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Institute of Science, Rehovot, Israel

Comprehending the meaning of body postures is essential for social organisms such

as humans. For example, it is important to understand at a glance whether two people

seen at a distance are in a friendly or conflictual interaction. However, it is still unclear

what fraction of the possible body configurations carry meaning, and what is the best

way to characterize such meaning. Here, we address this by using stick figures as

a low-dimensional, yet evocative, representation of body postures. We systematically

scanned a set of 1,470 upper-body postures of stick figures in a dyad with a second

stick figure with a neutral pose. We asked participants to rate the stick figure in terms

of 20 emotion adjectives like sad or triumphant and in terms of eight active verbs that

connote intent like to threaten and to comfort. The stick figure configuration space was

dense with meaning: people strongly agreed on more than half of the configurations. The

meaning was generally smooth in the sense that small changes in posture had a small

effect on themeaning, but certain small changes had a large effect. Configurations carried

meaning in both emotions and intent, but the intent verbs covered more configurations.

The effectiveness of the intent verbs in describing body postures aligns with a theory,

originating from the theater, called dramatic action theory. This suggests that, in addition

to the well-studied role of emotional states in describing body language, much can be

gained by using also dramatic action verbs which signal the effort to change the state of

others. We provide a dictionary of stick figure configurations and their perceivedmeaning.

This systematic scan of body configurations might be useful to teaching people and

machines to decipher body postures in human interactions.

Keywords: social neuroscience, emotional body language, social psychology, human-computer interaction,

emotion elicitation, physics of behavior, psychophysics

INTRODUCTION

Body language pervades our lives. It helps us make sense of the state and intent of others and
understand, from a distance, whether people are in a friendly or conflictual interaction. Despite its
importance, we lack systematic ways to describe the meaning that body language carries. In other
words, we lack ways to map the space of body configurations to fields of perceived meaning. A
better understanding of body language is important for understanding basic neuroscience of how
meaning is made [1–3], for improved human–machine interaction [4–11], and for training people
to better understand body language.
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What types of meaning are conveyed by body language is
an open question. There are at least two main theories. One
theory originates in psychology and considers body language as
primarily expressing emotions [1–3, 12]. This emotional body-
language theory takes ideas from the facial expression of emotion
and applies them to research the perceived emotional meaning of
body postures. Indeed, people can quickly understand emotion
from a snapshot showing body postures, sometimes as rapidly
and accurately as emotions are perceived from faces [13, 14].
Thus, according to the emotional body-language theory, body
language primarily speaks in adjectives: happy, sad, triumphant,
and sympathetic.

A second theory for body language is that it primarily
conveys dramatic actions. A dramatic action is defined as the
effort to change the state of another. Dramatic actions can be
described by transitive verbs, such as to encourage, to comfort,
to threaten, to scold. Unlike emotion adjective which define
a state, dramatic action verbs define an effort to change the
state of another. Dramatic action theory originates from the
practice of theater [15], and was recently operationalized by Liron
et al. [16]. Dramatic action theory and emotional body language
theory are non exclusive: body language can carry both types
of meaning.

Since the concept of dramatic action is not widely known in
behavioral research, we provide a brief background. The field
of theater often aims to create specific portrayals of human
interaction. Accumulated experience shows that instructions
for actors based on psychological factors such as emotion,
motivation, and narrative are not enough to generate satisfactory
performance [15]. Theater directors and actors rely on an
additional layer, which is thought to be essential for creating
believable interaction. This facet of behavior is dramatic
action [17].

Dramatic actions are observable behaviors whose timescale
is on the order of seconds. In this way, dramatic actions
differ from internal motivations [18, 19], which last the
entire play, and goals, which can last an entire scene. A
character can change dramatic actions rapidly in an attempt
to reach a goal. Dramatic actions are distinct from emotions
because they are not states but instead are the efforts
made to change the other’s state. One can carry out a
given dramatic action, such as threaten someone else, while
experiencing different emotional states such as happy, angry,
or sad.

Dramatic actions are related to a subset of Austin’s concept of
speech acts [20]. Many dramatic actions, however, are not speech
acts, and in fact, do not require speech.

Dramatic actions need not necessarily succeed. An attempt
to threaten or to comfort may or may not change the
state of the other. Regardless of success or failure, one
can still detect the effort made to change the state of the
other: the dramatic action. Often, dramatic actions are part
of people’s habitual behavior and can be performed without
conscious deliberation.

Dramatic actions can be conveyed by text: the same text
can be said with different dramatic actions. For example, the
text “come here” can have a different dramatic action if said

by a parent soothing a child, or by a drill sergeant threatening
a recruit. Dramatic actions are often conveyed through non-
verbal signals including body language and gestures, facial
expressions, speech, and physical actions. Even animals and
babies can detect, carry out, and respond to dramatic actions
[21]. Babies can activate surrounding adults and react to soothing
voices; dogs can try to cheer people around them or threaten
other dogs.

Currently, most research focuses on emotional body language
theory, whereas the dramatic action theory has not been
extensively tested. We set out to test both theories on the same
stimuli in order to gain a more complete understanding of the
range of meanings in body language.

Testing these theories requires a large and unbiased set of
body posture stimuli in a social context. Most studies employ
pictures of actors or cartoons which cover a small set of
the range of possible postures. To obtain a systematic and
unbiased set of body posture stimuli, we use stick figures. Stick
figures represent the human body with a few angle coordinates
[22–24]. By varying these angles, we systematically scanned
1,470 body configurations in a dyad of stick figures. Online
participants scored these stick figure images for a set of eight
dramatic actions and 20 emotions. Dramatic actions were found
somewhat more frequently and strongly than emotions. From
an applied point of view, we provide a dictionary of stick
figure body postures with defined dramatic action and emotional
meanings, which may be useful for research and automated
image understanding, and for training people to understand
body language.

METHODS

Stick Figures
We defined stick figures (SF) made of nine line segments and a
circle (Figure 1A), representing two-segment legs (length 0.283
each, in units where SF height is 1), a torso (0.364, including
a neck of length 0.055), two-segment arms (0.224 each), and a
head (radius 0.07). The segment proportions were taken from
average adult anthropometric proportions [25]. There was no
representation of ankles, wrists, hands, shoulders, face, etc. The
SF configurations were defined by five angles: the angles of the
torso, two shoulders, and two elbows (Figure 1A).We discretized
these angles in order to sample the SF configuration space: The
torso angle θ1 had two values: vertical to the floor and leaning
to the left at 30◦. The shoulder angles θ2, θ4 each had six
options: 90◦, 135◦, 165◦, 195◦, 225◦, and 270◦ relative to the neck,
clockwise. The elbow angles θ3 and θ5 had seven values: 45◦, 90◦,
135◦, 180◦, 225◦, 270◦, and 315◦ relative to the arm, clockwise.
The number of values for each angle was chosen based on pilot
studies to allow for completeness at a reasonable survey size.
The legs were not varied in order to allow a feasible survey size,
despite the expressiveness of leg posture such as kneeling. Angle
combinations in which two segments exactly overlapped were
removed. Only unique configurations were included (no two sets
of angles yielded the same SFs), resulting in 1,470 unique SFs.

Each stimulus included two SFs (Figures 1B,C). The SF with
different configurations was on the right, and the SF on the left
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FIGURE 1 | Stimuli and survey designs. (A) Stick figure configurations are defined by five angles. Scanning these angles at a set of values yielded 1,470 unique SF

configurations. (B) Schematic of the survey: A stick figure dyad was presented, in which the right SF configuration was one of 1,470 possibilities and the left SF was in

a neutral configuration. Online participants marked their agreement level for completing a sentence with each of the eight DA verbs (or, in experiments 2 and 3, with

emotion adjectives). (C) Seven typical stimuli from the set of 1,470.

had the same configuration in all images with θ1 =0◦, θ2 =195◦,
θ3 =180◦, θ4 =165◦, θ5 =180◦. The distance between the two
SFs was 0.55 when the right torso was upright (θ1 =0◦) and 0.64
when the right SF torso leaned to the left (θ1 =30◦). The latter
distance was used to avoid contact between the SFs.

Sampling and Participants
A total of 816 (56% female) participants, recruited on the
Amazon Mechanical Turk platform [26], answered the survey
(324, 470, and 558 in experiments 1, 2, and 3, respectively).
The survey was limited to US residents who passed an
English test, with at least 100 previously approved surveys on
Mechanical Turk. For every combination of a word and an
image, we obtained answers from 20 different participants. The
experiment was approved by the institutional review board of
the Weizmann Institute of Science, Rehovot, Israel. Informed
consent was obtained from all participants before answering
the survey.

Survey Design
In order to avoid priming participants with dramatic actions
(DA) and emotions in the same experiment, we performed
separate experiments: experiment 1 for DAs, experiment 2 for
basic emotions [15], and experiment 3 for social emotions. In
experiment 2, we asked both for the emotion of the right SF
and for the emotion of the left SF. In this analysis, we focus
on the right SF. Experiment 2 was completed 4 months after
experiment 1. Experiment 3 was completed 12 months after
experiment 1.

The participants were shown an image of two SFs and were
asked to rate how well a word completes a sentence describing
the image (Figure 1B). The rating used a continuous “agree-
disagree” slider scale. Instructions for experiment 1 (on DAs)
were as follows:

“You are about to see 14 images. After viewing each image,
press continue. Then, you will see the same image on the
left, together with nine possible suggestions for completing the
statement below, and nine bars on the right (see example). Use
the bars to indicate your agreement with each statement so that
it correctly describes the image, as you see it. The next image
will be available only after you marked your answers in the nine
bars. “The person on the right is trying to ________ the person on
the left”.”

We chose a set of DA verbs based on a previous study of 22
verbs presented with cartoon/clipart stimuli [16]. We chose verbs
that were strongly perceived by participants in Liron et al. [16]
and omitted verbs that were synonyms, to arrive at a list with
eight DA verbs. The eight DA verbs were encourage, support,
comfort, urge, hurt, bully, scold, and threaten. These eight verbs
and one attention check question were provided in a random
order for each image. The attention check question asked the
participants to mark one of the ends of the slider scale (“agree”
or “disagree”).

The structure of experiment 2 was very similar to that
of experiment 1 (Supplementary Figure 1). Instructions for
experiments 2 and 3 (on emotions) were identical to experiment
1, except for six emotion adjectives instead of eight DA verbs,
and the sentence “The person on the right is feeling ________.”
or “The person on the left is feeling ________.” The images were
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identical to experiment 1, except for a small arrow indicating
the SF on the right or left (Supplementary Figure 1). The six
emotion adjectives were happy, sad, disgusted, angry, surprised,
and afraid. These emotion adjectives are commonly used in
emotional body language research [27].

Experiment 3 tested an additional 14 emotions that have
been most commonly used in recent studies on emotions [28–
31], including social emotions: amusement, awe, confusion,
contempt, love, shame, sympathy, compassion, desire,
embarrassment, gratitude, guilt, pride, and triumph. The
basic emotion angry was used as a control to compare with the
results of experiment 2.

The “agree-disagree” slider scale had no initial value. The
participants had to click on the slider in order to mark their
score. The scale position indicated by the participants was
converted to a number between 0 (disagree) and 100 (agree)
for analysis.

One unit of the survey was a sequence of 14 images in
random order. Experiment 1 had 2,100 units and experiments
2 and 3 had 4,200 units. For each of the 14 visual stimuli, the
participants were first presented with a stimulus at the center of
the screen, and after clicking on the “next” button, the eight DA
verbs or six to eight emotion adjectives and an attention check
question were added, arranged in random order (Figure 1B,
Supplementary Figure 1).

Data and Statistical Analysis
We removed 36 units in which a respondent failed the
English test or answered more than one unit in an hour.
The units in which the participants failed two or more
attention check questions were removed (47/2,100, 171/4,200,
and 189/4,200 of the units in experiments 1, 2, and 3,
respectively, which make up 3.9% of the total units). Thus,
2,049, 2,016, and 4,011 units (of 14 images) entered the
analysis for experiments 1, 2, and 3, respectively. In total,
we analyzed 229,488 word–image responses for experiment
1, 337,764 for experiment 2, and 444,080 for experiment 3.
The scores in these experiments showed a distribution with
a peak at zero. We counted an identified word as a median
score above 50, which is the midpoint between disagree
and agree.

To compute the probability that a median score exceeds
50 by chance, we used bootstrapping. For each image and
word, we generated 104 bootstrapped datasets as follows: for
each participant that answered the question, we chose an
answer at random from the set of all answers provided by
that participant in the experiment (without attention checks).
This preserves the response statistics of each participant.
We found that the probability that the median score of
at least one word–image pair in an image exceeded 50
in the bootstrapped data is 0.0146 for DA and 1.9·10−4

and 1.1·10−4 for basic and social emotions of the right
SF, respectively.

For data clustering, we used the clustergram function in
MATLAB R2017b (MathWorks) with correlation distance and
clustering along the rows of data only.

RESULTS

Stick Figure Stimuli
In order to generate a systematic and unbiased set of stimuli,
we defined stick figures (SFs) with five degrees of freedom
(Figure 1A). We kept the legs in a fixed configuration to focus
on upper body postures, which can show all emotions [32] and
cover the affected space [33]. To focus on body posture and not
facial expressions, the SF “head” was a circle.

In order to sample the SF configuration space, we discretized
the angles, with two values for the torso angles, six for the
shoulder angles, and seven for the elbow angles (Figure 1A). This
resulted in 1,470 unique SF configurations (Methods).

To study the body posture of an SF interacting with another
SF, we used images that showed two SFs (Figures 1B,C). The
right SF had one of the 1,470 configurations, and the other had
a constant neutral position.

Surveys of DA and Emotion
The online participants identified DA and emotion words for
the SF dyads. We count a word as identified for a given
image if its median score between participants exceeds a
threshold of 50, which is the midway point between disagree
(0) and agree (100). The results are robust to changes of
this threshold (Supplementary Figures 2, 3). We find that the
participants identified at least one DA or emotion in 54% of the
images (798/1,470).

Participants identified at least one DA verb for 40%
(591/1,470) of the images (Figure 2A), with an average of 1.7 DA
verbs per image. A total of 57% of these images had one reported
DA, 20% had two reported DAs, and 23% had three or more
reported DAs (Supplementary Figure 4).

The participants identified at least one emotion word for
29.4% (432/1,470) of the images (Figure 2A), with an average of
1.4 emotion words per image. A total of 63% of these images had
one reported emotion, 30% had two reported emotions, and 7%
had three or more reported emotions.

The participants identified DAs but not emotions in 361
images and identified emotion but not DA in 207 images
(Figure 2B). In general, the scores for DA were higher than the
scores for emotions (Wilcoxon–Mann–Whitney test, U > 106, p
< 10−22 two-tailed, Figure 2C).

A potential concern is that the comparison was across
participants rather than within participants. To address this,
we repeated the analysis for a subset of n = 68 participants
who participated in both experiments 1 and 2 and answered
the surveys for DA and emotion for the same images. We find
qualitatively similar conclusions: DAs were identified in 75% of
images, emotions in 56% (one-sided paired t-test p < 10−8).
The number of cases where DA was identified but not emotion
was 3.1-fold higher than the number of cases where emotion
was identified but not DA (one-sided paired t-test p < 10−8)
(Supplementary Figure 5).

We conclude that the participants identified DAs and
emotions in about half of the SF dyads. Both DAs and emotions
were found frequently. DAs were perceived somewhat more
frequently and strongly. To test how strongly the emotions and
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FIGURE 2 | Dramatic actions and/or emotions were found in most images, with the former found somewhat more frequently and strongly. (A) Fraction of the 1,470

images identified with at least one DA (blue) and at least one emotion (orange). (B) Fraction of images identified with at least one DA but no emotion, and at least one

emotion but no DA. (C) Distribution of top scores. We compare the eight DA words with the eight emotion words that received the highest scores (angry, confused,

surprised, contempt, embarrassed, compassion, triumph, sympathy). The distribution of the highest scores of DA words (median = 44) is different from the

distribution of the highest scores of emotion words (median = 31), (Wilcoxon–Mann–Whitney U > 106, p < 10−22 two-tailed) with a large effect size (AUC = 0.61).

Vertical lines show the median of each distribution. (D) Percent of images, out of the images identified with at least one DA, that were identified with each of the eight

DA verbs. For example, the DA ‘encourage’ was identified in 128 images out of the 591 images where at least one DA was identified. Note that the images were often

identified with several DAs so that the histogram sums to more than 100%. (E) Percent of images, out of the images identified with at least one emotion, which were

identified with each of the twenty emotion adjectives.

DAs are correlated, we performed regression analysis. Emotion
scores were found to be able to predict 54 ± 17% of the variance
of each DA verb. Conversely, DA scores were found to be able
to predict 24 ± 20% of the variance of each emotion (mean
± STD, full results in Supplementary Tables 1, 2). Thus, while
emotions and DAs are correlated to a certain extent, the concepts
are distinct [16]; both DAs and emotions are required to cover
the image dataset.

Prevalence of Different DAs and Emotions
Of the 20 emotions describing the SFs, several emotions were
foundmuchmore often than others: The top three emotions were

angry, confused, and embarrassed, which were found in 21–44%
of the images. Other emotion adjectives were rarely found, with
13 of the emotions assigned to <5% of the images (Figure 2E).
Note that each image could be described with multiple words so
that the fractions of images do not sum up to 100%.

In contrast, different DAs were identified with roughly similar
frequencies (Figure 2D) in the range of 8–37%. Thus, the
present set of DA verbs seems to allow for a more refined
differentiation between these images than the present set of
emotion adjectives.

In order to visualize the data, and to further see the
relationship between DAs and emotions, we clustered the
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FIGURE 3 | Clustergram of all 798 images identified with at least one DA or emotion. Each column represents a single image, and each row represents a DA or

emotion word, arranged by clustering. Hence, images with similar scores are placed adjacently, and DAs found in similar images are placed adjacently. Color

represents median score (median scores below 50 are in blue).

images and the agreement scores (Figure 3). In the resulting
clustergram, images with similar response scores (scores for DAs
and emotions) are placed near each other [dendrogram presented
in SI (Supplementary Figure 6)]. Similarly, DAs or emotions
found in similar images are placed near each other.

We find that DAs cluster into two groups, which can be seen
as two large, colored regions in the upper part of the clustergram
(Figure 3). These groups are the negative DAs (bully, threaten,
scold, and hurt) and the positive DAs (comfort, encourage, and
support). The division into positive and negative valence groups
is also noticeable when clustering the correlation vectors of
the scores of all of the 1,470 images (Supplementary Figure 7).
The notion of negative and positive valence for DAs is further
supported by principal component analysis of the images based
on their DA scores (Supplementary Figure 8), which shows that
the first principal axis goes from the most negative to most
positive in the following order: threaten, scold, bully, hurt, urge,
comfort, support, encourage. The DA “urge” seems to be placed
between the negative and positive valence.

Each DA has images in which it is found alone or in
combination with other DAs of similar valence. For example,
threaten and bully often go together (120 images). Negative DAs
were never found together with positive DAs in the same image.

The bottom part of Figure 3 shows that the emotion scores
are sparser than DA scores as mentioned above, with 70% of
the images showing scores below 50 for all emotions. We find
that images with negative DAs are most often identified with the
emotion angry (156/295 images).

Images with positive DAs (154 images) are more rarely
identified with emotion; only 36 of them are identified with
sympathy or compassion. A final cluster of images was
scored with the emotions embarrassed and confused, usually
without a DA.

We repeated the clustering analysis for all 1,470 images,
without zeroing out median scores smaller than 50
(Supplementary Figure 9). The clustergram shows similar
results; images identified with DAs are clustered in two groups of
positive and negative valence, and DA scores are generally higher
than emotion scores.

We conclude that both emotions and DAs are needed to fully
describe the images, and that people can differentiate between
DAs in the present set of stimuli to a greater extent than they can
differentiate between emotions.

Mapping of Body Configuration Space to
DA and Emotion
We next asked about the relationship between the SF body
coordinates and the emotion andDA responses. For this purpose,
we display all of the 1,470 SF configurations in a set of panels
(Figures 4A–D).

Figure 4 displays all possible angle configurations in the study;
it is a complete display of the five-dimensional stick figure
configuration space. There are 5 right shoulder × 5 left shoulder
× 7 right elbow × 7 left elbow × 2 torso combinations. These
are displayed in a hierarchical manner. There are two columns
(each for a torso angle). Each column has two subfigures, one
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FIGURE 4 | Regions of SF configuration space map to specific emotions and DAs. All 1,470 SF configurations are displayed in a set of panels, arranged as follows.

(A,B) indicate tilted and upright torso, respectively. The 5 × 5 combinations of the right and left shoulder angles correspond to 25 matrices, of which 15 are shown

due to symmetry. Each matrix corresponds to the 7 × 7 elbow angles (axes in inset). SF configurations are color-coded according to the emotion adjective with the

highest score for each image. Images in which no emotion word score exceeded 50 are in gray. (C,D) Same as above except that configurations are color-coded

(Continued)
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FIGURE 4 | according to the DA with the highest score for each image. Images in which no DA score exceeded 50 are in gray. (E) A group of SFs showing the

emotion angry is tilted toward the second SF with an arm at 90◦ and an elevated forearm (elbow at 90◦). (F) Angry is identified in an upright position and a straight

horizontal arm toward the second SF. (G) Upright posture together with a hand touching the head is usually identified with the emotion surprise. (H) Many negative

DAs are identified in “W-shape” configurations, in which the elbows are high and form sharp angles. (I) A change of one angle (the elbow, from raised hand to low

hand) transforms the score from negative valence (left) to positive valence (right). (J) Positive valence DAs are identified with upright configurations with low hands. (K)

Urge is identified with a posture of horizontal arm pointing away from the second SF. (L) SFs with the arms crossed are often identified with the emotion angry, and

with the DA scold. The figures in (E–L) are examples selected manually.

for emotions and the other for DA. Each subfigure shows all
the arm configurations; these are ordered into 25 small matrices
(5 × 5 shoulder configurations), but only 15 are displayed
due to symmetry. Each small matrix shows the 7 × 7 elbow
configurations.

We begin with emotions (Figures 4A,B) by coloring each SF
configuration according to the strongest emotion identified for
the right SF (gray squares have no emotion scores above 50).
For simplicity, we consider the six basic emotions (happy, sad,
disgusted, angry, surprised, and afraid).We find that the adjective
angry is elicited primarily (77%) by the torso tilted toward the
other (Figure 4A). It is most prevalent with one arm raised
backwards at angle of 90◦ with respect to the torso (Figure 4A,
upper row of panels). Another group of angry SFs with a tilted
torso have a raised arm toward the other SF and the elbow is
at 90◦ (Figure 4E). In SFs with an upright torso, angry is found
in a stripe in which θ2 = 270◦ and θ3 = 180◦, where a straight
horizontal arm points toward the second SF (Figure 4F).

The next most common emotion of the six, surprised, is
identified primarily in upright SFs, with a symbolic gesture of
hands touching the head (Figure 4G). The three SFs with the
highest scores for each emotion are shown in Figure 5A.

We next consider the DAs assigned to the SF configurations
(Figures 4C,D). We find that negative DAs are found primarily
with the torso tilted toward the other (Figure 4C), especially
with arms held high and away from the other in a W-like shape
(Figure 4H). Another region with negative DAs has an arm
directed toward the other with the elbow at 90◦ (Figure 4I, left).
Interestingly, a move of a single angle (elbow) in this region
changes the DA to a positive one (Figure 4I, right). This is an
example of a small angle change that generates the opposite
meaning. With an upright torso, negative DAs are found, for
example, in a stripe with one arm pointing directly at the other,
perhaps in a symbolic gesture (Figure 4F).

Positive DAs are elicited primarily by upright SFs with at least
one arm toward the other, with an elbow angle of more than
90◦ (Figure 4J).

The DA urge, which has a neutral valence, is primarily elicited
by SFs with one arm pointing horizontally away from the other SF
(Figure 4K). This may correspond to a symbolic representation.
The three SFs with the highest scores for each DA are shown
in Figure 5B.

Although DAs were identified in more images than emotions,
there are cases in which emotions were identified but not
DAs. These include 33 images identified with the emotion
surprised. Many of these images show SFs with at least one
hand touching the head (Figures 4B,G). This may correspond
to a symbolic representation of surprise. Another class of SFs

was identified with the emotions angry and disgusted and
with no DA or the DA scold. These configurations include
SFs with arms crossed (Figures 4L, 5). Thus, emotion and
DA can serve as complementary approaches to understanding
dyadic images.

For completeness, we show in the SI two additional versions
of this figure. The first version (Supplementary Figure 10)
shows the strongest emotions and DAs for all SFs, not
just those with a score higher than 50. The second version
(Supplementary Figure 11) shows the second strongest word for
each stick figure.

DISCUSSION

To study the meaning of body language in terms of emotion
and dramatic action, we developed a method to generate a large
and unbiased dataset of body postures: a systematic scan of
stick figure configurations, in a dyad where one stick figure had
varying upper body configurations and the other had a neutral
stance. We asked the online participants to score the images in
terms of 20 emotions and eight dramatic action verbs. We find
that 40% of the images were scored with dramatic actions and
29% were scored with emotions. All eight dramatic actions were
found in many different images, but among the emotions, angry,
confused and embarrassed were much more common than the
others. We conclude that both emotions and dramatic actions
are needed to understand body language. Thus, dramatic actions,
which are verbs that describe the effort to change the state of
another, can add to our set of concepts for the meanings of body
language and complement the more widely tested emotions.

This unbiased scan of stick figure configurations confirms that
stick figures are evocative stimuli: a dramatic action or emotion
was identified in 54% of the images. This agrees with previous
research that shows that people are able to make sense of stick
figures or other schematic representations of agents [6, 34–36].
The full dictionary of the 1,470 stick figure images and their
dramatic action and the scores of the six basic emotions is
provided in the SI (Supplementary Figure 12).

Dramatic actions elicited somewhat stronger and more
expressive signal than emotions in the present dataset. This may
be due to the focus on body configuration rather than faces. Faces
are the stimuli most commonly used to study the expression of
emotion [2, 37–42]. The present list of eight dramatic action
verbs can be extended to include additional dramatic actions, for
example, from the list of 150 dramatic actions complied in Liron
et al. [16].

The systematic scan of body configurations allowed us to
ask about the continuity of the relationship between body
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FIGURE 5 | Top images for each emotion and dramatic action. (A) The three top-scoring images for each emotion. For afraid (all top three images) and for the third

strongest of happy and pride, the top images did not exceed a median score of 50. (B) The three top-scoring images for each dramatic action.

coordinates and emotions/dramatic actions. We find that similar
stick figure configurations often have similar dramatic actions
(Figures 4C,D). A wide class of configurations with the arms

raised, especially with elbows at sharp angles (W-configurations,
Figure 4H), are identified with negative dramatic actions such
as bully and threaten [43]. These configurations hint at tensed
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muscles. Positive dramatic actions are identified most often for
configurations in which there is an arm toward the other stick
figure with an elbow angle above 90◦ (Figure 4J).

There are interesting boundaries in the stick figure
configuration space in which changing a single angle can
change the dramatic action from positive to negative valence.
For example, on the arm directed toward the other, changing
the elbow angle [44] from 135◦ (low hand) to 90◦ (raised hand)
can change the dramatic action valence from positive to negative
(Figure 4I). In other cases, the configurations seem to resemble
symbols, where there are one or two angles whose precise value
is essential for the meaning (changing these angles changes the
scoring), while other angles can be changed widely without a
change in the scoring. For example, configurations in which one
arm touches the head are identified with surprise, regardless
of choices of the other angles (Figure 4G). One arm directed
horizontally toward the other stick figure or hands crossed
away from the other stick figure are often identified with anger
(Figure 4F), whereas an arm directed horizontally away from
the other stick figure is identified with the dramatic actions urge,
despite changes in the other angles (Figure 4K).

The stick figures with negative dramatic actions most
often (83%) had the torso leaning toward the other stick
figure. Previous studies have shown contrasting findings
regarding the emotional valence of leaning forward, which
was identified with positive [45] or negative [34, 46, 47]
valence. In comparing these results, it is important to note
that the present study uses an unbiased scan of stick figure
configurations, which may include configurations not sampled in
other studies.

How do dramatic actions work? How does body language act
to change the state of the other? One might speculate about at
least two possible mechanisms, one for situations of cooperation
and the other for those of competition. In a cooperative mode,
dramatic actions may rely in part on the human tendency
to mirror the other [48–50]. Dramatic actions can work by
assuming a body configuration similar to that desired in the other,
hoping to entrain the muscular system of the other [51–53]. For
example, the dramatic action comfort aims to reduce the arousal
and negative emotion of the other. The stick figures with this
dramatic action have arms at a low position, which indicates
relaxed muscles. If the entrainment is successful, the other will
also relax their muscles, hopefully inducing a relaxed emotional
state. In real life, to perform this dramatic action, one tends to
relax the chest muscles by breathing deeply and lowering the
pitch of voice, and so on.

In a competitivemode, negative dramatic actionsmay work by
enlarging the body, a common strategy used by animals to appear
more formidable [54]. An example is the W-configuration stick
figures with the arms raised above the shoulder and away from
the other (Figure 4H). Negative dramatic actions also involve
configurations with activated muscles in the arms and torso
[Figures 4H,I (left)], which may indicate readiness to attack.

In this study, the dataset of stick figures is limited in order
to maintain a feasible number of configurations. The study
focuses only on variations in the upper body, with a constant
distance between the figures, and in each dyad the receiving

stick figure is kept neutral. The study can be extended to a
wider range of stick figure space, including changes in the
configuration of the second stick figure in the dyad, changes in
distance between the stick figures, changes in leg coordinates,
and scanning more values for each angle. This can impact the
range of dramatic actions and emotions found. For example,
adding changes in the leg coordinates can allow kneeling figures,
which can access dramatic actions with aspects of dominance
such as “to beg” and “to flatter.” Examples of such stick figures are
provided in the SI (Supplementary Figure 13). Adding features
such as facial expression, wrists, fingers, or indicators of gaze
direction is also needed for a more complete study. Using
realistic silhouettes instead of stick figures can help viewers better
understand 3D postures. The study can be extended to include
motion, which adds important information for the perception of
action [55–61]. This study used respondents from one country
(United States), and testing in other countries can help resolve
how culture can make a difference [62, 63], for example,
in symbols.

The present methodology allows further research to address
several questions. How would the results change if the neutral
stick figure were not present? What happens if participants are
able to manipulate the pose directly, perhaps with a prompt
to produce a particular emotion or dramatic actions? Could
one direct human actors to create particular emotion/action
states and then capture these states using machine vision tools?
If so, would these states overlap with the states identified
in the current manuscript? Another interesting question is
whether the semantic relationship in the space of words
corresponds to relationships in the space of stick figures.
One such analysis could compute the distance between the
words using WordNet or other word embeddings and check
if this distance is related to distances in the space of
stick figures.

We hope that the present dataset serves as a resource
for further studies, for example, as stimuli for neuroscience
experiments on the perception of dramatic actions or for
training human recognition of dramatic actions. The top-
scoring images for each dramatic action and emotion can be
used as potentially strong stimuli, and the stick figures with
weaker scores can be used for tests of individual differences
in perception. The dictionary can also be used to label images
or videos with dramatic actions and emotions by extracting
stick-figure skeletons from the images using pose estimation
algorithms and matching them to the present stick figure
collection. It would be fascinating to learn which brain circuits
perceive dramatic actions, and what cultural, situational, and
individual factors contribute to how people make sense of
body language.
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Effects of Sinusoidal Vibrations on the
Motion Response of Honeybees
Martin Stefanec1*, Hannes Oberreiter1, Matthias A. Becher1, Gundolf Haase2 and
Thomas Schmickl 1

1Artificial Life Laboratory, Institute of Biology, University of Graz, Graz, Austria, 2Institute of Mathematics and Scientific Computing,
University of Graz, Graz, Austria

Vibratory signals play a major role in the organization of honeybee colonies. Due to the
seemingly chaotic nature of themechano-acoustic landscape within the hive, it is difficult to
understand the exact meaning of specific substrate-borne signals. Artificially generated
vibrational substrate stimuli not only allow precise frequency and amplitude control for
studying the effects of specific stimuli, but could also provide an interface for human-animal
interaction for bee-keeping-relevant colony interventions. We present a simple method for
analyzing motion activity of honeybees and show that specifically generated vibrational
signals can be used to alter honeybee behavior. Certain frequency-amplitude
combinations can induce a significant decrease and other signals might trigger an
increase in honeybees’ motion activity. Our results demonstrate how different subtle
local modulatory signals on the comb can influence individual bees in the local vicinity of the
emitter. Our findings could fundamentally impact our general understanding of a major
communication pathway in honeybee colonies. This pathway is based on mechanic signal
emission and mechanic proprio-reception of honeybees in the bee colony. It is a candidate
to be a technologically accessible gateway into the self-regulated system of the colony and
thus may offer a novel information transmission interface between humans and honeybees
for the next generation of “smart beehives” in future beekeeping.

Keywords: honeybees, behavior, substrate-born communication, modulatory signals, freezing responds

1 INTRODUCTION

Honeybees are not only economically valuable as producers of honey and wax, but most importantly
they are highly efficient pollinators of wild flowers and hence they provide exceptionally important
ecosystem services [1, 2]. Even beyond ecology, the economic dependency on honeybees for crop
production is significant: While the demand for bee-pollinated crops is constantly on the rise, the
recently reported steep increases in colony losses have raised concerns about the sustainability of
honeybee populations and crop production [3].

The Western honeybee (Apis mellifera L.) has evolved a sophisticated communication system
based on a set of very distinct locomotion behaviors, called “dances,” which involve the production
and a localized emission of specificmechano-acoustic vibrational patterns. These specific dance types
trigger very specific reactions or behavioral modulations in those animals that perceive the emitted
stimuli. These dances form, in their totality, the “dance language” of the honeybees. Most notably the
“waggle dance” is used for recruiting nest mates to a specific foraging source. A dancing bee
communicates the location of a food source by a repeated figure-eight shaped movement. The
direction of the linear waggle phase relative to gravity represents the direction of the food source
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relative to the sun, while the duration of each run increases with
the distance of the food source [4]. To decode the information
from such a dance, the observer bees have to closely follow the
movements of the dancing bee. As the inside of a hive is usually
dark, information cannot be transferred visually but instead via
vibrations emitted during the waggling phase of each waggle
dance circuit. The vibration signals are typically composed of a ca.
15 Hz body movement and a 200–300 Hz vibration produced by
the flight muscles [5, 6]. It has been shown that these signals also
travel through the comb which can act as an amplifier [7, 8].
Therefore the comb itself is the medium for sound transmission
and the content of the cells affects the number of dance followers,
with empty cells attracting more recruits [7, 9]. Other bees may
not only interact with a dancer by following her runs but they can
also interfere with the waggle dances and interrupt them. For
example, if another bee encounters a dance advertising a food
source that she already knows to be sub-optimal, she may send a
“stop signal” [10]. In this case the bee bumps her head into the
advertising dancer and emits another specific vibrational signal in
parallel to the head-butting [11]. As a consequence, the dancing
bee often stops advertising its food source. A similar effect of
stopping the previously executed behavior can be triggered
artificially in lab studies: When bees were stimulated with
sinusoidal sound vibrations emitted onto the honeycomb, they
reacted with spontaneous movement stops, what is called the
“freezing response” [12–14].While these stop and freezing signals
are characterized by higher frequency vibrations, low frequency
vibrations of ca. 10–40 Hz may be associated with increased
activity levels of bees [15–17]. In addition, other signals and
feedback mechanisms are involved in the coordination of
foraging by the bee colony [18]. We pick up this line of
research on the fundamental mechano-physical aspects of
honeybee interaction. In our study, we aim to understand the
effects of vibrations on the individual and collective behavior of
honeybees. The main research question that drives our study is
“How do specifically shaped vibration patterns on the combs alter
the behavior of the bees that perceive these stimuli?.” The answers
to this research question can offer insights into the recruitment
processes that governs the individual foraging behavior and the
collective foraging patterns that arise from them. This might be a
door opening method for novel technology to boost the
pollination service, and ultimately also the ecosystem service
provided by a honeybee colony in a new generation of “smart
beehives.”

2 MATERIALS AND METHODS

Our basic concept in the setup of our experiments was initially
inspired by the setup reported in [12] and further elaborated to
reflect and incorporate the technological progress we can build
upon. However, these innovations allowed us to make significant
improvements in the research focus and in the level of detail of
our observations: Instead of subjectively evaluating the bees’
behavioral responses, we use here a simple but effective pixel-
based evaluation metric to measure the change in motion activity.
This allowed us to quantify the behavioral responses instead of

reporting only qualitative annotations. We refrained from using a
modified loudspeaker to transfer the vibrational stimulus onto the
comb via a physical/mechanical bridge, but integrated a thin
piezoelectric loudspeaker into the honeycomb itself, to alter the
natural environment on the honeycomb as little as possible.

2.1 Experimental Setup
All experiments were conducted on a small honeybee colony
(approx. 1,500 bees) housed in a one-comb observation hive (see
Figure 1E). The hive was located inside a building with the hive
entrance being connected to the outside, allowing the bees to
forage in a natural habitat. In our experimental setup, a
commercially available food-grade plastic honeycomb, as
frequently used by beekeepers, was modified in the following
way: The outer frame elements of two plastic honeycombs were
shortened on one side each and both were joined together to form
a new combined double-layered honeycomb with a slim space in
between the two middle layers to allow cables and devices to
reside in this cavity (see Figure 1B). Into this cavity, which was
approx 10 mm wide, four piezoelectric elements were inserted
(see Figures 1A,D). One of these piezoelectric elements (Murata
7BB-27-4L0) served as the emitter of the vibration stimuli we
tested here, while the other three elements were used for signal
recording for control and adjustment purposes. The emitter was
placed at a specific area of the comb, the so-called “dance floor
region,” the region in the hive where the majority of forager
recruitment dances happen. After these preparations, the
honeycomb was covered with a thin layer of wax and placed
in a conventional full-sized colony beehive for 10 weeks. During
this time, it was fully accepted by bees and filled with cells
containing brood, pollen and nectar and received the required
chemical nest-scent which is important for acceptance of the
comb. The honeycomb was then transferred into the
experimental observation hive, replacing the original comb
that the experimental colony had in usage up until then. We
waited for additional 2 weeks for the experimental colony to fully
accept the modified comb before starting to conduct the
experiments. The experiments were recorded digitally as video
with a Canon D5 camera (see Figure 1C). In the experiments we
report here, a python script was used for the stimulus generation
(see Figure 1G). We tested 19 different sinusoidal frequencies:
From 50 to 750 Hz in 50 Hz steps, from 1000 to 2500 Hz in
500 Hz steps, and in addition, we examined the effect of white
noise. We repeated the excitation for each stimulus 12 times. The
intensities used for each frequency stimulus are shown in
Figure 2C. In addition, we tested the effect of different
amplitude levels on the bees’ response at 50, 500, and 5000 Hz
and repeated each amplitude-frequency combination 10 times
(shown in Figures 3D–F). These sinusoidal stimuli were passed
through an audio amplifier (see Figure 1F) to the emitter inside
the honeycomb. All experiments were carried out in continuous
30-min experiment cycles (see Figure 1L), which were recorded
on video at 25FPS. Each cycle consisted of a series of 5 s long
stimulus periods with vibrational emissions of specific
frequencies and amplitudes, alternated by 10-s periods without
any active stimulus emissions. The sequence of frequencies and
amplitudes was produced in a randomized order.
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2.2 Optical Motion Activity Analysis
The experimental video recordings were processed after all
experiments were completed. For the evaluation of the
honeybees’ motion activity modulations induced by the
vibrational patterns, we defined a pixel-based motion index
(PMI) according to Eqs. 2, 3. A square-shaped region of
interest (ROI) was defined around the emitter of the
vibrational stimuli, with a size of 400 × 400 pixels in each
frame, respectively, 10 × 10 cm on the comb. Within this ROI,
the three color (red, green blue) channels were combined into one
average gray-scale image array for each frame t as ROIt :

ROIt � ⎡⎢⎢⎢⎢⎢⎢⎣ p1,1,t p1,2,t . . .
« 1

pK,1,t pK,K ,t

⎤⎥⎥⎥⎥⎥⎥⎦ (1)

Each array element value of the gray-scale ROIt was compared to
the corresponding element in the consecutive video frame’s array.
To compensate for random noise of the image sensor, a threshold
value was defined. If the difference between two corresponding
array items exceeded this threshold, the change was denoted as 1,
otherwise a value of 0 was denoted. This procedure resulted in a
set of (significantly) changed pixel values in the ROI, which can
be expressed as a fraction of changed pixels in the whole
population of pixels in the ROI. This pixel-change metric can
be understood as a proxy metric for the motion in the video
recording, a similar metric has been shown to be useful in

previous studies [19]. To additionally account for noise in the
video recordings, the PMI of 10 frames each were arithmetically
averaged.

MIt � 1
K2

∑K
x�1

∑K
y�1

px,y,t{ 1, if
∣∣∣∣∣px,y,t − px,y,t+1

∣∣∣∣∣> threshold
0, otherwise

(2)

PMIt10 �
1
10

∑10
t�1

MIt (3)

An exemplary frame of such a video recording with an indicated
ROI is shown in Figures 1H–K. Figure 4 shows four example
PMI arrays at different frequency excitations before arithmetic
averaging of the arrays. The experiments were conducted over the
course of 2 days at the end of August 2019. To account for
differences in the general motion activity levels that the bees
exhibited between experimental cycles, eachMIi10 was normalized
to the arithmetic mean MI of all no-active stimulus emission
periods of the same experiment cycle. For the Python-based
implementation of the PMI calculation, multiprocessing was
used for efficient data processing, the source code can be
found in the repository.

2.3 Intensity Measurements
The effects of different intensities on the motion activity of the
bees at various frequencies (50, 500, and 5000 Hz) were

FIGURE 1 | Modified honeycomb, experimental setup, and exemplary video frame with overlays (A) placement of piezoelectric elements on the inner side of the
comb, (B) closed modified comb, (C) camera, (D) sound recorder, (E) observation beehive (position of vibration-emitter in diagram exposed), (F) amplifier, (G) frequency
generation, (H) information on the actuation status, (I) motion detection in ROI: value changes between frames below (black) and above (white) threshold, (J) average
PMI of ROI over time, (K) red markings indicate the position of ROI, (L) diagram of exemplary experiment cycle.
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FIGURE 2 |Normalized pixel-based motion index depending on the stimulus frequency (A) boxplots show the distribution of normalized PMI measurements to the
respective frequency stimulus. 12 repetitions per frequency, each repetition phase consists of 5 s of stimulus, filmed at 25 FPS. 10 FPS are combined into one
measurement, first and last measurement of each stimulus period were discarded. Same lowercase letters indicate non-significantly different data groups (pairwise
Wilcoxon tests, Bonferroni–Holm adjusted p-value) [25]. Colored backgrounds indicate areas with related data groups. Section A: control to 200 Hz stimulus, high
basic PMI; section B: 250–450 Hz stimulus, sharply decreasing PMI; section C: 500–2500 Hz stimulus, low PMI. Outside these ranges: white noise (B) shows the data
as mean values and the corresponding standard deviation with correctly spaced frequency intervals. Models describing the courses of frequency dependence of the PMI
were fitted to themean values for the respective data groups in section A,B,C. Section A is described by a parabolic function, section B by a power function and section C
by a line (C) shows the intensities of the stimulations at the respective frequencies (squares and red dotted line) measured at the position of the highest intensity on the
surface of the comb. The figure also includes threshold curve of the freezing response (black solid line), data adopted from [14]. Incorporated into the dependency of
frequency and displacement amplitude is also the change of PMI: blue fill color of the squares indicates a change in motion activity compared to control.
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measured (Figures 3D–F). For this purpose, intensities were
chosen that were respectively lower and higher than the
intensities used for the frequency-dependent experiments
(which are shown in Figure 2C). The actual vibration
intensity on the surface of a comb depends on the size of
the comb, on the type of comb and foundation, on the housing
and on the position of the measurement [8, 20]. Also the
content of the comb, respectively the bees themselves, might
influence the pervading vibrations [21]. To show the
distribution of the vibration intensity on the comb surface,
we measured the intensity for different frequencies (50, 500,
5000 Hz) in a 3 × 3 cm grid for the whole comb and a finer grid
within the ROI (1 × 1 cm). Since intensity measurements with
a laser vibrometer required direct, uninterrupted contact with
the surface of the comb, these measurements could not be
conducted in an inhabited hive. After the completion of the
behavior experiments, the colony was removed from the comb
and the bees were transferred to another hive. The same
observation hive and the experimental comb, which still
contained comb alterations of the bees affecting the
vibration propagation (food in cells, potentially brood), was
used for post-hoc evaluation. The intensity measurements were
conducted at a later point in time, the comb was stored in a
freezer in between. Changes that might alter the intensity of
vibration on the front side of the comb can therefore not be
ruled out. Hence, the distribution of vibration shown in
Figures 3A–C can only indicate the actual distribution of
vibration intensity in the live experimental setup. To
prepare the intensity measurements, we put self-adhesive
reflector tapes on the surface of the honeycomb at even
intervals. We measured the intensity exactly at the center of
each grid measurement point. We generated the vibration
stimuli of the behavioral experiments with a
piezotransducer and simultaneously recorded it with three
surrounding piezoelectric sensors. To make the post-hoc
laser-measurement evaluation as comparable as possible, the
vibration generation was performed the same as in the
behavior experiments and was additionally recorded by the
same piezoelectric sensors. The intensities in these recordings
were digitally measured to match with the previously digitally
measured intensities of the behavior experiment recordings.
The alignment showed comparable digital intensities at the
different frequencies tested. After we were able to ensure
similar vibration intensities through this step, we conducted
more precise intensity measurements using a laser vibrometer
(Polytec PDV 100), the measurements are shown in Figures
2C, 3. The data was transmitted to the Polytec Vibrometer
software (V5.2.2) via the USB break-out box (VIB-E-220). In
this software the magnitude was measured as velocity via fast
Fourier transform.

2.4 Statistical Analysis
We used the software package R [22] with the RStudio IDE [23]
for the majority of our analyses. The package collection tidyverse
[24] was used for graphs and exploratory data analysis. For
comparing effects of different frequency stimuli, a two sided
pairwise Wilcoxon rank sum test with Bonferroni–Holm family

wise error rate adjustment was used. Test results are represented
as lowercase letters [25], whereas the same letters indicate a
nonsignificant comparison p> 0.05, see Figure 2A.

2.5 Code Availability
For reproducible code a public Github repository1 under MIT
licence was created. It includes the exported dataset, session info
with packages, the code used for the statistical analysis, and the
exported pairwise comparison test results.

3 RESULTS

3.1 Motion Activity Depending on the
Stimulus Frequency
Figure 2 shows the normalized PMI (Eqs. 2, 3) in response to the
frequency of the applied vibration. All data groups were
compared pairwise (Figure 2A). This allowed us to classify the
data into three distinct frequency-defined sections that share a
common behavior: When bees were stimulated with frequencies
located in section A (in the range of 50–200 Hz, respectively the
control group), the observed bees in the ROI did not show a
significantly reduced motion activity in the normalized PMI, but
even a slight increase in activity at low frequencies, with a
maximum at 100 Hz. Further increasing the frequency of the
signal yielded a diminishing of the reaction back again to the level
observed in the control group at the highest frequency in section
A, which is 200 Hz. In contrast to that, when stimulating the bees
with frequencies within section B (250–450 Hz) a different
pattern was observed in the reaction of the bees: They
exhibited a significant decrease in their normalized PMI with
increasing frequencies. A further increase of frequencies covered
by section C (500–2500 Hz) resulted in a low normalized PMI,
independent of the exact frequency.

To further detail the observed dependencies of behavioral
modulation and bees on the frequencies of the emitted stimuli, we
fitted a set of regression functions for every section. These
functions model the expected behavioral modulation of the
PMI with respect to the tested vibrational frequencies
(Figure 2B), in order to allow prediction of the honeybees’
responses to signals in the regions on the frequency band
between the tested frequencies. The honeybees’ response to
signals with frequencies in section A can be predicted by a
parabolic function (A(frq) � −(0.0032frq − 0.28)2 + 1.08), in
response to frequencies in section B by a power function
(B(frq) � 105frq−2.21) and in response to frequencies in section
C by a linear function (C(frq) � 0.127).

In addition to the effect of specific frequencies, we also
tested the effect of white noise onto the bees’ motion
behavior. As Figure 2A shows, this signal, which is
composed by the definition of a collection, or a sum of all
possible frequencies, triggered again a clear, but not a
maximal, response in the honeybees’ motion modulation.
We observed that this mixed-frequency signal reduced the

1https://github.com/martin-st/motion-analysis-of-honeybees
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PMI down to be about four times higher than the lowest
observed PMI and was found to be a response similar to a
clean sinusoidal signal of 250 Hz.

Exemplary results showcasing the different PMI for the
control group, 100 Hz, white noise and 750 Hz are shown in
Figures 4A–D.

3.2 Motion Activity Depending on the
Stimulus Intensity
We also observed the influence of the signal’s amplitude onto the
observable behavioral modulation of the recipients’ motion
behavior. However, the actual vibration intensities on the

comb surface varied significantly depending on various factors.
To map an impression of the distribution of intensities on the
surface of the honeycomb, we measured the intensities for three
different frequencies at different locations (Figures 3A–C). The
highest intensities were measured near the emitter in the center of
the ROI for all frequencies. The emitter was placed in the inner
side of the hollow honeycomb.

Figures 3D,E shows the dependence of the freezing response on
the amplitude of the emitted sinusoidal signal. For three specific
frequencies, the normalized PMI was determined for different
intensity levels. At 50Hz, no significant change in motion activity
was detected regardless of the applied stimulusmagnitude. At 500Hz a
reduction ofmotion activity between video frameswas determined at a

FIGURE 3 | Spatial distribution of local vibration stimulation intensities and effect of stimulation intensity on changes in honeybee movement activity (A–C) local
intensity measurements on the comb at 50, 500, and 5000 Hz, (D–F) normalized pixel-based motion index of bee activity in the region of interest depending on different
signal intensities for 50, 500, and 5000 Hz (10 repetitions per group). Signal intensity measured at the comb position of maximum intensity at the corresponding
frequency.
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velocity of 0.528mm/s and at 5000Hz at a velocity of 1.076mm/s. At
500Hz and an intensity of more than 2.281mm/s, respectively, at
5000Hz and an intensity of more than 4.505mm/s no further
reduction of the PMI was detected.

3.3 Correlation of Frequency and
Displacement Amplitude
In order to provide a final interpretation of our data and to see its
standing within the existing body of literature, we conducted a
post-hocmeta-analysis on reference data from literature, which is
shown in Figure 2C. This graph depicts a 3Dimensional view of
our data: The X-Y plane depicts the relationship between
frequencies and displacement amplitude of the stimuli in our
experiments (measured directly on the emitter). The color of the
data points represents our experimental results in a summarized
way: data points filled in blue indicate a significant response of
honeybees to a stimulus compared to the control data set. In
addition to that, a threshold curve for the freezing response,

redrawn from [14], has been added as a reference data set to
this graph.

4 DISCUSSION

4.1 Stimuli Generation for Studying
Honeybee Communication Pathways
Much research effort has been invested over the past 50 years to
explore the effects of substrate-born vibrations in the honeybee
colony [26–30]. One common approach of such studies has been
to playback vibration signals onto the combs [31, 32]. However,
these signals consist of a convolution of many frequencies, they
are often modulated, and can be very complexly structured.
Another approach has been to study the effects of pure-tone
sinusoidal frequencies, such was the study that first reported on
the freezing response of honeybees to these stimuli [12]. The
study reports a decreased locomotive activity, especially with
frequencies in a range of 500–1000 Hz. No such freezing response

FIGURE 4 | Comparison of PMI10 for different frequency stimuli. For each panel: small colored top left image shows part of the frame with indicated ROI, small gray
image shows gray-scale ROI, large black and white image shows PMI10 out of one exemplary stimulus period for (A) control group, (B) 100 Hz stimulus, (C)white noise,
and (D) 750 Hz stimulus before arithmetically averaging the array, white pixels indicate movement.
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was reported at a frequency below 100 Hz or above 2500 Hz. The
excitation of the subgenual organs of a honeybee is a mechanical
energy transfer, thus the energy that the signal contains is
expected to be important. This energy depends on the signal’s
amplitude and on the frequency in combination, additionally
affected by material properties in the medium it spreads and
wave-based effects like interference patterns, harmonic
oscillations, the geometry of the substrate and dampening
effects. The behavioral response of the animals depends not
only on the specific frequency, or a specific amplitude, but on
the combination of these two and the measurement point on the
honeycomb [14]. showed the threshold for the required signal
amplitude. Such a threshold curve indicates the expected set of
minimum signal prerequisites in order to expect a specific
behavioral response (redrawn as a reference data set in
Figure 2C). The stimulus intensities applied in our
experiments can be grouped into three distinct regions: In the
range of 50–300 Hz, the stimuli we generated were below the
predicted behavior response threshold, thus if the prediction
holds we should not have observed the responses that we did
observe. In the region of 350–1000 Hz, the stimuli we generated
were approximately at the threshold level of the behavioral
response, thus also here the previous predictions we found in
the existing literature need to be questioned, given that the
behavioral responses we observed are too significant to assume
that the sensorial or behavioral threshold was just matched. Such
a match would suggest that we see weak to medium responses, as
such thresholds differ across individuals and over time, thus we
should expect only a fraction of the bees in the ROI reacting to
such borderline signals. Only for signals in the 1500–2500 Hz
range did the intensity of our signals lie above the threshold curve
described in the literature and thus lead to the predicted
behavioral responses. Studies have already shown that the
physiological threshold of the subgenual organ of honeybees is
lower than the behavioral threshold [33]. It is possible that the
behavioral threshold to vibration intensity was underestimated so
far due to the subjective assessment of the behavioral response.

In addition, our experiments potentially indicate that stimulus
intensities well below the reported behavioral threshold for
signals in the 50–100 Hz frequency range produce the opposite
effect of a freezing response: The PMI showed a statistically
significant increase in motion activity. This behavioral response
to these vibrational stimuli was previously unknown and, to our
knowledge, is the first time such a behavioral response to an
artificial stimulus has been observed. Our finding result from
statistical evaluation of the data and does not imply any
behavioral/biological relevance of this stimulus response. In a
second series of experiments measuring the effect of vibration
intensity on behavioral modification, no increase in activity was
detected with a pure tone of 50 Hz, regardless of intensity (see
Figure 3D). Activating vibration signals are known to occur in
natural honeybee colonies, in particular the shaking dance. This
signal is reported to cause a non-specific increase in activity [16].
However, the frequencies associated with this signal are
significantly lower (x � 16.3 Hz, S � ± 5.8 Hz [15]) than the
frequencies we used in our experiments. The data from our
experiments suggest that an increase in motion activity in

response to artificial vibratory stimulation may exist, but more
detailed studies are needed to confirm this assumption.

4.2 Strengths and Weaknesses of the
Applied PMI Metric
In contrast to the qualitative observer-based evaluation used in the
literature so far, the rather objective, as it is based on a computer
algorithm, and quantitative motion index metric used here allows
for a simple pixel-based assessment of the observed honeybees’
motion activity. This analysis reveals more details in the evaluation
of vibration signal effects on honeybee behavior. For example,
without such a quantitative approach, it would not have been
possible to generate a model, based on three regression functions,
that allows predicting the bees’ responses to specific frequencies in a
quantitative way. This is a fundamental new piece of evidence that
can be utilized in technological approaches of human-honeybee
interaction, for example in “smart beehives.”However, this method
of assessment also has its weaknesses and does not evaluate strictly
the actual stimulus-behaviour response of the bees themselves, but
uses rather the resulting optical flow as a proxy for quantification of
the video frames. But nevertheless, this simple method already
allows quantification of changes in the overall movement patterns
at certain areas on the comb over time, a feature that might suffice
for informing mean-field model based approaches of this system in
the future. For individual-based models the data would need to be
extracted rather on an individual bee level, with sophisticated image
tracking and individually marked bees. Such systems already exist
and are proven to be effective with honeybees [34–36], however,
these setups demand for much more sophisticated computer
hardware than we used here, as our method could easily be
performed in an all-in-one solution with a simple low-cost and
low-energy computing solution, likely even operating on a live
datastream and in a closed-loop setup in the near future.

In this work we show that artificially generated vibration
patterns on the comb can affect the locomotor activity of bees.
The surface of the honeycomb serves as a communication
platform through which the vibrations are transmitted. Many
factors influence the intensity of the signals on the surface of the
honeycomb [8, 20, 21]. Also in our experiments, the intensity of
the stimulus decreased very rapidly as a function of distance from
the emitter, respectively, a very complex intensity pattern
emerged, even within the ROI (see Figures 3A–C).
Nevertheless, certain well-defined frequency-amplitude
combinations result in significant downregulation of their
motion, while others may result in upregulation.
Understanding these responses could be a door opener for
targeted interventions in the signal cascade of the colony.
The dance floor, where the waggle dances occur, is not the
only the location where information is passed on from returning
foragers to the bees inside the colony, this information is also
further processed by a network of interacting bees, shaping the
foraging patterns of the colony as a whole [37]. By
downregulating the locomotor activity of the bees on the
dance floor via artificial vibrations, the information flow on
the dance floor will be disturbed and changes in the foraging
patterns of the colony may arise as a result of this intervention.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6705558

Stefanec et al. Honeybees’ Reactions to Sinusoidal Vibrations

23

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Especially since small interventions in the worker allocation
system, which is composed of many feedback loops [18], could
alter individual feedbacks and thus change the way the system
works. If these interventions could be triggered automatically in
a controlled way when dances to potentially hazardous forage
sites (like fields freshly sprayed with pesticides) were detected, a
mechanism could be established to protect the colony from a
potentially fatal foraging decision. Whether or not the potential
upregulation of motion activity we observed at low frequencies
could potentially be used to stimulate foraging activities requires
further studies.
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Goals and Limitations of Modeling
Collective Behavior in Biological
Systems
Nicholas T. Ouellette1* and Deborah M. Gordon2*

1Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States, 2Department of Biology,
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Local social interactions among individuals in animal groups generate collective behavior,
allowing groups to adjust to changing conditions. Historically, scientists from different
disciplines have taken different approaches to modeling collective behavior. We describe
how each can contribute to the goal of understanding natural systems. Simple bottom-up
models that describe individuals and their interactions directly have demonstrated that
local interactions far from equilibrium can generate collective states. However, such simple
models are not likely to describe accurately the actual mechanisms and interactions in play
in any real biological system. Other classes of top-down models that describe group-level
behavior directly have been proposed for groups where the function of the collective
behavior is understood. Such models cannot necessarily explain why or how such
functions emerge from first principles. Because modeling approaches have different
strengths and weaknesses and no single approach will always be best, we argue that
models of collective behavior that are aimed at understanding real biological systems
should be formulated to address specific questions and to allow for validation. As
examples, we discuss four forms of collective behavior that differ both in the
interactions that produce the collective behavior and in ecological context, and thus
require very different modeling frameworks. 1) Harvester ants use local interactions
consisting of brief antennal contact, in which one ant assesses the cuticular
hydrocarbon profile of another, to regulate foraging activity, which can be modeled as
a closed-loop excitable system. 2) Arboreal turtle ants form trail networks in the canopy of
the tropical forest, using trail pheromone; one ant detects the volatile chemical that another
has recently deposited. The process that maintains and repairs the trail, which can be
modeled as a distributed algorithm, is constrained by the physical configuration of the
network of vegetation in which they travel. 3) Swarms of midges interact acoustically and
non-locally, and can be well described as agents moving in an emergent potential well that
is representative of the swarm as a whole rather than individuals. 4) Flocks of jackdaws
change their effective interactions depending on ecological context, using topological
distance when traveling but metric distance when mobbing. We discuss how different
research questions about these systems have led to different modeling approaches.
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INTRODUCTION

Throughout nature, molecules, cells, and organisms interact in
ways that generate collective behavior. Collective behavior has
been defined in many ways, but some features are generally
recognized as essential. First, and perhaps most importantly,
collective systems operate without central control. The group-
level behavior and properties arise spontaneously from the local
behavior of the individuals in the group, and no individual directs
the behavior of others. The individuals interact with one another,
but because individuals typically do not have global knowledge
about the whereabouts and behavior of all the others, these
interactions are local. Since the interactions are essential in
determining the resulting collective behavior, different forms
of group-level behavior arise from distinct types of
interactions. Finally, collective behavior in nature (as we define
it) always performs some biological function. The goal of
modeling is to elucidate how local interactions, in the
aggregate, allow the group to accomplish this function.

