effects. Time spent up front thinking about
the model, how the estimated model coefficients may vary
across subsets, the inclusion of relevant ancillary data, spatial
variations in the data, and domain sample sizes may be
profitable by increasing the precision of particular small area
estimates, in addition to motivating the choice between GREG
and GREGORY.

For understanding operational implications for FIA,
GREGORY should be evaluated as an alternative to post-
stratification for more response variables, over different
geographic regions, and using alternative auxiliary
information. Further, much work is underway to expand
forest inventory capacity to address new user needs
through small area estimation. Through GREGORY, new
investigations can determine just how far FIA can push
direct, model-assisted estimators suitable for generic
inference to meet small domain needs before turning to
model-based methods.
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FIGURE 11 | The percent relative bias of the county standard variance estimator when estimating the average trees per acre by sample size across the following

sampling intensities: (A,B) 2%, (C,D) 4%, (E,F) 6%, and (G,H) 8%.
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National forest inventories (NFI), such as the one conducted by the United States
Forest Service Forest Inventory and Analysis (FIA) program, provide valuable information
regarding the status of forests at regional to national scales. However, forest managers
often need information at stand to landscape scales. Given various small area estimation
(SAE) approaches, including design-based and model-based estimation, it may not be
clear which is most appropriate for the user’s application. In this study, our objective
was to assess the uncertainty in tree aboveground live carbon (ALC) estimates for
differing modes of SAE across multiple scales to provide guidance for appropriate
scales of application. We calculated means and variances for ALC with design-based
(Horvitz-Thompson), model-assisted (generalized regression), and model-based (k-
nearest neighbor synthetic) estimators for estimation units over a range of sizes for
30 subregions in California, United States. For larger areas (10,000–64,800 ha), relative
efficiencies greater than one indicated that the generalized regression estimator (GREG)
generated estimates with less error than the Horvitz-Thompson estimator (HT), while
the bias-adjusted synthetic estimator relative efficiency compared to either the Horvitz-
Thompson or model-assisted estimators exceeded one for areas 25,000 ha and smaller.
Variance estimates from the unadjusted synthetic estimator underestimated the total
error, because the estimator ignores bias and thus only addresses model variance.
Across scales (250–64,800 ha, 0–27 plots per area of interest), 93% of the variation
in the synthetic estimator’s relative standard error was explained by forest area, forest
dominance, and regional variation in forest landscapes. Our results support model-
assisted estimation use except for small areas where few plots (<10 in the current study)
are available for generating estimates in spite of biases in estimates. However, users
should exercise caution when interpreting model-based estimates of error as they may
not account for model mis-specification, and thus induced bias. This research explored
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multiple scales of application for SAE procedures applied to NFI data regarding carbon
pools, potentially supporting a multi-scale approach to forest monitoring. Our results
guides users in developing defensible estimates of carbon pools, particularly as it relates
to the limits of inference at a variety of spatial scales.

Keywords: aboveground live carbon, California (USA), estimation, forest, forest inventory and analysis, national
forest inventory (NFI), small area estimation, variance

INTRODUCTION

National forest inventories (NFI), such as the one conducted
by the USDA Forest Service Forest Inventory and Analysis
(FIA) program, provide valuable information regarding the
status of forests at regional to national scales. For example,
FIA data are critical to generating estimates of carbon stocks
and fluxes and developing and testing ecosystem models in
support of planning and reporting of carbon stocks and
dynamics in the United States (Tinkham et al., 2018). Such
data may also be essential for regional assessments, such as
forest resource reports describing status and trends in forest
attributes like forest area, tree species composition, stand
structure, and forest carbon pools (e.g., Brodie and Palmer,
2020). NFI data can also be integrated with remote sensing to
generate maps of forest attributes as a basis for improving the
quality and efficiency of estimates (McRoberts and Tomppo,
2007; Lister et al., 2020). For example, USDA Forest Service
monitoring of status and trends in late-successional and old-
growth forests in Oregon, Washington, and California relies
both on design-based estimates as well as predictions generated
by integrating FIA data with Landsat satellite imagery using
nearest neighbor imputation (Ohmann et al., 2012; Davis et al.,
2015). Thus, the national consistency in NFI data generates
efficiencies for assessment, planning, and monitoring (sensu
Wurtzebach et al., 2019), but the utility of NFIs for generating
reliable forest attribute estimates at stand to landscape scales
remains challenging.

While NFI is vital to supporting strategic planning, forest
managers often need information at stand to landscape scales
in support of tactical decision making. For example, the USDA
Forest Service’s 2012 planning rule increases the emphasis on
adaptive planning, a recognition of the central role of broad-
scale monitoring, and the consideration of climate change,
landscape-scale restoration, ecosystem services, and other values
(Nie, 2018). This implies an increasing emphasis for National
Forest planning on forest conditions from stand scales (10–
100s of hectares) to landscape scales (1,000–100,000s of
hectares). NFIs are not always designed to answer questions
at these scales (e.g., one FIA plot per 2,428 ha) and the
minimum area for estimation used by some authors can be
relatively coarse (e.g., roughly 27 plots over 64,800 ha EMAP
hexagons; Woodall et al., 2006; Menlove and Healey, 2020),
impractical for guiding forest management decisions at stand-
and landscape-scales.

Many estimation procedures utilizing NFI data are available
to users interested in quantifying forest conditions over smaller
areas of interest, referred to here as small area estimation (SAE)

(Rao and Molina, 2015), though they may vary in terms of
both variance and bias (Goerndt et al., 2012). It is important to
note that SAE does not necessarily refer to a specific geographic
scale of inference, but rather situations under which few if any
plots are available for direct estimation based on available forest
inventory data (Rao and Molina, 2015). At finer scales relevant
to some types of forest management and planning questions,
auxiliary data can be integrated with plot data to improve
estimation or make it more flexible. Auxiliary data can be used to
improve estimator efficiency through model-assisted estimation
and models can be used to relate plot data to auxiliary data upon
which we can base the development of forest attribute maps
or hybrid approaches (Ståhl et al., 2016). From design-based to
model-based inference, there is a tradeoff between reliance on
probability samples vs. models as the foundation of inference,
though selection of a specific estimation procedure depends on
the objectives of the study.

Design-based methods provide unbiased estimators for users
and are appropriate at relatively broad spatial scales where
often 100s or 1,000s of plots are available. For example, the
Horvitz-Thompson estimator (HT) (Horvitz and Thompson,
1952) has been commonly used for estimation of forest
attribute means and variances with forest inventory data as
it is simple to compute and design unbiased (Williams, 2001,
Bechtold and Patterson(eds), 2005, McConville et al., 2020,
Stanke et al., 2020). However, strong relationships between
auxiliary data and forest attributes of interest may lead
users to explore other estimation procedures. Model-assisted
estimation, such as generalized regression estimators (GREGs)
(Deville and Särndal, 1992), leverages models to support design-
based inference, thus providing unbiased estimators that are
appropriate for smaller scales than direct estimators based
on existing inventory data can support (Goerndt et al., 2012;
McConville et al., 2020). For example, simulation results
indicated that GREGs are more efficient than Horvitz-Thompson
estimators as they leverage the auxiliary information to reduce
uncertainties (McConville et al., 2020). Synthetic estimation
relies on a model alone and, using model-based inference, can
thus provide estimates over areas with few or no plots. But
bias in synthetic estimators depends on a variety of factors,
including data used for fitting models, vegetation characteristics,
model assumptions, and other sources of the error (McRoberts,
2012; Chen et al., 2016). For example, the development of a
synthetic k-nearest neighbor estimator for variance over areas
of interest provides one avenue with which to generate mean
and variance estimates for small areas with insufficient plot
support to leverage design-based and model-assisted methods
(McRoberts et al., 2007). Therefore, while many estimation
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methods for forest attributes have been used, it may not
always be clear to users which is most appropriate at a given
scale of inference.

While the emergence of predictive mapping of forest
attributes based on NFI data or other plot networks and
remote sensing (e.g., Ohmann and Gregory, 2002; Tomppo
et al., 2008; Saatchi et al., 2011; Beaudoin et al., 2014; Du
et al., 2014) may provide information at fine scales (e.g.,
30-m pixels for maps based on Landsat satellite imagery),
simply summing pixels to generate aggregate means or totals
does not constitute a small area estimate as there is no
characterization of uncertainty. The development of CONUS-
level nearest neighbor imputed maps of forest attributes based
on FIA plot data, climate, and multispectral remote sensing (e.g.,
Wilson et al., 2012, 2013) motivates a need to move beyond
simply aggregating pixels to compare model-based estimation
for k-nearest neighbors (kNN) techniques (e.g., McRoberts
et al., 2007; McRoberts, 2012) with model-assisted and design-
based estimation across scales and diverse forest conditions
(sensu Ståhl et al., 2016). Such an assessment is necessary to
identify whether there are clear patterns in the performance
and comparability of estimation procedures as a function of
estimation unit area and forest heterogeneity, which can both
influence the quality of kNN estimates when aggregated (Bell
et al., 2018). Information regarding the biophysical drivers
of uncertainty could inform how users interact with the
data, by providing a priori information on the appropriate
scale of inference given their precision needs, the size of
the area of interest, and the biophysical characteristics of
the landscape being examined. It could also guide additional
plot sampling or improvements to modeling approaches to
address forest types where forest attribute estimation is
particularly challenging.

Due to substantial uncertainties inherent in the estimation
of carbon stocks and fluxes (Glenn et al., 2015) and the
challenges of monitoring forest attributes for relatively small
areas, there is a need to understand the appropriate use of
differing estimation methods across scales. The foundation of
that understanding should rely on assessments of variation in
estimate uncertainty, both in terms of variance and bias, as the
area of an estimation unit changes. In this study, our objective
was to assess how tree live aboveground carbon (ALC; Mg
ha−1) estimates (mean and variance) differed as a function
of scale (250–64,800 ha) and estimation method (design-
based, model-assisted, and synthetic estimators). Specifically,
we ask what is the size of a small area, and thus the
size of the associated forest inventory sample, for which
a model-based, synthetic kNN estimator (SK) would be
selected in favor of either the Horvitz-Thompson or GREGs?
Using this information, we aim to provide guidance to
users for the appropriate scales of application for different
estimation methods and a quantification of the error associated
with different procedures. We also propose that a unified
framework, which leverages multiple estimation procedures
depending on the needs of the user, would support simple and
transparent estimation, thus expanding the potential population
of users of NFI data.

MATERIALS AND METHODS

Study Region
For this study, we focus on the Sierra Nevada Mountains
Ecoregion (M261; Cleland et al., 1997, 2007), a 179,376
km2 region located in California, United States (Figure 1).
Forest landscapes in M261 are diverse, ranging from low-
elevation woodlands to montane mixed conifer forests to high
elevation subalpine forests. Therefore, forest landscapes include
a variety of forest types characterized by different tree species,
forest heterogeneity, and stand structures. As a result, forest
carbon pools themselves are spatially heterogeneous, providing
a useful area for assessing differing estimation procedures across
various conditions.

FIGURE 1 | Study region map highlighting (A) nested hexagonal areas of
interest, (B) 1,000,000-ha subregions within M261, and (C) an inset showing
the study region location in the United States.
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In addition to the environmental and ecological heterogeneity
in forest landscapes within M261, tracking carbon emissions
and sequestration has been of major interest in California,
United States. Federal, state, and municipal governments leverage
numerous mitigation strategies for emissions reductions and
sequestration improvements, such as California’s forest offset
program (Anderson et al., 2017; Cameron et al., 2017). These
types of strategies require reliable information on forest carbon
pools at a variety of scales, from all California forest lands down
to individual property owners or management units. This study
region (M261; Figure 1) and others would benefit greatly from an
improved capacity to produce carbon pool estimates at a variety
of scales as well as guidance with respect to appropriate use of
NFI data provided by FIA.

Forest Inventory and Analysis Data
The FIA program is the NFI for the United States and provides
a field-based assessment of forest conditions on a uniform
triangular grid represented by a hexagonal lattice (one plot per
2,428-ha hexagon) across all lands regardless of ownership (i.e.,
non-private and private lands) in the United States (Bechtold and
Patterson(eds), 2005). Through its design, the FIA plot network
is well-suited for analyzing and quantifying forest conditions
(e.g., volume, biomass, and carbon) at varying scales over time
as the data provides a basis for unbiased estimates of forest
conditions in a consistent and timely fashion (Glenn et al., 2015).
As determined by aerial photography and other remote sensing,
FIA locates a single plot in each 2,428-ha hexagon—either by
random or collocated with a preexisting plot (Bechtold and
Patterson(eds), 2005), but measures only those plots located on
forestlands. On forestlands (i.e., land at least 0.4 ha in size that
is at least 10% stocked with trees or formerly having such tree
cover and not currently developed for a non-forest land use), field
crews visit permanent ground plots and measure a suite of forest
and tree variables, including tree species and diameter at breast
height (dbh; 1.37 m). Plots consist four sets of nested subplots in
a triangular arrangement, with trees 2.5–12.7 cm dbh measured
on 2.07-m fixed radius subplots within larger 7.32-m fixed radius
subplots used for trees at least 12.7 cm dbh. Therefore, field
data are, at their most basic, measurements of tree species, size,
and mortality status with associated scaling factors depending on
size of the tree and the plot design described above. Additional
measurements on FIA plots are plentiful (e.g., seedling counts,
tree mortality agents, etc.), but are not used in the current study
and are not discussed further.

Individual tree measurements were used to calculate
ecosystem- or stand-level statistics, such as tree density, tree
basal area, and species diversity. For this study, plot-level ALC
was estimated using these tree diameter and species data by
applying the Component Ratio Method (Jenkins et al., 2003;
Woodall et al., 2011). We used tree measurements from 2014
to 2018 to represent the most recent forest conditions in the
study area. While ALC estimates are themselves based on models
and thus include error (Clough et al., 2016), we treat these as
observations for the purposes of SAE in this study (sensu Wilson
et al., 2013).

Auxiliary Data
To support the generation of raster maps of imputed plots for the
study area by assigning a set of k plots to pixels based on their
proximity in feature space (e.g., Ohmann and Gregory, 2002), we
identified and developed a suite of auxiliary variables (Figure 2).
Predictive features, or auxiliary variables, were derived from
a digital elevation model (DEM), climate data, and satellite
imagery, then resampled to 30-m pixel resolution. Elevation,
along with its derivatives, from the 1 arc-second DEM of the
National Elevation Dataset (Gesch et al., 2002) formed the set
of topographic features used. Topographic derivatives included
slope, compound topographic index (Beven and Kirkby, 1979),
and potential annual direct incident radiation (McCune and
Keon, 2002). Climate variables, derived from the Daymet Version
3 (Thornton et al., 1997, 2016) 1-km gridded monthly summaries,
included mean annual growing degree days and mean annual
precipitation over the nearly 40-year record. The reflectance
bands for each Landsat 8 OLI collection 1 scene collected
during 2014–2018 were transformed to the Tasseled Cap (TC)
components of brightness, greenness, and wetness (Kauth and
Thomas, 1976; Baig et al., 2014). Harmonic regression, based on
a 3rd-order Fourier series (Wilson et al., 2018), was employed to
characterize the mean shape of the spectro-temporal profile for
each pixel and TC component over the 5-year period. A 3rd-
order Fourier series requires 7 model coefficients: one for the
fundamental frequency, as well as a pair for each of the three
harmonics (i.e., comprised of a sine and cosine term). Given that
a series was fitted to each of the three TC profiles, a total of 21
model coefficients were estimated.

Generating Tree Aboveground Live
Carbon Estimates
Central to this manuscript is the comparison of multiple
estimation techniques for areas of different sizes in terms of
ALC mean and variance estimates. For this study, we examine
the Horvitz-Thompson estimator as an example of traditional
design-based estimation, GREG as an example of model-assisted
estimation, and a synthetic estimator based on the k-nearest
neighbors algorithm as an example of model-based estimation.

Horvitz-Thompson Estimator
Horvitz and Thompson (1952) developed an estimator that
provides a general framework for direct estimation under
multiple sample designs, whether or not auxiliary variables
are available. The Horvitz-Thompson (HT) estimator for the
population total Y is:

Ŷht = 6 Iidiyi

where, for the ith unit in a population of size N, Ii is a random
variable that indicates whether or not the unit is in the sample, di
is the unit’s design weight, and yi is the observation of the variable
of interest for the unit. The design weight of a unit is the inverse
of its probability of inclusion in the sample, πi, or di = π−i

1.
The inclusion probabilities are determined by the sample design,
which defines whether or not the sample units are to be drawn,
for example, from a simple random sample (SRS), systematic
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FIGURE 2 | Summarization of the source and generation of predictor (auxiliary) and response (forest inventory) variables used in the development of kNN mapping of
ALC.

sample, or cluster sample. Yates and Grundy (1953) developed an
estimator of the variance of the HT estimator,

Var̂(Ŷht) = 66(πiπj − πij)/πij(yi/π + yj/πj)
2

where πij is the joint inclusion probability of units i and j.

Generalized Regression Estimator
One approach to estimation when auxiliary variables are available
is to use a model-assisted estimator. One example is known as
the calibration estimator, or the generalized regression (GREG)
estimator (Deville and Särndal, 1992). The GREG estimator is
a generalization of a class of estimators, such as the ratio and
regression estimators, that use values of one or more auxiliary
variables for all population units with an assisting model to
calibrate the direct estimator. It still uses the design weights and
is therefore fundamentally design-based. As described in Rao
(2011), suppose that the parametric superpopulation model that
describes the relationship between unit-level observations of the
variable of interest and the auxiliary variables is,

yi = xi
′ β + εi

where β are the model parameters, xi are the auxiliary data, and εi
is the model error. In the current study, we used the predictions

from a non-parametric kNN model to replace the π ′iβ term (see
section Synthetic k-Nearest Neighbors Estimator). The errors
are assumed to be uncorrelated with mean of zero and variance
proportional to a known constant qi.

The GREG estimator of the population total Y is given by,

Ŷgreg = (Ŷht − β ′X̂) + β ′X

where X are the known population totals of the auxiliary variables
and Ŷ and X̂ are the corresponding estimated values for the
variable of interest and auxiliary variables using the sampled units
and their design weights. The variance is calculated as the Yates-
Grundy variance, based on the model residuals. The working
model used with the GREG estimator does not need to be a
parametric linear model, and could instead be non-linear or, as
in our study using the kNN algorithm, a non-parametric model.

Synthetic k-Nearest Neighbors Estimator
The model used as the foundation of our synthetic estimator and
required as the auxiliary data for our GREG estimator (the β ′X
term) was based on the kNN algorithm (Fix and Hodges, Jr.,
1952). The kNN imputation approach has been used extensively
as a flexible, multivariate, and non-parametric method for forest
attribute mapping (e.g., Ohmann and Gregory, 2002; Tomppo
et al., 2008; Eskelson et al., 2009; McRoberts et al., 2011;
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Wilson et al., 2013). Here, we briefly describe the development of
raster maps of imputed plots based on kNN as well as the SK
used for generating areal estimates for the mean and variance
of forest attributes. For mapping ALC in our study area, the
kNN algorithm was used to impute ALC data to individual pixels
where no tree measurements were taken based on their similarity
to forest inventory plots with relation to some set of predictors
(e.g., Figure 3). As the non-parametric kNN model was fit using
the FIA sample for the entire study region M261 and then used to
make predictions for all population units within several domains
of the study region, it forms the basis for a synthetic estimate of
ALC. While the kNN estimator is likely nearly, but not exactly,
unbiased across all units in the sample (sensu McRoberts et al.,
2007; Magnussen et al., 2009), there is no guarantee this holds for
a subsample, or any smaller domains.

An ecological ordination of tree species found in the ecological
province was conducted using a canonical correspondence
analysis (CCA) model (ter Braak, 1986). The set of 27 predictor
variables described above used were the four topographic
variables (slope, compound topographic index, and potential
annual direct radiation), two climate variables, and 21 Fourier
series coefficients associated with each pixel at the location of
the plots measured during 2014–2018. The response variables
used were live tree aboveground biomass per hectare by species
for trees located on the central 7.32-m fixed radius subplot of
the plots (Figure 2), to better match the pixel resolution of the
predictor variables. There were 2,251 plots with live trees on
forest conditions used to fit the CCA model.

The fitted CCA model coefficients formed the feature space for
measuring proximity between each pixel and the set of measured
plots (Figure 3; Ohmann and Gregory, 2002). All 27 orthogonal
canonical variates of the CCA model were used with the kNN
algorithm. Because the CCA model generates orthogonal axes,
this approach avoids multicollinearity when assigning nearest

FIGURE 3 | Conceptual diagram highlighting the kNN imputation process for
a simple case with two metrics (CCA axes) defining the feature space. After
the CCA modeling (solid circles) are located in the feature space, then a pixel
to be imputed (open circle) is placed in that space based on the auxiliary data
(geospatial predictors). Distances from the focal pixel to all plots in the feature
space are calculated and the k nearest neighbors are identified by minimizing
those distances (indicated by dashed lines). Each of those nearest neighbors
was imputed back to the pixel to populate a multiband raster, with the mean
ALC for neighbors across bands being the predicted ALC for the pixel.

neighbors based on the resulting feature space. There were 3,631
plot locations with a complete record of both predictor and
response variables used in the imputation for M261, with non-
forest conditions assigned a value of 0 for forest condition and
tree variables. The value of k used for kNN regression, with
predicted values being the unweighted mean of the k-nearest
plots, excluding the nearest plot using the Manhattan distance
metric, was selected to minimize mean squared error of predicted
total live tree aboveground biomass. The optimal value of k for
province M261 was 28.

To generate model-based mean and variance estimates for
ALC based on the maps of nearest neighbors, we applied an
areal estimation technique for kNN imputation (McRoberts et al.,
2007; McRoberts, 2012), and our SK. For an AOI, the mean ALC
was calculated as the mean pixel-level ALC across all forested
pixels and the 28 nearest neighbors for each pixel, excluding
the nearest plot. Variance estimation incorporated pixel-level
variance in ALC across the 28 nearest neighbors as well as
covariance between pixel pairs within an AOI. The covariance
between any two pixels depends on the standard deviation in ALC
across neighbors for each pixel and the number of plots shared
by the two pixels within the list of the k = 28 nearest neighbors.
Thus, the SK estimator generates model-based mean and variance
estimates for ALC, or any other forest attribute of interest for
which plot data are available.

Because imputed maps were based on plots that were visited
in the field (i.e., forestlands) and we wished to avoid extrapolating
beyond the scope of our input data, we used a map of forest type
groups (Wilson, 2021) to mask out non-forest lands. As a result,
we assume that ALC = 0 for non-forest lands. We also apply
the SK estimator only for forestlands, meaning that mean and
variance in ALC is for forestlands only. To generate mean ALC
for all lands, we multiplied the mean ALC from the SK estimator
with the proportion of pixels within an AOI that were forested.
Because we assume that ALC = 0 for non-forest lands and is thus
not a random variable, variance in ALC for all lands is equal to
variance in ALC for forestlands.

For this study, we implemented the SK estimator using R and
ArcGIS Pro. Our implementation of the SK estimator utilized an
R script embedded within an ArcGIS Pro Model Builder Toolbox.
Manipulation of spatial data was handled within ArcGIS Pro 2.6
and mean and variance calculations were processed in R (4.0.2;
R Core Team, 2020) within ArcGIS Pro using the arcgisbindings
package (version 1.0.1.244; Esri., 2021). ArcGIS Pro required
Spatial Analyst and the following R packages: doParallel (version
1.0.16; Microsoft Corporation, and Weston, 2020), raster (version
3.4-5; Hijmans, 2020), rgdal (version 1.5-23; Bivand et al., 2021),
rgeos (version 0.5-5; Bivand and Rundel, 2020), and snow
(version 0.4-3; Tierney et al., 2018). To accelerate processing
time, we adopted a subsampling approach for pixels within an
AOI, avoiding the need to assess all pairwise comparisons of
individual pixels (McRoberts et al., 2007). An example R script
upon which our ArcGIS Pro workflow is based can be found in
Supplementary Material 1.

To determine whether variance estimates with the
subsampling approach converge on the estimate based on
all pixels (i.e., stability of variance estimator), we generated five
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replicates for each of the 30 subregions of randomly selected
pixels for sample proportions from 0.01 to 0.30 and AOI areas
of 1,000, 5,000, and 10,000 ha. Initial testing on a high-end
workstation indicated that computation time scaled with the
square of the number of pixels. Given that constraint, we
limited the generation of replicates to intervals of 0.01 for
sample proportion between 0.01 and 0.15, but also generated
replicates at sample proportions of 0.20, 0.25, and 0.30. The
upper value of 0.30 was selected as it was roughly double the
recommendation from a previous study (McRoberts et al., 2007).
Thus, we attempted to balance reasonable computation time
with appropriate coverage of lesser sample proportions which
we assumed would be less stable. We then estimated variance
for each replicate, sample proportion, and area combination
and calculated the percent difference between that estimate and
the estimate derived from the one generated when using all
pixels in an AOI.

To identify the proportion of pixels that must be subsampled
to generate SK variance estimates that converge on the estimate
using all pixels within an AOI (i.e., a stable variance estimate),
we used ordinary least squares regression (lm function; R Core
Team, 2020) to fit a regression model for the absolute value
of the proportional difference between sample and full variance
SK estimates as a function of forest area within each AOI and
proportion of pixels in the AOI sampled to generate variance
estimates. Given that we were generating ALC estimates for
forest lands, rather than all lands, we used forest area instead
of AOI area to reflect the total number of pixels, and thus the
amount of information, being used by the SK variance estimator.
Additionally, forest area accounts for both AOI area as well
as forest dominance (proportion of AOI that was forested).
We included proportion of AOI being subsampled to represent
the influence of the subsampling procedure. Data exploration
indicated that the greatest predictive power for the regression
model was achieved when log-transforming both response
and predictor variables. We compared regression models with
differing combinations of main effects (P and F) using AIC,
selecting the model that minimized AIC as the best.

To solve for the proportion of pixels to sample P for values of
forest area F in order to generate variance estimates within 1% of
the estimate using all pixels in an AOI (Y = 0.01), we reorganize
the regression equation as

P =
0.01− (β0 + β1F + β3F2)

β2

When P> 1, we set P = 1 as this indicates a need to use all pixels in
an AOI. Note that forest area is the product of AOI area and forest
dominance, such that for any AOI area, the proportion of pixels
to be sampled depended on the forest dominance in the AOI.

Comparisons of Tree Aboveground Live
Carbon Estimates
To compare ALC estimates generated by the differing approaches
across scales, we first defined areas of interest (AOI) across
the study region in order to represent a diverse suite of forest

conditions (Figure 1A). Across M261, we created 30 1,000,000-
ha hexagons as subregions covering 500,000–1,000,000 ha each.
For each subregion, we selected the 648 km2 Environmental
Monitoring and Assessment (EMAP) hexagons (White et al.,
1992) overlapping the centroid of the subregion, resulting in
30 hexagons 64,800 ha in size across the study region M261
(Figure 1B). For FIA-based forest attribute estimation, the EMAP
hexagons have been identified as providing a balance between fine
spatial scale and sufficient numbers of plots to support design-
based inference (Woodall et al., 2006; Menlove and Healey, 2020).
We then generated hexagons at eight additional scales, centered
on the same centroids: 50,000, 25,000, 10,000, 5,000, 2,500,
1,000, 500 ha, and 250 ha. These hexagons were the estimation
units for this study.

We compared mean and variance estimates from each of
the different methods described above (HT, GREG, and SK)
only for the 10,000, 25,000, 50,000, and 64,800-ha AOIs. We
compared results from the GREG and SK estimators with the
HT estimator results using simple linear regression in order to
roughly assess uncertainties in model-assisted and model-based
estimators relative to design-based estimators. For each AOI
at each scale, we also computed the relative efficiency (RE) of
the SK and GREG estimators relative to the HT estimator and
to each other, which is simply the ratio of the variances being
compared. Two versions of the SK estimator were used for these
comparisons. Unadjusted SK is the usual synthetic estimator that,
by assuming the modeled relationship between predictor and
response variables developed for M261 holds for all domains
within it, also assumes unbiasedness for SAE. Adjusted SK uses
the design-weighted estimate of the bias provided by the sample
to calculate mean square error, where MSE = variance + bias2.
Under most SAE scenarios, this adjustment would not be possible
because of small sample sizes.

The SK estimator was applied to all scales described above,
though larger areas can require substantial processing time.
It should be noted that there are many users interested in
estimating means and variances for forest attributes for areas that
are much smaller (<10,000 ha). Therefore, we present variance
estimates for smaller areas to quantify estimate variance for the
SK estimator at scales relevant to forest managers. To examine
the variance of ALC estimates across a gradient of AOI area (250–
64,800 ha) for the SK estimator, we developed linear mixed effect
regressions of the log relative standard error (% of mean ALC
estimate) as a function of log forest area, forest dominance, and a
random effect for the 1,000,000-ha subregion. Forest dominance
was calculated as the proportion of area in an AOI that was
forested. We used all the estimates across scales (250–64,800 ha)
for the 30 subregions as inputs. We then used the lme function
in R (nlme package version 3.1-140; Pinheiro et al., 2019) to fit a
model for log relative standard error in the ALC estimates as

yij~N
(
γ0 + γ1Aij + γ2Dij + αj, σ

2)
αj~N

(
0, τ2)

where yij was the log relative standard error for AOI i in
subregion j, γ0, γ1, and γ2 were regression parameters, Aij
was the forest area (ha) in AOI i in subregion j, Dij was the
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forest dominance (unitless) in AOI i in subregion j, σ2 was the
process variance for the regression, αj was the random effect for
subregion j, and τ2 was the variance for the random effects. We
fit two additional linear regression models, one with forest area
Aij only and one with forest area Aij and forest dominance Dij,
in order to examine the explanatory power of each component of
the model describing the coefficient of variation.

RESULTS

Small Area Estimate Convergence
We tested the stability of the SK variance estimator as a function
of the proportion of pixels sampled. We found that increasing
the proportion of pixels sampled quickly led to convergence in
variance estimates, supporting the use of only a subset of pixels
with an AOI (Figure 4). We found that generating variance
estimates within 1% of the estimate based on all pixels depended
on several factors, including AOI area and proportion of pixels
being sampled. For 10,000-ha AOIs, sampling 7% of pixels
resulted in most variance estimates being within 1% of the
estimate using all pixels, whereas 15% were required to ensure
that most estimates were within 0.5%. Proportion of pixels
sampled needed to increase for smaller areas to achieve the same
convergence in variance estimates, with 5,000 ha AOIs requiring
14% and 1,000 ha AOIs requiring 30% of pixels sampled for most
estimates to converge within 1%.

