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Chondrocytes are the only cell type in normal cartilage. The pathological changes of osteoarthritis (OA) mostly revolve around the apoptosis and dysfunction of chondrocytes. Autophagy, as an intracellular degradation system that maintains the steady state of energy metabolism in cells, has been shown to restore the function of damaged chondrocytes, alleviating the occurrence and progression of OA. In this review, we explored the relationship between autophagy and OA and the key molecules of autophagy pathway that regulate the progression of OA, providing new ideas for OA treatment by targeting autophagy.
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INTRODUCTION

OA is a chronic and high prevalent arthropathy and the most common cause of pain and disability worldwide characterized by progressive cartilage degradation, synovitis, and conversion of joint peripheral sclerotin including osteophyte formation and subchondral bone sclerosis (Harrell et al., 2019). A variety of risk factors contribute to the development of OA, such as age, obesity, hereditary factors, and preceding joint injuries (Vina and Kwoh, 2018). Senility is the greatest risk factor of OA (Jeon et al., 2017). The incidence of OA is rising due to the increasing obesity and a rapidly aging population. Over 50% OA patients are over 65 years old (Loeser, 2017), and even 80% of OA patients are over 75 years old (O'Neill et al., 2018). Articular cartilage is a kind of connective tissue composed of chondrocytes and extracellular matrix (ECM) that is synthesized and secreted by chondrocytes. The matrix that encapsulates chondrocytes plays a role of lubrication and mechanical support for cartilage joint. Although chondrocytes account for only 1% of the total cartilage volume, it plays an indelible role in maintaining the integrity of the matrix (Charlier et al., 2019; Rim et al., 2020). In fact, when certain factors act on the cartilage matrix and change its structure, chondrocytes can respond accordingly. However, the ability of articular chondrocytes to maintain the structure and integrity of normal cartilage matrix is limited and declines with aging (Martel-Pelletier et al., 2016). The existing treatment for OA is still relatively conservative, mostly limited to control the pain. However, in terms of reducing and controlling joint inflammation and promoting the recovery of damaged chondrocyte function, effective interventions that proven to alter the natural course of OA are still lacking (Cutolo et al., 2015; Hunter and Bierma-Zeinstra, 2019). Therefore, an in-depth investigation of the pathogenesis of OA is essential to explore new therapeutic targets.

Macroautophagy/Autophagy (hereafter referred to as autophagy), as a highly conserved degradation system, plays a vital role in the regulation of energy and nutrition, maintaining energy metabolism in the body (Nakamura and Yoshimori, 2017; Yu et al., 2018). Autophagy plays a protective role on cells under abnormal physiological conditions, including external pressure, hypoalimentation, hypoxia, endoplasmic reticulum stress (ERS), and so on. Malfunctioning cytoplasmic macromolecules, membranes and organelles are transported to lysosomes for degradation and reusing through autophagy pathway (Nakamura and Yoshimori, 2017). The occurrence of autophagy can be artificially divided into the following steps, including initiation, nucleation, elongation, maturation, and degradation. With the formation of these autophagosomes, degradation of chelate products provides amino acids, nucleotides, saccharides and aliphatic acids for maintaining the steady state of the entire tissue and even the body (Glick et al., 2010).

As mentioned above, since autophagy can degrade and remove long-lived or impaired organelles and proteins, the reduction of autophagy with aging is related to various aging diseases (Ren and Zhang, 2018). With the growth of age, the basic autophagic activity of cells decreases, following a down-regulated clearance efficiency. Subsequently, the aggregation of various macromolecular proteins increases, leading to the eventual cell degeneration and functional defect, or even apoptosis. In recent years, the inhibition of chondrocytes apoptosis by autophagy activation has attracted much attention (Shapiro et al., 2014). Recent studies have shown that the level of autophagy in OA cartilage is reduced (Feng et al., 2020), and autophagy can protect chondrocytes from degradation (Caramés et al., 2012). With the progress of OA, mammalian target of rapamycin (mTOR), the main negative regulator of autophagy, is up-regulated and mediates the inhibition of autophagy signal transduction in articular cartilage, and the protective effect of autophagy on cartilage decreases, eventually promoting cartilage degeneration (Vasheghani et al., 2015). Study by Zhang et al. demonstrated that the surgical destabilization of the medial meniscus (DMM) OA mouse model has higher level of autophagy, lower level of apoptosis when knocked out of mTOR (Zhang Y. et al., 2015). Activation of autophagy in chondrocytes by intra-articular injection of resveratrol, an autophagy inducer, can significantly delay articular cartilage degeneration of DMM OA mouse model (Qin et al., 2017). In recent years, studies on pharmacological suppression and gene deletion of mTOR to reduce the severity of OA have also repeatedly demonstrated the protective effect of autophagy on chondrocytes (Takayama et al., 2014; Ribeiro et al., 2016).



MECHANISTIC STUDIES OF AUTOPHAGY AND OA

Association between aging and OA has been demonstrated in clinic and epidemiology. Risk factors related to aging, such as the limited ability of tissue and cell regeneration, increased expression of inflammatory mediators, oxidative stress, etc., cause damage to the cartilage matrix and cells, and promote the occurrence and development of OA (Rahmati et al., 2017). In recent years, autophagy, as a protective mechanism in cells, has attracted much attention because of its role in regulating the aging process. Autophagy will be activated when oxidative stress occurs, but excessive oxidative stress will exceed the tolerance of autophagy and impair its activity, eventually leading to cellular senescence and apoptosis (Roca-Agujetas et al., 2019). However, definitive studies on the relationship between autophagy and senescence are still lacking since some authors suggest a direct connection between autophagy and senescence and others indicative of an inverse relationship. Indeed, autophagy may promote or counteract senescence depending on the cellular context and stress stimuli (White and Lowe, 2009; Gewirtz, 2014). Study by Capasso et al. showed that in acute senescence, but low radiation, the autophagy flux is heavily impaired suggesting autophagy counteracts deteriorative processes, and its decline triggers senescence. This did not occur in replicative senescence. The authors hypothesized to reconcile these opposite events, that cells try to contend with stress by activating autophagy that eliminates damaged components. In that context, autophagy protects from senescence, and impairment of its function may promote senescence. On the other hand, if autophagy cannot counteract stress-induced damage, it may induce senescence (Capasso et al., 2015). In the state of excessive oxidative stress, chondrocytes can enhance autophagic activity and inhibit aging process by activating AMP-activated protein kinase (AMPK) or inhibiting mTOR (Han et al., 2016; Tai et al., 2017). Another important sign of aging is mitochondrial dysfunction associated with an increase of superoxide accumulation. It is noteworthy that mitochondrial phagocytosis can reduce phenotypes of cell senescence (Tai et al., 2017).

Inflammatory cytokines, mechanical stress and senescence can cause elevated levels of reactive oxygen species (ROS) in chondrocytes. Known ROS include superoxide, hydrogen peroxide, peroxyl radicals, the reactive nitrogen species (including nitric oxide and peroxynitrite derived from the nitric oxide) (Su et al., 2019). Kongara and Karantza have shown that autophagy is responsible for eliminating intracellular sources of ROS, including mitochondria and peroxisomes (Kongara and Karantza, 2012), thus, autophagy defect leads to accumulation of ROS (Scherz-Shouval and Elazar, 2007). Under pathological conditions, the phenomenon of cartilage degradation can be attributed to excessive ROS acting as second messengers, which subsequently mediate the inhibition of matrix synthesis, affect cell migration and the biological activity of growth factors, which in turn regulate the degradation of matrix components, activation of matrix metalloproteinases (MMP) and cell death. Excess ROS can cause inhibition of the mitochondrial respiratory chain, decrease of ATP, mitochondrial DNA (mtDNA) mutations, and disorder of redox regulated cell signaling pathways such as protein kinase B (PKB/AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. ROS-induced mitochondrial damage and activation of endoplasmic reticulum (ER) stress play a key role in OA, and may eventually trigger the cascade of chondrocytes apoptosis (Collins et al., 2018; Bolduc et al., 2019). Previous studies have shown that both autophagy defect and mitochondrial dysfunction were found in age-related and surgically induced OA mouse models, and mitochondrial function and autophagy in chondrocytes are directly mediated by the AKT-mTOR signaling pathway (Barranco, 2015). Inhibition of autophagy related 5 (Atg5) in chondrocytes increases the production of ROS, and induces mitochondrial dysfunction (Lopez de Figueroa et al., 2015). These results indicated that autophagy participates in the occurrence and development of OA by mediating apoptosis and ROS production (Charlier et al., 2016). When autophagy is activated, the damaged mitochondria can be removed and intracellular ROS reduces, protecting chondrocytes from the negative effects of OA. Therefore, we have every reason to believe that autophagy plays an irreplaceable role in protecting chondrocytes from oxidative stress (Ansari et al., 2018).



KEY MOLECULES INVOLVED IN AUTOPHAGY AND OA

mTOR kinase is a key molecule in the process of autophagy. It combines with various proteins to form two different multiprotein complexes known as mTOR complex 1 (mTORC1) and 2 (mTORC2). mTORC1, as a complex containing mTOR, plays a vital role in the regulation of autophagy (Laplante and Sabatini, 2012). Studies have shown that mTORC1 mainly acts as a negative regulator in autophagy and can be regulated by a variety of signaling molecules to affect autophagic activity (Choi et al., 2013). Thus, mTOR activation pathways, such as AKT and MAPK signaling pathways, inhibit autophagy, while mTOR negative regulation pathways, such as AMPK and p53 signaling pathways, promote autophagy. AMPK is an energy-sensing kinase, a highly conserved protein molecule during evolution. When metabolic stress or ATP consumption occurs, AMPK can be activated to promote catabolism. Once the AMPK pathway activated, AMPK phosphorylates tuberous sclerosis 2 (TSC2), which then inhibits mTOR and eventually promotes autophagy. In addition, AMPK can also directly regulate autophagy by acting on downstream signaling molecules of mTOR (Alers et al., 2012). In summary, both mTOR and AMPK are integral parts of autophagy initiation (Figure 1).
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FIGURE 1. Key molecules and pathways of autophagy in OA.


The chondrocytes in the growth plate survive in a microenvironment with almost no blood vessels and hypoxia, and have evolved a different way of energy generation, generating metabolic energy through anaerobic glycolysis. The hypoxia-inducible factors, HIF-1 and HIF-2, mediate the acclimatization of chondrocytes to this avascular environment (Zhang F.-J. et al., 2015). HIF-1α is highly expressed in hypertrophic chondrocytes (Taheem et al., 2018). Activation of HIF-1 enhances the autophagic activity of chondrocytes in hypoxia condition. Reduction of energy charge activates HIF-1, which leads to the phosphorylation and activation of AMPK. AMPK enhances autophagy flux by inhibiting mTOR and promoting other downstream signaling molecules (Bohensky et al., 2010). In contrast with HIF-1, HIF-2 is a potent negative regulator of autophagy in maturing chondrocytes which is elevated in OA cartilage and drives catabolic metalloproteinases, such as MMP-13 which is a major enzyme that mediates the degradation of type II collagen in cartilage (van den Berg, 2011; Wang et al., 2013) (Figure 1).

As a core protein with serine/threonine kinase activity in autophagy signaling pathway, unc-51 like autophagy activating kinase 1/2 (ULK1/2) can form the ULK complex with RB1 inducible coiled-coil 1 (RB1CC1/FIP200), autophagy related 13 (ATG13) and autophagy related 101 (ATG101) and mediate the activation of autophagy signaling pathway (Mizushima, 2010). ULK1 in a phosphorylation status has always been identified as a pivotal sign of autophagy initiation. Phosphorylation of ULK1 was mediated by AMPK and mTOR signaling pathway (Figure 1). A large number of studies have shown that with the change in the nutritional status of tissues or cells, the phosphorylation status of the ULK1/2-ATG13-RB1CC1 complex will also undergo corresponding changes. Specifically, in the context of glucose starvation, AMPK directly phosphorylates ULK1 at Ser 317 and Ser 777 to promote autophagy (Shang et al., 2011). However, in the case of sufficient nutrition, the high activity state of mTOR phosphorylates ULK1 at Ser 757, destroys the mutual effect between ULK1 and AMPK, and finally prevents the activation of ULK1 (Kim et al., 2011).

One of the initial steps in assembling pre-phagocytic structures into autophagosomes is to recruit and activate the class III phosphatidylinositol 3-kinase complex which is composed of Beclin1 (BECN1), phosphoinositide-3-kinase regulatory subunit 4 (PIK3R4/VPS15), phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3/VPS34), and autophagy related 14 (ATG14/ATG14L) proteins (Menon and Dhamija, 2018) (Figure 1). The pivotal role of ATG14 in autophagy is the recruitment of autophagy specific PI3 kinase complex in endoplasmic reticulum (Matsunaga et al., 2010). Meanwhile, PIK3C3, as a kind of catalytic phosphatidylinositol 3 kinase, catalyzes the phosphorylation of phosphatidylinositol to form phosphatidylinositol 3-phosphate (PI3P). PI3P on the autophagosome membrane has the ability to recruit the membrane-bound protein ATG18 and bind to the bilayer membrane, which is crucial for the elongation and formation of autophagosomes (Noda et al., 2010).

In addition to the above autophagy pathway signaling molecules, two protein conjugation systems are also involved in the formation and amplification of autophagosomes, among which ATG proteins microtubule associated protein light chain 3 (LC3) and ATG12 are important components of the related protein coupling system. LC3 is usually used as a marker to evaluate the degree of autophagy. During the process of autophagy, ATG4 can remove the C-terminus of LC3 to generate LC3-I in the cytoplasm, and LC3-I is connected with phosphatidylethanolamine (PE) in the way of ubiquitin like reaction, which requires the participation of E1-like enzyme ATG7 and E2-like enzyme ATG3. LC3-II is transformed from LC3-I through the lipidation of the ubiquitin-like reaction described above and binds to autophagic vesicles (Li et al., 2020). Therefore, the amount of LC3-II is related to the degree of autophagosome formation, and the ratio of LC3-II/LC3-I is usually used to assess the level of autophagy (Martin-Rincon et al., 2018). In selective autophagy, cytoplasmic components that are selectively degraded are labeled with ubiquitin in order to be recognized by means of autophagy receptors before being sequestered into an autophagosome (Lamark et al., 2017). As a multifunctional adaptor protein, sequestosome 1 (SQSTM1/p62) is able to combine with mono- or poly-ubiquitinated proteins. Through its LC3-interacting region (LIR) motif, SQSTM1 directly binds to LC3 and becomes a selective autophagy receptor which aggregates ubiquitinated proteins and brings them into the emerging autophagosomes (Shaid et al., 2013). SQSTM1 also acts as cargo receptor and is degraded by autophagy together with ubiquitinated substrate proteins (Figure 1).

Conjugation of ATG5 and ATG12 is an essential link in autophagy (Figure 1). The genetic ablation of Atg5 leads to the development of OA with age and the apoptosis of chondrocytes mediated by caspases (Vuppalapati et al., 2015; Bouderlique et al., 2016). As a ubiquitin activating enzyme, ATG7 plays an important role in autophagy formation and LC3 activation. Knocking out Atg7 in chondrocytes leads to growth retardation of chondrocytes, which is also related to the reduction of chondrocyte proliferation and the upregulation of apoptosis (Kang et al., 2017; Horigome et al., 2020).

The defects of autophagy in OA cartilage include the decrease of the number and size of autophagosomes, which is related to the decreased expression of ULK1, BECN1, LC3 and the overexpression of mTOR (D'Adamo et al., 2017b). At the same time, SQSTM1 increased in OA cartilage, indicating that autophagy was inhibited (Zheng et al., 2019).



KEY MOLECULES REGULATED THE AUTOPHAGY PATHWAY IN OA


MicroRNAs Regulated the Autophagy Pathway in OA

MicroRNAs (miRNAs) are a type of non-coding small RNAs that promote specific mRNA degradation and/or translation inhibition, and play a pivotal role in biological processes as new gene expression regulators, whose regulatory mechanism is thought to be through sequentially specific interactions with the 3' untranslated regions (UTRs) of specific mRNA targets (Bartel, 2004). miRNAs play a vital role in cartilage homeostasis as well (Miyaki and Asahara, 2012). There are a lot of evidences revealing that miRNAs targeting autophagy pathway act as key regulators in the occurrence and development of OA (Al-Modawi et al., 2019; Yu and Zhao, 2019).

miR-155 is one of the most upregulated miRNAs in human OA cartilage. Study by Adamo et al., revealed that miR-155 plays an inhibitory role in autophagy of chondrocytes and explored its targets in autophagy pathway, including ULK1 participated in the startup phase of autophagy, ATG14 responsible for recruiting autophagy-specific PI3 kinase complex, ATG5, ATG3, LC3, and GABA type A receptor associated protein like 1 (GABARAPL1/ATG8L) involved in the formation of autophagosomes, and forkhead box O3 (FOXO3) which is the key transcription factor of autophagy-related genes (D'Adamo et al., 2016) (Figure 1).

In addition, other studies explored the regulatory effect of miRNAs on sirtuin1 (SIRT1) which is another crucial signaling molecule of autophagy pathway. MiR-34a, miR-449a and miR-9 have been demonstrated to significantly reduce the expression of SIRT1 in chondrocytes (Figure 1). Inhibition of miR-34a, or miR-449a, or miR-9 can alleviate cartilage damage by upregulating the expression of SIRT1, indicating an improved prognosis of OA (Park et al., 2016; Yan et al., 2016; D'Adamo et al., 2017a).

miR-140-5p and miR-149 could target fucosyltransferase1 (FUT1). An in vitro experiment proved that overexpression of miR-140-5p or miR-149 can down-regulate the intracellular level of FUT1, promoting survival of chondrocytes by activating autophagy and inhibiting the apoptosis (Wang et al., 2018). Moreover, there are many other miRNAs that affect chondrocyte function by targeting autophagy pathway, such as miR-20 affects chondrocyte function by targeting ATG10 (He and Cheng, 2018), miR-146a enhances autophagic activity of chondrocyte by decreasing the expression of BCL2 which is an autophagy inhibitor (Chen et al., 2017) (Figure 1).

Although the autophagy control mechanism has been extensively studied, the changes of miRNA in chondrocytes are still in sore need of further research to explore the autophagy control network. So far, interfering the gene expression with miRNA in chondrocytes has been proved a promising strategy for the treatment of OA.



Other Key Molecules Regulated the Autophagy Pathway in OA

Based on the results of cell experiments, animal models of OA induced by various drugs or surgeries have been developed to study the causes and pathogenesis and to test some new therapeutic interventions. To explore the role of autophagy in cartilage of OA, mice specifically knocked out autophagy-related genes in cartilage were generated.

Cinque et al. discovered that the underlying mechanism of mild growth retardation after Atg7 gene ablation involves impaired type II collagen formation and secretion in cartilage. And they demonstrated that induction of chondral autophagy after birth is mediated by the fibroblast growth factor 18 (FGF18) through fibroblast growth factor 4 (FGFR4) and the autophagy initiation complex VPS34-BECN1 (Cinque et al., 2015) (Figure 1). This suggests that FGF18 may be a key molecule that regulates autophagy signaling pathways during OA generation and development.

Gene ablation of mTOR, an effective negative regulator of autophagy in cartilage can enhance autophagic activity, significantly reduce the degradation, apoptosis and synovium fibrosis of articular cartilage in DMM induced OA model, and effectively maintain joint homeostasis (Zhang Y. et al., 2015). Knocking out peroxisome proliferator activated receptor gamma (Pparg) in mouse cartilage accelerates the development of OA. As a ligand-activated transcription factor, the lack of PPARG in articular cartilage leads to an up-regulation of mTOR in articular cartilage, which subsequently suppresses the level of autophagy and is associated with increased apoptosis of chondrocytes (Vasheghani et al., 2015) (Figure 1).

DNA damage inducible transcript 4 (DDIT4/REDD1) can be induced by hypoxia and other stresses. The specific knockout of Ddit4 in a mouse model showed dramatically reduced LC3 and ATG5 expression levels, significant decrease of mtDNA, an increase apoptosis of chondrocytes in articular cartilage (Alvarez-Garcia et al., 2016, 2017). REDD1 has been shown to combine with thioredoxin interacting protein (TXNIP, a pro-oxidant protein) to form a protein complex in chondrocytes to induce the production of ROS, which is crucial for the induction of autophagy (Qiao et al., 2015). When the expression level of REDD1 in chondrocytes is reduced, ROS in the cytoplasm is down-regulated, which subsequently leads to the over-activation of cysteine endopeptidase ATG4, leading to delipidation of LC3 and defective autophagosome assembly (Figure 1). Therefore, we believe that REDD1 is the main molecule mediating articular cartilage homeostasis through autophagy pathway.

Deletion of Foxo transcription factors also produced OA-like changes (Matsuzaki et al., 2018). FOXO transcription factors could enhance the strength of chondrocytes to resist oxidative stress. Down-regulation of FOXO reduces the levels of autophagy-related proteins, such as LC3-II and BECN1 (Akasaki et al., 2014). Study also shows that the positive effect of FOXO3A in protecting chondrocytes by activating AMPK and autophagy pathway (Zhao et al., 2014) (Figure 1). FOXO transcription factors are also demonstrated as downstream effectors of insulin signaling under low nutrient situations, activating the transcription of glutamine synthetase and inhibiting mTOR to enhance autophagic activity (Webb and Brunet, 2014). Sirt1 haploid deficiency mouse model showed a slow-growing phenotype and was accompanied by spontaneous OA at 9 months, which may be related to the change in the number of chondrocytes (Gabay et al., 2012). Mice knocking out Sirt1 in chondrocytes develop OA in a time-dependent manner (Matsuzaki et al., 2014). Previous study also revealed that SIRT1 regulates autophagy and plays a protective role on chondrocytes through its effect on FOXO, as downstream of SIRT1 which is a conserved family of NAD+-dependent deacetylases, are the FOXO family members (Almeida and Porter, 2019) (Figure 1).

It has been shown that mouse models of OA are essential to improve our understanding of the potential molecular mechanisms of OA.




STATUS OF OA THERAPEUTICS TARGETING AUTOPHAGY SIGNALING PATHWAY

To delay the progress of OA clinically, various treatments have been developed, including medication, non-drugs therapy and physical therapy. Medical treatment includes some conventional drugs such as non-steroidal anti-inflammatory drugs, but these drugs have serious side effects, including damage to the gastrointestinal tract and increased susceptibility to cardiovascular and kidney diseases. Non-pharmacologic treatments consist of weight loss, biomechanical intervention, electromagnetic stimulation, and shock wave therapy (Cooper et al., 2019). Surgical treatment is a routine treatment for advanced OA, usually total joint replacement (Nelson, 2018; Kloppenburg and Berenbaum, 2020).

The current treatment methods are limited to symptomatic treatment to delay the course of OA. Various new drugs developed have no obvious benefit or have serious side effects and do not applicable in clinic. As an important role in the pathogenesis of OA, autophagy has been attracted intensive attention to be a target for new OA treatment. The development of safe and effective drugs that can enhance autophagic activity or restore autophagy flux is a promising strategy for the treatment of OA.

mTOR, as a key signaling molecule in autophagy pathway, has become an important target of drugs targeting autophagy pathway. Rapamycin has been proved to reduce the expression of mTOR and delay the degradation of articular cartilage. Local application of rapamycin by intra-articular injection may be a potential therapy for OA (Takayama et al., 2014). Other drugs such as isoimperatorin and glucosamine can also activate autophagy and improve cell homeostasis by inhibiting mTOR pathway (Ouyang et al., 2017) (Figure 1). In addition, isoimperatorin improve the pathological changes induced by OA by reducing the expression of matrix metallopeptidase 13 (MMP13), RUNX family transcription factor 2 (RUNX2), collagen type X alpha 1 chain (COL10A1) and vascular endothelial growth factor A (VEGFA). However, Glucosamine shows a dual role in dose-dependent and time-dependent manner in the regulation of chondrocyte survival and apoptosis. This is because when chondrocytes are exposed to glucosamine for a short period of time, autophagic responses will be activated (called a short-term response), and long-term exposure will cause the suppression of the level of autophagy, especially pexophagy and peroxidative damage (called a long-term response) (Kang et al., 2015). Resveratrol can activate SIRT1 in order to inhibit OA disease progression (Deng et al., 2019) (Figure 1).

Drugs regulating other targets, such as Tougu Xiaotong Capsule, facilitate autophagy by balancing ATG12/LC3 coupling system (Li et al., 2014). Several autophagosome formation indexes including ATG3, ATG7, ATG12-5 and BECN1 in trehalose treated chondrocytes and the proportion of LC3-II:LC3-I increased as the dose of the drug increases, and the level of SQSTM1 decreased, indicating that trehalose can enhance autophagy flux (Tang et al., 2017). Fenofibrate (FN) as a PPARA agonist is commonly used to treat abnormal blood lipid levels in humans. Studies have found that FN can reduce the number of senescent cells, increase autophagy level and prevent cartilage degradation. The abnormal appearance of cartilage after Ppara knockdown also verified the role of FN (Nogueira-Recalde et al., 2019) (Figure 1). Transcription factor EB (TFEB) is known as a member of melanocyte inducing transcription factor (MITF)/transcription factor E (TFE) family. TFEB has indeed been proved to be the main regulator of autophagy level. It can induce the occurrence of lysosomes, promote the formation of autophagosomes and mediate their fusion (Settembre et al., 2011). The mechanism may be that on the one hand, increase the formation of LC3-II to promote the process of autophagy, on the other hand, up-regulate the expression of cathepsin B (CTSB) and increase the acidity of lysosomes to restore the function of lysosomes, ultimately rescuing the destruction of autophagy flux (Zheng et al., 2018) (Figure 1).



CONCLUSION

As an age-related disease, the incidence of OA increases with aging. In recent years, the basic researches of OA from various countries have centered around the age-related changes of chondrocytes. These changes include not only damaged proteins and abnormal accumulation of lipids, but also changes in ROS levels caused by impaired mitochondrial function and changes in autophagy and energy metabolism caused by oxidative stress. These subcellular disorders, on the one hand, destroy the relevant signaling pathways and normal function of cells, on the other hand they also promote catabolic activity and eventually lead to apoptosis of chondrocytes.