Some of the best-known examples of collective behavior are
the many spectacular forms of synchronous movement in
animals. Flocks of starlings wheel in the sky. Schools of fish
travel together and turn sharply when a predator approaches.
Clouds of locusts travel together. Similar patterns occur at the
cellular level and also arise from interactions among individual
cells. Groups of neural crest cells, for example, move together
early in mammalian development [1]; the cells at one side
contract, and the others do not, pulling the whole group of
cells along. Common patterns of collective movement include
flocks, where the animal motion is directionally ordered and the
group has a net linear momentum; mills, where the motion is
ordered and the group has a net angular momentum; and
swarms, where the motion is disordered but the group
remains bound together.

A second and widespread category of collective behavior
regulates activity or effort to determine who does what and
when, using a distributed process based on interactions [2].
For example, differentiation in a developing embryo occurs
through local chemical and tactile interactions among cells,
leading to the formation of distinct tissues that descend from
identical cells. Another example of this type of collective behavior
is task allocation in social insects, the process that determines how
colonies adjust the numbers of individuals performing each of
various tasks, such as foraging and care of the larvae. Individuals
change tasks in response to interactions with each other and
changing colony needs [3].

The patterns generated by collective animal groups, and more
generally the distributed processes common to many forms of
collective behavior, have captivated scientists beyond biology and
have inspired diverse modeling approaches. Collective movement
first caught the interest of the computer graphics and animation
community [4], and has subsequently been the subject of a great
deal of study in physics and applied mathematics [5, 6].

Physicists have been especially interested in the observation
that when different kinds of animals in different environments
with very different individual behavior are brought together in
sufficiently large numbers, only a few types of group dynamics

emerge. Because collective behavior in natural systems involves
large numbers of discrete individuals, many physicists have
considered collective behavior through the lens of statistical
mechanics. The hope in this approach is that collective
behavior can be understood as an emergent property that
arises from averaging over large numbers of interacting
individuals. This is conceptually similar to how bulk material
properties emerge from averaging over atoms or molecules.

This line of thinking has been the genesis of the young but
rapidly evolving field of active matter [7, 8]. In conceptualizing
groups of organisms as matter, the focus of modeling has been on
specifying minimal microscopic models and working to tease out
how the group-level dynamics emerge. In this way, this bottom-
up approach to describing collective behavior reflects the way that
physicists are trained to work from first principles when possible.
The goal of the modeling in this case is the development of a
general understanding of how and why group-level properties
emerge given knowledge about the individual-level behavior. This
approach has historically been successful in allowing us to
understand and link many disparate physical phenomena [9].
However, the complexities of biological systems make them
different from systems traditionally considered by physicists,
in ways that warrant additional care in interpreting the
predictions of models.

Collective behavior in natural systems is particularly appealing
to engineers, who hope to exploit it in the design of engineered
distributed systems. Collective behavior operates with no
individual in charge and directing the motion of the others,
and the properties and functionality of the group arise from
the interactions among the individuals. This means that no
individual is essential for the group to function. Thus, one
advantage of collective behavior is that the function performed
by the group is robust to the loss of individuals. Additionally, the
bottom-up, self-organized nature of collective behavior means
that the group is regulated and maintains coherence without the
need for any individual to have global information about the state
of the others—and thus serves as a robust model of distributed
control with limited communication or information sharing.

Because the emphasis in the engineering community has been
on the function performed by the group rather than on scaling up
the behavior of each individual, models of collective behavior
formulated by engineers tend to start with the group-level
dynamics and propose a simplified model that generates this
behavior. In this way, these top-down engineering models can be
seen as explaining how a collective system works (in a simplified
fashion) rather than why it works. The resulting models can be
very powerful, both because they are easily translatable to
designed systems and because they lead to predictions that can
be tested in the biological system. However, because such models
are not based on first principles, it can be difficult to know
whether they will remain valid when the system parameters or
other factors change.

Modeling biological processes brings further challenges that
are not typically encountered in physics or engineering. Different
organisms communicate and sense their surroundings
differently, imposing distinct constraints on their behavior, so
that even if the structure of two groups of different organisms is
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similar or they have similar functions, they may operate in very
different ways. Additionally, organisms behave differently in
different situations, so that a model that describes a particular
group of animals well in one context may not hold when the
environment changes. Moreover, organisms act to modify their
environments, in ways that influence whether and how they
interact, so that their behavior cannot be considered to be
operating in an environment independent of the organisms
[10]. Thus, models of collective behavior are unlikely to be
generic, and do not fully describe the biological system. We
argue that models of collective behavior that are intended to
provide biological insight are most effective and useful when
designed to address specific questions about collective behavior,
and that it is important to remember their limitations.

To illustrate these ideas, we begin below with a broad overview
of modeling trends in collective behavior, including a discussion
of reasons why intuition gleaned from modeling in physics and
engineering may not be sufficient to understand a biological
system. We then discuss four distinct case studies that differ
in organism, interactions, and ecological context: foraging by
harvester ants, the formation of trail networks by arboreal turtle
ants, the emergence of binding and group-size regulation in
midge swarms, and collective travel and mobbing by flocking
jackdaws.

MODELING COLLECTIVE BEHAVIOR

Modeling is ubiquitous in all branches of science. However, both
what is meant by the term “modeling” and what its goal is differ
among disciplines. Such distinctions are particularly fraught in an
interdisciplinary field such as collective behavior, and they can
lead to misunderstandings among scientists with different priors.
Here, then, we begin by trying to elucidate some of these
differences and to clarify the various starting points and
perceived purposes of modeling collective behavior, before
describing modeling strategies in more detail.

Modeling in physics tends to be built on the process of
stripping away details, in an attempt to isolate only the most
fundamental aspects of a problem or system. A “toy model” in
this sense is typically not intended to reproduce the behavior of
the modeled system exactly; rather, the goal is to construct a more
tractable system that shares the same key features as the problem
of interest but whose dynamics can be completely understood. A
model of collective behavior developed in this spirit would not
necessarily be expected to capture the specific behavior of any
particular organism, but instead could be used to explain how
individual, local interactions can scale up to produce coherent
and distinct group-level behavior. We can characterize this
general approach as being bottom-up: the model explicitly
specifies the microscopic dynamics of the system, and the
macroscopic behavior is expected to be an outcome of solving
the model.

An engineer might approach modeling the same system
differently. The goal of models in engineering is often to
describe the actual behavior of the system, rather than why a
system behaves as it does. If such a model captures enough about

how the behavior works, it can then be translated into a new
situation or used for a different purpose. For collective behavior,
this style of modeling would entail describing in a simplified
fashion what a collective group does in the aggregate, without
explaining how the function of the collective behavior arises from
the behavior of the individuals. In this way, this approach is more
top-down: the macroscopic behavior of the group is what is
explicitly specified in the model.

Here we discuss the approach to modeling used by biologists
to guide empirical investigation [11]. Amodel is a description of a
natural process that can make specific predictions. When the
predictions do not fit the data, this provides an opportunity to
modify the model so as to describe the natural process more
accurately. However, even when the predictions of the model fit
the data, this does not prove that the model is correct, because the
same observed outcome could be achieved in other ways. Thus,
although the physicist’s modeling goal is achieved when the
collective behavior can be explained as the outcome of
individual behavior and the engineer’s goal is reached when
the operation of the system can be predicted, the biologist
with a model that predicts the observed outcome will still seek
to confirm that the real system actually operates in the way
described by the model. In other words, for the biologist,
obtaining a model that can then be studied and applied in
contexts that do not occur in nature is not the goal; rather,
the goal is to understand phenomena that do occur.

Thus, different scientific communities use models of collective
behavior in different ways and to address different questions. It is
important to remember that in all of these approaches, models are
by their nature always limited in scope and applicability; as
famously explained by the statistician George Box, “all models
are wrong” [12]. In particular, no model is likely to capture all of
the inherent complexity of a biological system as it adjusts to
constantly changing environments. Richard Levins in Evolution
in Changing Environments remarked that any model is either so
general that it cannot be used to ask how well it fits observations
or so detailed that it merely captures what is already known, and
so the exercise of modeling is the attempt, through matching
model results with data, to find a model that is somewhere in
between [13].

Next, we contrast strategies for implementing the bottom-up
and top-down approaches described above to address questions
about natural systems, and then discuss case studies of models of
different types of collective behavior.

Bottom-Up Modeling
The starting point of a bottom-up model of collective behavior is
the individual. Each member of the group is assigned a set of
behavioral rules, including interactions with others, that it
executes. The goal is that the correct group-level collective
behavior will emerge as the individuals follow their rules. This
approach, often termed agent-based modeling, has seen
widespread use in modeling collectively moving groups of
animals such as flocks and schools. Designing an agent-based
model of this type requires several explicit choices [14]. One must
at minimum specify how each individual behaves when it is not
interacting with others, which is often as simple as moving in a
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straight line at a constant speed; how the individual interacts with
others; and which others it interacts with. Although these rules
may be fully deterministic, it is common to include some
stochasticity to mimic variously the imperfections of biological
sensing or the random or unexplained variation among
individuals that occurs in natural groups. Any behavioral rules
assigned to individuals are themselves not fundamental, as they
must arise from a complex process of sensory signal transduction
by each individual and subsequent internal decision-making.
Some classes of bottom-up models attempt to take aspects of
these internal processes into account explicitly.

Some of the earliest agent-based flocking models were
developed in the computer-graphics community [4], with the
goal of producing animations of group motion that looked
realistic. Subsequently, the same general framework was
adopted by the physics community with the goal of casting
the emergence of collective motion as a kind of critical
phenomenon [15], by analogy with the study of phase
transitions. The focus of this work was primarily on groups
that display unidirectional ordered motion (that is, flocks), but
later research showed that changes to the interaction rules can
produce other types of group motion such as toroidal mills or
disordered swarms [16]. More generally, agent-based models
have also been used to describe many forms of collective
behavior beyond simple collective movement [17].

The primary goal of bottom-up modeling, however, is not
simply to replicate the observed collective outcome, such as the
shape of a group of moving individuals, but rather to explain how
that outcome arises from the behavior of individuals and their
interactions. For example, we would like to understand how
interactions between individual birds give rise to the
macroscopic ordered motion of a flock [18, 19], or why rafts
of interlocked fire ants display an effective viscoelasticity [20].

In physics, questions about collective outcomes of interactions
among individuals fit the general paradigm of statistical
mechanics. Originally developed to describe thermal systems,
statistical mechanics is a core tool throughout condensed matter
physics, and is extremely powerful for describing the properties of
materials by appropriately averaging over interactions between
their constituent atoms. The purview of statistical mechanics has
over the past several decades expanded enormously beyond its
traditional areas of application, and has proved to be useful in
understanding a broad range of topics, both physical and non-
physical [9]. Researchers have attempted to apply the general
methods of statistical mechanics to just about every problem
involving large numbers of discrete degrees of freedom [9]. It is an
obvious extension of this approach to use statistical mechanics to
treat collective groups, where the degrees of freedom are the
individual organisms. This is the core of the young subdiscipline
of active matter physics.

Statistical mechanics is not, however, a panacea; there are
many cases where its methods do not work. It is worth
considering when and why this occurs, to be aware of the
limitations of a statistical-mechanical approach to collective
behavior. The central concept in statistical mechanics is that
of an ensemble: instead of trying to predict the dynamics of a
single system, we instead make statements about the average

properties of a large number of identically prepared and
constrained systems. Thus, the key to any statistical-
mechanical approach is the specification of an appropriate
ensemble. One classical way to do this is to appeal to
conservation laws. For an isolated thermal system, for
example, we expect that its total energy is conserved. An
appropriate ensemble in this case is the microcanonical
ensemble, the set of all configurations of the constituent
molecules whose individual energies add up to the (conserved)
total energy.We can characterize different thermal systems in this
framework by specifying the relative likelihood of each of these
configurations via a density of states. However, there are many
cases where this approach fails. Without an appropriate
conservation law, for example, defining an ensemble is often
not possible, e.g., in highly dissipative athermal systems like
granular materials [21]. In systems far from equilibrium,
which is the rule for biological systems, defining an
appropriate ensemble is difficult, because the macroscopic
properties of such a system may change in time.

Unfortunately, both of these caveats apply in the case of
collective behavior. Because each individual organism
independently consumes and dissipates energy, we cannot in
general assert any of our usual conservation laws such as energy
or momentum. By the same token, life is inherently far from
equilibrium; a biological system in equilibrium is dead. Thus, it is
not obvious how to define an appropriate ensemble.

Modeling methods that originated in the study of
hydrodynamics and liquid crystals (and that generally fall
within the domain of nonequilibrium statistical mechanics)
have been somewhat more successful in developing group-
level descriptions of animal groups that exhibit net motion [8].
In this approach, one models the group with a small number of
continuum fields rather than discrete individuals. The equations
of motion for these fields can either be developed by coarse-
graining over the discrete microscopic equations of motion, or
sometimes simply by including all terms allowed by symmetry
and setting their relative strengths empirically. This approach was
notably recently applied to polarized human crowds [22].

To date, bottom-up, agent-based models have been quite
successful in demonstrating that collective states can be
generated only from simple local interactions. Such models
can produce various kinds of group shapes reminiscent of
those observed in nature. Advances in active matter are
beginning to lead to an understanding of how these collective
states arise and their properties. However, we must remain
cautious about interpreting these successes as indications that
simple bottom-up models accurately describe real biological
systems. It is certainly tempting to do so, following intuition
gained from decades of studying critical phenomena. Toy models
such as the Ising model accurately describe the behavior of
physical systems with much more complicated structure at the
microscale because these systems are strongly constrained by
conservation laws and symmetries. These constraints give rise to
universality, so that in a formal sense toy models describe aspects
of real physical systems exactly. Biological systems, however, need
not respect conservation laws and symmetries, particularly at the
whole-organism level. Thus, care must be exercised in trusting the
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predictions of simple agent-based models of collective behavior,
particularly when they are extrapolative. And because formal
theoretical arguments cannot guarantee that models predictions
will be correct, validation against observational data is essential.
Finally, we note that even such validation is fraught, and
comparing the output of a model with the macroscopic
behavior of a real system cannot definitively confirm that the
mechanisms assumed in the model are correct. Collective
behavior requires interactions and is thus inherently nonlinear,
and nonlinear systems are rarely invertible.

Top-Down Modeling
An alternative approach, that is characteristic of classic methods
in engineering, is to use a top-down approach to describe a
collective process. The goal of such models is not to discover the
underlying principles that govern collective behavior, but instead
to specify how to generate particular collective outcomes. It goes
without saying, of course, that employing this approach requires
one to know what outcome is sought. Dynamical systems theory
generally aims to predict the outcomes of dynamical processes,
without necessarily specifying the behavior of each component.
For example, control theory was developed to specify how the
flow of work, such as in a factory, possibly involving many
different operations, yields a rate of production and minimizes
delays or optimizes some outcome [23].

The tools of dynamical systems theory have been used to
model forms of collective behavior that regulate activity. For
example, many physiological processes arising from chemical
interactions and interactions among cells can be considered to be
collective behavior within tissues. The kinetics of such processes
describe how outcomes depend on concentrations of various
components, without considering the details of how the
components encounter each other and interact. For example,
metabolic pathways depend on interactions among various
molecular actors, and their collective behavior can be
described in a top-down way [24, 25].

Systems biology has developed the quantitative analysis of
collective processes within and among cells [26]. In general, the
dynamics of signaling pathways can be described with differential
equations that specify quantities without examining the details of
local interactions among the participants, ranging from
transcription networks [27] to cell division. For example,
Cheng and Ferrell [28] showed how, in the frog egg, a trigger
wave works quickly in apoptosis by examining the change in the
quantity of caspase moving across the cell. The dynamics
demonstrate the mechanism; trigger waves occur faster than
diffusion. This result is based on top-down modeling; the
dynamics reveal the broad strokes of how the components of
the system interact without describing the interactions
themselves in detail.

Similarly, the study of population dynamics in ecology uses
models of the outcome of interactions among individuals to
explain collective processes in populations [29]. The Lotka-
Volterra equations are a simple example. They describe how
populations change as a function of numbers of individuals and
amounts of resources in the environment, without addressing the
details of the particular interactions that cause individuals to

reproduce or die, or how birth and death are affected by available
resources.

Here we present some examples from our own work of
different approaches to modeling collective behavior.

Harvester Ants
Our investigations of the collective behavior that regulates
foraging activity in harvester ants have primarily used tools
from engineering to create top-down models that capture the
goals and tasks of the ants.

First, we considered a model of spatial distributions of a
population of harvester ant colonies. Harvester ants forage for
scattered seeds and so do not use pheromone trails [30]. Colonies
compete with neighboring colonies of the same species for
foraging area [31]. A colony regulates its foraging activity in
response to interactions with neighboring colonies and food
availability. Colonies must regulate activity in response to the
risk of water loss. Ants lose water to evaporation when out
foraging in the desert sun, but obtain their water from
metabolizing the fats in the food they eat. The extent to which
one colony’s foraging area overlaps with its neighbors’ changes
over a colony’s lifetime, as colonies grow older and larger [32].

We modeled the spatial distribution of colonies to ask how
competition among neighboring colonies generates the shifting
spatial distribution of colonies [33]. Our goal was to capture the
relevant interactions among colonies enough to predict how
distributions change over time. Similar studies have been done
to explain the collective outcome of spatial interactions among
individuals in populations of sessile organisms that compete with
their neighbors for resources, such as self-thinning in trees [34] or
populations of termite colonies [35]. The basic parameter in our
model was the spatial range of foraging by each age class of
colony. The results show how the local neighborhood of colonies
of the same species affects each colony’s opportunity to expand its
foraging area. A recent analysis of the effect of spatial
distributions on colony foraging area and its survival supports
the results of this model.

Harvester ant colonies regulate foraging collectively using
local olfactory encounters. Ants smell with their antennae, and
when one ant touches the antennae of another, it assesses the odor
of the other ant. Ants, like many insects, spread long-chain fatty
acids, cuticular hydrocarbons, on their bodies by grooming.
These cuticular hydrocarbons help to prevent desiccation, and
also carry specific odors. In the course of a brief antennal contact,
one ant smells the cuticular hydrocarbon profile of the other [36].
Ants use the odor of cuticular hydrocarbons to recognize whether
another ant is a nestmate and also to identify the task of the ants
they meet.

A harvester ant forager waits inside the nest entrance between
foraging trips. An outgoing forager uses the rate at which it
meets returning foragers with food to decide whether to leave
the nest on its new trip [37]. Because each ant searches until it
finds food, the rate of forager return is a cue to food
availability: more food means a shorter search time and a
higher rate of forager return.

We developed a model to predict the rate at which outgoing
foragers leave the nest, based on the rate of forager return [38].
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We tracked the rates at which foragers left the nest and returned,
including in field experiments in which we manipulated the rate
of forager return. The parameters of our model were the rate at
which foragers left the nest, which we treated as a Poisson process,
and a variable that describes how much returning foragers
stimulate the rate at which foragers leave the nest. Here we
did not specify the dynamics or details of the interactions of
outgoing and returning foragers. We used the data on the rate of
foraging return, and the model, to simulate the rate at which
foragers leave the nest. Our goal was to ask if this simple process
was sufficient to predict the observed fluctuations in foraging
activity. We found a good fit by the simulations with the observed
rate at which foragers left the nest. The good fit between model
predictions and data shows that it is plausible that the interactions
of returning and outgoing foragers as theymix inside the entrance
chamber generate the moment-to-moment rate at which foragers
they leave the nest.

The model showed that overall the rate at which foragers leave
the nest depends on the rate of forager return. We then looked
more closely at the interactions of outgoing and returning
foragers, to ask what is the process that individual foragers use
to decide whether to leave the nest on their next trip. Each forager
makes many trips in a day, and when it returns to the nest, uses its
rate of encounter to decide whether to leave the nest. The
encounters are antennal contacts in which it assesses the odor
of the ant it meets.

We asked how a forager assesses its rate of antennal contact
with other ants [39]. We used a leaky integrator model, based on
drift-diffusion dynamics, from theoretical neuroscience. This
choice of model was based on an analogy between ants and
neurons. Just as a forager uses the rate at which it meets returning
foragers to decide whether to leave the nest, so a neuron uses the
rate of stimulation from other neurons to decide whether to fire.
In neurons, the electrical charge leaks as it travels down the axon.
We modified the leaky integrator model to explain the firing rate
of neurons, to ask whether the decisions of outgoing foragers
could be based on a similar process.

In our model, each encounter between a returning and
outgoing forager stimulates the outgoing forager to leave the
nest, and this stimulus has a decay. If enough encounters occur
often enough, the stimulus reaches some stochastic threshold
value and the forager is likely to decide to leave the nest to forage.
We added another element to the model that does not apply to
neurons. Experiments showed that when no foragers return for
an extended period, about 8 min or more, the outgoing foragers
leave the entrance chamber and go down to the deeper nest where
they are not available to be stimulated to forage.

We were able to fit the model to data by developing a method
in the field to film ant interactions inside the nest. This allowed us
to obtain data on the rates of encounter of outgoing and returning
foragers inside the nest, as well as the rates of encounter of ants
that decided not to leave the nest on the next trip. These data fit
the predictions of the model. These results show that it is
plausible that a forager can assess interaction rate using a
physiological process in which each interaction it experiences
has a decay, and the decision depends on the accumulated
stimulation from encounters over time.

Once we understood the dynamics that regulate a forager’s
decision to leave the nest, we were able to consider the regulation
of foraging activity, and how it varies from day to day and among
colonies [40]. Using a low-dimensional analytical model from
control theory, we brought together the dynamics of different
aspects of the system, including interactions inside the nest and
foraging outside the nest [41].

The model brings together the encounters of foragers inside
the nest as an open loop with the activity of foragers going out to
search, retrieve seeds and return to the nest as a closed loop. It
uses excitability dynamics to represent how outgoing foragers
inside the nest respond to returning foragers to decide whether to
leave the nest to forage, and then uses a random delay distribution
to represent the activity of foragers outside the nest. The results
show how feedback from outgoing foragers returning to the nest
stabilizes the incoming and outgoing foraging rates to a common
value determined by the volatility of available foragers. There is a
critical volatility in the interactions of outgoing and returning
foragers, above which foraging activity continues at a set rate, and
below which foraging stops. Observations show that foraging
activity adjusts to changes in temperature and humidity both
within a day and from day to day. Our model suggests that these
adjustments occur because foragers modify their volatility after
they leave the nest and become exposed to the environment; a
forager’s experience on its last trip influences how it responds to
encounters with returning foragers.

In these examples, modelling was used to investigate
different aspects of harvester ant behavior. First, we
considered how the interactions of foragers of neighboring
colonies shape the spatial distribution of the population.
Then a series of models, combined with field experiments,
investigated the feedback that regulates foraging activity
through interactions of outgoing and returning foragers. We
found that interactions lead to individual forager decisions
whether to leave the nest, through excitable dynamics. Then
we combined these in a model that included both the excitable
dynamics and the adjustment of volatility by foragers in
response to the conditions they encounter outside. This
series of modelling projects show the role of feedback across
many timescales in the collective regulation of foraging activity,
and helps to explain how evolution is shaping collective
behavior through variation among colonies in individual
response to interactions [42].

Arboreal Turtle Ants
Turtle ants form networks of trails in the canopy of the tropical
forest. The network consists of a routing backbone that connects
several nests of the same colony, along which the ants distribute
resources, and temporary trails to ephemeral food sources. Ants
lay pheromone trails as they go, and when they get to a junction,
tend to take the edge with the most pheromone. The pheromone
evaporates over time, probably with an exponential decay. While
most ants follow the edge with the most pheromone, occasionally
some ant takes a different edge, not the one most strongly
reinforced. This allows for search and exploration, and also for
repair of breaks in the vegetation that interrupt the trail
network [43].
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We asked what is the algorithm that the ants use to maintain
and repair trails [44]. We modeled this as a distributed algorithm
with two parameters: the rate of evaporation of the pheromone,
and the probability that an ant leaves the trail to explore. We
found that the parameter values most successful in simulations
matched those from field observations [43]. This shows that this
model is plausible because it is consistent with field observations.

Next, we asked what objectives are optimized by the algorithm
that the ants use [45]. Unlike species that forage on the ground
and can go anywhere in a 2D plane, arboreal ants never leave the
tree canopy, and so the configuration of their trail networks is
constrained by the vegetation. We considered what objectives the
ant networks meet by comparing the observed turtle ant trail
networks with simulated networks of random, hypothetical trails
in the same surrounding vegetation. We made these comparisons
with trails optimized for different objectives: the shortest path, the
path with the least number of nodes or junctions in the
vegetation, and finally the path linking nodes with a 3D
configuration most likely to be reinforced by pheromone. To
consider the alternatives from which the ants choose a path, we
used data from maps of trail networks, tracking the path through
the tree canopy that the ants used, and also the vegetation around
the path. We found that the ants’ trails minimize the number of
nodes traversed, reducing the opportunity for ants to get lost at
each node, and favor nodes with 3D configurations most likely to
be reinforced by pheromone, thus keeping the ants together on
the same trail. The results showed that rather than finding the
shortest path, turtle ant trail networks take advantage of natural
variation in the environment to favor coherence, keeping the ants
together on the trails.

Next, we examined in detail what algorithm the ants use to
minimize the number of nodes or junctions in the trail network,
although no ant can assess the length of the trail [46]. This asks
what the details of the local interactions involving trail
pheromone are that have the outcome that trails minimize the
number of nodes, although no ant can assess the total number of
nodes in the trail.

The model is a form of a reinforced random walk on a directed
graph. The ants lay pheromone on edges and at each junction,
choose an edge with the most pheromone. The pheromone
decays with time. Ants travel both ways on the trail. Because
there is a consistent small probability that some ants explore, or
choose an edge that is not reinforced, every edge not taken is an
opportunity for leakage, losing ants off the trail. We found that
this process converges to the path with the fewest nodes bypassed
when the rate of flow of ants in both directions is constant.
However, when the flow rate increases, for example, due to the
discovery of a new food source, it converges to the shortest path.
We showed that the combination of forward and backward flow,
with ants laying pheromone (without directional signal) in both
directions, is necessary for convergence. Thus this model provides
a plausible explanation for how collectively the ants can minimize
the number of junctions in the path, or find the shortest path,
although no ant assesses the path’s length or number of nodes.

These modelling projects help to explain how colonies
maintain and repair trail networks that link nests and food
sources using only local information based on pheromone

intensity at junctions in the vegetation, how the networks are
shaped by the physical configurations of the vegetation, and
which aspects of the process contribute to the coherence of
the trails.

Midge Swarms
Chironomid midges, like most other species in order Diptera,
form swarms spontaneously as part of their mating process.
Swarms are composed entirely of males, and are thought to
provide targets for females to find mates. These swarms are
transient (tending to form at dawn and dusk based on light-
level cues), and form over ground-based features known as swarm
markers. Unlike flocks or mills, swarms are fixed in place, in that
the group as a whole does not exhibit net translational or
rotational motion; however, each individual is constantly
moving. Since the vector sum of the (nonzero) linear and
orbital angular midge velocities must vanish, the relative
motion of the midges must be either highly structured or
largely random. Empirically, the latter situation is what is
observed. However, the motion of individual midges is not
completely arbitrary, because they remain bound to the
swarm. In the wild, swarms form in free space with no
external constraints; thus, the swarm boundaries, which are
surprisingly tightly regulated, are dynamically set, and depend
most strongly on the number of individuals in the swarm [47].
More precisely, midges behave as if they are moving in a
harmonic potential well that binds them to the swarm [47].
The strength of this effective potential scales with the number
of midges in the swarm. This emergence of this effective potential
is one of the signatures that swarming is indeed collective despite
the difficulty of identifying specific interactions between
individuals [48].

Because swarms do not obviously accomplish any collective
tasks (aside from staying fixed despite environmental fluctuations
[49] and acting as a target for females), most models of swarms
are bottom-up. Building on the body of work done to understand
the Vicsek flocking model [15], one popular avenue for modeling
swarms has been to treat them as Vicsek flocks in the unpolarized
regime, often with additional attractive interactions [16] or a
confining potential [50, 51] to keep them cohesive. However, this
type of model makes predictions that do not agree with
observations, displaying, for example, much stronger attraction
to neighbors relative to other swarm features than is measured in
real swarms [48] or suggesting that swarms may spontaneously
polarize and become mobile flocks [51]. Part of the problem with
these models may indeed be that they start by assuming that the
collective behavior arises from direct interactions between
neighboring individuals, even though evidence for significant
interactions of this type is scant [48, 52].

A different modeling approach that has been more successful
in capturing observed features of swarms is to begin not by
assuming a particular type of behavioral interaction, but rather by
considering how midges sense each other. Midges in swarms
interact acoustically, perceiving the sound of the wingbeats of
other midges. Indeed, this is thought to be the primary
mechanism by which midges distinguish males from females,
as the fundamental wingbeat frequency is very different for males
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and females. Male midges transduce sound via their Johnston’s
organs, and to leading order, the strength of the sound signal they
perceive will decay as the inverse square of the distance from the
emitting source [53]. Inverse-square laws are, of course, very
common—perhaps most notably in gravitation. This observation
led us to model swarms as a kind of self-gravitating system
[53–57], following a line of reasoning that goes back to Okubo
[58]. This framework is very appealing, as it allows us to translate
intuition gained from studying gravitation to collective behavior.
Several observed features of swarms also naturally arise in a
gravitational model. Gravitational systems are, for example,
naturally bound together, but local interactions are difficult to
discern because gravitational forces are long-range. Additionally,
multi-body gravitating systems are well known to allow for
chaotic motion, so that the random and disordered nature of
the motion of individuals in the swarm can be captured without
needing to build it into the model explicitly.

A simple, purely gravitational model, although qualitatively
reasonable, does not quantitatively capture the structure of real
midge swarms [56]. However, we found that we can improve the
model by making an addition that is also grounded in biological
sensing. Most biosensors do not have a fixed gain; rather, to avoid
damage and improve sensitivity, their gain adapts to the input signal
strength. This typically occurs via the so-called fold-change detection
mechanism [59], also known as Weber’s law. In the case of a
gravitational swarm model, incorporating adaptivity means that
midges that are not too close to their neighbors primarily
respond to the net contribution of all of the other midges in the
swarm, while those that are close to neighbors respond primarily to
these nearby midges [53]. Note that this renormalization of the
effective force felt by individuals also formally makes the model
many-body, in that the adaptive force cannot be decomposed into the
linear superposition of the contributions from each individual midge.

Whether implemented in a deterministic way [53, 54, 56, 57] or
via a stochastic modelling framework [49, 55, 60, 61], adaptive-
gravity models of swarms correctly reproduce many features of
midge swarms. Model swarms display an emergent harmonic
potential, as they must given the form of the gravitational
interaction; but with adaptivity, they also reproduce the observed
weakening of the strength of the potential with increasing swarm size
[53]. They also reproduce the heavy tails seen in the acceleration
distributions [53, 60] and the distinct behavior of midges in the
swarm core as compared with those on the swarm periphery [60,
62]. What is perhaps more unexpected, since these adaptive-gravity
models do not explicitly model direct interactions between
individuals, is that such models also reproduce multipoint
properties of swarms. For example, they display similar transient
pairing of individuals as has been observed in real swarms [52, 57].
Adaptive-gravity swarms also display similarmaterial-like properties
such as effective viscoelasticity [60, 61].

To summarize, because the general function of swarms is not fully
understood, we approachedmodeling them from the bottomup.Our
primary goal was to understand a specific feature of the swarms,
namely the emergence of the effective potential that binds swarms
together and the way in which this potential varies with swarm size.
Appealingly, our models also reproduced other empirical features of
midge swarms. However, the models are certainly not full

descriptions of the biology; for example, these models cannot
shed light on the biological function of swarming.

Jackdaw Flocks
Jackdaws (Corvus monedula) are a highly social, colony-breeding
corvid. In the winter, when there are no young in the nest, they
roost together nightly in communal trees. At dusk, they form large
“transit” flocks to travel from their daytime foraging grounds to
their roosts. These flocks are highly polarized, in that the flight
directions of all the individuals in the flock are close to uniform. In
that sense, jackdaw transit flocks are qualitatively similar to those
other species of flocking birds that have been studied such as
European starlings. Unlike starlings, however, jackdaw societies are
highly structured; in particular, they are known to form lifelong
monogamous pair bonds [63]. Paired birds not only remain in close
proximity during foraging and nesting, but also qualitatively appear
to fly together during flocking [64]. Quantitative statistical analysis
of jackdaw transit flocks confirms the presence of paired birds,
which tend to remain unusually close together along their entire
flight trajectories [65].

Agent-based, bottom-up models that assume a tendency for
individuals to align their motion, such as the classic Reynolds [4] or
Vicsek [15] models, were first introduced with the intent of
capturing the behavior of bird flocks. Testing of these models,
however, occurred only many years later, due to the difficulty of
collecting detailed measurements of bird movement. Nevertheless,
when tested on starling flocks, these models have been shown to
perform reasonably well. They not only capture simple features of
the flocks, such as their high degree of polarization, but also more
subtle properties such as their long-range, scale-free velocity
correlations [66, 67]. To achieve agreement between the model
and the data, however, one significant modification was
required—not to the way in which individuals interact, but
rather to which individuals interact. Standard agent-based
models such as the Vicsek model assume that a given individual
responds to all others that lie within some distance of it. This way of
determining the interaction range is described as being metric,
because it depends on real, physical distance. Flocking starlings, in
contrast, were found to respond to a specific number of neighbors
(six or seven, empirically), regardless of their distance [68]. This
kind of interaction range is termed topological, because it does not
depend on distance.

In many ways, jackdaw transit flocks appear to be similar to
starling flocks. Like starling flocks, they are highly polarized and
exhibit long-range velocity correlations [65]. Jackdaws in transit
flocks also interact via a topological distance. An individual’s
topological range, however, depends on whether it is part of a
mated pair or not: paired birds interact with three to four others,
while unpaired birds interact with seven to eight [65]. This
difference has group-level consequences, as the correlation
length decreases monotonically with the fraction of jackdaws in
the flock that are paired. Because the correlation length can roughly
be taken to be a measure of the global responsiveness of the flock,
this result suggests that the more paired birds a jackdaw flock
contains, the less effectively that flock can detect and evade
predators. This effect can be reproduced by a Vicsek-style model
with a topological interaction rule and two classes of individuals
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with different interaction ranges [65]. Pairing thus appears to have
an adverse effect on the group behavior, in a way that can be
captured by simple modeling. That finding led us to question
whether pairing also carries some advantage. And indeed, in
addition to any benefits that long-term pairing may convey
when not flocking, paired birds also gain individual benefits
from pairing when participating in transit flocks. An analysis of
the wingbeat frequencies of paired and unpaired birds shows that
paired birds beat their wings more slowly on average, and thus
expend less energy flying in the flock than their unpaired
conspecifics [65]. This effect is not captured by simple Vicsek-
style agent-based modeling, since such models do not consider
energy expenditure; rather, self-propulsion is simply assumed at no
cost to the individual.

Jackdaws in the winter roosting season, in contrast to the
summer nesting season, roost in separate nests while taking care
of their young, and transit flocks do not form. However, even in
this season jackdaws will come together when responding to
distinctive scolding calls to mob predators [69]. This behavior can
be induced using model predators and playbacks of recorded
scolding calls [70].

Mobbing flocks are qualitatively different from transit flocks.
Paired birds, for example, are not evident, presumably because one
member of each pair remains in the nest with the young. The more
significant difference between mobbing and transit flocks, however,
is that the interactions among individuals in mobbing flocks occur
over metric rather than topological distances [70]. Rather than
interacting with a fixed number of neighbors, jackdaws in mobbing
flocks align their motion with neighbors over a real physical
distance, perhaps because they need to be careful about keeping
their distance from the predator. This difference has consequences
for the structure of mobbing flocks. Whereas transit flocks do not
show a qualitative dependence on flock size, small mobbing flocks
are loose and disordered while large mobbing flocks are dense and
polarized [70]. The development of this large-scale order as the
flock density increases is captured remarkably well by the Vicsek
model using a metric distance [71].

When tested against quantitative observational data, bottom-up,
agent-based models thus capture a fairly broad range of the features
of jackdaw flocks. In particular, we were able to use modeling to
assess the likelihood that pairing (and, more generally, differences in
local interaction range and type) was responsible for the decrease in
correlation length that we observed. However, the results described
here also illustrate the limitations of such models. In particular, the
observation that jackdaws in transit flocks interact via topological
distances but use metric distance in mobbing flocks dispels any
notion that there may be a single model for bird flocks, or even a
single model for a given species. Ecological context is an essential
factor for designing appropriate models, and cannot be ignored.

DISCUSSION AND CONCLUSION

These four examples illustrate how different modeling
approaches can be used to address questions about collective
behavior in biological systems. For both harvester ants and turtle
ants, we know at least some of the functions that the collective

behavior performs: the regulation of foraging in the case of
harvester ants, and the construction and maintenance of trails
in the case of turtle ants. For both of these examples, modeling
shows in a simplified way how these distributed systems can
accomplish these tasks given only local information. For both
midge swarms and jackdaw flocks, however, the situation is
somewhat different because the purpose of the collective
behavior is less clear. The role of modeling in these examples
thus cannot be to explain how the group achieves a task. Instead,
in the case of midge swarms, we used models to describe the
nature and properties of their non-random aspects. For jackdaws,
we used models to understand the consequences of differences in
local interactions between different individuals and of different
ways of determining interaction distance. Importantly, in none of
our examples did we attempt to create a single, complete model
for the collective behavior; rather, our models were designed to
ask specific questions or test specific hypotheses.

We argue that this approach, recognizing the limitations of
models and deploying them in targeted, judicious way, is not
simply an expression of ignorance but instead is a necessary
consequence of the characteristics of biological systems. Biology
is not physics. Organisms are not all the same, and even single
individuals do not always respond the same way to stimuli.
However, these variations are not purely stochastic, but rather
are influenced and biased by many factors. The powerful
constraints of conservation laws and symmetries that give rise
to universality in physics simply do not apply to biological
systems. Additionally, the types of questions that are pertinent
to a biologist are different from those typically asked in physics.
For physicists, the consequence is that there will probably never
be a single unified model of collective behavior in biology, or even
of the simpler problem of collective movement. Instead, we must
acknowledge that the goal of models based on the physics
approach is to explicate general principles of how global
properties can arise from local interactions, and perhaps to
constrain what kinds of properties are possible, while
making it clear that such models are not intended to
reproduce the details of any particular biological system. All
models are limited and imperfect. Biologists will not be able to
take a model off the shelf and apply it to a new system. Instead,
we can bring together the modeling tools from different
approaches to learn more about how collective behavior
operates, and to identify for further investigation the
processes that we do not yet understand.
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Impact of Variable Speed on Collective
Movement of Animal Groups
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Berlin, Germany, 4Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany, 5Center for
Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain, 6Department of Biology
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The collective dynamics and structure of animal groups has attracted the attention of
scientists across a broad range of fields. A variety of agent-based models have been
developed to help understand the emergence of coordinated collective behavior from
simple interaction rules. A common, simplifying assumption of such collective movement
models, is that individual agents move with a constant speed. In this work we critically re-
asses this assumption. First, we discuss experimental data showcasing the omnipresent
speed variability observed in different species of live fish and artificial agents (RoboFish).
Based on theoretical considerations accounting for inertia and rotational friction, we derive
a functional dependence of the turning response of individuals on their instantaneous
speed, which is confirmed by experimental data. We then investigate the interplay of
variable speed and speed-dependent turning on self-organized collective behavior by
implementing an agent-basedmodel which accounts for both these effects. We show that,
besides the average speed of individuals, the variability in individual speed can have a
dramatic impact on the emergent collective dynamics: a group which differs to another
only in a lower speed variability of its individuals (groups being identical in all other
behavioral parameters), can be in the polarized state while the other group is
disordered. We find that the local coupling between group polarization and individual
speed is strongest at the order-disorder transition, and that, in contrast to fixed speed
models, the group’s spatial extent does not have a maximum at the transition.
Furthermore, we demonstrate a decrease in polarization with group size for groups of
individuals with variable speed, and a sudden decrease in mean individual speed at a
critical group size (N � 4 for Voronoi interactions) linked to a topological transition from an
all-to-all to a distributed spatial interaction network. Overall, our work highlights the
importance to account for fundamental kinematic constraints in general, and variable
speed in particular, when modeling self-organized collective dynamics.

Keywords: collective motion, biophysics, mathematical models, variable speed, social interactions, group size,
phase transition
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1 INTRODUCTION

The emergent, highly coordinated, collective movements of
schools of fish, flocks of birds and insect swarms, are
fascinating examples of biological self-organization. Our
understanding of these collective systems has been significantly
advanced over the past years through diverse research efforts in
biology [1–5], mathematics [6–8], computer science [9, 10],
engineering [11, 12], and statistical physics [13–17].

In addition to empirical observations, mathematical models
are an important tool for studying self-organization and collective
behavior, and have been instrumental in uncovering general
principles of how robust, large-scale coordination can emerge
from simple, local interactions between self-propelled agents [10,
18, 19].

When formulating models, in general and for animal
collectives, one has to balance simplicity/generality and
detailed resemblance to experimental systems. From a
statistical physics point of view, it is viable to assume some
sort of universality of the collective dynamics even in far-
from-equilibrium situations. Thus, as long as the model
accounts for crucial aspects of the microscopic dynamics,
other microscopic details become irrelevant for the
macroscopic behavior for sufficiently large systems over a long
temporal scale. However, 1) there is no general way to tell when
the system is sufficiently large, and 2) animal groups consist of
tens to hundreds, rarely thousands or more, individuals.
Therefore, animal collectives should be rather viewed as
mesoscopic systems, where the actual details of individual
movement behavior may play an important role [20], and
caution is advised when simplifying modeling assumptions.

A particularly prominent simplification often encountered in
models of collective behavior is the assumption of constant speed
of individual agents [13, 21–23]; for exceptions see [24–28].
However, although animals may generally tend to move at a
certain, often preferred, speed, they are also able to flexibly
modify their speed, ranging from non-moving to the
maximum of their movement capacity. Speed adaptation due
to environmental factors or social interactions [2]—ignored in
constant speed models—as well as heterogeneity thereof, may
play a decisive role in the ability of groups to coordinate their
movement and thereby the structure of animal groups [29].
Indeed, experiments demonstrated that speed influences the
collective behavior strongly, via a coupling to polarization/
alignment [3, 22, 25, 29–31] which could also be shown at the
local scale [25], i.e. regions in the shoal with faster fish are more
polarized. In most former simulation studies, agents’ speed was
modelled to modify the turning rate or the assumed social forces,
but was generally set to be fixed rendering speed to a mere
parameter [3, 21, 22, 32]. However, a couple of studies have
shown that variable speed has repercussions on group-level
patterns and can lead to qualitatively new, emergent
phenomena on the group level as for example bi-stable
behavior with respect to polarization [24, 25]. In this bistable
region, the group remains in the initiated collective state (ordered
vs. disordered) because 1) the strong alignment force maintains
the order (stable order) or 2) the velocity alignment reduces the

speed, because the magnitude of the mean neighbor velocity is
low, which allows a faster turning initiated by noise (stable
disorder). These findings demonstrate the important role of
feedbacks between speed, turning, and social interactions for
the emergence and stability of collective states.

These feedbacks incorporate both, the physics and behavioral
side of collective behavior. Due to this combination, they have not
been explored, to our best knowledge, in the field of 1) active
aligning particle models [16, 18, 33, 34], which are often variants
of the Vicsek model that either lack inertia, repulsion and/or
speed variability (none of those is present in the Vicsek model), 2)
active Brownian particles [35] which consider speed variablility
and repulsion but operate normally in the over-damped limit (no
inertia) and rarely take alignment into account, 3) burst-coast
models [26–28, 36] which model swimming behavior in greater
detail (distinct phases of de- and acceleration) but either speeds
are picked randomly independent of social interactions and
current state [27, 36] or the focus was to resemble
experimentally observed individual behavior in detail without
investigating emergent effects on the collective level [26, 28].

In general, individuals in a group can differ in their phenotype
(e.g. animal personality) that can be strongly linked and result in
differences in movement speed [3, 37–39]). The inter-individual
variability in preferred movement speed has been found to
influence spatial self-sorting (faster individuals sort to the
front of the shoal), cohesion and polarization of groups [3, 21,
30], but its role decreases with larger group sizes [39].
Importantly, already in behaviorally homogeneous groups,
with individuals having highly similar preferred speeds, their
instantaneous speed will dynamically vary over time due to
individuals’ direct response to social and environmental cues
as well as internal decision processes. Both these types of speed
variability will be important for the collective movement
dynamics.

In this study, we focus on investigating the role of within-
individual speed variability on emergent, self-organized collective
movement using an agent-based model. It is meant to represent
real animal groups, and we will discuss the role of inertia and
friction and how these link speed, turning and social interactions.
We will first provide an experimental motivation for our
modeling ansatz by showing the ubiquity of speed variability
in living and robotic fish and providing evidence for coupling
between turning behavior and instantaneous speed, which can be
theoretically understood by considering self-propelled movement
with inertia. Inspired by these results, we will then investigate an
agent-based model and demonstrate how the ability of
individuals to flexibly adapt their speed in response to social
interactions and fluctuations has major consequence for the
emergent collective dynamics.

2 METHODS

2.1 Experimental Data
In order to determine the extent of within-individual variability
in movement speeds, we analyzed previously published data sets
of individual movement of the Trinidadian guppy [30] and
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individual and group movement of the clonal Amazon molly [38,
40] as well as a biomimetic robot (“RoboFish”, [3]). We include
the RoboFish to highlight that the movement constraints due to
inertia and turning friction are general and not limited to
biological agents. All data sets consist of positional tracking
data from laboratory observations with a sampling frame rate
of 30 fps, circular or rectangular arenas smaller than 1 square
meter in size and only female fish, as summarized in Table 1 and
explained in more detail in Supplementary Material Section I.

2.2 Processing of Trajectories
The tracking data obtained for the different species and the
robotic fish encodes the position xi(t) � [xi(t), yi(t)]T of the
individual i for each frame t. We approximate the velocity of
each individual from subsequent positions by computing:

vi,x(t + Δt) � xi(t + Δt) − xi(t)
Δt . (1)

We can approximate the direction of motion of individual i by
φi(t) � arctan2(vi,y(t), vi,x(t)). Similar to Eq. 1, we compute the
angular speed _φ(t) of each individual.

2.3 Fundamental Relations Between Speed
and Turning
The fundamental equation of motion for a self-propelled agent i
reads:

dvi(t)
dt

� 1
m
Fi(t) (2)

with vi as the velocity vector of the agent, m it’s mass and Fi
being total force acting on it. Please note that, in the following,
we omit the explicit time dependence for simplicity. The
velocity vector can be expressed via the speed vi and the
heading angle φi to vi � vi[cosφi, sinφi]

T � vi êv,i. We can
reformulate (in detail shown in Supplementary Material
Section II) the velocity dynamics in terms of speed and
heading angle dynamics [42] to

dvi
dt

� Fi

m
· êv,i (3)

dφi

dt
� Fi

vi m
· êφ,i with êv,i �

cosφi

sinφi

⎡⎣ ⎤⎦ . (4)

Therefore, without any further assumptions, we see that the
turning is inversely proportional to the current speed, i.e.
dφi/dt ∝ 1/vi. However, the inverse proportionality results in
instantaneous turning for vi � 0, which is unrealistic and is caused
by assuming a point-like object. To provide a simple correction
for this unreasonable assumption, we follow [43] and introduce a
rotational friction force acting on the velocity

dvi
dt

� 1
m

Fi − α
dφi

dt
êφ,i( ) (5)

with α as rotational friction coefficient. If we repeat the steps from
above analogously, the speed dynamics remain unchanged (Eq.
3) but the change in heading angle reads now:

dφi

dt
� Fi

(vi + α) m · êφ,i . (6)

In the context of self-propelled agents, the above relation
implies that the turning rate of an individual, in response to a
force Fi acting on the agent or generated by the agent itself,
depends on its speed vi. For a constant force |Fi| � const., faster
agents will turn slower. Alternatively, in order to turn at the same
rate, individuals moving at different speeds have to adjust the
strength of their turning force linearly with their current speed.
We emphasize that this fundamental relation, ignored in most
models of collective behavior explicitly modeling turning rates,
holds both for fixed speeds vidv0,i � const., as well as for variable
speeds vidvi(t).

2.4 Fitting Experimental Data and Model
Comparison
We introduced in the preceding Section 2.3 Eq. 4 that accounts
for inertia effects and Eq. 6 that additionally accounts for
constraints due to turning friction. Here we treat the force in
angular direction Fφ � F · êφ, and the rotational friction
coefficient α as parameters. In order to fit and state which of

TABLE 1 | List of previously published tracking data used in our analysis. The table lists major characteristics of the datasets we used to show within-individual speed
variability. The # of tracks indicates the number of individual tracks used for the analysis. Du to the initial study designs and questions, tracks may represent repeated
measures of the same (Guppy: 20 individuals, RoboFish 1 replica) or different individuals (Molly single ind, Molly groups: 8 with 4 ind. per group). Please find exact study
designs in the respective references.

RoboFish Guppy Molly (single) Molly (group)

Species — Poecilia reticulata Poecilia formosa Poecilia formosa
# of tracks 39 40 35 32
Observation time 10 min 10 min 6 min 5 min
Arena dimensions 88 × 88 cm 88 × 88 cm 48.5 cm diameter 60 × 30 cm
Water depth 7.5 cm 7.5 cm 3 cm 5 cm
Frame acquisition 30 FPS 30 FPS 30 FPS 30 FPS
Sex — Female Female Female
Tracking method BioTracker [41] BioTracker Ethovision (10.1) Ethovision (XT12)
References Jolles et al. [30] Jolles et al. [30] Bierbach et al. [38] Doran et al. [40]
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the two models represents the data best, we use a maximum
likelihood estimation and compare both fits using the Akaike
Information Criterion (AIC) [44] and the Bayesian Information
Criterion (BIC) [45]. This procedure has the advantage, over an
ordinary least square fit, that the AIC and BIC can be computed
without requiring normally distributed residuals. Note that Eq. 6
has one parameter more (α), and AIC and BIC penalize a larger
number of parameters and therefore prevent overfitting, whereby
the penalty term is larger for the BIC. The model with the lowest
AIC or BIC is preferred [46, 47].

2.5 The Model
As explained in Section 2.3, our model mimics the movement
behavior of real fish by obeying fundamental physics relations
(inertia and friction). This is mathematically expressed in Eqs 5,
6. Additionally, the interaction between fish is modelled by using
the continuous version (i.e. overlapping instead of discrete zones)
of a well established three-zone model that traditionally uses fixed
speed [19]. The force acting on an individual i has a self-
propulsion term (including noise) and a social term. We can
express this as: Fi(t) � Fi,sp(t) + Fi,social(t). The self-propulsion
force takes into account two main factors: 1) the tendency of an
individual to keep a preferred speed v0 and 2) the fluctuations on
the linear speed v and the angular speed _φ

Fi,sp(t) � β v0 − vi(t)( ) + ����
2Dv

√
ξv(t)( )êv,i + ����

2Dφ

√
ξφ(t)( )êφ,i,

(7)

where β is the speed relaxation coefficient, leading to the
relaxation of the speed towards the preferred speed v0 in the
absence of other perturbations with the time constant τv � β−1.
For solitary agents in the absence of external forces, the width of
the speed distribution will be inversely proportional to β, i.e. low β
corresponds to large speed variability and high β to small
variability around v0. Dv and Dφ are diffusion coefficients
setting the noise intensity in v and φ, respectively, whereas ξv
and ξφ are independent, Gaussian white noise processes. The
social interactions are explained in detail in the following.

2.5.1 Social Interactions
We consider a social force that combines two fundamental types
of interactions among individuals: 1) an alignment force Fi,alg and
2) a distance-regulating force Fi,d (Figures 1A,B). Thus, we can
express the total social force as Fi,social(t) � Fi,alg(t) + Fi,d(t). We
use Voronoi tesselation to define the neighborhood of a focal
individual i, which is labeled as Ni (Figure 1C). A Voronoi
interaction network can, on the one hand, be efficiently
computed, while on the other hand it is a good approximation
of visual interaction networks [48]. The mathematical expression
of the alignment force is:

Fi,alg(t) � 1
|Ni| ∑j∈Ni

μalg vji(t), (8)

where μalg is the alignment strength and vji(t) � vj(t) −vi(t). The
distance-regulating social force assumes a preferred distance rd
that individuals try to maintain between each other. It is
defined as:

Fi,d(t) � 1
|Ni| ∑j∈Ni

μd tanh md rji(t) − rd( )( ) r̂ji(t), (9)

where r̂ji � (rj − ri)/|rj − ri| is a unitary vector from agent i to
agent j, rji � |rj −ri|, μd is the strength of the force and md is the
slope of the change from repulsion (rji < rd) and attraction
(rji > rd) (Figure 1B). In principle, it is possible to extract a
specific functional form of the repulsion and attraction
interaction from experimental data [2, 27, 49, 50]. However,
these functions will likely depend on the species and the
ecological context, whereas the qualitative role of variable
speed discussed below does not depend on the specific choice
of the functional form of the inter-individual attraction-repulsion
interactions. Therefore, for the sake of simplicity and generality,
we have chosen a rather simple (sigmoidal) distance dependence
for the distance regulating force controlled by only three
parameters (μd, md, rd), with the key property being a finite
preferred distance rd, which individuals try to keep to their
neighbors. Note, that without the distance regulating force the

FIGURE 1 | Implementation of social interactions. A focal agent (black triangle) responds to neighbors (red and blue triangle) via a velocity alignment force Fi,alg,
which aims at minimizing the velocity difference to the mean neighbor velocity 〈v〉Ni

, and a distance regulating force Fi,d, their sum corresponds to the social force Fi,soc
(A). For simplicity the distance regulating force has a sigmoidal distance dependence: it is repulsive for distances closer, attractive for distances larger than a preferred
distance rd (A,B). Note, the sign of the projection of Fi,d onto the distance vector r̂ji defines the direction towards (+) or away (−) from the respective neighbor j. The
neighborhood of a focal agent (red arrow) is defined by its Voronoi neighbors (black arrows in red cells, C).
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model would be purely topological [16], but it could not
reproduce the in nature omnipresent short-range repulsion
and long-range attraction [2, 27, 49, 50].

2.5.2 The Equations of Motion
By considering the self-propulsion and social forces described
above, we can write the explicit equations of motion for
individuals, which resemble the equations in [24]:

dvi(t)
dt

� β v0 − vi(t)( ) + Fi,social,v(t) +
����
2Dv

√
ξv(t) (10)

dφi(t)
dt

� 1
vi(t) + α

Fi,social,φ(t) +
����
2Dφ

√
ξφ(t)( ), (11)

with Fi,social,v(t) � Fi,social(t) · êv,i(t) and Fi,social,φ(t) � Fi,social(t) ·
êφ,i(t) beeing the projections of the social force on the heading
direction êv,i and on the turning direction êφ,i.

2.5.3 Parameter Choice and Boundary Conditions
All simulations are performed with no boundary conditions (open
space) and the model parameters are summarized in Table 2. The
length scale is defined by the preferred distance rd � 1, which can be
associated to the body size.With a preferred speed of v0� 1 the agents
travel on average in one time unit their preferred distance. With a
distance regulating force strength of μd � 2 and β ≤ 2 agents are able
to prevent a collision by stopping. The angular noise Dφ � 1 is the
counterpart of the alignment strength μalg � 2 (same magnitude as
μd), i.e. increasing one has the same effect as decreasing the other.
Since the latter is varied in this study, the effect of both is explored.
The same holds for the velocity noise Dv � 0.4 and the speed
relaxation coefficient β. Note that with dimensionless equations,
e.g. declaring the characteristic length and time as L � rd and T �
rd/v0, two parameters could be reduced. However, to allow an easier
interpretation, we refrain from doing so.

3 RESULTS

3.1 Experimental Data of Individual Fish
The two species of fish as well as the robotic agent exhibited
qualitatively highly similar behavior: 1) non-negligible speed
variability (Figures 2A–C), and 2) a strong decrease of
turning rate with increasing speed (Figures 2E–G), which
reflects the potential effects of inertia (see methods). Applying
the same analyses on trajectories of our model simulation, we find
the same patterns Figures 2D,H.

TABLE 2 | Default model parameters. If figures represent simulation with a
different set of parameters, it is explicitly stated in the caption. The units are
given in general length L and time T units.

Single Collective

preferred speed v0 1 [L/T ] group size N 400 [1]
speed relaxation β 0.2 [1/T ] alignment strength μalg 2 [1/T ]
turn friction α 1 [L/T ] distance strength μd 2 [L/T 2 ]
angular noise Dφ 1 [L2/T 3 ] distance slope md 2 [1/L]
velocity noise Dv 0.4 [L2/T 3 ] preferred distance rd 1 [L]

FIGURE 2 | Speed and turning of individuals. The speed probability distributions P(v) for the experimental data (RoboFish, guppy, molly) and for model simulations
of individuals (A–D). Red transparent lines represent single tracks and the solid black line is the distribution of all tracks summarized. The absolute turning rate _φ as a
function of the speed v for the different individuals (E–H). For mollies we also show the relation between turning rate speed of individuals swimming in groups of N � 4
(insetG). The parameters of the model simulations (described inSection 2.5) are listed in Table 2;Supplementary Table S5with the difference of a turn friction of
α � 0.1. The parameters of the model fits in Supplementary Table S4.
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We find for all cases a speed distribution that shows a strong
variation in speed (Figures 2A–D). The Coefficient of variation
(COV(v) � σv/〈v〉) of individual speed for the different datasets
is: COV(5) � 0.92 ± 28 (RoboFish), 0.57 ± 0.1 (guppy), 0.92 ± 0.78
(single molly), 0.68 ± 0.03 (model).

The model-fit to explain the four datasets was significantly
(ΔAIC ∈ [31, 85], ΔBIC ∈ [28, 81]) improved by taking turning
friction into account (Figures 2E–H; Table 3; same for the group
molly data: inset Figure 2G).

3.2 Collective Level Consequence of Speed
Variability
The individual turning of our simulated agents resembles
qualitatively (in terms of the functional dependence on
speed) the behavior of real fish. This allows us now to

explore how social interactions in combination with variable
speed and turning restriction affect collective behavior in groups
with N � 400.

3.2.1 Order Induced by Individual-Level Speed and
Speed-Variation
Animals can vary in their preferred speed v0, but also in their
speed variability over time. We parametrized the latter by the
speed relaxation coefficient β (see methods). For socially
interacting agents, we find the mean individual speed 〈v〉
close to the preferred speed v0 but only in the ordered state
(Figures 3A,B). Interestingly, it is possible to change groups from
an ordered to a disordered state by just changing the preferred
speed and/or the speed variability. As shown for real, robotic and
simulated fish (Figures 2E–H) individuals’ turning rate is slower
the higher their speed. This causes rotational random forces to be

TABLE 3 | Statistical model comparison. Akaike (AIC) and Baysian (BIC) information criterion for a model without (dφdt � F/v) and with (dφdt � F/(v + α)) turning-friction α for each
model-species. For the same experimental data, the model with the smaller AIC or BIC is preferable, whereby the BIC penalizes additional parameters stronger and thus
is more conservative. The values of the parameters α and F are listed in Supplementary Table S4.