Our regression analysis examining the stability of variance
estimates indicated that the best model for log absolute value
of the proportional difference between sample and full variance
estimates Y explained 33.5% of the variation and included
an intercept (β0 = −1.868 ± 0.088 SE), log forest area F

(β1 = −0.516 ± 0.010 SE), and log proportion pixels sampled P
(β2 =−0.576± 0.015 SE).

Predicted proportion sampled increased as AOI area and
forest dominance within the AOI decreased, indicating that the
stability of the variance estimate depends on the number of pixels
being considered. For the purposes of the rest of this study, we
set the proportion of pixels sampled for estimating variance using
the SK estimator to the values predicted by the 25% forest cover
scenario (gray diamonds in Figure 5) to increase the likelihood of
estimate convergence. Thus, to generate variance estimates using
the SK estimator for 250, 500, 1,000, 2,500, 5,000, 10,000, 25,000,
50,000, and 64,800-ha AOIs, we used 1.00, 1.00, 0.82, 0.36, 0.19,
0.10, 0.05, 0.02, and 0.02 for proportion of pixels sampled.

Comparing Estimation Methods Across
Scales
Mean ALC estimates based on GREG generally agreed with
HT estimates, though that agreement decreased as AOI area
decreased (Table 1). Regressions of GREG and HT mean ALC
estimates across AOIs showed that slopes decreased from 1.010 to
0.818 and R2 decreased from 0.972 to 0.805 as AOI area decreased
from 64,800 to 10,000 ha. The regression intercept also decreased
as AOI area decreased. Relative standard errors increased from 16
to 31%, while the RE of GREG vs. HT estimators increased from
1.45 to 1.54 as AOI area decreased.

Comparisons of the SK estimator with HT and GREG
estimators indicated a more complex story regarding estimator
performance (Table 2). Like GREG, regression of SK and
HT mean ALC estimates indicated decreasing agreement with
decreasing AOI area, with R2 ranging from 0.920 to 0.758
for 64,800 and 10,000 ha areas, respectively. Slopes from the
regression were relatively constant (0.992–1.026) for scales

FIGURE 4 | Percent difference between AOI variance estimates based on a sample of pixels vs. using all pixels for AOIs of differing sizes. In this case, we examined
30 1,000, 2,500, and 10,000-ha AOIs distributed across the study region, each with five replicates. White horizontal lines indicate median, boxes indicate 50%
intervals, and whiskers indicate 90% intervals. Dashed horizontal lines demarcate –1 and 1% differences.
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FIGURE 5 | Proportion of pixels sampled for AOIs of differing sizes and forest
extent to, on average, generate variance estimates within 1% of the variance
estimate using all pixels.

TABLE 1 | Regression results (y = mx+b) of the scatterplot of GREG (x) vs. HT (y)
estimates across spatial scales, along with median relative standard error (% of
estimate) and median RE of the GREG vs. HT estimator.

Area (ha) m b/ȳ R2 RSE RE (HT)

10,000 0.818 0.215 0.805 30.977 1.542

25,000 0.954 0.113 0.928 24.566 1.556

50,000 0.991 0.093 0.946 21.234 1.406

64,800 1.010 0.062 0.972 16.148 1.450

greater than or equal to 25,000 ha, but decreased to 0.905 for
10,000 ha AOIs, while intercepts increased as AOI area decreased.
Relative standard errors for unadjusted SK were smaller than
other estimators (7.8–8.4%), resulting in RE compared to HT of
4.5–16.8. However, the unadjusted SK estimator RE values do not
account for potential biases inherent in the synthetic approach.
When we accounted for bias, using the design-weighted estimate
of bias, relative root mean square error of adjusted SK increased

from 24 to 33% and RE compared to HT increased from 0.649 to
2.269 as AOI area decreased from 64,800 to 10,000 ha. Similarly,
adjusted SK estimator RE compared to GREG increased from
0.496 to 1.263 as AOI area decreased from 64,800 to 10,000 ha.

Across subregions, linear mixed effects modeling indicated
that the relative standard error for ALC from the SK estimator
decreased with forest area and forest dominance within an
AOI (Table 3 and Figure 6A). The linear mixed effects model
including log forest area, log forest dominance, and a random
effect for subregion explained 93% of the variation in the log
coefficient of variation, whereas models without random effects
or without random effects and forest dominance explained 59
and 39% of the variation, respectively. Mapping random effects
indicated that coefficient of variation tended to be lesser in the
northwestern, greater in the northeastern, and more variable in
the southern portion of the study area (Figure 6B).

DISCUSSION

Comparing Estimators (10,000–64,800
ha)
Augmenting NFI data with auxiliary data using either model-
assisted or model-based estimation facilitates SAE, but our results
emphasize that the appropriate estimation procedure depends
upon the area of an AOI, and thus the sample of plots, being
considered. In our study, 25,000 ha was the nominal scale below
which one would consider changing from the GREG to the
adjusted SK estimator, or vice versa: RE for GREG was greatest
among estimators tested for areas larger than 25,000 ha and RE
for adjusted SK was greatest for areas less than or equal to 25,000
ha (Tables 1, 2). In the case of the FIA data used in this study,
25,000 ha roughly equates to 10 plots whereas the commonly used
EMAP hexagons (64,800 ha) would generally contain 27 plots.
Even at the 64,800-ha scale, the GREG estimator RE compared to
HT was greater than one, indicating that GREG estimators should
be preferred given sufficient plot support in an AOI.

Our results highlight a fundamental limitation of the
unadjusted SK estimator examined: the lack of appropriate
accounting of bias. The synthetic estimator used in
this study assumes unbiasedness in pixel predictions
(McRoberts et al., 2007). Given that regression slopes close
to one and intercepts close to zero highlight agreement, SK
mean ALC estimates did not exhibit major systematic lack

TABLE 2 | Regression results (y = mx+b) of the scatterplot of the unadjusted synthetic (x) vs. HT (y) estimates across spatial scales, along with median relative standard
error (% of estimate) and median relative efficiency of the synthetic vs. HT and GREG estimators.

Unadjusted synthetic Adjusted synthetic

Area (ha) m b/ȳ R2 RSE RE (HT) RE (GREG) RRMSE RE (HT) RE (GREG)

10,000 0.905 0.073 0.758 7.880 16.843 11.853 33.284 2.269 1.263

25,000 1.024 −0.002 0.874 8.185 11.088 6.450 24.496 1.263 1.226

50,000 1.026 −0.037 0.897 8.356 7.079 5.149 25.023 0.904 0.681

64,800 0.992 −0.047 0.920 8.383 4.542 3.536 24.033 0.649 0.496

Adjusted synthetic results are based on root mean square error, including the HT estimate of bias.
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TABLE 3 | Fixed effect and mixed effect linear regression results for predicting the log coefficient of variation in tree aboveground live carbon as a function of area,
dominance, and subregion.

Model β0 β1 β2 Residual standard error Random effect variance (τ 2) R2

Forest area −1.817 (0.140) −0.104 (0.008) 0.270 0.39

Forest area and dominance −1.551 (0.058) −0.095 (0.007) −0.537 (0.047) 0.222 0.59

Forest area, dominance, and
subregion random effect

−1.803 (0.062) −0.088 (0.003) −0.223 (0.048) 0.096 0.050 0.93

FIGURE 6 | Mixed effects regression results of relative standard error as a
function of scale and landscape. (A) Mean predictions of coefficient of
variation based on forested area and forest dominance (percent of AOI that is
forested). (B) Spatial distribution of random effects across study area.

of fit, but R2-values were less than those reported for GREG
(Tables 1, 2). This increased error in mean predictions was not
reflected in the unadjusted SK variance estimates, which were

considerably smaller than GREG or HT variance estimates.
Previous examinations of the kNN synthetic estimator used in
this study indicated that kNN using NFI data can be unbiased
with respect to the sampling aspects of the estimator, but not
necessarily in terms of the bias associated with model mis-
specification (McRoberts et al., 2007; Magnussen et al., 2009;
McRoberts, 2012). Such bias, for example, motivates the use of
empirical best linear unbiased prediction (such as a Fay-Herriot
model) or composite estimators that minimize MSE by finding
the optimal balance between the low variance of a synthetic
estimator and the unbiasedness of a direct estimator (such as
a James-Stein estimator) (Breidenbach and Astrup, 2012; Rao
and Molina, 2015; Mauro et al., 2017; Coulston et al., 2021).
Thus, while the unadjusted SK estimator can produce variance
estimates far smaller than other methods (McRoberts et al., 2007;
Breidenbach et al., 2010), they reflect only model variance, not
bias. While model-based variance estimates can be useful for
many applications, focusing primarily on variance estimates
without accounting for model bias leads to an overly optimistic
view of uncertainty.

Still, it is interesting that the adjusted SK estimator RE
compared to HT and GREG support the use of synthetic
estimators at smaller scales where few plots were available. One
might speculate that improving model fit or accounting for biases
among AOIs would improve relative efficiencies and increase the
nominal area for which one would select SK vs. GREG estimators.
Our results imply that development or application of model-
based SAE should incorporate an assessment against GREG at
the scales relevant to the individual study to determine whether
estimates are improved in a practical sense.

k-Nearest Neighbors Variance Estimates
(250–64,800 ha)
In our study, the SK variance estimates relative to the mean
ALC was predictable (Table 3), indicating that land cover and
AOI area determine the precision of estimates derived from
the SK estimator. Relative standard error for ALC depended
almost entirely on forest area within the AOI, forest dominance,
and biogeographic variation at the scale of our 1,000,000-ha
subregions. Across forest dominance gradients, average predicted
relative standard errors ranged between 0.05 and 0.07 for the
largest forest areas (64,800 ha) and 0.08–0.11 for the smallest
forest areas (250 ha) (Figure 6A). However, geographic variation
in random effects imply that broad-scale variation in forest
conditions explains roughly one third of the relative standard
error (Figure 6B). This result is consistent with our previous
examination of lidar-based vs. Landsat-based maps of forest
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biomass which highlighted increasing differences and decreasing
correlation between the two products as one shifted from
coniferous to mixed broadleaf-coniferous forest landscapes (Bell
et al., 2018). It has also been shown that stratification by forest
type prior to lidar-based modeling improves biomass and carbon
mapping (Swatantran et al., 2011; Chen et al., 2012), implying
that variation in forest composition and structure influences
prediction and estimation approaches.

Our results support the general application of a subsampling
approach in this SK estimator using kNN, but the degree of
subsampling depends on the area of the AOI and the amount of
forest located within it. Variance estimates based on a subsample
of pixels converged on the estimate using all pixels as AOI
area increased (Figure 4), but that convergence appeared to be
delayed with lesser forest dominance (Figure 5). The convergence
still appears to be quite variable (R2 = 0.25), indicating other
factors may determine convergence for any given AOI. Based
on this uncertainty in convergence, we recommend a relatively
conservative approach to selecting proportion of pixels to sample.
In our case, we assumed that forest dominance (proportion of
pixels forested in AOI) was 0.25. Given that our results for
10,000 ha AOIs were similar to a previous study in Minnesota
(15% sampling threshold; McRoberts et al., 2007) and are
relatively consistent regardless of the area forested in within the
AOI (134–9,740 ha), these results may be broadly applicable
across landscapes. Still, further application of this method would
necessitate examination of convergence as a function of other
biophysical factors, such as forest type group, so that users could
easily identify the appropriate sub-sampling to apply for stable
variance estimation.

CONCLUSION

Forest managers increasingly rely upon spatially explicit, mapped
forest attribute data as central source of information for decision-
making, but assessments of uncertainty provide a much needed
characterization of variance and bias in estimates of stand-,
landscape-, and region-level forest attribute estimates (Tomppo
et al., 2008; McRoberts, 2012). Though the choice of inferential
mode, from design-based to model-based, will always depend
on the question being asked (Ståhl et al., 2016), the scale of
inference and characteristics of forest ecosystems appear to play
a dominant role in estimate uncertainty. This study (Table 3 and
Figure 6) and others (e.g., Bell et al., 2015, 2018) show that spatial
variation in estimated variance may be predictable as a function
of biophysical characteristics of the ecosystems being studied.
Advances in model-based estimation that properly account for
bias in estimation error (e.g., Mauro et al., 2017; Coulston
et al., 2021) could extend the scale at which these approaches
outperform model-assisted estimation (e.g., > 25,000 ha). Such
advances could be integrated into estimation procedures to
guide the selection of estimators to fully characterize both
model precision and bias, both of which impact the utility of
estimates for users.

We suggest that an improved understanding of synthetic
estimator uncertainty across a diversity of forest landscapes

could form the basis for a simple, yet transparent workflow
for forest attribute estimation. That platform could open the
use of regional or national forest inventory data to a broader
community of users. These improvements should, in part, aim
to incorporate a proper accounting of prediction bias in model-
based estimation for small areas. Furthermore, the identification
of nominal scales at which users should generally switch
from one estimation technique (e.g., GREG) to another (e.g.,
synthetic) could be incorporated into an integrated approach
that guides users on the appropriate estimator to use at the
scale of their AOI. However, both producers and users of
estimates should bear in mind potential biases in predictions
that, in the case of the SK, result in overly precise (i.e., lesser
variance) estimates of forest attributes. By exploring multiple
scales of application for an SAE procedure applied to NFI data
regarding carbon pools, this research lays the groundwork for a
multi-scale estimation framework in a simple and transparent
manner that guides users in developing defensible estimates
and educates users on the limits of inference at a variety
of spatial scales.
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Small area estimation is a growing area of research for making inferences over

geographic, demographic, or temporal domains smaller than those in which a particular

survey data set was originally intended to be used. We aimed to review a body of

literature to summarize the breadth and depth of small area estimation and related

estimation strategies in forest inventory and management to-date, as well as the current

state of terminology, methods, concerns, data sources, research findings, challenges,

and opportunities for future work relevant to forestry and forest inventory research.

Estimation methodologies explored include direct, indirect, and composite estimation

within design-based and model-based inference bases. A variety of estimation methods

in forestry have been applied to extensive multi-resource inventory systems like national

forest inventories to increase the precision of estimates on small domains or subsets

of the overall populations of interest. To avoid instability and large variances associated

with small sample sizes when working with small area domains, forest inventory data

are often supplemented with information from auxiliary sources, especially from remote

sensing platforms and other geospatial, map-based products. Results frommany studies

show gains in precision compared to direct estimates based only on field inventory data.

Gains in precision have been demonstrated in both project-level applications and national

forest inventory systems. Potential gains are possible over varying geographic and

temporal scales, with the degree of success in reducing variance also dependent on the

types of auxiliary information, scale, strength of model relationships, and methodological

alternatives, leaving considerable opportunity for future research and growth in small area

applications for forest inventory.

Keywords: small area estimation, model-assisted estimation, forest sampling, geospatial data, design-based

inference, model-based inference

1. INTRODUCTION

The frequency and sophistication of statistical methods in forest inventory have grown steadily
since their earliest adoption by forest researchers, with an overall goal of providing information
of sufficiently high quality to inform decision-making (Schumacher, 1945). One ongoing trend
involves the use of data collected as a part of broad regional or national forest inventories
to produce estimates for areas smaller than the surveys were originally designed to address
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(Magnussen et al., 2014). This trend reflects a situation described
by W. A. Fuller in a plenary presentation delivered to a 1998
workshop on Environmental Monitoring Surveys Over Time
hosted by the University of Washington, Seattle (Fuller, 1999):

“The client will always require more than is specified at the

design stage. For example, the client will explain that they require

estimates only at the regional or national level and then, when

data are available, ask for county estimates.”

While the quotation cites a typical circumstance, many situations
arise in forest resource assessment where stakeholders recognize
that data from multiple sources and scales could be leveraged to
give improved estimates for increasingly small subsets of survey
populations—whether based on geographic areas, time periods,
or demographic subsets of larger populations from which sample
data were collected.

One means of addressing this need is through small area
estimation (SAE), a set of statistical methods aimed at providing
estimates of parameters of interest for population subsets known
as small area domains, typically by linking information from
auxiliary sources with sample observations gathered over a larger
population that encompasses multiple small area domains. A
small area in this case can be described as any geographic,
temporal, or categorical domain for which an established
approach for direct estimation does not provide adequate
precision (Rao and Molina, 2015). Usual quantities of interest
include finite population parameters such as area totals or means,
especially where tolerances for estimator accuracy have been
specified as a part of the sample design. Domains in SAE are
typically subsets of larger survey populations, such as those
found in regional or national economic, health, or agricultural
surveys focused on multiple attributes of interest (Schreuder
et al., 1993). These surveys may involve decades of repeated
sampling and data collection targeting dozens of attributes,
or be limited to a single attribute observed at just one point
in time.

SAE methods seek to improve the precision of estimates for
small area domains of interest (DOI) using data observed from
other domains to increase the amount of sample information
available, an approach often described as “borrowing strength.”
The indirect (i.e., outside-of-domain) data are generally linked
to small area DOI through one or more auxiliary variables and
a model relationship that holds across multiple domains. In this
sense, the domain (d) direct data (y ∈ d) are linked to the indirect
data (y /∈ d) via a model relationship involving the auxiliary data
(x) and corresponding observations of y. In the example Fuller
(1999) described, counties of interest are the small area domains,
with the sample data collected in a specific county serving
as its source of direct information. Sample observations from
surrounding areas—including other counties—are the source of
indirect data. In a national forest inventory (NFI) application
consistent with Fuller’s example both y ∈ d and y /∈ d
would be collected on observational units selected by statistical
sampling. Auxiliary information to construct a model for y ∼ x
might come from remote sensing or other geospatial data sets
separate from theNFI sample observations, or from other sources

including surveys of forest landowners, agencies, or enterprises
that keep records of timber harvesting, tree-planting, or other
management-related activities. Other arrangements and sources
of information are possible, but the overall pattern of direct,
indirect, and auxiliary information, and a model y ∼ x is present
in most SAE applications (Rao, 2008).

Methods now widely associated with SAE largely appeared
in technical literature beginning in the 1970s to address
needs for increased accuracy when estimating for small area
domains within population, social-economic, and public health
surveys (Federal Committee on Statistical Methodology, 1993).
Since then, SAE has been adopted in applications aimed at
estimating incomes (Fay and Herriot, 1979), census groupings,
and crop areas (Battese et al., 1988), among others. Methods
for SAE have continued to develop over time as new statistical
and computational tools have become available, together with
widespread availability and cost-effectiveness of modern data
sets. Remote sensing technologies such as satellite imagery or
aerial laser scanning (ALS) have played a key role in accelerating
the application of SAEmethodologies to forest inventory settings
(Pfeffermann, 2002, 2013; Sugasawa and Kubokawa, 2020;
Coulston et al., 2021).

Interest in applying SAE across disciplines has grown over
time but most applications in forest inventory began to appear
in published work over the past several decades (Burk and
Ek, 1982; Anderson and Breidenbach, 2007; Breidenbach et al.,
2010; Goerndt et al., 2011). SAE reduces forest inventory
estimator errors for small area domains, offering an efficient
and cost-effective option for reducing uncertainty compared
to increasing sampling intensity by installing additional forest-
inventory field plots (Magnussen et al., 2014). SAE techniques
have been used to enhance precision of NFI-derived estimates
(Breidenbach and Astrup, 2012; Frank et al., 2020), in forest
stand inventories (Ver Planck et al., 2018), and from surveys of
wood processors or commercial landowner inventories (Green
et al., 2020; Coulston et al., 2021), but are not limited to
those uses (Affleck and Gregoire, 2015). The ability of SAE
to increase estimator precision in small areas where data are
otherwise too sparse to satisfy tolerance specifications makes
it attractive for applications in forest inventory (Guldin, 2021).
For example, the Norwegian NFI has employed national canopy
height maps from aerial remote sensing as auxiliary data sources
since about 2010 to address needs for better local information
in producing municipal forest statistics and forest-management
related inventories (Astrup et al., 2019; Breidenbach et al., 2020).
SAE has been used with forest inventory data from the U.S.
Department of Agriculture Forest Service Forest Inventory and
Analysis (FIA) program to generate estimates of forest attributes
in small areas such as biofuel supply areas around co-firing power
plants (Goerndt et al., 2019). In forests where field plots can
be precisely referenced to high-quality geospatial auxiliary data
(e.g., ALS), SAE can provide increased precision of estimates for
arbitrarily small spatial areas—accounting for spatial correlations
in sample data when warranted—even where no direct sample
data lie within some DOI (Babcock et al., 2018; Pascual et al.,
2018). Current research aims to combine forest biomass data
from field plots with canopy-height measurements from the
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NASA GEDI spaceborne lidar platform and other remotely-
sensed auxiliary information in a SAE framework, signaling the
first efforts to obtain global scale forest biomass estimates in an
inferential framework (Patterson et al., 2019).

While the potential value of SAE for use in forest inventory
and monitoring is high, the number of applications reported in
technical literature to date is relatively small. A main objective
of this work is to provide an overview of published findings
of small area applications in forest inventory including relevant
considerations for their implementation in other, perhaps novel,
settings. An underlying goal is to provide a backdrop of SAE-
related concepts and terminology, as the clear and consistent use
of statistical language is important to wider adoption of these
tools in future work. A further objective is to provide clarification,
without a heavy emphasis on mathematical statistics, where
ample terminology and notation can pose challenges to those
interested in pursuing small area applications, possibly for the
first time. We begin in Section 2 with background on relevant
statistical paradigms of design- and model-based inference
relevant to SAE, including an important extension of design-
based inference known as model-assisted estimation. Section 3
presents terminology for direct and indirect estimators along
with an overview of composite estimators used in a majority of
SAE methods classified as either unit-level or area-level methods.
In Section 4, we summarize key findings of published SAE
research in forestry, with synthesis and comparison to design-
based approaches including model-assisted estimation. Section 4
also includes some discussion of variance estimators in small-area
inventory applications along with emerging topics in SAE. We
conclude in Section 5 with some take-home findings of the work.

2. BACKGROUND

2.1. Design-Based Estimators
The design-based framework for inference from statistical
sampling is a pillar of many SAE procedures, especially area-
level estimators that will be discussed in Section 3.3 below.
Sampling is likely familiar to most forest inventory specialists
as it provides the basis for establishing statistical properties
of estimators in well-designed inventories (Shiver and Borders,
1996; Gregoire and Valentine, 2007; Thompson, 2012). The
sample design assigns probabilities to population units (e.g.,
plots, trees, etc.) in the sampling frame for being selected in a
particular random draw from a finite population, with the overall
probability of any unit being included in a sample determined
from its selection probability in the context of the sampling
scheme. While the attributes of each unit—whether sampled or
not—are treated as fixed quantities, randomness in design-based
methods arises through the process of sampling. Gregoire (1998)
explained this detail stating, “in the design-based framework,
the population is regarded as fixed whereas the sample is
regarded as a realization of a stochastic process.” Design-based
methods rely on the randomization distribution of sampling and
possible estimates that could be obtained by following the sample
design and its implementation in the sampling scheme. A key
consequence is the lack of reliance on mathematical assumptions
of how elements in the population are distributed, or of model

relationships assumed about how two or more variables in the
population are related (Sterba, 2009).

The usual goal of design-based sampling and subsequent
estimation is to obtain reliable estimates of finite population
parameters in an inferential framework. In forest inventories,
population totals, means, or proportions for various attributes
of interest are typical subjects of estimation. No assumptions
about the underlying structure or distributions of population
units being surveyed are required for valid inference in the
design-based framework. Design-based estimators compatible
with their sample designs are design-unbiased, meaning the
expected value of the estimator over all possible samples equals
the true population parameter being estimated. It follows that
design-based estimators are design consistent, such that, “both
the design bias and the variance go to zero as the sample size
increases” (Skinner and Wakefield, 2017).

The Horvitz-Thompson (H-T) estimator is a design-based
estimator widely used in forest inventory and introduced in
many texts starting with simple random sampling. Any finite
population total for attribute y can be estimated using the
H-T estimator

τ̂y =
∑

iǫs

yi

πi
(1)

where τ̂y is the estimated population total, s denotes the set
of observed values in the sample, yi is the observed value of
attribute y on the ith sample unit, and πi is the probability that
yi is included in s. In this form design-based estimators rely
entirely on observed sample data and sample design weights,
i.e., the inclusion probabilities in the denominator of Equation
(1), to estimate an attribute of interest. Standard errors of an
estimate require pairwise joint inclusion probabilities P(yi ∩
yj) (i 6= j), calculated as the product of πi and πj when
random sampling is from non-overlapping population units.
Thus, the inference base for H-T estimator makes use of
properties of the sample design such as a sampling scheme
that draws samples according to design weights, independence
of sample observations, and sampling distribution properties
including applicability of Student’s t-distribution and the Central
Limit Theorem (Sterba, 2009). Sampling methods relying on a
design-based framework do so largely for its desirable properties
of unbiasedness and asymptotic consistency, often sought in
inventory settings. These methods, however, rely on direct data—
values of y observed directly by sampling from the population
of interest—which can be expensive to obtain. Any need for
estimates on small subsets of the population will likely result in
a need for increased sampling intensity and additional expense
(Fuller, 1999).

2.2. Model-Assisted Estimators
Models can be used within a design-based framework to improve
estimates in what are often called model-assisted estimators
(Särndal et al., 1992; McConville et al., 2017, 2020). Like the H-
T estimator (Equation 1), model-assisted estimators are direct
estimators in that they rely on values of y only from population
DOI. One example is post-stratification which has formed the
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basis of forest inventory estimation strategies in the U.S. for many
decades (Bechtold and Patterson, 2005). Among the simplest
model-assisted estimators are linear combinations of auxiliary
variables x – either univariate or multivariate – available for all
sampled units and having known populationmeans (µx) or totals
(τx). Using the H-T estimator (1), the model-assisted estimator
can be written as in Stahl et al. (2016)

τ̂MA
y =

∑

i∈U

ŷi +
∑

i∈s

yi − ŷi

πi
(2)

where τ̂MA
y is the estimated model-assisted population total for

attribute y, U denotes the (universal) set of all population units,
and predicted values are obtained from a model, i.e., ŷi = m(xi),
oftentimes a linear regression model. The first term on the right-
hand side of Equation (2) requires at least that population totals
τx for all predictors are known, while the second summand is a
H-T estimator of sample deviations frommodel-predicted values,
which should be positive if the model underpredicts for y ∈ s and
negative if the model overpredicts.

Särndal et al. (1992) presented an unbiased estimator for the
variance of Equation (2) when the coefficients of a linear model
m are known constants, an application known as the difference
estimator. The difference estimator is design-based because both
the estimator τ̂MA

y and it’s estimated variance are unbiased over
all possible samples due to the sample design. Thus, although
τ̂MA is a design-based estimator, the phrase “model-assisted” is
used to indicate that a model relationship is involved in the
estimation of τ .

The regression estimator, or generalized regression estimator
(GREG) is based on the same form as Equation (2) in cases
where ŷ is predicted from a regression model. GREG has
been applied in forest inventory solutions that include post-
stratification, ratio estimators, LASSO, ridge, and elastic-net
regressions (Stehman, 2009; McConville et al., 2020). Extensions
using non-linear, semiparametric, and non-parametric predictive
modeling techniques have also been demonstrated in forest
inventory applications (Opsomer et al., 2007; Tipton et al., 2013;
Kangas et al., 2016). Although taking the same form as the
difference estimator, as distinguished by Särndal et al. (1992),
the linear predictor m(x) in GREG consists of a regression
model y = xβ fit to paired sample values of x and y. Some
authors distinguish between the difference estimator and GREG
as either external or internal, respectively, based on the sources
of information from which their coefficients are derived (Kangas
et al., 2016; Stahl et al., 2016). Still within the realm of direct,
model-assisted estimators, the term modified GREG is used to
distinguish models where coefficients are derived using data
outside the population of interest (Rao and Molina, 2015). For
GREG to be approximately design-unbiased, sample inclusion
probabilities for x and y are used in a weighted-least-squares fit
of the model to sample observations. Inclusion probabilities are
also used in an approximate variance formulation for the GREG
estimator detailed by Särndal et al. (1992, ch. 6). Confidence
intervals can be reliably constructed for these estimators, but
are usually used for major domains as their variance can be
large or unstable in domains having small sample sizes (Särndal,

1984; Lehtonen and Veijanen, 2009). We note that design-based
approaches including H-T and model-assisted estimation are
sometimes categorized as SAE (see Figure 2.1 in Rahman and
Harding, 2017; Hill et al., 2021); however, they are often used
where interest lies in only a single population domain, such as
in the methods demonstrated by McConville et al. (2020) for
estimating forest attributes in a single county in Utah, USA.

2.3. Model-Based Estimators
A second pillar of many SAE procedures is the model-based
framework for inference, which we introduce here as being
distinct from a purely design-based framework, includingmodel-
assisted estimators described in Section 2.2. In model-based
estimation, univariate or multivariate statistical models are
formulated to establish the basis for assigning probabilities
to observed data, for characterizing probabilistic relationships
between variables, or for both. Unlike the fixed-quantity
view of population units in design-based estimation, model-
based approaches treat observable units in a population as
realizations or instances of random variables that underlie the
observable population. For this reason these conceptual models
of population variables and their statistical distributions are
sometimes referred to as “superpopulation models” but are just
as often simply called models (Gregoire, 1998; Skinner and
Wakefield, 2017).

Model-based estimators can be useful when random sampling
is impractical, or when assigning inclusion probabilities to
sample observations requires some assumption about the
statistical or spatial distributions of population units (e.g, Radtke
and Bolstad, 2001). Sterba (2009) emphasized the utility of
model-based estimators in surveys where selection probabilities
were unknown, particularly in some forms of non-random
sampling. Perhaps most important in the context of this review,
models serve an important purpose in providing a statistical
link between sample observations of y and auxiliary data x, to
make use of auxiliary information in ways that increase the
precision of parameter estimates. The parameters of interest
in forest inventory likely include population totals or means;
additionally, parameters of the models themselves, such as
regression parameters or ratios linking auxiliary and sample data
may be of interest (Gregoire, 1998). Model-based methodology
includes many tools to assist with identifying best models to
fit data, to estimate parameters and standard errors for model
predictors, and to adopt complex models and analyze more
complex data structures than might be possible from sampling
alone (Rao and Molina, 2015). While the complex and expansive
nature of model-based methodologies leads to a wide array of
SAE techniques that make use of models, they place a somewhat
greater burden on analysts to adequately address model selection,
goodness of fit, or checking of model assumptions—all model
concepts that would not be required in design-based approaches.

3. TERMINOLOGY AND METHODS

In Sections 2.1–2.3, estimation was presented as a means of
obtaining reliable information about population parameters of
interest—either for fixed finite populations or underlying model
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superpopulations—along with rationale for making statistical
inferences under design-based and model-based paradigms. In
moving to settings where the goal involves making reliable
estimates for subsets or domains of interest within broader
populations, the presentation will be expanded to include ideas
and terminology better suited to the purposes and practice
of SAE.