In the pathogenesis of OA, apoptosis and autophagy are considered to be two important links. At present, it is generally believed that autophagy as an adaptive response can reduce cell death in the early stage of OA, but with the development of OA, excessive autophagy may also cause cell death. Even so, we believe that the activation of autophagy has a positive significance for the survival of chondrocytes in the early development of OA. Although the role of autophagy disorder in the pathogenesis of OA has not been fully elucidated, autophagy as a therapeutic target for OA still shows broad clinical prospects. The targeted application of small molecule drugs to regulate the level of chondrocyte autophagy is expected to provide more options for the clinical treatment of OA.
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SP600125, a JNK-Specific Inhibitor, Regulates in vitro Auricular Cartilage Regeneration by Promoting Cell Proliferation and Inhibiting Extracellular Matrix Metabolism
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In vitro construction is a major trend involved in cartilage regeneration and repair. Satisfactory in vitro cartilage regeneration depends on a suitable culture system. Current chondrogenic culture systems with a high content of transforming growth factor beta-1 effectively promote cartilaginous extracellular matrix (ECM) production but inhibit chondrocyte survival. As is known, inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway acts in blocking the progression of osteoarthritis by reducing chondrocyte apoptosis and cartilage destruction. However, whether inhibiting JNK signaling resists the inhibitory effect of current chondrogenic medium (CM) on cell survival and affects in vitro auricular cartilage regeneration (including cell proliferation, ECM synthesis, and degradation) has not been investigated. In order to address these issues and optimize the chondrogenic culture system, we generated a three-dimensional in vitro auricular cartilage regeneration model to investigate the effects of SP600125 (a JNK-specific inhibitor) on chondrocyte proliferation and ECM metabolism. SP600125 supplementation efficiently promoted cell proliferation at both cellular and tissue levels and canceled the negative effect of our chondrogenic culture system on cell survival. Moreover, it significantly inhibited ECM degradation by reducing the expressions of tumor necrosis factor-alpha, interleukin-1-beta, and matrix metalloproteinase 13. In addition, SP600125 inhibited ECM synthesis at both cellular and tissue levels, but this could be canceled and even reversed by adding chondrogenic factors; yet this enabled a sufficient number of chondrocytes to be retained at the same time. Thus, SP600125 had a positive effect on in vitro auricular cartilage regeneration in terms of cell proliferation and ECM degradation but a negative effect on ECM synthesis, which could be reversed by adding CM. Therefore, a combination of SP600125 and CM might help in optimizing current chondrogenic culture systems and achieve satisfactory in vitro cartilage regeneration by promoting cell proliferation, reducing ECM degradation, and enhancing ECM synthesis.
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INTRODUCTION

Cartilaginous defects are among the most common human diseases. Damaged cartilage has poor self-repair capacity because the cartilaginous extracellular matrix (ECM) is neither vascularized nor innervated (Dhinsa and Adesida, 2012; Yin et al., 2016). To treat cartilage damage effectively, the defective area needs to be filled with repair tissue (Fini et al., 2013). Cartilage tissue engineering, which can regenerate functional tissues similar to native ones, is a promising strategy for repairing damaged cartilage (Zheng et al., 2014; He et al., 2018). In vitro construction has been an important direction and trend for cartilage regeneration because of its many advantages in avoiding cell leakage, reducing inflammatory reactions triggered by tissue culture scaffolds, and maintaining stability after transplantation in vivo (He et al., 2017), which are all of great significance for clinical applications.

To achieve satisfactory cartilage regeneration in vitro, a suitable chondrogenic culture system is needed. The chondrogenic medium (CM) currently used for cartilage regeneration contains a high content of transforming growth factor beta-1 (TGF-β1), which can effectively improve in vitro cartilage regeneration by promoting chondrocytes or cells with chondrogenic potential such as bone marrow stromal cells to generate abundant cartilaginous ECM (Blunk et al., 2002; Yang and Barabino, 2013). However, overexpression of TGF-β1 was reported to induce chondrocyte apoptosis and to reduce the number of active cells (Fang et al., 2016; Zhang et al., 2018), which is obviously unfavorable for the stability and maintenance of regenerated cartilage after implantation in vivo.

Previous studies have indicated that inhibition of c-Jun N-terminal kinase (JNK), part of a highly complex signaling pathway, could reduce chondrocyte apoptosis remarkably in cases of osteoarthritis (OA; Weston and Davis, 2007; Lu et al., 2014; Yang et al., 2016). This might provide a strategy to overcome the negative effect of current chondrogenic culture systems on cell survival. More importantly, accumulating evidence indicates that inhibition of the JNK pathway can effectively reduce ECM degradation associated with OA (Chen et al., 2016; Cheng et al., 2016; Ge et al., 2017), which is obviously beneficial for ECM deposition in regenerated cartilage. Nevertheless, all conclusions on the effects of the JNK inhibitors mentioned above were based on cellular levels or the model of OA being used. Whether JNK inhibitors have the same effects on in vitro auricular cartilage regeneration in terms of enhancing cell survival and decreasing ECM degradation has not yet been investigated. To determine the effects of JNK inhibitors on in vitro auricular cartilage regeneration (including cell proliferation, ECM synthesis, and degradation) and thus optimize current chondrogenic culture systems, several issues should be clarified. First, can JNK inhibitors promote cell proliferation so as to enhance the number of active cells in three-dimensional (3D) cartilage regeneration models in vitro? Second, can the use of JNK inhibitors help resist or even reverse the negative effect of CM on chondrocyte survival? Third, what effects do JNK inhibitors have on ECM metabolism during in vitro cartilage regeneration?

To address these problems, we established an in vitro 3D auricular cartilage regeneration model. Rabbit auricular chondrocytes were seeded into polyglycolic acid/polylactic acid (PGA/PLA) scaffolds and then cultured with or without SP600125 (a JNK-specific inhibitor) in either regular medium (RM) or CM for 8 weeks. Based on this, a series of evaluations were conducted to clarify the effects of SP600125 on cell proliferation, ECM metabolism, and cartilage regeneration, to help in optimizing the chondrogenic culture system.



MATERIALS AND METHODS


Isolation and Culture of Auricular Chondrocytes

Auricular cartilage was obtained from New Zealand White rabbits, purchased from the Shanghai Jia Gan Experimental Animal Raising Farm (Shanghai, China). All animal study protocols were approved by the Animal Care and Experiment Committee of Shanghai Jiao Tong University School of Medicine. After the perichondrium had been removed, cartilage slices were minced into 1.0-mm3 pieces, washed in phosphate-buffered saline (PBS) containing 1% penicillin–streptomycin (Gibco, Grand Island, NY, United States), and then treated with 0.15% collagenase II (Gibco) in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco) for 8–12 h at 37°C (Rodriguez et al., 1999). Isolated chondrocytes were then seeded into 10-cm culture dishes in DMEM containing 10% fetal bovine serum (FBS; HyClone, Logan, UT, United States) and 1% penicillin–streptomycin, and placed in an incubator at 37°C with 95% humidity and 5% CO2. Chondrocytes from the first and second passages were used for subsequent experiments.



Cell Counting Kit-8 Assay of Cell Proliferation

Harvested chondrocytes from the first passage were seeded at a density of 2 × 103 cells/well in 96-well plates. After incubation at 37°C for 24 h, chondrocytes were cultured in DMEM with 10% FBS supplemented with or without 0.02 mg/ml of the JNK pathway inhibitor SP600125 (AdooQ Bioscience, Irvine, CA, United States). The two groups were assessed individually for cell proliferation using cell counting kit-8 (CCK-8) kits (Dojindo Laboratories, Kumamoto, Japan) on days 1, 3, 5, and 7 as described (Zhang et al., 2014).



Counting of Chondrocytes

Cell yields following different treatments were measured by cell counting. Chondrocytes from the first passage were harvested and seeded into 24-well plates at a density of 1.0 × 104 cells/ml (1 ml per well). After incubation at 37°C for 24 h, chondrocytes were cultured in medium with (+) or without (-) SP600125. Cells were harvested and counted on days 1, 3, 5, and 7.



Preparation and in vitro Culture of Cell-Scaffold Constructs

Thirty micrograms of unwoven PGA fibers (National Tissue Engineering Center of China, Shanghai, China) was compressed into cylindrical scaffolds 9 mm in diameter and 2 mm thick. Next, 1.0% PLA (Sigma-Aldrich, St. Louis, MO, United States) in dichloromethane solvent was added to solidify the PGA scaffolds. The properties of these PGA/PLA scaffolds have been reported in detail in many previous studies (Liu et al., 2016; Chen et al., 2017). The scaffolds were then disinfected with 75% ethanol for 40 min and washed three times with PBS. Harvested chondrocytes from the second passage were seeded into each scaffold (0.1 ml per scaffold) at a concentration of 6.0 × 107 cells/ml in RM (DMEM containing 10% FBS), followed by a 4-h incubation, according to a previously described method to form cell-scaffold constructs (Liu et al., 2008; Yan et al., 2009). Next, half of the cell–scaffold constructs were cultured in RM with (+) or without (-) 0.02 mg/ml SP600125, while the other half were cultured in CM: DMEM containing 10 ng/ml of TGF-β1 (R&D Systems, Minneapolis, MN, United States), 40 ng/ml of dexamethasone (Sigma-Aldrich), 100 ng/ml of insulin-like growth factor (IGF)-I (R&D Systems), and other supplements (Li et al., 2019) with (+) or without (−) 0.02 mg/ml of SP600125. All constructs were cultured at 37°C in 95% humidity with 5% CO2 for 8 weeks.



Cell Adhesion

After 24 h of incubation, the cell-scaffold samples were transferred into new six-well plates for subsequent culture. The remaining cells in the primer six-well plate were collected and counted. Cell seeding efficiencies of scaffolds with different media contents were calculated based on the following formula:

(total cell number - remaining cell number)/total cell number × 100% (Liu et al., 2010).



Scanning Electron Microscopy

Extracellular matrix production on the surfaces of samples from different groups was observed by SEM (Philips XL-30, Amsterdam, Netherlands) after culture in vitro for 1, 3, 7, and 14 days. Samples were washed three times with PBS and fixed overnight in 2.5% glutaraldehyde at 4°C. After dehydration in a graded series of ethanol solution, samples were coated with gold and examined using SEM (Xu et al., 2017).



Wet Weight, Volume, and Thickness

After 8 weeks of in vitro culture, samples from all four groups were collected and weighed using an electronic balance. The thickness of each sample was measured with a Vernier caliper.



Histological and Immunohistochemical Evaluations

Tissue samples were fixed in 4% paraformaldehyde for 48 h before being embedded in paraffin wax and 5-μm sections were prepared. To evaluate the structure, ECM deposition, and chondrogenic differentiation of engineered tissues, sections were stained with hematoxylin and eosin (HE), Safranin O (SO), toluidine blue (TB), and type II collagen (COL II; mouse anti-human COL II monoclonal antibody, 1:100, Santa Cruz Biotechnology, Dallas, TX, United States), as described (Liu et al., 2008).



Quantitative Reverse Transcription Polymerase Chain Reaction Analysis

Total RNA was extracted from both cell and tissue samples (n = 3 per group) of different groups, and cDNA was obtained by reverse transcription (RT) according to a previously described method (Jiang et al., 2010). RT–quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed according to the manufacturer’s protocol (Thermo Fisher Scientific, Waltham, MA, United States). The expression levels of the genes TGF-β1, IGF, Aggrecan, COLIIA1, Sox9, TNF-α, IL-1β, and MMP13 were analyzed. The housekeeping gene encoding B-actin was quantified as an internal control. Forward and reverse primer sequences are listed in Supplementary Table 1. Expression levels were analyzed using the 2–Δ Δ CT method, as described (Livak and Schmittgen, 2001).



Biomechanical and Biochemical Evaluations

Young’s modulus of samples in different groups (n = 6 per group) was measured using a biomechanical analyzer (Instron-5542, Canton, MA, United States), as described (Chen et al., 2017). A constant compressive strain at 0.5 mm/min was applied until 80% of maximal deformation was reached, and the first 40% was used to plot the stress–strain curves. Young’s modulus was calculated according to stress–strain curves for statistical analysis.

After this biomechanical analysis, samples in the different groups were weighed and minced for DNA, total glycosaminoglycan (GAG), and total collagen quantifications. Quant-iT PicoGreen dsDNA assays (Invitrogen, Carlsbad, CA, United States) were used to quantify DNA contents of samples after culture in vitro for 3, 7, or 14 days and 8 weeks. Samples were treated and analyzed as described (Schagemann et al., 2010). GAG contents of tissue-engineered cartilage were quantified by a dimethylmethylene blue chloride (DMMB; Sigma-Aldrich) method, as described (Enobakhare et al., 1996). Total collagen contents of samples were quantified by a hydroxyproline assay, as described (Reddy and Enwemeka, 1996).



Statistical Analysis

All values are expressed as the mean ± standard deviation (SD). Statistical significance was analyzed by independent Student’s t-tests and one-way analysis of variance followed by post hoc tests with the Student–Newman–Keuls (SNK) method for comparison between groups using IBM SPSS Statistics (v. 25; IBM Corp., Armonk, NY, United States). A p-value less than 0.05 was considered to be statistically significant.



RESULTS


Influence of SP600125 on Chondrocyte Activity and Function

A two-dimensional (2D) model was constructed to study the short-term effects of SP600125 on chondrocytes. Light microscopy observations revealed that there were more active chondrocytes in the + SP600125 group compared with the -SP600125 group per field of vision (Figure 1A). Furthermore, CCK-8 cell proliferation curves showed differences between the two groups (Figure 1B), and cell counting identified an increased number of chondrocytes in the + SP600125 group compared with the -SP600125 group (Figure 1C). These results indicate that SP600125 promoted the proliferation of chondrocytes.
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FIGURE 1. Influence of SP600125 on auricular chondrocyte proliferation. Chondrocyte proliferation was observed by light microscopy (A), CCK-8 (B), and cell counts (C). The + SP600125 culture system promoted the proliferation of chondrocytes compared with the -SP600125 culture system as shown consistently by light microscopy, CCK-8 assays, and cell counts. Scale bars = 50 μm. “*”indicates statistical significance (p < 0.05). CCK-8, cell counting kit 8; JNK, c-Jun N-terminal kinase.


Cartilage-related genes and inflammatory-related genes were analyzed by RT-qPCR to evaluate the short-term effects of SP600125 on chondrocytes (Figure 2). After treatment with SP600125 for 24 h, expression levels of inflammatory-related genes such as those encoding TNF-α and IL-1β were decreased. Meanwhile, the expression of MMP13 was significantly downregulated probably in response to decreased expression of the genes for TNF-α and IL-1β, which suggests inhibited degradation of cartilaginous ECM. Unexpectedly, the expressions of some cartilage-related genes, such as TFGβ1, IGF, Aggrecan, COLIIA1, and Sox9 were downregulated, which indicates an inhibitory effect on ECM synthesis. These results demonstrate that SP600125 had an inhibitory effect on both ECM synthesis and degradation.
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FIGURE 2. Analysis of cartilage-related and inflammatory-related genes of auricular chondrocytes. After treatment with SP600125 for 24 h, the expressions of cartilage-related genes (TGF-β1, IGF, Aggrecan, COLIIA1, and Sox9) involved in the synthesis of ECM were downregulated. Simultaneously, the expression levels of inflammatory-related genes (TNF-α and IL-1β) and MMP13, which are involved in ECM catabolism, were significantly downregulated. “*”indicates statistical significance (p < 0.05). ECM, extracellular matrix; MMP13, matrix metalloproteinase 13.




Biocompatibility of Cell-Scaffold Constructs in a Three-Dimensional Culture System

Thirty micrograms of unwoven PGA fibers was compressed into a cylinder 9 mm in diameter and 2 mm thick. Scaffolds were then solidified by PLA in dichloromethane solvent. Aliquots of 6.0 × 107 chondrocytes were seeded onto each scaffold and cultured with or without SP600125 in either RM or CM (Figure 3A). Differences in cell seeding efficiency were not statistically significant (Figure 3B), which indicates no statistical difference in the initial number of cells among different groups. The DNA contents of all groups increased with culture times. Notably, the +SP600125 groups showed a more obvious growth trend, which indicates that cell proliferation was promoted in this 3D cartilage regeneration model (Figure 3C). The CM-SP600125 group showed lower levels of DNA than the RM-SP600125 group, which suggests an inhibitory effect of CM on cell proliferation. However, the CM + SP600125 group reversed the negative effect of CM on cell survival by showing a greater DNA content than in the RM-SP600125 group, which indicates a greater number of active cells. These results indicate that SP600125 supplementation promoted the proliferation of chondrocytes and reversed the negative effect of CM on cell survival.
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FIGURE 3. Preparation of in vitro constructed cartilage and biocompatibility of scaffolds. Unwoven PGA fibers were compressed into PGA/PLA scaffolds 9 mm in diameter and 2 mm thick, and then rabbit auricular chondrocytes were seeded into each scaffold to form cell-scaffold constructs (A). There were no significantly differences in cell seeding efficiencies among each group (B). DNA content (C) of each group was enhanced with culture time. Treatment with SP600125 resulted in an increase of DNA content, while treatment with CM inhibited the growth of DNA content. However, the CM + SP600125 group showed that adding SP600125 reversed this inhibitory effect of CM and resulted in more DNA content. PGA, polyglycolic acid; PLA, polylactic acid; RM, regular medium; and CM, chondrogenic medium.


The deposition of ECM was evaluated by SEM during the early stage of in vitro cartilage regeneration (Figure 4). SEM revealed that chondrocytes remained round and separated in the first 24 h, and there was no significant difference in morphology among the groups. After 3 days, the chondrocytes spread and began to secrete ECM to adhere to fibers. The addition of CM obviously accelerated and increased the deposition of cartilage ECM. At 7 days, more ECM was produced by chondrocytes, and the fiber interspaces were almost fully covered. At 14 days, the PGA fibers had been completely covered by abundant ECM. Less ECM deposition was observed in the RM + SP600125 group than in the RM-SP600125 group, which indicates inhibition of SP600125 on ECM synthesis. However, the CM + SP600125 group reversed this tendency by achieving obviously greater ECM deposition than in the RM + SP600125 and RM-SP600125 group. These results indicate that SP600125 inhibited ECM synthesis, but the addition of CM reversed this.
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FIGURE 4. ECM production by auricular chondrocytes on PGA/PLA scaffolds observed using SEM. Chondrocytes on scaffolds were separated and displayed round shapes within 24 h. In the following culture period, the ECM deposition increased with time. Treatment with CM enhanced the ECM deposition, while treatment with SP600125 alone decreased it. However, the CM + SP600125 group showed that adding CM reversed this inhibitory effect of SP600125 alone and produced more ECM deposition. Scale bars (1 day) = 20 μm. Scale bars (3, 7, and 14 days) = 200 μm. ECM, extracellular matrix; PGA, polyglycolic acid; PLA, polylactic acid; RM, regular medium; and CM, chondrogenic medium.




Tissue-Engineered Cartilage Regeneration in vitro


Gross View and Histology of in vitro Cartilage Regeneration

After 8 weeks of in vitro culture, different groups appeared to have different gross appearances (Figure 5). The RM groups had a faint yellow appearance, while the CM groups showed a cartilaginous ivory-white appearance. The RM-SP600125 group showed a relatively smooth surface, while the RM + SP600125 group showed a more irregular one; however, differences between the cartilage in the CM + SP600125 and CM-SP600125 groups could not be distinguished by eye. Histology further supported the observed macroscopic results (Figure 5). Generally, the +SP600125 groups exhibited less ECM deposition and chondrogenic differentiation but more nucleated cells. The CM groups showed more mature cartilaginous tissue, increased ECM production, and better chondrogenic differentiation than did the RM groups, likely reflecting active chondrogenesis. In the RM-SP600125 group, some lacuna-like structures were observed with positive SO, TB, and COL II staining results. In the RM + SP600125 group, only undegraded PGA fibers and fibrous tissue were observed without formation of lacuna-like structures; and the SO, TB, and COL II staining results were extremely weak. The CM + SP600125 group showed more mature cartilaginous tissue with increased ECM deposition and better chondrogenesis in terms of cartilaginous features and thicknesses than did the RM-SP600125 group, which indicates that the addition of CM reversed the inhibitory effect of SP600125 on ECM synthesis. Moreover, more cells were obvious in the CM + SP600125 group than in the RM-SP600125 and CM-SP600125 groups, which suggests that the negative effect of CM on cell survival was reversed by the addition of SP600125. These results indicate that SP600125 inhibited ECM synthesis, but the addition of CM reversed this. At the same time, SP600125 reversed the negative effect of CM on cell survival by enhancing the numbers of active cells.
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FIGURE 5. Gross view and histology of in vitro cartilage regeneration. Samples in different groups showed different colors and textures. The CM groups showed more mature cartilaginous tissue and increased ECM production than did the RM groups. Treatment with SP600125 alone decreased the ECM deposition and cartilage maturity with weak staining for cartilage-specific ECM molecules. However, the CM + SP600125 culture reversed the effect of SP600125 alone in reducing ECM synthesis and produced more active cells with stained nuclei compared with the -SP600125 groups at the same time. Scale bars = 50 μm. SO, Safranin O staining; TB, toluidine blue staining; COL II, type II collagen staining; RM, regular medium; CM, chondrogenic medium; and ECM, extracellular matrix.




Quantitative Evaluations of in vitro Cartilage Regeneration

Quantitative examinations of cartilage ECM, such as wet weight, thickness, Young’s modulus, total GAG, and total COL contents (Figures 6A–E), were decreased in the +SP600125 groups. However, differences decreased from absolute changes of 40–50% in the RM groups to 10–20% in the CM groups, which indicates that SP600125 inhibited ECM synthesis during in vitro chondrocyte culture but that this was diminished by the addition of CM. More importantly, the amounts of ECM were increased in the CM + SP600125 group compared with the RM-SP600125 group, which indicates that combination of SP600125 and CM reversed the inhibitory effect of SP600125 on ECM synthesis. The DNA contents of the +SP600125 groups were much higher than in the -SP600125 groups, which indicates the promotion of cell proliferation (Figure 6F). The CM-SP600125 group showed less DNA content than in the RM-SP600125 group, which indicates the negative effect of CM on cell survival. However, the addition of SP600125 to CM reversed this negative effect on cell survival and produced greater DNA contents compared with the RM-SP600125 group. These results indicate that SP600125 inhibited ECM synthesis, but the addition of CM reversed this negative effect. At the same time, SP600125 reversed the negative effect of CM on cell survival by enhancing the number of active cells.
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FIGURE 6. Wet weight, thickness, biomechanical, and biochemical evaluations. Wet weight (A), thickness (B), Young’s modulus (C), total GAG (D), and total COL (E) contents showed decreasing trends in the RM + SP600125 group compared with the RM-SP600125 group. However, the CM + SP600125 culture reversed these inhibitory effects. Treatment with SP600125 enhanced the DNA contents (F), which indicates greater cell numbers. More importantly, the CM + SP600125 culture reversed the inhibitory effect of CM on cell survival. Columns with the same letters indicate no statistically significant differences (p > 0.05), whereas the columns with different letters indicate statistically significant differences (p < 0.05). ECM, extracellular matrix; RM, regular medium; CM, chondrogenic medium; GAG, glycosaminoglycan; and COL, collagen.




Characteristic Gene Expression of in vitro Cartilage Regeneration

Cartilage-related genes and inflammatory-related genes were analyzed by RT-qPCR to further evaluate the effect of SP600125 on this pathway and on cartilage formation (Figure 7). The expression levels of cartilage formation-related genes, such as TGF-β1, IGF, Aggrecan, COLIIA1, and Sox9, were decreased in the +SP600125 groups compared with the -SP600125 groups. However, the addition of CM obviously diminished these differences. Moreover, higher expression levels of cartilage-related genes were observed in the CM + SP600125 group compared with the RM-SP600125 group, which indicates that a combination of SP600125 and CM reversed the inhibitory effect of SP600125 on ECM synthesis. It is noteworthy that expression levels of TGF-β1 and IGF were also decreased in the CM-SP600125 group, which was probably caused by feedback inhibition from the high concentrations of TGF-β1 and IGF-1 in CM. In addition, expressions of gene encoding TNF-α, IL-1β, and MMP13 were decreased in the +SP600125 groups, which indicates reduction of inflammatory responses and ECM degradation. All these results indicate that SP600125 decreased ECM synthesis and degradation in vitro, but the inhibitory effect of SP600125 on ECM synthesis was reversed by the addition of CM.
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FIGURE 7. Analysis of the expression levels of cartilage-related genes and inflammatory-related genes of in vitro cultured cartilages. After the samples were cultured in vitro for 8 weeks, the expressions of cartilage-related genes (TGF-β1, IGF, Aggrecan, COLIIA1, and Sox9) were greatly reduced when treated with SP600125 alone. However, the CM + SP600125 culture reversed the inhibitory effect of SP600125 alone on ECM synthesis. The expressions of TGF-β1 and IGF were also downregulated in the CM-SP600125 group, which was probably caused by feedback inhibition with the high contents of TGF-β1 and IGF in CM. Expressions of inflammatory-related genes (TNF-α and IL-1β) and of MMP13, which are involved in ECM catabolism, were downregulated in the + SP600125 groups. Columns with the same letters indicate no statistically significant differences (p > 0.05), whereas the columns with different letters indicate statistically significant differences (p < 0.05). RM, regular medium; CM, chondrogenic medium; ECM, extracellular matrix; and MMP13, matrix metalloproteinase 13.




DISCUSSION

Cartilage defects and degeneration remain difficult clinical problems because of the poor self-repair capacity of this connective tissue (Dhinsa and Adesida, 2012; Fini et al., 2013; Yin et al., 2016). In vitro construction is one of the major trends for cartilage regeneration. Although the chondrogenic culture systems used currently help in promoting ECM production, they inhibit chondrocyte survival, resulting in a sharp decrease in the number of active cells, which is obviously unfavorable for the stability and maintenance of regenerated cartilage after implantation in vivo. Here, we found that supplementation with SP600125 could significantly promote cell proliferation at both cellular and tissue levels and even cancel out the negative effect of CM on cell survival and thus effectively increase the number of active cells in regenerated cartilage. Moreover, SP600125 supplementation reduced ECM degradation by inhibiting the expression of the genes encoding TNF-α, IL-1β, and MMP13, which was also beneficial for the maintenance of regenerated cartilage. In addition, the inhibitory effect of SP600125 on ECM synthesis could be canceled and even reversed by adding chondrogenic factors. Therefore, the combination of SP600125 and CM could efficiently promote cell proliferation, reduce ECM degradation, improve ECM synthesis, and thus help in optimizing our chondrogenic culture system and achieve satisfactory in vitro cartilage regeneration.

Satisfactory cartilage regeneration in vitro depends on the numbers of active cells and the amount of ECM (Yokoo et al., 2005; Huey et al., 2012; Oseni et al., 2012). Chondrocytes are the only cell type in cartilage tissues and are thought to be involved in the maintenance of tissue homeostasis (Jiang and Tuan, 2015). Although the chondrogenic culture system we use currently has a strong effect on promoting ECM production, it reduces chondrocyte survival, which is obviously unfavorable for the stability and maintenance of regenerated cartilage in the long term. Although JNK inhibitors were shown to reduce chondrocyte apoptosis in a model of OA (Lu et al., 2014), whether JNK inhibitors can promote chondrocyte proliferation and reverse the negative effect of current chondrogenic system on cell survival in 3D cartilage regeneration models is still unclear. Here, we found that SP600125 promoted the proliferation of chondrocyte at both cellular and tissue levels. More importantly, adding SP600125 reversed the negative effect of CM on cell survival in our 3D culture system, improved the survival of chondrocytes, and thus provided a good cell basis for subsequent cartilage regeneration.

