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A considerable number of axons from neurons in one corti-
cal area end up on other cortical areas. When one neuron in
one cortical area sends an action potential to target neurons
in other cortical areas, this is a realization of a cortico-cortical
communication. Sensory perception, thinking, and planning of
a specific behavior, all rely on the evolution of cortico-cortical
communications. The action potentials change the membrane
potentials in the target neurons and, in turn, may excite these
neurons to produce action potentials and complex patterns of
excitation and inhibition in their targets. We launched the special
research topic of cortico-cortical communication dynamics to invite
contributions that would cast light on such evolution of spatio-
temporal action potential and membrane potential dynamics in
the cerebral cortex.

The contributions were theoretical models, human EEG, and
MEG data and data-driven models, and in vivo experimental data
from animals accounting for specific aspects of cortico-cortical
communication dynamics.

In a recent in vitro experiment, Branco et al. (2010) show that
single dendrites of pyramidal layer 2–3 neurons depolarize more
and have larger Ca2+ influx when their depolarization progresses
toward the soma, than when depolarization progresses away from
the soma. Kiebel and Friston (2011) construct a (developmen-
tal) model of the pruning of single synapses and show that they
can reproduce the findings of Branco et al. (2010) if the self-
organizing pruning follows a Bayesian and information theory
derived principle of minimization of free energy. Cortico-cortical
communication dynamics can only be comprehensively studied
in vivo. In vivo, the neurons and their dendrites are in a high
conductance state (Destexhe et al., 2003), and the propagation of
depolarizations to the soma and action potential generation may
thus be difficult to predict (Williams and Mitchell, 2008). This
does not exclude, however, that the model of Kiebel and Friston
(2011) may be appropriate in early development and in the
formation of cortio-cortical synapses. The pruning of synapses
under development and hence the formation of the adult corti-
cal network is the theme of the contribution of van den Bergh
et al. (2012). Their model departs from a random network. This
network is subsequently shaped by spontaneous ongoing spike
activity. After a while the random structure disappears and many
small-world sub-networks emerge. As van den Bergh et al. (2012)

show, this only happens if the connectivity in the network is larger
than a critical value. This is interesting as the developing brain
has many cortico-cortical connections that disappear at later
stages.

As pointed out in a critical review of cortico-cortical commu-
nication dynamics, there are many obstacles precluding the trac-
ing the ms by ms evolution of the spatio-temporal dynamics of the
cortex (Roland et al., 2014). Therefore examination of the spatio-
temporal dynamics in biologically plausible computational mod-
els of neurons may be one way to develop experimentally testable
hypotheses. Li and Zhou (2011) made a computational model of
neurons in two inter-connected cortical areas. The duration of
the delays in communication and the distribution of inhibition in
the local network determined whether the neurons would spike in
phase or in anti-phase and whether interactions between slow and
fast membrane oscillations would produce anti-phase spiking.
These findings are pertinent for the hypothesis on cortico-cortical
communication through coherence (Fries, 2009).

Facing the obstacles of tracing the spatio-temporal dynamics
of cortico-cortical communications at the cellular scale, many sci-
entists choose to study membrane electrical activity at the scale of
large neuron populations, and from EEG and MEG signals try
to infer putative routes of communication. Banerjee et al. (2012)
discuss these methods and point out that there is no consensus
as to what constitutes a large-scale network. Further, they show
how MEG measurements may be interpreted by combining the
empirical analysis with large-scale models of biologically realis-
tic membrane activity. This is what is done in the contributions
by Misic et al. (2011) and Vakorin et al. (2011). Their results
show that time delays and the number of connections between
sources, of MEG signals or EEG signals, contribute to the relation
between variance in the signals and information transfer between
the sources (Misic et al., 2011; Vakorin et al., 2011).

At the mesoscopic scale one can observe changes in the mem-
brane potentials with voltage sensitive dyes, local field potentials
and combine this with recordings of action potentials from a few
neurons or single neurons in experimental animals. Harvey and
Roland (2013) demonstrate both forward spatiotemporal popu-
lation membrane dynamics in higher visual areas that after 50 ms
was followed by backward propagation of net-excitation from
these areas in experiments with objects moving in the visual
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field. Vinnik et al. (2012) examined the communications from
the auditory cortex to the hippocampus and show that the access
to fire hippocampal neurons is state dependent. Sleep favors fast
reactions of the hippocampal neurons to the extent as only seen
for novel sounds in awake animals (Vinnik et al., 2012). Civillico
and Contreras (2012) examined how the communication from
the thalamus to the barrel cortex is affected by the state of the
neurons in the barrel cortex. When the cortical neurons were in
an up-state, the local field potentials, the membrane potential
increases, and the multiunit activity evoked by a whisker stimulus
was smaller than when the whisker stimulus was given just dur-
ing the early transition from a down-state to an up-state (Civillico
and Contreras, 2012).

If one wants to understand how the cerebral cortex works
one must be able to trace the evolution of the spatio-temporal
transmission of action potentials and membrane conductances
down to the cellular scale. As the critical review concludes, this
is not possible yet. Assume that a full connectome of the mouse
cerebral cortex exists (Bohland et al., 2009). This might help in
finding the target neurons in other areas for a given neuron.
However, it still remains to identify that source neuron spiking
in an experiment and measure the membrane potential changes
induced by that neuron on each of the target neurons, as each
target neuron may have 1000 other source neurons. One may
argue that if this multidimensional cellular dynamics should have
any impact on perception and behavior, the dynamics of action
potentials and membrane potential dynamics at more coarse
scales should organize to make such impacts. The contributions
to this special issue are fine examples of the many contempo-
rary attempts to advance theoretical knowledge of cortico-cortical
communication dynamics, provide testable hypotheses in this
field, and test these hypotheses at the microscopic, mesoscopic,
and macroscopic scales.
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In this paper, we pursue recent observations that, through selective dendritic filtering,
single neurons respond to specific sequences of presynaptic inputs. We try to provide
a principled and mechanistic account of this selectivity by applying a recent free-energy
principle to a dendrite that is immersed in its neuropil or environment. We assume that
neurons self-organize to minimize a variational free-energy bound on the self-information
or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of
dendritic spines that are expressed on a dendritic branch. This pruning occurs when post-
synaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with
respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic
signals that conform to its expectations, specified by a generative model implicit in its intra-
cellular kinetics. Not only does this provide a principled account of how neurons organize
and selectively sample the myriad of potential presynaptic inputs they are exposed to, but
it also connects the optimization of elemental neuronal (dendritic) processing to generic
(surprise or evidence-based) schemes in statistics and machine learning, such as Bayesian
model selection and automatic relevance determination.

Keywords: single neuron, dendrite, dendritic computation, Bayesian inference, free energy, non-linear dynamical

system, multi-scale, synaptic reconfiguration

INTRODUCTION
The topic of this special issue, cortico-cortical communication, is
usually studied empirically by modeling neurophysiologic data at
the appropriate spatial and temporal scale (Friston, 2009). Mod-
els of communication or effective connectivity among brain areas
are specified in terms of neural dynamics that subtend observed
responses. For example, neural mass models of neuronal sources
have been used to account for magneto- and electroencephalog-
raphy (M/EEG) data (Kiebel et al., 2009a). These sort of modeling
techniques have been likened to a “mathematical microscope”
which effectively increase the spatiotemporal resolution of empiri-
cal measurements by using neurobiologically plausible constraints
on how data were generated (Friston and Dolan, 2010). However,
the models currently used in this fashion generally reduce the
dynamics of a brain area or cortical source to a few neuronal
variables and ignore details at a cellular or ensemble level.

To understand the basis of neuronal communication, it may
be useful to understand what single neurons encode (Herz et al.,
2006). Although the gap between a single neuron and a corti-
cal region spans multiple scales, understanding the functional
anatomy of a single neuron is crucial for understanding communi-
cation among neuronal ensembles and cortical regions: The single
neuron is the basic building block of composite structures (like
macrocolumns, microcircuits, or cortical regions) and, as such,
shapes their functionality and emergent properties. In addition,
the single neuron is probably the most clearly defined functional
brain unit (in terms of its inputs and outputs). It is not unreason-
able to assume that the computational properties of single neurons
can be inferred using current techniques such as two-photon laser
microscopy and sophisticated modeling approaches (London and

Hausser, 2005; Mel, 2008; Spruston, 2008). In short, understanding
the computational principles of this essential building block may
generate novel insights and constraints on the computations that
emerge in the brain at larger scales. In turn, this may help us form
hypotheses about what neuronal systems encode, communicate,
and decode.

In this work, we take a somewhat unusual approach to derive a
functional model of a single neuron: instead of using a bottom-up
approach, where a model is adjusted until it explains empirical
data, we use a top-down approach by assuming a neuron is a
Bayes-optimal computing device and therefore conforms to the
free-energy principle (Friston, 2010). The ensuing dynamics of
an optimal neuron should then reproduce the cardinal behaviors
of real neurons, see also Torben-Nielsen and Stiefel (2009). Our
ultimate goal is to map the variables of the Bayes-optimal neuron
to experimental measurements. The existence of such a mapping
would establish a computationally principled model of real neu-
rons that may be useful in machine learning to solve real-world
tasks.

The basis of our approach is that neurons minimize their vari-
ational free energy (Feynman, 1972; Hinton and van Camp, 1993;
Friston, 2005, 2008; Friston et al., 2006). This is motivated by
findings in computational neuroscience that biological systems
can be understood and modeled by assuming that they minimize
their free energy; see also Destexhe and Huguenard (2000). Varia-
tional free energy is not a thermodynamic quantity but comes from
information and probability theory, where it underlies variational
Bayesian methods in statistics and machine learning. By assuming
that the single neuron (or its components), minimizes variational
free energy (henceforth free energy), we can use the notion of
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optimization to specify Bayes-optimal neuronal dynamics: in other
words, one can use differential equations that perform a gradient
descent on free energy as predictions of single neuron dynam-
ics. Free-energy minimization can be cast as Bayesian inference,
because minimizing free-energy corresponds to maximizing the
evidence for a model, given some data (see Table 1 and Hinton
and van Camp, 1993; Friston, 2008; Daunizeau et al., 2009).

Free energy rests on a generative model of the sensory input a
system is likely to encounter. This generative model is entailed by
form and structure of the system (here a single neuron) and speci-
fies its function in terms of the inputs it should sample. Free-energy
minimization can be used to model systems that decode inputs
and actively select those inputs that are expected under its model
(Kiebel et al., 2008). Note that the Bayesian perspective confers

Table 1 | Key quantities in the free-energy formulation of dendritic sampling and reorganization.

Variable Description

m ∈ M Generative model: in the free-energy formulation, a system is taken to be a model of the environment in

which it is immersed. m ∈ M corresponds to the form of a model (e.g., Eq. 1) entailed by a system.

(S, T ) Number of segments (or presynaptic axons that can be sampled) and the number of synaptic connections.

s̃(t) = [s, s′, s′′, . . .]T
s ∈ R

T ×1

Sensory (synaptic) signals: generalized sensory signals or samples comprise the sensory states, their veloc-

ity, acceleration, and temporal derivatives to high order. In other words, they correspond to the trajectory

of a system’s inputs; here, the synaptic inputs to a dendrite.

x̃(t) = [x , x ′, x ′′, . . .]T
x ∈ R

s×1

Hidden states: generalized hidden states are part of the generative model and model the generation of

sensory input. Here, there is a hidden state for each dendritic segment that causes its synaptic input.

ṽ (t) = [v , v ′, v ′′, . . .]T
v ∈ R

1×1

Hidden cause: generalized hidden causes are part of the generative model and model perturbations to the

hidden states. Here, there is one hidden cause for that controls the speed (and direction) of their sequential

dynamics.

W ∈ R
T × S Parameters of the generative model: here, these constitute a matrix, mapping from the hidden states

to synaptic inputs (see Eq. 1 and Figure 3, right panel). In other words, they determine the pattern of

connectivity from presynaptic axons to postsynaptic specializations.

Π(s) = diag(exp(γ)),

Π(x )

Precision matrices: (inverse covariance matrices) for random fluctuations on sensory (synaptic) signals and

hidden states (ωs , ωx ).

p(γ|m) = N(η(γ), Π(γ)−1) Prior density over the synaptic log-precision or gain, where Π(γ) is the prior precision.

− ln p(s̃|m) Surprise: this is a scalar function of sensory signals and reports the improbability of sampling some sig-

nals, under a generative model of how those signals were caused. It is sometimes called surprisal or

self-information. In statistics, it is known as the negative log-evidence for the model.

H (S|m) = limT →∞ − 1
T

T∫
0

dt ln p(s̃(t)|m) Entropy: sensory entropy is, under ergodic assumptions, proportional to the long-term time average of

surprise.

q
(
x̃ , ṽ , γ

) = N (μ, C) ≈ p
(
x̃ , ṽ , γ|s̃, m

)
Recognition density: this density approximates the conditional or posterior density over hidden causes of

sensory (synaptic) input. Under the Laplace assumption, it is specified by its conditional expectation and

covariance.

μ = (μ̃(x), μ̃(v ), μ(γ)) Mean of the recognition density. These conditional expectations of hidden causes are encoded by the

internal states of the dendrite and furnish predictions of sensory (synaptic) input.

G (s̃, x̃ , ṽ , γ
) = − ln p

(
s̃, x̃ , ṽ , γ|m)

p
(
s̃, x̃ , ṽ , γ|m) = p

(
s̃, x̃ , ṽ |γ, m

)
p (γ|m)

Gibbs energy: this is the surprise about the joint occurrence of sensory samples and their causes. This

quantity is defined by the generative model (e.g., Eq. 1) and a prior density.

F (s̃, μ
) = G (s̃, μ

)+ 1
2 ln

∣∣Gμμ

∣∣
≥ − ln p

(
s̃|m)

Variational free energy: this is a scalar function of sensory samples and the (sufficient statistics of the)

recognition density. By construction, it upper-bounds surprise. It is called free energy because it is a Gibbs

energy minus the entropy of the recognition density. Under a Gaussian (Laplace) assumption about the

form of the recognition density, free-energy reduces to this simple function of Gibbs energy.

D =

⎡
⎢⎢⎢⎢⎣

0 I

0
. . .

. . .

⎤
⎥⎥⎥⎥⎦ Matrix derivative operator that acts upon generalized states to return their generalized motion, such that

Dμ̃ = [μ′, μ′′, μ′′, . . .]

ε̃(s) = s̃ − g̃(μ̃)

ε̃(x) = Dμ̃(x) − f̃ (μ̃)

ε(γ) = μ(γ) − η(γ)

Prediction error for generalized sensory signals, hidden states, and log-precision; see Eq. 4. Here, (f̃ , g̃) are

generalized versions of the equations of motion and sensory mapping in the generative model (e.g., Eq. 1).
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attributes like expectations and prior beliefs on any system that
conforms to the free-energy principle; irrespective of whether it is
mindful (e.g., a brain) or not (e.g., a neuron). Using free-energy
minimization, we have shown previously that many phenomena
in perception, action, and learning can be explained qualitatively
in terms of Bayesian inference (Friston et al., 2009; Kiebel et al.,
2009b). Here, we apply the same idea to the dendrite of a single
neuron. To do this, we have to answer the key question: what is a
dendrite’s generative model? In other words, what synaptic input
does a dendrite expect to see?

Differences in the morphology and connections among neu-
rons suggest that different neurons implement different functions
and consequently “expect” different sequences of synaptic inputs
(Vetter et al., 2001; Torben-Nielsen and Stiefel, 2009). Recently
(Branco et al., 2010) provided evidence for sequence-processing
in pyramidal cells. By using in vitro two-photon laser microscopy,
glutamate uncaging, and patch clamping, these authors showed
that dendritic branches respond selectively to specific sequences
of postsynaptic potentials (PSPs). Branco et al. (2010) found PSP
sequences that move inward (toward the soma) generate higher
responses than “outward” sequences (Figure 1C): Sequences were
generated by activating spines along a dendritic branch with an
interval of ca. 2 ms (Figures 1A,B). They assessed the sensitiv-
ity to different sequences using the potential generated at the
soma by calcium dynamics within the dendritic branch. In addi-
tion, they found that the difference in responses to inward and
outward sequences is velocity-dependent: in other words, there
is an optimal sequence velocity that maximizes the difference
between the responses to inward and outward simulation (see
Figures 1C,D). These two findings point to intracellular mecha-
nisms in the dendritic branches of pyramidal cells, whose function

is to differentiate between specific sequences of presynaptic input
(Destexhe, 2010). Branco et al. (2010) used multi-compartment
modeling to explain their findings and proposed a simple and
compelling account based on NMDA receptors and an impedance
gradient along the dendrite. Here, we revisit the underlying cellular
mechanisms from a functional perspective: namely, the imperative
for self-organizing systems to minimize free energy.

In brief, this paper is about trying to understand how den-
drites self-organize to establish functionally specific synaptic
connections, when immersed in their neuronal environment.
Specifically, we try to account for how postsynaptic specializa-
tions (i.e., spines) on dendritic branches come to sample partic-
ular sequences of presynaptic inputs (conveyed by axons). Using
variational free-energy minimization, we hope to show that the
emergent process of eliminating and redeploying postsynaptic spe-
cializations in real neuronal systems (Katz and Shatz,1996; Lendvai
et al., 2000) is formally identical to the model selection and opti-
mization schemes used in statistics and machine learning. In what
follows, we describe the theoretical ideas and substantiate them
with neuronal simulations.

FREE ENERGY AND THE SINGLE NEURON
Our basic premise is that any self-organizing system will selectively
sample its world to minimize the free energy of those samples. This
(variational) free energy is an information theory quantity that is
an upper bound on surprise or self-information. The average sur-
prise is called entropy; see Table 1. This means that biological
systems resist an increase in their entropy, and a natural tendency
to disorder. Crucially, surprise is also the negative log-evidence
that measures the “goodness” of a model in statistics. By applying
exactly the same principle a single dendrite, we will show that it can

FIGURE 1 | Findings reported by Branco et al. (2010): Single dendrites are

sensitive to the direction and velocity of synaptic input patterns. (A)

Layer 2/3 pyramidal cell filled with Alexa 594 dye; the yellow box indicates the
selected dendrite. (B) Uncaging spots (yellow) along the selected dendrite.

(C) Somatic responses to IN (red) and OUT (blue) directions at 2.3 mm/ms.
(D) Relationship between peak voltage and input velocity (values normalized
to the maximum response in the IN direction for each cell, n = 15). Error bars
indicate SEM. Reproduced from Branco et al. (2010) with permission.
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explain the optimization of synaptic connections and the emer-
gence of functional selectivity, in terms of neuronal responses to
presynaptic inputs. This synaptic selection is based upon synaptic
gain control, which is itself prescribed by free-energy minimiza-
tion: When a synapse’s gain falls below a threshold it is eliminated,
leading to a pruning of redundant synapses and a selective sam-
pling of presynaptic inputs that conforms to the internal archi-
tecture of a dendrite (Katz and Shatz, 1996; Lendvai et al., 2000).
We suggest that this optimization scheme provides an interest-
ing perspective on self-organization at the (microscopic) cellular
scale. By regarding a single neuron, or indeed a single dendrite, as
a biological system that minimizes surprise or free energy, we can,
in principle, explain its behavior over multiple time-scales that
span fast electrochemical dynamics, through intermediate fluctu-
ations in synaptic efficacy, to slow changes in the formation, and
regression of synaptic connections.

This paper comprises three sections. In the first, we describe
the underlying theory and derive the self-organizing dynamics of a
Bayes-optimal dendrite. The second section presents simulations,
in which we demonstrate the reorganization of connections under
free-energy minimization and record the changes in free energy
over the different connectivity configurations that emerge. We also
examine the functional selectivity of the model’s responses, after
optimal reconfiguration of its connections, to show the sequen-
tial or directional selectivity observed empirically. In the third
section, we interpret our findings and comment in more detail on
the dendritic infrastructures and intracellular dynamics implied
by the theoretical treatment. We conclude with a discussion of
the implications of this model for dendritic processing and some
predictions that could be tested empirically.

MATERIALS AND METHODS
In this section, we present a theoretical treatment of dendritic
anatomy and dynamics. Following previous modeling initiatives,

we consider a dendrite as a spatially ordered sequence of seg-
ments (see, e.g., Dayan and Abbott, 2005, p. 217ff). Each segment
expresses a number of synapses (postsynaptic specializations) that
receive action potentials from presynaptic axons. Each synapse is
connected to a specific presynaptic axon (or terminal) and registers
the arrival of an action potential with a PSP. Our aim is to explain
the following: If a dendrite can disambiguate between inward and
outward sequences (Branco et al., 2010), how does the dendrite
organize its synaptic connections to attain this directional selec-
tivity? In this section, we will derive a model that reorganizes its
synaptic connections in response to synaptic input sequences using
just the free-energy principle.

We start with the assumption that the dendrite is a Bayes-
optimal observer of its presynaptic milieu. This means that we
regard the dendrite as a model of its inputs and associate its
physical attributes (e.g., intracellular ion concentrations and post-
synaptic gains) with the parameters of that model. In what follows,
we describe this model, its optimization and consider emergent
behavior, such as directional selectivity.

To illustrate the approach, we modeled a dendrite with five seg-
ments, each of which expresses four synapses: see Figure 2. This
means the dendrite has to deploy T = 20 synapses to sample five
distinct presynaptic inputs in a way that minimizes its free energy
or surprise. The internal dynamics of the dendrite are assumed
to provide predictions for a particular sequence of synchronous
inputs at each dendritic segment. In other words, each connection
within a segment “expects” to see the same input, where the order
of inputs over segments is specified by a sequence of intracellular
predictions: see Figure 3.

To minimize free energy and specify the Bayes-optimal update
equations for changes in dendritic variables, we require a gener-
ative model of sequential inputs over segments. To do this, we
use a model based on Lotka–Volterra dynamics that generates a
sequence, starting at the tip of the dendrite and moving toward

FIGURE 2 | Synaptic connectivity of a dendritic branch and

induced intracellular dynamics. (A) Synaptic connectivity of a branch
and its associated spatiotemporal voltage depolarization before
synaptic reorganization. In this model, pools of presynaptic neurons fire
at specific times, thereby establishing a hidden sequence of action
potentials. The dendritic branch consists of a series of segments,
where each segment contains a number of synapses (here: five
segments with four synapses each). Each of the 20 synapses connects

to a specific presynaptic axon. When the presynaptic neurons emit
their firing sequence, the synaptic connections determine the
depolarization dynamics observed in each segment (bottom).
Connections in green indicate that a synapse samples the appropriate
presynaptic axon, so that the dendritic branch sees a sequence.
Connections in red indicate synaptic sampling that does not detect a
sequence. (B) After synaptic reconfiguration: All synapses support the
sampling of a presynaptic firing sequence.
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FIGURE 3 | Generative model of dendritic branch dynamics. (Left) This
shows the hidden states generating presynaptic input to each of five
segments. These Lotka–Volterra (winnerless competition) dynamics are
generated by Eq. 1 in the main text. The inhibitory connectivity matrix A

depends on the state v which determines the speed of the sequence.
(Middle) The Lotka–Volterra dynamics are induced by the specific inhibitory
connections among the five segments. In matrix A, we use the exponential

of v to render the speed positive; this could be encoded by something like
calcium ion concentration. (Right) The synaptic connectivity matrix W

determines which presynaptic axons a specific synapses is connected to.
An element Wij in black indicates that there is a connection from presynaptic
axon j to synapse i. Each synapse is connected to exactly one presynaptic
axon; i.e., each row of matrix W must contain a single one and zeros
elsewhere.

the distal end. In other words, the dendrite models its synaptic
input S(t ) = [S1,. . .,ST]T as being caused by a saltatory sequence
of changes in (hidden) states x(t ) = [x1,. . .,xs]T representing the
presynaptic activity to which each segment is exposed. The speed at
which the sequence is expressed is controlled by a hidden variable
v(t ) according to the following equations

s = g (x , v)+ ωs

ẋ = f (x , v)+ ωx

g (x , v) = Wx

f (x , v) = A(v)σ(x)− 1
8 x + 1s

σ(x) = 1

1 − e−x

ωs ∼ N(0, Σ(s)) : Σ(s) = diag(exp(−γi))

ωx ∼ N(0, Σ(x))

(1)

These equations model winnerless competition among the
hidden states to produce sequential dynamics (called a stable het-
eroclinic channel; Rabinovich et al., 2006). Here, ωs(t ) ∈ R

T and
ωx (t ) ∈ R

S correspond to random fluctuations on synaptic input
and the hidden states respectively. These fluctuations have covari-
ances (Σ(s),Σ(x)) or precisions (Π(s),Π(x)) (inverse covariances),

where the precision of the i-th synaptic input is determined by
its log-precision or gain: γi . Log-precisions are a convenient way
to express variances because they simplify the update equations
presented below.

The mapping from hidden states (presynaptic axons) to synap-
tic input is parameterized by a connectivity matrix W ∈ R

T×S with
elements Wij ∈ R{0, 1} that determine whether there is a synap-
tic connection between the j-th presynaptic axon and the i-th
segment (Figure 3). It is this pattern of connections that deter-
mines the form of the model. The matrix A ∈ R

S × S determines
the sequential dynamics. For example, to generate a sequence for
S = 4 segments, one would use:

A (v) =

⎛
⎜⎜⎝

0 −ev 0 ev

ev 0 −ev 0
0 ev 0 −ev

−ev 0 ev 0

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ (2)

In Eq. 2, the first matrix models exhibition and inhibition
between neighboring segments and determines the sequence. We
use the exponential of the hidden cause to ensure the speed ev

is positive. The second matrix encodes non-specific inhibition
among segments.
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Given this model of how synaptic inputs are generated, we
can now associate the internal states of the dendrite with the
model’s parameters or variables. In other words, we assume that
the intracellular dynamics of the dendrite are trying to predict
the input that it receives, based on the generative model in Eq. 1:
see Figure 2B and Figure 3 (left panel). This means that we can cast
dendritic changes as minimizing the free-energy associated with
any given synaptic inputs. This provides Bayes-optimal update
equations (i.e., non-linear differential equations) for each internal
state. These equations describe how the internal states of a dendrite
change when receiving input over time. A related application using
winnerless competition in the context of sequence recognition can
be found in Kiebel et al. (2009b). In the following, we will briefly
describe the resulting update equations. Details of their derivation
and implementation can be found in Friston et al. (2008). The key
quantities involved in this scheme are described in Table 1.

FREE-ENERGY MINIMIZATION
Minimizing the free-energy based on the generative model (Eq. 1)
involves changing the internal variables of the dendrite so that
they minimize free energy. Free energy is a function of the internal
variables because they constitute Bayes-optimal predictions of the
hidden states and synaptic input. In the present context, there are
four sets of variables that can change (μ̃(x), μ̃(v), μ(γ), η(γ));
these correspond to conditional expectations or predictions about
hidden states and causes; predictions about synaptic log-precision
or gain and predictions about existence of a synaptic input per se
(see Table 1). As we will see below, optimizing these variables
with respect to free energy is necessarily mediated at three dis-
tinct time-scales pertaining to (i) fast intracellular dynamics (e.g.,
depolarization and consequent changes in intracellular concen-
trations such as calcium): (ii) synaptic dynamics that change
the efficacy or precision of synaptic connections and (iii) an
intermittent selection and regeneration of postsynaptic special-
izations. Crucially, all three minimize free energy and can be
expressed as a series of differential equations or update rules, as
follows:

˙̃μ(x) = − ∂

∂μ̃(x)
F(s̃, μ|m)+ Dμ̃(x)

˙̃μ(v) = − ∂

∂μ̃(v)
F(s̃, μ|m)+ Dμ̃(v) (3a)

μ̇′(γ) = μ′(γ)

μ̇′(γ) = − ∂

∂μ(γ)
F(s̃, μ|m)− πμ′(γ) (3b)

η(γ) = arg min
η∈m

∫
F(s̃, μ|m)dt (3c)

We now consider each of these updates in turn.

FAST INTRACELLULAR DYNAMICS (Eq. 3a)
Equation 3a represents the fastest time-scale and describes the
predictions of hidden states associated with each dendritic seg-
ment and the hidden cause controlling the speed of the synaptic
sequence. Later, we will associate these with depolarization and
intracellular concentrations within the dendrite. The dynamics of

this internal states correspond to a generalized gradient descent
on free energy: F(s̃, μ|m) ∈ R, such that when free energy is
minimized they become Bayes-optimal estimates of the hidden
variables. This is the basis of Variational Bayes or ensemble learn-
ing and is used widely in statistics to fit or invert generative
models, see Hinton and van Camp (1993), Friston (2008), Fris-
ton et al. (2008) for details. For those readers with a time-series
background, Eq. 3a has the form of a generalized Kalman–Bucy fil-
ter and is indeed called Generalized Filtering (Friston et al., 2010).
The reason it is generalized is that it operates on generalized states
μ̃ = [μ, μ′, μ′′, . . .]T , where D is a matrix derivative operator,
such that Dμ̃ = [μ′, μ′′, μ′′, . . .]T . See Table 1 and Friston et al.
(2010).

It can be seen that the solution to Eq. 3a [when the motion
of the prediction is equal to the predicted motion ˙̃μ(x) = Dμ̃(x)]
minimizes free energy, because the change in free energy with
respect to the generalized states is zero. At this point, the internal
states minimize free energy or maximize Bayesian model evidence
and become Bayes-optimal estimates of the hidden variables.

Gaussian assumptions about the random fluctuations in the
generative model (Eq. 1) allow us to write down the form
of the free energy and therefore predict the exact behavior of
the dendrite. Omitting constants, the free energy according to
Eq. 1 is:

F = G(μ̃)+ 1
2 ln |Gμ̃μ̃|

G = 1
2 ε̃(s)T Π̃(s)ε̃(s) + 1

2 ε̃(x)T Π̃(x)ε̃(x) + 1
2 ε(γ)T Π(γ)ε(γ)

− 1
2 ln |Π̃(v)Π̃(x)Π(γ)|

ε̃(s) = s̃ − g̃ (μ̃)

ε̃(x) = Dμ̃(x) − f̃ (μ̃)

ε(γ) = μ(γ) − η(γ)

(4)

In these expressions, a subscript denotes differentiation. The
expression for G may appear complicated but the first three terms
are simply the sum of squares of precision-weighted prediction
errors. The last three equalities are prediction errors for the sensory
states, hidden states, and log-precisions. The synaptic precisions;∏(s)

ii = exp(μ(γ)
i ) depend on the optimized log-precisions or

gains, where (η(γ), Π(γ)) are the prior expectation and precision
on these log-precisions. In other words, the dendrite embodies the
prior belief that γ ∼ N(η(γ), Σ(γ)).

Given Eq. 4, we can now specify the dynamics of its internal
states according to Eq. 3a:

˙̃μ(x) = Dμ̃(x) + g̃ T
x̄ Π̃(s)ε̃(s) + (f̃ T

x̄ − DT )Π̃(x)ε̃(x)

˙̃μ(v) = Dμ̃(v) + f̃ T
v̄ Π̃(x)ε̃(x)

(5)

These equations describe the segment-specific dynamics μ̃(x)

and dendrite-wide dynamics μ̃(v) that we associate with local
depolarization, within each segment and intracellular (e.g., cal-
cium ion concentrations) throughout the dendrite (see Discus-

sion). The precision Π
(s)
ii = exp(μ(γ)i ) can be regarded as the

gain of a synaptic connection, because it modulates the effect of
presynaptic input on internal states. This leads to the next level of
optimization; namely, changes in synaptic gain or plasticity.
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SYNAPTIC DYNAMICS (Eq. 3b)
Equation 3b prescribes the dynamics of the log-precision parame-
ter that we associate with synaptic efficacy or gain. Mathematically,
one can see that the solution to Eq. 3b minimizes free energy, when
both the change in efficacy and its motion are zero. This motion
can be thought of as a synaptic tag μ′(γ) at each connection that
accumulates the prediction error on inputs. Under the model in
Eq. 1, Eq. 3b becomes

μ̇(γ) = μ′(γ)

μ̇′(γ) = 1
2 dim(Π̃(s))− 1

2 ε̃(s)T Π̃(s)ε̃(s) − Π(γ)ε(γ) − πμ′(γ) (6)

This has a simple and plausible interpretation: the log-precision
or gain has a tendency to increase but is counterbalanced by the
precision-weighted sum of the squared error (e.g., potential differ-
ence) due to the inputs. When the noise is higher than predicted,
the level of the synaptic tag will fall and synaptic efficacy will fol-
low. The final two terms mediate a decay of the synaptic tag that
depends on its prior expectation η(γ), see Eq. 4, where π is the
(large) precision on prior beliefs that connections change slowly,
see Friston et al. (2010). In the simulations, we actually update
the efficacy by solving Eq. 6 after it has been exposed to a short
periods of inputs (128 time-bins). Finally, we turn to the last level
of optimization, in which the form of the model (deployment of
connections) is updated.

SYNAPTIC SELECTION (Eq. 3c)
Equation 3c can be regarded as a form of Bayesian model selec-
tion, when the dendrite reconfigures its model in structural terms;
that is, by redeploying synaptic connections through changing
the matrix W. This is implemented using the free energy or log-
evidence for competing models. For each connection, two models
are considered: a model m0 with a synapse that has a low prior

log-precision η
(γ)
0 = −2 and a model m1 in which the connection

has a high prior η
(γ)
1 = 4. If the evidence for the model with a high

prior (gain) is greater, then the synapse is retained. Intuitively, this
procedure makes sense as model m1 with high prior will be bet-
ter than model m0, if the internal states of the dendrite predicted
the input (the dendrite sampled what it expected). Otherwise, if
synaptic input is unpredictable (and model m0 is better than m1)
the synapse is removed (regresses) and is redeployed randomly
to sample another input. The corresponding odds ratio or Bayes
factor for this model comparison is

p(s̃|m1)

p(s̃|m0)
=
∫

p(γi |s̃, m0)
p(γi |m0)

p(γi |m1)
dγi

p (γi |mk) = N(η(γ)k , Σ(γ))

(7)

Where s̃ corresponds to the all the presynaptic input seen
between model updates. The details of this equality are not impor-
tant here and can be found in Friston and Penny (2011). The key
thing is that it is a function of the conditional density of the log-
precision of the i-th connection p(γi |s̃, m0). The ensuing relative
probabilities of models with and without a high-precision con-
nection have the simple (sigmoid) form shown in Figure 4. The
threshold appears at unity because it is half-way between the high

FIGURE 4 | Synaptic selection function. This sigmoidal function measures
the relative probability of two models with and without a high-precision
synapse. The i-th synaptic connection is retained when μ

(γ)

i > 1 ; i.e., there
is more evidence that the synapse has high precision. If μ

(γ)

i � 1, the
synaptic connection is removed and a new, randomly chosen, presynaptic
target is chosen. See also Eq. 7.

(four) and low (minus two) prior expectations we allow the neuron
to consider. In the present context, this means that a connection is

retained when μ
(γ)

i > 1.
In summary, after the conditional log-precisions are optimized

they are used to determine whether the synapse should be retained
or replaced. This decision is formally identical to a model selec-
tion procedure and can be regarded as a greedy search on models
m ⊃ W with different patterns of connections. In practice, we
update the model after every four bursts (128 time points) of
input.

SIMULATIONS AND RESULTS
Synaptic inputs were generated using the Lotka–Volterra system
in Figure 3 and presented to the dendrite using simulated noise
with a log-precision of two. Each simulated 128 time-bin time-
series was presented over (64 × 4) repeated trials. The internal
states of the dendrite evolved according to Eq. 3a and provide
(Bayes-optimal) conditional expectations about the hidden states
and cause of sampled inputs. We started with an initially random
deployment of connections and changed them every four trials
(after which the conditional estimates of log-precision had con-
verged, see Eq. 3b). As described above, connections were only
retained if the conditional log-precision was greater than one (see
Figure 4). Otherwise, it was replaced at random with a connection
to the same or another input. This slow model optimization or
reorganization (Eq. 3c) was repeated over 64 cycles.

Figure 5 shows the results of the ensuing optimization of the
connections, based upon free-energy minimization, at the three
temporal scales (Eq 3). Since the optimization scheme converged
after 30 iterations we only show the first 32 iterations. The middle
panel shows that the negative free-energy increased as a function of
pruning over cycles of reorganization. Note that this is a stochastic
search, because the relocation of each connection was chosen at
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FIGURE 5 | Reconfiguration of the synaptic connections for a dendritic

branch with five segments and four synapses per segment. After 32
iterations, the scheme converged on the optimal solution. (Left panel): Correct
(black) versus incorrect (white) synaptic gains (precisions) learned over
iterations. (Middle panel): Temporal evolution of the objective function, the

negative free energy. In most iterations, the free-energy decreases but there
are sporadic setbacks: e.g., after the sixth iteration. This is due to the
stochastic search, i.e., the random sampling of presynaptic axons. (Right
panel): Snapshots of the connectivity matrix W (see Materials and Methods)
after iterations 1, 10, 20, and 32.

random. However, it is greedy because connections are retained
if they provide a better model at that point in the search. Over
time, the dendrite comes to sample presynaptic inputs in exactly
the way that it expects to sample them. This means that each
segment samples the same presynaptic axons (Figure 2B) and all
five segments sample presynaptic inputs in a particular temporal
sequence (a sequence prescribed by intracellular dynamics that
rest on the generative model in Eq. 1). As the pattern of connec-
tions is optimized, the conditional log-precisions (or the gain) of
the synaptic connections increases; as shown in the left panel of
Figure 5. Usually, but not inevitably, once a synapse has found its
place, in relation to others, it retains a relatively high log-precision,
and is immune from further regression. Note that the fourth seg-
ment (synapses 13–16) converged quickly on a particular axon.
After this, other segments start to stabilize, as confident predictions
about their inputs enable the dendrite to implicitly discriminate
between a good synapse (that samples what is expected) and a
bad synapse (that does not). The sequence grows slowly until all
20 synapses have found a pattern that samples the five inputs in
the order anticipated. This simulation is typical of the many that
we have run. Note further, there is no unique pattern of connec-
tions; the sequence could “start” at any segment because (in this
example) there was no prior constraint in the generative model
that the first input would be sampled at any particular segment.
Examples of synaptic connections are shown in the right panel
of Figure 5 as “connectivity matrices” in the lower row for the
1st, 10th, 20th, and 32nd cycles. We see here a progressive orga-
nization from an initially random deployment to an ordered and
coherent sequence that is internally consistent with the generative
model.

Figure 6 shows the conditional predictions of synaptic input
and hidden states before (upper row) and after (lower row) the
synaptic pattern has been established. The right panels show the
location of the connections in terms of expected log-precisions.
The left panels show the predictions (solid lines) and prediction
errors (red dotted lines) of synaptic inputs. Note that when the
dendrite can predict its inputs (lower left) the prediction error
(input noise) has a log-precision of about two (which is what we

used when simulating the inputs). The predictions are based upon
the conditional expectations of hidden states describing the Lotka–
Volterra dynamics shown in the middle panels. Here, the solid lines
correspond to the conditional expectations. After optimization,
the predicted hidden states become quickly entrained by the input
to show the stable sequential orbit or dynamics prescribed by the
dendrite’s generative model. This orbit or attractor has a sin-
gle control parameter v (Eqs 1 and 2) that the dendrite is also
predicting and implicitly estimating (see below). Notice that this
synchronous entrainment never emerges before reconfiguration
(upper panels) and the sequence of expected hidden states is not
the sequence expected a priori; deviations from this sequence are
necessary to explain the seemingly unpredictable input. Note that
there is still a winnerless competition and sequential itinerancy
to the conditional (internal) dynamics, because there are strong
priors on its form. However, the expected sequence has not been
realized at this stage of synaptic reconfiguration.

It is worth noting that although relatively simple, this greedy
search has solved a quite remarkable problem: It has identified
a viable arrangement of connections in a handful of iterations,
from an enormous number 520 of potential configurations. Once
the pattern of connection weights has converged the dendrite has
effectively acquired selectivity for the particular spatiotemporal
pattern of inputs it originally expected. This is demonstrated in
the next section.

FUNCTIONAL SPECIALIZATION
In the simulations above, the prior on the synaptic noise had a
low log-precision (minus two). The log-precision of the hidden
states and cause was assumed to be 16; i.e., the precision of the
hidden states was very high relative to synaptic precision. After the
synaptic reorganization converged, we reduced the log-precision
on the hidden states and causes to eight, to test the ability of the
branch to correctly infer its inputs, even when less confident about
its internal dynamics. In this context, the hidden cause reports the
presence of a sequence. This is because when the hidden cause
takes small values, the implicit speed of flow through the sequence
becomes very small and, effectively, the sequence disappears.
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FIGURE 6 | Intracellular dynamics for the simulation reported in

Figure 5. (Top) Before synaptic reconfiguration, the intracellular dynamics
do not follow the expected sequence, because the dendrite samples the
presynaptic neurons in a random fashion. The left panel show the
predictions (solid lines) and prediction errors (red dotted lines) of
presynaptic inputs. The solid lines in the left and middle panels show the
predictions (of x ) that can be considered a fusion of the expected

Lotka–Volterra dynamics and the sensory input. The right panel indicates
the synaptic configuration (as expected log-precisions). (Bottom) Same
representation as top panels but after synaptic reconfiguration is
complete. The dendrite samples the presynaptic neurons such (right panel)
that the expected Lotka–Volterra dynamics are supported by the input.
Note that the prediction error (left panel) has a log-precision of about two
(which is what we used when simulating the inputs).

Figure 7 illustrates the selectivity of postsynaptic responses
to particular sequences of presynaptic inputs, using the hidden
cause as a summary of postsynaptic responses. Each row of this
figure corresponds to a different trial of 128 time-bins, in which
we presented presynaptic inputs with different sequences. Each
sequence was created by integrating a Lotka–Volterra system using
a Gaussian bump function for the cause v(t ), that peaked at v = 1
at time-bin 64 and adding noise in the usual way. The top row
of Figure 7 shows the sequence the dendrite expects, as can be
seen by the progressive temporal shift in presynaptic input over
the 20 neurons (organized into five successive segments; upper
left). The corresponding postsynaptic response, modeled in terms
of the conditional expectation of the hidden cause, is shown on
the upper right. This shows a sustained firing throughout the
sequence. In contrast, if we present the identical presynaptic inputs
but in a different sequence, this sustained response collapses to 0.5
(the default). This can be seen in the lower two rows for two
arbitrary examples. The thin blue lines correspond to the condi-
tional expectation of the hidden cause that controls the velocity
of orbits through the stable heteroclinic channel. The gray areas
correspond to 90% confidence intervals (tubes). The thick blue
lines correspond to null firing and provide a reference. While
the middle row contains no evidence of the expected sequence,
the lower row contains two occurrences of the sequence between

time point 40–60 and time point 80 (bottom left). These chance
occurrences are promptly indicated by the postsynaptic response
(bottom right). These graded responses between the maximum
response (top right) and the minimum response (middle right)
replicate another finding of Branco et al. (2010), who reported
similar graded responses to random sequences.

VELOCITY-DEPENDENT RESPONSES
Branco et al. (2010) were able to demonstrate a velocity-dependent
selectivity in relation to inward and outward sequences of presy-
naptic activation (see Figure 1D). We attempted to reproduce their
results using the above simulations by changing the velocity of the
input sequence and presenting it in the preferred and reverse order:
Presynaptic inputs were presented over 64/v time-bins for each of
four velocities, v ∈ {1, 2, 4, 8}. We generated two presynaptic input
sequences at each velocity, one with an inward and the other with
an outward direction. Figure 8 shows the maximum response as
a function of velocity for inward (red) and outward (blue) direc-
tions using the same format as Figure 1D (Branco et al., 2010).
As with the empirical results, velocity-dependent responses are
observed up to a certain ceiling. This ceiling (about v = 4 in these
simulations) arises because the generative model cannot predict
fast or high-velocity sequences, because of a (shrinkage) prior on
the hidden cause. This means the hidden states are poor estimates
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FIGURE 7 | Sequence selectivity of dendritic response. Left column:
Three waves of presynaptic inputs and their associated postsynaptic
responses after successful reconfiguration (see Figure 6). Top: Inward
sequence, where the wave progresses as expected by the branch, from
the tip of the dendrite toward the soma. Middle and Bottom: Random
sequences, with no specific order. Right column: The postsynaptic
responses of the model to presynaptic input causing the three different

depolarization waves. The post-response is modeled as the time-varying
propagation rate exp(μ(v ) ) (see Eq. 1). Top: For the inward sequence, the
branch infers a rate of 1 during the presence of the sequence. The random
sequences let the branch infer a rate of the default of 0.5 (no inward
sequence present) 1 with brief excursions beyond the value of 0.5 when
parts of the sequence were sampled (e.g., lower right plot around time
points 40 to 60 and 80).

of the true values and the hidden cause is underestimated as a
consequence. However, within the range imposed by prior expec-
tations, the response scales linearly with the true hidden cause
(velocity). However, we were unable to reproduce the increase in
the normalized response to the outward sequence as a function of
velocity. It is an open question at what level this mismatch arises;
e.g., at the level of the generative model presented above, which
would call for a further adaptation of the model, or in terms of
measuring its responses (note we report absolute as opposed to
normalized responses).

DISCUSSION
We have described a scheme for synaptic regression and sampling
that is consistent with the selectivity of dendritic responses of pyra-
midal cells to spatiotemporal input sequences (Branco et al., 2010);
and is consistent with the principle of free-energy minimization
(Friston et al., 2006). The scheme explains how a dendrite opti-
mizes synaptic re-organization in response to presynaptic input
to minimize its free energy and therefore produce Bayes-optimal
responses. From a neurobiological perspective, the mechanism
implied by the model is simple; intracellular states of a dendrite are

viewed as predicting their presynaptic inputs. Postsynaptic spe-
cializations, with imprecise predictions (over a period of time)
are retracted and a new dendritic spine is elaborated elsewhere.
Over time, the dendrite comes to sample what it expects to sample
and this self-limiting process of synaptic reorganization converges
on an optimum pattern of synaptic contacts. At this point, post-
synaptic responses become selective for the expected sequence
of inputs. In the model, synaptic reorganization is described as
model optimization at a slow time-scale (Eq. 7), which is based
on free-energy minimization schemes at two faster time-scales
(Eqs 5 and 6). Using simulations, we showed that this scheme
leads to self-organized synaptic reorganization of a simulated den-
drite and replicated two key experimental findings reported by
Branco et al. (2010); directional selectivity and velocity-dependent
responses.

FREE-ENERGY MINIMIZATION AND INTRACELLULAR DYNAMICS
The functional form of Eq. 5 has an interesting and straightforward
interpretation in terms of transmembrane voltage differences and
conductances. The first equality of Eq. 5 can be associated with
the dynamics of transmembrane voltage in each segment. This
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FIGURE 8 | Velocity-dependent responses of the dendrite for the

inward (red) and outward (blue) sequence. We modeled the response by
the mean over the inferred time-dependent propagation rate (see right
column of Figure 7) at four different speeds of the input sequence.

suggests that the prediction errors in Eq. 4 play the role of potential
differences that drive changes in voltage μ̃(x) according to Kirch-
hoff ’s law (where the accumulation of charge is proportional to
current). In other words, each term in Eq. 5 corresponds to a cur-
rent that is the product of a conductance and potential difference
(prediction error). For example, in the second term, where, ε̃(s) =
s̃ − g̃ (μ̃), the synaptic input s̃(t ) corresponds to local depolariza-
tion, while the generalized prediction of this depolarization, g̃ =
(I ⊗W)μ̃(x) plays the role of a dynamic reference or reversal poten-
tial. The associated conductance g̃ T

x̃ Π̃(s) depends upon the pres-
ence of a synaptic connection g̃x̃ = (I ⊗W) and the synaptic preci-
sion (gain). The conductance of the third term is more complicated
and can be thought of in terms of active membrane dynamics of
the sort seen in Hodgkin Huxley formulations of gating variables
(e.g., Cessac and Samuelides, 2007). In short, our formal (Bayes-
optimal) model of dendritic dynamics can be regarded as a mixture
of currents due to active conductances that are entrained by synap-
tic currents. This is important because it means that the present
model is consistent with standard models of active dendritic func-
tion; see Gulledge et al. (2005) for a review. Interestingly, we did
not make any such assumption in the generative model (Eq. 1) but
these active dendritic dynamics emerged as a functional feature
of self-organization from free-energy minimization. An exciting
prospect for future research is that one can ask how the generative
model could be refined to replicate other experimental findings,
such as spike timing dependent plasticity (STDP).

Although slightly more speculative, the kinetics of the hid-
den cause ˙̃μ(v) may correspond to slow dynamics, such as the
calcium ion concentration. Although the associations with mem-
brane voltage and calcium dynamics are hypothetical at this stage,
we note they can be tested by using the dynamics described by
Eq. 5 as qualitative or even quantitative predictions of empirical
dendritic responses (cf, dynamic causal modeling; Kiebel et al.,
2009a).

Furthermore, to identify generative models from empirical
observations, one can use the concept of generalized convolution
kernels, which describe the mapping between dendritic input and
output. The fact that neurons are selective for temporal sequences
necessarily requires the kernels to have a long support and to be
non-linear (a linear kernel would just average over time and not
care about temporal order). Critically, one can derive these kernels
analytically from the differential equations used in the present sim-
ulations (Eq. 5). It is possible to evaluate these kernels empirically
by looking at their input–output characteristics (e.g., Pienkowski
et al., 2009). This means, in principle, it is possible to infer the
implicit generative models used by neurons and dendrites, given
empirical estimates of their generalized (Volterra) kernels and use
these models to test concrete predictions of what output should
be observed given some defined input, e.g., provided by glutamate
uncaging.

DYNAMICAL CONSTRAINTS
In our scheme, the intracellular dynamics of a dendrite encode the
implicit expectation that input is sampled in a particular sequence.
This is enforced by prescribing the form of intracellular dynamics
(where the parameters governing these dynamics are fixed): the
only variables that can change are estimates of the hidden states
and the time-varying rate constant (Eq. 1). The only parameters
that are optimized (Eq. 3b) are the connections to presynaptic
inputs encoded by matrix W. This means that a dendrite can only
stop re-organizing its synaptic connections when the postsynaptic
effect of synaptic inputs are consistent with (predicted by) its intra-
cellular dynamics. Intuitively, this behavior may be interpreted by
an observer as if the dendrite is actively looking for a sequence
in its input. This view is conceptually important because it sug-
gests that single neurons cannot decode arbitrary synaptic input
but implicitly expect specific spatiotemporal input patterns. This
scheme may be considered slightly counter-intuitive: In the text-
book view, the assumption is that neuronal networks should be
decoders of arbitrary spatiotemporal input, thereby mimicking
the generalization abilities of the brain (Hertz et al., 1991). In
contrast, in the present scheme, a dendrite of a pyramidal cell is
“cherry-picking” just those inputs that happen to form particu-
lar sequences. Input selectivity of this kind is not necessarily a
surprise to neurophysiologists, because this hypothesis has been
entertained for some time (Destexhe, 2010). It is reasonable to
expect that neurons, whatever their apparent function, generally
expect specific spatiotemporal patterns of synaptic input; where
the morphology of a neuron (the dendritic infrastructure and
ion channel distributions) place strong constraints on its function
(Torben-Nielsen and Stiefel, 2009). The advantage of this selectiv-
ity may be that constraints simplify structural reconfiguration and
learning because there are fewer free parameters to optimize (and
fewer local minima to confound learning). In this paper, we pro-
vide some evidence that anatomic–dynamical constraints enable
synaptic reorganization by self-organization of intracellular and
synaptic dynamics.

ACTIVE INFERENCE
In the model, the dendritic branch is optimizing its internal rep-
resentation of presynaptic inputs at a fast time-scale (Eqs. 3a,b),
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while the dendrite’s implicit model of those inputs is itself opti-
mized over longer time periods, using synaptic regression (Eq.
3c). Crucially, because model-optimization changes the way that
presynaptic signals are sampled, this corresponds to a form of
“active inference” or optimal sampling of the local environment.
Conceptually, this sampling is based on model selection, which
contrasts with the use of gradient descent schemes we have used
in previous work (Friston et al., 2009). The model selection scheme
used here is stochastic and necessarily slow due to the sampling
of synapses that do not support a sequence. However, due to its
stochastic nature, the scheme is more robust to local minima and
may provide a useful metaphor for how real neuronal architectures
are selected; cf, neuronal Darwinism (Edelman, 1987).

ROBUSTNESS, SCALABILITY, AND CONVERGENCE BEHAVIOR
In the present paper, we did not evaluate the proposed scheme
with respect to robustness to noise or artifacts, its scalability or
its convergence behavior. Our aim was to provide proof of prin-
ciple that free-energy minimization is a sufficient explanation for
recent empirical observations about dendritic behavior. However,
the present model was robust to noise and showed good conver-
gence behavior within 64 iterations. We did not explore scalability,
due mainly to computational reasons: the current implementation
of free-energy minimization [dynamic expectation maximization
(DEM), see software note] is relatively fast on a modern desk-
top computer (∼10 min) for small numbers of segments (five)
but becomes prohibitive (with runtimes of hours) for dendrite
models with more than 10 segments. We are currently working
on a more efficient implementation and will report a thorough
evaluation of the proposed algorithm and extensions in future
communications.

RELATED MODELING WORK
There are several computational treatments that share key fea-
tures with the present modeling approach: Gutig and Sompolinsky
(2006) have described a classification of input spike trains based
on the membrane potential function of a point neuron. Although
both their model and inference technique differ from the present
approach, they share the idea that intracellular dynamics can be
used to decode spatiotemporal input structure. We extend this
notion and show that Bayesian inference for non-linear dynamical
systems enables decoding based on dynamical generative mod-
els (such as Lotka–Volterra dynamics). A different idea is shared
with the work by Deneve (2008) who considers single spiking
neurons as Bayesian decoders of their input, where decoding
dynamics map to neuronal and synaptic dynamics. This is exactly
the view we take here but we use non-linear dynamical systems
to describe the multi-dimensional internal state of a dendrite, as
opposed to a single state representation of “the internal activa-
tion level.” In other words, we share the view that neurons are
Bayesian decoders of their input but assume that a single neuron
(dendrite) can represent many more variables than a single state.
This enables us to describe spatiotemporal Bayesian decoding at
multiple time-scales.

Conceptually, there is a strong link with the work of Torben-
Nielsen and Stiefel (2009) where the function of a neuron (detect-
ing the order of two inputs) is specified first, followed by an

optimization of the neuron’s morphology and ion channel distrib-
ution, in relation to that function. This is similar to the free-energy
formulation, where a generative model specifies the function by
describing what input is expected. The subsequent free-energy
minimization optimizes the neuronal system to perform this func-
tion using neurobiologically plausible intracellular dynamics. As in
Torben-Nielsen and Stiefel (2009), the goal is to map the resulting
inversion dynamics to the intracellular dynamics of real neurons.

FREE-ENERGY MINIMIZATION AT DIFFERENT SCALES
We have exploited free-energy minimization over three temporal
scales in the dendritic simulations (intracellular dynamics, synap-
tic dynamics, and synaptic regression) and have framed these as
model inversion and optimization respectively. Free energy can be
minimized consistently over spatial and temporal scales because
the underlying imperative is to minimize the sum or integral of free
energy over all parts of the system and over all times. Because the
time-integral of energy is called action, we are basically appealing
to the principle of least action (Friston et al., 2008). Action here
is fundamental and, mathematically, is an upper bound on the
entropy of presynaptic inputs. In short, by minimizing surprise
(self-information) at fast temporal scales, systems can place upper
bounds on their entropy and therefore resist a natural tendency to
disorder; i.e., they resist the second law of thermodynamics.

In terms of network formulations of free-energy minimiza-
tion; how does recognizing sequences of presynaptic inputs help
at the neuronal network level? The answer to this question may
rest on message-passing schemes in cortical hierarchies that can
be understood in terms of free-energy (prediction error) mini-
mization (Mumford, 1992; Rao and Ballard, 1999; Friston, 2005;
Kiebel et al., 2008; Friston and Kiebel, 2009). A key aspect of these
schemes is that they are based on prediction error units that report
the generalized motion (local trajectory) of mismatches between
bottom-up presynaptic inputs and top-down predictions (Fris-
ton et al., 2008). This necessarily entails a selective response, not
to input patterns at any instant in time, but patterns over time.
But how does a neuron learn what to respond to? In this paper,
we have avoided this question and assumed that the neuron has
a pre-ordained generative model (prior expectations) of its local
presynaptic milieu. This model rests upon the form and para-
meters of internal dynamics; i.e., the form and parameters of
Lotka–Volterra dynamics. Clearly, in the real brain, these para-
meters themselves have to be learned (optimized). Future research
may show the utility of free-energy minimization at different spa-
tial and temporal scales to relate learning at the single neuron and
network level.