3.1. Direct, Indirect, and Composite
Estimators
Apart from the design- and model-based modes of inference
introduced above, estimators in general can be described as being
either direct, indirect, or composite in nature, depending on
the sources of information they make use of. Domain-direct
estimates use observed values yi only from sample units in a
particular domain, i.e., i ∈ sd. Domain-specific totals can be
estimated directly as

τ̂DIRd =

∑

iǫsd

wiyi (3)

where DIR indicates that τ̂ is a direct estimator, and d denotes
the domain of interest. Substituting wi = 1/πi in Equation 3
shows how the H-T estimator (Equation 1) serves as the domain-
direct estimator when data are restricted to sample units selected
in domain d, i.e., when i ∈ sd. The benefit of direct domain
estimation is that no explicit model assumptions are required
(cf. Sterba, 2009), and sampling weights can be used, allowing
for design-unbiased estimates. A fundamental concern of SAE
is that direct estimation often leads to unacceptably large or
unstable standard errors for domains with small sample sizes
(nd). Additionally, no direct estimates are possible for domains
having no sampled units, i.e., when nd = 0.

Indirect domain estimation seeks to remedy the direct domain
estimator’s shortcoming of large variance when nd is small by
increasing the “effective sample size” using information outside
of the domain of interest together with a statistical model (Rao
and Molina, 2015, pg. 35). The indirect approach is manifest in
what is often called a synthetic estimator, e.g.,

τ̂ SYNd = τ ′

xdβ̂ (4)

which gives the indirect or synthetic estimate (Schaible, 1993) of
the total for the dth small area domain, with domain d auxiliary

total τ xd, and regression coefficients β̂ estimated from (x, y)
data sampled across the entire population to borrow strength
for estimating on d. Benefits of the synthetic estimator are that
it can allow for estimates to be made in non-sampled units,
and likely has a smaller variance than direct domain estimates,
especially where nd is small. However, Equation (4) as given does
not account for between-domain heterogeneity and thus can be
biased for specific domains. Additionally the indirect estimator
does not necessarily trend toward the unknown domain total τd
as nd increases.

Not all synthetic estimators are regression models, but the
example in Equation (4) was chosen to illustrate some additional
details. First, when the coefficients are estimated only from data

sampled in the domain of interest, i.e., when β̂ in Equation (4) is

replaced by β̂d, the estimator is considered to be a model-assisted
(GREG) estimator having design-based properties for inference.
The same is true when the regression model is fit using sample
observations weighted by their design weights using weighted
least squares (Särndal et al., 1992; McConville et al., 2020, Section
6.4). Second, a synthetic estimator’s inference base may depend
on assumptions about its model form being correct, and whether
its parameters estimated from one set of domains are suitable for
making predictions for other domains. As with any estimator,
care should be taken to verify what conditions must be met to
satisfy the inference base for GREG.

The synthetic estimator can be used in concert with the direct
domain estimator to create a composite estimator that balances
the strengths and weaknesses of direct and indirect estimators
(Rao and Molina, 2015):

τ̂COMP
d = γdτ̂

DIR
d + (1− γd)τ̂

SYN
d (5)

The weighted average of the direct and indirect estimators
comprises the composite estimator τ̂COMP

d
, where τ̂DIR

d
is

a direct estimator, e.g., (3), τ̂ SYN
d

is an indirect estimator,
e.g., (4), and γd ∈ [0, 1] is a domain-specific weighting
factor, also known as a shrinkage factor. An optimal solution
for minimum MSE(τ̂COMP

d
) can be formulated as γ̂d =

MSE(τ̂ SYN
d

)/
(
MSE(τ̂ SYN

d
)+MSE(τ̂DIR

d
)
)
(Rao and Molina, 2015,

Section 3.3.1). For the optimal solution, as nd gets large or
when MSE(τ̂DIR

d
) is small, γ̂d tends toward 1, moving the

composite estimator toward τ̂DIR
d

and its favorable properties of

unbiasedness and consistency. Similarly τ̂COMP
d

tends toward the

synthetic estimator when nd is small orMSE(τ̂DIR
d

) is large. Most
SAE approaches favor the composite estimator for its ability to
balance the unbiasedness and precision of direct and indirect
estimators, respectively, while allowing for flexibility in the choice
and formulation of direct estimators and synthetic models.

3.2. Unit Level SAE
Unit-level SAE employs synthetic models that operate at the scale
of observational or sample units in the population, typically field
plots in forest inventory applications. The synthetic model in a
unit-level estimator is used to predict ŷ on all population units in
a domain d, regardless of how many (or whether) sample data
for y were observed in that domain. Predictors from auxiliary
variables x and the model relationship y ∼ x provide the means
of generating predictions for ŷ ∈ d. Here x is either known
for every unit in d or known in aggregate, as in a case where
a domain-specific mean for x, denoted x̄d, is known. In either
case, paired values of (x, y) are observed on sampled units across
the broader population, i.e., the indirect data, and used to fit or
train a synthetic model. Errors in the synthetic model predictions
are partitioned into two components (see Rao and Molina, 2015,
model 4.3.1). A domain-specific error vd is attributed to synthetic
model variance that applies equally to all y ∈ d, and within-
domain residual errors edi—independent of vd—that apply to
individual sample units yi; i ∈ d.

The unit-level composite estimator developed by Battese et al.
(1988, hereafter BHF) is an excellent example from which to
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study unit-level SAE, as the data and models the authors used
to demonstrate the application are integrated into the R “sae”
package (Molina and Marhuenda, 2015). BHF used the nested-
error linear regression model

ydi = x
′

diβ + vd + edi; d = 1, . . . ,D; i = 1, . . . , nd.

to estimate crop areas for corn and soybeans in Iowa, using
USDA Statistical Reporting Service field survey data from 1978
as direct observations of y, and Landsat 2 multispectral scanner
(57 x 79 m) raster imagery as auxiliary information for x.
Unit-level approaches rely on matching individual sample unit
observations to the auxiliary data; thus, the satellite image pixels
in BHF were assigned to corresponding 250-ha (1 sq. mile) field
survey units (BHF called the units “segments”)—about 555 raster
cells per segment. The aggregated Landsat and field survey data
formed (x, y) pairs for 37 sampled segments in a population of
D = 12 counties, with each county treated as a small-area domain
of interest. The BHF synthetic model used a response y = sample
segment area (ha) growing corn, in a linear regressionmodel with
an intercept and two predictors x1 = Landsat pixels classified as
corn and x2 = pixels classified as soybeans, with

∑
d∈D nd = 37

observed segments.
Using their synthetic model, similar to Equation (4), BHF

were able to predict domain means for corn area per segment in
counties as

µ̂d = x̄
′

dβ̂ + v̂d (6)

with x̄d calculated from all segments in county d, using Landsat
pixel class counts of a given crop in each segment (see Table

1, Battese et al., 1988). By estimating β̂ as fixed effects and v̂d
as random effects using mixed linear regression modeling, BHF
obtained the empirical best linear unbiased predictor (EBLUP) of

domain-specific means µ̂EBLUP
d

= x̄
′

dβ̂ + v̂d, a key contribution
of their work because of the favorable properties of the EBLUP.

Goerndt et al. (2013, Equation 5) and Costa et al. (2009,
Equation 13) presented the BHF unit-level nested error EBLUP in
the form of a composite estimator with domain-level, i.e., county-
level estimates obtained from direct and synthetic regression
estimates weighted as

µ̂EBLUP
d =


 σ̂ 2

v

σ̂ 2
v +

σ̂ 2e
nd


 µ̂DIR

d +


1−

σ̂ 2
v

σ̂ 2
v +

σ̂ 2e
nd


 x̄

′

dβ̂ (7)

where µ̂DIR
d

is a sample-direct estimate of the mean y for small

area domain d and β̂ is the vector of fixed effects regression
coefficients obtained by linear mixed modeling with domain-
specific random effects. The term σ 2

v in Equation (7) denotes
the variance among domain random effects vd ∼ N (0, σ 2

v ), and
σ 2
e as the residual variance of population units—the variance

unaccounted for by the EBLUP—within domains, i.e., edi ∼

N (0, σ 2
e ). This assumption assigns a single residual variance to all

domains, with σ 2
e estimated from the full set of sample residuals.

As when using optimal shrinkage weights γ̂d in Equation (5), the
weights in Equation (7) ensure that as the domain-specific direct

estimator variance gets small, such as when nd is large, the EBLUP
tends toward µ̂DIR

d
.

Unit-level paired (x, y) data typically provide an information-
rich means of linking indirect data from broad and extensive
populations to specific domains of interest. Further, when
y is observed by non-random sampling, the model-based
properties of the composite estimator support approximate
and asymptotic inference bases where direct estimation alone
would not. Efforts should be made to verify the veracity
of the underlying statistical model and stochastic processes,
especially when data collection employs stratification, clustering,
or disproportionate sampling among some elements of the
population (Sterba, 2009). In applications involving large data
sets the computational requirements of unit-level analyses can
be demanding, especially when objectives include the validation
of variance estimates approximated by Taylor series linearization
or when using resampling procedures to estimate variance
components (Prasad and Rao, 1990; González-Manteiga and
Morales, 2008). Computationally demanding synthetic models
can also pose challenges for SAE, but software advances have
made steady gains in providing tools to address such challenges
(McRoberts et al., 2007). As with any model-based inference
approach, customary steps involving model selection, goodness-
of-fit, and checking other assumptions are important in unit-
level SAE. In cases where influential points, heteroscedastic error
variances, or non-independence of residuals present problems,
developments have been made to help overcome limitations of
the BHF approach (Babcock et al., 2015; Breidenbach et al., 2018).

3.3. Area Level SAE
Unlike unit-level approaches, area-level SAE employs synthetic
models that operate at the scale of subpopulation domains,
rather than individual sample or observational units. As a
consequence, auxiliary data do not need to be paired one-to-
one with individual sample observations. Instead, domain-direct
estimates (e.g., τ̂DIR

d
or µ̂DIR

d
) are paired with domain-specific

observations, such as domain means or totals of x ∈ d, which
we denote as xd. The paired domain data (ŷDIR

d
, xd) are then used

to develop regression models or train other types of synthetic
models for use in SAE. Rao and Molina (2015, model 4.2.5)
presented a regression-based area-level model

ŷDIRd = x
′

dβ + bdψd + ǫd (8)

where ψd are domain-specific model errors and ǫd are errors due
to sampling on the domain-direct estimates that appear on the
left-hand side in Equation (8). In the basic area-level model, Rao
and Molina (2015) explain that bd are domain specific positive
constants set to bd = 1 in the model presented by Fay and
Herriot (1979), which, for direct estimates of domain totals can
be expressed as

τ̂FHd = x
′

dβ + ψd + ǫd (9)

Fay-Herriot (F-H) models (Fay and Herriot, 1979) like the one
shown in Equation (9) are often synonymous with area-level
SAE, as they have seen considerable use in area-level applications
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since their introduction. An EBLUP derived from the F-Hmodel,
expressed as a composite estimator having a form similar to
Equation (5) shows the roles of direct and synthetic estimators

τ̂FHd =
(
γ̂d

)
τ̂DIRd +

(
1− γ̂d

)
xd

′β̂ (10)

with weights γ̂d = σ̂ 2
ψd
/(σ̂ 2

ψd
+ σ 2

ǫd
) composed as the model

variance relative to the total variance. A difference in the
shrinkage weights’ formulations for Equations (7) and (10) is
that σ 2

ǫd
in Equation (10) is assumed to be known, but typically

specified as the variance estimated from sample observations
y ∈ d. Wang and Fuller (2003) developed a modified area-level
estimator that accounts for the empirical estimation of domain-
direct variances, which has been demonstrated in forest inventory
applications (Magnussen et al., 2017). Similar to the unit-level

model, β̂ in Equation (10) is a vector of fixed-effects coefficients
from a linear mixed model having domain-specific random
effects. As in Equation (7) the F-H EBLUP tends toward the
direct estimator when the direct variance is low, and toward the
synthetic estimator when the direct variance is high. Because the
synthetic estimator in the F-H model operates on subpopulation
domains, the same aggregated measures xd from the auxiliary
data that were used in estimating the regression coefficients are
also used in predicting τ̂FH

d
in Equation (10). In contrast, the unit-

level EBLUP uses an aggregated measure such as x̄d in Equation
(7), despite the model coefficients having been estimated using
observed x (and y) values from individual sample units.

In applications framed in a geographic context, such as
forest inventories, where field plot observations are often paired
to auxiliary data from remote sensing, area level modeling
obviates the need for highly accurate plot coordinates, and
can be used when there is a degree of misalignment between
plots and auxiliary data (Goerndt et al., 2011). This concern is
highly relevant when the protection of confidential information
prevents the release of exact coordinates of sampled locations to
unauthorized personnel. Instead, only direct linkage to a specific
domain is needed for each plot. This also facilitates using sample
units that possess indistinct sampling boundaries, such as where
linear transects or variable-radius plots are used in field sampling
(Ver Planck et al., 2018). This method also tends to require
less processing time which lends itself to analysis involving very
large datasets.

3.4. Other SAE Methods
In addition to the aforementioned model forms, there are other
methods which serve as alterations or variations of the above
model types and as such are not mutually exclusive from them.
Such methods include Bayes methods, and nearest neighbor
models which are worthy of particular mention due to their
use in forestry SAE (McRoberts, 2012; Babcock et al., 2018;
Ver Planck et al., 2018). Bayesian methods, both empirical
Bayes (EB) and hierarchical Bayes (HB) offer some advantages
over their frequentest counterparts such as being able to model
different target variable types such as binary or count data (He
and Sun, 2000). HB also gives posterior distributions of the small
area parameters, and can therefore avoid relying on unrealistic
asymptotic assumptions (Pfeffermann, 2013). Bayesian methods

offer flexibility in specifying spatial structures such as spatially
correlated random effects (Wang et al., 2018).

Nearest neighbor techniques offer a similar set of benefits
for SAE, for example, where estimators for categorical, binary,
or count variables are involved. They are non-parametric
in that no distributional assumptions regarding response or
predictor variables are necessary, which has proven useful when
multivariate auxiliary information is used to construct synthetic
models. Nearest neighbor models can also accommodate
correlated sample and auxiliary data that may arise in spatial or
temporal domains (McRoberts et al., 2007; McRoberts, 2012).

4. APPLICATIONS IN FOREST INVENTORY

We now turn to selected examples related to SAE in forest
inventory from published research (Table 1). Note that in
Table 1, we exclude a large body of literature employing post-
stratification, a widely-usedmodel-assisted estimation technique.
Instead we aim to focus on estimators less-commonly used in
existing forest inventory production processes. Post-stratification
notwithstanding, model-assisted estimators including GREG
were among the most widely-used and earliest-adopted methods
for increasing estimator precision using models to link auxiliary
information from remote-sensing with field sample data. As such,
we elected to include a number of model-assisted applications
in our example references, even though some of the selected
examples do not involve “small area” domains as the term is often
used in SAE (Table 1).

Among the reasons authors have given for adopting model-
assisted estimators was the need to ensure design-based inference
in large, multi-resource sample designs (Reich and Aguirre-
Bravo, 2009; Næsset et al., 2011). Others cited the need for
precise estimation in small area domains nested within broader
population surveys as a motivating factor (Goerndt et al.,
2011; McRoberts, 2012; Magnussen et al., 2014). A few noted
that consistency and additivity of estimates from small areas
nested within larger domains were motivating concerns (Reich
and Aguirre-Bravo, 2009; Nagle et al., 2019). Others noted
the need for sample survey organizations to conduct generic
inference, i.e., tomake compatible estimates of all forest attributes
simultaneously by using the same model to define survey weights
(Opsomer et al., 2007; Johnson et al., 2008; McConville et al.,
2020). Nearly all research referenced in Table 1 reported the
potential for increased efficiency in estimating forest inventory
attributes as a reason for pursuing the work, with the high
cost of increasing field sample sizes frequently noted as an
operational constraint.

Lidar and digital aerial photogrammetry (DAP) were major
data sources used as auxiliary information, with some authors
using lidar or DAP point cloud metrics, e.g., height percentiles or
pulse return densities aggregated to unit or area levels, and others
using canopy height models (CHM) processed from point cloud
data (Steinmann et al., 2013; Babcock et al., 2015). Field plots in
forest inventories were the primary source of directly-sampled
observations, with more than half of the selected studies using
NFI or other land-management agency field sample observations,
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TABLE 1 | Table of selected studies using SAE-related methods in forest inventory with methods and data used.

References Estimation method(s) Direct data Auxiliary data

Affleck and Gregoire (2015) GREG Tree crowns Tree Branch Attributes

Anderson and Breidenbach (2007) GREG FI lidar

Babcock et al. (2015) HB FI lidar

Babcock et al. (2018) HB FI lidar, Landsat

Breidenbach and Astrup (2012) GREG, U-EBLUP NFI DAP

Breidenbach et al. (2018) U-EBLUP, A-EBLUP NFI DAP

Coulston et al. (2021) A-EBLUP NFI Landsat, TPO

Frank et al. (2020) U-EBLUP FI lidar

Goerndt et al. (2011) GREG, A-EBLUP, NN FI lidar

Goerndt et al. (2013) GREG, U-EBLUP, NN NFI Landsat, NLCD

Goerndt et al. (2019) A-EBLUP, NN NFI Landsat, NLCD, MODIS, EDNA

Green et al. (2020) A-EBLUP, U-EBLUP FI lidar, management records

Magnussen et al. (2014) GREG, U-EBLUP NFI lidar, DAP

Magnussen et al. (2017) A-EBLUP, HB FI lidar, DAP

Mauro et al. (2017) A-EBLUP, U-EBLUP FI lidar

Mauro et al. (2019) U-EBLUP FI lidar, SRM

McConville et al. (2020) GREG, Other NFI Landsat

McRoberts (2012) NN NFI Landsat

McRoberts et al. (2007) NN NFI Landsat

McRoberts et al. (2013) GREG, A-EBLUP NFI lidar

Næsset et al. (2011) GREG FI lidar, InSAR

Næsset et al. (2013) GREG NFI lidar

Nagle et al. (2019) GREG NFI NLCD

Pascual et al. (2018) U-EBLUP FI lidar

Reich and Aguirre-Bravo (2009) GREG FI Landsat

Steinmann et al. (2013) GREG NFI lidar, DAP

Ver Planck et al. (2018) A-EBLUP, HB FI lidar

Methods included are generalized regression estimators (GREG), nearest neighbor (NN), unit-level empirical best linear unbiased predictor (U-EBLUP), area-level best linear unbiased

predictor (A-EBLUP), and hierarchical Bayes (HB). Direct data sources include national forest inventories (NFI), non-national based forest inventories (FI), plus directly sampled tree data.

Auxiliary data used include tree branch data, light detection and ranging (lidar), digital aerial photogrammetry (DAP), Landsat, timber products outputs (TPO) surveys, national land cover

database (NLCD), management records, solar radiation models (SRM), elevation derivatives for national applications (EDNA), moderate resolution imaging spectroradiometer (MODIS),

and interferometric synthetic aperture radar (InSAR).

and most others using plots installed for management or
research purposes, such as on state, university, private, or public
experimental and working forests (Anderson and Breidenbach,
2007; Mauro et al., 2017; Green et al., 2020).

Several studies aimed to examine and augment existing
estimation frameworks in forest inventory settings to address
potential violations in underlying assumptions. Examples include
accounting for heteroscedasticity of variance in synthetic
model residuals and spatial or temporal autocorrelation among
measurements on observational units or areas of interest
(Babcock et al., 2018; Breidenbach et al., 2018; Ver Planck
et al., 2018; Mauro et al., 2019). Estimating the change of
forest attributes over time with SAE methods was demonstrated
successfully by Mauro et al. (2019) and by Coulston et al. (2021),
both of which used repeatedmeasurements from forest field plots
in their work.

Multiple studies applying one or both unit-level and area-level
EBLUP-based SAE appear in Table 1. The choice of adopting

unit- or area-level SAE in forest inventory applications can
depend on limitations of sample or auxiliary data sets, for
instance, where georeferencing inaccuracies introduce significant
errors in pairing field observations to remotely-sensed or other
geospatial data sets, e.g., maps (Næsset et al., 2011; Green et al.,
2020). Similar challenges in pairing field data to remote-sensing
can occur where plot designs and raster layers are incompatible,
such as when variable radius field plots (i.e., angle gauge
sampling) are used, or when field plot sizes are small compared
to the pixel size in available auxiliary data sources (Goerndt
et al., 2011; Ver Planck et al., 2018; Temesgen et al., 2021).
Although area-level estimators are flexible to accommodate

situations where precise georeferencing is impractical, a trade-
off may arise due to the loss of information from aggregating
unit-level observations to domain- or area-level scales; further,

aggregating sample observations also reduces effective numbers
of observations available for synthetic model development
(Magnussen et al., 2017).
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When georeferencing enables pairing of auxiliary and sample
data, sampled units can all serve as (x, y) observations for fitting
or training synthetic models. The models can then be used
to make predictions on raster cells or other spatial units that
correspond to unobserved population units (Babcock et al., 2018;
Frank et al., 2020). It follows that unit-level SAE estimators
can be used to map predictions or estimates at finer spatial
resolutions than area-level methods, the latter of which allow
for mapping SAE predictions only at domain levels. Another
potential advantage of the unit-level approach is the ability
to define arbitrary spatial domains subsequent to sampling
without necessarily losing substantial power of inference (Pascual
et al., 2018). Gains in efficiency between unit-level and area-
level SAE methods have been compared in multiple studies,
generally confirming the potential for greater gains from unit-
level approaches (Mauro et al., 2017; Breidenbach et al., 2018).

4.1. Gains Over Direct Estimation
4.1.1. Model-Assisted Estimation

Model-assisted estimators have proven to reduce estimator errors
considerably, e.g., when measured by the relative efficiency
of a model-assisted estimator compared to its simplest direct
counterpart—often characterized as simple random sampling—
cf. Equations (2) and (3)

RE =

Var(τ̂MA
y )

Var(τ̂DIRy )
(11)

McRoberts et al. (2013) demonstrated substantial variance
reduction 100%(1 − RE) = 84% using a non-linear regression-
based model-assisted estimator of growing stock volume per unit
area in a 1,300 km2 study area in southeastern Norway. The
gains corresponded to over sixfold increase in apparent sample
size, calculated as RE−1. Aerial lidar (0.7 pulses m-2) served as
the auxiliary data, with direct observations from n = 145 NFI-
type (200 m2) field plots over the study area. They noted similar
variance reduction (82%) using the same method to estimate
growing stock volume over a one-half partition of the study area
represented by n = 69 field plots, thus demonstrating how sample
data from a larger area can be used to increase the precision of
estimates in a smaller area (McRoberts et al., 2013).

Model-assisted estimation has been demonstrated to
increasing precision in multiple population sub-domains
including Breidenbach and Astrup (2012), who tested GREG
as a model-assisted estimator in a similar sized study area in
Norway divided into 14 municipalities, each having from 1
to 35 NFI sample plots of a total n = 145. They noted gains
in precision were smaller and more variable than McRoberts
et al. (2013), with RE ranging from 0.35 to 0.87 in eight
municipalities having nd ≥ 6. They concluded that sample
sizes nd < 6 in the other six municipalities gave unstable
estimates, a finding similar to Næsset et al. (2011). Their data
revealed that despite GREG’s limitation in areas with small
nd, its estimates deviated from sample-direct design-based
estimates by less than half as much as synthetic model estimates
alone, a result consistent with the design-unbiased property of
GREG in the model-assisted framework. Næsset et al. (2013)

observed consistent improvement in precision of estimates
of aboveground forest biomass using GREG with aerial lidar
auxiliary data in model-assisted two-stage sampling. Their
gains were greatest (RE = 0.125) for all cover classes combined
(n = 632), and only slightly more modest 0.09 ≤ RE ≤ 0.20
for individual age and productivity classes, all of which had
class-specific sample sizes nc ≥ 46.

Reduced RMSE of synthetic model estimates when compared
to direct estimator variance has been demonstrated in a number
of applications involving the pairing of ALS and NFI-type
field sample data (Næsset et al., 2011; Järnstedt et al., 2012;
Nord-Larsen and Schumacher, 2012; Kotivuori et al., 2016;
Nilsson et al., 2017; Novo-Fernandez et al., 2019). A variety
of synthetic modeling approaches have been tested including
parametric and non-parametric regression modeling, Random
Forests and other ensemble predictive models, and nearest-
neighbor imputation, often with a goal of identifying suitable
auxiliary data sources for estimating forest biophysical attributes
(Latifi et al., 2010; Popescu et al., 2011; Bright et al., 2012;
Rahlf et al., 2014). A common theme in these studies is the
direct examination of synthetic model prediction errors (e.g.,
using cross validation) without formulating the models in a
design-based or composite modeling framework to mitigate
potential synthetic estimator bias (cf. McRoberts et al., 2013;
Irulappa-Pillai-Vijayakumar et al., 2019; McConville et al., 2020).
In model-assisted applications the usual goal is to increase
the precision of population-level estimates, and less often to
produce estimates for domains that divide a larger population
into small areas where direct estimator instability can be a
concern.Where investigated, model-assisted estimators were able
to reduce small area uncertainties considerably, within limits
of direct-data sampling intensity and the strength of model
relationships involving indirect and auxiliary data (Breidenbach
and Astrup, 2012).

4.1.2. Unit-Level SAE

Research comparing unit-level SAE to model-assisted estimators
has shown that gains in precision are generally greater for
unit-level EBLUPS than model-assisted estimates (e.g., GREG)
primarily when direct-domain sample sizes are small. In directly
comparing unit-level EBLUPs tomodel-assisted GREG estimates,
Breidenbach and Astrup (2012) noted an average RE = 0.86,
meaning unit-level SAE MSEs were lower than direct estimate
variances by an additional 14%, on average, compared to
GREG. Not all EBLUP MSEs were smaller than those computed
for GREG. Comparisons showed greatest gains in five of six
municipalities having 6 ≤ nd ≤ 17, but smaller—even
negative—gains (RE = 0.93 and 1.15) were noted in two
municipalities having nd ≥ 29. Such findings indicate that
unit-level EBLUPS may not have as clear of an advantage over
GREG in reducing estimator variance when domain sample sizes
are relatively large; nonetheless, even when nd was relatively
large, EBLUP performance was not much worse than model-
assisted regression estimates (Breidenbach and Astrup, 2012).
EBLUPS showed considerable stability across the range from
1 ≤ nd ≤ 35 compared to GREG, with unit-level SAE relative
errors ranging from just [7.0, 12.4] % compared to a range of
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[0.6, 25.4] % for GREG, even with three municipalities having
nd = 1 excluded for the GREG results since their errors could not
be calculated (Breidenbach and Astrup, 2012). Magnussen et al.
(2014) reported virtually identical gains for model-assisted and
unit-level EBLUP estimates (both RE = 0.49) when compared
to direct volume per hectare estimates for forest districts in
Switzerland. The near identical results may have been related
to comparatively large average sample sizes n̄d = 79 across the
D = 108 Swiss forest districts.

Of the studies listed in Table 1 that compared unit-
level EBLUPs to domain-direct estimates, the largest variance
reductions noted (RE = 0.03) were in a study of forest volume
in Burgos Province, Spain, made up of D = 54 stands in an
area covering about 13.65 km2 (Pascual et al., 2018). The same
authors reported more modest gains (RE = 0.50) in a 3 km2

management area having D = 6 stands near Cercedilla, Spain.
The authors attributed the greater gains at Burgos as being due to
the lower sampling intensity there (about 0.5 %) compared to a 4
% sampling intensity at the Cercedilla site (Pascual et al., 2018).
Large gains were reported for unit-level volume EBLUPs (RE =

0.09) tested by Mauro et al. (2017) in an area roughly 8 km2. A
high degree of positive skewness was evident in the distribution
of nd across domains, with roughly 30% of map unit domains
having nd ≤ 2 despite n̄d = 10.3 acrossD = 64 map units having
any sample observations (Mauro et al., 2017). In estimating
volume change in D = 24 stands experimentally manipulated
for three levels of forest structural diversity, Mauro et al. (2019)
reported unit-level gains (RE = 0.71) for 7-year volume change
estimates. The sample design relied on 1 remeasured plot per 8
ha on a systematic grid, for a sparse but narrow range of domain-
direct sample sizes, with 3 ≤ nd ≤ 10 and n̄d = 6.3 (Mauro
et al., 2019). Breidenbach et al. (2018) reported greater efficiencies
RE = 0.43 and RE = 0.28 compared to direct estimate variances,
with the latter result including a formulation that accounted for
heteroskedasticity of variance in synthetic model residuals.

By artificially reducing sample sizes from the available n
= 680 NFI plots across D = 12 county-sized domains for
estimating Oregon Coast Range forest volumes, Goerndt et al.
(2013) demonstrated diminishing efficiency gains with increasing
nd in unit-level EBLUPS from RE = 0.41 (n = 136), to
RE = 0.57 (n = 204), to RE = 0.71 (n = 272). They also
found that alternative unit-level composite estimators calculated
with smoothed variances performed well in terms of increased
precision and low apparent biases in unit-level SAE (Costa
et al., 2003; Goerndt et al., 2013). The alternative estimators
employed multiple linear regression, as well as nearest neighbor
and gradient-nearest-neighbor imputation in synthetic models to
achieve balances between bias and precision of SAE (Ohmann
and Gregory, 2002).

4.1.3. Area-Level SAE

A number of studies have shown area-level SAE precision
gains for timber volume or biomass compared to sample-direct
estimates. Breidenbach et al. (2018), for example, reported a
reduction in overall standard error from 32.7 m3ha−1 for direct
volume estimates compared to F-H area-level RMSE of 23.1
m3ha−1 (RE = 0.50). A nearly identical gain in efficiency (RE =

0.50) was reported by Goerndt et al. (2011) for volume estimates
in forest stands treated as small area domains with intentionally-
reduced sample sizes between 2 ≤ nd ≤ 4. Relative gains
tended to be less when the simulated small nd were increased
by factors of two and three, with no gains for larger sample
size increases. Despite finding modest gains when nd was large,
area-level EBLUPS were demonstrably superior—in terms of RE
and lack of apparent biases—to two synthetic estimators and
two composite James-Stein type estimators tested (James and
Stein, 1961; Goerndt et al., 2011). In testing area-level SAE with
counties as small-area domains, a composite estimator similar
to F-H showed 0.43 ≤ RE ≤ 0.91 over a 20-state region
of the northeastern U.S. (Goerndt et al., 2019). In the same
study a composite estimator based on a non-parametric nearest-
neighbor (NN) synthetic model showed slightly less gain in
efficiency than the F-H type approach. Despite this, Goerndt
et al. (2019) indicated the NN approach may have lower model
bias and they cautioned against potential biases in model-based
estimators, pointing out the need for thorough checking of model
assumptions to ensure validity of model-based inferences.