In addition to the active chondrocytes, cartilaginous ECM metabolism is a key factor in determining the quality of regenerated cartilage. A balance between anabolism and catabolism of the ECM is vital for the long-term survival and stability of cartilage (Karsdal et al., 2016; Huang et al., 2018; Iturriaga et al., 2018). When dominated by anabolism, such as the in vitro cartilage regeneration models, cartilage tends to grow; when dominated by catabolism, such as in models of OA, cartilage tends to degrade. JNK inhibitors could significantly reduce the cartilaginous degradation associated with OA by inhibiting the activity of MMP13 (Ge et al., 2017). However, the effects of JNK inhibitors on cartilage ECM metabolism in 3D cartilage regeneration models are still unclear. As expected, our results demonstrate that JNK inhibitors had a markedly inhibitory effect on ECM degradation, evidenced by significant downregulation of ECM catabolism-related genes such as those encoding TNF-α, IL-1β, and MMP13 at both cellular and tissue levels. According to previous reports, it was demonstrated that OA chondrocytes produced matrix-degrading enzymes primarily MMP13 in response to pro-inflammatory cytokines such as TNF-α and IL-1, which promoted the breakdown of articular cartilage (Kimura et al., 2009; Akutsu et al., 2013; Zhang et al., 2016). Therefore, we speculate that the inhibitory effect on the expression of MMP13 was a response to the reducing expression of pro-inflammatory cytokines such as TNF-α and IL-1β and thus lead to the inhibition of ECM degradation. Given that reducing ECM degradation is a vital factor in cartilage survival and maintenance, SP600125 had a positive effect on ECM deposition during in vitro cartilage regeneration.

The effect of JNK inhibitors on ECM anabolism is another important issue. Unexpectedly, ECM synthesis was also greatly inhibited at both the cellular level and our 3D cartilage regeneration model, as indicated by SEM, histology, quantitative evaluations of ECM, and the expression levels of cartilage-related genes. According to our results, the inhibitory effect of SP600125 on ECM synthesis might result from reduced levels of TGF-β1 and IGF-1. This would greatly reduce the self-secretion of these anabolic factors and thus inhibit ECM synthesis (Sandell and Aigner, 2001). Because ECM anabolism plays a dominant role during cartilage regeneration in vitro, SP600125 alone was obviously unfavorable for cartilage regeneration in terms of inhibiting ECM synthesis.

Fortunately, this could be canceled and even reversed by combining supplementation with a chondrogenic culture system. According to our results, the combination of SP600125 and CM achieved better ECM synthesis and more mature cartilage regeneration compared with standard medium, as indicated by histology, quantitative evaluations of ECM, and the expression levels of cartilage-related genes. The inhibitory effect of SP600125 on ECM synthesis could be reversed, and this mainly contributed to the high contents of exogenous TGF-β1 and IGF-1 in the chondrogenic culture system. Obviously, the addition of exogenous TGF-β1 and IGF-1 reversed the downregulation of these factors caused by SP600125 and thus kept high contents of anabolic factors in the culture system, which is the key factor for satisfactory cartilage regeneration. More importantly, the addition of SP600125 significantly enhanced the numbers of active cells and greatly inhibited ECM degradation, which effectively made up for the deficiencies of our current chondrogenic culture system in regulating cell survival and ECM catabolism. Therefore, the combination of SP600125 and CM not only had no negative effect on ECM deposition but also helped to achieve better in vitro cartilage regeneration in terms of enhancing cell survival and inhibiting ECM catabolism.

In summary, using an in vitro 3D cartilage regeneration model, here, we demonstrated that the combination of a JNK inhibitor and CM could efficiently improve the quality of in vitro cartilage regeneration by promoting cell proliferation, reducing ECM degradation, and enhancing ECM synthesis. Although some issues such as dosage and the duration of SP600125 supplementation need to be further investigated for future clinical applications, this study suggests a feasible strategy for optimizing chondrogenic culture systems and achieving satisfactory in vitro cartilage regeneration.
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Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder that characterized by progressive destruction of articular cartilage. There is no effective disease-modifying therapy for the condition due to limited understanding of the molecular mechanisms on cartilage maintenance and destruction. Receptor-interacting protein kinase 1 (RIP1)-mediated necroptosis plays a vital role in various diseases, but the involvement of RIP1 in OA pathogenesis remains largely unknown. Here we show that typical necrotic cell morphology is observed within human OA cartilage samples in situ, and that RIP1 is significantly upregulated in cartilage from both OA patients and experimental OA rat models. Intra-articular RIP1 overexpression is sufficient to induce structural and functional defects of cartilage in rats, highlighting the crucial role of RIP1 during OA onset and progression by mediating chondrocyte necroptosis and disrupting extracellular matrix (ECM) metabolism homeostasis. Inhibition of RIP1 activity by its inhibitor necrostatin-1 protects the rats from trauma-induced cartilage degradation as well as limb pain. More importantly, we identify bone morphogenetic protein 7 (BMP7) as a novel downstream target that mediates RIP1-induced chondrocyte necroptosis and OA manifestations, thereby representing a non-canonical regulation mode of necroptosis. Our study supports a model whereby the activation of RIP1-BMP7 functional axis promotes chondrocyte necroptosis and subsequent OA pathogenesis, thus providing a new therapeutic target for OA.

Keywords: cartilage, chondrocyte, osteoarthritis, necroptosis, receptor-interacting protein kinase 1, extracellular matrix


INTRODUCTION

Osteoarthritis (OA) is the most common joint disease, which is a major source of pain, disability, and socioeconomic cost worldwide (Hunter et al., 2014; Safiri et al., 2020). The epidemiology of OA is complex and multifactorial, with genetic, biological, and biomechanical components (Glyn-Jones et al., 2015; Martel-Pelletier et al., 2016). Cartilage destruction is a key feature of OA, but current treatment options are limited to symptoms relief, with no effective disease-modifying OA drugs (DMOADs) discovered so far (Bijlsma et al., 2011). Therefore, unraveling novel molecular mechanisms of cartilage maintenance and destruction is likely to yield new therapeutic strategies for OA.

Loss of chondrocyte cellularity within the articular cartilage is one of the prominent events that contribute to its degradation. However, what controls the fate of chondrocytes during OA pathogenesis is still uncertain. Chondrocyte death has been shown to play a vital part in OA. Previous studies mainly focused on chondrocyte apoptosis rather than necrosis, which has long been regarded as an unregulated form of passive cell death and cannot be used as a therapeutic target (Ryu et al., 2012; Hosseinzadeh et al., 2016). Recent advances have identified a “programmed” form of necrosis (i.e., necroptosis), which has been placed in a central position in the pathogenesis of various diseases. Necroptosis is mediated by necrosome, a supermolecular complex which contains receptor-interacting protein kinase 1 and 3 (RIP1, RIP3), and its direct substrate mixed-lineage kinase domain-like protein (MLKL), targeting the complex to appropriate downstream effectors in the necroptosis-inducing process (Cho et al., 2009; He et al., 2009; Wang et al., 2014). Previous studies have discovered a possible link between necroptotic process and cartilage injury depending on oxidative stress and cytokine release in OA, and the TRIM24-RIP3 axis was proposed to promote OA chronicity by modulating the expression of catabolic factors (Riegger and Brenner, 2019; Jeon et al., 2020; Stolberg-Stolberg et al., 2020). However, the involvement of RIP1 during OA pathogenesis still lacks direct evidence. Unlike RIP3 primarily mediating necroptosis, RIP1 induces both necroptosis and apoptosis when appropriate downstream signals are present, which makes it a major regulator in cell death (Dannappel et al., 2014; Degterev et al., 2019). And given the fact that RIP1 functions upstream of RIP3 and MLKL, it is likely that RIP1 might be a more effective therapeutic target for clinical treatment of OA.

The cellular events acting downstream of the necrotic signaling complex to execute necroptosis depends on the cell type and stimulus. Therefore, further investigation is required for complete understanding of tissue-specific intracellular necroptosis mediators during OA. A recent report demonstrated that knockdown of RIP1 protected chondrocytes against inflammation and apoptosis induced by interleukin (IL)-1β in a manner mediated by a TRIF/MyD88-RIP1-TRAF2 negative feedback loop (Liang et al., 2019). Although this observation suggested a possible role of RIP1 in cartilage degeneration, the physiological and pathological functions of RIP1 in chondrocytes and the underlying mechanism have not yet been fully addressed. The contribution of RIP1-mediated necroptosis during OA onset and progression in vivo is also undefined. Herein, we aim to investigate the possible functions and underlying molecular mechanisms of RIP1 in OA pathogenesis.

In this study, we provide the first in situ evidence that typical morphological features of necroptosis occur in chondrocytes within osteoarthritic human cartilage, and demonstrate that the expression level of RIP1 is significantly upregulated in cartilage from both OA patients and experimental OA rat models. We are also the first to prove that intra-articular RIP1 overexpression is sufficient to induce OA manifestations in rats, highlighting the crucial role of RIP1 at OA onset by mediating chondrocyte necroptosis and extracellular matrix (ECM) degradation. And inhibition of RIP1 activity by its inhibitor necrostatin-1 (Nec-1) protects the rats from trauma-induced cartilage disruption as well as limb pain. More importantly, we demonstrate that MLKL is dispensable for RIP1-induced chondrocyte necroptosis and OA pathogenic signatures, and identify bone morphogenetic protein 7 (BMP7) as a novel downstream target of RIP1 in chondrocytes, thereby representing a non-canonical regulation mode of necroptosis. Our study supports a model whereby RIP1-BMP7 functional axis participates in the regulation of OA pathogenesis, thus providing a new therapeutic target for the clinical treatment of OA.



MATERIALS AND METHODS


Human Cartilage Samples

Human OA cartilage samples were obtained from individuals undergoing total knee arthroplasty in Peking University Third Hospital (Supplementary Table 1). All patients provided written informed consent. Sample collection was approved by the ethics committee of the hospital. Healthy human cartilage samples were obtained from Shanxi Osteorad Biomaterial Co., Ltd., provided by donors. The inclusion and exclusion criteria for screening OA patients are as follows:

•Inclusion criteria (all of the following):

1. Age of above 55 years old;

2. Plain X-rays showing OA (Kellgren and Lawrence gradus 3–4) which correlates with clinical symptoms;

3. Severe bone destruction and significantly narrowed joint space indicated by X-rays, or varus and valgus deformity/flexion contracture deformity, which has severely affected joint mobility and living ability of the patients;

4. Symptoms were not improved by conservative treatment.

•Exclusion criteria (any of the following):

1. No symptom of pain or deformity;

2. Paralysis of the tissues around the knee joint;

3. Severe cardiovascular disease;

4. Acute or chronic infectious diseases;

5. Hemorrhagic disorders;

6. Pulmonary insufficiency;

7. Mental instability.



Experimental OA Rat Models

To produce experimental OA models, 10 weeks old male Sprague–Dawley (SD) rats were subjected to surgical anterior cruciate ligament transection (ACLT), female rats were not used because of the effects of female hormones on OA pathogenesis. Briefly, under general anesthesia, the anterior cruciate ligament of the right knees was transected. Three days after surgery, the rats were randomly divided into three groups: ACLT + DMSO group, ACLT + Nec-1 L (0.025 mg/kg) group and ACLT + Nec-1 H (0.05 mg/kg) group. And sham operation was performed on control rats. Nec-1 was diluted in 50 μL of DMSO and injected into the articular twice a week, and continued for 4 weeks until the rats were sacrificed. Spontaneous OA in rats was examined at 12 months of age. All animals were maintained in the Animal Facility of Peking University Health Science Center, and ethical approval was obtained from the Institutional Animal Care and Use Committee.



Primary Culture of Chondrocytes

Primary rat chondrocytes were isolated from femoral condyles and tibial plateaus of SD rats weighing 80 g by digesting cartilage tissue with 0.25% trypsin for 30 min and then 0.2% type II collagenase for 4 h at 37°C. The cells were suspended in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; HyClone) and antibiotics (penicillin G and streptomycin). All cells were maintained as a monolayer in a humidified incubator containing 5% CO2 at 37°C. Human chondrocytes were isolated from healthy and OA human cartilage samples using the same method. Mouse chondrocytes were isolated from wild-type and Mlkl gene knockout (KO) mice which were generated as previously described (He et al., 2009). Recombinant IL-1β, TNF-α and BMP7 used to treat chondrocytes were purchased from PeproTech, Inc.



Adenovirus Infection of Chondrocytes and Intra-Articular Injection of Rats

Chondrocytes were cultured for 2 days, infected with replication-defective adenovirus encoding the complete Rip1 open reading frame (Ad-Rip1) or adenoviral vector (Ad-Ctl) at the indicated multiplicity of infection (MOI), and cultured in the absence or presence of Nec-1. For intra-articular injection of the adenovirus, SD rats weighing 80 g were randomly divided into four groups: Healthy control group, Ad-Ctl group [5 × 108 plaque forming units (pfu)], Ad-Rip1 L group (108 pfu) and Ad-Rip1 H group (5 × 108 pfu). The adenovirus was diluted in 50 μL of physiological saline and injected into the knee joints of rats through the patellar ligament using a 26-gauge needle once per week. The rats were sacrificed 4 weeks after the initial injection under anesthesia. All animals were maintained in the Animal Facility of Peking University Health Science Center, and ethical approval was obtained from the Institutional Animal Care and Use Committee.



Evans Blue Dye Staining Assay

For human OA cartilage tissues, freshly obtained samples were soaked in Evans blue dye (EBD) dissolving in saline (1 mg/mL) overnight, and Hoechst 33342 (2.5 μg/mL) was added 10 min before harvest. The fluorescence was then visualized by confocal microscopy.

For rats with intra-articular injection of Ad-Ctl or Ad-Rip1, EBD (100 mg/kg) was intraperitoneally injected 1 day before sacrifice, and then the cartilage was snap-frozen and embedded in O.C.T. compound. Frozen cryosections (7 μm thickness) were mounted onto slides, fixed in ice-cold methanol for 5 min, and then incubated with Hoechst 33342 for 10 min. After washed with PBS, the slides were visualized under confocal microscope.



Cell Viability Assay

Chondrocyte necrosis was determined by lactate dehydrogenase (LDH) assay. The LDH concentration in the culture medium was spectrophotometrically assayed using a kit from Sigma (MAK066) according to the manufacturer’s instructions. CCK-8 and Live-Dead staining assay was used to measure cell viability. For CCK-8 assay, 10 μL of CCK-8 (Dojindo) was added into each well of culturing cells, and after 1 h of incubation, the absorbance was measured at 450 nm using the microplate reader. Background reading of medium was used to normalize the result. For Live-Dead staining, the culture medium of chondrocytes was replaced by a solution of PBS containing 1 mg/mL calcein-AM (Thermo Fisher Scientific) and 1 mg/mL propidium iodide (PI) (Thermo Fisher Scientific). And the stained cells were observed under confocal microscope after 30 min of incubation.



Transmission Electron Microscopy

Human cartilage tissues were cut into 1 mm3 pieces and fixed immediately in 2.5% glutaraldehyde at 4°C for 2 h, dehydrated in a graded ethanol series, embedded and sectioned at a thickness of 50 nm. The sections were stained with uranium acetate for 30 min and lead citrate for 5 min, and then examined with transmission electron microscope (TEM) (JEM1400PLUS, JEOL).



Histological Assessment

Human and rat cartilage tissues from the knee joints were resected and fixed in 4% paraformaldehyde, decalcified in 0.5 M EDTA, dehydrated in a graded ethanol series and embedded in paraffin. The paraffin blocks were sectioned at a thickness of 5 μm. The sections were deparaffinized in xylene, and cartilage destruction in rats was examined using safranin O and fast green (Sigma) staining and scored by two blinded observers using the Osteoarthritis Research Society International (OARSI) histological grading scale (Moskowitz, 2006; Pritzker et al., 2006). Immunohistochemistry (IHC) analysis was performed with antibodies recognizing type II collagen (Abcam, ab34712; 1:200), MMP13 (Abcam, ab219620; 1:200), RIP1 (BD Biosciences, 610459; 1:200) and RIP3 (Novusbio, NBP1-77299; 1:200). HRP conjugated anti-mouse and anti-rabbit secondary antibodies were purchased from ZSGB-BIO.



Immunofluorescence

Rat chondrocytes were treated with or without 10 ng/mL IL-1β for 24 h, rinsed in PBS and fixed with 4% paraformaldehyde for 15 min at room temperature. Triton X-100 was used to penetrate the cell membrane for 5 min, and goat serum was applied to block non-specific binding sites. Then the cells were incubated with primary antibodies against RIP1 (BD Biosciences, 610459; 1:200) at 4°C overnight, washed with PBS and incubated with anti-mouse IgG (Alexa Fluor® 488) (Abcam, ab150113; 1:1,000). Nuclei were counterstained with Hoechst 33342 for 10 min. After washed again, the samples were visualized using confocal microscope.



Quantitative Real-Time PCR

Total RNA was extracted using TRIzol reagent (Invitrogen). Isolated RNA was reverse-transcribed using RevertAid First Strand cDNA Synthesis Kit (Fermentas, K1622) according to the manufacturer’s instruction, and quantitative real-time PCR (qRT-PCR) was performed using StepOne Plus Real-Time PCR System (Applied Biosystems). Primers for qRT-PCR were shown in Supplementary Table 2. Amplification was performed as follows: 95°C for 2 min, followed by 40 cycles of 95°C for 15 s and 60°C for 30 s. A dissociation stage was added at the end of the amplification procedure. The expression level of GAPDH was used as an internal control. The relative expression level was calculated by 2–Δ CT.



Annexin V/PI Staining Assay

Live, apoptotic and necrotic chondrocytes were distinguished by Alexa Fluor® 488 annexin V/Dead Cell Apoptosis Kit (Invitrogen) according to the manufacturer’s instruction. Briefly, cells were gently trypsinized, washed with serum-containing media and collected by centrifugation. Then the cell pallets were resuspended in 500 μL of 1x binding buffer. After adding 5 μL of annexin V-FITC and 5 μL of PI, the samples were incubated at room temperature for 5 min in the dark and proceeded for quantification by flow cytometry within 1 h. Unstained cells were used as a negative control.



Cell Cycle Analysis

Chondrocytes were harvested, washed in PBS and fixed in 75% ethanol at 4°C overnight. Then the cells were washed and centrifuged at 850 g, the supernatant was discarded and 50 μL of a 100 μg/mL RNase stock was added. After incubated at 37°C for 30 min, the cells were centrifuged and resuspended in 450 μL of PBS. After adding 50 μL of a 50 μg/mL PI stock solution and incubated for 10 min in the dark, the samples were proceeded for flow cytometric analysis.



Western Blotting and Enzyme-Linked Immunosorbent Assay

Western blotting analysis was conducted using the protein of lysates isolated from cultured rat chondrocytes. The cell lysates prepared in lysis buffer (150 mM NaCl, 1% NP-40, 50 mM Tris, 0.2% SDS, 5 mM NaF) containing protease inhibitors (Roche) were centrifuged, and the supernatants were separated by SDS-PAGE and blotted on a polyvinylidene fluoride membrane (Bio-Rad). After incubated with specific antibodies, proteins were detected using BIO-RAD ChemiDoc XRS + system. Antibodies direct against the following proteins were used: cleaved poly ADP-ribose polymerase (PARP) (Abcam, ab32064; 1:1,000), cleaved caspase-3 (Abcam, ab32042; 1:500), MMP1 (Proteintech, 10371-2-AP; 1:1,000), MMP13 (Abcam, ab39012; 1:2,000), IL6 (Abcam, ab9324; 1:800), type II collagen (Abcam, ab34712; 1:1,000), SOX9 (Abcam, ab185966; 1:1,000), RIP1 (BD Biosciences, 610459; 1:1,000), RIP3 (Novusbio, NBP1-77299; 1:1,000), and BMP7 (Bioss, bs-2242R; 1:1,000). Anti-GAPDH and HRP-conjugated secondary antibodies were purchased from ZSGB-BIO.

Rat articular chondrocytes were infected with Ad-Ctl or Ad-Rip1 at the indicated MOI, after 48 h of culture, the amount of secreted BMP7 in the cultural supernatant was determined by the enzyme-linked immunosorbent assay (ELISA) Development kit (SEA799Ra, Cloud-Clone) according to the manufacturer’s suggested protocol.



Cartilage Explants Experiment

Cartilage disk from intact human knee cartilage was cut into pieces of approximately 1 mm3 in volume, and each piece was cultured in medium supplemented with Ad-Ctl (100 MOI), Ad-Rip1 or Ad-Rip1 with 50 μM Nec-1 for a total of 10 days. The cartilage piece cultured in medium without supplement was used as negative control. Then the explants were proceeded for the measurement of glycosaminoglycan (GAG) content, or fixed, cut into sections and stained with toluidine blue. The cultural supernatant was collected for the quantification of secreted cartilage oligomeric matrix protein (COMP) by using the ELISA Development kit (abx256440, Abbexa).



Measurement of GAG Content

The cartilage explants were grinded and digested overnight in papainase (125 μg/mL) at 60°C. The GAG content was measured using a DMMB assay. Briefly, 20 μL of lysates were mixed with 200 μL of DMMB working solution for 30 min at room temperature. The absorbance was then measured at 525 nm. Chondroitin sulfate (Sigma) was used as a standard.



Alcian Blue and Alizarin Red Staining

Chondrocytes were fixed with 4% paraformaldehyde in PBS for 15 min at room temperature and washed with diH2O three times, then 1% Alcian blue staining solution (Cyagen) or 2% Alizarin red staining solution (Sciencell) was added. After 30 min of incubation, cells were washed and images were taken using optical microscope.



Nanoidentation Assessment

Biomechanical properties of rat cartilage surface were analyzed using nanoindentation. Cartilage samples were isolated from the central part of rat femoral condyle. Circumfluent PBS solution was used to maintain hydration. All indentations were performed using TI 950 TriboIndenter with a 400 μm radius curvature conospherical diamond probe tip. A trapezoidal load function was applied to each indent site with 10 s peak load, 2 s hold, and 10 s unload. Indentations were force-controlled to a maximum indentation depth of 500 nm. The microscopic geomorphology of the indentation zones was captured using micro-scanning apparatus.



Hotplate Analysis

Hotplate test was applied to analyze the pain response of rat limbs. The rats were placed on the hotplate (UGO BASILE) setting at 55°C. The latency period for hind limb response (e.g., shaking, jumping, or licking) was recorded as response time. Each rat was measured for three times. The observers were blinded to the animal group.



Weight Bearing Test

The weight distribution of hind paws of rats was measured using the incapacitance tester (UGO BASILE). Rats were standing inside the chamber with each hind paw on one transducer during testing. The duration time was set for 9 s. The results were shown as the ratios of weight placed on the injected/operated (right) hindlimb vs. that on the contralateral sham (left) hindlimb. Measurements were taken for three times for each rat. The observers were blinded to the animal group.



Terminal Deoxynucleotidyl Transferase dUTP Nick-End Labeling Assay

Transferase dUTP nick-end labeling (TUNEL) assay was performed using a TUNEL Apoptosis Assay Kit (HRP-DAB, Beyotime, C1098) for in situ detection of apoptotic cells in rat cartilage tissues according to the manufacturer’s instructions. Briefly, the paraffin slices were deparaffinized, hydrated, incubated with 20 μg/mL Proteinase K at 37°C for 20 min, washed with PBS and then incubated with 3% H2O2 in PBS at 25°C for 20 min. After washed again, the slices were incubated with a terminal deoxynucleotidyl transferase (TdT) enzyme working solution at 37°C in the dark for 60 min, washed and incubated with Streptavidin-HRP solution at 25°C for another 30 min, and then with a DAB working solution at 25°C for 5 min. After stop the reaction by washing with PBS, the slices were dehydrated, mounted and examined using optical microscope.



Microarray Analysis

Rat articular chondrocytes were infected with Ad-Ctl or Ad-Rip1 at a MOI of 100 for 24 h. Total RNA was extracted from each group using Trizol reagent. The cDNA libraries were then constructed and quantified with the Agilent Bioanalyzer 2100 system. Sequencing was performed using the Illumina HiSeq platform (Agilent Technologies, United States) by Novogene Co., Ltd., and 150 bp paired-end reads were generated. Analysis of differentially expressed genes was performed using the DEGseq R package. Gene ontology (GO) analysis was performed to facilitate elucidating the biological implications of the differentially expressed genes, including biological process (BP), cellular component (CC), and molecular function (MF) (Ashburner et al., 2000). Pathway analysis was used to identify the significantly influenced pathways on which the differentially expressed genes have affected according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000). Fisher’s exact test was applied to identify significant GO categories as well as influenced pathway. And the threshold of significance was defined by P value (Draghici et al., 2007). Enrichment maps were generated using Clusterprofiler for graphical representation of top 30 enriched biological processes and KEGG pathways, including upregulated and downregulated ones.



RNA Interference-Mediated Gene Silencing

For gene-silencing assays, siRNAs 19 nucleotides in length with a dTdT overhang at the 3′ terminus were designed to target BMP7, the siRNA sequences were as follows: siRNA1, 5′-CCATCGAGAGTTCCGGTTT-3′; siRNA2, 5′-GGATCTATAAGGACTACAT-3′; siRNA3, 5′-GGAGGGCTGGTTGGTATTT-3′. Rat chondrocytes were seeded onto 6-well plates and cultured for 24 h, then transfected with 3 μL of siRNA (10 μM) using Lipofectamine RNAiMAX (Invitrogen) following the manufacturer’s instructions and harvested after 48 h.



Statistical Analysis

Results were presented as the mean ± standard error of the mean (SEM). GraphPad Prism 7 was used for statistical analysis. Statistical significance with parametric data was assessed by Student’s t-tests (two groups), one-way ANOVA (homogeneity of variance, three or more groups), or non-parametric test (uneven variance). Significance was accepted at the 0.05 level of probability (P < 0.05).