SOFTWARE NOTE
The simulations described in this paper are available (in Matlab
code) within the DEM Toolbox of the SPM Academic freeware
(http://www.fil.ion.ucl.ac.uk/spm). To reproduce the figures in
this paper, type “DEM_demo” at the Matlab prompt and select
“Synaptic selection” from the user interface.
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Psychiatric illnesses characterized by disorganized cognition, such as schizophrenia, have
been described in terms of fragmentation and hence understood as reduction in functional
brain connectivity, particularly in prefrontal and parietal areas. However, as graph theory
shows, relatively small numbers of nonlocal connections are sufficient to ensure global
coherence in the modular small-world network structure of the brain. We reconsider
fragmentation in this perspective. Computational studies have shown that for a given
level of connectivity in a model of coupled nonlinear oscillators, modular small-world
networks evolve from an initially random organization. Here we demonstrate that with
decreasing connectivity, the probability of evolving into a modular small-world network
breaks down at a critical point, which scales to the percolation function of random
networks with a universal exponent of α = 1.17. Thus, according to the model, local
modularity systematically breaks down before there is loss of global coherence in network
connectivity. We, therefore, propose that fragmentation may involve, at least in its initial
stages, the inability of a dynamically evolving network to sustain a modular small-world
structure. The result is in a shift in the balance in schizophrenia from local to global
functional connectivity.

Keywords: small-world, connectivity, percolation, schizophrenia, computer simulation, complex system

INTRODUCTION
Connectivity is key to understanding activity in neural systems
(Sporns et al., 2000). Network connectivity in science and in
engineering fields as diverse as mechanics, communication tech-
nology, public health, geography and town planning, is studied
mathematically using the concepts of graph theory (Bollobas,
1998). Recently, graph theory is being applied to brain connec-
tivity (Sporns and Zwi, 2004; Bullmore and Sporns, 2009) and
its pathologies in Alzheimer’s disease (Stam, 2004; Stam et al.,
2007), brain tumors (Bartolomei et al., 2006), epilepsy (Ponten
et al., 2007) and, in particular, schizophrenia (Bleuler, 1911/1950;
Friston and Frith, 1995; Andreasen, 1999; Micheloyannis et al.,
2006; Rubinov et al., 2009a).

Applying graph-theoretic concepts to the brain sheds new light
on the basic principles of integration and segregation underlying
adaptive cognitive processes, and on their disruption in mal-
adaptive states. Schizophrenia has been understood as a cognitive
disorder (Bleuler, 1911/1950) based on the breakdown of large-
scale cortico-cerebellar-thalamic-cortical (Andreasen, 1999) or
prefronto-temporal circuits (Friston and Frith, 1995; Goldman-
Rakic and Selemon, 1997), or more generally the inability to
integrate neural processes in different brain areas, a syndrome
termed dysconnectivity (Stephan et al., 2006, 2009). The density
of dendritic spines is reduced in the brains of subjects with

schizophrenia. This condition may pare down, in particular,
the input to pyramidal cells of the dorsolateral prefrontal and
temporal cortex (Garey et al., 1998; Glantz and Lewis, 2000).
These cells are glutamatergic and receive projections from the
thalamus and widespread cortical areas, and hence are likely
to be involved in higher-level cognition. Reduced connectivity
may thus lead to fragmentation, a loss of coherence in cognitive
activity.

The relevant graph-theoretical notion is the loss of network
connectivity. Graph theory enables us to model the loss of con-
nectivity in simulated neuronal networks and predict the time
course of fragmentation. On the face of it, a crucial factor appears
to be percolation. Percolation plays an important role in the
evolution, growth, and maintenance of a large variety of natu-
ral, technological, and social systems (Ben Avraham and Havlin,
2000). It refers to the probability of existence of a path between
every pair of nodes in a graph, or equivalently, the graph being
“connected” (Bollobas, 1998; Kesten, 2006). Whilst many pre-
vious studies have examined cortical network connectivity in
schizophrenia and other disorders, none to our knowledge have
employed the concept of percolation, an issue that we presently
redress.

The percolation function is the cumulative density function
(CDF) of percolation as a function of connectivity. It is possible,
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in principle, to measure the percolation function in living neural
tissue, by using progressive lesioning, for instance through the
administration of inhibitory neurotransmitters (Breskin et al.,
2006)—clearly something not feasible in humans. Observations
on human brain functional connectivity may be compared to
the theoretical percolation function for random networks (Erdös
and Rényi, 1959). The percolation function Cp(n) of a random

graph of n vertices and E edges is given by Cp(n) = e−e−k1(E−k2)

(Erdös and Rényi, 1959), in which k1 = 2/n and k2 = Arand(n) =
½ × n × ln(n) representing the anchor point of the random graph.
Arand(n) is where the sigmoidal curve Cp(n) shows the greatest
inflection. This critical point indicates the percolation threshold:
if the number of connections in the graph is gradually reduced,
a sudden breakdown of percolation occurs, and the network
decomposes into several disconnected fragments.

The presence of a critical threshold motivates us to revisit
the notion of cortical dysconnectivity as a sudden breakdown
of percolation. There are, however, reasons to assume that the
percolation threshold is neither the first, nor the most predom-
inant, critical transition in the development of schizophrenia:
brains are not random networks. In both the structural (Sporns
and Zwi, 2004) and functional (Salvador et al., 2005; Achard
et al., 2006; Bassett et al., 2006) domains, the hallmarks of brain
organization include local clustering as expressed in high values
for the Clustering Coefficient (CC), high global connectedness
as specified by a short Characteristic Path Length (CPL) (Watts
and Strogatz, 1998), and modularity (Murre and Sturdy, 1995)—
a combination characteristic of modular small-world networks
(He et al., 2009). Graph-theoretical studies (Murre and Sturdy,
1995; Watts and Strogatz, 1998) showed that small-world and
modular networks can secure global connectivity with a small
number of connections. For brains configured as modular small-
worlds, a few connections will suffice to ensure percolation. Most
likely, therefore, percolation is not the crucial bottleneck for brain
pathologies such as schizophrenia.

We will propose as an alternative theoretical possibility that,
instead, brain pathologies are associated with a breakdown in the
local organization. In schizophrenia patients, functional connec-
tivity in scalp EEG channels appears to reflect a loss of clustering
after correcting for differences in the density of functional con-
nections (Micheloyannis et al., 2006; Rubinov et al., 2009a). The
question, therefore, arises, whether fragmentation can be under-
stood as a critical breakdown in the ability of the brain to establish
and maintain a modular small-world functional architecture.
Here we show by numerical simulations that in neural activity
networks, with loss of connectivity a self-organizing small-world
neural network cannot sustain its local clustering, well before
global connectivity breaks down.

METHODS
The iterated logistic map f (x) = 1 − ax2 is unimodal on
[−1;1] → [−1;1] and capable of both periodic and chaotic
behavior depending on its control parameter a. In this study, we
construct networks of coupled logistic maps, all with parameter
a = 1.7 such that the dynamics of a single unit are chaotic under
iteration of a randomly chosen initial activation value. A unit xi

is coupled with coupling strength ε = 0.4 to any number Mi of

other units in the network such that its activation value xi
n+1 at

iteration n + 1 depends on the activation value of itself and all
adjacent units at iteration n:

xi
n+1 = (1 − ε) f

(
xi

n

)
+ ε

Mi

∑
j

j ∈ B(i) f
(

x
j
n

)
(1)

In this equation, B(i) is the set of units adjacent to unit i, Mi is
the number of units adjacent to unit i. The coupling strength ε

is divided by Mi, and has a compensation term (1 − ε) to make
sure that logistic map of an individual unit retains its mapping
[−1:1] → [−1:1], and thus functions properly for any numbers
of adjacent units.

A network of this type can be used to study the buildup
and breakdown of modularity resulting from Hebbian adaptive
structural self-organization. It implements a simple rewiring rule
based on synchronization of chaotic activity and rewires at most
one connection per iteration, carefully keeping the network’s total
number of connections constant throughout the process. A sin-
gle iteration of the network consists of four steps, to be repeated
several times after an initial random inception:

1. Initialize the network. Randomly establish e connections
between v units to create a (v, e) random network, and initial-
ize every unit with a random activation value [−1:1]. Though
values of v and e are chosen such that a network has a high
probability of being connected, this is not required.

2. Update units. Synchronously update every unit’s activation
value from its own and all its adjacent units’ activation values
according to Equation (1).

3. Select pivot and candidate. Randomly select one unit from
the network (the pivot). From all other units, select the one
whose activation value is closest to the pivot’s. This unit is the
candidate.

4. Rewire if possible. Establish a connection between the pivot and
the candidate if there is none. Then, from the units already
adjacent to the pivot, select the one whose activation value is
farthest from the pivot’s, and cut its connection to keep the
number of connections constant. If there is already a connec-
tion between the pivot and the candidate, or if the pivot has
zero connections, nothing happens and this step is skipped.

5. Iteration completed. Go back to step 1.

Networks implementing these iterative steps exhibit develop-
ment from an initial random configuration to modular small-
world configurations (Gong and van Leeuwen, 2003; van den Berg
and van Leeuwen, 2004; Rubinov et al., 2009b) But as it turns out,
both the consistent build-up of connective modularity on one
hand, or the loss of structural coherence due to functional frag-
mentation on the other, are a result of changing dynamic activity
depending critically on the number of connections in the net-
work. The influence of these numbers shows a close relationship
to the percolation function of random graphs.

RESULTS
EVOLVING NETWORKS
A common principle for neural network evolution is preferential
attachment (Barabási and Albert, 1999). This mechanism leads to

Frontiers in Systems Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 20 | 20

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


van den Berg et al. Fragmentation as modularity breakdown

networks that are scale-free, but not modular small-worlds. Only
by combining preferential attachment with adaptive, Hebbian
rewiring, does a network emerge that is scale-free and also has
modular small-world network structure (Gong and van Leeuwen,
2003). An adaptive rewiring scenario for evolving networks allows
networks with initially random or regular structures to develop
into modular small-world structures (Gong and van Leeuwen,
2004; Rubinov et al., 2009b). The scenario requires network
units (edges) that produce ongoing, non-random, non-periodic
oscillatory activity. These could, for instance, be represented
by spiking model neurons (Kwok et al., 2007) or by nonlinear
maps as an extremely simplified model of neural mass activity
(Breakspear et al., 2003a,b). With these simple units as edges,
the vertices of the network represents the couplings of a coupled
nonlinear map (Kaneko, 1989). Adaptive rewiring operates on
this activity according to the general Hebbian principle of “what
fires together wires together” (Paulsen and Sejnowski, 2000).
At successive points during the systems ongoing spontaneous
activity, connections are added between pairs of synchronously
active but hitherto unconnected units, while connections between
desynchronized units are removed (see Methods). Over time the
network gradually assumes a modular, small-world structure
(Figure 1).

Meanwhile a mixture of regular and irregular behavior is estab-
lished in the network activity that is itself optimal for sustain-
ing the small-world structure. Crucially, whilst low dimensional,
ordered, and synchronized activity dominates within modular
communities, high dimensional unsynchronized activity in con-
nector hubs ensures that the system does not fragment (Rubinov
et al., 2009b). The resulting systems can thus be thought of

FIGURE 1 | Adaptive rewiring leads from an initial random network

(left), to modular small-world structure (right) in small iterative steps.

Coupled chaotic oscillators intermittently synchronize and desynchronize
their activity spontaneously in patterns of great variability. After some time
a momentarily synchronized pair of units that are not connected receive a
connection, which is removed from a pair that are connected but not
synchronized. As this process continues, a modular, small-world structure
emerges from an initially random configuration. To obtain a more detailed
view of this phase transition, we use the adaptive rewiring scenario with
coupled nonlinear maps (Kaneko, 1989) with initially randomly structured
graphs, for a range of different numbers of vertices v : v = 300,

400, 500, . . . , 1000 vertices and numbers of edges E that differ by small
steps of 20. For each combination of v, E, across four million iterations we
measured the CC and the CPL every one thousand iterations, resulting in a
4000 point record for each of five runs. The maximum, minimum, and mean
values of the last 2000 points in each run were averaged over the five runs
as illustrated in Figure 3.

as “attractors” in the space of possible systems (Gong and van
Leeuwen, 2004), which offers a potential explanation for their
ubiquity in biological neural networks at different scales, includ-
ing the entire brain (Barabási and Albert, 1999).

In this scenario, connectivity constitutes a critical limit for the
evolution to small-world structure (Figure 2). When the number
of edges is large enough, adaptive rewiring guarantees a robust
evolution from random to small-world connectivity. Below this
limit, this evolution is frustrated, and fails to reach a stable asymp-
totic state. With reduced connectivity levels, we first encounter
critical fluctuation: intermittently during some episodes, cluster-
ings are formed intermittently, which are annihilated in other
episodes. This may reflect the intermittent occurrence of cer-
tain symptoms (e.g., delusions) as the brain disease first becomes
manifest. For still lower connectivity levels, adaptive rewiring
becomes completely ineffective; this may reflect the advanced
state of the disease.

PERCOLATION AND SELF-ORGANIZATION IN SMALL-WORLDS
We compared the critical limit on the evolution to small-world
structures to percolation thresholds of random networks with
the same numbers of edges and vertices. Figure 4 shows that the
observed minimum CC can be modeled as a linear function of
Cp(n), with k3 for offset and k4 for amplitude: CCpred = k3 +
k4Cp(n). Parameter k3 was in the range [0.107:0.196], parameter
k4 in [0.392:0.459] and parameter k1 in [0.001:0.006]. The behav-
ior of these parameters across network sizes was not monotonic
(Figure 4). Parameter k2 however, the horizontal position of the
anchor point, showed a universal scaling law to the anchor point
in the percolation function of random graphs, namely (Table 1):
ASWN(n) = Arand(n)1.17.

DISCUSSION
We propose that important insights into cortical activity and
architecture can be obtained by modeling the activity-dependent
rewiring of neural connections during development (Gong and
van Leeuwen, 2003; Rubinov et al., 2009b). In our model, net-
work connections evolve in accordance with the principle that the

FIGURE 2 | Self-organization from random to small-world critically in a

network of 700 vertices. The self-organization occurs through adaptive
rewiring. Whether a small-world emerges depends on the number of
edges.
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FIGURE 3 | Evolution under adaptive rewiring of maximum, minimum,

and average cluster coefficient and characteristic path length. (A) The
values of minimum, maximum and average CC for networks of 700 vertices
and edges ranging from [7000, 7020, 7040, . . . , 10,000] after extensive
adaptive rewiring. Note that beyond 9000 edges, CC-values tighten to a
narrow range, indicating strong and consistent clustering behavior. (B) The
values of minimum, maximum, and average CPL for networks of 700
vertices and edges ranging from [7000, 7020, 7040, . . . , 10,000] after
extensive adaptive rewiring. Beyond 9000 edges, CPL-values also tighten to
a narrow range of low values. Thus, for 700 vertices, at least 9000 edges
are needed for adaptive rewiring to converge to small-world structure.

structure rewires in adaptation to spontaneous, on-going activity.
Network structure thus evolves toward a modular small-world.
This evolution, however, is only guaranteed if there are sufficiently
many connections available. If connectivity is reduced below this
number, the structure shifts toward randomness; in particular,
local clustering is reduced.

Andreasen (1999) and Friston and Frith (1995) considered
schizophrenia as fragmentation, understood as the breakdown
of integration between widely distributed brain areas (Stephan
et al., 2006, 2009). This breakdown can be associated with the
loss of connectivity (Zalesky et al., 2011), in particular of input
to Layer 3 pyramidal cells, an effect which is well-documented
(e.g., Garey et al., 1998; Glantz and Lewis, 2000). Zalesky et al.
(2011) observed widespread impairment in structural connec-
tivity in schizophrenic patients, involving medial frontal, pari-
etal/occipital and left frontal cortex. It should be observed that the
loss of connectivity that may lead to the onset of schizophrenia
can be relatively subtle. Across the population, inputs to layer 3
pyramidal cells are substantially reduced during late adolescence,
the typical period for the onset of schizophrenia (Bourgeois et al.,

1994). Given that brain connectivity is costly, it may well be that in
normals, its density hovers just above the critical level (the anchor
point in Figure 4), but in early schizophrenia it may fall just below
this point.

The graph-theoretical concept of percolation tells us that a
small decline in connectivity can lead to a sudden breakdown
of global network coherence. Based on our results, however, we
argue that fragmentation in brain pathologies such as schizophre-
nia may be considered theoretically as a breakdown in the local
connectivity structure, prior to the loss of global coherence. The
number minimally needed to secure local modularity, and hence
to prevent it from shifting toward randomness in structure, is
systematically related to, and greater than, that needed to secure
global connectivity, even if the system has fallen into entirely
random connectivity. This result is of potential importance for
understanding the pathophysiological processes that give rise to
this disorder.

The loss of local clustering in our model is in accordance
with observations in schizophrenic patients by Micheloyannis
et al. (2006) and Rubinov et al. (2009a). In Micheloyannis et al.
(2006), the clinical group also showed longer path lengths than
the controls, whereas in Rubinov et al. (2009a), the opposite
was observed. We would have predicted path length to remain
comparatively stable. Differences in methods limit the value of
a direct comparison between these data. Nevertheless, we might
attribute the discrepancy to the fact that in both studies com-
parisons were made, for statistical reasons, between networks
that were thresholded to have identical connectivity. Whereas
the above-mentioned effects of clustering remain relatively unaf-
fected by threshold setting, the differences in path length rapidly
disappear for lower thresholds (Figure 1 in Micheloyannis et al.,
2006). Rubinov et al. (2009a) observed larger, but looser clusters
in their networks. Similarly, Breakspear et al. (2003b) reported
that although there were no significant increases in the occur-
rence of nonlinear interdependence between pairs of electrodes in
schizophrenia, there was an increase in the co-occurrence in mul-
tiple (widespread) instances of nonlinear interdependence. This
means that a relatively large number of global connections will
have survived thresholding in Rubinov’s study, leading to their
observation of path length shortening.

It cannot be concluded from Rubinov’s study, therefore, that
global connectivity is stronger in schizophrenics than in nor-
mals; it could, however, be concluded that the global connectivity
becomes stronger in schizophrenia relatively to their local connec-
tivity. Such a conclusion would entirely be in accordance with the
modularity breakdown observed in our model. Along the lines
set out here, a shift in the balance from local to global connec-
tivity is perfectly consistent with an overall loss of connectivity
in early schizophrenia. Lee et al. (2003) introduced the notion
of “overbinding”—the formation of excessive connections that
are effectively random—and, as such, do not enable distinguish-
ing external from internal sources, thus providing conditions
favorable for phenomena such as hallucination.

A possible objection to our findings is the specific choice of our
rewiring algorithm. Note, however, that in the present paper we
sought to establish the principled possibility using the simplest
possible model, rather than to establish the empirical validity
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FIGURE 4 | Universal scaling in the clustering threshold for

self-organized small-world networks. Gray lines represent minimal,
maximal and average observed values for clustering coefficient, the dotted
line is the predicted clustering coefficient, CCpred, a linear function of the

percolation function Cp(n) of a random graph of n vertices:
CCpred = k3 + k4 × Cp(n) fitted with parameters k3 and k4 to the minimum
observed clustering; the arrow indicates its anchor point ASWN(n) with the
corresponding number of edges in parentheses.

through the most realistic model possible. Note that, as a conse-
quence, the model contains only generic dynamical and adaptive
principles. We have discussed elsewhere the robustness of this
model (Gong and van Leeuwen, 2003, 2004; van den Berg and
van Leeuwen, 2004; Kwok et al., 2007; Rubinov et al., 2009b).

An important limitation is that the model inevitably makes
over-simplifying assumptions. In particular, it ignores the spa-
tial embedding of the system. Inter-modular connections are
physically of longer range than intra-modular ones and, there-
fore, have a higher metabolic cost and a greater vulnerability.
They also originate from different cortical layers and involve
different cell types. Preliminary analysis of models with more
realistic constraints does not appear, however, to affect our con-
clusions. Clearly, a more differentiated model is needed to address
empirical datasets such as (Rubinov et al., 2009a), an impor-
tant goal of future work. However, it should also be noted
that uncovering universal principles—such as those reported

here—has the advantage of being “detail invariant”—that is,
robust across a range of potential constraints, whereas findings
arising in detailed models may not be robust to changes in those
details.

We observed universal scaling behavior in adaptive self-
organization of clustered small-world networks: the connectivity
needed for these network properties to emerge under Hebbian
rewiring scales with a universal power α = 1.17 to the percolation
function in random networks. Note, first, that α > 1 might have
been expected, given that the requirement to observe clustering
and small-world structure are constraints additional to percola-
tion. What is surprising is that these requirements are met with
alpha very close to unity; near-linear scaling implies that these
additional constraints can be realized with great efficiency.

In terms of Kolmogorov-complexity, small-worlds are com-
pressible, whereas almost every possible network of n nodes and
E edges (or equivalently a bit string of length L = ½n(n − 1) with
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Table 1 | Anchor points for random graphs and small-world networks.

#vertices Arand(n) ASWIN(n) Chi-Square Scaling power

p-value

300 856 2737 0.0245904 1.1722

400 1198 4042 0.0376061 1.1715

500 1554 5405 0.060586 1.1697

600 1919 6957 0.0816264 1.1704

700 2293 8562 0.0978013 1.1703

800 2674 10,246 0.113233 1.1702

900 3061 11,996 0.0800191 1.1702

1000 3454 13,824 0.173335 1.1702

Note: Anchor point Arand (n) = ½ × n × ln(n) for classic random graphs of n

vertices; this anchor point indicates the percolation threshold, where the per-

colation function Cp(n) shows the greatest inflection. ASWN(n): anchor point

for the small-world networks fitted according to Figure 4. p-values result from

the fitting procedure using the Levenberg–Marquardt algorithm implemented in

Fityk. Scaling power: the value of h in the equation ASWN (n) = Arand (n)h.

E ones and L-E zeros) will be incompressible (Li and Vitányi,
1993). In this perspective, the ubiquity of small-world struc-
ture in real-world networks is quite astonishing: within human
brains (Sporns and Zwi, 2004; Stam, 2004; Eguíluz et al., 2005;
Salvador et al., 2005; Achard et al., 2006; Bartolomei et al., 2006;
Micheloyannis et al., 2006; Ponten et al., 2007; Stam et al., 2007;
Rubinov et al., 2009a; Bassett et al., 2010), as well as between
them: networks of scientific co-authorship (Newman, 2001), col-
laborating movie actors (Watts and Strogatz, 1998; Amaral et al.,
2000), social networks in general (Wasserman and Faust, 1994).
Here we showed how such a network could arise with minimal
connectivity close to random network percolation

What is the reason for the universality of the scaling expo-
nent? We may wonder whether the same exponent found in
other domains, could help us understand the principle. A study
of class graphs in open-source, object-oriented software systems
ranging from simple paint programs, peer-to-peer downloaders,
racing games, database management software to a complete oper-
ating system, showed that the number of links between classes
scales to the number of classes with an exact power α = 1.17.
The authors found that class graphs are small-world networks
at the critical threshold for the breakdown of modularity, which
happens when developments to the system are widely dispersed
and affect many unrelated classes in apparently distant modules
(Valverde and Solé, 2007). The similarity of this finding to ours
supports the view that the scaling exponent reflects a general
feature in the emergence and breakdown of modular network
structure.

The study of self-organizing modular small-world networks
casts a new perspective on psychiatric illnesses characterized
by disorganized cognition, such as schizophrenia, of which the
expression has been attributed to fragmentation—a “subtle but
pernicious disconnection” (Friston, 1996, p. 644). Rather than a
breakdown in global connectivity, we propose that fragmentation
is to be understood as a failure to organize the functional connec-
tivity of the brain into a modular small-world structure. This is
in accordance with the observed “random shift” in schizophrenic

(Micheloyannis et al., 2006; Rubinov et al., 2009a) and Alzheimer
patients (de Haan et al., 2009).

There are reasons why such a shift toward randomness is
undesirable. Random networks are considered extremely uneco-
nomical; in terms of cable length, an optimal configuration
combines local modules with a limited number of large-scale con-
nections (Murre and Sturdy, 1995). Even though our model does
not consider distance, in terms of network topology it is still the
case that information travels efficiently both within locally con-
nected circuits of modular small-world graphs and between their
circuits, which makes these networks efficient for transport or
communication (Latora and Marchiori, 2001; Bassett et al., 2010).

The scaling observations tell us that fragmentation is a result
of a breakdown in local, rather than global structure. With pro-
gressive loss of connectivity, the breakdown of modularity occurs
before the breakdown of percolation. Ultimately, it may not mat-
ter which connections are lost first, the result may be a cascade
of changes that lead to the network falling apart. For diagnosis,
however, a proper understanding of the early stages of the disease
is crucial; loss of modularity might offer a new perspective on the
origins of the disease.

DATA
One simulation consists of one network of v units and e con-
nections, which is randomly initialized and then iterated exactly
4,000,000 times, simultaneously rearranging its connections and
activity patterns, according to the adaptive rewiring scenario. The
smallest simulation we adopt has v = 300 units and e = 2400
connections. During iteration, its CPL and its CC are taken
every 1000th iteration (1000, 2000, . . . , 40,00,000) resulting in a
4000 point record, with a value for CC and a value for CPL at
each point. Although the speed of convergence depends on the
size of a network, 4, 000, 000 iterations prove to be enough to
clearly discern asymptotic behavior for all simulations used in this
investigation (Figure 3).

From the 4000 point record, the maximum, minimum, and
average values for both CPL and CC are calculated from the last
2000 points. For statistical robustness, we do any single simula-
tion five times, and average the five values over this simulation-
quintuple, resulting in a maximum, minimum, and average CC
and CPL for the (v = 300, e = 2400) network.

We then start a new quintuple of simulations, increasing the
number of connections e by 20, generating five networks with
v = 300 units and e = 2420 connections, and calculate the max-
imum, minimum, and average CC and CPL values from these
five new simulations. We keep starting new quintuples, repeatedly
increasing e by 20, until e = 3300 and the batch of 300-quintuples
is complete. From the entire batch, The six CC and CPL values
of every (v, e) are taken to graph the asymptotic clustering and
path-length behavior of networks of 300 units as it depends on
the numbers of connections (Figure 4).

This process is then repeated for a batch of quintuples of net-
works with 400 units and numbers of connections 3600, 3620, . . . ,
5000 (see Figure 4, top-right box). We continue doing this for
batches of networks with 500, 600, 700, 800, 900, and 1000
units, with connections increasing by 20, showing asymptotic
clustering and path-length behavior depending on connectivity
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for networks of different sizes (Figure 4). Note that although for
300 units, connections ranged from e = 2400 to e = 3300, these
numbers are different for larger networks.

For each of the eight batches, a phase transition was witnessed
for both the CC and the CPL. To pin down the exact location
of the steepest inclination in the phase transition of the CC (its
center, or “anchor point”), the percolation function for classic
random graphs was function-matched to the Minimum CC of
every batch. The minimum cluster coefficient was chosen over
the average and the maximum cluster coefficient because it has
the steepest inclination, which facilitates the fitting best.

The entire process of fitting was done in Fityk under Linux
using Levenberg–Macquardt an iterative curve-fitting algorithm
which operates by minimizing the summed squares of the resid-
uals, in this case the difference between minimal CC-values of
n-edge simulation quintuples on the one hand, and the (Erdös
and Rényi, 1959) percolation function’s value for n edges on the
other. Both graphs are depicted in overlay in Figure 4.

The Levenberg–Macquardt algorithm is sensitive to local min-
ima which makes it inefficient when using completely random
initial values. Initial parameters were hand-guessed separately for
each of the eight subgraphs in Figure 4, after which the algo-
rithm was ran until convergence beyond the program’s six-digit
resolution, a procedure that was repeated three times with small
differences in the hand-guessed initial parameters. The final val-
ues did not differ within the program’s six-digit resolution over
the three repetitions, and convergence was very fast (typically well
before 100 iterations).

The fits show significant deviations from the data curve, due to
intrinsic fluctuations in the data. Nevertheless the fits adequately
track the data curve. We, therefore, considered reliable the esti-
mates of the scaling power and other model parameters. Even
more reliable estimates could, in principle, be obtained by scaling
up the network size to 2000, 5000, and 10,000 vertices, resources
permitting, as computation time and data grow nonlinearly with
network size.
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Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the
mechanism underlying the organization of anti-phase pattern is of significance for better
understanding more complicated pattern formations in brain networks. In dynamical sys-
tems theory, the organization of anti-phase oscillation pattern has usually been considered
to relate to time delay in coupling. This is consistent to conduction delays in real neural
networks in the brain due to finite propagation velocity of action potentials. However, other
structural factors in cortical neural network, such as modular organization (connection den-
sity) and the coupling types (excitatory or inhibitory), could also play an important role.
In this work, we investigate the anti-phase oscillation pattern organized on a two-module
network of either neuronal cell model or neural mass model, and analyze the impact of the
conduction delay times, the connection densities, and coupling types. Our results show
that delay times and coupling types can play key roles in this organization. The connection
densities may have an influence on the stability if an anti-phase pattern exists due to the
other factors. Furthermore, we show that anti-phase synchronization of slow oscillations
can be achieved with small delay times if there is interaction between slow and fast oscilla-
tions. These results are significant for further understanding more realistic spatiotemporal
dynamics of cortico-cortical communications.

Keywords: anti-phase, delay time, modular network, connection density, excitatory and inhibitory couplings

1. INTRODUCTION
Dynamical activity of the neural systems in the brain is char-
acterized by collective oscillatory activity over a broad range of
frequencies, showing complex spatiotemporal pattern formations
(Gusnard and Raichle,2001; Corbetta and Shulman,2002; Buzsáki,
2006). These complicated patterns are related to cognitive process
(Engel et al., 2001; Fries, 2005), so as to provide wonderful objects
for research in order to properly understand the information
processing in the brain. The mechanisms underlying these spa-
tiotemporal patterns are consist of at least two components. One
component refers to the background, which is a type of spon-
taneous pattern formation, not necessarily related to a state of
cognition in evidence. This pattern is organized basing on the fact
that in the absence of cognitive tasks, neurons still keep on firing
and sending information to their neighbors. The other compo-
nent refers to the pattern induced by some cognitive tasks, which is
organized basing on the background one (Dosenbach et al., 2006;
Ouyang et al., 2011). It is therefore of fundamental importance
to gain insight into the organization of the background pattern
formation for better understanding how brain realize its cognitive
functioning.

The neuronal networks in the brain are very complex in topo-
logical structure (Hilgetag et al., 2000; Hilgetag and Kaiser, 2004;
Sporns et al., 2004; Bassett and Bullmore, 2006; Hagmann et al.,
2008; Bonifazi et al., 2009; Bullmore and Sporns, 2009). On such
complex networks, even if in the absence of any external stim-
uli, the dynamical patterns could be very complicated under the

condition of spontaneous communications among the dynami-
cal nodes (Newman, 2003; Boccaletti et al., 2006; Arenas et al.,
2008; Yuan et al., 2008). The two simplest patterns are in-phase
(zero time lag) and anti-phase oscillations. In-phase pattern means
that the neurons fire simultaneously. Long-distance in-phase syn-
chronization is believed to benefit for the integration of separated
functions performed in different regions, which has been a topic
of great interests (Engel et al., 1991b; Roelfsema et al., 1997;
Rodriguez et al., 1999; Varela et al., 2001; Wang et al., 2006; Vicente
et al., 2008). Differently, anti-phase pattern means that certain
areas of the brain normally increase activity, when others decrease
activity. Anti-phase pattern can be considered as the simplest case,
where two regions can be distinguished from each other from
the viewpoint of dynamics, so that the mechanism underlying
the anti-phase patterns is quite useful for deeper understanding
the formation of functional regions. In neuronal networks, such
anti-phase patterns have been widely observed in experiments
(Greicius et al., 2003; Fox et al., 2005; Fox and Raichle, 2007;
Mantini et al., 2007; Shmueli et al., 2007; Vincent et al., 2007;
Lewis et al., 2009). Actually, during attentional tasks, the pattern
of different areas of functional networks can usually show two
opposite types of responses that increase (Cabeza and Nyberg,
2000; Corbetta and Shulman, 2002) or decreases activity (Gus-
nard and Raichle, 2001; Simpson et al., 2001), so as to organize
a type of anti-phase pattern. An anti-phase oscillation is also
observed during the rest state (Greicius et al., 2003; Fox et al.,
2005; Mantini et al., 2007). For example, it was demonstrated by
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using functional magnetic resonance imaging (fMRI) method that
spontaneous blood oxygen level-dependent signal during rest fluc-
tuates slowly with a small frequency and is highly organized into
anti-phase pattern (Fox et al., 2005). Even during sleep, similar
phenomena have also been observed that some regions increase
activities meanwhile some other regions decrease activities (Kauf-
mann et al., 2006; Horovitz et al., 2009). Anti-phase oscillation
patterns have also been found in anesthetized monkeys (Vin-
cent et al., 2007), meaning that they do not necessarily reflect a
state of consciousness. These patterns are experimentally found
to oscillate at various bands of frequencies, e.g., the cardiac rate
(Shmueli et al., 2007) or even much slower (<0.1 Hz; Mantini
et al., 2007). The anti-phase pattern in the absence of task is a type
of background one organized by the spontaneous cortico-cortical
communication dynamics, and the intrinsic dynamical reasons for
the organization of the anti-phase pattern in the absence of overt
task performance may have some relationship to that typically seen
during attentional tasks.

In dynamical systems, the organization of anti-phase oscilla-
tion pattern has usually been considered relating to the time-delays
in coupling, which is consistent with the real neuronal networks
in the brain, where communication between neurons are carried
out by propagation of action potentials from one neuron to the
network neighbors through neuronal axons, with finite velocity
(Swadlow, 1985, 2000). This finite velocity leads to conduction
delays, which can reach up to many tens of milliseconds. Some
of the unmyelinated axons can generate a delay time as large as
300 ms. Furthermore,cortical architectures are hierarchical modu-
lar networks with several characteristics: (1) The distances between
neurons within a module are usually shorter than that in differ-
ent modules (Achard and Bullmore, 2007; Bullmore and Sporns,
2009); Consequently, the delay time is most likely smaller within
modules. (2) The connection densities are usually larger within
modules (Hilgetag et al., 2000; Hilgetag and Kaiser, 2004; Achard
and Bullmore, 2007; da F Costa et al., 2007), which may impact on
synchronization within and between the modules. (3) Inhibitory
couplings usually form local connections (Albus and Wahle, 1994;
Bosking et al., 1997; Battaglia et al., 2007). As a result, inhibitory
coupling likely exists more within modules.

These important structural factors may influence the pattern
formation of neural networks significantly. In a recent theoretical
study (Deco et al., 2009), it is shown that the anti-phase pat-
terns can emerge from noise-driven transitions between different
multistable cluster synchronization states, with a two-community
network structure. In the study, impact of different factors of the
time delay and the modularity is mixed. However, to elucidate
which characteristics is crucial for the origin of anti-phase patterns
is actually a significant problem.

In this work, we investigate the anti-phase oscillation pattern
organized on a two-module network of either neuron cell model
or neural mass model and study the key factors among the conduc-
tion delay times, the connection densities, and the coupling types
(excitatory or inhibitory). Our results show that delay times and
coupling types can play key roles in this organization, but connec-
tion densities cannot. In an excitatory coupled neuronal systems,
the role of delay time is similar to a classical case of coupled phase
oscillators. A delay time close to half-period can induce anti-phase

pattern between two neuronal modules. However, this is not a
necessary condition, since we further reveal that if there exist an
interaction between low and fast oscillations, small delay time can
contribute to the organization of anti-phase pattern in slow oscil-
lation, which could be especially relevant to those experimentally
observed anti-phase synchronization of very small frequencies.
The investigation is significant for understanding more compli-
cated spatiotemporal pattern formations in the brains organized
by cortico-cortical communication dynamics.

2. MATERIALS AND METHODS
To study the key factors for the organization of an anti-phase
pattern between cortices, we analyze the dynamical behaviors of
both coupled neuron cells model and coupled neural mass model
on a two-module network. As schematically demonstrated in
Figure 1A, a part of cortex is modeled by a module, and the com-
munication between cortices is represented by the time-delayed
interaction between modules. By changing several important fac-
tors, we aim to elucidate the conditions for supporting an anti-
phase oscillation between modules, as illustrated in Figure 1B.
Within each module, the collective behaviors of the oscillators
should show a macroscopic rhythmic oscillation. In the simplest
case, these oscillators within each module arrive at a relatively high
degree of coherence with small phase shifts (approximate in-phase
oscillation).

The factors we will study in the following include conduction
delay times, connection densities, and coupling types (excitatory
or inhibitory). In the brain, the nodes (nerve cells or cortices) are
connected in different distances. Generally speaking, long-distance
connections contribute to integrating the functions of different
areas and short-distance connections can save the connection
costs. According to experimental results, the nodes within-module
usually have much shorter distance than those between modules
(Achard and Bullmore, 2007; Bullmore and Sporns, 2009), so that

FIGURE 1 | A schematic demonstration of an anti-phase oscillation

organized on a two-module network. (A) The network is divided into two
modules. Several factors are different within-module and between
modules, including conduction delays, connection densities, and coupling
types (excitatory or inhibitory). (B) Illustration of anti-phase oscillation
between modules. The lines stand for some kinds of collective behaviors
within each module, e.g., total firing rate, total synaptic current, etc.
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we can suppose that the conduction delays are usually smaller
within modules. On the other hand, it has been reported that
some long-distance conduction delays may not be too large in
myelinated axons (Waxman, 1980), which is also believed to be
significant for the integration of the functions. We will study sys-
tematically how the synchronization pattern changes when the
delays within and between modules are varied.

The second factor is the connection densities. In the brain
networks, there are much more short-distance connections than
long-distance ones. In this work, the word module is used with
broader meanings to allow us change various factors within and
between modules, however, in the usual sense, the concept of mod-
ule is based on the connection densities (Hilgetag et al., 2000;
Clauset et al., 2004; Hilgetag and Kaiser, 2004; Newman and Gir-
van, 2004; Newman, 2006; Achard and Bullmore, 2007; da F Costa
et al., 2007). Denser connections within a module and sparser con-
nections between modules may be significant for performing some
particular functions by the modules while maintaining commu-
nication between modules, allowing both functional segregation
and integration. The modularity has been shown to impact on
synchronization of oscillators without considering delays (Arenas
et al., 2006, 2008; Gómez-Gardeñes et al., 2010; Zhao et al., 2011).
However, its role in organizing the anti-phase pattern between
modules in the presence of heterogeneous delays is not known.
This issue is a very important open problem. In experiments, func-
tional networks are usually detected by some coherent activities
(Scannell et al., 1999; Hilgetag and Kaiser, 2004), and anti-phase
pattern could be the simplest case that the coherent activity within
one module can be distinguished from another. A deep under-
standing of the impact of connection densities in organizing
anti-phase pattern is useful to elucidate the role of modularity
in organizing functional networks in the brain.

The third factor refers to the coupling types. In the brain, there
coexist excitatory and inhibitory neurons. They have different
numbers, distributions, and connected distances in brains (Albus
and Wahle, 1994; Bosking et al., 1997; Battaglia et al., 2007), so
that the distributions of excitatory and inhibitory connections are
also different within-module and between modules. The competi-
tion and balance of excitation and inhibition has profound effects
on the collective dynamics of neural network, such as the emer-
gence of slow oscillations (Wang et al., 2011). Therefore, the type
of coupling may also contribute to the organization of anti-phase
patterns in cortical communication.

When these factors are taken into consideration, we can sim-
plify some other settings in our model. We consider a directed
random network of N /2 nodes for each module. We assume that
the connection probability k in and time-delays τ in are uniform for
connections within the modules. Likewise, they are also uniform
for the connections between modules and are denoted as kout and
τ out, respectively. The ratios of the number of excitatory links to
the number of all links within and between modules are repre-
sented as�in and�out, respectively. In the brain, the overall ratio
is about �= 0.8, while in our model we assume it is a tunable
parameter.

After the analysis of this simplified model, we will also study
the impact of distributed delay times using a realistic cortical
network of visual system of macaque monkey, where the delay

time is assumed to depend on the distance between the functional
regions.

2.1. NEURON CELL MODEL
We first study the dynamical behaviors with pulse-coupled
integrate-and-fire (IAF) neuron model on each node. Each mod-
ule may represent a local neuronal circuit from two distant, but
connected cortical regions. The IAF model is described as

dVj

dt
= Id − Vj +

∑
i

Kijδ
(
t − t s

i,k − τij
)

, (1)

where V j is the membrane potential of the jth neuron. Whenever
the membrane potential of a neuron crosses a spiking threshold
Vth, an action potential is generated and the membrane potential
is reset to the resting potential Vr. t s

i,k is the time of the kth spike
sent by neuron i. It takes a delay time τ ij for the spike to prop-
agate to the neuron j. τ ij = τ in when the two neurons are from
the same module and τ ij = τ out otherwise. Kij is the connectivity
matrix, and Kij = 0 means there is no link from neuron i to neuron
j. Otherwise, Kij are given a value common for all i and a positive
(negative) Kij represents that the presynaptic neuron i is excita-
tory (inhibitory). The dc current Id is set that the neurons keep on
spontaneous firing.

While investigating the aforementioned three factors, we
respectively change the conduction delays (τ in �= τ out; kin = kout;
and �in =�out = 100%), connection densities (kin �= kout;
τ in = τ out; and �in =�out = 100%), and nerve type. In the third
case, where we investigate the factor of coupling types, we change
20% neurons to inhibitory ones in each module. The output links
of these inhibitory neurons only link to the neighbors within each
module, so that we get�in = 80% �=�out = 100%, τ in = τ out, and
kin = kout.

2.2. NEURAL MASS MODEL
We can consider a model representing the cortical network of
higher hierarchy compared to the neuronal networks in subsec-
tion 2.1. In almost all cortical regions, there is a basic neural
circuit composed of a pyramidal cell receiving excitatory input
from extrinsic afferent systems and spiny cells and inhibitory input
from interneurons. Neural mass model (Wendling et al., 2000;
Zhou et al., 2007) has been developed based on such basic micro-
circuits to describe mean activity of the cortical networks. The
dynamics are described by average membrane potential v and spike
density S of three subpopulations: excitatory pyramidal cells, exci-
tatory and inhibitory interneurons. A network of coupled neural
mass oscillators is described by the following equations,

v̈ i
0 (t ) = AaS

[
vi

1 (t )− vi
2 (t )

]
− 2av̇i

0 (t )− a2vi
0 (t ) , (2)

v̈ i
1 (t ) = Aa

⎧⎨
⎩I0 +

∑
j=1,...,N

gij S
[

v
j
1

(
t − τij

)− v
j
2

(
t − τij

)]

+ C2S
(

C1vi
0(t )

)⎫⎬
⎭− 2av̇i

1 (t )− a2vi
1 (t )+ ηi (t ) , (3)

v̈ i
2 (t ) = Bb

{
C4S

[
C3vi

0 (t )
]}

− 2bv̇i
2 (t )− b2vi

2 (t ) , (4)
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where the spike density is related to the potential by the sigmoid
function

S (v) = 2e0

/(
1 + er(v0−v)

)
, (5)

where 2e0 is the maximum firing rate, r0 is the post-synaptic
potential corresponding to a firing rate of e0 and r is the steepness
of the sigmoid. Here C1 and C2, C3 and C4 are the average num-
ber of synaptic contacts, for the excitatory and inhibitory synapses,
respectively. The superscript i is the serial number of the popula-
tion. ηi(t ) represents independent background white noise. τ ij is
the time delay from the population j to the population i. When
the population i and j belong to the same module, τ ij = τ in; oth-
erwise, τ ij = τ out. gij Is the coupling strength, where a positive gij

is equivalent to an average excitatory effect and a negative gij to
an average inhibitory effect. In numerical simulations, we use very
small gij, so that the frequency of coupled oscillators does not have
a big difference from that of a single oscillator.

This model can generate either delta or alpha oscillation,
depending on the injected dc current I 0. The spatiotemporal
patterns are very complicated, depending not only on system para-
meters but also on initial states, so that we use an anti-phase pattern
with some noise perturbation as the initial state for numerical
simulations in order to investigate the role of important factors in
persisting this pattern.

We use a set of typical system parameters as in Wendling
et al. (2000): A = 3.25 mV, B = 22 mV, a = 100 s−1, b = 50 s−1,
C1 = 135, C2 = 108, C3 = 33.75, C4 = 33.75, r0 = 6 mV, e0 =
2.5 s−1, and r = 0.56 mV −1. In our simulation, we set I 0 = 115 mA
for the delta oscillation and I 0 = 180 mA for the alpha oscillation.

2.3. SYNCHRONIZATION INDEX
In the following, we define the in-phase and anti-phase synchro-
nization index in order to evaluate the anti-phase patterns. First
we define the oscillatory phaseψ of a single neural mass oscillator
j. Here we use a definition generalized from Pikovsky et al. (2001):

ψ j (t ) = 2π
t − t

j
0

T
, (6)

where T is the oscillation period and t
j
0 is the first time that the

output of the jth oscillator v
j
1 − v

j
2 arrives at its maximum value.

Such a definition can also be applied to the oscillations in the neu-
ron cell model. The order parameter within modules, Z1,2, can be
defined as

Z1,2 =
〈
eiψ j (t )

〉
N/2

, (7)

where the subscripts 1,2 denote the two modules, and 〈·〉N/2 means
averaging within a module and over long time.

The in-phase index ϑ in within modules can be defined as

ϑin = |Z1| + |Z2|
2

, (8)

so that ϑ in = 1 when an ideal in-phase pattern is achieved within
modules and ϑ in = 0 when it is a zero-coherence state.

The anti-phase index ϑan between modules is defined as

ϑan = 1 − |Z1 + Z2|
|Z1| + |Z2| , (9)

so that ϑan = 1 when a perfect anti-phase pattern is achieved
between modules and ϑan = 0 vise verse. If within a module, the
oscillations are incoherence,ϑ in ≈ 0, and the collective behavior is
merely some fluctuations. In order to avoid such irrelevant case,
we only define ϑan when ϑ in> 0.1.

3. RESULTS
3.1. EFFECT OF DELAY TIME
In the neuron cell model, when we select reasonably different delay
times for the connections within-module and between modules,
anti-phase pattern can be achieved between the two modules. The
precondition is that in-phase pattern has to be achieved within
each module. An example can be seen in Figure 2A, where the
delay time between module is τ out = 100 ms, and the delay time
within each module is τ in = 2 ms. The other two parameters, the
density and ratio of excitatory coupling, is the same within and
between modules. The existence of an anti-phase synchronization
is robust to these parameters. Therefore, the delay time can be a
key factor in organizing the anti-phase pattern.

In the neural mass model, we can get similar conclusion. With
I 0 = 115 mA, a single oscillator oscillates at about 1.5 Hz in the

FIGURE 2 | Dynamics of two-module networks with neuron cell

models. (A) Delay times are different within-module τ in = 2 ms and
between modules τ out = 100 ms; kin = kout = 0.6; and �in =�out = 100%. (B)

Connection densities are different within-module kin = 1 and between
modules kout = 0.2; τ in = τ out = 100 ms; and �in =�out = 100%. (C) 20%
neurons are changed to be inhibitory and the outputs of them only link to
the neighbors within modules; �in = 80%, �out = 100%, τ in = τ out = 150 ms,
and kin = kout = 0.3.
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delta band. We use excitatory couplings, i.e., positive gij. Numer-
ical results show that conduction delays also play a key role in
the persistence of the anti-phase patterns between modules and
in-phase patterns within modules, as shown in Figures 3A–H,
where the pronounced anti-phase pattern mainly persists in two
regions: the delays within a module τ in ∼ 0 and the delays between
modules τ out are around 200 ms, and τ in are around 500 ms and
τ out are around 200 ms. The latter one has a larger region than
the former one. This situation, i.e., the delay time between distant
modules can be significantly smaller than those within the module,
is unlikely to be realistic, though we can simulate it in the model.
When we change the input current to I 0 = 180 mA, the frequency
of a single oscillator comes to the alpha band, around 11 Hz. The
numerical results are shown in Figures 3I–P, which are similar

to those in Figures 3A–H. The most prominent difference is that
the time scale is only about 1/7 of the Figures 3A–H, noting the
frequency in Figures 3I–P is about 7 times of that in Figures 3A–H.

3.2. EFFECT OF CONNECTION DENSITY
In neuron cell model, no matter how we change the connection
densities within-module and between modules, if other factors are
homogeneous, the anti-phase pattern never emerges. An example
is shown in Figure 2B. Therefore, the connection density is not a
key factor in organizing the anti-phase pattern. However, in the
neural mass model, we can see that, though anti-phase pattern
cannot be found when delay times are homogeneous (τ in = τ out,
the diagonal of each panel of Figure 3) the parameter region of
τ in and τ out for anti-phase pattern are different, depending on

FIGURE 3 |The in-phase synchronization index ϑ in within a module and

the anti-phase synchronization index ϑan between the modules as

functions of the delay times τ in and τ out at different connection densities

in networks of coupled neural mass oscillators (Eqs 2–4). (A–D) and (I–L):
the in-phase synchronization index ϑ in in color scale. (E–H) and (M–P): the
anti-phase synchronization index ϑ an in color scale. ϑ an is not defined when

ϑ in < 0.1, represented by black region. Upper panel (A–H): I0 = 110 mA, the
neural mass oscillators oscillate at about 1.5 Hz in the delta band. Lower panel
(I–P): I0 = 180 mA, the neural mass models oscillate at about 11 Hz in the
alpha band. The connections densities of the networks are: (A,E,I,M),
kin = kout = 0.3; (B,F,J,N), kin = 0.6, kout = 0.3; (C,G,K,O), kin = 0.9, kout = 0.3;
(D,H,L,P), kin = kout = 0.6.
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connection densities. It means that the connection density also
play an important role in maintaining the stability of the anti-
phase pattern in the presence of noise perturbation, if τ in and τ out

are different.
Previously, it has been found that the connection densities have

impacts on the synchronization properties of a network (Arenas
et al., 2006, 2008; Gómez-Gardeñes et al., 2010; Zhao et al., 2011).
The collective behaviors of nodes within a module are easier to be
established since the interactions within a module is stronger (con-
nection density is higher) than that between modules. Intuitively,
the connection density probably has an impact on the organization
of anti-phase pattern. In this work, we clarify that the connection
density actually impact on the stability rather than the existence
of an anti-phase pattern. With higher connection densities within
or between the modules, the anti-phase attractors are stabilized in
a broader parameter region of the delay time.

3.3. EFFECT OF INHIBITORY COUPLING
At last, when we change 20% neurons to inhibitory type in
each module, anti-phase oscillation may also be observed if
the inhibitory synaptic current is sufficient large, as shown in
Figure 2C. This result also depends on the coupling strength
(synaptic current). Under the condition τ in = τ out and kin = kout,
in order to achieve the anti-phase pattern between modules, a
good match of coupling strength with τ in,out, kin,out and �in,out is
required. In the example we show in Figure 2C, τ in,out = 150 ms,
kin,out = 0.3,�in = 80%,�out = 100%, and the inhibitory coupling
strength is ten times of the excitatory coupling strength. The bal-
ance of excitation and inhibition in neural network with large
inhibitory coupling is realistic in biological neural networks, since
inhibitory synapses are in general closer to the neuron cell body
(soma; Buzsáki, 2006). These results also indicate that in the orga-
nization of an anti-phase oscillation pattern in cortex, the coupling
types can be a key factor. The mechanism is that the inclusion
of inhibitory coupling may generate slow oscillations within the
module, which will be discussed in more detail later.

3.4. ANALYSIS
Given a pair of oscillators φ1(t ) and φ2(t ), with time-delayed
coupling, their phase difference is defined as 
φ=φ1 −φ2. The
stability of in-phase and anti-phase patterns versus delay time
becomes clear when the evolution of 
φ can be approximately
written in the following linearized form:

d
φ

dt
=
{

G (2πγ τ)
φ, 
φ ∼ 0

G (2πγ τ + π) (
φ − π) , 
φ ∼ π
, (10)

where γ is the oscillatory frequency, τ is the delay time of the
coupling and G is a periodic function with period 2π . In such a
case, stability analysis theory can give the conclusion that when
G(2πγ τ )< 0, the in-phase pattern (
φ= 0) is stable and when
G(2πγ τ +π)< 0, the anti-phase pattern (
φ=π) is stable. Fur-
thermore, for some given values of delay time τ , if both G(2πγ τ )
and G(2πγ τ +π) are negative, the in-phase and the anti-phase
pattern coexist in this parameter region; and whether the in-
phase or anti-phase pattern will be achieved depends on the initial
conditions.

For example, in the case of classical coupled phase oscillators:

dϕ1,2(t ) /dt = 2πγ + K sin
[
ϕ2,1 (t − τ)− ϕ1,2 (t )

]
, (11)

where K is the coupling strength, G(2πγ τ ) takes the form
G(2πγ τ ) = −2K cos(2πγ τ ). The function −2K cos(2πγ τ )
(K > 0) versus 2πγ τ is shown in Figure 4A. When 2πγ τ <π /2
or 2πγ τ > 3π /2, G(2πγ τ )< 0, and G(2πγ τ +π)> 0, so that
the in-phase pattern is stable. When π /2< 2πγ τ < 3π /2,
G(2πγ τ )> 0, and G(2πγ τ +π)< 0, the anti-phase pattern is
stable.

In the following, we show that anti-phase synchronization in
coupled neuron systems can be understood using coupled phase
oscillators, with mathematical details presented in Appendix. The
collective behaviors of coupled neuron cells are basis for the spa-
tiotemporal pattern formations in neuron networks. In the sim-
plest case where a pair of neuron cells are pulse-coupled together
(K12 = K21 = K̃ ), the phase shift between them is determined by
the delay time, coupling strength, and the initial conditions (Ernst
et al., 1998). We can define the phase of an IAF cell as:

ϕj (t ) = 2π
t − t

j
0

T
, (12)

where t
j
0 is the time when the jth neuron fires for the first time.

The membrane potential V (t ) then can be expressed as a function
of the phase V (ϕ). Actually, from Mirollo and Strogatz (1990), an
IAF cell is usually described as a phase oscillator in this way. In
the case of a pair of cells with small excitatory coupling, the phase
difference |
ϕ| = |ϕ1 −ϕ2| equals to the time delay τ or 2π − τ
(Ernst et al., 1998), so that a delay time approximated to half of the
period can induce an apparent anti-phase oscillation pattern. This
case in shown in Figure 5A. It looks different when compared to
the classical phase oscillator in Figure 5B. However, there is sim-
ilarity between a pair of pulse-coupled IAF model and a pair of
coupled phase oscillators model: when τ approximates to 0 or 1/γ ,
the phase difference is small (in-phase or approximate in-phase),

FIGURE 4 | Comparison of function G(2πγ τ ) between (A) coupled

phase oscillators (K > 0) and (B) coupled neuron cells systems.
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FIGURE 5 | In-phase and anti-phase attractors. (A) A pair of coupled IAF
oscillators described by Eq. 1 (green lines); (B) a pair of coupled phase
oscillators described by Eq. 11 (K > 0); (C) a pair of coupled neuron mass
oscillators described by Eqs 2–4.

whereas when τ approximates to 1/2γ , the phase difference is big
(anti-phase or approximate anti-phase). This similarity actually
has deeper significance in understanding key role of delay time in
organizing the anti-phase pattern in neuron networks, as we will
show shortly.

Let us consider a system with two populations of cells. Within
each population, neurons are coupled together so that they
fire orderly; and between the populations, the phase difference
between pairs of neurons corresponds to the phase difference of
the oscillations of the two populations. This is the simplest case
where the interaction between neuron cells can map to the inter-
action between neuron populations. In this case, we can show
(see Appendix) that the phase difference can be described by the
same form as in Eq. 10, where the function G(2πγ τ ) is piece-wise,
satisfying:

G (2πγ τ)

⎧⎪⎨
⎪⎩
< 0, 2πγ τ ∈ refractory period

> 0, 2πγ τ ∈ integrationperiod

< 0, 2πγ τ ∈ firing period

, (13)

as shown in Figure 4B. When the neuron receives a spike, if V (ϕ)
increases to a new value V (ϕ)+K̃ , the neuron is in the integration
period, (ϕ ∈ integration period); if V (ϕ) increases to Vth where the
neuron fires a spike, it is in the firing period, (ϕ ∈ firing period);
and if V (ϕ) remains at the value Vr, it is in the refractory period,
(ϕ ∈ refractory period). More details about the function G can be
obtained in the Appendix. These three periods are qualitatively

similar to the three regions I, II, and III in coupled phase oscillators
with K > 0 in Figure 4A. The above analysis can therefore explains
the relationship of the organizations of anti-phase pattern between
coupled neuronal systems and coupled phase oscillators, so as to
understand the key role of the delay time.

In a pair of coupled neural mass oscillators, the dynamical
behaviors versus delay time will be more similar to the case of
coupled phase oscillators. We show an example in Figure 5C.
Compared to the coupled phase oscillators, the region for anti-
phase pattern is smaller and shifts to smaller τ in coupled neural
mass oscillators. This result has influence on the organization of
the anti-phase pattern on the two-module networks. For exam-
ple, in each panel of Figure 3, the region with high values of the
in-phase index ϑ in and anti-phase index ϑan is smaller in size at
small τ in than that of large τ in.