The pattern of decreasing gains in efficiency with increasing
nd was also noted by Mauro et al. (2017), who reported an
average RE = 0.48 over D = 84 management areas (domains),
while no gain (RE = 1.13) was noted in 14 of the domains
having nd ≥ 25 sample plots (cf. Goerndt et al., 2011, 2019).
Green et al. (2020) noted average RE = 0.79 in F-H estimates of
timber volume across D = 40 stands, with little or no efficiency
gains in stands where direct estimates were already quite precise
(relative standard errors < 10%). Greater gains (RE ≈ 0.35)
were noted in stands having direct relative standard errors >
25%. Findings such as these indicate that where domain-direct
estimates are already quite precise, as in cases where nd is large or
variation within domains is inherently low, F-H type estimators
may exhibit a limited ability to further increase precision over
domain-direct estimates.

Magnussen et al. (2017) reported RE ranging from 0.44 to 0.77
in four study areas in Spain, Norway, Switzerland, and Germany,
using a modification of F-H that treats domain-specific variances
as estimates rather than known constants (Wang and Fuller,
2003). In the same study they found greater gains 0.28 ≤ RE ≤

0.34 by including a non-stationary spatial correlation process in
an area-level composite estimator which accounted for the spatial
covariance structure in model residuals (Chandra et al., 2012,
2015). In a third approach Magnussen et al. (2017) used the HB
approach of Datta and Mandal (2015) to obtain efficiency gains
intermediate (0.27 ≤ RE ≤ 0.81) compared to their baseline—
specifying empirically estimated variances—and non-stationary
spatial F-H approaches. The Bayesian approach demonstrated
several advantages related to estimated posterior distributions
for specific domains, especially when the random-effect variance
was largely attributable to a small number of domains from the
larger population (Magnussen et al., 2017). Coulston et al. (2021)
evaluated the performance of area-level F-H models including
a simultaneous autoregressive (SAR) model of residual spatial
correlation among domains in estimating forest removals, noting
the spatial model improved efficiency of estimates at scales of
individual counties, but not at the scale of larger survey regions
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encompassing groups of 12-20 counties each in the southeastearn
United States. Ver Planck et al. (2018) compared F-H gains
with no accounting for spatial autocorrelation (RE = 0.23)
to a conditionally-autoregressive (CAR) F-H model that further
reduced estimator variance (RE = 0.19), noting that the CAR
model performance was generally greater in domains (stands)
sharing boundaries with high numbers (> 10) of neighboring
stands. The non-stationary spatial process (Chandra et al., 2012)
may improve upon simpler CAR and SAR modeling approaches,
as it employs a distance-weighted measure of correlation among
domains rather than a simple binary model based on domain
adjacency. Spatial models provide a promising tool for future
applications of area-level SAE that account for non-trivial spatial
correlations among small area domains likely to be realistic
in many forest inventory applications (Finley et al., 2011;
Magnussen et al., 2017).

4.1.4. Unit Level vs. Area Level SAE

Although area-level EBLUPS have shown clear gains in efficiency
over direct estimates in forest inventory SAE applications,
still greater gains have been demonstrated using unit-level
approaches when suitable data are available and model
assumptions are met (Breidenbach et al., 2016, 2018). In
comparing both approaches to direct estimates of forest volume,
Mauro et al. (2017) observed halving of variance (RE = 0.48)
and ten-fold reduction (RE = 0.09) for area-level and unit-
level estimates, respectively. A notable feature in the study was
the large proportion—slightly more than half—of the 84 stand
groupings defined as small area domains containing nd ≤

6 field plots, linking greatest gains in efficiency to domains
having relatively small nd. Their unit-level results achieved
variance reductions among the largest of any reported in forest
inventory literature (Mauro et al., 2017; Pascual et al., 2018). By
comparison, Breidenbach et al. (2018) reported RE = 0.50 (see
Section 4.1.3) for area-level and RE = 0.28 (see Section 4.1.2)
for unit-level estimators applied to a common data set. Their
domain-direct sample sizes were also small [4 ≤ nd ≤ 7], so
the source of differential gains between the two studies’ unit-
level estimators may be related to other factors including the
strength of the synthetic model relationships, which we weren’t
able to compare between the two studies (Mauro et al., 2017;
Breidenbach et al., 2018). A distinct barrier to achieving large
gains in efficiency with unit-level SAE, especially compared to
area-level approaches, is the ability to accurately georeference
field plots and spatial auxiliary data sources. Green et al. (2020)
noted this as a possible reason for the lack of gains in their
unit-level models compared to area-level SAE.

4.2. Variance Estimation
Variances for model coefficients and estimates of finite-
population parameters for design-based direct or model-assisted
estimates (Sections 2.1 and 2.2) are in most cases calculable using
commercially available statistical software packages (Molina and
Marhuenda, 2015; Breidenbach, 2018; McConville et al., 2018;
Hill et al., 2021). Other variance estimators are documented in
research literature in sufficient detail to facilitate calculation with
scientific programming software (McRoberts, 2012; Mandallaz

et al., 2013; Babcock et al., 2015; Magnussen et al., 2017; Mauro
et al., 2017; Frank et al., 2020). In design-based model-assisted
estimators, variance calculations exist in closed form for some
estimators such as GREG, or as approximations for others
including ratio estimators (Särndal et al., 1992; Breidenbach
and Astrup, 2012; Mandallaz, 2013; Magnussen et al., 2018).
Because variance calculations often require accounting for non-
independence of observations or heteroskedasticity of residuals,
or where algorithmic synthetic models such as non-parametric or
nearest-neighbor modeling are employed, iterative methods can
be used to estimate approximate variances, even where closed-
form solutions exist when model assumptions allow for them
(McRoberts et al., 2007). Numerical approaches, such as leave-
one-out cross validation or parametric bootstrap estimation have
proven useful in variance estimation, although caremust be taken
to ensure that bootstrap data-generating mechanisms are aligned
with error correlation structures and distributional assumptions.

Standard errors of domain-direct estimates are required
inputs for FH and other area-based SAE, which can pose a
problem when nd is insufficient to give stable variance estimates
(Särndal, 1984; Breidenbach and Astrup, 2012). A solution for
such applications is the use of generalized variance estimators
(Valliant, 1987; Wolter, 2007; Goerndt et al., 2013; Coulston
et al., 2021). Generalized variance functions tend to give variance
estimates that are highly dependent on nd, e.g., Coulston et al.
(2021), which may differ from direct variance estimates in
domains having sufficient sampling intensity to produce stable
standard errors.

Closed form solutions typically do not exist for variance
estimation for SAE composite estimators, e.g., when domain-
level estimates are obtained as EBLUPs (Fay and Herriot, 1979;
Battese et al., 1988; Rao and Molina, 2015). Variance of EBLUPs
is assessed by mean squared errors (MSE) rather than standard
errors to distinguish EBLUPS from design-unbiased estimators.
The MSEs are routinely calculated in SAE software as additive
combinations of terms representing uncertainties associated with
(a) prediction of random effects, (b) estimation of regression
model coefficients, and (c) estimation of the random-effect
variance, i.e., the variance among small-area domains (Prasad
and Rao, 1990). Alternatives involving parametric bootstrap
variance estimation are employed in some applications, as are
variances determined from posterior distributions in Bayesian
analyses (Prasad and Rao, 1990; Babcock et al., 2015; Molina and
Marhuenda, 2015).

4.3. Emerging Applications
Bayesian methods have been applied to SAE across disciplines
for several decades (Morris, 1983; Ghosh and Rao, 1994), with
recent applications in forest inventory settings as well (e.g.,
Finley et al., 2011). Babcock et al. (2018) used HB to estimate
aboveground biomass with coupled auxiliary data from Landsat
and lidar, to resolve incomplete coverage of remote sensing data.
Of the HB models they tested, one incorporating spatial random
effects with lidar as auxiliary data led to 0.33 ≤ RE ≤ 0.51
across their 4 areas of interest. By incorporating coregionalization
and adding tree cover derived from Landsat to complement
incomplete lidar coverage, the range of RE decreased to 0.16 ≤
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RE ≤ 0.35. Ver Planck et al. (2018) also saw success in
formulating the F-H approach in a HB framework to increase
precision of aboveground biomass SAE over direct estimates
(RE = 0.23). Further improvement was demonstrated by adding
conditional autoregressive random effects to account for spatial
correlation (RE = 0.80), with the autoregressive model giving
greater gains in precision in domains that shared boundaries with
larger numbers of neighbors (Ver Planck et al., 2018). Adding a
spatial random effect did not always lead to greater predictive
performance, however, as shown by Babcock et al. (2015), who
attributed modest to negative gains (0.83 ≤ RE ≤ 1.27) to
possible overfitting.

Estimating population parameters for multiple attributes of
interest is an important concern in forest inventory applications
ranging from local-scale stand assessments to regional and
national multi-resource inventories (Babcock et al., 2013;
Lochhead et al., 2018). Multivariate F-H and spatial F-H
approaches have been developed and incorporated into statistical
software, but their application to forest inventory has been
limited (Molina and Marhuenda, 2015; Benavent and Morales,
2016). While multiple domain-specific estimates can be obtained
using SAE in separate modeling procedures for each attribute,
doing so fails to maintain logical consistencies among estimates,
and overlooks potential gains in efficiency that may otherwise
be realized by accounting for cross-attribute correlations (Mauro
et al., 2017; Coulston et al., 2021). Generic inference in
model-assisted design-based estimation affords consistency in
multivariate estimates, but may come at a cost of increased
standard errors in attributes uncorrelated or weakly correlated
with selected auxiliary variables (McConville et al., 2020).
Nearest-neighbor approaches have been used successfully in
multivariate forest inventory settings, including multivariate
model-assisted estimation to improve estimator efficiencies while
preserving consistency among estimates (Chirici et al., 2016;
McRoberts et al., 2017). Hierarchical Bayesian multivariate
methods for SAE have been demonstrated for both unit-level
and area-level settings suitable for forest inventory applications
(Datta et al., 1998; Arima et al., 2017). Recent advances have also
increased computational efficiencies for Bayesian analyses that
can be applied to multivariate SAE involving very large data sets,
expanding opportunities for further advances in this area (Finley
et al., 2015, 2017; Datta et al., 2016; Babcock et al., 2018).

Another development in SAE applications for forest inventory
aims at modeling sample and observational units at a level
approaching that of individual trees rather than forest plots or
larger subpopulation domains (Næsset, 2002; Mauro et al., 2016).
Frank et al. (2020) tested a semi-individual tree (s-ITC) model
approach—analogous to a unit-level approach—by segmenting
tree crowns in lidar point clouds and delineating s-ITC units
around them. Compared to a unit-level approach the s-ITC
model showed a RE = 1.04 for volume, RE = 0.71 for basal
area, RE = 1.38 for stem density, and RE = 0.48 for quadratic
mean diameter. Despite attaining similar precision as plot-based
unit-level EBLUPs for volume estimates at the population level,
the s-ITC approach showed potential for its increased spatial
resolution and ability to estimate population parameters more
closely related to individual trees, such as mean diameter (Frank
et al., 2020).

Applications of enhanced estimators such as model-assisted
and SAE are not limited to cases where estimates per unit of
land area are needed. Affleck and Gregoire (2015) compared
estimation of crown biomass using randomized branch sampling
to provide sample data for GREG. In their examination
of a univariate estimator, model-assisted estimation led to
improvement in the precision of estimates across a range of
simulated sample sizes in randomized branch sampling (n = 5,
10, 20 and RE = 0.54, 0.71, and 0.97, respectively), although
the authors cautioned against the possible trade-off between
precision and design-unbiasedness (Affleck and Gregoire, 2015).
Gains in precision were not limited to one sampling scheme.
Increased precision was also seen for n = 5 based on other branch
sampling methods: probability proportional to size sampling
(RE = 0.94), simple random sampling (RE = 0.28), and stratified
random sampling (RE = 0.28). The potential gains in biomass
estimation at the tree level demonstrates how SAE may prove
a useful tool in other contexts than estimating forest inventory
attributes for small geographic areas.

5. CONCLUSIONS

Small area estimation (SAE) is a growing area of research in
forest inventory owing largely to its ability to support model-
based inference in small area domains lacking sufficient sample
data to provide stable estimates using purely design-based
estimation. A variety of modeling techniques can be employed
in the SAE framework with linear mixed modeling among
the most widely used to-date. A unifying requirement is the
use of auxiliary data that allows estimators to both borrow
strength from indirect sample data that co-vary with auxiliary
observations and to provide auxiliary population parameters as
predictors in synthetic models for composite estimation. The
availability of large data sets like those collected in NFIs, along
with increasingly available auxiliary data such as DAP, ALS,
satellite remote-sensing, or other digital map products has made
SAE of particular interest to forest inventory specialists. Increases
in precision from SAE can provide efficient alternatives to sample
intensification when insufficient sample data are available tomeet
needed tolerances for estimator error.

The examples summarized here demonstrate potential
benefits of SAE, along with some limitations researchers have
encountered in applying evolving model-assisted design-based
estimators or composite estimators that lie within unit-level or
area-level SAE frameworks. As with anymodel-based approaches
considerable attention should be paid to model assumptions
including distributional assumptions for residuals, correct model
form (e.g., linear vs. non-linear), careful selection of model
predictors, and accounting for correlation structures among
synthetic model residuals. Challenges may arise from a lack of
correspondence between sample and auxiliary data such as when
precise pairing of (x, y) observations is impractical, or when
auxiliary data are unavailable for specific areas or time periods
of interest. Consideration of alternative approaches including
design-based and model-assisted estimation, area-level, or unit-
level (model-based) SAE is needed to ensure suitability of
methods given inferential needs. Many topics for further research
have been identified in the literature reviewed here, pointing
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out opportunities for future improvement in forest inventory
applications of SAE. Although no tool can address needs in all
circumstances, methods like those reviewed here provide flexible,
efficient alternatives to reduce the need for sample intensification
in many cases and to meet tolerance specifications in others at
reduced cost by increasing estimator efficiency.
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The United States (US) Department of Agriculture Forest Service Forest Inventory and

Analysis (FIA) program operates the national forest inventory of the US. Traditionally,

the FIA program has relied on sample-based approaches—permanent plot networks

and associated design-based estimators—to estimate forest variables across large

geographic areas and long periods of time. These approaches generally offer unbiased

inference on large domains but fail to provide reliable estimates for small domains

due to low sample sizes. Rising demand for small domain estimates will thus require

the FIA program to adopt non-traditional estimation approaches that are capable of

delivering defensible estimates of forest variables at increased spatial and temporal

resolution, without the expense of collecting additional field data. In light of this challenge,

the development of small area estimation (SAE) methods—estimation techniques that

support inference on small domains—for FIA data has become an active and highly

productive area of research. Yet, SAEmethods remain difficult to apply to FIA data, due in

part to the complex data structures and survey design used by the FIA program. Herein,

we present the potential of rFIA, an open-source R package designed to increase the

accessibility of FIA data, to simplify the application of a broad suite of SAEmethods to FIA

data. We demonstrate this potential via two case studies: (1) estimation of contemporary

county-level forest carbon stocks across the conterminous US using a spatial Fay-Herriot

model; and (2) temporally-explicit estimation of multi-decadal trends in merchantable

wood volume in Washington County, Maine using a Bayesian multi-level model. In both

cases, we show the application of SAE techniques offers considerable improvements in

precision over FIA’s traditional, post-stratified estimators. Finally, we offer a discussion of

the potential role that rFIA and other open-source tools might play in accelerating the

adoption of SAE techniques among users of FIA data.

Keywords: forest inventory and analysis (FIA), R package, forest carbon, merchantable wood volume, Bayesian

mixed-effects models, spatial Fay-Herriot models, area-level models, unit-level models
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INTRODUCTION

The United States (US) Department of Agriculture Forest
Inventory and Analysis (FIA) program conducts the US national
forest inventory (NFI), collecting data describing the condition
of forest ecosystems on a large network of permanent inventory
plots distributed across all lands in the nation (Smith, 2002).
These data offer a unique and powerful resource for determining
the extent, magnitude, and causes of long-term changes in forest
health, timber resources, and forest landowner characteristics

across large regions in the US (Wurtzebach et al., 2020). The
FIA program has traditionally relied on post-stratification to
improve precision of point and change estimates (Bechtold and
Patterson, 2005; Westfall et al., 2011). Like other NFIs (Köhl
et al., 2006; Breidenbach and Astrup, 2012), FIA has experienced
increased demand for estimates within smaller spatial, temporal,
and biophysical domains than post-stratification can reasonably
deliver (e.g., annual, stand-level estimates). The development of
estimation techniques that support inference on small domains—

referred to as small area estimation (SAE) methods—using FIA
data is an active area of research, with considerable progress
made in the last decade (Schroeder et al., 2014; Lister et al.,
2020; Coulston et al., 2021; Hou et al., 2021). SAE methods are
numerous and diverse, thoughmost seek to improve inference on
small domains by making use of statistical models and auxiliary
information that is correlated with target variables (Rao and
Molina, 2015).

Despite recent progress in SAE method development, many

FIA data users are likely to find such techniques difficult to
implement due to limitations in data accessibility and complexity
in survey design. Here, we demonstrate the potential of rFIA
(Stanke et al., 2020), an open-source R package (R Core
Team, 2021), to reduce barriers in data access that arise from
complexity in data coding, database structure, and Structured
Query Language used by the FIA program. Using a simple yet
powerful design, rFIA implements the post-stratified, design-
based estimation procedures described in Bechtold and Patterson
(2005) for over 60 forest variables and allows users to return
intermediate summaries of all variables for use in modeling
studies (i.e., plot, condition, and/or tree-level). Further, target
variables can be easily estimated for domains defined by any
combination of spatial zones (i.e., spatial polygons), temporal
extents (e.g., most recent measurements), and/or biophysical
attributes (e.g., species, site classifications).

Model-based SAE techniques offer a valuable alternative to
the design-based, post-stratified estimators implemented in rFIA.
Model-based SAE methods often seek to borrow information
from non-target domains (e.g., from neighboring spatial zones
if domains are defined by spatial boundaries) and auxiliary data
(e.g., remote sensing data) to improve precision of estimated
quantities for a domain of interest, and can generally be
classified into two distinct groups: unit-level and domain-level
(also referred to as area-level) models. Unit-level models are
constructed at the level of population units, where population
units are defined as the minimal units that can be sampled
from a target population. With respect to FIA’s survey design,
field plots represent population units (in the finite population

sense) and target populations are defined by any spatial and/or
temporal region with known extent. Unit-level models relate
target variables measured on sampled population units to
auxiliary data that is available for all population units (e.g.,
wall-to-wall remote sensing data) in order to predict quantities
of the target variables for a domain of interest (i.e., where
domains are defined by some combination of population units;
Rao and Molina, 2015). In contrast, domain-level models are
constructed at the level of domains. Here, domain-specific
auxiliary information (e.g., county-level census data, where
counties represent domains) is related to post-stratified or
direct estimates within corresponding domains (Rao andMolina,
2015). Hence, domain-level models effectively “adjust” direct
domain estimates in light of auxiliary information.

By design, rFIA does not implement model-based SAE
techniques directly, owing to their exceptional variety and
requirements for thorough model checking and validation.
Rather, rFIA automates the process of summarizing FIA data
to a form that is appropriate for input to a wide variety of
unit- and domain-level SAE models. Hence, rFIA allows the
user to focus their attention on model development and data
output, as opposed to the intricacies of FIA’s data structure and
sampling design.

Here we present two case studies chosen to demonstrate
some aspects of rFIA’s potential to simplify model-based SAE
applications using FIA data. First, we use the post-stratified
estimators implemented in rFIA to estimate current forest carbon
stocks within counties across the conterminous US (CONUS),
and develop a domain-level spatial Fay-Herriot SAE model to
couple these direct estimates with auxiliary climate variables and
improve precision of estimated carbon stocks. Second, we derive
a temporally-explicit unit-level estimator of total merchantable
volume for a small spatial domain in Maine (i.e., Washington
County), and compare precision of the model-based estimator to
that of a design-based, post-stratified estimator of merchantable
volume for the domains of interest (Washington County, all
years over the period 1999–2025). Specifically, we use rFIA to
extract survey design information associated with current volume
inventories in the State, and produce plot-level summaries of
merchantable volume for all plot visits since 1999. We then
develop a Bayesian multi-level model to estimate merchantable
volume at annual time-steps, and use the approach presented in
Little (2004) to derive a robust model-based estimator of total
merchantable volume for all domains of interest. All code and
data used in these case studies are available in Appendices A, B,
on GitHub (https://github.com/hunter-stanke/FGC_rFIA_SAE),
and at our official website (https://rfia.netlify.app).

METHODS

FIA Data
Data Collection
Since 1999 FIA has operated an extensive nationally-consistent
annual forest survey designed to monitor changes in forests
across all lands in the US (Smith, 2002). The program measures
forest variables on a network of permanent ground plots that are
systematically distributed at a base intensity of ∼1 plot per 2,428
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hectares across the US (Smith, 2002). Data collected on ground
plots are stored in a large, public database (i.e., the FIADatabase),
however the true locations of ground plots are not released in
order to protect the ecological integrity of plots and the privacy
rights of private landowners (Shaw, 2008).

For trees 12.7 cm diameter at breast height (d.b.h.) and
larger, tree attributes (e.g., species, live/dead, mortality agent)
and variables (e.g., d.b.h., height, volume) are measured on a
cluster of four 168 m2 subplots at each plot location (Bechtold
and Patterson, 2005). Trees 2.54–12.7 cm d.b.h. are measured
on a microplot (13.5 m2) contained within each subplot,
and rare events such as very large trees are measured on
an optional macroplot (1,012 m2) surrounding each subplot
(Bechtold and Patterson, 2005). Importantly, some variables in
the FIA database, like tree biomass and carbon, are modeled from
variables measured on field plots and auxiliary variables, such as
mean annual temperature, that are joined with the plots based on
their spatial location.

Survey Design
Traditionally, the FIA program has used post-stratification to
improve precision of point and change estimates, account for
variability in non-response rates, and to allow sample intensity
to vary across regions (Smith, 2002; Bechtold and Patterson,
2005; Tinkham et al., 2018). Importantly, post-stratification
is applied to populations defined by a set of exhaustive
and mutually exclusive geographic units with known areas—
known as estimation units using FIA’s terminology. Estimation
units are often formed from administrative boundaries, for
example counties, county groups, or large ownerships and are
constrained by State boundaries (i.e., estimation units can only
fall within one State). FIA implements post-stratification by
dividing each estimation unit into relatively homogeneous strata
using wall-to-wall remotely-sensed imagery. Strata are designed
to minimize within-strata sample variances, while ensuring
constant within-strata sample intensity. In short, FIA’s survey
design is hierarchical and area-based: States are comprised of
multiple estimation units, estimation units are divided into
multiple strata, and strata contain multiple inventory plots. We
refer readers to Bechtold and Patterson (2005) for a complete
description of FIA’s post-stratified survey design.

FIA uses an annual panel system to estimate current
inventories and change. Inventory cycles—the period of time
required to measure all ground plots with at least one forest
condition within an estimation unit—are generally 5–7 years in
length in the eastern US, and 10 years in length in the western
US (Bechtold and Patterson, 2005). A mutually exclusive and
spatially-balanced subset of ground plots with at least one forest
condition are measured in each year of an inventory cycle,
forming a series of independent annual panels. For example in an
ideal 5-year inventory cycle, 20% of ground plots are measured
annually, such that 100% of plots are measured once between
Year 1 and Year 5. In Year 6, the subset of plots measured in
Year 1 are remeasured, and a second inventory cycle emerges
consisting of all plots measured between Year 2 and Year 6
(not independent of the previous cycle, as 80% of measurements
are shared).

Precision of point and change estimates can often be improved
by combining annual panels within an inventory cycle (i.e.,
by augmenting current data with data collected previously).
While FIA does not prescribe a core procedure for combining
panels (Bechtold and Patterson, 2005), the temporally-indifferent
approach, which effectively pools data from annual panels into a
single periodic inventory, is the most widely known and used.
From our example 5-year inventory cycle above, the temporally-
indifferent approach pools all data collected between Years 1 and
5 and computes point estimates from the aggregated sample,
assuming all plots are measured simultaneously at the end of the
inventory cycle. Estimates of change could first be computed in
Year 6 in our example (consisting of a single annual panel, 20%
of remeasured plots), and change estimates for a full inventory
cycle could first be computed following Year 10. In the case
studies that follow, we use the periodic, or temporally-indifferent,
approach to estimate contemporary carbon stocks across the
CONUS, and the post-stratified estimator applied to individual
annual panels to characterize temporal trends in merchantable
volume in Maine. Importantly, both approaches rely on the same
direct post-stratified estimator, differing only in their treatment
of time as dimension of the survey design (i.e., the temporal
subset of data that the estimators are applied to).

The rFIA R Package
rFIA is an open source package for the statistical computing
environment R (R Core Team, 2021), and was designed to
simplify the process of working with FIA data. Specifically, rFIA
alleviates hurdles arising from FIA’s complex survey design and
database structure by offering a simple and highly flexible toolset
for data acquisition and management (e.g., downloading and
storing FIA data), population estimation (e.g., estimation of totals
and ratios for domains of interest), and alternative summary
of FIA data (e.g., plot-level summaries of forest variables). We
provide a brief description of the key features of rFIA here, and
refer readers to Stanke et al. (2020) for a detailed description of
the package and our official website (https://rfia.netlify.app/) for
example code and details regarding package installation.

Core functions in the rFIA R package can be divided into
three categories: (1) utility functions designed to acquire, load,
and save modifications to FIA data; (2) subset functions designed
to help users navigate FIA’s survey design and subset inventories
of interest in their applications; and (3) estimator functions that
ingest raw FIA data and produce population estimates (e.g.,
totals, ratios, and associated variances) or intermediate-level
summaries (e.g., plot- or tree-level summaries) of forest variables
within user-defined populations of interest. Table 1 provides a
brief description of the rFIA functions used in the case studies
presented herein, and Appendices A, B provide all associated
code required to reproduce these case studies.

By default, rFIA implements standard estimation routines
used by the FIA program—post-stratified estimators and a
temporally-indifferent (i.e., periodic) approach to combining
annual panels within inventory cycles—to produce population
estimates for more than 60 forest variables. These estimation
routines have been tested extensively across Forest Service
regions and potential domains of interest (e.g., defined by species,
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TABLE 1 | Descriptions of core rFIA functions used in case studies presented

herein.

rFIA function Description

Utility functions

getFIA() Download FIA data, load into R, and optionally save to disk

readFIA() Load FIA database into R environment from disk

Subset functions

clipFIA() Spatial and temporal queries for FIA data

getDesignInfo() Extract survey design information for post-stratified inventories

Estimator functions

carbon() Estimate carbon stocks by IPCC forest carbon pools

volume() Estimate merchantable volume on standing trees

land types) to ensure national-consistency and appropriate
behavior of the estimators under a broad range of user-inputs.
Furthermore, resulting estimates have been validated against
official FIA estimation tools (i.e., EVALIDator; Miles, 2021),
and found to be accurate to two decimal places for all forest
variables (Stanke et al., 2020). In addition to standard estimation
approaches, rFIA offers users the ability to produce population
estimates for individual annual panels or combine annual panels
within an inventory cycle using a moving-average approach with
potentially time-decaying weights (simple, linear, or exponential
moving averages). We refer readers to section 2.2 of Stanke
et al. (2020) for additional details on the estimation routines
implemented in rFIA.

Domain-Level Model for Forest Carbon
Stocks
To demonstrate rFIA’s capacity to simplify development of
domain-level small area estimators, we estimate contemporary
forest carbon stocks by county across the CONUS using a
spatial Fay-Herriot model (Fay and Herriot, 1979; Petrucci and
Salvati, 2006). This process consists of two primary stages: (1)
produce post-stratified estimates of carbon stocks and associated
variances for all forestland in each county (i.e., domain), and
(2) “smooth” post-stratified estimates using a model constructed
from domain-average climate variables and spatial random
effects to improve precision of estimated quantities within each
domain. Figure 1 provides a conceptual diagram that illustrates
key steps in our general estimation approach.

FIA measures/models forest carbon variables on all forested
portions of inventory plots (Domke, 2022). Here, forestland is
defined as land with at least 10% tree canopy cover (or had
previously, or is expected to have in the future) that occurs in
a patch of at least 0.4 ha in extent and that is not narrower
than 37 m. The carbon() function in rFIA draws from forest
carbon variables to produce population estimates of forest carbon
stocks, where carbon stocks include the following ecosystem
components: live overstory, live understory, standing dead wood,
down dead wood, litter, and soil organic material. Here live
overstory, live understory, and standing dead wood encompass
both aboveground and belowground carbon stocks.

We used rFIA to download an appropriate subset of the
FIA Database from the FIA DataMart (FIA DataMart, 2021),
and select the most recent subset of current volume inventories
within each State across the CONUS. We then used the carbon()
function to estimate total carbon stocks within counties using the
periodic, temporally-indifferent approach (i.e., the samemethods
implemented by EVALIDator; Miles, 2021). Here, total carbon
stocks are a sum of all ecosystem components across public and
private forestland, and are expressed as a population total. We
convert estimates of population totals (tons CO2e) to population
means (tons CO2e · ha−1) by dividing population totals by the
areal extent of each county (known quantities). Similarly, we
convert the variance of the population total to the variance of the
population mean by dividing by the square of the areal extent of
each domain.

We next fit a spatial Fay-Herriot model to the post-stratified
estimates of population means, using the sae R package (Molina
and Marhuenda, 2015). Fay-Herriot models are widely used in
small area estimation and generally use domain-level auxiliary
data in an attempt to improve the precision of domain estimates
for a target variable. These models are often defined in two
stages, in which variability arising from imperfect observation
of the target variable within a domain (e.g., variability arising
from sampling) is modeled separately from variability arising
from functional processes (e.g., processes represented in the
auxiliary data). This framework is particularly useful as it allows
estimation of relationships between auxiliary variables and the
true state of a target variable, without requiring that the true
state of the target variable be known. Instead, the probabilistic
linkage between imperfect observations of the target variable
(e.g., sample-based estimates with known error) and its true
state are used to estimate these relationships, thereby allowing
information to be “borrowed” across domains (e.g., via shared
regression coefficients) and often improving the precision of
domain estimates for the target variable (Molina andMarhuenda,
2015).