RESULTS


RIP1 Is Upregulated in OA Cartilage, in Which Chondrocyte Necrosis Is Observed

First, to explore whether chondrocyte necrosis existed in human OA cartilage, EBD uptake of the chondrocytes within freshly obtained cartilage tissues of OA patients and healthy donors was determined in situ by confocal microscopy. The results showed that obvious EBD-positive staining was observed within the cytoplasm of OA chondrocytes relative to the healthy control, indicating the existence of necrosis (Figures 1A,B). The LDH concentration of the cultural supernatant from OA cartilage explants was also significantly higher than that from healthy cartilage tissues, further demonstrating the injury of chondrocytes and release of intracellular contents from OA cartilage (Figure 1C). TEM was conducted to directly visualize the necrotic morphology of chondrocytes. Chondrocytes exhibiting typical morphological features of necrosis including cell swelling, loss of membrane integrity and interior structures disintegration were presented in OA cartilage, while the cell morphology within healthy cartilage was intact and normal (Figure 1D).
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FIGURE 1. Chondrocyte necrosis and RIP1 upregulation are both presented in OA cartilage tissues. (A,B) Representative photomicrographs (A) and quantitative data (B) of chondral EBD uptake (red) in healthy and OA human cartilage (n = 6 for each group). Cell nuclei were labeled by Hoechst. (C) LDH concentrations in the cultural supernatant of healthy and OA human cartilage explants cultured ex vivo for 10 days (n = 5 for each group). (D) Representative TEM images of healthy and OA human cartilage. (E) Safranin O staining of healthy and OA human cartilage (n = 10 for each group). (F,G) The integrated optical density (IOD) value (F) and positive staining area (%) (G) of proteoglycan content in healthy and OA human cartilage tissues determined by safranin O staining (n = 10 for each group). (H) RIP1 immunostaining of healthy and OA human cartilage (n = 10 for each group). (I) The IOD value of RIP1 immunostaining in healthy and OA human cartilage tissues (n = 10 for each group). (J) The mRNA level of RIP1 in primary chondrocytes derived from healthy and OA human cartilage tissues measured by qRT-PCR (n = 10 for each group). (K) Safranin O staining and RIP1 immunostaining of cartilage from sham- and ACLT-operated rats (n = 10 for each group). (L) Safranin O staining and RIP1 immunostaining of cartilage from 3- and 12-month old rats (n = 10 for each group). (M) RIP1 immunofluorescent staining of rat chondrocytes treated with or without 10 ng/mL IL-1β for 24 h (n = 3 for each group; three independent experiments). **P < 0.01 and ***P < 0.001.


Next, to investigate the role of RIP1 in cartilage degeneration, we examined the expression level of RIP1 in cartilage samples from 10 OA patients and 10 healthy donors. While proteoglycan content was significantly lower in OA cartilage compared to that in healthy control, the expression level of RIP1 was greatly increased as evidenced by immunohistochemical staining (Figures 1E–I). To avoid the interference of inflammatory cell infiltration, the upregulation of RIP1 in OA was further validated in primary chondrocytes derived from healthy and OA cartilage tissues by qRT-PCR (Figure 1J). Moreover, we have demonstrated the same expression trend of RIP1 in normal and OA rat cartilage caused by trauma, as well as spontaneous OA rat cartilage caused by old age (Figures 1K,L). IL-1β stimulation is used as a conventional way to recapitulate the pathological condition of in vitro OA cell model. As shown in our results, immunofluorescent staining of RIP1 was greatly enhanced in chondrocytes with IL-1β treatment compared to those without treatment (Figure 1M). The above observations confirm the upregulation of RIP1 during OA progression.



RIP1 Induces Significant Chondrocyte Death Including Necroptosis and Apoptosis

Next, we sought to determine whether the upregulation of RIP1 was sufficient to trigger chondrocyte necroptosis. RIP1-expressing adenovirus vector was constructed and transfected to chondrocytes, the live-dead staining results showed that RIP1 overexpression by adenovirus led to robust chondrocyte death, while application of its small molecule inhibitor Nec-1 significantly reversed that effect (Figure 2A). CCK-8 assay further demonstrated that RIP1 induced impaired chondrocyte viability in a dose-dependent manner (Figure 2B), and Nec-1 effectively blocked TNF-α-mediated decline of chondrocyte viability (Figure 2C). Compared to control adenovirus, loss of cell membrane integrity increased dose-dependently in chondrocytes transduced with RIP1-expresssing adenovirus as indicated by the LDH concentration in the cultural supernatant (Figure 2D). RIP1 overexpression also caused the upregulation of RIP3, the key marker of necroptosis, further supporting the occurrence of necroptosis in chondrocytes induced by RIP1 (Figure 2E). Meanwhile, Nec-1 suppressed RIP1-mediated LDH release and RIP3 upregulation also in a dose-dependent way (Figures 2F,G). These results suggest that RIP1 triggers chondrocyte necroptosis, which can be reversed by its inhibitor Nec-1. Moreover, RIP1 also induced the expression of cleaved PARP and cleaved caspase-3, indicating that RIP1 is involved in the activation of not only necroptosis, but also apoptosis in chondrocytes (Figure 2H). To further clarify RIP1-mediated necroptosis and apoptosis in chondrocytes, flow cytometry assay with annexin V and PI staining was conducted. Both early apoptotic cells (Annexin V-FITC+/PI–) and late apoptotic/necrotic cells (Annexin V-FITC+/PI+) were profoundly increased by RIP1 (Figure 2I). Furthermore, flow cytometry was performed to determine the impact of RIP1 on the cell cycle distribution of chondrocytes, and it showed that RIP1 caused significant cell cycle arrest in G2 phase (Figure 2J). Taken together, these findings suggest that upregulation of RIP1 is sufficient to trigger both necroptosis and apoptosis in chondrocytes.
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FIGURE 2. Overexpression of RIP1 in chondrocytes causes necroptosis and apoptosis. (A) Live-dead staining of rat chondrocytes treated with Ad-Ctl (100 MOI), Ad-Rip1, or Ad-Rip1 with 50 μM Nec-1 (n = 3 for each group). Green fluorescence: live cells; red fluorescence: dead cells. (B) Relative cell viability of rat chondrocytes assessed by CCK-8 assay after treatment with indicated MOI of Ad-Ctl or Ad-Rip1 for 24 h (n = 6 for each group). (C) Relative cell viability of rat chondrocytes assessed by CCK-8 assay after treatment with indicated doses of TNF-α with or without 50 μM Nec-1 for 24 h (n = 6 for each group). (D) LDH concentrations in the cultural supernatant of rat chondrocytes treated with Ad-Ctl (100, 200 MOI) or Ad-Rip1 for 24 h (n = 3 for each group; three independent experiments). (E) The protein levels of RIP1 and RIP3 detected by western blotting assay in rat chondrocytes treated with Ad-Ctl (100, 200 MOI) or Ad-Rip1 for 24 h. (F) LDH concentrations in the cultural supernatant of rat chondrocytes treated with Ad-Ctl (100 MOI), Ad-Rip1 or Ad-Rip1 and Nec-1 (50, 100, and 200 μM) for 24 h (n = 3 for each group; three independent experiments). (G) The protein levels of RIP1 and RIP3 detected by western blotting assay in rat chondrocytes treated with Ad-Ctl (100 MOI), Ad-Rip1 or Ad-Rip1 and Nec-1 (50, 100, and 200 μM) for 24 h. (H) The protein levels of RIP1 and cleaved PARP and cleaved caspase-3 detected by western blotting assay in rat chondrocytes treated with Ad-Ctl (100, 200 MOI) or Ad-Rip1 for 48 h. (I) Necrotic and apoptotic rat chondrocytes stained by annexin V and PI and analyzed by flow cytometry after treatment with Ad-Ctl (100 MOI) or Ad-Rip1 for 24 h, rat chondrocytes without treatment were used as negative control (n = 3 for each group; three independent experiments). (J) Cell cycle distribution of rat chondrocytes treated with Ad-Ctl (100 MOI) or Ad-Rip1 for 24 h, rat chondrocytes without treatment were used as negative control (n = 3 for each group; three independent experiments). *P < 0.05 and **P < 0.01.




Enhanced RIP1 Deteriorates ECM Metabolic Homeostasis in Chondrocytes

We proceeded to investigate whether upregulation of RIP1 in chondrocytes elicits ECM-related gene expression pattern changes. Ad-Rip1-infected chondrocytes displayed increased mRNA levels of catabolic enzymes matrix metalloproteinase 1 (MMP1), MMP13, and proinflammatory cytokines IL6, as well as decreased levels of ACAN, COL2A1, and SOX9 (Figure 3A). The protein levels of MMP1, MMP13, and IL6 were also augmented after RIP1 overexpression, while COL2A1 and SOX9 were significantly downregulated by it (Figure 3B). Next, to evaluate whether RIP1 causes ECM loss ex vivo, cartilage disk was harvested from intact human knee cartilage and cultured in the medium containing control adenovirus or RIP1-expressing adenovirus with or without Nec-1 for 10 days. The concentration of matrix content GAG in the cartilage was decreased by RIP1, and this reduction was dose-dependently blocked by Nec-1 treatment (Figure 3C). COMP has been shown to reflect the severity of joint damage in OA and is classified as a biomarker of cartilage degeneration (Lohmander et al., 1994; Clark et al., 1999). The amount of COMP released from the cartilage explant was greatly increased by RIP1, and Nec-1 also inhibited that effect (Figure 3D). Moreover, toluidine blue staining of the cartilage as well as Alcian blue staining of the chondrocytes further demonstrated that RIP1 upregulation caused robust loss of ECM, which could be rescued by Nec-1 (Figures 3E,F). These results demonstrate that RIP1 sabotages the metabolic homeostasis of cartilage by altering the expression of ECM-related genes.
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FIGURE 3. RIP1 promotes catabolism and inhibits anabolism in chondrocytes. (A) The mRNA levels of ECM-related biomarkers Mmp1, Mmp13, Il6, Acan, Col2a1, and Sox9 in rat chondrocytes treated with Ad-Ctl (100, 200 MOI) or Ad-Rip1 for 24 h (n = 5 for each group; three independent experiments). (B) The protein levels of MMP1, MMP13, IL6, COL2A1, SOX9, and RIP1 detected by western blotting assay in rat chondrocytes treated with Ad-Ctl (100, 200 MOI) or Ad-Rip1 for 24 h. (C,D) The concentration of GAG in cartilage explants (C) and the concentration of COMP released from the explants (D) treated with Ad-Ctl (100 MOI), Ad-Rip1 or Ad-Rip1 and Nec-1 (50 and 100 μM) for 10 days (n = 6 for each group). (E) Toluidine blue staining of the cartilage explants treated with Ad-Ctl (100 MOI), Ad-Rip1 or Ad-Rip1 and Nec-1 (100 μM) for 10 days (n = 6 for each group). (F) Alcian blue staining of the chondrocytes treated with Ad-Ctl (100 MOI), Ad-Rip1 or Ad-Rip1 and Nec-1 (100 μM) for 24 h (n = 6 for each group). *P < 0.05, **P < 0.01, and ***P < 0.001.




Intra-Articular Overexpression of RIP1 Induces Chondrocytes Necroptosis and OA-Related Syndromes

Next, the contribution of RIP1 to chondrocyte necroptosis and OA pathogenesis was assessed by intra-articular overexpression of RIP1 in rats. One month after injection of Ad-Ctl (5 × 108 pfu) and two different doses of Ad-Rip1 (108 pfu, 5 × 108 pfu) respectively, frozen sections of rat knee joints from each group were examined by confocal microscopy, and normal rat knee joints were used as negative control. Notably, overexpression of RIP1 by adenovirus vector led to significant loss of chondrocyte membrane integrity in rats, as indicated by increased EBD penetration, which was stronger as the dose increased (Figures 4A,B). Then we investigated the biomechanical properties of the cartilage surfaces from each group. Compared to negative control and Ad-Ctl groups, Ad-Rip1 injection groups exhibited lower elastic modulus and hardness, and the load-displacement curves further revealed the impaired biomechanical strength of cartilage caused by RIP1 (Figures 4C–E). Moreover, the microscopic geomorphology of the indentation zones in Ad-Rip1 injection groups appeared to be much rougher than the control groups (Figure 4F).
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FIGURE 4. Intra-articular injection of Ad-Rip1 causes chondrocyte necroptosis and impaired biomechanical properties of rat cartilage. (A,B) Representative photomicrographs (A) and quantitative data (B) of chondral EBD uptake (red) in cartilage from rats intra-articularly injected with Ad-Ctl (5 × 108 pfu) and two different doses of Ad-Rip1 (108 pfu, 5 × 108 pfu) (n = 6 for each group). Cell nuclei were labeled by Hoechst. (C–F) Elastic modulus (C), hardness (D), load-displacement curves (E), and microscopic geomorphology (F) of cartilage surface from rats intra-articularly injected with Ad-Ctl (5 × 108 pfu) and two different doses of Ad-Rip1 (108 pfu, 5 × 108 pfu) evaluated by nanoindentation test (n = 5 for each group). *P < 0.05 and **P < 0.01.


Next, we sought to determine whether RIP1 overexpression in rat knee joints was sufficient enough to induce OA manifestations. Cartilage destruction condition was examined using safranin O-fast green staining, and then scored using the OARSI grading system. The results revealed that RIP1 overexpression caused significant disruption of articular cartilage relative to control groups (Figures 5A,B). Hotplate analysis and weight bearing test were conducted to evaluate the level of pain for the injected limb of the rats from each group. RIP1 overexpression led to faster response of the limb on hotplate, as well as the imbalance of weight bearing between the injected limb and the contralateral one, and higher dose of RIP1 caused a more significant change, indicating OA-induced pain behavior mediated by RIP1 (Figures 5C,D). The immunohistochemical results showed that RIP1 caused significant downregulation of type II collagen and enhanced expression of MMP13, and gene delivery efficiency of the adenovirus by intra-articular injection was confirmed by increased expression of RIP1 in cartilage (Figure 5E). The status of chondrocyte necroptosis and apoptosis within rat joints was determined by IHC of RIP3 and TUNEL staining, respectively. And the results showed that RIP1 increased both the expression of RIP3 and TUNEL-positive chondrocytes in rat cartilage tissue (Figure 5F). These data suggest that, similar to its function in vitro, RIP1 plays an important role in OA by mediating chondrocyte necroptosis and apoptosis, as well as OA-related pathological changes in rat knee joints.
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FIGURE 5. Intra-articular overexpression of RIP1 induces OA-related symptoms in rats. (A,B) Safranin O and fast green staining (A) and the corresponding OARSI scores (B) of the cartilage from rats intra-articularly injected with Ad-Ctl (5 × 108 pfu) and two different doses of Ad-Rip1 (108 pfu, 5 × 108 pfu) (n = 5 for each group) F: femur; T: tibia. (C) The pain response times for the rats of each group when placed on the 55°C hotplate meter (n = 6 for each group). (D) The ratios of weight placed on the hindlimb with adenovirus injection vs. that on the contralateral sham hindlimb for the rats of each group (n = 6 for each group). (E) COL II, MMP13, and RIP1 immunostaining of the cartilage from rats intra-articularly injected with Ad-Ctl (5 × 108 pfu) and two different doses of Ad-Rip1 (108 pfu, 5 × 108 pfu) (n = 5 for each group). (F) RIP3 immunostaining and TUNEL staining of the cartilage from rats intra-articularly injected with Ad-Ctl (5 × 108 pfu) and two different doses of Ad-Rip1 (108 pfu, 5 × 108 pfu) (n = 5 for each group). *P < 0.05, **P < 0.01, and ***P < 0.001.




Inhibition of RIP1 Activity by Nec-1 Significantly Attenuates OA

To investigate the effect of inhibiting RIP1 kinase activity by its small-molecule inhibitor Nec-1 on OA progression, a destabilized OA animal model was generated by transecting the ACL in rats. Three days after surgery, we conducted intra-articular injection of vehicle control and two different doses of Nec-1 (0.025 and 0.05 mg/kg) into the operated knee joints of rats respectively. Notably, cartilage ECM loss induced by ACLT was attenuated by Nec-1 injection, and higher concentration of Nec-1 led to a more obvious improvement, as indicated by OARSI scores (Figures 6A,B). Local administration of Nec-1 in ACLT rats also significantly alleviated OA-related pain as assessed by hotplate assay and weight bearing test (Figures 6C,D). Moreover, the expression of type II collagen was significantly higher in Nec-1-treated ACLT rats than the vehicle-treated ones, while the expression of MMP13 was markedly reduced by Nec-1, both of which were in a dose-dependent fashion, indicating protection from articular cartilage degeneration by inhibiting RIP1 activity (Figure 6E). Meanwhile, augmented expression of RIP1 caused by trauma was also blocked by Nec-1 application (Figure 6E). IHC of RIP3 and TUNEL staining results showed that ACLT procedure elicited chondrocyte necroptosis and apoptosis within rat joints, which was reversed by Nec-1 (Figure 6F). Taken together, these results indicate that inhibition of RIP1 activity by Nec-1 in rat articular cavity efficiently protects the chondrocytes from necroptosis and apoptosis, and meliorates OA-related symptoms including cartilage degeneration as well as limb pain during disease progression.
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FIGURE 6. Inhibition of RIP1 enzymatic activity by Nec-1 blocks OA cartilage destruction and the related pain. (A,B) Safranin O and fast green staining (A) and the corresponding OARSI scores (B) of the cartilage from rats with sham or ACLT surgery following by intra-articular injection of vehicle control or two different doses of Nec-1 (0.025 and 0.05 mg/kg) (n = 5 for each group) F, femur; T, tibia. (C) The pain response times for the rats of each group when placed on the 55°C hotplate meter (n = 6 for each group). (D) The ratios of weight placed on the operated hindlimb vs. that on the contralateral sham hindlimb for the rats of each group (n = 6 for each group). (E) COL II, MMP13, and RIP1 immunostaining of the cartilage from rats with sham or ACLT surgery following by intra-articular injection of vehicle control or two different doses of Nec-1 (0.025 and 0.05 mg/kg) (n = 5 for each group). (F) RIP3 immunostaining and TUNEL staining of the cartilage from rats with sham or ACLT surgery following by intra-articular injection of vehicle control or two different doses of Nec-1 (0.025 and 0.05 mg/kg) (n = 5 for each group). *P < 0.05, and ***P < 0.001.




Analysis of Chondrocyte Transcriptome After RIP1 Overexpression

Since MLKL has been identified as a direct target of necrosome formed by RIP1 and RIP3, and serves as a key component of the necroptosis machinery (Sun et al., 2012; Zhao et al., 2012), we investigated its possible involvement in RIP1-mediated downstream effects using chondrocytes isolated from wild-type and Mlkl KO mice. The results showed that ablation of MLKL did not completely block RIP1-induced chondrocyte necroptosis and ECM-related gene expression alterations (Supplementary Figures 1A,B), indicating that MLKL is dispensable for RIP1-induced pathological changes in chondrocytes, and that RIP1 upregulation may potentiate OA progression via non-canonical MLKL-independent functions.

To identify new molecular targets of RIP1 in chondrocytes, RNA sequencing (RNA-seq) was performed in chondrocytes treated with adenovirus expressing RIP1 or vector control. We found that 9,857 genes were differentially expressed in chondrocytes after RIP1 overexpression (Figure 7A and Supplementary Figure 2). GO analysis indicated that DNA replication, chromosome segregation and regulation of cell cycle process were upregulated, while terms including cartilage development, skeletal system development, ECM organization, skeletal system morphogenesis, chondrocyte differentiation, collagen fibril organization and limb development were downregulated (Figure 7B). Pathway analysis revealed that IL-17 signaling pathway, cell cycle, DNA replication, proteasome, TNF signaling pathway, cellular senescence and p53 signaling pathway were significantly upregulated by RIP1, meanwhile, ECM-receptor interaction, other glycan degradation and glycosaminoglycan degradation were downregulated (Figure 7C). Regulation of cell cycle process and TNF signaling pathway were significantly enriched according to enrichment maps generated for biological processes and KEGG pathways, respectively (Figure 7D). These results underscore the importance of RIP1 in OA by perturbing a series of essential events during disease progression such like cell cycle regulation, chondrocyte differentiation, inflammation and ECM remodeling.
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FIGURE 7. Chondrocyte transcriptome after RIP1 overexpression determined by RNA-seq. (A) Heatmap of differential expressed genes in rat chondrocytes treated with Ad-Ctl (100 MOI) or Ad-Rip1 for 24 h (n = 3 for each group). (B,C) GO analysis (B) and pathway analysis (C) for differentially expressed genes of rat chondrocyte transcriptome. (D) Enrichment map generated for graphical representations of top 30 enriched biological processes and KEGG pathways.




Identification of BMP7 as the Target of RIP1 in Chondrocytes

Bone morphogenetic protein family is known to play a predominant role in chondrocyte differentiation and ECM remodeling, as well as endochondral ossification, the dysregulation of which are essential processes during OA development (van der Kraan et al., 2010). Previous studies have suggested that multiple BMPs play important roles in chondrocyte biology, including BMP2, BMP6, BMP7, BMP9, and BMP14 (Chen et al., 2004; van der Kraan et al., 2010; Salazar et al., 2016; Thielen et al., 2019), among which BMP2, BMP6, and BMP7 were significantly upregulated in RIP1-overexpressing chondrocytes according to our RNA-seq results (Supplementary Figure 3). By verifying the mRNA levels of BMP2, BMP6, and BMP7 in chondrocytes with or without RIP1 overexpression, we confirmed that the induction level of BMP7 by RIP1 was much higher than the other two (Figure 8A). Therefore, BMP7 appears as a promising candidate that functions downstream of RIP1 in chondrocytes during OA progression. To further demonstrate that RIP1 promoted the expression of BMP7, the concentration of BMP7 in the cultural supernatant of chondrocytes was determined before and after RIP1 overexpression, the result showed that RIP1 increased secreted BMP7 level in a dose-dependent manner (Figure 8B). As BMPs play pivotal roles in the regulation of bone induction, maintenance and repair, we also performed Alizarin red staining to reveal the formation of calcium deposits in chondrocytes, which are indicative of ossification (Lowery and Rosen, 2018; Gooding et al., 2019; Wei et al., 2020). As expected, RIP1-overexpressing chondrocytes showed positive reaction with Alizarin red while control cells were negative, indicating that RIP1 indeed induces endochondral ossification, a crucial process during OA progression (Figure 8C).
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FIGURE 8. BMP7 mediates RIP1-induced OA pathological signatures in chondrocytes. (A) The mRNA levels of Bmp2, Bmp6, and Bmp7 in rat chondrocytes treated with Ad-Ctl (100, 200 MOI) or Ad-Rip1 for 24 h (n = 4 for each group; three independent experiments). (B) The concentration of secreted BMP7 in the cultural supernatant of rat chondrocytes treated with Ad-Ctl (100, 200 MOI) or Ad-Rip1 for 48 h (n = 3 for each group; three independent experiments). (C) Alizarin red staining of rat chondrocytes treated with Ad-Ctl (100 MOI) or Ad-Rip1 for 48 h (n = 4 for each group). (D) LDH concentration in the cultural supernatant of rat chondrocytes treated with indicated doses of recombinant BMP7 for 24 h (n = 4 for each group). (E) The protein level of RIP3 in rat chondrocytes treated with indicated doses of recombinant BMP7 for 24 h. (F) The mRNA and protein levels of BMP7 in rat chondrocytes transfected with scrambled or BMP7-targeted siRNAs (n = 4 for each group). (G) LDH concentration in the cultural supernatant of rat chondrocytes treated with Ad-Ctl (100 MOI) or Ad-Rip1 following by transfection of BMP7-targeted siRNAs (n = 4 for each group). (H) The protein levels of RIP1, RIP3, and BMP7 in rat chondrocytes treated with Ad-Ctl (100 MOI) or Ad-Rip1 following by transfection of BMP7-targeted siRNA. (I) The mRNA level of Rip3 in rat chondrocytes treated with Ad-Ctl (100 MOI) or Ad-Rip1 following by transfection of BMP7-targeted siRNA (n = 4 for each group; three independent experiments). (J) The mRNA levels of Mmp1, Mmp13, Il6, Acan, Col2a1, and Sox9 in rat chondrocytes treated with Ad-Ctl (100 MOI) or Ad-Rip1 following by transfection of BMP7-targeted siRNA (n = 4 for each group; three independent experiments). *P < 0.05, **P < 0.01, and ***P < 0.001.


To investigate the contribution of BMP7 on chondrocyte necroptosis, we treated the chondrocytes with recombinant BMP7, and it showed that BMP7 triggered chondrocyte necroptosis dose-dependently as indicated by increased LDH concentration in the cultural supernatant and induction of RIP3 in chondrocytes (Figures 8D,E). We proceeded to examine if silencing BMP7 could inhibit the effect of RIP1 on chondrocytes. The gene knockdown efficiency of three siRNAs targeting BMP7 was confirmed at both mRNA and protein levels (Figure 8F), and all of them inhibited LDH release from the chondrocytes induced by RIP1 to varying degrees (Figure 8G). We chose siRNA-2 with the best knockdown efficiency for subsequent detection, and silencing of BMP7 with this siRNA in chondrocytes significantly inhibited the upregulation of RIP3 mediated by RIP1, further supporting the participation of BMP7 in RIP1-mediated chondrocyte necroptosis (Figures 8H,I). Whether silencing BMP7 blocks the regulatory effect of RIP1 on ECM-related genes expression was also determined, and the results showed that the induction of MMP1, MMP13, and IL6 by RIP1 was greatly suppressed after BMP7 silencing, while the downregulation of ACAN, COL2A1, and SOX9 by RIP1 were significantly restored (Figure 8J). Thus, these data demonstrate that BMP7 mediates the inductive effect of RIP1 on chondrocyte necroptosis and cartilage ECM degeneration, contributing to the onset of OA.



DISCUSSION

Osteoarthritis is characterized by progressive destruction of articular cartilage, resulting in significant disability. Since articular cartilage depends solely on its resident cells, chondrocytes, to maintain the ECM, compromising of chondrocyte function and survival would lead to the failure of the articular cartilage (Pitsillides and Beier, 2011; Aicher and Rolauffs, 2014). Chondrocyte death is the most common pathological feature in OA, and literatures revealed that there is a definite correlation between chondrocyte apoptosis and cartilage damage (Thomas et al., 2007; Ryu et al., 2012; Hosseinzadeh et al., 2016). However, contradictory reports exist on the relative contribution of chondrocyte apoptosis in the pathogenesis of OA, and reducing apoptosis by blocking the apoptotic pathways might increase necrosis (Holler et al., 2000; Han et al., 2011). Necroptosis, as a new form of programmed cell death, is critically involved in vital physiological and pathological processes including embryonic development, host responses to bacterial and viral infection, tissue injury and inflammation, and has been intensively investigated in various disease conditions (Pasparakis and Vandenabeele, 2015; Galluzzi et al., 2017; Weinlich et al., 2017). Although the possible involvement of chondrocyte necroptosis in OA has been suggested, direct evidences are still lacking. Recent studies immunohistochemically analyzed the expression of necroptosis markers RIP3, MLKL, and p-MLKL to prove the existence of necroptosis in degenerated human and murine cartilage (Riegger and Brenner, 2019; Stolberg-Stolberg et al., 2020). However, it remains unclear whether chondrocyte necroptosis is the inducer of cartilage destruction or its byproduct, and the expression status of another important necroptosis marker, RIP1, in OA clinical samples has not been assessed. In this study, typical necrotic cell morphology in OA clinical samples was observed in situ for the first time. And we investigated the expression status of RIP1 in OA and its contribution to the disease using not only experimental OA rat models, but also human OA cartilage, which is closer to the clinical disease status. Our findings indicate that upregulation of RIP1 is essentially involved in OA pathogenesis.