To organize the anti-phase oscillation pattern between mod-
ules, highly coherent oscillation (approximate in-phase synchro-
nization) has to be achieved within modules, or otherwise there
would not be macroscopic oscillations of the population except
for some fluctuations. From the above analysis, we know that a
suitable delay time between modules τ out is very important. The
delay time within modules τ in should be small enough (or close
an integer times of the period) to allow the oscillators within mod-
ules have small phase difference, so that the oscillators within each
module may exhibit the approximate in-phase pattern. For pulse-
coupled neuron networks, in the extreme case, all the neurons
within a module fire simultaneously, and the interaction between
modules is equal to the interaction between a pair of neurons as
analyzed by Ernst et al. (1998). The delay time between modules
approximating to half of the period can induce this anti-phase
pattern. In network of neural mass models, the dynamics is more
similar to the coupled phase oscillators, though the attractors are
more complex, depending on the initial conditions. Therefore, dif-
ferent delay times within and between modules can be a key factor
for anti-phase synchronization.

The connection density does not play an important role as the
delay times. In the network of coupled neuron cells with homo-
geneous delay time τ and excitatory coupling, high-coherence
collective oscillation can only be achieved when τ = nT where
T is the firing period of the neurons (e.g., n = 4 in Figure 2B).
Supposing that the neurons in the first module fire, after time τ ,
the signal transfer to the second module, inducing firing of the
neurons in the second module. At the same time, the neurons in
the first module also fire because of the relationship between the
delay time and the firing period, so that only in-phase oscillation is
observed. In this case, changing the connection density within and
between modules cannot organize an anti-phase pattern. However,
connection densities also have impact on the anti-phase pattern.
Neuronal network is complicated in dynamics, where multiple
attractors usually coexist, and network connection matrix is very
important for the stability of an attractor (Memmesheimer and
Timme, 2006). Connection densities play a very important role
in the stability of an existing anti-phase pattern, though changing
connection densities cannot influence the existence of an anti-
phase pattern. Specially, in the network of neuron cell model,
under the condition of suitable delay times and other parameters
for anti-phase pattern, if the connection density is not suitable
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to stabilize this pattern robustly, this pattern is still difficult to
achieve. For example, if kin is small, anti-phase pattern can be only
achieved by using the initial condition very close to this attrac-
tor. Otherwise, with random initial conditions, the neurons will
fire randomly without achieving in-phase and anti-phase synchro-
nization. For the network of neural mass model, other attractors
can also coexist with the anti-phase synchronization. Compar-
ing the Figures 3E–H or the Figures 3M–P, one can notice that,
even in these simulations we use the same initial conditions, under
the noise perturbations, the parameter regions of anti-phase pat-
tern are not the same with different kin or kout. In this case, the
connection density can play an important role in preserving the
anti-phase pattern.

The other key factor is the inhibitory coupling. When inhibitory
couplings are added within modules, the firing patterns can be
altered. Compared to the case of totally excitatory coupling,
Brunel and Wang (2003) have ever shown that in the presence
of inhibitory coupling, an oscillatory behavior at the popula-
tion level can happen among the neurons. The period of the
collective oscillations is determined by several parameters of the
excitatory and inhibitory synapses. Given an oscillation period,
a suitable delay time τ approximating to half of the period can
induce an anti-phase pattern, similar to the case of a pair of cou-
pled neuron cells when the oscillations within-module is highly
coherent. In the example we show in Figure 2C, the period is
about 320 ms, and the delay time is 150 ms. Therefore, the role
of inhibitory couplings in anti-phase synchronization is that they
induce emergent oscillations with periods fitting to delay times
between modules.

3.5. INTERACTION BETWEEN HIGH AND LOW FREQUENCIES
The analysis in the previous section shows that the time delay
approximating to 1/4γ < τ < 3/4γ contributes to the anti-phase
patterns for oscillations with frequency γ for dominant excitatory
couplings between modules. Collective activity in the brain oscil-
lates in a quite wide range of frequencies. The conduction delays
between neurons in different cortex are usually tens of milliseconds
which can support anti-phase synchronization of oscillations with
a period of hundreds milliseconds if the oscillations are narrow-
banded. In reality, the anti-phase oscillations can be much slower
(sometime slower than 0.1 Hz), corresponding to the delay times
several orders of magnitude larger than the conduction delays.
A crucial question is whether the relatively small delay times of
neuronal communications can contribute to the slow anti-phase
patterns? Our analysis using a simple mathematical model show
that this is possible if there exists an interaction between slow and
fast oscillations.

Supposing the signal measured from a cortical region is a func-
tion of two variables δ and α as H (δ,α), where δ and α respectively
denote the phase of slow and fast oscillations. We describe the
evolution of them as coupled phase oscillators

δ̇1,2 (t ) = 2πγδ

+ Iδ
[
δ1,2 (t ) , δ2,1 (t − τ) ,α1,2 (t ) ,α2,1 (t − τ)

]
, (14)

α̇1,2 (t ) = 2πγα

+ Iα
[
δ1,2 (t ) , δ2,1 (t − τ) ,α1,2 (t ) ,α2,1 (t − τ)

]
, (15)

where γ δ and γ α represent their intrinsic frequencies and the
subscripts 1 and 2 indicate two cortical regions. The question now
can be specified as: can the anti-correlated population activities be
observed between these two regions in δ band, if the conduction
delay τ has the same order as 1/γ α , and τ < 1/4γ δ .

If there is no interaction between high-frequency and low-
frequency oscillations, the system will be reduced to two cou-
pled oscillators in the δ and α bands separately, very similar to
that of Eq. 11. In this case, anti-phase synchronization cannot
be realized for the slow oscillations with τ < 1/4γ δ . Therefore,
if the anti-correlation pattern organized in low-frequency band
is induced by small time-delays, there must be an interaction
between high-frequency and low-frequency oscillations.

We use an example in the following to demonstrate this
mechanism, where we take the interaction terms as

Iδ1,2 = K sin
(
δ2,1(t − τ)− δ1,2(t )

)
cos

(
α2,1(t − τ)−α1,2(t )

)
,

(16)

Iα1,2 = K sin
(
α2,1(t − τ)−α1,2(t )

)
cos

(
δ2,1(t − τ)− δ1,2(t )

)
,

(17)

with positive coupling strength K > 0. This is one of the
simplest cases where the interaction between high-frequency
[cos(α2,1(t − τ ) −α1,2(t ))] has influence on the interaction
between low-frequency oscillations [sin(δ2,1(t − τ ) − δ1,2(t ))],
and vise versa. Using new variables u = δ+α and v = δ−α, we
can separate the system into two pairs of coupled phase oscillators
with frequencies γ δ + γ α and γ δ − γ α , respectively,

u̇1,2 (t ) = 2π (γδ + γα)+ K sin
(
u2,1(t − τ)− u1,2(t )

)
, (18)

v̇1,2 (t ) = 2π (γδ − γα)+ K sin
(
v2,1(t − τ)− v1,2(t )

)
. (19)

Now the conditions for in-phase and anti-phase synchronization
of these new oscillators become clear. Since δ= (u + v)/2 and
α= (u − v)/2, we can obtain the phase differences of the original
fast oscillations α1,2 and slow oscillations δ1,2. We can identify sev-
eral important values of the delay τ . The results are summarized in
Table 1. All of τ 0,1,2,3,4 have the same order of 1/γ α , and are smaller
than 1/4γ δ when γ δ is much smaller than γ α . Notably, there is a
region (τ 2, τ 3), the slow oscillations δ1 and δ2 can show anti-
phase oscillation. Examples of numerical simulation are shown in
Figure 6.

In the real cortex system, the interactions between high and
low-frequency oscillations will not be as simple as the model
shown in Eqs. (16) and (17). Furthermore, some of the anti-phase
patterns of cortical dynamics are investigated by using indirect
methods, e.g., fMRI studies (Fox et al., 2005), where the under-
lying mechanism of slow oscillation is quite complicated and

Table 1 | Phase difference of α1,2 and δ1,2.

�φ\τ (τ0, τ1) (τ1, τ2) (τ2, τ3) (τ3, τ4)

α1 −α2 0 π /2 0 −π /2

δ1 − δ2 0 π /2 π π /2

τ 0 = 0; τ 1 = 1/4(γ δ + γ α ); τ 2 = 1/4(γ δ − γ α ); τ 3 = 3/4(γ δ + γ α ); τ 4 = 3/4(γ δ + γ α ).
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is not yet clearly understood. Nevertheless, this part of discus-
sion provides an understanding of principle that it is possible
to obtain anti-phase pattern in very slow-frequency band with
a relative smaller delay time if there is the interaction between
high and low frequencies oscillations. Moreover, in the pres-
ence of these interactions, more types of patterns can emerge in
addition to in-phase and anti-phase oscillations, e.g., the pattern
of π /2 phase difference (see Table 1; Figure 6). It is therefore
expected that more complex pattern formations can organize in
the time delay environments when the interactions among differ-
ent frequency bands are entangled in a complicated manner. Our
research is of fundamental meaning for further understanding
the complex pattern formations organized within cortico-cortical
communications.

4. DISCUSSIONS
4.1. IN-PHASE SYNCHRONIZATION WITHIN MODULES
When we show the organization of an pattern which is anti-phase
between modules and in-phase synchronization within modules,
the analysis is made basing on that in-phase has been organized
within modules. The dynamics between modules is then similar to

FIGURE 6 |The pattern of slow and fast oscillations in the presence of

time-delays, described by Eqs. (16) and (17). Parameters are K = 0.02,
γ α = 10, γ δ = 1, so that τ 1 = 0.025 × 10/11, τ 2 = 0.025 × 10/9,
τ 3 = 0.075 × 10/11, τ 4 = 0.075 × 10/9. (A) τ = 0.005 ∈ (τ 0, τ 1),
α1 −α2 = δ1 − δ2 = 0; (B) τ = 0.025 ∈ (τ 1, τ 2), α1 −α2 = δ1 − δ2 =π /2; (C)

τ = 0.05 ∈ (τ 2, τ 3), α1 −α2 = 0, δ1 − δ2 =π ; (D) τ = 0.075 ∈ (τ 3, τ 4),
α1 −α2 = −π /2, δ1 − δ2 =π /2.

a pair of coupled neuron cells or coupled phase oscillators (Eq. 11).
In other words, in our analysis, in-phase pattern within-module is
a precondition for the organization of anti-phase pattern between
modules.

However, when two neurons without direct connections are
coupled to the third intermediary one, each fires in anti-phase
with the third one, the two neurons can achieve in-phase fir-
ing. Such a case can be also observed on a neuronal network. As
shown in Figure 7, the network is divided into two populations;
within each population, there is no connection among neurons,
but between populations, neurons are randomly coupled with suit-
able delay times for anti-phase firings. On this network, neuron
A and B can achieve in-phase because they have common input
from neuron D and both of them are anti-phase to neuron D. The
neurons D and E can achieve in-phase because of the common
input from neuron B. This mechanism can finally make all the
neurons within one population fire in-phase, even for those with-
out a common input, like the neurons A and C. In such a case,
anti-phase between the two populations forms a precondition for
the organization of in-phase pattern within each population in
the presence of delay times. This case is therefore different from
what we have analyzed where the connection density is usually
higher within modules than between modules. In a real neuronal
network, the two populations presented in Figure 7 will not be
defined as a module in term of connectivity. Including interaction
within such a population does not necessarily enhance in-phase
synchronization, so that if there exist interactions within popu-
lations, especially when the delay time and coupling type are the
same as those between the populations, the in-phase pattern could
be destroyed.

Generally speaking, the mechanism, where anti-phase between
populations is precondition for in-phase within populations, is
more appropriate to describe the case where two populations
are indirectly coupled by the third intermediary one. This sit-
uation is perhaps relevant for understanding in-phase synchro-
nization between distant cortical regions (Vicente et al., 2008);
the mechanism, where in-phase within modules is precondition

FIGURE 7 | A network structure where in-phase pattern within

population can be induced by anti-phase between populations when

there is no interaction between neurons within the populations.
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for anti-phase between modules, is more relevant for understand-
ing the organization of anti-phase pattern between two coupled
cortical regions.

4.2. UNDER TASKS
We have analyzed important factors in the spontaneous organi-
zation of anti-phase patterns without external stimuli. Actually,
this kind of anti-phase pattern can also be organized under tasks.
From the traditional viewpoint, the task-induced anti-phase pat-
tern often referrs the coexistence of both the areas of task-increased
activity and task-decreased activity (Broyd et al., 2009). Our analy-
sis can also shed some lights on this task-induced anti-phase
pattern phenomenon.

If we suppose that one of the modules is forced to be in-
phase synchronization by external signal, rather than spontaneous
organized, a suitable delay time may also be a key factor in
inducing an anti-phase pattern between modules. We give a sim-
ple example in Figure 8. A number (N = 1000) of IAF neurons
are coupled together with excitatory synapses. In the absence of
external input, these neurons fire randomly, with a set of parame-
ters kin = kout = 0.05 and τ in = τ out = 100 ms. We add an external
input to the first module (1 → N /2), to force the neurons in
this modules fire nearly simultaneously every 200 ms, mimick-
ing a firing pattern induced by some tasks. Since the delay time
τ out = 100 ms, after 100 ms, the membrane potentials of the neu-
rons in the second module are increased, so that a large fraction
of them fire simultaneously at that time. Even though the neurons
in the second module still show a relatively random firing pattern,
anti-phase oscillation can be observed between modules. However,
if the delay time does not approximate to half of the period of the
external input, such an anti-phase pattern cannot be observed.

This simple mathematical mechanism can help us under-
stand some observations in neuron systems. Previous studies
showed that approximate in-phase patterns (or long-distance
spatial coherence) can be observed in slow-wave sleeping states,
anesthetized states, or under tasks. Anti-phase patterns are also

FIGURE 8 | Anti-phase pattern when the neurons in the first module

are forced to fire every 200 ms. τ out = 100 ms.

found in these states. Regardless whether the in-phase pattern in
each module is self-organized (e.g., resting state) or induced by
external signals (under some tasks), the in-phase patterns within
cortex make the cortico-cortical communication dynamics much
similar to the time-delayed coupled phase oscillators, showing
anti-phase pattern with suitable delay times. There is a precondi-
tion that the in-phase synchronization is achieved within modules,
which may bridge the understanding of the common characteris-
tics of cortical dynamics in slow-wave sleeping states, anesthetized
states, or under tasks.

4.3. DIVERSITY IN NETWORK CONNECTIVITY AND DELAYS
All the above analysis is made basing on the conditions that the
delay times and connection densities are uniform within each
module or between modules. However, in the real cortical net-
works, none of them is uniform. In the following, we discuss some
results on network with diverse connectivity and delays, and show
that delay time is still a key factor but the connected density is not
as important in organizing in-phase and anti-phase patterns.

We use the cortico-cortical network among the visual areas of
monkey (Kötter, 2004; Kaiser and Hilgetag, 2006). Basing on net-
work connectivity, this network can be put into two modules (da
F Costa et al., 2007), and the connection densities are much higher
within each module than that between modules. The spatial posi-
tion of the mass-center of these cortical areas (network nodes)
are shown in Figure 9A, where the black and red colors represent
different modules. We simulate the dynamics of the network by
putting a neural mass oscillator on each node. The delay times are
introduced by a conduction velocity assumed to be common for
all the links. Therefore, the delay times are non-uniform, propor-
tional to the Euclidean distances between different pairs of areas.
In the simulations we cannot find anti-phase synchronization

FIGURE 9 | Dynamical pattern on the cortical network of Macaque

visual system. (A) The spatial positions of the network nodes. (B) The
distributions of the delay time τ when the conduction velocity is set as a
biological reasonable value 2.4 mm/ms. (C) The average values of the
output v j

1 − v j
2 within each modules.
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between the two modules. Even if we start with an anti-phase
pattern with some noise perturbation as the initial conditions,
this pattern cannot be preserved on this network. For very large
velocity, the delay times approximate to zero, and the whole net-
work can preserve a highly coherent (in-phase) state. On the other
hand, when the velocity is in the biologically reasonable range, the
delay times have a broad distribution from zero to a value compa-
rable to the period of the neural mass oscillator (Figure 9B), the
phase differences among oscillators distribute randomly in (−π ,
π). Even though the average values of the output from each mod-
ule show some small macroscopic oscillation, they do not show
anti-phase pattern between the two modules (Figure 9C). These
results confirm again that the formation of densely connected
modules cannot induce an anti-phase pattern between them. In
the real visual cortex, cells tend to fire simultaneously when acti-
vated by related features of a visual stimulus (Gray et al., 1989;
Engel et al., 1991a; Castelo-Branco et al., 2000; Tiesinga et al.,
2008), though this network has two modules.

ANTI-PHASE INDUCED BY INHIBITORY COUPLING
The above analysis is basing on the case that the coupling between
modules is dominantly excitatory. If the coupling is inhibitory, the
results of coupled neural mass oscillators can be roughly predicted
from Eq. 11, where a negative K stands for a negative coupling, so
that we can expect that anti-phase pattern emerges when the delay
time τ is around zero. Our simulations of a pair of coupled neuron
mass oscillators confirmed that, anti-phase pattern emerges with
zero τ , whereas in-phase pattern emerges when the delay is close
to half of the oscillation period.

In neuronal systems, the inhibitory neurons and the non-
symmetry of the inhibitory connections can induce pronounced
competition of activity among neuron pools. Competition
dynamics broadly exists in neuronal system (Laurent et al., 2001;
Levi et al., 2005; Mazor and Laurent, 2005; Moldakarimov et al.,
2005; Rollenhagen and Olson, 2005; Komarov et al., 2009a; Szücs
et al., 2009), which may play important roles in neuronal functions,
e.g., the integration between low-frequency and high-frequency
oscillations (Rabinovich et al., 2006). This type of dynamics
also has a relationship to anti-phase pattern from a generalized
viewpoint. For example, in the well-known n-competitor neu-
ronal system (Komarov et al., 2009a,b), each population activity
may achieve its peak value sequently. If in this case, n can be
degenerated to 2, the dynamics degenerates to the anti-phase
oscillation pattern. Therefore, it is significant to get insight into

the organization of anti-phase pattern for better understanding
the organization of more complicated competition dynamics in
the brain.

To summarize this part of discussion, when the coupling is
inhibitory between modules, delay time can also be a key factor
in the organization of anti-phase oscillation. The difference from
the case of excitatory coupling is that anti-phase between modules
require a small delay (or close to a period) between modules.

CONCLUSION
We investigate the anti-phase oscillation pattern organized on two-
module networks with both neuron cell model and neuron mass
model in time delay environments, among other factors. The time-
delays and the coupling types (excitatory and inhibitory) can be
key factors for organizing the patterns of in-phase within modules
and anti-phase between modules, but the connection densities are
not as crucial though the stability is influenced by the network
connectivity. Our analysis shows that important understanding of
the anti-phase synchronization in neural networks can be obtained
by the classical coupled phase oscillators. The anti-phase patterns
organized in real cortical networks are more complicated. Further-
more, some of them are investigated by using indirect methods,
e.g., fMRI studies. It is possible that anti-phase pattern in the
signals of these indirect measurements can reflect some kinds of
anti-phase pattern in cortical dynamics. However, it is still an open
problem how they are related. Our analysis in this work provides
a clear understanding of the key factors in the organization of the
anti-phase pattern on a two-module neuronal network, which is
of importance for gaining insight into the mechanisms underlying
the dynamics, no matter how this anti-phase pattern is expressed in
the measurement signals. These results are significant for further
understanding the formation of more complex spatiotemporal
patterns and functional networks in the brain, and the bridge
between the anti-phase patten in the measurement signals and
the anti-phase pattern organized on the neuronal network need to
be meticulously constructed in the further studies.
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APPENDIX
ANALYSIS OF PHASE DIFFERENCE IN PULSE-COUPLED NEURONAL
NETWORK
The phase of an IAF cell can be defined as:

ϕj (t ) = 2π
t − t

j
0

T
, (A1)

where t
j
0 is the time when the jth neuron fires for the first

time. The potential V then have the properties V (ϕ= 0) = Vr,
V (ϕ= 2π) = Vth, dV/dϕ > 0, and d2V/dϕ2< 0. For two coupled
neurons, when a neuron receives an action potential from the other
one, its phase will has an increment ϕ̃,

ϕ̃ = g
(
ϕ1,2

)− ϕ1,2, (A2)

where the function g (ϕ) is

g (ϕ) = V −1 (min
[
V (ϕ)+ K̃ , Vth

])
, (A3)

and V −1 is the inverse function of V (ϕ). The phase difference of
these two neurons
ϕ=ϕ1 −ϕ2 therefore follows

d
ϕ

dt
=

⎧⎪⎪⎨
⎪⎪⎩

g (2πγ τ +
ϕ)− 2πγ τ −
ϕ, ϕ2 = 2πγ τ

−g (2πγ τ −
ϕ)+ 2πγ τ −
ϕ, ϕ1 = 2πγ τ

0, otherwise

.

(A4)

It means that only when ϕ2 = 2πγ τ or ϕ1 = 2πγ τ , its value is
non-zero. In the following, we assume it has non-zero values all
the time, which means that the coupling effect always takes place.
We can write this evolution of 
ϕ in the following form:

d
ϕ

dt
= g (2πγ τ +
ϕ)− 2πγ τ −
ϕ − g (2πγ τ −
ϕ)

+ 2πγ τ −
ϕ. (A5)

This situation describes such a system that the neuron system is
divided into two populations; within each population, nerve cells
are coupled together so that they fire orderly; and between these
populations, the phase difference between the paired nerve cells
corresponds to the phase difference of the oscillations of the two
populations. In this case, the evolution of 
ϕ can be written as

d
ϕ

dt
≈
{

2g ′ [(2πγ τ)− 1]
ϕ, 
ϕ ∼ 0

2g ′ [(2πγ τ + π))− 1] (
ϕ − π) , 
ϕ ∼ π
, (A6)

where g ′(ϕ) = dg (ϕ)/dϕ. We therefore get G(2πγ τ ) = 2g ′[(2πγ τ )
− 1], so that one can understand the role of delay time τ in coupled
neuronal systems as in the coupled phase oscillators.

In the following we will show that the expression of g (ϕ) in Eq.
A2 can generate a similar performance of G(2πγ τ ) versus τ to the
case in coupled phase oscillators when we consider another factor
existing in real neuronal systems, the refractory period.

The properties dV /dϕ > 0 and d2V /dϕ2< 0 (Figure A1A) are
the basis for the analysis in the following. When the neuron receives

FIGURE A1 | Comparison of function G(ϕ) in coupled neuron systems

and G(ϕ) in coupled phase oscillators. When analyzing the role of delay
time τ in the stability of in-phase pattern, the value of G(2πγ τ ) is vital;
when referring to anti-phase pattern the value of G(2πγ τ +π ) is vital. (A) In
IAF oscillator V(ϕ) versus ϕ; (B) min[V (ϕ)+ K̃ , Vth] versus ϕ; (C) g(ϕ) versus
ϕ; (D) 2[g ′(ϕ) − 1] versus ϕ; (E) 2[g ′(ϕ) − 1] versus ϕ when refractory period
is defined (the same form as Figure 4B); (F) in coupled phase oscillators,
−2K cosφ versus φ when K > 0 (the same form as Figure 4A).

a spike, if V (ϕ) increases to V (ϕ) + K̃ , we call that the neuron
is located in the integration period; if V (ϕ) increases to Vth, it is
located in the firing period, as shown in Figure A1B. Therefore,
we get

g (ϕ) =
{

V −1
[
V (ϕ)+ K̃

]
, integrationperiod

2π , firing period
, (A7)

as shown in Figure A1C. Since K̃ > 0, we get

g ′ (ϕ)
{
> 1, integrationperiod

= 0, firing period
, (A8)

as shown in Figure A1D. On the other hand, if the refractory
period is taken into consideration, V (ϕ) + K̃ = Vr is a con-
stant during this period, so that g (ϕ) = 0 and g ′(ϕ) = 0. We can
therefore express 2[g ′(ϕ) − 1] as

2
[
g ′ (ϕ)− 1

]
⎧⎪⎨
⎪⎩
< 0, refractory period

> 0, integrationperiod

< 0, firing period

, (A9)

as shown in Figure A1E. These three periods are similar to the three
cases labeled as I, II, and III in Figure A1F for coupled phase oscil-
lators with K > 0. The above analysis can therefore explain the
relationship of the organizations of anti-phase pattern between
coupled neuronal systems and coupled phase oscillators, so as to
understand the key role of the delay time.
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Over the last two decades numerous functional imaging studies have shown that
higher order cognitive functions are crucially dependent on the formation of distributed,
large-scale neuronal assemblies (neurocognitive networks), often for very short durations.
This has fueled the development of a vast number of functional connectivity measures
that attempt to capture the spatiotemporal evolution of neurocognitive networks.
Unfortunately, interpreting the neural basis of goal directed behavior using connectivity
measures on neuroimaging data are highly dependent on the assumptions underlying the
development of the measure, the nature of the task, and the modality of the neuroimaging
technique that was used. This paper has two main purposes. The first is to provide an
overview of some of the different measures of functional/effective connectivity that deal
with high temporal resolution neuroimaging data. We will include some results that come
from a recent approach that we have developed to identify the formation and extinction
of task-specific, large-scale neuronal assemblies from electrophysiological recordings at
a ms-by-ms temporal resolution. The second purpose of this paper is to indicate how to
partially validate the interpretations drawn from this (or any other) connectivity technique
by using simulated data from large-scale, neurobiologically realistic models. Specifically,
we applied our recently developed method to realistic simulations of MEG data during a
delayed match-to-sample (DMS) task condition and a passive viewing of stimuli condition
using a large-scale neural model of the ventral visual processing pathway. Simulated MEG
data using simple head models were generated from sources placed in V1, V4, IT, and
prefrontal cortex (PFC) for the passive viewing condition. The results show how closely the
conclusions obtained from the functional connectivity method match with what actually
occurred at the neuronal network level.

Keywords: EEG, MEG, large-scale networks, information processing, high resolution, timing, decoding, delayed

match-to-sample (DMS)

INTRODUCTION
We try to relate present realizations with prior experiences in
numerous daily life activities. For example, imagine a situation
where you encounter a person during a train ride who appears
to be vaguely familiar. Almost instinctively, you try to remem-
ber this person from the near or distant past. Within a short
time, maybe in a few seconds, you come to a decision by match-
ing the current face against a huge sample of faces you have
known as to whether this is somebody you were familiar with
from the past. Outcomes of such a matching endeavor may fur-
ther decide whether you are going to start an informal social
interaction with the person. Such seemingly simple tasks engage
a complicated set of information processing stages in the brain.
Starting with sensory processing of the facial and bodily fea-
tures of the person, the human brain performs face and object
recognition, recollection of short and long-term memories, and
finally decision-making. All this may occur with varying levels
of attention in each occurrence of the event across individu-
als. Brain dynamics underlying these processing stages operate

at a millisecond scale to ensure that the final outcome (decision
to interact) occurs as soon as possible, most likely within sec-
onds. Existing research in sensory visual processing (Prechtl et al.,
1997; Horwitz and Braun, 2004), face and object recognition
(Haxby et al., 1991, 1995; DiCarlo and Cox, 2007), long-term
memory retrieval (Frankland and Bontempi, 2005; Smith et al.,
2010a) and decision-making (Siegel et al., 2011) suggests that
large-scale brain networks are involved in each stage of neu-
ral information processing (Atkinson and Shiffrin, 1968). Hence,
understanding goal directed behavior in humans will require
characterization of network mechanisms at varying spatiotem-
poral scales from neuroimaging data recorded at high temporal
resolution.

The idea of studying networks as substrates of higher order
cognition has gained relatively recent popularity. Human brain
mapping have traditionally relied on functional segregation stud-
ies (Felleman and van Essen, 1991) based on the fact that cortical
areas get preferentially connected in terms of their functional rel-
evance. Functional integration (Luria, 1980), the mechanism that
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refers to integration of information processed in distributed brain
structures, can be studied with modern neuroimaging techniques.
Based on these two mechanisms that govern cognitive func-
tion, it can be hypothesized that neurocognitive networks form
coordinated configurations which vary in size and temporal char-
acteristics (Kelso, 1995; Bressler and Kelso, 2001; McIntosh, 2004;
Horwitz, 2005). Identifying the task-specific variations in size and
temporal characteristics of large-scale neurocognitive networks
is highly non-trivial. Overlapping of the network components,
also known as neural degeneracy (Tononi et al., 1999), presents a
significant challenge for neuroelectromagnetic data analysis and
interpretation as well as quantification of spatiotemporal net-
work boundaries. In order to unravel the temporal structure of
a functionally relevant brain network, two vital questions need
to be addressed simultaneously: (1) How can low dimensional
functional brain networks be defined from high dimensional
electromagnetic recordings? (2) How can the time scales of mod-
ulatory and compensatory network processing mechanisms be
interpreted from neurodynamics? Answering these questions on
a subject-by-subject basis will help us understand the neural basis
of several higher order cognitive tasks.

The purpose of this article is two-fold. First, in the Overview
section we review a set of existing methods that aids in infer-
ring the existence of large-scale networks from imaging data at
high temporal resolution. We also present some existing model-
ing approaches to simulate the dynamics of large-scale networks
and indicate their importance for testing novel connectivity anal-
ysis methods. Second, we review one novel method in detail that
detects the time scales of formation and extinction of large-scale
neurocognitive networks from EEG/MEG data. We applied this
method to simulated MEG data from a biophysically realistic
large-scale neural model of a delayed match-to-sample (DMS)
task to partially validate the time scales of network level pro-
cessing. Only with simulated data does one have the knowledge
of ground truth, and hence data from large-scale neural mod-
els encompassing neural assemblies in both hemispheres provide
an ideal platform to test the efficacy and validity of novel meth-
ods that are being developed to interpret the presence of network
mechanisms.

OVERVIEW OF METHODS TO ASSESS LARGE-SCALE
NETWORK MECHANISMS
Identifying network substrates of higher order cognition poses a
number of significant challenges. The number of nodes in a func-
tional network and their connections can undergo reorganization
within a few milliseconds. At certain instants of time, new areas
may get recruited while subsisting areas disengage. Added to this
is the fact that the total number of possible functional configura-
tions that might exist within a large-scale network is itself a large
number. These configurations may result from the different tem-
poral relationships each node has on the others and are defined
as functional connectivity during a specific task (Friston et al.,
1993b). Alternatively, a large-scale network may need to recruit
additional brain areas for task-specific information processing
(Meredith and Stein, 1983; Damasio, 1989; Calvert and Thesen,
2004). Understanding this orchestra of recruitment-modulation
mechanisms can be formulated as data-driven frameworks for

elucidating neuronal processes (Banerjee et al., 2008; Smith et al.,
2010b). There are several ways to explore the spatiotemporal
features of network evolution which gives us a deeper understand-
ing of the circuit mechanisms underlying ongoing behavior and
emerging brain states. In this section we classify some of the pop-
ular concepts which are applied to neuroimaging data at high
temporal resolution. The first two sections are based on indirect
measurements of network function and the last two are devoted
to direct measures of extracting networks.

REDUCTION OF HIGH DIMENSIONAL DATA TO A LOW
DIMENSIONAL SUBSPACE
Motivated by empirical observation, it can be argued that
dynamics of brain network activations following an exter-
nally presented stimulus becomes low dimensional. This sim-
ply means that a significant proportion of data can be
captured by the dynamics of a few patterns using spa-
tiotemporal mode decomposition techniques, such as princi-
pal component analysis (Friston et al., 1993a; McIntosh et al.,
1996; Kelso et al., 1998), independent component analysis (ICA)
(Bell and Sejnowski, 1995; Makeig et al., 1997; Onton et al., 2006;
Kovacevic and McIntosh, 2007) etc. Hence, the goal of any
dimensional reduction analyses is to explain the maximum pos-
sible variance in the data with the minimum number of modes
(spatial patterns) and corresponding temporal projections. The
spatial patterns can be interpreted as signatures of large-scale
networks that constitute the substrate on which information pro-
cessing occurs. Extracting such spatial patterns by combining
temporal evolution of the corresponding behavioral task and
brain recordings in a covariance matrix, allows one to study
the relationship between behavior and brain signals at the net-
work level (McIntosh et al., 1996). One common method for
extracting such spatial patterns is principle components analy-
sis (PCA). PCA (also known as singular value decomposition
and Karhunen-Loève transform) involves a high dimensional
rotation of the covariance matrix to rank the orthogonal dimen-
sions (components) in the data in order of decreasing variance
explained by each dimension. Hence, data distributions struc-
tured as a high dimensional ellipsoid rather than a sphere is
suitable for PCA analysis. Ranking dimensions in order of vari-
ance becomes ambiguous for a spherically symmetric distribution
(Jollife, 2002). Higher order statistics, e.g., kurtosis and skew-
ness is ignored by PCA and thus any sharp or abrupt changes in
variability wouldn’t be extracted as an independent feature.

The orthogonality of principle components (PCs) is both an
advantage and disadvantage of PCA. Orthogonal PCs provide an
intuitive backdrop of data visualization. Choosing the number
of PCs to use for dimensional reduction can follow quantitative
approaches (Mitra and Pesaran, 1999) rather than handpicking
them based on a priori hypothesis of brain areas involved. On the
other hand, there is no biophysical motivation as to why patterns
of activity spanned by orthogonal PCs have to be functionally rel-
evant. This is the single biggest disadvantage of the PCA method.
However, it is important to note that attributing functional sig-
nificance to individual principal components is where the main
disadvantage of PCA is apparent. Thus, PCA is more suited to
identify the most general features in the signal, characterize the
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overall subspace of neural activity and disambiguate it from the
noise space.

The success of relatively simpler approaches like PCA has
led to the development of more complicated dimension reduc-
tion techniques based on explaining higher order statistics in
the data (variance is only second-order). Commonly known as
ICA (Bell and Sejnowski, 1995) these techniques come in var-
ious flavors (Makeig et al., 1997; Onton et al., 2006). Typically
ICA is based on the assumption that the true underlying gener-
ators of the data are statistically independent (but not necessarily
orthogonal). Hence, ICA maps do not have any preference or
temporal order in which they appear in the neural time series.
However, a “second-order blind identification” (SOBI) approach
(Molgedey and Schuster, 1994) considers relationships between
multiple time points using an autoregressive model in which
sources are assumed to have both differing spatial distributions
and stable power spectra. ICA algorithms can be used as a quan-
titative technique to reject physiological artifacts in the neural
data (Delorme et al., 2007), classify electromagnetic brain activ-
ity from different population groups (Kovacevic and McIntosh,
2007) and characterize task-specific network activations from
whole brain recordings (Makeig et al., 1999). The temporal struc-
ture of task-related network dynamics can also be studied using
ICA (Hong et al., 2005; Grau et al., 2007). However, the challenge
here lies in quantifying the right set of independent components
(ICs) that capture the global properties of the network over a cer-
tain period of time. The major disadvantage of ICA is that a subset
of relevant ICs for explaining a particular function is often chosen
based on a priori hypothesis on the role of certain brain structures
onto the task rather than a quantitative scheme.

There are other options for dimensional reduction meth-
ods that address some of the disadvantages listed here, but
not yet applied consistently to EEG/MEG data analysis. Notable
among these are factor analysis (Everitt, 1984), probabilis-
tic PCA (Tipping and Bishop, 1999), locally linear embedding
(Roweis and Saul, 2000). In summary, there exist several dimen-
sional reduction techniques for developing ways to compare
spatiotemporal network mechanisms underlying two tasks and
identification of the onsets and offsets of task-specific informa-
tion processing. Combining this with behavioral measures of task
performance can give us a comprehensive understanding of the
network mechanisms involved during higher order cognition.

SPECTRAL REPRESENTATIONS OF RAW EEG/MEG DATA
Spectral decomposition of neurophysiological time series has
now become an essential pre-requisite for analysis of multi-
variate EEG/MEG signals. In 1924, Hans Berger observed that
the most dominant contribution in EEG signals came from
8 to 12 Hz oscillations during wakeful relaxation with closed
eyes (Niedermeyer, 1997). He named these “alpha” rhythms
and correspondingly the smaller amplitude faster waves (16–25
Hz) during awake state with eyes open were denoted as “beta.”
Originating in the occipital areas, alpha rhythms have been pro-
posed to reflect the electrical activity of large-scale networks
incorporating neocortical visual areas and thalamus that have
strong bi-directional excitatory connections (Llinas and Pare,
1991). “Beta” rhythms have been related to synchronized firing

activity of long distant brain networks (such as those comprising
frontal and parietal areas) during a perceptual or cognitive task
(Brovelli et al., 2004). Finally, the “gamma” oscillations (>30 Hz)
initially related to processing of complex visual stimuli in pyrami-
dal cell layers of the visual cortex (Gray et al., 1989) are now con-
sidered as a crucial ingredient for consciousness (Crick and Koch,
2003), perceptual binding (Rodriguez et al., 1999) and other
higher order cognitive functions (Buzsáki, 2006).

However, for EEG/MEG time series recorded over a con-
siderable period of time with high temporal resolution, power
spectra may not show clear peaks and indeed such spectra fol-
low a 1/freq distribution (pink noise). This scale free nature of
brain dynamics has been termed self-organized criticality (Kelso,
1995; Linkenkaer-Hansen et al., 2001; Stam and de Bruin, 2004).
Theoretically, the scale free nature of EEG power spectra can
be viewed as counterintuitive to the notion of orderliness in
EEG signals explained by dominance of one or two frequency
bands, but taken together these two notions offer an attrac-
tive explanation for empirically observed brain dynamics, such
as spontaneous transitions of global modes of oscillation in the
absence of external input (for more detailed discussions see Kelso,
1995; Buzsáki, 2006). In this theoretical framework the ordered
brain dynamics constitutes a transiently stable behavior resulting
from the presence of a sensory input or task-processing on top
of the perpetually critical state on which the brain sits. The spa-
tial localization of the power spectra reveals interesting features
of such transient stability. For example, the “mu” rhythm (9–
11 Hz), which seems to originate from network activity involving
thalamus and motor cortex, disappears when there is move-
ment or movement intention (Steriade and Llinas, 1988). “Phi”
rhythm, localized over parietal regions and comprising two sub-
components; Phi1(10–12 Hz) and Phi2(12 Hz) are enhanced dur-
ing social interaction. Phi1 during independent and Phi2 during
coordinated behavior respectively (Tognoli et al., 2007). We will
return to the scale-free nature of brain dynamics and try to relate
it with underlying anatomical connections in a latter section.
However, the key concept here is that identifying the large-scale
network underlying task-related processing may lie in character-
izing the spatial and temporal structure of transiently stable brain
oscillations.

To understand the temporal dynamics of spectral power, time-
frequency spectrograms can be computed. Primarily, this involves
windowing the raw time series in small time windows over
which the power spectrum is computed. To obtain a contin-
uously varying spectrogram (power spectrum across frequency
and time) wavelet (Grossman and Morlet, 1984; Antonini et al.,
1992), and multitaper (Thompson, 1982) analyses techniques
have been employed. One striking result obtained from the
wavelet analysis was the discovery of spontaneous bursts of
EEG/MEG activity in “gamma” band when spectrograms were
computed over single trials (induced power) but not when
they were computed from the trial averaged evoked poten-
tial time series (Tallon-Baudry et al., 1998). In a recent review,
different spectral profiles have been related to different cog-
nitive functions (Donner and Siegel, 2011). According to this
hypothesis, encoding functions (such as the encoding of sen-
sory features or motor plans) involving local computations will
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be reflected in gamma oscillations, whereas integrative func-
tions (such as perceptual inference and decision-making) involv-
ing long-range interactions among distant brain regions will be
reflected in beta band modulation. Time-frequency spectrograms
(Percival and Walden, 1993) also allow the development of effec-
tive connectivity measures that establish the presence of networks
of brain regions which communicate during the task-specific
information processing. We will continue this discussion briefly
in the next section. However, it is important to note that very
few methods exist that quantitatively capture the onset times of
spectral changes (Bokil et al., 2006). How can the onset and off-
set times of transiently stable large-scale oscillatory networks be
computed at millisecond resolution is an open question that will
be the target of future research.

APPLYING DIRECT MEASURES OF CONNECTIVITY ONTO
FUNCTIONAL IMAGING DATA
Functional integration (Luria, 1980) is the cortical organizational
principle by which two or more brain areas can simultane-
ously engage in information processing via modulations of their
interactions. Integration of information across distributed brain
areas is required by higher order cognitive tasks (Luria, 1980;
Horwitz, 1989, 2003; Horwitz et al., 1992; Sporns et al., 2004;
Bressler and Tognoli, 2006; Friston, 2009). Hence, functional
integration as opposed to the mechanism of functional segrega-
tion (Penfield and Erickson, 1941) operates over a larger spatial
scale. Non-invasive neuroimaging techniques EEG/MEG/fMRI
are ideal tools to study functional integration because they can
record from multiple brain areas simultaneously. One way to
measure functional integration would entail computation of sta-
tistical relationships between brain activations across different
brain areas. Comparing the strengths of such connections (func-
tional connectivity) across the entire brain will reveal the func-
tional brain network underlying a specific task (Horwitz et al.,
1992; Friston, 1994). The spatiotemporal scale of functional
integration is an elusive concept (a recurring theme of this
review) as it depends on the context of the experimental design
(Horwitz, 2003; Kim and Horwitz, 2008). Thus a more restricted
measure of functional integration—“effective connectivity”—is
widely used (Friston, 1994; McIntosh et al., 1996; Horwitz et al.,
1995; Horwitz, 2003; Sporns et al., 2004). Effective connectiv-
ity essentially constrains the more general functional connec-
tivity onto a network with specified anatomical connections
(McIntosh et al., 1994) between a relatively small number of
nodes based on a model of the behavior being studied (Friston,
1994; McIntosh and Gonzalez-Lima, 1995; Friston et al., 2003).

In the early days of neuroimaging research, functional and
effective connectivity concepts were primarily developed on
modalities with high spatial resolution but low temporal res-
olution such as PET and fMRI (Friston et al., 1993b, 2003;
Horwitz et al., 1995; Horwitz and Braun, 2004). In principle,
functional connectivity changes of the order of a few millisec-
onds can be measured with EEG and MEG (Breakspear, 2004;
Schnitzler and Gross, 2005; Wendling et al., 2009; Stam, 2010).
However, results obtained from a connectivity analysis are highly
dependent on the algorithms used to quantify a network and task
context (Horwitz, 2003).

Perhaps the simplest measure of connectivity can be defined
in terms of the correlation between neural signals from different
brain areas. If X(t) and Y(t) represent the simultaneous elec-
tromagnetic activity (EEG/MEG) from two sensors at time t,
correlation (CXY) between them is defined as

CXY = cov(X, Y)

σxσy
(1)

where, σx and σy are standard deviations of X(t), X(t) and cov
stands for covariance between X and Y over the time window
of recording. Thus, correlation evaluates the degree of statisti-
cal interdependency between two time series within a given time
window. It is important to note that correlation does not tell us
anything about causality. A correlation analysis can also be per-
formed on latencies of neural events across different brain areas
(DiCarlo and Maunsell, 2005; Banerjee et al., 2010) or between
task variables and parameters of a large-scale neural model
(Daunizeau et al., 2009).

One way to understand the intricate relationship between two
correlated time series can be to explore how correlated they are
at different frequencies. This can be evaluated using coherence
(Bendat and Piersol, 1971; Bressler et al., 1993). Coherence (ρXY)

is defined as

ρXY = |SXY |2
SXXSYY

(2)

where, SXX and SYY are power spectral densities obtained from the
Fourier transforms of X and Y respectively and SXY is the cross-
spectral density. Significance tests on correlation, coherence, cor-
relation differences and coherence differences can be performed
parametrically using Fisher’s Z-transforms (Kleinbaum et al.,
1998) as well as non-parametric tests (Maris et al., 2007) that
involves creating null distributions from shuffled data sets.
Coherence quantifies the degree of synchronization in the oscil-
latory responses from multiple brain areas. Functional brain
networks can be extracted by setting thresholds on coherence
values from whole brain analysis of EEG and MEG data. A
potential problem with pair-wise correlation and coherence mea-
sures magnify when dealing with multivariate recordings such as
EEG/MEG. Significant correlation between two time series does
not overrule the fact that such a relationship may arise from a
common input driving two regions, rather than two indepen-
dent regions working harmoniously over time. To address this
issue, both correlation and coherence can be computed invok-
ing multivariate considerations and the corresponding quantities
are called partial correlation and coherence (Fisher, 1924). Here,
the inter-relationship between two time series can be conditioned
on the activations of all other sensors. Several other measures of
functional connectivity are used for EEG/MEG data analysis such
as nonlinear coherence (Lopes da Silva et al., 1989), phase syn-
chrony (Rodriguez et al., 1999; Pikovsky et al., 2001) and general-
ized synchronization index (Arnhold et al., 1999). Typically each
method is tuned to detect a specific feature of inter-relationships,
however, the simpler regression based methods (correlation and
coherence) seem to be the most robust in detecting the underlying
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neural coupling (Wendling et al., 2009). To detect the dynam-
ics of coherence, the method of wavelet coherence have been
used (Lachaux et al., 2002). This method holds a lot of promise
in detecting the temporal structure of network evolution during
a task.

GRAPH THEORETIC METHODS FOR ASSESSING NETWORK
DYNAMICS
In previous sections we presented a brief overview of some
of the widely used EEG/MEG-based tools to measure the
strength of inter-relationships between different brain regions.
Here, we briefly present an alternative direct way to con-
struct a functional brain network using graph theoretical tools
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). A net-
work is characterized essentially by two components: nodes
(vertices) and connections (links). Nodes in large-scale net-
works represent brain regions or sensors whereas connections
can be anatomical, functional or effective (Horwitz et al., 1992,
1995; Friston, 1994). EEG/MEG records brain activity from
sensors located outside the head and “far away” from the
neural sources. Often cortical source dynamics is estimated
using inverse techniques (Geselowitz, 1967; Gross et al., 2001;
Hillebrand and Barnes, 2005). Hence, graph theoretic tools can
be applied to both sensor level (Bassett et al., 2006; Stam, 2010)
and source level (Palva et al., 2010) data. An overwhelming num-
ber of these studies indicate that the dynamical state of the net-
works lie near the order/disorder transition point, a phenomenon
known as self-organized criticality (Stam and de Bruin, 2004;
Bassett et al., 2006; Kitzbichler et al., 2009). Bassett et al. (2006)
showed that the highest-frequency gamma network had greater
synchronizability, greater clustering of connections, and shorter
path length than networks in lower frequencies. Even though
the global topology or synchronizability was not strongly influ-
enced by the ongoing behavioral state, motor task performance
was associated with emergence of long-range connections in both
beta and gamma networks. Since the task was over a long time
window, this observation fits within the theoretical framework
of self-organized criticality governing the ongoing background
activity of the brain upon which the task-specific transiently
stable dynamics emerges (Buzsáki, 2006). In the future, met-
rics with higher temporal resolution such as wavelet coherence
(Lachaux et al., 2002) may be able to reveal the time scale of tran-
siently stable oscillations. Hypotheses about spectral markers of
cognitive functions (Donner and Siegel, 2011) can be tested using
this framework.

In addition to the number of nodes and connections of a
network, other measures such as modularity, clustering, path
length, and efficiency are often meaningful (Bassett et al., 2009;
Bullmore and Sporns, 2009). Such measures seem to be ideally
tuned to reveal the spatial structure of a large-scale network.
Often complex brain networks are densely connected within
a module and have only a few nodes that have connections
with different modules. Such modes of network organization
can be extracted via the measures of clustering and modularity
(Meunier et al., 2010). Recent studies have tried to address the
dynamics of task-specific processing in large-scale networks using
complexity measures (Palva et al., 2010).

TEMPORAL MICROSTRUCTURE OF LARGE-SCALE CORTICAL
NETWORKS UNDERLYING TASK-RELATED DIFFERENCES
The knowledge of time scales of network level processing has been
used to identify the sequential steps in task processing via feed-
forward and feedback processes (Garrido et al., 2007; Liu et al.,
2009). In neurophysiological studies on non-human primates,
top-down and bottom-up influences on neural information pro-
cessing during higher order cognitive tasks have been disam-
biguated using onset time detection (Hanes and Schall, 1996;
Monosov et al., 2008; Liu et al., 2009). Nonetheless, there are
two major limitations in extending these approaches directly to
multivariate EEG/MEG data. First, task-specific network recruit-
ment cannot be interpreted from a “pure insertion” based
subtraction of brain activity during control from the task condi-
tion, because the possibility of temporal modulation via changes
in the strength of functional connections cannot be easily ruled
out (Friston et al., 1996). Second, the existing analysis methods
are somewhat tuned in an either/or fashion to address the spatial
or temporal aspects of network dynamics.

To circumvent some of these issues, we have recently devel-
oped a computational framework that decodes the temporal
microstructure of spatiotemporal network mechanisms (Banerjee
et al., submitted). Here, dimensional reduction techniques are
used to define control subspaces from an experimental control
dataset (EEG/MEG at the sensor level). Data from an experimen-
tal task condition can be reconstructed from their projections
onto this control subspace. Banerjee et al. (2008) showed how the
goodness of fit of such reconstructions can be used to interpret
the underlying spatiotemporal network mechanisms: “tempo-
ral modulation” where the task relevant large-scale network is
comprised of the network components identified for the base-
line control versus “recruitment” where compensatory network
involvement is required for specific aspects of task processing. In
our current framework (Banerjee et al., submitted)the temporal
evolution of the goodness of fit of such reconstructions is used for
detection of the time scales of task-specific network recruitment
at millisecond resolution. Decoding the temporal microstructure
of task-specific large-scale networks based on quantitative defi-
nitions is of immense practical importance. One may be able to
obtain a network level biomarker for a broad variety of higher
order neural processes where information processing occurs in
stages. Using our approach, quantitative statistical analysis can be
performed on the resulting onset times of network recruitment at
an individual subject level. In a subsequent section, we will dis-
cuss the details of our computational framework and use it to
decode the temporal microstructure of network level processing
on simulated MEG data for a DMS task (Atkinson and Shiffrin,
1968). We have earlier applied this analysis for a paired asso-
ciate long-term memory recall task (Banerjee et al., submitted).
There, we were able to decode the time scale (onset time and
offset time) of task-specific networks required for retrieving an
auditory object (a non-linguistic tonal pattern) paired with a
visual stimuli from the long-term memory at an individual sub-
ject level. A comparison with visual-visual association indicated
that the onset times for long-term memory retrieval networks
appeared after an initial period of sensory processing of about
0–250 ms.
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LARGE-SCALE NEURAL MODELS
We have briefly reviewed a range of techniques that can be used
to estimate the presence and functionality of brain networks
(from EEG/MEG data at high temporal resolution) essential for
task-specific processing. We also reviewed one such method in
detail to illustrate how such methods can be applied to actual
experimental data. The regression based techniques such as cor-
relation and coherence have been shown to be the most robust in
detecting changes in inter-relationships between functional units
(Wendling et al., 2009). However, this is not an isolated result.
Using biophysically motivated neural mass models, each method
was shown to have different sensitivity profiles for functional con-
nectivity estimation in EEG data (David et al., 2004). This, as
well as several other studies (Srinivasan et al., 2007; Deco et al.,
2008; Daunizeau et al., 2009; Coombes, 2010), indicate that large-
scale models can become an important tool to test the valid-
ity of signal processing tools that are being applied to deci-
pher functional connectivity in brain networks at high temporal
resolution.

An important step in understanding large-scale network
mechanisms is to develop an understanding of empirical EEG
and MEG observations at the macroscopic level (Kelso, 1995;
Horwitz et al., 1999; Buzsáki, 2006). Neural field models of
macroscopic EEG/MEG activity have been used primarily to
explain the dynamics of spatial patterns that are observed at the
sensor level (Wilson and Cowan, 1972; Nunez, 1974; Amari, 1977;
Jirsa and Haken, 1996; Robinson et al., 1997; Coombes, 2010).
The underlying neural circuit mechanisms producing the spa-
tiotemporal patterns at the sensor level are harder to address.
One can only rely on the knowledge gained from electrophysi-
ological recordings in non-human primates. Understanding from
animal recordings can then be used to develop biologically realis-
tic simulation frameworks to understand the circuit mechanisms
in humans (Tagamets and Horwitz, 1998; Deco et al., 2004, 2008;
Horwitz and Husain, 2007). These are large-scale approaches that
consider a basic unit of neural processing to consist of excita-
tory and inhibitory populations of neurons within one cortical
column, and the connection topology across several such units
shape the overall network dynamics and ultimately control behav-
ior. The mean field approximation is often employed by these
approaches (Wilson and Cowan, 1972), which essentially means
that overall activity from a population of neurons in one cortical
column in a functionally active area such as V1 for process-
ing elementary visual stimuli can be lumped into one variable
whose temporal dynamics can be studied using differential equa-
tions. This approximation is supported by empirical evidence
from electrophysiology (Mountcastle, 1957; Hubel and Wiesel,
1963). Event related potentials (ERPs), or changes in the brain’s
electromagnetic potential difference (voltage response) follow-
ing the presentation of a visual/auditory/tactile stimulus recorded
from EEG, reflect the collective behavior of neuronal popula-
tions combined with spatial filtering through volume conduc-
tion. Event related fields (ERFs) on the other hand capture the
minute changes in magnetic fields generated from varying inten-
sities of current sources inside the brain from MEG recordings
with minimal volume condition. A combination of collective
behavior and spatial filtering makes the large changes in the

ERPs/ERFs highly correlated across sensors. Mathematically this
makes spatiotemporal analysis of the EEG/MEG signals simpler.
A high dimensional recording can be captured in terms of the
dynamics of few spatial patterns (Friston et al., 1993a; Kelso et al.,
1998; Banerjee et al., 2008). Modeling the collective behavior of
neural networks giving rise to these patterns is of immense practi-
cal importance. They provide a phenomenological understanding
of the laws which govern neurobiological elements that pro-
duce emergent dynamics (Deco et al., 2004, 2008; Assisi et al.,
2005; Stefanescu and Jirsa, 2008) and can be used to validate new
techniques that estimate functional connectivity (Banerjee et al.,
2008).

A major advantage of using simulated large-scale models of
neural dynamics is one can test the effects of different connectivity
topologies on task-specific information processing. A large num-
ber of studies have shown the role of local and global connectivity
in shaping cortical oscillations. For example a simplistic approx-
imation of the feed-forward connectivity between thalamus and
visual areas has been used for explaining the generation of alpha
rhythms (Lopes da Silva et al., 1974). Whereas, detailed models
of excitatory and inhibitory neuronal populations can capture
complex phenomena such as multistability (Freyer et al., 2011),
and epileptic seizures (Breakspear et al., 2006). Synchronization
among distant populations of neurons in the gamma frequency
band has been shown to occur in a network of integrate and fire
neurons with small world connection topology (Bazhenov et al.,
2008). Large-scale models on the role of attention and working
memory encoding in prefrontal cortex (PFC) have been highly
useful for explaining fMRI and PET brain imaging results and
unifying them with animal recordings (Tagamets and Horwitz,
1998; Deco et al., 2004; Horwitz et al., 2005). Similar models
have been extended to understand the neural dynamics underly-
ing perceptual and sequential decision-making (Deco and Rolls,
2005; Deco et al., 2010). Large-scale models have also been
used to explain the role of neural connectivity in bimanual
motor coordination (Jirsa et al., 1998; Daffertshofer et al., 2005;
Banerjee and Jirsa, 2007).

Thus, large-scale models of functional brain networks provide
a unique way to relate brain structure with function. Though
most of the neuromodeling studies we have discussed are at the
network level, numerous studies model the local circuits at the
level of few neurons (Wang, 2008). A detailed overview of some
of these local microcircuits can be found in Wang (2008). This
also presents us an opportunity to unify different levels of neu-
ronal dynamics in a combined theoretical framework (Deco et al.,
2008). Neuroimaging data with high spatial and temporal reso-
lution are highly complex and requires careful interpretation of
brain organization often using multiple methods of data analysis
if possible (Horwitz, 2003).

HOW CAN WE USE LARGE-SCALE NEURAL MODELS TO
TEST NEW NETWORK LEVEL MEASURES?
Often the goal of network level measures is to understand minute
changes in brain network organization during a particular task or
during neurological disorders. Comparisons are drawn between
different populations to reveal the change in functional neural
circuitry and the strength of the results are established based on
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statistical significance tests. Using large-scale models of neural
activity provides us with sample data sets where all underlying
network organizations and parameters are completely under-
stood. Here, one can validate the reliability and sensitivity of a
novel network analysis technique. In the spirit of this approach,
we performed a sensitivity analysis for the temporal microstruc-
ture analysis (Banerjee et al., submitted)presented earlier using
simulated data from a large-scale neural model for a visual DMS
task (Tagamets and Horwitz, 1998).