Let Ȳd denote the estimated population mean of county d
obtained via the post-stratified estimators from rFIA, and v(Ȳd)
the estimated variance of Ȳd. Importantly, the estimators of Ȳd

and v(Ȳd) are derived under a design-based framework, and
hence can be assumed unbiased for large samples (an assumption
that is potentially violated for domains with few observations).
The spatial Fay-Herriot model for county d in 1, 2, . . . ,D, where
D is the number of counties (D = 3, 107), is then defined as

Ȳd = Zd + ǫd, (1)

Zd = x⊤d β + vd, (2)

where Zd denotes the true, but unobserved value of the
population mean in county d, and ǫd is a normally distributed
error term with zero mean and variance v(Ȳd). Equation (1)
represents post-stratified estimates of county-level population
means from rFIA as imperfect observations of true (unobserved)
county-level population means. In other words, we represent
the post-stratified estimate for domain d as being drawn from
a normal distribution with mean Zd (unobserved, and to be
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FIGURE 1 | Concept map illustrating key steps, functions, and workflows used in the development of our spatial Fay-Herriot model of forest carbon stocks in

conterminous US. Here, blue cylinders represent data inputs, orange hexagons represent intermediate data products, red ovals represent models, and green

rectangles represent domain estimates.

estimated) and variance v(Ȳd) (estimated directly from FIA data,
assumed to be known).

In Equation (2), xd is a vector of length three comprising an
intercept and two climate predictors for county d, and β is an
associated vector of regression coefficients. Climate predictors
include mean annual temperature and precipitation, and were
obtained from the long-term (30-year) climate normals hosted
in the PRISM climate dataset (PRISM Climate Group, 2010).
Climate normals were distributed on a 800 m2 grid spanning the
CONUS, and we took an average of grid cells within each county
to produce domain-level climate predictors. The collection of
county random effects v = (v1, v2, . . . , vD)

⊤ is assumed to follow
a first order simultaneous autoregressive (SAR) process

v = ρWv+ τ , (3)

where ρ is the autocorrelation parameter defined on the range
(−1, 1), and each element of the vector τ is a normally distributed
error term with mean zero and variance σ 2

v . Finally,W is aD×D
row-standardized county proximity matrix. In words, Equations
(2)–(3) represent the true county-level population means (Zd,
unobserved) as a linear function of our climate predictors and
a first-order spatial process which accounts for all variation in Zd

unexplained by x⊤
d
β (i.e., linear relationship between population

means and climate variables).
Petrucci and Salvati (2006) present an empirical best linear

unbiased predictor (EBLUP) under the Fay-Herriot model with
spatially correlated random effects, and an analytic estimator
of the mean squared error (MSE) of the EBLUP is described
in Singh et al. (2005). We use the sae R package (Molina and
Marhuenda, 2015) to fit the model described in Equations (1)–
(3), and obtain the EBLUP of population means ȲEBLUP

d
and

associated mean squared error MSE(ȲEBLUP
d

) for all domains via
restricted maximum likelihood.

We use the relative standard error (RSE, expressed as a
percentage) as a standardized measure of precision of the
estimators of forest carbon stocks

RSEPSd =
100 [v(Ȳd)]

0.5

Ȳd

, (4)

RSEEBLUPd =
100 [MSE(ȲEBLUP

d
)]0.5

ȲEBLUP
d

. (5)

Here, a lower RSE indicates higher precision. Following Coulston
et al. (2021), we compare the precision of post-stratified (design-
based) and model-based estimators of forest carbon stocks using
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the ratio of their respective standard errors for each domain

SERd =
[MSE(ȲEBLUP

d
)]0.5

[v(Ȳd)]0.5
, (6)

where SERd denotes the ratio of the standard error of the post-
stratified estimator (assumed unbiased) to that of the EBLUP
for domain d (derived from MSE, cannot be assured to be
unbiased). Hence, a SER less than one indicates the EBLUP
yields more precise estimates of forest carbon stocks than the
post-stratified estimator.

Unit-Level Model for Merchantable Wood
Volume Trends
To demonstrate rFIA’s capacity to simplify development of unit-
level small domain estimators of forest variables, we use a
Bayesian multi-level model to estimate multi-decadal trends
in merchantable wood volume in Washington County, Maine.
This process consists of four primary stages: (1) extract survey
design information associated with the most recent “current
volume” inventory in Maine; (2) produce plot-level summaries
of merchantable volume for all FIA plot visits within our
target population; (3) fit a Bayesian multi-level linear model to
estimate plot- and stratum-level trends in mean merchantable
volume, accounting for repeated inventory plot observations;
and (4) summarize regression model coefficients using post-
stratified design weights, yielding a robust model-based estimator
of temporal trends in total merchantable wood volume across
Washington County. Note that in this case study, domains are
defined by spatial, temporal, and biophysical boundaries, i.e.,
by the spatial boundary of Washington County, by individual
years over the period 1999–2025, and by the unknown extent
of timberland (defined below) in the region. Figure 2 provides
a conceptual diagram that illustrates key steps in our general
estimation approach.

FIA records merchantable wood volume of all trees (d.b.h.≥
12.7 cm) on forested inventory plots. The volume() function in
rFIA uses these observations to produce population estimates
and plot-level summaries of merchantable wood volume in
the bole and sawtimber portions of trees. We consider net
merchantable bole volume herein, defined as the volume of wood
in the central stem of trees (d.b.h.≥ 12.7 cm), from a 30.5 cm
stump to a minimum 10.2 cm top diameter, or to where the
central stem breaks into limbs all of which are ≤ 10.2 cm in
diameter (Burrill et al., 2021). Volume loss due to rot and form
defect are deducted. Further, FIA defines timberland as the subset
of forestland that is capable of producing crops of industrial wood
and is not withdrawn from timber utilization by legal statute
or administrative regulation (i.e., it excludes wilderness areas;
Burrill et al., 2021).

We used rFIA to download the Maine subset of the FIA
Database from the FIA DataMart (FIA DataMart, 2021), extract
survey design information (i.e., stratum and population areas)
for the most recent current volume inventory in the State
(2019 inventory), and summarize plot-level net merchantable
bole volume for all plot-visits in the State since the onset of
the annual FIA program (i.e., first plots measured in 1999).

Here, plot-level summaries of merchantable volume are simply
a sum of merchantable volume on all trees within our domain of
interest—timberland in Washington County—at each inventory
plot, expressed on a per-area basis (m3

· ha−1). All plots outside
our domain of interest (e.g., non-forested) receive a value of zero.

In the 2019 inventory, Washington County is split into
three distinct estimation units (split into private and public
ownerships, and inland census water). As FIA’s estimation units
are geographically distinct (i.e., independent populations), we
combine these estimation units into a single target population
representing Washington County. Importantly, FIA’s estimation
units should not be confused with population units in a finite
sampling framework. Estimation units can be seen as minimum
target populations for estimation using FIA’s survey design. These
populations are comprised of many population units, some of
which may be sampled (i.e., plot locations).

We next formulate a multi-level linear model to characterize
plot-, stratum-, and domain-level trends in merchantable
wood volume from our visit-level summaries. By explicitly
acknowledging the nested, hierarchical nature of FIA’s survey
design in our multi-level model, we can derive inference at
multiple scales simultaneously (e.g., estimation of both plot-
and stratum-level trends), partition estimated variance (i.e.,
uncertainty) across scales, and improve parameter estimates by
allowing partial-pooling of information within groups (e.g., when
few observations are available on a plot, estimated trends are
“pulled” toward the stratum-level mean). This is in contrast to
conventional approaches that may perform independent linear
regressions for each plot (i.e., no pooling of information) or
combine data from all plots within a stratum and perform a
single linear regression (i.e., complete pooling of information) to
estimate trends across scales.

Let yhij denote the merchantable bole volume within our
domain of interest that was observed at visit j, on plot i, belonging
to stratum h. Further, let thij denote the year of visit j on plot
i, relative to onset of the annual FIA program (i.e., t = 0, 1, 2
for plots visited in 1999, 2000, 2001, etc.). Our model is then
defined as

yhij = αhi + βhi · thij + ǫhij, (7)

where αhi is a plot-level intercept term describing the mean
merchantable volume at plot i, belonging to stratum h, in 1999
(i.e., onset of the annual FIA program, t = 0), and βhi is
a plot-level slope term describing the average annual change
in mean merchantable volume at plot i, belonging to stratum
h, over the period 1999–2019. The error term ǫhij is assumed
normally-distributed with zero mean and constant variance.

Trends in merchantable volume are expected to vary both
among plots (e.g., growth rates vary by forest type, and some
plots may be harvested) and among strata (e.g., predominately
forested vs. non-forested strata). We model this variability by
treating plot-level parameters (αhi and βhi) as random effects
that follow distributions defined by associated stratum-level
parameters (αh and βh), and similarly treating stratum-level
parameters as random effects that follow distributions defined by
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FIGURE 2 | Concept map illustrating key steps, functions, and workflows used in to estimate multi-decadal trends in merchantable wood volume in Washington

County, Maine. Here, blue cylinders represent data inputs, orange hexagons represent intermediate data products, red ovals represent models, and green rectangles

represent domain estimates.

a set of population-level parameters (α and β):

αhi ∼ normal(αh, σ
2
αhi
), (8)

βhi ∼ normal(βh, σ
2
βhi
), (9)

αh ∼ normal(α, σ 2
αh
), (10)

βh ∼ normal(β , σ 2
βh
), (11)

where σ 2
αhi

and σ 2
βhi

are the stratum-level (among plot) variances

of the regression coefficients, and σ 2
αh

and σ 2
βh

are the associated

population-level (among stratum) variances. In words, Equation
(7) states that plot-level trends (defined by αhi and βhi, for each
plot in i = {1, . . . , 310}) are estimated from data collected at each
visit of an FIA plot (yhij), Equations (8)–(9) state that stratum-
level trends (defined by αh and βh, defined for each stratum in
h = {1, . . . , 6}) represent an “average” of plot-level trends for all
plots within a particular stratum, and Equations (10)–(11) state
that the domain-level trend represents an “average” of overall
population-level trends.

To complete the Bayesian specification of Equation (7) we
assigned prior distributions to all parameters. We choose weakly
informative normal priors for α (i.e., mean 50, standard deviation
250) and β (i.e., mean 0, standard deviation 100), and weakly
informative half student-t priors for all variance terms (i.e., mean
0, scale 100, 3 degrees of freedom; Gelman, 2006). The mean
and standard deviation assigned to priors for α and β differ,
as α represents a point-in-time estimate while β represents an
estimate of average annual change. Hence, assigning a prior
to α with a positive mean reflects our knowledge of the non-
negativity of the target variable (ideally would be addressed
via specification of a non-negative likelihood function, but is
not here due to computational constraints), and assigning a
prior with zero mean to β represents an assumption of no
change in the population over time. Further, as β represents an
annual rate, we expect it’s absolute value to be considerably less
than the population total at a point-in-time (e.g., α), and our
assignment of a lower standard deviation to the prior on β reflects
this belief. Using these priors, we estimated the model using
Hamiltonian Monte Carlo (HMC) algorithms implemented in
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the probabilistic programming language, Stan (Carpenter et al.,
2017), and affiliated R package, brms (Bürkner, 2017). We
simulated three Markov chains, for a total of 4,000 iterations
per chain. We assessed convergence via visual inspection of
traceplots, and ensured proper model specification via posterior
predictive checks.

While the set of parameters estimated in Equations (10)–
(11) (α and β) allow us to derive an estimator of population-
level trends in merchantable volume, such estimators ignore
variation in the size of strata (i.e., which is known from
FIA’s survey design) and thus may be biased toward stratum
that contain a large number of plots (as sampling intensity
may vary across strata, a constant relationship between plot
number and stratum size cannot be assumed). This bias may
be addressed, however, by adjusting population-level parameters
using a product of model- and design-weights (Little, 2004).
Let α∗

h
and β∗

h
denote a set of posterior samples of stratum-

level regression coefficients observed at a single iteration of the
HMC algorithm. We then compute design-adjusted estimates of
population-level regression coefficients, denoted as α̂∗ and β̂∗,
for each set of posterior samples as

α̂∗
= A−1

H∑

h=1

Ah · α
∗

h , (12)

β̂∗
= A−1

H∑

h=1

Ah · β
∗

h , (13)

where Ah is the known area of stratum h, and A is the combined
area of all H strata (i.e., A =

∑H
h=1 Ah, equivalent to the

combined area of estimation units). Here, model-weights are
implicit in estimates of stratum-level parameters, arising from the
hierarchical nature of the model described in Equations (8)–(9).
In contrast, design weights are explicit, with large strata receiving
more weight than small strata. In essence, we take an area-
weighted mean of regression coefficients across strata to estimate
trends at the population-level, thereby explicitly acknowledging
features of FIA’s survey design in the construction of our model-
based estimator of population parameters.

Using our adjusted population-level regression coefficients,
we derive a robust model-based estimator (Little, 2004) of the
population mean and total for our domains of interest, denoted
as Ȳ(t)∗ and Ý(t)∗, respectively:

Ȳ(t)∗ = α̂∗
+ β̂∗

· t, (14)

Ý(t)∗ = A · Ȳ∗

t . (15)

Here, variability in Ȳ(t) and Ý(t) across posterior samples
reflects uncertainty in the model-based estimator of the
population parameters. We produce point estimates of
population parameters and their associated variances from
the posterior mean and variance, and obtain 95% interval
estimates from the 2.5 to 97.5% percentiles of the posterior
samples for each population parameter. Similarly, we compute
the relative standard error for each estimator as the ratio of the
posterior standard deviation to the posterior mean.

FIGURE 3 | County-level estimates of mean forest carbon density (tons CO2

equivalent per hectare, tCO2e · ha
−1) produced by the spatial Fay-Herriot

model with climate predictors (top), and associated relative standard error (%;

bottom). Gray shaded counties indicate no forested FIA plots were

encountered in the county during the most recent current volume inventory,

i.e., post-stratified estimator of total forest carbon and associated variance for

the county are equal to zero.

Finally, we evaluate the performance of the model-based
estimator of trends in total merchantable volume by comparing
model-based population estimates to post-stratified annual
estimates for the same population of interest over the period
1999–2019. All post-stratified estimates were computed using
the annual approach implemented in the volume function in
rFIA, and hence represent estimates of individual annual panels.
We have elected to use estimates for annual panels because
our domains are partially defined by individual years. A direct
estimator then, by definition, should draw only from data
collected within a particular year to produce domain estimates.
Importantly, this approach differs from standard FIA estimation
procedures, which pool data from multiple (up to 10) annual
panels within an inventory cycle to generate domain estimates.

RESULTS

Results from design-based and model-based estimators are
often not strictly comparable due to fundamental differences
in their underlying inferential paradigms (see, e.g., Little,
2004). Of particular importance, design-based estimators
can be reasonably assumed unbiased for large samples,
whereas model-based estimators cannot be assured to be
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FIGURE 4 | County-level ratios of the standard error of the spatial Fay-Herriot model-based estimator of mean forest carbon density, relative to that of the

post-stratified estimator. Ratios <1 indicate the model-based approach yields a more precise estimator of forest carbon stocks than the traditional design-based

approach. Gray shaded counties indicate no forested FIA plots were encountered in the county during the most recent current volume inventory, i.e., direct estimator

of total forest carbon and associated variance for the county are equal to zero.

FIGURE 5 | Relative standard error (%) of model-based (i.e., spatial

Fay-Herriot model) and post-stratified estimator estimators of mean forest

carbon density by county, ordered by increasing relative standard error of the

direct estimator.

unbiased (Lohr, 2019), and in the event of model mis-
specification, adverse effects on inference can be substantial
(Little, 2004). Even among model-based estimators, frequentist
and Bayesian inferences yield different interpretation in
some cases (see, e.g., Gelman et al., 2004). Therefore,
comparing results derived from these different paradigms,
presented in subsequent sections, should be received with
an understanding about the respective modes of inference.
For example, in some cases we compare design-based

estimate derived confidence intervals to Bayesian model-
based credible intervals. While it can be convincingly argued
such comparisons are not appropriate, we present comparative
results to explore general patterns in estimates and highlight
estimators’ qualities.

County-Level Forest Carbon Stocks
Our results indicate the EBLUP derived from the spatial Fay-
Herriot model (described in Equations 1–3) offers considerable
improvements in precision relative to the post-stratified
estimator of county-level forest carbon stocks across much of
the CONUS. We present model-based estimates of mean forest
carbon density, along with associated estimates of precision,
in Figure 3. Similarly, we map the spatial distribution of
the SER in Figure 4. Finally, we illustrate improvements in
relative precision offered by the model-based estimator (i.e.,
measured by the relative standard error), along a gradient
of relative precision in the post-stratified estimator, in
Figure 5.

The spatial Fay-Herriot model yields spatially smooth
estimates of county-level forest carbon stocks, that generally
reflects the distribution of forestland across the CONUS
(Figure 3). The largest estimated forest carbon densities are
in the coastal Pacific Northwest, Northern Lake States, and
Appalachian regions. In contrast, the smallest estimated forest
carbon densities appear in the Southwest, Great Basin, and
Northern Plains. We show the relative precision of the model-
based estimator generally decreases with estimated mean forest
carbon density (Figure 3; lower precision in counties with
low carbon density relative to high carbon density) and with
county size (Figure 5; lower precision in small counties relative
to large counties). Notably, we show the relative precision
of the model-based estimator was generally smallest in the
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FIGURE 6 | Annual model-based and design-based estimates of total merchantable wood volume (million m3) on timberland in Washington County, Maine.

Model-based point estimates are derived from the posterior median of Hamiltonian Monte Carlo (HMC) samples of parameters presented in Equations (14)–(15), and

are represented by the solid, dark blue line. Similarly, model-based interval estimates (i.e., Bayesian 95% credible intervals) are derived from the 2.5 to 97.5% quantiles

of HMC samples, and are represented by dashed, dark blue lines. Further, realizations of parameters presented in Equations (14)–(15) from each HMC sample are

represented as thin, semi-transparent blue lines. Hence the posterior predictive distribution of the model-based estimator of total merchantable wood volume can be

inferred from the relative density of thin blue lines in a given region of the graph (i.e., higher density of lines indicates higher posterior probability). Annual, design-based

point estimates are represented by white circles, and are connected by a solid black line. Design-based interval estimates (95% confidence intervals) associated with

each annual point estimate are presented as vertical gray bars. All design-based estimates were produced using the annual, post-stratified estimation approach

implemented in rFIA (Stanke et al., 2020).

Northern Plains and Southern Lake States regions, likely arising
from a combination of small county sizes and relatively low
forestland area.

We show the model-based estimator of forest carbon stocks
offered the greatest improvements in precision in the coastal
Pacific Northwest and eastern US, relative to the post-stratified
estimator (Figure 4). In these regions, the SER commonly fell
below 0.5, indicating the standard error of the model-based
estimator was less than half that of the post-stratified estimator
for a given county. Across the Interior West, in contrast, we
show the model-based estimator rarely improved precision by
more than 10% (i.e., SER commonly exceeded 0.9). Further,
results presented in Figure 5 indicate the model-based estimator
generally offered consistent improvements in relative precision
over the post-stratified estimator, regardless of the absolute
magnitude of the post-stratified estimator’s relative precision.

Trends in Merchantable Wood Volume in
Washington County
Our results indicate the model-based estimator of total
merchantable wood volume in Washington County, Maine
(approach described in Equations 7–15) offers substantial
improvements in precision relative to the post-stratified
estimator (Figures 6, 7). Specifically, we show 95% credible
intervals associated with model-based point estimates are
consistently narrower than 95% confidence intervals associated
with the post-stratified estimator (Figure 6). On average over the
period 1999–2019, the relative standard error of the model-based
estimator was 55.9% lower than that of the post-stratified
estimator (ranging from 48.9 to 62.4% lower across all years;
Figure 7), indicating the model-based estimator is more than
twice as precise as the post-stratified estimator for our domain
of interest. Further, consistent alignment of post-stratified and
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FIGURE 7 | Relative standard error (%) of model-based and post-stratified

estimators of trends total merchantable wood volume on timberland in

Washington County, Maine.

model-based point estimates suggests the model-based estimator
is generally unbiased for the domain of interest (Figure 6).

Both approaches indicate that total merchantable wood
volume in Washington County has increased considerably
over the period 1999–2019 (Figure 6). Notably however, the
model-based approach yields a smooth, linear trend in total
merchantable volume. The post-stratified estimator, in contrast,
exhibits large inter-annual variability (±5–10% per year, arising
from sampling) and pronounced cyclical patterns over the same
period (arising from remeasurement of annual panels). Further,
the model-based estimator offers an intuitive approach to
characterize the magnitude, direction, and statistical significance
of temporal trends in our target variable—a feature the
post-stratified estimator lacks (absent estimating change from
remeasured plots). Specifically, the posterior distribution of the
adjusted population-level regression coefficient, β̂ , yields an
estimator of average annual change in total merchantable wood
volume across our domain of interest. The posterior median
of β̂ was 1,293,900 m3

· yr−1 (95% credible interval: 588,000–
1,989,000 m3

· yr−1), indicating a relatively rapid increase in total
merchantable wood volume over the last two decades. Further,
we show the probability that β̂ exceeds 0 is > 0.999, indicating
very high certainty in the observed upward trend.

Finally, the model-based approach offers the ability to
forecast changes in our variable of interest, along with
associated estimates of uncertainty. We highlight this unique
capacity in Figures 6, 7 by predicting total merchantable wood
volume, along with estimates of relative precision, over the
period 2020–2025—years for which no FIA data has yet been
collected/released for our target population. By the year 2025,
we estimate, with 95% probability, that total merchantable wood
volume on timberland in Washington County, Maine will range
between 124.4 and 154.7 m3.

DISCUSSION

The FIA program operates the largest network of permanent
forest inventory plots in the world, making it well suited to
provide critical information on US forests over large geographic
and temporal domains (e.g., periodic, state-level estimates).
However, the program has experienced increased demand for
estimates of forest variables for smaller spatial and temporal
domains than traditional sample-based estimation approaches
can deliver. Providing such estimates without additional
investments in field sampling requires adopting alternative
estimation approaches. Here, we presented two case studies
that demonstrated some aspects of rFIA’s potential to simplify
application of SAE to data collected by the FIA program, and thus
accelerate adoption of such techniques by FIA data users.

First, we estimate contemporary county-level forest carbon
stocks across the CONUS using a domain-level spatial Fay-
Herriot model (Figure 3), and show the model-based approach
offers considerable gains in precision across the predominately
forested regions of the CONUS (Figure 4). Previous efforts have
applied spatial Fay-Herriot models to FIA data to improve
precision of estimators of forest density variables (Goerndt et al.,
2011), private landowner characteristics (Ver Planck et al., 2017),
and forestland removals (Coulston et al., 2021). Domain-level
models are particularly useful when inventory plot locations are
unknown or measured imperfectly, as spatial auxiliary data need
not be associated with plot locations, but rather with domains
(Rao and Molina, 2015; Mauro et al., 2017). That is, spatial
predictors can be used in domain-level models without requiring
the release of actual FIA plot locations. We provide all code
and data used to develop the domain-level model presented
herein in Appendix A, on GitHub (https://github.com/hunter-
stanke/FGC_rFIA_SAE) and at our official website (https://rfia.
netlify.app). Our procedures can be easily adapted for use with
alternative target variables, spatial regions, and/or auxiliary data,
and we encourage interested users to adapt our code for use in
their own applications of domain-level SAE models.

Second, we follow the approach presented in Little (2004)
to develop a temporally-explicit unit-level estimator of multi-
decadal trends in merchantable wood volume in Washington
County, Maine, using a Bayesian multi-level model. We show
the model-based approach offered substantial improvements in
precision of annual estimates, relative to the traditional, post-
stratified approach (Figures 6, 7). Further, we show the model-
based estimator offers an intuitive approach to characterizing
the magnitude, direction, and statistical significance of temporal
trends, and allows predictions of the target variable to bemade for
unobserved domains, with associated uncertainty (e.g., forecast
change). Unit-level SAE models have been widely applied to FIA
data in recent decades (Ohmann and Gregory, 2002; Goerndt
et al., 2011; McRoberts et al., 2017; Babcock et al., 2018), and
frequently draw from remotely-sensed auxiliary variables to
support domain estimation. However, extending the approach
presented herein to incorporate spatial auxiliary data will present
challenges for most users of FIA data, as neither the true
locations of inventory plots, nor the spatial boundaries of strata
used for post-stratification are available in the public version of
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the FIA Database. Nevertheless, the unit-level model presented
can be easily adapted for applications involving alternative
populations of interest, and might be useful in the detection
and characterization of long-term change in forest ecosystems.
Further, such models can be used to characterize the status and
change in forest variables at spatial and/or temporal domains that
are not currently possible using sample-based approaches (e.g.,
stand-level estimates).

Role of rFIA in Accelerating the Adoption
of SAE Techniques for FIA Data
We posit that rFIA has the potential to simplify the application of
model-based SAE techniques to FIA data in three key ways. First,
rFIA implements standard, periodic post-stratified estimators—
consistent with the estimators implemented by FIA’s popular
online estimation tool, EVALIDator (Miles, 2021)—within highly
flexible, user-defined domains. These direct estimators, along
with their associated variances, form the basis for construction
of domain-level estimators, as demonstrated by our spatial Fay-
Herriot model (Fay and Herriot, 1979; Petrucci and Salvati, 2006;
Pratesi and Salvati, 2008) of county-level forest carbon stocks.
Second, rFIA implements post-stratified estimators for individual
annual panels, offering increased temporal specificity over
standard periodic estimation approaches (i.e., the temporally-
indifferent estimator), and supporting the development of
small area estimators that require direct annual estimates
of forest variables at aggregate scales. Examples of such
temporally-explicit, domain-level estimators include mixed-
estimators (Van Deusen, 1999) and the spatial-temporal Fay-
Herriot model (Marhuenda et al., 2013). Finally, rFIA allows
summaries of forest variables to be returned for individual
response units (i.e., plot-level) and provides utility functions for
extracting design information relevant to particular inventory
cycles (e.g., stratum assignments and weights). Together, these
data can be used to construct a wide variety of unit-level
estimators that acknowledge features of FIA’s survey design, as
demonstrated in our multi-level model of trends in merchantable
wood volume in Washington County, Maine.

Adoption of SAE methods by FIA data users (particularly
new users) is limited more by FIA’s complex data structure and
survey design than by the availability of tools that implement
SAE methods. Thus, we argue the primary benefit of rFIA in
accelerating SAE method adoption is its ability to simplify the
process of summarizing and formatting FIA data to serve as input
to a wide variety of SAE models. There is a large suite of existing,
open-source tools that provide generalized implementations of
many domain-level and unit-level SAE models. For example,
the sae R package (Molina and Marhuenda, 2015) is specifically
designed to implement domain-level SAE models, and we draw
from this functionality to develop the domain-level model of

forest carbon stocks presented herein. Our intention is not to
duplicate efforts of others by implementing common SAEmodels
natively in rFIA, but rather to reduce barriers to the application
of such SAE models to FIA data that arise from the complexity of
FIA’s data structure and sampling design.

Future Extensions of rFIA
Current efforts to extend rFIA include the implementation
of a suite of model-based time-series estimators that aim to
improve the precision of annual estimates of forest variables,
thereby increasing the relevance of FIA data for change detection,
characterization, and attribution. Specifically, we aim to provide
an intuitive implementation of Van Deusen’s mixed-estimator
(Van Deusen, 1999), which was recently shown by Hou et al.
(2021) to offer considerable improvements in the precision of
annual FIA-based forest land area estimates, at both the state-
and county-levels. Further, we aim to provide an alternative
Bayesian estimator of annual trends in forest variables based
on a measurement error model (e.g., similar to Bayesian meta-
analysis; Sutton and Abrams, 2001). Notably, both approaches
effectively smooth annual, post-stratified estimates of forest
variables, and hence are compatible with FIA’s existing survey
design and database structure.
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Many National Forest Inventory (NFI) stakeholders would benefit from accurate estimates
at finer geographic scales than most currently implemented in operational estimates
using NFI sample data. In the past decade small area estimation techniques have
been shown to increase precision in forest inventory estimates by combining field
observations and remote-sensing. We sought to demonstrate the potential for improving
the precision of forest inventory growing stock volume estimates for counties in
United States of North Carolina, Tennessee, and Virginia, by pairing canopy height
models from digital aerial photogrammetry (DAP) and field plot data from the
United States NFI. Area-level Fay-Herriot estimators were used to avoid the need for
precise (GPS) coordinates of field plots. Reductions in standard errors averaging 30%
for North Carolina county estimates were observed, with 19% average reductions in
standard errors in both Tennessee and Virginia. Accounting for spatial autocorrelation
among adjacent counties provided further gains in precision when the three states
were treated as a single forest land population; however, analyses conducted one state
at a time showed that good results could be achieved without accounting for spatial
autocorrelation. Apparent gains in sample sizes ranged from about 65% in Virginia to
128% in North Carolina, compared to the current number of inventory plots. Results
should allow for determining whether acquisition of statewide DAP would be cost-
effective as a means for increasing the accuracy of county-level forest volume estimates
in the United States NFI.

Keywords: spatial Fay-Herriot models, model-assisted analysis, model-based estimation, composite estimators,
forest inventory

INTRODUCTION

National Forest Inventories (NFI) are designed to produce estimates of forest attributes on
regional to national scales; however, many stakeholders would benefit from accurate estimates
at finer geographic scales using NFI sample data in a cost-effective manner (Reams et al., 1999;
Coulston et al., 2021). Even though the spatial extent of NFI surveys can be very large, sampling
intensities may be insufficient to reliably estimate attributes on small areas carved out from what
are often expansive target forest populations (Breidenbach and Astrup, 2012). As an example, in
the United States NFI, coordinated through the United States Department of Agriculture, Forest
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Service, Forest Inventory and Analysis (FIA) program, sampling
is conducted on a network of field plots with an average intensity
of one plot per 2,430 ha (6,000 acres) and a remeasurement
interval of 5 years (Bechtold and Patterson, 2005). The FIA survey
design provides sufficient sampling intensity to meet precision
requirements specified as ±5% (one standard error), in terms
of growing stock volume per billion cubic feet (28.3 million
m3) on commercial forest land (USDA Forest Service National
Headquarters, 2008). For estimates on large areas of forestland,
this standard can be readily met; however, individual county
subdivisions within states rarely contain timber volumes this
large. As such, the 5% precision standard for individual county
forest volume estimates is generally unattainable from the
survey as designed.

Survey designers have recognized this limitation for decades,
even to the degree of anticipating the example presented above,
as did W.A. Fuller in the following comment made over two
decades ago,

“the client will always require more than is specified at the
design stage. For example, the client will explain that they require
estimates only at the regional or national level and then, when
data are available, ask for county estimates,” (Fuller, 1999).

Estimating forest attributes for areas smaller than a single
state is typically done by making direct estimates from plots
sampled within an area of interest; however, it is difficult to obtain
acceptably reliable direct estimates within relatively small areas
that may contain few inventory plots, or when precise coordinates
of a sample unit may be unavailable to analysts due to regulatory
restrictions (Reich and Aguirre-Bravo, 2009; Mauro et al., 2016;
Magnussen et al., 2017). In solving the problem of insufficient
sample sizes, an inventory supported by auxiliary information is
an effective approach to predicting forest attributes at unsampled
locations. Remote sensing data sets often serve as sources of
auxiliary information (McRoberts, 2012; Brosofske et al., 2014).
Statistical methods, such as regression or generalized regression,
imputation, interpolation, and machine-learning algorithms have
been used to link remote sensing data to field observations
from NFI samples.