Receptor-interacting protein kinase 1 has emerged as a crucial regulator in various human diseases such like cancers, neurodegeneration, autoimmune, and inflammatory diseases (Ofengeim and Yuan, 2013; Liu et al., 2015; Ofengeim et al., 2017; Wang et al., 2018; Tao et al., 2020). While the kinase activity of RIP1 mediates the activation of RIP3 and caspase-8 to promote necroptosis and apoptosis respectively, RIP1 also serves as a signaling scaffold to prevent the activation of RIP3 and caspase-8 in a kinase-independent manner, implying the tissue-specific complicated role of RIP1 (Degterev et al., 2019). Our study suggests that RIP1 upregulation in chondrocytes causes both necroptosis and apoptosis, as well as changes in ECM metabolism-related gene expression patterns. More importantly, we have provided the first in vivo evidence that initiation of necroptosis by intra-articular overexpression of RIP1 alone is sufficient to trigger typical osteoarthritic manifestations including impaired mechanical properties of cartilage, pain, ECM loss and subsequent cartilage destruction in rats. Therefore, activation of RIP1 represents a key factor to promote OA pathogenesis. Given the fact that current treatments for OA act only on symptoms and cannot alleviate or cure OA, and that RIP1 functions upstream of RIP3 and MLKL, RIP1 could be a valid target to modulate cartilage degeneration.

Numerous studies have indicated that Nec-1, the specific small molecule inhibitor of RIP1, effectively delayed disease progression in an extensive list of animal models such as acute ischemic brain, heart, kidney, and eye injuries, but the effects of Nec-1 on OA progression have not been evaluated comprehensively (Smith et al., 2007; Trichonas et al., 2010; Northington et al., 2011; Chavez-Valdez et al., 2012; Linkermann et al., 2012). A previous study has shown that Nec-1 abolished the increases of MMP3, MMP13, and ADAMTS5 expression induced by IL-1β in mouse chondrocytes, and suppressed cartilage catabolism in a destabilized medial meniscus (DMM) mouse model (Liang et al., 2018). However, the dose-dependent chondro-protective effect of Nec-1 has not been evaluated in vivo, and its therapeutic efficiency on limb pain-related behaviors, the major symptom of OA, were not assessed either. Herein, our study showed that Nec-1 abolished RIP1-mediated necroptosis, apoptosis and ECM disruption in chondrocytes and cartilage explants without chondrocyte cytotoxicity, and local injection of Nec-1 efficiently alleviated trauma-induced OA pathogenic signatures in a dose-dependent manner. We also provided the first evidence that Nec-1 potently ameliorated OA-related pain in rats as demonstrated by hotplate analysis and weight bearing test. Nevertheless, further studies are required to investigate other Nec-1 targets, and the treatment efficacy of Nec-1 in larger preclinical animal models of OA, as well as its extra-articular and systemic side effects before entering clinical trials.

Initially, necroptosis seemed to be following the typical pathway, and most studies have focused on manipulating the RIP3-MLKL cascade to regulate necroptosis and diverse disease processes. Deficiency of MLKL prevents necroptosis in multiple cell types, including tumor cells, macrophages, and fibroblasts (Sun et al., 2012; Zhao et al., 2012; Wu et al., 2013; Wang et al., 2014). But with recent studies reporting diverse pathways and outcomes, the necroptosis signaling has become a lot more interesting and intricate. There is a need to further understand the alternative tissue-specific interactions of necroptosis signaling molecules. In this study, we demonstrate that RIP1 plays a MLKL-independent role in cartilage by evoking chondrocytes necroptosis and disrupting ECM metabolism homeostasis in the absence of MLKL, and that BMP7 is also essential for linking RIP1 to chondrocyte death and the resultant structural and functional defects of cartilage. These findings highlight a distinct regulation form of RIP1-dependent necroptosis in chondrocytes compared with that in many other cell types, in which it requires MLKL. Nevertheless, the participation of other BMP family members during RIP1-induced OA progression cannot be excluded, as BMP family is shown to act in collaboration during bone morphogenesis. Our results showed that although to a lesser degree, BMP2 and BMP6 were also upregulated by RIP1 in chondrocytes. Therefore, the possible involvement of other BMPs in RIP1-mediated OA manifestations needs to be explored in the future study.

As a kinase, RIP1 induces necroptosis and apoptosis following its enzymatic activation by directly phosphorylating its downstream targets RIP3 and caspase-8, respectively (Degterev et al., 2019). Therefore, the potential mechanism regarding how RIP1 positively regulates the expression of BMP7 to trigger chondrocyte necroptosis and apoptosis might be an indirect modulation via an intermediate effector. RIP1 is known to activate NF-κB, which has been demonstrated to regulate the transcription of BMP family members like BMP2 and BMP4 (Feng et al., 2003; Fukui et al., 2006; Zhu et al., 2007). There were also putative NF-κB response elements within the promoter region of BMP7, but whether these NF-κB response elements are functional in chondrocytes or NF-κB promotes BMP7 gene transcription through these response elements remains to be further explored. And more evidences are needed to support the hypothesis that RIP1 upregulates BMP7 via activating NF-κB in chondrocytes.

BMP7, also known as osteogenic protein-1, is a member of the transforming growth factor-β (TGF-β) superfamily that acts, via its downstream Smad1/5/8, as endogenous counter-regulator of TGF-β1 signaling (Meng et al., 2013). BMP7 controls the development and maintenance of multiple physiological processes in the human body, and its aberrant expression has found to be associated with a variety of pathologic conditions (i.e., incomplete fracture healing, the development of bone metastases in cancers, renal fibrosis, obesity, and OA) (Boon et al., 2011). Endochondral ossification is an essential process not only for physiological skeletal growth but also for the development of OA. Previous studies have revealed that BMP7 induced hypertrophy and endochondral ossification in rat knees by mediating chondrocyte differentiation (Garciadiego-Cázares et al., 2015), and that upregulation of BMP7 in plasma and synovial fluid is related to progressive joint damage determined by radiographic and symptomatic changes, indicating that BMP7 might serve as a biochemical parameter for determining disease severity in primary knee OA (Honsawek et al., 2009; Schmal et al., 2015). However, evidences also showed that controlled release of low concentrated BMP7 leads to the decrease of inflammation and matrix degradation markers as well as the induction of matrix synthesis in osteoarthritic chondrocytes (Gavenis et al., 2011), suggesting a pleiotropic role of BMP7 in the regulation of chondrocyte fate. Therefore, careful titration of BMP7 inhibition might be a possible avenue for the prevention of OA or the treatment of this disease at early stages.

In conclusion, we demonstrate that upregulation of RIP1 contributions to OA pathogenesis by mediating chondrocyte necroptosis and ECM destruction via BMP7, a newly identified downstream target of RIP1, in addition to MLKL. These findings reveal a previously unappreciated mode of necroptosis and pave the way for future research investigating RIP1-BMP7 blockade as a novel therapeutic approach for OA.
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Osteoarthritis (OA), one of the most common degenerative diseases, is characterized by progressive degeneration of the articular cartilage and subchondral bone, as well as the synovium. Integrins, comprising a family of heterodimeric transmembrane proteins containing α subunit and β subunit, play essential roles in various physiological functions of cells, such as cell attachment, movement, growth, differentiation, and mechanical signal conduction. Previous studies have shown that integrin dysfunction is involved in OA pathogenesis. This review article focuses on the roles of integrins in OA, especially in OA cartilage, subchondral bone and the synovium. A clear understanding of these roles may influence the future development of treatments for OA.
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INTRODUCTION

As the most common degenerative joint disease, OA can destroy both cartilage and subchondral bones, causing progressive degeneration of the articular cartilage and subchondral bone, as well as the synovium (Chen et al., 2017). The unique composition and structure of the cartilage extracellular matrix (ECM) allows for the long-term load-bearing capabilities of the joint, playing important roles in joint function. OA can affect the ECM, causing increased catabolic activity and inflammation changes in the mechanical function of the ECM in the joint (Guilak et al., 2018). There is evidence that metabolic changes in the ECM play an vital role in the pathological process of OA (Rahmati et al., 2017). As participants in an integral membrane complex, integrins play important roles in the transmembrane association, which are involved in the ECM and the cytoskeleton interactions and take part in transmembrane signals conduction. Previous studies have shown that integrin dysfunction is involved in OA pathogenesis. This review article focuses on the roles of integrins in OA, especially in OA cartilage, and subchondral bone, as well as the synovium. A clear understanding of these roles may influence the future development of treatments for OA.



WHAT ARE INTEGRINS?

Integrins, comprising a heterodimeric transmembrane protein family, contain two subunits (the α subunit and β subunit). There are eighteen α subunits and eight β subunits. All these can combine into twenty-four integrin molecules (Ansari and Byrareddy, 2016). The integrin molecules can act as transmembrane receptors to bind ECM proteins, which can regulate essential physiological functions of cells, such as adhesion, migration, the inflammatory response, and mechanical signal conduction. Depending on the types of ligands, integrins can be divided into two categories: Arg-Gly-Asp (RGD)-binding receptors and non-RGD-binding receptors. Non-RGD binding receptors include collagen-binding receptors, laminin-binding receptors, and leukocyte-binding receptors (Margadant and Sonnenberg, 2010; Finney et al., 2017). As transmembrane molecules, integrins play important roles in the physiological function of cells. Integrins can mediate adhesion between cells and their surroundings. Integrin-based adhesion is formed mainly between the cytoskeleton and the ECM. For example, lamellipodia and filopodia, the bumps of the cell surface and cytoskeleton, can attach to the ECM through integrin-based adhesions (Geoghegan et al., 2019). By combining with intracellular proteins, like α-actinin, vinculin, and paxillin, integrins can connect the inner cytoskeleton to the ECM (Zaidel-Bar et al., 2004). Cell signaling mediated by integrins can regulate the functions of cells, including their matrix remodeling, adhesion, migration, and mechanical signal conduction (Loeser, 2002). In addition, integrins, working in concert with the cytoskeleton, can receive external mechanical stimulation and transmit information on the mechanical status of the ECM into the cell. As mechanical sensors, integrins play important roles in facilitating cell movement, generating tension on the ECM, activating intracellular signaling pathways, and producing biological reactions (Humphries et al., 2019; Sun et al., 2019).

More and more results showed that the dysregulated function of integrins was implicated in OA pathogenesis. Animal experiments showed that α4, α5, and α2 integrin expression was increased in cartilage and that the content of proteoglycan and fibronectin was also changed (Almonte-Becerril et al., 2014). High levels of α1β1 and α3β1 were detected in OA cartilage tissues, potentially facilitating the modulation of ECM deformation and promoting chondrocyte hypertrophy (Häusler et al., 2002). The components of the ECM play important roles in maintaining chondrocyte homeostasis. For example, the stiffness of collagen in cartilage is associated with the occurrence and development of OA, not only on the joint surface but also at the interface between cartilage and bone (Wen et al., 2012). Collagen type II (COLII) can suppress chondrocyte hypertrophy and deterioration of OA by promoting the interaction between β1 integrin and drosophila mothers against decapentaplegic protein 1 (SMAD1) (Lian et al., 2019). Because of the crosstalk between the cartilage and subchondral bone, the subchondral bone of OA patients is also changed. Compared to controls, subchondral osteocytes showed a series of changes in cell morphology, such as rough cell surfaces, unorganized dendrites, and so on (Jaiprakash et al., 2012). Studies have also shown that culturing bone cells on the ECM of OA specimens leads to reduced expression of integrin β1 and inactivation of the FAK cell signaling pathway (Prasadam et al., 2013). The changes of αVβ3 integrin level can vary with the degree of cartilage degeneration in patients with OA (Wang et al., 2018). Dysfunction of integrin αvβ3 and integrin-associated protein (CD47) signaling pathways have been proved that can promote the occurrence and progression of OA (Wang et al., 2019). We will discuss the role of integrins in OA in detail in the following text.



INTEGRINS IN ARTICULAR CARTILAGE AND CHONDROCYTE HOMEOSTASIS


Integrins in Chondrocytes Adhesion

Articular cartilage, composed mainly of water, collagen, proteoglycans, and cells, provides a smooth surface for joints and facilitates the transmission of loads (Ulrich-Vinther et al., 2003; Carballo et al., 2017). The articular cartilage lining the surface of the subchondral bone is multi-layered. The surface layer consists of collagen fibrils and chondrocytes, which parallels to the articular surface. In the deeper layer, the arrangement of collagen fibrils is more random and collagen fibrils are vertically inserted into the subchondral bone in the deepest layer (Silver et al., 2001). Chondrocytes, constituting the main cell group of adult articular cartilage cells, play important roles in maintaining the balance between the anabolism and catabolism of the ECM (Loeser, 2009; Kozhemyakina et al., 2015; Li et al., 2017; Liang et al., 2018; Kadry and Calderwood, 2020). Under normal physiological conditions, the ECM components are in a slow renewal state, which maintains homeostasis between chondrocyte catabolism and anabolism. Studies have confirmed that integrins, such as α1β1, α2β1, αVβ3, αVβ5, and so on, are expressed on chondrocytes (Loeser et al., 2000; Kurtis et al., 2003; Lahiji et al., 2004; Shattil et al., 2010). The interactions between chondrocytes and the ECM mediated by integrins are crucial for chondrocyte activity. ECM, as an “informative” environment, is made up of many molecules, including COLII, proteoglycans (PGs), hyaluronic acid (HA), and chondroitin sulfate (CS), etc., And the various components in the ECM are important for the structure and function of the ECM (Gao et al., 2014; Hansen, 2019). ECM changes in OA seem to be driven by the imbalance between anabolic and catabolic activities of chondrocytes, which are responsible for the occurrence and development of OA. The increase of catabolism in ECM was observed in OA pathology (Rahmati et al., 2017).

As a transmembrane molecule of chondrocytes, integrin plays an important role in cartilage homeostasis. Integrins act as a central regulator in multicellular biology, which can coordinate with multiple cellular functions. The integrins can mediate cell adhesion between chondrocytes and the ECM (Ginsberg, 2014; Dustin, 2019; Kadry and Calderwood, 2020). Integrins and their connections to the cytoskeleton play important roles in monitoring cell adhesion and the physical properties of the ECM (Romero et al., 2020). Cell adhesion can be achieved by binding the adhesion superstructures with integrins to the periphery of the non-collagenous fibril (Woltersdorf et al., 2017). Chondrocytes express several integrin protein families, like fibronectin (α5β1), COLII and COLVI (α1β1, α2β1, α10β1), laminin (α6β1), osteopontin (αVβ3), and so on (Loeser, 2000). Chondrocytes can be attached to various cartilage and bone proteins, which is mainly mediated by integrins, including members of the β1 and β3 subunit family. The regulation of chondrocyte adhesion is related to the activation or increase of integrin expression (Loeser, 1993). Adhesions between cartilage oligomeric matrix protein (COMP) and chondrocytes occurs through αVβ3 integrin (Chen et al., 2005). α10β1 integrin, expressed by normal adult chondrocytes, can bind COLII, and α1β1 integrin can also bind COLII collagen but preferentially binds COLVI collagen (Camper et al., 1998; Loeser et al., 2000). Complex interactions between integrins and their extracellular ligands show that integrins play important roles in chondrocyte adhesion.



Integrins in Chondrocyte Mechanotransduction

Studies have shown that the mechanical stress environment of joints is an essential factor affecting or regulating chondrocyte activity in vivo (Loeser et al., 2000). Mechanical load plays an important role in the formation, differentiation, shaping, maturation and matrix synthesis of cartilage. Chondrocytes are exceedingly sensitive to mechanical changes in their surroundings. The stabilizing maintenance of articular cartilage can be regulated by stimulations, such as mechanical load, small soluble molecules in ECM and matrix components. Mechanical stimulation can be divided into dynamic compression, fluid shear, tissue shear, and hydrostatic stimulation (Sharifi and Gharravi, 2019). Integrins, as an important mechanical receptor, can affect the physiological function of chondrocytes by activating the mechanical signal pathway, a process known as mechanotransduction (Roca-Cusachs et al., 2012; Geoghegan et al., 2019).

The integrin-mediated biochemical signals of extracellular mechanical stimuli are dependent on integrin-matrix interactions (Zhao Z. et al., 2020). Studies have shown that integrin α1β1 is a crucial molecule for transducing mechanical load (Jablonski et al., 2014). The periodic mechanical load can significantly facilitate the fibronectin-integrin α5β1 bond (Kong et al., 2013). Periodic mechanical load activates downstream protein kinase C (PKC) signals by stimulating chondrocytes α5β1 integrin, which can cause hyperpolarization of chondrocyte membrane (Wright et al., 1997). Mechanical signal pathways mediated by integrins are involved in the proliferation and matrix synthesis of chondrocytes, such as integrin β1-Src- GIT ArfGAP 1 (GIT1)- focal adhesion kinase (FAK) (Tyr576/577)- extracellular regulated protein kinase 1/2 (ERK1/2), integrin β1-FAK(Tyr397)-ERK1/2, and integrin β1- Ca2+/calmodulin dependent protein kinase II (CaMKII)- Proline-rich tyrosine kinase 2 (Pyk2)-ERK1/2 signal pathway (Liang et al., 2017; Ren et al., 2018). Studies suggested that the death signaling pathway mediated by integrins also participated in the process that excessive mechanical load acting on cartilage explants (Jang et al., 2014).



Integrins in Chondrocyte Transmembrane Signaling

In addition to being involved in mechanical signal transduction, integrin involvement in transmitting signals has attracted attention (Loeser, 2014; Prein and Beier, 2019). The cytoplasmic signaling within chondrocytes, called “inside-out signaling,” can regulate the affinity of integrins for their ligands. The combination of the α subunit and β subunit cytoplasmic tails can maintain integrins in an inactive state. Signals from G-protein-coupled receptors can activate integrins, causing phosphorylation of the cytoplasmic domain of the β subunit, which can disrupt the combination of the α subunit and β subunit (Takada et al., 2007). Through “inside-out signaling,” the adhesion intensity and strength between integrins and the ECM can be regulated. Binding to specialized extracellular ligands, integrins can be activated by “outside-in signaling.” In this situation, integrins cluster on the surface of the cell and undergo conformational changes that activate cytoplasmic kinase and cytoskeletal signaling cascades. The cross-talking of signaling mechanism components in integrin-mediated “outside in” and “inside out” signaling pathways play a role in maintaining cartilage homeostasis (Attur et al., 2000). As a vital mediator of between chondrocytes and ECM in cartilage, integrins can regulate the response to signals emitted from the ECM, which play an important role in cell proliferation, survival, differentiation and matrix remodeling.

Studies have shown that integrin-mediated signaling pathways are involved in the gene expression of micro-molecules, like inflammatory mediators, chemokines, matrix metalloproteinases (MMPs), such as MMP-1, MMP-3, MMP-10, MMP-13, etc., (Werb et al., 1989). The α5β1 integrin, an important cellular membrane receptor of chondrocytes, can be activated by proteins with RGD peptide, antibodies against α5β1 integrin or fibronectin fragments (Fn-fs) in ECM. One reason for the imbalance between anabolism and catabolism of chondrocytes is that the combination of α5β1 integrin with soluble Fn-fs. Fn-fs, generated by MMPs degrading fibronectin (Fn), have catabolic properties. The pro-catabolic response to matrix fragments may be particularly associated with the destruction of ECM. RGD-containing Fn-fs, when binds to α5β1 integrin, was found to be the most active (Homandberg et al., 1993). PKCδ is the rate-limiting factor at the convergent points of signaling input from Fn-fs. PKCδ activation can cause the activation of nuclear factor kappa B (NF-κB) in addition to MAP kinase (MAPK) (Lee et al., 2013). MAPK activation can lead to inhibition of anabolic signaling, suppression of PG production, and upregulation of catabolic proteases, like MMP-3, MMP-13, and so on. Many signaling pathways are interconnected, which can enhance cartilage destruction in OA. For example, MAP3-kinase TGF-β-activated kinase 1 (TAK1) can link MAPK signals to the activation of NF-κB, which may play a role in OA pathogenesis (Cheng et al., 2016). The NF-κB pathway, considered a typical proinflammatory signaling pathway, plays an important role in many inflammatory diseases (Lawrence, 2009). Both pathways work together to inhibit anabolic signaling and stimulate ECM degeneration (Figure 1). All these can stimulate chondrocytes to produce proinflammatory mediators, such as prostaglandin E2 (PGE2), reactive oxygen species (ROS), a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5, nitric oxide (NO), and MMPs (Arner and Tortorella, 1995; Homandberg, 1999; Forsyth et al., 2002; Gemba et al., 2002). The roles of integrins in pathological processes of OA will be discussed in detail in the following text.
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FIGURE 1. Integrins undergo many changes in OA, suggesting integrins participate in pathological processes of OA. Recent studies have identified the important role of integrins in OA cartilage, as well as subchondral bone and synovium.





CHANGES IN INTEGRIN EXPRESSION AND FUNCTIONAL BEHAVIOR IN OSTEOARTHRITIS

Cartilage surface defects are common changes in OA. Chondrocytes can be fixed to special positions by adhesion, which in turn can trigger the secretion of molecules that repair the defect and tissue. Eventually, chondrocytes adhere to the host tissue and become part of the cartilage. There are many important molecules involved in chondrocyte adhesion to the ECM, such as Annexins (mainly A5), CD44, and integrins. Studies found that there was an increased level of α1β1, α3β1, α2β1, α4β1, and α6β1 in cartilage tissue of OA (Loeser et al., 1995; Lapadula et al., 1997; Ostergaard et al., 1998). These changes in integrins may be the result of feedback regulation from changes in the ECM. Growth factors and cytokines can stimulate integrin expression, which accounts for the change in integrins in OA (Loeser, 1997). Dysfunction of integrin αVβ3 and CD47 signaling in chondrocytes has been confirmed to contribute to inflammation and joint destruction in OA (Wang et al., 2019).

Integrin α5 is inferred to be a protective factor that inhibits hypertrophy, OA occurrence, and chondrocyte development. Evidence has shown that the expression of integrin α5 in chondrocytes was lower in an OA model of rats induced by surgery than in a normal group, suggesting that changes of ECM may lead to the imbalance of cartilage homeostasis and affects the repair ability of chondrocytes, finally deteriorating the pathological changes of OA (Castaño Betancourt et al., 2012; Bernhard et al., 2017). Lack of α1 integrin subunit was associated with early degradation of cartilage homeostasis and accelerated aging-dependent lesions. Compared with wild-type (WT) mice, more severe degradation, glycosaminoglycan depletion, and higher expression of MMP-2 and MMP-3 in the cartilage of α1-KO mice (Zemmyo et al., 2003). In addition, the increase of α2 and α3 subunits expression in cartilage tissue is related to the degree of fibrosis and a high expression of αV integrin was detected in hypertrophic chondrocytes of rats with OA. All these changes suggest that integrins play important roles in OA (Figure 2).
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FIGURE 2. The RGD-containing fibronectin fragments (Fn-fs) can induce cartilage damage and proteoglycan loss. PKCδ is the rate-limiting factor at the convergent point of signaling input from Fn-fs. PKCδ activation can lead to nuclear factor kappaB (NF-κB) activation in addition to MAP kinase (MAPK) activation. MAPKs (ERK1/2, JNK1/2, and p38) activation can lead to inhibition of anabolic signaling, including IGF-1 and BMP7 signaling pathways, increased levels of inflammatory cytokines and upregulation of catabolic proteases like MMP-3 and MMP-13.




THE ROLES OF INTEGRINS IN OSTEOARTHRITIS


Integrins in Osteoarthritis Cartilage


Changed ECM Components and Integrins

Changed ECM components in OA are a result of an imbalance of synthesis and catabolism, which can serve as initiating or progressive factors of OA (Guilak et al., 2018). Developmental and mature chondrocytes are constantly interacting with ECM and remodeling ECM. Various ECM components promote OA by stimulating receptors on chondrocytes membranes, such as endothelin-1 (ET-1), which induces chondrocyte senescence and cartilage damage by endothelin receptor B, so as integrins (Au et al., 2020). Integrin-mediated signaling pathways are key sources of the catabolic reactions critical for joint destruction in OA. Developmental chondrocytes can express a special molecule called integrin-β-like 1 (Itgbl1) at specific stages, which can inhibit integrin-mediated signal pathways and promote cartilage generation. However, the expression of Itgbl1 was decreased significantly in the chondrocytes of OA (Song et al., 2018). A rat model experiment suggested that Indian hedgehog (Ihh) expression during the late stages of OA can inhibit the endochondral ossification induced by bone morphogenetic protein 7 (BMP-7) and αV integrin (Garciadiego-Cázares et al., 2015). During the procession of OA, ECM-degrading enzymes, such as urokinase-type plasminogen activator (uPA), ADAMTSs, and MMPs, can degrade components of the ECM (Pérez-García et al., 2019). Angiopoietin-like protein 2 (ANGPTL2) secreted by chondrocytes can induce the production of inflammatory factors through the integrin α5β1/MAPKs, Akt, and NF-κB signaling pathways (Takano et al., 2019). Another study found that the stimulation of the αVβ3 and αVβ5 integrins of chondrocytes can upregulate the gene expression of Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), MMP-3, and MMP-13 (Hirose et al., 2020). Animal experiments have shown that ofloxacin can interfere with the β1 integrin/ERK/MAPK signal pathway and thus induces apoptosis in young rabbit articular chondrocytes (Sheng et al., 2008). CD147, also called ECM metalloproteinase inducer (EMMPRIN), is a highly glycosylated transmembrane glycoprotein, which can interact with β1 integrin (α3β1 and α6β1) in the membrane of chondrocytes (Orazizadeh and Salter, 2008). Previous studies suggested that collagen type X (COLX) can interact with chondrocytes directly through major integrin α2β1 (Leitinger and Kwan, 2006).