MODELING THE MEG ACTIVITY DURING A DELAYED
MATCH-TO-SAMPLE (DMS) TASK
DMS tasks involve presentation of two consecutive sensory
stimuli, following which a subject has to respond whether second
stimulus matches the first one (Haxby et al., 1995). They are used
extensively to study working memory with neuroimaging tech-
niques PET/fMRI in humans (Sergent et al., 1992; Haxby et al.,
1995; Courtney et al., 1997; Husain et al., 2006; Schon et al.,
2008) and in single unit electrophysiological recordings in
monkeys (Fuster et al., 1982; Haenny et al., 1988; Fuster, 1990;
Wilson et al., 1993; Miller et al., 1996). Tagamets and Horwitz
(1998) proposed a large-scale neural model incorporating the
major nodes of the ventral visual pathway comprising areas V1,
V4, inferior temporal (IT) and the PFC to generate simulated
data for a visual DMS task. These nodes were observed in PET
and fMRI studies of the ventral visual stream in relation to face
and object recognition (Corbetta et al., 1991; Haxby et al., 1991,
1995; Sergent et al., 1992; Courtney et al., 1997; Connor et al.,
2007). The basic circuit used to represent each cortical column
(the basic neuronal unit in each region) is shown in Figure 1.
The local response and total synaptic activity within a cortical
area depends on the interactions of the afferent connections,
originating from other areas and local connectivity which shapes
the response. Following earlier results (Douglas et al., 1995;
Tagamets and Horwitz, 1998) we have (1) 85% of the synapses in
cortex are excitatory, and (2) of those, 85% are to other excitatory
neurons. This high percentage of excitatory connection has
given rise to the notion of “amplification” of neuronal responses
within a local circuit in response to small amount of afferents.
Following Tagamets and Horwitz (1998) we chose the total
excitatory to excitatory connectivity weight at 0.6, excitatory
to inhibitory connectivity weight at 0.15 and inhibitory to
excitatory connectivity weight at −0.15 (Figure 1). Each pair of
excitatory and inhibitory units is the well-known Wilson-Cowan
unit (Wilson and Cowan, 1972). In our large-scale model, each
brain area is composed of 81 Wilson Cowan units in 9 × 9
configuration (in order to capture complex visual patterns).
We model the MEG activity for the DMS task in three steps. In
the first step, we define the activation equations of membrane
currents for each Wilson-Cowan unit. In the second step, we
sum the activation of excitatory neurons to compute the primary
currents which are the main sources of MEG data. In the third
stage, we obtain the magnetic fields generated by the current
sources outside the brain on a unit hemisphere using a forward
solution for a spherical head (Mosher et al., 1999).

The electrical activity of each of the excitatory (E) and
inhibitory (I) units is governed by a sigmoidal function of the

summed synaptic inputs that arrive at the unit. This corresponds
to average spiking rates from single-cell recordings. The electrical
activity of an E-I pair is mathematically expressed as:

dEi(t)

dt
= �

(
1

1 + e−KE[wEEEi(t)+wIEIi(t)+iniE(t)−τE+N(t)

)
− δEi(t)

(3)

dIi(t)

dt
= �

(
1

1 + e−KI [wEI Ei(t)+iniI (t)−τI +N(t)

)
− δIi(t) (4)

where, Ei(t) and Ii(t) represent the electrical activations of the
ith excitatory and inhibitory elements at time t respectively. KE

and KI are the gains or steepness of the sigmoid functions for
excitatory and inhibitory units respectively, τE and τI are the
input thresholds for the excitatory and inhibitory units, � is the
rate of change, δ is the decay rate, and N(t) is the added noise
term. wEE, wIE, and wEI are the weights within a unit: excitatory-
to-excitatory (value = 0.6), inhibitory-to-excitatory (value =
−0.15) and excitatory-to-inhibitory (value = 0.15) respectively.
iniE(t) and iniI(t) are the total inputs coming from other areas
into the excitatory and inhibitory units at time t.

iniE(t) =
∑

j

wE
jiEj(t) +

∑
j

wI
jiIj(t)

iniI(t) =
∑

k

wE
kiEk(t) +

∑
k

wI
kiIk(t) (5)

where, wE
ji and wI

ji are weights coming from excitatory/inhibitory
unit j in another area into the ith excitatory and inhibitory units
respectively. Electrical activations in the model range between
0 and 1, and can be interpreted as reflecting the percentage
of active units within a local population. For this article we
chose to keep parameter values (KE, KI , τ, δ, �) identical to
Tagamets and Horwitz (1998).

The source of MEG activity is the primary currents across
pyramidal cell assemblies dominated by excitatory connections
(Okada, 1983). To obtain the source activity of magnetic dipoles,
the generators of ERFs, we sum over the total inputs to one
excitatory unit.

Iprim(t) =
∑

i

wEEEi(t) +
∑

i

wEIEi(t) +
∑
k,i

wE
kiEk(t) (6)

where, the first two terms on the right hand side of Equation (6)
represent the contribution of excitatory inputs onto itself (no
axonal delays are considered) and the third term represents the
input from other excitatory units.

The DMS task involves remembering the first stimulus S1 and
responding after a second stimulus S2 with a button press if
S2 matches with S1. We have square patterns of light (S1 and
S2) as external visual stimuli presented consecutively interspersed
with a delay period. A large-scale model of the DMS task is cre-
ated by including brain areas V1, V4, IT, and the PFC as the
magnetic dipole sources (Figure 1A). A local short-term mem-
ory circuit is implemented in the PFC by incorporating different
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FIGURE 1 | MEG Extension of the Tagamets-Horwitz (1998) large-scale

neural model. (A) Locations in the ventral visual stream where sources
are located for simulating MEG data. The 3-D Talairach coordinates have
been projected to the nearest gray matter on the cortical surface within a
window of 5 mm. The medial surface locations V1 and V4 are shaded in
lighter color, pink whereas the lateral surface locations in inferior temporal
(IT) and prefrontal cortex (PFC) in brighter red. (B) The basic Wilson-Cowan
unit. E represents the excitatory population and I the inhibitory population in
a local assembly such as a cortical column. Local synaptic activity is
dominated by the local excitation and inhibition, while afferents account for
the smallest proportion, as indicated by the synaptic weights shown.

(C) A cortical area is modeled by a 9 × 9 set of basic units. The
excitatory population is shown in bold lines above the inhibitory group,
shown in lighter lines. Individual units in the excitatory and inhibitory
populations within a group are connected as shown in (B). (D) The
working memory circuit in the prefrontal area of the model. It is composed of
different types of units, as identified in electrophysiological studies, and
shown in (C). Each element of the circuit shown is a basic unit, as shown in
(B). Inhibitory connections are affected by excitatory connections onto
inhibitory units. These D2 units also are the source of feedback into earlier
areas. Figures B–D are adapted with permission from
(Tagamets and Horwitz, 1998).
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Table 1 | Talaraich coordinates of the cortical sources used for

simulation of MEG data.

Brain areas (sources) Talaraich coordinates (mm)

X Y Z

V1 −12 −94 4

V4 −12 −84 1

IT −63 −18 −16

C −50 25 4

D1 −50 25 4

D2 −50 25 4

R −50 25 28

sub-modules (Figure 1D). We placed dipoles at the Talairach
coordinates corresponding to each area (Table 1) with electrical
responses as follows:

1. V1/V4/IT become active during stimulation periods S1 and S2.
2. Cue (C) units respond if there is a stimulus present.
3. Delay only (D1) units become active during delay period after

presentation of the first stimulus.
4. Delay + Cue (D2) units become active during presentation of

the stimulus and delay period.
5. Response (R) units show a brief activation if the sec-

ond stimulus matches the first and if the first stimulus is
remembered.

Based on primate electrophysiological recordings
(Funahashi et al., 1990), D1, D2, and C are taken to be
located near one another and hence, share the same Talairach
coordinates. The effect of attention in the model is implemented
by a low-level, diffuse incoming activity to the D2 units as shown
in Figure 1D (from the modulator). While we do not model the
source of this modulation, our model makes it explicit that the
D2 units are the recipients. When the attention level is low there is
very little delay period activity in the D1 and D2 units (Figure 2).
Hence, the prefrontal working memory network is only recruited
for the DMS task during high attention. Two sources of trial-
by-trial variability were incorporated in the model: (1) additive
random noise to each Wilson-Cowan unit, and (2) activity of
the non-specific units at a background rate were added to the
DMS task-specific network (see Horwitz et al., 2005 for details).
The magnetic dipole source dynamics at different brain locations
are plotted in Figure 2. Finally, MEG activity at the sensor level
is computed by applying a forward solution with sources at
the aforementioned locations. We chose a single-shell forward
model of a spherical head with unit conductivity derived by
Mosher et al. (1999). MEG data were generated for DMS task
with low and high levels of attention. The scalp topography of
the simulated data at two different time points (stimulation and
delay period respectively) is shown in Figure 2.

DECODING TEMPORAL MICROSTRUCTURE OF TASK-RELATED
INFORMATION PROCESSING
A key event in the DMS task is the recruitment of the local pre-
frontal circuit to engage the working memory network during the
delay period. This is required for temporarily storing the visual

stimulus S1 until S2 arrives following which a DMS response
is made. The large-scale model is set up such that an effective
recruitment of the prefrontal working memory network only
occurs for high attention scenarios. By applying a recently devel-
oped method to identify the temporal microstructure of task
processing (Banerjee et al., submitted), we sought to decode the
onset times of recruitment of this network and validate if the
decoded onset times correspond to those occurring in the under-
lying neural model. Thus, the main objective here is to illustrate
the usage of large-scale models for providing face validity for con-
nectivity analysis. The temporal microstructure analysis involves
three steps:

1. Defining control subspaces from the control condition
(DMS task during low attention, which amounts to passive
viewing).

2. Reconstructing the experimental task condition (DMS task
during high attention) from their projection onto the control
subspace.

3. Statistical comparison of goodness of fit of reconstruction time
series to detect onset times of recruitment.

In principle, any of the dimensional reduction techniques dis-
cussed in the overview section can be used to compute the control
subspace. However, for the purpose of this example, we chose one
of the simpler methods: principal component analysis. This can
be mathematically expressed as

DMSlow att(X, t) =
n∑

i=1

λi�i(X)ξi(t) (7)

where, DMSlow att are the simulated MEG data at the sensor level
for low attention scenario, �i’s are the principal components, λi

is the eigenvalue that scales component �i, and ξi(t) is the tem-
poral coefficient of the spatial pattern �i. X is a column vector
of all sensors, n is the number of sensors at which MEG data
were simulated (n = 264, matches closely with the 275 channel
CTF MEG system) and t is the instantaneous time. The first
two modes �1 and �2 capture 99.98% of the total variance in
data DMSlow att . Hence, we chose m = 2 to construct the control
subspace.

DMSlow att(X, t) ≈
2∑

i=1

λi�i(X)ξi(t) (8)

The two modes (�1 and �2) are plotted in Figure 3A with
corresponding normalized eigenvalues reflecting percentage con-
tribution to the total variance. The MEG data for high attention
DMShigh att can be reconstructed ms-by-ms by using their pro-
jections onto the vector space spanned by the set of orthogonal
vectors �1 and �2.

DMShigh att(X, t) ≈
2∑

i=1

�
†
i

〈
DMShigh att(X, t)|�〉 (9)
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FIGURE 2 | Temporal and spatial organization of simulated neural

activity: Total currents in each brain location computed using the

large-scale neural model for two different levels of attention (0 and 0.3).

During stimulus S1, the sensory and object identification areas are first
activated (V1, V4 and IT) followed by activations in prefrontal network (D1, D2,
C, and R). For low attention (or zero attention) all units are silent during delay
period because no working memory is required to perform the DMS task. D1
and D2 units have sustained activation (recruited) during delay period if high
attention is required to store the identity of S1 in working memory while the
other units were silent. Neuromagnetic (MEG) activity is simulated at 264

sensors using a forward solution with spherical head model. Topographic
maps of this activity are plotted over a transparent hemisphere at times
t = 15 (within initial S1) and t = 100 (during delay). During S1 similar identical
network organization between passive viewing (low attention) and DMS task
performance (high attention) occurs. However, network organization changes
during the delay period. Discerning by looking at raw topographic maps is
quite hard, as illustrated by closeness of the scalp topography between the
two task conditions during delay period. The temporal microstructure of
cortical network (TMCN) analysis retrieves the onset of recruitment of the
task-specific prefrontal networks at the sensor level.

where, 〈|〉 indicates projection operation, and † represents trans-
pose. The orthogonality of basis vectors is an important require-
ment that is guaranteed by PCA. However, non-orthogonal basis
vectors can be employed in the control subspace by using the
dual basis for reconstruction (Banerjee et al., 2008). Similarly,

DMSlow att can be reconstructed ms-by-ms from the two control
modes.

DMSlow att(X, t) ≈
2∑

i=1

�
†
i 〈DMSlow att(X, t)|�i〉 (10)

Frontiers in Systems Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 102 | 50

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Banerjee et al. Temporal microstructure of network level processing

0 0.05 0.1 0.15 0.2 0.25 0.3

10

20

30

40

50

60

70

80

O
n

s
e

t 
ti
m

e
 (

m
s
)

Attention level

A B

CD

λ = 99.87

 

λ = 0.11

 

−0.05 0 0.05

FIGURE 3 | Temporal microstructure analysis. (A) The two principal
components (and corresponding eigenvalues λ) computed from the DMS
task at lowest attention level that spans the control subspace. The sum of the
eigenvalues amounts to the total variance of the control condition that is
capture by these two patterns. (B) The mean goodness of fit of
reconstruction (Gof ) time series plotted as a function of time when the
difference in attention levels is low. The error bars at 95% significance level
are also plotted as a function of time (patches). In this scenario, lack of
significant recruitment results in statistically equivalent Gof over time.
(C) The mean goodness Gof time series from two conditions are plotted as a

function of time when the difference in attention levels is high. The error bars
at 95% significance level are also plotted as a function of time (patches). The
regime of difference in Gof distributions reflect the time scale of recruitment.
(D) Sensitivity analysis for onset time detection: Onset time plotted as
function of different attention levels. For all levels of attention (except the zero
attention scenario) the same prefrontal network (D1, D2) is recruited in the
delay period, with varying degrees of intensity. At low attention (gain < 0.09),
onset time of this prefrontal network recruitment occurs twice by chance.
However, after a threshold level of attention (0.09), onset time is consistently
detected for all higher levels.

Goodness of fit of the reconstruction is computed by the follow-
ing expression

Gofi =
(

1 − DMS
†
i .DMSi

DMS†
i .DMSi

)
× 100% (11)

where, i = low att, high att. We obtained the Gof time series for
low attention and high attention DMS tasks. Using bootstrapping
techniques (Efron, 1979), distributions of these variables can be
derived (Figures 3B,C) for different levels of attention in the DMS
task.

Using the lines of reasoning outlined in Banerjee et al. (2008),
a high goodness of fit occurrence indicates that no additional
nodes compared to the control network is present in the task
network, whereas any depreciation of Gof from 100% will indi-
cate recruitment of additional subspaces. The regimes where the
two Gof ’s significantly differ are identified as the time scales of
recruitment. For example if the zero attention scenario is used as
control and high attention as task, then the time scale of network

recruitment for storing the identity of S1 in working memory is
captured by the onset and offset of significant differences in Gof
(Figure 3C). On the other hand, if the DMS task is performed
at a lower attention level, significant amount of network recruit-
ment is absent and hence, the Gof distributions are statistically
equivalent over time (Figure 3B). The onset time of recruitment
was defined as the first point where the two Gof time series are
significantly divergent with p < 0.05 and remains so for 50 con-
secutive time points. Additionally at least for one point within
this regime p should reach a value of 0.001. Choosing a win-
dow size of 50 time points sets a lower limit on the time scale of
recruitment decoded from this analysis. The choosing of the time
window for control subspace construction is another constraint
on the network to which recruitment is analyzed. For our exam-
ple, we chose to run the PCA on the entire DMS data from start
of S1 to end of S2. However, choosing such time segments can
also be done a posteriori from the experimental design and sta-
bility of onset times may be tested by varying the length of such
windows.
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The value of onset time detected by the temporal microstruc-
ture analysis (in Figure 3D) closely matched with the time at
which D1 and D2 units get activated for the delay period in the
high attention scenarios (Figure 2). We performed a sensitivity
analysis for the temporal microstructure method by varying the
attention level for the task condition and correspondingly com-
puting the onset time for each levels of attention (Figure 3D).
For low levels of attention (<0.09) our method was unable
to detect an onset time consistently. However, the onset time
detected after a threshold attention level of 0.09 did not change
significantly when the level was parametrically varied up to 0.3.
Hence, we conclude that statistically significant levels of recruit-
ment occur for this network at a certain attention level beyond
which the DMS task can be actively executed. Once the thresh-
old attention level is reached, recruitment of a large-scale network
is detected and the onset time does not change with further
increases in attention level. The detection of the onset time
of task-specific recruitment amounts to decoding an important
event in the underlying information processing at the large-
scale network level. Using similar statistical thresholds, we can
also decode when the recruitment of additional nodes get disen-
gaged. Changes in functional connectivity via interactions among
overlapping components of control and task networks are not
detected by the temporal microstructure analysis. Hence, the
regimes where, Gof ’s are statistically equivalent can be used as
ideal candidates for applying other functional connectivity tech-
niques described in the overview, such as correlation and coher-
ence. We conclude that the large-scale model provided a partial
validation for the use of temporal microstructure analysis as a
tool to detect spatiotemporal network mechanisms at millisecond
resolution.

An important aspect of the temporal microstructure analysis
that needs immediate attention is that once presence of recruit-
ment is inferred, how can we estimate the spatial localization
of recruited brain areas? This issue will be addressed in future
research. The challenge here is that the residual activity which car-
ries the signatures of spatial localization has higher noise to signal
ratios than the original signals. One way to circumvent this issue
would be to design experiments with a larger number of trials
when the localization question needs to be answered.

The time scales of recruitment decoded from the microstruc-
ture analysis can be used as constraints for building large-scale
models of behavioral tasks. Such models provide a mechanis-
tic understanding of neural information processing. From a
complementary perspective, decoding the timing of information
processing is a key to understanding network mechanisms under-
lying ongoing behavior in action-perception paradigms where
brain dynamics at millisecond resolution controls task process-
ing. Also, in practical scenarios such as in development of neural
prosthetic tools where decoding between two alternative task con-
ditions is the often the main goal, the temporal microstructure
analysis might provide a simple but robust algorithmic frame-
work.

SUMMARY
In this article we have provided an extended overview of meth-
ods that can detect the presence of functional brain networks for

a wide variety of tasks in which information processing occurs at
the network level with rich temporal behavior. EEG/MEG/iEEG
provide high temporal resolution whole brain recordings that
have the ability to record the elemental properties of a large-
scale network. A major challenge in analyzing such giant data
sets is the fact that no consensus exists as to what consti-
tutes a large-scale network. It often depends on the modality
of the imaging technique and the idiosyncrasies of the par-
ticular task that are being studied that ultimately shapes the
patterns observed in the data. In addition each network level
analysis (some of which are discussed in the Overview), may
yield different results, sometimes seemingly conflicting. A classic
example is the observation of temporally ordered brain responses
(Gray et al., 1989; Tallon-Baudry et al., 1998; Tognoli et al., 2007;
Donner and Siegel, 2011) and self-organized criticality (Kelso,
1995; Linkenkaer-Hansen et al., 2001; Stam and de Bruin, 2004)
being simultaneously present as mechanisms of neural informa-
tion processing. Interpreting such results with theoretical frame-
works that allows co-existence of different mechanisms (such as
Kelso, 1995; Buzsáki, 2006) will be a pre-requisite for future sig-
nal processing tools. We have recently developed a computational
framework (Banerjee et al., submitted)which decodes the time
scales of network level processing at high temporal resolution via
characterization of two distinct modes of information process-
ing: modulation of functional connectivity and recruitment of
task-specific networks.

Our second objective in this article was to show how devel-
opment of network analysis can immensely benefit from using
biologically realistic large-scale models of brain activity. It is
relatively easy to implement candidate functional connectivity
topologies in such models at various time scales mimicking
the complexity associated in real neuronal processing, following
which the face validity of a novel method for network analysis
can be tested on simulated data generated by the model. This is
important, because only in simulated data one has the knowl-
edge of the ground truth. Using this approach we have tested
the face validity of our recently developed method to decode
the temporal microstructure of task-specific information process-
ing during a DMS task. Such tasks or its variants are used in
the literature to study a diverse set of questions in higher order
sensory processing (Corbetta et al., 1991; Sergent et al., 1992),
multisensory integration (Haenny et al., 1988; Maunsell et al.,
1991; Colombo and Gross, 1994), working memory processing
(Haxby et al., 1995; Courtney et al., 1997), long-term memory
retrieval (Naya et al., 1996; Smith et al., 2010a) and perceptual
and cognitive decision-making (Bechara et al., 2000; Lamar et al.,
2004). Hence, we believe our simple illustration of decod-
ing network mechanisms during a DMS task may lay out
a strategic framework to answer long-standing questions in
several brain systems. In the future a combined modeling-
decoding approach may help in characterization of timing
of task-specific processing in networks at the level of single
trials.
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Neural activity is irregular and unpredictable, yet little is known about why this is the case
and how this property relates to the functional architecture of the brain. Here we show
that the variability of a region’s activity systematically varies according to its topological
role in functional networks. We recorded the resting-state electroencephalogram (EEG)
and constructed undirected graphs of functional networks. We measured the centrality of
each node in terms of the number of connections it makes (degree), the ease with which
the node can be reached from other nodes in the network (efficiency) and the tendency
of the node to occupy a position on the shortest paths between other pairs of nodes in
the network (betweenness). As a proxy for variability, we estimated the information con-
tent of neural activity using multiscale entropy analysis. We found that the rate at which
information was generated was largely predicted by centrality. Namely, nodes with greater
degree, betweenness, and efficiency were more likely to have high information content,
while peripheral nodes had relatively low information content. These results suggest that
the variability of regional activity reflects functional embedding.

Keywords: variability, entropy, degree, efficiency, connectivity, centrality, functional integration

1. INTRODUCTION
The functional architecture of the cerebral cortex is configured in
a manner that balances local segregation and global integration,
endowing the system with a high degree of complexity (Tononi
et al., 1994). The complexity of the system allows for a diverse
dynamic répertoire and is reflected in the information content and
variability of neural activity. The variability inherent in neurophys-
iological recordings is now considered a fundamental dynamical
property of the brain, allowing for spontaneous transitions among
several metastable states (Ghosh et al., 2008; McIntosh et al., 2008,
2010; Deco et al., 2009, 2011; Jirsa et al., 2010).

What determines the variability of neural activity? If brief
functional associations allow information to be integrated, then
regions which participate in the greatest number of functional
subnetworks will facilitate the flow of information by bridging
and integrating other regions that would be otherwise discon-
nected and topologically distant (Sporns et al., 2000, 2004; Stam,
2004; Stam and Reijneveld, 2007). Therefore, information con-
tent should depend on connectivity and more specifically on the
functional integration enabled by individual nodes.

Recent findings are consistent with this notion and suggest that
the information content of regional activity may depend on the
configuration of functional networks and on their participation
in such networks. For example, information – measured using
entropy-based metrics – increases during normal brain develop-
ment (McIntosh et al., 2008, 2010; Lippé et al., 2009; Mišic et al.,
2010). This may reflect intensified global integration relative to
local segregation and a gradual shift from local, clustered informa-
tion processing in children to distributed processing in adults (Fair

et al., 2009; Supekar et al., 2009; Hagmann et al., 2010). Indeed, the
developmental increase in entropy is most robust in areas such as
the precuneus and posterior cingulate (Mišic et al., 2010), which
are known to be central to the topology of resting-state functional
brain networks (Hagmann et al., 2008, 2010; Buckner et al., 2009;
Tomasi and Volkow, 2010). Moreover, just as functional networks
reconfigure in response to task-induced perturbations (Bassett
et al., 2006), so too do spatial patterns of entropy (Lippé et al.,
2009; Mišic et al., 2010).

In the present study we tested the notion that the functional
embedding of a brain region is related to the information content
of neural activity from that region. We addressed this hypothesis by
recording the electroencephalogram (EEG) from 56 participants
in the resting-state with eyes open and eyes closed. Whole-head
functional networks were constructed by measuring the phase lag
index (PLI; Stam et al., 2007, 2009) between all pairs of elec-
trodes. Centrality of individual nodes was assessed in terms of
node degree, betweenness, and efficiency. The degree of individ-
ual nodes was indexed by counting the number of connections
they make with other nodes in the network. Betweenness was
measured as the fraction of all shortest paths in the network
that pass through the node (Freeman, 1977, 1978). Regional effi-
ciency was calculated as the inverse of the minimum path length
(Latora and Marchiori, 2001; Achard and Bullmore, 2007; Bas-
sett et al., 2009). Thus, regions which have a short minimum
path to all other regions will have high efficiency. We predicted
that the centrality of a region (indexed by degree, between-
ness, and efficiency) will be associated with greater information
content.
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We quantified the information content of regional activity
using multiscale entropy (MSE) analysis (Costa et al., 2002, 2005).
As an entropy-based measure, MSE is sensitive to the complexity of
the signal and will assign low values to both completely regular and
to uncorrelated random signals. Moreover, the multiscale nature
of the index takes into account the fact that physiological dynam-
ics underlying the expressed information are likely to unfold over
multiple temporal scales (Honey et al., 2007). Although functional
magnetic resonance imaging (fMRI) would have allowed us to
delineate functional networks with greater precision, the number
of data points required to estimate entropy from empirical time
series is quite large and necessitated an imaging technique with
fast sampling such as EEG.

2. MATERIALS AND METHODS
2.1. EEG ACQUISITION
Fifty-six (29 male) healthy children 10 years old (mean 10.0, SD
0.393 years) participated in the study (see Poulsen et al. (2009)
for details). The protocol was approved by the Research Ethics
Board of the Montreal Neurological Institute and Hospital. The
participants were asked to keep their eyes open or closed in 8 alter-
nating 30 s epochs (4 each). The electroencephalogram (EEG) was
continuously recorded from 128 scalp locations using a HydroCel
geodesic sensor net (Electrical Geodesics, Inc., Eugene, OR) ref-
erenced to the vertex (Cz). The signal was digitized at a rate of
500 Hz. Impedances did not exceed 60 k�. All offline signal pro-
cessing and artifact correction was performed using the EEGLAB
toolbox (Delorme and Makeig, 2004) for MATLAB (Mathworks,
Inc.). Data were then average-referenced, digitally filtered (band-
pass: 0.5–55 Hz; notch: 60 Hz) and epoched into 30 s segments.
Only the middle 20 s of each epoch (5–25 s) were used in the analy-
sis to avoid excessive contamination associated with opening and
closing of the eyes. In the absence of a true baseline, the temporal
mean was subtracted from each epoch. Ocular (blinks and lateral
eye movements) and muscle artifacts were identified and sub-
tracted on a subject-by-subject basis using the Infomax indepen-
dent components analysis (ICA) algorithm (Bell and Sejnowski,
1995) implemented in EEGLAB. The analyses described below
produced identical results for the eyes closed and eyes open resting-
state runs, so for brevity only data from the eyes closed runs are
displayed in the rest of this report.

2.2. MULTISCALE ENTROPY (MSE)
In multiscale entropy (MSE) analysis (Costa et al., 2002, 2005) each
single trial time series is downsampled to multiple temporal scales
and sample entropy (SE; Richman and Moorman, 2000) is calcu-
lated for each scale. For a given temporal scale τ , the corresponding
time series is derived by averaging data points in non-overlapping
windows of length τ from the original time series (τ = 1 cor-
responds to the original time series). The SE algorithm calculates
the conditional probability that any two sequences of (m + 1) data
points will be similar to each other given that they were similar for
the first m points, which reflects the degree of regularity in a given
time series. The SE metric is the negative of the natural logarithm
of this quantity, so higher values of SE are associated with less
regular and more variable time series. In the present study, pat-
tern length was set to m = 2 and the similarity criterion to r = 0.5.

The pattern length (otherwise known as the embedding dimen-
sion) was judged to be optimal following the method proposed by
(Small and Tse, 2004). The similarity criterion (also known as the
tolerance) was chosen following (Richman and Moorman, 2000).
MSE was calculated for each of the 128 channels and averaged
across epochs.

2.3. FUNCTIONAL CONNECTIVITY
The biggest challenge in estimating functional associations
between EEG or magnetoencephalogram (MEG) surface sensors
is the confounding influence of volume conduction (Nunez et al.,
1997). Electromagnetic activity originating from a single brain
region may be observed instantaneously by several scalp electrodes
and misinterpreted as a functional connection. This zero-lag“blur-
ring” tends to inflate the strength of short-length, neighbor-to-
neighbor statistical interdependencies. Moreover, in EEG the effect
is exacerbated if the montage involves an active reference (Nunez
et al., 1997). One approach to address this problem has been to
reformat EEG recorded with respect to an active reference to a
reference-free montage, such as the bipolar (Rubinov et al., 2009a).
Although the technique can be extended to include multiple bipo-
lar orientations, it may still miss certain dipoles (Schiff, 2005).
Another approach has been to estimate patterns of functional con-
nectivity among reconstructed sources and to define the graph in
source space (De Vico Fallani et al., 2007, 2008). However, source
reconstruction techniques do not produce unique solutions and
therefore different assumptions and models may lead to different
results. Moreover, many common localization techniques such as
beam forming operate by changing the covariance structure of the
observed data.

To minimize the effect of volume conduction, we opted to use
a measure of functional connectivity that is insensitive to spurious
coherencies due to volume conduction, known as the Phase Lag
Index (PLI; Stam et al., 2007, 2009). The measure takes advan-
tage of the fact that functional connectivity between two channels
due to volume conduction or an active reference cannot produce
phase delays. Thus, PLI attempts to quantify the distribution of
phase differences between two signals but is explicitly insensitive
to differences that center around 0 mod π . As a result, PLI indexes
synchronization between electrodes in a way that is minimally
affected by volume conduction.

2.4. GRAPH EXTRACTION AND ANALYSIS
As we sought to compare aspects of network structure with infor-
mation, which was indexed by SE at multiple time scales, we
extracted functional connectivity graphs at multiple time scales
as well. Thus, each EEG epoch was downsampled using the same
procedure as for MSE and functional connectivity was estimated
for each of the resultant 20 coarse-grained time series. PLI was
computed between all pairs of electrodes for each epoch, scale,
subject, and condition, yielding a series of 128 × 128 matrices.
For each time scale, these matrices were then averaged across the
four epochs to yield subject- and condition-specific association
matrices.

The importance of individual nodes was quantified by
directly computing measures of centrality from each subject- and
condition-specific weighted graph. All network measures except
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Mišić et al. Functional embedding and variability

regional efficiency were computed using MATLAB routines imple-
mented in the Brain Connectivity Toolbox (Rubinov and Sporns,
2010). The degree of each node was determined by taking the
sum of all weighted connections to other nodes in the network. In
order to calculate regional efficiency and betweenness for weighted
graphs, we first defined an inverse mapping from weight to length.
Thus, the length of a weighted edge between regions i and j (di,j)
was calculated as the inverse of the edge weight between those two
regions (wi,j)

di,j = 1

wi,j
. (1)

The path length between any two nodes in the network can
then be calculated as the sum of the lengths of edges along the
path. Regional efficiency was calculated by taking the inverse of
the harmonic mean of the minimum path length between a given
node and all nodes in the network (Latora and Marchiori, 2001,
2003; Achard and Bullmore, 2007). Thus, if the minimum path
length between regions i and j (i, j = 1, 2,. . ., N, and i �= j) is Li,j,
the efficiency of region i (Ei) is given by

Ei = 1

N − 1

∑
i �=j∈G

1

Li,j
. (2)

The normalized betweenness of a node j is the proportion of
all shortest paths between all pairs of nodes i and k (ρik) that also
pass through j (ρijk)

Bj = 1

(N − 1) (N − 2)

∑
i �=j ,i �=k,j �=k

ρik

ρijk
. (3)

Together, the three measures offer complementary informa-
tion about the topological role of a given node. Degree indexes
the connectedness of a given node. Efficiency tells us how close a
node is to other nodes in the network. Betweenness measures the
tendency of a node to serve as a way station between other pairs of
nodes in the network. Each of these regional measures was aver-
aged across subjects and then correlated with SE, separately for the
two conditions and for each temporal scale.

3. RESULTS
To demonstrate and broadly summarize the regional variation in
MSE, Figure 1A shows the spatial pattern of SE values that have
been summed across all 20 scales. These patterns demonstrate
that total MSE tends to be greatest at medial and mid-lateral
posterior parietal channels, in concordance with previous stud-
ies (McIntosh et al., 2008). The complete MSE curves for two
representative channels (marked by black dots in Figure 1A) are
displayed in Figure 1B. The curves show increasing entropy with
coarse-graining, similar to previous studies using electrophysi-
ological (McIntosh et al., 2008) and neuromagnetic recordings
(Mišic et al., 2010; Figure 1). Moreover, the curves show large dif-
ferences in SE across most temporal scales, except the first two.
This demonstrates that differences in variability occur at multiple
time scales and suggests that network structure should likewise be
considered at different levels of coarse-graining.

FIGURE 1 | Multiscale entropy curves. Values of SE are summed across
temporal scales and the spatial distribution is shown in (A). The complete
multiscale entropy (MSE) curves for two representative channels (marked
by black circles), showing SE at each level of coarse-graining, are displayed
in (B). Error bars indicate standard errors of the mean.

The overall correspondence between information entropy and
network embedding is explored in Figure 2. Node degree, regional
efficiency, and betweenness were positively associated with entropy
(Figure 2, top row). The relationships were statistically significant
and were observed at all temporal scales (p � 10−3). On average,
node degree, efficiency, and betweenness accounted for approxi-
mately 44, 70, and 42% of the variance in SE across electrodes. We
also observed an effect of time scale on the relationship between
network embedding and MSE, whereby correlations were slightly
weaker for fine time scales and increased with coarse-graining
(Figure 2, middle row). This was expected given the fact that
coarse-graining acts as a low-pass filter. Thus, the broad-band sig-
nal at fine time scales contains higher frequencies in addition to
lower frequencies and estimates of phase synchronization are likely
to be less robust. In contrast, the coarse-grained representations
of the signal contain a narrower band of lower frequencies and
therefore estimates of phase synchronization are more likely to be
reliable.

The bottom row of Figure 2 shows the scale-specific spatial
distributions of node degree, regional efficiency, and betweenness,
summed across all scales. Importantly, the pattern of gradations
was similar for SE (Figure 1A) and the three network metrics. For
all three measures, the highest values were observed at medial pos-
terior channels and this peak typically extended around the vertex,
forming a ring-like relief pattern over the superior aspect of the
scalp, with a minute dip at the vertex. In some instances, the corre-
spondence was not perfect and there were also minor differences.
For example, some anterior channels had relatively high efficiency
while the same was not true for SE. Likewise, the topographical
map for betweenness did not perfectly match the map for SE, but
this is not surprising since betweenness was not as good a predictor
of SE as the other two measures of centrality. Overall, comparison
of topographic maps for SE and centrality revealed the possibility
of two separate effects: a posterior parietal peak in centrality that
matched a similar peak in variability, as well as a fronto-central
peak in centrality that was not consistently accompanied by a peak
in SE.
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FIGURE 2 | Multiscale entropy and functional embedding. Top row: scatter
plots and regression lines depict the relationship between SE and centrality
across all electrodes (both have been integrated across temporal scales).
Middle row: the correlation coefficient between SE and each of the three

network measures is plotted as a function of temporal scale. Bottom row:
Scalp distributions for the three types of centrality. The measures were
calculated for functional connectivity graphs at each time scale and then
integrated across scales as a summary measure.

In general, the effects associated with node degree and effi-
ciency were similar and this is to be expected because the two
measures are complementary. Namely, efficiency is the average
minimum path length between a given node and all others, while
node degree quantifies the total number of connections. In the case
of weighted graphs, if direct connections are also the shortest, then
the measures will index the same thing and may be redundant. We
quantified this overlap and found that, on average, direct connec-
tions constituted 40% of the shortest paths. Therefore, there was
considerable overlap but also significant divergence. Moreover, cal-
culation of betweenness did not take into account this rather large
proportion of direct connections and this may explain why the
effects and the topography associated with betweenness was not
as similar to degree and efficiency as they were to each other.

Although we took several steps to ensure that the effects of vol-
ume conduction would be minimized, we still sought to assess the
extent to which this may have affected our estimates of synchro-
nization. In practice, simultaneous activation due to spatial smear-
ing will tend to be most pronounced between proximal electrodes.
Therefore, for each possible pair of electrodes we calculated a vec-
tor of Euclidean distances as well as a vector of PLI values. We then
estimated the degree to which physical distance between chan-
nels could predict the strength of their functional coupling, using
both mutual information and simple linear regression. Both meth-
ods revealed that Euclidean distance typically accounted for 24%
of the variance in functional connectivity (consistently across all
time scales). This suggests a reasonable effect of spatial proximity
on coupling strength and even compares favorably to previous
studies using MEG (Bassett et al., 2006).

4. DISCUSSION
The temporal evolution of neural activity is far from regular. This
element of unpredictability is indicative of the information car-
ried by the signal and represents an important facet of the brain’s
organization at multiple scales of time and space (McIntosh et al.,
2008, 2010; Deco et al., 2011). We have shown that the centrality of
network nodes strongly predict the information content of their
physiological activity during the resting-state.

Ephemeral functional associations among distributed regions
constitute the dominant patterns of information flow in the
brain. Vertices with many connections as well as short or direct
paths to the rest of the network are conduits for system-wide
communication. These nodes engender the exchange of infor-
mation both within and between communities (Sporns et al.,
2007). The fact that highly central areas also generate infor-
mation at a high rate is consistent with the notion that they
facilitate functional integration. Similar results were uncovered
in a recent theoretical study which explored the relationship
between node dynamics and connectivity using a simple deter-
ministic model (Rubinov et al., 2009b). The authors found that
highly connected, central nodes were more likely to receive discor-
dant inputs and as a result exhibited variable, high-dimensional
dynamics. Conversely, peripheral nodes were more likely to receive
homogeneous inputs and exhibited less variable, low-dimensional
dynamics.

Our data support the idea that the variability observed in
neural activity is an important facet of the functional organiza-
tion of the brain. Variability may take many forms and can be
measured in a multitude of ways, from information content of
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neurophysiological signals (McIntosh et al., 2008) to SD of hemo-
dynamic responses (Garrett et al., 2010). Increased variability is
associated with many benefits, both for behavioral performance
and physiology. For example, greater brain signal variability is
linked to accurate responses and stable response times (McIn-
tosh et al., 2008; Mišic et al., 2010). Network reorganization
during healthy development is associated with increased variabil-
ity (McIntosh et al., 2008; Lippé et al., 2009; Mišic et al., 2010).
Conversely, pathologically low variability is associated with tissue
damage due to seizures (Protzner et al., 2010), as well as autism
spectrum disorder (Bosl et al., 2011).

The inherent variability of neurophysiological signals repre-
sents the trajectory of a metastable dynamical system with non-
linearities (Ghosh et al., 2008; Deco et al., 2009, 2011; Jirsa et al.,
2010). As the brain typically occupies a high-energy state, small
intrinsic fluctuations (for example, due to low-fidelity cellular
processes; Faisal et al., 2008) are sufficient to perturb the sys-
tem and induce excursions to other states/configurations. Thus,
the stochastic characteristics of local physiology cause the sys-
tem to continuously traverse the state space and confer a high
degree of flexibility to adapt to changing demands in the exter-
nal environment (Breakspear et al., 2010). This fluid reconfig-
uration is reflected by the variable dynamics observed in gross
neurophysiological recordings.

In the present study we measured the connectivity of all nodes
with respect to the entire brain and then matched regional dif-
ferences in connectivity with differences in variability. In future
studies it would be interesting to focus on one select region and
to manipulate the connectivity of that region using some form
of stimulation or cognitive task. This complementary approach
would allow us to study how the information generated in a given
brain region dynamically changes under different external and
internal conditions.

4.1. METHODOLOGICAL CONSIDERATIONS
Graphs are a natural model for anatomical networks, but their
application to functional networks is subject to several method-
ological issues (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010). First, graph theoretic measures of centrality tend to be
based on the importance of shortest paths (such as betweenness
and efficiency in the present study) and this may not be an accu-
rate model for a system such as the brain where information is

likely to be transmitted along multiple parallel paths that are not
necessarily the shortest. Second, it is difficult to infer the direction-
ality of functional connections and this limits the range of local
and global metrics that can be calculated for the network. In the
present investigation we chose simple indices to capture connect-
edness, centrality, and functional integration of individual nodes
that are not sensitive to directionality of edges in the network.
Third, whole-brain functional networks can only be defined with
limited precision using neurophysiological measurements over the
scalp. This was a necessary compromise that allowed us to estimate
information content over a broad-band, which would not have
been feasible with high-resolution methods such as fMRI.

In the present investigation, the resting-state paradigm was
used instead of some cognitive task with multiple trials for two rea-
sons. First, in the no-task setting cognitive processing could not
be biased by external demand. Second, the resting-state allowed
many measurements (long time series) to be recorded such that
information and functional connectivity could be reliably esti-
mated. For these reasons resting-state paradigms are often used to
estimate functional connectivity and centrality (De Vico Fallani
et al., 2007; Rubinov et al., 2009a; Boersma et al., 2011), as well
as entropy (Escudero et al., 2006; Park et al., 2007; Mizuno et al.,
2010; Takahashi et al., 2010; Bosl et al., 2011).

5. CONCLUSION
The dynamical properties of the brain give rise to a complex func-
tional architecture that stays true to the underlying anatomy over
long periods of time, but at short time scales reconfigures in a
highly fluid fashion (Honey et al., 2007,2009), thereby exploring its
functional répertoire (Ghosh et al., 2008). The fluid landscape of
functional associations drives and determines the statistical prop-
erties of neural activity. The present study demonstrates a link
between functional topology and variability of neurophysiological
activity.
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Variability in source dynamics across the sources in an activated network may be indica-
tive of how the information is processed within a network. Information-theoretic tools
allow one not only to characterize local brain dynamics but also to describe interactions
between distributed brain activity. This study follows such a framework and explores the
relations between signal variability and asymmetry in mutual interdependencies in a data-
driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human
magnetoencephalographic (MEG) data collected as a reaction to a face recognition task.
Asymmetry in non-linear interdependencies in the network was analyzed using transfer
entropy, which quantifies predictive information transfer between the sources. Variabil-
ity of the source activity was estimated using multi-scale entropy, quantifying the rate
of which information is generated. The empirical results are supported by an analysis of
synthetic data based on the dynamics of coupled systems with time delay in coupling.
We found that the amount of information transferred from one source to another was
correlated with the difference in variability between the dynamics of these two sources,
with the directionality of net information transfer depending on the time scale at which
the sample entropy was computed.The results based on synthetic data suggest that both
time delay and strength of coupling can contribute to the relations between variability of
brain signals and information transfer between them. Our findings support the previous
attempts to characterize functional organization of the activated brain, based on a com-
bination of non-linear dynamics and temporal features of brain connectivity, such as time
delay.

Keywords: MEG, signal variability, non-linear systems, non-linear interdependence, conditional mutual information,

transfer entropy, sample entropy, time delay

1. INTRODUCTION
Recently, significant progress has been made showing that cogni-
tive operations result from the generation and transformation of
cooperative modes of neural activity (Bressler, 1995, 2002; McIn-
tosh, 1999). Specifically, the progress in this field was based on the
principle that emphasizes the integrative capacity of the brain in
terms of ensembles of coupled neural systems (Nunez, 1995; Jirsa
and McIntosh, 2007). In turn, we have witnessed advances both
in the modeling endeavors to explore brain integration and the
collection of empirical evidence in support for this integration.

From the theoretical point of view, the neural ensembles can be
represented by single oscillators (Haken, 1996). Further, different
neural ensembles can be coupled with long-range connections,
forming a large-scale network of coupled oscillators. Due to the
separation of sources in the space and limited transmission speeds,
communication between brain regions may include time delays.
Thus, the coupling between two nodes in a brain network can be
characterized by the connection strength, directionality, and time
delay. In turn, time delays in coupling can influence the dynami-
cal properties of coupled oscillatory models (Niebur et al., 1991).
Encouraging results were obtained in modeling the resting state

network dynamics wherein time delays play a crucial role in gen-
eration of the realistic fluctuations in brain signals (Ghosh et al.,
2008; Deco et al., 2009).

At the same time, from the perspective of empirical analy-
sis, recently developed non-linear tools were able to characterize
variability of local brain dynamics and interaction effects of dis-
tributed brain activity (see Stam, 2005 for a review). Information-
theoretic techniques provide a model-free non-linear approach to
address both issues (Pereda et al., 2005; Vakorin et al., 2011).

First, such techniques can be used to characterize the variabil-
ity in brain signals as a consequence of more complicated neural
processing. A typical application includes a comparative analysis
of different groups, for example, in brain development (McIn-
tosh et al., 2008) or clinical versus normal populations (Stam,
2005), or different conditions within the same groups (Lippé et al.,
2009). Traditionally, the analysis is performed at the level of elec-
troencephalographic (EEG) or magnetoencephalographic (MEG)
scalp measurements that do not directly represent localized brain
regions in the vicinity of one electrode due to volume conduction
(Nunez and Shrinivasan, 2005). The translation to source space
would be a logical extension, and it has been recently shown that
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entropy-based techniques are sensitive enough to discriminate the
variability of neural activity within a network of sources (Mišić
et al., 2010; Vakorin et al., 2010b).

Second, a number of studies have explored methods of assess-
ing linear and non-linear interactions between dynamics of neu-
ronal sources, reconstructed using beamformers (Hadjipapas et al.,
2005; Vakorin et al., 2010b; Wibral et al., 2011). Analyses of asym-
metries in non-linear interdependency between different brain
areas, both in normal and clinical populations, may provide an
insight upon processing and integration of information in a neu-
ronal network. The time course of one process may predict the time
course of another process better than the other way around. This
enhancement in predictive power can characterize the coupling
between these two processes (Blinowska et al., 2004; Hlavackova-
Schindler et al., 2007). This idea was originally proposed by
Granger (1969), who used autoregressive models to describe the
interaction between the processes as well as the time courses of the
processes themselves. A non-linear extension of the framework of
predicting a future of one system from the past and present of
another one is based on estimating the information transfer, using
information-theoretic tools. Two measures can be used, namely
transfer entropy (Schreiber, 2000) or conditional mutual infor-
mation (Palus et al., 2001), which are essentially equivalent to each
other under certain conditions (Palus and Vejmelka, 2007). Trans-
fer entropy has been applied in both EEG (Chavez et al., 2003;
Vakorin et al., 2010a) and MEG data (Vicente et al., 2011; Wibral
et al., 2011), as well in functional magnetic resonance imaging
(Hinrichs et al., 2006).

Differences in signal variability among brain areas constituting
an activated network as a reaction to a cognitive or perceptual task,
can be indicative of how that task is being processed in the brain
(Mišić et al., 2010; Vakorin et al., 2010b). In this study, we explored
empirical aspects of the relations between complexity of individual
sources constituting a network and the exchange of information
between them. The analysis was performed under the assumption
that the neuronal ensembles activated in performing the task can
be represented by non-linear dynamic systems interacting with
each other.

The first part of this study presents a data-driven pipeline for
non-linear analysis of neuromagnetic sources reconstructed from
human MEG data collected in reaction to face recognition task.
Specifically, we first computed the asymmetries in mutual inter-
dependencies between the original MEG sources using the condi-
tional mutual information as a measure of information transfer.
We then estimated variability of the MEG sources using the mea-
sure of sample entropy. Sample entropy was designed in essence
as an approximation to the Kolmogorov entropy (Richman and
Moorman, 2000), which can be interpreted as the mean rate of
information generated by a dynamic system (Kolmogorov, 1959).
Sample entropy can be used to infer the presence of non-linear
effects. In practice, however, sample entropy is sensitive not only
to non-linear deterministic effects but also to the linear stochas-
tic effects such as, for example, auto-correlation. A number of
studies indicate that the information averaged over a larger time
horizon can reflect non-linear determinism with higher confi-
dence (Govindan et al., 2007; Kaffashi et al., 2008). Multi-scale
entropy represents an approach when sample entropy is estimated

at different time scales (Costa et al., 2002). In this study, we
explored how the differences in variability of the source dynam-
ics, estimated at fine and coarse time scales, can be explained, in
a statistical sense, by an asymmetry in the amount of informa-
tion transferred from one source to another. In the second part
of this study, using synthetic data based on a model of coupled
non-linear oscillators with time delay in coupling, we demon-
strated how the effects found in the MEG data, may arise from
time delayed interactions.

2. METHODS
2.1. PARTICIPANTS
Twenty-two healthy adults (20–41 years, mean = 25.7 year, 9
female) took part in the study. None of the participants wore
any metallic implants or had metal in their dental work and all
reported normal or corrected-to-normal vision. Experiments were
performed with the informed consent of each individual and with
the approval of the Research Ethics Board at the Hospital for Sick
Children.

2.2. STIMULI AND TASK
Participants performed a one-back task in which they judged
whether the currently viewed stimulus was the same as the previ-
ous one. The stimulus set comprised 240 grayscale photographs of
unfamiliar faces of young adults (2.4˚ × 3˚ visual angle) with neu-
tral expressions. All faces were without glasses, earrings, jewelry, or
other paraphernalia. Male and female faces were equiprobable. In
each block of trials, one-third of the faces immediately repeated.
Thus, there were 120 new faces that either did or did not repeat
on the subsequent trial (N1 and N2, 60 trials each), as well as
60 repeated faces (R) per block (180 faces in total). Upright faces
were presented in one block and inverted faces in the other, with
the order of the two blocks counterbalanced across participants.
For more information on stimulus control please see Taylor et al.
(2008). The tasks will be coded as invN1, invN2, invR, upN1, upN2,
and upR.

2.3. MEG SIGNAL ACQUISITION
The MEG was acquired in a magnetically shielded room at the
Hospital for Sick Children. Head position relative to the MEG
sensor array was determined at the start and end of each block
using three localization coils that were placed at the nasion and
bilateral preauricular points prior to acquisition. Motion toler-
ance was set to 0.5 cm. Surface magnetic fields were recorded using
a 151-channel whole-head CTF system (MEG International Ser-
vices, Ltd., Coquitlam, BC) at a rate of 625 Hz, with a band pass of
DC-100 Hz. Data were epoched into [−100 1500] ms segments
time-locked to stimulus onset. Structural Magnetic Resonance
Imaging (MRI) data were also acquired for each participant. Fol-
lowing the MEG recording session, the three localization coils were
replaced by MRI-visible markers and 3D SPGR (T1-weighted)
anatomical images were acquired using a 1.5-T Signa Advantage
system (GE Medical Systems, Milwaukee, WI).

2.4. EXTRACTION OF NEUROMAGNETIC SOURCES
Individual anatomical MR images were warped into a common
Talairach space using a non-linear transform in SPM2. Latencies
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of interest were chosen from the group average event-related fields
(ERFs). Source analysis was performed using event-related beam-
forming (ERB; Robinson and Vrba, 1999; Sekihara et al., 2001;
Cheyne et al., 2007), a 3D spatial filtering technique which is used
to estimate instantaneous source power at desired locations in the
brain. To model the forward solution for the beamformer, multiple
sphere models were fit to the inner skull surface of each partici-
pant’s MRI using BrainSuite software (Shattuck and Leahy, 2002).
Activity at each target source was estimated as a weighted sum of
the surface field measurements. Weight parameters and the ori-
entation of the source dipole were optimized in the least squares
sense, such that the average power originating from all other loca-
tions was maximally attenuated without any change to the power
of the forward solution associated with the target source. The
weights were then used to compute single-trial time series for each
source.

Two prominent peaks sensitive to facial orientation were
observed at 100 ms and 150 ms following stimulus onset
(Figure 1A) and were localized bilaterally to the primary visual
cortex (Figure 1B, sources 1 and 2) and bilaterally to fusiform
gyrus (Figure 1B, sources 3 and 4), respectively. A third, less
prominent peak was observed at 220 ms (Figure 1C) and was
most affected by the memory manipulation (i.e., it differed most
between the first presentation of a face and its repeat). To avoid
any confounding interaction between the effects of face inversion
and working memory, the N2-R difference waves were computed
and localized separately for Upright and Inverted faces (Figure 1D,
sources 5 and 6, respectively). Both were localized to the anterior
cingulate cortex. Thus, neuromagnetic activity was extracted from
all six source locations, in all six conditions. For the purpose of
this paper, the sources were coded as follows: (1) VISL; (2) VISR;
(3) FUSL; (4) FUSR; (5) ACCUP; (6) ACCINV.

2.5. INFORMATION GENERATED BY A SYSTEM
Many complex biophysiological phenomena are due to non-linear
effects. Recently there has been an increasing interest in study-
ing complex neural networks in the brain, specifically by applying
concepts and time series analysis techniques derived from non-
linear dynamics (see Stam, 2005 for a comprehensive review on
non-linear dynamical analysis of EEG/MEG). Various statistics
quantifying signal variability based on the presence of non-linear
deterministic effects, were developed to compare and distinguish
time series. Among others, sample entropy was developed as a
measure of signal regularity (Richman and Moorman, 2000). The
sample entropy was proposed as a refined version of approxi-
mate entropy (Pincus, 1991), compensating for self-matches in
the signal patterns. In turn, approximate entropy was devised
as an attempt to estimate Kolmogorov entropy (Grassberger and
Procaccia, 1983), the rate of information generated by a dynamic
system, from noisy and short time series of clinical data.

One approach to non-linear analysis consists of reconstruct-
ing the underlying dynamical systems underlying EEG or MEG
time series through time delay embedding. Specifically, let xt

denote the delay vectors, describing recent history of the observed
process xt:

x t = (
xt , xt − τ , . . . , xt−τ(d−1)

)T
(1)

where d is embedding dimension, and τ is embedding delay
measured in multiples of the sampling interval.

For estimating sample entropy of time series xt, two multi-
dimensional representations of xt are used, as defined by two sets
of embedding parameters: {d, τ } and {d + 1, τ }. Typically, the val-
ues of the time embedding delay τ are kept equal to 1, measured
in data points of a given time series for which sample entropy
is to be estimated. Sample entropy can be estimated in terms of
the average natural logarithm of conditional probability that two
delay vectors (points in a multi-dimensional state-space), which
are close in the d-dimensional space (meaning that the distance
between them is less than the scale length r), will remain close in
the (d + 1)-dimensional space. A greater likelihood of remaining
close results in smaller values for the sample entropy statistic, indi-
cating fewer irregularities. Conversely, higher values are associated
with the signals having more variability and less regular patterns
in their representations.

Specifically, let x(d)t = (xt , xt−1, . . . , xt−d+1)
T represent

d-dimensional (N − m − 1) delay vectors reconstructed from a
time series xt of length N. The function Bd

i (r) is defined as

1/(N − d − 1) multiplied by the number of state vectors x(d)j

located within r of x(d)j :

Bd
i (r) = 1

N − d − 1

N−d∑
j such that

j �=i

�
(

r −
∥∥∥x(d)i − x(d)j

∥∥∥
)

(2)

where j goes from 1 to N − d, and ||·|| stands for the maximum
norm distance between two state vectors. Then, averaging across
(N − d) vectors, we have

Bd(r) = 1

N − d

N−d∑
i=1

Bd
i (r) (3)

Similarly, the equivalent of Bd
i (r) in a (d + 1)-dimensional rep-

resentation of the original time series x(t ), the function Ad
i (r) , is

given by 1/(N − d − 1) times the number of state vectors x(d+1)
j

located within r of x(d+1)
j :

Ad
i (r) = 1

N − d − 1

N−d∑
j such that

j �=i

�
(

r −
∥∥∥x(d+1)

i − x(d+1)
j

∥∥∥
)

(4)

which can be averaged across (M − n) points as

Ad(r) = 1

N − d

N−d∑
i=1

Ad
i (r) (5)

Sample entropy is defined as

SampEn(d , r) = ln
[

Bd(r)
]

− ln
[

Ad(r)
]

= −ln

[
Ad(r)

Bd(r)

]
(6)
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FIGURE 1 | Source reconstruction using ERB. The first two peaks in the surface fields (A) were directly localized to the left and right primary visual cortex
[sources 1 and 2, (B) left] and the left and right occipito-temporal cortex [sources 3 and 4, (B) right].The third peak [sources 5 and 6, (D)] was not localized directly
from the surface field ERFs, but rather at the latency at which the difference in global field power (GFP) was greatest between the N2 and R conditions (C).

Multi-scale entropy (MSE) was proposed to estimate sample
entropy of finite time series at different time scales (Costa et al.,
2002). First, multiple coarse-grained time series are constructed

from the original signal. This is performed by averaging the
data points from the original time series within non-overlapping
windows of increasing length. Specifically, the amplitude of the
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coarse-grained time series y(θ)(t ) at time scale θ is calculated
according to

y(θ)t = 1

θ

i=tθ∑
i=(t−1)θ+1

xi , 1 ≤ t ≤ N/θ (7)

wherein the fluctuations at scales smaller than θ are eliminated.
The window length, measured in data points, represents the scale
factor, θ = 1, 2, 3,. . .. Note that θ = 1 represents the original time
series, whereas relatively large θ produces a smooth signal, con-
taining basically low frequency components of the original signal.
To obtained the MSE curve, sample entropy is computed for each
coarse-grained time series.