RoboFish Guppy Molly Mollies (N = 4) Model

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

dφ
dt � F/v 780 784 949 952 656 659 194 195 483 485
dφ
dt � F/(v + α) 711 718 864 871 625 631 181 185 445 450

FIGURE 3 | Influence of preferred speed and speed variability on polarization and speed-polarization coupling. The preferred speed v0 and the speed variability
(modulated by the speed relaxation β) both affect the individual speed (A) and modulation of either of these parameters may induce orientational order marked by a high
polarizationΦ (B). The transition to order can be understood by a local coupling between the local average speed 〈v〉R and the local polarizationΦR, which we quantified
via their correlation Corr (〈v〉R, ΦR) (C). The local averages consider all individuals within a circle of radius R � 3 around a focal one (red circle in inset (E). Note that
〈v〉R is not the local group velocity (where a positive correlation with order is trivial) but the local average of the individual speed magnitudes. The specific dependence
between local speed and order for three specific parameter choices (marked by square, circle and cross in (C) is shown for the disordered state (D), the phase transition
region (E) and the ordered state (F). A snapshot of a simulation (inset (E)) where agents with higher speed are darker colored, with parameters corresponding to the black
circle in (C). The parameters of the simulations are listed in Table 2; Supplementary Table S5.
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damped for groups with larger speeds, facilitating order due to
inertial restrictions on turning (Figure 3B).

In contrast, large speed-variability (low β) may lead to
disorder, while a narrow individual speed distribution (large β)
induces order. If the speed of an agent can vary, the velocity
alignment can reduce the average speed of individuals: A focal
agent i matches its velocity (direction and magnitude) with the
mean velocity of its neighbors 〈v〉Ni

. However, for finite levels of
directional fluctuations |〈v〉Ni

|)vi, in other words, it will
decelerate due to an effective social friction associated with the
speed matching of the alignment interaction [24]. The reduced
speed allows a faster turning and consequently enhances the
angular noise and therefore disorder (Figure 3B). Thus, in any
collective system where individuals also match their speed and
not only their orientation to the local neighborhood, a group can
be in different collective states only depending on the individuals’
speed variability. We numerically confirmed that if agents only
align their orientation and do not match their speed, the change
in order by a different speed variability does not exist.

The speed variability has another highly robust emergent
consequence. It allows agents of the same collective to differ in
their instantaneous speed and since higher speeds induce order,
we observe correlations on the local level between mean
individual speed 〈v〉R and local polarization ΦR with R as the
radius of the circle from which the average is computed (Figures
3C–F). Please note that as we consider individual speed, the above
correlation is different from the trivial correlation between local
polarization and local group speed. The correlations between
individual speed and local polarization is always positive and
largest at the transition between disorder and order. The latter is a
signature of phase transitions, where the susceptibility, i.e. the
response to weak signals/fluctuations, is maximal. It means that
information encoded in speed is best translated to a directional
response at the transition region, and vice versa (likely to be
beneficial in collective computation tasks).

The local coupling is an emergent consequence of the
fundamental dependence of turning on speed. Thus, it is
highly robust and the qualitatively same non-linear functional
form was observed in experiments (compare Figures 3D–F with
Figure 1 in [25]). Most importantly, it weakens with low speed
variability (Figure 3C) and does not exist for fixed speed models.

3.2.2 Mean Speed and Cohesion in Different Collective
States
We have demonstrated above that the preferred speed and its
variability can induce an order-disorder transition. Now, we keep
the preferred speed fixed at v0 � 1 and change the alignment
strength μalg. By repeating this for different speed relaxation β we
investigate how the collective behaves in the ordered and
disordered state (controlled by μalg) under different speed
variabilities.

The higher the speed variability of individuals, the larger
alignment strengths are necessary for the collective to reach
the ordered state (Figure 4A). This shift of the phase
transition is more clearly depicted by shifting peaks of the
susceptibility χ (Figure 4A inset), which is defined by the
fluctuations of the polarization χ � N (〈Φ2〉 − 〈Φ〉2).

The collective phase transition impacts the individual
dynamics as well: The mean individual speed 〈v〉 shows a
distinct minimum at the transition which vanishes for a high
speed variability (β � 1, Figure 4B). The minimum in speed is
related to the velocity alignment where a focal agent adjusts its
velocity vi to the average velocity vector of its neighbors 〈v〉Ni

. In
the disordered state 〈v〉Ni

≈ 0, i.e. the alignment interaction
induces an effective social friction − μalgvi and thus slows the
focal agent down [24]. It changes at the disorder-order transition
where the neighborhood of each agent becomes increasingly
polarized with increasing alignment strength. However, since
there is always noise on the heading direction |〈v〉Ni

|< v0,
even in the strongly ordered state the individual speed is
below the preferred speed v0.

A very general qualitative change from fixed to variable speed
can be observed in the group cohesion close to the phase
transition. The area of the convex hull of the collective is
maximal at the transition for fixed speeds. This maximum
becomes less pronounced and finally vanishes with increasing
speed variability (Figure 4C). The same holds for the nearest
neighbor distance (Figure 4C inset). At the transition the
directional correlation of the agents is maximal (i.e.
susceptibility peaks, Figure 4A inset) and the directional
fluctuations cause subgroups of the collective to head in
different directions, leading to an expansion of the collective
[19]. This expansion weakens with increasing speed variability
because the distance regulating force can now lower the speed
from a subgroup if it moves away from the shoal, effectively
inhibiting expansion. A common consequence of weak cohesion
is an increased probability for groups to split. However, for
simplicity we assumed an unlimited attraction and alignment
range, disabling fragmentation. The trend, that groups with a
higher speed variability are more cohesive, is most striking at the
transition, but holds in general in our model.

3.2.3 Group Size Dependent Effects
Group size is among the most biologically most important and
variable parameters in the context of grouping. Thus, we
investigate in this last part how group and individual measures
change with group size N.

For low speed variability, the polarization remains high Φ ≲ 1
independent on N. If speed variability is high, polarization
decreases with increasing group size and we expect Φ → 0 for
even larger N (Figure 5A). Note that only in a narrow range close
to the transition (marked by a large susceptibility, Figure 5B), the
polarization saturates to intermediate values for large groups. The
order-disorder transition for intermediate values of speed
variability (β), is of the same nature as discussed for Figure 3A.

It is of particular interest, given that the size of animal groups
is a key parameter of collective behaviour, if there is a specific
threshold where the collective patterns of the system show a
qualitative change. We find that when modelling agents with high
speed variability, the mean individual speed 〈v〉 in our model
undergoes a sudden change at N � 3 (Figure 5C). Until N � 3 the
individual speed 〈v〉 is larger than v0 and saturates towards v0
with decreasing speed variability. The reason for 〈v〉 > v0 is
that the speed distribution of individuals is asymmetric, with a
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long-tail at large speeds but cutoff at low speeds at v � 0 (Figures
2A–D), i.e. a maximum of the distribution is at v � v0 but the
mean is larger. For larger groups with N ≥ 4, the speed is lower
than the preferred speed but saturates also to v0 in the fixed speed
limit (β → ∞).

This abrupt change can be understood through the
interplay of individual dynamics and fundamental property
of the interaction network: 1) A focal agent decelerates
stronger the more its heading deviates from the average
polarization of its neighborhood, i.e. dvi/dt∝ΦNi · êv,i − 1
(derived in Supplementary Material Section III). 2) For
Voronoi-type interactions and for group size N ≤ 3, we
have an all-to-all interaction network, which is not the case
for N > 3. The second point is illustrated in Figure 6, where for
N > 3 a set Di of agents disconnected from the focal agent i can
exists, i.e. Di � A \ (Ni ∪ {i})≠ ∅ forN > 3 with A as the set of
all agents of the group. We confirmed this by computing the
average number of neighbors during the simulations
(Figure 6).

FIGURE 4 | Variable speed affects collective behavior in different states. PolarizationΦ(A), the susceptibility χ (inset A), the individual speed 〈s〉 (B), the area of the
convex hull (C) and the nearest neighbor distance NND (insetC) are shown in dependence on the velocity alignment strength μalg. Black crosses (B,C)mark the peak of
the susceptibility, i.e. the location of the phase transition. The lines are color coded according to the speed relaxation as indicated at the colorbar, i.e. β ∈ {1, 2, 4, 8, 16,
32, 64}. The parameters of the simulations are listed in Table 2; Supplementary Table S5.

FIGURE 5 | Group size effects depend on speed variability. The polarization Φ (A), the susceptibility χ (B) and the mean individual speed 〈v〉 (C) are shown for
different speed relaxation β and group sizes N. The parameters of the simulations are listed in Table 2; Supplementary Table S5 with the difference of a preferred
speed of v0 � 2.

FIGURE 6 | Qualitative topological change with group size. Average
Voronoi neighbor number for different group sizes. The dashed purple line
(inset) marks the numbers of neighbors of a fully connected group. Illustrations
of a typical spatial constellation for a group of size N � 4. The focal agent
(0), its neighbors (1, 3) and an agent that is not connected to the focal agent (2)
are shown. Note that only for group sizes N > 3 the latter exists, which
hampers directional synchronization of the collective. The parameters of the
simulations are listed in Table 2; Supplementary Table S5 with the
difference of a preferred speed of v0 � 2.
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In summary, for N ≤ 3 we have an all-to-all coupling, thus all
agents receive the same social input, whereas for N > 3, centrally
located individuals receive “independent” social inputs from
different neighbors on different sides, which are not neighbors
themselves, i.e. are not directly interacting. Thus, for N > 3 the
centrally located individuals seek a compromise between two
independent sources of information. As a consequence, the
neighborhood of a focal agent located on the edge and the
edge-agent itself, agree less in velocity. This results in slowing
down the focal edge-agent, which in turn feeds back on the group
behavior. To support this explanation we computed the vector
product ΦNi · êv,i which shows a sudden decrease from N � 3 to
N � 4 (Supplementary Figure S1).

4 DISCUSSION

We provide detailed empirical insights of speed variability in fish,
providing evidence that inertia together with rotational friction
explain the reduced turning ability of individuals at higher
speeds. With our model that incorporates both, we explored the
effect of speed variability on the emergent collective behavior. We
found, among others, that 1) besides differences in (average) speed,
also differences in individual speed variability (keeping preferred
individual speed constant) can result in a change in polarization, 2)
local coupling between speed and order is largest at the order-
disorder transition, 3) individual speed variability decreases speed
and increases cohesion at the phase transition and 4) the mean
individual speed drops suddenly at a threshold group size (N> 3) but
only at sufficiently high speed variability, which is intrinsically linked
to the fundamental structure of the interaction network.

Our finding that higher speeds increase the polarization, is
explained by the decrease of individuals turning rate at higher
individual speeds that will inhibit individual directional noise,
and thus facilitate stronger group polarization. Importantly, this
speed-dependent turning effect comes on top of previously identified
positive impact of higher speeds on group order [3]. The transition
from ordered to disordered motion with speed was reported in
experiments [22, 25, 29, 31]. However, corresponding models
incorporating a dependence of turning rate on speed were based
on fitting experimental data and not on the fundamental physics of
inertia and rotational friction (see e.g. [22, 25]). This order-disorder
transition induced by speed might enhance collective computation,
such as the collective gradient sensing reported in golden shiners [1]:
Fish swam fast in brighter and slow in darker regions and due to
cohesion could collectively stay in the shade. A variable speed model
that correctly accounts for inertia, could enhance the tendency of the
collective to stay in the desired environment because there, low
speeds increase disorder and thereby further decrease group speed
prolonging the time in shade.

Additionally, we found that individual speed variability as well
can change the polarization. The reason behind this dependence
is speed matching, part of the social velocity alignment, that can
lead to a decelerating social friction, where an agent adapts to the
mean local group speed of its neighborhood [24]. We confirmed
numerically (not shown) that this dependence vanishes if agents
only align their orientation but do not match their speed.

However, 1) this leads to extremely elongated groups that are
unable to stay cohesive which is biologically unrealistic, 2) if
agents ignore the speed of their conspecifics, flight cascades [51,
52] would not exist and 3) speed matching is experimentally
confirmed for fish [3, 39]. Thus, our implementation of the
alignment force, which incorporates speed matching, is very
justified, and thus we also expect that the polarization
dependence on speed variability is robust (implying our
related findings as group size influence on speed and
polarization).

We report a maximum of the local correlation between
polarization and speed at the disorder-order transition and
therefore elaborate the connection to collective computation by
supporting the criticality hypothesis [53, 54]: information
encoded in speed is most strongly linked to directional
information at the transition, or the “critical point”. In other
words, individuals within a group show the strongest response to
directional information via speed adaptations and vise versa at this
transition. We also found that a minimum in cohesion at the
transition exists for fixed-speed models, but weakens or even
vanishes with increasing speed variability. This has important
implications for studies that investigate collective behavior at
criticality [19]. For example, a weak cohesion is associated with a
high probability of group splits (smaller group size) and lower
densities. Both effects decrease the defense against predators
(safety in number [55], confusion effect [56]) and thus make the
transition region less biological favorable. This effect would weaken/
vanish in a variable speed model. Bode et al. [36] predict an opposite
effect of speed variability on cohesion in a burst coast model where
the speed variability is modulated via the length of the bursts (phases
of acceleration), whereby they refer to fish with shorter bursts as
more agitated fish. Shorter bursts allow more direction changes per
time and thus also a better response to positional information of con-
specifics, enhancing cohesion while reducing speed variability. This
discrepancy shows, that it is important to clarify in future research
how the general speed variability (explored in our model) plays
together with the characteristics of distinct movement phases.

In our model with a high speed variability (low β), we observe
a decrease in polarization with increasing group size. Linking our
results again to criticality: only at the disorder-order transition
does the polarization saturates for large groups to intermediate
values. Recently, the same functional dependence was
experimentally observed and reproduced in a model with only
pairwise interactions [23]. Thus, we present an alternative
explanation only based on variability in individual speed. In
general, specific experimental data can be mimicked by a
multitude of models which differ strongly in their microscopic
interactions [21, 28, 57–59]. However, those models are most
often fit to a specific experimental setup, i.e. to a certain group
size, tank size and depth, and need to be recalibrated if the setup
changes [22]. We avoid this with a distance regulating and
alignment force that have simple, yet generic forms motivated
by experimental observations [2, 27, 49, 50]. Additionally, we
ensured robustness of the local coupling by repeating the
simulations with circular reflecting boundary conditions.

We report a sudden speed decrease in our variable speedmodel at
a critical group size of N � 3, linked to a transition from an all-to-all
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network to a distributed spatial network. It might offer alternative
means to test hypotheses about the underlying interaction network
in real animal groups [48, 60]. In our model Voronoi-interactions
cause the specific size threshold at N � 3, but for example for
k-nearest neighbor interaction a group is all-to-all connected up to a
threshold size directly set by k, i.e. for N < k. However, in order to
observe this qualitative change the neighbors also need to match
their speeds [3, 39] instead of only matching their movement
direction, but, as discussed above, this assumption is reasonable.
There might be also other limitations to this approach (e.g. we
assume individual behavior does not change with group size [59]),
however the emergent speed-interaction network coupling clearly
shows how taking into account variable speed may introduce novel
effects at the group level via the self-organized interplay of speed and
orientation dynamics and social interactions.

To summarize, we have shown that speed variability affects
polarization (on the local- and group level), cohesion (especially
at the order-disorder transition) and can lead to new emergent
transitions at specific groups sizes. Thus, we conclude that
extreme caution should be taken when drawing strong
conclusions on collective behavior of animal groups based on
agent-based models with fixed speed.
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Larval Zebrafish Exhibit Collective
Circulation in Confined Spaces
Haider Zaki1, Enkeleida Lushi2 and Kristen E. Severi 1*

1Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, United States, 2Department of
Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States

Collective behavior may be elicited or can spontaneously emerge by a combination of
interactions with the physical environment and conspecifics moving within that
environment. To investigate the relative contributions of these factors in a small
millimeter-scale swimming organism, we observed larval zebrafish, interacting at
varying densities under circular confinement. If left undisturbed, larval zebrafish swim
intermittently in a burst and coast manner and are socially independent at this
developmental stage, before shoaling behavioral onset. Our aim was to explore the
behavior these larvae as they swim together inside circular confinements. We report
here our analysis of a new observation for this well-studied species: in circular confinement
and at sufficiently high densities, the larvae collectively circle rapidly alongside the
boundary. This is a new physical example of self-organization of mesoscale living
active matter driven by boundaries and environment geometry. We believe this is a
step forward toward using a prominent biological model system in a new
interdisciplinary context to advance knowledge of the physics of social interactions.

Keywords: zebrafish, social interaction, living active matter, swimmers, confined collective motion

INTRODUCTION

The emergence of complex collective behavior of natural and artificial motile agents has long been a
question of interest to scientists in many disciplines. The transition from disordered to ordered
collective motion can be seen across scales, frommicron long bacteria and colloids, to millimeter long
ants and bees, to centimeter long crickets and bristle-bots, and even to meter-long fish and humans
[1–3]. The complex behavior of flocks of birds, colonies of ants, swarms of bees and schools of fish
emerges from the interactions of the constituent parts of the respective systems. While similarities in
the patterns that such groups produce have suggested general principles governing the self-
organization [4], it is also becoming clear that the specific patterns depend on the type of motile
agent, scale, and also the type of interaction. For example, for fluid-immersed micro-scale units such
as motile bacteria and colloids, it has become clear that mechanical interactions often mediated
through the liquid are paramount to the type of eventual patterns [5, 6]. For larger animals such as
birds, mechanics are not the only factor as others may become more prominent, e.g., visual input for
birds [7], environmental factors for bees [8], sensory stimuli or social cues for humans [9].

Despite the large effort in studying the emergence of collective motion for various motile agents,
little has been done to study how this behavior changes when the agents are confined, whether by
hard walls or soft impediments. Recent work has shown that when swimming bacteria, colloids,
spermatozoa, and even bristle-bots are placed in circular or racetrack dishes, then they will
spontaneously start to circulate [5, 6, 10–13]. Even soft confinement can lead to locust milling
[4] and human mosh pits [14]. Our approach was motivated by the need to develop a model where
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behavior can be observed easily, which is amenable to
neurobiological perturbations, and which generates interesting
and quantifiable individual and collective behavior. In the
popular biological model organism Danio rerio, the zebrafish,
swimming is influenced by fluid mechanics as well as by
sensory stimuli [15–18]. Adult zebrafish have been studied
extensively in both individual and collective contexts [19–24].
However, at the 5 days post-fertilization larval life stage, when
zebrafish are approximately 4 mm in length, before the onset of
social shoaling behavior [25, 26], they utilize different movement
patterns from adult fish. Larval zebrafish, a millimeter with 2 Ls
swimmer move in what is often termed a beat-and-glide or burst-
and-coast discontinuous manner; they swim in bouts of movement
followed by pauses [27]. This species has been extensively studied
in terms of their kinematics, neurobiology, development, and
behavior [28–32] but the individual or collective motion of
larvae in confinement has not been explored previously.

At this life stage, larval zebrafish placed in low density have a
usual social avoidance area of approximately 50 mm2

surrounding their body and will initiate escape responses to
avoid contact [33]. However, the set of observations we report
here included confinement and a range of densities where larvae
were forced to interact with others and did not permit them to
maintain their preferred social avoidance area. These “escape”
responses are short duration, high velocity movements, and can
be directed away from noxious stimuli [34, 35, 36]. Here, we
observed that when in confined environments at sufficiently high
densities, larval zebrafish may spontaneously collectively perform
a novel circling behavior or short duration “panic waves” along
the confining dish. We report conditions under which the
phenomenon of collective circling behavior may be elicited in

larval zebrafish by use of confinement. Confined collective
motion is a new and developing area of interest in the field of
living active matter, where experiments at this scale and
intermediate Reynolds number remain rare [36].

MATERIALS AND METHODS

Animals
Larval zebrafish used in these experiments were 5 days post-
fertilization (dpf) AB wild-type (origin: ZIRC stock center,
Eugene, Oregon) reared in an incubator at 28.5°C with a 14L:
10D light cycle. Larvae were generated from an adult colony
maintained at NJIT in the Severi lab under Rutgers University-
Newark IACUC oversight, PROTO201800041.

Acquisition
High-speed videos were collected on a custom-built setup
(Figure 1A, Supplemental Table S1). A high-speed camera
(Mikrotron GmbH, Germany) attached to a rail (ThorLabs) fitted
with a 35 mm F1.4 lens (Fujinon) and an 850 nm bandpass filter
(Midwest Optical) were used to acquire images to a Dell Precision
5820 computer fitted with a frame grabber (National Instruments)
and running custom-written LabView software (National
Instruments, available upon request) saving TIFF image stacks for
each trial. Larvae were illuminated with 850 nm IR LEDs which are
notwithin their visible spectra (WaveformLighting) under an acrylic
platform stabilized by Thorlabs components covered with light
diffusers (Pro Gel, B&H Photo) within a custom-built enclosure
(MiniTec Framing Systems, LLC) which was left open to room light.
Videos were acquired at 200 Hz with 1,423 μs shutter speed at 648 ×
648 pixel resolution, and trials were 6,000 frames or 30 s in duration.
The same larvae were used for each trial. Videos were captured
approximately 1–5min after larvae were placed in the behavior
enclosure to allow time for acclimation following handling. Animals
were counted and added to the arena group before trial repeats
occurred at each density stage (Table 1). Animals were recorded at
room temperature during daytime in round petri dishes with 5.4 cm
diameter.

Tracking and Trajectories
To generate tracks from raw videos, we utilized trackR, an R
package written by Dr. Simon Garnier [38]. trackR is an object
tracker for R allowing users to perform multi-object video
tracking by background subtraction and adaptive thresholding.
trackR outputted object trajectories as .csv files however with
discontinuities, i.e. we could not assign particular tracks to
individual larvae. These tracks were imported to MATLAB
and plotted. To determine the distance traveled over tracks in
separate regions within the dish, tracks were imported to
MATLAB and the arena boundary and center were
determined using a custom function, with a radius of 310
pixels. The inner circle was 70% of the radius (217 pixels)
with the same center coordinates Figures 2A,B. Tracks within
those regions were segregated and distances across all tracks for a
given trial were calculated for three trials with 30 larvae and three
trials with 130 larvae over 1,497 frames of the trial. Each trial and

FIGURE 1 | Experimental observation of larval zebrafish
swimming collectively at various densities. (A) Schematic of
experimental set-up. (B) Image of a larval zebrafish at 6 days post-fertilization,
scale bar 1 mm. Rostral (head) is to the left. (C) 30 larval zebrafish in the
arena as captured by the camera. (D) 130 larval zebrafish in the arena. Scale
bar for C-D 1 cm.
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the means were plotted along with the standard error of the mean
Figure 2C. A standard t-test was applied between groups (ttest2
function in MATLAB) and p-values < 0.05 were considered
significant. The mean tangential velocities and circulating

order parameter were calculated using the trajectories from
trackR with MATLAB custom code (Figures 2D,E).

Radial Distance Measure
To determine how position varied with radial distance Figure 3E
using FIJI (NIH) and MATLAB, videos were reduced by ¼ in FIJI
and cropped to exclude the pixels outside the arena. A standard
deviation z-projection was applied to the image stacks to create a
single image using FIJI. This process outputs a single image where
each pixel represents the standard deviation value over all images in
the stack at that particular pixel location (https://imagejdocu.tudor.lu/
gui/image/stacks#zproject). Using the MATLAB function average_
radial_profile_2 (Image Analyst, Mathworks author id:31,862) the
average radial profile was calculated from a center location of each
image and plotted.

Qualitative Assessment
For determination of the circling behavior (Table 1), a pair of
qualitative assessments of the captured videos were used. First,
when watching the videos at 30 Hz playback and paying
attention to the region just inside the arena boundary, some
collective circling instances were immediately obvious based on
easily discernible rotational movement. When many
conspecifics began moving in a coordinated manner around
the edge of the dish in a single major direction, we took this to be
circling behavior. A second qualitative identifier of circling
motion was a correlate of the behavior that arises due to
fluid flow. When a significant number of the larvae are
circling near the boundary of the dish, a radial region of the
larvae within the circling ring will exhibit larvae in counter-
rotation, moving in the opposite circular direction to the major
circling direction of the outer ring. This is characterized through
the obvious lack of self-propelled movement (the larvae
themselves are static), and oftentimes a drifting motion in a
backward direction which is not a gait present in this species.
Based on our understanding of fluid motion [6], this is strongly
indicative of coordinated circling in one major direction. With
either or both of these qualifications met, we could categorize a
captured video to have circling behavior.

RESULTS

We set out to observe larval zebrafish behaving spontaneously
under confinement at various densities and to determine whether

TABLE 1 | Table of density across trial noting when circling behavior was observed.

Arena diameter (cm) Number of larvae (n) Density (larvae/cm2) Circling behavior Trials

5.4 5 0.218 not observed 5
5.4 10 0.437 not observed 5
5.4 30 1.310 observed 1/5 5
5.4 50 2.183 observed 2/5 5
5.4 70 3.057 not observed 5
5.4 100 4.367 observed 3/6 6
5.4 130 5.677 observed 8/10 10

FIGURE 2 | Distribution of larval positions varies as a function of
distance from the arena wall. (A) Tracked trajectories for a single trial with 30
larvae. (B) Tracked trajectories for a single trial with 130 larvae. (C) Standard
deviation z-projection for the frames corresponding to A. (D) Standard
deviation z-projection for the frames corresponding to B. (E) Average gray area
of standard deviation z-projections plotted from the center of the arena to the
border of the arena for 5 trials at eachdensity. Themean is shown in bold and the
standard error of the mean is shaded in a color corresponding to the density.
Densities tested were: 10 larvae, 30 larvae, 50 larvae, 70 larvae, 100 larvae, and
130 larvae, in the same arena. Scale bar for A-D 1 cm.
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collective behavior emerged. Observing larval zebrafish behaving
spontaneously at varying densities, from 5 to 130 individuals, in a
5.4 cm diameter arena (Figure 1), we found the animals moved
freely within the arena in short bouts of swimming. We
systematically tested a range of densities (Table 1) and found
that at low densities the animals behaved relatively independently
of each other, though the circular wall affected their motion as
they tended to swim or stop by it more often. At high densities
however the animals exhibited a high-speed circling behavior,
with incidence increasing alongside density. At this density the
larvae are forced to interact with other larvae as well as the
boundary. The circling behavior appeared to initiate on occasions
when larvae came close to each other, producing a response in the
contacted larvae, and that the size and shape of the arena and the
interaction with the wall produced a group of larvae circling near
the edge of the arena (Figure 2, Supplementary Movie S1).

Tracking the positions of the animals confirmed there was
a propensity to spend time in the outer region of the arena in

proximity to the arena walls (Figures 2A,B). While a
preference for the arena edges is well noted and was found
at densities of 30 or greater larvae, the distribution in spatial
position was highly biased toward the outer circumference of
the arena at higher densities (Figures 2C–E). These higher
densities of 100 larvae and greater 5.4 cm dish correlated with
more frequent observation of the circling behavior (Table 1).
We observed instances where the collective circulation slowed
down, stopped, or initiated in competing directions with one
direction of flow emerging as the dominant direction. This
needs to be explored in future work investigating the factors
that determine initiation, stopping, and direction of motion,
keeping in mind that the fish can interact with others and the
boundary not just through direct contact but also through
fluid-mediated mechanical forces.

Indeed, when the traveled distances of each tracked position
were plotted and separated into the wall-adjacent boundary
region of the arena and compared to the central inner circle
away from the boundary (Figures 3A,B), there were significant
differences in the distance traveled when comparing high and low
densities, and when comparing the two spatial regions at high
densities (Figure 3C).

We quantify the active swimming bouts of the larvae by
examining the azimuthal flow profile vt � < v · t> θ where v
is the instantaneous larva velocity measured from the trajectories,
and t is the tangential direction at the larval position. Figures
3D,E show the profiles of vt as a function of the distance from the
dish center for three experiments each at n � 30 larvae
(Figure 3D) and n � 130 larvae (Figure 3E). The positive
direction is taken to be one with the dominant circulation
direction (clock-wise or counter-clockwise). We notice higher
vt, especially closer to the edge, for the higher density, meaning
the larvae are moving tangentially, i.e., alongside the boundary
especially since vt is highest there. Negative vt means counter-
rotating movement, which matches the observations. We also
calculate the vortex order parameter

Φ � ∑i|vi · ti| / ∑i

∣∣∣∣∣∣∣∣ vi ∣∣∣∣∣∣∣∣ − 2/ π

1 − 2/π

This parameter is used in many studies of confined collective
motion to quantify collective circulation [6, 39].Φ � 1 means the
motion is perfectly tangential/azimuthal, Φ � 0 means the
motion is disordered, and Φ< 0 means the motion is radial.
For our examples with n � 30 larvae, we get
Φ � 0.0759, 0.0580, 0.0898, whereas for n � 130 larvae we get
Φ � 0.1295, 0.1327, 0.1120. We note that Φ is higher for the
higher density cases, meaning there is more circulation in those
cases. While this is not as stong a signal as in the examples of
bacteria [39], note that larval zebrafish do not have constant
swimming speed and move in bouts.

DISCUSSION

The collective motion of animals and other active agents in enclosed
areas is an evolving but promising area of study, as is collective

FIGURE 3 | Larval zebrafish traverse space differently at different densities
when bordering the arena wall in comparison to in the center of the arena. (A)
Trajectories for a trial with 30 larvae segregated into an outer ring adjacent to the
wall (blue) and the arena center (magenta). (B) Trajectories for a trial with
130 larvae segregated into an outer ring adjacent to the wall (blue) and the arena
center (magenta). Scale bar for A-B 1 cm. (C) Summed distance traveled in cm
for all tracks in a trial. Trialswith 30 larvae (open circles) were compared to trials of
130 larvae (filled circles) and wall-adjacent regions (blue) were compared to the
inner circle of the arena (magenta). Means per group are in black open circles
and error bars are the SEM. n.s. � not significant, *p < 0.05, **p < 0.01. (D–E).
Mean tangential velocity <v> versus the radial distance from the dish center for 3
trials each of n � 30 (D) and n � 130 (E) larvae.
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motion at the mesoscale [6, 37]. We see similarities but also
differences in the self-organization of larval zebrafish to other
types of motile agents under circular confinement. Here we refer
to collective motion simply as an emergent group behavior that only
occurs as a function of the interactions of the conspecifics and their
environment and would not occur if a single larva were in isolation
or in free space. At high densities the larval fish transition to short
bouts of circulation alongside the dish boundary and tend to be
found swimming closer to the walls than at low densities. A largely
similar circulating collective motion pattern is seen across scales
from single-cell organisms to humans when the motile units are
placed in hard or soft circular enclosures. And yet the specific
physical and neurobiological capabilities of larval fish give rise to
distinct behavior. Their individual non-uniform speeds and
preference for social avoidance may be influencing the non-
uniform circulation or “panic wave” which at times may stop or
even reverse direction. Their preferred social distancing, possible
visual cues, and fluidic interactions may influence why they can
mostly be found at a certain distance from the confining wall that
increases with density.

Unlike smaller swimmers like bacteria, algae or spermatozoa
[40], these relatively larger larval fish have more complex
individual motion patterns. They are well-studied however,
and much is known about their biology, locomotion,
individual, and social behavior. Groneberg et al., 2020 shows
that the preferred distance between animals changes due to early
life social interaction, and that these responses are driven by
vision and by the sensory lateral line, which senses water flow
around fishes [33]. While thigmotaxis or “wall-hugging” as a
response to anxiety-inducing stimuli has been well documented
in larval zebrafish [41], it is interesting to consider this emergent
circling behavior in the context of social anxiety caused by
crowding and confinement. It was observed in work involving
small groups of zebrafish at the same life stage with much smaller
arenas housing seven larvae at a time, that one larva in the group
could set off chain reactions of escape responses: if one animal
escaped it would collide with another setting off a domino effect
[42]. It’s possible this emergent collective circling results from
these same chains of escapes, created by the interaction with the
confinement of walls and the high density of conspecifics, which
then catalyze this circling behavior. In future work we are
interested in identifying mechanistic drivers of transitions
between states, as has been identified in other species [43].

Another interesting observation was noted just inside the
extreme edges of the arena, where immobile larvae can be seen
drifting rearwards, in counter-rotation with the adjacent larvae
circling at the dish circumference. We presume this can be
attributed to fluid flow as the animals do not appear to be
oscillating their tail or actively moving, and larval zebrafish
have not been observed to swim backward. This is reminiscent
of the collective behavior of bacteria in circular chambers where the
fluid flow disturbed by the edge-swimming bacteria pushed back
themiddle-swimming ones [6]. The interaction between water flow
generated by the circling proportion of animals and the diameter
and shape of the confinement is a point of interest which we will
model and further test experimentally in the future. The study of
individual or collective animal motion at intermediate Reynolds

numbers remains underexplored. A better understanding of the
mechanisms and interactions that give rise to the confined
zebrafish collective motion will allow us to optimally direct their
behavior by designing appropriate confining boundaries.

In future work, we hope to experimentally manipulate these
various sensory inputs and systematically study the triggers for
collective circling. It is highly advantageous to develop collective
motion paradigms in a model system with an extensive genetic
and optical toolkit to allow experimenters to observe and
manipulate neural circuits [44–53]. Insects are also known to
display a transition from disordered to ordered movement with
increasing density, most famously in locusts [4]. Zebrafish sit in
an advantageous space between invertebrate models where
sensory systems may be easily perturbed to investigate
mechanisms [54], and humans which display complex
behavior but inaccesssible neurobiological underpinnings,
although techniques like fMRI permit some measurement of
individual human neural activity during complex social
decision making [9].

Here we share a new paradigm where collective motion can
be induced by confinement in a model system amenable to
genetic and neurobiological tools to investigate the underlying
neural circuits. By understanding what influences this
collective behavior and manipulating the enclosure scales
and shapes in the future, we can determine fundamental
interaction rules that could be widely applicable to other
organisms and systems.
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Emergent Collective Locomotion in an
Active Polymer Model of Entangled
Worm Blobs
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M. Saad Bhamla3*‡ and Orit Peleg1,5,6*‡
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Numerous worm and arthropod species form physically-connected aggregations in which
interactions among individuals give rise to emergent macroscale dynamics and
functionalities that enhance collective survival. In particular, some aquatic worms such
as the California blackworm (Lumbriculus variegatus) entangle their bodies into dense
blobs to shield themselves against external stressors and preserve moisture in dry
conditions. Motivated by recent experiments revealing emergent locomotion in
blackworm blobs, we investigate the collective worm dynamics by modeling each
worm as a self-propelled Brownian polymer. Though our model is two-dimensional,
compared to real three-dimensional worm blobs, we demonstrate how a simulated
blob can collectively traverse temperature gradients via the coupling between the
active motion and the environment. By performing a systematic parameter sweep over
the strength of attractive forces between worms, and the magnitude of their directed self-
propulsion, we obtain a rich phase diagram which reveals that effective collective
locomotion emerges as a result of finely balancing a tradeoff between these two
parameters. Our model brings the physics of active filaments into a new meso- and
macroscale context and invites further theoretical investigation into the collective behavior
of long, slender, semi-flexible organisms.

Keywords: collective behavior, active matter, locomotion, active polymers, blackworms, annelids

1 INTRODUCTION

Throughout the living world, interactions among individuals, and between individuals and the
environment, give rise to emergent collective phenomena across scales: cell migration, flocking birds,
schooling fish, and human crowds moving in unison [1–4]. While most examples of collective
behavior occur in regimes without physical contact among individuals, many insect, arthropod, and
worm species form dense aggregations, where constituent individuals are in constant physical
contact with each other, for the purposes of survival, foraging, migration, and mating [5–7]. Small-
scale interactions among individuals enable emergent functionalities at the group level, such as the
formation of adaptive structures, including fire ant rafts [8], army ant bridges [9], and bee clusters
[10], that can enhance the survival of the aggregation compared to solitary individuals. These living
aggregations, where the constituents exert forces on each other or even entangle their bodies into a
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single mass [6, 11], are associated with the world of soft active
matter, which comprises a wide range of systems in which self-
propelled individuals can convert energy from the environment
into directed motion [7, 12–14].

Here, we examine the aggregation and swarming behavior of
active polymer-like organisms, such as worms, that are flexible
and characterized by their slender bodies (i.e., each possessing a
length much longer than the width). Some species of worms can
physically braid their bodies into highly entangled aggregations
[11, 15–17]. In this paper, we focus on Lumbriculus variegatus, an
aquatic worm also known as the California blackworm or
mudworm. Blackworms are approximately 1 mm in diameter
and up to 2–4 cm in length and live in shallow, marshy conditions
across the Northern Hemisphere [11]. The physiology,
neurology, biology, and behavior of individual L. variegatus
has been extensively studied [11, 18–20], while their collective
behavior has only recently been examined [17]. Blackworms can
form entangled, shape-shifting blobs which allow the constituent
worms to protect themselves against environmental stressors and
to preserve moisture in dry conditions [17]. Recent experiments
have quantified the material properties and aggregation dynamics
of blackworm blobs, which can contain anywhere from a few to
over tens of thousands worms and behave as a non-Newtonian
fluid [17].

Most notably, these experiments resulted in the first
observation of emergent locomotion in an entangled
aggregation of multicellular organisms and robophysical
models. While some physically-connected aggregations of
worms and arthropods have been observed to demonstrate
collective, coordinated movement and migration (e.g., [21,
22]), the blackworm blobs demonstrated collective self-
transport in temperature gradients [17]. Under high light
intensity, the worms remained a single entangled unit as they
moved toward cooler environments, but only about 70% of
worms moved together as an entangled blob in the absence of
the spotlight [17]. It was observed in small blobs that the
mechanism of this collective movement lies in a differentiation
of activity, with outstretched “puller” worms in the front pulling
the coiled, raised “wiggler” worms at the back [17]. This
phenomenon was also captured in robophysical models of
“smarticle” robots, indicating the importance of this
mechanism in the self-motility of an entangled collective [17].

Other recent work has investigated the rheology and phase
separation in aggregations of a similar organism, T. tubifex, also
called the sludge worm or sewage worm. These worms also form
highly entangled blobs in water to minimize exposure to
poisonous dissolved oxygen, though collective locomotion has
not been observed [16, 23]. The authors of this work showed that
the dynamics observed in their experiments could not be
captured by modeling blobs as coalescing droplets undergoing
Brownian motion [16]. Namely, the diffusion constant of the
blobs, which describes how quickly the blobs explore space, was
observed to be independent of their size, rather than scaling as the
inverse of the blob radius as would have been expected assuming
completely randommotion; this discrepancy was attributed to the
active random motion of worms at the surface of the blob.
Moreover, it was asserted that a model of collective worm

behavior would likely need to account for the self-propelled
tangentially-driven motion of individual worms [23].

Motivated by these experiments and insights on aggregations
of blackworms and sludge worms [16, 17, 23], we pursue a
theoretical model that captures the collective behavior of
aquatic worms by linking together local rules governing
interactions between individual worms with the emergent
macroscale dynamics of the blob. Worms consume energy in
order to propel themselves; hence, we look toward the extensive
body of research in modeling active polymers and worm-like
filaments [24, 25], where activity can be implemented in different
ways, such as by immersing the polymer in a bath of colored or
non-Gaussian noise [26, 30–32], or via monomers driven by
active forces [27–29, 33]. In general, application of these models
has been geared toward biopolymers and unicellular organisms in
the microscopic regime, such as actin filaments, microtubules,
cilia and flagella, and swarms of slender bacteria [24, 28, 34–37].
In this paper, we adapt the physics of active filaments to a
macroscale, whole-organism context in order to characterize
the collective behavior of worm blobs.

A similarly polymer-like organism that has also demonstrated
aggregation and swarming is the nematode C. elegans, which is
about an order of magnitude smaller than the blackworm [38].
Agent-based modeling was used to elucidate the behavioral rules
governing collective C. elegans behavior [38], in which individual
nematodes were modeled in polymer-like fashion as nodes
connected by springs, with the head node undergoing a
persistent random walk and the rest of the body following.

Here, we are primarily interested in tangentially-driven active
filaments [27, 28], as their behavior is qualitatively similar to that
of worms. Such semi-flexible, tangentially-driven filaments
demonstrate a rich diversity of behavior. The bending rigidity,
activity, aspect ratio, and density of filaments define phases of
flocking, spiraling, clustering, jamming, and nematic laning [28].

Drawing upon these models, we model worms as two-
dimensional active Brownian polymers, driven by experimental
observations of the behavior of single worms (Figure 1A), worm
blobs (Figure 1B), and the collective locomotion of worm blobs
in temperature gradients (Figure 1C; [17]). Wemodel each worm
as a polymer with a tangential self-propulsion force acting only
on a portion of the worm designated as the head end, as this
qualitatively reflects our observations of worms being more active
at the head (Figure 1D). After developing this single-worm
model, we simulate worm blobs via aggregation of multiple
identical worms (Figure 1E) attracted to each other via an
interaction potential.

We then simulate worm blobs in a temperature gradient,
which sets a preferred direction of the worm toward the cold
side, reflecting real worms’ preference for cooler temperatures in
analogous experimental setups [17]. We perform a parameter
sweep over the strength of attraction between worms and the
magnitude of the tangential force. We find that from the resulting
rich phase diagram, collective locomotion arises only when the
attraction strength and tangential force are finely balanced
(Figure 1F). Though our model is in 2-D, it captures the
emergent collective locomotion of the worm blob as observed
in experiments [17].
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2 ACTIVE POLYMER MODEL

To construct our model, we begin by modeling a single worm as a
polymer: a series of individual monomers linked together by
springs of equal length (Figure 1D). Themonomers are subject to
three potentials: interaction (Uinteraction), spring (Uspring), and
bending (Ubending) [39, 40]:

Uinteraction � 4ε∑Nm

i�1
∑Nm

j>i

σ

|rij|( )8

− σ

|rij|( )4[ ] (1)

Uspring � ks
2
∑Nm

i�1
(|ri,i+1| − σ)2 (2)

Ubending � kb
2

∑Nm−2

i�1
(ϕi,i+1,i+2 − ϕ)2 (3)

where Nm is the number of monomers per chain, rij � rj −ri is the
vector between the positions of monomers i and j, σ is the
equilibrium length of the spring connecting two adjacent
monomers, ks is the spring constant, and kb is the bending
stiffness. The bending potential Ubending, described by a
harmonic angle potential, is computed for every consecutive
triplet of monomers i, i + 1, i + 2 whose connecting springs
form an angle ϕi,i+1,i+2 � cos−1(ri+1,i ·ri+1,i+2/|ri+1,i||ri+1,i+2|). ϕ0 is
the equilibrium angle of each adjacent pair of springs and is set
to π.

The interaction potential is inspired by the Lennard-Jones
potential used to describe interatomic interactions [39]. We use a
modified form of this potential as it captures strong short-range
repulsion and weaker long-range attraction, though with slightly
smaller exponents that enable computational efficiency with
qualitatively similar results. For two monomers with a

FIGURE 1 |Worm-inspired active polymer model. (A). A single California blackworm (L. variegatus). (B). An entangled worm blob consisting of 20 worms. (C) An
entangled worm blob ( ∼20 worms) in a temperature gradient displays collective locomotion toward the cold side (right), with “puller” worms extending from the front
(worm headsmarked by red dots). (D). Polymer model of single worm consisting of 40monomers connected by springs with interaction potential described inEq. 1. The
“head” section (with the distal head node indicated by the red dot) of the worm is subject to a constant-magnitude tangential force �Factive generating self-propulsion.
The spring force �Fspring (Eq. 2) is computed for adjacent pairs of monomers, and the bending force �Fbending (Eq. 3) for adjacent triplets of monomers. The interaction force
�F interaction (Eq. 1) is computed for every pair of monomers in a chain and is attractive if the monomers are further apart than the equilibrium distance σ and repulsive if they
are closer than σ. (E). Simulated worm blob consisting of 20 polymers. Each color represents a different worm. The interaction force �F interaction (Eq. 6) is computed for
every pair of monomers and is stronger between monomers of different chains. (F). Simulated worm blob in a temperature gradient with the hotter side on the left (black
background) and the colder side on the right (white background) demonstrates collective locomotion toward the cold side. Red dots indicate the head ends of each
worm; some worm heads protrude from the bulk of the blob.

TABLE 1 | List of model parameters and corresponding ranges of values used in simulations.

Parameter Description Range of values

Nm Number of monomers 40
Σ Equilibrium distance between monomers 1.189 (arb. units)
ε Interaction coefficient, single worm 1
ks Spring constant 5000
kb Bending stiffness 10
Factive Self-propulsion force magnitude 220–440
εblob Interaction coefficient for blob (attraction parameter) 2–22
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separation r < σ, the interaction potential mimics an excluded
volumemechanism to prevent the monomers from occupying the
same space. For two monomers with separation r > σ, the
potential is weakly attractive. This results in the polymer
forming a more coiled-up conformation. The coiling up is
offset partially by the bending potential, which acts to
straighten the polymer.

At each step of the simulation, the force on each monomer is
computed:

Fi
→ � − �∇Uinteraction,i − �∇Uspring,i − �∇Ubending,i, (4)

and the position of each monomer is updated via the overdamped
equation of motion

xi
→(t + Δt) � xi

→(t) + Fi
→Δt + T �ζ , (5)

where �ζ is a two-dimensional random vector with each
component sampled from the normal distribution N (0, 1) with

mean 0 and variance 1, such that T �ζ represents noise with
standard deviation given by a temperature value T.

L. variegatus cultivated in the laboratory measured
approximately 25 ± 10mm in length with a radius of 0.6 ±
0.1 mm, corresponding to an average length-to-radius ratio of
approximately 40. In our model, each pair of monomers is
connected by a spring with equilibrium length σ, which is also
set to be the equilibrium distance at which the interaction potential
of each monomer has value 0. In our simulations, we model worms
that are N � 40 monomers long, such that each worm can be
considered to have a length of 41 σ with radius σ, corresponding to a
length-to-radius ratio of 41. We also set the spring coefficient ks �
5,000, a relatively high value as worms do not easily stretch along
their axis. We also set the bending coefficient kb � 10, an
intermediate value that results in more elongated worms at low
temperatures and coiled worms at high temperatures (2A-D). This
bending coefficient is also partially offset by a interaction of ε � 1.
The model parameters are tabulated in Table 1.

FIGURE 2 | Active polymer model of a single worm. (A–B): Snapshots of single worm experiments at T � 14°C and T � 30°C, respectively. Worms are colored in
software to visualize time progression. (C–D): Snapshots of simulated single worm conformations at T � 0.024 and T � 0.033 (simulation units), respectively. (E):
Examples of mean squared displacement (MSD) as a function of lag time τ from three separate experimental trials at three different temperatures, indicated by the
squares in panel (G). Because the MSD is not linear over the entire range of τ, the slope is computed for the region shaded in pink. (F): Examples of MSD from three
simulations at three different temperatures, indicated by the squares in panel (G). (G): Comparison of mean slope ± SD of mean squared displacement (MSD) as a
function of temperature for simulation (blue) and experiment (red, 5 trials). The slope of MSD generally decreases with increasing temperature. Experimental data at T �
32–34°C are indicated by a dashed line, as worm physiology is likely to be affected by the high temperature. Squares indicate temperatures at which examples of MSD
are plotted in panels (E–F). (H): The angle θ at time t is computed by fitting an ellipse to the worm and calculating the angle of the major axis with respect to the horizontal.
The average change in angle between consecutive timesteps θ(t + 1) −θ(t) is used as a measure of worm fluctuations. (I): For the trials analyzed in panel (G), the average
change in angle θ increases with temperature for both simulation and experiment.
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The dynamics of the simulated worm-like polymer are
governed by the imposed thermal fluctuations, and as such the
polymer is expected to exhibit Brownian motion. However,
previous studies have indicated that a Brownian depiction
does not accurately describe worm behavior [16]. We also
observe that simulated worms in this Brownian model
demonstrate little exploration of the simulation arena (e.g.,
low mean squared displacement) at low temperatures, with
greater exploration at high temperatures due to large random
fluctuations. However, in our observations of real L. variegatus,
blackworms often demonstrate greater exploration at low
temperatures (Figure 2A). Thus, we add an additional active
force that reflects the self-propelled forward peristaltic crawling
of the worm (Figure 1). The force acts with equal magnitude on
eight monomers at one end of the worm, denoted the head end, in
the tangential direction determined by averaging the position
vectors of the links on either side of the monomer; that is,
�F
i
active � factive(r̂i−1,i + r̂i,i+1)/2. This also reflects our observation

that the worms in experiments demonstrate more activity at their
heads than from the rest of their bodies.

To fit the parameters of the model (Table 1) to reflect the
observed behavior of blackworms, we compare simulations with
single-worm experiments (Figures 2A,B). Blackworms obtained
from Aquatic Foods and Blackworm Co. (CA, United States) and
were cultivated in several boxes (35 cm × 20 cm × 12 cm, 25 g of
worms per box) filled with spring water (at a height of
approximately 2 cm) at ∼4°C for at least 3 weeks. Worms were
habituated to room temperature in a 50 ml beaker with spring
water at ∼20°C at least 6 h prior to experiments. Worms were fed
with tropical fish flakes twice a week, and the water was changed
1 day after feeding them. Studies with L. variegatus do not require
approval by the institutional animal care committee.

In these experiments, a single wormwas placed in the center of
a 30 cm × 30 cm × 1 cm container filled with water at a height of
approximately 0.5 cm. We recorded experiments at water
temperatures from 12 to 34°C ± 1°C in increments of 2°C. The
worm behavior was recorded at a rate of two frames per second
for 15 min. Video frames were analyzed using MATLAB Image
Processing Toolbox (MathWorks, Natick, MA, United States) to
extract the position and geometry of the worm. Example
trajectories of the tracked worms are animated in
Supplementary Video S1–S4 and plotted in Supplementary
Figures S1–S12.

We observe that at temperatures of 30°C or lower, the worm
tends to explore the arena. Often, the worm will travel in a
relatively straight path until it reaches the wall of the container,
after which it will then continue to explore along the edge of the
wall. In some cases, the worm fails to find the wall and continues
to explore somewhat erratically. Beyond 30°C, the worm exhibits
significantly less exploration, staying close to its original starting
position. We attribute this to the temperature being too high for
the worm to comfortably explore, and potentially even causing
physiological changes to the worm [41]. Above 34°C, the worm is
unlikely to survive for more than a few minutes if not seconds.

In our simulations, the self-propelled Brownian polymer
remains subject to Gaussian thermal fluctuations. Most
noticeably at low T, the active tangential force results in the

simulated worm moving persistently in a single direction
(Figure 2C). At high T, the thermal fluctuations tend to
dominate over the bending potential, resulting in a coiled-up
conformation of the simulated worm, and as such the individual
tangential forces are likely to effectively cancel each other out in
direction, resulting in lower overall displacement (Figure 2D,
also see Supplementary Video S5–S7).

To compare simulation and experiment, we examine the mean
squared displacement (MSD) as a function of lag time τ (Figures
2E–G; Supplementary Figures S1–S12). Our key observation is
that the slope of the MSD, when plotted on a logarithmic scale,
differs depending on the temperature. A higher MSD slope
indicates that the worm undergoes more directed motion,
while a lower MSD slope indicates more diffusive motion,
with a slope of one representing Brownian motion. In both
experiment and simulation, the slope of the MSD generally
decreases as temperature increases: at low temperatures, the
worm displays near-ballistic movement, which becomes
increasingly less directed as temperature increases. Because the
worm is confined in the experiments, the MSD is limited by the
size of the arena and begins to plateau at large values of τ. Hence,
we calculate the slope for the regime in which the logarithm of
MSD is generally linear, for τ between 5 and 100. The simulated
worm is not subject to boundary conditions and, at low T, will
move persistently in the direction set by its initial orientation.

By comparing the slope of the MSD from experiments with
simulations, we derive a rough scaling of the temperature between
simulation units (Tsim) and degrees Celsius (Texp): Texp � (5,000/
3)Tsim − 77/3. In determining this scaling, we excluded
experimental data above 30°C, due to the drastic decrease in
worm activity at high temperatures. Hence, this scaling is valid
only for temperatures between 12 and 30°C inclusive.

While the slope of the MSD captures whether the worm’s
motion is directed or random, it does not capture higher-order
measures of worm activity. To examine the amount by which a
worm fluctuates over time, we calculate the average change in
angle of the worm between consecutive timesteps (Figures 2H,I).
The angle θ is determined by fitting the smallest ellipse that
encloses the worm and calculating the angle of the major axis with
respect to the horizontal direction (Figure 2H). The change in
angle increases with temperature, reflecting the greater
fluctuations observed in both simulation and experiment.

3 WORM BLOB AGGREGATION

To model a collective system of worms, we retain the dynamics of
the single-worm model, but specify a stronger interaction
potential between monomers of different chains:

Uinteraction � 4ε ∑M
g�1

∑Nm

i�1
∑Nm

j>i

σ

|ri(g)j(g) |( )8

− σ

|ri(g)j(g) |( )4[ ]
+4εblob ∑M

g�1
∑M
h>g

∑Nm

i�1
∑Nm

j�i

σ

|ri(g)j(h) |( )8

− σ

|ri(g)j(h) |( )4[ ]
(6)
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whereM is the number of worms in the system, Nm is the number
of monomers per worm, ri(g)j(h) � rj(h) − ri(g) is the vector
between the positions of monomer i of chain g and monomer
j of chain h, and the coefficient εblob > ε. We refer to εblob as the
attraction parameter governing the strength of attractive forces
between worms.

We observe in experiments that temperature affects the
attachment of worms in a blob, resulting in a transition
between a solid-like phase to a fluid-like phase (Figure 3A).
At a low temperature (10°C), a tightly entangled blob remains
approximately the same size over the course of several minutes.
At a moderate temperature (25°C), the worms spread out slightly,
though the blob remains intact; at a high temperature (35°C), the
worms quickly disentangle from one another, forming a fluid of
detached, coiled worms.

We simulate worm blobs at three different temperatures, T �
0.021, 0.030, and 0.09 (Figure 3; Supplementary Video S8–S10).
The first two temperatures roughly correspond to 10 and 25°C,
respectively, following the temperature scaling described in
Section 2. Since temperatures above 30°C result in drastic
changes to worm behavior and scale differently than at
moderate temperatures, we choose a high simulation
temperature of 0.09 to represent 35°C. In these simulations,
εblob was set to 12, and the active force magnitude was 220.

Each simulation (row of Figure 3B) begins from the same
initial conditions shown in the t � 1 column. To generate these
conditions, we perform a preliminary simulation starting from 20
worms initialized to random positions: the location of the head
node was randomly sampled from a square with side length equal
to half the worm length, with the angle of the worm sampled from
the interval [0, 2π). This ensured that the worms were close
enough to aggregate into a single blob. The worms were then

allowed to aggregate at a low temperature, T � 0.02, for a period of
20 time steps. The interaction coefficient εblob was set to a high
value of 20, and the active tangential force was set to zero (i.e., the
worms obeyed Brownian dynamics) to facilitate attachment. The
values of the parameters in this preliminary simulation are chosen
such that this “equilibration” process results in worms attaching
into a stable, densely-packed blob from random conditions. This
same resulting blob was used as the starting point for all
simulations described below.

At T � 0.021, the worms remain in a compact, solid-like blob,
demonstrating little activity. At T � 0.030, a few worms begin to
detach, but most of the worms remain tightly attached. However,
at T � 0.090, the blob “melts” into a fluid-like state, as the worms
separate from each other and disperse across the arena,
corroborating the experimental results (Figure 3A).

4 EMERGENT LOCOMOTION AND
COLLECTIVE THERMOTAXIS

Previous experiments demonstrated the ability of biological
worm blobs to undergo emergent collective locomotion in
temperature gradients [17]. The blobs exhibited negative
thermotaxis, moving from the high temperature side of the
gradient to the low temperature side (Figure 4A). The
collective locomotion was enhanced by shining a spotlight on
the worms [17]: a worm blob subject to bright light conditions
(5,500 lux) moved together as an entangled unit, resulting in over
90% of worms reaching the cold side over the course of the 30-
min experiment. In contrast, worms under low room light
conditions (400 lux) did not move as a compact blob, with
most disentangling and moving individually, resulting in

FIGURE 3 | Temperature affects cohesion of worm blobs. (A): Snapshots of experimental blobs (N ∼ 600) at 10, 25, and 35°C. Experiments at T � 35°C were
performed for only 1 min since worms begin to die after about 2 min at this temperature. The diameter of the dish is 20 cm. (B). Snapshots of simulated blobs at different
temperatures (row) and time steps (column). Each box is a square with side twice the equilibrium length of one worm (Lworm � 41σ). Each blob contains 20 worms with
attachment strength εblob � 12. (C): Mean radius ± SD of simulated blob as a function of time for different temperatures (T � 0.021 (dark blue), 0.03 (cyan), and 0.09
(yellow)), corresponding roughly to the experimental temperatures used in panel (A). For each trial, the radius is normalized to the initial radius at t � 0. (D): Mean radius ±
SD of experimental blob (N ∼ 600) as a function of time for different temperatures (T � 10 (blue), 25 (green), 35 (red) °C). For each trial, the radius is normalized to the initial
radius at t � 0.
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approximately 70% of worms successfully reaching the cold side
in the same timeframe.

In the single worm case, a simulated worm has no preferred
direction in the absence of a gradient; if the temperature is low
enough, the worm will move in the tangential direction dictated
by its head end, but this direction relies only on the initial
orientation of the worm, which is randomly chosen. A
temperature gradient will break this symmetry and sets a
preferred direction of motion. At high temperatures, the
worm’s motion is largely random. However, if, via
fluctuations, the head of the worm becomes oriented along
the temperature gradient, pointing toward colder temperatures,
the tangential forces will cause the worm to move in that
direction. The further the worm moves toward lower
temperatures, the more it will straighten out, resulting more
pronounced ballistic motion. Inversely, if the worm is oriented
such that it points toward warmer temperatures, the worm will
continue to move in that direction if the surrounding

temperature is low enough that the active force is not
immediately dominated by random fluctuations. However,
the component of the worm’s velocity parallel to the
gradient will decrease as it moves toward higher
temperatures, at which point fluctuations will dominate, and
the worm more frequently reorients itself (Figure 2I).

Here, we simulate blobs in temperature gradients and observe
that the level of attachment of worms in a blob depends on a
tradeoff between the interaction coefficient εblob and active force
magnitude Factive. The higher the interaction coefficient εblob, the
more compact the blob, with worms tightly adhering to one
another. Increasing the active forcemagnitude Factive, on the other
hand, increases the likelihood that worms will break apart from
the blob.

Simulated blobs with 20 worms were placed in a temperature
gradient linearly decreasing from T � 0.08 on the left edge of the
visualization area to T � 0 on the other edge. The visualization
area corresponds to a square arena with each edge chosen to be

FIGURE 4 | Emergent locomotion in temperature gradients. (A): Snapshots of an experimental worm blob (N � 300 worms) demonstrating emergent locomotion in
a temperature gradient (left: high temperature; right: low temperature). (B): Snapshots of blob in temperature gradient from T � 0.08 (black) on the left to T � 0 (white) on
the right. Each column corresponds to a different simulation time step (t � 8, 42, 76, and 110 respectively). Each row corresponds to different set of attraction parameters
εblob and active force magnitudes Factive (diamond: εblob � 2, Factive � 260; triangle: εblob � 10, Factive � 340; circle: εblob � 18, Factive � 400; square: εblob � 20, Factive �
300). Red dots indicate the heads of individual worms. Despite the three-dimensional nature of real worm blobs, our two-dimensional model captures emergent
collective locomotion for some combinations of εblob and Factive: in the triangle sequence, the majority of worms collectively move from the hot side of the gradient to the
cold side, with the heads of some worms extending into the cold side. (C): Heatmap of the average x-component of the blob velocity (in worm length per second) for a
range of Factive and εblob. The velocity is computed for the center of mass of the largest cohesive blob in the simulation. (D): Heatmap of the average number of worms
(maximum of 20) of the largest cohesive blob for a range of Factive and εblob. Cartoons indicate typical configurations of worms for different regimes of parameter space.
(E): Heatmap of the fraction of successful worms per simulation. Success is indicated by the fraction of worms that reach the T � 0 cold side of the gradient by the end of a
120-timestep simulation. (F): Heatmap of the collective locomotion score, given by the product of the blob velocity, blob size, and fraction of success, with each term
weighted so that its maximum is 1 (Eq. 7).