Excessive Mechanical Load and Integrins

The mechanical load can affect the cartilage matrix. Chondrocytes are constantly subjected to external mechanical load, thereby regulating remodeling. The optimal level of mechanical load is essential to maintain the dynamic balance of chondrocyte homeostasis (Vazquez et al., 2019). The mechanical load acting on joints can directly affect the production of matrix degradation enzymes and further affect cartilage homeostasis (Aigner et al., 2006; Goldring and Goldring, 2007). The moderate mechanical load can lead to hypertrophy. The excessive mechanical load can lead to collagen network damage, resulting in irreversible cartilage destruction (Jørgensen et al., 2017). Moreover, excessive mechanical load of cartilage also can cause cartilage tissue damage through necrosis (Arokoski et al., 2000). MAPKs, as central regulators of cell signaling pathways, play important roles in cell physiological functions, which are considered potential targets for the treatment of OA (Loeser et al., 2008). MAPKs can mediate cell signaling pathways induced by the mechanical stimulation of integrins and then regulate chondrocyte gene expression and proliferation in response to the mechanical load acting on joints (Roca-Cusachs et al., 2012). After the stimulation of integrins by mechanical load, a signaling cascade is activated (Lee et al., 2000).

The homeostasis of articular cartilage depends partly on the mechanical load generated in daily activities. Appropriate joint load stimulates chondrocytes to maintain healthy cartilage by producing specific protein components. Conversely, excessive mechanical load alters cartilage composition and causes focal degeneration of cartilage, leading to disease (Smith et al., 2004; Monfort et al., 2006). Excessive mechanical load acting as signals from the ECM can activate integrins, which further promotes the progressive destruction of the cartilage matrix in OA (Fang et al., 2021). Under excessive mechanical load, integrins can regulate the responses of chondrocytes to mechanical stimulation through multiple pathways. Studies have shown that integrins can interact with the MAPK-ERK pathway. Articular chondrocytes respond to α5β1 integrin, acting as a mechanoreceptor. Animal experiments showed that mechanical load led to an increase in the number of α5 subunit in both immature cartilage and mature cartilage, but the number of β1 subunit was not increased (Lucchinetti et al., 2004). Integrin-associated protein (CD47/IAP) can interact with α5β1 integrin to modulate chondrocyte responses to mechanical signals (Orazizadeh et al., 2008). The downstream signaling cascades and cell responses are different in OA chondrocytes. Excessive mechanical signals can regulate key molecules in MAPK signal cascades to maintain their efficacy in proinflammatory environments. For example, mechanical signals can affect gene expression and chondrocyte proliferation during proinflammatory environments through integrin-linked kinase and signal pathways (Perera et al., 2010). All these factors can progressively destroy the cartilage matrix in OA. Cellular communication network factor 2 (CCN2), a cysteine-rich secreted matricellular protein, is highly expressed and secreted into the ECM under mechanical load, regulating cell physiological functions. Integrins, the first receptor to perceive mechanical load on the cell membrane of chondrocytes, can enhance the gene expression of CCN2. CCN2 expression is increased when exposed to excessive mechanical stress, that further triggers cartilage fibrosis through the activation of integrin-mediated signal pathways (Huang et al., 2021). There were significant differences in signal events and cell responses when mechanical load acts on normal and OA chondrocytes (Millward-Sadler and Salter, 2004). Under excessive mechanical stress, integrins can respond to inflammatory activation in chondrocytes. High levels of α1β1 and α3β1 were observed in the cartilage tissues of OA patients, which may potentially contribute to ECM deformation and chondrocyte hypertrophy (Zhao Y. et al., 2020).



Cytokine Signals and Integrins

As the most common disease in the elderly, OA can damage the ECM of cartilage, leading to pain and dysfunction of joints. There are many factors that can cause OA, including mechanical injury, cytokines, superoxide release, adipokines, etc., (Sofat, 2009; Zhang et al., 2018). The role of cytokines in OA has gradually drawn people’s attention (Sofat, 2009). Integrins as key receptors on the cell surface can interact with cytokines secreted into the ECM, that may participate in the pathogenesis of OA. The gene expression of integrins can be regulated by cytokines like insulin-like growth factors-1(IGF-1) and transforming growth factor-beta (TGF-β) (Loeser, 2000). Integrins can change their expression patterns under pathological conditions and promote the deterioration of OA by releasing active TGF-β and regulating various signals downstream of the integrins (Zhang et al., 2020). A high level of TGF-β can disrupt cartilage homeostasis and impair the metabolic activity of chondrocytes. Animal studies have shown that knockdown of αV integrin gene in mouse chondrocytes can reverse TGF-β activation and subsequent abnormalities in articular cartilage metabolism (Zhen et al., 2021). Cytokines in ECM are considered to have a variety of effects on cartilage. We listed some of the cytokines associated with integrins in this section. The chemokine CX3CL1 can induce chemotaxis of monocytes, neutrophils, and fibroblasts. CX3CL1 acts through its receptor CX3CR1. By stimulating CX3CR1, CX3CL1 can activate integrin-dependent migration of chondrocytes, which is evident in many articular cartilage diseases (Poniatowski et al., 2017). Angiopoietin-like 2 (ANGPTL2) secreted by chondrocytes can stimulate the integrin α5β1/MAPKs, Akt, and NF-κB signaling pathways leading to ECM degradation and inflammatory response, which plays a negative role in the pathogenesis of OA (Shan et al., 2019). In addition, both growth differentiation factor 5 (GDF-5) and BMP-7 in chondrocyte could regulate the expression of integrins, that may participate in normal physiological function and OA progression (Garciadiego-Cázares et al., 2015).




Integrins in Healthy and Osteoarthritic Subchondral Bone

Like the bones in other parts of our bodies, subchondral bone osteocytes are the main mechanical sensitive cells in bone. Increasing evidence showed that integrin-based adhesion could promote mechanical transduction and play an important role in forming subchondral bone (Geoghegan et al., 2019). During the formation of subchondral bone, Osteoblasts and osteocytes express β1 subunit, that can combine with α1, α2, α3, α4, and α5 subunits. β3 subunit connects with αv subunit in osteoblasts and osteocytes (Horton et al., 1991; Engleman et al., 1997; Geoghegan et al., 2019). All these integrin molecules are involved in cell-matrix adhesion and facilitate mechanical conduction. Integrin-mediated signaling pathways and their cross-talking with Wnt/β-catenin signaling pathways are involved in osteoblast mechanical transduction (Marie et al., 2014). Mechanical load acting on joints can regulate the metabolism of healthy subchondral bone osteoclasts and cause gene expression of interleukin-6 (IL-6), interleukin-8 (IL-8), MMP-3, MMP-9, MMP-13, etc., (Sanchez et al., 2012). The structure of subchondral bone can determine the mode of mechanical load acting on cartilage and the mode of TGF-β activation, which can regulate the metabolism of chondrocyte and cartilage homeostasis. Mechanical stress can trigger TGF-β activation through αV integrin-mediated signaling pathways. A high level of TGF-β activation has been detected in areas with high mechanical load in cartilage (Zhen et al., 2021).

In addition to degenerative changes in articular cartilage, OA also causes the destruction of subchondral bone. The role of subchondral bone in OA has been gradually recognized (Goldring and Goldring, 2010). The causes of the subchondral bone of OA, specially in non-load-bearing areas, include synovial fluid inflow, mechanical contusion, vascular lesion, etc., (Chan et al., 2017). Abnormal subchondral bone remodeling plays an important role in the pathological changes of OA. Osteocyte morphology was found to be altered in the subchondral bone of OA patients, the cell body became round and roughened by the degeneration of typical dendrites and the appearance of unorganized dendrites (Jaiprakash et al., 2012). OA can cause the destruction of subchondral bone, osteoblast dysfunction of subchondral bone at the cell level; and cystic lesions, sclerosis, and osteophytes at the tissue level (Weber et al., 2019). Risk factors for OA include aging, obesity, abnormal joint mechanical load, and joint sprain, which interact in a complex way (Palazzo et al., 2016). In particular, the excessive mechanical load of joints triggered a series of cell changes, including cartilage damage and subchondral bone adaptation changes (Adebayo et al., 2017). The imbalance between cartilage and subchondral bone destroys the normal physiological relationship between both tissues and further leads to the deterioration of OA. This section of this article focuses on integrins in the subchondral bone of OA.

Pathological changes of subchondral bone were found in OA, including microstructural damage, bone marrow edema-like injury, and bone-cyst formation (Li et al., 2013). Excessive mechanical load applied upon articulation may be critical for these changes. The sclerosis of the subchondral bone is widely regarded as one of the features of OA. Osteoblasts isolated from sclerotic areas of subchondral bone were found to express levels of α5, αv, β1, and β3 integrins and CD44, which is similar to the levels in non-sclerotic osteoblasts under basal conditions (Sanchez et al., 2012). Subchondral bone is hypo-mineralized due to abnormal bone remodeling. Osteopontin (OPN), a multifunctional phosphoprotein, was found that highly expressed in OA tissues. Stimulation of osteoblasts with OPN can activate the αvβ3 integrin-mediated signaling pathway (Su et al., 2015). Culture of osteocytes on defective ECM tissue produced by OA subchondral bone osteoblasts caused a decreased gene expression of integrin β1 and deactivation of the FAK signaling pathway. Many proteins containing the three amino acid sequence RGD in the ECM can be recognized by corresponding integrin β1 receptors (Schaffner and Dard, 2003; Marini et al., 2017). The combination of integrins with these macromolecules can activate a series of downstream signals and initiate a cascade of phosphorylation events, which are essential for the function of subchondral bone cells, such as cell adhesion and proper cytoskeletal organization (Legate et al., 2009; Michael and Parsons, 2020). Lower expression of integrin β1-FAK signaling in the subchondral bone can induce cell detachment from ECM, leading to subtle structural changes, cellular dysfunction even cell necrosis (Prasadam et al., 2013).



Integrins in Osteoarthritic Synovium

The synovium can secret synovial fluid to joint space, which contributes to the functional properties of articular surfaces and modulation of the state of chondrocytes. For example, hyaluronic acid (HA) secreted by synovial lining cells contribute to the integrity of the cartilage surface and reduce friction at cartilage surface (Hui et al., 2012). Synovitis in OA is characterized by increased angiogenesis and hypoxia (Liu et al., 2019). Fibroblasts and macrophages in the synovial lining are important sources of inflammatory mediators, such as IL-1, IL-6, TNF, etc., The destruction of cartilage can induce the inflammation of the synovium, causing the production of cytokines. The concentrations of cartilage-protecting factors in the synovial membrane decrease, and harmful factors are constantly generated (Scanzello and Goldring, 2012; Hügle and Geurts, 2017; Michael and Parsons, 2020). All these alterations can deteriorate OA by the degradation of the ECM and apoptosis of chondrocytes.

In synovium tissue, the gene expression of integrins depends on the specific cell location and cell type. Most gene expressions of integrins are similar in synovium tissue but differ in the synovial lining, where the fibroblasts and macrophages degrade ECM and invade the cartilage. α6β1 integrin is expressed only by fibroblasts, while macrophages not. The expression levels of α5, αν, and β1 integrin in the synovium lining increased compared to the sub-lining areas (Pirilä et al., 2001; Lowin et al., 2009; Lowin and Straub, 2011). Synovial cells are involved in the protection and maintenance of the stability of joints. Studies on rabbit synovial fibroblasts showed that cooperative signaling mediated by α5β1 and α4β1 integrins plays a dominant role in regulating MMP expression signaling in response to FN. MMP expression can remove the damaged matrix, which is the first step in repairing the damaged matrix. The cross-talking of integrins makes it possible for synovial fibroblasts to identify whether the matrix is intact or damaged. The volume of synovial fluids is increased in the OA articular cavity. Synovial fluids obtained from OA tissue showed increased expression of ligands for integrin αvβ3 and CD47, including COMP, fibronectin, and vitronectin. Increased ligand binding affinity of αvβ3 and CD47 was found in the synovium of the OA rat model. Signals mediated by αVβ3 and CD47 can result in the expression of inflammatory mediators and matrix degradation enzymes, leading to joint destruction in OA (Wang et al., 2019). Integrin αvβ3 and α5β1 are involved in synovial cell proliferation, differentiation, and migration. Both are overexpressed in damaged synovial cells, acting as inflammatory and angiogenic factors in the progression of rheumatoid arthritis (RA). Their roles in the OA synovial membrane need further study (Morshed et al., 2019). There is evidence that the synovial lining cells in OA strongly and uniformly express integrin subunit αv, whereas synovial lining cells in RA show heterogeneous expression. Both RA and OA cells fail to express the integrin subunit β3. These results show different manifestations of the αV and β3 integrin subunits in cytokine-stimulated fibroblast-like cells from the synovium of OA and RA in vitro (Rinaldi et al., 1997). All these results showed that integrins are not only play a significant role in synovial joint development, but also involved in the pathological changes of OA.




PROSPECTS FOR INTEGRIN RESEARCH IN THE TREATMENT OF OSTEOARTHRITIS

Osteoarthritis, with a high incidence in the elderly population, brings tremendous economic burdens to individuals and society. Pain and joint dysfunction are the main causes of decreased quality of life in patients with OA. Current clinical trials mainly include repairing defects of cartilage and bone, intra-articular injections of drugs, physical exercise, etc. However, all the therapies has been proven that don’t significantly have improvement in disease progression and successfully prevent arthroplasty surgery (Grässel and Muschter, 2020). People are constantly looking for new ways of treating OA. Integrins, as important receptors on the cell surface, play important roles in OA, which may provide new targets for the therapies of OA. In this section, we discuss the application prospects for integrin research in the field of OA treatment.

Interfering with the integrin-mediated signaling pathway provides a novel therapeutic approach for OA. For example, osteopontin (OPN) can interact with the integrin αVβ3 receptor, which participates in maintaining the homeostasis of articular cartilage. High expression of OPN was detected in cartilage and synovial fluid, which may be involved in the progression of OA. Recently, researchers have attempted to use this protein as a diagnostic marker of OA or a targeted drug against OA (Cheng C. et al., 2014). Low-intensity pulsed ultrasound (LIPUS) can interfere with integrin - FAK-phosphatidylinositide 3-kinases(PI3K)/protein kinase B (Akt) mechanochemical transduction pathways and alter chondrocyte-induced ECM production. The effect of LIPUST on articular cartilage can be used as a new treatment for OA (Cheng K. et al., 2014). Mesenchymal stem cells (MSCs) with high expression of the α10 subunit have been proven to improve chondrogenic potential. Research showed that intra-articular injections of MSCs with high integrin α10 expression after joint damage may protect against posttraumatic OA (Delco et al., 2020). Another study showed that mechanical exposure at moderate intensity combined with diacerein treatment could modulate integrin-FAK-MAPK mechanotransduction in human osteoarthritis chondrocytes (Lohberger et al., 2019). In addition to the treatments mentioned above, we have summarized the results of recent experiments on the treatment of OA based on interference of integrin-mediated signaling pathways in the following table (Table 1).


TABLE 1. Recent experiments on treating OA by interfering with integrin-mediated signaling pathways.
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CONCLUSION

As transmembrane molecules on the cell surface, integrins play important roles in cartilage homeostasis, including cell survival, cell differentiation, matrix remodeling, and responses to mechanical stimulation. Integrins undergo many changes in OA, which may suggest that integrins are involved in the pathological procession of OA. Recent studies have proved that the important roles of integrins in OA cartilage, subchondral bone, and synovium. Integrin-mediated signaling pathways are key sources of the catabolic reactions critical for ECM destruction. Excessive mechanical loading can cause the destruction of the cartilage matrix, and abnormal mechanical signals from the ECM mediated by integrins work together to promote progressive destruction of the cartilage matrix in OA. Interactions between cytokines and integrins also contribute to the progression of OA. Changes in integrins also contribute to pathological changes in the subchondral bone and synovium. Integrin shows good application prospects for the treatment of OA. Interfering with integrin-mediated signaling pathways is a novel therapeutic approach to OA.
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Introduction: In addition to the well-known cartilage extracellular matrix-related expression of Sox9, we demonstrated that chondrogenic differentiation of progenitor cells is driven by a sharply defined bi-phasic expression of Sox9: an immediate early and a late (extracellular matrix associated) phase expression. In this study, we aimed to determine what biological processes are driven by Sox9 during this early phase of chondrogenic differentiation.

Materials: Sox9 expression in ATDC5 cells was knocked down by siRNA transfection at the day before chondrogenic differentiation or at day 6 of differentiation. Samples were harvested at 2 h and 7 days of differentiation. The transcriptomes (RNA-seq approach) and proteomes (Label-free proteomics approach) were compared using pathway and network analyses. Total protein translational capacity was evaluated with the SuNSET assay, active ribosomes were evaluated with polysome profiling, and ribosome modus was evaluated with bicistronic reporter assays.

Results: Early Sox9 knockdown severely inhibited chondrogenic differentiation weeks later. Sox9 expression during the immediate early phase of ATDC5 chondrogenic differentiation regulated the expression of ribosome biogenesis factors and ribosomal protein subunits. This was accompanied by decreased translational capacity following Sox9 knockdown, and this correlated to lower amounts of active mono- and polysomes. Moreover, cap- versus IRES-mediated translation was altered by Sox9 knockdown. Sox9 overexpression was able to induce reciprocal effects to the Sox9 knockdown.

Conclusion: Here, we identified an essential new function for Sox9 during early chondrogenic differentiation. A role for Sox9 in regulation of ribosome amount, activity, and/or composition may be crucial in preparation for the demanding proliferative phase and subsequent cartilage extracellular matrix production of chondroprogenitors in the growth plate in vivo.

Keywords: ATDC5, chondrogenesis, Sox9, ribosome, translation, proteomics, transcriptomics


INTRODUCTION

Chondrogenesis, or chondrogenic differentiation, is the differentiation path of progenitor cells via early mesenchymal condensation into chondrocytes that synthesize a cartilaginous extracellular matrix (ECM) (Kronenberg, 2003; Lefebvre and Smits, 2005; Mackie et al., 2008). Aside from formation of articular cartilage and its maintenance, skeletal development also depends on chondrogenic differentiation. Development of the long bones of the mammalian skeleton depends on the activity of growth plates, cartilaginous entities at the ends of developing bones in which chondrocytes differentiate from progenitor cells (Kronenberg, 2003; Lefebvre and Smits, 2005; Mackie et al., 2008). In contrast to articular chondrocytes, differentiating growth plate chondrocytes are predestined to undergo hypertrophic differentiation and apoptosis. The remaining cartilaginous matrix is subsequently remodeled by osteoclastic/osteocytic activity, resulting in de novo synthesized bone tissue (Kronenberg, 2003; Lefebvre and Smits, 2005; Mackie et al., 2008). In vivo, chondrogenic differentiation is almost exclusively initiated from local mesenchymal progenitor cells that reside in the cartilaginous tissue [growth plate resting zone (Abad et al., 2002), articular cartilage superficial layer (Karlsson and Lindahl, 2009)] or in surrounding fibrous tissues [e.g., periosteum (Nakahara et al., 1990; Emans et al., 2011)]. However, in vitro chondrogenic differentiation has been reported from various primary (mesenchymal) progenitor cell sources including synovial membrane/fluid, bone marrow, adipose tissue, fibroblasts, and induced pluripotent stem cells (Barry and Murphy, 2004; French et al., 2004; Medvedev et al., 2011). In addition to high amounts of oligosaccharides (mostly hyaluronic acid, heparan sulfate, and chondroitin sulfate), important cartilage ECM proteins are type II collagen (Col2a1) and aggrecan (Acan) (Mankin et al., 2000; de Crombrugghe et al., 2001; Lefebvre and Smits, 2005).

The master regulator of chondrogenic differentiation is the transcription factor SRY (sex determining region Y)-box 9 (Sox9). Mutations in SOX9 were originally identified as the cause for campomelic dysplasia (Foster et al., 1994; Wagner et al., 1994), a severe skeletal dysplasia associated with XY sex reversal and disproportionally short stature, as well as general lack of cartilaginous tissue formation. SOX9 was found to be essential for murine early chondrogenic lineage determination (Akiyama et al., 2002). Upon nuclear translocation (Argentaro et al., 2003; Haudenschild et al., 2010), Sox9 binds as a homodimer to its consensus DNA recognition sequence (A/T) (A/T)CAA(A/T)G (Mertin et al., 1999), which includes the highly conserved AACAAT motif recognized by the HMG-box domain shared among Sox and Sry protein family members. In chondrogenic differentiation, Sox9 drives the transcription of, and cooperates with, L-Sox5 and Sox6 for efficient transcription of the COL2A1 and ACAN genes (Lefebvre et al., 1997, 1998, 2001; Akiyama et al., 2002; Han and Lefebvre, 2008). Other cartilage ECM genes have also been demonstrated as under transcriptional control of SOX9, including COL9A1 (Genzer and Bridgewater, 2007), COL27A1 (Jenkins et al., 2005), and MATN1 (Rentsendorj et al., 2005; Oh et al., 2010). Besides L-Sox5 and Sox6, another important factor for Sox9-mediated transcription is Smad3. Smad3 modulates the interaction between Sox9 and CBP (CREB-binding protein)/p300 (Furumatsu et al., 2005), thereby possibly explaining the pro-chondrogenic effect of bone morphogenetic proteins (BMPs) and transforming growth factor beta (TGFβs) on chondrogenic differentiation (Yoon and Lyons, 2004; Wang et al., 2014).

During chondrogenic differentiation of progenitor cells in vitro, induction of Sox9 expression is biphasic (Caron et al., 2012). In the first hours after initiation of chondrogenic differentiation, Sox9 expression is transiently induced (immediate early Sox9 induction), together with the other members of the “Sox-trio.” Sox9 expression increases a second time, in parallel with the synthesis of cartilage ECM molecules (late Sox9 induction). Previously, we demonstrated that this immediate early Sox9 expression is in part regulated by the immediate early response gene 1 (Egr1) (Spaapen et al., 2013) as well as by NFκB/p65 (Caron et al., 2012). Similar expression patterns were also found in growth plate sections (Caron et al., 2012). The function of the early Sox9 induction itself remains elusive. In the present work, we therefore determined the transcriptomic and proteomic consequences of the abrogation of early Sox9 expression during ATDC5 chondrogenic differentiation, and uncovered the biological processes that are driven by Sox9 during the early phase of chondrogenic differentiation.



MATERIALS AND METHODS


ATDC5 Cell Culture

ATDC5 cells (RIKEN BRC, Japan, STR profiled) (Atsumi et al., 1990) were cultured in a humidified atmosphere at 37°C and 5% CO2 in culture media consisting of Dulbecco’s Modified Eagle Medium (DMEM)/F12 (Life Technologies, Waltham, MA, United States), 5% fetal calf serum (Life Technologies), 1% antibiotic/antimycotic (Life Technologies), and 1% non-essential amino acids (NEAA) (Life Technologies). Chondrogenic differentiation was induced by plating the cells in triplicates at 6,400 cells/cm2, or 20,000 cells/cm2 in transfection experiments, and the addition to culture media of differentiation supplements 10 μg/ml insulin (Sigma-Aldrich, St. Louis, MO, United States), 10 μg/ml transferrin (Roche, Basel, Switzerland), and 30 nM sodium selenite (Sigma–Aldrich). Media was refreshed every 2 days.



Sox9 Loss and Gain of Function

A small interfering RNA (siRNA) duplex for Sox9 (“Sox9 RNAi”) (sense: 5′-GACUCACAUCUCUCCUAAUTT-3′, anti-sense: 5′-AUUAGGAGAGAUGUGAGUCTT-3′) and a scrambled siRNA duplex (“Control RNAi,” Eurogentec, Seraing, Belgium) were transfected (100 nM) 1 day prior to initiation of chondrogenic differentiation or at day 6 of differentiation using HiPerFECT according to manufacturers’ protocol (Qiagen, Hilden, Germany). A custom-made DNA strand containing a start codon and 3×FLAG sequence (derived from p3×FLAG CMV7.1) and the mSox9 coding sequence (NM_011448.4:376-1899) without start codon was flanked by 5′Eco RI and 3′Xba I restriction sites (GeneCust, Boynes, France). This fragment was cloned directionally into the pLVX-EIF1α-IRES puro MCS (Takara, Saint-Germain-en-Laye, France) to generate a pLVX-EIF1α-mSox9-IRES puro transfer plasmid. Lentiviral particles were generated according to manufacturer’s instructions with the fourth-generation VSV-G envelope Lenti-X system (Takara, Saint-Germain-en-Laye, France). Lentiviral titers were determined by p24 ELISA (enzyme-linked immunosorbent assay; INNOTEST HIV antigen mAb, Fujirebio, Zwijnaarde, Belgium). Viral transductions were performed by incubation of 1 ng lentivirus/cell in the presence of 8 μg/ml polybrene (Sigma-Aldrich) for 8 h, followed by an overnight incubation with 1.6 μg/ml polybrene.



RNA Isolation

RNA was isolated using TRIzol (Life Technologies), collecting the aqueous phase after centrifugation. RNA was precipitated with isopropanol (VWR International, Radnor, PA, United States) (−80°C) and pellet by centrifugation. RNA pellets were washed in 80% ethanol (VWR International) and dried. RNA was dissolved in DNase/RNase-free pure water. RNA quantity and purity were determined spectrophotometrically (Biodrop, Isogen Life Sciences, Utrecht, Netherlands).



Quantitative Real-Time PCR

Total RNA was reverse transcribed into cDNA using standard procedures and random hexamer priming as previously described (Welting et al., 2011). Real-time quantitative PCR (RT-qPCR) was performed using Mesagreen qPCR master mix plus for SYBR Green (Eurogentec, Liège, Belgium). A CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, United States) was used for amplification: initial denaturation 95°C for 10 min, followed by 40 cycles of amplification (denaturing 15 s at 95°C and annealing 1 min at 60°C). Validated primer sequences are shown in Supplementary Table 1. Data were analyzed using the standard curve method, mRNA expression was normalized to a reference gene, and gene expression was calculated as fold change as compared to control conditions or t = 0.



RNA Sequencing and Analysis

Isolated RNA was checked for quality and integrity on the Agilent 2100 Bioanalyzer (Santa Clara, CA, United States) via 2100, an Expert Eukaryote Total RNA Nano chip according to the manufacturer’s protocol. The mRNA sequencing library was generated using TruSeq mRNA sample preparation kit (Illumina, Eindhoven, Netherlands). In short, mRNA was enriched using magnetic beads coated with poly-dT, followed by fragmentation. The fragmented mRNA-enriched samples were subjected to cDNA synthesis by reverse transcriptase, followed by dA-tailing and ligation of specific double-stranded bar-coded adapters. Next, the library was amplified, and following cleanup, the sizes of the libraries were determined on an Agilent 2100 Bioanalyzer via a DNA 1000 chip according to the manufacturer’s protocol. Pooled libraries consisting of equal molar samples were sequenced on a high-output 75-bp single read on the NextSeq500 (Illumina). For each sample, the number of reads covering one or more exons of a given transcript were extracted. Triplicates of samples that were treated with either Scrambled or Sox9 siRNAs, at two different time points, were grouped separately. A transcript was defined as expressed when all replicates of a group had at least five reads extracted within the transcript’s region. The grouped data were then compared to one another. The fold-change difference and the p-value were calculated using R-package edgeR (Robinson et al., 2010; McCarthy et al., 2012), after which the p-value was corrected for multiple testing [false discovery rate (FDR)-corrected]. Transcripts having an FDR-corrected p-value < 0.05 and a fold change of at least 1.5 were considered differentially expressed transcripts. RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI1 under accession number E-MTAB-10333. EnrichR (Chen et al., 2013) software was used to display the pathways of interest obtained from the enrichment of down- or upregulated proteins. The top three pathways of interest were considered from both Wikipathways and KEGG software (version 2019, Mouse) based on the combined score of the p-value and the adjusted p-value scores.