2.6. INFORMATION TRANSFER
A number of studies have used information-theoretic tools to char-
acterize coupled systems (see Pereda et al., 2005 for a comprehen-
sive review). Within this approach, predictive information transfer
is a key concept used to define asymmetries in mutual interdepen-
dence (Palus et al., 2001; Lizier and Prokopenko, 2010). Infor-
mation transfer Ik(x → y) is defined as the conditional mutual
information I (xt, yt + k|yt) between the past and present of one
system, xt, and a future of another system, yt + k, provided that
information about the past and present of the second system, yt is
excluded (Palus et al., 2001). The subindex k is used to designate
dependence of the conditional mutual information I (xt, yt + k|yt)
on the latency k, which typically is measured in units of data points.
Thus, I (xt, yt + k|yt) can be considered as a function of the latency
between the past and present of the first system and the future of
the second one.

The measure I (xt, yt + k|yt) can be expressed in terms of
individual H (·) and joint entropies H (·,·) and H (·,·,·) as follows:

Ik(x → y) = I
(
x t , yt+k |y t

) = H
(
yt+k , y t

)+ H
(
x t , y t

)
− H

(
yt+k , x t , y t

)− H
(
y t

)
. (8)

In a similar way, we can define the transfer of information from
the past and present of the second system, yt, to the future of the
first one, xt + k:

Ik(y → x) = I
(
y t , xt+k |x t

) = H
(
xt+k , x t

)+ H
(
y t , x t

)
− H

(
xt+k , y t , x t

)− H (x t ) . (9)

I (xt, yt + k|yt) or I (yt, xt + k|xt) are closely related to the sta-
tistic termed transfer entropy, a measure of the deviation from
the independence property for coupled systems evolving in time
(Schreiber, 2000). It can be shown that under proper condi-
tions the transfer entropy is equivalent to the conditional mutual
information (Palus and Vejmelka, 2007): Ik(x → y) = Tk(x → y).

Net transfer entropy or information transfer, �T (x → y) =
Tk(x → y) − Tk(y → x), can be used to infer the directionality of
the dominant transfer of information between coupled systems.
Positive �T (x → y) would imply that the system xt has a higher
predictive power to explain the time course of the system yt, than
vice verse.

In estimating transfer entropy, the key issue is estimation of the
entropies themselves. The straightforward approach is to divide
the state-space into bins, i = 1, 2, 3,. . ., of some size δ and cal-
culate the entropy of the multi-dimensional dynamics through
constructing a multi-dimensional histogram, estimating proba-
bilities of being in the ith bin. This study took another approach,
as proposed by Prichard and Theiler (1995) and tested using lin-
ear and linear models (Chavez et al., 2003; Gourévitch et al.,
2007). Specifically, individual and joint entropies H (x) are approx-
imated by estimating the corresponding correlation integral Cq(x,
r) computed as

H (x) ≈ −log2Cq (x , r) , (10)

where

Cq (x , r) = 1

N (N − 1)q−1 ×
N∑

s=1

⎡
⎣∑

s �=t

�(r − ‖x s − x t ‖)
⎤
⎦ ,

(11)
N is the number of data points, and � is the Heaviside function.
Specifically, the correlation integral Cq(x, r) is a function of a scale
parameter r, which in general, can be related to the bin size δ, and
the integral order q. The second order (q = 2) correlation integral,
as used in this study, is interpreted as the likelihood that the dis-
tance between two randomly chosen delay vectors (points in the
multi-dimensional state-space) is smaller than r.

3. ANALYSIS
3.1. PIPELINE OF THE ANALYSIS
The dynamics of the networks consisting of six sources were identi-
fied for 22 participants in 6 conditions, as described in the Section
1. To determine the optimal embedding parameters for recon-
structing the delay vector from the observed time series, we applied
the information criterion proposed by Small and Tse (2004). For
most of the time series, with a few exceptions, the embedding win-
dow was estimated to be equal to 2, which implies the embedding
dimension d = 2 (a two-dimensional system) and the embedding
delay τ = 1. For each subject and condition, sample entropy was
computed for the scales 1–20 for all of the single trials. The infor-
mation rate produced by a system underlying the observed signal
was computed by averaging the sample entropy statistic across the
trials, as well as over some range of scale factors. Specifically, the
information rate at fine time scales was estimated by averaging
the first five scale factors, whereas the information rate of coarse-
grained time series was computed by averaging the time scales
16–20. Thus, for a network of six sources, each source was asso-
ciated with two values: information rate at fine and coarse time
scales. For the purpose of this study, we use the terms variability,
sample entropy and information rate interchangeably.

For the same networks, transfer entropy was computed as a
function of the latency between the past of dynamics of one
source and a future of the dynamics of another source (k = 1,
2,. . .,50), for all possible pairs of the sources (30 connections in
total) and for all single trials. Following Palus et al., 2001, the
transfer entropy was averaged across the latency k with the idea
to decrease the variability of estimated statistics and to increase
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the robustness of the results. Note that as the MEG epochs were
relatively short, the transfer entropy was computed only at time
scale θ = 1, which corresponds to the original time series. For
each trial and pathway, the information transfer was estimated in
both directions: Ik(x → y) and Ik(y → x), as described in Section
6. The net information transfer was computed as the difference
between two amounts of transfer entropy, averaged across tri-
als. Thus, for a network of six sources, each pathway between
two sources was associated with a value of the net information

transfer, reflecting the asymmetry in the predictive power between
the source activity.

3.2. MEG DATA
In Figure 2, the relations between asymmetry in mutual interde-
pendence and variability are shown across subjects, separately for
all the conditions. Specifically, the figure shows the net information
transfer between two sources as a function of difference in sam-
ple entropy computed at fine (Figure 2A) and coarse (Figure 2B)

FIGURE 2 | Net information transfer between sources within the same

network versus the difference in sample entropy, computed (A) at fine

time scales; (B) at coarse time scales. Each point is associated with one
subject (22 in total) and one connection (out of 30 possible pathways
between 6 sources). The top of each plot shows the correlation value r

between the two measures (significant for all the conditions with p-values
less than 0.001). A positive correlation implies that the net information is
transferred from a source with higher sample entropy to a source with lower
sample entropy. Negative correlations imply that more information is
transferred toward a system with a higher sample entropy.
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time scales, separately for each condition. Each point is associ-
ated with one subject and a pair of sources. Correlations between
the two variables are given at the top of corresponding plots. In
all the cases, the correlations are relatively strong (on the order
of 0.5–0.8), statistically significant with p-values less than 0.001.
Positive correlations in Figure 2A imply that a system with higher
variability can better predict the behavior of a system with lower
variability, than the other way around. Conversely, negative corre-
lations observed in Figure 2B support the conclusion that at coarse
time scales more information is transferred from sources with
lower variability to sources with higher variability, than vice versa.

In addition to the relations between information transfer and
complexity, it may be important to explore the connectivity maps
of the networks based on neuromagnetic sources, in the context of
the latencies between the peaks of the event-related fields (ERF).
Figure 3 illustrates the measures of transfer entropy for a pair of
sources, shown as functions of the latency k between the future
of one signal and the past of the other signal. Figure 4 shows the
reconstructed connectivity patterns masked by the bootstrap ratio
maps, computed separately for six conditions. The significance of
the couplings was estimating by bootstrapping the subjects (selec-
tion with replacement). The bootstrap ratio threshold of 3.0,which
corresponds roughly to a 95% confidence interval, was used to
define the connections which were robust across the subjects.

Connections can essentially be divided into two groups. One
group represents the connections between the brain regions with
the asymmetry in predictive power leading from right to left.
Those are VISR →VISL, FUSR → FUSL, and FURR →VISL. The
other group unites the connections with the net information
transfer directed from the sources with smaller latencies in the
peaks of ERF to those with larger latencies, such as VISR → FUSL,
VISR → ACCUP, or FURR → ACCUP.

FIGURE 3 |Transfer entropy as a function of the time lag between the

future of one signal and the past of the other signal, illustrated for a

pair of sources. The sources are taken from the same network for a given
subject and condition. The errorbars are specified by the mean and standard
error of the estimated measures across trials.

3.3. SYNTHETIC DATA
In the previous section, we considered some empirical aspects
of the interplay between sample entropy (information rate) and
transfer entropy (information transfer) in the pairwise relations
between the neuromagnetic sources. In the following section, we
propose that such an interplay might be explained by coupling
parameters, such as time delays or coupling strength, character-
izing coupled non-linear dynamic systems. Our objective would
be to demonstrate the same pattern of relationships between vari-
ability computed at different time scales and asymmetry in mutual
interdependence between the original time series, using a simple
computational model of interacting sources. Specifically, we will
consider a model of coupled oscillators with time delay in cou-
pling. We will show that such a model has a potential to explain
the peculiarities we observed in Figure 2. The model we simulate
is based on unidirectionally coupled chaotic Rössler oscillators.

Hadjipapas et al. (2009) used coupled Rössler systems to study
collective dynamics in oscillatory networks as a simple case of peri-
odic systems perturbed by a noise that has a deterministic rather
than stochastic nature. Such systems represent a relatively sim-
ple non-linear system able to generate self-sustained non-periodic
oscillations. In turn, oscillatory behavior and rhythms of the brain
have been extensively studied as a plausible mechanism for neu-
ronal synchronization (Varela et al., 2001). Under this context, the
coupled Rössler oscillators can be viewed as a prototypical example
of oscillatory networks.

Explicitly, the model reads

d x1

d t
= −ω1y1 − z1+ ∈ x2 (t − T )

d x2

d t
= −ω2y2 − z2

d y1

d t
= ω1x1 + 0.15y1

d y2

d t
= ω2x2 + 0.15y2

d z1

d t
= 0.2 + z1 (x1 − 10)

d z2

d t
= 0.2 + z2 (x2 − 10)

(12)

whereω1 =ω2 = 0.99 are the natural frequencies of the oscillators,
∈ is the coupling strength, and T denotes the delay in coupling.
In the model, the dynamics of the first system determined by a
behavior of three variables (x1, y1, z1) is the response driven by the
second system based on a behavior of (x2, y2, z2). Further analysis
is based on an assumption that only the dynamics of the variables
x1(t ) and x2(t ) can be observed. Our specific goal is threefold:
(i) to reconstruct the directionality of coupling between x1(t )
and x2(t ), (ii) to analyze the complexity of these signals, and (iii)
explore relations between the complexity and causal information.

Numerical solutions of Eqs. (12) were obtained using the dde23
Matlab function (the Mathworks, Natick, MA) with a subsequent
resampling of the time series with a fixed step 0.1. The dynamics
were solved on the interval [0, 600], subsequently discarding the
interval [0, 300] to avoid transitory effects. Thus, each time series
had 3000 data points.

For a given pair of parameters, ∈ and T, the signals were gen-
erated 20 times. Analyses of sample entropy and transfer entropy
were performed similarly to the pipeline for the analysis of the
MEG data, as described in Section 1. The only difference was that
for synthetic data, we had a network consisting of two systems, and
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FIGURE 4 | Net information transfer, robustly expressed across the

participants in six conditions: (A) invN1; (B) upN1; (C) invN2; (D) upN2;

(E) invR; (F) upR. The robustness is estimated by bootstrapping, selecting the
participants with replacement. The net transfer information maps are masked

by the bootstrap maps, using the bootstrap ratio threshold of 3.0,
corresponding roughly to a 95% confidence interval. The arrow’s
width is related to the bootstrap ratio value associated with a given
connection.

realizations of the model as an equivalent to trials. Transfer entropy
between the two systems was computed for all the realizations, as
functions of the past of system #1 and the future of system #2.
The latency varied from 1 to 100 data points, which corresponded
to the interval [0, 10]s. To obtain a value of the net information
transfer, the difference between two amounts of transfer entropy
was averaged across realizations and latency range. For the same
data, sample entropy was computed as a function of scale factors
1–20. As in the MEG data analysis, the variability at fine time scales

was estimated by averaging the sample entropy values across the
first five scale factors, whereas the variability of coarse-grained
time series was computed by averaging the sample entropy across
the time scales 16–20.

First, we considered the influence of the time delay, T, varied
on the interval [1, 20], with the coupling parameter ∈ fixed. The
effects of its variability on complexity and information exchange
are shown in Figure 5. The figure shows net transfer entropy
(Figure 5A), differences in sample entropy at fine (Figure 5B)
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FIGURE 5 | Effects of time delay in coupling on the relations between

differences in sample entropy between coupled Rössler’s oscillators

and net information transfer between them. Specifically, net transfer
entropy (A) and differences in sample entropy computed at fine (B) and
coarse (D) time scales are plotted as functions of the time delay T in
coupling. Sample entropy and transfer entropy were estimated based on
the time series x 1 and x 2, generated according to the model (12) for the
different values of the parameter T with a contant ∈. Only the relations
illustrated in (C,E) can be observed in the MEG data analysis (Figure 2).
Specifically, (C) (correlation r = 0.73, p-value< 0.0001) corresponds to
Figure 2A, whereas (E) (correlation r = −0.08, statistically not different
from 0) corresponds to Figure 2B.

and coarse time scales (Figure 5D) as functions of the time delay
T. Note that, when we deal with real data, such relations cannot be
observed as typically the true values of T are not known (see, how-
ever, Prokhorov and Ponomarenko, 2005; Silchenko et al., 2010;
Vicente et al., 2011 for the attempts in recovering time delays in
coupling). What we can observe is the correlations between the
net transfer entropy and the differences in sample entropy shown
in Figures 5C,E. The results revealed the presence of a relatively
strong and robust linear correlation between the two statistics,
similar to what we saw for MEG data in Figure 2A. However, the
correlation observed in Figure 5E is close to zero and statistically
insignificant, contrary to Figure 2B.

Similar to the time delay, the coupling parameter ∈ turned out
to be able to explain, to some degree, the results in Figure 2. As
expected, the net transfer entropy was found to be a monotoni-
cally increasing function of the coupling strength ∈, as shown in
Figure 6A. Also, the difference in coarse-grained sample entropy
was, at first approximation, a linear function of ∈, as shown in
Figure 6D. In turn, this led to the negative correlation between the

FIGURE 6 | Effects of the strength of coupling (parameter ∈) on the

relations between differences in sample entropy between coupled

Rössler’s oscillators and net information transfer between them.

Specifically, net transfer entropy (A) and differences in sample entropy
estimated at fine (B) and coarse (D) time scales are given as functions of
the coupling strength ∈. Complexity and transfer entropy were estimated
based on the signals x 1 and x 2, according to the model (12) for the different
values of the parameter ∈ with a fixed T. As in Figure 5, only the relations
illustrated in (C,E) can be observed in the MEG data analysis (Figure 2).
Note that Figures 2A,B are consistent with (C,E), respectively, only for
relatively weak couplings, with ∈< 0.08 (B).

complexity difference and net transfer entropy for all the values of
the coupling parameter, as plotted in Figure 6E, in a good accor-
dance with the results observed in Figure 2B. The influence of ∈
on the fine-grained sample entropy was ambiguous, as shown in
Figures 6B,C. It is worth noting that Figures 2A,B are consistent
with Figures 6C,E, respectively, only for a weak coupling.

4. CONCLUSION AND DISCUSSION
In this paper, we examined relations between signal variability
and asymmetry in mutual interdependencies between activated
neuromagnetic sources. Variability was quantified based on sam-
ple entropy (Richman and Moorman, 2000), which is ultimately
interpreted as the average rate of information generated by a
dynamic system (Grassberger and Procaccia, 1983; Pincus, 1995).
Using the concept of multi-scale entropy (Costa et al., 2002), we
examined variability at fine and coarse resolutions of the same
time series. Interdependencies between source dynamics was esti-
mated using conditional mutual information between the past and
present of one signal and the future of another signal, provided
that the knowledge about the past and present of the second signal
is excluded (Palus et al., 2001). The asymmetry in information
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transfer represent the differences in predictive power between
sources, i.e., to predict the activity of each other.

The analyses of signal variability and information transfer
were performed under an assumptions that neuronal ensembles
involved in performing a task can be described by coupled non-
linear dynamic systems (Haken, 1996). Noise can be present at
different levels of the non-linear models describing the observed
time series. For the purpose of this study, we differentiate three
types of noise-like activity. First, there is internal noise, which is
an inherent component of a model, and is a part of the input
entering the non-linear deterministic system. Second, we distin-
guish the variability in the signal generated by non-linear dynamic
system. Finally, observational noise can be mixed with the output
of the system.

This study focuses on exploring the variability in non-linear
dynamics and describes this variability in its relations to the
transfer of information in functional networks. Typically, there
is the assumption that one observes non-linear systems in differ-
ent states, and the goal is to describe these differences. Although
different, two initial conditions would not be differentiated with
certain experimental precision. However, they may evolve into dis-
tinguishable states after some finite time. Thus, one could say that
a system that is sensitive to initial conditions produces information
(Eckmann and Ruelle, 1985).

Sample entropy, which was used as a measure of variability,
is closely related to the mean rate of information generated by a
dynamic system underlying the observed signals. In practice, how-
ever, both linear stochastic and non-linear deterministic effects can
contribute to the measure of sample entropy. A number of stud-
ies indicate that averaging the information rate over a larger time
horizon allows one to alleviate linear effects, in particular, those
associated with observational noise, and to focus on the signal vari-
ability due to the underlying non-linear determinism (Govindan
et al., 2007; Kaffashi et al., 2008). Down-sampling of the original
time series, as used in the multi-scale entropy approach, can be
viewed as a way to extend the period over which the information
generated by a system is averaged.

The first part of our analysis was based on the dynamics of
neuromagnetic sources reconstructed from MEG data collected
during a face recognition task. In the second part, we extended
our empirical findings with an analysis of synthetic data based
on the dynamics of coupled non-linear oscillators with time delay
in coupling. We found that relations between sample entropy of
the activity of neuromagnetic sources and the net information
transfer between them depends on time scales at which the sample
entropy is computed. Specifically, we found that more information
is transferred from a source with a higher sample entropy at coarse
time scales, but with a lower sample entropy at fine time scales.

Under certain conditions, analysis of the synthetic data offered
a potential explanation our empirical findings. Specifically, a study
of the system of two coupled oscillators with time delay in cou-
pling revealed the same relations between the difference in sample
entropy and asymmetry in information transfer. In particular, we
found that the interplay between sample entropy-based on fine-
grained signals and information transfer can be explained, in a
statistical sense, by the variability in the time delay in coupling.
On the contrary, correlations between information transfer and

sample entropy computed at coarse time scales were insignifi-
cant. In addition, we found that the variability in the coupling
strength can contribute to the observed relations between the
sample entropy-based on the coarse-grained signals and the infor-
mation transfer. Taking into account that the coarse scales would
better reflect non-linear effects, these results indicate that the vari-
ability of the signals due to non-linear determinism become more
diversified as a result of the propagation of information in the
network. In other words, propagation of information in a net-
work may be described as accumulation of complexity (variability)
of the brain signals. Similar results were found in (Mišić et al.,
2011), who showed that the variability of a region’s activity sys-
tematically varied according to its topological role in functional
networks. Specifically, the rate at which information was generated
was largely predicted by graph-theoretic measures characterizing
the importance of a given node in a functional network, such as
the node centrality or efficiency of information transfer.

It would be worth discussing the differences between an analysis
of transfer entropy, as performed in this study, and an analy-
sis of causal relationships between the source activity. Lizier and
Prokopenko (2010) suggested to distinguish information transfer
and causal effects. Information transfer is defined as the condi-
tional mutual information, representing the averaged information
contained in the future of one process about the past of another
process, but not in the past of the first process itself. In contrast,
causal effect can be viewed as information flow quantifying the
deviation of one process from causal independence on another
process, given a set of variables that may affect these two processes
of interest. Along a similar line of reasoning, Valdes-Sosa et al.
(2011) differentiate predictive capacity between temporally dis-
tinct events and the effects of controlled intervention on the target
process. Observing activity at a network node may potentially
indicate its effects at remote nodes. However, identification of a
physical influence upon a node at a given network assumes that any
other physical influence that this node receives should be excluded.

Under this context, it should be emphasized that this study
focuses on predictive information transfer, rather than on infor-
mation flow. Using bivariate variant of information transfer, com-
pared to the multivariate version, imposes a few limitations. First,
it is impossible to distinguish between direct and indirect connec-
tions (Gourévitch et al., 2007). Specifically, confounding effects
of indirect connections on estimation of transfer entropy were
considered in Vakorin et al. (2009). Second, bivariate estimates of
directionality in case of mutually interdependent sources may pro-
duce spurious results (Blinowska et al., 2004). With regards to this
study, it should be noted that the issue associated with common
sources is less of a problem in MEG than in EEG, as neuromagnetic
signals do not suffer from volume conduction (Hämäläinen et al.,
1993). However, in general, choosing an optimal set of variables
constituting a network to analyze in a multivariate way remains an
open issue. For example, it was shown that information-theoretic
measures (transfer entropy), which in general does not require a
model of interactions between nodes of a network, in contrast
to autoregressive models, remain sensitive to model misspecifica-
tion, wherein excluding a node from the analysis or adding a node
affects the estimation of transfer entropy and robustness of the
results (Vakorin et al., 2009).
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It is not known how visual cortical neurons react to several moving objects and how their
firing to the motion of one object is affected by neurons firing to another moving object.
Here we combine imaging of voltage sensitive dye (VSD) signals, reflecting the population
membrane potential from ferret visual areas 17, 18, 19, and 21, with laminar recordings
of multiunit activity, (MUA), when two bars moved toward each other in the visual field,
occluded one another, and continued on in opposite directions. Two zones of peak MUA,
mapping the bars’ motion, moved toward each other along the area 17/18 border, which
in the ferret maps the vertical meridian of the field of view. This was reflected also in the
VSD signal, at both the 17/18 border as well as at the 19/21 border with a short delay. After
some 125 ms at the area 19/21 border, the VSD signal increased and became elongated
in the direction of motion in front of both of the moving representations. This was
directly followed by the phase of the signal reversing and travelling back from the 19/21
border toward the 17/18 border, seemingly without respect for retinotopic boundaries,
where it arrived at 150 ms after stimulus onset. At this point the VSD signal in front
of the moving bar representations along the 17/18 border also increased and became
elongated in the direction of object motion; the signal now being the linear sum of what
has been observed in response to single moving bars. When the neuronal populations
representing the bars were some 600 μm apart on the cortex, the dye signal and laminar
MUA decreased strongly, with the MUA scaling to that of a single bar during occlusion.
Despite a short rebound of the dye signal and MUA, the MUA after the occlusion was
significantly depressed. The interactions between the neuronal populations mapping the
bars’ position, and the neurons in between these populations were, apart from 19/21 to
17/18 interaction, mainly lateral-horizontal; first excitatory and inducing firing at the site of
future occlusion, then inhibitory just prior to occlusion. After occlusion the neurons that
had fired already to the first bar showed delayed and prolonged inhibition in response
to the second bar. Thus, the interactions that were particular to the occlusion condition
in these experiments were local and inhibitory at short cortical range, and delayed and
inhibitory after the occlusion when the bars moved further apart.

Keywords: feedback, lateral interactions, visual cortex, visual motion, voltage sensitive dye

When an object is moving into the visual field of view and the
retina is still, the object is mapped in several visual areas as mov-
ing peak firing rates (Motter and Mountcastle, 1981; Harvey et al.,
2009). This mapping is associated also with moving increases in
the population membrane potential (Jancke et al., 2004; Yang
et al., 2007; Harvey et al., 2009). Increases in the population mem-
brane potential reflect the local dynamics of the neurons, but also
dynamics influenced by activity in higher visual areas, (Harvey
et al., 2009). Not only feed-forward input, but also lateral hori-
zontal neuronal computations and action potentials from higher
order areas influence visual perception and firing rates in the
primary visual cortex (Gilbert and Wiesel, 1989; Lamme, 1995;

Abbreviations: MUA, multiunit activity; VSD, voltage sensitive dye; SRP, spatially
restricted pre-depolarization.

Bosking et al., 1997; Bringuier et al., 1999; Buzas et al., 2006;
Roland et al., 2006; Roland, 2010). The relative weights of these
three inputs are still debated. Feed-forward input from the lateral
geniculate nucleus affects the computations of neurons primar-
ily located in layer 4 of primary visual cortex, (Maunsell and
Gibson, 1992; Hirsch et al., 2002). Horizontal interactions within
an area may take place in supra- and infra-granular layers, and
these layers are also assumed to be the target of back projecting
axons from higher areas. It is known that another object outside
a receptive field occupied by an object can influence the spik-
ing from that receptive field (Jones, 1970; Bishop et al., 1973;
Allman et al., 1985). The other object can facilitate or inhibit
the spiking from the receptive field, depending on its distance
from the field (Jones, 1970; Bishop et al., 1973). The current
picture is that long-range horizontal connections are excitatory
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for similar stimulus orientations whereas short-range axons have
no orientation preference and are mainly inhibitory, (Tucker and
Fitzpatrick, 2003). Visually moving objects add complexity to this
picture. A moving object, as a stationary object, elicits a laterally
spreading excitation in the supragranular layers, but this is soon
superimposed upon by excitation and firing ahead of the object
mapping in the direction of object motion, (Harvey et al., 2009).

When a single object moves in the field of view and the eyes
don’t move, the object is mapped in a retinotopic fashion in visual
area 17 as increased multiunit activity (MUA) and increased
membrane potential by one population of neurons (Jancke et al.,
2004; Harvey et al., 2009). This population forms a path in the
cortex, corresponding to the trajectory in the field of view. For
each position of the object in the field of view, there is one sec-
tor of this population where the object is mapped as the peak of
the MUA and membrane potential increase (Harvey et al., 2009).
However, after some 130 ms, the neurons not yet having mapped
the object, start to fire and increase their membrane potential as
far as 8◦ ahead, thus marking the future trajectory of the peak
activity across cortex. (Harvey et al., 2009). The present study is
an extension of the Harvey et al. (2009) study with the purpose
of revealing the cortical dynamics elicited by two bars moving in
opposite directions.

When more than one object traverses the visual field simulta-
neously, neurons firing to one object might be affected by other
neurons firing to another object in a way that is not possible to
predict from the dynamics associated with a single moving object.
This happens for example when two objects move to occlude
or partially occlude one another (Adelson and Movshon, 1982).
This situation is common in natural scenes. A moving object is

mapped by spatially extended populations of neurons in all layers
of the visual cortex (Harvey et al., 2009), but to our knowledge
the spatio-temporal representations and interactions between two
continuously moving objects has not been examined neurophys-
iologically. We used a simplified visual scene consisting of a gray
background and two objects, white bars, moving in opposite
directions to occlude one another (Figure 1). We examined the
relative changes in population membrane potential in supragran-
ular layers of areas 17, 18, 19, and 21 with voltage sensitive dyes
(VSDs), as well as the laminar MUA in areas 17 and 18 of ferrets.

From the single bar dynamics, we predicted that four popu-
lations of neurons would map the two bars in the cortex, i.e.,
two representations, one of each bar, at the 17/18 border and
two other representations at the 19/21 border. Based on previ-
ous work (Harvey et al., 2009), we expected to see evidence for
communications between areas 19/21 and 17/18. Finally based on
Harvey et al. (2009) we expected an increase in membrane voltage
ahead of the representations along the future cortical trajectory
of object motion. Our results confirmed these predictions, and
open the possibility that populations of neurons could provide an
advanced signal of the location of an upcoming occlusion.

We also tested the hypotheses that inter-area and cross-area
interactions would be non-linear. To our surprise we found both
linear and non-linear interactions. The dynamics of the cor-
tical interactions prior to occlusion depended on the distance
between the objects, but after the occlusion they were largely
independent of the distance between objects. The interactions
started early at a long range and initially they were net excitatory.
Close to occlusion the population membrane potential showed
strong net decreases of excitation, or alternatively net increases

FIGURE 1 | Experimental conditions and ferret visual areas. (A) The
left hemisphere of the ferret brain with visual areas 17, 18, 19, and 21.
The cortex monitored by the hexagonal photodiode array is delimited in
black. The cytoarchitectural borders between areas 17 and 18 and
between areas 19 and 21 correspond to the mapping of the vertical
meridian in the field of view on the cortex. The two white dots mark
the expected mappings of the center of field of view. The relation

between hexagon borders and cytoarchitectural borders (and hence the
center of field of view mapping) varies somewhat between animals. Each
diode picks up a signal from a cortical spot of 150 μm in diameter. MED,
medial; LAT, lateral; and ANT, anterior direction. (B) The stimulus
conditions and timing of the occlusion. All stimulus conditions were
compared to a gray screen (baseline condition). All latencies relate to the
appearance of the stimuli on the display screen.
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in inhibition. After the occlusion, the previous mapping of the
objects continued to affect the MUA.

MATERIALS AND METHODS
ANIMALS
All experimental procedures were approved by the Stockholm
Regional Ethics Committee and were performed according to
European Community guidelines for the care and use of animals
in scientific experiments. Recordings were performed in 14 adult,
female ferrets. Ferrets were initially anesthetized with Ketamin
(15 mg kg−1) and Medetomidine (0.3 mg kg−1) supplemented
with Atropine (0.15 mg kg−1). After the initial anesthesia fer-
rets received a tracheotomy and were ventilated with 1:1 N20:02

and 1% Isoflurane. The arterial pCO2 (partial pressure of CO2)
was maintained between 3.5 and 4.3 KPa. A craniotomy was
made exposing the left hemisphere visual areas 17, 18, 19, and
21 and was covered with a chamber affixed to the skull with den-
tal acrylic. Animals were paralyzed with pancuronium bromide
(0.6 mg kg−1), the left eye was occluded, and the right eye had
its pupil dilated (1% atropine), nictating membrane retracted
(10% Phenylephrine), and was then fitted with a zero power
contact lens.

STIMULATION AND IMAGING
A reverse ophthalmoscope was used to record the position of
the optic disk and center a video monitor to the area centralis.
Known cortical landmarks were then used to guide a single elec-
trode penetration at the estimated crossing of the vertical and
horizontal meridian. The receptive field (RF) at this area was
then mapped using an m-sequence method, (Reid et al., 1997).
The monitor position was then further adjusted so as to be pre-
cisely centered to this RF location. The cortex was stained for
2 h with the VSD RH1838 (0.53 mg ml−1; n = 3) or RH1691
(0.53 mg ml−1; n = 11) (Optical Imaging, Rehovot, Israel). After
staining, the cortex was rinsed with artificial cerebral spinal
fluid, the chamber was filled with silicon oil and sealed with a
cover glass. Imaging was centered on the initial recording site
and acquired using a 464-channel photodiode array, (H469-IV
WuTech Instruments Gaithersburg, MD) through a macroscope
fitted with a 5× objective (Red Shirt New Haven, CT). Images
were acquired at a rate of 1.6 kHz, stimulus presentation was
synchronized to the ECG signal, and respiration stopped during
stimulus presentation. Stimuli were presented in a pseudorandom
order on a video monitor with a refresh rate of 120 Hz located
57 cm in front of the animal. Stimuli were controlled using a
VSG series IV system (Cambridge Research Systems, Kent UK).
Stimuli consisted of 1 × 2◦ horizontal bars (64.5 cd m−2) on a
homogenous gray background (7.2 cd m−2). There were three
stimulus conditions: (1) upward and (2) downward moving bars
originating 10.5◦ below and 10.5◦ above the center of field of
view (CFOV), respectively, and moving a total of 21◦ with a
velocity of 25.4◦ s−1 for a period of 825 ms with start and end
points equidistant from the screens center. (3) In the occlusion
condition, upward and downward moving bars were presented
simultaneously 10.5◦ below and 10.5◦ above the CFOV moving
toward each other with a velocity of 25.4◦ s−1 for a period of
392 ms. At 392 ms the bars abutted one another, such that for a

short moment, 8 ms, they occupied 2 × 2◦ square in the CFOV
(Figure 1). Then the bars began to occlude one another until
there was, at 412 ms, only the image of a single bar at the center of
the screen. From 412 to 432 ms this central bar grew until again
the bars were at an abutting position. From 432 ms until 825 ms
the bars moved away from each other until they reached their final
positions 10.5◦ below and 10.5◦ above the CFOV at which point
they disappeared.

ELECTROPHYSIOLOGY
Electrode penetrations were made perpendicular to the cortical
surface along the estimated course of the vertical meridian using
single shank, 16 channel, laminar probes (NeuroNexus, Ann
Arbor, MI) with recording site resistances of ∼3 M�, and sep-
arated by 100 μm. Signals were routed through an RA16AC head
stage to an RA16PA Medusa preamplifier and amplified at 40 K
using the RA16 Medusa Base station (Tucker-Davis Technologies,
Alachua, FL). For multiunit recordings the signal was digitally
band pass filtered between 100 Hz–10 KHz and for local field
potential recordings between 1 and 10 KHz. Signals were acquired
and written to a hard-drive using CED power 1401 AD-converter
and Spike 2 Software (Cambridge Research Systems). All sub-
sequent analysis was done using Matlab R13 (The MathWorks,
Natick, MA). At each recording site receptive fields were first
mapped using the methodology noted above.

CYTORARCHITECTONICS AND FUNCTIONAL RETINOTOPY
At the end of the experiment three vertical needle marks were
made around the recorded area, the animals were sacrificed (pen-
tobarbital) and perfused transcardially with 4% paraformalde-
hyde. Brains were sectioned and alternate 50 μm sections were
stained for Nissl and cytochrome oxidase. Areal borders were
then reconstructed using cytoarchitectonic landmarks (Innocenti
et al., 2002), and these borders were mapped onto the image
of the cortical surface in each animal. After reconstruction, the
cytoarchitectural borders of individual animals were aligned by
simultaneous standard affine transformations as described in
Harvey et al. (2009) (see Movies S1, S3).

Although recordings of the optical intrinsic signal in many
cases is helpful in showing the border between areas 17 and 18,
this method has not consistently shown the borders between area
18 and 19, nor the borders between area 19 and 21 or between
area 21 and the suprasylvian area in the ferret. We used the
VSD signal, �V(t), to determine the location of the stimulus-
induced peak of �V(t) in all four areas according to the method
devised by Kalatsky and Stryker (2003). In the control condi-
tions the bar moved upwards in half the trials and downwards
in the other half. Thus, the bar would reach an identical posi-
tion on the screen from two different directions. As each position
on the screen corresponds to one cortical position along the
17/18 border, we could estimate how the bar would be mapped
on the cortex if there was no delay between its position on
the screen and its mapping as the �V(t) peak on the cortex
(Kalatsky and Stryker, 2003). Figure A1 illustrates this procedure
and Movie S1 panel C shows the locations of our peak �V(t)
estimate. This map, color coded in Figure A1, then serves as
an additional independent mapping of the retinotopy obtained

Frontiers in Systems Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 23 | 76

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Harvey and Roland Cortical interactions of moving objects

from a bar moving along the vertical meridian. The velocity of
the moving representation over the cortex predicted from this
mapping without delay was 25.43◦ s−1, (s.e.m. 1.1◦ s−1, n = 4),
which might serve as a further validation of the recording pro-
cedures. It is apparent that the bar mappings in visual areas 17,
18, 19, and 21 always lag the position of the object mapped with-
out delay. This non-delayed representation was on average 50 ms
(s.e.m. = 4 ms; n = 4) ahead of the maximal �V(t) and the
maximal MUA firing rate. Note that this procedure uses infor-
mation from all imaged cortical points. For further details see
Figure A1.

DATA ANALYSIS
Treatment of the VSD signal
All VSD signals were analyzed in terms of fractional fluores-
cence, the details of which have been described elsewhere (Roland
et al., 2006; Eriksson et al., 2008). In brief, the signal in the blank
(background alone) condition is subtracted from the signal of the
stimulus conditions and divided by the background fluorescence
to yield the fractional fluorescence (�F/F0) referred to here as
�V(t).

Two types of normalization procedures were used, normal-
ization to the maximum �V(t) value in time, �V(t)rel(t) =
�V(t)/ maxt[�V(t)] and normalization the maximum �V(t)
value in space, �V(t)rel(s) = �V(x, y, t)/ maxx,y[�V(x, y, t)].
For the spatial normalization this meant that for each frame of
our VSD measurement (0.616 ms) the �V(t) from the photo-
diode with the highest value would be set to 1 and the �V(t)
from all other diodes would be relative to that. Finally a spe-
cific additional normalization scheme was used. In this procedure
the �V(t) from each diode is made relative to itself within a
25 ms sliding window, such that for each time point �V(t)rel =
�V(x, y, t)/ maxt{−12.5,12.5}[�V(x, y, t)]. Using this scheme we
can then monitor when the �V(t) at each diode reaches its max-
imum relative to its self, rather than relative to the �V(t) of the
surrounding diodes.

We selected five sites along the 17/18 cytoarchitectural border
and hence the path of the moving �V(t) maximum at the 17/18
border, and three sites along the 19/21 cytoarchitectural border
and the path of the moving �V(t) maximum at the 19/21 bor-
der for detailed analysis. The purpose was to examine whether
the �V(t) and MUA added linearly until the time of occlusion,
with some caveats. First we have no systematic multiunit record-
ings at the 19/21 border. Second, while the distance from the
site mapping the CFOV could always be calculated precisely for
the �V(t), the location of the individual electrode penetrations
were subject to some variability. This is obvious in the aver-
age MUA recorded at the central location (Site 3 in Figure 3
MUA), where the average time of arrival of the peaks in the
downwards and upwards movement conditions are offset by some
72 ms. This would correspond to an average lateral displacement
of our penetrations at this site of 180 μm. Thus, in order to test
whether the occlusion condition generated a larger amplitude
of �V(t) and MUA than that for the single moving bar condi-
tions we compared the �V(t) and MUA only to the larger of
the two amplitudes generated by the control conditions for each
temporal bin. Similarly when testing if the occlusion condition

generated a weaker response than that for the control conditions,
we compared it to the lesser of the two amplitudes of the con-
trol conditions for each bin. When comparing response onset
and peak times, we always chose for statistical comparison the
control condition that had the earliest onset or the earliest peak,
respectively. As the positional error of the electrodes at the cen-
ter was lateral, this meant that our comparisons at the center
are biased toward the downward movement condition. However,
data from individual animals for which there was no such dis-
crepancy in the electrode positions do not contradict our main
results as shown in Figure A2. Finally, primarily due to differ-
ences in the cortical vasculature, it was rare for two electrode
penetrations in different animals to be at exactly the same dis-
tance from the cortical site mapping the CFOV, therefore the
distances from center for the MUA are described as mean values
in Figure 3.

Calculating significance
Using the amplitude fluctuations in the pre-stimulus interval to
define the noise level, the �V(t) was thresholded at p < 0.01 of
being noise. In this we assumed the amplitude fluctuations to be
not significantly different from a Gaussian distribution. This sig-
nificance threshold applied for single photodiode channels and
small regions of interest consisting of three channels (see below
and Figures 3–6). Once statistically significant epochs of �V(t)
changes were determined for a particular region of interest, the
timing of the first significant frame in the first post-stimulus
epoch > 10 ms was the onset latency, thus calculated from the
start of the stimulus. The peak latency was simply the mean
peak time calculated across animals from stimulus onset (in a
statistically significant epoch).

Statistics for the whole photodiode array of 464 channels.
A threshold of estimated p < 0.01 was set for each photodiode
detector channel and divided by the number of channels (464) to
give the Bonferroni corrected value of p < 0.01.

Statistical comparisons between conditions are corrected for
mass significance with a false discovery rate of 0.01 (Benjamini
and Hochberg, 1995). For the movies the pre-stimulus �V(t)
or d[�V(t)]/dt was thresholded with a global p < 0.025 or p <

0.01; this threshold was used on the post-stimulus �V(t) or
d[�V(t)]/dt. The results are movies and snapshot sequences of
only statistically significant membrane events.

In order to calculate significant responding in the MUA, a
Poisson distribution was fitted to the spike trains in the pre-
stimulus period and spikes from the background trial. Spike trains
passing both the criterion of having significantly increased dis-
charge rate compared to the pre-stimulus period of p < 0.01 and
increased rate compared to the background condition of p <

0.01, were considered statistically significant periods of firing.
Once statistically significant epochs of MUA were determined

for a particular region of interest, for the number of animals
in which the region was exposed, the timing of the first frame
in the first post-stimulus significant epoch > 10 ms was the
onset latency, thus calculated from the start of the stimulus.
The peak latency was simply the mean peak time calculated
across animals from the stimulus start (in a statistically significant
epoch).
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RESULTS
VSDs are potentiometric dyes that bind non-specifically to all cell
membranes, (Grinvald and Hildesheim, 2004). Changes in the
fluorescence of these dyes has been shown to bear a near linear
relationship to changes in membrane voltage, recorded intracel-
lularly in vivo from cells in superficial cortical layers, (Petersen
et al., 2003; Ferezou et al., 2006; Berger et al., 2007), as well as
in vitro, (Cohen et al., 1974; Ross et al., 1977). We used VSDs
in order to image the spatiotemporal evolution of the relative
population membrane potential in the supragranular layers of
ferret visual areas 17–19 and 21, when ferrets viewed two iden-
tical luminance bars moving toward each other along the vertical
meridian of the field of view. In the ferret, the vertical meridian of
the field of view is represented along both the cytoarchitectonic
border separating visual areas 17 and 18, and along the border
separating areas 19 and 21, (Manger et al., 2002), (Figure 1).
Subsequently we used the results from the VSD imaging to guide
the placement of a laminar electrode along the 17/18 border,
and thus along the predicted path of activity evoked by the
moving bars.

The VSD signal, �V(t), is the difference between the fluo-
rescence recorded during a stimulus condition and that recorded
during the baseline, gray screen, condition divided by the fluores-
cence obtained in darkness (Materials and Methods). According
to a recent estimate, approximately 90–95% of this difference
signal reflects the difference in synaptic activity (Berger et al.,
2007). The spatio-temporal dynamics of the �V(t) and the
MUA associated with the motion of a single bar is relatively
complex. For this reason, we shortly summarize the results of
the control conditions [for further details see Harvey et al.
(2009)].

SPATIO-TEMPORAL DYNAMICS OF THE MEMBRANE POTENTIAL AND
MULTIUNIT ACTIVITY CHANGES ASSOCIATED WITH THE MOTION OF A
SINGLE BAR
There were two control conditions, (Figure 1B), in which a sin-
gle bar moved upwards or downwards along the vertical meridian
of the field of view. As the retina was always stationary, the MUA
and �V(t) maximum moved over the cortex. Due to the diverse
dynamics of the �V(t) when a single moving object enters the
field of view, the peak MUA has been considered as the best esti-
mate of the cortical position receiving the retinal signal of the
moving bar (Harvey et al., 2009). When the bar moved upwards,
the peaks of the MUA and �V(t) moved laterally along the
cytoarchitectural border between areas 17 and 18, with a weaker
second �V(t) peak moving laterally along the cytoarchitectural
border separating areas 19 and 21 (Harvey et al., 2009). When the
bar moved downwards, the peaks of the MUA and �V(t) moved
medially along these cytoarchitectural borders Movie S1 panel D;
Figure 2). The representation of the bar in visual areas 17, 18,
19, and 21 always lags the position of the object mapped with-
out delay. This non-delayed representation was on average 50 ms
(s.e.m. = 4 ms; n = 4) ahead of the maximal �V(t) and the max-
imal MUA firing rate. See Materials and Methods, Figure A1 and
Movie S1 panel C. We had no systematic electrode penetrations
along the 19/21 cytoarchitectural border.

Thus the motion of a single bar is associated with MUA peaks
moving in retinotopic cortical coordinates corresponding to the
position of the bar in the field of view (Figure 3).

After the bar appears in the field of view the signal from the
VSD increases at cortical sites representing the bars’ position and
then spreads out in all directions, as has been previously demon-
strated (Grinvald et al., 1994; Slovin et al., 2002; Roland et al.,

FIGURE 2 | Snapshots of the dye signal changes taken from the left

hemisphere in one animal, for the three conditions (shown in the

gray boxes). All �V (t) increases at yellow scale and above were
significant (p < 0.01). As the photodiode array creates a mirror image of
the cortex, lateral (LAT) is to the left and medial (MED) is to the right and
posterior (POST) is up. Dashed lines show the cytoarchitectural borders of
the animal. Time of the snapshots and bar position at the display screen
shown in ms below each column. Note that the bar mapping on the cortex
only corresponds to the maximal �V (t) increase in the snapshot. For the
occlusion condition (last row), the �V (t) increase emerges in the cortex

between the representation sites of the two bars at the 19/21 border, this
is the slender spatially restricted pre-depolarization, SRP and the beginning
of a similar SRP is seen along the 17/18 border (150 ms). After 450 ms the
amplitude of the �V (t) decreases. Notably, we did not perform specific
subtractions of the �V (t) from bars with other orientations, and
consequently no orientation specific domains can be seen in the figures or
movies as the orientation specific part of the �V (t) amounts to maximally
15% (Sharon et al., 2007). Data filtered with a σ = 20 frame temporal
filter. The snapshots cannot reveal the full dynamics, for this the reader
should look at the Movies S1–S3.
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FIGURE 3 | The �V (t) and MUA at selected spots in the cortex and the

sum of the �V (t) and MUA from the single bar conditions. Above each
column is a cartoon of the area imaged by the hexagonal photodiode array
where dashed lines indicate the average area borders (see Materials and
Methods) and black dots indicate the approximate position of the recording
site. The distance from the site representing the center of field of view

appears at the top left of each graph. The gray boxes with white bars indicate
the position of the stimulus on the monitor for the different time points for
the occlusion condition only. Solid lines indicate the mean and shaded
regions indicate the standard error of mean, for each trace. For the �V (t)
N = 14 animals at each site and the MUA represents the average activity
across all 16 leads of the laminar probe for N = 10 animals at each location.

2006; Harvey et al., 2009; Polack and Contreras, 2012). At ∼
120 ms, the neurons in areas 19 and 21 produce a �V(t) increase
extending in the direction of motion far ahead of the peak activ-
ity mapping the bars’ position, (compare Movie S1 panels D,C).
This, increase in the population relative membrane potential
propagates back to reach the representation of the bar at the 17/18
area border (see Harvey et al., 2009 Figure 5 and Supplementary
Movie 7 in that paper). At the 17/18 border a similar slender
�V(t) increase is then produced extending on average 8◦ ahead
of the mapping site (Movie S1 panel D, 170–205 ms). This slen-
der increase was roughly restricted to the cytoarchitectural border
between areas 17 and 18 and hence to the future trajectory of
the bar representation. It was therefore referred to as a spatially
restricted pre-depolarization, (SRP). Corresponding to the SRP,
there was an increase in the MUA recorded from neurons in lay-
ers 5, 6, i.e., ahead of those neurons mapping the bar. (see Harvey
et al., 2009, Supplementary Movie 7). This MUA increase is more
moderate, such that it is easily distinguished from the peak MUA
associated with the mapping of the bar. When the neurons spike
ahead of those neurons mapping the retinal input, it is like a pre-
diction of the direction the object will move (Figure 2; Movie S1
panel D).

THE SPATIO-TEMPORAL DYNAMICS ASSOCIATED WITH THE TWO
BARS MOVING TOWARDS EACH OTHER
In the occlusion condition, the two bars moved toward each
other along the vertical meridian, one from above and the other
from below the center of the field of view (Figure 1). The spatio-
temporal dynamics contained all the characteristics just described
for single bar motion, but in double. First two cortical sites of
initial increased MUA appeared at the cytoarchitectural border
between area 17 and 18 corresponding to the introduction of the
bars in the field of view (data not shown). In what follows, we, in
accordance with Harvey et al. (2009), use the terms representa-
tion and mapping to mean the peak firing in the MUA. Then the
�V(t) increased at these two sites and the increase spread later-
ally. Thereafter two additional sites of �V(t) increases appeared
along the cytoarchitectural border between areas 19 and 21, most
likely as the result of a feed-forward input from areas 17/18. From
115 ms and onwards, two SRP’s extended toward each other along
the 19/21 border between the two representations of the bars,
(Figure 2, Movie S1 panel B). From 115 to 160 ms post stimulus,
the two SRP’s merged along the 19/21 border. This was followed
by an increase of the �V(t)rel, (see Materials and Methods) that
propagated from the 19/21 border toward the two representation
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sites at the 17/18 border, i.e., back propagating synaptic activity
(p < 0.01, Movie S2). At ∼160 ms two similar SRP’s appeared
extending toward each other in between the moving represen-
tations of the bars at the 17/18 area border, (Movie S1 panel B,
Figure 2).

From 286 ms the MUA increased significantly above the spon-
taneous rates in the neuron population representing the center of
field of view (p < 0.01; Table 1, Figure 3).

Thus the activity during the occlusion condition, while
the neuronal populations representing the two bars were
still well-separated, displayed all the dynamic characteristics

associated with the motion of single bars. That is: moving peak
MUA over the cortex, activation of areas 19 and 21 following
activation of areas 17/18, SRPs first in areas 19/21 and then
after synaptic activity moving from here to areas 17/18 sim-
ilar SRPs and advanced MUA along the 17/18 border. The
only difference was that the SRPs merged and fired neurons
at the cortical site representing the center of field of view,
i.e., the site of occlusion. This indicates that the brain at this
moment could have knowledge about the upcoming clash or
occlusion, 126 ms in advance of the occlusion on the display
screen (Table 1).

Table 1 | Onsets and peaks of multiunit activity and dye signal.

Medial Central Lateral

Recording Site 1 2 3 4 5

MUA 17/18 ∼969 µm ∼623 µm Center ∼641 µm ∼991µm

Down Onset/Peak 525/626 408/536.4 309/436 207/320 177/312

SEM 7.1/8.9 10.9/9.5 6.1/5.4 11.1/ 8.6/9.6

N 7 7 10 5 6

Up Onset/Peak 180/278 253/396 383/508 467/582 506/633

SEM 11.9/9.8 14.6/9.9 6.0/4 9.2/8.3 8.42/8.2

N 7 7 10 5 6

Occlusion Onset/Peak 183/283 226*/364* 286*/413* 203/334 187/321

SEM 11.8/9.1 9.7/6.2 6.42/4.4 10.7/11.5 10.4/11.5

N 7 7 10 5 6

�V(t) 17/18 980 µm 540µm Center 540µm 980 µm

Down Onset/Peak 270/628 192/556 147/483 124/439 84/349

SEM 43/20 36/19 28/16 26/25 11.6/34

N 14 14 14 14 14

Up Onset/Peak 116/332 156/414 164/489 152/528 244/614

SEM 24/34 34/24 31/21 31/22 50/23

N 14 14 14 14 14

Occlusion Onset/Peak 106/323 96*/364 91*/403* 97*/413 77/336

SEM 21/38 14/21 14/17 20/37 11.8/43

N 14 14 14 14 14

�V(t) 17/18 540 µm Center 540 µm

Down Onset/Peak 193/510 98/431 76/293

SEM 43/38 17/48 9/49

N 14 14 14

Up Onset/Peak 122/274 128/412 138/494

SEM 37/50 50/50 42/40

N 14 14 14

Occlusion Onset/Peak 62/259 22.2/354* 84/250

SEM 8/42 12/48 14/40

N 14 14 14

*p < 0.01.
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THE APPROACHING PHASE UNTIL OCCLUSION STARTS
Since the dynamics in visual areas 17, 18, 19, and 21 of
the �V(t) (population membrane potential) and MUA up
to 370 ms had all the characteristics of the dynamics associ-
ated with single bar motion, the dynamics up to 370 ms of
the two bars moving toward each other might be a simple
combination of single bar dynamics. We therefore tested the
hypothesis that the occlusion condition �V(t) and MUA was
the simple sum of the �V(t) and MUA in the two control
conditions.

We selected five sites along the 17/18 cytoarchitectural bor-
der, and hence the path of the moving �V(t) maximum at
the 17/18 border, and three sites along the 19/21 cytoarchitec-
tural border for detailed analysis. We calculated the sum of the
�V(t) for the control conditions and the sum of the MUA for
the control conditions and tested when the amplitude of the
�V(t) and MUA for the occlusion condition deviated signif-
icantly from these sums. The tests of significance were done
using a two tailed t-test using a within subjects design. The
time courses of the MUA and �V(t) at these sites are shown
in Figure 3 for the three motion conditions as well as for
the sum of the �V(t) and the sum of MUA of the control
conditions.

Figure 4 shows the results of the statistical tests for the �V(t)
as well as for the MUA in the supragranular, granular, and
infragranular layers. First, the �V(t) in between the mapping
populations of neurons added not significantly different from
the sum of �V(t)s in the two control conditions, from 80 ms
and onwards to occlusion (392 ms). During most of this time
interval, the �V(t) in the occlusion condition was significantly
larger than that of either of the single bar conditions. Thus, the

linear addition hypothesis could not be refuted. For the rate of
the MUA, there were epochs of supra-linear summation dur-
ing which the firing in the infragranular and granular layers
exceeded that associated with the sum of the single bar condi-
tions at a population of neurons 540 μm from the retinotopic
point of the center of field of view (Figure 4). Unlike the �V(t),
the sum of MUA lateral and medial to the representation of
the center of field of view was roughly equal to the MUA of
a single bar. This was because the presence of the other bar
contributed little to the total MUA at these most lateral and
medial positions (Figure 3). In cortex where the center of field
of view was represented, however, there was an increase of the
MUA in the infragranular layers just prior to occlusion that
was significantly larger than that associated with a single bar
(Figure 5).

So, whereas one could not refute that the population mem-
brane potentials in the supragranular layers in between the corti-
cal mapping of the two bars added linearly, the MUA was either
supra-linear in short epochs or not significantly different from
that associated with the similar motion of a single bar, as also seen
in Figure 3. In particular, the addition of the �V(t) in supra-
granular layers did not lead to an increase in the MUA in these
layers. It should be noted that the dye signal adds if a larger area
of membranes become excited at any measuring point, or, con-
versely, if already excited dendrites undergo further excitation.
Thus, the addition of the �V(t) signal in itself does not imply
that the membranes of the dendrites and neurons already excited
from one side (say lateral) are identical to those excited from the
other side (say medial).

If the �V(t) adds at a given cortical point, the onset
latency may diminish compared to the single bar condition. This

FIGURE 4 | Statistical comparison of the amplitude of the variables

�V (t) and MUA for the occlusion condition compared to the amplitude

of the sum of �V (t) and sum of MUA from the single bar conditions.

The MUA was recorded from supragranular (S), granular (G), and infragranular
(I) cortical layers at five sites along the 17/18 border (Top) and for the �V (t)
at three sites along the 19/21 border, (Bottom) (Sites identical to those in

Figure 3). Epochs where the amplitude of the �V (t) or MUA during the
occlusion condition is significantly greater (p < 0.01) than the amplitude of
the �V (t) sum or the MUA sum in the two single bar conditions are shown
in red, and epochs where the amplitude of the �V (t) in the occlusion
condition is significantly less (p < 0.01) than the amplitude of the sum of the
�V (t) or sum of MUA in the single bar conditions are shown in blue.
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happened at three measurement points, the point mapping the
center of field of view and those two points flanking the cen-
ter of the field of view at 540 μm (Table 1). Also the onset of
MUA occurred earlier at the cortical site representing the cen-
ter of field of view (Table 1). At this site, both the onset (286 ms)
and peak time of the MUA came equally earlier in the occlusion
condition than in the control conditions by 23 ms (see Materials
and Methods for judgment of latencies). The onset and peak
of the �V(t) recorded from this site at the 17/18 border were
also advanced, in this case by 73 and 80 ms, respectively. At the
site mapping the center of field of view at the 19/21 border, the
timing of the peak of the �V(t) arrived an average of 113 ms
earlier than for the control conditions in a pair-wise compari-
son in which the animal was its own control (Table 1). Thus,
as the populations of neurons firing to the moving bars came

FIGURE 5 | Statistical comparison of the amplitude of the �V (t) and

MUA for the occlusion condition compared to the amplitude of the

�V (t) and MUA for the single bar conditions. The MUA was recorded
from supragranular (S), granular (G), and infragranular (I) cortical layers at
the cortical site for the center of field of view along the 17/18 border (Top)

and for the �V (t) at the corresponding cortical site along the 19/21 border
(Bottom). Epochs where the amplitude of the �V (t) or the MUA during
the occlusion condition is significantly greater (p < 0.01) than the amplitude
of �V (t) or MUA of either of the two single bar conditions are shown in
red, and epochs where the amplitude of �V (t) and MUA in the occlusion
condition is significantly less than the amplitude of responding to the single
bar conditions are shown in blue (p < 0.01 see Materials and Methods).
Note that the �V (t) and MUA in the time window 392 to 460 ms was not
significantly different from that of a single bar (p > 0.2).

within 600 μm of one another, the MUA and �V(t) peaked ear-
lier than in the control conditions. At the center of the field
of view the derivative of the VSD signal, d[�V(t)]/dt, also
became significantly greater than that that for single bar condi-
tions, and this occurred already at 85 ms post stimulus, (Figure 6
arrows; Movie S3).