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 7344997

Nguyen et al. Emergent Locomotion in Worm Blobs

61

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


120 arbitrary units long, approximately 2.5 times the
equilibrium length of a single worm. While only this region
is visualized, the arena extends indefinitely in each direction,
with a constant T � 0.08 beyond the left edge and T � 0 beyond
the right edge.

Each temperature gradient simulation was run from the same
initial conditions as described previously in Section 3, where the
initial blob aggregated in the absence of a temperature gradient.
The same initial blob was used for each simulation and was
subsequently placed in the temperature gradient such that its
center of mass was located in the center of visualization area,
corresponding to T � 0.04. We then performed a systematic
parameter sweep over the interaction coefficient εblob between
values of 2–22 and the active force magnitude Factive between 220
and 420.

In Figure 4B, we highlight four examples of simulations from
different regions of the explored parameter space that illustrate
cases in which the blob successfully or unsuccessfully traverses
the gradient as a collective. Simulations from a larger sampling of
parameter space are also shown in Supplementary Video S11. If
εblob is too low (diamond sequence), the worms do not remain
attached; if εblob is too high (square sequence), the strong
attachment forces dominate over the active forces, and the
blob remains at its starting position. If εblob and Factive are
balanced, this can lead to emergent cohesive locomotion
toward the cold side of the gradient (triangle sequence). If
εblob is slightly larger than Factive, collective locomotion may
also occur, but at a slower speed (circle sequence).

In Figures 4C–E, we compare three quantities as a function of
εblob and Factive: the velocity of the center of mass of the largest
worm blob in the simulation, the size of the largest blob, and the
fraction of worms that successfully reach the cold side of the
gradient. Generally, we observe that each of these quantities is
positively correlated with Factive and negatively correlated with
εblob, or vice versa.

Figure 4C is a heatmap of the blob velocity as a function of
Factive and εblob; as all of the worms in a given simulation may not
be attached as a single aggregation, especially for lower values of
εblob, we report here the velocity of the center of mass of the
largest cohesive blob as identified using the DBSCAN clustering
algorithm [42]. We use this algorithm to identify blobs of
arbitrary size and shape where the separation between two
monomers in a blob is no greater than 2σ, though many other
clustering methods exist, with a range of applications across fields
[43, 44]. We find here that the velocity increases as Factive
increases, but decreases as εblob increases.

Meanwhile, Figure 4D shows a heatmap of the average
number of worms in the largest blob, which shows the
opposite trend as Figure 4C: the size of the blob is positively
correlated with εblob but negatively correlated with Factive. For
high εblob and low Factive, the blob remains completely cohesive,
encompassing all 20 worms. For low εblob and high Factive, the
worms are less cohesive, with the largest blobs containing down
to about four worms.

Figure 4E illustrates the fraction of worms successfully
reaching the cold side of the gradient per simulation. This
heatmap parallels that of Figure 4C, showing that the highest

proportion of success occurs for low εblob and high Factive, and the
least successful blobs for high εblob and low Factive.

In general, simulated worms are most effective at reaching the
cold side when εblob is low and Factive is high. However, they do
not move cohesively, with the largest blobs containing between
approximately 25–50% of the total worms in the simulation. At
the other extreme, when εblob is high and Factive is low, nearly all
worms remain in a cohesive aggregation, but the blob
demonstrates little to no movement toward the cold side of
the gradient, due to the attachment forces dominating over the
active motion. We note that for real worms, remaining in a
cohesive aggregation is beneficial, especially when there is danger
of moisture loss [17]. Moreover, individual blackworms can die
within minutes in high temperature environments (above 30°C).
Our simulations do not reflect any potential worm death; in some
cases, individual simulated worms that have moved toward the
hot side of the gradient become “unstuck” via random
fluctuations and may eventually find the cold side.

Hence, we seek a regime in which the worms demonstrate a
high rate of success at reaching the cold side of the gradient and
move relatively quickly while remaining mostly cohesive. To do
so, we compute a score for each simulation given by the product
of the velocity of the center of mass, largest blob size, and fraction
of success, which each of the three terms normalized such that
each individual term scales between 0 and 1. All three terms are
moreover equally weighted such that the score takes on values
between 0 and 1:

score � min(vblob, v0) ·Nlargest blob/20 · frac. success (7)

where min(vblob, vmax) represents the smaller value between the
average speed of the blob in the direction of decreasing
temperature vblob, and v0, which is defined as half the width of
the arena divided by the total simulation time (e.g., the slowest
possible speed of a successful blob); and Nlargest blob is the number
of worms in the largest blob.

Figure 4F illustrates this score as a function of εblob and Factive.
The tradeoff between εblob and Factive produces a regime in which
the highest scores are achieved, along a band that roughly follows
the line Factive � 22εblob + 132.

Figure 5 illustrates a phase diagram corresponding to this
function overlaid with example snapshots of blob configurations
from corresponding simulations, revealing the rich ensemble of
behaviors across the parameter space of Factive and εblob. To
generate the phase diagram, we fit the score landscape from
Figure 4F to the following function of Factive and εblob:

score � α00 + α10εblob + α01Factive + α20ε
2
blob + α11εblobFactive

+α02F2
active + α30ε

3
blob + α21ε

2
blobFactive + α12εblobF

2
active

+α03F3
active

(8)

The parameters are tabulated in Supplementary Table S1.
The dashed lines in Figure 5 separate three regions (I-III)

characterized by the prevailing collective behavior. In region I,
corresponding to the region where the highest scores are
achieved, the worms consistently traverse the gradient as a
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collective. In this region, the emergent collective locomotion
reflects what is observed in experiments (Figures 1C, 4A;
[17]). We note that while these real worm blobs inhabit three-
dimensional space, our two-dimensional model nevertheless
captures collective locomotion. In regions II and III, collective
locomotion is generally unsuccessful, though successful cases of
collective locomotion are intermittently observed near the
boundary with region I. In region II, failures typically occur
when the blob dissociates and worms move individually, as Factive
is too high for the corresponding values of εblob. For failed cases in
region III far from the boundary with region I, the worms are too
strongly attached and as such the blob does not demonstrate any
self-motility and remains near the starting position. Closer to the
boundary with region I, the majority of worms may remain
attached, with a few worms detaching from the blob and
potentially moving toward the cold side on their own. The
center of mass of the largest blob either remains close to the
origin or drifts slowly to cold side, as here εblob is slightly too high
compared to Factive.

5 DISCUSSION

Following the first observation of collective locomotion in
entangled worm blobs [17], we developed a model that
employs the physics of active, semi-flexible polymers and
filaments in the context of the collective behavior of
macroscale, multicellular organisms. We model worms as self-

propelled Brownian polymers, focusing specifically on the
parameter space of aspect ratio, bending rigidity, activity, and
temperature that describes the California blackworm, L.
variegatus, at temperatures between 10 and 35°C. In the
simulated single worm case, the constant-magnitude tangential
force Factive results in a persistent directed motion at low
temperatures, with larger fluctuations erasing the persistent
motion at high temperatures. In a temperature gradient, this
results in a preferred direction of movement from high to low
temperatures.

Multiple simulated worms can aggregate into a blob, held
together by attractive forces as governed by the attachment
strength εblob. We show that the simulated blob can
collectively navigate along a temperature gradient provided
that the tangential force and attachment strength are balanced.
In a parameter sweep over the attachment strength εblob and the
magnitude of the tangential force Factive, we observe a tradeoff
between the worm velocity and the cohesiveness of the blob.
Higher attachment reduces the speed of the blob and hinders
collective motion in extreme cases, while a higher force increases
the individual worm speed but can result in worms detaching
from the blob. We identify the regime where blob movement is
“optimal” from a biological perspective–i.e., where the blob
quickly moves toward cooler, less dangerous temperatures,
while remaining largely cohesive, as worms are less likely to
survive on their own outside of the blob–quantified by a score that
combines the blob velocity, blob size, and fraction of worms
successfully reaching the cold side of the gradient.

FIGURE 5 |Heatmap of score reveals parameter regime in which the most effective collective locomotion is observed. The score illustrated in Figure 4F is fit to the
function given in Eq. 8. The heatmap illustrates this fitted score function and is divided into three regimes (I-III). I: consistently successful cohesive blob locomotion,
reflecting observed emergent locomotion in real worm blobs (Figure 4A); II: generally unsuccessful blob locomotion, with failure due to dissociation of blobs; III: generally
unsuccessful blob locomotion, with failure due to overly strong attachment, resulting in little collective movement. In phases II and III, parameter combinations near
the boundary of phase I can intermittently lead to successful collective locomotion. Each subpanel shows an overlaid snapshot at between t � 50 and 150 of an example
simulation with the corresponding Factive and εblob. Red shapes correspond to example sequences shown in Figure 4B.
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We note that a similar tradeoff, between the fraction of
successful worms and the blob speed, was observed in
experiments, as illustrated in Supplementary Figure S12 of
[17]. For experiments at four different worm blob sizes (N �
10, 20, 40, and 80), it was observed that as the number of worms
in a blob increased, the fraction of worms successfully reaching
the cold side of the gradient increased as well. However, larger
blobs were slower at reaching the cold side. While we have
focused on a single blob size in this paper, our model can be
expanded to other system sizes and can be used to make
experimentally testable predictions of how the number of
worms affects collective locomotion. Moreover, future
experiments can involve altering the activity of individual
worms (e.g. by adding alcohol to the water) and/or their
attachment strength (e.g., by manipulating light conditions as
observed in [17]) in order to test our predictions on these
parameters’ effect on blob motility.

Currently, the parameters of our model are chosen such that
there is qualitative agreement between the behavior of the
simulated worm and observed L. variegatus. However, we
expect that our model should be broadly generalizable to
describe other long, slender, flexible organisms including
annelids and nematodes. Future work will investigate the
effect of the aspect ratio of individual worms on their
collective behavior in temperature gradients. For instance, T.
tubifex are a similar length to blackworms but are about a
quarter as thick, though collective locomotion in T. tubifex has
not been observed. Blob formation was also observed in
terrestrial worms such as common earthworms (Lumbricus
terrestris) and red wigglers (Eisenia fetida) [17], but collective
locomotion in such worms remains to be investigated.
Moreover, in the limit of an aspect ratio of 1, the polymer
picture reduces to that of a single round particle. Such a model
can be useful to describe aggregations of organisms that more
closely resemble particles rather than filaments, such as ants and
bees; future research can work toward a unified model that
captures collective behavior along the gradient between active
particles and filaments.

A primary limitation of our current model is its two-
dimensionality. While we are able to capture collective
behavior of active worm-like polymers, in reality, blackworms
form blobs that are three-dimensional in nature. In sufficiently
deep water, small blackworm blobs are hemispherical
(Figure 4A). Future work will generalize the current model to
three dimensions, which will also allow us to explicitly model the
physical entanglement of polymers. Entanglement and reptation
in polymer melts and solutions has been extensively examined for
decades (e.g., by de Gennes [45]). More recently, non-equilibrium
polymeric fluids containing active polymers have come under
focus, as these systems cannot be explained by statistical-
mechanical theories [24, 35, 46]. For instance, Manna and
Kumar showed that in a confined volume, contractile active
polymers spontaneously entangled, and moreover that this
entangled state was stable for any volume fraction of polymers
[46]. Meanwhile, for extensile active polymers, they observed a
phase transition between disentanglement and entanglement
governed by the activity and volume fraction.

In our current model, for simplicity, we have implemented
self-propulsion of worms as a tangential force with constant
magnitude, without consideration of the medium through
which the worms are moving. In reality, worms harness
friction to propel themselves, employing a combination of
peristaltic elongation and contraction, undulatory strokes, and
helical movements to crawl on surfaces, burrow through
sediments, or swim through water [18, 47]. While our goal in
this paper is to develop a parsimonious and generalizable
description of worm behavior, accounting for hydrodynamics
and friction can provide a more complete analysis of a specific
biological system. As such, we expect that while a model with
hydrodynamics can allow for a more accurate depiction of worm
dynamics at smaller time and length scales, our current model
nevertheless captures observed collective worm behavior.

By simulating entangled active polymers, we can more closely
examine the mechanisms by which blackworm blobs collectively
locomote: the differentiation of activity whereby worms at the
front are elongated and pull the clump of coiled worms at the
back. In particular, we can examine the role of trailing “wiggler”
worms that lift themselves off the surface, potentially to reduce
friction, which cannot be probed currently with our 2-D model.
In experiments, differentiation of activity has only been explicitly
observed in small blobs containing on the order of tens of worms,
where such differentiation of activity can be seen by eye [17].
These observations were validated by force cantilever
experiments, which demonstrated that a few worms were able
to exert a force strong enough to pull the blob, and by
robophysical experiments, in which a blob of entangled
“smarticles” could only move as a unit if the group was
divided into a few robots that use a “crawl” or “wiggle” gait
while the rest remain inactive, as opposed to all crawling or all
wiggling [17]. In future simulations, we aim to simulate 3-D
entangled worm blobs in order to elucidate whether this collective
motion mechanism remains valid as blob size increases.

Here, we have examined the collective dynamics in a general
system of active filament-like worms, focusing on a section of
parameter space chosen to reflect blackworm behavior. However,
real three-dimensional blackworm blobs also exhibit properties
that are not captured in our model. For instance, in a surface in
air, blackworms form a hemispherical blob to maximize moisture
retention; they will also spread out in long “arms” in order to
search for moisture and shrink back into a hemisphere if no
moisture is found [17]. To describe this particular biological
system, our current model could be expanded to explicitly
incorporate rules that describe worms’ sensing of their local
environments. Indeed, the interplay between individual sensing
and interaction with the environment, coupled with interactions
between worms in close proximity, leads to fascinating emergent
collective phenomena such as this cooperative searching
behavior.

In conclusion, we have developed amodel that examines active
polymers in the context of entangled living systems much larger
than the scale of cytoskeletal, cellular, and other biological
systems typically described within similar frameworks. We
subsequently identified a regime wherein effective collective
locomotion emerges as a result of balancing the tradeoff
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between directed activity and attachment of individuals. While
the experimental observations of the California blackworm in
particular have driven our current work, our research opens up
avenues for new experiments and theoretical investigations of the
collective behavior of long, slender organisms at the meso- and
macroscales.
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Spatial Structure and Information
Transfer in Visual Networks
Winnie Poel1,2*, Claudia Winklmayr1,2 and Pawel Romanczuk1,2*

1Department of Biology, Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany, 2Bernstein Center for
Computational Neuroscience Berlin, Berlin, Germany

In human and animal groups, social interactions often rely on the transmission of
information via visual observation of the behavior of others. These visual interactions
are governed by the laws of physics and sensory limits. Individuals appear smaller when far
away and thus become harder to detect visually, while close by neighbors tend to occlude
large areas of the visual field and block out interactions with individuals behind them. Here,
we systematically study the effect of a group’s spatial structure, its density as well as
polarization and aspect ratio of the physical bodies, on the properties of static visual
interaction networks. In such a network individuals are connected if they can see each
other as opposed to other interaction models such as metric or topological networks that
omit these limitations due to the individual’s physical bodies. We find that structural
parameters of the visual networks and especially their dependence on spatial group
density are fundamentally different from the two other types. This results in characteristic
deviations in information spreading which we study via the dynamics of two generic SIR-
type models of social contagion on static visual and metric networks. We expect our work
to have implications for the study of animal groups, where it could inform the study of
functional benefits of different macroscopic states. It may also be applicable to the
construction of robotic swarms communicating via vision or for understanding the
spread of panics in human crowds.

Keywords: spatial networks, collective behavior, social contagion, complex systems, visual interactions, network
topology

1 INTRODUCTION

The emergent collective behavior of animal groups, or more generally multi-agent systems, is
decisively shaped by the underlying networks of social interactions [1–3]. These networks may
strongly differ in their spatio-temporal embedding and topology depending on the type of interaction
or the behavior of interest. For example in humans, online social networks have no, or only very
weak, relation to physical space and interactions typically do not depend on instantaneous
communication [4,5]. On the other hand, contact networks governing the (direct) spread of
pathogens between individuals [6,7] or interaction networks governing the collective movement
of human crowds [8–10], represent examples of spatial networks with a tight correlation between
spatial and temporal distance of individuals and the probability (or strength) of corresponding
interaction links. In non-human animals a similar variety of networks can be observed ranging from
mating and hierarchy networks [11] to strongly spatio-temporally constrained interaction networks
underlying the collective movement of fish schools [2,12], bird flocks [1,13] or insect swarms and
colonies [14,15]. Especially in large animal collectives many inter-individual interactions forming the
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basis for coordinated collective movements [16], collective
decision making [17], or spread of information [12] are
directly governed by spatio-temporal proximity.

Typically, spatially embedded interaction networks between
biological agents are modelled either via metric network models
[17], where the probability of a link (or its strength) depends only
on the inter-individual distance, or by topological models [3,18]
where a focal agent is connected to a set of spatial neighbors based
on their distance rank in comparison to all others, as e.g., in the k-
nearest neighbor network model [1,3], but where the actual link
probability (or strength) does not dependent on the absolute
physical distance. In the past, most agent-based models assumed
metric interaction networks, but after evidence for topological
interaction in starling flocks has been presented by Ballerini et al.
[1], corresponding topological interaction networks have received
increased attention in the context of collective animal behavior.

However, the discussion of these two idealized models of
interaction networks largely ignores the constraints set by
different sensory and cognitive mechanisms underlying social
interactions (see e.g., [19]). Vision mediated interactions play an
important role for a wide range of social phenomena [2,8,20,21].
In particular, visual interaction networks accounting for visual
occlusions have been shown to outperform both metric and
topological interaction networks in describing collective
behavior of fish [2]. Acoustic communication, on the other
hand, which shapes social behavior of many animals [22,23],
is not affected by the same constraints as vision (e.g., occlusion at
high densities) but depends mainly on sensory limits and
properties of the medium. Here, metric interaction networks
may provide a simple model for acoustic social interactions.
Finally, topological interaction networks with a limited
number of nearest neighbors have been recently discussed in
the context of cognitive constraints regarding the number of
neighbors (or objects) a focal individual can pay attention to [3].

Although the importance of visual interactions has been
highlighted in recent research [2,12], there is a lack of
systematic investigations of the structure of visual networks, in
particular with respect to their ability to transmit information and
behavior. Here, we address this gap by comparing static visual
networks with the established metric and topological models
which, as discussed above, may represent different sensory
and/or cognitive constraints.

Comparing different types of networks quantitatively is
challenging and even more so when networks represent social
interactions based on different sensory limits which will be
unique for a given biological agent and environment and can
not generally be related to each other (i.e., some species may be
able to hear further than they can see while for others the opposite
may be true). While a common approach is to quantitatively
compare networks of similar average degree (i.e., average number
of interaction partners per individual) this may not yield the most
relevant insights into biological systems where sensory limits may
be fixed and tuning them to achieve a certain number of
interactions may not be possible. It is known though that
animal groups can quickly modify their spatial density of
individuals in response to changes in the environment, e.g.,
related to predation risk [20,24] which in turn influences

network structure. Thus besides the common approach of
quantitatively comparing networks of similar degree, we also
especially focus on a qualitative comparison of the networks
dependence on the spatial density of individuals.

First, we study structural differences between the three
network types using static network measures that have been
used to classify and compare different types of networks
[25,26]. We then move beyond pure structural network
analysis and compare the dynamics of a simple and a complex
SIR-type contagion process spreading on the static visual and
metric networks. This approach is motivated by observed
collective behaviors for which a time-scale separation exists,
where the spread of information is much faster than any
changes in the interaction network, as e.g., in the escape
response in fish [12] or flight initiation in birds [27]. Through
the general and simple framework of the two contagion types it
also provides first insights into the potential impact of network
structure on information transfer more generally. While simple
contagion may be viewed as a minimal model for information
diffusion in animal interaction networks, complex contagion
describes the spread of behaviors or emotions where
simultaneous, non-linear reinforcement by multiple neighbors
is at play, as observed e.g., in escape waves in schooling fish [12]
and various quorum responses [28].

Our work demonstrate the fundamental difference of visual
networks in terms of structural parameters in comparison to
metric and topological interaction networks. In particular, visual
networks exhibit qualitatively different behavior in response to
density modulation. Second, we demonstrate that these structural
differences result in characteristic deviations in the dynamics of
the two contagion processes on visual and metric networks.

2 METHODS

In order to investigate and compare the influence of spatial
structure on properties of and dynamics on visual networks
we will construct visual, metric and topological networks in
two dimensional space. Here, we first discuss how we generate
and characterize the spatial distribution of individuals, i.e., the
network nodes. We then move on to explain the construction of
the different spatially-embedded networks and the network
measures we will use to characterize them, before introducing
the two contagion models that we use to investigate the transfer of
information or behaviors on these networks.

2.1 Network Construction: Spatial
Distribution and Shape of Nodes
We initially place N � n2 nodes on an n by n two dimensional
square grid with distance g (measured in body length) between
nearest neighbors. This setup creates a homogeneous density
controlled via the parameter g. To yield more realistic
distributions we add positional noise, ηx, ηy ∼ U(−ηpos, ηpos),
drawn from the uniform random distribution between ± ηpos
which we also scale by a factor g. Thus, node positions are
given by
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�ri � xi

yi
( ) � g

nx + ηx
ny + ηy

( ) (1)

where nx, ny ∈ (0, 1, . . . , n − 1) with i � nnx + ny. Here, we only
consider values of ηpos up to 0.5 to ensure that the density stays
relatively homogeneous which allows us to systematically study
its effect on the networks by varying g. Note that in the limit of
large noise ηpos, the random placement of agents will correspond
to the simple two-dimensional spatial Poisson process.

Throughout this work we mainly characterize spatial
distribution of nodes by density and polarization. We estimate
spatial density, ρ, via the average third nearest neighbor distance,
�r3nnd, a measure which describes the average radius of a disk
containing four individuals (the focal individual and its three
nearest neighbors, for a sketch see SI). An estimate of the local
density which is relatively robust with respect to positional noise
is thus given by

ρ � 4
π�r23nnd

. (2)

Inspired by the elongated body shape of fish, single agents are
represented by identical ellipses of length 1 and width w with
orientations ϕi that are drawn from a von Mises distribution

f(ϕ|μ, κ) � eκ cos(ϕ−μ)

2πI0(κ) (3)

where μ � 0 is the average, I0(κ) is the modified Bessel function of
order 0 and κ a parameter that defines the width of the
distribution (here we use κ � 0.1, 1.7, 31.6). Note that because
ellipses are of length one, density is measured in inverse squared
body length (BL). We characterize the group’s polarization
(degree of orientational order) by the absolute value of the
normalized sum of all orientation unit
vectors ϕi

→ � (cos(ϕi), sin(ϕi))T

Φ � 1
N

∑N
i�1

ϕi

→∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ . (4)

To eliminate overlap of the ellipses (to keep the group strictly
two dimensional) we use simulations of ellipse shaped particles
based on the code provided by [29]. These particles repel each
other with a force proportional to their overlap area and we let
them settle into a non-overlapping configuration (see SI). Thus
there is a upper limit to density given by the physical bodies of
the nodes. An example of a spatial configuration generated
using g � 1.4, ηpos � 0.5, N � 36, κ � 0.9, w � 0.3 is shown in
Figure 1B.

2.2 Network Construction: Edges
The three network types considered in this work are distinguished
exclusively via the rules for the construction of links based on
spatial positions of the ellipse shaped bodies, i.e., the network
nodes. We limit ourselves to binary networks with the adjacency
matrix given by

Aij � 1 if there is a link from i to j
0 otherwise

{ . (5)

The decision rule determining if a link from i to j exists
depends on the type of network and is explained in the following
paragraphs. An illustration of the connection rules can be seen in
Figure 1A. Figure 1B provides an example of each network type
for N � 36, where the same positions and orientations of ellipses
are underlying each network and respective thresholds are chosen
such that the total number of links is identical between networks.

2.2.1 Visual Networks
In a visual network a link from node i to node j exists if i is visible
to j. To account for sensory and/or cognitive limitations an
individual i must have an angular area (defined below) in the
visual field of j that is above a certain threshold, θvisual, in order to
be visible to j. This threshold parameterizes our visual network
model

Avisual
ij � 1 if αij ≥ θvisual

0 otherwise
{ . (6)

The angular area, αij, is the angle that the visible part of an
ellipse i occupies in the visual field of j. Thus if i is partially
occluded by other ellipses k then the visual threshold applies to
the partially visible portion of i. We determine the angular area
through a combination of analytical calculation of the
unobstructed (occlusion-free) visual angle of i in the visual
field of j, αfreeij , with a numerical casting of rays at angles
specified by the analytics to determine occlusions (for details
refer to the SI and Leblanc [30]). As a result of partial occlusions
the angular area, αij is thus smaller than that of the unobstructed
ellipse, αij ≤ αfreeij . Figure 1A illustrates the visual field of a central
ellipse as shaded areas. Here, angular areas larger than the visual
threshold, θvisual � 0.43, are illustrated by the angles of the purple
shaded areas while those smaller than the visual threshold are
shaded light grey. The effect of a partial occlusion on the angular
area can be seen for the bottom left ellipse and a more detailed
illustration of angular areas including other cases of partial
occlusions can be found in Supplementary Figure S3 of the
SI. Correspondingly, it can be seen in Figure 1A that the central
individual only has incoming links from those individuals with αij
≥θvisual. Because visibility is not necessarily reciprocal, visual
networks are generally directed. Note that for simplicity, we
assume each ellipse has 360° vision from a single eye located
at the center of the ellipse.

2.2.2 Metric Networks
In a metric network two nodes are connected if their Euclidian
distance, rij � |ri→− rj

→|, is smaller than the metric threshold,
θmetric [31]

Ametric
ij � 1 if rij ≤ θmetric

0 otherwise
{ . (7)

This rule is illustrated in Figure 1A, where a focal individual
(white) has incoming links from all individuals within a radius of
θmetric (marked by a shaded circle). Because rij � rji metric
networks are undirected. Note that, when not considering
occlusion, visual networks can also be understood as having a
metric interaction range because the visual threshold sets an
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upper limit for the interaction distance. The exact distance at
which the angular area of an ellipse drops below the visual
threshold, will of course depend on its orientation and width
(see SI). When needing to construct the visual threshold resulting
in an equivalent effective cutoff distance for visual networks as in
a certain metric network, we therefore averaged over all possible
relative orientations for a specific value of w (see SI).

2.2.3 Topological Networks
In a topological network node i has incoming links from its θtopo
nearest neighbors, chosen successively by increasing Euclidian
distance. If we assign each individual j a closeness rank, kij, with
respect to individual i as kij � |{m|rim < rij}| + 1 where ‖ denotes
the set’s cardinality (number of elements in the set) we can write
the construction rule as

Atopo
ij � 1 if kij ≤ θtopo

0 otherwise
{ . (8)

The connection rule is illustrated in Figure 1A, where
individuals close to a focal individual (white) are labeled
according to their closeness rank and the focal individual has
incoming links from those with a closeness rank up to θtopo � 2.
Because closeness rank is not necessarily reciprocal, topological
networks are generally directed as can been seen in the example in
Figure 1B.

2.3 Network Measures
To assess and compare the structural properties of the different
networks we use three well-established measures, the average in-
degree, the average clustering coefficient and average shortest

FIGURE 1 | The different network types: (A) illustration of rules determining incoming network links of the central individual (white). Left: visual angles needs
to be larger than a threshold value, θvisual �0.43, (purple shaded areas indicate visual angles that fulfill this requirement, light grey ones do not, threshold chosen
very high for the purpose of illustration). Center: metric distance between individuals needs to be below a certain threshold (indicated by a circle). Right:
incoming links are coming from fixed number of nearest neighbors (here 2) for the topological model. Numbers indicate closeness rank. (B) Examples of
the different networks for g � 1.4, ηpos � 0.5, N � 36, κ � 0.5, w � 0.3 using the same positions, orientations and total number of links (thresholds: θvisual � 0.254,
θmetric � 2.1035, θtopo � 5, yielding 180 directed links). (C) Average in-degree as a function of density for different threshold values indicated by line color. The
average in-degree of the different network types show a very distinct dependence on density. (D) Influence of ellipses, aspect ratio on avg. in-degree for
different density regimes indicated by line color for fixed thresholds, θvisual � 0.05, θmetric � 8, θtopo � 5. At low density circles (aspect 1) are visible over larger
distances leading to an increase in average in-degree. At high densities, elongated ellipses (high aspect ratio) cause fewer occlusions which in turn increases the
average in-degree. N � 225 in (C) and (D).
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path length. These measures have been used widely to classify and
compare different types of networks (see e.g., Newman [25];
Barthélemy [31]) and are known to influence contagion
processes, with shorter paths enabling a faster spreading of a
simple contagion process and a higher clustering leading to a
more robust spreading of a complex contagion process [32]. We
calculate the latter two quantities using themethods implemented
in Python’s networkx library [33].

2.3.1 In-Degree and Out-Degree
The in-degree dini of a node i is defined as the number of its
incoming links, dini � ∑j≠iAji. The average in-degree is given by
�d
in � 1

N∑N
i�1d

in
i . The out-degree is analogously defined as douti �∑j≠iAij.

2.3.2 Clustering Coefficient
In an undirected, unweighted network the clustering coefficient
of node i describes the probability that two neighbors, j and k of
node i are also linked among each other. This is calculated by
dividing the number ti of all triangles of actual links formed by i
by the number Ti of all possible triangles that could be formed by
i. Here, we use the following simple extension of this measure to
directed graphs from Fagiolo [34]:

ci � ti
Ti

�
1
2
∑j≠i∑k≠(i,j) Aij + Aji( ) Aik + Aki( ) Ajk + Akj( )

dtot
i dtot

i − 1( ) − 2d↔
i

dtot
i � din

i + dout
i , d↔

i � ∑
i≠j

AijAji .

(9)

The average clustering coefficient of a network is then given by
1
N∑N

i�1ci.

2.3.3 Average Shortest Path Length
The average shortest path length describes the average minimum
number of steps on the network needed to get from a node i to a
node j. It is defined as

a � 1
N(N − 1) ∑i,j d(i, j) (10)

where d(i, j) is the length of the shortest path between nodes i and
j. We use networkx’s implemented algorithm
average_shortest_path_length to determine the value
for a where possible (networks need to be weakly connected).

2.3.4 Relative Link Length
While the shortest path measures the topological distance
between nodes in spatial networks the link length, lij � rij if Aij

� 1, measures the Euclidean distance between two connected
agents. In order to make link length comparable across densities,
we measure link length in units of the longest possible link, lmax,
in the group. For the grid configuration used in this paper this
relative link length is given by

lrelij � lij
lmax

� rij
g

�
2

√ ( ��
N

√ − 1) . (11)

2.4 Contagion Models
We investigate two models, one of simple and one of complex
contagion, to demonstrate the differential impact of the network
topology on these processes. In simple contagion, the probability
of an infection in a time interval Δt can be decomposed into the
superposition of independent pair-wise interactions between a
non-infected (susceptible) individual and its infected (network)
neighbors. In complex contagion such a decomposition is not
possible as the infection probability is a non-linear function of the
number or fraction of infected neighbors. We emphasize that
“infection” does not refer here to disease spread, but to spreading
of information or behavior. Thus, throughout this work,
becoming infected refers to an individual becoming informed
or activated (see e.g., [20]). Both types of contagion models are
studied via discrete time approximation of the continuous time
stochastic infection and recovery processes using a (small)
numerical time step Δt � 0.05. In what follows we describe the
respective processes.

2.4.1 Simple Contagion Model
Each agent within the network can be in one of three states:
susceptible S, infected I or recovered R. A susceptible agent in
contact with a single infected neighbor can become infected with
a constant probability rate β. Thus, the infection probability for
such a pair-wise contact during a short time interval Δt is pΔt �
βΔt. The total infection probability of a susceptible individual
connected to ninf neighbors during the small time interval Δt for
such a simple contagion can be calculated to:

Psc,Δt ninf( ) � 1 − 1 − pΔt( )ninf . (12)

Infected individuals transition to the recovered state with a
finite, constant recovery rate c. Thus, the average infection
duration is τinf � c−1. For simplicity, we assume that the
recovered state is an absorbing state, i.e., once recovered an
agent does not change its state anymore. Starting from an
initial state of mostly susceptible agents and a small number
of infected the epidemic spread will terminate once there are no
more infected agents in the network.

2.4.2 Complex Contagion Model
The complex contagion model is analogous to the simple
contagion model described above, with exception of the
infection probability. Here, we assume a complex contagion
process with an overall infection rate of a susceptible
individual βcc given by a sigmoidal function S(rinf ) of the
fraction of its infected network neighbors rinf � ninf/d

in with
din being the in-degree of the susceptible individual:

βcc rinf( ) � βmaxS rinf , r0( ) � βmax

1 + tanh σ rinf − r0( )( )
2

(13)

Here, βmax sets the maximal possible infection rate, σ
controls the steepness of the sigmoidal function, whereas r0
sets the inflection point of the sigmoid with S(r0) � 1/2.
For large σ ≫ 1, Eq. 13 yields a sharp, step-like function
with βcc(0) ≈ 0 and βcc(1) ≈ βmax. For σ ≈ 1, βcc(rinf) is
approximately linear with βcc(0) � βmax[1 − tanh(σr0)]/2 and
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βcc(1) � βmax[1 + tanhσ(1 − r0)]/2. For σ � 0, the infection rate
becomes independent on rinf with βc � βmax/2. The overall
probability of an susceptible agent to get infected in a short
time interval Δt is thus simply:

Pcc,Δt rinf( ) � βcc rinf( )Δt. (14)

As the infection probability depends on the fraction of infected
individuals and not on the absolute number of infected neighbors,
this model describes a fractional, complex contagion process.

3 RESULTS

In a first step we study how different network properties such as
average in-degree, clustering coefficient, shortest path length and the
distribution of link length depend on network density. We use
networks ofN � 225 individuals unless stated differently. In the case
of visual networks we find that all these measures exhibit an
interesting non-monotonic relationship with density. The choice
of density as an independent parameter is reasonable when studying
social behavior because while animals might not be able to change
individual perceptual thresholds they can usually adapt their
distance to neighboring individuals. For example fish schools
have been shown to move closer together under the threat of
predation [20].

Given that the average in-degree is modified by network density
and the in-degree in turn affects both the clustering coefficient and
the average shortest path length we then explicitly investigate the
relationship between in-degree and clustering coefficient as well as
shortest path length. Here we still find that visual networks differ
qualitatively from both metric and topological networks.

In a second step we study how these static properties affect
information propagation by comparing the speed and reach of
simple and complex contagion processes through visual and
metric networks. Finally, we use the contagion processes to show
examples of anisotropy in contagious spreading that can be observed
in visual networks for certain combinations of density and sensory
limits and are absent in metric networks. For the study of anisotropy
we use larger networks of N � 400 individuals.

3.1 Density Dependence of Network
Properties
3.1.1 In-Degree
Figure 1C shows the average in-degree as a function of spatial
density of individuals for all three network types and various
sensory thresholds. In the case of topological networks the in-
degree is not affected by density due to the constraint that an
individual can only interact with a fixed number of neighbors
independent of their distance. For metric networks average in-
degree increases with density. This is explained by the networks,
construction where every individual is connect to all other
individuals within a fixed range and naturally, the number of
individuals within this fixed interaction radius increases with
density.

Visual networks, on the other hand, exhibit a different
relationship between density and average in-degree: depending

on the visual threshold the average in-degree either
monotonically decreases with density (very small visual
thresholds) or exhibits a maximum at intermediate densities
(higher visual thresholds), the exact position of which depends
on the value of the visual threshold. The decrease at high densities
is due to occlusions in the visual field that become more
prominent at high packing fractions and constrain visual
interactions. The decrease at low densities is the result of the
non-zero visual threshold. Individuals need to occupy a certain
angular area in the visual field of a focal individual before they
become connected and this requires them to be within a certain
distance to it. This behavior is similar to that of the metric
network with the maximal interaction radius being determined
by the visual threshold and the projected body size of the
individual. Since this projected body size heavily depends on
the ellipses aspect ratio, Figure 1D takes a closer look at the
variation of average in-degree with aspect ratio, which is 10

3 ≈ 3.3
in Figures 1A–C and throughout the rest of this paper.

In topological and metric networks the average in-degree does
generally not depend on the ellipse shape. An exception is the case
of metric networks at high density, where for elongated ellipses
(high aspect ratio) the average in-degree increases because ellipses
can move closer together with a high aspect ratio and thus slightly
increases the average in-degree by increasing the number of
individuals that can fit within a fixed interaction radius. For
visual networks one observes a strong dependence of in-degree on
aspect ratio at all ranges of density. For high densities elongated
ellipses (high aspect ratio) lead to less occlusions and thus a
higher average in-degree. For low densities, circles (aspect ratio 1)
remain visible best at large distances, leading to a higher average
in-degree for small aspect ratio. At intermediate densities these
two opposing effects can lead to a maximum of the average in-
degree at intermediate aspect ratios.

Note that throughout this study we vary density and network
thresholds only within limits that result in at least weakly
connected networks. This yields to a lower limit on density for
each threshold which becomes apparent in our results, i.e., in the
line corresponding to a 2 BL in Figure 1C ending at a density of
roughly 0.1 BL−2. Where possible, we consider densities from 0.01
to 2 BL−2. This covers a range of densities we can roughly estimate
from reported nearest neighbor distances and body length for
different animal species.

Juvenile golden shiners, schooling freshwater fish with an
average body length of 5.5 cm, exhibit median (first) nearest
neighbor distances of roughly �r1nnd � 3 to 7 cm [20]. Using ρ �
2/(π�r21nnd) in analogy to Eq. 2 this results in a density of roughly
0.4 to 2.1 BL−2. Buhl et al. [35] states the density of marching
desert locust as ranging from 20 to 120 with an average of
50 locusts/m2. Assuming an average body length of 7.5 cm
[36] this corresponds to a density of roughly 0.1 to 0.7 with
an average of 0.3 locusts/BL2. Lower densities are observed for
starling flocks where the average nearest neighbor distance lies
between 0.68 and 1.51 m [1]. Common starlings have a body
length of roughly 20 cm and a wingspan of roughly 35 cm [37].
For the sake of comparability we calculate a two-dimensional
density using the reported nearest neighbor distance in three
dimensions (which is likely lower than that in two dimensions)
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and 20 cm as body length, yielding an estimated range of density
from 0.01 to 0.06 starlings/BL2. We want to stress that these are
only very crude estimates of density to give the reader an
qualitative impression of where different animal species are
located in the considered density range. They do not
constitute a rigorous scientific measurement of density.

3.1.2 Other Network Measures
We study the effect of network density on the average clustering
coefficient, the average shortest path length and the distribution
of relative link lengths, measures that have proven useful in
characterizing types of spatial networks [26] and thus allow us
to contextualize visual networks in the broader landscape of
spatial networks.

Figure 2A summarizes the effect of spatial density of
individuals on the average shortest path length for all three
network types and the same sets of thresholds as in Figure 1.
For topological networks the length of the shortest path is
unaffected by network density. In metric networks the average
length of the shortest path decreases monotonically with
increasing density, which can be explained by the
simultaneous increase in in-degree (see Figure 1C). In visual
networks the average shortest path can exhibit a minimum, the
position of which depends on the visual threshold and roughly
matches with the maximum in the average in-degree (Figure 1C).

Figure 2B shows the effect of density on the average clustering
coefficient. For topological networks the clustering coefficient
depends only on the threshold, θtopo, and shows no density
dependence. For metric networks the clustering coefficient
increases monotonically with density. This can again be
explained by network construction: since every node is
connected to all nodes within a radius prescribed by the
threshold, two neighbors of the same node are also likely to be
close to each other and thus share a connection. In the case of
visual networks, the clustering coefficient exhibits a non-
monotonic relationship with density. In particular, for some
threshold values we find a maximum at low densities followed
by a (threshold independent) minimum at intermediate density
values.

Average relative link length, depicted in Figure 2C, varies with
density similarly to the average in-degree, shown in Figure 1C.
Qualitative differences between the link length distributions of
the different network types, which are not adequately captured by
the average, can be seen in an example in Figure 3C and the SI.

3.2 Quantitative Comparison of Network
Types
While we have observed a variety of changes in networks measures
with density, we have also found that they can to a large degree be
explained by changes in the average in-degree. It is thus important
to discern how much of this difference between network types
persists when the average in-degree is kept fixed. The results,
shown in Figure 3, represent averages over all densities.

Figure 3A depicts the average shortest path, which decreases
as networks become more densely connected with little difference
between metric and topological networks. In visual networks,
however, shortest paths tend to be shorter, especially at low to
intermediate in-degrees. This decreased average shortest path
length can most likely be explained by the presence of long links
allowing shortcuts between spatially distant nodes (see
Figure 3C).

Figure 3B shows that for all three network types the average
clustering coefficient increases with the number of incoming links
per node. Again, there is little difference between metric and
topological networks, whereas over a wide range of in-degrees the
clustering of visual networks is substantially lower. This
phenomenon can be partly explained by the presence of long-
range connections breaking local clusters (cf. [38]). Additionally,
local clustering structure is disrupted by the visual blocking of
neighbors on either side of an individual. At very high average in-

FIGURE 2 | Density dependence of network measures: (A) Average
shortest path length as a function of density for all three network types. In
visual networks the shortest path length assumes a threshold dependent
minimum. In metric networks shortest path length decreases with
density. In topological networks no density dependence is observed. (B)
Average clustering coefficient as a function of density for all three network
types. In visual networks the average clustering coefficient assumes a
minimum at intermediate to high densities. The average clustering
coefficient increases with density in metric networks and shows no density
dependence in topological networks. (C) Average relative link length as a
function of density. Visual networks exhibit a threshold dependent
maximum while for metric networks link length increases with density.
Again, topological networks show no dependence on density. N � 225 was
used for all subplots.
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degree, when the networks become essentially all-to-all
connected, clustering approaches one. Visual networks
however, do not reach such high degrees due to occlusions.

Finally, Figure 3C, shows the average relative link length of the
different network types. While visual networks have a slightly
higher average relative link length, the difference between the
networks becomes more apparent when looking at the full
distributions, shown as an inset for an average in-degree of 50.
For comparison the distribution of the fully connected network is
added in grey. In metric networks all links up to the threshold
value are realized, where the distribution shows a sharp cutoff.
For our spatial distribution of relatively homogeneous density,
topological networks include all links up to a certain length and
then show a fast decay in the distribution. The distribution of
visual networks shows amuch slower decay for higher link length,
confirming the existence of substantially longer links in visual
networks and underpinning our attribution of differences in the
other two network measures to a difference in link length and
shortcuts via a few very long links.

3.3 Density Dependence of Contagion
Processes
In Density Dependence of Network Properties we showed that the
density dependence of the visual networks structural properties is
very distinct from that of the other two network types. In order to
understand their implications for dynamic processes, we compare
the evolution of simple and complex contagion dynamics on
visual to that on metric networks. We omit topological networks
because of the independence of their topological properties from
density and their similarity to metric networks in their
dependence on average in-degree (see Figures 2, 3).

3.3.1 Simple Contagion
For a connected network and a sufficiently low recovery rate a
simple contagion process will always spread through the entire
network activating all nodes eventually. In order to compare the

two network types we study the speed of the spread measured by
the inverse of the time it takes for the activation to spread from a
single individual to 75% of the network, 1/t75. The probability of a
node becoming infected is proportional to its number of infected
neighbors (see Eq. 12). Therefore we can expect the infection to
spread faster in networks with high average in-degree.

Figures 4A,B show examples of the time course of infection
for low and high densities respectively (for parameter sets refer to
the figure caption). For the parameters used, at low densities (A)
the infection spreads faster on visual networks, at high densities
(B) the metric networks have a speed advantage. The solid lines in
Figure 4C summarize the effect of density on speed for both
network types and confirms the observation that for lower
densities a simple contagion process will spread substantially
faster through a visual than through a metric network while at
higher densities this effect is reversed. The speed maximum of
visual networks in the low to mid density regime correlates nicely
with the shortest path length as shown in Figure 2 (for the
threshold value 0.05) and can be explained by the presence of
long-range connections.

However, the above examples are for one specific choice of
metric and visual thresholds, θmetric � 5 BL and θvisual � 0.05 rad.
As illustrated in Figure 4G, this choice allows visual links of (on
average) up to 13 BL and thus longer-ranged visual than metric
interactions (5 BL). For a full picture of the possible quantitative
differences between the two network types, we include two more
parameter values of the metric network. For θmetric � 13 BL the
maximal link length of metric and visual networks is similar
(dashed line) and the two networks have a comparable contagion
speed at low density, only diverging at higher densities when
occlusions in the visual network lead to a decrease in average in-
degree compared to the metric networks. For θmetric � 25 BL
metric interactions can be longer than visual ones (dotted line)
and the simple contagion process spreads faster on the metric
networks at all densities because of their higher average in-degree.

Considering metric networks as a simple model of acoustic
interactions, the different choices of thresholds could describe

FIGURE 3 | Degree dependence of network measures. All Figures were created using networks ofN � 225 averaged over all densities and thresholds. (A) Average
shortest path length as a function of average in-degree. At low in-degrees visual networks exhibit shorter shortest-path lengths than both metric and topological
networks. (B) Average clustering coefficient as a function of average in-degree. Consistent with the results in Figure 2 visual network display substantially lower clustering
across a wide range of in-degrees than bothmetric and topological networks. (C) Average relative link length as a function of average in-degree. For intermediate in-
degree, visual networks exhibit considerable longer links than both metric and topological networks. Inset: Example of the average distribution of relative link length for
networks of average in-degree 50. The grey shaded area indicates the link length distribution for a fully connected network. Parameters: g � 2.0,
θvis � 0.00505, θmetric � 9.2944, θtopo � 50, averaged over 40 networks.
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animals that can see further/equally far/shorter than they can
hear which will strongly depend on the animals physiology but
also on the properties of the surrounding medium.While in those
cases where metric interactions can be longer than visual ones
acoustic interactions can be understood to provide a faster
transfer of information across the group at all densities
(dotted line), for the opposite case (solid line), the fastest
mode of information transfer strongly depends on density.

3.3.2 Complex Contagion
In the complex contagion model considered here, the probability
of getting infected is a sigmoidal function of the fraction of
infected neighbors. Thus individuals only have a high infection
probability if their fraction of infected neighbors, rinf, exceeds the
threshold r0. A fractional contagion process is not guaranteed to
spread through the entire network. If no node has a fraction of
infected neighbors ≥ r0, the remaining infection rates of the
individuals may drop far below the recovery rate and the process
can come to a halt. To account for the possibility of incomplete
spread we compare the network types with respect to the fraction
of the network that gets infected before the process stops, instead
of the contagion speed for the complex contagion.We refer to this
as the reach of the contagion.

Where in the case of simple contagion having a high in-degree
increases a node’s rate of infection, because it increases its
probability to have infected neighbors, the contrary is true for
fractional contagion in the case of a low overall prevalence of the
“infected” state. Assuming a fixed number of infected neighbors
(as we use to initiate the processes in Figures 4D–F), an increase
in in-degree will only lower a node’s fraction of infected
neighbors and thus decrease infection probability.

Figure 4D and E show the time course of infection for the same
density regimes as in A and B. Compared to the simple contagion
process the roles of the networks appear reversed: at low densities
the fractional contagion process spreads faster and further in
metric than in visual networks, while at high densities visual
networks are faster and become infected to a larger fraction. It
is also clear, that most networks do not get fully infected for this
choice of parameters. Figure 4F compares the fraction of infected
nodes in both network types as a function of density for the same
set of thresholds as in Figure 4C. The effect of density is clearly
reversed between the complex and the simple contagion process
which can be attributed to the opposing effect of an increase in in-
degree on the infection probability of a node as discussed above.

Coming back to the interpretation of the two network types as
based on two different senses (vision and hearing), we can now

FIGURE 4 | Simple and complex contagion on visual and metric networks. (A) Example trajectories for a simple contagion process at low densities for visual
(purple) and metric (orange) networks showing faster spread in metric networks. (B) same as (A) but for high densities showing faster spread for visual networks. (C)
Comparison of visual and metric network with respect to the speed of infection via simple contagion. In metric networks the speed of spread increases monotonically
with density. In visual networks the contagion speed assumes a maximum at intermediate densities. Line-styles correspond to different thresholds of the metric
network as illustrated in (G). Shaded grey areas correspond to the density ranges in (A) and (B) respectively. (D) Example trajectories for a complex contagion process at
low densities showing faster spread in metric networks. Note, that most trials do not reach full activation in either network type. (E) Same as (D) for high densities,
showing faster spread in visual networks. Again, most trials do not reach full activation. (F) Comparison of average reach (i.e., final fraction of activated individuals) as a
function of density for both network types. In metric networks average reach decreases with density, while visual networks show aminimum at intermediate densities. As
in (C) line-styles correspond to different metric thresholds and shaded areas correspond to the examples in (D) and (E) respectively. (G) Illustration of different thresholds.
Parameters:N � 225,Φ ∈ [0, 0.3],γ � 0.03, β � 0.3, r0 � 0.35, σ � 10. Lines in (C) and (F) are averages over 100 networks and 100 runs per network, starting the contagion
process with one (simple contagion) or five (complex contagion) randomly chosen individuals.
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see that in addition to the group density the optimal mode of
transmission (acoustic or visual) does also depend on the type of
contagion process. A combination of both interaction types may
allow robust communication independent of group density.

Another notable feature that distinguishes visual from metric
networks here is their consistency and robustness over a wide
range of densities. While contagion speed for metric networks
quickly increases with density (for all threshold values), visual
networks provide comparable speeds at high and low densities.
Similarly, for each metric threshold there is an upper density limit
for the transmission of a complex contagion, but we can find
visual thresholds that allow a complex contagion to (partially)
pass at all densities.

3.4 Quantitative Comparison of Contagion
Processes on Visual and Metric Networks
In Quantitative Comparison of Network Types a degree-
controlled comparison of the different network types
revealed that for intermediate average in-degrees visual
networks on average have a lower shortest path length, a
lower average clustering coefficient and links that span
larger distances than their metric and topological
counterparts (Figure 3). In order to illustrate the effect that
these differences can have on dynamic processes, we again
compare the evolution of simple and complex contagion
dynamics on visual to that on metric networks for an
exemplary set of parameters, see caption of Figure 5.

Figure 5A depicts the spreading speed of a simple contagion
on visual networks in units of the spreading speed on degree-
matched metric networks, tmetr

75 /tvis75 , as a function of average in-
degree (black dots). Spreading on visual networks is faster
(indicated by values larger than 1) for a wide range of
intermediate average in-degrees. The ratio of average
shortest path lengths, ametric/avisual, (grey dots) mirrors the
qualitative shape of the speed ratio indicating that the
increased speed of the simple contagion process on visual

networks can be attributed to their shorter average shortest
paths (compare Figure 3A).

Figures 5B,C illustrate the effect of the lower clustering
coefficient of visual networks on the reach of the complex
fractional contagion. As already discussed in Density
Dependence of Contagion Processes in the context of
Figure 4F, as long as the number of infected individuals in
the network is low and infections are randomly distributed
(illustrated in the inset of Figure 5B), each additional link is
most likely decreasing the focal node’s infection probability in the
fractional contagion process (because it is more likely to a
susceptible than to an infected individual). This is the case in
Figure 5B for both network types and explains the decrease of the
average reach with increasing average in-degree. A spatial
clustering of infections (as in the initial conditions of
Figure 5C, illustrated in the inset) increases the fraction of
infected individuals in the neighborhood of nodes with a high
local clustering and close to the “wave front” of the infection (the
border between susceptible and infected individuals). Therefore,
the average reach of the fractional contagion remains
substantially larger on metric than on visual networks with
increasing average in-degree for a spatially correlated initial
activation (Figure 5C).

Put differently, visual networks have a longer average link
length for a comparable average in-degree, which results in a
lower clustering and in nodes receiving inputs from many,
possibly far away and not spatially correlated neighbors. This
makes it difficult for any node to reach the required fraction of
infected neighbors in case of a very spatially confined spreading
(i.e., a single wave front passing throught the group). The long
range connections lead to a diffusion of information and an
overall decrease in the local fraction of infections. Thus the same
mechanisms that have proven helpful in the case of simple
contagion (i.e., the long links, providing short cuts), hinder the
spread of information for complex contagion. The hampering
effect of long range connections has also been described in the
sociological literature where its is known as the “weakness of long
ties” [32].

FIGURE 5 | Structural differences influence dynamics on networks: (A) The ratio of contagion speeds (time to 75% infected or recovered, tmetr
75 /tvis75) shows a similar

dependence on average in-degree as the ratio of average shortest path lengths (ametr/avis, grey). Dots represent averages and errorbars one standard deviation over 100
networks (static) or 100 runs on 100 networks (dynamic). (B) and (C) Effect of clustering coefficient on fractional contagion. (B) Initial activation by 15 randomly selected
individuals (see black ellipses in inset for an example). (C) Initial activation by 15 individuals in one corner of the group (inset). Lines represent averages over 100
networks with 100 runs of the fractional contagion dynamic each, shaded areas represent one standard deviation of the networks, average reach. A higher clustering
coefficient (as in metric networks, compare Figure 3) is beneficial for a spatially clustered initial activation, (C). Parameters: N � 225, Φ ∈ [0.0, 0.3], γ � 0.01, β � 0.3,
r0 � 0.4, σ � 10.
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3.5 Polarization
While so far we have studied the effect of density and degree on the
structural properties of and contagion processes on the different
network types, we have not considered the influence of the group’s
polarization which we have kept between 0 and 0.3. While under
natural conditions polarizationmay correlate with density and thus
indirectly influence network structure, for our grid-like positioning
of ellipses, metric and topological network links are not influenced
by the orientation of individuals because of their sole dependence
on the Euclidean distance between individuals. For visual networks,
however, the orientation of an ellipse may crucially influence its
visibility and thus its social interactions. A high polarization may
therefore lead to an anisotropy in spreading only on visual
networks, i.e., a difference in speed of propagation in direction
of the polarization to that perpendicular to it. Figure 6 illustrates
this effect with two examples of a combination of group density and
visual threshold that leads to an anisotropy at high polarization,
which is notable in the speed of a simple contagion process on
visual networks.

Figures 6A,B depict the average propagation of a simple
contagion process through a group of 400 individuals in a

square 20x20 grid with average distance of 1.5 BL and 5.0 BL
respectively between grid neighbors (g � 1.5 and g � 5.0). The
contagion process is initiated by one individual in the lower left
corner at t � 0 for high (Φ ∈ [0.0, 0.2], left) and low (Φ ∈ [0.8, 1.0],
right) polarization along the x-axis. The average time it takes the
infection to spread from the initial position at (0,0) to any other
point in the group (given by an x and y position in body length) is
indicated by color intensity (averages over 30 networks with 50
runs each). For low polarization the contagion process spreads
evenly in all directions (circular equitemporal regions) while for
high polarization spreading speed is enhanced either along (A) or
perpendicular (B) to the direction of polarization (elliptic
equitemporal regions).

Panels C and D show examples of the underlying spatial group
configurations. They include examples of the visual field of one
focal individual. Angular areas that exceed the visual threshold
used for the construction of networks for A and B (θvisual � 0.01
BL in A,C,E and θvisual � 0.1 BL in B, D, F), are shown as shaded
purple areas and corresponding visual network neighbors are
filled in purple. For the low visual threshold and high density used
in C, at high polarization links can span longer distances and are

FIGURE 6 | Anisotropic spreading of simple contagion for high group polarization: (A) Propagation time of a simple contagion process initiated at t � 0 by one
individual in the bottom left corner of a 20 × 20 grid with g � 1.5 BL and high (left,Φ ∈ [0.8, 1.0]) and low (right,Φ ∈ [0.0, 0.2]) polarization along the x-axis. Average time to
activation (time, t > 0, at which an individual at position (x,y) is infected) is obtained as an average over 30 visual networks with 50 runs each and θvisual � 0.01. (B) Like (A),
but for g � 5.0 and θvisual � 0.1. (C) and (D) Illustrations of the spatial configurations and visual fields used in the contruction of networks underlying the results of (A)
and (B) respectively. Visual angles αij > θvisual are shown as shaded purple areas for one exemplary focal individual. Orange circles indicate the metric thresholds used in
the construction of (E), θmetric � 6, and (F) θmetric � 7. (E) Average time to activation averaged over 3 outer rows in x (solid lines) and y (dashed lines) direction for high
(purple, orange) and low (grey) polarization. The contagion spreads faster parallel than perpendicular to the polarization for the visual networks (left). For metric networks
(right) polarization has no effect on activation time. Parameters as in (A) and (C). (F) As in (E) but with parameters as in (B) and (D). For this combination of density and
visual threshold the contagion spreads faster perpendicular to the polarization. Metric thresholds were chosen to yield similar contagion speeds as low polarization visual
networks. Parameters: N � 400, γ � 0.03, β � 0.1.
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more numerous in direction of the polarization as occlusions are
less prominent in this direction because of the smaller visual
angles. For the high visual threshold and low density used in D, at
high polarization links are more likely to exist perpendicular to
the polarization because of the larger angular areas of ellipses
when seen from the side. These unevenly distributed links
increase spreading speed in the direction of higher link density
and length. In Panel E and F we summarize the above results by
averaging over the outer three rows of individuals in x (solid lines) and
y (dashed lines) direction for high (purple) and low (grey) polarization.
For low polarization perpendicular and parallel propagation times
are similar, while for high polarization propagation time is reduced
either parallel (E) or perpendicular (F) to the polarization. Metric
networks with a threshold of θmetric � 6 BL (illustrated by orange
circle in C) and θmetric � 7 BL (D) show no difference in
propagation times for high and low polarization (E,F). Metric
threshold values were chosen to yield similar contagion speeds as
the visual counterparts.

4 DISCUSSION

Animal groups represent examples of spatially-embedded
interaction networks, where the spatial density of individuals
does not only vary due to external factors but can be actively
modulated by the group members based on environmental
context [20]. We have shown, that when describing such
systems with highly variable density by considering fixed
interaction thresholds, potentially related to sensory or
cognitive limitations, the fundamental properties of the
resulting interaction network, their qualitative dependence on
density and their emergent collective dynamics will crucially
depend on the type of the network used. In particular, each
network type shows a characteristic qualitative dependence of the
average degree on density, which influences the density
dependence of other network measures as well as the speed
and reach of two classes of contagion processes (Figures 1, 2,
4). We characterized visual networks as a distinct class of
interaction networks and highlighted the often neglected
dependence of collective behavior on density and network type.

When modelling the collective behavior of animal groups with
variable densities and fixed thresholds, intermediate-threshold
visual networks display several key advantages. In contrast to
metric networks, the average degree does not monotonically
increase with density and thus avoids unrealistically high values
at high densities. In contrast to topological networks they show a
non-trivial dependence of the (in-) degree on density, and more
crucially the finite visual threshold introduces a maximal
interaction distance, which makes their behavior more realistic
at low densities. In addition, they exhibit amaximum in the average
(in-) degree at intermediate spatial densities of individuals which
could explain preferred group densities.