As a class of statistical estimators, small area estimation
(SAE) techniques combine survey sample data with auxiliary
information – often statistically-related to sample attributes of
interest – that will improve the precision of direct estimates. SAE
methods are often categorized as (1) domain-direct estimation,
(2) domain-indirect estimation, and (3) composite estimators
(Rao and Molina, 2015). In domain-direct estimation, parameters
for an area or domain of interest are estimated primarily from
sample data observed inside that domain. Domain-indirect,
estimation also makes use of sample information from outside
a domain of interest, with a goal of reducing the standard
error of the estimate within the small area domain. Indirect
estimators borrow strength from observed sample data (y)
outside the domain of interest by linking them to auxiliary
data (x) using a model y ∼ x, sometimes called a synthetic
estimator or shrinkage estimator, to increase the precision of
parameter estimates (Lehtonen and Veijanen, 2009). While direct
estimators are often unbiased based on their sampling design,
they may become unstable or subject to very large variances
when sample sizes are small. Further, while indirect estimators,

such as regression models, may be capable of generating precise
predictions, they may be subject to large biases when model
assumptions are violated. To preserve the unbiasedness of direct
estimators, while achieving greater precision afforded by indirect
(model-based) estimators, the two can be combined in a weighted
average. The resulting composite estimator can be optimized to
balance the unbiased property of their direct component and
the minimum variance property of the synthetic model. In two
common approaches, the optimization is achieved using a mixed
modeling framework that accounts for both the variation of
sample estimates within each small area domain and the variation
among domains not explained by the model (Fay and Herriot,
1979; Battese et al., 1988).

Depending on the structural resolution of data available for
developing synthetic estimators, SAE models are commonly
distinguished as taking either an area-level or unit-level approach
(Rao and Molina, 2015). Area-level models operate by treating
each small area domain in a population as a single datum (x,
y) to be used for fitting a synthetic model. The models are then
useful for generating estimates on small area domains within
the same population. The domain-direct estimate and its sample
variance serve as the source of direct information, while the
indirect information – sample estimates and variances from other
domains – is then linked to the direct domain via the model y ∼
x, which leverages the relationship between sample and auxiliary
data sets. Area-based approaches are often synonymous with the
Fay and Herriot (1979) estimator, a well-recognized and widely
adopted model used in area-based SAE, including a number of
forest inventory applications (Green et al., 2020b).

Like area-based SAE, the unit-level approach also aims to
make composite estimates for small area domains; however, data
used to formulate the model relationship involve the population
observational units themselves, which, in NFI applications are
usually the field plot observations that comprise a sampling
frame (Battese et al., 1988; Breidenbach et al., 2018; Mauro
et al., 2019). While area-level SAE requires that sample units
can be explicitly tied to the domains on which they were
sampled, unit-level approaches require that each sample unit
is paired with corresponding data from the auxiliary source
(Rao and Molina, 2015). Unit-level analyses that pair field
sample observations with geospatial auxiliary information or
digital maps require precise coordinates of field sample plots,
most often obtained using global navigation satellite systems,
e.g., GPS, to facilitate geospatial pairing of field plot data with
co-occurring observations from remote sensing data layers.
In the forest inventory literature, both area-level and unit-
level SAE have been demonstrated to improve the precision of
estimates on small area domains while largely preserving their
unbiasedness (Wang et al., 2011; Breidenbach and Astrup, 2012;
Goerndt et al., 2013; Magnussen et al., 2017; Mauro et al., 2017;
Green et al., 2020a).

Our focus here is the Fay-Herriot (FH) area-level approach
to demonstrate an application of SAE that can be used with
publicly available observations from the FIA database, which
do not include precise coordinates for field sample plots that
would otherwise be required in unit-level analyses (Goerndt et al.,
2011). The application builds on the situation exemplified by
Fuller (1999), where our objective was to make use of sample

Frontiers in Forests and Global Change | www.frontiersin.org 2 April 2022 | Volume 5 | Article 769917162

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-05-769917 April 21, 2022 Time: 13:52 # 3

Cao et al. Increased Precision Area-Level SAE

data from several eastern states surveyed in the national FIA
inventory to produce county-level estimates having enhanced
precision over what can be achieved by direct estimation
alone. Working with the publicly available FIA data for the
three states—North Carolina, Tennessee, and Virginia—the FH
approach was chosen for SAE. Magnussen et al. (2017) found
that accounting for spatial autocorrelations in an area-level
model augmented for that purpose increased SAE precision
over non-spatial FH. We also examined the potential for
adopting the spatial Fay-Herriot (SFH) approach to further
increase precision of area-level SAE (Petrucci and Salvati, 2006).
A somewhat novel aspect of the work involves the source
of the auxiliary information, namely, digital canopy height
models (CHM) derived from 3D digital aerial photogrammetry
(DAP) acquired for entire states through the USDA National
Agriculture Imagery Program (NAIP; Strunk et al., 2020). To
demonstrate the potential for using area-level SAE techniques
in estimating county-level total forest volume from FIA in
single or multiple state settings, we identified the following
four research questions to be addressed: (1) To what degree
does area-level SAE using NAIP photogrammetrically-derived
CHMs improve the precision of FIA direct county-level estimates
of forest volume in the three states; (2) Does accounting
for spatial correlation among neighboring counties provide
additional gains in precision; (3) What effective gains in sampling
intensity can be achieved using CHM auxiliary information
in the FH modeling framework; and (4) To what degree
are SAE results dependent on treating the states as distinct
populations, compared to the alternative of treating them as a
single multistate population for purpose of estimating county-
level volumes?

MATERIALS AND METHODS

Study Area and Forest Inventory and
Analysis Data
The study area included states of North Carolina (NC), Tennessee
(TN), and Virginia (VA) in the southeastern United States
(Table 1). States were chosen based on the availability of remote
sensing data from USDA NAIP enhanced aerial acquisitions
that produced 3d surface point clouds from DAP. The states
possess significant forest resources, ranking second (NC), fifth
(VA), and eleventh (TN) in total forestland volume of 37 states
that lie entirely east of the North American Rocky Mountain
Range. Political subdivisions within the states divide them into 95
counties in TN, and 100 counties in each of the other two states,
for an average county land area of 1,220 km2 for the 295 counties
in the study area.

Direct estimates of forest volume were obtained using the
USDA Forest Service FIA program’s database of field plot
measurements for the United States’ NFI (USDA Forest Service
FIA, 2021). Estimates were based on the FIA calendar year 2017
forest evaluation, so that full-panel estimates—those based on
complete sample sets of field plot measurements collected over
5 years (2015–2019)—were available for estimation (Bechtold
and Patterson, 2005). Sampled plot-level data were processed to

TABLE 1 | Forest volume and land area statistics for states in the study area, with
the number of forested FIA sample plots (n) in each state.

Net volume Land area (total) Forest
area %

State ft3 × 106 m3 × 106 mi2 km2 n plots

North Carolina 43,691 1,237 53,800 139,400 54 3,662

Tennessee 32,072 908 42,100 109,200 52 2,932

Virginia 40,573 1,149 42,800 110,800 62 3,298

produce timber volume estimates and standard errors for each
county in the three states. The estimated volumes and their
standard errors provided direct estimates of forest inventory to
be tested for possible precision gains using SAE techniques. The
attribute of interest estimated for each county was the total (net)
wood volume in live tree main stems having diameters at breast
height ≥12.7 cm (i.e., 5.0 inches). The volume attribute excluded
wood contents in stumps below a 30.5 cm (1 foot) height, and
topwood above a 10.2 cm (4 inch) upper stem diameter.

Auxiliary Data
Digital data in the form of CHM acquired through USDA NAIP
served as source of auxiliary information for the SAE analyses.
The data were delivered as digital surface model (DSM) raster
files having grid cells of approximately 1 × 1 m (TN) and
5× 5 m (NC and VA) produced from aerial imagery and 3d DAP
methods (Strunk et al., 2020). The DSM data were resampled at
10 m × 10 m resolution for overlay with United States National
Elevation Database Digital Elevation Model (DEM) data. CHMs
were calculated by subtracting DEM values from the NAIP DSMs,
setting any negative values to zero.

Land cover data from the National Land Cover Database were
used to remove CHM data for raster cells classified as open water.
No accounting was made for other land cover types, as the goal
was to use auxiliary information derived as much as possible
from the NAIP imagery, rather than depending on land cover or
vegetation type classifiers derived from other auxiliary sources.
The CHM raster layers were clipped to each county boundary
and aggregated into seven 5-m interval height classes spanning,
{(0, 5), (5, 10), . . ., (30–35) m}, with values >35 m omitted to
remove possible outliers, anomalies, or atmospheric interference,
assuming nearly all forest canopies in the study area were ≤35 m
in height. County areas covered by each of the seven height classes
were calculated as the product of grid cell counts and the cell
area in km2.

Area-Level Fay-Herriot Model
The area-level approach introduced by Fay and Herriot
(1979) and implemented in the R package “sae” (Molina and
Marhuenda, 2015) was adopted for conducting SAE analysis.
The FH approach uses a composite of two estimates that results
in empirically best linear unbiased predictions (EBLUP) of an
attribute of interest in each spatial domain. Counties were the
domains, and total volumes the attributes of interest here, with
the population attribute for a given county (d) denoted as (τd).
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The composite estimator averaged direct and synthetic estimates
to produce EBLUPS

τ̂EBLUPd = γ̂d̂τ
DIR
d +

(
1− γ̂d

)
XT
d β̂ (1)

where τ̂DIR
d is the direct inventory estimate of total volume for

the dth county, Xd is a vector of canopy height class areas for the
county, β̂ is a set of linear regression coefficients estimated from
all county-level observations, and the composite weighting factor,
i.e., shrinkage γ̂d is defined as

γ̂d =
σ̂2
a

(̂σ2
a + v̂(̂τDIR

d ))
(2)

where v denotes the direct estimator variance and σ̂2
a is the

estimated variance among the county totals, formulated as mixed
effects in the FH model. A basic idea of the FH estimator
and composite estimators used in SAE in general is that the
weighting factor provides a way to balance the information
between the direct τ̂DIR

d and regression-synthetic XT
d β̂ estimators.

In (1) the weighting factor (2) accounts for relative sizes
of the domain-direct variance v̂(̂τDIR

d ) and variance among
counties measured by the random effect variance σ̂2

a. Parameter
estimation, including mixed-effects coefficients and variances
approximated by a polynomial expansion, were estimated using
restricted maximum likelihood in the “sae” package. Additional
details of the estimation procedure are given by Molina and
Marhuenda (2015).

Spatial Fay-Herriot Model
A spatial FH model (SFH) was also used to account for possible
spatial correlation among estimates from adjacent pairs of
counties (Petrucci and Salvati, 2006). The SFH model is built on a
FH model with simultaneously autoregressive spatial correlation
structure specified by a single parameter ρ and (d × d) proximity
matrix W having zero diagonals and ones in off-diagonal
elements indexing pairs of adjacent counties, i.e., those that share
a common border (Molina and Marhuenda, 2015). The advantage
of this spatial model in settings where forest conditions are more
alike among adjacent counties than for counties separated by
some distance is that it should provide additional precision gains
beyond those of the non-spatial FH model.

Model Fitting
In the “sae” package, FH EBLUPS and their mean-squared errors
are estimated by functions named eblupFH and mseFH with
the response variable specified as the vector of county-level
direct estimates of forest volume from FIA sample data, i.e.,
τ̂DIR
d (106 m3). County-level estimator variances v̂(̂τDIR

d ) were
given as inputs to the fitting procedure for use in calculating
domain weights for use in the composite estimator (1). County-
level area coverage (km2) for each canopy height class were
specified as predictors, with the full set of predictors including
all seven height classes. A zero intercept was found to be
supported for the base fixed-effects model based on increased
AIC by >2 units when a global intercept was included, with
additive random effects estimated for counties. The same inputs

were used in fitting the SFH model, but with the proximity
matrix also specified.

Both FH and SFH models were fitted with the response
formulated as µ̂DIR

d , where µ = county volume per unit land
area (m3 km−2) along with a suitable set of predictors that
gave roughly equivalent model results, but on a per area basis
rather than for county totals. Scaling the predictors to the same
per area basis as µ was necessary to preserve the strength of
the relationship between response and predictors. Preliminary
analyses indicated no meaningful differences in any of the
results or hypotheses tested, including comparison of spatial
autocorrelations with the SFH method. As a result, only results
for totals are reported here.

As in any multiple regression analysis, the correct specification
of predictors was investigated, in part to reduce any effects of co-
varying predictors that might inflate the estimated variances of
regression coefficients. Using a backward elimination procedure
based on the greatest reduction in the Akaike Information
Criterion (AIC) predictors were sequentially removed from a
reference model having a full set of p = 7 predictors, dropping
one predictor at a time until AIC was no longer reduced upon
removing another predictor. As a further restriction to address
a tendency of AIC to select models that are overspecified, we
adopted a type-I error rate α = 0.01 for model coefficients to
be included in final models. Predictors that did not meet this
criterion were dropped from final models.

Apparent Sample Size
A simple formulation for the standard error of a population
total estimated from sample observations of the total y, assuming
random sampling and ignoring any finite population correction,
is σ̂̂τ = σ̂y/

√
n. Using this formula and comparing domain-

direct estimated standard errors to RMSEs of EBLUPS obtained
from a FH or SFH estimation gave the apparent sample size
formula

napp = nfor ×

[
σ̂DIRτ̂

σ̂EBLUPτ̂

]2

(3)

where nfor is the sample size for the number of forested plots
involved in the direct estimate of the total, σ̂DIR

τ̂ is the standard
error of the direct estimate, and σ̂EBLUP

τ̂ is the RMSE of the
EBLUP estimated FH or SHF total. Although FIA volume
estimates include observed zeros on non-forested plots, the same
formulation as (3) can be used to calculate apparent sample sizes
for both forest and non-forest plots. To avoid redundancy, only
the results for napp of forested plots are presented here.

Single vs. Multiple State Analyses
In both FH and SFH approaches, composite estimators were
first developed using data from NC, TN, and VA fitted
separately as “individual states,” effectively treating them as
distinct populations for purposes of county-level forest volume
estimation. Second, estimators were developed using data from
all three states in a single model-fitting procedure, i.e, treating
the three “combined states” as a single population divided into
county domains. Both approaches produced EBLUP estimates for
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all counties having at least two FIA sample plots—the minimum
needed to estimate the direct estimator variance; however,
nothing in the two analyses explicitly constrained the resulting
estimates to agree between individual and combined state
approaches. Performing separate analyses for each state would
lead to three sets of fixed effects coefficients, and three separate
random effects variances σ̂2

a, one for each state, compared to just
one for the analysis combining the three states. Similarly, the SFH
approach gave separate state estimates of ρ for each state, while a
single value was estimated in the combined approach.

Evaluation of Spatial Autocorrelation
To compare the FH models to the SFH models we used
Likelihood ratio tests (LRT)

LRT = 2(lnL1 − lnL2)

where L1 and L2 are the restricted likelihoods calculated for SFH
(L1) and FH (L2) models, identical except for the correlation
parameter ρ. Under the null hypothesis SFH does not improve
on the fit of the non-spatial FH model, and large values of the test
statistic LRT ∼ χ2 (1) provide evidence for concluding that the
SFH model improves on the fit over the FH model.

Estimator Errors
Uncertainty of area-level FH EBLUPs is assessed by mean
square error (MSE), calculated in the mseFH R function as
an additive combination of terms representing uncertainties
associated with (a) prediction of random effects, (b) estimation of
regression model coefficients, and (c) estimation of the random-
effect variance, i.e., the variance among small-area domains
(Prasad and Rao, 1990; Molina and Marhuenda, 2015). The
MSE calculation is an second-order approximation using Taylor
linearization, shown to be approximately unbiased for large
D. Approximate unbiasedness of the Prasad and Rao (1990)
MSE estimator holds when any of three estimation techniques
are used, including the package default restricted maximum
likelihood (REML) used here. A similar approximation for REML
estimation based on the findings of Singh et al. (2005) and
implemented in the R package function mseSFH was adopted
here for calculating MSE for SFH estimates. Both the FH and
SFH MSE estimates are known to be asymptotically unbiased,
i.e., any bias approaches zero as D→∞ (cf. Li and Lahiri, 2010;
Coulston et al., 2021).

Precision Gains
To evaluate gains in the precision of FH estimators, we used
the relative standard errors (RMSE%) for τ̂DIR

d and τ̂EBLUP
d from

FIA sample data and FH models, respectively. The RMSE% to be
compared for each county were calculated as

RMSE%EBLUP = 100 ∗
√

MSE(̂τEBLUP
d )/ τ̂DIR

d

RMSE%DIR = 100 ∗
√

Var(̂τDIR
d )/ τ̂DIR

d

and a unitless standard error ratio (SER) for each county was
calculated as

SER = RMSE%EBLUP/RMSE%DIR

RESULTS

Model Fitting
Model fixed effects coefficients values generally increased from
lowest to highest with CHM height class, consistent with higher
volumes per unit area as would be expected for taller forests
(Table 2). A notable exception to this increasing trend was the
(20, 25] m height class, which contributed less to predicted
volumes per km2 than lower height classes in the same models.
The (30, 35] m CHM height class was a significant predictor for
all states and models, including in the combined 3-state model,
and had the largest coefficient estimates in all the models tested.
The Virginia estimator was the only one to include a significant
fixed-effects coefficient for the lowest (0, 5] m height class, and
its small magnitude reflected the low potential for forest volumes
in such low canopy heights, being less than half the size of the
next smallest coefficient value estimated for any model or height
class (Table 2).

Best models for individual state estimators included between
2 and 4 predictors, with variable selection excluding predictors
for at least one 5-m height class between any two consecutive
height classes kept in the final models (Table 2). In the combined
three-state spatial model, predictors for two consecutive
height bins (15, 20] and (20, 25] were both found to
be significant (α = 0.01) despite a greater potential for
collinearity due to possible overlapping of information in
abutting measurement intervals (see Supplementary Material
for predictor scatterplot/correlation matrices).

Fixed effects for the FH estimators were generally in line with
those of the SFH models for the single-state analyses (Table 2).

TABLE 2 | Estimated coefficients (106 m3/km2) for best SAE area-level models
(p < 0.01 for reported model coefficients).

State Predictors Estimated coefficients

FH SFH

North Carolina CHM (10-15] 0.03786 0.03623

CHM (20-25] 0.02357 0.02605

CHM (30-35] 0.08277 0.07889

Tennessee CHM (15-20] 0.04241 0.04250

CHM (30-35] 0.10179 0.10090

Virginia CHM (0-5] 0.00500 0.00465

CHM (10-15] 0.03360 0.03290

CHM (20-25] 0.02864 0.03028

CHM (30-35] 0.07009 0.06837

Three-state region CHM (5-10] 0.01230 0.01315

CHM (15-20] 0.04357 0.03381

CHM (20-25] * 0.01261

CHM (30-35] 0.09240 0.07563

*CHM (20-25] was not statistically significant in FH model for three-state region.
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Differences between FH and SFH estimates for any predictor
diverged by less than 3% percent on average (8 of 9 single-state
FH to SFH pairwise comparisons), although a discrepancy of
about 11% in magnitude was noted for the NC (20, 25] m height
class predictor. Larger differences were noted between the FH
and SFH coefficients in the three-state analysis, with differences
greater than 18% observed for two height class parameters and
the (20, 25] m height class being significantly different from zero
in the SFH model but not in the three-state FH model (Table 2).
Positive signs on all coefficients suggested that the synthetic
models themselves would not produce negative volume estimates,
none of which were observed in any of the results produced
for the study data.

Spatial vs. Non-spatial Models
Positive spatial autocorrelation estimates for ρ in SFH models
(Table 3) indicated that geographically adjacent counties’ forest
volumes tended to vary together in the same direction (Griffith,
2005). While LRT did not support the need for the SFH
formulation in individual state FH models, the spatial model was
found to significantly improve upon the non-spatial FH model in
the combined 3-state analysis (Table 3).

Precision of Estimation
Comparison of county-level direct estimates to FH EBLUPS
showed no obvious inconsistencies that might point to biases
in any sets of estimates (Figure 1). Relative RMSE from SAE
estimators compared to direct estimate standard errors for
county estimates showed magnitudes of reduction in estimator
errors (Figure 2). Relative errors for two Virginia counties,
Hampton City and Newport News, were noticeably higher
(>100%) than the bulk of the state’s counties (Figure 2C).
A similarly, high relative error (>80%) was noted for Crockett
county, TN (Figure 2B). Volume estimates for all three of these
counties were below 28,300 m3 (1 million m3), the smallest three
volume estimates of any counties sampled by at least one FIA
forest plot in the study. The two Virginia counties—defined by
the United States Census Bureau as “county equivalents,” but by
the State of Virginia as “independent cities”—had just one FIA
forest plot record each, while Crockett County, TN had just two
FIA forest plots. No other counties in the study area had fewer
than 5 FIA forest sample plots within their boundaries.

Using SER as a measure of the relative reduction in estimator
error for each county, North Carolina had the greatest gains
in precision at close to a 30% reduction using FH estimators
compared to sample domain-direct estimator errors (Table 4

TABLE 3 | Estimated spatial correlation coefficients in SFH models and likelihood
ratio tests (LRT) between FH and SFH models.

State Spatial autocorrelation
coefficient

LRT
(P-value)

North Carolina 0.4627 1.6622 (0.1973)

Tennessee 0.2880 0.7976 (0.3718)

Virginia 0.2204 0.3332 (0.5638)

Three-state region 0.6195 37.8980 (<0.00001)

and Figure 2A). Virginia and Tennessee exhibited comparatively
modest reductions in estimator errors at about 19% for FH versus
direct county estimates (Figures 2B,C).

Apparent Sample Size Gains
Apparent sample sizes for each county were calculated by
applying (3) to county domains in the study states (Figure 3).
Apparent sample size gains for the counties (ngain = napp – nfor)
attributable to the increased efficiencies of FH estimators were
summed for each state and the whole study area to determine
roughly how many additional FIA field plots would be required in
each state to achieve the county-level precisions afforded by FH
and SFH estimators (Table 4). In comparison to the FIA forested
plot sample sizes (Table 1), the gains under FH estimation ranged
from about 65% in Virginia to about 128% in NC, i.e., more
than an apparent doubling of the FIA sample size for forested
plots in that state.

DISCUSSION

Reductions in standard errors of direct estimates (volume
or biomass) from published studies of area-level SAE vary
considerably, from close to zero reduction (SER = 1) for planted
pine stands on which relative standard errors of direct estimates
were <10% (Green et al., 2020a) to reductions greater than
one-half (SER = 0.4) in small natural stands (average 6.1 ha)
studied by Ver Planck et al. (2018). Magnussen et al. (2017)
achieved considerable error reduction (SER = 0.53) in 25–
37 ha management units around Burgos, Spain and Rastatt,
Germany, and nearly as good (SER = 0.57) in forest districts
and municipalities in Jura canton, Switzerland (70,800 ha) and
Vestfold county, Norway (14,900 ha). Breidenbach et al. (2018)
attained error reductions (SER = 0.8) similar to what we achieved
for TN and VA working with a larger set of domains in
Vestfold county than the population studied by Magnussen et al.
(2017). While Green et al. (2020a) noted little reduction in
standard errors in stands where direct estimates were already
quite precise, they showed strong gains (SER = 0.65) in stands
having comparatively large uncertainties in direct estimates (up
to 30% relative SE). In the states studied here, most counties
having direct relative standard errors >30% for total volume
did not achieve precision gains as great as their corresponding
state averages, i.e., county SERs were not as small as the state
average SER (Figure 2). However, such counties comprised a
small proportion—about 13 of 295—of the counties studied.
Although Goerndt et al. (2013) focused more on domain-specific
biases than relative gains in precision, their results showed clearly
that gains depended a great deal on the attributes of interest being
studied, a consideration not pursued here as we only examined
FH model performance in estimating total forest volumes.

Several authors have examined the relationship between
sample size and precision gains such as those we measured by
SER, as well as the effect of direct estimator precision on SER
(Magnussen et al., 2014; Green et al., 2020a). By intentionally
reducing domain-specific sample sizes (nd), Goerndt et al.
(2011) demonstrated greatest precision gains (SER = 0.7) for
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FIGURE 1 | Fay Herriot composite estimates (EBLUP) of county forest volume totals compared to FIA direct estimates for three separate state-level analyses (A–C)
and the combined 3-state SFH analysis (D).

area-based SAE for 2 ≤ nd ≤ 4. They noted comparatively
modest gains (SER > 0.7) for nd > 4, with no appreciable
reduction in variances compared to direct estimates for large
samples (nd > 30). Area-level SAE over a twenty-state region
of the northeastern United States involving counties as small-
area domains showed gains comparable to those observed in
the three-state region studied here, with 0.65 ≤ SER ≤ 0.95
(Goerndt et al., 2019). Despite there being many large sample
sizes in the three states we studied—median nd = 31 (forested
plots) and median nd = 50 (all plots)—SERs for the 295 counties
studied here averaged 0.77 (Figure 2D) with SER 2.5th and
97.5th percentiles [0.58, 0.94] (Supplementary Table 1) showing
appreciable gains in precision for FH results across all domain-
specific (county) sample sizes. Precision gains observed here

across a range of forested plots’ sample sizes from 5 ≤ nd ≤ 96
differ from what other authors have shown, possibly because our
analysis did not rely on generalized variance functions, which
are known to convey mainly information on nd, rather than
directly estimated within-domain variation (Goerndt et al., 2011;
Coulston et al., 2021).

While precision gains were notable for estimating total
wood volume with FH EBLUPS compared to direct, design-
based estimates, a significant concern is that end-users often
require volume estimates disaggregated by forest type or species
groups (e.g., hardwoods or softwoods), or by product classes
such as pulpwood or sawtimber (Coulston et al., 2021). End-
users may also wish to preserve consistency among estimates
of multiple attributes for which NFI data provides estimates,
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FIGURE 2 | Fay Herriot estimates RMSE% compared to FIA direct estimate standard errors (percent of county total) for three state-level analyses (A–C) and the
combined 3-state analysis (D). Non-spatial FH estimators were used for data in panels (A–C), while the SFH estimator was used for panel (D). (note: SER = ratio of
standard errors).

including biomass, stem density, basal area, or any of dozens
to hundreds of other attributes. While not pursued here,
multivariate FH models have been developed and applied
to situations where multivariate estimates were sought from
repeated sampling (Ghosh et al., 1996; Benavent and Morales,
2016). Model-assisted methods may also allow for simultaneous
and compatible estimation of multiple attributes, or generic
inference, as distinguished from the focus on a single attribute
of interest, or specific inference, pursued here (McRoberts
et al., 2017; McConville et al., 2020). Expanding the analyses
conducted here to multivariate cases would constitute a
significant augmentation.

Accounting for spatial correlation among adjacent counties
had minimal effect in single-state analyses conducted here and
modest effect in the combined model involving all three states,
likely due to a mismatch between the scale at which the counties
in this study differed from scales of natural and anthropogenic
processes affecting total wood volumes in the states and counties
studied. We note that the mean land area of 295 counties
studied here was 1,218 km2, with a range of [107, 4,047]
km2 (Supplementary Table 1). The lack of spatial correlation
differed from other work that found substantial reductions in
SER when spatial autocorrelation was accounted for Magnussen
et al. (2014); Ver Planck et al. (2018). Observed gains may be
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TABLE 4 | Mean standard error ratios (SER) of EBLUP RMSE to direct standard
error, averaged over counties within state groupings.

Single state
results

Combined
state results

Apparent nd

gains

State FH SFH FH SFH FH SFH†

North Carolina 0.7044 0.6957 0.783 0.7363 4,692 3,921

Tennessee 0.8129 0.7984 0.8567 0.8166 1,937 1,746

Virginia 0.8128 0.8155 0.817 0.7729 2,137 2,893

Three states 0.7759 0.7694 0.8183 0.7746 8,766 8,560

Unshaded entries correspond to alternative FH or SFH results supported by
likelihood ratio tests (cf. Table 3).
†results from SFH analysis performed on three-states combined.

related to the areas of domains studied, such as in relatively
small stands studied by Ver Planck et al. (2018), which were
necessarily much closer in proximity (e.g., as could be measured

by centroid distances) due to their small land areas than the
county domains we studied. Closer proximities among domains
does not necessarily explain the gains achieved in accounting for
spatial correlation noted by Magnussen et al. (2014) in their study
of large Swiss forest districts spanning an area of 14,000 km2.
One result from our combined 3-state analysis that agreed with
results of Ver Planck et al. (2018) is that accounting for spatial
correlation can increase overall precision when averaged across
many small area domains. Our results were also consistent with
results presented by Ver Planck et al. (2018) that showed while
the SFH reduced relative errors in some domains, it led to
increased errors in others. When presented as maps of relative
standard errors for counties in the study region (Figures 4, 5),
it becomes evident that gains in precision for combining states
and using SFH reduced the errors in some counties in Virginia
while increasing errors in some counties in North Carolina and
Tennessee. Such tradeoffs should be considered when choosing
an approach for implementation.

FIGURE 3 | Apparent domain sample sizes (nd,app) for total forest volume of study area counties compared to FIA sample sizes from direct estimates. Non-spatial
FH estimators were used for results shown in panel (A–C), while the SFH estimator was used for panel (D).
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FIGURE 4 | Relative standard errors of non-spatial Fay-Herriot EBLUP estimates of county total forest volume, obtained from separate models for each of three
states, North Carolina, Tennessee, and Virginia.

FIGURE 5 | Relative standard errors of simultaneous autoregressive spatial Fay-Herriot EBLUP estimates of county total forest volume obtained from a single model
combining data for three states in the southeastern United States.

Since county areas are treated as known, fixed quantities in
the FIA estimation framework, scaling of responses, predictors,
model coefficients, and estimated RMSEs to a per-area basis can
be accomplished post hoc by dividing quantities related to totals
by the corresponding county areas (Supplementary Table 1).
No recalculation of model parameter estimates, including the
spatial correlation parameters in SFH results is necessary. Future
work could look at how results generated per unit of forest

land might differ from the area totals (or totals scaled per
unit area of all land) presented here. Since forest land area is
an estimated quantity in the FIA inventory design, estimates
per unit of forest land area would consist of ratio estimates
with both numerator (volume) and denominator (forest land
area) being estimated quantities. It is possible that the spatial
correlation structure for such ratio estimates differs from
those noted here.
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Further gains in estimator efficiency should be possible
by including additional auxiliary information to reduce
likely inconsistencies in the largely unmodified NAIP CHM
information used here (Hansen et al., 2013; Potapov et al.,
2020). Apart from filtering CHMs to omit areas over water,
no efforts were made here to eliminate pixels in the CHMs
representing heights of vegetation or other structures lying
outside of areas that would typically be classified as forestland
in the FIA inventory. Features such as buildings or other raised
structures, urban forests, small patches of trees growing outside
of areas defined as forest (see Glossary of Terms, Bechtold and
Patterson, 2005), agricultural crops, or features in other land
types undoubtedly contributed to the summed canopy height
class metrics derived from CHM metrics used as predictors
in the synthetic models developed here (Hansen et al., 2016).
Although the current study was focused on gains to be realized
with minimal processing of NAIP CHMs as-delivered, exploring
the impact of non-forest features on forest volume estimates is a
topic of considerable interest (Potapov et al., 2021).