OCCLUSION DYNAMICS
Eventually, the two peaks of MUA, representing the two mov-
ing bars, moved closer to the cortical point representing the

FIGURE 6 | The time course of the temporal derivatives for the three

stimulus conditions are shown. Top: the d[�V (t)]/dt and the d(MUA)/dt.
Bold lines indicate the mean values for N = 14 and N = 10 animals,
respectively, and the shaded regions indicate standard error of mean (SEM).
Recordings were taken from the cortical site representing the center of
field of view at the 17/18 border. The first positive peak at 85 ms is due to
the directional pre-excitation ahead of the moving bar representation.
Bottom: Statistical comparison of the amplitude of the response for the
occlusion condition compared to the amplitude of the response for the
single bar conditions for the d[�V (t)]/dt and the d(MUA)/dt recorded from
supragranular (S), granular (G), and infragranular (I) cortical layers at the site
representing the center of field of view. Epochs where the amplitude of
these variables during the occlusion condition is significantly greater than
the amplitude of the variables to either of the two single bar conditions are
shown in red, and epochs where the amplitude of the variables to the
occlusion condition is significantly less than the amplitude of responding to
either of the single bar conditions are shown in blue (p < 0.01). Note that
when the first effect of the excitatory synaptic activity reaches the area
17/18 border at 120 ms, the d�V (t)/dt becomes statistically significantly
stronger than in the single bar conditions (black arrows Top and Bottom).
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center of field of view. At 392 ms the bars abutted one another
on the display screen and the occlusion became maximal at
412 ms (Figure 1, Movie S1). At 370 ms the d�V(t)/dt started
to decrease at the cortical site representing the center of field
of view (Figure 6). At this point in time the bars’ distance on
the screen was 2.6◦, and the bar representations at the 17/18
border in retinotopic coordinates were further apart, given the
retino-cortical delay.

In vivo, the derivative of �V(t), the d[�V(t)]/dt is an indi-
cator of net membrane excitation and net inhibition (Ferezou
et al., 2006, 2007; Berger et al., 2007; Eriksson et al., 2008;
Roland, 2010). If the d[�V(t)]/dt increases significantly over
the pre-stimulation baseline this indicates net membrane exci-
tation, if the d[�V(t)]/dt decreases significantly below base-
line, this indicates reduction of net-excitation and most likely
increase of net inhibition. The d[�V(t)]/dt of the neurons
mapping the center of field of view at the 17/18 border (and
identical to those mapping the occlusion) started to decrease
at 370 ms (Figure 6). Thereafter the �V(t) peaked at 403 ms.
The MUA peaked at 413 ms when the occlusion on the screen
was maximal. The MUA in the supragranular, granular and
infragranular layers at this cortical spot and at this moment
scaled to that of a single bar (Figure 5), as did the total
MUA (Figure 3). In the supragranular, granular and infragran-
ular layers, the MUA was not statistically different from the
MUA associated with a single bar from 415 to 460 ms (p > 0.2,
Figure 5).

At the cortical point mapping the center of field of view, the
d[�V(t)]/dt, then the d(MUA)/dt and subsequently the MUA
in all layers continued to decrease, such that the d[�V(t)]/dt,
�V(t) and the MUA were significantly below the values associ-
ated with a single bar at 460–500 ms (p < 0.005) (Figures 5, 6).
This significant dip in the d[�V(t)]/dt, far below the base-
line, may be interpreted as a net inhibition of the population.
Accordingly the MUA also diminished significantly following
the d[�V(t)]/dt decrease. This raised the question of what
might have caused this. We therefore looked at the d[�V(t)]/dt
over all neurons in the supragranular layers of areas 17, 18,
19, and 21. From 370 ms there was a strong decrease in
d[�V(t)]/dt starting at the four zones of cortex where the
bars were mapped initially (p < 0.025, Figure 6). The signif-
icant d[�V(t)]/dt decrease propagated from these zones fol-
lowing the subsequent cortical trajectory across the neuron
populations subsequently mapping the bars. At 473 ms the
d[�V(t)]/dt decrease reached its minimum almost simultane-
ously over all four areas. The decrease though remained the
strongest at the cortical bar trajectory zones (Movie S3). The
�V(t) also decreased, because of the strong d[�V(t)]/dt decrease
(Figure 3).

Although net-inhibition appeared first in the populations of
neurons that had already mapped the approaching bars, this
cannot explain why the population of neurons in the supragran-
ular layers at the cortical spot mapping the center of field of
view decreased prior to the time this population actually mapped
the bars and their subsequent occlusion. It is likely therefore
that there might be more than one mechanism reducing the
d[�V(t)]/dt.

THE POPULATION MEMBRANE AND MUA DYNAMICS WHEN THE TWO
BARS MOVED AWAY FROM EACH OTHER AFTER THE OCCLUSION
After the occlusion was maximal on the screen at 412 ms, the bars
at the display screen formed one growing rectangle until 435 ms,
at which point they began to move away from one another in
opposite directions.

As seen in Figure 6, the d(MUA)/dt started to increase sig-
nificantly from 500 ms, first in the granular layer. Thereby the
MUA and subsequently the d[�V(t)]/dt also increased at the cor-
tical spot mapping the center of field of view. The d[�V(t)]/dt
increase appeared also outside the bar representations in areas
17, 18, 19, and 21 in the time interval from 473 to 515 ms
(Movie S3). As is also apparent from Figure 6, these increases
in d(MUA)/dt and d[�V(t)]/dt were transient, significant (p <

0.01), and unique to the occlusion condition (see also Figure 3).
The MUA increase was especially strong in the granular layer
(Figure 6) and followed by an increase of d[�V(t)]/dt (Figure 6).
This resembles the dynamics seen after excitation by thalamo-
cortical afferents (Roland et al., 2006; Harvey et al., 2009). The
increase of MUA at 525 ms, however, occurred only at the cortical
spot mapping the bar occlusion (Figure 3).

Perhaps the most conspicuous finding was that the MUA never
recovered fully at their subsequent trajectory across the popu-
lations of neurons that once already had mapped the bars. This
decrease in MUA compared to the single bar MUA was strongly
significant for the MUA across layers at the positions outside the
retinotopic spot of the center of field of view (p < 0.01, Figure 3).
In the control conditions, the populations of neurons mapping
the single bar also significantly decreased their d[�V(t)]/dt,
resulting in a decrease in �V(t) some 200 ms after the peak
MUA and peak �V(t) as seen in Figure 2. These decreases in
d[�V(t)]/dt and �V(t) are relatively broad.

In summary, when two bars move toward each other along the
vertical meridian in the field of view and the retinas are still, the
bars are mapped by two continuously moving maximal laminar
MUA increases moving toward each other in constantly changing
populations of neurons located at the border between areas 17
and 18. Peak �V(t) activity also moved toward each other over
populations of neurons along the border between areas 19 and 21
and toward each other along the border between areas 17 and 18.
Further, the population of neurons along the 19/21 border gen-
erated net excitatory (synaptic) membrane activity propagating
toward the area 17/18 border where SRP’s appeared in the pop-
ulation of neurons located in between the moving peak MUA
and peak �V(t). Almost until the occlusion, these SRP’s were
double the amplitude of those generated by single bar motion.
The neurons between the moving peaks in the MUA then started
to fire, especially in the infragranular layers. The neurons repre-
senting the center of the field of view then fired, 126 ms prior
to the occlusion. When the neuronal populations representing
the bars in areas 17/18 were ∼600 μm apart, the activity in the
population of neurons between them showed strong decreases
in d[�V(t)]/dt, and subsequently the MUA and �V(t). At the
time of occlusion the MUA and �V(t) matched those of a single
bar. The d[�V(t)]/dt behind the moving mapping populations
was now also strongly decreased. After a short transient increase
in MUA and then in �V(t) at the cortical site representing the
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center of the field of view, the �V(t) recovered somewhat, but
the MUA remained significantly reduced in the populations of
neurons where the bars were mapped following occlusion.

DISCUSSION
Whereas there is a rich psychophysical literature showing interac-
tions between continuously moving objects, the neurophysiologic
mechanisms of these interactions have not previously been exam-
ined. We examined two bars moving toward each other and then
occluding one another at the center of field of view. There are at
least five types of interactions between the populations of neu-
rons in areas 17, 18, 19, and 21 relevant for the understanding of
the observed dynamics: (1) feed-forward passage of action poten-
tials between layers and areas, (2) synaptic activity from higher
to lower areas, (3) interactions between the populations map-
ping the bars, (4) interactions between the populations of neurons
representing the bars and the population of neurons in between
them, and (5) net inhibitory effects from the population that once
mapped one of the bars and subsequently mapped the other bar.

We examined only occlusion taking place in the center of
field of view. Consequently we cannot generalize our findings to
dynamic object occlusions elsewhere. Also the bars had identical
contrasts, such that their leading edges were no longer apparent
from the moment the occlusion started. Rather they appeared to
merge and shrink to one single bar at the moment of maximal
occlusion. Moreover, we had no systematic electrode penetra-
tions along the cortical path of motion in areas 19 and 21 and
cannot therefore with certainty state the position of the bar
representations here.

INTER-AREA FEED-FORWARD AND BACK PROPAGATING ACTIVITY
Initially, just after the bars appeared, there were no differences
between the single bar and the occlusion condition. Subsequently,
the bars were represented, presumably through feed-forward
communications, to two populations at the area 19/21 border.
This was verified in the few examples where we had the appropri-
ate electrode penetrations [data not shown, but see also Harvey
et al. (2009), Roland (2010)]. The feed-forward flow of action
potentials from the lateral geniculate nucleus to areas 17/18 con-
tinued, with modulations, throughout the time course of bar
motion, continuously moving the two MUA peaks closer to occlu-
sion. After occlusion, feed-forward excitation from the lateral
geniculate nucleus moved the peaks of the MUA away from each
other.

After the neurons along the border between areas 19 and
21 had produced SRP’s, the neurons of area 18 and 19 showed
increases in �V(t) and d[�V(t)]/dt as an organized wave
from 115 ms to 160 ms (Movie S2). As the �V(t) signal reflects
differences in synaptic activity (Berger et al., 2007) and the
d[�V(t)]/dt increase reflects net increase in membrane excita-
tion, one could interpret this wave as a propagation of synaptic
excitatory activity from the area 19/21 border toward the 17/18
border. Movie S3 shows an 11 ms delay in d[�V(t)]/dt increase
between the mapping site at the 19/21 border and that of the 17/18
border 60–71 ms after stimulus onset. This could arise from other
causes than transmission of action potentials between these areas.
However, in Movie S2 one can follow the propagation over cortex

of the relative �V(t) peak with fast velocity from 19/21 to 17/18.
The cortical motion of this peak also includes retinotopic posi-
tions in areas 19 and 18 that are not supposed to be stimulated by
the stimulus. This, however, is a characteristic of these (waves of)
back propagating synaptic excitation (Roland et al., 2006; Ahmed
et al., 2008; Harvey et al., 2009). They seem to have a course simi-
lar to the course of the feedback axons in the ferret (Cantone et al.,
2005).

When the synaptic activity reached the 17/18-area border, it
added to the net-excitation of the sub-population of neurons
in between the populations of neurons representing the moving
bars. This might have contributed to bring some of these neurons
over their firing threshold. Harvey et al. (2009) measured a simi-
lar propagation of d[�V(t)]/dt in the same time interval, elicited
by the motion of a single bar. Such motion of (net excitatory)
synaptic activity is also observed in other species and other visual
stimulus conditions (Eriksson and Roland, 2006; Roland et al.,
2006; Xu et al., 2007; Ahmed et al., 2008; Takagaki et al., 2008;
Harvey et al., 2009; Roland, 2010; Ayzenshtat et al., 2010).

INTRA-AREA INTERACTIONS
Interactions were observed in all four areas beginning 85 ms post
stimulus. These interactions began in the population of neurons
in between the moving representations of the bars. During the
occlusion condition the �V(t) in the supragranular layers was
not significantly different from the sum of the single bar condi-
tions. We cannot discern how much of this summation was due to
the recruitment of independent, for example directionally tuned,
neurons, or to the increased drive on neurons responding to both
directions of bar motion. Since the MUA started to increase sig-
nificantly earlier in the infragranular layers, this indicates that at
least some neurons in these layers could be influenced by additive
net excitations. Also in the infragranular layers, there were non-
linearly additive epochs of MUA. This was despite the fact that
the moving bars were not collinear (Chisum et al., 2003), but in
accordance with reports of firing ahead of the object mappings,
(Guo et al., 2007; Harvey et al., 2009).

The synaptic net excitation between the moving representa-
tions could be mediated by horizontal connections extending
from the bar representations in the lower supragranular layers.
The reason why the �V(t) sums along the future path in between
the moving bar representations could be that the populations of
neurons representing the bars, through excitatory horizontal con-
nections (Bosking et al., 1997; Chisum et al., 2003; Buzas et al.,
2006), increased the synaptic net excitation along the future path
of the bars’ motion. In addition action potentials from higher
order areas 19/21, where the future path was already mapped,
could further increase the �V(t) along the future path in area
17/18, (Harvey et al., 2009).

After 180 ms the neurons, especially in the infragranular lay-
ers, started to fire in between the moving bar representations
(Figure 3 and Table 1). In the occlusion condition the prema-
ture firing also reached the cortical zone for the future occlusion
(280 ms) indicating that the brain at this point had information
to predict the occlusion. As the firing was strongest in infragranu-
lar neurons and as the vast majority of neurons in primary visual
cortex projecting to superior colliculus are in layer 5, (Palmer and

Frontiers in Systems Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 23 | 84

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Harvey and Roland Cortical interactions of moving objects

Rosenquist, 1974), one may speculate that this premature firing
toward the cortical point of future occlusion could be useful for
generating a saccade to the point in the field of view where the
occlusion was expected in analogy with parietal cortical neurons
(Duhamel et al., 1992).

INHIBITION PRIOR TO OCCLUSION
The d[�V(t)]/dt is related to the inward/outward currents of the
cells in the upper layers of cortex. This follows from the near linear
relation between the population membrane potentials in supra-
granular layers and the �V(t), (Petersen et al., 2003; Ferezou
et al., 2006; Berger et al., 2007; Eriksson et al., 2008; Roland,
2010). When the distance between the moving bar representa-
tions at the 17/18 border were approximately 600 μm and 20 ms
prior to the start of the occlusion of the bars on the display screen,
the d[�V(t)]/dt went below baseline and continued to decrease.
After the d[�V(t)]/dt went below baseline, the dMUA/dt in all
layers decreased almost simultaneously. Together this indicates a
decrease in excitation, or alternatively an increase of inhibition of
all layers or both, at the central position of the 17/18-area bor-
der. What is in favor of an increased net inhibition is that the
d[�V(t)]/dt went far below baseline and that the dMUA/dt fol-
lowed this decrease (Figure 6). From the measurements depicted
in Movie S3 one can see that the d[�V(t)]/dt decreased all along
the path taken by the bar representations until occlusion. The
spatial dynamics of d[�V(t)]/dt in the interval 370–570 ms is
complex. For this reason first the net inhibition of the pop-
ulation of neurons that subsequently mapped the occlusion is
discussed.

The inhibition of the population of neurons mapping the
occlusion/the center of field of view could depend on several
mechanisms. When the bars on the screen came closer together,
the likelihood increases that neurons located close to the cortical
point representing the center of field of view where the occlu-
sion is going to take place may react. One mechanism could
be that the geniculo-striate afferents exciting the granular layer
neurons also contact basket cells providing almost simultaneous
inhibition (Ahmed et al., 1994; Liu et al., 2011). If such elicited
extra inhibition reaches the upper layers, the d[�V(t)]/dt might
decrease. Contradicting the geniculo-striate mechanism of feed-
forward inhibition, is that the decrease started in supragranular
layers prior to the time when the d(MUA)/dt decreased. Another
possibility is that the lateral geniculate neurons might have been
inhibited. However, the lateral geniculate neurons cannot have
been very much inhibited, as the MUA in layer 4 of the cortex
was, at the time of occlusion, equal to that of a single bar.

Another alternative is that the increased inhibition of the pop-
ulation of neurons mapping the center of field of view is elicited
intra-cortically by the horizontal connections.

The majority of the neurons in area 17 decreases their fir-
ing rates to counter-phase gratings and oppositely moving bars
(Baker and Emerson, 1983; Qian and Andersen, 1995). In vitro
experiments on the ferret visual cortex supragranular layers also
show that simultaneous stimulation of cortical points separated
by 500 μm or less generates net inhibition in neurons getting
synaptic excitation from both stimulating points in these layers
in between the stimulation sites (Tucker and Katz, 2003). If the

inhibition was elicited by contrast edges approaching each other,
theoretically the inhibition should cease when the cortex detected
that occlusion was maximal. The contrast edges, both the lead-
ing and the following edges of the bars, then would move away
from the cortical site of the center of field of view. This was what
happened. One may accordingly describe the behavior of the neu-
rons, at and close nearby the central field of view representation at
the 17/18 border, as being net inhibited by the simultaneous and
oppositely moving excitation associated with the bar represen-
tations. This mechanism might require increased firing of local
inhibitory neurons in between the bar representations. The hori-
zontal connectivity in area 17 is most pronounced in lower layer 3
and layer 5 (Gilbert and Wiesel, 1989; Buzas et al., 2006). The net
inhibition in these layers may have helped in bringing the MUA
in phase across all layers when the granular layer mapped just
one bar at the midst of the occlusion (Figures 3, 5). According
to Figure 6, the net inhibition or depression of the firing ceased
first in the granular layer at 462 ms, i.e., 50 ms after the maximal
occlusion on the screen.

THE REDUCTION OF THE MULTIUNIT ACTIVITY AFTER THE OCCLUSION
As seen in Figure 5, the MUA at the site mapping the center of
field of view was for a short period below that associated with a
single bar just after the occlusion. As the MUA started to increase
in the granular layer, the increase spread to supra and infragranu-
lar layers and increased the d�V(t)/dt to a temporary maximum
in about 50 ms, which is the time it normally takes to increase the
population d�V(t)/dt when a stimulus appears (Harvey et al.,
2009; Roland, 2010).

Although the inhibition at the cortical retinotopic site of the
center of field of view may be explained by mutual horizontal
inhibition in areas 17/18 from the bar edges moving toward each
other, this cannot explain why the �V(t) decreased behind the
moving bar representations (Movies S1, S3, Figure 4). Neither
can this explain why the populations of neurons representing the
vertical meridian uniformly suppressed the MUA, after the occlu-
sion. One major result was that the total MUA, across layers,
after the occlusion, was significantly reduced at all cortical points
where the bars had been mapped prior to the occlusion. As seen
in Figure 3, and in Harvey et al. (2009), there is no reduction of
the total MUA when single bars get mapped. The total MUA asso-
ciated with single bar representation moving over cortex thus is
symmetrical, no matter whether the motion is toward or away
from the center of field of view. However, when the representa-
tion of a single bar moves over the cortex, the d�V(t)/dt of the
neurons mapping the moving bar turns negative with a delay of
130–150 ms (Roland, 2010). This significant negativity thus is a
sign of net inhibition.

As seen in Figure 3, this reduction of MUA is relatively long
lasting. One possibility is that the cortex remains in a gener-
ally inhibited state after the inhibition associated with the bars
approaching occlusion. This is unlikely for several reasons. First,
the decrease in d[�V(t)]/dt started behind the mapping popula-
tions prior to the occlusion. Second, the inhibition was released
in the population of neurons representing the occlusion, increas-
ing the MUA to the level of a single bar (Figure 3). Third, the
d[�V(t)]/dt did not remain suppressed, but showed a clear
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rebound above that associated with single bars and stayed nor-
mal. However, at 570 ms, i.e., 150 ms after the mapping of the
occlusion at the d[�V(t)]/dt started to decrease again, but only in
the zone mapping the center of field of view from where it spread
slowly (Movie S3).

The mapping of single bars, however, is also associated with
a significant decrease in d[�V(t)]/dt below baseline after some
100–150 ms (Roland, 2010). This affects also the �V(t) that even-
tually becomes negative (Figure 2). One possibility is that the
mapping of the bar is associated with a delayed inhibition (after-
hyperpolarization?) that lasts longer. In the occlusion condition,
this delayed inhibition then reduces the MUA when the retinal
input reaches the population that mapped the other bar 150 ms
ago or earlier.

CONCLUSIONS
The spatio-temporal dynamics of membrane potential changes
and laminar MUA associated with objects moving toward occlu-
sion and continuing thereafter is complex. When the retina
is still, a single bar moving in the field of view is mapped
retinotopically as peak increases in firing rates across cortical
layers and, after some 150 ms also by peak increases in mem-
brane potentials by a populations of neurons in each of the
four visual areas 17, 18, 19, and 21. If the bar moves up or
down the vertical meridian, the laminar peak increases fol-
low paths over the cortex that correspond to the retinotopic
mapping of events located at the vertical meridian. In cor-
tex one path is equal to the cytoarchitectural border between
areas 17 and 18 and another path equal to the cytoarchitec-
tural border between areas 19 and 21 and yet other paths at
several locations in other areas that were not explored in our
study. The neurons that map the object at each position in
the field of view in each area form a path over the cortex
corresponding to the trajectory in the field of view, the path
population.

When two objects move exactly toward each other, the path
population is identical for the two objects. The instantaneous
mapping of the moving objects was done by the laminar peak
firing of two constantly approaching sub-populations of neurons
at the 17/18 border. At the border between areas 19 and 21 two
net excitations of the population membrane potentials appeared
approximately 50 ms after stimulus onset. This excitation pre-
sumably derives from feed-forward connections emanating from
the neurons representing the bars at the 17/18 border. Early on,
the neurons of the path population at the 19/21 border in the sec-
tor between the peak net membrane excitation also became net-
excited. The second interaction between the path populations was
a back propagation of net excitatory synaptic activity 115–160 ms
after the start of motion from the 19/21 path population to the
17/18 path population.

The interactions expressed in the path population of neu-
rons, in the sector between the neurons mapping the progres-
sion of the bars, started 85 ms post stimulus onset with the
d[�V(t)]/dt, net membrane excitation, propagating to the pop-
ulations mapping the center of field of view from both sides.
This continued with the formation of net membrane excita-
tion and increased membrane potential of double the amplitude

of both of the whole path population of neurons (17/18 and
19/21) in the upper layers. This behavior of the �V(t) thus could
be interpreted as a long range horizontal interaction combined
with the effects of an excitatory back transmission from areas
19 and 21.

Despite the additive effect of the relative population mem-
brane potentials in the supragranular layers of the 17/18 popula-
tion, the MUA in these layers did not deviate from that associated
with a single bar, suggesting that the �V(t) effect was mainly sub-
threshold. However, in the infragranular layers, the MUA started
earlier and far ahead of the peak activity mapping the bars.
Already at 286 ms when the bars were 7◦ apart, the significant
firing in infragranular layers reached the cortical zone mapping
the future site of the occlusion. This indicates that the brain from
this moment had information to predict a collision or an occlu-
sion. This finding and the following findings were particular to
the occlusion condition.

When the laminar MUA associated with the moving bars came
closer, the d�V(t)/dt turned negative and thereafter the MUA
decreased simultaneously in all layers. This we interpret as a net
inhibition of the membranes in the cortical zone of the occlusion.
So far these interactions in the 17/18 path population between
the mapping populations may be described as horizontal interac-
tions. At the time of occlusion in the cortex at 413 ms (Table 1)
the spiking population was one population of neurons spiking
with a peak rate corresponding to that of a single bar. After the
occlusion the sub-populations mapping the bars moving away
from each other became identical to the neurons that had once
already mapped the bar moving in the opposite direction. Despite
a short rebound starting with firing in the granular layers, the
MUA of the bar mapping populations did not recover to that prior
to the occlusion. We attribute this relatively long lasting depres-
sion of the spiking occurring with a delay of 130–150 ms to a
delayed inhibition/after hyperpolarization.

The feed-forward and back transmission (feedback) interac-
tions between the path populations of neurons of different areas
and the local (horizontal) excitatory interaction between the
mapping subpopulation and the sector of the path population
ahead occur in association with movement of single bars as well
as two bars moving to occlusion. The local net-inhibitory inter-
actions at short range, and the delayed and long lasting inhibition
of the spiking of the mapping neurons when the neurons that
once already mapped the approaching bars now again must map
the departing bars, are specific for the occlusion condition in
these experiments. It remains to be investigated whether the local
short-range inhibition is a general phenomenon for any two bars
approaching each other, no matter at which angle.
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SUPPLEMENTARY MATERIAL
The Supplementary Movies for this article can be found
online at: http://www.frontiersin.org/Systems_Neuroscience/
10.3389/fnsys.2013.00023/abstract

Movie S1 | The �V(t) of the occlusion condition and the estimate of the

position of the cortical position of the representations of the bar without

delay in one animal. (A) Animation of the stimuli in the occlusion condition

with a frame frequency of 200 Hz. Distance from the center of field of

view shown on the sides of the monitor. Time in ms from the start of

motion is shown in green. (B) The voltage sensitive dye signal, �V (t), in

the occlusion condition. The scale to the right shows the absolute values.

Yellow and colors above yellow signify significant changes (p < 0.01).

Notice the two spatially restricted depolarizations starting along the 19/21

border (115 ms), and then shortly after along the 17/18 border. For location

of cytoarchitectural borders in this animal see C and D. Notice also the

almost simultaneous decrease in the �V (t) starting at 445 ms. (C)

Location of the bar representation without delay in response to single

bars, here shown as downward moving, after (Kalatsky and Stryker, 2003)

(see details in Figure A1). (D) Bonferoni corrected (p < 0.01) and

normalized, �V (t)rel(s), signal for a downward moving bar. This movie

shows only the significant responding after the presentation of a bar

moving downward along the vertical meridian.

Movie S2 | The increased net membrane excitation traveling from areas

19/21 toward areas 17 and 18. (A) Animation of the stimuli in the

occlusion condition with a frame frequency of 200 Hz. Distance from

the center of field of view shown on the sides of the monitor. Time in

ms from the start of motion is shown in green. (B) The statistically

significant part of �V (t)rel (phase plot) (p < 0.01) averaged across

animals in response to two bars moving to occlusion. The feedback

began at 120 ms after stimulus onset and traveled toward the 17/18

border with an average velocity of 0.12 mm ms−1 where it arrived at

160 ms (standard error of mean 10 ms, n = 14). The signal then

decreases as the bars approach one another. This decrease then

surrounds the site mapping the occlusion (representing center of field of

view), black circle.

Movie S3 | The spatio-temporal increases, back-propagation from areas 21

and 19, and subsequent decrease of d[�V(t)]/dt averaged over three

animals. Statistically significant increases are shown yellow and red;

statistically significant decreases are shown light blue and blue [p < 0.025

false discovery rate with correction for multiple comparisons (Materials

and Methods)]. The cytoarchitectural borders are aligned (Methods) across

animals. Notice also the net inhibition of the membrane potentials starting

bilaterally in the periphery. The scale values shown in the scale bar for the

d[�V (t)]/dt should be multiplied with 10−6.
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APPENDIX

FIGURE A1 | Mapping of the mean maximum �V (t) without delay:

in order to get an estimate of the position of the object

representation on the cortex at any given time, we used the strategy

of Kalatsky and Stryker (2003). Briefly, the contrast bar moves with a
velocity v over the screen, starting at 0 ms at the top/bottom of the
screen and ending at T ms at the bottom/top of the screen, here
T = 824 ms. After a certain time, t, the bar position on the screen, vt, is
mapped to a cortical position (x, y ). The �V (t) at position (x, y) reaches
its maximum after a certain delay, �t, after the bar has arrived at screen

position vt. Thus, the maximal �V (t) will be reached after p+ = t + �t,
(A Left). When the bar moves in the opposite direction, the square will
reach the same cortical position (x, y ) after (T − t) and hence the maximal
�V (t) will be reached after p− = (T − t) + �t ms, (A Right). The color
scale at the right shows the �V (t)rel values and hence also the peak
value which is reached at 476 ms for the downward motion condition and
at 470 ms for the upward motion condition in this animal. The
time courses of the respective �V (t)’s for the cortical point x, y are shown

(Continued)

Frontiers in Systems Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 23 | 89

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Harvey and Roland Cortical interactions of moving objects

FIGURE A1 | Continued

below the snapshots. If one reverses the time axis for one of the
conditions one will end up with the same stimulus as the other condition,
i.e., T − (T − t) = t. However, the maximal response will instead come
�t before the arrival time of the stimulus at point vt on the monitor, (B).
Now the time when the stimulus passes the position vt on the monitor
can be found by averaging p+ and T − p, which in this case equals the
position (x, y) on the cortex without any delay, (C). We can now calculate
the delay of the maximal response �t, by subtracting p+ and T − p, The
time that the peak would have if there were no delay from the screen to
the cortex is calculated to be 415 ms after the start of the motion of the
bars = start of the bar stimuli (D). Once we have the value derived in (C)

for every imaged point, (x, y), we can construct a map of the bar position
without delay as shown in (E). Note that the point x, y used in the
example above is not marked in (E). Instead the position of the �V (t)
maximum is mapped as a white line, exactly at the time when the
excitation ahead of the bar mapping, the SRP, was maximal. Note that the
colors now show time from the start of stimulation. The arrow shows the
time when the �V (t) at the white line was maximal. (F) For comparison,
a snapshot of the Bonferroni corrected �V (t) map is shown at a
corresponding time point [i.e., when the (predictive) spatially restricted
pre-depolarization (SRP) is maximally ahead of the bar mapping during
downwards motion, and where the bar map would have been (white line)
if there had been no delay from the display screen to the cortex].
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FIGURE A2 | Comparison of the mean, (N = 10 Animals), MUA to that

obtained from a single animal, (A6) that showed identical peak times

in response to upward and downward moving bars at the cortical

site representing the central field of view. Note that in both cases the

peak of the response arrives equivalently earlier in the occlusion condition.
MUAs are normalized in time i.e., the maximum MUA in the post stimulus
interval is set to 1, in order to visualize the relative timing of the peak
activity generated during the three stimulus conditions.
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To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded
from neurons in the CA1 region of hippocampus in rats while they learned to associate
the presence of sound with water reward. Rats learned to alternate between two reward
ports at which, in 50% of the trials, sound stimuli were presented followed by water
reward after a 3-s delay. Sound at the water port predicted subsequent reward delivery
in 100% of the trials and the absence of sound predicted reward omission. During this
task, 40% of recorded neurons fired differently according to which of the two reward
ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to
sound/nosepoke (19%) and reward delivery (24%). When the sounds were played during
passive wakefulness, 8% of neurons responded with short latency onset responses;
25% of neurons responded to sounds when they were played during sleep. During
sleep the short-latency responses in hippocampus are intermingled with long lasting
responses which in the current experiment could last for 1–2 s. Based on the current
findings and the results of previous experiments we described the existence of two types
of hippocampal neuronal responses to sounds: sound-onset responses with very short
latency and longer-lasting sound-specific responses that are likely to be present when the
animal is actively engaged in the task.

Keywords: auditory, sensory, stimulus, sleep, space, location, hippocampus

INTRODUCTION
Hippocampus is located on top of the cortical hierarchy
(Felleman and van Essen, 1991; Burwell et al., 1995; Burwell and
Amaral, 1998; Vertes, 2006; van Strien et al., 2009) and is neces-
sary for the formation of new episodic memories (Scoville and
Milner, 1957; Aggleton and Brown, 1999; Eacott and Norman,
2004; Cipolotti and Bird, 2006). It is also necessary for the for-
mation of spatial memory and navigation (Morris et al., 1982).
During the last 40 years of study of the firing properties of hip-
pocampal neurons, knowledge about the spatial variables that
drive hippocampal firing became extensive in both phenomenol-
ogy and details (O’Keefe, 1976; O’Keefe and Nadel, 1978; Muller
and Kubie, 1987; Kubie et al., 1990; O’Keefe and Recce, 1993;
Wilson and McNaughton, 1993; O’Keefe and Burgess, 1996;
Wood et al., 1999; Jensen and Lisman, 2000; Anderson and Jeffery,
2003; Wills et al., 2005; Leutgeb et al., 2005a,b; Colgin et al., 2008).
Non-spatial variables are also represented by hippocampal neu-
rons and studies using various sensory modalities demonstrate
that hippocampal neurons respond to sounds (Berger et al., 1976;
Christian and Deadwyler, 1986; Sakurai, 2002; Moita et al., 2003;
Takahashi and Sakurai, 2009; Itskov et al., 2012), textures (Itskov
et al., 2011), odors (Wood et al., 1999; Wiebe and Staubli, 1999,
2001; Komorowski et al., 2009), and gustatory cues (Ho et al.,
2011). The majority of place unrelated sensory responses in hip-
pocampus have been demonstrated in animals actively engaged
in a behavioral task. We recently developed a categorization task

(Itskov et al., 2011, 2012) which allowed us to demonstrate that
hippocampal neurons discriminate between sounds. However,
in those experiments hippocampal neurons did not respond to
sounds when played to the animal not engaged in a discrimina-
tion task. These recordings were performed in highly over trained
animals and it is possible that some of the features of neuronal
responses were absent due to repetition of the same stimuli over
many thousands of trials. In the current experiment we character-
ized responses of hippocampal neurons to behaviorally relevant
sounds which were played during sleep and to awake passively lis-
tening rats. In the behavioral task, the sounds cued the upcoming
release of a reward. Outside the task, the sounds were unrelated to
the animal’s behavior.

MATERIALS AND METHODS
ETHICS STATEMENT
All experiments were conducted in accordance with standards for
the care and use of animals in research outlined in European
Directive 2010/63/EU, and were supervised by a consulting vet-
erinarian.

SUBJECTS
Six male rats weighing about 350 g were housed individually
and maintained on a 14 h/10 h light/dark cycle. Animals were
placed on water-restricted diet 1 day prior to the beginning
of the experiments. To ensure that the animals did not suffer
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dehydration as a consequence of water restriction, they were
allowed to continue the behavioral testing to satiation and were
given access to ad lib drinking water for 1 h after the end
of each recording session. The animals’ body weight and gen-
eral state of health was monitored throughout the experiments.
Out of the six animals trained to perform the behavioral task,
four were implanted using microdrives for chronic recordings.
Neuronal data suitable for analysis was collected from two ani-
mals.

STIMULI
The stimuli were chosen so that they were short sounds, easily
perceived by rats. We chose artificial vowels as a more “natu-
ralistic” class of stimuli than pure tones. Artificial vowels are a
simplified version of vocalization sounds used by many species
of mammals, and have been used in studies of the ascending
auditory pathway from the auditory nerve (Cariani and Delgutte,
1996; Holmberg and Hemmert, 2004) to the auditory cortex
(Bizley et al., 2009, 2010). The spectra of natural vowels are char-
acterized by “formant” peaks which result from resonances in
the vocal tract of the vocalizing animal (Schnupp et al., 2011).
Formant peaks therefore carry information about both the size
and the configuration of the vocal tract, and human listen-
ers readily categorize vowels according to vowel type (e.g., /a/
vs /o/, Peterson and Barney, 1952) as well as according to speaker
type (e.g., male vs. female voice) or speaker identity (Gelfer and
Mikos, 2005). Many species of animals, including rats (Eriksson
and Villa, 2006), chinchillas (Burdick and Miller, 1975), cats
(Dewson, 1964), monkeys (Kuhl, 1991), and many bird species
(Kluender et al., 1987; Dooling and Brown, 1990) readily learn to
discriminate synthetic vowels.

The stimuli were generated using binary click trains at the fun-
damental frequency of 330 Hz and 100 ms duration which were

bandpass filtered with a bandwidth equal to 1/50th of the formant
frequency using Malcolm Slaney’s Auditory Toolbox. Formant
center frequencies were 6.912 and 15.008 kHz, respectively.
The spectra of the stimuli are shown in Figure 1B. The formant
frequencies chosen here lie within rat and human sensitivity range
(Heffner et al., 1994). As demonstrated in our previous experi-
ments (Itskov et al., 2012) the rats can perceive and discriminate
similar artificial vowels. A third, control sound used in passive
recordings as a novel stimulus was a naturalistic noise-like sound
(see the spectrum in Figure 1B). The stimuli were ramped on
and off (supplementary audio files 1–2). They were presented
at a sound level of 70 dB SPL, from a speaker located above the
experimental apparatus.

Sounds were presented through Visaton FRS 8 speaker, which
has a flat frequency response (<±2 dB) between 200 Hz and
10 kHz. The speaker was driven through a standard PC sound
card controlled by LabView (National Instruments, Austin, TX,
USA).

APPARATUS
The arena for the behavioral task consisted of a dim-lit sound-
attenuated box (35 × 30 × 40 cm). One of the walls had two
round holes (called “nose pokes” throughout the text, see
Figure 1A). A water well was placed behind each of the nose
pokes. Infrared sensors at the edge of the nose pokes moni-
tored the rat’s entry and exit from the holes. Outside the context
of the behavioral task, passive exposures to the awake rat were
done in an unfamiliar dark plastic bin (33 × 22 × 35 cm) which
differed from the training environment by geometry, texture of
the floor and the walls, the lighting, and the smell. For record-
ings during the sleep we used a tall box (26 × 20 × 60 cm) lined
with thick cotton tissue. Light sensors, sound, and water delivery
were controlled by a custom-written LABview script, operating

FIGURE 1 | Apparatus and the stimuli. (A) Experimental apparatus,
view from the top. Nose pokes are marked with arrows. A water well
was positioned behind each nose poke. (B) Frequency spectrum of the

two artificial sounds used in the behavioral sound (blue and red)
and a control noise-like sound also used in passive listening
experiments.
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a National Instruments card (National Instruments Corporation,
Austin, TX, USA).

SURGERY AND ELECTROPHYSIOLOGICAL RECORDINGS
The rats were implanted with chronic recording electrodes. They
were anesthetized with a mixture of Zoletil (30 mg/kg) and
Xylazine (5 mg/kg) delivered i.p. A craniotomy was made above
left dorsal hippocampus, centered 3.0 mm posterior to bregma
and 2.5 mm lateral to the midline. A Neuralynx “Harlan 12”
microdrive loaded with 12 tetrodes (25 µm diameter Pl/Ir wire,
California Fine Wire) was mounted over the craniotomy. Tetrodes
were loaded perpendicular to the brain surface and individu-
ally advanced in small steps of 40–80 µm, until they reached the
CA1 area, indicated by the amplitude and the shape of the sharp
wave/ripples. After surgery, animals were given antibiotic (Baytril;
5 mg/kg delivered through the water bottle) and the analgesic
caprofen (Rimadyl; 2.5 mg/kg, subcutaneous injection) for post-
operative analgesia and prophylaxis against infection, and were
allowed to recover for one week to 10 days after surgery before
training started.

After recovery from electrode implantation the animals were
trained, during which neuronal responses were recorded from the
tetrode array using TDT data acquisition equipment (RZ2, Tucker
and Davis Technologies, Alachua, FL, USA). We usually recorded
from 1 to 4 single units per tetrode. Spikes were presorted auto-
matically using KlustaKwik (Harris et al., 2000), using waveform
energy on each of the four channels of the tetrode as coordinates
in a 4 dimensional feature space. The result of the automatic clus-
tering was inspected visually after importing the data into MClust

(kindly provided by A. D. Redish). Each single unit was recorded
only in one session.

BEHAVIORAL TASK
The task was designed in a way that allowed us to examine neu-
ronal responses to behaviorally relevant auditory stimuli. We took
into account the richness of location-related neuronal signals
in hippocampus that are known to influence sensory responses
recorded in different spatial locations (Itskov et al., 2012). The
animal initiated each trial by poking its snout into a nose poke.
During the recording sessions (referred to as “lottery,” see below)
the sounds were presented with 50% probability for a given nose
poke entry. Trials with and without sound presentation were com-
pared, assuring that the animal was in exactly the same position
and motivational state in both types of trials.

Pre-training
The day prior to behavioral testing, animals were placed on a
water restricted dry food diet. To accustom the animals to the set-
up and the task they were given four pre-training sessions with
100% reward probability (Figure 2A). During these four sessions
the rats learned to alternate between two water spouts, collecting
a reward at each site. After receiving water in one of the spouts,
the rat had to go to the second spout to receive reward, and then
back to the first spout. Attempts to collect water from the same
spout twice were neither rewarded nor punished. Initially water
reward was delivered immediately upon the nose poke. During
the following sessions, reward was delayed by 1 s on each suc-
cessive session. Thus, by the end of fourth pre-training session,

FIGURE 2 | Behavioral task. (A) Pre-training. The animal had to collect
water reward by continuously alternating between the two nose pokes
(right and left). During the first pre-training session water was delivered
instantly upon nose poke entry. The delay between the nose poke and
water delivery increases during subsequent sessions

(see Materials and Methods). (B) “Lottery” task: now water was delivered
only in 50% of the trials. This sequence of pictures outlines the case when
the animal had a “lucky” trial in one of the nose poke. Other “unlucky” trials
have neither sound nor reward, the animal proceeded to the opposite nose
poke (see Materials and Methods).
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delay was 3 s. At this point, the rat was introduced to the main
“lottery” task (see below). The rats typically started to perform
the alternation task at the end of the first or beginning of the sec-
ond session. By the end of the fourth session, rats reached stable
performance of ∼300 trials per session (206–510, mean 309). No
sounds were played during the pre-training.

“Lottery”
On the fifth day of the training, the reinforcement schedule was
changed to increase the salience of the reward and, especially, to
make the rat attend to novel sounds associated with reward. Now
the water was delivered only on 50% (not 100%, as before) of nose
pokes (Figure 2B). The rat still had to alternate between right and
left nose pokes and wait for at least 3 s for the water reward deliv-
ery. Whether the current trial would turn out to be “lucky” or
“unlucky” was determined randomly by software. On “lucky” tri-
als, a sound was played immediately upon entry into the nose
poke, predicting the upcoming reward. There were two sounds
used in the behavioral task (two artificial vowels, Figure 1B), each
of them associated with just one of the reward spouts.

This task was designed so that we could examine neuronal
responses to sound presentation in awake behaving animals.
Importantly, in the “unlucky” trials the animals decreased waiting
time over the course of the session, suggesting that the occur-
rence of the sound became associated with the water reward and
absence of sound became a cue to go to the alternate nose poke
(see Results).

PASSIVE LISTENING
To record hippocampal responses to sounds in a context unrelated
to the behavioral task we placed the rat in a novel environment
2–3 h after completion of the behavioral session. Three types
of sound stimuli (familiar vowel associated with the right well,
familiar vowel associated with a left well, and a novel noise-like
sound) were presented pseudo-randomly, so that no sound was
repeated more than two times in a row. Inter-stimulus interval
varied randomly from 25 to 30 s. The sounds were presented irre-
spectively of the animal’s action and location. Each stimulus type
was presented 43 times on average. The long inter-stimulus inter-
val was intended to reduce the animal’s adaptation to stimulus
repetitions (Ulanovsky et al., 2004).

Passive sound presentation during sleep started 5 min after the
animal had fallen asleep, as determined by total immobility. The
animal was monitored continuously via remote video camera. As
was the case during the session in which the rat remained awake in
a novel environment, three types of sound stimuli (familiar vowel
associated with the right spout, familiar vowel associated with a
left spout, and a novel noise-like sound) were presented pseudo-
randomly, so that no sound repeated more than two times in a
raw. Inter-stimulus interval varied randomly from 25 to 30 s. Each
stimulus type was presented 49 times on average.

To ensure the proper timing of the responses, we recorded a
copy of the signal sent to the loudspeaker along with the neuronal
signals.

STATISTICAL PROCEDURES
Firing rates of hippocampal neurons typically vary over the course
of a single trial, since they tend to respond to different aspects

of the task. The timing and the latency of the response can vary
across individual cells. Taking this into account, to quantify the
responses to sounds we used a method intended to (1) take into
account multiple time points, (2) provide a single measure of sta-
tistical significance of the effect, (3) take into account variability
in the timescale of the responses, fast in some cases (on the order
of tens of milliseconds, Brankack and Buzsaki, 1986) and slow
(hundreds of milliseconds) in others.

STATISTICAL SIGNIFICANCE OF NEURONAL RESPONSES IN THE
BEHAVIORAL TASK
To quantify firing rate changes related to animal’s location in
space we measured firing rate in non-overlapping 50 ms bins
during the approach to the nose pokes (see Figure 3A). Firing
rates in each time bin were compared using Wilcoxon rank-
sum test for two independent samples (Siegel and Castellan,
1988). Benjamini–Hochberg false discovery rate corrections were
used to correct for multiple comparisons (FDR, Benjamini
and Hochberg, 1995). A neuron was considered to distinguish
between the two nose pokes and therefore to be a “location-
encoding” neuron if any of the time bins showed a corrected
p-value smaller than 0.05.

To quantify a neuron’s responses to sound presentation and
water reward delivery during the behavioral task, we compared
firing rates in the “lucky” trials to firing rates in trials in which
no sound was played and no water delivered. To take into account
the variability of the responses (e.g., fast transient or sustained
responses), we used four a-priori defined bin sizes (50 ms, 500 ms,
1 and 2 s). In case of 50 ms bins, we measured firing rate in
six non-overapping bins (0–300 ms). Wilcoxon rank-sum test for
two independent samples was used to compare the firing rates,
bin by bin, in “lucky” trials versus not reward trials. Benjamini–
Hochberg FDR correction were used to correct for testing multi-
ple time points (n = 6 in 50 ms bins) and bin sizes (50 ms, 500 ms,
1 and 2 s, FDR, Benjamini and Hochberg, 1995). A neuron was
considered a “sound or reward-encoding” neuron if any of the
time bins showed a corrected p-value smaller than 0.05.

STATISTICAL SIGNIFICANCE OF SOUND-EVOKED RESPONSES IN
PASSIVE LISTENING AND DURING SLEEP
To quantify sound-evoked responses during passive presenta-
tion, we compared post-stimulus firing rate with the baseline. To
take into account the variability of responses we again used four
a-priori defined bin sizes (50 ms, 500 ms, 1 and 2 s). For each anal-
ysis, baseline firing rates were defined as the firing rate in the time
immediately preceding the presentation of the sounds. We used
baseline bin size equivalent to the time bin size used to measure
evoked activity (50 ms, 500 ms, 1 or 2 s).

In the case of the smallest bin size, firing rate was calculated
in 50 ms non-overlapping bins in first 300 ms after sound onset,
yielding six individual time points. Firing rate values in each of
them were compared to firing rate values in 50 ms baseline (sign
test for dependent measurements, Siegel and Castellan, 1988).
This yielded six tests for each neuron, which were corrected for
using FDR. Latency of the responses was calculated as time of the
first bin after sound onset with activity significantly different from
baseline.
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FIGURE 3 | Encoding of spatial and sensory features of the task. Each
panel with a peri-stimulus histogram and a raster plot shows responses
of an individual neuron. On each plot zero time corresponds to nose poke,
upon which in “lucky” trials a sound was triggered. On plots B–D line at
3 s corresponds to reward delivery in “lucky” trials. In unlucky trials the
animal always stayed in the nose poke for at least 3 s (see Results).
(A) Location-responsive neuron. (B) Responses of reward-responsive neuron
during nosepokes to the left nosepoke. This neuron responded upon water

delivery (at 3 s). (C) Responses at the right nosepoke of the
sound-responsive neuron. This neuron responded to the sound presentation.
(D) Responses at the right nosepoke of sound-responsive neuron. This
neuron responded to the nosepoke, but fired at higher frequency when the
sound was presented. All of the demonstrated neurons showed very similar
robust responses at the opposite nosepokes, but fired at smaller peak rates
(data not shown). Bin size for peri-stimulus histograms is 200 ms with 190 ms
overlap.

In the case of 500 ms bins, we took a mean firing rate in 500 ms
baseline and compared it with mean firing rate in the 500 ms
post-stimulus interval. In the case of 1 s bins we took a mean fir-
ing rate in 1 s baseline and compared it with mean firing rate in 1 s
post-stimulus interval. In the case of 2 s bins we took a mean fir-
ing rate in 2 s baseline and compared it with mean firing rate in 2 s
post-stimulus. This yielded four measurements for each neuron:
p-value for 50 ms bins (already corrected for comparing multiple
bins), and p-values for 500 ms, 1 and 2 s bins. These p-values were
corrected for multiple testing using FDR. A neuron was consid-
ered sound-responsive if any of the time bins showed a corrected
p-value smaller than 0.05.

For the purposes of illustration, the firing rate was calculated
in a 50 ms wide window sliding in steps of 25 ms along the whole
duration of the trial (see Figures 3–4).

HISTOLOGY
After conclusion of the recording experiments, the animals were
overdosed with intraperitoneal injection of the anesthetic ure-
thane and transcardially perfused with 4% paraformaldehyde
solution. Brains were sectioned in the coronal plane and stained
with cresyl-violet. Electrode tracks were localized on the serial
sections in CA1 field.

RESULTS
BEHAVIOR
This study set out to test how neurons in rat hippocampus rep-
resent auditory stimuli in the context of a behavioral task, during
passive exposure and during sleep. Familiar sounds that during
the training preceded water reward were played in the novel
context (new enclosure) or during sleep.
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FIGURE 4 | Short lasting neuronal responses to passive sound

presentation during quiet wakefulness and sleep. Each panel with a
peri-stimulus histogram and a raster plot shows responses of an individual
neuron. Zero time corresponds to the time of sound presentation. Trials with

three different sounds are pooled together (vowel 1, vowel 2 and a novel
noise-like sound). (A) Neuron responsive to sound presentation during passive
listening. (B–D) Neurons responsive to sound presentation during sleep. Bin
size for panels peri-stimulus histograms is 50 ms with 40 ms overlap.

Rats were given four pre-training sessions, during which they
learned to alternate between two water spouts to get water reward
(see Figure 2A and Materials and Methods). In the main exper-
imental session (“lottery”, Figure 2B) the water reward contin-
gencies were changed: now water was given only in 50% of the
entries to the nosepokes. On these “lucky” trials one of the sounds
was played immediately upon the nosepoke entry. Distinct sounds
were used for each of the two nose pokes (see Figure 1B and
Materials and Methods).

NEURONAL REPRESENTATION OF THE BEHAVIORAL TASK
In awake rats, hippocampal neurons exhibit strong spatial selec-
tivity: they encode the animal’s position, head direction, and
other spatial variables (O’Keefe and Dostrovsky, 1971, reviewed
in Moser et al., 2008). Consistent with the existing literature, the
neurons recorded in this task exhibited significant sensitivity to
animal’s location in space. Forty-one percent of tested neurons
(24 out of 58) discriminated between right and left nosepokes

(see Figure 3A; p < 0.05, corrected, rank sum test on firing rates
400 ms before the nose pokes, see Materials and Methods).

On the “lucky” trials (50% of trials, selected randomly), upon
entry to the nosepoke the rats heard a sound and received water
reward after a 3 s delay. Two different sounds were used in two
different locations (nose pokes). In “unlucky” trials (50% of tri-
als) the rat heard no sound and received no water reward (see
Figure 2B and Materials and Methods). The rats stayed still with
their snouts in the nosepoke waiting for 3 s between the nosepoke
entry/sound onset and the water reward delivery. The average
time of waiting in no-sound-no-reward trials was 5.09 ± 0.19 s
(SEM). Waiting time decreased over the course of the session
(p < 0.001, paired-sample t-test). To examine responses to sound
and reward, we aligned neuronal activity on the entry to the nose-
poke and compared firing rate observed in the two types of trials,
separately for the two water wells. The responses are illustrated
on Figures 3B–D; the line at 3 s denotes reward delivery. Out of
58 cells recorded in the task, 11 cells responded in the first 300 ms
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upon sound presentation (19%, p < 0.05, rank sum tests done in
50 ms windows, corrected for testing six time points and also four
different bin sizes, see Materials and Methods). Fourteen (24%)
responded upon the reward delivery (Figure 3B). There were no
cells with responses to both sound and reward.

PASSIVE SOUND EXPOSURE
The aim of this experiment was to characterize the representation
of sound identity during passive listening. We played three dif-
ferent sounds to the animals outside the context of the behavioral
task, in a novel box. Two of the sounds were artificial vowel stimuli
associated with water in the two different nosepokes and familiar
to the animals and one of the sounds was a dissimilar novel band
pass filtered noise stimulus. Our intention was to compare the
responses to familiar and relevant sounds with the responses to
novel and behaviorally irrelevant ones. The animals were placed
in a novel context 24 h after they performed the “lottery” behav-
ioral task. Sounds were triggered with no relation to the animal’s
posture or movement, in a random sequence lasting approxi-
mately 50 min with a random interstimulus interval ranging from
25 to 30 s. The rats did not respond to the sounds with any overt
behavior.

Three out of 25 neurons recorded during the awake pas-
sive conditions were classified as sound-sensitive (see Materials
and Methods, p-values were 0.0029, 0.0000016, and 0.01, cor-
rected). The responses are illustrated in Figure 4A. The latencies
of response to passive sound presentation were less than 150 ms
in two cases and less than 50 ms in the third case (see Figure 4A).
Two of the neurons showed a significantly increased firing rate
in response to the sound, and one a decreased the firing rate. It
would be interesting to know whether the neurons that responded
to sounds were also responsive to events occurring within the
task, such as sounds, reward, or locations. Although we were able
to keep the same neurons across the recording sessions, as evi-
denced by the neuronal waveforms, autocorrelations and firing
rates, we feel that the number of recorded neurons does not allow
us to make any conclusive statements regarding a single neuron’s
properties across time and context. None of the three sound-
responding neurons discriminated between different sounds i.e.,
their responses to different sounds were identical.

AUDITORY RESPONSES DURING SLEEP
During sleep sessions, the rats were placed in a small familiar box
in which they soon curled up and fell asleep. Animals’ activity was
monitored remotely via webcam, placed above the box. Five min-
utes after the animals curled up and fell asleep, the sound stimuli
were turned on. The animal’s sleep status was constantly mon-
itored online by the experimenter and sound presentation did
not cause the animals to wake up. The sounds were presented the
entire time when the animals were asleep (117–180 times, 49 pre-
sentations per sound type on average) and were turned off when
they awoke. Only the trials where sounds did not cause any vis-
ible behavioral response from the sleeping animal were analyzed
further.

The responses to sounds during sleep are illustrated in
Figures 4B–D and Figure 5. Twenty-four percent of recorded
neurons (8 out of 33) exhibited significant sound-evoked

responses. Across neurons, latency ranged from 50 to 150 ms. In
five cases firing rate decreased after sound presentation, in three
cases the firing rate increased.

Figure 5 illustrates neurons with significant differences
between baseline and post-stimulus activity lasing more than 1 s,
even when considered in short 50 ms long bins (e.g., black line in
Figure 5C). In some cases an initial time-locked response was fol-
lowed by a long sustained activity response (Figures 5A,B,C,D).

In five cases we observed significant differences between mean
firing rate in 2 s post-stimulus and the baseline (p < 0.05, cor-
rected). A neuron in Figure 5 (panels F-G-H-I-J) illustrates the
case. A short-latency onset response was followed by a sustained,
long lasting response (Figure 5F). Panel I plots average firing rate
in 2 s pre-and post-stimulus windows. p-value is indicated at the
outset (p = 0.0035, sign test for dependent measures). Both neu-
rons depicted on this figure had narrow spikes (Figures 5E and J),
0.2 ms when measured on 25% of spike amplitude. Both of these
neurons are likely to be putative interneurons because of the
narrow spike width and the absence of the 3–4 ms peak in the
autocorrelation plot (data not shown). Unfortunately, limited size
of our dataset does not allow us to make any further conclusions
on this issue.

Long lasting responses to sounds were unique to responses
recorded during sleep (Figure 6). The responses to sounds dur-
ing sleep were on average almost twice as long as the response
to sounds presented during passive wakefulness (Figure 6F).
Responses to sounds during sleep also appeared slightly earlier
than the responses during passive wakefulness (Figure 6E).

The majority of cells did not discriminate between differ-
ent sounds. We found only one neuron with significant sound
identity-dependent responses (p = 0.0101, Kruskal–Wallis test)
comparing responses to three sounds, two artificial vowels and
the novel noise-like sound.

Taken together, these results indicate that hippocampal neu-
rons showed sound-evoked responses during awake passive
listening. One quarter of recorded neurons showed reliable
sound-evoked responses during sleep. Short latencies of the
responses (less than 50 ms) were observed alongside with long-
lasting sustained activity.

DISCUSSION
In this study we show that a significant subset of hippocampal
neurons responds to sounds presented passively to a rat dur-
ing both quiet wakefulness and during sleep. During sleep the
responses were characterized by a sharp, short latency onset, and
in some cases by long-lasting sustained activity. These responses
were as strong as the responses to the sounds are associated with
water reward and the novel sounds that had never been played to
the animal before.

The absence of neuronal responses to sound stimuli outside
the categorization task (Itskov et al., 2012) seems at the first
glance inconsistent with the results of our current experiment,
where we have found that hippocampal neurons responded to
the sound stimuli presented during passive wakefulness. We think
that this discrepancy may be explained by the differences in the
behavioral task and experimental conditions. In the former study
highly familiar sounds (used during 4–5 weeks of training) were
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FIGURE 5 | Sound-evoked responses during sleep can last for over 1 s.