Our results further demonstrate that for wide ranges of group
densities visual networks are characterized by the existence of
long-ranged links, absent in metric or topological interaction
networks with comparable in-degrees which are accompanied by
a lower average shortest path and clustering coefficient

(Figure 3). The role of such long-range links in facilitating
simple contagion processes such as information diffusion, has
been studied extensively in network science and is known as the
“strength of weak ties” or the “small-world” phenomenon [39,40].
Here we observe their influence in an increased spreading speed
of the simple contagion on visual networks as compared to metric
ones of similar degree (Figure 5). On the other hand, visual
networks have in general smaller clustering coefficients in
comparison to metric and topological networks, which is
disadvantageous for the spread of fractional, complex contagion
processes, assumed to be involved in spreading of behaviors [12]
and known as the “weakness of long ties” [32]. We can observe this
effect in our simulations of a complex fractional contagion process
on visual and metric networks of the same degree. Here, the
contagion process spreads to a larger fraction of the metric than
the visual network and this effect becomes even more apparent
when the initial activation is spatially correlated (Figure 5).

In summary, how fast and how far a behavior or information
will spread, is dependent upon the network density, the agent’s
sensory limits and the type of contagion process. The use of
multiple types of interactions (like visual or acoustic) may enable
organisms to compensate the shortcomings of one type of sensory
interaction and thus enable reliable collective response across a
range of densities or sensory limits varying under changing
environmental conditions.

Finally, we show that only visual networks have a strong
dependence on the aspect ratio and orientation of individuals.
More specifically, the breaking of a group’s orientational symmetry
due to alignment of individuals induces a symmetry breaking in the
interaction network and consequently spatial anisotropy of social
interactions. For two exemplary combinations of density and visual
threshold we found anisotropy in the spreading of a simple
contagion process on visual networks of polarized groups. More
detailed studies of this dependence could reveal advantages or
disadvantages of different spatial configurations of animal
collectives observed in nature, especially when studied together
with their visual detection ability [41].

Overall, our work provides compelling arguments for the
consideration of visual networks in the study of social
behavior. Nevertheless, it marks only a first step towards a full
understanding of their role in collective animal behavior. While
our results for artificially generated, static networks based on a
square grid allow us to systematically study the effect of density,
they do not capture the temporal nature and full range of
structures observed in animal groups. Luckily, recent
improvements in tracking software promise faster and more
convenient access to realistic animal network data, including
visual networks [42]. Using networks constructed from animal
tracking would provide information about naturally occurring
group sizes, densities and polarization as well as spatio-temporal
fluctuations within these measures and thus allow to study their
effects within a naturally occurring parameter range. Additional
knowledge about the sensory limits specific to the studied
organism (including the addition of a visual blind angle) will
further improve the interaction networks and may enable a direct
comparison between networks based on different senses like
sound perception and vision.
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A next step could then be to move on to non-static networks
and to study the effect of different macroscopic states such as
milling or swarming on network structure and spreading
dynamics. Here, one could also use movement models that
simulate the trajectories of all individuals based on the
different types of social interactions. This approach could then
go beyond the SIR-type spreading of information and investigate
how movement information, e.g., a preferred direction of a few
informed individuals, can spread and influence the group when
using different interaction modes (visual, metric, topological).

Such an approach could also take into account the interactions
of a group with the environment, asking, for example, how the
detection of visual cues and the trade-off between private (external)
and social information depends on group structure. It has been
shown that predator detection based on sensory limits is dependent
on density and group size and varies between different
macroscopic states of fish schools [41] whereas interactions with
the environment may induce density fluctuations. We hypothesize
that visual networks are more robust to such spatial perturbations
(i.e., a local increase or decrease in density).

Finally, let us note that, by starting with themost basic approach
and considering binary connections (1 or 0 for presence or absence
of links), we laid out the fundamental effects of the different
networks dependency on density and threshold. A natural
extension to weighted networks in the visual model would be to
use relative angular area (angular area divided by the total field of
view) as a link weight. Such an approach would entail an additional
dependence of average link strength on density, which would in
turn affect the weighted counterparts of the network measures. For
the purpose of this paper, i.e., to establish visual networks as
fundamentally different from other spatial networks by making
direct comparisons between network types, the introduction of link
weights would have been impractical as it would have introduced
additional and arbitrary dependencies on density by the choice of
link weights for each network type. Observed differences between
the weighted networks would be heavily influenced by the choice of
link weights and could therefore be less clearly attributed to sensory
limits and the different rules establishing links. A comparisons
between weighted networks will thus be most informative when
studying a specific biological system which justifies the choice of
link weights. Nevertheless, we expect essential features of the visual
network, i.e., the existence of an upper bound on the degree at high
densities, a lower clustering, the existence of longer links and the
anisotropy of visual interaction networks due to orientational
symmetry breaking, to also hold for weighted networks.

In conclusion, our work proposes experimentally testable
hypothesis, e.g., in the context of behavioral contagion in
animal groups [12,43], as well as a theoretical foundation

for future investigation on how collective information
processing could be dynamically tuned by individual-level
behavioral adaptations affecting local density [20]. We
highlighted several important qualities of visual networks,
including their unique dependence on density and
polarization, which encourages further research in this area.
Overall, visual networks provide a promising and necessary
addition to the established toolkit for the study of social
interactions and collective behaviour and emphasize the
need to include system-specific sensory limits.
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Simple Physical Interactions Yield
Social Self-Organization in Honeybees
Martina Szopek*, Valerin Stokanic, Gerald Radspieler and Thomas Schmickl
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Social insect colonies show all characteristics of complex adaptive systems (CAS). Their
complex behavioral patterns arise from social interactions that are based on the
individuals’ reactions to and interactions with environmental stimuli. We study here
how social and environmental factors modulate and bias the collective thermotaxis of
young honeybees. Therefore, we record their collective decision-making in a series of
laboratory experiments and derived a mathematical model of the collective decision-
making in young bees from our empirical observations. This model uses only one free
parameter that combines the ultimate effects of several aspects of the microscopic
individual behavioral mechanisms, such as motion behavior, sensory range, or contact
detection, into one single coefficient. We call this coefficient the “social factor.” Our model
is capable of capturing the observed aggregation patterns from our empiric experiments
with static environments and of predicting the emergent swarm-intelligent behavior of the
system in dynamic environments. Besides the fundamental research aspect in studying
CAS, our model enables us to predict the effects of a physical stimulus onto the
macroscopic collective decision-making that affects several crucial prerequisites for
efficient and effective brood production and population growth in honeybee colonies.

Keywords: collective decision-making, self-organization, complex adaptive systems (CAS), honeybees, social
interactions, swarm intelligence

1 INTRODUCTION

Complex adaptive systems (CAS) are ubiquitous. They include diverse systems such as social
networks, Earth’s climate, or its ecosystems [1, 2], but all CAS have specific properties and features in
common: They are comprised of many independent agents whose loosely coupled and local
interactions on the microscopic system level lead to emergent outcomes that are observable on
the macroscopic system level. These macroscopic outcomes often happen surprisingly suddenly, e.g.,
phase transitions, which can profoundly alter the overall system’s properties. These system changes
are not sufficiently predictable by looking only at the microscopic individual behavior [3]. Similar
phenomena can be observed in eusocial insect colonies, which possess all the typical characteristics of
CAS [4]. The abilities of honeybee colonies (such as the western honeybee Apis mellifera L.) allow
colony adaptation on various levels by altering or modulating the interaction network that emerges
between the individuals. These properties involve many nonlinear feedback loops with significant
time constants (delays). These properties of system ingredients are textbook examples of
prerequisites for complex behavior arising from very simple interaction patterns [5, 6]. While
these functional components may easily lead to chaotic behaviors, the existence of balancing
feedback loops within social insect colony systems yields homeostasis and resilience through
mechanisms of social self-regulation and self-organization [7]. Ultimately, these colonies can be
seen as super-organisms: as a collective, they manage to navigate the delicate balance between
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complexity-induced chaos and homeostatic self-regulation, a
property that is seen as a characteristic of organisms and of
life itself [8]. This residing on the edge between chaos and order
makes social insect colonies in general, and honeybee colonies
specifically, an excellent model system for complex but not
chaotic CAS.

We examined the CAS of honeybees by a set of down-scaled
laboratory experiments to keep the complexity of the study
system within tractable bounds but still large enough to show
interesting phenomena, such as collective decision-making,
symmetry breaking, and biasing effects through informed
leadership within the collective. We focused on how group
size, environmental conditions, environmental dynamics, and
local availability of information affect the individual and
collective decision-making within this CAS.

Therefore, we studied groups of young honeybees, which
already show complex social behaviors, e.g., in the collective
thermotaxis where bees are able to collectively distinguish
local from global thermal optima in complex thermal
environments [9], based on simple individual processes [10].
The temperature-based self-localization behavior and the
collective decision-making of young bees in complex and
dynamic temperature fields of the brood nest are crucial
components of the self-regulatory feedback loops of the
colony. These mechanisms are governed by physical
environmental stimuli that are capable of modulating the
microscopic behaviors of the bees, e.g., their motion speed or
their ability to preferably stay longer at places with specific
environmental conditions.

Our focal research question in the presented work is as follows:
Can we explain naturally observed examples of complex group-
level behavior (e.g., collective thermotaxis) in complex adaptive
systems (e.g., honeybees) as an emergent phenomenon arising
from simple microscopic individual motion principles and simple
interaction mechanisms? We here restrict ourselves to study the
simplest set of mechanisms to allow us the building and
parametrization of a simple but complex-enough model that is
able to predict a rich set of empirical data that are collected on
these CAS. This model is able to predict the emergence of
collective taxis, and also the arising collective decision-making
and symmetry breaking phenomena with respect to specific
environmental configurations and dynamics. We further
consider the social context in these processes, because it may
be modulated by group members that have additional
information or follow specifically different roles than our
modeled agents. These predictions are made by a simple
difference equation model that we develop here based on our
empirical data. We used two different methods to solve the
model: a mechanistic top-down approach using the forward
Euler method and a bottom-up approach using an individual-
based Monte Carlo simulation.

To understand the complex link between the individual
microscopic behavioral repertoire of young bees and the
emerging macroscopic patterns of aggregation that emerges
from a collective decision-making process and the physical
environment, we first conducted a set of experiments as a
macroscopic evaluation of the system. We observed groups of

young honey bees in static and dynamic temperature fields
showing either a) one global, b) one global and one local, or
c) two global optima and observed the aggregation behavior of the
bees in these environments. By considering the most relevant
underlying microscopic mechanisms that are the individual
behaviors of young bees in such temperature fields, we
ultimately developed a mathematical model that connects
these two system levels. The first difference equation model is
fitted to the observed empirical data collected in static
temperature fields. This way the only “free parameter” our
model contains, the social factor Xbee, is parametrized based
on empirical data on living honeybees. Based on this
parametrized difference equation model, a set of predictions is
made regarding how this CAS will behave in dynamically
changing environments. These predictions are then compared
to empirical data for further validation of the model. Finally, we
extend the model to incorporating social context and again
predict the effect of biases that may arise by special actors in
the collective that either pursue other goals have different
limitations or possess alternative pieces of information.

2 MATERIALS AND METHODS

2.1 Experiments With Honeybees
2.1.1 Animals
All experiments were conducted with young honeybees (Apis
mellifera L.) aged between 1 and 30 h after hatching from their
brood cells. Honeybees at this age are still ectothermic, i.e., they
are not able to produce heat on their own with their wing muscles

FIGURE 1 | Circular temperature arena setup and evaluation zones. (A)
The setup consists of a circular arena (a) with temperature sensors that are
embedded in the acrylic glass floor underneath the wax foundations,
surrounded by a plastic barrier. The two thermal optima are generated
with ceramic heating lamps mounted above the arena (b). The setup is
illuminated with lamps that are covered with filters so that only infrared light is
emitted (c), and the experiments are recorded with an IR-sensitive camera (d).
Furthermore, technical details can be found in Section 2.1.2 and [9]. (B)
Evaluation zones: The arena was divided into three zones, with the left zone (L)
and the right zone (R) representing the area under each heat lamp and the
center (C) representing the area outside of these zones. For collecting the
empirical data, the number of bees in each zone was determined from video
recordings in either 1-minute intervals (Exp. 1–4) or at the end of each
experimental run in minute 30 (Exp. 5).
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yet [11] and are therefore dependent on the appropriate thermal
environment, in which they navigate actively. To collect bees with
this defined age, a set of brood combs with many sealed pupae was
gathered from colonies and incubated at 35°C and at a relative
humidity of 60%. After hatching, the freshly emerged bees were
removed from the combs and transferred to ventilated plastic
containers with access to honey ad libitum to support their health
and development. Each individual bee was participating only
once in an experiment, and no individual with a visible handicap
was used. After participating in an experiment, all bees were
transferred to an identical separate container, and all bees were
re-introduced into full colonies after the experiments each day.

2.1.2 Experimental Setup
Our basic experimentation setup consisted of a circular arena
(with a diameter of 60 cm) that was surrounded by a plastic wall
(Figure 1A). To prevent the bees from climbing the boundary, the
plastic wall was coated with Teflon spray. The thermal
environments were generated with either one or two ceramic
heat lamps that were mounted above the arena (Figure 1B). To
actively regulate the thermal environment in our setup, an array
of temperature sensors was built into the acrylic glass arena floor
(based on the methods described in [12]). The arena floor was
covered with wax foundations that were replaced after each trial
to remove any possible scent traces left behind by the bees. A
standard PC controlled two digital dimmers that regulate the
ceramic heat lamps by using the data from the temperature
sensors. Three additional sensors were used to measure the
ambient room temperature. The room temperature was kept
around 29 ± 1°C by either heating with a radiator or by
cooling with a portable air conditioning unit before starting
each experiment. All experiments were performed under
infrared light (Figure 1C), at a wavelength that is invisible for
bees [13] so that we could exclude that the bees use any visual cues
but were required to rely purely on their thermal sensory system
and on their haptic sensory inputs when touching other bees or
obstacles. Such conditions exist also in the brood area deep in the
colony’s hive, where young bees usually locate themselves [14].
All experiments were recorded with an IR-sensitive camera
(Figure 1D). For technical details of the individual
components and the setup, see [9, 15].

2.1.3 Experiments
We carried out five different sets of experiments to gather
empirical data on the honeybees’ behavioral repertoire: Three
sets of experiments were conducted with groups of bees in static
thermal environments to examine the influence of a static,
thermally heterogeneous environment on the collective
behavior. Another set of experiments was conducted with
groups of bees in a dynamic environment to examine the
flexibility of the collective behavior in response to sudden
changes in the environmental conditions. Finally, another set
of experiments was conducted with a static thermal environment
and an additional social stimulus. The optimum temperature of
36°C was chosen in all experiments as it corresponds to the
preferred temperature (thermal optimum) of freshly emerged,
still ectothermic, honeybees [16]. To minimize the time the

animals have to spend in the experimental setup, we set the
runtime of experiments in stable thermal environments to 30 min
to ensure enough time for the bees to explore their environment
and form stable aggregations and to 105 min in dynamic thermal
environments to additionally take into account the thermal
inertia and the time the bees need to react to the changes in
the thermal environment.

Static Thermal Environments—Experiments 1, 2, and 3
We conducted three different sets of experiments with this
setting, each one with groups of 64 bees, in different
configurations of static thermal environments. The bees were
introduced (released from their cup) in the center of the arena,
and each experimental run lasted for 30 min. In Experiment 1,
we generated a thermal environment with one global optimum
at 36 ± 1°C on one arena side and with a pessimum of 30 ± 1°C
on the other arena side, as depicted in Figure 2A (n � 9
repetitions). In Experiment 2, we generated a more complex
environment with, again, a global optimum at 36 ± 1°C on one
arena side, but this time also with a local optimum at 32 ± 1°C on
the opposite side of the arena as depicted in Figure 2B (n � 8
repetitions). In Experiment 3, we generated a thermal
environment with two equally optimal spots at 36 ± 1°C on
two opposite sides of the arena as depicted in Figure 2C (n � 6
repetitions).

Dynamic Thermal Environment—Experiment 4
The experimental runs with a dynamic thermal environment
were also performed with groups of 64 bees. The bees were
introduced in the center of the arena, and each experimental run
lasted for 105 min (n � 17 repetitions). For this experimental
setup, we generated an initial environment with a global optimum
at 36 ± 1°C and a local optimum at 32 ± 1°C on the opposite side
of the arena, equal to the second set of experiments with a static
thermal environment. Thirty minutes after introducing the bees,
the heat lamp providing the 36 ± 1°C optimum was shut off while
the heat lamp generating the 32 ± 1°C optimum remained at the
initial setting, leading to a change in the thermal environment as
depicted in Figure 2D.

Static Thermal Environment With Social
Stimulus—Experiment 5
In the experimental runs with a social stimulus, we used groups of
24–25 bees that could run freely in the arena. The thermal
environment was equivalent to the one used in experiment 2
with one global optimum at 36 ± 1°C and a local optimum at 32 ±
1°C on the opposite side of the arena (as depicted in Figure 2B).
To provide a local social stimulus, we introduced additional bees
as a local “social stimulus” that was confined to a specific location.
To confine these “social stimulus” bees, we used circular cages
that were built from wire mesh and covered with an acrylic glass
Petri dish (3B). We put two cages in the arena, one under each
heat lamp (3A), whereby the cage in the local optimum contained
the five stimulus bees. The cage in the global optimum remained
empty and acted as a control against effects such as the wire cage
itself hypothetically acting as an attractant for the bees. The test
bees were introduced in the center of the arena and could run
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FIGURE 2 | Graphical representation of the used static and dynamic thermal environments in the different experiments. (A) static environment with one global
optimum of 36±1°C on the left side (used in Experiment 1), (B) static thermal environment with a global (36±1°C) optimum on the left and a local optimum (32±1°C) on the
right side (used in Experiments 2 and 5), (C) static environment with two global 36±1°C optima on opposing sides of the arena (used in experiment 3) and (D) dynamic
environment used in Experiment 4 with an initial configuration equal to (B) and the resulting thermal environment at the end of the experiment after switching off the
heat lamp on the left side at minute 30 with the new global optimum of 32±1°C on the right side. The run-time of the experiments with static environments was 30minutes
and 105 minutes in the experiments with the dynamic environment.

FIGURE 3 | Setup for experiment 5. (A) A wire cage with a transparent top was placed under each heat lamp. The cage placed under the right heat lamp that
produced the local optimum contained 5 stimulus bees while the cage on the left in the global optimum remained empty and acted as a control. (B)Close-up of the caged
bees with aggregated bees around.
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freely in the arena, except for the space covered by the cages. Each
experimental run lasted for 30 min (n � 10 repetitions).

2.1.4 Data Collection and Evaluation
The experiments were evaluated by assessing the location of the
bees in specific time intervals throughout the experimental
runtime. To collect the data, the area of the circular arena was
subdivided into three zones: L (zone under left heat lamp), R
(zone under right heat lamp), and C (remaining area; center) as
depicted in Figure 1B. The left and right zones cover 11.2% of the
total arena size each, corresponding to the area heated by the heat
lamps. We manually counted the bees in each evaluation zone in
1-min intervals on still images from the recordings for
experiments 1–4 to acquire a sufficient amount of data points
for the model fitting (experiments 1–3) and to capture the
dynamics in experiment 4. For experiment 5, we evaluated the
number of bees in the respective zones at the end of the
experimental runs (after 30 min). Each bee was attributed to
the zone where most of its body was located. If a bee happened to
be exactly on the evaluation line between two zones, it was
attributed to the zone its thorax was located in. If a bee’s
thorax was directly on the line, it was attributed to the zone it
was headed to. We evaluated a total of 50 runs with this method.

To visually depict the influence of the physical stimulus
(temperature) on the macroscopic distribution pattern of the
bees, we indicate the expected occupancy of the different zones,
assuming that the bees ignore other bees and the local
temperature (uniform distribution as a null model, see also
[9]), in the result graphs for the empirical data. The expected
occupancy is indicated as a dotted horizontal line for the
respective evaluation zone, with an expected fraction of bees
of 0.112 for the right and the left zones, respectively, and 0.776 for
the center, corresponding to the size ratios of the
evaluation zones.

All statistical comparisons were performed using the
MannWhitney U test with a significance level of 0.05, and the
p values are given in parentheses where results are reported.

2.2 Method of Parameterization and Fitting
of the Developed Difference Equation
Model
2.2.1 Implementation of the Temperature-Dependent
Waiting Time
Bees are known to often rest (wait) for some time after a bee-to-
bee contact, and it is known that this behavior is affected by the
local temperature [9, 17]. To represent this important mechanism
in the difference equation model, we generated a waiting-time
function that maps a given time-dependent temperature T(t) to a
predicted waiting period duration.

This waiting time of a bee W (T(t)) is derived from empirical
data collected in observations of young honeybees [18] and is
described through the sigmoidal function

W(T(t)) � a · tanh T(t)
b

− d( ) + e (1)

with the parameters a � 12, b � 1.2, d � 27, and e � 13. This yields
a curve that returns 1 s at 28°C and 25 s at 36°C as depicted in
Figure 4A. Restricted through the lower boundary of the waiting
time, we chose a time step of Δt � 1 s for our model.

Our model needs also to be able to depict a dynamic thermal
environment, i.e., the temperature decay over time that is a
significant aspect in experiment 4 after the heating lamp is
turned off. Thus, we used the mean temperature sensor data
for the left temperature field zone from the runs of experiment 4
and fitted a temperature decay curve to the values that lie on the
mean of the deviation (see Figure 4B).

2.2.2 Model Fitting
To fit our model’s difference equations, we used the proven
method of least squared residuals. Here, we looked at the
difference between the model’s prediction and the empirically
observed mean value at equally spaced given points in time and
minimized the sum of all squared residuals by numerically
solving the equations while adjusting our social parameter
Xbee. To find the one parameter value that suits all the
conducted experiments 1, 2, and 3, we fitted the equations to
the mean empirical data of all zones and experiments at once.

2.2.3 Noise Implementation
The basic behavior exhibited by most bees in a thermal field is
forms of correlated random walks [10, 17, 19, 20]. To reflect this
randomness in the underlying microscopic behaviors, we
implemented a noise-affected term in our model. This noise is
introduced to the system by multiplicative application of a time-
discrete, uncorrelated, and Gaussian distributed random value
(see Eq. 2) on the free parameter, the social factor Xbee, with the
mean μ � 1 and a standard deviation σ � 0.25 restricting the
possible values to the interval [0; 2], which is necessary to
guarantee non-negativity and symmetry around the mean.

ϵ(t) � 1
σ

���
2π

√ e−
1
2

t−μ
σ( )2 (2)

3 RESULTS

3.1 Groups of Bees in Static Thermal
Environments
To examine the macroscopically observable patterns of
aggregation, we conducted experiments with different static
thermal environments. In experiment 1, with only one global
optimum at 36°C, the majority of bees are found in the left
evaluation zone at the end of the experimental runs. This zone
corresponds to the global thermal optimum, and most bees are
located there within 15 min. The median fraction of bees in the
left zone is significantly higher than in the center zone and the
right zone after 15 and after 30 min (p < 0.001, compare
Figure 5A left, center, and right). Similarly, in experiment 2,
with a global optimum on the left and a local optimum on the
right side of the arena, the median fraction of bees at the global
optimum on the left was significantly higher than the median
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fraction of bees in the center (p � 0.003) and at the local optimum
on the right (p � 0.012) (Figure 5B left, center, and right) after
30 min. In experiment 3, with a thermal environment containing

two equally warm global optima, the results in Figure 5C show no
statistical difference in the median fraction of bees between the
right and the left zones (p � 0.261). For this experiment, we also

FIGURE 4 | (A) Function of the implemented waiting time in dependence of the locally experienced temperature according to equation 1. (B) Temperature decay
model. Shown are the mean temperature sensor data with standard deviation from the left zone overtime for the runs of experiment 4 (blue line and band) and the
implemented temperature profile for the model (dashed red line). The decrease in temperature after the lamp was switched off at minute 30 (dotted vertical line) follows
the characteristics of an exponential decay.

FIGURE 5 | Results of Experiments 1, 2, and 3. Shown is the median fraction of bees (with Q1, Q3, minimum, and maximum) at minutes 0, 15, and 30 in the left
evaluation zone (L), the center (C), and the right evaluation zone (R) for (A) Experiment 1 (L: 36±1°C, R: 30±1°C), n�9 repetitions, (B) Experiment 2 (L: 36±1°C, R: 32±1°C), n�8
repetitions, and (C) Experiment 3 (L: 36±1°C, R: 36±1°C), n�6 repetitions. The crosses indicate the model fits for each data series for the model described in the discussion
section. Dotted horizontal lines indicate the expected occupancy if the bees ignored other bees and the local temperature (uniform distribution model).
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looked at the individual trials that show that while the groups split
up approx. 50:50 in most of the trials, in 20% of the trials a strong
symmetry breaking occurred, i.e. the majority of the bees
aggregated on one side of the arena (see Figure 6).

3.2 Building a Difference Equation Model of
the Observed System
Based on the empirical results we described in the previous
section, we here develop a simple difference equation model in
which we break down the social stimulus-based self-localization
behavior into basic principles. We aim at constructing a
parsimonious model with a limited set of parameters that
describe the observed complex behaviors in a simple way. An

overview of all model variables and parameters is given in
Table 1. The model tracks the bees with conservation of mass
and describes their rates of change between the three
compartments that were used and are thus suggested by the
empirical experiments’ analysis method: The state variable L(t)
models all bees located in the left zone, the state variable R(t)
models all bees located in the right zone, and the state variable
C(t) models all other bees. The total number of bees is N � L(t) +
C(t) + R(t), guaranteeing respect for mass conservation in the
model. For the sake of simplicity, we do not explicitly model the
area of the zones (and, respectively, the proportions of its
boundaries) or the area a bee or a group of bees would occupy.

The changes of the three state variables are then described as a
system of coupled ordinary difference equations, whereby

FIGURE 6 | Results for Experiment 3–individual runs. Shown is the fraction of bees in 1-minute wide intervals over the whole experimental run-time (30 minutes) for
each individual run (n�6 repetitions) in the left zone (36±1°C), the center, and the right zone (36±1°C).

TABLE 1 | Model variables and parameters.

Model variables

Symbol Description Value Units Source

L(t), C(t), R(t) Number of bees in the left, center, and right zones (at time t) - bees -
Tl(t), Tr(t) Temperature in the left and right zones (at a time t) - °C empirical data
Wl(T), Wr(T) Waiting time in the left and right zones (at a temperature T) - s [18]
ϵ1(t), ϵ2(t), ϵ3(t) Gaussian distributed noise (at a time t) [0; 2] dmnl first principles
Xbee Social factor 0.0056 (s · bees)−1 fitting
Xseed Weight parameter for stimulus bees 1 dmnl free parameter
Pc,l Probability for bee switching from center to left zone - dmnl -
Pc,c Probability for bee staying in center zone - dmnl -
Pc,r Probability for bee switching from center to right zone - dmnl -
Pl,l Probability for bee staying in left zone - dmnl -
Pl,c Probability for bee switching from left to center zone - dmnl -
Pr,r Probability for bee staying in right zone - dmnl -
Pr,c Probability for bee switching from right to center zone - dmnl -

Model parameters

Symbol Description Value Units Source

L (0), C (0), R (0) Initial number of bees in the left, center and right zone (at t � 0) L(0) � 0
C(0) � 64
R(0) � 0

bees empirical data

N Total number of bees 64(exp.1 − 4)
24,25(exp.5)

bees empirical data

Sl, Sr Number of stimulus bees in the left and right zones Sl � 0
Sr � 5

bees empirical data
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ΔL
Δt � meetl(t) + joinl(t) − leavel(t) (3)

models the change in the number of bees in the left zone,

ΔR
Δt � meetr(t) + joinr(t) − leaver(t) (4)

models the change in the number of bees in the right zone, and

C(t) � N − L(t) − R(t) (5)

models the number of bees in the center simply by subtracting the
number of bees that are in the left and right zones from the total
number of bees.

These three equations are modeled following the standard
mass action law, as it expresses the expected interactions of
entities based on their mean densities, as it is also used in the
mathematical modeling of predator-prey and host-parasite
systems [21, 22], intraspecific competition [23], interspecific
competition [24], the spreading of infectious diseases [25], or
chemical, e.g., enzyme-substrate interactions [26].

As we aim for the simplest version of this model, we combined
all individual microscopic parameters—motion behavior, sensory
range, contact detection—into one single parameter that we
named “social factor” Xbee. Another microscopic system-level
aspect that needs to be modeled is the individual behavioral
response to the locally perceived temperature and how this affects
the social interaction. Young honeybees tend to stop after
encountering another bee and rest for some time after such
collisions, whereby the resting time is positively correlated
with the local temperature [9, 17]. This temperature-
dependent waiting time is represented by W(T). For the
model, we assume that the bees move randomly and stop
when encountering another bee with a probability determined
by Xbee and that the waiting time of those individuals depends on
the locally prevalent temperature [9]. The implemented waiting-
time function is depicted in Figure 4A. The terms on the RHS of
our equations are functions of time in our model. They express
specific processes that affect the rate of change of the specific
system variable on the LHS of the equation.

The functionsmeetl(t) andmeetr(t) represent half of the initial
center zone bees that, after interacting with each other in
dependence of our social factor Xbee, form a cluster in the left
and right zones equally likely and are described as

meetl(t) � meetr(t) � 1
2
·Xbee · C(t)2 (6)

The functions joinl(t) and joinr(t) represent initial center zone
bees that join already present bees in the left and right zones and
are described as

joinl(t) � Xbee · L(t) · C(t) (7)

for the left zone and

joinr(t) � Xbee · R(t) · C(t) (8)

for the right zone.
Finally, the functions leavel(t) and leaver(t) represent the bees

in either zone that transition back to the center zone after their

temperature-dependent waiting time has expired and are
described as

leavel(t) � L(t)
Wl(Tl(t)) (9)

for the left zone and

leaver(t) � R(t)
Wr(Tr(t)) (10)

for the right zone.
In our empirical experiments with bees, the number of bees

was kept constant in experiments 1 to 3. For the simulation runs
of our model, we thus set N to a value of 64, and equivalent to the
experiments, all bees were starting in the center region, therefore
C (0) � N bees and L (0) � R (0) � 0 bees. The variables that
represent the mean temperatures within the left and right area are
set Tl(t) � 36°C and Tr(t) � 30°C, respectively, for comparison
with experiment 1, to Tl(t) � 36°C on the right and Tr(t) � 32°C on
the left for comparison with experiment 2 and to Tl(t) � Tr(t) �
36°C on both sides for comparison with experiment 3.

The functions that involve the waiting timesWl (T(t)) andWr

(T(t)) in the modeling of specific rates of change represent the
number of bees that leave their zone of resting (Eq.(3) and (4) and
transition back into the center zone (Eq.5), which can be assumed
to be equal to the mean time a bee spends in this zone. This
waiting duration is not directly a function of time, but a function
of the local temperature, as was expressed by W (T(t)) in Eq. 1.
However, the mean temperatures and thus the waiting times
within the two zones are able to change in time in our
experiments.

Finally, our system of coupled difference equations is
numerically solved through the forward Euler method with a
step size of Δt � 1.

In our model building approach, we aim at a “one fits all”
model; thus, we fitted our free parameter Xbee to the empirical
data set from all our experiments in static environments
(experiments 1–3), aiming for a value with which the model
can qualitatively (and partially even quantitatively) represent the
results from all three experiments sufficiently.

Using the method described in subsection 2.2.2, we found the
best fit for our free parameter with a value of Xbee � 0.0056 1

s·bee.
The results of this fitting are shown in Figure 7, where the
empirical data (median fraction of bees, IQR, minimum, and
maximum) that were used for fitting are plotted over time for
experiments 1 (Figure 7A), 2 (Figure 7B), and 3 (Figure 7C) with
the respective fitted model results (dashed lines).

3.3 Predicting Macroscopic Aggregation
Patterns in Complex Environments
To test the predictive ability of the model when applied to new
data, we simulated our model in resembling to the two
experimental settings that were not previously used to fit the
model’s parameters: experiment 4 with a dynamic thermal
environment and experiment 5 with an additional social
stimulus. The model predictions of these experiments can then
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be compared to the empirical observations for validation
purposes.

3.3.1 Aggregation Patterns in a Dynamic Thermal
Environment (Model Solved With the Forward Euler
Method)
The empiric results from experiment 4 show that the median
fraction of bees in the left zone at the optimal temperature rises
in the initial phase, when this side holds a global optimum of
36°C. As soon as the heat lamp on the left is switched off in
minute 30, the median fraction of bees in the left zone starts to
decrease. In parallel, we find an increase in the right zone (32°C)
while the median fraction of bees in the center rises only slightly
(8A). As soon as the left zone starts to cool down, the unchanged
right zone becomes the global optimum in the system, and the
bees collectively start to aggregate in this zone. Statistical
analysis of our data indicates a median fraction of bees in
the left zone that is significantly higher than in the right
zone at minute 30 (p < 0.001). When comparing the median
fraction of bees in the left zone at minute 30 with the median
fraction of bees in the right zone at the end of the experiment

(minute 105), no statistical difference was found (p � 0.97). The
same was found when comparing the median fraction of bees in
the left zone at minute 105 and the right zone at minute 30
(p � 0.63).

To model the dynamic thermal environment from experiment
4, we implemented the time dependency via the temporal
progression of the temperature T � T(t), as detailed in Section
2.2.1. Besides adding the required exponential decay of
temperature in the left zone and applying noise to the
system’s free parameter (see Section 2.2.3), no changes were
made to the model for simulating experiment 4. As the system has
three distinct possibilities for the interaction of bees (C2, C · L, and
C · R), we implemented three uncorrelated noise factors ϵ1(t),
ϵ2(t), and ϵ3(t), corresponding to Eq. 2, and with one factor for
each of the three possibilities. As the bees that leave the center
split up 50:50 (Eq. 6), the noise that is applied to one side needs to
be reflected in the other by subtracting it from the maximum
possible value that the noise can deliver, forming the term (2
− ϵ1(t)).

After introducing the noise, the resulting cluster functions
(Eqs. 6–8) are being restated as following:

FIGURE 7 |Model fitting. Shown is the fraction of bees in the different evaluation zones (Left, Center, Right) from empirical data (median with IQR, minimum and
maximum) over time with the respective fitted model data (dashed lines) with the social factor Xbee of 0.0056 1

s·bee for (A) experiment 1 (L: 36±1°C, R: 30±1°C), n�9
repetitions (B) experiment 2 (L: 36±1°C, R: 32±1°C), n�8 repetitions and (C) experiment 3 (L: 36±1°C, R: 36±1°C), n�6 repetitions. Dotted horizontal lines indicate the
expected occupancy if the bees ignored other bees and the local temperature (uniform distribution model).
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meetl(t) � ϵ1(t) · 12 ·Xbee · C(t)2 (11)

meetr(t) � (2 − ϵ1(t)) · 12 ·Xbee · C(t)2 (12)

joinl(t) � ϵ2(t) ·Xbee · L(t) · C(t) (13)

joinr(t) � ϵ3(t) ·Xbee · R(t) · C(t) (14)

For the prediction of the empirical data, we performed 20
individual runs with the model, with settings that match the
experimental conditions: An initial static thermal environment
with 36°C on the left side and 32°C on the right side, with the
temperature on the left side decreasing according to the
exponential decay and groups of 64 bees. For Xbee, we used
the value 0.0056 1

s·bee as it was determined by the initial fit to
data from static thermal environments.

The resulting simulation data are shown in Figure 8B: Our
model generates a lower variance but predicts the dynamics in

all zones quantitatively well when compared to the empirical
data. The model also qualitatively captures the delay between
the switching off of the heat lamp in the left zone and the
decrease in the median fraction of bees, but compared to the
empirical data, the delay is longer and even shows an initial
increase (compare Figure 8A left and B left). Similarly to the
empirical data, also in the model, the median fraction of bees is
comparably low and increases slightly in the later half of the
experimental runtime during the transition of bees from the left
to the right side (Figure 8B). The model also qualitatively
captures the increase in the number of bees in the right zone
at about the point in time when the median fraction of bees on
the other side starts to decrease, what also fits qualitatively well
to the empirical data (Figure 8B). The median fraction of bees
in the right zone after the transition at minute 105 does not
significantly differ from the median fraction of bees in the left
zone at minute 30 before the transition in the model data (p �

FIGURE 8 | Empirical and model results from experiment 4. (A) Empirical data: Shown is the median fraction of bees (with IQR, minimum and maximum) in the
different evaluation zones (Left, Center, Right) over 105 minutes experimental runtime (data collected in 1-minute intervals), n�17 repetitions. Dotted horizontal lines
indicate the expected occupancy if the bees ignored other bees and the local temperature (uniform distribution). (B) Predictions of the model solved with the forward
Euler method: Shown is the median fraction of bees (with IQR, minimum andmaximum) in the different evaluation zones (Left, Center, Right) over an equivalent of
105 minutes experimental runtime, grey lines represent the individual model runs, n�20 repetitions. (C) Individual-based Monte Carlo simulation predictions: Shown is
the median fraction of bees (with IQR, minimum and maximum) in the different evaluation zones over the experimental runtime, grey lines represent the individual model
runs, n�20 repetitions. The solid vertical lines in the graphs for the left zone in (A), (B) and (C) indicate the point in time where the lamp in this zone was switched off at
minute 30.
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0.253). While the empirical data show no statistical significant
differences when comparing the median fraction of bees in the
left zone at minute 105 and in the right zone at minute 30, the
model results show a significant difference for the same
comparison (p < 0.001).

The quantitative comparison between the empirical data and
the model data shows that there is no significant difference
between the median fraction of bees in the experimental left
zone and in the simulated left zone (p � 0.843) and also no
significant difference when comparing the median fraction of
bees in the experimental and in the simulated right zone (p �
0.96) at minute 30. The same was found when comparing the
median fraction of bees of the experimental and of the model data
in the left zone (p � 0.165) and in the right zone (p � 0.353) at
minute 105.

The noise in the model that is solved with the forward Euler
method produces a lower variance compared to the empirical
data. We therefore simulated the same experiment with an
individual-based sequential Monte Carlo method as described
in the next section.

3.3.2 Aggregation Patterns in a Dynamic Thermal
Environment (Individual-Based Monte Carlo
Simulation)
To represent the higher variance that is shown in the
experimental data, we introduce a sequential and individual-
based Monte Carlo simulation, in which the difference equations
are described by the probabilities for each bee to transition into a
neighboring zone (see Figure 9).

The probability P for a bee to transition from the center C to
the left zone L is defined as Pc,l(t) � Xbee · (L(t) + 0.5 · C(t)) and,
respectively, to the right zone R as Pc,r(t) � Xbee · (R(t) + 0.5 · C(t)).
The probability for a bee to leave the left zone is defined as Pl,c(t) �
1/Wl(t) and as Pr,c(t) � 1/Wr(t) to leave the right zone. The
probabilities Pl,l(t), Pr,r(t), and Pc,c(t) are the counter-probabilities
and are defined as Pl,l(t) � 1 − Pl,c(t) for the left zone, Pr,r(t) � 1 −
Pr,c(t) for the right zone, and Pc,c(t) � 1 − Pc,l(t) − Pc,r(t) for the
center zone.

The results are depicted in Figure 8C and show that the
variance produced by the individual-based Monte Carlo
simulation is greater than the variance produced by the model
solved with the forward Euler method (Figure 8B) and more
similar to the empirical data shown inFigure 8A.

Similarly to the predictions made by the model solved with the
forward Euler method, the median fraction of simulated bees in
the right zone after the transition at minute 105 does not
significantly differ from the median fraction of bees in the left
zone at minute 30 before the transition (p � 0.291). As it is the
case for the results of the model solved with the forward Euler
method, and in contrast to the empirical results, the results from
the individual-based Monte Carlo simulation also show a
significant difference when comparing the median fraction of
bees in the left zone at minute 105 and in the right zone at minute
30 (p < 0.001).

The quantitative comparison between the empirical data and
the model data shows that there is no significant difference
between the median fraction of bees in the experimental left
zone and in the simulated left zone (p � 0.772) and also no
significant difference when comparing the median fraction of
bees in the experimental and in the simulated right zone (p �
0.437) at minute 30. The same was found when comparing the
median fraction of bees of the experimental and of the model data
in the right zone at minute 105 (p � 0.279), while there is a
significant difference between the median fraction of bees of the
experimental data and the model data in the left zone at minute
105 (p � 0.002).

3.3.3 Aggregation Patterns in a Static Environment
With an Added Social Stimulus
The results from experiment 2 reported in Section 3.1 show that
the bees are collectively able to distinguish the global from the
local optimum with the majority of the bees found in the right
zone at 36°C after 30 min (Figure 5B). Based on these findings, we
studied whether or not this collective decision-making process
can be biased by a social stimulus in the local optimum in the
same thermal environment used for experiment 2. Therefore, we
tested groups of 24–25 bees and additionally introduced five bees
that were confined in the local optimum. The empirical results for
this experiment are shown in Figure 10A (blue data set). To show
the effect of the social stimulus on the macroscopic behavior, we
compare it with data from comparable experiments without a
social stimulus, redrawn from [9] (red data set), where
experiments with groups of 24 bees in the same static thermal
environment were reported.

These results show that the median fraction of bees in the
global optimum is significantly lower in experiments with a social

FIGURE 9 | Finite state machine of the individual-based Monte Carlo simulation. States and transitions as described in Section 3.3.2.
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stimulus compared to experiments without a social stimulus (p �
0.036, compare boxplots in Figure 10A left zone), while the
median fraction of bees is significantly higher in the local
optimum in experiments with a social stimulus (caged bees)
compared to the experiments without caged bees (p � 0.009,
compare boxplots in Figure 10A right zone); thus, the data show
that a social stimulus has an influence on the overall macroscopic
aggregation pattern of the bees.

To be able to predict the results of the empirical experiment
with a social stimulus with our model, we had to implement an
equivalent for these “caged bees.” We did this by modifying our
difference equation system and included an additional term that
takes into account the number of stimulus bees Sl and Sr and
another parameter different from Xbee, the “social seed”
parameter Xseed, that acts as a weighting value for Sl and Sr.
We can see these bees as being “informed agents” or acting as
social “influencers” in the collective decision-making process. We
assume that a stimulus bee weighs as much as a free bee in the
calculations, thus Xseed � 1.0. The three difference equations for
the three zones are being extended by introducing the following
functions to the left and right zones, respectively:

sociall(t) � ϵ2(t) ·Xbee · C(t) ·Xseed · Sl (15)

socialr(t) � ϵ3(t) ·Xbee · C(t) ·Xseed · Sr (16)

Furthermore, while all other empirical data are based on
experiments with groups of 64 bees, the experiments with
caged bees were performed with groups of 24–25 bees plus
five bees in the cage at the local optimum. The model was
previously fitted to a group size of 64 bees and was not
refitted to adapt for the smaller group size, and thus the lower
population density, in the same setup.

The simulation results with the extended model solved with
the forward Euler method are depicted in Figure 10B. To show
the effect of the implemented social stimulus, we compare the
results with simulations using groups of 24 bees without the social
stimulus term. The median fraction of bees in the global optimum
is predicted to be significantly lower in runs with a social stimulus
acting at the zone with the local optimum on the opposite arena

side, compared to runs without a social stimulus acting on the
other side (p < 0.001, compare boxplots in Figure 10B left zone).
The median fraction of bees is predicted to be significantly higher
in the local optimum zone in runs with the social stimulus
presents compared to the runs without the social stimulus (p
< 0.001, compare boxplots in Figure 10B right zone).

The statistical analysis shows that there is no significant
difference between the empirical and the model data with
social stimulus in the median fraction of bees in the left zone
(p � 0.734) as well as in the right zone (p � 0.273, compare
Figures 10A,B blue data series in left zone and A and B blue data
series in right zone). The prediction of the model solved with the
forward Euler method is therefore quantitatively comparable to
the empirical data.

The resulting distributions of 10 exemplary runs of the
individual-based Monte Carlo simulation are shown in
Figure 10C. The comparison between the results from the
model solved with the forward Euler method and the
individual-based Monte Carlo simulation shows that there is
no significant difference between the median fraction of bees in
the left zones (p � 0.623, compare boxplots of left zone in Figures
10B,C) or the right zones (p � 0.053, compare boxplots of right
zones in Figures 10B,C).

4 DISCUSSION AND CONCLUSIONS

This study shows that groups of young bees, in contrast to the
highly variable individual thermotactic behavior of young bees
[10], reliably manage to aggregate at a global thermal optimum
amongst the accessible set of options. It provides novel empirical
findings about symmetry-breaking events and shows the
flexibility and dynamics of the bees’ collective thermotactic
behavior in dynamic environments and the influence of social
cues on the collective decision-making. The simple model of this
collective thermotactic behavior, which was step-wise developed
here (Figure 11), uses only one free parameter that combines all
microscopic individual parameters. Despite its simplicity, the
model is able to capture the bees’ aggregation patterns of all

FIGURE 10 | Empirical and model results from experiment 5. (A) Empirical data: Shown is the comparison of the median fraction of bees (with Q1, Q3, minimum
and maximum) in the different evaluation zones (Left, Center, Right) at minute 30 between experiments with an added social stimulus in the local optimum (blue, n�10
repetitions) and experiments without this social stimulus (red, data redrawn from [9], n�8 repetitions). (B) Predictions of the model solved with the forward Euler method:
Comparison of the median fraction of bees (with Q1, Q3, minimum, and maximum) in the different zones (Left, Center, Right) at minute 30 between runs with an
added social stimulus in the local optimum (blue, n�10 repetitions) and experiments without this social stimulus (red, n�10 repetitions). (C) Predictions of the individual-
based Monte Carlo simulation: Comparison of the median fraction of bees (with Q1, Q3, minimum, and maximum) in the different zones (Left, Center, Right) at minute
30 between runs with an added social stimulus in the local optimum (blue, n�10 repetitions) and experiments without this social stimulus (red, n�10 repetitions).
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tested scenarios. The model shows that the prerequisites for
explaining the abilities of the bee collective by means of social
interactions are much smaller than an equally well-performing
individual problem-solving would require. Thus, the observed
behavior is a clear candidate for a phenomenon known as “swarm
intelligence” [5, 27–29]. This phenomenon has aspects of
emergence and exhibits interesting micromacro bridging at its
core, a simple model to describe such systems is therefore of
great value.

The empirical data show that local optima do not trap a
significant amount of bees; thus, we can reject that the bees simply
perform an individual uphill walk in the temperature gradient. In
addition, we deduce from our experiments with two equal optima
in the environment an informative result: The analysis of the
individual runs shows that the bees sometimes exhibit strong
symmetry breaking and collectively choose one of the two equally
favorable options. Such symmetry breaking is, for example,
known to happen in choice experiments with ants, where

FIGURE 11 | Graphic representation of our scientific workflow and concept. Based on empiric results from laboratory experiments and a-priory knowledge (e.g.,
temperature-dependent waiting time), we built a simple model of the collective thermotaxis in honeybees that describe the change of the number of bees in the three
zones with three coupled difference equations and combined all individual microscopic parameters into the free parameter Xbee in Model Step 1.We then fitted the model
to data from 3 different laboratory experiments to determine a single value for the free parameter Xbee. After this fitting, the model was further refined by adding noise
to the free parameter Xbee (Model Step 2). To test the predictive ability and validate the model, we compared the simulation results to a laboratory experiment with a
dynamic gradient (Experiment 4) using the previously fitted value for Xbee. In Model Step 3, we introduced the “social seed” parameter Xbee to simulate caged bees
equivalent to Experiment 5. Starting with single empirical facts, we gained a fundamental understanding of the CAS by gradually developing our model and using
subsequent empirical experiments to validate previous model building steps.
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small random variations in trail laying are amplified and lead to a
collective choice for one of two identical shelter options [6]. We
assume a similar effect in our focal honeybee system: Whenever
more bees randomly move to one side of the arena, more small
initial aggregations may emerge faster on this side than on the
other and increase the probability of additional bees joining there.
Furthermore, empirical research on the individual motion
behavior in this experimental setting (e.g., tracking individual
trajectories) will be necessary to learn more about the
prerequisites for symmetry breaking in this system.

We further showed the adaptability of the collective
thermotaxis in honeybees in dynamic environments as the
bees were capable of selecting a previously neglected less
warm place when the environment changed. This shows that
bees are not exclusively searching for their thermal optimum of
36°C, but instead dynamically and adaptively choose the best
available option in their environment at a given time
collectively, while they simultaneously try to stay together as
a group. This is demonstrated by introducing a “social seed” to
bias the group decision: Although the bees usually would choose
the warmest area in the environment, an additional social
stimulus unfolds a significant influence onto the overall
collective behavior and ultimately has a tendency of drawing
the bees to a comparably suboptimal temperature zone. The
caged bees can exert some sort of direct physical influence, e.g.,
via olfactory or ground-vibrational cues. Additionally, they also
exert some indirect influence via the system’s behavioral
feedback loops, e.g., by increasing the stopping probability.
Such effects have also been observed in swarms of robots
that perform similar behavioral programs [19]. Analogous to
our experiments, some immobile robots are placed at a local
optimum. These immobile robots simply increase the stopping
probability there, what induces a similar change in the
macroscopic swarm behavior without the need of emitting
any additional cues. This indicates that no direct influence
from the caged bees is necessary, just their plain local
presence was sufficient to emphasize local behavioral
feedback loops to draw the group to the local temperature
optimum. Although the robot swarm example shows that
communication via direct signal exchange is not necessary to
achieve such effects, the bees could still exchange signals, e.g., to
achieve a faster or more stable effect. Also, more indirect
density-dependent amplifiers are possible. The temperature-
dependent waiting time could be additionally modulated by
cluster size, as it was shown for the aggregation behavior of
cockroaches [30]. A bee could wait increasingly longer the more
bees it is surrounded by, what would further stabilize
aggregations as soon as a certain number of bees are aggregated.

The results of our experiments suggest that the ability to solve
the given sets of problems cannot be explained by simple
individual behavioral programs such as a simple gradient
ascent, probabilistic choosing, or a specific temperature
threshold. Thus, solving the problem on an individual level
would require a sophisticated behavior, assuming several
sophisticated (cognitive) abilities: good sensor discrimination,
memory, self-localization in the environment (map making), and
the ability to choose individually from multiple options.

Rejecting complex individual behaviors and looking into
simple collective behaviors are the core motivation of the
model that we have built and have, based on empirical
validation experiments, refined here in several steps (see
Figure 10). Our simulations show that a simple model of
interactions amongst the bees is sufficient to capture the
observed collective macroscopic behavior through a few simple
assumptions about the mechanisms operating on the microscopic
system level. Under the assumption of social interaction, purely
random motion and modulating the resting behavior after a bee-
to-bee contact suffice to explain all the observed collective
behavioral patterns in all tested environments, which are a
significant step in the understanding of a natural complex
adaptive system, such as a honeybee colony. With only one
free parameter, which we call the “social factor” (Xbee), both
modeling approaches, the mean-field approach of the model
solved with the forward Euler method and the individual-
based Monte Carlo simulation, were capable of qualitatively
and for the most part also quantitatively predicting the
emerging flexible group-level behavior of the bees in a
complex dynamic environment. The free parameter was
exclusively fitted with data from static environments, and both
modeling approaches used the same parameter value, what shows
an interesting generality of our model. The only addition that was
necessary to model the dynamic environmental setting was not in
the model of the bees but in the model of the environment: It was
required to develop an additional temperature decay function.
While the individual-based Monte Carlo simulation better
captured the variance in the empirical data, the model solved
with the forward Euler method more accurately predicted the
overall macroscopic behavior when compared to the
empirical data.

Quantitative differences between the results from empirical
and simulation experiments, especially in the variance can be
attributed to the following factors: While the empirical data show
some fluctuations in the set temperatures in our setup (±1°C, as
shown in [9], Figure 2), we used idealized temperature gradient
fields in the model. With no noise acting on the waiting time, all
bees joining a zone in the same time step will therefore have the
exact same waiting time, making the idealized system more
reactive. In experiment 5, the differences can additionally be
attributed to the different group sizes used in the experiments and
the model. As the free parameter, Xbee integrates several
microscopic individual parameters that have an influence on
density-dependent processes in the system (e.g., stopping
probability after contact with another bee), changes in the
initial setting of the model runs, like the group size, can lead
to quantitatively different outcomes. Another important
difference between the empirical system and the difference
equation model is the fact that in the model, the bees are
considered to be volumeless points in space. Thus, in the
model, an infinite number of bees can squeeze themselves into
an infinitely small amount of space, while in reality, target spots
can get saturated. In addition, in reality, clusters can form
everywhere in the arena and block the path of bees towards
better places. Furthermore, physiological aspects, like depleting
energy reserves of individual bees that could lead to increased
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resting times, especially in dynamic environments, are not taken
into account in the model. It can therefore be the case that special,
more complex collective behaviors cannot be represented with
these simple models’ abstraction of the bee behavior and mean-
filed approximation. We show with our implementation of an
individual-based Monte Carlo simulation a better representation
of the variance and diversity concerning the macroscopic
collective behavior. Thus, a multi-agent model with complex
state machines [31, 32] or neural networks [33] to control the
agent’s behaviors could be the better approach for depicting more
complex situations. This would however require a full reversal of
the model-building strategy. Additionally, environmental factors
and beehive physics, such as acoustics and chemical and thermal
interactions with older bees, would then have to be implemented,
what may increase the degree of complexity by several orders of
magnitude.

Besides the fundamental basic research aspect, studying such
systems is of additional importance: Honeybees are under severe
ecological stress today, and this is endangering their wide-spread
role as ecosystem-service providers (pollination). Our model
enables us to predict the effects of a physical stimulus onto
the macroscopic collective decision-making such as the process
of preparing cells for the egg-laying of the queen, which is
performed by young bees at the same age as our experimental
bees. We found that the local abundance of such cell-preparing
bees is affected by the local temperature conditions. In the brood
nest, the local temperature conditions are actively regulated
(again collectively) by older bees, and this collective
thermoregulation is also influenced by the temperatures
outside of the hive. Ultimately, understanding how
temperature fields can affect the self-localization of young bees
is a crucial aspect of understanding brood production and colony
population growth in times of climate change. There is also an
application aspect to be considered here: Understanding the
complex adaptive system at the core of honeybee colonies can
help in designing novel smart beehives, in which technological
devices are capable of producing exactly these physical stimuli

and may thus exert a regulatory support for colonies in distress,
e.g., by motivating them to keep up brood production in adverse
environments or colony situations. We see this as a potential
cornerstone in developing modern “smart beehives” that go
beyond mere sensing by actively promoting the stability and
robustness of the colony [34, 35].

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

TS implemented the first version of the difference equationmodel
and contributed significantly to the planning of this study. He
also advised and mentored the other authors in the course of the
research and the paper writing. The mathematical models were
further elaborated by VS and MS. MS, TS, VS, and GR wrote the
article together in a collaborative effort. Experiment 1: conducted
by GR and analyzed by GR and MS; Experiments 2, 3, and 4:
conducted and analyzed by MS; Experiment 5: analyzed by MS.
Statistical analyses were made by MS. Model data were analyzed
by VS. Figures 1–3 were conceived and implemented by MS.
Figures 4–10 were conceived and implemented by VS and MS.
Figure 11 was conceived and implemented by TS.

FUNDING

This work was supported by the Field of Excellence Complexity of
Life in Basic Research and Innovation (COLIBRI) at the
University of Graz, the Austrian Science Fund research grant
P19478-B16, the EUH2020 FET-Proactive project HIVEOPOLIS
(no. 824069), and the EU ICT project ASSISIbf (no. 601074).

REFERENCES

1. Gell-Mann M. Complex Adaptive Systems. In: G Cowan, D Pines, and
D Metzer, editors. Complexity: Metaphors, Models, and Reality. Reading,
MA: Addison-Wesley (1994). p. 17–45.

2. Levin SA. Ecosystems and the Biosphere as Complex Adaptive Systems.
Ecosystems (1998) 1:431–6. doi:10.1007/s100219900037

3. Holland JH. Complex Adaptive Systems. Daedalus (1992) 121:17–30.
4. Bonabeau E. Social Insect Colonies as Complex Adaptive Systems. Ecosystems

(1998) 1:437–43. doi:10.1007/s100219900038
5. Bonabeau E, Dorigo M, and Théraulaz G. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press (1999).
6. Camazine S, Franks NR, Sneyd J, Bonabeau E, Deneubourg JL, and Theraula G.

Self-Organization in Biological Systems. Princeton University Press (2001).
7. Moritz RFA, and Fuchs S. Organization of Honeybee Colonies: Characteristics

and Consequences of a Superorganism Concept. Apidologie (1998) 29:7–21.
doi:10.1051/apido:19980101

8. Lewin R. Complexity: Life at the Edge of Chaos. University of Chicago Press
(1999).

9. Szopek M, Schmickl T, Thenius R, Radspieler G, and Crailsheim K.
Dynamics of Collective Decision Making of Honeybees in Complex

Temperature fields. PLoS One (2013) 8:e76250. doi:10.1371/
journal.pone.0076250

10. Kengyel D, Hamann H, Zahadat P, Radspieler G, Wotawa F, and
Schmickl T. Potential of Heterogeneity in Collective Behaviors: A
Case Study on Heterogeneous Swarms. In: International Conference
on Principles and Practice of Multi-Agent Systems Proceedings;
Bertinoro, Italy; October 26–30, 2015 Springer (2015). p. 201–17.
doi:10.1007/978-3-319-25524-8_13

11. Stabentheiner A, Kovac H, and Brodschneider R. Honeybee Colony
Thermoregulation - Regulatory Mechanisms and Contribution of
Individuals in Dependence on Age, Location and Thermal Stress. PLoS one
(2010) 5:e8967. doi:10.1371/journal.pone.0008967

12. Becher MA, and Moritz RFA. A New Device for Continuous Temperature
Measurement in Brood Cells of Honeybees (apis Mellifera). Apidologie (2009)
40:577–84. doi:10.1051/apido/2009031

13. Menzel R, and Backhaus W. Color Vision Honey Bees: Phenomena and
Physiological Mechanisms. In: DG Stavenga and RC Hardie, editors. Facets
of Vision. Berlin Heidelberg: Springer (1989). p. 281–97. doi:10.1007/978-3-
642-74082-4_14

14. Seeley TD. Adaptive Significance of the Age Polyethism Schedule in
Honeybee Colonies. Behav Ecol Sociobiol (1982) 11:287–93. doi:10.1007/
bf00299306

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 67031715

Szopek et al. Social Self-Organization in Honeybees

95

https://doi.org/10.1007/s100219900037
https://doi.org/10.1007/s100219900038
https://doi.org/10.1051/apido:19980101
https://doi.org/10.1371/journal.pone.0076250
https://doi.org/10.1371/journal.pone.0076250
https://doi.org/10.1007/978-3-319-25524-8_13
https://doi.org/10.1371/journal.pone.0008967
https://doi.org/10.1051/apido/2009031
https://doi.org/10.1007/978-3-642-74082-4_14
https://doi.org/10.1007/978-3-642-74082-4_14
https://doi.org/10.1007/bf00299306
https://doi.org/10.1007/bf00299306
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


15. Scheiner R, Abramson CI, Brodschneider R, Crailsheim K, Farina WM, Fuchs
S, et al. Standard Methods for Behavioural Studies ofApis Mellifera.
J Apicultural Res (2013) 52:1–58. doi:10.3896/IBRA.1.52.4.04

16. Heran H. Untersuchungen über den Temperatursinn der Honigbiene (Apis
mellifica) unter besonderer Berücksichtigung der Wahrnehmung strahlender
Wärme. Z für vergleichende Physiologie (1952) 34:179–206.

17. Kernbach S, Thenius R, Kernbach O, and Schmickl T. Re-embodiment of
Honeybee Aggregation Behavior in an Artificial Micro-robotic System.
Adaptive Behav (2009) 17:237–59. doi:10.1177/1059712309104966

18. Mills R, Zahadat P, Zahadat P, Silva F, Mlikic D, Mariano P, Schmickl T, and
Correia L. Coordination of Collective Behaviours in Spatially Separated
Agents. In: Proceedings of the ECAL 2015: the 13th European Conference
on Artificial Life; York, United Kingdom; July 20–24, 2015 MIT Press (2015).
p. 579–86. doi:10.7551/978-0-262-33027-5-ch101

19. Schmickl T, and Hamann H. Beeclust: A Swarm Algorithm Derived from
Honeybees. In: Y Xiao and F Hu, editors. Bio-inspired Computing and
Communication Networks. Boca Raton, London, New York: CRC Press
(2011). p. 95–137.