Label-Free Proteomics

At indicated time points, plates were rinsed three times with 1% phosphate buffered saline (PBS). A mixture containing complete Mini Protease Inhibitor Cocktail (Roche, Basel, Switzerland) in 25 mM ammonium bicarbonate (ABC) buffer (Sigma-Aldrich, Zwijndrecht, Netherlands) and 6M urea (GE Healthcare, Eindhoven, Netherlands) was added to the plates. Cells were collected by scraping with a rubber policeman and the samples were transferred to Eppendorf tubes. Triplicates were pooled and sonicated for 10 min and centrifuged at 12,000g for 10 min in 4°C. The supernatant containing proteins was transferred into new tubes and a Bradford assay (Bio-Rad, Lunteren, Netherlands) was performed to assess protein concentration. The concentrations were adjusted to 0.2 μg/μl in order to normalize for the following steps. Samples were reduced with 20 mM of dithiothreitol (DTT) (Sigma-Aldrich) for 45 min and alkylated with 40 mM of iodoacetamide (IAM; Sigma-Aldrich) for 45 min in the dark. The alkylation step was stopped by adding 20 mM of DTT. Samples were then digested using LysC and trypsin (Promega, Leiden, Netherlands) added at a ratio of 1:25 (enzyme:protein) and incubated for 2 h at 37°C in a water bath. Finally, 200 μl of 25 mM ABC buffer was added to the samples before overnight incubation at 37°C. The digestion was stopped by adding formic acid (FA; Sigma-Aldrich) and acetonitrile (Biosolve) at a final concentration of 1 and 2%, respectively. Two hundred nanograms of each sample were injected in duplicate for liquid chromatography mass spectrometry (LC-MS/MS) analysis. The separation of the peptides was performed on a Thermo Fisher Scientific Dionex Ultimate 3000 Rapid Separation ultrahigh-performance liquid-chromatography (HPLC) system (Thermo Scientific, MA, United States) equipped with an Acclaim PepMap C18 analytical column (2 μm, 75 μm∗150 mm, 100 Å). The samples were first trapped on an online C18 column for desalting. The peptides were then separated on the analytical column with a 90-min linear gradient from 5 to 35% acetonitrile/0.1% FA and a flow rate set at 300 nl/min. The HPLC system was coupled to a high mass resolution Orbitrap MS instrument (Q-Exactive HF, Thermo Scientific, Waltham, MA, United States). The mass spectrometer was operated in data-dependent acquisition (DDA) mode with the following settings: Full MS scan of the mass range m/z 350–1,650 at a resolution of 120,000 at m/z 400, followed by tandem mass spectrometry (MS/MS) scans for the fragmentation of the 15 most intense ions at a resolution of 30,000. The ions already selected for fragmentation were dynamically excluded for 20 s. External calibration of the instrument was performed using a standard calibration solution for positive ion mode (Thermo Scientific). For protein identification, raw files were processed within the Proteome Discoverer software version 2.2 (Thermo Scientific) using the search engine Sequest with the Swiss-Prot database Mus musculus version 2017-10-25 (TaxID 10090). The following parameters were used for the database search: carbamidomethylation of Cysteine for fixed modifications; oxidation of Methionine and acetylation of protein N-terminal for variable modifications; trypsin for enzyme with a maximum of two missed cleavages; y and b for the ion types with a mass tolerance of 10 ppm and 0.02 Da for the precursors and the fragments, respectively; minimum and maximum peptide length of 6 and 144, respectively. Normalization of the data was performed on the total peptide amount. Percolator was used for the decoy database search and the FDR was fixed at 1% maximum. Finally, a list of 23 commonly detected contaminants were removed manually (data not shown). For protein quantitation, the Minora Feature Detector node in the processing step and the Feature Mapper node combined with the Precursor Ions Quantifier node in the consensus step were used with default settings. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD024715. ANOVA test and principal component analysis (PCA) were performed within the Proteome Discoverer software. PCA was performed to visualize protein abundance changes between groups in an unsupervised manner. ANOVA test was used to analyze the statistical significance of variation observed in protein abundances between the conditions. The proteins were considered modulated with a p-value ≤ 0.05 and a fold change (FC) ≥ 2. The modulated proteins were then imported within the EnrichR software (Chen et al., 2013) to display the top 3 pathways of down- or upregulated proteins ranked by the combined score. WikiPathways and KEGG were used as databases (version 2019, Mouse).



Immunoblotting

Cells were lysed in RIPA buffer [150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0, 5.0 mM ethylenediaminetetraacetic acid (EDTA), pH 8.0, 0.5 mM dithiothreitol (DTT) supplemented with cOmplete Mini Protease Inhibitor Cocktail (Roche) and PhosSTOP phosphatase inhibitor (Sigma-Aldrich)]. Extracts were sonicated and protein concentrations were determined with a bicinchoninic acid (BCA) assay (Sigma-Aldrich). Proteins were separated by SDS-PAGE [sodium dodecyl (lauryl) sulfate-polyacrylamide gel electrophoresis] and transferred to nitrocellulose membranes by electroblotting. Primary antibodies for immunodetection were anti-Sox9 (Abcam, Cambridge, United Kingdom; ab3697) and anti-Tubulin (Sigma-Aldrich; T6074). Bound primary antibodies were detected using immunoglobulins conjugated with HRP (horseradish peroxidase; DakoCytomation, Glostrup, Denmark) and visualized by enhanced chemoluminescence (ECL). ECL signals were quantified using ImageJ 1.46f software (Figure 1B). Relative differences in Sox9 levels, corrected for background and Tubulin levels, were determined as compared to t = 0 conditions.
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FIGURE 1. Sox9 expression has a bi-phasic peak expression during chondrogenic differentiation of ATDC5 cells. (A) Sox9 mRNA expression showed bi-phasic peak pattern during ATDC5 differentiation (h = hours, d = days) as measured by RT-qPCR (Caron et al., 2012; Spaapen et al., 2013). Results were normalized to β-Actin mRNA expression and presented relative to t = 0. (B) Sox9 protein expression peak during early ATDC5 differentiation as measured by immunoblotting. α–Tubulin was used as loading control. Molecular weight markers (in kDa) are shown on the left and relative quantifications are depicted on top of immunoblot. (C) In similar samples from (A), Col2a1 mRNA expression was measured during ATDC5 differentiation by RT-qPCR and showed an increase in expression from day 6 onward. (D) GAG content (by Alcian Blue staining and corrected for total protein expression) was determined during ATDC5 differentiation. Experiments were performed in triplicate, bars represent mean ± SEM. ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.0001.




sGAG Assay

The sulfated glycosaminoglycan (GAG) content was measured using a modified dimethyl methylene blue (DMB) assay (Farndale et al., 1982). The absorbance of samples was read at 540 and 595 nm using a spectrophotometer (Multiskan FC, Life Technologies) and GAG concentrations were calculated using a chondroitin sulfate standard curve (Sigma-Aldrich) and corrected for total protein content using a BCA assay.



SUnSET Assay

Protein translational capacity of ATDC5 cultures (in sextuplicates) was assessed with the SUnSET assay (Goodman and Hornberger, 2013; Henrich, 2016). Puromycin (5.4 μM; Sigma-Aldrich) was incubated for 15 min in the cell culture medium, immediately followed by washing in PBS and fixation for 20 min with 10% formalin (VWR, Radnor, PA, United States). Permeabilization was performed for 10 min with PBS supplemented with 0.1% Triton X-100. Wells were rinsed with PBS with 0.1% Tween (PBS-T) and blocked for 1.5 h with 1% (m/v) skimmed milk powder (ELK, Campina, Zaltbommel, Netherlands) in PBS-T, followed by overnight incubation at 4°C with the primary anti-puromycin antibody 12D10 (Sigma-Aldrich). After washing with PBS-T, wells were incubated for 1 h at room temperature with the secondary goat anti-mouse Alexa488 antibody (Life Technologies). The fluorescent signal intensity was determined using a TriStar2 LB942 (Berthold, Bad Wildbad, Germany) equipped with excitation filter F485 and emission filter F535. Fluorescent data were normalized to DNA content from the same well (McCaffrey et al., 1988). To this end, wells were washed with HEPES-Buffered Saline (HBS), followed by 1 h incubation with 5 μg/ml DAPI (Life Technologies) plus 5 μg/ml HOECHST 33342 (Life Technologies) in HBS. After subsequent washing steps with HBS, fluorescent signal intensity was determined using a TriStar2 LB942 (Berthold), using the excitation filter F355 and emission filter F460.



Polysome Fractionation

Polysome fractionation was performed as described previously (Panda et al., 2017). Three 15-cm plates with ATDC5 cells were used to generate a single sample. At the day of sample collection, cells were differentiated for 2 h, then pre-treated for 5 min with 100 μg/ml Cycloheximide (Sigma), washed twice in 0.9% NaCl with Cycloheximide, and collected by scraping with a rubber policeman in cold 0.9% NaCl. Pelleted cells were lysed for 10 min in 1.8 ml of polysome extraction buffer [20 mM Tris–HCl (pH 7.5), 100 mM KCl, 5 mM MgCl2, 0.5% Non-idet P-40, 100 μg/ml Cycloheximide, complete protease inhibitor cocktail (Roche), and RNasin (Promega, 40 U/ml)] on ice. Nuclei and cellular debris were removed by centrifugation at 12,000 × g for 10 min at 4°C and 9/10th of the total volume was transferred to fresh tubes and measured spectrophotometrically. Total yield was the same for siCtrl- and siSox9-treated cells. Sucrose gradients (linear 10–50%) were made using the Gradient Master (BioComp) in ultracentrifuge tubes (Seton, SW41 tubes). Cytoplasmic extracts (250 μg/sample) were loaded to each gradient in a fixed volume (400 μl). Gradients were run on an ultra-centrifuge (Beckman L60, Brea, CA, United States) at 39,000 rpm for 1.5 h at 4°C with max acceleration and deceleration 9. Samples were fractionated into 24 × 0.5-ml fractions using a Piston Gradient fractionator (BioComp, Fredericton, Canada) and fraction collector (Gilson FC203B, Middleton, WI, United States) with continuous A260 monitoring (Triax FC-1).



Bicistronic Reporter Assay

Reporter constructs for the CrPv IGR IRES, the CrPv CCGG IGR IRES mutant, the HCV, and the P53 IRES were a kind gift of Dr. S. Thompson (UAB, United States). One day post-plating, maxi-prep DNA (0.5 μg/well) and 100 nM siRNA were transfected into 24-well plates (n = 3/group) using Mirus Transit-X2 according to the manufacturer’s instructions. The next day, differentiation was induced for 24 h, and samples were collected by washing cells with 0.9% NaCl and incubation in 100 μl of passive lysis buffer for 15 min (Promega). Subsequently, samples were transferred to Eppendorf tubes and centrifuged for 10 min at 12,000 × g in a tabletop centrifuge. Next, 50 μl of lysate was used for dual luciferase measurements (Promega) using a Berthold injection system (Reeuwijk, Netherlands; 10 s counting time per cistron). Data are represented as fold change of the ratio Fluc/Rluc in control cells for each IRES.



Statistics in Other Than Proteomics or Transcriptomic Analysis

Statistical significance was determined by two-tailed Student’s t tests using GraphPad PRISM 5.0 (La Jolla, CA, United States). Error bars in graphs represent mean ± standard error of the mean. Significance for all tests was set at p ≤ 0.05.



RESULTS


Early Sox9 Peak in ATDC5 Chondrogenic Differentiation

Induction of Sox9 expression is biphasic during chondrogenic differentiation of progenitor cells in vitro (Caron et al., 2012; Spaapen et al., 2013). In the first (Abad et al., 2002; Lefebvre and Smits, 2005; Mackie et al., 2008) hours after initiation of chondrogenic differentiation of ATDC5 cells, Sox9 expression was transiently induced on mRNA (Figure 1A) and protein level (Figure 1B). Sox9 expression increased a second time around day 7 in differentiation (Figure 1A), in parallel with the expression of the important Sox9 transcriptional target Col2a1 (Lefebvre et al., 1997; Figure 1C) and gain of sulfated glycosaminoglycan (GAG) content (Lefebvre and Smits, 2005; Han and Lefebvre, 2008; Figure 1D). The immediate early transient Sox9 expression peak at 2 h in differentiation did not correlate with the induction of expression of well-known Sox9 transcriptional targets such as Col2a1. Hence, we questioned what the function of the early Sox9 expression peak (2 h) was and how it differs from the later Sox9 activity (day 7). We approached this by performing a loss-of-function experiment and comparing the Sox9-dependent transcriptome and proteome in an unbiased manner.



Transcriptome and Proteome Analysis at 2 Hours and 7 Days in ATDC5 Chondrogenic Differentiation Under Sox9 Knockdown

To target early Sox9 expression, a siRNA for Sox9 or scrambled control siRNA were transfected prior to initiation of differentiation (t = −1 day) (Figure 2A). At t = 0, chondrogenic differentiation was induced and cells were differentiated for 14 days. We established effective knockdown of Sox9 at t = 0 and t = 2 h in differentiation, while at days 5, 7, and 14 in differentiation, Sox9 mRNA levels returned to scrambled siRNA control conditions (Figure 2B; black bars and Figure 2C). In parallel, ATDC5 cells were differentiated and the siRNA for Sox9 or scrambled siRNA was transfected at day 6 in differentiation, to specifically target expression of “late” Sox9 induction. Effective knockdown of Sox9 at day 7 and day 14 was observed at mRNA as well as (Figure 2B; gray bars) at the protein level (Figure 2C). Knockdown of the early Sox9 expression peak resulted in decreased Col2a1 expression, and increased Col10a1 expression at early time points. At days 7 and 14 in ATDC5 differentiation, Sox9 siRNA treatment was not effective anymore (Figure 2B; white versus black bars); however, a major induction of Col2a1 mRNA expression at days 7 and 14 in differentiation was prevented in this condition (Figure 2D). A similar but opposite effect was seen for Col10a1 expression in the early Sox9 peak knockdown condition (Figure 2E). Knockdown of the “late” Sox9 peak (gray bars) also resulted in a decreased Col2a1 and increased Col10a1 expression at days 7 and 14 in differentiation, with a smaller magnitude. These data indicate that the early Sox9 expression peak is paramount for successful chondrogenic differentiation of ATDC5 cells (see Supplementary Figure 1 for confirmation with independent Sox9 siRNA). Differential expression of mRNAs and proteins was determined between the scrambled versus Sox9 siRNA at 2 h as well as at 7 days in ATDC5 differentiation, to target the early and late Sox9 expression peaks (Figure 2F).
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FIGURE 2. Elucidating the function of early Sox9 expression by transcriptome and proteome analyses. (A) Schematic representation of experimental setup for Sox9 knockdown experiment. Specific Sox9 RNAi (100 nM) or scrambled control RNAi (100 nM) were transiently transfected “early” at t = −1 day or “late” t = 6 day. ATDC5 cells were differentiated from day 0 onward and harvested for transcriptome and proteome analysis at t = 0, 2 h, 5 day, 7 day, and 14 day. (B) Sox9 mRNA expression during ATDC5 differentiation in Control and Sox9 RNAi conditions (h = hours, d = days) as measured by RT-qPCR. Results were normalized to β-Actin RNA expression and presented relative to t = 0. Bars represent mean ± SEM. ns = not significant, *p < 0.05, **p < 0.01, ***p ≤ 0.0001. (C) Sox9 protein expression at t = 2 h (for “early knockdown condition) and t = 7 day (for “late” knockdown conditions) time point in Control and Sox9 RNAi conditions as measured by immunoblotting. α–Tubulin was used as loading control. Molecular weight markers (in kDa) are shown on the left. (D) Col2a1 mRNA expression in similar samples from (B). (E) Col10a1 mRNA expression in similar samples from (B). (F) Schematic representation of time points and comparisons for transcriptomics and proteomics analysis.


The extracted RNA was used for RNA sequencing and PCA of the transcriptome confirmed that samples from the four groups separated (Supplementary Figure 2). Noteworthy, the separation between the scrambled siRNA and Sox9 siRNA conditions was evident at 2 h, while separation between the scrambled siRNA and Sox9 siRNA conditions at 7 days was less clear. At 2 h in ATDC5 chondrogenic differentiation, knockdown of Sox9 led to the differential expression of 2,422 genes, with 1,235 upregulated genes and 1,187 downregulated genes (Figures 3A,B). At 7 days in differentiation, 493 genes were differentially expressed (203 up and 290 down) due to knockdown of Sox9. From these differentially expressed genes, 203 genes were upregulated (only 15 overlapped with the 2-h time point) and 290 genes were downregulated (49 genes overlapped with the 2-h condition) (Figures 3A,B). All genes that were differentially expressed (FC ≥ 2; p < 0.05) at 2 h and at 7 days in ATDC5 chondrogenic differentiation following Sox9 knockdown are shown in Supplementary Tables 2, 3, respectively.
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FIGURE 3. Changes in transcriptome and proteome after Sox9 knockdown. (A) Venn diagram (Heberle et al., 2015) showing the numbers of genes whose expression was significantly upregulated upon Sox9 knockdown at 2-h versus 7-day condition. (B) Venn diagram showing the numbers of genes whose expression was significantly downregulated upon Sox9 knockdown at 2-h versus 7-day condition. (C) Venn diagram showing the numbers of proteins whose expression was significantly upregulated upon Sox9 knockdown at 2-h versus 7-day condition. (D) Venn diagram showing the numbers of proteins whose expression was significantly downregulated upon Sox9 knockdown at 2-h versus 7-day condition. (E) Venn diagram showing the upregulated genes versus proteins at 2 h in differentiation. (F) Venn diagram showing the downregulated genes versus proteins at 2 h in differentiation.


Proteins from control conditions and Sox9 knockdown conditions at 2 h and 7 days in ATDC5 differentiation were quantified using a label-free proteomics approach. PCA plotting confirmed that control samples at 2 h clearly separated from the Sox9 knockdown samples at 2 h in ATDC5 differentiation. Separation between control and Sox9 knockdown conditions was also confirmed at 7 days in chondrogenic differentiation. However, and in concert with the PCA plot of the RNA sequencing data (Supplementary Figure 2), the separation between control and Sox9 knockdown conditions appeared to be most obvious at 2 h in differentiation (Supplementary Figure 3A). At 2 h in differentiation, knockdown of Sox9 caused the differential expression of 90 proteins (29 up and 61 down) (Figures 3C,D and Supplementary Figure 3B). At 7 days in differentiation, the knockdown of Sox9 induced differential expression of 19 proteins (9 up and 10 down). There was no overlap between the Sox9-dependent differentially expressed proteins at 2 h or at 7 days in differentiation (Figures 3C,D and Supplementary Figure 3B). The proteins that were differentially expressed (FC ≥ 2; p < 0.05) at 2 h and at 7 days in ATDC5 chondrogenic differentiation following Sox9 knockdown are shown in Supplementary Tables 4, 5, respectively.

These data indicate that at 2 h in chondrogenic differentiation, the knockdown of Sox9 induced different changes in the ATDC5 transcriptome and proteome when compared to knockdown of Sox9 at 7 days in differentiation. In addition, the consequences of Sox9 siRNA treatment appears to be stronger at 2 h than at 7 days of differentiation, as indicated by larger separation in the PCA plots and larger number of differentially expressed genes and proteins. The role of the immediate early Sox9 expression was further investigated by comparing the Sox9-dependent differentially expressed mRNAs and proteins at 2 h in differentiation. Four overlapping mRNAs and proteins are upregulated in the early Sox9 knockdown condition (Rps30/Fau, Avan, Eefsec, and Rpl38; Figures 3E,F and Supplementary Table 6) and three overlapping mRNAs and proteins are downregulated in the early Sox9 knockdown condition (Ube2d3, Dclk1, and Svil; Supplementary Table 6). Except for Rpl38, these overlapping targets are unique for the 2 h in differentiation time point. The relative low number of overlapping genes and proteins (Figures 3E,F) might be explained by the different control of expression regulation at different levels for RNA and protein (Vogel and Marcotte, 2012) and the notion that not all mRNAs are instantaneously translated into protein. Overlapping targets might be involved in a biological process that reacts fastest in a way that is visible in both RNA and protein expression.



Immediate Early Sox9 Expression Is Involved in Ribosomal Protein Expression

To determine which prominent pathways link to the Sox9-dependent differential transcriptome and proteome at 2 h in differentiation, we performed pathway analyses. Two independent Pathway analyses revealed that “Cytoplasmic Ribosomal Proteins” and “Ribosome” pathways were in the top three of identified enriched pathways (Figure 4). This strong overrepresentation of the “Cytoplasmic Ribosomal Proteins” and “Ribosome” pathways was not obvious in the Sox9-dependent differential transcriptome and proteome at day 7 in differentiation (Supplementary Table 7). Further analysis revealed the differential expression of 29 ribosomal protein encoding genes from the large (60S) ribosomal subunit (Rpls) and 10 ribosomal proteins from the small (40S) ribosomal subunit (Rpss) in the Sox9 knockdown condition at 2 h in ATDC5 chondrogenic differentiation (Figure 5A and Supplementary Table 2). In addition, the 2-h proteomics datasets demonstrated the differential expression of five ribosomal Rpl and Rps proteins (Figure 5A and Supplementary Table 4). Notably, the four overlapping mRNAs and proteins (Rps30/Fau, Avan, Eefsec, and Rpl38) that were upregulated in the Sox9 knockdown condition at 2 h in ATDC5 chondrogenic differentiation (Figures 3E, 5B, Supplementary Figure 4A) are all linked to protein translation and represent either ribosomal protein subunits or factors with a known function in ribosome biogenesis. Additional factors involved in ribosome biogenesis, but only differentially expressed in either the 2-h transcriptomics or proteomics datasets were SBDS, Nop10, and Brix1 (Figure 5B and Supplementary Tables 2, 3). Where expression of Sox9 was significantly increased at 2 h in ATDC5 differentiation, expression of Rpl38, Rps30/Fau, Nop10, and SBDS was significantly decreased compared to t0 (Supplementary Figure 4C). Since ribosomes do not only consist of proteins, but depend on structural and catalytically active ribosomal RNAs (rRNAs), we investigated whether rRNA levels were affected by the Sox9 knockdown at 2 h in differentiation in ATDC5. Expression of 18S rRNA, 28S rRNA, and 5.8S rRNA was not significantly different between the conditions (Figure 5C) (see Supplementary Figure 4B for confirmation with independent Sox9 siRNA). Together, these data indicate that the Sox9 expression during early ATDC5 chondrogenic differentiation is involved in expression of ribosomal proteins and proteins involved in ribosome biogenesis.
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FIGURE 4. Early Sox9 expression is involved in ribosomal pathways. Top 3 identified enriched pathways from WikiPathway 2019 and KEGG2019 pathway analysis in control RNAi compared to Sox9 RNAi at 2-h condition in ATDC5 differentiation for transcriptome and proteome data sets.
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FIGURE 5. Early Sox9 regulates ribosomal protein expression. (A) Schematic representation of significantly differentially expressed ribosomal proteins from transcriptome and proteome datasets based on Wikipathways (Slenter et al., 2018): WP163 using PathVisio 3 (Kutmon et al., 2015). (B) Rpl38, Rps30/Fau, Nop10, and SBDS expression at 2 h in ATDC5 differentiation in Control and Sox9 RNAi conditions as measured by RT-qPCR. Results were normalized to β-Actin RNA expression and presented relative to t = 0. (C) In similar samples from B; 18S rRNA, 28S rRNA, and 5.8S rRNA expression. Bars represent mean ± SEM. ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.0001.




Early Sox9 Expression Regulates Protein Translation Capacity and Ribosome Translation Modus

Since we identified the differential expression of ribosomal protein subunits and ribosome biogenesis factors, combined with unaltered rRNA expression levels, we hypothesized that ribosomes of early Sox9 knockdown ATDC5 cells are functionally distinct. To address this, we measured total translational capacity, performed polysome fractionation, and evaluated ribosome translation modus in Sox9 knockdown and control ATDC5 cells. Following the knockdown of immediate early Sox9 expression, a reduction of the total protein translational capacity was observed at 2 h in chondrogenic differentiation (Figure 6A). The abrogation of early Sox9 expression also caused a reduction of total protein translational capacity at day 7 in differentiation [while Sox9 levels normalized at 7 days following the early knockdown (Figure 2B)]. This impact on translation capacity was lost at day 14 in differentiation (Figure 6A). In contrast, late knockdown of Sox9 expression did not affect ATDC5 translational capacity at 7 days in chondrogenic differentiation. This is consistent with transcriptome and proteome data. To assess if Sox9 knockdown had a specific effect on polysomal distribution of ribosomes, we performed sucrose density gradient separation of ribosomal subunits. Knockdown of the immediate early Sox9 expression resulted in an overall lower abundance of ribosomal subunits, which is in agreement with reduced translational activity (Figure 6B). In addition to total ribosome translation capacity (Figure 6A), the modus of translation is also subject to regulation. Thus, we evaluated the activity of IRES (internal ribosome entry site)- over cap-mediated protein translation using well-characterized bicistronic reporter constructs (CrPv IGR, HCV, and P53 IRES) (Collier et al., 1998; Ray et al., 2006; Deniz et al., 2009). We observed a 1.5-fold induction of the ITAF (IRES trans-acting factor) independent CrPv IGR IRES activity and 5-fold down regulation of both the HCV and P53 IRES activity in Sox9 knockdown ATDC5 cells compared to controls (Figure 6C, and Supplementary Figure 5). We next investigated whether overexpression of Sox9 levels during early ATDC5 differentiation may have a reciprocal effect on the translation capacity as opposed to the Sox9 knockdown conditions. Overexpression of Sox9 was confirmed (Figure 7A), and the mRNA expression of the Sox9 transcriptional target Col2a1 was significantly induced by Sox9 overexpression (Figure 7A). The overexpression of Sox9 resulted in a significant increase in translational capacity at 2 h in ATDC5 differentiation (Figure 7B). This increase in translational capacity in the Sox9 overexpression condition was not accompanied by an increase in expression of rRNAs (Figure 7C). Contrary to the knockdown of Sox9 (Figure 5B), expression of ribosomal protein subunits Rpl38 and Rps30/Fau was significantly downregulated when Sox9 was overexpressed (Figure 7D). This was also the case for ribosome biogenesis factors Nop10 and SBDS (Figure 7D).
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FIGURE 6. Knockdown of early Sox9 expression leads to a reduced translational capacity and lower amount of ribosomes and alters ribosome modus. (A) Total protein translation measurements based on puromycin incorporation was normalized to total DNA content per well (mean ± SEM, n = 6/group) at indicated time points. (B) Polysome fractionation of control and Sox9 knockdown cells (mean only, n = 3/group) after 2 h of differentiation. (C) Ribosome modus was assessed for the CrPv IGR CCGG mutant IRES, the intact CrPv IGR IRES, the HCV IRES, and the P53 IRES after 24 h of differentiation. Bars represent mean ± SEM. ns = not significant, *p < 0.05, **p < 0.01, ***p ≤ 0.0001.
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FIGURE 7. Overexpression of early Sox9 leads to an increased translational capacity. (A) Sox9 mRNA expression at 2 h in ATDC5 differentiation in Control and Sox9 overexpression (OE) conditions as measured by RT-qPCR. Results were normalized to β-Actin RNA expression and presented relative to t = 0. (B) Total protein translation measurements based on puromycin incorporation was normalized to total DNA content per well (mean ± SEM, n = 6/group) at indicated time points. (C) In similar samples from A; 18S rRNA, 28S rRNA, and 5.8S rRNA expression at 2 h in ATDC5 differentiation in Control and Sox9 overexpression conditions. (D) In similar samples from A; Rpl38, Rps30/Fau, Nop10, and SBDS expression at 2 h in ATDC5 differentiation in Control and Sox9 overexpression conditions. Bars represent mean ± SEM. ns = not significant, *p < 0.05, **p < 0.01, ***p ≤ 0.0001.