Panels (A–E) and (F–J) depict responses and results of statistical analysis for
two individual neurons recorded from two rats. Panels (A, F) show
peri-stimulus time histograms, PSTH (0 ms corresponds to sound onset; trials
with three sounds are pooled together); (B, G) show raster plots on the same
time scale as the PSTH. Panels (C, H) show p-value (sign-test for dependent
measures, 50 ms windows). Box plots in panels (D, I) present comparison of
2 s long baseline and post-stimulus periods. On each box, the central mark is

the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considering outliers;
outliers are plotted individually as dots. p-values are indicated at the outset
(paired-sample sign test). Panels (E, J) depict average waveforms on each of
the four channels of the tetrode for the corresponding neuron. Spike width (at
25% max spike amplitude) and firing rate for neuron on panels (A–E) are
0.2 ms and 1.8 Hz, respectively; for the neuron in panels (F, J), 0.2 ms and
1.8 Hz, respectively. Bin size for panels (A, C, F, H) is 50 ms with 40 ms overlap.
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FIGURE 6 | Time course of sound-evoked responses: transient and

sustained responses. (A) normalized PSTHs of neurons with significant
responses on a fast time scale (window size 50 ms), recorded during sleep;
(B) normalized PSTHs of neurons with significant responses on a slow time
scale (window size 500 ms), recorded during sleep; (C) normalized PSTHs of
neurons with significant responses on a fast time scale (window size 50 ms),
recorded during awake passive listening; (D) normalized PSTHs of neurons

with significant responses on a slow time scale (window size 500 ms),
recorded during passive listening. Out of 25 neurons only three showed
small, but significant responses; (E, F) Absolute values of normalized PSHT
(pulled data from neurons that significantly increase and decrease the firing
rate). Black trace represents the average of neurons recorded during sleep
(n = 8 out of 33), Gray trace is the mean activity of neurons responsive
during awake conditions (n = 3 out of 25).

played in the familiar context after the animal had quenched its
thirst and was quietly sitting in the apparatus. In the present
study the animals were thirsty during passive presentation and
were placed in a completely novel dim environment, which could
have facilitated attention to the auditory stimuli. In this situation
we observed strong sound evoked responses in passive listening
conditions.

Thus, there are three possible differences that could have
explained the difference between these two results: motivational
state of the animal (thirsty/satiated), familiarity of the stimuli
and familiarity of the context. Short latency responses to sounds
in hippocampus have previously described in the literature
(Brankack and Buzsaki, 1986). This study described responses
of extremely short latency evoked potentials with first compo-
nent around 27 ms after the click onset and neuronal responses
with latency similar latency (see their Figure 5). Several reports
have demonstrated that stimulus-elicited responses appear in
hippocampal neurons with latency of around 80 ms after the
stimulus onset (Christian and Deadwyler, 1986; Moita et al.,
2003). What is probably even more important is the similarity
of the behavioral paradigms that we and the above mentioned

authors used in their studies: the use of naive animals (Moita
et al., 2003) or the lack of overtraining due to fast learning
in a simple behavioral task (Christian and Deadwyler, 1986).
Unfortunately it is not possible to compare response specificity
to individual sound stimuli in these studies since the authors
did not consider this feature in their experimental design. In
addition to the abovementioned facts, one study that used tac-
tile stimuli in anesthetized and awake naive passively stimu-
lated rats (Pereira et al., 2007) have found similar short latency
responses to trigeminal nerve shock. In over-trained, behav-
ing animals tactile responses have longer latency (Itskov et al.,
2011). Furthermore, the stimulus-specific responses to behav-
iorally relevant sensory stimuli can persist for at least several
seconds after the stimulus has disappeared, as demonstrated using
tactile-guided task (Itskov et al., 2011).

Based on our observations we suggest that there might be
two types of neuronal responses in the hippocampus to sensory
stimuli:

1. Short-latency responses (from ∼27 ms latency to tens of mil-
liseconds). These responses are not present in the over-trained

Frontiers in Systems Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 49 | 100

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Vinnik et al. Hippocampal responses during sleep

and/or satiated animals suggesting that they might disappear
when the animal expects the stimuli.

2. Long-latency responses. These responses are likely to be
evoked by behaviorally relevant stimuli. This second type of
hippocampal responses to sounds is likely to encode object
identity e.g., are specific to particular behaviorally relevant
sounds (Itskov et al., 2012) and textures (Itskov et al., 2011).
We posit that these responses are associated with the behav-
ioral “meaning” of the sound.

The evoked responses in the CA1 region may be generated
by perforant path terminals, originating in the entorhinal cor-
tex or polisynaptically via the Schaffer collaterals. The origin of
this short-latency signal in the entorhinal cortex is not known;
previous studies suggest that it is unlikely to be of cortical ori-
gin, because bilateral ablation of the somatosensory cortex had
no effect on the amplitude or the depth distribution of tooth pulp
evoked responses in the hippocampus (Brankack and Buzsaki,
1986).

The long-latency responses might be routed to hippocampus
through the same entorhinal cortex pathway or perhaps even
through medial prefrontal cortex and thalamus, contributions
of which remain, to the best of our knowledge, unexplored. It
is likely that long-latency responses originate from higher-level
cortices with more elaborated “object-related” rather sensory fea-
ture processing. Stimulus-specific representations can persist in
hippocampus for at least several seconds after the offset of the
behaviorally relevant stimulus (Itskov et al., 2011). This memory
trace could be stored by sustained activity, previously described
in entorhinal cortex (Egorov et al., 2002), or by some other cellu-
lar or network mechanisms in higher order associative cortices or
hippocampus itself.

HIPPOCAMPAL RESPONSES DURING SLEEP
It has been recently demonstrated that re-exposure to olfac-
tory and auditory stimuli during sleep can enhance memory
for specific events, associated with those stimuli (Rasch et al.,
2007; Rudoy et al., 2009). Rasch and co-authors (2007) cued
new memories in humans during sleep by an odor that had
been presented as context during prior learning, and showed
that this manipulation enhanced subjects’ performance. Re-
exposure to the odor during slow-wave sleep improved the

retention of hippocampus dependent declarative memories but
not of hippocampus-independent procedural memories. Re-
exposure was ineffective during rapid eye movement sleep or
wakefulness or when the odor had been omitted during prior
learning. Concurring with these findings, functional magnetic
resonance imaging revealed significant hippocampal activation
in response to odor re-exposure during slow wave sleep. Rudoy
and co-authors (2009) trained participants to associate each of
50 unique object images with a location on a computer screen
before a nap. Each object was paired with its characteristic sound
(e.g., cat with meow and kettle with whistle). Presentation of
the sounds during sleep resulted in better memory performance.
Interestingly, the memory enhancement was specific to the played
sounds and did not generalize to the other stimuli; those corre-
sponding sounds were not played during sleep. Average electroen-
cephologram (EEG) amplitudes measured over the interval from
600 to 1000 ms after sound onset were larger when there was less
forgetting.

In the present study we investigated the hippocampal
responses to behaviorally relevant sounds during re-exposure to
the sounds during awake state and sleep. We found short-latency
responses to sound presentation during sleep, as well as long-
lasting (more than 1 s) sustained responses. The latter finding
might be related to the sustained EEG response found in Rudoy
et al. (2009) after presentation of auditory stimuli to humans dur-
ing sleep. Rasch et al. (2007) reported an increased BOLD-signal
in hippocampus after presentation of the odors. There results
suggest that long-lasting changes in neuronal activity contribute
to stimulus-evoked responses observed in previous studies, in
addition to previously shown local field potential change and
short-latency onset responses. It is hoped that further studies will
clarify how exactly the presentation of the relevant sensory cues
during sleep facilitates the hippocampus-dependent memory.
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Sensory responses in neocortex are strongly modulated by changes in brain state,
such as those observed between sleep stages or attentional levels. However, the
specific effects of network state changes on the spatiotemporal properties of sensory
responses are poorly understood. The slow oscillation, which is observed in neocortex
under ketamine-xylazine anesthesia and is characterized by alternating depolarizing
(up-states) and hyperpolarizing (down-states) phases, provides an opportunity to study
the state-dependence of primary sensory responses in large networks. Here we used
voltage sensitive dye (VSD) imaging to record the spatiotemporal properties of sensory
responses and local field potential (LFP) and multiunit activity (MUA) recordings to
monitor the ongoing brain state in which the sensory responses occurred. Despite a rich
variability of slow oscillation patterns, sensory responses showed a consistent relationship
with the ongoing oscillation and triggered a new up-state only after the termination
of the refractory period that followed the preceding oscillatory cycle. We show that
spatiotemporal properties of whisker-evoked responses are highly dependent on their
timing with regard to the ongoing oscillation. In both the up- and down-states, responses
spread across large portions of the barrel field, although the up-state responses were
reduced in total area due to their sparseness. The depolarizing response in the up-state
showed a tendency to propagate along the rows, with an amplitude and slope favoring
the higher-numbered arcs. In the up-state, but not in the down-state, the depolarizing
response was followed by a hyperpolarizing wave with a consistent spatial structure.
We measured the suppression of whisker-evoked responses by a preceding response
at 100 ms, and found that suppression showed the same spatial asymmetry as the
depolarization. Because the resting level of cells in the up-state is likely to be closer to
that in the awake animal, we suggest that the polarities in signal propagation which we
observed in the up-state could be used as computational mechanisms in the behaving
animal. These results demonstrate the critical importance of ongoing network activity on
the dynamics of sensory responses and their integration.

Keywords: barrel cortex, mouse, in vivo, voltage sensitive dyes, ongoing activity, spatiotemporal dynamics,

network state

INTRODUCTION
Complex representations in sensory cortices rely on the integra-
tion of inputs that overlap temporally and spatially, particularly
in supragranular layers, yet the spatiotemporal dynamics of this
synaptic integration are largely unknown. It is a general princi-
ple of cortical organization that cortical columns are arranged on
the two-dimensional axis of the cortex in such a way as to form
continuous topological representations, which may be thought
of as maps of particular parameter spaces in the environment of
an organism. When navigating the world and making decisions,
organisms make use of the complete range of input from each
sensory modality, and are continually combining inputs across
modalities in the context of the brain’s ongoing activity. Between
the entry of the relatively segregated components of a repre-
sentation into the input layer 4 of primary sensory cortex, and
the so-called “higher” or “association” cortices where neurons
respond to more abstract stimuli, these partial representations,

the results of columnar computation, must be combined in a
hierarchical processing scheme. This combination is the essence
of sensory integration and requires anatomical and physiolog-
ical overlap of the output of cortical columns. In the rodent
whisker-barrel system, easily visualized input pathways for sin-
gle whiskers in layer 4 of primary somatosensory cortex give rise
to overlapping anatomical and functional representations in layer
2/3, creating an excellent opportunity to study the spatiotempo-
ral dynamics of sensory processing and its relationship to ongoing
brain activity.

In the past few decades, voltage-sensitive dye (VSD) imaging
studies in this model system (Arieli et al., 1996; Contreras and
Llinas, 2001; Petersen and Sakmann, 2001; Ferezou et al., 2006)
have revealed fundamental properties of the neocortex which are
sometimes left implicit in the presentation of results; namely, that
subthreshold responses are locally homogeneous, that neighbor-
ing regions tend to be excited together, and that activity moves
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in all directions once initiated. These features are expected given
early field potential results and the dense recurrent connectivity
of neocortical tissue (Douglas et al., 2004; DeFelipe and Jones,
2010). At the same time, intracellular (Carvell and Simons, 1988;
Moore and Nelson, 1998; Higley and Contreras, 2003; Wilent
and Contreras, 2004) and extracellular (Simons, 1983; Brumberg
et al., 1996; Shimegi et al., 2000; Webber and Stanley, 2004;
Ego-Stengel et al., 2005) recordings indicate that stimulus-evoked
spiking may be quite sparse, particularly in the rodent barrel cor-
tex. Thus, we may think of the computations performed by a
local cortical circuit as the selection of a subset of cells to fire
from an envelope of partially synchronous subthreshold activity.
The representation of sensory information as spikes which will
be transmitted to other areas must be contained within the sub-
threshold spatiotemporal envelope; therefore, to understand the
computation performed by a cortex it is important to understand
the spatiotemporal dynamics of this envelope. Imaging studies
with VSDs are uniquely suited to advancing this understand-
ing and have revealed much about sensory responses in various
modalities and organisms.

With some exceptions (Arieli et al., 1996; Petersen et al., 2003a;
Ferezou et al., 2006; Hasenstaub et al., 2007; Poulet and Petersen,
2008), sensory studies have been based on data acquired as the
average of many trials, combined indiscriminately with regard
to brain state. Nevertheless, evoked responses in intact primary
neocortex do not occur in a vacuum, but rather impinge on
networks which are continuously active. Even the first experi-
ments demonstrating the existence of the electroencephalogram
(EEG) produced the surprising finding that the brain was active
in the absence of sensory stimulation (Caton, 1875; Brazier,
1961). Since then, many studies have illustrated the rich reper-
toire of rhythms in the EEG. The cellular basis of most EEG
rhythms has only recently been worked out (Speckmann et al.,
2011). At both the single cell and network level, it is clear that
there is a high level of ongoing activity constantly providing a
background for sensory input. During sleep and epilepsy, highly
synchronized slow (<15 Hz) EEG rhythms preclude the forma-
tion of dynamic neural ensembles necessary for the processing
of information and the generation of rapid adaptive behaviors
characteristic of the awake brain (Steriade, 2000). During the
waking state, faster rhythms (>40 Hz) provide context and allow
coordination of activity between groups of neurons within and
between networks. Consistent with these observations, evoked
sensory responses have been shown to be significantly dependent
on the state of ongoing activity at the time of the stimulus (Arieli
et al., 1996; Sachdev et al., 2004; Hasenstaub et al., 2007; Hirata
and Castro-Alamancos, 2011).

One particular form of ongoing activity which has been the
subject of much recent interest is the slow oscillation between so-
called up- and down-states which occurs in the neocortex and
other brain regions (Steriade et al., 1993a,b). For some time it
has been known that this slow (<1 Hz) oscillation is a hallmark
of deep ketamine-xylazine anesthesia and may be observed intra-
cellularly in nearly all thalamic and cortical cells and extracellu-
larly in the local field potential (LFP). The dynamics of cellular
relationships during the slow oscillation have been extensively
characterized with intracellular recordings in vivo (Steriade et al.,

1993a,b; Contreras and Steriade, 1995; Contreras et al., 1996;
Steriade, 1997) and in cortical (Sanchez-Vives and McCormick,
2000) and thalamic (Blethyn et al., 2006) slices in vitro. Neurons
in thalamocortical circuits remain hyperpolarized and quiescent
during the down-state, and are depolarized by 10–20 mV dur-
ing the up-state. Both experimental and modeling studies have
shown that the input resistance of cortical cells is lowered by the
increased synaptic drive during depolarized states (Destexhe et al.,
2003; Shu et al., 2003b; Sachdev et al., 2004; but see Waters and
Helmchen, 2006). Negative LFP waves recorded from the corti-
cal depth are the extracellular correlate of synchronized neuronal
depolarization; positive waves are the correlate of synchronized
and sustained hyperpolarization. Intracellular studies in the cat
neocortex determined that the hyperpolarization of cortical cells
is produced by the removal of synaptic input in combination
with a powerful leak conductance, with the extreme synchrony
owing much to the dense recurrent connectivity of these net-
works (Contreras et al., 1996; Sanchez-Vives and McCormick,
2000).

The recent avalanche of interest in the slow oscillation
notwithstanding, neither its up- nor its down-state should be
considered to be analogous to a conscious activated brain state
(Steriade, 2000), nor is there yet sufficient evidence to ascribe to
the phenomenon the role of a computational mechanism in the
intact, awake brain, despite the demonstrated importance of per-
sistent neural activity in other systems (Aksay et al., 2003; Major
and Tank, 2004). Nevertheless, because of the well-characterized
differences in the resting membrane potential and input resis-
tance of single neurons in the two states, the slow-oscillating brain
presents an opportunity to address a fundamental question in
neurophysiology: how are the properties of an excitable tissue
en masse shaped by changing the responsiveness of the individual
elements which comprise it?

In this study we used tungsten bipolar electrodes to monitor
the cortical LFP and multiunit activity (MUA) while recording
whisker-evoked responses over the entire barrel cortex of the
mouse in vivo using VSD imaging with either RH795 or RH1691.
LFP and MUA recordings allowed us to characterize in detail the
spontaneously occurring state changes observed under ketamine-
xylazine anesthesia and classify the sensory responses into three
categories according to their relationship to the spontaneous
oscillation. We used single-whisker stimuli, paired simultaneous
stimuli, and stimuli paired at a 100 ms interval. These stimulation
conditions represent a sampling of common paradigms in the
whisker sensory literature and in sensory physiology more gen-
erally. Our goal was to revisit each of these common conditions
with attention to network context.

We observed that evoked sensory responses both altered and
were altered by the ongoing network activity in important ways.
Using barrel-column averaged VSD signals to examine response
properties across the entire barrel field, we show that the properties
of sensory responses are altered by the shift to the up-state
in ways which go beyond what has been previously reported.
We find that, in the up-state, whisker deflections produce an
initial depolarization which is smaller in amplitude and area than
that observed in the down-state and more likely to propagate
asymmetrically across the barrel field. In the up-state, but not in the
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down-state, this depolarization is followed by a hyperpolarizing
wavewhichmoves ina consistentdirectionacrosscortical columns.
We also show that, regardless of state, there is little difference
between single- and multiple-whisker stimuli in the spatial extent
of subthreshold evoked responses. Finally, we show that the degree
of suppression of a second response depends more strongly on the
second stimulated whisker’s location than on the relative radial
position of the first stimulated whisker, regardless of brain state.
Because the resting level of cells in the up-state is likely to be
closer to that in the awake animal, we suggest that the polarities
in signal propagation which we observe in the up-state could be
used as computational mechanisms in the behaving animal.

MATERIALS AND METHODS
Results are based on 40 adult C57 mice (7–12 weeks old, 20–35 g).
From these, 30 experiments were selected for analysis based on
the following criteria: (1) homogeneous VSD staining of the bar-
rel cortex as judged by visual inspection of the baseline image
(14-bit) obtained at the beginning of each recording, (2) stabil-
ity of the optical responses throughout the experimental session,
(3) stability of the spontaneous LFP pattern recorded from the
same electrodes used for electrical stimulation, (4) stability of
the evoked LFP responses recorded by electrodes adjacent to the
stimulating one, and (5) large signal-to-noise ratio (10:1) of VSD
responses to deflections of at least two different vibrissae.

Surgery and preparation
Mice were deeply anesthetized with ketamine-xylazine (100 mg/
kg i.p., 20 mg/kg i.p., respectively,) and mounted in a stereo-
taxic apparatus. Supplemental anesthesia (25 mg/kg, 5 mg/kg)
was administered as necessary to maintain cortical slow oscilla-
tions and weak or absent foot withdrawal reflex. A craniotomy
was made which extended 2 mm in the anterior-posterior direc-
tion starting from bregma, and 2–4 mm in the mediolateral
direction starting from the midline. In most animals this was
sufficient to expose most of the posteriomedial barrel subfield
(PMBSF). The dura was resected over the entire craniotomy.

Once electrodes were inserted, hand stimulation of the
whiskers with audio feedback from the cortical LFPs was used
to determine the approximate location of the electrodes within
the PMBSF. This information was used to determine the whiskers
most suitable for VSD imaging.

Staining
Following Kleinfeld and Delaney (1996), a 1 mm3 piece of
gelfoam (Upjohn Pharmacia) was soaked in a warm solution
of the VSD RH795 (Molecular Probes, Eugene, OR, 1 mg/mL)
or RH1691 (Optical Imaging, Mountainside, NJ, 1 mg/mL) in
0.9% saline and placed on the exposed cortex. Additional dye
was added to keep the gelfoam soaked for 1.5 h. After staining
and before recording the exposed surface of the brain was gen-
erously washed with saline to remove unbound dye. Throughout
the experiment the brain surface was rinsed with saline to pre-
vent desiccation. RH795 (Grinvald et al., 1994; Obaid et al., 2004)
and RH1691 (Shoham et al., 1999) are potentiometric styryl dyes
which attach to cell membranes and show a decrease (RH795) or
increase (RH1691) in fluorescence on a microsecond time scale

in response to membrane depolarization. For consistency with
convention all VSD responses shown here are oriented so that
positive-going deflections indicate depolarization. When applied
topically in vivo, the dyes stain the supragranular cortical lay-
ers most intensely (Kleinfeld and Delaney, 1996; Petersen et al.,
2003a). Potentiometric dyes are linear indicators of Vm over phys-
iological ranges (Cohen and Salzberg, 1978; Cohen et al., 1978).
The dye is taken up preferentially by dendrites and cell bodies.
Because layers 2/3 are primarily neuropil, the signal source in vivo
is considered to be mostly from dendrites (Grinvald et al., 1994;
Yuste et al., 1997; Contreras and Llinas, 2001), although a recent
detailed stereological analysis revealed that far more axonal than
dendritic membrane per unit of volume is present in the neuropil
of layers 2 and 3. Some contribution also comes also from glial
cells (Konnerth et al., 1987; Salzberg, 1989).

Optical recordings
Recordings were made with a modified upright microscope
(Olympus, BX50WI). Epi-illumination was provided by a 12V
halogen lamp. Excitation light was bandpass filtered at 540 ±
20 nm; light emitted from the preparation was long-pass filtered
below 600 nm. The optical signal was collected with a CCD cam-
era (MiCam01 or Ultima, BrainVision, Japan) with a detector
array of 87 × 60 (Micam01) or 100 × 100 (Ultima) imageable
pixels, at frame rates of 250–500 Hz (2–4 ms/frame). Frame times
given in figures and text refer to the end of acquisition of a
frame; for example, a frame labeled 24 ms and acquired at 250 Hz
is a measurement of light emitted from 20–24 ms poststimu-
lus. The microscope objective was 4X (N.A. = 0.28, Olympus,
Japan). With the Micam01, an Olympus U-TV0.35×C demagni-
fying camera adapter was used, resulting in a total magnification
of 1.4×, imageable area of 1.5× 2 mm, and a pixel size of 22 by
22 µm (484 µm2). With the Micam Ultima, the camera adapter
was not used, resulting in an imageable area of and 2.5 by 2.5 mm
with a pixel size of 23 by 23 µm (529 µm2). Optical recording was
controlled by the BrainVision software.

The fractional fluorescence change received little contribution
from intrinsic metabolic signals related to oxygen delivery. No
data was analyzed beyond 250 ms after a stimulus, i.e., the time
between the first whisker deflection and the peak response to a
second whisker deflection 100 ms later. In contrast, hemoglobin-
associated absorbance changes have been shown to begin several
hundred milliseconds poststimulus. For example, in Devor et al.
(2003), blood-flow related signals were recorded from 1.5 to 2.5 s
after the stimulus whereas LFP and MUA were integrated from
0 to 300 ms after the stimulus. The “early signal” or “initial dip”
corresponding to the increase in deoxyhemoglobin by oxygen
delivery to neurons takes almost 1 full second to develop (Frostig
et al., 1990; Kim et al., 2000). Additionally, in experiments with
RH1691, which is not sensitive to hemoglobin changes due to its
shifted absorbance spectrum, the kinetics of the responses were
identical to those seen with RH795.

Electrophysiological recordings
To record LFPs, we constructed arrays of 3 or 4 pairs of tungsten
electrodes (FHC, Bowdoinham, ME), with vertical tip separation
of 0.5 mm and horizontal separation of 0.75 mm between pairs
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in the array. For each experiment the array was advanced into the
cortex at the lateral edge of the craniotomy, normal to the corti-
cal surface, until the upper electrode just entered the pial surface.
Recording and stimulation were in bipolar configuration. The sig-
nal from the electrodes was band-pass filtered between 0.1 and
300 Hz to obtain LFP recordings, and between 300 and 10000 Hz
to obtain multiunit recordings (MUA). Measurements of MUA
and LFP were made at the periphery of the stimulated area, to
allow for imaging over the greatest possible cortical area.

Whisker stimulation
A reliable optical response was first obtained from a single whisker
in response to a 100 ms ramp-and-hold deflection (8 ms rise time,
1300◦/s, calibrated as for (Wilent and Contreras, 2004) in the
ventral direction with a piezoelectric device (Simons, 1983). For
simultaneous stimulation of two whiskers, two whiskers were
threaded into the same piezo-controlled tube. For multiwhisker
sequences, an air puff (Picospritzer, Intracel, Herts (UK), 10 ms,
2–5 PSI) was directed to deflect another single whisker or group of
whiskers in the ventral direction using a 1 mm diameter glass cap-
illary tube bent into an “L” shape. Great care was taken to ensure
that no whiskers were unintentionally stimulated; when neces-
sary, nearby whiskers were trimmed away. Once clear responses
had been evoked from two whiskers, pairs of deflections were
presented at an interstimulus interval (ISI) of 100 ms.

Cytochrome oxidase histology
At the conclusion of an imaging experiment, two fiducial marks
were made by advancing an electrode into two different loca-
tions in the imaged cortex. Reference images in register with the
VSD recordings were taken with these new marks. Animals were
perfused with 4% paraformaldehyde in 0.1 M sodium phosphate
buffer (PBS). Brains were postfixed overnight in the same fixa-
tive and the cortex was flattened by pressing gently between two
clean microscope slides submerged on PBS. One hundred micron
thick tangential sections were cut in a vibratome (Vibratome
1000-plus). In order to reveal the barrels, tissue was treated with
3,3′-Diaminobenzidine (DBA, Sigma D-5905) and Cytochrome C
from horse heart (Sigma C-2506) according to (Wong-Riley 1979)
with some modifications. Briefly, sections were washed in 0.1M
PBS (3×10 min) at room temperature and incubated in a mixture
of 0.1 M PBS with 10% methanol (Fisher Scientific BP1105-1)
and 1% hydrogen peroxide (Sigma H-1009) for 15 min at room
temperature, washed again in PBS (3×10 min) and kept in the
dark shaking overnight at 4◦C in 0.1 M PBS containing 4 g
sucrose, 50 mg DBA (Sigma) and 30 mg of cytochrome oxidase
per 100 ml of PBS. The following day, tissue was washed in PBS,
mounted on subbed glass slides, dehydrated, and coverslipped.

Trial sorting
Optical data was collected as single trials, with no online
blank subtraction or online averaging. We identified transitions
between states by visual inspection of the simultaneously and
continuously recorded LFP from S1 cortex, and classified the
single-trial optical recordings into three groups: trials occurring
in the down-state, trials occurring in the up-state, and trials in
which the stimulus caused a transition to the up-state.

Barrel binning
The tracks left by the field potential electrodes, in combination
with the additional fiducial marks made at the end of the exper-
iment, were used to align the barrel outlines from histology with
the fractional fluorescence images. This allowed binning of pixels
into signals corresponding to the average activity within barrel-
columns. The margin of error for the alignment of barrels was the
width of a single electrode, which is close to the width of septa.

Data analysis
Optical data was collected as differential fluorescence and divided
by a reference image acquired automatically at the start of each
trial to produce fractional fluorescence (�F/F) data which was
used for all analysis and figures. Post-processing consisted of aver-
aging of single trials after screening (see below) followed by bin-
ning into barrels as described above. For clarity the images shown
in Figure 4 were filtered with a flat 3 × 3 kernel. All analysis was
done with custom routines written in Igor Pro (Wavemetrics,
Lake Oswego, OR).

QUANTIFICATION OF RESPONSES
Area functions (Figure 4B, right) were computed by counting the
number of pixels in each frame with values at least 2 SD above the
prestimulus noise at that pixel. These values were then multiplied
by the pixel size to produce areas in mm2. The number of barrel
columns participating in a response (Figures 5 and 6) was mea-
sured by first projecting the histologically identified barrel map
onto the optical recording using fiducial marks (see Civillico and
Contreras, 2006 Figure 1), and binning the pixels into column-
sized regions accordingly. Average time traces were then taken
using these barrel-column regions of interest. The determination
of a response for barrel column counts was performed by com-
paring the maximum amplitude of each barrel column signal in a
100 ms window following the stimulus with a threshold based on
the prestimulus SD of the barrel column signal.

POLAR AMPLITUDE PLOTS
Polar amplitude plots (Figures 7, 8, 9, 10) were computed as fol-
lows: a grid schematic of the barrel field was divided into eight
radial half-quadrant sectors with the stimulated whisker taken as
the center. Each barrel column accessible to the VSD recording
was mapped to a sector based on its angular position relative to
the stimulated whisker on the schematized grid. The values of the
mapped quantity (amplitude, slope, latency, etc.) were averaged
for each radial sector and plotted using polar coordinates.

Polar amplitude plots in Figures 7, 8, and 10 were normalized
by maximum polarity as follows: each eight-point plot con-
sisted of four pairs separated by 180◦, representing four possible
axes of polarity. The largest polarity or maximum anisotropy
was identified by comparing the members of each of these four
pairs, and the smaller value of that pair was used to normalize
the histogram.To facilitate comparison with the center hyper-
polarization, polar amplitude plots in Figure 9 were normalized
according to the value of the center hyperpolarization.

Quantification of divisive suppression
To quantify the divisive suppression of whisker responses as a
function of radial position, the transient ratio (TR) was calculated
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FIGURE 1 | Diversity of spontaneous LFP patterns in mouse barrel cortex

under ketamine-xylazine anesthesia. (A–F), left column: Selected 20 s
epochs of LFP displaying typical variation in electrographic features.
Recordings from same preparation (A–B, C–D) grouped with brackets. Sleep
spindles in B, C, D, indicated by “s.” Paroxystic events in F indicated by

asterisks. Middle column: distributions of LFP amplitude over 10 min periods
containing the corresponding epochs shown at left. Right column: power in
the 0–2 Hz frequency band for the same periods. Except where indicated, all
recordings shown in this study were performed in the bistable, deeply
anesthetized state corresponding to the recordings in A or E.

as the magnitude of the second whisker transient following a
preceding whisker response, divided by the size of the second
whisker response alone. TR polar amplitude plots for second
whisker responses were calculated as for the single response mea-
surements, with different choices of origin as described in results.

RESULTS
LFP AND MUA WHISKER RESPONSES DURING THE SLOW
OSCILLATION
The slow oscillation under anesthesia is characterized by spon-
taneous and widespread changes in membrane potential and
firing probability. Our goal was to examine the effect of these
well-characterized rhythmic neuronal excitability changes on the
spatiotemporal properties of sensory responses measured with
voltage sensitive dyes (VSDs) in vivo. In order to understand
the effect of network state on sensory responses it is critical
to first understand the variability of the oscillation under anes-
thesia and, perhaps more importantly, the interaction between
single stimuli and the spontaneous cycles of oscillation. We

reasoned that, if down-state stimuli could trigger new up-states,
such responses must be analyzed separately from the other
down-state responses. Because the period of the slow oscil-
lation is much longer than the optical recordings, to mon-
itor the spontaneous electrical activity on which responses
were superimposed, we recorded the LFPs and MUA from
the primary somatosensory cortex. The recordings shown in
Figure 1 illustrate the rich variability of the anesthetized prepa-
ration. Under deep and stable anesthesia, the spontaneous LFP
was characterized by a prominent and stable slow oscillation
(<1 Hz) consisting of alternating positive and negative waves
(Figures 1A,C,E, 2). Deepening of anesthesia resulted in an
increase in amplitude and decrease in frequency of the slow
oscillation, which reached values as low as 0.3 Hz (Figure 1E).
Conversely, lightening of anesthesia was characterized by a
progressive reduction in the amplitude of the slow oscilla-
tion (Figures 1B,D and Figures 2A,B, “activated”). We measured
the bistability of EEG patterns by computing the distribu-
tion of amplitude values over 10 min periods (middle column,
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FIGURE 2 | Sensory responses interact with ongoing network activity as

visualized in the LFP. (A) LFP trials at compressed time scale, arranged from
top to bottom by phase of sensory stimulus with respect to ongoing
spontaneous oscillation. (B) Expanded time scale of four examples from A,
showing differing structure of LFP responses to triggered-up (blue), down
(black), up (brown), and “activated (gray).” As in A, traces are aligned to the
stimulus time which is indicated by the dotted line. (C) Compressed time
scale of three examples indicated by the colored bars in A showing the
relationship between the stimulus and the oscillation. Traces are aligned on
the end of an up-state to highlight the difference in down-state lengths.
Green and blue arrowheads indicate stimulus times for green and blue

traces, respectively. The red trace shows a cycle without a stimulus for
comparison (see red bar in A). (D) Distributions (left) and cumulative
distributions (right) of time measurements showing effects of state
changes and responses on each other. RED: lengths of down-states
which end spontaneously (compare to red trace in 1C). BLUE: lengths of
down-states which end in a stimulus-associated up-state transition
(compare to blue trace in 1C). GREEN: interval between the start of a
down-state and a stimulus that did not trigger an up-state transition.
Down-state shortening due to stimulus: green is shorter than blue
(K–S test, p < 0.01); Up-state refractory period: blue is shorter than red
(K–S test, p < 0.01).

distributions). When the EEG alternated between two stable
states, the distributions contained two separated peaks (A, E),
or occasionally a peak with a prominent shoulder, indicating a
greater proportion of intermediate values due to frequent spindles
(C). We computed power spectra for 10 min EEG periods. During
periods of deep anesthesia the power spectrum was dominated
by a peak between 0 and 1 Hz; under lighter anesthesia this peak
was absent. For the data presented below, we controlled the level
of anesthesia as to maintain a stable slow oscillation (see below

Figure 2). We will refer to the negative phase of the LFP during the
slow oscillation, in which neurons are depolarized, as the up-state,
and to the quiescent, depth-positive waves, in which neurons are
hyperpolarized, as the down-state.

Whisker stimuli were delivered at a fixed frequency
(0.1–0.2 Hz) and, therefore, occurred randomly with respect to
the ongoing slow oscillation. Because the stimulus frequency
was much slower than the oscillation frequency, we recorded
many oscillation cycles which contained no stimulus. The shape
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of the whisker responses was strongly modulated by the slow
oscillation and, reciprocally, whisker responses entrained slow
oscillation cycles, both in a phase-dependent manner (Figure 2).
To illustrate the phase dependence between whisker responses
and the slow oscillation, we ordered the LFP responses accord-
ing to the phase in which they occurred (Figure 2A). Stimuli
occurring in the second half of the down-state (>420 ms after the
termination of the preceding up-state in this example) triggered
a new up-state (Figures 2B and C, blue trace). Stimuli delivered
early during the down-state did not trigger a new up-state but
generated a large monophasic response lasting approximately
200 ms (Figures 2B and C, green trace). When stimuli occurred
during the up-state, responses consisted of a short negative
wave, followed by a positive wave and a return to the steady
level of the up-state (Figure 2B, brown trace). Stimuli delivered
during occasional periods when the slow oscillation was absent
(similar to an activated EEG) (Figure 2A, bottom trace, detail in
Figure 2B) generated a smaller amplitude response not followed
by a large hyperpolarization. We did not observe changes in
duration of the down-state when the stimuli occurred during
the up-state, nor did we observe premature termination of the
up-state by the occurrence of a whisker response. A typical
triggered up-state is shown in Figure 2C (blue trace) with respect
to a spontaneous cycle (red trace) and with respect to a response
that does not trigger an up-state (green trace).

We quantified the effect of whisker stimulation on the ongoing
activity by plotting the distribution of the durations of the down-
states (n = 16 mice, 3968 total oscillatory periods; Figure 2D).
To compensate for the variability in oscillation period across
experiments, we normalized the down-state durations within
each experiment to the median spontaneous duration for that
experiment. The normalized distributions were added to obtain
population distributions (Figure 2D, left), which were integrated
to obtain population cumulative histograms (Figure 2D, right).
The distributions show that down-states that were terminated by
a sensory triggered up-state (blue trace) were significantly shorter
than those terminating spontaneously (red trace, p < 0.01, K–S
test), demonstrating that responses to whisker stimulation effec-
tively reduced the duration of the down-state by triggering a new
cycle of the slow oscillation. Responses that failed to trigger an
up-state (green trace) occurred significantly earlier (hence, closer
to the termination of a previous oscillatory cycle) than those
that succeeded (green histogram vs. blue histogram, Figure 2D,
p < 0.01, K–S test), which shows that the slow oscillation has
a refractory period, as shown previously in vitro (Sanchez-Vives
and McCormick, 2000).

The phase-dependence and duration of the LFP response
was paralleled by the MUA recorded on the same electrodes
(Figure 3). Spontaneous spiking activity occurred exclusively
during up-states and paralleled the duration of the up-states
recorded in the LFP, demonstrating that up-states represent sus-
tained depolarization (Figure 3A). We quantified the MUA by
constructing peristimulus time histograms (PSTH) from spikes
isolated using an arbitrary threshold (Figure 3A, red line). Stimuli
arriving during established up-states caused a short-latency mul-
tiunit response followed by a trough indicating inhibition which
was strong enough to completely suppress firing for at least

50 ms (Figure 3B, top panel). Stimuli arriving early in the down-
state triggered a phasic response which was sometimes followed
by a temporally broader, lower-amplitude rebound (Figure 3B,
middle panel). As described for LFP responses, stimuli arriving
later in the down-state triggered an up-state (Figure 3B, bot-
tom panel) and the response was characterized by a large initial
MUA peak, followed by a valley and then a resumption of the
activity level seen in spontaneous up-states. Neither the initial
peak nor the valley were present in the firing pattern during
spontaneous up-states (Figure 3B, bottom panel, red open his-
tograms), indicating that the sensory response was to a certain
degree additive with the up-state which it triggered. Thus, the
slow oscillation showed a refractory period after which sensory
responses to whisker deflections successfully triggered a new up-
state. However, sensory responses did not terminate or delay
an up-state. Furthermore, hyperpolarizing inhibition was only
present in the sensory responses during the up-state. This is likely
due to several effects of the more depolarized membrane poten-
tial, including an increased driving force for GABA-mediated
chloride currents in pyramidal cells, as well as the increased
firing probability of inhibitory interneurons. Thus, our results
demonstrate that sensory responses are not only modulated by
spontaneous activity, but also entrain it. Furthermore, sensory
responses engage local circuit inhibition in a state-dependent
manner.

RESPONSES RECORDED WITH VOLTAGE SENSITIVE DYES
The LFP (Figure 2) and MUA (Figure 3) recordings illustrate the
state-dependence of responses at single locations. To quantify this
state-dependence over the entire surface of the barrel cortex, we
recorded the population Vm response from the supragranular
layers with VSDs (Figure 4). The simultaneous LFP and MUA
recordings allowed determination of the state of the network at
all times, providing an independent means to classify the VSD
responses for analysis. Optical responses were sorted according
to state based on the simultaneously recorded LFP and 10 trials
per state were averaged together to produce three sub-averages
(for consistency with intracellular recordings all VSD responses
shown here are oriented so that net depolarization is indicated
by upward deflections). In the example shown in Figure 4A, a
deflection of whisker D2 during the up-state (top row) resulted
in a low-amplitude depolarizing response, beginning above the
D2 barrel at 22 ms and spreading to all other barrels, which
was followed by a large and widespread hyperpolarization vis-
ible over the entire barrel field at 172 ms. Responses occurring
early in the down-state (middle row) showed a larger depolar-
ization and an absence of hyperpolarization, and failed to trigger
an up-state. When the stimulus occurred later in the down-state
and triggered an up-state (bottom row), the response was larger
and of shorter latency than that occurring during the down-state.
Consistent with the LFP recordings, the triggered up-state was the
largest optical response and lead to a strong widespread depolar-
ization with a long latency and long duration. The difference in
response amplitude between states can be best appreciated in the
fluorescence signal averaged over the principal barrel being acti-
vated (Figure 4B, left column, D2 in this example) but may also
clearly be observed in the column-averaged signal in individual
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FIGURE 3 | Response variability in the MUA as a function of network

state. (A) Three cycles of spontaneous EEG. Top trace (MUA) was filtered at
30–10000 Hz and concurrent LFP recording was filtered at 0.1–100 Hz. Thin
red line indicates threshold used to detect events used in peristimulus
histogram (PSTH). (B) MUA responses to whisker deflections, grouped by

time with respect to the slow oscillation. Top: responses in up-state. Note
inhibition revealed by trough in PSTH during up-state. Middle: Short-lasting
responses in down-state. Bottom: Stimulus triggers up-state. Red line shows
the histogram of spontaneous up-state, superimposed. All data is from same
experiment shown in Figure 1.

trials (thin traces). That such differences are robust across the sur-
face is shown by the fact that single pixel, single trial behavior is
consistently similar to the average (Figure 4B, middle column).
The peaks of the fluorescence responses during the down- (blue
traces) and the up-(red traces) states were 49% and 15% of the
peak of the triggered up-state (blue traces), respectively. Finally,
consistent with its corresponding LFP response, the VSD response
in the up-state returned to baseline more quickly than in the other
states (∼50 ms).

Clear responses with these same basic features were visible in
state-averaged recordings from single pixels (529 µm2, Figure 4B,
middle column). To quantify the differences in the spatial spread of
the responses, we measured the total depolarized area (Figure 4B,
right column, see “Methods”) as a function of time. In the
representative example of Figure 4, the depolarized area of the

response during the down-state reached a maximum of 62% of the
visible barrel cortex (1.4 mm2 at 56 ms (Figure 4B, right, black
trace). In contrast, in the up-state the depolarized area was smaller
(Figure 4B, right, red trace), consistent with a previous report
(Petersen et al., 2003b), reaching a maximum of 24% of the visible
barrel cortex 0.45 mm2 at 40 ms. This depolarizing response was
followed by a hyperpolarization encompassing the entire visible
barrel cortex by 150 ms (top row, rightmost frame). Finally, the
depolarization of the triggered-up state reached 0.93 mm2 by
34 ms, and extended over 1.6 mm2 by 150 ms (Figure 4B, right,
blue trace). Only the response in the up-state had a significant
hyperpolarizing component. The average of the population (n =
22) measurement of depolarized area is shown in Figure 4B.
Because the triggered up-state responses consist almost entirely
of self-generated recurrent activity in cortex, their spatiotemporal
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FIGURE 4 | Spatiotemporal profile of whisker response is dependent on

brain state. (A) Snapshots at five consecutive times during responses to
identical deflections of the D2 whisker. Top row: in up-state. Middle row: in
down-state, early. Bottom row: in down-state, late, triggering an up-state.
Image series were averaged from 10 single trials for each state. (B) (Left)
Fluorescence traces from the stimulated barrel of the same three recordings,
color corresponds to labels at left of image series in A. Vertical lines indicate

times of frames in A. Thin lines: individual trials. Thick lines: average
of thin lines. (Middle) Single pixel traces in the different states. Locations
indicated on grayscale frame at bottom left. (Right, upper panel) Thresholded
depolarized areas as a function of time. Vertical lines indicate times
of frames in A. (Right, lower panel) Average depolarized areas as a
function of time (n = 22 experiments). Shaded area
indicates ± SEM.

properties are not comparable with those of the other sensory
responses. Therefore, we will not consider the triggered-up state
responses further. Thus, the remaining analysis will be concerned
only with responses during up-states and responses during down-
states that did not trigger an up-state.

Inspection of the up-state responses in images such as those
shown in Figure 4A suggested that despite being fewer in num-
ber, activated pixels in the up-state were distributed across a large
portion of the visible barrel cortex, suggesting that the number of
barrel columns activated may not significantly differ across states.

Such an observation would imply that, rather than “sharpening” a
simple sensory representation, depolarization of the cortical net-
work would instead function to make the representation sparser
while remaining distributed. In order to quantify and compare
the number of responding barrel columns across states we aver-
aged the fluorescent signal inside each barrel column area (see
“Methods”). We counted as responding barrel columns (n = 30
whisker responses in 20 mice) those in which fluorescence tran-
sient values crossed an arbitrary threshold expressed in units
of standard deviation (SD, z-scores) of the prestimulus baseline
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(Figure 5). Because varying threshold revealed a difference in the
number of barrels showing a response, we systematically explored
the effect of detection threshold in the comparison between up-
and down-states. As expected, the number of barrels included
in the response decreased with increasing threshold (Figure 5A).
More importantly, the effect of increasing threshold was par-
allel between up- and down-states (Figure 5A, red and black
trace, respectively); for all thresholds in which there was a dif-
ference there were more barrels responding in the down-state.
At a threshold of 3SD, all barrels included in the image were
responding in both states. But even at 5SD most of the barrels
responded during both down- and up-states. We quantified the
difference between up- and down-states by measuring the thresh-
old level at which the number of barrel-columns participating
in the response crossed below half of its maximum. Because we
converted response amplitudes into z-scores (response amplitude
divided by prestimulus SD), we refer to this value as z1/2. In all
experiments, z1/2 was lower for the up-state than for the down-
state. The population average of the ratio of z1/2 between up and
down-state was 0.40 ± 0.03 (Figure 5B, mean and SEM indicated
by the red circle with error bars).

To compare the number of depolarizing columns between the
up- and down-states for the population, we arbitrarily chose two
thresholds, one low (z = 2) and one high (z = 10). (Figure 5C,
left). When the threshold was 2SD above background noise (min-
imal response, z = 2 in Figure 5C), we observed that the majority
of barrel columns participated in responses in both up and down
states, and the difference between the two states was statistically
significant (Wilcoxon Signed Rank Test, p < 0.01). The column
counts at lower threshold values showed that some degree of
depolarizing response propagated over most of the imaged area
in both the up- and down-states. Thus, at the level of barrel
columns, responses in both the up- and the down-states spread
over almost the entire barrel cortex. By combining pixels into a
barrel column signal, we decreased the noise and became able to
resolve a smaller response. The number of responding columns
in the up-state is greater than what has been implied by previ-
ous work (Petersen et al., 2003b), a difference we attribute to an
increase in sensitivity over previous work due to (1) binning pix-
els over a columnar area and (2) recent improvements in CCD
technology. Because the entire barrel field could not be imaged in
all experiments, we normalized the number of responsive barrels
by the total number of imaged barrels in order to better compare
population data between states (Figure 5C, right); the effects were
unchanged. When the threshold was increased to 10 SD above
background noise, fewer columns responded in both up- and
down-states, but the decrease was greater in the up-state (decrease
was from 98% to 41% in the down-state, and from 74% to 6.3%
in the up-state).

RESPONSES TO TWO WHISKERS
Because under natural conditions many whiskers are stimulated
simultaneously, and because single whisker responses have been
shown to influence one another, we extended our context-based
analysis to multiwhisker responses. In a subset of experiments
(8/30), we threaded two adjacent whiskers into the glass of the
same piezoelectric stimulator. This had no effect on the average

FIGURE 5 | Columnar extent of depolarizing responses in up and

down-states. (A) Count of participating barrels as a function of chosen
fluorescence (z-score) threshold for down-(black) and up-(red) states in an
example experiment. Vertical dotted line indicates a z1/2 of 1. (B) Up-state
z1/2 values for all experiments (each normalized to the corresponding
down-state); red dot indicates mean. (C) Raw (left) and normalized (right)
column counts for minimal response (z = 2) and large response (z = 10)
thresholds in up- and down- states. Statistically significant differences
between up and down-state counts (Wilcoxon Signed Rank Test, p < 0.01)
are indicated with the ∗.

Frontiers in Systems Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 25 | 112

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Civillico and Contreras Network modulation of response dynamics

columnar extent of responses in either the up- or the down-state.
We mapped the peak response in units of SD (z-scores) at all pixel
locations and superimposed the histologically determined barrel
map onto these maps; this showed that in both states there were
statistically significant responses in all columns (Figure 6A, color
scale starts at 2SD). The same effect is seen in the barrel-column
averaged pixel traces (Figure 6A, bottom panels). We averaged the
extent of columnar responses as for single-whisker responses and
found the same effect (Figure 6B). In all subsequent data analy-
sis, single and multiple whisker responses are pooled. This strong
sublinearity of the summation of responses from more than one
whisker when activated at a negligible time interval is consis-
tent with our earlier detailed study of multiwhisker response
interactions (Civillico and Contreras, 2006).

SPATIAL ASYMMETRY IN THE DEPOLARIZING RESPONSE
We compared barrel-column averaged traces from different parts
of the barrel field and detected a consistent asymmetry in spa-
tial distribution of response amplitude in the up-state only
(Figure 7A). In the example of Figure 7A, after stimulation of D2
during the up-state, the peak amplitude of the response in the
D1 column was 50% less than that in the D2 column, whereas the
amplitude was unchanged from D2 to D3. This effect was not seen
in the down-state. There was a similar but less pronounced effect
along the arc axis: in the down-state, the responses in C2 and E2
were the same size as in D2 (Figure 7A, left). However, in the up-
state, the response in the E2 column was 5% larger, whereas that
in the C2 column was 5% smaller. This result shows that in the
up-state, responses were asymmetric with respect to direction of
propagation.

We quantified this asymmetry of propagation by binning
the barrel field into eight radial quadrants with the stimulated
whisker at the center, and generating polar plots of response
amplitude (Figures 7B and C). We normalized the polar plots in
order to compare their shapes (see “Methods”). The bias toward
higher numbered arcs seen in the example traces (Figure 7A) is
clear in the normalized barrel column polarity plot for this exam-
ple (Figure 7B, upper panel) and was also clear in the entire pop-
ulation of barrel column-averaged recordings (Figure 7B, lower
panel). In the direction of maximum asymmetry (indicated by the
arrow in 7B) the average response in the preferred propagation
direction was 1.6 times greater than the anti-preferred direction
in the up-state vs. 1.3 times greater in the anti-preferred direction
in the down-state.

The asymmetry in amplitude of the barrel-averaged responses
could be due to a larger number of responding pixels within the
barrel or to a greater response from the same number of pixels.
Thus, we measured the percentage of responding pixels (response
density) within all imaged barrel-columns as a function of time
and plotted the value as radial averages in the same way as with
the response amplitude above (Figure 7). Up-state responses used
a smaller percentage of the barrels (averaging 20% vs. 60% in the
down-state), consistent with the more granular responses in the
up-state images shown in Figures 4 and 6. There was no signifi-
cant polarity to the peak densities of responses indicating that the
asymmetry in the spatial distribution of barrel column-averaged
signals during up-state responses (Figure 7B) is due to differences

FIGURE 6 | Absence of significant differences between the columnar

extent of two-whisker and one-whisker responses. (A) Maps of peak
response at each pixel over 40 ms poststimulus in response to the indicated
whisker deflections in down- and up-states. Peak maps were constructed
from averages of 15 recordings per state. (B) (Left) Barrel-column-averaged
traces from same example as A. Statistically significant differences
between up and down-state counts (Wilcoxon Signed Rank Test, p < 0.01)
are indicated with the ∗. (Right) Comparison of z1/2 values in down- and
up-states for single whisker and multiwhisker experiments.

in amplitude and not to differences in the number of responding
pixels within each barrel-column.

We also examined the polarity of the response time course.
There was no significant polarity to the onset latency (Figure 8,
left). Rise times, however, were significantly longer in the down-
state toward the A row and lower-numbered arcs. In the up-state
the rise times were more evenly distributed (Figure 8, middle).
The initial slopes of responses were significantly larger in the
down-row direction in both up- and down-states, but the effect
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FIGURE 7 | Depolarizing response amplitude distribution is not

homogeneous in the up-state. (A) Barrel-column-averaged traces from a
cross-shaped subregion of the barrel field, with the stimulated whisker (D2)
at the center. Top: along row-axis comparison. Bottom: along arc-axis
comparison. (B) Radial plot of response amplitude; same experiment as A.
(C) Population radial plot of response density.

was more pronounced in the up-state (Figure 8, right). In sum-
mary, the population depolarizing responses at the subthreshold
level show greater asymmetry when the network is depolarized:
the depolarizing response spreads preferentially along the rows
toward higher-numbered arcs.

SPATIAL ASYMMETRY OF THE RESPONSE HYPERPOLARIZATION
We next studied how subsequent whisker deflections would be
differentially affected by the state of the network. Previous stud-
ies have demonstrated strong suppression of whisker responses by
a combination of well-known postsynaptic cellular mechanisms
(Coombs et al., 1955; Llinas et al., 1974; Simons, 1985; Simons
and Carvell, 1989; Holt and Koch, 1997; Moore and Nelson, 1998;
Higley and Contreras, 2003, 2005; Civillico and Contreras, 2006).
Subtractive effects are due to a reduction in the peak level of a sub-
sequent response due to the lowering of the baseline caused by a
preceding response. As shown by the two examples in Figure 9A,
whisker responses during the up-state were followed by a sharp
hyperpolarization below baseline. We measured this hyperpolar-
ization at 100 ms after a single stimulus and found that it had
a consistent spatial pattern across experiments (Figure 9B). It
appeared first over the barrel columns corresponding to more
ventral whiskers (the D and E row), where it also reached its
largest amplitude (see barrel traces in Figure 9A).

This spatial pattern did not appear as so-called “surround inhi-
bition” (Derdikman et al., 2003, their Figure 6), since the wave
moved indiscriminately across the stimulated whisker’s barrel.
In other words, the stimulated whisker’s barrel participated in
the wave at the same time as its neighbors, rather than after a
delay or not at all, as in what is often described as a “surround”
response. To demonstrate this, the average values in Figure 9B
were normalized to the level of the stimulated whisker’s barrel.
We note that many values in the surround have normalized val-
ues less than 1, indicating that the spatial pattern of inhibition
was greater at the center than in many of the surround locations.
Thus, whisker deflection-triggered inhibition resembles more a
wave than an annulus around the principal barrel. As expected,
the hyperpolarizing wave was not observed in the down-state,
most likely due to the hyperpolarized membrane potential that
characterizes this state (Steriade et al., 1993a,c).

Finally, to measure the effects of network state on input inte-
gration, we performed experiments in which a second whisker
was deflected 100 ms after the first one. This interstimulus interval
produces the strongest whisker-to-whisker suppression (Civillico
and Contreras, 2006) and seems equivalent to the 20 ms inter-
val in the anesthetized rat (Simons, 1985; Shimegi et al., 1999,
2000; Higley and Contreras, 2003). We quantified the suppression
of the second response by calculating a TR, as the magnitude of
the response following the first whisker, divided by the size of the
response alone (Figure 10). A complete suppression of the second
response gives a TR of 0 while an unchanged second response will
result in a TR of 1. Values of TR above 1 indicate response facili-
tation. Unlike single-cell experiments, these experiments produce
values of TR for the entire spatial extent of the barrel field. As in
the previous analyses, we binned the barrel field into eight radial
quadrants so as to compute averaged TR values as a function of
angular position with respect to the second stimulated barrel-
column. An example of this analysis for a single experiment is
shown in Figure 10A (barrel maps at left, polar plot at right).
The origin of the polar plot is the location of the second stimu-
lated whisker’s barrel. The angular location of whisker 1 relative to
whisker 2 is indicated “w1” and in this example corresponded to
225◦ (positive angles moving counterclockwise, origin at right).
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FIGURE 8 | Polarity of depolarizing response timing is

accentuated in the up-state. Left: population radial plot of
response onset time. Middle: population radial plot of response
rise time. Right: population radial plot of response slope. Before

averaging, data from individual experiments were normalized to
the smaller of the two values on the axis of maximum anisotropy
as described in Methods. The gray circles have a radius of 1 on this
scale.

The outer radius of the polar plot corresponds to a TR of 1, indi-
cating no suppression. All angular locations relative to the second
stimulated whisker showed some degree of suppression (TR <1)
in both the up- and down-states (consistent with our previous
study (Civillico and Contreras, 2006) in which trials were not
sub-averaged by state). Suppression was greater in the down-state.
However, the spatial pattern of suppression shown in the bar-
rel maps (Figure 10A, left and middle columns) was similar in
the up- and down-states: suppression was greatest in the part of
the barrel field corresponding to the ventral posterior whiskers
(arcs 1,2, rows D,E), and decreased in a gradient toward the bar-
rels corresponding to more dorsal and more anterior whiskers.
In the example shown the direction of greatest suppression cor-
responds to the direction of the previously stimulated whisker’s
barrel. When many angular plots were averaged with the whisker
1 directions aligned (n = 10, Figure 10B, left), suppression was
clearly seen to be biased in the direction of whisker 1 (indicated by
“w1” and arrow on polar plot). However, when the radial TR plots
were rotated and re-averaged to be oriented to the barrel field
map (i.e., with w1 directions pointing in their original various
directions), the directional bias of suppression, rather than disap-
pearing, became even more pronounced (Figure 10B, right). This
indicates that the effect was not entirely caused by the location of
the previously stimulated whisker in either up- or down-states,
but rather appeared to be yet another intrinsic polarity of the
barrel field, possibly related to the row bias observed with the
single-whisker responses.

DISCUSSION
In this study, we examined the effect of ongoing network activity
on the spatiotemporal properties of population responses mea-
sured with VSD imaging. We used LFP and MUA recordings
in the anesthetized mouse to confirm the presence of two well-
defined network states in our preparation and to characterize the
phase dependence of the interaction between the sensory stimulus

and the ongoing oscillation. We found important variability in
the slow oscillation, for which we accounted in our analysis. We
observed that down-state stimuli could trigger a transition to the
up-state only after the refractory period following each cycle of
the oscillation. We excluded responses triggering up-states from
the analysis of down-state responses because triggered up-states
mainly consist of self-generated recurrent cortical activity. After
classifying VSD trials by state using the simultaneous LFP record-
ings, we compared the spatiotemporal properties of the sensory
responses and their interactions across the entire barrel field
between up- and down-states.