20. Schmickl T, Thenius R, Moeslinger C, Radspieler G, Kernbach S, Szymanski
M, et al. Get in Touch: Cooperative Decision Making Based on Robot-To-
Robot Collisions.Auton Agent Multi-agent Syst (2009) 18:133–55. doi:10.1007/
s10458-008-9058-5

21. Lotka AJ. Elements of Physical Biology. Baltimore: Williams & Wilkins (1925).
22. Volterra V. Fluctuations in the Abundance of a Species Considered

Mathematically1. Nature (1926) 118:558–60. doi:10.1038/118558a0
23. Verhulst PF. Recherches mathématiques sur la loi d’accroissement de la

population. J des Économistes (1845) 12:276.
24. Smale S. On the Differential Equations of Species in Competition. J Math Biol

(1976) 3:5–7. doi:10.1007/BF00307854
25. Kermack WO, and McKendrick AG. A Contribution to the Mathematical

Theory of Epidemics. Proc R Soc Lond A (1927) 115:700–21. doi:10.1098/
rspa.1927.0118

26. Palsson BO, and Lightfoot EN. Mathematical Modelling of Dynamics and
Control in Metabolic Networks. I. On Michaelis-Menten Kinetics. J Theor Biol
(1984) 111:273–302. doi:10.1016/S0022-5193(84)80211-8

27. Millonas MM. Swarms, Phase Transitions, and Collective Intelligence. In:
C Langton, editor. Swarms, Phase Transitions, and Collective Intelligence.
Reading, MA: Addison-Wesley (1993).

28. Eberhart RC, Shi Y, and Kennedy J. Swarm Intelligence. Elsevier (2001).
29. Schranz M, Di Caro GA, Schmickl T, Elmenreich W, Arvin F, Şekercioğlu A,

et al. Swarm Intelligence and Cyber-Physical Systems: Concepts, Challenges

and Future Trends. Swarm Evol Comput (2021) 60:100762. doi:10.1016/
j.swevo.2020.100762

30. Jeanson R, Rivault C, Deneubourg J-L, Blanco S, Fournier R, Jost C, et al. Self-
organized Aggregation in Cockroaches. Anim Behav (2005) 69:169–80.
doi:10.1016/j.anbehav.2004.02.009

31. Schmickl T, Thenius R, and Crailsheim K. Swarm-intelligent Foraging in
Honeybees: Benefits and Costs of Task-Partitioning and Environmental
Fluctuations. Neural Comput Applic (2012) 21:251–68. doi:10.1007/s00521-
010-0357-9

32. Schmickl T, and Crailsheim K. Costs of Environmental Fluctuations and
Benefits of Dynamic Decentralized Foraging Decisions in Honey Bees.
Adaptive Behav (2004) 12:263–77. doi:10.1177/105971230401200311

33. Schmickl T, Zahadat P, and Hamann H.Wankelmut: A Simple Benchmark for
the Evolvability of Behavioral Complexity. Appl Sci (2021) 11:1994.
doi:10.3390/app11051994

34. Schmickl T, Szopek M, Mondada F, Mills R, Stefanec M, Hofstadler DN,
et al. Social Integrating Robots Suggest Mitigation Strategies for
Ecosystem Decay. Front Bioeng Biotechnol (2021) 9:612605.
doi:10.3389/fbioe.2021.612605

35. Ilgün A, Angelov K, StefanecM, Schönwetter-Fuchs S, Stokanic V, Vollmann J,
et al. Bio-hybrid Systems for Ecosystem Level Effects. In: Artificial Life
Conference 2021 Proceedings; Virtual (formerly Prague, Czech Republic);
July 19–23, 2021 MIT Press (2021).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Szopek, Stokanic, Radspieler and Schmickl. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 67031716

Szopek et al. Social Self-Organization in Honeybees

96

https://doi.org/10.3896/IBRA.1.52.4.04
https://doi.org/10.1177/1059712309104966
https://doi.org/10.7551/978-0-262-33027-5-ch101
https://doi.org/10.1007/s10458-008-9058-5
https://doi.org/10.1007/s10458-008-9058-5
https://doi.org/10.1038/118558a0
https://doi.org/10.1007/BF00307854
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1016/S0022-5193(84)80211-8
https://doi.org/10.1016/j.swevo.2020.100762
https://doi.org/10.1016/j.swevo.2020.100762
https://doi.org/10.1016/j.anbehav.2004.02.009
https://doi.org/10.1007/s00521-010-0357-9
https://doi.org/10.1007/s00521-010-0357-9
https://doi.org/10.1177/105971230401200311
https://doi.org/10.3390/app11051994
https://doi.org/10.3389/fbioe.2021.612605
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


A Computational Study of
Hydrodynamic Interactions Between
Pairs of Sperm With Planar and
Quasi-Planar Beat Forms
Lucia Carichino1*, Derek Drumm2 and Sarah D. Olson2

1School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, United States, 2Department of
Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, United States

Although hydrodynamic interactions and cooperative swimming of mammalian sperm are
observed, the key factors that lead to attraction or repulsion in different confined
geometries are not well understood. In this study, we simulate the 3-dimensional fluid-
structure interaction of pairs of swimmers utilizing the Method of Regularized Stokeslets,
accounting for a nearby wall via a regularized image system. To investigate emergent
trajectories of swimmers, we look at different preferred beat forms, planar or quasi-planar
(helical with unequal radii). We also explored different initializations of swimmers in either
the same plane (co-planar) or with centerlines in parallel planes. In free space, swimmers
with quasi-planar beat forms and those with planar beat forms that are co-planar exhibit
stable attraction. The swimmers reach amaintainedminimum distance apart that is smaller
than their initial distance apart. In contrast, for swimmers initialized in parallel beat planes
with a planar beat form, we observe alternating periods of attraction and repulsion. When
the pairs of swimmers are perpendicular to a nearby wall, for all cases considered, they
approach the wall and reach a constant distance between swimmers. Interestingly, we
observe sperm rolling in the case of swimmers with preferred planar beat forms that are
initialized in parallel beat planes and near a wall.

Keywords: method of regularized stokeslets, sperm motility, hydrodynamic interactions, image systems, quasi-
planar beatforms, collective motion

1 INTRODUCTION

The tumultuous journey of the mammalian sperm involves navigating the female reproductive tract.
Even though millions of sperm are deposited at the beginning of the tract, only a select few are able to
traverse the long distances and overcome all of the hurdles to make it to the egg [1, 2]. Using a single
flagellum, sperm progress through a wide range of environments and their motility patterns must
change in response to various chemical and physical cues; this could act to group sperm together or
separate them [3–5]. A sperm senses other nearby sperm and surfaces via hydrodynamic
interactions, which results in a wide range of collective motion, from alignment in trains and
vortices to synchronization and attraction [6–8].

Sperm are able to propel themselves through different fluid environments by bending their elastic
and flexible flagellum or tail. Within the flagellum, dynein is the molecular motor that actively
generates force along the length of the flagellum, which results in a bending wave [2, 9–11]. The
emergent beat form and trajectory will depend on the local fluid environment and the particular
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species of sperm. In experiments, emergent planar, helical, and
quasi-planar flagellar beat forms have been observed, with planar
beat forms more likely in higher viscosity fluids [10, 11].
Similarly, tracking of sperm trajectories has shown linear
trajectories as well as helical trajectories [12, 13].

Surface interactions play an important role of many micro-
organisms, including sperm swimming in the reproductive tract
[6, 14]. Once sperm reach the oviduct, they generally bind to the
epithelial cell wall and remain in this sperm reservoir until the
time of ovulation [15]. At ovulation, signaling molecules such as
heparin or progesterone will increase in concentration and will
aid in the release of the sperm from the oviductal wall [15–17].
Likely, these signaling molecules will either act to break bonds of
the cell body with the wall or bind to the flagellum and initiate a
different beat form that will aid in generating increased force to
break away from the wall [18, 19]. There are many interesting and
unanswered questions as to how sperm get to the walls, how long
they stay at the walls, as well as how the sperm reservoir could act
as a filter to sort out healthy sperm [20, 21]. Investigations with
microfluidic channels have revealed that sperm guidance can be
achieved with surface topography and microchannels [22, 23].

There are many different modeling approaches that can be
taken to model sperm motility, but one of the key ingredients is
how the sperm cell itself is being represented. Simplified
approaches neglect the head or cell body [24–26]; headless
sperm can still swim and previous analysis has shown that
neglecting the cell body results in similar dynamics [27, 28].
Other studies have focused on capturing accurate cell body
geometries to investigate the role on swimming and
interactions [29–31]. Similarly, when accounting for the
bending of the flagellum, there are a few options. One can
actuate or drive the dynamics of the flagellum with forces or
torques corresponding to a curvature wave [24, 32], prescribe a
preferred curvature that is utilized in an energy functional that
determines forces [25, 26, 33], or exactly prescribe the beat form
[29–31]. When the beat form is prescribed exactly, the swimmer
may rotate, but the flagellum will always have its entire centerline
in the same plane and it will always have the same beat form
parameters (e.g., amplitude and beat frequency). Preferred beat
forms will have emergent beat forms based on interactions with
other swimmers and/or surfaces.

To date, there have been many studies that have investigated
the 3-dimensional (3D) dynamics of a single sperm near a wall
[10, 19, 34]. Wall attraction was observed when approaching at
specific angles, including perpendicular to the wall. Similarly,
there have been studies of pairs of swimmers in free space to study
the dynamics of attraction since biologically, most sperm are not
swimming in isolation [24–26, 31]. Since there has not been a
detailed study of the interactions of pairs of swimmers near a wall,
our goal is to further investigate and characterize how pairwise
interactions vary from free space to the case where the sperm are
swimming in close proximity and perpendicular to a planar wall.
Using the method of regularized Stokeslets with an image system
to account for the wall, we study swimmers propagating both
preferred planar and quasi-planar beat forms. The dynamics of
attraction and repulsion of swimmers is explored through
different configurations; we vary both the initial distance

between the sperm as well as the planes in which the
swimmers are initialized. Our results show that sperm will
attract to and stay near the wall while phenomenon such as
sperm rolling will occur for a subset of sperm configurations. Our
results further contextualize divergent results for pairs of
swimmers in previous studies and provides insight into
relevant interactions that can be utilized in the development of
artificial micro-swimmers [35–37].

2 MATERIALS AND METHODS

2.1 Mathematical Model
We utilize a fluid-structure interaction framework where the
sperm is assumed to be neutrally buoyant and immersed in
the fluid. Since sperm swim in viscosity dominated
environments and are often in close proximity to a wall or
boundary [2, 38], we will consider the 3-dimensional (3D)
incompressible Stokes equations for the fluid velocity u above
a planar wall at x � W:

μΔu(x) � ∇p − f b(x), ∇ · u � 0, x|x>W{ }, (1)

subject to the boundary condition u(x)|x�W � 0. Here, μ is the
viscosity, p is the pressure, and fb is the sperm body force density
exerted on the fluid as the flagellum actively bends. That is, the
hydrodynamic stresses are coupled to the bending of the flagella;
the fluid “feels” the swimmers through fb and the swimmers “feel”
each other through the fluid.

To determine the body forces, we will study a simplified
representation of a sperm cell where we neglect the cell body,
similar to previous studies of [32, 39]. Additionally, we
assume the sperm flagellum is isotropic and homogeneous
with constant radius much smaller than length L so that we
can represent it using the Kirchhoff Rod (KR) model. This
allows for each cylindrical elastic flagellum ι to be represented
via a space curve Xι(t, q) for arc length parameter q (0 ≤ q ≤ L).
Local twisting is accounted for via a right-handed
orthonormal triad, Dι(t, q) � {D1

ι ,D
2
ι ,D

3
ι }. We briefly

summarize the model here and refer the reader to [39–42]
for additional details.

In the KR model, through a variational energy argument, we
can define the internal force Fι and torqueMι on a cross section of
flagellum ι as F ι � ∑3

i�1F
i
ιD

i
ι and Mι � ∑3

i�1M
i
ιD

i
ι , respectively.

The scalar components of the force and torque in the Darboux
frame are defined as:

Fi
ι � bi Di

ι ·
zX ι

zq
− δ3i( ), Mi

ι � ai
zDj

ι

zq
· Dk

ι − κ̂i( ), i � 1, 2, 3,

(2)

where δ3i is the Kronecker delta and Fi
ι ,M

i
ι are defined for any

cyclic permutation of (i, j, k). The physical properties of the
flagellum determine the moduli (a1, a2-bending, a3-twisting, b1,
b2-shearing, b3-stretching); the stiffness of sperm flagella can be
measured experimentally and related to these moduli [43, 44].
The preferred kinematics can be described by the preferred twist
κ̂3, normal curvature κ̂1, and geodesic curvature κ̂2 [45, 46]. In
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this formulation, there will be no torque when the flagellum is in
its preferred shape, which we will now define.

Sperm propagate bending along the length of the flagellum due
to the coordinated action of molecular motors inside the
flagellum [2, 47]. We can capture a range of beat forms
representative of experimental observations [9, 10] by
assuming that the flagella have the preferred configuration of

X̂(q, t) � (x(q, t), α sin(ηx(q, t) − ωt), β cos(ηx(q, t) − ωt)),
(3)

with beat frequency f � ω/2π, wavelength 2π/η, and beat
amplitudes α and β. Planar bending of the flagellum occurs
when either α or β are zero whereas quasi-planar bending
occurs when α, β ≠ 0 and either α < β or β < α. We note that
we are not prescribing a rotation of the flagellum; we simply actuate
or drive it to beat (and bend) in this preferred planar or quasi-
planar configuration that is a function of arc length parameter q
and time t. Similarly, these are the initialized and preferred
configurations that can deviate later in the simulation due to
interactions with other swimmers and/or the wall. Utilizing this
preferred configuration, we can calculate the preferred
orthonormal triad D̂(t, q) by setting D̂

3
as the tangent to X̂,

and choosing D̂
1
as the normal and D̂

2
as the binormal vector.

Then, the preferred curvature and twist can be calculated as

κ̂i(q, t) � zD̂
j

zq
⎛⎝ ⎞⎠ · D̂k

, (4)

which is a spatiotemporal function based on X̂(q, t) in Eq. 3.
For this configuration, we impose force and torque balance

along the length of the flagellum. That is, the fluid feels the sperm
through a force per unit length fι and torque per unit length mι

[only defined on Xι(q, t)],

0 � f ι +
zF ι

zq
, 0 � mι + zMι

zq
+ zX ι

zq
× F ι( ). (5)

The body force f bι in Eq. 1 will be equal and opposite to the
internal forces of the flagellum and will also need to be a smooth force
field on the fluid domain with finite velocities onX. Hence, we will set

f bι(x) � −∫
Γι

f ιψε(r) +
1
2

∇ ×mι( )ϕε(r)( )dq, (6)

where Γι � Xι(q, t), x is any point in the 3D domain with x>W
and r � ‖x − X‖. The regularization functions ψε and ϕε are
radially symmetric, satisfying ∫

R3ψε(r)dx � ∫
R3ϕε(r)dx � 1, and

smooth the singular force field with parameter ε governing the
region where most of the force is spread [48, 49]. In this model,
each sperm flagellum will have a preferred configuration X̂ and
D̂(q, t), but its ability to achieve that configuration will depend on
the local fluid flow through a no-slip condition,

zX ι(q, t)
zt

� u t,X ι(q, t)( ),
zDi

ι(q, t)
zt

� w t,X ι(q, t)( ) × Di
ι(q, t), i � 1, 2, 3, (7)

where w � 1
2∇ × u is the angular velocity.

2.2 Numerical Method
We discretize each of the m flagella into p points and use
standard second order central finite difference approximations
to determine forces and torques in Eqs 2, 5. The body force in Eq.
6 is approximated using the trapezoidal rule. In free-space,
utilizing the linearity of Eq. 1, the flow can be written as a
superposition of regularized fundamental solutions (regularized
due to the smoothing of the body force in Eq. 6). Since we are
interested in the flow above a wall at x � W, we utilize a
regularized image system that first accounts for the resulting
flow in R3 (no wall) and then cancels the flow at the wall x � W
through combinations of fundamental solutions at additional
image points on the other side of the wall (outside of the half
space of interest). Let Xℓι � (xℓι, yℓι, zℓι) be the ℓ-th discretized
point on the ι-th flagellum, hℓι � xℓι −W the height above the
wall, and Xim

ℓι
� (−hℓι, yℓι, zℓι) the image point of Xℓι. The linear

velocity u is

u(x) � 1
μ
∑m
ι�1

∑p
ℓ�1

Sψε
ξf,ℓι , rℓι[ ] + Rϕε ξn,ℓι , rℓι[ ] + Simψε ,ϕε

ξf,ℓι , rℓι , r
im
ℓι

[ ] + Rim
ψε ,ϕε

ξn,ℓιX
im
ℓι

[ ]( ),
(8)

where rℓι � ‖x − Xℓι‖, rimℓι � ‖x − Xim
ℓι
‖, ξn,ℓι � −ξmℓι, ξf,ℓι � −ξf

ℓι
,

and ξ is the quadrature weight. S and R denote the fundamental
solutions for a point force and point torque, corresponding to the
Stokeslet and Rotlet, respectively, and the subindex refers to the
particular regularization function that is being utilized to
smoothly spread the force or torque in Eq. 6. Simψε ,ϕε

and Rim
ψε ,ϕε

are the regularized image systems for the Stokeslet and Rotlet. Via
a direct calculation, w � 1

2∇ × u for u in Eq. 8. As detailed
previously in [50, 51]; [34], we set the regularization functions as

ψε(r) �
15ε4

8π r2 + ε2( )7/2, ϕε �
3ε2

4π r2 + ε2( )5/2, (9)

which ensures that the boundary condition at the wall is satisfied,
u|x�W � 0. Additionally, this ensures that the regularized image
system in Eq. 8 satisfies the property that in the limit as ε→ 0, the
singular image system is recovered.

To solve this coupled fluid-structure interaction, at each time
point t, we complete the above steps to determine the resulting
linear and angular velocity due to a given flagellar configuration
(assuming the preferred configuration in Eqs 3, 4). Once the
velocity of the flagellum, u (Xι), and angular velocity of the triads,
w (Dι), are known, we determine the new flagellar location and
triads at time t + τ by solving the no-slip equations in Eq. 7 with
the forward Euler method. This process is repeated, solving for
the new instantaneous flow due to each time-dependent force
balance equation, which depends on the emergent flagellar
configurations. We emphasize that this is a Lagrangian
method; only the flagella are discretized. Through the
regularized image system in Eq. 8, we automatically satisfy
that the wall at x � W has zero velocity. Additionally, we can
evaluate Eq. 8 at any point of interest in the fluid domain.

2.3 Quantifying Interactions of Swimmers
The actual beat form, swimming speed, and trajectory that the sperm
achieves is an emergent property of the coupled system that depends

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7354383

Carichino et al. Pairwise Interactions of Sperm

99

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


on both the geometry of the swimmers and the wall, fluid parameters
such as viscosity, beat form parameters, as well as stiffness or moduli
of the flagella.Wewill explore these dynamic and nonlinear relations
through simulations. Here we highlight some of the metrics and
different parameters that are studied.

The sperm number is a non-dimensional number that
characterizes the ratio of viscous fluid effects to elastic effects
of the bending flagellum, computed as

Sp � fχL4

a1
( )1/4

, χ � 4πμ
ln(2L/ε). (10)

Here, L is the flagellum length, f is the beat frequency (inverse
time), ε is the regularization parameter that approximates the
flagellum radius, μ is fluid viscosity, and a1 is the bending
modulus. To compare to previous studies, we utilize the
resistive force theory coefficient χ to capture viscous effects,
similar to [32]. For mammalian sperm, previous estimates
have had Sp in the range of 2–17 [2]. Using the values
reported in Table 1, the baseline sperm number for our
simulations is Sp � 5.11. We explore increasing Sp to a value
of 7.64 by increasing μ to 5μ and increasing Sp to 9.08 by
increasing μ to 10μ. Similarly, we also explore increasing Sp by
setting ai to ai/5 or ai/10 for i � 1, 2, 3. Even though this leads to
the same sperm number, we explore the differences since a
change in μ changes the magnitude of all terms in Eq. 8
whereas a change in ai only changes the magnitude of the
terms involving the torque, which can be seen from Eq. 2.

Through interactions, the beating planes of swimmers may
continue to deviate from the plane they were initialized in. A
diagram of the directions of pitching and/or rolling out of the
beating plane is given in Figure 1. The beating plane is calculated
as the plane that passes through the center of mass �X � 1

p
∑p

ℓ�1Xℓ

of the swimmer and minimizes the orthogonal distances between
the points on the flagellum and the plane [26, 52]. The pitching
angle θ of the swimmer’s beating plane is the angle between the
plane and the unitary vector in the x-direction ex,

θ � 90° − arccos
n · ex
|n|( ), (11)

where n is the normal vector to the beating plane. The pitching
angle θ is in the range [ −90°, 90°] and θ > 0 (θ < 0) corresponds to
the plane pitching upward (downward). The rolling angle c of the
swimmer’s beating plane is the angle between the plane and the
unitary vector in the y-direction ey,

c � 90° − arccos
n · ey
‖n‖( ). (12)

The rolling angle c is also in the range [ −90°, 90°] and c > 0 (c
< 0) corresponds to the plane rolling right (left) with respect to
the direction of motion.

3 RESULTS AND DISCUSSION

The aim of this study is to further quantify and understand the
hydrodynamic interactions of pairs of swimmers close to or far
away from a wall. To do this, we will consider a few different
scenarios that include planar or quasi-planar beat forms
initialized a distance d apart. For the case of planar beat
forms, we also consider the case of flagellar beating with
centerlines initialized in parallel planes or the same plane (co-
planar). The wall is either initialized at x � −5 (near a wall) or at
x � −10,000, which we denote as the free space solution since the
wall has negligible effects on swimming at this location. The
baseline parameters used for the numerical methods and
preferred beat form are given in Table 1; we assume that in a
given simulation, all sperm flagella have the same preferred
configuration given by Eqs 3, 4, with values in the range of
mammalian sperm [10]. Swimmers are separated by a distance d
in either the y or z-directions. We explore distances d in the range
of 3–30 μm, i.e., distances where there is non-negligible flow
effects from the nearby swimmer. Here, 30 μm is half the length of
the swimmer (L � 60 μm) and 3 μm is equal to the beat
amplitude α.

3.1 Co-Planar Swimmers
This case involves two planar swimmers (α � 3 and β � 0 in Eq. 3)
initialized such that their initial beating planes are in the plane z �
0, shifted a distance d apart in the y-direction. That is, the average
y-value, �y, is set at �y � 0 for the bottom swimmer and �y � d for
the top swimmer.

3.1.1 Free Space
Figure 2A shows the configuration of two co-planar sperm cells
at time t � 0 (gray dashed lines) and at time t � 0.6 s (gray solid
lines) for swimmers initialized d � 6 μm apart. The first point is
represented by a solid gray circle and denotes the cell body and
swimming direction. The trajectories of the first point during this
time frame (blue and black solid lines) show the hydrodynamic
attraction of the two sperm cells; the top sperm starts to go down
and attract to the bottom sperm, which is swimming with an
upward trajectory. We classify this movement as yaw since these
motions remain within the plane z � 0, which has been observed
in other modeling work for a single swimmer [29, 30, 34]. A solo
swimmer has an upward yaw [34], but attraction dominates and

TABLE 1 |Computational parameters for preferred planar (P) and quasi-planar (Q)
beat forms.

Parameter Value for P and Q

Arc length, L (μm) 60 for P, Q
Points on flagellum, p 301 for P, Q (equispaced)
Regularization parameter, ε (μm) 5 △ q for P, Q
Amplitude, α (μm) 3 for P, Q
Amplitude, β (μm) 0 for P, 1 for Q
Wavelength, 2π/η (μm) 30 for P, Q
Beat frequency, f � ω/2π (Hz) 20 for P, Q
Bending modulus, a1 � a2 (g μm3 s−2) 1 for P, Q
Twisting modulus, a3 (g μm3 s−2) 1 for P, Q
Shear modulus, b1 � b2 (g μm s−2) 0.6 for P, Q
Stretch modulus, b3 (g μm s−2) 0.6 for P, Q
Time step, τ (s) 10–6 for P, Q
Viscosity, μ (g μm−1 s−1) 10–6 for P, Q
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allows the top swimmer to have a downward yaw and attract to
the bottom swimmer. This attraction is also in agreement with
previously published theoretical and experimental studies [24–26,
31, 33, 53].

Figures 2B,C track the minimum distance between the two
sperm (solid lines) and the distance between the first points of the
two sperm (circles) as a function of time, for the initial distances d
considered. In both cases, for d � 6 and d � 30 μm, we observe a
monotonic decrease in the distance between the sperm for this
initial time period of attraction, similar to results of [26]. Even
though the sperm are initialized at the same distance d apart along
the entire flagellum, the minimum distance between the sperm
cells occurs at the head (first point). For longer time simulations,
we continue to observe attraction, reaching a steady configuration
of flagella that are a very small distance apart. We do not show
simulations or report this distance since a repulsion term is
required to keep the filaments from occupying the same space
and hence, the steady state distance between the flagella will
depend on the strength and form of the repulsion term.

We also varied the sperm number Sp (given in Eq. 10); similar
dynamics of attraction were observed but on a slower time scale
(results not shown). As previously noted in [32], for a solo
swimmer, increasing Sp results in a decreased swimming
speed. We observe a similar decrease for a pair of swimmers
with increased Sp, which leads to the increased time scale for
attraction to occur.

Previous studies with planar beat forms required to stay in the
plane have reported an increase in swimming speeds for pairs of
swimmers relative to the case of a solo swimmer when filaments
propagate planar beat forms, are co-planar, and the flagella are
sufficiently stiff [25]. Other studies that allow beat forms to
deviate from the plane have reported a slowdown of
swimming speed while swimmers attract [26]. For the
parameters utilized in Figure 2 (reported in Table 1), we
observe a decrease in swimming speed for a pair of swimmers
initialized d � 6 μm apart and a small increase in swimming speed
for a pair of swimmers initialized d � 30 μm. The speeds reported
in Table 2 are looking at the magnitude of velocity of the first

FIGURE 1 | Pitching and Rolling of Flagellar Beating Planes. A sketch of the swimmer (blue) and the beating plane (gray). Changes in the initial beating plane are
characterized by a pitching angle θ and rolling angle c. The center of mass of the swimmer �X is represented by a small red sphere at the origin. The normal vector to the
beating plane is n, and ex and ey are the unitary vectors in the x and y direction, respectively. In this sketch, θ � c � 0 since the beating plane is in the plane z � 0.

FIGURE 2 | Co-Planar Sperm in Free Space. (A) Swimmer configurations with planar preferred beat forms at t � 0 s (dashed gray lines) and t � 0.6 s (solid gray
lines), and traces of the first point on the swimmer in time (blue and black solid lines) for the initial separation distance of d � 6 μm. Minimum distance between the two
sperm (solid lines) and distance between the first points of the two swimmers (circles) in time, for initial distances d � 6 μm (B) and d � 30 μm (C). Distances reported are
the average over a beat period.
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point on the flagellum by utilizing locations at time t � 0 and t �
0.6 s; for two swimmers, the speed is the average over both
swimmers. We do not observe a significant increase in
swimming speed during the attraction phase for a range of
initial separation distances. However, on longer time intervals

after attraction has occurred, we do observe an increase in
swimming speed (results not shown).

3.1.2 Near a Wall
We have shown that our model can capture a range of known
phenomena for a pair of swimmers in free space, but sperm are
not swimming in isolation and they are swimming in close
proximity to walls as they navigate the female reproductive
tract [2, 5]. Hence, we wish to go beyond previous studies of a
pair of swimmers in free space or a solo swimmer near a wall to
understand whether the wall will help or hinder attraction of
swimmers. For a solo swimmer, simulations have shown
attraction to a wall is immediate but no yawing motion or
vertical translation (up or down with respect to the centerline
of the flagellum) is observed [34]. We note that for a solo
swimmer initialized perpendicular to the wall, it will always
attract to the wall regardless of whether it starts 2 μm or
50 μm away (the wall does not cause the swimmer to tilt and
escape the wall). The questions are now 1) will additional sperm
change the dynamics of attraction to a wall; 2) will swimmers near
a wall still be able to attract to each other; 3) if attraction occurs,

TABLE 2 | Swimming speeds in free-space for the preferred planar (P) beatform in
co-planar or parallel beating planes and quasi-planar (Q) beat forms,
comparing the two sperm configuration initialized d apart to the solo sperm.

Configuration Two sperm Solo sperm

Initial distance Speed [μm/s] Speed [μm/s]

Co-planar (P) d � 6 μm 20.95 28.04
d � 30 μm 28.85

Parallel planes (P) d � 5 μm 28.82 28.04
d � 30 μm 28.01

Quasi-planar (Q) d � 6 μm 20.70 23.60
d � 30 μm 23.61

FIGURE 3 | Co-Planar Sperm Near a Wall. Swimmer configurations with planar preferred beat forms at t � 0 s (dashed gray lines) and at three snapshots in time
(solid gray lines) for the initial distance d � 3 μm (A), d � 6 μm (B) and d � 11 μm (C)with a planar wall at x � −5 μm. The traces of the first point on the swimmer are shown
(blue and black solid lines). The time-dependent distance between swimmers is characterized in (D)–(F). For initial swimmer distances of d � 3 μm (D), d � 6 μm (E) and
d � 11 μm (F), the minimum (solid line), maximum (dashed line), and first point distance (circles) are reported as averages over each beat period. The times chosen
to report the swimmer configurations for each value of d (A–C) are identified with vertical gray lines in the corresponding distance graphs (D–F). The thick gray vertical line
in (A–C) represents the wall.
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will it happen with heads decreasing their distance apart at a
faster rate (similar to Figures 2B,C)?

To study these questions, we consider the case of two co-
planar swimmers initialized at a distance d apart and
perpendicular to a planar wall at x � −5 μm. Figure 3 shows
the configurations of the swimmers at time t � 0 (gray dashed
lines) and at three snapshots in time (gray solid lines), for the
initial distance of d � 3 μm in A, d � 6 μm in B, and d � 11 μm in
C. The first point of the swimmer is represented by a solid gray
circle and the trace of this point (from t � 0 until the time point
given in that panel) is shown with the solid lines. For all values of
d considered, the swimmers start with the head 5 μm away from
the wall and rapidly attract to the wall, remaining close to the wall
for the full time of the simulation (over 2.5 s).

In order to explore the rich dynamics of swimmers near a wall,
we also report the minimum (solid line) and maximum (dotted
line) distance between the two swimmers, along with the average
distance between the first points of the two swimmers (circles) in
Figure 3, for initial distance d � 3 μm inD, d � 6 μm in E and d �
11 μm in F. The snapshots in time in A–C are identified with
vertical gray lines in the corresponding distance graphs in D–F,
and were chosen to highlight specific points of interest. The top
panel in Figures 3A–C is the last time point for which the
distance between the first points equals the minimum distance
between the swimmers, i.e., the end of the first attraction period
between the two swimmers where the heads are moving closer.
The middle panel in Figures 3A–C is where the maximum
distance between the swimmers is at a maximum. The stable
configuration achieved by the swimmers is shown in the bottom
panel in Figures 3A–C. Here, we are defining stable as attaining
an average distance between points on the swimmer that persists
in time. The same preferred beat form is given for all swimmers in
all of these simulations; the presence of the wall and the initial
separation distance is what causes the different beat forms to
emerge. We note that two swimmers in free space attract, with the
top swimmer yawing down and the bottom swimmer yawing up
(Figure 2B). The dynamics of the nearby wall prevent the
swimmers to attract with equal yawing due to the emergent
flagellar beat forms.

For all the values of d considered, the stable configuration
achieved toward the end of the simulation (third snapshot)
consists of an average first point distance of approximately
5.5 μm, in between the maximum and minimum average
distance between the swimmers. As shown in Figures 3A,D,
for an initial distance d smaller than 6 μm, the swimmer’s first
points initially attract, reaching a minimum distance on the order
of 1 μm at t � 0.34 s, then repulse reaching the maximum average
distance of approximately 8 μm at t � 0.62 s (with the top
swimmer moving up). Due to hydrodynamic interactions of
the swimmer and the close wall, even though the swimmers
have centerlines that are parallel, we observe a dramatic yaw in
the top swimmer as the head of the top swimmer is pushed up.
Later, the swimmers reach a stable configuration after 2.50 s
where flagellar centerlines are again parallel. For an initial
distance d equal to 6 μm, shown in Figures 3B,E, the head of
the swimmers (first point) attract up until t � 0.33 s, reaching a
distance of approximately 4.5 μm. After this initial attraction, the

heads of the swimmer then repulse, reaching a maximum
distance 9 μm apart at t � 0.71 s, and reach the stable
configuration after 2.50 s. For an initial distance d greater than
6 μm, Figures 3C,F, the maximum distance of 14 μm between the
swimmers is reached at t � 0.86 s and the distance between the
first points show a continuous decrease in time until reaching a
plateau and the stable configuration after 5.69 s. In this last
scenario, the top swimmer, after reaching the wall, is moving
downward to get closer to the bottom swimmer, clearly visible in
Figure 3C at t � 5.69 s. The asymmetry between the swimmer’s
behavior is due to the direction of motion chosen. When the
direction of motion is reversed (wall at x � 5, swimmers reflected
about the y-axis, and preferred beat form propagating a wave in
the opposite direction with − ω), we observe the bottom swimmer
moving upward to get closer to the top swimmer (results not
shown).

To explore competing effects of wall attraction and swimmer
dynamics, we vary the sperm number Sp in Eq. 10. Figure 4 shows
the swimmer configurations obtained for the different values of Sp
considered in the case of two co-planar swimmers near a wall,
varying μ in A,B,E and varying ai in C,D,F. Increasing Sp means
that the viscous effects are increasing relative to the elastic effect.
As a result, in both Figures 4A–D, increasing Sp exhibits a beat
form with decreased achieved amplitude. InA,B, this is due to the
increased viscosity of the fluid creating additional drag on the
bending flagellum whereas in C,D, this is due to the decrease in
the bending moduli making the flagellum less stiff and less able to
propagate bending at the preferred amplitude. Even though the
achieved amplitude of the flagellar beat form decreases, this does
not prevent or slow down attraction to the wall (shown in zoomed
views in B and D). Through a close examination of the distance
between the swimmers at different time points, we can see the
subtle differences between increasing Sp via increasing μ in
Figure 4E and decreasing ai in Figure 4F. The baseline value
of Sp � 5.11 exhibits attraction and then repulsion with the heads
being further apart than the rest of the flagellum at later time
points (Figures 4E,F) and reaching a steady state configuration
by t � 2 s. In contrast, if an increase in Sp to 7.64 or 9.08 is
obtained by increasing μ by a factor 5 or 10, the swimmers do not
maintain a stable configuration near the wall, but they continue to
attract with the heads being the closest points at later time points
(Figure 4E). Increased Sp in Figure 4E results in continued
attraction whereas increased Sp in Figure 4F results in a quasi
steady state configuration at t � 2 s.

We emphasize that for all simulations presented here for co-
planar swimmers near a wall, the swimmers had a preferred
planar configuration. With swimmer interactions and the
presence of the wall, there was some out of plane motion, but
on average, the swimmers tended to maintain a beat form in the
same plane (due to torques in Eq. 2 that penalize deviations from
the preferred motion). Additionally, for all simulations, the head
or first point of the swimmers attract to the wall and maintains a
small distance away from the wall. This occurs for a range of
parameters in the case of two swimmers and also occurs on a
similar time scale to that of a solo swimmer [34]. For a sperm
number of Sp � 5.11, in the range for mammalian sperm, we
observe swimmers reaching a somewhat steady state distance of
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∼5.5 μmwithin a few seconds when starting in the same plane at a
distance of 3–11 μm apart. Since the beat frequency of the
swimmers is set to f � 20 Hz; attraction on the order of
seconds near the wall requires hundreds of beats of the
flagellum. The dynamics of attraction will depend on the
sperm number and increased Sp (increased viscous forces)

results in sperm being able to attract closer at the first point
or cell body. This is important to consider since the epithelial cells
on the oviductal walls may be secreting proteins and/or fluids that
will change the viscosity near the walls [54] and potentially
control or dominate emergent interactions and motility of
sperm [55].

FIGURE 4 | Varying Sperm Number: Co-Planar Sperm Near a Wall. Swimmers with planar preferred beat forms are initialized a distance d � 6 μm apart with a
planar wall at x � −5 μm. Configurations at t � 0 s (gray dashed lines) and t � 1.8 s (colored solid lines) are shown along with traces of the first point on the flagellum for
varying fluid viscosity in (A), with zoomed in view in (B), and varying flagellar material parameters ai in (C), with zoomed in view in (D). The thick gray vertical line in (A)–(D)
represents the wall. Theminimum distance between the two swimmers (solid lines) and distance between the first points of the two swimmers (circles) are shown as
averages over a beat period, varying μ in (E) and ai in (F).
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3.1.3 Fluid Mixing
It is well known that as mammalian sperm navigate through the
female reproductive tract, their motility patterns change in
response to different signaling molecules, which may be
released from the wall or be present in the entire fluid [2, 3,
5]. When sperm are trapped on the oviductal walls, signaling
molecules such as heparin or progesterone initiate changes in
motility by binding to the cell body or the flagellum [15, 16]. In
turn, changes to asymmetrical beating occur, which aids in the
release of these trapped sperm [15–17, 19]. The ability for these
molecules to reach the sperm and bind to receptors is highly
dependent on the local fluid flows. In Figure 5, we look at the
mixing of the fluid by the swimmers in the case of an initial
separation of d � 3 μm in A,B and a separation of d � 11 μm in
C,D. The left hand side (A,C) is the case of the wall at x � −5 μm
where as the right hand side is the free space case (B,D). For each
plot, the initialization is a plane of passive fluid markers (in the

plane of the swimmers at t � 0), similar to the inset in A. We
initialize these locations and track their movement by solving
Eq. 8 for their velocity due to the moving swimmers and update
the fluid marker locations using Eq. 7. Similar to the swimmers
in Figures 2, 3, the fluid particles initialized in this plane remain
mostly in the plane. In all of the cases in Figure 5, we observe a
region at the end of the flagella that is empty. These fluid
particles have traveled with the swimmer and can be seen
along the flagella. Due to the beat form of the flagella, we
observe fluid markers that were originally a vertical stripe
that have moved and now taken on a range of x-values. For
example, the yellow fluid particles were initialized at x ∼ 9–10 μm
and are now in the approximate range of x � −5 to 20 μm inD. We
observe significant movement in both directions for this x −
location; this means that signaling molecules can get close to
the flagella if being passively advected by the flow that the
flagella are generating.

FIGURE 5 | Fluid Mixing by Co-Planar Swimmers. A plane of fluid markers was initialized at t � 0 with x ∈ [0, 60] and either y ∈ [ −4, 7] when d � 3 μm or y ∈ [ −4, 16]
when d � 11 μm, as shown on the inset in (A); fluid markers are colored by initial x-value. The fluid markers are advected by the flow and are shown at later time points
with the same color as at t � 0. (A): d � 3 μm and a nearby wall at x � −5 at t � 0.882 s, (B): d � 3 μm and free space at t � 0.804 s, (C): d � 11 μm and a nearby wall at x �
−5 at t � 0.882 s, (D): d � 11 μmand free space at t � 0.804 s. The gray dashed lines correspond to the initial location at t � 0 and the solid black lines correspond to
the flagellar configurations at the specified time point.
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FIGURE 6 | Parallel Sperm in Free Space. Short-term behavior for initial distances d � 5, 30 μm (A–D) and long-term behavior for d � 3 μm (E–G) for swimmers
initialized in parallel beating planes. Minimum distance between the two swimmers (solid lines) and distance between the first points of the two swimmers (circles) in time,
for initial distances d � 5, 30 μm in (A) and d � 3 μm in (F). Pitching angle θ of the beating planes of the top and bottom swimmers in time, for initial distances d � 5,
30 μm in (B) and d � 3 μm in (G). Top and bottom swimmer’s beating planes and pitching angles θ for d � 5 μm in (C) and d � 30 μm in (D) at time t � 3 s. (E)
Swimmer configurations at t � 0 s (gray dashed lines) and traces of the swimmers initial points in time (colored solid lines). Top and bottom swimmer’s beating planes
and pitching angles θ for three snapshots in time are reported in the corresponding zoomed portions. The times chosen for the zoomed portions of (E) are identified with
vertical gray lines in (F,G). In (C,D,E), a filled in sphere is used to denote the swimmer first point in the direction of motion.
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3.2 Parallel Swimmers
We continue to consider the case of two planar swimmers (α � 3
and β � 0 in Eq. 3), but now these swimmers are initialized with
parallel beating planes. The distance d between the swimmers is
initialized by placing the bottom swimmer in the plane z � 0 and
the top swimmer in the plane z � d. However, the emergent beat
plane may pitch upward or downward in the z-direction and/or
roll left or right around the lateral axis (refer to Figure 1 for a
schematic). Similar to the co-planar case, we wish to first
benchmark our model and further explore the case of
swimmers far away (free space) or close to a wall to
understand how these dynamics change.

3.2.1 Free Space
The results in the case of free space are reported in Figure 6. The
short-term simulations, up to t � 3.25 s, are shown in Figures
6A–D. A non-monotonic behavior depending on the initial
distance d between the swimmer’s beating planes is observed.
For d � 5 μm, the distance between the first points of the two
swimmers increases in time (Figure 6A) while the rest of the
swimmers slightly attract and then slowly increase their distance.
The beating plane of the bottom swimmer pitches downward
while the top swimmer pitches upward by angles of ±2.3° at t � 3 s
(Figures 6B,C), corresponding to the swimmers pushing away
from each other. In contrast, for d � 30 μm, the distance between
the first points of the two swimmers decrease in time (Figure 6A),
attracting with the beating plane of the bottom swimmer pitching
upward and the top swimmer pitching downward with angles of
±1.6° (Figures 6B,D). In the shorter time simulations (Figures
6A–D), the beating plane of both swimmers have a minimal
rolling motion, alternating between left and right rolling with
−0.26° ≤ c ≤ 0.26° for d � 5 μm and −0.14° ≤ c ≤ 0.14° for
d � 30 μm.

In terms of the swimming speeds for these shorter term
dynamics over 3 s, the swimming speed of two parallel
swimmers was similar to the corresponding solo swimmer
(Table 2). This is similar to previous results for pairs of
swimmers separated by a distance of at least half their length,
swimming speeds are similar to that of a solo swimmer [24, 26,
31]. However, we observe marked differences between swimmers
that are co-planar and those that are in parallel planes. At an
initial separation distance of d � 6 μm, the swimmers in parallel
planes are significantly faster (∼28 μm/s) than the case of the co-
planar swimmers (∼20 μm/s).

To investigate the long-term dynamics, we look at an initial
separation of d � 3 μm for t � 0–11 s in Figures 6E–G. The
zoomed in portions of Figure 6E show the top and bottom
swimmer’s beating planes and corresponding pitching angles θ
for the three snapshots in time, delineating the switches among
near-field, mid-field and far-field dynamics. The times of the
snapshot are identified with vertical gray lines in Figures 6F,G.
The swimmers show near-field repulsion until t � 3.5 s, i.e., with
heads or first points increasing in separation (Figure 6F) and
beating planes pitching away from each other (Figure 6G and
right-most zoomed portion of Figure 6E). The top and bottom
swimmer’s beating planes obtain their maximum pitching angle
at t � 3.5 s and after t � 3.5 s, the swimmers enter the mid-field

regime where they will continue to repel each other (Figure 6F)
but the pitching angles will decrease in magnitude (Figure 6G)
and reach θ ≃ 0 at t � 9.3 s (central zoomed portion of Figure 6E).
After t � 9.3 s, the swimmers show far-field attraction,
i.e., decreasing distance between the swimmers (Figure 6F)
with beating planes pitching toward each other (Figure 6G
and leftmost zoomed portion of Figure 6E). In the long-term
simulations, the rolling of the beating planes is also minimal, with
−0.38° ≤ c ≤ 0.38° over 11 s.

In summary, swimmers that are close to each other will
initially show near-field repulsion and then eventually, after
reaching a significant distance between each other, will
transition to far-field attraction (Figure 6E). Conversely, if the
swimmers are initialized relatively far away from each other, the
swimmers will initially show far-field attraction and then
eventually, when getting too close to each other, will transition
to near-field repulsion (results not shown for d � 14 μm). Hence,
dynamics of swimmers with planar beat forms in initially parallel
beating planes will not reach a stable configuration of attraction
and will continue to oscillate between attraction and repulsion.
Our far-field attraction results differ from previous results of [26]
where only repulsion was observed and [31] where only attraction
is observed; this is likely due to different modeling assumptions
with regards to the preferred planar beat form, how out of plane
beating is penalized, and geometry of the cell body. We note that
rotations of swimmers with respect to θ and c are also on par with
previous studies [24].

3.2.2 Near a Wall
Similar to the previous cases, we wish to understand whether
pairs of swimmers initialized in parallel planes will attract or
repulse when near a wall. Results for the case of a wall at x �
−5 μm are highlighted in Figure 7. For all the values of d
considered, the swimmers also attract to the wall (similar to
the case of initially co-planar swimmers in Figures 3, 4). When
the swimmers are initialized d � 3 μm apart, they push apart and
then quickly reach a constant distance apart (Figure 7A) whereas
in free space, they continued to push apart initially (Figure 6A)
and then oscillate between attraction and repulsion in the long
term (Figure 6E). With the wall, the beating plane of the bottom
swimmer pitches downward while the top swimmer pitches
upward, but at a very small angle (Figures 7B,C). For the full
∼ 4 s simulation, the beating planes show minimal rolling
behavior with −0.91° ≤ c ≤ 0.91°. For the case of an initial
distance of d � 30 μm, we observe constant attraction in
Figure 7A, similar to the free space case in Figure 6A. In
Figure 7A, the average distance between the two swimmers
decreases monotonically in time for t ≥ 2.5 s. To understand
why the first point or head distance is in between the minimum
and maximum distance, we can see in Figure 7D that the entire
length of the flagellum is not remaining in the same plane. The
beating plane of the bottom swimmer pitches upward while the
top swimmer pitches downward (i.e., toward each other), with a
more preeminent rolling motion of the swimmer’s beating planes
(Figures 7B,D), with −3.29° ≤ c ≤ 3.29° for d � 30 μm.

To investigate the long-term behavior, we report in Figures
7E–I the results for d � 11 μm for ∼ 10 s. Figure 7E shows the
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FIGURE 7 | Parallel Sperm Near a Wall. Sperm with planar beat forms initialized in parallel planes (z � 0 and z � d) near a wall at x � −5 μm. (A–D): Short-term
behavior for initial distances d � 3, 30 μm. (A) Minimum (solid lines) and maximum (dotted lines) distance between the two swimmers and distance between the first
points of the two swimmers (circles). (B) Pitching angle θ of the top and bottom swimmers in time. The top and bottom swimmers beating planes for d � 3 μm is in (C)
and d � 30 μm is in (D), both at time t � 3 s. (E–I): Long-term behavior for d � 11 μm. (E) Swimmer configurations at t � 0 s (gray dashed lines) and traces of the first
point in time (colored solid lines). Corresponding beating planes of the swimmers for three snapshots are in (G–I). The times chosen for the snapshots are identified with
vertical gray lines in (F), which has distance between the swimmers in the top panel, pitching angle θ in the middle panel, and rolling angle c in the bottom panel. In
(C–E,G–I), a filled in sphere is used to denote the swimmer first point in the direction of motion. The light gray plane in (C–E,G–I) represents the wall (and the darker gray
planes are the beating planes).
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swimmer configurations at t � 0 s (gray dashed lines) and traces of
the first point or head in time (colored solid lines). Figures 7G–I
shows the top and bottom swimmer’s beating planes and
corresponding pitching and rolling angles (θ and c) for three
snapshots in time. The times coincide with the vertical gray lines
in Figure 7F.When initialized at d� 11 μm, the swimmers show far-
field attraction until t ≃ 4 s, reaching an average distance apart of
∼5 μm (Figure 7F top panel). The top and bottom swimmer’s
beating planes obtain their maximum average pitching angle at t �
1.2 s (Figure 7G) and after t ≃ 4 s, the swimmers enter in the near-
field stability regime with the swimmer’s beating planes pitching
away from each other (Figure 7Fmid panel). However, after t ≃ 8 s,
the swimmer’s dynamics change drastically since the average rolling
angle c, for both swimmers, increases and reaches the maximum
value of ∼84° (Figure 7F bottom panel), i.e., both swimmer’s beating
planes roll to the right and the beating planes become almost
perpendicular to the z � 0 plane (Figure 7H). Then, both
swimmer’s beating planes roll to the left with an almost 180°

motion (Figure 7I), the average rolling angle c decreases and
reaches the minimum value of ∼ −86° (Figure 7F bottom panel).
After this second rotation, the swimmers reach a configuration
similar to the one obtained in the two co-planar swimmers case in
Figures 3C,G for the same initial distance d � 11 μm.

In summary, if the swimmers are initialized close to a wall and
relatively far away from each other, the swimmers will initially

attract and then eventually, when getting too close to each other,
will transition to a short-term near-field stability. After a certain
period of time, the stability is broken by variations in the rolling
angle c that cause the swimmer’s planes to rotate (twice) and
reach a final configuration in which the swimmers are almost co-
planar, with beating planes almost perpendicular to the z �
0 plane.

The rolling of sperm has been observed in experiments where
the frequency of rolling is correlated with the beat frequency of
the flagellum [10, 56]. In this longer term simulation, we observe
two rotations in ∼10 s with a beat frequency of 20 Hz (Table 2), so
this is at a higher rate than the beat frequency. Simulations
observe rolling with a very low frequency but we hypothesize that
additional perturbations to the flow from additional swimmers
would increase the rolling rate; this is backed up by a recent study
that showed a nonplanar component of the beat form is necessary
to see rolling [57]. Indeed, rolling was previously observed in free
space with a pair of swimmers when they were initialized as a
perturbation to the coplanar configuration [26]. This will be
important to further investigate as it has been proposed that
sperm rolling plays an important role in selection of sperm as well
as in the organization of sperm in the female reproductive tract
[56]. In our simulations, the rolling episode is what enables the
swimmers to fully align, allowing for cooperative movement of
sperm swimming in close proximity and near a wall.

FIGURE 8 | Trajectories with Parallel Sperm. Resulting trajectories for passive fluid markers as a result of the motion of sperm initialized in parallel planes with
preferred planar beat forms. (A,B) Free space case with swimmers initialized d � 3, 5 μm apart. Initial locations of fluid markers in (A) are (33, 0, −2.9) and (33.6, 0, −2.9)
and initialized at (−4.8, 0, 3.02) and (−4.8, 0, 3.04) in (B), for t � 0–0.4775 s. (C,D)Comparing trajectories with and without a wall with swimmers initialized d � 3 μmapart.
Initial locations of fluid markers in (C) are (32.84, 0, 2.82) and (33.28, 0, 2.82) and initialized at (−4.2, 0, −0.1) and (−4.12, 0, −0.04) in (D), for t � 0–0.4325 s. Starting
locations are denoted with * and ending locations are denoted with •.
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3.2.3 Particle Trajectories
We also investigated trajectories of passive fluid markers to
further understand how signaling molecules near or around
the swimmer would be advected by the flow. In Figures 8A,B,
we look at particles initialized at different x-locations with
swimmers separated by distances of d � 3, 5 μm. For
reference, even though the swimmer is not shown, it is similar
to that of Figure 6 where the swimmers are 60 μm in length and
the top swimmer is in the plane z � d and the bottom swimmer is
in the plane z � 0. In Figure 8A, the fluid particles start below the
bottom swimmer (z � −2.9) and mid-way along the swimmer in
the x-direction. We observe that for both cases, trajectories below
the bottom swimmer are the same at this location and that
particles are being pushed down and further back, similar to
the pitching angles of the swimmers. Signaling molecules

initialized in this region will not be able to reach and bind to
the flagellum. When looking at a particle trajectory initialized
slightly above the plane z � 3 (Figure 8B), we observe that the
particles are moving in an upward trajectory and are being advected
in the negative x-direction, corresponding to the direction of
swimming. At these time points, the fluid particle is also
pitching at a similar angle to that of the top swimmer, while
attracting to the swimmer. The movement of these particles is
also interesting in that the amplitude of their movement is growing
in time in the y-direction. In comparison, we look at fluid particles
with a wall at x � −5 and compare it to the free space case for an
initial separation distance of d � 3 μm in Figures 8C,D. Mid-way
along the swimmer in Figure 8C, at these early time points, we
observe that trajectories of fluid markers behave in the same way,
being pushed down in the z − direction regardless of whether the

FIGURE 9 |Quasi-Planar Swimmers in Free Space. 3D flagellar configurations for the first beat period (gray lines) and the trajectory of the first point in the direction
of swimming (colored lines with respect to time) over the specified time interval for the two swimmers, initialized at a distance d � 6 μm apart in (A) and d � 30 μm apart in
(C). The curves traced by the first point of the two swimmers on the yz-plane over the specified time interval are shown in the corresponding zoomed-in portions.
Minimum (solid line) and maximum (dotted line) distance between the two swimmers and distance between the first points (circles) with respect to time for initial
distance d � 6 μm in (B) and d � 30 μm in (D) (averages over a beat period).
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wall is present close by. This fluid particle is initialized close to but
below the top swimmer and it is being pushed downward in the
direction of the bottom swimmer. In contrast, we observe the effects
of the wall in Figure 8Dwhen initializing a fluid particle close to the
wall and directly below the swimmer. In the case of the wall, the
particle trajectory is following and getting close to the swimmer,
increasing in the z-direction with hardly any progression in the x −
direction due to the wall. The free space case shows the extensive
movement in the x-direction, but littlemovement in the z-direction.

3.3 Quasi-Planar Swimmers
Everything presented thus far has been for swimmers with a
planar preferred beat form. Due to interactions with a swimmer

or the wall, nonplanar beat forms have emerged (e.g., Figure 7D).
Since different species of sperm exhibit a variety of nonplanar
beat forms [2, 9], we now consider here the case of two quasi-
planar swimmers where α � 3 μm and β � 1 μm in the preferred
beat form in Eq. 3. The bottom swimmer is initialized with its
centerline lying on the plane z � 0 and the top swimmer’s
centerline is on the plane z � d.

3.3.1 Free Space
We now wish to further characterize interactions of two
swimmers with quasi-planar beat forms and understand how
they are similar or different to swimmers with planar beat forms.
In Figure 9, for an initial distance d � 6 μm apart, the two

FIGURE 10 |Quasi-Planar Swimmers Near aWall. 3D flagellar configurations for the first beat period (gray lines) and the trajectory of the first point in the direction of
swimming (colored lines with respect to time) over the time interval from 0 to 5 s for the two swimmers, initialized at a distance d � 6 μm in (A) and d � 30 μm in (D) near a
wall at x � −5 μm. The curves traced by the first point of the two swimmers on the yz-plane over the specified time interval are shown in the corresponding zoomed-in
portions. Minimum (solid line) and maximum (dotted line) distance between the two swimmers and distance between the first points of the two swimmers (circles)
with respect to time for initial distance d � 3 μm in (B), d � 6 μm in (C), and d � 30 μm in (E) (distances averaged over a beat period). The gray panel in (A,D) represents
the wall.
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swimmer’s trajectories rotate around each other creating a bundle
formed by the two flagella. At the same time, the two swimmers
are attracting to each other, as shown in Figure 9B, where all
distance metrics considered are oscillating and decreasing in time.
Here, there are no signs of repulsion between the swimmers as
they reach a minimum distance between the swimmers on the
order of 3–4 μm for t ∈ [4, 5]s, similar to the swimmers with
planar beat forms that were initialized as co-planar in Figure 2B
and in contrast to those initialized in parallel planes in Figures
6A,E where repulsion was observed when starting d � 3, 5 μm
apart. For the quasi-planar case, as expected, the trace of the first
point shown in the zoomed portions of Figure 9A exhibit a more
complicated trajectory, known as the flagelloid curve (or f-curve),
as previously recorded in experiments and simulations for a
single sperm [32, 39, 58, 59]. The flagelloid curve is shown in
the yz-plane over the time interval from 2 to 3.2 s, where the
curvature is higher at the bottom of the bundle and lower at the
top of the bundle; this trend in curvature is consistent for the full
time of the simulation.

We have also considered the case of two quasi-planar
swimmers initialized at a distance of d � 30 μm in Figure 9C.
In this case, the swimmer’s trajectories show clear attraction
between the swimmers. That is, the minimum distance between
the swimmers in Figure 9D is monotonically decreasing. Here,
the average minimum distance and the average distance between
the first points coincide for the full simulation. The flagelloid
curves for d � 30 μm are also reported in the zoomed in portions
of Figure 9C and exhibit a similar pattern to those in the zoomed
in portions of Figure 9A.

The results reported in Figure 9 suggest that the fundamental
dynamics in free space of two quasi-planar swimmers, in terms of
attraction and repulsion, is similar to the dynamics of two co-
planar swimmers reported in Section 3.1.1 and Figure 2. We also
quantified the swimming speeds of a solo quasi-planar swimmer
as well as a pair of quasi-planar swimmers (Table 2). Again,
similar to the dynamics of attraction, the swimming speed trends
were similar to that of the co-planar swimmers. Relative to the
swimming speed of a solo swimmer, a pair of swimmers 5 μm
apart had a decrease in swimming speed whereas swimmers
initially 30 μm apart had a very small increase in swimming
speed (at earlier time points). For the preferred configurations
studied, the quasi-planar swimmers were slower than the planar
swimmers (by a few μm/s). We also emphasize that no difference
in the results are obtained if the second swimmer was initialized
with a centerline lying on the plane y � d, instead of z � d,
i.e., translating on the y-axis instead of the z-axis.

3.3.2 Near a Planar Wall
Figure 10A shows the dynamics near a planar wall for a pair of
swimmers initialized a distance d � 6 μm apart; the two swimmers
attract to the wall and start rotating around each other. Similar to
the free space case in Figure 9A, the swimmers continue to circle
each other. However, with the wall in Figure 10A, they do not
progress forward but stay a constant distance away from the wall,
remaining perpendicular to the wall. The zoomed portion of
Figure 10A shows the flagelloid curves traced by the first point on
the swimmers. The curvature is approximately the same whether

the swimmer is at the top or at the bottom of the bundle. This
trend in curvature is consistent for the full time of the simulation
and in contrast to quasi-planar swimmers in free space (Figures
9A,C). In terms of the dynamics of attraction, after an initial
transient period of approximately 1 s where the first points of the
swimmer attract and then repulse, the swimmers reach an
almost-constant average distance between the heads at ∼6 μm
apart (Figure 10C). Similarly, swimmers initialized 3 μm apart
reach a constant distance apart around 1 s, but the heads repulse
initially and level off at a distance ∼5 μm apart (Figure 10B).

The case of two quasi-planar swimmers initialized at a distance
of 30 μm apart and also near the wall at x � −5 is shown in
Figure 10D. In this case, the swimmer’s trajectories show clear
attraction, i.e., monotonic decrease of the average minimum
distance between the swimmers (Figure 10E). The results
reported in Figure 10 suggest that the fundamental dynamics
near a wall of two quasi-planar swimmers, in terms of attraction
and repulsion, is similar to the dynamics of two co-planar
swimmers near a wall reported in Section 3.1.1 and Figure 3.
In particular, we point out the strong similarity between Figures
3D–F and Figures 10B,C,E. We also emphasize that no
difference in the results were obtained if the second swimmer
was initialized with a centerline lying on the plane y � d, instead
of z � d.