Cost Effectiveness
Results of this work demonstrated the magnitudes of gains
in efficiency possible by integrating NAIP-derived CHMs with
direct sample data from NFI field plots using the area-level FH
and SFH procedures. Such information can be used to evaluate
cost-effectiveness of implementing the approach to other states
or repeating a NAIP 3d acquisition at a future date, such as in
monitoring forest growing stock change over time. In considering
this, we defined the costs of collecting sample data from a single
survey plot (Cplot) and the cost of acquiring NAIP 3d DAP
coverage for a state (C NAIP).

The cost of additional forest plots needed in direct estimation
to attain the same level of precision that SAE analysis using NAIP
CHM data provided is Cplot × ngain, leading to the following cost
effectiveness (Ce) calculation

Ce =
CNAIP

Cplot × ngain

where values of Ce < < 1 should indicate some degree of
cost-effectiveness for acquiring NAIP 3d imagery. In the three
states studied here, the inequality Ce < 1 requires a cost ratio
CNAIP/Cplot < ngain, with values of ngain ranging from 1,937 to
4,692 (Table 4). From this basic calculation, it appears that NAIP
acquisition costs below about 2,000 times the cost of adding an
additional sample plot measurement would be worth considering
for states like North Carolina, Tennessee, or Virginia, at least
from the perspective of cost-effectiveness. In actual settings, cost
considerations would not likely be this simple. For instance, when
evaluating a decision to install new field plots, potential costs
would undoubtedly be different than the cost of remeasuring
existing plots. Other factors such as the number of plots and forest
acreage in states would also merit consideration.

Precision Standards
Direct and SAE estimates of precision in this study can shed
light on the degree to which the FIA standard for precision

FIGURE 6 | Relative standard errors of FIA direct and FH county forest
volume estimates (million m3) with 5% precision standard per 28.3 million m3.

could be met or exceeded using FH type estimators. Because
the estimates in this study are for all forest land, rather than
limited to commercial forest land, the 5% standard may not
be representative of FIA direct estimates’ precision, despite
approaching the 5% standard (Figure 6). Even so, gains achieved
using SAE demonstrate that the standard can be met at a
smaller volume threshold, perhaps 90% of the current 1 billion
ft3 by incorporating photogrammetric CHM information into
estimates (Figure 6).

CONCLUSION

Area-level SAE models using NAIP 3d DAP canopy heights
as auxiliary information provided precision gains averaging
between 19 and 30% for estimates of county-level forest volumes
in North Carolina, Tennessee, and Virginia, compared to
estimates made from FIA sample data alone. Choosing the
appropriate populations from which to generate county-level
FH estimates, i.e., using single states or combining data from
multiple states, should be given due consideration in operational
inventory settings. The applied research presented here is the first
example we know of that applied SAE techniques to FIA survey
data at state and county-level scales, which should make results
relevant to stakeholders concerned with increasing efficiencies
in FIA inventory estimation. Results suggest that the non-spatial
model seemed adequate in generating county-level estimates in
single-state settings, while the area-level model accounting for
spatial autocorrelation was better suited in the combined three-
state setting. Composite FH-type area-level estimators showed
high potential for increasing precision in county-level estimates
of growing stock volume with considerable gains in apparent
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sample sizes, a clear measure of cost-effectiveness, and seemingly
little or no added bias. Further examination of potential gains in
estimating other forest attributes in the FIA program—including
measuring change over time–seem warranted, as do the use of
other sources of auxiliary information and the application of
these methods to other states and regions in the United States.
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This paper demonstrates a process for translating a database of forest measurements
to interactive dashboards through which users can access statistically defensible
estimates and analyses anywhere in the conterminous US. It taps the extensive Forest
Inventory and Analysis (FIA) plot network along with national remotely sensed data
layers to produce estimates using widely accepted model-assisted and small area
estimation methodologies. It leverages a decade’s worth of statistical and computational
research on FIA’s flexible estimation engine, FIESTA, and provides a vehicle through
which scientists and analysts can share their own tools and analytical processes. This
project illustrates one pathway to moving statistical research into operational inventory
processes, and makes many model-assisted and small area estimators accessible to
the FIA community. To demonstrate the process, continental United States (CONUS)-
wide model-assisted and small area estimates are produced for ecosubsections,
counties, and level 5 watersheds (HUC 10) and made publicly available through R
Shiny dashboards. Target parameters include biomass, basal area, board foot volume,
proportion of forest land, cubic foot volume, and live trees per acre. Estimators
demonstrated here include: the simplest direct estimator (Horvitz–Thompson), model-
assisted estimators (post-stratified, generalized regression estimator, and modified
generalized regression estimators), and small area estimators (empirical best linear
unbiased predictors and hierarchical Bayes both at the area- and unit-level). Auxiliary
data considered in the model-assisted and small area estimators included maps of
tree canopy, tree classification, and climatic variables. Estimates for small domain sets
were generated nationally within a few hours. Exploring results across estimators and
target variables revealed the progressive gains in precision using (in order of least gain
to highest gain) Horvitz–Thompson, post-stratification, modified generalized regression
estimators, generalized regression estimators, area-level small area models, and unit-
level small area models. Substantive gains are realized by expanding model-assisted
estimators beyond post-stratification, allowing FIA to continue to take advantage of
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design-based inference in many cases. Caution is warranted in the use of unit-level small
area models due to model mis-specification. The dataset of estimates available through
the dashboards provides the opportunity for others to compare estimators and explore
precision expectations over specific domains and geographic regions. The dashboards
also provide a forum for future development and analyses.

Keywords: small area estimation, EBLUP, post-stratification, hierarchical Bayes, Fay and Herriot model, National
Forest Inventory

INTRODUCTION

The USDA Forest Service, Forest Inventory and Analysis (FIA)
program is responsible for reporting status and trends of the
nation’s forests and is mandated by Congress, through the 1928
McSweeney-McNary Forest Research Act and the 1974 Forest
and Rangeland Renewable Resources Planning Act, to inventory
and maintain a national database and provide estimates at State
and National levels. The inventory was designed to provide
strategic level information (Gillespie, 1999), with states being
the standard reporting units, and post-stratification being the
predominant estimator used in production processes (Bechtold
and Patterson, 2015). Yet, there is a growing need for more
precise and statistically defensible estimates to support forest
land management over sub-State areas (U.S. Department of
Agriculture, 2014; Prisley et al., 2021; Wiener et al., 2021).

To provide some examples, while standard FIA reporting
provides analyses over entire states or regional collections of
counties within a state (Witt et al., 2018; U.S. Department of
Agriculture, Forest Service, 2021), estimates of forest resources
are frequently needed by individual counties for county-level
assessments (Morin et al., 2015; Filippelli et al., 2020) and
alignment of sustainable management practices to national
efforts (U.S. Department of Agriculture, Forest Service, 2020).
Further, the USDA Forest Service has emphasized an ecological
approach to managing forests and directing policy by its
development of a hierarchical framework of Ecological Units
(ECOMAP; Cleland et al., 2007). The classification was aimed
at providing a scientific basis for analyzing ecosystems at
different scales, depending on the management need. The
ECOMAP delineations are frequently used for analyzing
vegetation patterns (West et al., 1998; Hanberry et al., 2018;
Miller et al., 2018) and ecological subsections provide a
national collection of areas for which estimates of forest
attributes would be useful. As another example, the Forest
Service has recognized the need for assessing and monitoring
the hydrologic systems across the US. Quantifying forest
attributes within watersheds, particularly in conjunction with
disturbance events, is needed for assessing variables such as
stream flow and snowpack (Goeking and Tarboton, 2020). It is
important to have the ability to construct estimates of forest
attributes across smaller political, ecological, and hydrologic
areas of interest.

One question that frequently arises is: how can we take
advantage of FIA’s extensive, strategic-level national database to
generate estimates for areas that do not have enough sample plots
using current estimation strategies to get meaningful estimates?

Auxiliary data generated from remotely sensed platforms is
abundant, inexpensive, and is often correlated with forest
attributes of interest. One way to use the auxiliary data is to
build a model for the forest attribute of interest using the FIA
plot data as the response, and the auxiliary data intersected
at those ground plots as the predictor variables. From this
model, a wall-to-wall map of predictions of the forest attribute
of interest is generated. The assumed statistical framework
determines how the predicted values are aggregated to form
an estimate and how the estimator accounts for the sampling
design. Post-stratification is one of the simplest forms of model-
assisted estimation and is the estimator currently employed
in FIA’s production processes. But numerous other model-
assisted estimators offer further opportunity to make better
use of auxiliary data (e.g., McConville et al., 2020). In model-
assisted estimation, the model is simply used as a vehicle for
estimating parameters in the regression estimator formula. We
are not making the assumption that the population was really
generated by that model. Therefore, model-assisted estimators
are considered robust to model mis-specification (meaning they
are asymptotically unbiased for the population attribute and
the variance formulas are valid) regardless of whether or not
the working model is an accurate reflection of the relationship
between the variable of interest and auxiliary variables. Small
area estimators (e.g., Rao and Molina, 2015), on the other
hand, are needed in instances where there are too few sample
plots in order to produce a reliable estimate using only data
within those small domains of interest. In this case, small area
estimators “borrow strength” (both sample plots and auxiliary
data) from other similar areas to increase the effective sample
size from which information can be produced. This borrowing
process is orchestrated through a model from which measures of
precision can be derived. Small area estimators rely on model-
based inference which means the observations are assumed
to be random realizations of some superpopulation. That is,
unlike model-assisted estimators (which rely on design-based
inference), we are making the assumption that the model
did generate the population. One should be careful when
comparing the standard error estimates of design-based and
model-based methods because each paradigm conceptualizes
randomness differently. In design-based inference the primary
source of randomness comes from the sampling of units
from the population while model-based inference considers the
data to be realizations from a superpopulation model. These
different conceptualizations impact how the standard error of
the estimator is calculated. In addition, substantial gains in
precision can be realized from model-based estimators, but
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they can easily yield biased estimates if the model is mis-
specified.

Recent reviews of the use of model-assisted and small
area estimators in forest inventory applications are provided
by Guldin (2021) and Dettmann et al. (2022). Extending
beyond those reviews, the last year has seen a spike in
investigations into improving precision in FIA estimates over
small domains. For example, in the Interior Western US,
estimates for multiple forest attributes were explored using a
modified generalized regression estimator over counties (Wojcik
et al., 2022). And area-level Hierarchical Bayesian and Empirical
Best Linear Unbiased Predictor strategies were compared to post-
stratification over ecological subsections (White et al., 2021).
In the Pacific Northwest, Bell et al. (2022) compare Horvitz
Thompson, generalized regression, and k-nearest neighbor
synthetic estimates of aboveground live carbon. Temesgen
et al. (2021) use Fay–Herriot models of above ground biomass
and volume specific to stand-level inventories where variable
radius plot locations may be unknown. In the Southern US,
Cao et al. (2022) improve precision in volume estimates for
counties using spatial area-level small area estimators. In the
northern US, Harris et al. (2021) compare design- and model-
based estimates in support of the National Woodland Owner
Survey. Across the Western US, Gaines and Affleck (2021)
estimate postfire tree density through temporal borrowing
strategies. And across the conterminous US, Stanke et al. (2022)
use rFIA to facilitate spatial Fay–Herriot models of forest
carbon stocks.

Constructing estimates over non-traditional boundaries
requires a shift to using these statistical estimators that can
better leverage improved auxiliary remotely sensed data. FIESTA
(Forest Inventory ESTimation for Analysis) (Frescino et al.,
2020) is an R package that was originally developed to support
the production of estimates consistent with current tools
available from the FIA National Program, such as DATIM
(Design and Analysis Toolkit for Inventory and Monitoring)
and EVALIDator1. FIESTA provides an alternative data retrieval
and reporting tool that is functional within the R environment,
allowing customized applications and compatibility with other
R-based analyses. It hosts a growing suite of model-assisted
and small area estimators. While the package itself is available
publicly for R users, most forest land managers need tools that
do not require programming expertise. A first step in making
estimates available is through distribution via a dashboard.

In this paper we first demonstrate a national, production-level
process whereby a large collection of model-assisted and small
area estimators can be rapidly applied in FIESTA for a variety
of forest attributes and domains across the conterminous US.
Second, we compare the levels of precision that can be achieved
using these different estimators for different sized domains,
providing benchmarks from which future improvement can be
made. And third, we provide estimates and their standard errors
through publicly available dashboards so others can perform
analyses in different regions of the country.

1https://www.fia.fs.fed.us/tools-data/index.php

MATERIALS AND METHODS

FIESTA
FIESTA is an R package made up of a set of functions for
compiling response data and auxiliary information for use
in different estimation strategies, including simple random
sampling, model-assisted, and model-based small area estimation
(SAE). The functions are categorized based on different
purposes: FIESTA’s core functions include code for querying and
summarizing FIA data and different types of spatial data; FIESTA
modules present different estimation strategies; and FIESTA
analysis functions are wrapper functions to streamline different
estimation routines.

We created an analysis function to generate and compare
estimates using several different estimators for any defined
domain(s) as depicted in Figure 1. The analysis function
combines FIESTA core functions to: (1) extract FIA inventory
data and (2) compile and summarize auxiliary information from
multiple spatial data layers by domain. These are shaded in
blue to indicate data compilation processes. From here, another
function formats the output from these core functions, for input
to the FIESTA Green-Book (GB), Model-Assisted (MA), and
Small-Area (SA) estimation modules, including adjustments for
non-response and auxiliary data standardization. The estimation
modules, shaded in green, draw from a number of published R
packages and generate estimates and standard errors by response
for each domain.

Domains of Interest
To illustrate this database to dashboard process, three national
datasets were used as targets for constructing forest population
estimates: (1) Cleland Ecomap Subsections (Cleland et al.,
2007), (2) County boundaries (U.S. Census Bureau, 2019)
and (3) Watershed Boundary Dataset (WBD) – hydrological
unit code (HUC) 10 (U.S. Geological Survey [USGS], 2013).
The Cleland Ecomap dataset consists of a set of polygon
feature classes across the conterminous United States, delineated
from a nested, hierarchical classification based on ecological
associations, including climate, physiography, hydrology, soil,
and vegetative characteristics. The ecosubsection polygon feature
classes are the smallest unit of Ecomap classification, ranging
from 55 thousand acres (222 square kilometers) to over 8
million acres (32,375 square kilometers) in size. The US Census
Bureau delineation of counties is based on political boundaries,
without any consideration of ecological characteristics. Here,
the Federal Information Processing Standards (FIPS) codes were
used as domain identifiers. The sizes of the counties range from
292 thousand acres (1181 square kilometers) to approximately
6 million acres (24,281 square kilometers). The hydrological
units (HU) are from a standardized, nested hierarchical system
made up of delineations based on topographic, hydrologic,
and other relevant landscape characteristics, defining surface
water drainage across the United States. The HUC levels
range from the largest, first-level (HUC-2) region, averaging
approximately 123 million acres (496 square kilometers) to
the smallest, sixth-level (HUD-12) sub-watershed, averaging
approximately 26 thousand acres (107 square kilometers). We
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FIGURE 1 | Flowchart of FIESTA functions used for dashboard estimates.

used the fifth-level (HUC-10) watershed as our domains of
interest, with areas averaging approximately 144 thousand acres
(585 square kilometers).

We used the Cleland Ecomap Province boundaries to define
areas for which our small area estimators would borrow strength
from, based on the assumption that within-province domains are
more homogenous for fitting models, and will therefore offer a
collection of similar plots to increase our effective sample size
with, and help constrain the variance of estimates. For ease
of processing, we generated post-stratified and model-assisted
estimates by province as well for each domain. There are a
total of 39 provinces across the conterminous US, ranging from
approximately 3 million acres (12 thousand square kilometers)
to 195 million acres (789,000 square kilometers) in size. Polygon
domains that crossed more than one province were assigned to
a province based on a plurality overlap. Figure 2 illustrates the
designation of ecosubsections, counties, and watersheds within
province boundaries.

Response Data
The FIA updates and maintains a comprehensive database of
forest inventory data across the U.S. based on a sample of plots,
each representing approximately one acre of land. The database
stores: tree-level measurements, including diameter and height;
forest condition observations, including stand size and forest
type; and a slew of calculated attributes, including basal area,
volume, and biomass. The response data used in this analysis
were extracted from the FIA database based on the most current
measurement of each sampled plot at the time of download (2021

July 29). Only single intensity plots were used for this analysis
to assure equal sampling probabilities across the populations. It
should be noted that only the unit-level, model-based estimators
require data from an equal probability sample design while all of
the other estimators can account for unequal probability samples.

We used six different forest attributes as the focus for this
analysis: forest area; live basal area (sqft) of trees 1.0 inch diameter
and greater; number of live trees 1.0 inch diameter and greater;
net board-foot (International 1/4-inch Rule) volume of live trees;
cubic-foot volume of live trees; and biomass of live trees 1.0 inch
diameter and greater, in tons (Burrill et al., 2021). All response
data were expanded to the acre and adjusted for non-response at
the plot-level; then summarized by the domain of interest. Thus,
a plot that was partially sampled was assumed to be representative
of the entire plot. A FIESTA function was used to extract and
compile the data for each set of domains within each province.
Plots were retrieved by intersecting states from a pre-built SQLite
database and assigned to each province based on the Global
Positioning System (GPS) plot location center.

Auxiliary Data
We used a limited set of auxiliary information for simplicity and
consistency in the analyses. The data included two satellite-based
classified images to represent current vegetative cover: (1) the
2016 USGS National Land Cover Dataset (NLCD), analytical tree
canopy cover raster (Yang et al., 2018), including values from
1 to 100 representing the percent of tree canopy cover on the
ground (tcc), and (2) the LANDFIRE 2014 Existing Vegetation
Type (EVT) product (Rollins, 2009) re-classed to two classes,
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FIGURE 2 | Illustration of provincial modeling domain and the (A) ecosubsections, (B) counties, and (C) watersheds they contain. Domains are assigned to
modeling domain based on plurality of occupancy.

representing the dominant lifeform (1: tree; 2: non-tree) (tnt2).
The NLCD layer was resampled to 90 m using the average of the
original 30 m pixels to correspond to the acre-size FIA plot more
closely (Nelson et al., 2009). Similarly, the LANDFIRE classified
map was resampled to 90 m using the majority value within a
focal window of 3× 3 pixels.

The next three spatial layers are from the PRISM (Parameter-
elevation Regressions on Independent Slopes Model) dataset
(PRISM Climate Group, 2004), and represent influential climate
patterns. The data layers include 30-year normals (Daly,
2002) describing average annual precipitation (ppt), average
annual temperature (tmean), and average minimum temperature
(tmin01) for the month of January over the period 1981–2010.

The last layer was chosen to understand the local altitude
characteristics of the site, the LANDFIRE 2010, elevation dataset,
derived from the National Elevation Dataset (NED), representing
land height, in meters, above mean sea level (elev). This layer
was resampled from 30 m resolution to 90 m using cubic-
convolution interpolation.

A FIESTA function was used to assign values from each
auxiliary spatial layer at each FIA plot location as well as
calculate zonal mean statistics by domain within each province.
The function uses the Geospatial Data Abstraction Library
(GDAL) for low-level access to raster and vector geospatial data
formats (GDAL/OGR contributors, 2019) and C++ to increase
performance for large datasets. Predictors were standardized by
subtracting the mean and dividing by the standard deviation
for all observations within the modeling extent (i.e., province
for small area estimates and domains for post-stratified and
model-assisted estimates).

Estimators
Using the same input datasets, we generated estimates for
three national datasets, using one estimator programmed in
FIESTA and seven other estimators available from packages in
the Comprehensive R Archival Network (CRAN2), integrated
through FIESTA. This example illustrates FIESTA’s versatility to
call upon a variety of estimation packages and also allows a user

2https://cran.r-project.org/

to compare output from multiple estimation strategies within a
dashboard environment.

Mimicking FIA’s current estimation strategy, we produced
post-stratified estimates based on the tnt2 variable through
FIESTA’s Green-Book module which implements estimators
documented in Bechtold and Patterson (2015). We also generated
estimates based on a generalized regression estimator (GREG;
Sarndal, 1984; McConville et al., 2020) that was implemented
through FIESTA’s Model-Assisted module that makes use of the
mase R package (McConville et al., 2018).

Through FIESTA’s Small-Area module, we integrated multiple
estimators from the JoSAE R package (Breidenbach, 2018),
including: area-level and unit-level empirical best linear unbiased
prediction (EBLUP) estimators based on the Battese–Harter–
Fuller unit-level model (Battese et al., 1988) and the Fay–
Herriot area-level model (Fay and Herriot, 1979); a modified
generalized regression (Rao and Molina, 2015); and a Horvitz–
Thompson estimator (HT; Horvitz and Thompson, 1952). Area-
level EBLUPs were also fit using the sae R package (Molina
and Marhuenda, 2015). Note that unit-level estimators rely
on models that relate specific plot-level responses to specific
plot-level predictors, while area-level estimators rely on models
that relate averaged area-level responses to averaged area-level
predictors. To obtain the EBLUP estimates, the model parameters
were estimated using restricted maximum likelihood within both
the JoSAE and sae packages. We also generated hierarchical
Bayesian (HB) estimates using the hbsae R package (Boonstra,
2012). We again used the Battese–Harter–Fuller model for the
unit-level HB and the Fay–Herriot model for the area-level HB
now with flat priors on all of the model parameters except the
ratio of the between and within area variance where a half-
Cauchy prior was used (White et al., 2021). The estimators
described above are consolidated in Table 1, along with associated
acronyms used for those estimators, as well as the publically
available packages and functions called by FIESTA to construct
those estimates. The source code for the back-end estimation
done in FIESTA is publicly available via the FIESTAutils R
package (Frescino et al., 2022), particularly in the SAest.pbar and
MAest.pbar functions. In this implementation of FIESTA, we did
not use any spatial covariance structure in our models, instead
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TABLE 1 | Estimators and associated short names/acronyms, R packages, and specific R functions within those packages.

Estimator Short name(s) used in paper and
dashboards

Packages(s) used to
fit estimator

Function(s) used to
fit estimator

Horvitz–Thompson Horvitz–Thompson, HT mase horvitzThompson()

Post-stratified Post-stratified, PS mase postStrat()

Modified Generalized Regression Modified GREG JoSAE eblup.mse.f.wrap()

Generalized Regression GREG mase greg()

Unit-level empirical best linear unbiased prediction based on the
Battese–Harter–Fuller model

Unit-level EBLUP, unit EBLUP JoSAE eblup.mse.f.wrap()

Area-level empirical best linear unbiased prediction based on
the Fay–Herriot model

Area-level EBLUP, area EBLUP sae, JoSAE mseFH(), sae.al.f()

Unit-level hierarchical Bayesian prediction with half-Cauchy
prior based on the Battese–Harter–Fuller model

Unit-level HB, unit HB hbsae fSAE.Unit()

Area-level hierarchical Bayesian prediction with half-Cauchy
prior based on the Fay–Herriot model

Area-level HB, area HB hbsae fSAE.Area()

borrowing strength from ecologically similar areas serving as
surrogates both for spatial proximity as well as similarity in
other dimensions.

Relevant predictors were selected for each small area model
(both unit- and area- level, as well as the modified GREG)
using the elastic net component of the gregElasticNet function
in the mase R package (McConville et al., 2018). The elastic
net is a regularized regression method, which controls for
multicollinearity and performs variable selection (Zou and
Hastie, 2005). The regularization is a linear combination of a
lasso (L1) penalty and a ridge (L2) penalty. The mixing of these
two penalties is controlled by alpha, where α = 1 is purely
lasso and α = 0 is ridge. The variables were selected using
α = 0.5. If no variables were selected, then the function was
rerun with α = 0.2. If again, no variables were selected, NA
was returned for all domains in the province. Variable selection
was also implemented within mase for the GREGs, also using the
elastic net procedure.

In addition, for area-level small area models, domains were
identified up front where models would fail (e.g., where number
of observations per domain were less than or equal to 1, or
where variance of the response within that domain was 0) and
returned with NA values.

Dashboards
We created three dashboards for this article, each associated
with each different national dataset used in this article:
an ecosubsection dashboard, a fifth-level, HUC10 watershed
dashboard, and a county dashboard. The dashboards were
built using the R packages flexdashboard (Iannone et al.,
2020) and shiny (Chang et al., 2021). The dashboards utilize
interactive spatial data mapping R packages such as leaflet
(Cheng et al., 2021) in order to display results across the nation.
The use of leaflet allows for users to zoom into regions of
interest and click on interactive polygons to obtain estimate
information at the domain level through the visual aid of
an interactive map. We also use R packages such as ggplot2
(Wickham, 2016) and plotly (Sievert, 2020) to visualize estimates
graphically and the R package DT (Xie et al., 2021) to create
interactive data tables.

RESULTS

Continental United States Processing
Estimates and standard errors from eight different estimators
were generated across the conterminous US for six forest
responses using the FIESTA R package. We ran a compiled set
of FIESTA functions for each national dataset that performed:
database extractions, auxiliary data summaries, and estimation
preprocessing calculations, for integration with five different
estimation R packages.

Estimates for all domains within all three national datasets
were completed overnight using a Windows 10, 32.0 GB RAM,
64-bit, single core, i5-6300U CPU, 2.40 GHz processor. There
was an average of 963 million, 90 m pixels across our three
national datasets. Table 2 shows total times for one run by
each national dataset, broken down by data compilation and
estimation processes. Data compilation was a combination of
plot data extraction and auxiliary spatial summaries, including
pixel counts and zonal statistics for each domain across all
provinces. Estimation processing included generation of small
area estimates (and modified GREG) from JoSAE, sae, and hbsae
packages, along with post-stratification from FIESTA, and GREG
estimates from the mase package. Processing times also included
a model selection routine from mase for all small area estimates
(and modified GREG) and GREG estimates. On average, the
GREG estimates consumed over 50% of the total estimation
time. This was because a model was fit for each response for
each domain (i.e., ecosubsection, county, watershed) within a
province, different than small area estimates (and modified
GREG), where only one model was fit for each response for

TABLE 2 | Processing times for generating eight different estimates for five
response variables across the three national datasets.

Total domains Total minutes for
data compilation

Total minutes for
estimates

Counties 3,100 75 54

Ecosubsections 1,232 86 58

Watersheds 15,456 177 152

Frontiers in Forests and Global Change | www.frontiersin.org 6 May 2022 | Volume 5 | Article 779446179

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-05-779446 May 19, 2022 Time: 14:31 # 7

Frescino et al. FIESTA Database to Dashboard

FIGURE 3 | Nationwide processing times for data summarization and model estimation. Times are expressed in minutes by number of domains and number of
pixels for each of the national datasets: ecosubsections, counties, and watersheds.

each province. Processing times are further explored in Figure 3
by national dataset as a function of number of pixels for data
compilation (with the number of pixels increasing as predictors
are added), and as a function of number of domains for the
estimation processes. In both cases, processing time follows a
linear trend, although the slope of the trend varies by national
dataset. The number of domains shows a slightly stronger
influence on time.

The estimation challenges posed by these three national
datasets are explained by looking at a summary of the number
of domains and plots within each province available to our
suite of estimators. In general, ecosubsections are relatively
large domains for which FIA would customarily rely on direct
estimators. Contrarily, HUC 10 watersheds pose applications
better suited for SAE. The sizes of counties in the US vary
dramatically and are typically much smaller in the eastern
US than they are in the western US. The distribution of
number of domains in each province (Figure 4A) shows that
on average, area-level models had over 30 domains to work
with for the county and ecosubsection national datasets, whereas
the smaller watershed delineation resulted in an average of
over 200 domains per area-level model. However, both the
ecosubsection and county national datasets posed challenges for
the area-level models in instances where number of domains fell
into the single digits. Area-level models occasionally failed in
production runs, most often for domains for which there was
a combination of too few domains and too weak a relationship
with auxiliary data at the area-level. For the unit-level models

(both model-assisted and small area) the median number of plots
available (Figure 4B) was over 100, well within the recommended
sample sizes for direct estimators. However, for watersheds, the
average number of plots across provinces was only around 3.
Figure 4C reflects how many provinces had extremely small
numbers of plots at the domain level. For ecosubsections, very
few did, with the minimum never falling below about 10 plots.
However both the county and watershed national datasets had
a number of provinces where only 1 plot was available in
some of the domains, precluding the use of area-level models
in those cases. Finally, the maximum number of plots by
domain within province in Figure 4D illustrates how rarely
there are a sufficient number of plots within watersheds for
direct estimation.

Variable selection was part of the nationwide processing to
minimize model failure rates and improve model specification.
Although all the auxiliary data made available to the estimation
modules were known to have some relationship to FIA response
variables, that relationship is naturally different across provinces
and estimators. To provide a sense of variable importance
nationally, Figure 5 illustrates the percentage of times each
predictor variable was selected by the elastic net for unit-level
and area-level EBLUPs of basal area for the watershed national
data set. The tcc and tnt2 predictors are most often included
in both unit- and area-level models, with ppt, elev, tmean, and
tmin01 selected less often. With the weaker relationships at the
unit-level than the area-level, the elastic net most commonly
selected 2 predictors at the unit-level and 4 predictors at the
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FIGURE 4 | Violin plots reflecting the distribution, by national dataset, of (A) number of domains within the provinces, as well as (B) median, (C) minimum, and (D)
maximum number of plots per domain within the provinces. The maroon dots on these plots indicate the mean for each national dataset, while the navy dots
indicate the median. The color of the violin plot indicates the national dataset it represents: yellow for ecosubsections, green for counties, and blue for watersheds.
Note that the y-axis is spaced on a log10 scale.

area-level. Strongly correlated predictors, such as tcc and tnt2,
exhibited a grouping effect where they were either all included
or excluded from the model, a known phenomenon for the
elastic-net procedure (Zou and Hastie, 2005).

Results from this nationwide processing are represented by
Figures 6A–C, which depict the small area estimates of basal area
for ecosubsections, counties, and watersheds, respectively. The
estimator used is the sae area-level EBLUP. Missing values were
filled with JoSAE’s area-level EBLUP and then with the Horvitz-
Thompson estimator if needed. This process filled all holes except
for 12 ecosubsections. For those 12 ecosubsections, there were no
sampled plots with response variable greater than zero, so these
were given a value of zero.