In the up-state, whisker deflections triggered a distributed
depolarization which was smaller in amplitude and area than that
observed in the down-state, but nonetheless involved most of
the barrel field. The spatial distribution of whisker-driven exci-
tation during the up-state was characterized by (1) fewer barrel
columns, (2) lower response density (smaller number of pixels per
responding barrel column) and (3) asymmetrical amplitude dis-
tribution across the barrel field with higher response amplitude
along the row-axis toward higher numbered arcs, with no match-
ing change in response density. Although fewer columns showed
high-amplitude responses in the up-state, using barrel-column
averaged VSD signals we found that most columns participated
in the responses in both states. As expected, this meant that we
observed little change in number of participating columns when
comparing one and two-whisker responses. In the up-state, but
not in the down-state, response depolarization was followed by a
spatially distributed hyperpolarizing response, which propagated
along the arc-axis, preferentially toward the A row. Finally, we
examined the state-dependence of the extensively studied phe-
nomenon of cross-whisker suppression. At a 100 ms deflection
interval, we found that suppression showed an asymmetry similar
to that of the up-state depolarizing response which was apparently
independent of the relative locations of stimulated whiskers. This
asymmetry was not dependent on network state.
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FIGURE 9 | Polarity of hyperpolarizing response observed in the

up-state. (A) Examples of barrel-column maps from individual experiments
showing the level of hyperpolarizing VSD signal at the indicated time after a
stimulus, and the corresponding VSD traces. Principal barrel column
corresponding to the deflected whisker is outlined with a thick yellow
square. (B) Population average of the direction of inhibition. Angles are
measured from the barrel corresponding to the first stimulated whisker.
Before averaging, data from individual experiments were normalized to the
hyperpolarizing level observerd in the stimulated whisker’s barrel-column
trace. The gray circle has a radius of 1 on this scale.

THE SLOW OSCILLATION
The dynamic cellular relationships in cortex and thalamus dur-
ing the slow oscillation have been extensively characterized
with single and dual intracellular recordings in vivo (Steriade
et al., 1993a; Amzica and Steriade, 1995; Contreras and Steriade,
1995; Contreras et al., 1996) and in cortical (Sanchez-Vives and
McCormick, 2000) and thalamic (Blethyn et al., 2006) slices
in vitro. It is known that in the up-state most cortical and thalamic
cells are depolarized by ∼10–20 mV relative to the down-state,
that they receive barrages of synaptic input in which excitatory
and inhibitory drive are balanced (Compte et al., 2003; Shu et al.,

2003a; Haider et al., 2006), and that the power in the gamma band
(20–50 Hz) of intracellular Vm and extracellularly recorded LFP
activity is increased (Steriade et al., 1996). This high-frequency
activity is synchronous only over short distances (Steriade and
Amzica, 1996), in contrast to the long-range synchrony of the
slow oscillations (Amzica and Steriade, 1995; Destexhe et al.,
1999). Both experimental and modeling studies have shown that
the input resistance of cortical cells is lowered by the increased
synaptic drive during depolarized states (Destexhe et al., 2003;
Shu et al., 2003b; Sachdev et al., 2004 but see Waters and
Helmchen, 2006).

THE SLOW OSCILLATION AND EVOKED RESPONSES
The effect on evoked responses of ongoing transitions between
up- and down-states has been studied with intracellular and
whole-cell patch recordings and has led to conflicting results.
Single cell responses to electrical stimulation in cat motor cor-
tex (Timofeev et al., 1996; Rosanova and Timofeev, 2005), to
visual stimulation in cat visual cortex (Azouz and Gray, 1999)
and to electrical stimulation of white matter in slices in vitro
(Shu et al., 2003b) have shown a higher spike output probability
during up-states compared to down-states. Conversely, responses
to whisker deflection in mouse (Petersen et al., 2003b) and rat
(Sachdev et al., 2004; Hasenstaub et al., 2007) barrel cortex have
shown a decreased firing probability. While depolarization during
the up-state brings neurons closer to firing threshold, seemingly
increasing the probability of spike firing, decreases in input resis-
tance and increases in spike threshold (Sachdev et al., 2004)
have the opposite effect, decreasing spike probability; thus, the
issue remains unresolved. Sensory responsiveness of single cells
has also been studied in the activated state that results from
brainstem electrical stimulation (Timofeev et al., 1996; Castro-
Alamancos, 2004; Aguilar and Castro-Alamancos, 2005). In this
activated state, cortical cells are even more depolarized than dur-
ing the up-state of the slow oscillation, and the decrease in input
resistance caused by the barrage of synaptic input may be par-
tially counterbalanced by an increase in input resistance resulting
from the closing of potassium channels by muscarinic action
of acetylcholine (Curro Dossi et al., 1991; Steriade et al., 1991;
McCormick, 1992).

We observed that some down-state sensory responses
appeared to trigger an up-state transition and demonstrated that
this was in fact the case. For this analysis we assumed no causal
link between sensory stimuli and state transitions, and simply
quantified various interval lengths. Because of the variability
across preparations, it was necessary to use normalized interval
lengths (Figure 2D). We observed that, in a given preparation,
considering all LFPs aligned on up-to-down transitions, as time
moves forward the first events encountered are stimuli which are
not associated with a down-to-up transition; these are followed
later in time by stimuli which are associated with a down-to-up
transition; and finally these are followed in time by spontaneous
down-to-up transitions. In other words, with reference to the
examples depicted in Figure 2C, the “green” intervals in a given
preparation were consistently shorter than the “blue” intervals,
which in turn were consistently shorter than the “red” intervals.
Our interpretation of this is as follows: during a down-state, an
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FIGURE 10 | Spatial pattern of suppression. (A) Example experiment.
Barrel maps of suppression (TR). First whisker’s barrel: black square.
Second whisker’s barrel: yellow square. Polar plot at right compares
angular direction of suppression between up- and down-states. The
outer radius of the polar plot corresponds to a TR of 1, indicating no

suppression (see Results). (B) Population measurements of suppression
by angle (TR). Left: up-state vs down-state, angles aligned to whisker 1.
Right: up-state vs down-state, angles aligned to barrel field. The outer radius
of the polar plot corresponds to a TR of 1, indicating no suppression
(see Results).

underlying time-dependent process proceeds which will eventu-
ally result in the next up-state. When this process has reached a
certain point, it can be accelerated by a sensory stimulus. When
the process reaches a certain further point, even in the absence of
a stimulus, the up-state will occur spontaneously. Such a process
has been shown in detail in slices of entorhinal cortex and further
confirmed by a large scale network model (Cunningham et al.,
2006).

STATE DEPENDENCE: DEPOLARIZING RESPONSES
The responses during down-states were larger in amplitude and
spatial extent than those during up-states. However, the responses
during up-states were not limited to the activated barrel and
spread over the majority of the barrel field. This result is in
contrast with a previous VSD study in vivo comparing whisker
responses during up- and down-states under anesthesia, in which
responses during up-states did not spread and remained con-
fined within the principal barrel (Petersen et al., 2003b). The large

area of the whisker-evoked depolarization during up-states that
we report here was nevertheless significantly smaller than during
down-states. More importantly, the depolarizing responses dur-
ing up-states were much sparser than during down-states, i.e.,
fewer pixels responded within each barrel column. Because the
density of active pixels was higher in the principal barrel, it is
likely that the use of strong spatial filtering may create an image
of responses confined to the principal barrel. We also note the
possibility that our single-trial responses may have been tightly
focused in variable locations, resulting in an apparent sparse
and distributed response in the multitrial average. The results
obtained with other methods in this system including intracel-
lular recordings (Moore and Nelson, 1998), and current source
density probes (Roy et al., 2011) would seem to contradict this
possibility, however.

An important methodological difference between our results
and the study of Petersen et al. (2003b) is our separation of
responses during down-states according to whether an up-state
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was triggered or not. Our data show that triggered up-states will
slowly and consistently propagate throughout the barrel cortex
creating a long-lasting response (see Figure 4) with sustained
neuronal discharge (see Figure 3). In contrast, responses during
down-states (that do not trigger an up-state), although simi-
larly widespread in space, are more transient in time. This is
an important distinction because the transitions between up-
and down-states are all-or-none and involve recurrent activity
that is independent of the response to the whisker deflec-
tion. Thus, the most informative basis for comparison with
the responses during the up-state is provided by the subset of
down-state responses which are not associated with an up-state
transition (see Figure 4 for a comparison of the three types of
responses).

A recent VSD imaging study in the mouse in vivo (Ferezou
et al., 2006) extended our understanding of the state-dependence
of sensory responses by including recordings during states of
quiet waking and active exploration. Using a combination of VSD
imaging and whole cell recording in mouse in vivo, the study
of Ferezou et al. (2006) showed that, surprisingly, responses to
a passive whisker deflection were longer-lasting and more spa-
tially widespread during quiet waking than during isoflurane
anesthesia (∼90 ms vs ∼40 ms on average). Furthermore, the
same widespread pattern of activation was observed during active
exploration only when the whisker deflection was caused by
self-generated movement. In contrast, small passive deflections
during active exploration triggered spatially restricted responses.
In the 2006 study, Ferezou et al. did not distinguish up- and
down-states during anesthesia; however, we note that isoflurane is
less often associated with clear slow oscillations. Furthermore, the
most important finding of that study was the widespread depolar-
ization observed in whisker responses during active exploration.
This corresponds well with the widespread distribution which we
observed during up-states and strongly suggests that up-states
bear some similarity to the active waking state.

In agreement with the Ferezou et al. (2006) study discussed
above, extracellular studies in chronically implanted rats per-
forming a discrimination task (Krupa et al., 2004) showed that
the spike output due to active whisking during discrimination
is prolonged (over 200 ms in all cortical layers) compared with
the few millisecond brief discharges caused by a passive whisker
deflection presented during the task when the rat is not mov-
ing its whiskers. However, in contrast with VSD results (Petersen
et al., 2003a,b; Ferezou et al., 2006; our results) brief responses
to passive whisker stimulation were similar to those obtained
during anesthesia (Krupa et al., 2004). Discounting possible
species differences (rat vs. mouse), these apparent discrepan-
cies could be simply due to the fact that the VSD signal reflects
subthreshold depolarization and does not provide information
about which areas of cortex are actually spiking and for how
long. Therefore, the studies of single neurons, together with the
VSD results discussed above and our own results shown here
and elsewhere (Civillico and Contreras, 2005, 2006), demon-
strate that, regardless of brain state, sensory-driven spiking is
superimposed on a larger basin of subthreshold depolarization.
Studies using combinations of extracellular spike recordings over
large areas of barrel cortex are necessary to fully understand the

dynamic spatiotemporal transformation between synaptic inputs
and intrinsic dendritic depolarization on one hand and spike
output on the other.

An earlier study of state dependence of visual responses using
VSDs in the anesthetized cat primary visual cortex (Arieli et al.,
1996) found that most of the trial-to-trial variability was due
to the initial state, which was defined as a single 3.5 ms frame
of the optical recording, and that a “template” average response
added to the initial state provided a good prediction of the whole
response in each trial. Therefore, that study showed that if the
sensory response is small enough the spatiotemporal dynamics of
the brain is entirely dominated by the large fluctuations caused by
anesthesia.

STATE DEPENDENCE: HYPERPOLARIZING RESPONSES
There is a remarkable correspondence between the barrel-
column-averaged VSD signals in the up- and down-states
described here, and the averaged intracellular PSPs recorded at
corresponding resting potentials in the supragranular and gran-
ular layers of rat barrel cortex (Wilent and Contreras, 2004, their
Figures 5 and 8). This is expected given that the resting poten-
tial of all cortical cells is depolarized by 10–20 mV in the up-state
(Steriade et al., 1993a). Derdikman et al. (2003) reported a hyper-
polarizing response following a depolarizing response to whisker
deflection and attributed this observation to the use of the blue
dye RH1692. Contrary to their interpretation, we associate the
same observation with the depolarization of cortical cells in the
up-state. The shift to more depolarized Vms decreases the driv-
ing force for excitatory inputs and increases the driving force
for inhibitory inputs. Thus, we suggest that the presence of the
hyperpolarizing “tail” in the VSD signal is dependent on the
depolarization of cortical cells, and therefore on the Vm dur-
ing the up- or down-state (or the general level of anesthesia in
a less bistable state). Sachdev et al. (2004) demonstrated these
changes in driving force using intracellular recordings, and we
have characterized the population spatiotemporal effect on the
supragranular network in the present work. Furthermore, we
did not observe that the presence of hyperpolarization was asso-
ciated with the nature of the stimulus, since it was observed
in response to both piezoelectric whisker deflections, as well as
deflections of single whiskers with directed air puffs. Thus visual-
ization of hyperpolarization did and does not require the use of
an RH169x dye, but simply that the preparation be in the right
state, as determined during the experiment by concurrent LFP
recordings.

An open question of great importance and related to the above
discussion is whether such strong and widespread hyperpolariza-
tion occurs in the active whisking animal since the discharges of
single neurons in all layers are very prolonged (>200 ms, Krupa
et al., 2004) and the available VSD studies during active whisking
did not report hyperpolarizing responses (Ferezou et al., 2006).

DISTRIBUTED REPRESENTATION OF SENSORY RESPONSES
Responses during up-states had a smaller depolarizing footprint
despite the fact that neurons were presumably closer to spiking
threshold. If the spread of activation depends only on spike prob-
ability, defined as proximity to spike threshold, it is reasonable to
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predict a much more widespread activation during the up-state.
Since the issue of neuronal responsiveness during up-states is not
resolved (see above), we suggest that the large inhibition that
accompanies responses in the up-state plays an important role in
shaping the spatiotemporal properties of whisker responses.

Our data showing a large spread of responses during up-states
agrees with the widespread activation recorded with VSDs in
rodent barrel cortex under isoflurane anesthesia, during quiet
waking and during active exploration (Ferezou et al., 2006, 2007).
The observation that, even during active tactile exploration, sen-
sory responses initiate in the corresponding principal barrel and
then spread over large portions of the barrel cortex (Ferezou
et al., 2006) is key to the concept that the information carried by
whisker deflections is highly distributed and represented by com-
plex spatiotemporal patterns of activation. How these distributed
spatiotemporal patterns in cortical layers 2/3 are decoded into
meaningful images of the world is a fundamental open question
in neuroscience.

The first mapping of sensory responses in mammalian neo-
cortex using VSDs was done in rat somatosensory and visual
cortex and showed widespread activation throughout the cortex
in response to small stimuli (Orbach et al., 1985). Noticeably, in
that study, responses to two distant whiskers were clearly seg-
regated on the surface of the barrel cortex as recorded by the
photodiode array, but responses in visual cortex spread over the
entire imaged area. Large spread of activation by small stimuli was
subsequently shown using VSDs in the monkey primary visual
cortex (Grinvald et al., 1994). In the primary visual cortex of the
cat, waves of supra and subthreshold activity are evoked by local
visual stimuli (Bringuier et al., 1999; Jancke et al., 2004; Benucci
et al., 2007) and full screen drifting gratings generate widespread
responses that contain information about both specific and non-
specific properties of the stimulus (Sharon and Grinvald, 2002).
A recent VSD study in cat V1 (Sharon et al., 2007) showed that
the response to small drifting gratings of varying orientation
consisted of a large activated area, the cortical response field,
characterized by an orientation-independent plateau of activity
on top of which one to three orientation-dependent peaks of
activity emerged. Importantly, spiking activity was only observed
at the peaks of activation. Furthermore, such results have been
extended to the orientation domain (Chavane et al., 2011). Thus,
in the visual system, as in barrel cortex, sparse and distributed
firing is superimposed on a widespread basin of depolarization.
Furthermore, as in the present study, a large area of cortex is
“biased” in its integrative properties due to the presence of this
large subthreshold plateau of depolarization.

In visual cortex, imaging studies with intrinsic signals
(Grinvald et al., 1986) or VSDs (Bonhoeffer and Grinvald, 1991;
Bonhoeffer et al., 1995; Maldonado et al., 1997) revealed several
superimposed maps including retinotopy, orientation, and spa-
tial frequency selectivity. In contrast, imaging studies in barrel
cortex have only focused on the spatial location of the stimu-
lus; stimulus properties such as direction or frequency of whisker
deflection have not been systematically studied. However, extra-
cellular studies in rat barrel cortex have provided some evidence
for the existence of such maps, although the spatial resolution of
the resulting maps is a function of the number of cells in the study

and is inherently low even with a large number of recordings.
One study suggested the presence of direction-selective verti-
cal domains within each barrel akin to orientation columns in
visual cortex (Andermann and Moore, 2006), while another study
provided evidence of a putative map of frequency preference
with isofrequency columns extending along the representation of
arcs (Andermann et al., 2004). In the auditory system, the very
existence of tonotopic maps is a matter of debate (reviewed in
Schreiner and Winer, 2007).

The distributed nature of responses to sensory stimuli com-
plements the observed broad tuning of individual neurons to
stimulus properties such as location. Together, these two classes
of observations imply that large numbers of neurons respond
to many stimulus parameters. However, response properties vary
with cell type and laminar location, two parameters not accessi-
ble to VSD imaging. Therefore, generating models of information
encoding by distributed activity which satisfy both optical and
single-cell electrophysiological data is a phenomenally complex
task.

The large spread of activation is in agreement with the large
receptive fields (RFs) of single cells in L2/3 of barrel cortex (Moore
and Nelson, 1998; Zhu and Connors, 1999; Kwegyir-Afful et al.,
2005; Roy et al., 2011). However, while the widespread propa-
gation of activation in L2/3 is attributed to the long horizontal
connections in L2/3 (Laaris et al., 2000; Laaris and Keller, 2002;
Petersen et al., 2003a), the large RFs in barrel cortex are in large
part due to subthalamic mechanisms (Timofeeva et al., 2004).
Thus, lesions of the spinal trigeminal nucleus (pars intermedia)
render neurons in the principal nucleus and their targets in VPm
monowhisker-responsive. How the RFs of individual cells relate
to the spread of subthreshold activation demonstrated with VSDs
is unknown and will require extremely difficult experimental
studies, if not major advances in experimental technologies and
analytical methods.

POOLING ALGORITHMS
A key aspect of our study is that the spatial analysis is based
on columnar counts rather than single pixels. We binned pix-
els over the outline of columns based on L4 cytochrome oxi-
dase staining. Given the sparse yet widespread nature of the
response during the up-state, we reasoned that a more accu-
rate description of the response was to count the columns with
activity above a significance threshold. In doing so, we empha-
size the information carried by individual columns rather than
individual cells. Neurons with similar selectivity are generally
organized in vertical columns spanning the cortical depth (Rose
and Mountcastle, 1954; Mountcastle, 1957, 1997). One appealing
solution to the problem of decoding whisker position is the use
of pooling of neuronal responses according to spatial and tempo-
ral rules (Darian-Smith et al., 1973; Zohary et al., 1994). Using
an information-theoretic formalism to analyze single whisker
responses recorded from many neurons simultaneously, Panzeri
et al. (2003) concluded that pooling can be an effective strategy to
decode stimulus location when restricted to individual columns.
Pooling conserves all the information conveyed by an intracolum-
nar neuronal population (Panzeri et al., 2003) with very little
redundancy due to the very low firing rates (Petersen et al., 2002)
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and allows for summation of activity at the postsynaptic target.
In this schema, the most relevant attribute of the firing neuron is
its columnar location. The present study is the first to provide a
quantification of whisker responses based on column counts and
demonstrate the largely distributed nature of responses both in
up and down-states.

ASYMMETRIES
Excitation in barrel cortex has been shown to propagate preferen-
tially along the rows for both spontaneous and sensory evoked
activity, and was observed to be similar during anesthesia and
during quiet waking (Petersen et al., 2003a). Here we report
an additional asymmetry in the distribution of depolarization
present only during the up-state, consisting of a preferential
propagation along the rows toward higher numbered arcs. The
asymmetry in whisker-evoked response propagation has been
attributed to a bias in the large axonal arborizations of L2/3
neurons along the row axis (Petersen et al., 2003b). Such long
range intrinsic connections characterize L2/3 in all sensory cor-
tices, including visual (Fisken et al., 1975; Gilbert and Wiesel,
1979; Rockland and Lund, 1982; Martin and Whitteridge, 1984),
auditory (Read et al., 2001; Atencio and Schreiner, 2010) and
somatosensory (Keller and Carlson, 1999; Lubke and Feldmeyer,
2007). Biases in horizontal connectivity have been shown in
visual cortex where they support feature-specific connectivity
between distant neurons (Ts’o et al., 1986; Ts’o and Gilbert, 1988).
Interestingly, in similarity with our results, in the visual cor-
tex there are also clear asymmetries in the spread of activation
caused by a small stimulus. For example, in cat visual cortex the
spread of activation is approximately two-fold larger along the
axis orthogonal to the ocular dominance columns (Grinvald et al.,

1994), though it is important to note that this effect may orig-
inate from anisotropic retinotopy (difference in horizontal and
vertical scales), in which case it is not a property of cortical pro-
cessing per se. The idea that increased inhibition in the up-state
could sculpt cortical response properties finds further support in
a study (Wörgötter et al., 1998) which found sharper RFs in cat
V1 during desynchronized EEG epochs, analogous to the up-state
of the slow oscillation.

Because the resting level of cells in the up-state is likely to be
closer to that in the awake animal, we suggest that the polarities
in signal propagation which we observe in the up-state could play
a computational role in the behaving animal. We propose that
such consistent asymmetry could participate in the processing of
whisker-evoked activity by introducing a bias toward the smaller
whiskers at the front of the snout. Our results demonstrate the
critical importance of ongoing network activity on the dynamics
of sensory responses and their integration. Finally, similarly to the
asymmetric suppression shown in our results, in cat visual cortex
VSD imaging has shown that suppression by surround stimuli is
stronger for stimuli with matched orientation than for those with
orthogonal orientation (Grinvald et al., 1994). The functional sig-
nificance of such asymmetries for higher-level processing remains
largely unknown.
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In principle, cortico-cortical communication dynamics is simple: neurons in one cortical
area communicate by sending action potentials that release glutamate and excite their
target neurons in other cortical areas. In practice, knowledge about cortico-cortical
communication dynamics is minute. One reason is that no current technique can capture
the fast spatio-temporal cortico-cortical evolution of action potential transmission and
membrane conductances with sufficient spatial resolution. A combination of optogenetics
and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical
dynamics of specific neurons and their targets, but does not reveal how the dynamics
evolves under natural conditions. Spontaneous ongoing action potentials also spread
across cortical areas and are difficult to separate from structured evoked and intrinsic
brain activity such as thinking. At a certain state of evolution, the dynamics may engage
larger populations of neurons to drive the brain to decisions, percepts and behaviors.
For example, successfully evolving dynamics to sensory transients can appear at the
mesoscopic scale revealing how the transient is perceived. As a consequence of these
methodological and conceptual difficulties, studies in this field comprise a wide range of
computational models, large-scale measurements (e.g., by MEG, EEG), and a combination
of invasive measurements in animal experiments. Further obstacles and challenges of
studying cortico-cortical communication dynamics are outlined in this critical review.

Keywords: spontaneous activity, synaptic transmission, membrane potential dynamics, spiking dynamics, cortical
areas

BACKGROUND AND SCOPE
When one speaks of cortico-cortical connections, one usually
means that axons start in one cortical area and end in another
cortical area. These cortico-cortical axons are excitatory, releas-
ing glutamate at their terminals (Ottersen and Storm-Mathisen,
1986). Neurons communicate by sending an action potential or a
sequence of action potentials, r(t), down their axons. By cortico-
cortical communication, we mean that the r(t) travels from one
neuron in one cortical area, area A, to target neurons in another
cortical area, area B. Area A often has different sets of output
neurons, such that set 1 send the r(t)s produced to area B, set 2
to area C and so on. In this way the r(t)s produced by the neurons
in area A are communicated to target neurons in several other
areas (Felleman and van Essen, 1991; Scannell and Young, 1993).
Each area has a unique pattern of connections (Passingham et al.,
2002). The word communicate does not imply that the neurons
in one area send coded messages to their target neurons; it simply
means that the neurons send action potentials to the pre-synaptic
terminals on the target neurons. As cortico-cortical neurons are
excitatory, the glutamate release increases the currents flowing
through the membranes of the target neurons, dVm(t)/dt, such
that this term becomes net-positive, no matter whether the target
neurons are excitatory or inhibitory. Thus

r(t)area A ⇒ dVm(t)area B/dt ↑ (1)

in which Vm(t) is the membrane potential. Note that for each pre-
synaptic site, the cortico-cortical communication is transmission
over one synaptic cleft only. The increased excitation of the target
neurons may or may not lead to action potentials in area B. The
point is that the communication of excitation to target neurons
in area B, as a minimum, changes the membrane dynamics of the
target neurons in area B, which may influence the further spiking
in area B.

As neurons in one area communicate r(t)s to several areas,
one could imagine that dVm(t)/dt would increase in several
cortical areas when the r(t)s are transmitted. Moreover, as some
neurons in the target areas may fire r(t)s as a consequence of the
communication, these neurons might excite other neurons within
the target area, of which some might communicate to another set
of target areas. This should evoke dVm(t)/dt increases in yet other
areas. By cortico-cortical communication dynamics we mean the
spatial and temporal evolution of r(t)s and dVm(t)/dt between
neurons in different cortical areas. If we could measure how such
cortico-cortical communications evolve, then we may understand
the mechanisms that ultimately drive the cerebral cortex and the
brain to particular percepts and behaviors. Thus we would have
captured essential traits of how the brain works in a relevant time
scale and relevant spatial scale.

Despite the theoretical simplicity, experimental studies of
cortico-cortical communication dynamics meet many and
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complicated obstacles. First, as the relevant time scale is 0.5 ms
or less, many methods based on slower brain signals are automat-
ically excluded, for example blood oxygen level detection (BOLD)
responses, intrinsic optical signals, regional cerebral blood flow
and metabolism and other methods based on vascular kinetics
and extracellular diffusion over larger distances positron emission
tomography (PET). Second, the relevant spatial scale ranges from
single dendrites to the whole cortex. Current methods with suffi-
cient time resolution are in practical use limited to certain spatial
scales. At a small spatial scale, voltage sensitive dye recordings
can capture events at the single dendrite and single neuron scale
(Canepari et al., 2010; Fisher and Salzberg, 2010). At a large spatial
scale, magnetoencephalography (MEG) captures events over the
whole cortex, albeit with some limitations. It is a major theoretical
and practical challenge to combine these methods. Furthermore,
in vivo, both methods are largely insensitive to action potentials
(Hämäläinen et al., 1993; Petersen et al., 2003a; Grinvald and
Hildseheim, 2004). Action potentials can be captured easily with
electrodes near the axon hillock; but so far there is no method by
which on can capture all action potentials in the brain. Ca2+ sen-
sitive dyes can be used to localize neurons that had communicated
action potentials, but current dyes are too slow to capture the
time when each potential is created (Grienberger and Konnerth,
2012). In a prominent recent proposal, neuroscientists describe
new (nano-) technologies that may allow capturing every single
action potential in the cortex of the mouse within the next 15
years (Alivisatos et al., 2012).

A test of cortico-cortical transmission of r(t) from one cortical
area to another requires two electrodes. One electrode, very
close to or into the transmitting neuron, recording the action
potentials transmitted and one electrode into one of the target
neurons in the receiving area to record the increase in dVm(t)/dt
and eventual subsequent action potentials. This monosynaptic
transmission then in most cases should take a few ms until the
dVm(t)/dt increases. One problem with this strategy is that the
transmitting axon most likely makes synapses on the dendrites
of the target neurons. Depending on where on the dendrites the
transmitter opens the ion channels, it may take up to 5–6 ms
until the dendritic dVm(t)/dt increase is detected at the soma
where the electrode is sampling. This is because the dendritic
conduction velocities are around 0.1 mm ms−1 (Nicoll et al.,
1993; Stuart and Spruston, 1998). Actually there might not even
be a detectable dVm(t)/dt increase, as this could be shunted
out by prevailing or concomitant inhibitory conductances and
conductances provided by the many other (in the order of 1000
or more) neurons that make synapses on the target neuron.
Now, the chance of putting a patch electrode into precisely one
of the dendrites that receive the glutamate from the transmit-
ting neuron is very small indeed. One may object that sub-
threshold excitation of dendrites does not matter anyway, only
if the target neurons spike they can change the dynamics. This
does not seem to be the case, as sub-threshold dVm(t)/dt increases
very well may influence the subsequent dynamics of a neuron
population both in single cortical neurons and at the meso-
scopic neuron network scale. Indeed such dVm(t)/dt increases
can be induced by neurons in other cortical areas (Roland et al.,
2006; Ahmed et al., 2008; Harvey et al., 2009; Niell and Stryker,

2010; Roland, 2010; Harvey and Roland, 2013; Zagha et al.,
2013).

Electrical stimulation and later, cortical micro-stimulation has
been used widely to examine cortico-cortical communications.
However, unless the micro-stimulation is done intracellularly, a
small population of neurons is usually excited. Furthermore, even
moderate stimulation currents evoke inhibition in the target area,
most likely from engaging inhibitory neurons in the target area
(Kara et al., 2002; Logothetis et al., 2010). It is possible to detect
monosynaptic transmission between two areas by antidromic
electrical stimulation of axons, for example those axons running
from the primary visual area 17 to area middle temporal lobe
visual area (MT)/V5, for which the time of transmission is 2 ms
(Movshon and Newsome, 1996). This is an elegant technique,
in which the synaptic transmission is checked by colliding the
antidromic action potential with a sensory evoked orthodromic
action potential, giving undoubtedly valuable results. However,
even this method does not give any further information on the
evolving dynamics associated with natural use of this commu-
nication. Similarly, although there now are powerful methods to
localize the group of neurons that connect monosynaptically to a
neuron of interest (Wickersham et al., 2007; Wall et al., 2010), the
mere proof of the monosynaptic connection cannot predict how
the dVm(t)/dt and inter-area spike dynamics will evolve under
natural circumstances. Furthermore, although it is possible to
stimulate neurons electrically by micro-stimulation, and although
it is possible to stimulate genetically modified neurons by laser
beam pulses, it is the naturally evolving r(t) and membrane
potential spatio-temporal dynamics that is in the focus when
scientists want to understand how the cerebral cortex creates
perception and behavior (Lim et al., 2012). Identification of
target neurons, measurements of conduction velocities and other
reductionist approaches still might be very helpful in constraining
the interpretation of cortico-cortical dynamics under natural
conditions.

The study of cortico-cortical communication dynamics would
be so much easier if only a certain spatial scale mattered. As
one could imagine, the dynamics must at a certain state of its
evolution engage larger populations of cortical neurons, as only
larger populations may drive the brain to a certain percept or
towards a certain behavior. Consequently, all dynamics of the r(t)
and dVm(t)/dt that matters may occur at the (mesoscopic) scale
of neuron populations. Unfortunately, the r(t) of a single neuron
may change also the r(t) and dVm(t)/dt dynamics of larger neu-
ron populations. Consequently, it seems that one must keep track
of every neuron to understand the evolution of cortico-cortical
communication dynamics. This seems so in both experiments and
reasonable realistic models of the brain (Houweling and Brecht,
2008; Izhikevich and Edelman, 2008; London et al., 2010).

SPONTANEOUS AND INTRINSIC COMMUNICATION
DYNAMICS—EXPERIMENTS AND COMPUTATIONAL
MODELING
Neurons sending action potentials to another cortical area
increase the dVm(t)/dt of the target neurons, no matter what
caused the action potentials in the first place (Roland, 2010).
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For example, in the sleeping and anesthetized brain, an up-state
in one area may spread to other areas (Figure 1). Up-states
typically lasts 1 s or more, during which period the Vm(t) is
around −50 mV and accompanied by an increased number of
action potentials (Steriade et al., 1993; Paré et al., 1998; Destexhe
et al., 1999; Petersen et al., 2003b). In the anesthetized and the
awake brain, many action potentials are not related to exter-
nal sensory events (Destexhe, 2011). Traditionally, this is called
“spontaneous ongoing activity”, as the sources of this activity are
not known. This intrinsic activity is also communicated between
cortical areas (Arieli et al., 1995; Lippert et al., 2007; Xu et al.,
2007).

To get a full understanding on how dVm(t)/dt and spiking
dynamics evolve among the cortical areas, one must know the
sources and the targets. In principle, this may be possible in
studies of anesthetized brains, where it is sometimes possible to
capture the population of neurons bifurcating into an up-state
(Figure 1). Then one can follow how the up-state spreads to
populations of neurons in adjacent areas (Lilly, 1954; Lippert
et al., 2007; Xu et al., 2007; Huang et al., 2010; Gao et al., 2012;
Zheng and Yao, 2012). In contrast to sensory evoked activity,
the spontaneous up-states may spread from different origins
in the cortex. The spread out from the initiation site is often
in the form of wave fronts of net-excitation traveling over the
cortex (0.001–0.2 mm ms−1), sometimes the waves have spiral
character (Huang et al., 2010). The wide range in the veloc-
ity of propagation indicates that the mechanisms behind the
spread can be monosynaptic at times (Figure 1) and polysynap-
tic at other times, or combinations of mono- and polysynaptic
progressions.

In the awake state, not surprisingly, there may be sponta-
neous cortico-cortical communications of r(t)s in sensory cortical
areas and in motor areas although the animal remains relaxed,
immobile, and does not receive any external sensory stimuli
(Ferezou et al., 2006, 2007; Han et al., 2008; Zagha et al., 2013).
Surprisingly even in the awake state, dVm(t)/dt increases may also
move as wave fronts from sensory to motor areas or vice versa,
or between visual areas similarly to the spontaneous up-states.
Again the velocity of this cortical propagation is highly variable.

The direction of propagation in some cases however mimicks
that of sensory evoked dVm(t)/dt increases or motor associated
(whisking) dVm(t)/dt increases (Ferezou et al., 2006, 2007).
All examples of spontaneous propagating dVm(t)/dt increases
between cortical areas were captured by simultaneous measure-
ments of changes in the membrane potentials of populations of
neurons in the upper layers of cortex with voltage sensitive dyes.
The dye signal change has a near linear relationship to the change
in membrane voltage, recorded intra-cellularly in vivo from cells
in superficial cortical layers (Petersen et al., 2003a; Ferezou et al.,
2006; Berger et al., 2007). Furthermore, according to a recent
estimate, approximately 90–95% of the dye signal reflects changes
in synaptic activity (Berger et al., 2007). Given these premises,
Eriksson et al. (2008) showed that significant increases in the
temporal derivative of the dye signal in vivo, dVSD(t)/dt, can
be interpreted as net excitation of the stained membranes and
significant deceases as net inhibitions. This means that the inves-
tigators in these studies most likely observed the spatio-temporal
dynamics of net-excitations of membranes in the upper layers
of cortex traveling between cortical areas. The net-excitations
could be indirect indications that r(t)s from one area were com-
municated to the target area(s). However, the sources of these
communications are not known, as the dye signal recordings were
not paired with simultaneous r(t) recordings. Even in the case
where one directly observes that the neurons bifurcate into an up-
state at a particular spot from where the depolarization spreads
out, one must have laminar electrodes at the spot to find the
source of increased spiking (which of course could be in the
spot itself). Finding the spiking source of spontaneous activity
that propagates between cortical areas may in practice involve
an electrode density that is unrealistic. See also Chicharro and
Ledberg (2012) for theoretical limitations of interpreting causal
influences in studies of temporal dynamics of cortico-cortical
communications.

Faced with the practical problems, the fact that the cortex
has a rich and diverse spontaneous and intrinsic activity, and
the microscopic likelihood of finding the sources of the r(t)s,
neuroscientists have thought of ways in which the sources of the
dynamics can be controlled. There are basically two strategies:

FIGURE 1 | Upstate in areas SSy and 21 spreading to lower visual areas 18 and 17 in the ferret. The voltage sensitive dye signal, reflecting the membrane
potential at the mesoscopic scale, propagates at time 249.8–262 ms and again 317.9–340 ms from SSY to the border between areas 17 and 18 (from Roland,
2010, by permission).
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computational models, and experimenter-controlled natural sen-
sory perturbations of the cortex network.

CURRENT STATE IN THE COMPUTATIONAL MODELING OF
NEURAL SIGNAL PROPAGATION
Tremendous advances in IT hardware have made it possible to
model neural networks of a scale approaching that in the real
brain. Realistic computational models of the cortical neuron
networks have the great advantage that all sources, synapses,
and target neurons are known. Consequently the fundamental
variables r(t) and dVm(t)/dt can be observed in any neuron
and hence a detailed description of the evolving communication
dynamics should be possible. With an estimated average conver-
gence and divergence rate of cortical neurons in the order of 104–
105 inputs and outputs (Braitenberg and Schüz, 1998), realistic
models even of small cortical patches require the inclusion of
several 10,000s of neurons (Potjans and Diesmann, 2012). Hard-
ware progress has allowed modeling of such large populations
with some degree of realism in the local dynamics, that is, as
biophysical or spiking neurons. For example, Izhikevich and
Edelman (2008) modeled a population of 106 phenomenological
spiking neurons and linked them in a multi-scale fashion by
almost half a billion synapses, combining long-range connec-
tions estimated from diffusion imaging of the human brain at
the large-scale with the “canonical” microcircuit from cat visual
cortex (Binzegger et al., 2004) at the local scale. After adjustment
by spike-time dependent plasticity, the network showed self-
sustained activity in the absence of external inputs, which activity
was organized into different dominant frequencies within differ-
ent regions and layers. Moreover, the model exhibited propagating
waves of excitation and simulated fMRI signals showing slow
oscillations with multiple anticorrelated modules, similar to real
data. More recently, Potjans and Diesmann (2012) presented a
full-scale model of the canonical cortical microcircuit, comprising
80,000 spiking neurons and 0.3 billion synapses, which produced
spontaneous asynchronous irregular activity and cell-type specific
firing rates in agreement with in vivo recordings in awake animals.
On a larger scale, the Human Brain Project (Markram, 2012)1

is now under way and aims to build a model of the whole
brain based on biophysical neurons, that is, including channels
characteristics and other features at the molecular scale. While the
promise of this enormous modeling effort is that multi-faceted
dynamic phenomena may be found at multiple scales, a deeper
understanding of such phenomena may also be hampered by the
model complexity.

Alternatively, if the main goal of a neural network model is to
understand the fundamental relationship between network topo-
logic features and propagation of excitation, smaller models and
more simplified assumptions about the local nodes may suffice.
For instance, it can be shown with multi-scale models as well as
simple excitable nodes (akin to cellular automata) that topological
features of brain networks strongly shape brain dynamics. For
instance, modular and hub features of biological neural networks
induce a modular and target wave-like propagation of excita-
tion, respectively (Zhou et al., 2006; Müller-Linow et al., 2008;

1www.humanbrainproject.eu

Lohmann et al., 2010). “Nodes” in these models correspond to
neural elements ranging in scope from individual cells to large-
scale populations (e.g., cortical areas).

The question of how the topology of structural connections
shapes cortical communication dynamics is addressed by sev-
eral papers of the Special Research Topic “Cortico-cortical com-
munication dynamics” (Roland et al., 2014). The references to
these contributions are underlined. For instance, Mišić et al.
(2011) demonstrate through the analysis of functional connec-
tivity derived from EEG data, that the variability of signals at
different network nodes (as assessed by the measure of multi-
scale entropy) depends on the placement of the nodes within
the network. In biological neural networks, which have a non-
regular and non-random organization (Sporns et al., 2004), not
all nodes are created equal. In particular, some nodes possess more
connections, turning them into so-called hub nodes, which are
also more central in the network topology. From the observations
by Mišić et al. (2011), it also turns out that more central hub
nodes have higher signal variability. This finding complements
previous experimental and modeling observations that hub nodes
also have higher activity than other nodes, which in turns makes
them more liable to injury (Buckner et al., 2009). Based on the
analysis of MEG data in a visual, face recognition task, Vakorin
et al. (2011) showed that the amount of information transferred
from one node (i.e., a MEG source) to another was correlated with
the difference in variability between the dynamics of these two
sources. These results and similar outcomes from analyses of syn-
thetic data suggest that both time delay and strength of coupling
can contribute to the relations between variability of brain signals
and information transfer between sources. Delay times as well as
density and type of coupling were also found to be essential factors
by Li and Zhou (2011) who used computational modeling, based
on integrate and fire neurons or a neural mass model, to explore
factors resulting in anti-phase oscillations between two network
modules. The modeling also showed that interactions between
slow and fast oscillations may provide a basis for anti-phase syn-
chronization of slow oscillations at small delay times. This work
deepens the understanding provided by previous computational
models attempting to reproduce functional connectivity during
spontaneous activity of the brain (e.g., Deco et al., 2009).

In humans, the neuroanatomical network structure is typically
inferred from variants of diffusion tensor imaging and tractogra-
phy techniques (see Jones et al., 2013 for a sober evaluation). The
resulting anatomical matrix expresses the likelihood or density
with which two different brain areas are connected through white
matter fiber tracts. The second component of the models is the
type of dynamics that is assumed for the local nodes. Some
neurodynamical models considered a simple oscillatory dynamics
(Ghosh et al., 2008; Deco et al., 2009; Cabral et al., 2011), others
a more realistic spontaneous state dynamics (Honey et al., 2009),
and finally, even very detailed and realistic local networks con-
sidering excitatory and inhibitory populations of spiking neurons
coupled through realistic NMDA, AMPA and GABA synaptic
dynamics, have also been formulated (Deco and Jirsa, 2012).

Further, van den Berg et al. (2012) studied the evolution of
random networks of interacting nonlinear dynamical systems in
which the coupling between the local dynamical nodes follows
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a rule of adaptive rewiring. For a large enough number of
connections, the system evolves towards a small-world network
architecture similar to the one observed in healthy brains after
development. Nevertheless, if the number of connections is not
larger than a critical value, the system evolves towards a ran-
dom network. They relate this failure with the fragmentation
hypothesis underlying schizophrenia. This study is a beauti-
ful example of how computational and theoretical analysis of
dynamical systems serves to deepen our understanding on the
relationship between function (activity), structure (anatomy) and
development (rewiring). Kiebel and Friston (2011) investigated
the reorganization and pruning of synaptic connections in a neu-
ropil stimulated by spatiotemporal input sequences. They demon-
strated that the reorganization underlies an optimal Bayesian
principle, namely the minimization of free-energy. They were
able to show that following this reorganization optimal principle,
dendrites self-organize and replicate two key experimental find-
ings (Branco et al., 2010) on directional selectivity and velocity-
dependent responses. Banerjee et al. (2012), review different
measures characterizing functional and effective connectivity, in
particular in MEG data. Furthermore, they propose and show
how MEG measurements could be validated by combining the
empirical data analysis with simulations of large-scale neurobi-
ological realistic modeling.

ATTEMPTS TO FOLLOW SENSORY EVOKED
CORTICO-CORTICAL COMMUNICATION DYNAMICS.
DEPENDENCE ON THE STATE OF THE TARGET NEURONS
In later years scientists have become increasingly aware that the
spontaneous and intrinsic ongoing fluctuations in the membrane
potentials and firing of action potentials have a profound effect
on sensory evoked activity when it arrives to primary sensory
areas (Destexhe, 2011). For example, it has been debated whether
sensory evoked r(t) and dVm(t)/dt increases are favored by up-
states or down states (Steriade et al., 1993; Contreras et al., 1996;
Paré et al., 1998; Destexhe et al., 1999; Petersen et al., 2003b;
Crochet and Petersen, 2006; Haider et al., 2006; Luczak et al.,
2007). Up-states are associated with high inhibitory and excita-
tory conductances; whereas in down-states the conductances are
smaller, but often coupled to a leak conductance (Contreras et al.,
1996; Haider et al., 2006). Civillico and Contreras (2012) induced
oscillation between a down-state and an up-state with ketamine-
xylazine. They then examined how the phases of the up-state and
down-state affected the arrivals of r(t)s from thalamus and the
membrane potentials in the barrel cortex. They found that the
local field potentials, the membrane potential changes and the
multi-unit activity in the barrel cortex increased less to a whisker
stimulus applied during the up-state, as compared to whisker
stimulus applied in the later part of the down-state (Figure 2).
When the whisker stimulus was given when the membrane
was maximally hyperpolarized or when the hyperpolarization
diminished in the oscillatory cycle, the whisker stimulus almost
invariably triggered an up-state during which the amplitude of
the local field potential, the membrane potential and the multi-
unit activity was strong (Figure 2). Also the spreading of the
depolarization to the whole barrel field was much stronger.

Many cortical areas send (multi-synaptic) communications via
the entorhinal cortex to the hippocampus (van Hoesen et al.,
1972). In awake animals, novel sounds evoke 50 ms latency, short
lasting spike trains in hippocampus (Christian and Deadwyler,
1986). Overlearned sounds, if task relevant, may also modulate
spiking in hippocampus, albeit often with long latencies 150–
300 ms (Itskov et al., 2012; Vinnik et al., 2012), However if the
sounds irrelevant for a task, they modulate the spiking in only a
few percent of hippocampal neurons also with long 150–300 ms
latencies in the awake animal (Vinnik et al., 2012; Figure 3).
Surprisingly, if the animals are asleep, 25% of the hippocampal
neurons react with short 50–70 ms latencies and long lasting r(t)
increases or decreases even to task irrelevant sounds (Figure 3).
These results show that the access to hippocampal neurons is
state and context dependent. The sounds did not arouse the EEG,
suggesting that the effect, at least partly, may be cortico-cortical,
although it is not clear whether the sleep stage had any influence
on the accessibility.

Finally, Harvey and Roland (2013), explore experimentally, by
using voltage-sensitive dyes, the propagation of activations in the
ferret visual system in response to colliding visual stimuli, and
how the propagation may be shaped by cortical connections, in
particular their direction from primary visual cortices to higher-
order cortical areas or in the opposite direction (Figure 4).
Anatomical projections proceeding in these two directions have
well known orderly characteristics of laminar projection origin
and termination (Felleman and van Essen, 1991), but it still
remains a challenge to understand the impact of these anatom-
ical features on cortical communication dynamics (Bastos et al.,
2012).

EVOLUTION OF SENSORY EVOKED CORTICO-CORTICAL
COMMUNICATION DYNAMICS
In a classical approach to follow the cortico-cortical communi-
cation dynamics scientists stimulated the sensory apparatus with
a very brief stimulus and recorded action potentials or multi-
unit activity with laminar electrodes in one or more cortical
areas. Typically such an effort result in an ON response, a fast
increase in the number of action potentials over some 20 ms, in
the primary sensory area. If the stimulus is sufficiently strong,
ON responses will spread to many (higher order) sensory areas.
In general, however, these studies failed to reveal any clear order
of the start of the ON r(t)s in most cortical areas. For example
in the visual areas there were no significant latency differences
between the primary visual area neurons in layer 4 and the
neurons in areas MT/V5, middle superior temporal visual area
(MST) and the frontal eye fields (Best et al., 1986; Schmolesky
et al., 1998; Schroeder et al., 1998; Bullier, 2001; Chen et al., 2007).
One exception are the progression of ON r(t)s in V1,V2,V4 and
inferior temporal cortex, where the mean ON r(t)s are separated
by approximately 10 ms (Nowak and Bullier, 1997; Schmolesky
et al., 1998; Schroeder et al., 1998; Chen et al., 2007). However,
the number of potential sources altering the cortical dynamics are
many already at the time, approximately 45 ms after the stimulus
onset, when the majority of the ON r(t)s leave the primary visual
cortex.
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FIGURE 2 | Temporal dynamics of multiunit activity and local field
potentials, and spatio-temporal dynamics of the voltage sensitive
dye signal in the barrel field of the mouse during up-state and
down-state. Top: (A) Spontaneous multi-unit activity and local field
potential at the D 2 barrel during three consecutive up-states.
(B) Multi-unit activity after stimulating the whisker at 0 ms during an
up-state, in the first half of a down-state, and in the last part of the

down state. Note the different time scales. (C) The spatio-temporal
spread of the increase in population membrane potential (voltage
sensitive dye signal), after whisker stimulation during an up-state, in
the first half of a down-state, and in the last part of the down state
(from Civillico and Contreras, 2012). Notably the whisker stimulus only
modifies the oscillation in one cycle, but does not alter the future
oscillations.
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FIGURE 3 | Time courses of the sound evoked post stimulus histograms
in the CA1 of the hippocampus of the rat. To the left, normalized filtered
post stimulus time histograms (PSTHs) at a short time scale (window 50 ms).

To the right, same responses at a large time scale (window size 500 ms).
Black curves: sleep, gray curves: awake. (E) and (F): absolute mean rates in
the two conditions (from Vinnik et al., 2012).

There have been a number of interesting studies in which
paired electrode recordings were made in two or more areas
that were known to connect anatomically, for example visual
areas V1 and V2, V1 and MT/V5, and auditory areas A1, A2
(Movshon and Newsome, 1996; Nowak et al., 1999; Eggermont,
2000; Valentine and Eggermont, 2001). These studies give some
insight in the development of temporal dynamics between the
two areas, and may reveal likely sources (Movshon and Newsome,
1996). However, the spatial dynamics, and the simultaneous
temporal dynamics of the neurons in all the other cortical areas
cannot be revealed by this method.

After staining the cerebral cortex with voltage sensitive dyes
one can in practice observe some spatial evolution of cortical
dynamics of the Vm(t) and dVm(t)/dt, at least in the upper layers
of cortex. This seemingly contradicts the results of the action
potential studies just described. Part of the explanation might
be that the dye signal in vivo reflects synaptic activity at the
mesoscopic scale, whereas the action potential recordings capture
the activity of single neurons (Lippert et al., 2007; Eriksson et al.,
2008). Nevertheless, in several studies one can follow how net
increases in the synaptic activity propagate over the cortical areas
when the cortex is perturbed by a sensory transient (Senseman,
1996; Prechtl et al., 1997; Senseman and Robbins, 2002; Slovin
et al., 2002; Grinvald and Hildseheim, 2004; Roland et al., 2006;
Ferezou et al., 2007; Lippert et al., 2007; Xu et al., 2007; Ahmed
et al., 2008; Han et al., 2008; Takagaki et al., 2008; Yoshida et al.,
2008; Harvey et al., 2009; Ayzenshtat et al., 2010; Meirovithz

et al., 2010; Ng et al., 2010; Polack and Contreras, 2012; Harvey
and Roland, 2013). This synaptic dynamics may show some order
in the feed-forward propagation of net-excitation for example
between V1 and V2 in monkeys, rats and turtles, between the
barrel field and the motor cortex in the mouse, and between
visual areas 17, 18 and 19, 21 in the ferret. Typically the higher
order area(s) lag the primary areas with some 8–15 ms depending
on species.

Some of these studies contain observations of a reverse order
of synaptic propagation, that is, from higher areas towards the
primary sensory areas, some 40–50 ms later, i.e., 80–100 ms after
the stimulus onset (Roland et al., 2006; Lippert et al., 2007; Xu
et al., 2007; Ahmed et al., 2008; Takagaki et al., 2008; Yoshida
et al., 2008; Harvey et al., 2009; Ayzenshtat et al., 2010; Ng et al.,
2010; Lim et al., 2012; see also Zheng and Yao, 2012; Harvey
and Roland, 2013). This mode of propagation has been named
feedback. The sources of these feedbacks are not known (but
see Zagha et al., 2013). As the synaptic net excitation during
feedback propagates fast (0.15–0.25 mm ms−1) over the cortex, it
was suggested that feedback axons from higher order areas made
synaptic contact during their way back from the higher order area.
This propagation velocity, though, is slower than that of 1–3 mm
ms−1 measured in primate axons running from V2 to V1 (Girad
et al., 2001), suggesting that higher areas may influence lower
areas with different mechanisms.

One major finding from the voltage dye studies was that the
dynamics of the dVm(t)/dt evolved to engage whole sensory
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FIGURE 4 | Eight phases of dynamics of net-excitation, net-inhibition
(obtained with voltage sensitive dyes) and multi-unit activity in the
cerebral cortex of the ferret exposed to two bars in the field of view
moving towards each other. Mean temporal derivative of the population
membrane potential (related to dV m(t)/dt) in cytoarchitecturally defined
cortical areas 17, 18 , 19 and 21 of the ferret. Mean of three animals shown.
(1) The two bars have not yet entered the part of cortex monitored by the
photodiode camera, but the net-excitation especially in areas 19 and 21 has.
(2) The mapping of the bars in areas 19/21 has entered the part of cortex
monitored. The net-excitation ahead of the spiking neurons at the area 17/18
border from the two sides meet at the cortical zone mapping the center of
field of view. (3) Feedback from areas 19/21 to areas 18 and 17 begin. (4) The

bars are now separated by 15◦ in the field of view and the neurons start to
spike at the edge of in the cortex monitored (gray dots). (5) The bars are
separated by 7.5◦ and the neurons at zone mapping the center of field of view
start to fire. The positions with more than 90% of the maximal firing rate (the
mapping sites) are marked with white dots. (6) There is now only one cortical
mapping site at the 17/18 border, corresponding to the fact that the bars now
occlude one another. Net-inhibition now dominates the cortex at the former
mapping sites. (7) The net-inhibition is maximal 70 ms after the occlusion in
the field of view. (8) The net excitation recovers somewhat at the sites of the
mapping (bars now drifting apart by 9◦), but the spiking remains reduced. The
color scale ranges from −6.5 10−6 to 6.5 10−6 (for laminar propagation see
Harvey and Roland, 2013).

cortical areas within 100 ms after the sensory stimulus. In the
barrel field of mice and rats this happened 16–36 ms after the start
of stimulation of single whiskers (Derdikman et al., 2003; Petersen
et al., 2003a; Civillico and Contreras, 2006, 2012; Ferezou et al.,
2006, 2007; Lippert et al., 2007). The whole primary auditory
cortex was engaged in 26–40 ms after stimulus start in guinea
pigs (Horikawa et al., 1998; Kubota et al., 2012). The whole
craniotomy exposed part of the primary visual cortex in ferrets,
cats, and monkeys became engaged 48–70 ms after stimulus start,
even with small stimuli (Slovin et al., 2002; Jancke et al., 2004;
Eriksson and Roland, 2006; Roland et al., 2006; Sharon et al.,
2007; Eriksson et al., 2008; Harvey et al., 2009; Ayzenshtat et al.,
2010; Meirovithz et al., 2010; Roland, 2010; Chavane et al., 2011;
Reynaud et al., 2012; Harvey and Roland, 2013). In mice and rats
it took some 70–110 ms for the dynamics to engage the whole
primary visual cortex (Xu et al., 2007; Han et al., 2008; Gao et al.,
2012; but Lim et al., 2012: 46 ms; Polack and Contreras, 2012).
The engagement of the whole area lasted some 60–70 ms, i.e., up
to 140 ms after the start of the stimulus, even after very short stim-
uli (Eriksson et al., 2008). This is the relevant time scale for per-
ceiving changes in the sensory environment (Thorpe et al., 1996).

CONCLUDING REMARKS
To measure the evolution of cortico-cortical communications,
first one must identify the neurons that communicate their action
potentials between cortical areas. Then one must measure how
these neurons spread their action potentials to neurons in other
cortical areas under natural conditions. Finally one must measure
the effect of this communication in the target neurons, i.e.,
measure the dVm(t)/dt, because the temporal evolution of the
dVm(t)/dt affects the future dynamics of the target neurons. The
experience, from experiments and large-scale models of the brain
(cerebral cortex), is that the measurements should be done in

different scales, from the single neuron scale to the mesoscopic
scale (larger populations of neurons), because spiking from a few
neurons can spread through cortical layers and evoke spiking in
many cortical areas. Moreover, sensory evoked spiking in cortical
areas tends to increase dVm(t)/dt in a large part or a whole
cortical area. This means that the task is to measure the spatio-
temporal dynamics, at least of the fundamental variables r(t) and
dVm(t)/dt from the single neuron to the large population of neu-
rons scale during natural conditions. As discussed, neuroscience
so far does not have efficient methods to do this.

In the case of sensory evoked r(t) one has a chance to
identify the neurons in the primary mammalian sensory area
starting to send their action potentials to other areas. But what
about the neurons starting a thought or starting planning an
action? To get insight into this type of cortico-cortical com-
munication dynamics one must monitor neurons in all layers
and all cortical areas with sufficient spatial density. The avail-
able experimental results show that already 20–30 ms after the
start of sensory evoked spiking in cortex 10000’s of neurons
may be spiking and perhaps two orders of neurons in addition
will have changed their membrane potentials. Furthermore, a
fair proportion of these spiking neurons will mutually affect
each other across area borders. At this point of time, causal
relations of spiking, i.e., which neuron drives which neurons,
are not so clear. This problem of understanding the cortico-
cortical communication dynamics at the single neuron scale while
the communications evolve, experimental neuroscience shares
with large-scale computational models of the cerebral cortex
and models of whole brains. One, speculative, solution of this
conundrum would be if the collective dynamics of the r(t) and
dVm(t)/dt of larger populations after the initial evolution reduced
the importance single neuron r(t) dynamics. Thus by observ-
ing larger scale spatio-temporal dynamics of these variables one
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might hope to observe spatio-temporal patterns giving hints of
what the brain will perceive or do (Roland, 2010). Such specu-
lations notwithstanding, advances in experimental methods are
prerequisites for understanding cortico-cortical communication
dynamics.

Science is not there yet.
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