4 CONCLUSION

The ability of mammalian sperm to reach and fertilize the egg is
aided by a multitude of dynamic interactions between swimmers,
signaling molecules in the fluid, and walls of the female
reproductive tract. In this work, we provide a detailed look at
pairs of swimmers to characterize conditions that lead to
emergent phenomena such as attraction or repulsion of
swimmers. In free space, we observe long-term attraction of
two swimmers in the case of initially co-planar sperm with
preferred planar beat forms and sperm initially with
centerlines in parallel planes with preferred quasi-planar beat
forms. In contrast, sperm initially with centerlines in parallel
planes and preferred planar beat forms exhibit oscillatory
dynamics, alternating between periods of attraction and
repulsion. For both of these, we emphasize that these
classifications are for separation distances on a length scale
smaller than the length of the flagella and greater than or
equal to the beat amplitude. When sperm are swimming in
close proximity to a wall, we observe attraction to the wall for
planar and quasi-planar beat forms, i.e., even if swimmers are in
close proximity when near the wall, they are still trapped at the
wall. For sperm initialized in parallel planes with a planar
preferred beat form and near a wall, due to the instability in
the angle of the attracted swimmers, we observe significant rolling
episodes that allow the swimmers to attain a beat form and
distance apart that can then be maintained. The observation of
this rolling behavior is important as it is proposed to be an
important mechanism in sperm selection [56].

The results presented in this work further clarify and
contextualize divergent results in the literature. For
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example, in the case of parallel sperm in free space, our far-
field attraction results differ from previous results of [26]
where only repulsion was observed and [31] where only
attraction is observed. We are able to show that the
swimmers in this configuration will not reach a stable
configuration of attraction and will continue to oscillate
between attraction and repulsion. Zooming in on a
particular time frame and/or different parameter choice
leads to these divergent behaviors. Understanding the
complex interactions of beat form and elasticity of the
flagella can also be utilized to design artificial micro-
swimmers that navigate in complex environments [35–37].

The modeling framework used did not account for
background fluid flows and limited the study to the case of
two swimmers initialized in the same plane or with centerlines
in parallel planes. In all of the cases where attraction is observed,
we emphasize that perturbations to the flow would likely cause
additional rolling and pitching. Similarly, we focused on the case
of a purely homogeneous fluid with a constant viscosity. It is well
known that the viscosity of the fluid in the female reproductive
tract varies and will often exhibit nonlinear properties with
respect to stress and strain [2, 10]. We observed changes in
the dynamics of attraction with increases in the viscosity and
hence, we expect that nonhomogeneous or nonlinear fluid
contributions will also act to change the frequency of rolling

and the degree of pitching in the swimmers. This will be the focus
of future studies.
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Air-Fluidized Aggregates of Black
Soldier fly Larvae
Hungtang Ko1, Grace J. Cassidy2, Olga Shishkov3, Enes Aydin4, David L. Hu1,5* and
Daniel I. Goldman4*

1School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States, 2School of Chemical Engineering,
Georgia Institute of Technology, Atlanta, GA, United States, 3Biofrontiers Institute, University of Colorado Boulder, Boulder, CO,
United States, 4School of Physics, Georgia Institute of Technology, Atlanta, GA, United States, 5School of Biology, Georgia
Institute of Technology, Atlanta, GA, United States

Black soldier fly larvae are a sustainable protein source and play a vital role in the emerging
food-waste recycling industry. One of the challenges of raising larvae in dense
aggregations is their rise in temperature during feeding, which, if not mitigated, can
become lethal to the larvae. We propose applying air-fluidization to circumvent such
overheating. However, the behavior of such a system involves complex air-larva
interactions and is poorly understood. In this combined experimental and numerical
study, we show that the larval activity changes the behavior of the ensemble when
compared to passive particles such as dead larvae. Over a cycle of increasing and then
decreasing airflow, the states (pressure and height) of the live larva aggregates are single-
value functions of the flow speed. In contrast, dead larva aggregates exhibit hysteresis
characteristic of traditional fluidized beds, becomingmore porous during the ramp down of
airflow. This history-dependence for passive particles is supported by simulations that
couple agent-based dynamics and computational fluid dynamics. We show that the
hysteresis in height and pressure of the aggregates decreases as the activity of simulated
larvae increases. To test if air fluidization can increase larval food intake, we performed
feeding trials in a fluidization chamber and visualized the food consumption via x-ray
imaging. Although the food mixes more rapidly in faster airflow, the consumption rate
decreases. Our findings suggest that providing moderate airflow to larval aggregations
may alleviate overheating of larval aggregations and evenly distribute the food without
reducing feeding rates.

Keywords: black soldier fly larvae, fluidization, living matter, collective behavior, activity, Gaussian force, CFD,
agent-based simulation

1 INTRODUCTION

Every year, humans waste over one billion tons of food, a third of all food production [1]. Such
excessive food waste also creates management problems. When left unattended in traditional
landfills, rotting food becomes an environmental hazard that can spread diseases and release
greenhouse gases [2]. One solution to this issue involves feeding the food waste to insects, which
subsequently can be rendered into livestock feed or biofuel [3–6]. Black soldier fly larvae (Hermetia
illucens) have been used extensively for this process because they reduce the house fly population and
have high nutritional value [7–9]. However, raising black soldier fly larvae in denser aggregations
than those found in nature creates a number of new challenges, such as the distribution of food, the
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removal of uneaten food, and the removal of solid and liquid
waste produced by the larvae. Furthermore, larval metabolic heat
dissipates slowly in dense aggregations, causing them to rise to
temperatures lethal to larvae. As a result, it is recommended to
grow larvae at area densities lower than five larvae per square
centimeter, or equivalently, at heights lower than approximately
three times the larval width [8, 10]. This factor limits efficient
space utilization in the industry. To feed larvae in denser
aggregations, it has been proposed to provide aeration during
feeding [11–13].

Providing fluid flows through particle aggregations, a process
called fluidization, is a common strategy used in industrial
processes such as coal gasification, catalytic cracking, chemical
synthesis, heat exchange, and coating [14–16]. During the
procedure, air or other inert fluids are forced from below the
particle beds. The external flow lifts the particles and allows them
to behave like fluids themselves. Fluidization is a collective
phenomenon: the flow velocity required for the aggregations
to fluidize is insufficient to lift one particle. Fluidization is
adopted in industrial applications mainly for three reasons: the
increased surface area exposure to the fluid, even distribution of
heating, and mixing of particles [14]. While aeration can indeed
cool larval aggregations [12], it is unclear if fluidization can
improve the mixing of food in the aggregates well. A better
understanding of the interactions between airflow and larvae
could help improve industrial practices.

Fluidization has also drawn much interest from physicists for
generating interesting multiphase states of matter [15, 17, 18]. A
fluidization-defluidization cycle is defined as a ramp up and then
ramp down in flow rate. A critical feature of fluidized beds
undergoing such cycles is that the particulate response to
airflow is history-dependent due to granular-level interactions.
Both state variables, the air pressure difference across the
aggregation, and the aggregation height, show hysteresis
effects. Particles pack together more loosely towards the end
of the fluidization-defluidization cycle compared to the beginning
[15, 17, 18]. Previous fluidization studies have mostly considered
passive particles, but black soldier fly larvae have their own energy
source and can deform their bodies, thus actively generating
forces on their neighbors. This study will show how active matter
behaves in a fluidized bed.

In this project, we used both experiments and simulations to
examine the behavior of black soldier fly larvae under fluidization-
defludization cycles and to develop a minimal model for how living
aggregates interact with airflow.We subjected live and dead larvae to
ramps in airflow and measured their height and air pressure. To
study the effect of activity on fluidization, we developed simulations
with actively propelling agents in fluidization-defluidization cycles.
Using both approaches, we also explored how food mixes with the
larvae under airflow.

2 MATERIALS AND METHODS

2.1 Experiment
We used the black soldier fly larvae from EVO Conversion
Systems for our experiments. Larva sizes were affected by the

environmental conditions during growth, including the
conditions during shipment. Due to this challenge, we used
one of three size classes of larvae (short, medium, and long) in
each experiment. Larvae sizes were not mixed in any experiment.
Long larvae were 20.1 ± 1.9 mm long, 6.2 ± 0.5 wide, and 4.2 ± 0.6
thick (N � 50). Medium larvae were 12.0 ± 1.4 mm long and 4.4 ±
0.5 mmwide. Short larvae were 9.7 ± 2.2 mm long, 4.0 ± 0.4 wide,
and 2.1 ± 0.4 thick (N � 26). In the experiments with dead larvae,
we euthanized the larvae by placing them in a freezer overnight
and then thawing them to room temperature. We performed the
fluidization experiments with larval aggregations with masses 300
and 600 g.

To estimate the larval propulsive force, we placed plastic
spheres 6 mm in diameter and 0.11 g each in mass on the
surface of the larva aggregates. We tracked the trajectories of
the spheres using the circular Hough transform in MATLAB and
obtained the acceleration by calculating the finite differences over
0.06-s intervals. The force on a sphere was obtained by
multiplying the acceleration by the mass.

The fluidization chamber consisted of a 95 mm-diameter acrylic
tube. Beneath the tube, we used a 0.635 cm-thick, porous plastic
sheet with 50 μm-diameter pores to support the weight of the larval
aggregation and to laminarize the flow. We supplied the airflow by
connecting the setup to a ToroUltra Leaf BlowerVac (51619), whose
voltage was controlled manually by a voltage relay Staco 3PN1010.
The system can provide a maximum air speed of approximately 2
m/s at the outlet of the fluidization chamber. We performed the
fluidization experiments with a voltage ramp rate of 0–100% at 1%
per second, as well as two and four times this rate. In a typical trial,
airflow velocity increased linearly, was held at the maximum for 20
seconds, and then decreased linearly. In total, each trial took 220 s for
the experiments at a 1x ramp rate. For experiments at greater ramp
rates, 2x and 4x, all steps of the cycle were sped up accordingly. The
duration of the constant velocity phase was halved for the 2x ramp
rate and quartered for the 4x ramp rate. As a consequence, 2x trials
and 4x trials took a half and a quarter of the time it took for 1x trials,
respectively.

We measured air speed and pressure using an OMEGA FMA
1000 series anemometer and a Honeywell pressure sensor. The
anemometer was positioned at the top of the setup, and the
pressure sensor was placed at the bottom of the larval aggregates
(Figure 1E). The data were digitized using an Arduino Uno and
saved with MATLAB at a 5 Hz sampling rate.

For all trials, we captured side view videos using a webcam at
30 frames per second. We performed video processing using a
custom MATLAB program which identified larvae based on the
brightness difference and extracted the height of the larval
columns as a function of time. In addition, we customized
functions within PIVlab [19] to estimate the larval velocity field.

For the feeding trials, we used an x-ray machine (Orthoscan
Mobile DI) to visualize the food within the larval aggregation
(Figure 6A). In all feeding trials, medium size larvae were used.
We prepared a food source composed of water, sugar, agar
powder, and 20% contrast agent Omnipaque iohexol for x-ray
imaging. We cut the “jelly” into cubes with sides 6.3 ± 0.7 mm
long, roughly half the length of a larva. We performed the feeding
experiments under three conditions: no flow, slow flow (1.4 m/s),

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 7344472

Ko et al. Air-Fluidized Aggregates of Fly Larvae

116

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


and fast flow (2 m/s). We conducted two trials for each condition.
In each trial, we placed four jelly cubes onto the top surface of
150 g larval aggregations before recording x-ray images
every 10 s.

2.2 Simulation
We simulated fly larvae in two dimensions as circular discs
capable of actively propelling themselves. “Dead” larvae in
simulations were the same shape but did not actively apply
any forces. We wrote the simulation in the computational
fluid dynamics package Basilisk, open-source software based in
C [20]. Basilisk solves moving boundary problems using an
adaptive Cartesian mesh and the volume of fluid (VOF)
technique. The fidelity of this package has been verified in
various benchmark tests [20]. We modified the solver to
incorporate agent-based rules. The geometry and the
dimensionless parameters of the simulation are comparable to
those of the experiment, as detailed in the following subsection.
Here, we highlight some key aspects of the simulations.

All agents moved following Newton’s second law. Dead larvae
were driven by three forces: 1. fluid viscous and pressure forces; 2.
gravity; 3. viscoelastic collision forces with other agents and the
container walls (Figure 4A). For live larvae, an additional active force
Factive was applied. Based on our experimental measurements of the
Brownian motion of plastic spheres at the bed surface, we model
Factive as Gaussian white noise. The activity intensity is isotropic and
homogeneous in the simulations.

In our simulations, the thickness of the virtual shell tshell
accounted for 30% of the diameter. The collision force Fcollision
was applied when the virtual shells (gray in Figure 4A) overlapped.
The virtual shells did not obstruct fluid flows. The collision force
consisted of an elastic and a viscous component.
Fcollision � ksd + c _d, where ks � 1.6 × 106 N/m is the spring
constant and c � 0.45 N·s/m is the damping coefficient, d and _d

are the distance and relative velocity between the centers of two
colliding discs. These values were chosen to prevent the core of the
discs from overlapping without using thicker shells.

At each time step, the program updated the location and
velocity of each agent. Their translational and rotational velocities
became the boundary conditions for the fluid field at the next
time step. At the inlet, a turbulent velocity profile was assumed.
The velocity followed a 1/7 power-law increased from zero
at the side walls to a maximum value at the center [21]. At
the outlet, we set the Neumann boundary conditions for
velocity and the Dirichlet boundary condition for the pressure.
At each time step, the average velocity and pressure across
the outlet were measured. The height of the aggregates was
calculated by averaging the vertical locations of the 19 highest
simulated larvae, which typically represent the top layer of the
aggregation.

We simulated larval feeding using circular food with twice the
radius of the larvae, which exceeded the size ratio in the
experiment. Simulating food elements smaller than the larvae
would require finer meshes and more computational time. Here
instead of seeking quantitative agreement we sought to discover if
our minimal model could capture features of feeding observed in
the experiments. At each time step, the area of the food decreased
by the product of the number of contacting larvae and a fixed
feeding rate. Simulations were performed with fixed flow speeds
of 0, 1.4, or 1.8 m/s.

The simulations required high resolution in space and time
to resolve the fluid field. The mesh sizes adapt to the local
fluid fields at each time step, becoming 0.74 mm wide at their
finest. The size of the time step also varied according to the
Courant–Friedrichs–Lewy condition requirement for the fluid
field calculation [22]. Agents were updated at a fixed time step of
0.12 ms. The flow ramp rate and the feeding rate were sped up in
the simulation to reduce the computation time.

FIGURE 1 | Aggregates of live black soldier fly larvae show fluid-like behaviors. (A) Larva aggregates flow and level with the horizon as the container is tilted. (B) The
orientation of the larva aggregate surface with respect to the horizon. The circles represent the snapshots in (A). (C) Plastic spheres in the larva aggregates undergo
Brownian motion. Red circles mark the locations of the plastic spheres, and colored lines show their tracked trajectories. (D) The probability distribution of translational
forces on the plastic spheres. Blue dots and red dots show the force component in the x and y direction, respectively. The gray line shows a Gaussian distribution
with a standard deviation of 6.3 mN. (E) Side view of the fluidization chamber. Scale bars are 1 cm long in all subfigures.
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We performed the simulations on the Partnership for an
Advanced Computing Environment (PACE) clusters at the
Georgia Institute of Technology. Fluidization simulations
took approximately 5.5 h when calculated on 24 CPU cores
in parallel. The simulations with food took approximately
3.5 h. The fluid field and the agent information are saved
throughout the simulation. Occasionally, the fluid field
failed to converge due to the limited spatial and temporal
resolution. In these cases, we restarted the simulation a few
time steps before its termination.

2.3 Normalization
Our experiments and simulations are each characterized by
five dimensionless groups, including the Reynolds number,
Re, which represents the ratio between the fluid inertia to the
viscous force; the Froude number Fr, which represents the
ratio between gravity and inertia; the activity level k, which
represents the ratio of the random force intensity to the air
inertial force; the density ratio between larvae and air; the
dimensionless size of the larvae, which is the ratio of the larva
width to bed width. They are defined as:

Re� ρumaxD

μ
Fr � u���

gD
√ (1)

k�
��������
〈F2

random〉
√
ρumaxD

2 ρs/ρ wlarvae/D (2)

Here ρ and umax are the air density and the maximum velocity
of the airflow in the fluidization-defluidization cycle, D is the
diameter of the fluidization chamber, g is the gravitational
acceleration,

��������
〈F2

random〉
√

is the standard deviation of the active
force, wlarvae is the width of the larvae in the experiments.
Experiments are characterized by another dimensionless
group, wlarvae/Llarvae, the aspect ratio of the larvae, which was
not matched in the simulations, which assumed circular particles.

The values of the dimensionless parameters are shown in
Table 1. The orders of magnitude of all dimensionless groups are
matched, except for the Reynolds number. Re is 105 in the
experiments and 5 × 104 in the simulations, indicating the
fluid inertia dominates over viscous effects. We artificially
increased the viscosity of air by a factor of 10 to ensure that
the fluid field could be simulated without using finer meshes. For
the feeding trials, k � 0.25 was used for simulating live larvae.

The response of the system is also presented using
dimensionless variables. We normalized the three state
variables, pressure p, air velocity u, and height of the larvae

bed h. We define their dimensionless counterparts P*, U*, andH*
(Figure 2A) as:

P* � p

Mlarvaeg/A
(3)

U* � u

u(P* � 1) (4)

H* � h

Vlarvae/A
, (5)

where Mlarvae and Vlarvae are the total mass and volume of the
larvae in the container, g the gravitational acceleration, and A
the cross-sectional area of the chamber. Dimensionless pressure
P* � 1 signifies the fluidization condition, which arises when the
total larvae weight equals the applied air pressure force (which
develops as the flow is forced through the porous medium). In
this condition, the container is fluidized such that particles enter a
collisional regime and do not experience enduring contacts. For
most experiments, P* � 1 when the airflow velocity reached
1.6 m/s. Therefore, we used 1.6 m/s to normalize the velocity. H*
is normalized by the height of the larvae if they had filled all the
gaps among them. H* equals the inverse of the volume fraction.

3 RESULTS

3.1 Fluidization
Aggregations of black soldier fly larvae behave like fluids even
without external fluid flows (Supplementary Video S1 and
Figure 1A). For example, as the container of larvae is tilted,
the larvae rearrange themselves, creating a level interface. Their
movement creates a new configuration minimizing the center of
mass. Figure 1B and Supplementary Video S1 shows the
orientation of the surface θ due to a series of inclinations of
the container. As we moved the container, the magnitude of θ
initially increased but then θ converged to zero within tens of
seconds. Similarly, after larvae were forced to separate and occupy
more volume due to the fluidization process (Figure 1E), larvae
returned to the original densely-packed state through a
continuous movement of individuals. Plastic spheres within
the top layers of the larva aggregates exhibit approximate
Brownian motion as shown in Figures 1C,D. Through
tracking the movement of the spheres, we fit the force acting
on each sphere to a 2D Gaussian distribution and obtained a
standard deviation of 6.3 mN. Since the spheres are similar in size
to the larvae, this provides an estimate for the force a larva within
the aggregate would experience due to their neighbors’ activity.
The propulsive force generated by the larva itself should also be
on the same order of magnitude.

We performed 25 fluidization-defluidization cycles using both
live and dead larvae (Supplementary Video S2). Figure 2B
shows the dimensionless height H* and air pressure P* of the
aggregation as functions of time, with dead larvae shown by the
black curves and live larvae by the red curves (Source data
provided in Supplementary Table S1). To highlight the
magnitude of hysteresis, Figure 2C plots the state variables H*
and P* against U*. As the flow velocity increases and then

TABLE 1 | Dimensionless parameters in the experiments and simulations.

Dimensionless parameters Experiment Simulation

Re 105 5 × 104

Fr 4.2 5
K 0.17 0–2.5
ρs/ρ 500 500
wlarva/D 0.042 0.050

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 7344474

Ko et al. Air-Fluidized Aggregates of Fly Larvae

118

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


decreases, dead larva aggregates expand and then contract.
However, dead larvae do not return to their original height at
the end of the fluidization-defluidization cycle. Instead, they form
a more loosely packed configuration. This results in hysteresis,
where the state of the system depends not only on the applied flow
rate but also on its history. Such hysteresis is a characteristic of
fluidized beds, as shown by numerous experiments with various
granular systems, from sand to glass particles [18, 23]. The
dimensionless pressure P* also shows hysteresis, but a second
mechanism becomes apparent. Similar to the fluidization of
closely packed glass beads, during the airflow increase,

pressure P* of dead larvae exceeds 1 momentarily. At this
moment, the air pressure force exceeds the gravity on the
larvae since the aggregation cannot expand fast enough to
fluidize. As U* later decreases, dead larvae aggregates settle
down to a more porous arrangement, allowing P* to be lower
than before.

In contrast to typical granular systems, live larvae do not
show hysteresis. As shown by the red curves in Figure 2C,
height H* and pressure P* are both single-valued functions of
U*. The larvae activity evidently erases the memory effect of the
granular material, making the fluidization-defluidization cycles

FIGURE 2 | Larva fluidization-defluidization experiments. (A) Schematic of the fluidization setup. (B) Time series of dimensionless variable U*, H*, and P* in a
fluidization cycle for 300 g “long” larvae at the 1x ramping rate. Red shows the live larva trials, and black shows the dead larva trials. (C) Hysteresis diagram plotting H*
and P* as functions of U*. Data and the color scheme are the same as (B). (D) Hysteresis diagram for 300 g short larvae at ramping rates of 1x (dark blue), 2x (light blue),
and 4x (green). Dots represent the raw data, whereas the solid lines show the average across trials.

FIGURE 3 | The magnitude of hysteresis. (A) Hysteresis metrics ΔH* and ΔP* are defined as the area between the curves in the hysteresis diagrams such as
Figures 2C,D. Here, blue and red circles represent ramping up and down, respectively. (B) ΔH* and ΔP* under different flow conditions. “Long” and “short” refer to the
size of the larvae used. Other conditions include the total weight of larvae (300 g or 600 g) and the ramp rate (1x, 2x, and 4x). All long larva experiments are performed at
1x, and all short larvae experiments are 300 g.
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independent of their history. We saw earlier that without flow,
larvae rearranged to assume the lowest gravitational potential. Live
larval aggregations expand earlier during increasing flow and pack
themselves for a more extended period during decreasing airflow.

We hypothesize that the rearrangement in live larval aggregates
requires a specific time scale. If velocity U* is varied at a rapid
enough pace, larvae would not have enough time to rearrange, and
pressure P* and height H* would show hysteresis.

FIGURE 4 | Larva fluidization-defluidization simulations. (A) Agents move under fluid forces, collisional forces, and a random force that mimics larval activity. (B) A
snapshot from the simulation of 396 active cylinders in ramping air flows. Contour colors represent the magnitude of the vorticity field. (C) Hysteresis diagram and (D)
hysteresis metric ΔH* and ΔP* of cylinders at various activity level k. In both (C–D), k � 2.5 is shown in red, k � 1.25 in orange, and k � 0 in blue.

FIGURE 5 | Top layers of both live and simulated larvae move more rapidly. (A) Larval speed distribution at the boundary measured using Particle Image
Velocimetry (PIV). The color bar shows the scale in mm/s. (B) Average larval speed (x-axis) at different elevation z (y-axis). Elevation level z corresponds to that in A. Dash
lines mark the top surface of the larva aggregates in each snapshot. (C) Speed of active cylinders at the onset of fluidization is shown using colors and arrows. The color
bar shows the scale in mm/s. (D) Average cylinder speed from simulation, the axes arrangement is the same as (B).
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To test this hypothesis, we performed experiments at various
air ramp rates, from 2 cm/s2 (1x) to 8 cm/s2 (4x). Long larvae
were used for Figure 2D. Short larvae in Figure 2D behave the
same as the long larvae in Figure 2C at the 1x ramp rate.
Nonetheless, Figure 2D shows that indeed, when the airflow
increases at 8 cm/s2, four times the original rate, even live larvae
demonstrate hysteresis (bright green). Why do live larvae exhibit
hysteresis at high ramp raptes? Larval aggregations respond
similarly at all flow decelerations. However, at the highest
accelerations, they do not have enough time to rearrange and
adjust to the increasing flow, thus displaying hysteresis. The
inability to cope with this time scale indicates that live larval
aggregations in our system can be considered as fluids if the time
scale of the disturbance is more than approximately 25 s, the
duration of air acceleration at 4x ramp rate. This time scale is
comparable to the time for a larva to crawl its body length, around
7 seconds ([24]).

We quantify the extent of hysteresis, ΔH* and ΔP*, as the area
between the hysteresis diagrams (Figure 3A). Figure 3B
summarizes the fluidization trials and shows that live larvae
show hysteresis only at higher ramp rates. Dead larvae show
hysteresis under all conditions.

The simulations recover the experimental measurements
qualitatively through modeling larval activity with propulsive
forces that act in random directions and magnitudes. We
simulated 296 discs that move under physical forces as well as
active propulsive forces [Figures 4A,B (Supplementary Video

S3)]. Figure 4C shows as the dimensionless activity levels k
increases from 0 to 2.5, the hysteresis in both height H* and
pressure P* decreases. The ramp rate was 11.2 times the original
speed, or 2.8 times the fastest ramp rate performed in
experiments. The response during the ramp-up period is
similar to those in Figures 2C,D. Active discs rise earlier and
more smoothly. However, due to lack of friction and other
simplifications made in the simulation, during the ramp down,
H* is lower, and P* is higher compared to dead larvae (Figures
2C,D). Figure 4D demonstrates that ΔH* and ΔP* start to
decrease when k > 1 or when the random propulsion is
comparable with the scale of the air pressure force. Our
simulation suggests that the hysteresis-free behavior of live
larval aggregation does not require active strategies that
involve sensory information. Instead, it can be achieved simply
through larvae exerting random propulsive forces (achieved in
their case via body self-deformation and locomotion).

3.2 Feeding and Mixing
Figure 5 shows that under low airflow, the larva motion is
suppressed at positions deeper in the aggregation. In both
experiments and simulations, with applied flow velocity from
U* � 0 to U* � 0.6, larvae closer at the top surface move more
rapidly than larvae in the bulk. This is because the contact forces
among larvae are higher for the bottom layers due to the weight
on top of them. The effect of self-propulsion is therefore
negligible. In contrast, with little weight to support, larvae at

FIGURE 6 | Larva feeding experiments with cubic jellies. (A) The experimental setup for the feeding experiment consists of the fluidization chamber and a portable
x-ray machine. (B) A representative X-ray image of the experiment. Darker regions near the top of the aggregations are food. The inset shows a picture of the cube-
shaped jelly. The black shades near the bottom of the image are the screws of the chamber. (C) The spatial distribution of the food using time-lapse photography. Light
gray shows that the food never appeared in the location throughout the video. Black shows that the food appeared at least in three video frames. (D) Time series of
the proportion of food remaining in the chamber under no flow, slow flow, and fast flow conditions. Larvae used in here are medium size (see theMaterials and Methods
section).
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the top layers “flow” freely. This points to the challenge of feeding
in dense aggregations. Food may be mixed and consumed among
the larvae close to the top surface, but larvae at the bottom layers
remained unfed.

We confirmed the non-uniformity of motion using X-ray imaging
experiments where we fed the larvae cubes of jelly. Figures 6A–C and
Supplementary Video S4 show that without flow, jelly cubes remain
at the top of the aggregation. Under airflow, more layers of larvae can
move, and the food can be distributed deeper into the aggregations.
When the air speed is high (2m/s), the larval aggregation is fully
fluidized, and both food and larvae travel rapidly in the chamber.

Surprisingly, despite a broader spatial distribution, jelly cubes were
consumed at comparable or slower rates with respect to the no-flow
condition (Figure 6D). Under fast flow, large pieces of food were still
found after 15min. However, jelly cubes fed to larvae without flow or
with slow flow disappeared in approximately 5min.

Similar conclusions were reached through simulating food
particles that decreased in areas at a rate proportional to the
number of neighbors (Supplementary Video S5). While a higher
flow mixes the food more uniformly (Figure 7A), the feeding rate
decreases (Figure 7B). The simulations also provide a potential
reason for this observation: as food and larvae are agitated by rapid

FIGURE 7 | Larva feeding simulations for different constant fluidization air speeds. (A) Trajectories of the four food particles. (B) Time series of the proportion of food
remaining in the simulation over approximately 4 seconds. The feeding rates are significantly sped up in the simulations. (C) The histogram of numbers of “eating” larvae,
defined as those contacting and consuming food in each time step.
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flows, larvae are more likely to be suspended in mid-air without
contacting the food (Figure 7C). This suggests that a moderate flow
rate would be optimal for feeding dense aggregations of larvae. Such
moderate flows prevent the larvae from being airborne for a
prolonged period of time, while allowing food to travel deeper
into the aggregation. The optimal flow rates for larval feeding
remains to be determined in future research.

4 DISCUSSION

Mixing granular materials is critical to a wide range of industrial
applications. Typically, it is achieved through applying external
forces [25–28]. Common strategies require motions of the
container, such as a rotating drum [29] or a manually tossed
wok [30]. Air-fluidization provides another method to mix
particulate matter since it does not require intrusion into or
boundary-driven agitation of the particles, allowing nearly
uniform particle motion. Black soldier fly larvae, on the other
hand, can move like a fluid without airflow. Their activity propels
them in random directions, which allows the aggregation to flow
and minimize its gravitational potential. However, mixing through
larval activity alone is limited since gravitational forces dominate
their activity in deeper layers via the high contact forces due to
increasing “lithostatic pressure”. By carefully varying the airflow
from below, black soldier fly farmers may optimize mixing,
maximize larva feeding rates, and improve their use of space.
Future research could help elucidate the optimal conditions for
larva feeding, such as the flow rate and the food density.

Our work expands upon knowledge of biological aggregations,
which have been shown to demonstrate fluid-like behaviors. These
aggregations can be considered active granular fluids, where the
animal movement prevails over the contact forces among
individuals. As a result, live larva aggregates do not jam like
grains in a fluidization-defluidization cycle. Active granular fluids
span from the scale of plant cells [31] to that of fly larvae and can be
realized with centimeter-scale robots [32]. It remains an open
question how these active fluids consisting of millimeter-scale or
micrometer-scale constituents behave differently from traditional
fluids made up of nanometer-scale molecules. More intriguingly,
how do fluids of different scales interact with each other? This paper
presents one example of such interactions. More research is required
to describe the behaviors of such systems.

The simulations presented in this paper are among the first to
incorporate active particle dynamics into particle suspensions in
fluids. Our simulations had several simplifications. To reduce
running time, we used two-dimensional particles and decreased
fluidization-defluidization cycle durations. We also used a rigid
circular geometry for the larvae. Assuming frictionless particles
may have reduced jamming effects during decreasing airflow.
Lastly, larval activities were simplified as random body forces.
Therefore, experimental observations such as larva squeezing
through narrow gaps could not be simulated. Despite these
shortcomings, our simulations successfully recovered features of
fluidization, such as the plateauing of air pressure as airflow
velocity increases, through capturing complex agent-environment
interactions. The simplified form of activity in our simulation also

caused the collectives to behave like fluids and reduced the
magnitude of hysteresis, matching the behavior of live larval
aggregates at least qualitatively. The relative success in these
simulations paves the way for future studies that focus on animal
collective behaviors in moving fluids.
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Photogyrotactic Concentration of a
Population of Swimming Microalgae
Across a Porous Layer
Praneet Prakash1 and Ottavio A. Croze2*

1Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge,
Cambridge, United Kingdom, 2School of Mathematics, Statistics and Physics, Newcastle University, Newcastle Upon Tyne,
United Kingdom

The light environment controls the swimming of microalgae through a light-seeking and
avoiding behaviour, which is known as phototaxis. In this work, we exploit phototaxis to
control the migration and concentration of populations of the soil microalga
Chlamydomonas reinhardtii. By imaging a suspension of these microalgae in a cuvette
illuminated from above by blue light, we study how phototaxis changes the stability of the
suspension and demonstrate how a thin, porous layer at the top of the cuvette prevents
phototaxing microalgae from sinking, leading to the up-concentration of the microalgae in
the region above the porous layer. We discuss the potential implications of our findings for
microalgae in biotechnological applications and the natural environment.

Keywords: microswimmers, microalgae, phototaxis, light environment, porous media, biotechnology

1 INTRODUCTION

Environmental stimuli, such as chemical gradients, gravity, light and flow shear, bias the motion of
swimming microorganisms [1–3]. At the level of a population, these biases cause the formation of
spectacular, often macroscopic, patterns. Inasmuch as they cause cells to congregate and interact,
these patterns can be considered a form of social behaviour. Paradigmatic examples of pattern
formation in swimming microbes are the waves exhibited by bacteria [4, 5] and slime mold [6]
sensing chemical gradients (chemotaxis), or the bioconvection patterns formed by ciliates and
microalgae [7], responding to a combination of gravity and flow shear (gyrotaxis). More specifically,
the latter is a bias resulting from the combination of a torque on a swimmer due to shear in the flow
and one due to gravity, caused by asymmetry in body shape, mass distribution and/or between body
and flagella [8].

Recent decades have seen a marked increase in the mechanistic understanding of how biases act at
the individual swimmer level and how this affects macroscopic patterns. For example, mathematical
models of flowing and dispersing gyrotactic suspensions of microalgae [9–12] have been compared
with measurements of algae in an uniformly rotating flow [12], sheared bioconvection patterns [13],
populations of microalgae dispersing in pipe flow [14], and laboratory versions of oceanic thin layers
[15]. For comprehensive summaries of current work, we refer the reader to reviews covering recent
progress in the physics of swimming microbes [16, 17] and bioconvection [7]. This area of research is
also closely related to active matter [18] comprising biological swimmers, as we have just described,
but also synthetic [19] and biohybrid ones [20–22].

In this study, we focus on how light can be used to control and concentrate a suspension of
Chlamydomonas reinhardtiimicroalgae. The bias of swimming by light is known as phototaxis and is
an adaptation that allows C. reinhardtii and other photosynthetic microorganisms to find optimal
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levels of light needed to grow [23, 24]. Recent studies have
demonstrated how exposing a suspension of microalgae to
light can dramatically alter the patterns they form, and even
generate new ones [25]. In the absence of phototactic stimulation,
bioconvection patterns form in shallow layer suspensions, e.g., a
thin layer of fluid in a Petri dish, as a result of the tendency of
microalgae to swim upwards (gravitaxis) and form a dense layer
of cells (denser than the fluid they are suspended in) at the top of
the suspension [7]. This is unstable and results in sinking
“plumes,” which drive a bioconvective pattern, reinforced by
the cells’ response to the flow (gyrotaxis), which enhances the
instability by driving cells towards downwelling plumes. Bees and
Williams investigated how white light from above and below a
suspension of the microalga Chlamydomonas augustae in a Petri
dish alters the stability of bioconvection patterns, quantified by
measuring the dominant initial pattern wavelength [26]. As well
as changes to existing bioconvection patterns, recent investigations
have also explored how shining light into a suspension can
stimulate patterns that would not otherwise be there. For
example, bioconvection patterns for the microalga Euglena
gracilis were induced by illuminating a Hele-Shaw cell from
below [27]. In the absence of light, the patterns vanished. A
study by Arrieta et al. also demonstrated how quickly
bioconvective structures can be created, and even reconfigured
by light, using it to generate “blinking plumes”; the study also
provided a model of this (ignoring gyrotactic effects), and reported
good agreement with the experimental observations [28].

Aside from some of the studies above, several investigations in
the literature have provided theoretical analyses of bioconvection
in the presence of phototaxis. These have recently been reviewed
comprehensively [7, 25]. We will discuss briefly here only the
model byWilliams and Bees [26], which includes phototactic and
gyrotactic effects, and encompasses several simpler models that
have been recently proposed. The model equations, summarized
in Supplementary Appendix SA, describe the coupled dynamics
of fluid flow, described by a Navier-Stokes equation, and a
population of swimmers, described by a continuity equation.
The probability density function (PDF) for the swimmer
orientation obeys a Fokker-Planck equation, with a
deterministic bias due to the combined action of flow, gravity
and light. Taking moments of this PDF provides the mean
swimming velocity and diffusivity in the continuity equation.
Williams and Bees considered three alternative models to
describe the effect of phototaxis on the swimmers [26]. In
model A, the speed of the cells is dependent on light intensity
(photokinesis), while gravitaxis and gyrotaxis are not affected. In
model B, light causes a change in the bottom-heaviness of the
cells, inducing an effective gravi/gyrotactic torque. In model C,
cells respond directly to an effective torque due to light,
dependent either of the light direction or the gradient of its
intensity (the latter was also used by [23, 28]). Williams and Bees
used their model to predict the stability of bioconvection patterns
for a suspension illuminated from above and below, in qualitative
agreement with the experiments with C. augustaemicroalgae in a
Petri dish mentioned above [29].

Our study combines a photogyrotactic suspension with porous
media, materials with voids through whichmicrobes can swim. In

the environment, these can occur as the spaces between particles
in soils [30]; in the laboratory they can be patterned using
microfluidics, or assembled using gels or beads. There has
been much recent interest in the behaviour of swimming
microorganisms, such as bacteria, in porous media [31]. A few
recent studies have also considered how the transport of
microalgae is altered in porous chambers [32] and
microfluidic arrays [33], including the deflection of negatively
phototactic swimmers through obstacle arrays [34].

Thus, it is known how porous media change the transport of
microswimmers and it is well established that light perturbs, and
drives instabilities in, suspensions of phototactic microalgae,
visibly causing the concentration of cells. However, the
systematic concentration of microalgae at a given location
exploiting photogyrotaxis, which was suggested by Kessler as
early as 1982 [35], has hitherto not been demonstrated. In this
study, we aim to show that a unique combination of phototaxis
and porous media permits the concentration of microalgae at a
given location in a container. We report the first “milliliter-scale”
experiments demonstrating how photogyrotactic microalgae can
be concentrated above a porous layer of beads overlaid onto a
metal mesh. We also observe interesting photogyrotactic
instabilities and accumulations in the suspension, which have
not been previously reported. An “essential” model to
qualitatively account for the temporal evolution of the average
concentration of cells above the porous layer and for their initial
spatial distribution is also developed, leaving a full theoretical
analysis of the photogyrotactic dynamics leading to this
concentration for future work. Finally, we discuss how, a
scaled-up version of our set-up could provide the basis for a
new and efficient method to harvest swimming microalgae
industrially. This is desirable since harvesting microalgae
industrially is expensive (up to 20–30% of the total production
costs [36]), and represents a bottleneck in the production of
bioproducts from microalgae.

2 MATERIALS AND METHODS

2.1 Experimental Methods
We used the wild-type algal strain Chlamydomonas reinhardtii
(CC125) for our studies. Single colonies of these algae were picked
from slant cultures and inoculated into Tris-minimal growth
media (Supplemental Material Section S1). These media are based
on the standard TAP medium [37], but omit acetic acid and HCl
is used to titrate to pH 7, and were chosen to ensure purely
photosynthetic growth of cells so that they would be synchronised
to light-dark cycles, following [38]. Indeed, liquid cultures of the
microalgae were then grown in a 14:10 h light-dark cycle on a
rotary shaker at 100 rpm and continuously bubbled with air, as in
[38]. The shaking incubator (Infors Minitron) was maintained at
a temperature of 25°C, and provided photosynthetically active
radiation (PAR) at 315 − 325 μmol/m2s, as measured with a PAR
meter (Skye SKP200). It took around 7 − 10 days for a culture to
reach a concentration of 1 − 2 million cells/mL. Thereafter, it was
sub-cultured by mixing 10 mL of grown algae into 140 mL of
fresh Tris-minimal media until the cell count, measured with a Z2
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Coulter counter (Beckman Coulter, Brea, CA), reached
1.5 million/mL; this took about a week. Subsequently, algae
were diluted everyday by replacing 50 ml of the culture with
fresh media. This protocol maintains the algal count between
1.2 − 1.5 million/mL with mean diameter of 4.5 − 5 μm
(estimated by using the Coulter counter); the subcultures can
be used for 10 − 15 days. Care was taken to do experiments with
microalgae harvested during the light phase of the growing cycle
to avoid variations in the swimming parameters, and in particular
the swimming speed, which have been observed at the onset the
dark phase [38]. All the experiments were carried out in square
plastic cuvettes of external dimensions 12.5 × 12.5 × 45 mm3

(Sigma-Aldrich, filling volume 2.5 ml) filled with 2 ml of algal
suspension. The imaging was performed using a monochrome
CMOS camera (Pointgrey, Grasshopper3 GS3-U3-23S6M) fitted
with a macro lens (Sigma 17–70 mm f2.8-4). The cuvette was
illuminated from the side by a red (660 nm) square 100 × 100 mm
LED array (Advanced Illumination BL1960, Rochester, VT,
United States), as shown in Figure 1A. This illumination was
used as it allowed to image the suspension laterally without
triggering a phototactic response [3]. The concentration of
microalgae in the cuvette was estimated from the transmitted
light intensity across the short dimension of the cuvette by
applying the Lambert-Beer law: the intensity recorded by the
camera (measured in arbitrary units, a. u.) can be converted into
algal concentration (million/mL) from the calibration curve
shown in Supplementary Figure S1. The intensity decays as I �
Ioexp(−A.C), where Io � 179 is the intensity in arbitrary units in
the presence of cuvette containing just Tris-min medium, A �
0.22 is the attenuation coefficient and C is the algal concentration
in million/mL. This exponential decay provides a mapping to
concentration, with an excellent fit for intensity data higher than
50 a.u., and an R-squared value of 0.99 for a fit across the range of
values (see Supplementary Figure S1). In the experiments

described below, the swimmer concentration was then
quantified from images by first measuring integrated pixel
intensity in selected regions (see e.g., Supplementary Figure
S2) of the cuvette using ImageJ, and then mapping to actual
concentration values using the calibration curve just described.

For the phototaxis experiments, a blue LED (Thorlabs
M470L2, nominal wavelength 470 nm) is mounted above the
cuvette at a distance of 47 mm from its base. Using a PAR meter,
the light intensity at the base of cuvette containing only the media
was 16 − 18 μmol/m2s, whereas the intensity immediately below
the LED is 150 − 160 μmol/m2s. The cuvette is separated into an
upper “harvest” and a lower “reservoir” region by a porous layer
of glass beads. The latter was achieved by folding a rectangular
wire mesh so that it attaches to a cuvette, and overlaying it with
glass beads of diameter 425 − 600 μm and various weights, as
shown in Figure 1B. Glass beads of diameter 425 − 600 μm,
provide a porous medium with spacings large (∼50 − 200 μm)
compared to the size of individual algae (< 10 μm), so that the
latter could easily move through the pores. To initialize
experiments, first an empty cuvette was filled with an algal
suspension approximately up to the mesh height and
thereafter the mesh was installed. To make a porous layer of
various thicknesses, beads of appropriate weight were placed over
the mesh. Finally, more algal suspension was poured from the top
to create a harvest region of height ≈ 0.5 cm. The experiments
reported below also considered the case of a bare mesh with
no beads.

2.2 Essential Model of Concentration
We present here the details of a simplified model of the
concentration of swimming microalgae into the upper
“harvest” region by light. The model describes the case of a
suspension of microalgae with a porous layer near the top (mesh
+ beads), as shown in Figure 1, and we shall also apply it below to

FIGURE 1 | Schematic showing lower reservoir and upper harvest regions, separated by a wire mesh overlaid with beads: the porous layer. (A) A blue LED is
mounted on the top of the cuvette to create a phototactic bias. For imaging the suspension and concentration calibration, a deep red LED illuminates the cuvette from the
side (deep red light does not elicit phototaxis [3]). (B) Glass beads of diameter 425 − 600 μmwere used to create the porous layer. 70 mg of bead results in single layer,
200 mg–2 to 3 layers, and 400 mg–4 to 5 layers, respectively.
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consider the case of a bare mesh. For the mesh + beads case, the
suspension of microalgae is divided into three regions, an upper
harvest region (u), a porous layer region (p) and a lower
“reservoir” region (l). Photogyrotactic migration delivers
microalgae to the upper region from the lower region through
the porous region. As evident from our results and discussion (see
Section 3.4, 4 below), the dynamics underpinning the
concentration are complex; the challenge of describing them
with a full photogyrotactic model is beyond the scope of this
paper. Instead, we seek here to formulate a model to capture the
essential features of the concentration process into the upper
harvest region. We make the reasonable simplifying assumption
that: 1) the average concentrations in the upper, porous and lower
regions evolve slowly compared to the observed photogyrotactic
dynamics; we consider here spatial and temporal variations
separately, and assume a steady state for the fast dynamics in
the upper region. We further assume that 2) phototactic
migration is the dominant process and brings cells to from the
lower region to the porous region, with swimmers migrating
straight upwards toward the light (there is no dependence on light
gradients, only light direction) at the maximum phototactic
speed, equal to the mean swimming speed of the population,
Vs. In the lower region, we assume that 3) the mean concentration
is representative of the concentration of cells swimming into the
porous layer. In the porous layer region, we assume that: 4) the
speed of the swimmers is slowed down by collisions with the
porous medium, but the swimming direction continues on
average to be upwardly directed by phototaxis. In the upper
harvest region, as well as the average concentration dynamics, we
also consider a 0th order spatial model of phototactic
concentration. To set this up, as assumed above, we posit that
there is a separation of timescales between the migration of cells
from the lower region (slow) and the redistribution of cells in the
upper region (fast). We further assume that: 5) the effect of flow is
negligible prior to the formation of the plume from the upper
surface (see Figure 4B); 6) upward phototactic swimming at the
maximum speed Vs and diffusion dominate the fast suspension
dynamics (gyrotactic effects are negligible); 7) diffusion is
assumed approximately isotropic; 8) the meniscus at the top
of the suspension is flat (any effects of curvature are neglected).

With the assumptions above, denoting by �ci the average
concentrations in regions i � u, p, l for the upper, porous and
lower regions, respectively, and with A the cross-sectional area of
the cuvette, the average cell numbers �Ni in the three regions
evolve according to the following balance equations:

d �Nl

dt
� −AVs �cl, (1a)

d �Np

dt
� AVs �cl − AVeff �cp, (1b)

d �Nu

dt
� AVeff �cp. (1c)

Equation 1a describes the loss of cells from the lower region
due to the phototactic flux of cells, of concentration �cl, swimming
into the porous region at speed Vs. Correspondingly, the porous
region, as described by Equation 1b, gains an equal and opposite

flux. This region also has a loss term due to cells, of
concentration �cp, swimming at a speed Veff into the upper
region. The upper harvest region, as shown in Equation 1c, has
an equal and opposite gain. The speed Veff is the effective
swimming speed of the microalgae within the porous layer,
which is given by [39].

Veff � Vs
τc
τ + lobs

τ , (2)

where Vs is the “free” mean swimming speed of the microalgae,
τc � λ

Vs
is the time between collisions with the beads in the porous

layer, and λ is the swimmer mean free path. The timescale τ �
τc + τR is the total porous travel time, including the residence
time τR that a swimmer spends at an obstacle. These parameters
were recently measured experimentally for C. reinhardtii (see
Table 1). To express system (1) in terms of concentrations only,
we note that themean number of cells in regions i � u, p, l can be
written as �Ni � Ahi ci, where, as above, A is the cross-sectional
area of the cuvette, and hi, ci are the height and mean
concentration in region i, respectively. Substituting into (1),
we thus obtain, dividing both sides by the respective hi,

d�cl
dt

� − α �cl, (3a)

d�cp
dt

� β �cl − γ �cp, (3b)

d�cu
dt

� δ �cp (3c)

where we have defined the upswimming rate constants α � Vs/hl,
β � Vs/hp, γ � Veff/hp and δ � Veff/hu. Equation 3a has
immediate solution �cl � k0e − α t, where k0 is a constant. The
system of Eq. 3 can then be solved analytically by substituting
this solution into (3b), and the resulting solution (e.g. by using the
integrating factor eβ t) into (3c). Applying the initial conditions
�cl(0) � �c0l , �cp(0) � �c0p and �cu(0) � �c0u, where �c0i represent the
initial average concentrations in the three regions, we find:

�cl(t) � �c0i e
− α t, (4a)

�cp(t) � �c0l
β

γ − αe
− α t + (�c0p − �c0l

β
γ − α) e− γ t, (4b)

�cu(t) � �c∞u − �c0l
βδ

α(γ − α)e− α t − (�c0p − �c0l
β

γ − α) δ
γ
e− γ t, (4c)

where we have defined the long-time concentration in the upper
region as

�cu
∞ � �cu

0 + �cp
0δ
γ
+ �cl

0 βδ
α γ � �cu

0 + �cp
0hp
hu

+ �cl
0hl
hu

, (5)

and where, recalling the definitions of the constants α, β, γ and δ,
we have re-written �cαu in terms of the heights of the regions. Thus,
it is clear from Equation 5 that, in this simple model, the long-
time (maximum) concentration in the upper region occurs when
all swimmers from the porous and lower regions have
concentrated themselves into the upper region.

We also consider the “mesh-only” case (without a porous layer
of beads). The derivation, shown in Supplementary Appendix SB,
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is similar and provides the temporal evolution of the mean
concentrations as

�cml (t) � �cm0
l e− α t, (6a)

�cmμ (t) � �cm∞
l − �cm0

l

η
αe

− α t, (6b)

where the superscript ‘m’ denotes concentrations in the mesh-
only case, and we have defined the rate constants α � Vs/hl, which
is as in the porous layer model (but takes a slightly different value
because of the different value of hl, see Supplementary Table S2),
and η � Vs/hu. For the mesh-only case the concentration in the
upper region at long times is given by

�cm∞
u � �cm0

u + �cm0
l

η
α � �cm0

u + �cm0
l

hl
hu

. (7)

This corresponds to the concentration in the upper region
occurring when all microalgae have swum into it from the lower
region.

In the upper region we observe that cells accumulate strongly
at the surface. To describe this, we can use a simplification of the
Williams and Bees model [26]. By virtue of assumptions 5)–8)
above, as shown in Supplementary Appendix SA, the full
swimmer conservation equation in the Williams and Bees
model simplifies to:

zcu
zt

� −∇ · [Vs cu k − D ∇cu ], (8)

where k is a unit vector pointing upwards andD is the diffusivity,
approximated as isotropic, by assumption 7) (see Supplementary
Appendix SA for more details). By assumption 1), we have a
steady state, so that (8) implies

Vs cu k − D ∇cu � const., (9)

where k is a unit vector pointing upwards. Imposing a no flux
condition at the upper boundary (flat for simplicity, assumption
viii) requires (Vs cu k − D ∇cu) · k � 0 on z � h, so that
Equation 9 becomes

dcu
dz

� Vs

D
cu , (10)

which integrates to

cu � k1 e
z
lp , (11)

where we have defined a characteristic phototactic accumulation
lengthscale lp � D

Vs
, and where k1 is a constant. To find the latter,

we use the fact that the average background concentration is
given by �cu, that is, taking z � 0 at the bottom of the upper region
and z � hu at its top, �cu � 1

hu
∫hu

0
cudz. Thus, integrating Equation

11 gives k1 � �cu (e hu/lp − 1)−1 hu/lp, so that finally the
distribution in the upper region is given by

cu(z, t) � �cu(t) hu
lp

e
z
lp

e
hu
lp − 1

, (12)

where that the mean concentration as a function of time, �cu(t), is
provided by Equation 4c.

3 RESULTS

3.1 Initial Condition for the Lower Region
Prior to considering the effect of light on a suspension of C.
reinhardtii placed in the cuvette, we will consider the initial
condition of the suspension in the lower reservoir region,
which will be the same starting point for all subsequent
experiments. With the blue LED light off, microalgae were

TABLE 1 | Essential model parameters for the mesh + beads case. Values were obtained from direct measurements of our experimental system or literature values for the
swimming parameter of C. reinhardtii grown under identical conditions.

Parameter Symbol Units Value References

Mean swimming speed of C. reinhardtii Vs cm/s 80 × 10−4 [38]
Rotational diffusivity of C. reinhardtii DR s−1 0.4 [38]
Effective diffusivity of C. reinhardtii D � V2

s
DR

cm2/s 1.6 × 104 [38]

Mean free path in porous layer λ cm 125 × 10−4 This work
Collision time in porous layer τc � λ

Vs
s 1.56 This work

Residence time at obstacle in porous layer τR s 1 [32]
Mean run time τ � τc + τR s 2.56 [32]
Mean distance on obstacles lobs cm 30 × 10−4 [32]

Lower reservoir region height hl cm 0.212 This work
Porous region height hp cm 0.378 This work
Upper harvest region height hu cm 0.422 This work
Initial mean concentration of suspension in the lower region �c0l cells cm−3 1.20 × 106 This work

Initial mean concentration of suspension in the porous region �c0p cells cm−3 1.18 × 106 (�c0p � �c0u) This work

Initial mean concentration of suspension in the upper region �c0u cells cm−3 1.18 × 106 This work

Phototactic lengthscale lp � D
Vs

cm 0.02 This work

Upswimming rate 1 α � Vs
hl

s−1 3.8 × 10−3 This work

Upswimming rate 2 β � Vs
hp

s−1 2.12 × 10−2 This work

Upswimming rate 3 γ � Veff
hp

s−1 1.60 × 10−2 This work

Upswimming rate 4 δ � Veff
hu

s−1 1.43 × 10−2 This work
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mixed into the cuvette and the suspension was allowed to stabilize
in the presence of only red illumination from the side (see
Figure 1A), which does not elicit a phototactic response
(Supplementary Video S1) [3, 40]. The suspension images and
profiles are shown as a time-series in Figure 2: over a few
minutes, the suspension (initial concentration
∼ 1 million/mL) settles into a distribution where the majority
of cells reside at the bottom of the cuvette; a steady distribution is
observable beyond 4 min. The gradient in concentration already
visible for the concentration profile at t � 0 is due to a lag in
transferring the cuvette to the imaging setup after mixing: some
settling has already occurred at the first instance of imaging. The
steady distribution observed beyond 4 min would, for other
species of gyrotactic swimming algae such as Chlamydomonas
augustae [2], also display features known as “bottom-standing
plumes” (see also Figure 1A in [7]). For C. reinhardtii, however,
the bottom-standing plume structures are not discernible in the
images of the cuvette (though plumes can be seen to descend from
its sides, see Supplementary Video S1), though they can be seen in
a larger container (see Supplementary Figure S3). It is possible
that, for this species, the cuvette width is too narrow to give rise to
central bottom-standing plume structures.

3.2 Free Surface: Bulk Photogyrotactic
Instabilities
We consider here the effect of light on a suspension of microalgae
in a cuvette when the surface of the suspension is free (the metal
mesh applied in the next section has been raised above the
surface). This experimental scenario can be seen in
Supplementary Video S2, stills of which are shown as the
sequence in Figure 3. Initially the blue LED illumination is
switched off and the suspension is distributed with the
majority of cells at the bottom, as described in the previous
section. Then the LED is switched on, and the cells in suspension
phototactically respond to the light, migrating upwards toward

the surface (Figure 3, t � 3 min). Concomitantly, instabilities
arise throughout the suspension, resulting in meandering
plumes (Figure 3, t � 3 − 5 min). These are of photogyrotactic
origin, as discussed below. In the span of ∼ 6 minutes
phototactic migration appears to have delivered many
swimmers to the surface, leaving the bulk of the suspension
depleted. This surface accumulation is gravitationally unstable
because of the negative buoyancy of surface-accumulated cells: it
results in the formation of a plume instability seen to originate
from the middle of the meniscus of the suspension surface
(Figure 3, t � 9 min). The plume structure wiggles around but
once formed, is dynamically stable (Figure 3, t � 18 min),
delivering cells to the bottom of the container. Once they
reach this, the microalgae migrate back up to the surface to
join the plume, and so forth. When the light is switched off
(Figure 3, t � LEDOff + 17 sec,+ 3, 6 min), the phototactic
migration toward the surface stops and the surface
accumulation sinks as a broader, non-meandering plume. This
takes the cells to the bottom of the cuvette, where they once more
settle into a distribution similar to the initial one.

3.3 Mesh: New Phototactic Structures
In this section we consider the case of a metal mesh immersed at
the top of the microalgal suspension. As described in the
methods, the pore size of the mesh is 350 μm, so individual
microalgae (∼ 5 μm in diameter) easily swim through it. A typical
experiment is shown in Supplementary Video S3, stills of which
are presented as a sequence in Figure 4A (top row). As for the free
surface case, blue LED illumination is initially off, and the
suspension is distributed with most cells at the bottom
(Figure 4A, first still). The LED is then switched on and
microalgae migrate upward in response to the light
(Figure 4A, t � 3 min). The response is broadly similar to the
free surface case, but there are some interesting differences. One
such striking difference is that the mesh creates a pattern of light
and shadow to which the microalgae visibly respond

FIGURE 2 | In the absence of phototactic illumination from above microalgae redistribute over the height of the cuvette. A steady distribution can be seen to arise
after 4 min.
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photogyrotactically, forming accumulations (‘phototactic
curtains’), see Figure 4C. The average width of phototactic
curtain feature is 630 ± 53 μm, nearly twice the mesh pore
size, showing that the curtains are not the result of shadowing
by the mesh, but genuine phototactic structures originating from
the response of the microalgae to the local light profile. As in the
case of a free surface, when the density of cells phototactically
accumulated at the surface becomes too high, a plume of dense
cells forms and sinks. However, viscous resistance caused by the
mesh pores prevents the plume from completely sinking beyond
the mesh, and instead a cloud-like plume structure is seen to be
trapped, hovering above the mesh (Figure 4A, t � 9, 18 min).
Not all the plume-cloud is trapped, negative buoyancy is
sufficient to cause some of it to escape through the mesh
forming a meandering secondary plume, similar in appearance
to the one observed in the free surface case (Figure 4A,
t � 9, 18 min). While the light is on, these structures appear
dynamically stable. As the light is switched off, however, the
curtains and cloud structure disperse, cells sink through the mesh,
and the escaped plume sinks down straight, again similarly to free
surface case (Figure 4A, t � LEDOff + 19 sec,+ 3, 6 min). This
emphasizes the stabilizing influence of phototaxis: none of the
observed structures could be possible in the absence of the light.
Both mesh and light are critical for supporting the plume-cloud.

3.4 Porous Layers: Stabilization of
Phototactic Structures and Concentration
Gain
We next turn to the case where a porous layer is placed on top of
the suspension. As described in the Methods, the porous layer
consists of glass beads overlaid onto a metal mesh (the same as
was used in the previous section). The beads are around 425 −
600 μm in diameter, which results in interparticle spacings
∼ 50 − 200 μm (from microscopic observation). Thus,
individual algae ∼ 5 μm in diameter can swim through the
porous layer. We studied the effect of light on suspensions of
microalgae overlaid with porous layers, quantified by the weight
of the beads placed on the mesh. A typical experiment with a layer
weighing 400 mg is shown in Supplementary Video S4, and stills
from this video are presented in Figure 4B. As in previous cases,

the LED light is initially off and the suspension is distributed with
the majority of cells at the bottom (Figure 4B, first still). When
the LED is switched on, the initial suspension dynamics are
similar to the mesh-only case (Figure 4B, t � 3 − 6 min),
displaying instabilities as the microalgae respond to the light
(but with no curtains visible). However, for this case, we were also
able to observe clusters of cells swimming upwards as waves in
response to the light, see Figure 5A for an example. Averaging
over five such waves, we found them to have a mean speed of
190 ± 60 μm/s. This is faster than mean swimming speed of
individual algal cells, 80 μm/s [38], possibly as a result of
advection by upwelling fluid in the lower region of the cuvette
generated by the photogyrotactic suspension dynamics. The large
deviation in the speed of the waves could also be due to the
interaction of the waves with other photogyrotactic structures
and up/downwelling flows in the suspension. Once cells have had
time to accumulate in the harvest region and on the surface of the
suspension, a plume-cloud structure originating at the low point
of the meniscus forms above the porous layer (Figure 4B,
t � 9, 18 min). The plume-cloud appears more diffuse than in
the mesh case. The time taken for the plume-cloud to arise in 10
out of 12 experiments used for the analysis is between 6 − 10 min
from when the LED light is switched on, as shown in
Supplementary Figure S4. Unlike the case of the mesh, the
plume does not leak through the porous layer into the
suspension: in the presence of light, the viscous resistance
offered by the porous layer is sufficient to stabilize the plume-
cloud. Instead of sinking the plume-cloud is observed to gradually
expand into the upper region. Figure 5B charts this expansion.
The lateral extent of the plume structure increases the most
between 7 and 9 min after the LED has been switched on,
when the plume begins to drop and propagate along the
porous layer. After that the plume-cloud achieves a steady
structure, probably as a result of balance between influx of
cells from the surface, where the plume originated at the low
point of the meniscus, and loss to the edges of the harvest region
(and resorption to the suspension surface by upswimming).