Precision and Bias
With FIESTA’s ability to compute a wide range of estimators,
we can now easily make comparisons of the performance of
different estimation approaches. Figure 7 displays the median
relative efficiency of each of the eight estimators of basal area
over all domains across continental United States (CONUS).
Numbers in each cell reflect the median ratio of the variance of
the estimates derived under the estimator named in the column
over the variance of the estimator named in the row. Reading an
estimator’s median variance ratio down the column allows one
to see its median variance ratio where it is in the numerator,

while reading an estimator’s median variance ratio across the row
allows one to see the ratio where it is in the denominator. Red
cells indicate higher valued ratios, meaning that the estimator
in the denominator is less variable, while blue cells indicate
lower valued ratios, meaning that the estimator in the numerator
is less variable.

From Figure 7, we see that the direct estimators tend to have
higher median variance estimates than the indirect estimators.
Among the direct estimators, the modified GREG and the GREG,
which incorporate more of the auxiliary data, tends to be less
variable than the HT, which utilizes no auxiliary data, and the
PS, which uses one categorical, auxiliary data layer. The variance
estimates tend to be slightly lower when modeling at the domain
(GREG) instead of the province (modified GREG), which may
be explained by the GREG’s tendency to underestimate the
variance when using an internal model (Kangas et al., 2016). In
general, the best direct estimator was the GREG and its average
relative efficiency over a Horvitz Thompson estimator for the
three national datasets ranged from 0.35 to 0.45. In fact, the
GREG is fairly competitive with the indirect estimators and
in some cases results in a smaller median variance estimate,
especially for ecosubsection domains which tend to have larger
sample sizes. Among the indirect estimators, the HB and EBLUP
approaches show strong agreement, which isn’t surprising given
the moderately sized samples, large number of domains, and
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FIGURE 5 | Proportion of times each of the predictor variables was selected for area-level (purple) and unit-level (green) model-based estimators (both EBLUP and
HB) applied to the county national dataset through the elastic net variable selection process used in this paper.

weakly informative prior on the ratio of the within and between
variation. Relative efficiencies range from 0.96 to 1.0.

The relative gain in precision we obtain using any one of
these estimators is further clarified as a function of sample size
in Figures 8A–C for ecosubsections, watersheds, and counties
respectively. Here, smoothed curves of standard errors for basal
area are plotted against sample size for each estimator. We see
a consistent pattern across national datasets. As expected the
direct estimators yield the highest variances with direct being
the worst, followed by improvements with post-stratification,
modified GREG, and GREG. Also as expected, the model-based
estimators show considerable improvement over smaller sample
sizes, with the unit-level EBLUP and HB, as well as the area-
level EBLUPs and HB yielding similar results with a slight
improvement from the unit-level estimators. Similar patterns
were seen for the other response variables.

Overall, between the indirect, area-level and indirect, unit-
level estimators, neither is consistently more efficient than the
other. However, Figure 9 illustrates the potential for model
misspecification in unit-level models. Figure 9A we see the
challenging relationship between basal area and tcc at the unit
level for province M221 with counties as the national dataset.
Figure 9B depicts the clear linear relationship between the same
variables, in the same province and with the same national
dataset, but at the area level. The consequences of using the
unit- versus the area-level estimators are also depicted where
the Horvitz Thompson estimates are plotted against the unit-
level EBLUP in Figure 9C, and against the area-level EBLUP
in Figure 9D. The potential for over predicting biomass in the

unit level instance is apparent at the zero tick for the x-axis.
Nationally, this pattern persists for all the unit-level models
(EBLUP, HB, and modified GREG) as shown in Figure 10.
Negative estimates are also occasionally provided by the unit-
level models.

Dashboards
While we are able to draw several useful conclusions using
the static tables and figures provided in the results above,
the FIESTA dashboards provide an interactive venue for
users to explore these estimators in greater depth. For
ecosubsections, counties, and watersheds, these can be found at
https://ncasi-shiny-tools.shinyapps.io/Ecosubsections/, https://
ncasi-shiny-tools.shinyapps.io/Counties/, and https://ncasi-
shiny-tools.shinyapps.io/Watersheds/, respectively. In these
dashboards, the tables and figures adapt dynamically to the user’s
choices for state, attributes, and estimators.

Figure 11 gives an example of the watershed dashboard.
From the “Maps and Data” tab (A) the user can select the
state, the forest attribute, and which of the design- or model-
based estimates they are interested in. Clicking on any individual
watershed reveals the watershed name, as well as the estimate
and standard error for the attribute selected. Then from
the “Estimator Comparisons” tab, the user can compare the
performance of any of the estimators for their attribute and
state of choice through graphs depicting the distribution of
estimates and standard errors, as well as a table of relative
efficiencies comparable to Figure 7C, but for the users specified
state and attribute.
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FIGURE 6 | Small area estimates of basal area for (A) ecosubsections, (B) counties, and (C) watersheds based predominantly on area-level EBLUPs.

DISCUSSION

In this paper, we demonstrated a process for using FIA’s extensive,
strategic-level, national database for generating estimates within
non-traditional extents across the US, and present results from a
wide range of alternative estimators in a user-friendly dashboard
environment. The study of SAE and other alternative estimation
strategies for forest inventories is rapidly evolving. FIESTA

offers the flexibility to accommodate these estimation strategies,
along with integrating unique responses, multiple auxiliary data
sources, and different model fitting specifications, to continue
this evolution through user-friendly delivery systems, and it
reveals a pathway for using FIA data in more creative ways
for answering forest research questions. The demonstration
presented in this paper of a nationwide processing system,
precision analyses, and dashboards, answered several questions
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FIGURE 7 | The relative efficiency of each of the eight estimators for basal area averaged over (A) ecosubsections, (B) counties, and (C) watersheds for the entire
study region. Numbers in each cell reflect the variance of the estimates derived under the estimator named in the column divided by the variance of the estimator
named in the row. Shades of blue reflect values less than 1, with the deepest blue set at the minimum value for that specific table. Conversely, shades of red reflect
values greater than 1 with the deepest red set at the maximum value for that specific table.

surrounding SAE for forest inventories, but also posed additional
topics warranting further research.

Inventory Attributes
Here we constructed estimates of six key FIA attributes
to demonstrate the process. But FIA has information on

hundreds of attributes and FIESTA can access any of these
from FIA’s extensive database to construct estimates of interest.
FIA’s current estimation process does not just focus on one
variable at a time to conduct specific inference, rather it
reports on a multitude of estimates that must be internally
consistent, accommodating generic inference. FIESTA can
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FIGURE 8 | Smoothed standard errors by number of plots for all estimates of basal area obtained over (A) ecosubsections, (B) counties, and (C) watersheds. The
lines used to represent the data were created with a generalized additive model using smoothing splines with a cubic spline basis. The y-axis represents the
standard error of each estimator and the x-axis represents the number of plots within the domain of interest. For each plot, we trimmed the number of plots to the
0.95 quantile in order to avoid high leverage points in the smoothing algorithm. This 0.95 quantile point was found to be 991 for ecosubsections, 277 for counties,
and 40 for watersheds. These plots were created only for regions where no estimators produced NA values.

mimic this process using post-stratification through its Green-
Book or Model-Assisted modules, and thus be compatible
with current estimates. However, the opportunity exists
to improve precision in these direct estimates by simply
moving to other model-assisted methods such as a GREG
where additional auxiliary data in either continuous or
discrete format can be used, and still retain the ability for
generic inference that is important to any sample survey
organization. Going beyond that, though, there are instances
where specific inference is called for and small area estimates
are constructed through model-based methods targeting
a single attribute. FIESTA has the ability to accommodate

these types of problems through its SA module. More
work is needed to provide guidelines on transitioning
from model-assisted to model-based estimators in cases of
specific inference. In addition, more work is needed in small
domains to model FIA variables jointly to preserve their
ecological consistency.

Auxiliary Data
The development and distribution of alternative auxiliary data
layers relevant to forest inventory is an active area of research.
The set of predictors used here provide a sensible place to
start for estimates of forest status. But finer resolution and
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FIGURE 9 | The relationship between a response variable (basal area) and a predictor variable (total canopy cover, “tcc”). (A) Depicts the relationship between basal
area and tcc at the unit level for province M221 with counties as the national dataset. (B) Depicts the relationship between the same variables, in the same province
and with the same national dataset, but at the area level. (C) Unit and (D) area-level EBLUP estimates compared to the Horvitz–Thompson estimates in province
M221 for the county domains. On plots (A,B), the yellow line indicates the ordinary least squares best fit line and on plots (C,D) the blue line is the identity line.

FIGURE 10 | Estimates of basal area (sqft) from each estimator compared to the Horvitz–Thompson for all counties in across the conterminous US.

Frontiers in Forests and Global Change | www.frontiersin.org 13 May 2022 | Volume 5 | Article 779446186

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-05-779446 May 19, 2022 Time: 14:31 # 14

Frescino et al. FIESTA Database to Dashboard

FIGURE 11 | Example views from the watershed dashboard available at https://ncasi-shiny-tools.shinyapps.io/Watersheds/. From the Maps and Data Tab (A) the
user can select a state, which variable they are interested in and specify which of the design- or model-based estimates they would like to see. Then from the
Estimator Comparisons Tab (B), the user can compare the performance of any of the estimators for their variable and state of choice through graphs depicting the
distribution of estimates and standard errors, as well as a table of relative efficiencies comparable to Table 2, but for the users specified state and attribute.
Dashboards in the same format have also been constructed for ecosubsections and counties, which can be accessed at https://ncasi-shiny-tools.shinyapps.io/
Ecosubsections/, and https://ncasi-shiny-tools.shinyapps.io/Counties/ respectively.

higher quality data is coming online rapidly and could offer
substantial improvements in precision of inventory estimates.
(See Lister et al., 2020 for a review of evolving remotely sensed

products.) In addition, looking beyond status to variables that
reflect change, such as growth removals and mortality, requires
a very different set of auxiliary data in order to establish good
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models between the response and predictors (e.g., Coulston
et al., 2021). FIESTA is designed to use any appropriately
scaled auxiliary data and allows the user to easily assess the
contribution of a given set of predictors on the precision of
an estimator. Although critical to defining the sample design,
a nationwide layer depicting sampling intensity by year has
yet to be developed and is needed to enable the use of all
inventory plots, not just those collected at standard spatial and
temporal scales.

Estimators
The eight estimators applied to the three national datasets
illustrate the ability of FIESTA to draw from numerous alternative
estimation packages in R. In this case, the packages mase,
JoSAE, sae, and hbsae were called upon. There are many options
associated with these packages that can be tapped, while FIESTA
was also designed to plug-and-play alternative packages and
arguments as needed. As new estimation packages, or user-
built analysis functions become available, they can be added
to the comparison to continue to get the best results for the
questions asked.

This nationwide processing of domains of different sizes
over CONUS revealed some important information about the
efficiency of different estimators given the set of auxiliary
data provided. Evaluated at a national scale the increasingly
superior precision performance of post-stratification, modified
GREG, and GREG is not surprising. However, the smaller
variances produced by GREG over the modified GREG warrant
further investigation. Also, the precision gains from model-based
estimators over the design-based estimators for very small sample
sizes is also not surprising. And although unit-level models
produced estimates compatible with direct estimates in areas
where direct estimates were reliable, the effect of model mis-
specification on bias in estimates should be more fully explored.
Important to note are the gains that can be realized from model-
assisted methods such as GREG for smaller sample sizes while
still maintaining asymptotic unbiasedness even if the models
are mis-specified, and retaining the ability to conduct generic
inference. This automated processing also makes tests for simply
improving FIA’s current post-stratification process with new
auxiliary data much easier.

Model Fitting
While it is ideal to construct individual models for every
variable over every geographic region, a production system
needs to be automated and robust to model mis-specification.
For example, while it is good to have a number of auxiliary
data layers available for estimation models, variable selection
techniques, like the elastic net employed here, can help ensure
only meaningful data are contributing to the estimation process.
This paper demonstrates the strides that have been taken
to automate model-fitting strategies such as variable selection
and handle inevitable issues that arise from non-convergence,
insufficient data, and small numbers of domains in a production
environment. However, more work should be done to evaluate
variable contributions, especially in the presence of collinearity
and complex, non-linear relationships.

In these nationwide runs, borrowing strength occurred at the
ecological province level. However, FIESTA is set up to allow a
user to specify a different borrowing strategy. For example, White
et al. (2021) suggest, for some response variables, ecological
sections may provide a better borrowing strategy for small
area models, as they are smaller, more homogenous regions.
Alternatively, management strategies across different forest land
ownerships might suggest a reason to distinguish borrowing
across public vs. private land ownerships. In addition, users may
have access to higher quality or higher resolution auxiliary data
in their specific geographic region and wish to constrain the
borrowing area to the extent of the better data. In addition, as
future work we hope to add more flexible small area models to
FIESTA in order to account for spatial structure, as these models
have been shown to increase precision in a forestry context
(Ver Planck et al., 2018).

Computing and Delivery
The dashboards presented here provide a mechanism for
scientists, statisticians, and other users to explore potential for
precision gains and for setting expectations in geographically
specific regions of the country. All the graphics presented in the
results at the national scale can be subset for specific provinces or
states within the dashboards. The dashboards also demonstrate
an opportunity through which users of forest inventory data
can explore small area perimeters and specific forest inventory
variables for which estimates are needed until such time as
interactive online tools are available for them to fulfill their
information needs. Following the same process shown here,
estimates will soon be derived for past and present wildfire
perimeters across the nation to obtain a sample-based picture
of resources lost to fire. Although similar strategies will be used,
new challenges arise from the diversity of sizes and extents across
non-contiguous boundaries.

All estimates, tables, graphics, maps, and dashboards were
processed within the R environment. This project highlights
the power, versatility, and magnitude of R. Although some
aspects may be more efficient in other software, keeping it
in one platform minimizes complexity in programming and
analysis. Work is underway to increase FIESTA’s processing
speed through conversion of spatial functions to Python. Beyond
FIESTA access provided to novice users through dashboards
like those illustrated here, plans for other distribution veins
proceed as follows: for expert users, the FIESTA package is
currently distributed on GitHub3, and will soon be available
on CRAN (see footnote 2); for novice-to-intermediate users,
a stand-alone desktop application of FIESTA is currently
rolling out; and for Esri users, FIESTA is being integrated
into ArcGIS Pro. In addition to the backend estimation code
already available in the FIESTAutils R package on CRAN,
all other code used in this paper will be available through
the open-source delivery of FIESTA along with additional
resources in vignettes and the associated FIESTAnalysis package
which provides wrapper functions to streamline analyses

3https://github.com/USDAForestService/FIESTA
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using FIESTA functions and includes estimate diagnostics
found in this paper.

CONCLUSION

Leveraging a decade’s worth of statistical and computational
research on FIA’s flexible estimation engine, FIESTA, we
demonstrated a process for translating information in
FIA’s extensive national database to interactive dashboards
through which users can easily access statistically defensible
estimates anywhere in the conterminous US. We combined
FIA plot data with national remotely sensed data layers to
produce estimates over collections of small domains using
published and widely accepted model-assisted and SAE
methodologies. Based on national analyses, the order of estimator
performance for smaller sample sizes (ranging from best
to worst precision) was unit-level small area models, area-
level small area models, generalized regression estimators,
modified generalized regression estimators, post-stratification,
and Horvitz–Thompson. But the gains in precision for unit-level
over the area-level small area models do not offset the potential
for bias due to model mis-specification in unit-level models.
Further, for moderate sample sizes, substantive gains in precision
can be realized by simply moving beyond post-stratification to
alternative model-assisted estimators like generalized regression,
to capitalize on information from auxiliary data and retain the
advantages of direct design-based estimators. The extensive
dataset of estimates available through the dashboards provides
the opportunity for others to compare estimators and explore
precision expectations over specific domains and geographic
areas of the country. The dashboards also provide a forum for
future development and analyses. This project also illustrates one
pathway to moving statistical research into operational inventory
processes, providing a vehicle through which FIA scientists and
analysts can share their own tools and analytical processes with
others.
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INTRODUCTION

The U.S. Forest Service, Forest Inventory and Analysis (FIA) program manages and implements
a design-based network of permanent sample plots that are used to derive a suite of estimates
describing the current extent, status and condition of the nation’s forest resources (Bechtold and
Patterson, 2005). Like many national forest inventory (NFI) systems, the FIA sample is designed
for strategic-level estimation of forest characteristics to meet broad scale monitoring and reporting
requirements. FIA produces official estimates for entire states or multiple county areas (referred to
as survey units), which are large enough to guarantee sufficient sample sizes for direct estimation
(USDA, 2008). Users of FIA data often desire estimates for smaller areas (e.g., single counties,
watersheds, burn perimeters, etc.) however, in most cases these smaller areas have insufficient
sampling densities to support direct estimation alone. In addition, the expansion factors reported
by FIA (Bechtold and Patterson, 2005) have been designed to estimate the area of forest within a
survey unit, and thus are not appropriate for use on small areas andmay not be suitable for use with
all forest attributes (e.g., basal area, volume, biomass, etc.). To overcome these limitations, we use a
previously published regularized raking algorithm (Nagle et al., 2019) to develop spatial expansion
factors which can be combined with FIA plot data to derive statistically valid estimates in areas that
are too small to support direct estimation with FIA data alone.

One advantage of regularized raking is that instead of producing a single set of expansion
factors representing a plot’s contribution to the survey unit (such as those published by FIA),
a wall-to-wall map of expansion factors is produced, which describes the probability that any
location can be represented by a particular FIA plot. This map of design weights facilitates
mapping of survey estimates for small areas and allows post-stratified estimates to be derived
for any forest attribute in the FIA database. Furthermore, because the expansion factors are
map-based they can be delivered and used on the backend of web-based applications, allowing
end users the ability to interactively derive small area estimates for specific areas of interest
without having to directly interact with the FIA database. To demonstrate the potential utility
of this approach we present RegRake, a new, web-based application that uses pre-developed
expansion factor maps to support on-the-fly estimation of FIA forest attributes for user defined
small areas in the state of South Carolina, USA. In this article we briefly describe the regularized
raking algorithm and ancillary input data used to produce the small area expansion factor maps.
We also use RegRake to develop a series of raster and vector-based forest attribute estimates
to help evaluate the amount of wood supply surrounding a proposed biomass energy plant.
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FIGURE 1 | Overview of the six main steps in the RegRake small area estimation workflow, which include: 1. Combining maps of land cover and canopy cover to

produce small area patches; 2. Assigning FIA plot identifiers to the small area patches; 3. Running the regularized raking algorithm; 4. Developing a table of small area

expansion factors; 5. Using the RegRake application to combine small area patches and small area expansion factors for user supplied GIS shapefile; and 6.

Outputting small area estimates in raster and vector format.

SURVEY ESTIMATION WITH
REGULARIZED RAKING

First, we provide a brief overview of the six main steps (shown in
Figure 1) involved with developing custom small area estimates
with the RegRake R (R Core Team, 2020) Shiny application
(Chang et al., 2020). The reader is assumed to have a basic
understanding of forest survey statistics (Köhl, 2004), including
the use of sample plots and estimators using survey weights
or expansion factors (e.g., Horvitz-Thompson, or HT; Cochran,
2007; Thompson, 2012) to derive population totals (e.g., means
and variances). As a strategic-level inventory FIA uses spatially
balanced, randomly selected sample plots to derive estimates for
a variety of forest attributes, however at a density of one plot
per 2,400 ha the sampling intensity requires the use of multi-
county areas (referred to as survey units) to derive valid statistical
estimates for reporting (see Figure 1 for the three FIA survey
units in SC). Expansion factors (or survey weights) published by
FIA are designed for large-area estimation of forest area at the
scale of the survey unit, therefore, to expand the use of FIA data
to smaller areas (or regions that can’t support direct estimation
with plot data alone) and other attributes, we use a modification
of the dasymetric mapping technique (Nagle et al., 2014) known
as “regularized raking” (Nagle et al., 2019). Regularized raking
develops a new set of expansion factors, wit for each survey
unit by matching each FIA plot (i) to a map of homogenous

small area patches (t). Unlike traditional expansion factors that
produce a single weight representing each plot’s contribution to
the survey unit (or in the case of FIA the number of acres each
plot represents in the entire sample population), our approach
results in a map describing the probability that each pixel or
patch can be represented by a particular FIA plot. This expansion
factor map, which is the main output of the regularized raking
approach, can be used to produce both small area estimates and
wall-to-wall maps for every attribute in the FIA database.

To develop new expansion factor maps for SC, Nagle et al.
(2019) combined land cover and tree canopy cover maps (binned
into 11 and 20 classes, respectively) from the 2011 National Land
Cover Database (Homer et al., 2015) to form a series of up to
220 homogenous patches for each county in SC (Figure 1, step
1). Next, they developed predictive models for basal area and
volume within each patch. Finally, they used these predictive
values as ancillary information and developed expansion factors
for FIA plots sampled between 2007 and 2011 (Cycle 7) using
the regularized raking estimator. Both Deville et al. (1993) and
Nagle et al. (2019) discuss the use of unregularized raking and
calibration to adjust survey weights to match population totals
derived from ancillary data. This process, also known as post-
stratification, is currently used by FIA to calibrate survey design
weights to land- and canopy cover maps, however this is done
at the survey unit level. This approach cannot be directly applied
to the large volume of ancillary data considered here for several
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reasons. First, ancillary data derived from predictive models
violate the assumption of raking and calibration that ancillary
data are perfectly known. Second, when there are large numbers
of ancillary data sets, raking and calibration algorithms often
produce erratic and unreliable expansion factors, or the raking
algorithm can even fail to converge. The regularized raking
algorithm of Nagle et al. (2019) provides a feasible solution as it
estimates the expansion factors wit by solving the minimization
problem (shown in Figure 1, step 3):

min
wit

−

∑

i∈s

∑

t

wit log

(
wit

dit

)
+

1

2γ

∑

ℓ

∑

j

(
τjℓ −

∑
i∈s

∑
t∈Jj

witxiℓ

)2

σ 2
jℓ

(1)

where, xiℓ are the survey data for plot i and attribute ℓ, and the
ancillary data for region j and attribute ℓ has the estimated value
τjl and variance σ

2
jl
, and dit are prior weights determined by the

sample design probabilities.
Deville and Särndal (1992) showed that the only difference

between raking and the generalized regression estimator (or
GREG) is the use of the entropy distance function (i.e., the
logarithmic term in Equation 1) instead of the chi-square
function. Although GREG is a commonly used model-assisted
approach that can produce lower squared errors than the
more generalized raking approach, it can produce negative
design weights which can be problematic. In addition to being
asymptotically design unbiased (Guggemos and Tille, 2010), the
output of our generalized raking estimator (shown in Figure 1,
step 4) is a set of strictly positive expansion factors wit in units
of acres of patch t represented by plot i. Since the weights are
normalized by the small-area’s size wit∑

t wit
, they form a vector

representing the probability density across all the samples found
in each small patch, allowing for broader use with all attributes in
the FIA database.

Calibrating on too many ancillary variables can result in
erratic expansion weights or non-convergence (in the case of
raking) or negative weights (in the case of GREG). Negative
weights are problematic for survey estimation, especially for
agencies that publish them, thus, to ensure weights stay positive
and to avoid overfitting a regularization approach is employed.
Inspired by ridge GREG and LASSO regression (McConville
et al., 2017), we use a global regularization parameter gamma (γ
in Equation 1), which allows the raking estimator to converge
when the design weights “approximately” fit the ancillary data.
Essentially the regularization parameter strikes a balance between
producing expansion factors that closely match the unbiased
design weights vs. finding factors that closely match the ancillary
totals. While this tradeoff tends to sacrifice some small amount
of finite-sample bias in the predictions it significantly reduces
the overall mean square error. One challenge is finding a
suitable value for γ. In the limit as γ gets large, the resulting
weights will match the survey-unit HT weights without regard
for the patch-level data. At the other extreme, as γ approaches
zero, the resulting weights are a purely model-based estimate
without regard to the sample design. Here, a cross-validation
procedure was used to find γ. This process (described in full

in Nagle et al., 2019) involved running the regularized raking
algorithm on a series of simulated auxiliary totals, then using
the resulting expansion factors to predict forest volume. Errors
from these simulations were then compared across a range
of regularization values and the γ with the lowest mean
square error was selected. We recognize our use of the survey
data to determine γ is considered endogenous, and while
these approaches have been shown to be unbiased (Breidt
and Opsomer, 2008) more work is needed to determine their
legitimacy for use in survey estimation with FIA data. Lastly,
to proportionally assign the errors to the quality of the various
ancillary data sets we set the denominator σ

2
jl
in Equation (1) to

the variance of the ancillary total (τjl) as proposed in Nagle et al.
(2014).

DELIVERING CUSTOM SMALL AREA
ESTIMATES VIA WEB-BASED
APPLICATION

Although the regularized raking equation can produce a map
of small area expansion factors, these weights (in acres) can
also be stored in tabular form once they have been merged
with the FIA plot identifiers. This table of small area weights
(shown in Figure 1, step 4) can then be used with the map
of small area patches (Figure 1, step 2) to produce small area
estimates. Here, instead of delivering these inputs as separate
products, we opt to distribute them on the backend of the
RegRake R Shiny application (shown in step 5, Figure 1), which
can combine both inputs on the fly to produce vector and
raster-based estimates for user defined areas of interest (shown
in step 6, Figure 1). Disseminating the small area weights and
patch raster map via the R Shiny application simplifies the
process of developing small area estimates, giving users the
ability to derive small area estimates by simply uploading a
polygon shapefile into the web-based interface.1 Although the
small area weights developed with regularized raking can be
used to develop small area estimates for any attribute in the
FIA database, currently RegRake only supports estimation of a
limited number of key variables including total basal area of live
trees >1.0 inch (based on the FIA condition variable, BALIVE
in ft2/acre), total net volume of wood in the merchantable stem
of sample trees > 5.0 inches (based on the FIA tree variable,
VOLCFNET in ft3), and total acres of Forest, Agriculture,
Developed and Other land use classes (derived by simplifying
the FIA condition variable LAND_USE_SRS according to the
cross-walk table found in the RegRake user’s guide available
at the above url). In addition, RegRake also offers the option
to run these estimates on a per acre basis. For basal area and
volume, the per acre estimates are derived by dividing the
estimates of total basal area and total volume by the estimated
number of forest acres in the user’s polygon shapefile, while for
land use, the per acre estimates are reported as a percentage
of the polygon’s area found in each land use class (summing
to 100% across all land uses). In addition to these tabular

1http://quetelet.geog.utk.edu/regrake/
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TABLE 1 | Population totals and per acre estimates for FIA basal area, net volume

and land use variables derived for a series of concentric rings representing driving

distances to a hypothetical biomass energy plant.

Distance to biomass

plant (miles)

0–20 20–40 40–80

ACRES_UNADJ 480,391 1,565,802 2,694,707

BALIVE_TOT (ft2) 26,744,795 88,923,486 175,528,455

VOL_TOT (ft3) 473,034,195 1,572,693,792 3,088,850,144

FOREST_TOT (acres) 283,896 945,211 1,890,851

AG_TOT (acres) 126,524 371,062 428,540

URBAN_TOT (acres) 61,831 223,308 329,006

OTHER_TOT (acres) 8,140 26,221 46,309

BALIVEperAC (ft2/acre) 94.21 94.08 92.83

VOLperAC (ft3/acre) 1,666.23 1,663.85 1,633.58

FOREST_percent (%) 0.59 0.60 0.70

AG_percent (%) 0.26 0.24 0.16

URBAN_percent (%) 0.13 0.14 0.12

OTHER_percent (%) 0.02 0.02 0.02

and vector-based estimates, RegRake can also produce raster-
based estimates, which represent the estimated amount of each
variable found in each 30m pixel (matching the resolution of
the patch raster map). Therefore, when the per pixel values
are multiplied by the area represented by all the pixels in
each volume, basal area and land use bin and summed, the
resulting values match the estimates reported in the RegRake
tabular output.

As an example, we used RegRake to derive tabular, vector and
raster-based small area estimates for a set of concentric rings
representing various driving distances from a proposed biomass
energy plant. First, the individual files making up the polygon
shapefile are zipped and uploaded into the RegRake application
(shown in step 5, Figure 1). Note, shapefiles must be in polygon
format and can include one or many polygons in the same file.
Here, our shapefile contains 3 polygons representing driving
distances of 0–20, 20–40, and 40–80 miles from the proposed
biomass energy plant. We recommend that polygons be at least
10,000 acres to ensure enough FIA plots are used to produce valid
estimates. We also note that if the uploaded shapefile overlaps
multiple survey units, each one must be run individually and
later combined to produce estimates for the full area. After
running the population totals and per acre estimates the results
appear directly in the table tab of the RegRake application. These
estimates (shown in Table 1) can then be copied and pasted into
a spreadsheet or downloaded as a new shapefile with the results
appended to the attribute table (e.g., the shapefile showing total
volume for the three driving distances in our example is shown in
Figure 1, step 6). As a final step the user can also develop raster-
based estimates, which can be downloaded as a single or multi-
band file depending on the number of variables selected (e.g., the
raster-based total volumemap for our example shapefile is shown
in Figure 1, step 6). In this hypothetical example, a plant manager
could overlay the raster total volume estimates with other GIS

data sets (e.g., roads, land use, protected areas, ownership, etc.)
to help pinpoint areas where supply is plentiful, allowing cost
estimates associated with accessing and delivering the necessary
rawmaterials to be considered when evaluating potential sites for
building a new bioenergy plant.

ADVANTAGES AND FUTURE
OPPORTUNITIES OF REGULARIZED
RAKING

In this article we describe an approach for using a web-based,
R Shiny application called RegRake to deliver a new set of
expansion factors that can be used with U.S. Forest Service
FIA data to develop on the fly, custom small area estimates for
several forest attributes in the state of South Carolina, USA. The
regularized raking estimator used to develop these new expansion
factors has several appealing qualities that help facilitate the
development of small area estimates. These include automated
calibration of survey design weights using multiple ancillary data
sets that can be applied to all FIA variables (instead of just 1
variable, as is common with the GREG estimator). The new,
strictly positive expansion factors also produce consistent spatial
and tabular estimates, that scale seamlessly across domains of
interest, and which maintain relatively low levels of uncertainty
despite the tendency for variance to increase when small area
estimates are made with FIA data alone. Although RegRake
is only available in South Carolina we anticipate adding new
locations as the requisite expansion factor maps are developed
for other states across the southeastern U.S. We also plan to add
other attributes and estimates of uncertainty, giving users even
greater flexibility to develop and evaluate small area estimates
for a more robust suite of forest characteristics for their area
of interest.
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