In view of quantifying microalgal concentration in the upper
harvest region above the mesh or the mesh + beads porous layer,
it is instructive to chart the evolution of the average concentration
of the suspension in this region (Supplementary Figure S2). To

FIGURE 3 | Free surface: photogyrotactic dynamics of a suspension of C. reinhardtiimicroalgae in a cuvette illuminated from the top by a blue LED, and dynamics
when the LED is switched off (last three stills).
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identify a porous layer thickness that would not leak into the
suspension below, we considered layers of several weights in trial
experiments presented in Supplementary Figure S5. We found a
general qualitative trend that was similar for all cases: the
concentration grows as the light is switched on, and then
saturates to a constant value. We focus here quantitatively on
the mesh-only case and the “minimally-leaky” mesh + beads
(400 mg) case, shown for three repeats in Figures 6A,B,
respectively. The averaged profiles are shown in Figure 6C.
This makes it clear that the concentration in the upper harvest
region of both the mesh and mesh + beads cases, following a dip
in concentration due to phototactic accumulation of cells to the
upper surface, grows after the LED is switched on and then tends
to saturate. The mesh case, however, saturates earlier, probably
because of losses to the lower region, such as the plume visible in
Figure 4A (9 min). Another interesting quantitative difference
between the two cases is the initial rate of concentration, which

appears slightly larger for the mesh case. This indicates the
concentration process is initially slower when a porous layer is
present, than in its absence. As discussed below using the essential
model, this makes sense in terms of the microalgae having to
make their way through the porous layer, which reduces the
swimming speed that sets the concentration rate. The difference
in swimming speed will also affect the average time it takes to
form the plume, which was measured to be 7.3 ± 0.6 min for the
mesh case, while it is 8.7 ± 1.5 min for mesh + beads
(Supplementary Figure S4). When the LED is switched off
(Figures 6A–C inset), the concentration in the upper harvest
region is seen to rise briefly before steadily falling. This is because,
with the light off, the concentrated algal suspension in the harvest
region no longer responds phototactically and cells accumulated
to the surface are released, sinking down as dense fluid. The
increase in concentration due to the cells coming off the surface
shows that our measurements likely underestimate the

FIGURE 4 |Microalgal suspension dynamics for the case of: (A) a mesh; (B)mesh + beads (400 mg) placed at the top of the suspension. The dynamics is similar,
but there are important differences. Significantly a cloud-like plume is completely trapped between the porous layer and top surface, while in the case of the mesh, it can
leak as a thin plume to the suspension below. (C) Phototactic “curtain” pattern formed by the accumulation of cells in response to the light and shadow pattern generated
by illumination falling on themesh. (D)Curve showing the concentration of algae across the phototactic curtains (mean feature width � 630 ± 53 μm)marked in (C).
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concentration in the upper harvest region because of cells
“hidden” at the surface. This could account, at least in part,
for discrepancies withmodel predictions discussed below. For our
setup, the time after switching the LED off is optimal for
harvesting the suspension, yielding a harvest concentration
≈ 5 million/mL (gain ≈ 4.2 compared to the initial
concentration) for the mesh + beads case, as compared to
≈ 4 million/mL cells for mesh-only (gain ≈ 3.6). This
highlights the advantage of concentrating using a porous layer.
The latter also slows down the rate at which the cells sink back
through to the lower region, which depends on the layer
thickness.

Also shown in Figure 6 are profiles charting the temporal
evolution of concentration in the lower reservoir region. As for
the upper region, we have measured triplicate repeat profiles for
the mesh (Figure 6D) and mesh + beads (Figure 6E), and also
evaluated averaged profiles (Figure 6F). We see that, after the
LED is switched on, the concentration for the mesh and mesh +
beads falls, as phototactic swimming into the upper regions
depletes the lower region of cells. However, the depletion
appears to saturate, and to a higher concentration in the case

of mesh-only, reflecting the greater leakiness of the mesh, as
discussed below. Insets in Figures 6D–F display how, with the
LED off, the concentration in the lower region rises due the influx
of cells sinking from the upper regions.

3.5 Essential Model Predictions
We have developed a simple model to capture the essential
features of the phototactic concentration dynamics, and
evaluate it here using parameters for C. reinhartii concentrated
using a mesh + beads setup, as shown in Table 1. In Figure 7A,
the model prediction using Equation 4c for the average
concentration of cells �cu(t) in the upper harvest region is
shown as a function of time (the concentration process starts
at time t � 0, “LED on”). Qualitatively, the predicted behaviour is
as in the experimental curves (Figure 6C), with the concentration
initially rising and then saturating. However, quantitatively, the
concentration values predicted by the essential model are much
larger than those seen experimentally. Indeed, using Equation 5
and the parameters in Table 1, the essential model predicts
saturation to a long-time concentration �c∞u � 8.2 × 106 cells/
ml. This is of the same order of magnitude as, but

FIGURE 5 | Photogyrotactic dynamics of swimming algae in the mesh + beads case. (A) Stills of the algal clusters in the lower region moving upwards as waves
with speed ∼ 180 μm/s. (B) Lateral expansion of the trapped algal plume-cloud formed in the upper harvest region. Its density is seen to increases over time as it
expands.
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approximately double what we observe experimentally
( ≈ 4 × 106 cells/ml). Part of the discrepancy is because, as
mentioned above, experimental concentration curves
underestimate the concentration in the upper reservoir
because of swimmers phototactically accumulated and ‘hidden’
at the surface. Another possible reason is that the essential model
unrealistically ignores mechanisms causing losses: as illustrated
by Equation 5, �c∞u corresponds to the concentration obtained
when all the swimmers from the porous and lower regions swim
to the upper region and do not leave it thereafter. In reality,
swimmer diffusion will cause cells to be transferred from the
upper to the porous region, particularly at longer times when
concentration gradients between the regions are large. Another
possibility not accounted for by the essential model is that, if
swimmers respond to gradients of light (as opposed to just its
direction, as assumed in the model), the denser suspension of
swimmers in the upper region shades the region below, changing
the light gradient and reducing the phototactic speed of
swimmers below, and thus the rate of accumulation.
Figure 7A also shows the model prediction for the
concentration in the upper region for the mesh-only case. As
in experiment, this is seen to initially rise steeper and saturate at a
lower value than the case of mesh + beads; numerically, however,

the predicted concentrations (�c∞u � 7.5 × 106 cells/ml) are
approximately double what we measured experimentally. This
is for the same reasons as for the mesh + beads case, and
additionally in the mesh-only case there are also losses due to
the plume leaking through the mesh, as we have shown
(Figure 4A, 9 min). The faster rise in concentration observed
for the mesh-only case compared to mesh + beads, is due to the
difference in upswimming rates in the two cases: for mesh +
beads, swimmers are slowed down when they swim through the
porous layer. The essential model also allows the prediction of the
concentrations in the porous and lower regions, respectively �cp(t)
and �cl(t), which are shown in Figure 7A. The lower region
concentration is seen to decay exponentially to zero, as swimmers
evacuate the lower region by phototactic upswimming. The lower
region decay predictions overlap for the mesh and mesh + beads
cases, so they are not separately visible in the figure (the
prediction equation is the same for these cases, and
parameters are practically identical). We can compare these
predictions with the experimentally determined
concentration profiles. As observed in the previous section,
these also decay with time, but not to zero: they saturate to a
fixed value (Figure 6F), with the mesh-only case reaching a
lower value than mesh + beads due to the greater leakiness of

FIGURE 6 | Temporal concentration profiles in the upper harvest region above a mesh or mesh + beads, after the LED is switched on and off (insets), as indicated.
(A) Three repeats for microalgae phototactically concentrating above the bare mesh. Inset: concentration rise and decay after the LED is switched off. (B)As in (A), but for
the mesh + beads (400 mg) case. (C) Time point average of the concentration profiles shown in (A, B). The concentration for the mesh-only case saturates ∼10 min after
the LED is switched on, whereas it keeps on increasing towards a higher saturation concentration in the mesh + beads case. When the LED is switched off, the
concentration initially increases and then decays, for the reasons discussed in the text. (D) Three repeats for profiles in the lower region for the mesh only case. Inset:
concentration rise after the LED is switched off. (E) As in (D) but for the mesh + beads case. (F) Time point average of the concentration profiles shown in (D, E). For the
mesh-only case the profile decays to a constant value sooner thanmesh + beads. The inset shows how the concentrations for both cases rise in the lower region after the
LED is switched off, with a greater rise for the more leaky mesh-only case.
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the mesh. The essential model fails to predict this saturation
and the important difference between the two cases,
demonstrating the need to model diffusive transfer and
leaking plumes between the regions, and/or a reduction of
the phototactic speed. For the porous region, the essential
model predicts that the concentration, �cp(t), initially rises,
due to influx from the lower region outpacing losses to the
upper region, and eventually decays to zero. It was not
possible to optically image the microalgae in the porous
region and obtain the concentration there, so we cannot
make a comparison with the essential model prediction in
this case.

Assuming phototaxis and diffusion processes are dominant in
the upper region, and that these occur faster than the
accumulation from the porous region, we can also use the
spatial extension of the essential model to chart the
distribution of swimming algae in the upper region, which is
provided by Equation 12. We note that, since this model does not
fully account for photogyrotaxis, the predictions are only strictly
valid prior to the formation of the plume off the upper surface,
which we know from experiment occurs ≈ 9 min after turning
the light on. In Figure 7B the distribution of swimmers is charted
at different points in time (prior to plume formation), predicting
that the suspension becomes increasingly top-heavy as time
progresses. This accumulation, with concentrations reaching
∼ 108 cells/ml close to the upper boundary, is unstable
against its own negative buoyancy, and eventually results in
the formation of the plume we observe experimentally. As it is
not possible to accurately image the accumulation of cells around
the meniscus, we did not experimentally quantify the spatial
concentration distribution in the upper region. However, the
increasing accumulation of swimmers at the surface is clearly
discernible in our image sequences, see Supplementary Video S4.
The model predicts that the cells accumulate strongly at the top of
the upper region, with no sizeable concentration below a certain
height. Instead, our image sequences reveal that there is also a
nonzero concentration in the bottom of the upper region (indeed

that is what we have measured to obtain Figures 6A–C). This
could be accounted for by losses from the accumulation at the
surface to the edge of the cuvette, which are not considered in
our model.

4 DISCUSSION

We have shown how light from above can trigger instabilities and
upwards migration in an initially quiescent suspension of C.
reinhardtii microalgae within a rectangular cuvette. By imaging,
we qualitatively and quantitatively studied for the first time this
migration in the following cases: when a permeable metal mesh is
placed at the top of the suspension; when porous layers of beads
are overlaid onto the mesh; in the absence of any mesh or layer on
the surface. In the latter case, light was seen to drive
photogyroactic instabilities in the bulk of the suspension and
upwards migration of the cells to the surface, from which,
eventually, a plume structure was seen to arise. A similar
phenomenology was observed when a mesh was present,
except in this case the plume from the surface was partially
trapped by the mesh, later giving rise to a secondary plume. By
trapping the plume, the mesh allows the concentration of cells in
the upper region of the cuvette (also termed “harvest region”), but
this is a leaky process. However, when a porous layer of glass
beads is overlaid onto the mesh, it is possible to stably concentrate
the suspension in the upper harvest region while the light is
switched on: the plume from the surface is trapped with minimal
leakage. We have charted how the mean concentration in the
harvest region varies with time for the case of a mesh with a layer
of beads of different weights (thicknesses), showing that a
≈ 4-fold concentration is possible for the thickest layer
weighing 400 mg (Figure 6C). Critically, we have
demonstrated that it is the unique combination of light and a
moderately thick porous layer of beads that makes the
photogyrotactic concentration of cells possible. Without the
beads the accumulation of microalgae in the harvest region is

FIGURE 7 | Predictions of the essential model. (A) Average concentrations as a function of time since ‘LED on’ at t � 0 in the upper, porous, and lower regions for
the mesh + beads case, and upper and lower regions for the mesh-only case. For both cases, phototactic concentration causes the lower region to evacuate and the
upper region to fill up with swimmers, up to amaximum limit, as discussed in the text. For clarity, this limit, shown as a dotted line for the mesh + beads case, is not shown
for the mesh-only case. (B) Spatial swimmer concentration profiles in the upper region at different times, as shown. The suspension becomes increasingly top-
heavy. The plot starts at z � 0.2 cm to make the profiles more evident (the concentration predicted below this level is 0 cells/ml).
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leaky. When the light is switched off, all photogyrotactic
structures fall apart, and the microalgal population sinks back
down to the initial quiescent state.

We can discuss our findings in terms of what is known about
the phototactic and photogyrotactic behaviour of microalgal
suspensions. When the LED is switched on, the suspension
responds visibly in seconds, similarly to what has been
measured for populations responding to light from an optical
fibre [23], and corresponding to the time scale for C. reinhardtii
to perceive light and turn to swim towards it by controlling their
flagellar beat [24]. Subsequent to this initial response, the
suspension displays instabilities in cell concentration and flow.
Some groups of cells rise, moving as waves drifting at the
swimming speed of the algae or above, probably advected by
upwelling flow; others form stretching plumes; others still sink.
This complex behaviour is the result of the interplay of the
phototaxis and gyrotaxis of the population, coupled with the
fluid dynamics of a negatively buoyant suspension. In the absence
of a full photogyrotactic model, whose development is beyond the
scope of this paper, it is not possible to account for these observed
patterns quantitatively. A lower bound estimate of the timescale
for accumulation to the surface leading to the formation of a
plume there can, however, be obtained by considering the time
for cells to swim straight up to the surface at the maximum
phototactic speed. For the mesh + beads (400 mg) case, the mean
swimming speed of the microalgae in the lower and upper
regions, with heights hl and hu, respectively, is Vs, while it is
Veff, as given by Equation 2, in the porous region with height hp.
The time to reach the surface is then
t ∼ (hl + hu)/Vs + hp/Veff ≈ 6 min, using parameters in
Table 1. For the mesh-only case, there is no porous layer so
that tm ∼ (hl + hu)/Vs ≈ 5 min, using parameters in
Supplementary Table S2. These values are not too far from the
∼9 (7) min it takes for a plume instability to develop from the
surface in the mesh + beads (mesh) cases (Supplementary Figure
S4). This suggests, as is clear from our concentration data in the
harvest region (Figure 6), that, in spite of the instabilities
observed, phototaxis drives a net flux of cells upwards through
the porous layer towards the harvest region, where cells
accumulate at the surface. Here they distribute, with
maximum concentration at the surface. The concentration
becomes increasingly top-heavy (as predicted by our essential
model, see Figure 7B) and eventually a plume instability develops
driven by the negative buoyancy of the suspension. The plume
then drops towards the porous layer, but its negative buoyancy is
not great enough to sink through it. Instead, the plume is trapped
in the harvest region forming a toroidal “plume-cloud” fed from
the surface, whose size expands with time to the edge of the
harvest region (see Figure 5B). Here it appears to stabilize,
possibly due to a balance between cell gain from the surface and
loss to the suspension at the edges of the cuvette. The surface
accumulation and plume-cloud, and all the structures in the
lower region, collapse within a few seconds of switching the
LED light off. In particular, the concentrated suspension in the
harvest region sinks right through the porous layer, though this
takes some time for the thick (400 mg) mesh + bead layer. This
collapse of the suspension structures demonstrates the essential

role of phototaxis in dramatically altering the stability
thresholds of the active suspension: none of the structures
we have observed can exist without light.

Our essential model provides a qualitative picture of how the
average concentration changes in the upper, porous and lower
regions, and gives concentration values which agree in order of
magnitude with what we have measured. Comparison with
experiment, however, reveals that the model fails to
quantitatively describe the saturation of the upper and lower
concentrations. This in part because our measurements in the
upper region underestimate the concentration (missing cells
accumulated at the surface). However, as evidenced by the
failure of the model to predict saturation in the lower region
(compare Figures 6D, 7A), it is likely that quantitative agreement
is not possible because critical processes have not been modelled,
such as diffusive exchanges between reservoirs and/or shading
effects of the cell concentration in the upper region on the
phototactic speed. For the upper region, the model was
applied to predict a top-heavy distribution of cells, as is
observed in our image sequences. The model, however, does
not reproduce the concentration of cells visible in the bottom part
of the upper region, probably due to a neglect of losses from the
surface accumulation at the edge of the cuvette. The model is
further limited to the description of the phototactic concentration
prior to the formation of the plume-cloud, whose quantitative
dynamics require a fully photogyrotactic description. Future
studies should develop such a description using continuum
models coupling the suspension cell and flow dynamics in
response to gravity, flow and light, as has been done by
Williams and Bees to describe bioconvection patterns [26].
This will present some challenges. For example, it is as yet
unclear which model of the phototactic response of a
population agrees quantitatively with experiment. Williams
and Bees did not test their model C against experiment [29],
and other studies using a similar description to model C did not
include gyrotaxis [23, 28]. Alternatively, the adaptive,
microscopic model of photoaxis presented in [24] could be
used as the basis of an agent-based model (ABM) of the
population response, and integrated with known gyrotactic
responses implemented in ABMs [41], and coupled to the
fluid dynamics (another challenge for ABMs). Numerical and
analytical predictions from such models will predict the spatio-
temporal patterns in the suspension, including the meandering
photogyrotactic plumes, the formation of propagating waves of
cells and their concentration in the phototactic curtain structures
we have observed. To describe the latter, accounting for the
observed width of the curtain pattern, it will be necessary to
develop a model coupling the local light profile (optical
shadows from the mesh) to the photogyrotactic dynamics.
Photogyrotactic models should be developed for the lower,
porous and upper regions combined, and should be able
predict the characteristic timescales we have observed, such
as the time required for plumes to form off the upper surface
(Supplementary Figure S4). Such models will also describe how
the plume-cloud in the harvest region grows with time,
accounting for the curvature in the meniscus (neglected in
our essential model) and how this affects the plume formation.
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Observation indicates that the plume forms in the lowest point
of the meniscus, likely because cells accumulate there.
Advanced modelling should also predict how long the mesh
or porous layer is able to support the plume against sinking
when the LED is on, and how long it takes to sink through the
layer when the LED is switched off.

A full account of photogyrotactic dynamics will permit
inclusion of processes (such as diffusion and light shading
affecting phototactic speed) not included in our essential
model. Predictions from these improved photogyrotactic
models for the concentration in the upper, porous and lower
regions, should provide better agreement with the results shown
in Figure 6. In particular, it will be interesting to use these refined
models to establish the parameters that determine optimal
conditions for harvesting microalgae in the upper region.
From a practical perspective it is desirable to obtain the largest
possible volume of suspension with the highest concentration
gain for a given initial mean concentration and critical
parameters, such as the height of the lower, porous and upper
harvest regions, and the total duration of the concentration
process. In addition, it will be desirable to know how strong
the light intensity should be for optimal phototactic
concentration. This is a parameter which was held fixed in the
present study.

Harvesting contributes a significant amount (about 20–30%
[36]) of the cost for processing microalgae and bioproducts
derived from them. New methods are required to reduces this
cost and replace energy-intensive solutions such as
centrifugation. In many applications, a concentration factor of
100 upon harvesting is desirable to remove water and allow
further bioprocessing of microalgae [36]. Investigations
following our study should determine if such a concentration
gain, improving on the four-fold gain we have demonstrated, can
be achieved using photogyrotaxis alone. Alternatively,
photogyrotactic concentration could already be viable as a
preliminary concentration step, as is currently done by
membrane filtration [42], reducing the time spent on more
costly concentration methods, such as centrifugation.
Following a demonstration at the milliliter (‘cuvette’) scale, it
is worth investigating if photogyrotactic concentration can be
scaled up, and if it can be an energy-efficient (using inexpensive
LED or natural light, and exploiting natural swimming energy for
concentration), and convenient method of value in industrial
microalgal bioprocessing and harvesting. Indeed, for industrially-
valuable swimming microalgae, exploiting swimming in response
to light, as we have here explored, has not been considered as the
basis for an efficient new harvesting method. Dunaliella salina, a
marine relative of C. reinhardtii, is cultured in ponds that are
maximum 20 cm deep to allow light penetration for growth [43].
It is known that this microalga can be concentrated when a layer
of freshwater is produced, artificially or by rain, at the surface of
the pond [43]. The freshwater generates a gradient in the density
of the suspension medium, which acts similarly to the porous
layer in our study and causes the microalgae to become trapped in
the freshwater layer at the surface [44]. The role of photogyrotaxis
in this industrially well-known concentration process [43] has not
yet been investigated. However, taking into consideration the

concentration physics we have uncovered in this study, it could be
optimized to produce better microalgal yields from culture ponds.
Density gradients cannot be exploited for freshwater microalgae
(an aqueous suspending medium less dense than water is not
easily found), which require a porous layer to be concentrated by
upswimming. In this case, the use of glass beads for the porous
layer, as in this study, represents an improvement over Kessler’s
original suggestion of a fibrous porous layer [35], which, from
experience with gravitactic concentration using cotton wool [13,
14, 45], is known to be liable to irreversible cell loss to the fibers
(biofouling).

Finally, it is worth remembering that C. reinhardtii is a soil-
dwelling microalga. Little is known about its ecology within
soils [46], but we can speculate that in saturated soils C.
reinhardtii may migrate across porous layers in response to
daylight. Thus, the phenomenology we have uncovered in this
work and the methods we have developed can be adapted to
better understand the behaviour of C. reinhardtii and similar
species in their natural environments. It will be very interesting
in future studies to investigate the phototactic movements of C.
reinhardtii in laboratory soil-like porous media, and how this
social behaviour affects its photosynthetic growth in topsoil, as
well as more “traditional” social behaviours, such as sex [46]
and interactions with other soil microbes [47, 48].
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Toward Task Capable Active Matter:
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Confined Collectives via Collisions
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Social organisms which construct nests consisting of tunnels and chambers necessarily
navigate confined and crowded conditions. Unlike low density collectives like bird flocks
and insect swarms in which hydrodynamic and statistical phenomena dominate, the
physics of glasses and supercooled fluids is important to understand clogging behaviors in
high density collectives. Our previous work revealed that fire ants flowing in confined
tunnels utilize diverse behaviors like unequal workload distributions, spontaneous direction
reversals and limited interaction times to mitigate clogging and jamming and thus maintain
functional flow; implementation of similar rules in a small robophysical swarm led to high
performance through spontaneous dissolution of clogs and clusters. However, how the
insects learn such behaviors and how we can develop “task capable” active matter in such
regimes remains a challenge in part because interaction dynamics are dominated by local,
potentially time-consuming collisions and no single agent can survey and guide the entire
collective. Here, hypothesizing that effective flow and clog mitigation could be generated
purely by collisional learning dynamics, we challenged small groups of robots to transport
pellets through a narrow tunnel, and allowed them to modify their excavation probabilities
over time. Robots began excavation with equal probabilities to excavate and without
probability modification, clogs and clusters were common. Allowing the robots to perform
a “reversal” and exit the tunnel when they encountered another robot which prevented
forward progress improved performance. When robots were allowed to change their
reversal probabilities via both a collision and a self-measured (and noisy) estimate of tunnel
length, unequal workload distributions comparable to our previous work emerged and
excavation performance improved. Our robophysical study of an excavating swarm shows
that despite the seeming complexity and difficulty of the task, simple learning rules can
mitigate or leverage unavoidable features in task capable dense active matter, leading to
hypotheses for dense biological and robotic swarms.

Keywords: collision-based interaction, collective behavior, multi-robot excavation, swarm robotics, decentralized
learning, ant-inspired learning, active matter, confined and crowded conditions
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1 INTRODUCTION

Active matter systems, ensembles of driven “agents”, are of much
interest in physics for their rich phenomena, which often feature
formation of spatially extended structures such as those observed in
flocking [1, 2], motility-induced-phase-separation [3–5], giant
number fluctuations [6–8] and more [6, 9]. Active systems in
confined environments (like within narrow channels) are
interesting as structures that form due to collisions and
constrained maneuverability in this regime [10–13] decay slowly in
time, displaying glassy/supercooled features [11]. Such slow relaxation
can lead to deleterious performance of an active system which must
perform a “task” (like a group of ants, termites creating tunnels or
humans rushing through narrow doors). General physics principles
which could allow such active systems to become “task capable” are
less understood as the bulk active matter physics focuses on flow and
structures that emerge from relatively simple rules among individuals.

Mitigating structure formation in confined systems likely
necessitates agents change behavior (“rules”) in response to
conditions and via interactions with other agents. Studies of such
systems are typically the domain of swarm engineering where
researchers seek to understand the functional benefits of structure
formation. For example, engineers seek to have robot teams achieve
goals such as getting aerial swarms to create formations [14] or
planar collections of robots to arrange in different patterns [15].
Generically, swarm control schemes may modify a steady-state
property of the system such as cluster size [16], pattern
formation [17] and locomotion alignment [18]. Such schemes are
often represented as functional dependencies between variables, like
the orientation being the average of neighbor orientations [1] or the
speed decreasing with local particle density [5].

Unfortunately, most control schemes for swarms assume dilute
conditions and avoid collisions thus discovery of general principles for
task completion (like flow at high speed or low energetic cost) in
crowded confined conditions requires new insights in part because
real-time adjustment is particularly challenging without a central
controller, and with the limited sensing and computation we
imposed on the robots, all while dealing with physical noise from
their mechanics, jostling and collisions. As a result, conventional
planning and control methods that rely on precise or accurate
information of the surrounding may not be applicable to achieve
coordinated behavior and good traffic flow in such a setting. It is
instead useful to discover decentralized learning rules that rely on the
unavoidable features of these dense active systems–social and local
interactions–to reach effective traffic flow and task performance, under
evolving conditions. We wish to understand then broadly how such
structures formor dissolve in collectiveswhose agents possessmemory,
sensory feedback and even capability to learn over time.

Ants and termites are biological examples of dense and crowded
task oriented active systems, where various behaviors (i.e., control
schemes) have been naturally selected to aid task performance in such
regimes [19, 20] without central control. Ants, for example,
cooperatively create nests with complex subterranean networks
[21]. They employ no centralized controller or global information,
yet are able to excavate soil in dark, narrow and overpopulated
conditions [22, 23]. Their tasks usually involve manipulation of
soil particles or substrates, transport of bulk pellets through long

and narrow tunnels, as well as directed movement to and from their
nests [24]. Controlled lab experiments and numerical simulations
show that clustering and clogging are prevalent in these conditions
[11, 12], similar to “glassy arrests” in non-living active matter [25, 26].
This is due to individuals’ persistence in their goals, being unaware or
inconsiderate of others’, which may lead to clogs that are difficult to
resolve when working in narrow, quasi one-dimensional tunnels [12].

Previously we used robots as a robophysical model of the ant
tunneling system which facilitated testing of behavioral rules in a
controlled environment with noise and complexities of the real
physical world [12]. Using the robophysical model we
demonstrated how an active confined crowded robot collective
could mitigate structure formation (slowly dissolving clogs and
jams) via being “lazy” and “giving up”. That is, manipulations of
workload distribution in this robophysicalmodel collective rationalized
our observations of biological ants’ strategy unequal workload
distributions and probabilistic yielding to oncoming traffic (termed
“reversals”) demonstrating the importance and utilty of such rules for
maintaining optimal tunnel flow. However, we had to program the
behaviors in the robots; here we are interested to learn how robots can
adjust their behaviors to optimize their workload distributions and
retreat behaviors thus providing insight into biological collectives as
well as providing principles for robot swarms that must operate in
crowded, confined conditions.

Therefore to discover principles by which confined swarms can
learn to avoid clogging while performing a useful task (excavation),
purely via local information, social interactions and a noisy estimate of
their state, here we augment our robophysical swarm to investigate
hypotheses for how ant encounters can regulate [27–29] activity by
individually learning from collisions. We systematically study the
performance of the robots as we subject them to different protocols.
We show that clogging can indeed be mitigated, by some individuals
learning to “give up” and participate less in digging, where social
interactions such as inter-robot collisions and noisy estimates of tunnel
length serve as a means of reinforcement in our learning scheme. Our
learning scheme provides a robust response to changing conditions,
even when individuals acquire noisy or inaccurate information about
their environment (tunnel length). We expect that our robophysical
model and learning technique will provide guidance for biological
hypotheses, as well as inform the design of a robust coordination
technique for dense swarms in dynamic and evolving environments.
Our results provide an example of the richness of active matter
dynamics when the agents can use information to change state to
perform and learn to perform tasks.

2 METHODS

Our robots, modified from our previous study [12] are programmed
to execute autonomous behaviors independently such as navigation to
specific sections in the tunnel and excavation. They are equipped with
force sensitive grippers for pellet excavation, an outer shell with
capacitive sensing to detect and distinguish two types collisions -
robot-robot collisions and robot-wall collisions, as well as terminal
rods for charging and detecting the home area (Figure 1). The pellets
to be excavated are laid at the end of the tunnel are a cohesive granular
medium consisting of plastic shells housing loose rare-earth magnets.
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Since we are particularly interested in how coordinated group success
could be achieved only from physical interactions and local
observation of the environment, we do not allow direct robot-to-
robot communication or global information to the individuals in the
group; our robots rely purely on on-board sensors and make decision
based on local sensing and self-reinforcement.

2.1 Collective Task
Our task is a collective excavation scenario: a group of robots must
continuously excavate themodel granularmedia in a narrow (1.5 body
lengths) and confined tunnel, shown in Figure 1. As more pellets are
excavated, the tunnel “grows” or changes geometrically as the robots
perform their task. A robot starts by leaving the Home area and, using
vision, following the guiding trails to the digging area where the
cohesive pellets are located. During transit in the tunnel, the robot can
detect and distinguish collisions with other robots, as well as collisions
with the wall of the tunnel. By sensing a magnetic field, the robots can
also detect the pellets. After a successful attempt to excavate, a robot
heads home todrop the excavatedpellets into aDeposit bin placed on a
weighing scale.

Our goal is for the group to excavate as many pellets as possible
within a given time. An obvious solution is for the robots to remain
constantly active and try to excavate; however as we demonstrated in
[12] when all the robots are in such a mode and enter the tunnel
concurrently they spend much of their time resolving collisions as a

result of competition for space to maneuver and carryout their
activities. The resulting traffic jams have robots stuck or stalled due
to excessive stress from repeated collisions. This wasted time results in
degraded performance, to the extent that fewer robots in the tunnel
would excavate faster. The challenge is therefore to use the local
information available to individual robots to regulate the
congestion and improve group performance under such
physical constraints and hindrances. We derive our
inspiration from the social behavior of fire ants under
crowded and confined conditions [12], and our previous
robophysical-model excavation experiment [30], to develop
an adaptive learning rule that makes the robots decide when
to “give up” digging and when to “take a rest” in a way that
significantly improve the performance of the group.

2.2 Robot Controller
We adopt a finite state automaton model [31] which is a common
scheme used to control behavior-based robot activities with no
global knowledge. A state transition is triggered when a robot
senses some physical clues from the environment. Each sensor on
the robots has a specific trigger state that enables the robot to
transition into another state. Figure 2 shows the model of
individual robot’s controller. Each block contains a set of
states or sub-states that form a mode or behavior that the
robot exhibits. The states and sub-states are as described below:

FIGURE 1 | Experimental apparatus consisting of robots and a tunnel. (A)Components of an ant robot (two left images): Inertia Measurement Unit (IMU) sensor for
absolute orientation; Wheel encoders for localization via robot odometry/dead reckoning; Capacitive touch sensor shells for detecting collisions; Force sensitive resistors
for gripper tactile feedback, Magnetometer for detecting pellets and Digging Area; Pixy camera for tunnel navigation and localization; Terminal rod for charging and
detection of Home area. In the tunnel (rightmost image): Velostat sheets for lining the tunnel to distinguish robot-robot collision (copper-copper) from robot-wall
collision (copper-velostat); Granular media to simulate model cohesive soil excavated by ants (B) Schematic diagram of the confined tunnel: a robot starts from the Home
Area, decides whether to enter the tunnel and excavate some pellets, or decides to go to the Resting Bay to avoid interference at the tunnel entrance.
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1. Goto Dig: This state is triggered at the start of each trip when a
robot “decides” whether to dig based on their tunnel entrance
probabilities Pe(k).

2. Digging: This state is triggered when the robot is in proximity
to the granular media. The magnetometer at the base of the
robot detects the magnetic field of the granular media and
prompts the robot to start the excavation routine.

3. Exit Tunnel: The robot enters this state fromDigging when the
Force Sensitive Resistor (FSR) detects sufficient amount of
pellets in the gripper. The robot executes several turning
maneuvers to exit the digging area and head back home.

4. Goto Dump: This is the state that captures the robot heading
home after a successful pellet retrieval (Successful Trip) or
unsuccessful pellet retrieval (Unsuccessful Trip). The
controller drives the robot out of the tunnel and gets the
robot home to the deposit area.

5. Dumping: Robot releases the excavated pellets from its gripper
and dumps it in the “Deposit Bin” which is placed on a weighing
scale to measure the amount of pellets excavated over time.

6. Exit Home: Robot executes some turning maneuvers to exit
the deposit area and enters the tunnel to dig.

7. Collision: This state is triggered when a robot collides with
another robot or with the tunnel wall. The robot executes a set
of turning maneuvers in an attempt to resolve the collision.

8. Resting: Robot goes to this state at the beginning of a trip if the
entrance probability is sampled and the robot decides to rest. The
robot follows the guiding trail on the tunnel floor to navigate to the
resting area to take a rest and not participate in the tunnel traffic.

We developed a stochastic model with two parameters to
control the entrance rate and reversal rate (give-up rate) of the
robots so as to regulate tunnel traffic and improve group
performance. Let Pe(k) be the tunnel entrance probability and
Pr(k) be the reversal probability of each robot at trip attempt
number k. A trip begins when a robot samples from the entrance
probability, Pe(k) and decides whether to “go in and dig” or “stay

at home and rest”. This parameter controls the number of robots
in the tunnel which directly controls the tunnel density or
congestion rate. The reversal probability, Pr(k), on the other
hand controls how a robot responds to a collision when it occurs.
A robot samples from this parameter and decides if it should “give
up” or to continue its journey. With these two parameters, we
developed two protocols for studying the effects and performance
of fixed social behaviors [12] in multi-robot collective excavation.
We use these previously reported fixed behavior protocols [12] as
controls to test against the adaptive (learning) behaviors we
develop in the next section:

Active Protocol: In this protocol, we fix the tunnel entrance
probability Pe(k) to a value of one for each trip for each robot. The
reversal probability Pr(k) is set to zero, so the robots do not return
home until they are able to collect pellets. This ensures that all the
robots are active, trying to dig in the tunnel at all times.

Reversal Protocol: Here we set the reversal probability Pr(k)
for each robot to a value greater than zero but less than one, while
still keeping the entrance probability to one at all time. This
allows the robots to randomly “give up” trying to dig when they
collide with other robots in the tunnel.

2.3 Developing an Adaptive Protocol
To go beyond the above fixed behavior protocols and to gain insight
into useful social interactions of the confinedmulti-robot system, we
conducted a parameter sweep to find the optimal reversal
probabilities that yielded the highest excavation rate in a Cellular
Automata (CA) model developed in our previous work [12]; see
Supplementary Section for detailed description of the model.
Figure 3A shows the range of excavation rates for varying
reversal probability as the tunnel length increases. A closer look
at the region with highest excavation rates suggests a non-linear
inverse relationship between optimal reversal probabilities and
tunnel length. In particular, the optimal probability values drop
sharply for short tunnels (less than 5BL) and more gradually for
longer tunnels. This gives us inspiration to develop an Adaptive

FIGURE 2 | Block diagram for the individual robot controller. State transitions are event-based. Pe: probability of tunnel entry (or go to dig). Pe′: probability of resting
(or staying at home). Pr: probability of “giving up” after colliding with another robot in the tunnel. Pr′: probability of continuing to dig after colliding with anther robot.
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Reversal probability function, Pr(ΔL), that decreases sub-linearly as
the tunnel length grows (Figure 3B and Eq. 1 below).

Additionally, ant excavation studies and CA model analysis
reveal that an asymmetric or unequal workload distribution
improves excavation performance in confined conditions [12, 24].
To attempt to incorporate this principle/strategy in our robophysical
system, we develop a self-reinforcement protocol where we model
the digging desire of individual robots with a probability Pe, called
the “tunnel entrance probability”, and update its value based on if a
digging attempt performed by a robot was successful (increase Pe by
a constant), or unsuccessful (decrease Pe by a constant). Preliminary
results showed that this protocol consistently produced an unequal
workload distribution with better excavation performance than the
Reversal protocol in long tunnels (~10BL). However, this was not the
case for short tunnels. Unequal workload strategy did not perform
better when the tunnel was short (< 4BL). To account for this
phenomenon, we crafted an adaptive “update value” function, ΔPe,
(Figure 3C and Eq. 2 below, which has a small update value when
the tunnel is short. We call this the Adaptive Protocol. That is, our
adaptive protocol modifies the digging desire of individual robots by
using egocentric estimates of the change in tunnel length to update
individuals’ entrance probability values.

Intuitively, the Adaptive protocol (via Eqs 1, 2) suggest that the
cost of “giving up” due to collisions (high density) at longer tunnels is
substantial, and the strategy to minimize congestion is by deploying
fewer workers to dig, or equivalently, more workers to rest. That is,
long-duration clogging is more likely to occur in longer tunnels than
in short tunnels due to the cascaded effects of multi-body collisions

propagated as the robots or ants flow into the tunnel simultaneously.
Our adaptive protocol addresses this issue by having the robots
modify their entrance probabilities slowly first at the initial stage of
digging, then more rapidly at the later stage (Eq. 2). ξ is a parameter
added to ensure that a resting robot does not remain in restingmode
indefinitely (i.e. that Pe does not go to zero) allowing robots to
explore their environment, update their estimates of the change in
tunnel length, and modify their behaviors if necessary.

Pr ΔL( ) � α

�������
L0

L0 + ΔL

√
(1)

Pe k,ΔL( ) �
Pe k − 1( ) + ηΔPe ΔL( ) if successful trip
Pe k − 1( ) − ηΔPe ΔL( ) if unsuccessful trip
Pe k − 1( ) + ξ otherwise resting( )

⎧⎪⎨⎪⎩
(2)

where:

ΔPe(ΔL) � entrance probability update value
L0 � initial tunnel length (in robot body lengths)
ΔL � change in tunnel length
ξ � noise or exploration term
α � normalizing constant for reversal probability
η � normalizing constant for tunnel entrance update

and ΔPe(ΔL) � ( ΔL
L0+ΔL)2.

The power law expressions of Eqs 1, 2 are simple forms that yield
the desired behaviors, i.e. rapid change in the reversal andupdate values

FIGURE 3 | Probability sweep over tunnel length with selected equation models. (A) Reversal probability sweep vs. Tunnel length. Plot shows that high to medium
reversal probabilities give the highest excavation rate for short tunnels, while low reversal probabilities give the highest excavation rates for long tunnels (B) Selected
equation for modelling Reversal probabilities as a function of tunnel length for multi-robot experiments (C) Learning update value for Entrance probabilities as a function of
tunnel length for multi-robot experiments.
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at short tunnels and slow/gradual change at long tunnels (Figures
3B,C). Other power law exponents can also be used and will likely
result in various degrees of performance gains, as long as the exponent
is < 1 for the reversal probability and > 1 for entrance probability
update.Eq. 2 takes a positive sign if the robot is able to get pellets home
(successful trip), otherwise it takes a negative sign (unsuccessful trip).

Each time a robot reaches the digging area and excavate pellets, it
updates its estimate of the change in tunnel length, ΔL as follows:

L k( ) � L k − 1( ) + γ L k( )′ − L k − 1( )( ) (3)
ΔL � L k( ) − L0 (4)

where:

L(k)′ � newmeasurement of the tunnel length, derived from robot odometry(or dead − reckoning) using the wheel encoder readings.
L(k) � estimate of the tunnel length, averaged over old and newmeasurements.

L(k − 1) � updated value of the tunnel length during the last successful trip
γ � the weighting parameter or learning rate.

A new measurement of the tunnel length, L(k)′, is computed
when a robot successfully reaches the digging site and excavates
pellets. At this time, the tunnel length is derived from the
x-component of the robot’s location as computed by the robot
odometry [32]. The robots use the kinematic model of a differential
drive mobile robot based on wheel encoder counts to estimate their
absolute displacements in the tunnel. The derivation is provided in
the Supplemental Section. Eq. 3 above is an exponential moving
average formula that acts as a filter for the estimate of the tunnel
length which is used to compute Pr and Pe. It has an important
application of reducing noise in a robot’s estimate of the tunnel
length which might occur when the robots are in multiple collisions.
We chose our value of γ to be 0.9 which results in good performance
for our experiments. Each robot maintains a separate copy of the
equations and updates Pe(k), Pr(k) and ΔL asynchronously
according to Algorithm 1 described below.

Algorithm 1: Adaptive Learning Rule Pseudocode.

The complexity of Algorithm 1 is proportional to the total
number of states, S, that the robot visits during an excavation trip.
This is denoted as O(S) using the big-O notation. The best-case
scenario occurs when the robot does not encounter any collisions
but travels from the home area to the digging site and back with
pellets. This is likely to occur when there are a few robots in the
tunnel and the time to complete a trip (i.e., one pass of the
algorithm) is relatively short. On the other hand, the worst-case
scenario occurs when the robot encounters and handles collisions
in all the states, since collision handling is considered an
“intermediate” state (see Figure 2). In either case, the
amortized run time complexity of the algorithm is O(1) since
the number of possible states is bounded and does not depend on
any input. Similarly, the space complexity is O(1) since the
memory space is fixed and does not grow or depend on any input.

3 EXPERIMENT

We implemented the Adaptive protocol on our physical robots to
compare its performance with the Active and Reversal protocols.
Unlike in our previous robophysical experiments [12] in which
tunnel length and digging probabilities did not change during
excavation, here we conducted experiments in which the tunnel
increased in length as the robots excavated the granular media
(pellets). This both better models growth of tunnels in biological
collective excavation [12, 21, 24] and demonstrates how our
learning scheme can adapt to dynamic and non-stationary
environments. Figure 4 shows three snapshots of the robot
experiment setup.

Because of limitations in the robot’s excavation performance per
trip, we conducted experiments in the following scheme: initially, the
granularmedia was positioned at one body length in the tunnel (L0 =
1). To model a tunnel increasing in length, the pellets were moved
backwards incrementally by one body-length each time the robots
made a cumulative deposit increment of 300 g (a camera positioned
above a weighing scale recorded the weight of total pellets excavated
by the robots). The robots can estimate the tunnel length with a
calculation of distance traveled as reported by their wheel encoders
(Figure 1), and update their reversal and entrance probabilities
according to Eqs 1, 2 respectively.

At the start of each trial and for each protocol, the entrance
probability of the individual robot is set to 1. This ensures that all
robots are active and will thus interact with the environment. For the
Active and Reversal protocols, the entrance probability remains fixed
throughout the duration of the experiment, while for the Adaptive
protocol, the entrance probability changes approximately as the inverse
square of the tunnel length (Eq. 2). This update rule ensures that the
robots become less active as the tunnel length increases. Hence, the
workload should go from equal to unequal. The η parameter is chosen
to ensure that unsuccessful robots decide to rest more often when the
tunnel is long, so as to not hinder the performance of the robots that
can reach the digging area. If a robot samples from the entrance
probability and decides to rest, it navigates to the Resting area and rests
for 1minute.When the resting time is over, the robot samples from the
entrance probability again to determine if it should continue to rest or
to re-enter the tunnel to dig (Figure 2).
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For the Reversal protocol, a fixed reversal probability of 0.8 was
used for all the robots in all trials. Prior multi-robot experiments
demonstrated that such a high reversal probability regulated
congestion better than a lower value. For the Adaptive protocol,
however, it is desired that the reversal probability drops rapidly for

tunnels less than 5BL and saturates quickly for tunnels greater than
5BL. The value of the α parameter–which controls the maximum
and minimum values of the reversal probability for the robot
experiment–is set to 0.6 which is within the range of values
suggested by the parameter sweep plot of Figure 3A.

FIGURE 4 | Three snapshots of the top view of multi-robot excavation experiments. (A) Pellets at one body-length (1BL) of the tunnel which is the initial position of
the pellets at the beginning of each trial, (B) pellets at five body-length (5BL) of the tunnel after robots have excavated 1200 g of pellets, (C) pellets at ten body-length
(10BL) of the tunnel after robots have excavated 2700 g of pellets.

FIGURE 5 | Estimated tunnel length, L(k), Reversal probability, Pr, and Entrance probability, Pe over time for individual robots based on Adaptive rule. Dashed
colored lines represent robot A (red), robot B (blue), and robot C (yellow). Solid black line represents actual tunnel length measurement (A) Plot shows how individual
robots track the actual growing tunnel, based on dead-reckoningmethod and exponential moving average formula described inEq. 3. (B) Reversal probability values for
individual robots as a function of time. These curves closely match the curve described in Figure 3B (C) Plot of the entrance probability values over time. This shows
how robots initially started off with equal digging “desires” and gradually become unequal “desires” as the tunnel length grows.
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FIGURE 6 | Excavated Pellets vs. Time for three different protocols. Active protocol: all robots have an entrance probability of 1.0 but a reversal probability of 0;
Reversal protocol: all robots have an entrance probability of 1.0 and reversal probability of 0.8; Adaptive rule: entrance probability is a function of inverse square of tunnel
length, while reversal probability is a function of inverse square-root of tunnel length. (A) Individual trial comparison of excavation experiments (B)Mean excavated pellets,
shaded areas correspond to standard deviation from three experiments.

FIGURE 7 | Experimental space-time overlap heat maps of robot positions along the tunnel (x-axis) measured in body-lengths (BL). Y-axis is the time duration of the
experiment in minutes. White straight lines show how fast the tunnel grows which depends on the running protocol in the robots. Robots start from the Home area (right
side) and transit to the Digging area (left side) continuously while excavating the pellets.
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4 RESULTS

In our robot collectives, we implemented the three different
protocols and ran three trials for each protocol. Each trial was
conducted for 3 h; this duration is set by the capacity on the
power-pack of the robots and ensures sensors and actuators are
running effectively. The results of these trials are summarized in
Figures 6–9.

Figure 5 shows the estimated tunnel length, L(k), reversal
probabilities, Pr, and entrance probabilities, Pe, for individual
robots based on Algorithm 1. Figure 5A is the plot of L(k) vs. time
which the robots use to estimate the change in tunnel length, ΔL,
according to Eqs 3, 4. Since new estimates of tunnel length, L(k)′,
are derived from the x-component of an individual robot’s
odometry, it is important to note that wheel slippage can
occur when a robot is simultaneously turning and undergoing
a collision. This will likely introduce noise in the estimate of the
tunnel length, as shown by the fluctuations in the plots of
Figure 5A. However, the moving average formula of Eq. 3
will ensure its effect is minimized. In addition, the
propagation of noisy measurements is minimized by having
the robots reset their odometry measurements at the
beginning of each trip, i.e. just before a robot re-enters the
tunnel. Figure 5B shows that the reversal probability tracks
the desired power law expression of Eq. 1 and Figure 3B.
Figure 5C illustrates how the Pe or “digging desires” of each
robot changes from equal to unequal as a function of time, or
equivalently, change in tunnel length.

Figure 6 shows a comparison of the cumulative amount of
pellets deposited for the three protocols. Figure 6A illustrates that
the individual trials with the Adaptive rule yield the highest
number of pellet deposits for all trials. The graph shows that all
protocols produce similar excavation rates at the initial stages of
the experiment before they start to diverge as the tunnel length
increases. This confirms that the all protocols and trials started
with the same initial conditions, except for the reversal
probability values in the case of Adaptive and Reversal protocol.

Figure 7 shows space-time plots of the robot trajectories for
one of the three trials. The presence of robots in the tunnel is
tracked from video captured by a camera positioned above the
tunnel. At each time point, the presence of robots is summed over
the width of the tunnel and is represented by a single row in the
diagram. The adaptive rule produces the fastest tunnel growth,
and the map includes some stationary blocks near the Home area
which corresponds to resting robots.

Figure 8 explores the portion of time spent by the individual
robots either outside of the tunnel (Figure 8A)—in the resting or
deposition areas–or in contact with each other, while in the
tunnel (Figure 8B), for the three protocols. The times are
quantified based on the robots horizontal position as tracked
in the recorded experiments. In Figure 8B, robots are considered
in contact with others when the horizontal coordinates are less
than a body-length apart. We observe that the average time spent
outside of the tunnel is roughly the same for the Active and
Reversal protocols, at about 40%, but increases a bit for the
Adaptive rule (Figure 8A). Notably, the Adaptive rule generates a
wider variance, indicating some of the robots spend significantly
less time in the tunnel than others. Looking at the time spent in
contact (Figure 8B), we see a narrower distribution for the
Reversal than the Active protocol, demonstrating that the
Reversal protocol regulates contact time in most cases. More
importantly, there is a clear reduction in the average portion of
time spent in contact, using the Adaptive rule, from more than
15% using the other protocols, to about 5%.

Figure 9 compares inequality in workload distribution for the
Reversal and Adaptive rules, quantified using Lorenz curves. A
Lorenz curve presents the cumulative fraction of work done by a
cumulative fraction of the population. This curve is convex by
definition and an equal workload distribution appears as a
straight line between (0,0) and (1,1) A divergence from this
straight line indicates unequal workload distribution, where,
for example, half of the population is doing less than half of
the work. This measure of divergence is usually quantified by the
Gini coefficient, G, defined as the ratio of the area between the

FIGURE 8 | Time spent in various states by individual robots, for the three protocols: Active, Reversal and Adaptive. (A) Time spent at the resting and deposition
areas (B) Time spent in contact with other robots while in the tunnel. Boxes span 25th to 75th percentile, whiskers are between the minimal and maximal values, inner line
is the median, × for means, and circles (solid and empty) represent actual data points.
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Lorenz curve and the line of equality [33]. The curves in Figure 9
show that the Reversal protocol produces an equal workload
distribution with a Gini coefficient of approximately ~0.06. The
Adaptive protocol on the other hand produces a strategy that
leads to equal workload distribution at short tunnels and unequal
workload distribution at long tunnels with a Gini coefficient of
~0.3. This strategy produces the most effective excavation rate in
all the experiments. This is smaller than the inequality, in terms of
a Gini coefficient, previously reported for ants, of about 0.6 [12],
which is due to the larger number of individuals involved in the
ant study. Since a tunnel essentially imposes a limit on the
number of robots or ants that move through it concurrently
without clogging, a larger number of individuals requires a higher
degree of inequality to avoid clogging.

5 DISCUSSION

Our results demonstrate that an adaptive strategy, inspired by
observations on ant behavior, leads to significant improvements
in performance of excavation through a narrow tunnel, by a
group of robots.

It was noticed previously that ants are sometimes willing to
reverse or “give up”, when faced with oncoming traffic [12]. When
studied systematically, it was suggested that there is an optimal
probabilistic rate for these reversals, which reduces multi-body
collisions and jamming events [12]. Indeed, when we implemented
probabilistic reversals upon collisions in the robots, we saw
improved performance compared to an insistent, non-reversing
(“active”) behavior (Figure 6). Furthermore, our Cellular
Automata simulations of the robots suggest that the optimal
reversal rate decreases with increasing tunnel length (Figure 3),
which results from an increase in time wasted working without
achieving pellet excavation. When a jam occurs far into the tunnel,

a low reversal probability tells the robot not to give up quickly but
rather try to resolve congestion locally.

Despite an improvement in performance (Figure 6), the
willingness to “give up” and reverse did not significantly
reduce contacts between the robots in the system when
compared with the “active” protocol (Figure 8). Ants display
another salient collective feature–an unequal workload
distribution–which has been demonstrated to improve
performance of collective digging in simulation, when
compared to an equal workload distribution [12]. We
hypothesized that a reinforcement rule employed by the
individual robots, governing entrance probabilities Pe
(Figure 2), could spontaneously result in an unequal workload
distribution.

We implemented a reinforcement rule that increases (decreases)
the probability to attempt digging with every successful (unsuccessful)
digging trip. This reinforcement rule indeed results in the spontaneous
formation of unequal participation in digging (Figure 9). Our
preliminary experiments showed this unequal workload results in
reduced performance for short tunnels and increased performance for
long tunnels. Taken togetherwith the trendwe observed in simulations
for optimal reversal rates (Figure 3), we decided to implement adaptive
rules employed by individual robots, according to the tunnel length,
estimated by distance travelled. As a result, an unequal workload
distribution emerged that allows them to avoid costly contacts
(Figure 8) and collectively perform better in an excavation task
(Figure 6), using noisy estimates (Figure 5).

5.1 Relations to Social Insect Collective
Dynamics, Active Matter Physics and
Swarm Robotics
Given that our work touches on aspects of biological
collective behavior, active matter physics and swarm

FIGURE 9 | Lorenz curves of robot workload distribution for 1-h “epochs” of 3-h experiment. The curves represent: 1 h duration (red), 2 h duration (blue), and 3 h
duration (green). Black solid line represents the line of equality. Cumulative fraction of work is the number of trips the robots took into the tunnel in an attempt to excavate
pellets. In Reversal protocol, all robots are mostly inside the tunnel, either going in to excavate pellets or going out to dump or “give-up” and re-enter the tunnel. Adaptive
rule on the other hand leads some robots to rest and become less active over time.
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robotics, we briefly discuss our work in context of these well
developed disciplines.

In terms of relation to biology, several studies have revealed that
social insects (e.g. ants)modify their individual behaviors in response
to specific stimuli experienced in the environment [34–38]. This
tendency of individuals to make decisions based on their experience
or observation is necessary for organisms’ survival and reproduction,
and it is termed adaptation or learning [39, 40]. In ants removal of
highly active ants from the group results in increased activity by the
others [41], suggesting they too use some adaptive strategy. Other
studies have also observed adaptation in ant collectives. For example,
Buhl et al [42] suggested a feedback model that explains the
excavation behavior of ants in a laboratory setting, and Bruce
et al [27] suggested that ants use collision information to
maintain a desired proximity to others. Thus, we find it
reasonable that ants adapt their behaviors based on excavation
success which could have a strong relation to collisions (traffic
jams) and tunnel length.

Biological systems are known to possess compliant and flexible
capabilities which enable them to perform sophisticated
maneuvers that are otherwise difficult for their robotic
counterparts [43]. For example, Gravish et al [44] studied how
antenna deformations provide mechanical support to slipping
ants when climbing in confined spaces. Such morphological
adaptation of ants makes them excellent excavators in their
natural environments [45]. Ants typically generate tunnels that
fit about two ant widths and can easily pass each other within
them. However, an encounter with three or more ants will take
longer to resolve. Our robots also take much longer to resolve 3-
robot traffic jams than they do 2-robot collisions, and these
become the dominant time cost to be avoided. Thus, strategies
for congestion modulation in biological systems may prove
applicable in multi-robot real-world scenarios.

In terms of relation of our work to active matter physics, most
studies of active matter assume particles remain in a given state
(e.g., constant speed movement) and study the global dynamics
emerging from such rules. There is typically no “goal” for the
global dynamics in such studies. In contrast our system is
explicitly “task oriented”: from a broad perspective, the system
has a mixture of particles with different behaviors that
occasionally transition between the different populations
(control states) in pursuance of a goal. Thus from a physics
perspective it is interesting to ask how desired macroscopic
outcomes (e.g., flow of material) must be coupled to
microscopic rules which can change in response to
macroscopic state (e.g., particles “give up” which detect a
slowing of flow). This is particularly interesting in the
collisional and dense regimes in part because of challenges for
any one agent to know the state of others and active systems must
deal with the propensity of such systems to cluster [9, 46, 47], clog
and form glassy states [11].

Finally, from a swarm robotics/engineering point of view, while
tasks are a critical aspect of making swarms task capable, most
work has been conducted in either low density regimes and/or
focused on various techniques for collision avoidance [48–52]. This
is to ensure safe operation of the robots and to prevent possible
catastrophes that may occur in cases of collisions. However,

attempting to avoid collisions in crowded and confined
conditions could be impractical. This is due to the physical
constraint of the environment and/or the uncertainties present
in sensor measurements which make collisions inevitable. Even in
some cases where accurate measurements are available, the
challenges in such environments make robot to be overtly
cautious. This conservative behavior would make the robots
spend most of their time avoiding collisions rather than
advancing the mission of the group.

Recently, researchers have studied scenarios involving small
mass and low velocity robots where mild collisions and contacts
can be tolerated. In this case, collision can be used as a sensing
modality to estimate the state of the environment. For example,
[53, 54] developed a probabilistic filtering technique based on
inter-robot contacts to localize a team of robots in particular
environments. The robots were equipped with binary tactile
collision sensors, which provide information for computing
the likelihood of a robot to experience collisions in different
sections of the environment. In contrast to this, our work uses
collisions as a source of reinforcement rather than to estimate the
state of the environment. We assume the environment is
unknown and dynamic, so our approach can generalize to
various scenarios where little domain knowledge is available.
This requires our robots to learn to cooperate and adjust to the
changes in the environment, including the behavior of other
robots, to accomplish their tasks collectively and effectively.

6 CONCLUSION

Active particles performing persistentmotion often develop structures
consisting of aggregated formations [3–5], especially in confined
environments [10–12]. Active matter studies typically involve
particles lacking sensing and control that change direction only
stochastically. Our robotic system presents a kind of task-oriented
active matter, where control is injected to minimize otherwise
unavoidable aggregated states and improve collective performance.
In this work, collective performance is measured as the rate of pellet
collection from the tip of an ever-extending tunnel. This imposed task
compels our robots to traverse the entire length of the system (tunnel),
to and fro, while encountering any other robot already in it.

Unlike uncontrolled particles, the robots studied here do not
stochastically change direction. In fact, when impeded by another
robot, they first attempted tomaneuver around the robot to continue
on their way. This behavior facilitates a “greedy” attempt to
maximize individual performance, at the expense of the collective
one, and exacerbates formation of aggregates (Figure 7 and
Figure 8). On the other hand, we demonstrated that robots can
limit time wasted on this persistence through probabilistic reversal,
which generates some collective performance gains (Figure 6).
However, aggregates still form and are expected to increase in
frequency with collectives larger than those studied here.

Even in our relatively small groups of robots, to achieve high
collective performance that is robust to a changing environment
and possibly to group size, we developed a learning control
scheme that uses collisions as an information source, which
are a noisy proxy for number density in the system. In
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robotics, collisions are often viewed as problematic occurrences to
be avoided, whereas, they could be an important aspect in the
lives of social insects, given the constraints and challenges of their
environments. Collisions could serve as fundamentally important
information sources that can be harnessed to coordinate the
activities of individuals so as to achieve the common goal of
the group.

In our multi-robot scenario, we achieved coordination for
effective excavation performance by modifying individual robot’s
response to collision and task desires based on an independent
estimate of the tunnel length. We discovered that “giving up”,
while sacrificing the individual performance, often contributes to
the collective performance. We demonstrated that a learning rule
that modulates both “giving up” rate and “individual desires”
gives a significantly higher group performance than with
maladaptive behaviors (Figure 6). This technique could be
applied to real world scenarios where collisions or physical
interactions are unavoidable, or in decentralized task-oriented
physical systems where individuals in a group must interact via
contacts. We suspect social insects also make good use of
collisions to modulate their decision making, in service of a
collective goal.
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