Taken together, knockdown of early Sox9 expression during ATDC5 chondrogenic differentiation reduced protein translational activity over a 7-day time period, which was reflected by a general reduction of A260 signal in a polysome fractionation experiment at 2 h in differentiation. This was associated with a differential effect on ribosome translation modus during the first day of differentiation. Sox9 overexpression during early ATDC5 differentiation was able to induce reciprocal effects of the Sox9 knockdown on total protein translation.



DISCUSSION

Early chondrogenic lineage commitment during mesenchymal condensation is driven by Sox9 (Akiyama et al., 2002; Liu et al., 2018; Lefebvre et al., 2019). Following lineage commitment, Sox9 is a key regulator of cartilage ECM synthesis, by driving expression of key ECM molecules such as Acan, Col2a1, and others (Lefebvre et al., 1997, 1998, 2001; Akiyama et al., 2002; Jenkins et al., 2005; Rentsendorj et al., 2005; Genzer and Bridgewater, 2007; Han and Lefebvre, 2008; Oh et al., 2010). Sox9 also safeguards maintenance of articular cartilage homeostasis by influencing chondrocyte Nkx3-2 levels, a transcriptional repressor of chondrocyte hypertrophy (Yamashita et al., 2009; Caron et al., 2015). This dual action of Sox9 is recapitulated in in vitro models of chondrogenic differentiation, as we have previously reported on bi-phasic expression dynamics of Sox9 in ATDC5 and bone marrow-derived stem cells (BMSC) chondrogenic differentiation (Caron et al., 2012; Spaapen et al., 2013). In this earlier work, we demonstrated that early (hours) transient induction of Sox9 expression driven by NFκB/p65 or Egr1 in ATDC5 chondrogenic differentiation is a prerequisite for late-stage (days) expression of cartilage ECM genes. As a key transcription factor for cartilage, the vast majority of investigations on the downstream functions of Sox9 have mainly focused on its role in the transcriptional regulation of cartilage ECM genes (Lefebvre et al., 1997, 1998, 2001; Akiyama et al., 2002; Jenkins et al., 2005; Rentsendorj et al., 2005; Genzer and Bridgewater, 2007; Han and Lefebvre, 2008; Oh et al., 2010). In addition, a function in epigenetic reprogramming has been suggested for early Sox9 (Spaapen et al., 2013), as well as a role for Sox9 in activating super-enhancers in chondrocytic cells (Liu and Lefebvre, 2015). However, its downstream cell biological consequences during early chondrogenic differentiation are incompletely understood. The present study demonstrates that Sox9 expression during the very early phase of ATDC5 chondrogenic differentiation regulates the expression of ribosomal protein subunits, as well as proteins that are involved in ribosome biogenesis that together modulate ribosome activity and translation modus. These data, for the first time, connect the Sox9 transcription factor to regulation of protein translation during chondrogenic differentiation.

Ribosomopathies are severe genetic diseases caused by mutations in genes involved in ribosome biogenesis and function and are, among others, associated with developmentally related skeletal malformations, caused by impairment of chondrogenic development of the growth plates (Trainor and Merrill, 2014; Venturi and Montanaro, 2020). This indicates that chondrogenic differentiation is particularly susceptible to disturbances in ribosome protein translation activity. Indeed, during chondrogenesis, a large amount of cartilage ECM is produced by the developing growth plate and disturbances in ribosome activity are likely to impair ECM synthesis, with consequences for the development of skeletal elements. It should, however, be noted that the link between Sox9 and chondrocyte translation activity in the current work was particularly present during early rather than late differentiation. This is highlighted by the deregulated expression of ribosomal subunits following Sox9 knockdown in early ATDC5 chondrogenic differentiation (Figures 4, 5). In addition, the knockdown of Sox9 specifically impacted total protein translation throughout differentiation upon early knockdown, while not having an effect on protein translation when knocked down during later in chondrogenic differentiation (Figure 6). The link between early Sox9 and chondrocyte protein translation suggests that protein translation is likely to be paced through Sox9 during early chondrogenic differentiation. However, it remains to be determined how early Sox9 is specifically able to influence chondrocyte translational capacity. Our present data suggest that expression of ribosomal protein subunits, ribosome biogenesis factors, and ancillary ribosomal factors (such as ITAFs) depends on Sox9 during early chondrogenic differentiation, with downstream consequences for translation in the later differentiation program. Since we found these ribosomal genes and proteins differentially expressed after Sox9 knockdown, we studied the supplementary data of previously published Sox9 ChIP-seq and Sox9–/– mouse studies (Liu and Lefebvre, 2015; Liu et al., 2018). In supplementary data of a Sox9 ChIP-seq study, we found 24 Rps and Rpl genes that were enriched in Sox9 occupancy and 14 with Sox6 occupancy of which 10 overlapped (Liu and Lefebvre, 2015). Notably, this included Rpl38, which we found to be differentially expressed at the mRNA and protein level in our present Sox9 knockdown condition.

Aside from ribosome core components, we identified Sox9-dependent differential expression of several factors regulating the mode of protein translation. The rate-limiting step of cap-mediated translation is eukaryotic initiation factor 4 (Svitkin et al., 2005). Interestingly, EIF4BP2 was downregulated at the protein level at 2 h of differentiation in Sox9 knockdown cells. EIF4 binding proteins were shown to regulate cell proliferation, but not cell size (Dowling et al., 2010). Unexpectedly, we found strong differences in IRES activity upon early Sox9 knockdown after 24 h of differentiation. Of note, the CrPv IGR IRES [a type IV IRES (Johnson et al., 2017)] does not require ITAFs and is able to recruit the ribosome directly for translation (Jan and Sarnow, 2002). The activity of this IRES was increased and might be regulated by specific Rps/Rpls that transiently interact with the core ribosome components. The HCV (a type III IRES) and P53 IRES do require additional ITAF co-factors (Godet et al., 2019). Based on the increased expression of the ITAF Rpl38 (Xue et al., 2015), it is tempting to speculate that other ITAFs that facilitate HCV/P53 IRES translation are downregulated and may contribute to alternative use of ribosome translation modus. Rpl10a, Rpl11, Rpl38, and Pdcd4 were shown to regulate IRES-mediated translation (Godet et al., 2019). Rpl10a is known to activate the IGF2, APP, Chmp2A, and Bcl-2 IRESs. Gain- and loss-of-function studies in Drosophila showed that Rpl10a regulates insulin signaling (Chaichanit et al., 2018). Moreover, Rpl10a was found to be preferentially translated by a sub pool of ribosomes in embryonic stem cells that required ribosome-associated Rpl10a (Shi et al., 2017). Insulin and insulin-like growth factor I (IGF1) signaling are crucial for ATDC5 differentiation (Atsumi et al., 1990). Rpl11 induced the BAG1, CSDE1, and LamB1 IRESs, while Rpl38 activated a Hox gene IRES (Horos et al., 2012; Xue et al., 2015). Upregulation of Rpl11 led to stabilization of P53 and reduced proliferation of breast cancer cell lines (Tong et al., 2020). In contrast, we found a reduction in P53 IRES activity. Of note, P53 and ribosome biogenesis were recently coupled through SBDS (Ribosome Maturation Factor) (Tong et al., 2020). In our dataset, SBDS was downregulated at the protein level at 2 h in differentiation in Sox9 siRNA-treated cells, which matches the observed reduction in ribosomes and/or ribosome activity. Pdcd4 activated or inhibited the P53, INR, IGF1R, BcL-XL, and XIAP IRESs (Godet et al., 2019). The IGF1R IRES might again be relevant for the ATDC5 differentiation model. Finally, Rpl38 was the only ITAF that was found to be upregulated at both the mRNA and protein level. It was found to control HOX gene translation during murine embryonic development (Xue et al., 2015) and knockout led to ectopic mineralization in certain soft tissues (Noben-Trauth and Latoche, 2011).

We identified multiple connections between immediate early Sox9 expression during ATDC5 chondrogenic differentiation and downstream consequences for expression of ribosomal protein subunits, ribosome biogenesis factors, and ITAFs. The connection between Sox9 expression and protein translation appears to be centered in early chondrogenic differentiation, with consequences for protein translation in later stage of chondrogenic differentiation. This suggests a role for early Sox9 in the priming of progenitor cells in the chondrogenic differentiation program for cartilaginous ECM production later in differentiation. This provides a new level of understanding how Sox9 controls the fate of chondrogenic differentiation at the level of protein synthesis. In this respect, it is tempting to speculate on the classification of campomelic dysplasia (OMIM #114290) (Mortier et al., 2019), as links between Sox9 and genes involved in ribosomopathies (Nakhoul et al., 2014; Trainor and Merrill, 2014) were identified in the present work (SBDS, Rpl11, and Rps26). In conclusion, we collected essential new data on the regulation by Sox9 during early chondrogenic differentiation, uncovering an unanticipated role of Sox9 in ribosome biogenesis and protein translational capacity.
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The adenosine monophosphate (AMP)–activated protein kinase (AMPK) was initially identified as an enzyme acting as an “energy sensor” in maintaining energy homeostasis via serine/threonine phosphorylation when low cellular adenosine triphosphate (ATP) level was sensed. AMPK participates in catabolic and anabolic processes at the molecular and cellular levels and is involved in appetite-regulating circuit in the hypothalamus. AMPK signaling also modulates energy metabolism in organs such as adipose tissue, brain, muscle, and heart, which are highly dependent on energy consumption via adjusting the AMP/ADP:ATP ratio. In clinics, biguanides and thiazolidinediones are prescribed to patients with metabolic disorders through activating AMPK signaling and inhibiting complex I in the mitochondria, leading to a reduction in mitochondrial respiration and elevated ATP production. The role of AMPK in mediating skeletal development and related diseases remains obscure. In this review, in addition to discuss the emerging advances of AMPK studies in energy control, we will also illustrate current discoveries of AMPK in chondrocyte homeostasis, osteoarthritis (OA) development, and the signaling interaction of AMPK with other pathways, such as mTOR (mechanistic target of rapamycin), Wnt, and NF-κB (nuclear factor κB) under OA condition.

Keywords: AMPK, energy balance, chondrocyte, osteoarthritis, signaling interaction


INTRODUCTION

Advanced technology and medical therapy in health care are highly demanded in the era after the Millennium. World Health Organization introduced the concept of “healthy aging” based on the statistics demonstrating that (1) the faster pace of the growing of aging population in the past 30 years; (2) by 2050, the proportion of the world population older than 60 years will reach nearly 22%; (3) the occurrence of chronic and metabolic diseases, such as cardiovascular disease, Alzheimer disease, diabetes mellitus, and cancer, has been dramatically increased in the upper- to middle-income and high-income countries between 2000 and 20191. So, the improvements in medical care are key mission required in the future to reduce social–economic burden. Regarding to this situation, chronic metabolic diseases have been gained significant attention in the research field where scientists are aiming to increase life quality and extend life expectancy via controlling the initiation and/or the progress of chronic metabolic diseases (Aburto et al., 2020). Previous studies have indicated that there is a negative correlation between metabolic diseases and energy expenditure. It illustrated that low energy expenditure is associated with high risk of obesity (Zurlo et al., 1990; Lam and Ravussin, 2016). High energy expenditure levels and low body weight may protect people from potentially atherogenic diet (Mbalilaki et al., 2010; Ross et al., 2020).

Brown et al. (1975) found a cytosolic factor could inactivate 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) in the presence of adenosine triphosphate (ATP) and ADP, as shown in Figure 1A (Steinberg and Carling, 2019). Thereafter, several studies have been focused on the origin and function of this factor. They found that a self-regulated phosphorylation of HMGR kinase could form a protein kinase cascade, alone with adenosine monophosphate (AMP) activating a protein kinase but inactivating acetyl-CoA carboxylase (ACC). It has been demonstrated that ACC and HMGR could be purified separately, and the ACC and HMGR are regulated by AMP (Figure 1B). When the scientists discovered and named molecule AMPK in 1990s, Crute et al., and Bateman described the structure of AMP-activated protein kinase (AMPK) comprised an α1 catalytic subunit with a functional domain and a β1 subunit. Most importantly, it has been reported that AMPK is allosterically activated by AMP to phosphorylate and inactivate ACC at Ser79, implying the function of AMPK in an allosteric and covalent activation manner (Figure 1C). This laid the foundation for all the future studies on exploring the functional activation of AMPK. Meanwhile, a few attempts were conducted and tried to study the functions of AMPK in tissue distribution associated with metabolic physiological conditions: glycogen synthase in skeletal muscle related to GLUT4 translocation and lipolysis and lipogenesis in isolated rat adipocytes with AICAR (Steinberg and Carling, 2019). The limitation of these studies may be due to the shortage of scientific knowledge and appropriate measurement techniques. After the Millennium, with the great leap forward of science and technology, the scientists have ushered in a prosperous age that advanced technology applied to explore comprehensive molecular mechanisms in detail. In this transition period, gamma subunit of AMPK had been revealed and implied its function in mediating energy; thus, peroxisome proliferator-activated receptor δ (PPARδ) agonists were applied in few studies. In addition, besides the depth in understanding the activation and deactivation of AMP, depending on allosteric stimulation, autoinhibitory effects of AMPK also pointed out by Pang et al. To expand the understanding of signaling pathway of AMPK, several factors have been identified (Figure 1D). Liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinases (CaMKK2) are the upstream kinases phosphorylating AMPK at Thr172. Sanders et al., illustrated that A-769662 was a valuable tool for AMPK activation, and ADaM site activators activate AMPK at Ser108 at the β1 subunit. Leptin and adiponectin both stimulate fatty acid oxidation by activating AMPK. Berberine and metformin acted as antidiabetic effects via activating AMPK activities. On the basis of this, the idea of APMK-allied food intake has leaped into public attention. AMPK has been shown to be involved in glucose transport in skeletal muscle, orexigenic neuropeptide inhibition, mitochondrial biogenesis, circadian clock regulation, and promotion of autophagy. Furthermore, the idea “energy sensor” of AMPK has been pointed out as the response to the changes of intracellular AMP, ADP, and ATP. In 2010s, the structural domains of AMPK were fully characterized, including an α subunit with a catalytic domain, β-regulatory subunits, and a γ-regulatory subunit. Moreover, Xiao et al., thought the high efficiency of AMPK activator 991 and A769662 was due to their high potency in tight binding to carboxy-terminal (CBM, C-interacting helix) of the β1 subunit (Steinberg and Carling, 2019). Apart from only explaining the activity of AMPK involved in certain pathophysiological conditions, in these time periods, researchers were eager to clarify the underlying mechanism in regulation of energy homeostasis to treat metabolic diseases. Carling et al., have defined AMPK as an energy sensor through phosphorylation of both ACC and HMG-CoA reductase in response to the changes in ADP/ATP concentration. Other groups have been working on observing activities of AMPK in aforementioned conditions such as glucose uptake and lipid homeostasis and identified several novel molecules (Figure 1E). For instance, AMPK regulated glucose uptake via GLUT1, controlling lipid homeostasis via phosphorylation of ACC1 and ACC2, and downregulation of their activity in tumor cells by Akt phosphorylation. AMPK also increased autophagy and mitophagy through phosphorylation of ULK1 and BECN1 at threonine 388. Moreover, the role of AMPK in mitochondrial homeostasis was well-established as regulation of PGC-1α expression in mouse adipose tissue and skeletal muscle. Next, Price et al., found that resveratrol (an AMPK activator) functions as an antioxidant through activation of AMPK in mitochondria. In addition, salicylate, biguanides, and canagliflozin were also found as AMPK activators in controlling metabolic process including glucose transformation, fatty acid oxidation, and cancer cell proliferation. A big step at this stage was that AMPK has been shown to play a key role in interorgan interaction. Reduced AMPK-ACC and mechanistic target of rapamycin (mTOR) signaling were reported in muscle of aged male in mankind. AMPK and hypoxia-inducible factor (HIF) together regulated adipogenesis via miR-455 (Steinberg and Carling, 2019). AMPK also interacts with nuclear factor κB (NF-κB) to increase p53 activity in liver cancer cells (Steinberg and Carling, 2019). Under extensive studies of AMPK functions in the past three decades, knowledge has been gained regarding AMPK structure and functional activities and signaling pathways in certain pathological conditions; however, limited information has been gained in recent years regarding roles of cardiovascular diseases, diabetes mellitus, and cancers, etc. In addition, studies on the functional activities and metabolic balance of AMPK in other organs are also needed.
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FIGURE 1. Milestones of discoveries of AMPK protein. (A) Cytosolic factor could inactivate 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) in the presence of ATP and ADP. (B) ACC and HMGR could be purified separately, and the ACC and HMGR are regulated by AMP. (C) The structure of AMPK comprised an α1 catalytic subunit with a functional domain and a β1 subunit. AMPK is allosterically activated by AMP to phosphorylate and inactivate ACC at Ser79. (D) Factors reported to stimulate AMPK activation. (E) Activities of AMPK in glucose uptake, lipid homeostasis, autophagy, and mitochondria.




AMPK IN ENERGY BALANCE

Energy balance refers to the equilibrium between energy intake and energy expenditure, accompanied by energy storage, and this concept was first introduced in 1996 (Figure 2A; Hill and Commerford, 1996; Hill and Saris, 2003; Hill et al., 2013). In the following 15 years, in pursing high life quality and the encouragement of healthy diet by social media, energy balance has been linked with obesity, diet, and exercise due to a high prevalence of obesity in public epidemic worldwide (Hall et al., 2011; Hill et al., 2013; Ng et al., 2014; Manore et al., 2017). The well-balanced energy is critical in maintaining a stable body weight illustrated by several groups since 1999 (Figure 2B; van Baak, 1999; Webber, 2003; Hill et al., 2012; Hill et al., 2013; Manore et al., 2017), whereas the imbalanced energy resulted in weight loss, which could be used as the intervention of obesity (Hall et al., 2011). It is known that half of the body energy was obtained from glucose metabolism after energy intake (Figure 2C; Murphy and Bloom, 2006). When it comes to energy balance, energy intake refers to catabolic pathways (glycolysis, fatty acid oxidation, and mitochondrial biogenesis) and energy expenditure regarded as anabolic pathways (gluconeogenesis, glycogen, fatty acid, and protein synthesis) (Figure 2D; Lim et al., 2010). The quantification of energy was measured by the unit “calorie” (Figure 2E; Halliday et al., 2011). The generated energy produced by food intake could be stored as body fat, triglycerides, or glycogen in the form of ATP and dissipated as heat (Figure 2F; Hill and Saris, 2003; Halliday et al., 2011; Keith, 2013). Moyes et al. (2010) thought that there is a link between negative energy balance and impaired immune response. Gerber and Corpet (1999) proposed that prevention of visceral obesity could potentially prevent cancer via balancing caloric intake and caloric expenditure. In addition, other studies have demonstrated that energy balance is critical in neuronal activity and leptin and ghrelin control energy balance in neurons (Strassburg et al., 2008; Dietrich et al., 2010; Brown et al., 2017).
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FIGURE 2. Milestones of discoveries of energy balance and the role of AMPK in energy balance. (A) Concept of energy balance. (B) Well-balanced energy is critical in maintaining a stable body weight. (C) Half of the body energy was obtained from glucose metabolism after energy intake. (D) Concept of energy intake (catabolic pathways) and energy expenditure (anabolic pathways). (E) The quantification of energy was measured by the unit “calorie” proposed by Halliday et al. (2011). (F) Format of energy store and energy balance involved activities. (G) AMPK is activated via inducing ACC by calorie restriction. (H) AMPK protein structure has been studied in energy balance. (I), Energy imbalance between anabolic and catabolic process in some metabolic syndromes is due to ATP consumption. (J) Factors reported to stimulate AMPK activation in hypothalamus. (K) AMPK may act as the key regulator in energy balance in a specific organ or tissue.


Witters et al. (1994) found AMPK is activated via inducing ACC by calorie restriction in varying nutritional states (Figure 2G; Steinberg and Carling, 2019). Hardie et al. (1999) found that AMPK monitored cellular energy changes through regulation of nucleotide concentration. Based on scattered analyses, in 2000s, with the information of AMPK protein structure, significant progress has been made in the understanding of the role of AMPK in energy balance (Figure 2H). Hardie (2004) concluded that the energy imbalance between anabolic and catabolic process in some metabolic syndromes is due to ATP consumption disorder, and several AMPK activators have promising therapeutic effects via activating AMPK phosphorylation. The AMPK isoforms α (α1, α2), β (β1, β2), and γ (γ1, γ2, and γ3) were identified in humans and rodents and were encoded by distinct genes (Figure 2I). And a year after, Steinberg and Kemp summarized a comprehensive story about the structure and regulation of AMPK in metabolism. The ratio of [ATP]/[ADP]:[AMP] was regarded to metabolic coupling of anabolic and catabolic pathways of AMPK activities known as “adenylate charge hypothesis.” Steinberg and Kemp also suggest that the metabolic stress could sense the change of AMPK levels in yeast. Moreover, the functional roles of AMPK in carbohydrate metabolism (glucose), lipid metabolism (fatty acid, mitochondrial, and cholesterol), protein synthesis, cell growth, cell apoptosis, cell polarity, and ion flux were well-established (Steinberg and Kemp, 2009). Lim et al. (2010) further empathized that the γ subunit of AMPK could tightly bind AMP in low energy states to activate AMPK with persistent phosphorylation of Thr172 residue in maintaining energy balance (Figure 2J). Leptin stimulates hypothalamosympathetic axis in an AMPK-independent manner. Adiponectin could activate and stimulate AMPK activity both in vivo and in vitro, thus leading to excitation of glucose uptake, fatty acid oxidation, and PEPCK annexation in liver and muscle. Resistin decreases fatty acid uptake and oxidation in skeletal muscle via inhibiting AMPK activity (He et al., 2018). Ghrelin and cannabinoids stimulate AMPK activity in hypothalamus and heart, while inhibiting AMPK activity in adipose tissue and liver. Insulin, as an anorectic hormone, stimulates glucose uptake and inhibits hypothalamic AMPK activity. Glucagon-like peptide-1 inhibited fasting-induced increase of hypothalamic AMPK activity as an anorectic effect. And glucocorticoids activate AMPK activity in hypothalamus via stimulating endocannabinoid synthesis (Lim et al., 2010). By 2021, accumulated evidence suggest that AMPK may act as the key regulator in energy balance in a specific organ or tissue to a certain extent (Figure 2K; Hardie, 2014; Lopez et al., 2016; Garcia and Shaw, 2017; Herzig and Shaw, 2018; Steinberg and Carling, 2019; Wang et al., 2020b).

Hardie provided the insights into stimulatory effects of AMPK on catabolic pathway and inhibitory effects of AMPK on anabolic pathways with direct targets and also listed a number of natural products, which have been reported to activate AMPK pathway and underlying mechanisms. Lopez’s group suggests that hypothalamic AMPK signaling pathway regulates energy homeostasis by integrating peripheral signals, including hormones and metabolites, with neuronal networks. Garcia and Shaw showed that AMPK, as a cellular energy sensor, restores metabolic balance, together with upstream and downstream factors. Herzig and Shaw were focusing on serine/threonine kinase AMPK complex in guarding mitochondrial homeostasis, including mitophagy and autophagy. Steinberg and Carling summarized pharmacological agents of AMPK activators, including berberine, metformin, and A769662, in the treatment of metabolic syndrome based on the information of AMPK structure and regulation. Generally speaking, the core of AMPK controls energy balance and acts as a critical bioenergy sensor, regulating anabolic and catabolic pathways under different physiological conditions, which are highly sensitive to the changes of AMP and ATP levels.



AMPK IN CHONDROCYTES

Chondrocytes are derived from mesenchymal stem cells and form “hyaline cartilage” (Lee et al., 2013; Rim et al., 2020). It is well-established that chondrocytes contribute to endochondral ossification in the embryonic cartilage, thus helping bone elongation in skeletal development via self-proliferation and self-hypertrophy (Rim et al., 2020). The initial studies of “chondrocyte” could retrospect to the mid-20th century when Eichelberger et al. (1951) proposed that chondrocytes are the primary cells forming cartilage (Figure 3A). Okada (1960) found that chondrocytes had ability in generating cartilaginous matrix, and Godman and Porter applied electron microscope to reveal the evolution of chondrogenesis from chondroblasts to chondrocytes (Figure 3B; Okada, 1959; Godman and Porter, 1960). After experiencing a decade of research blank, by 1980, studies of chondrocytes back to the researchers’ scope and chondrogenesis were emerging as well. Searls’ group first showed that cartilage-forming region could be detected by light microscope (Searls et al., 1972). Vasan and Lash (1975) and Lewis et al. (1978) found that vitamin A could inhibit chondrogenesis by restraining cell proliferation, limiting extracellular space with thick and banded collagen fibrils but no proteoglycan granules (Figure 3C). Green found that chondrocytes isolated and cultured in vitro could repair a large articular defect when allografting took place in rabbit knee (Green, 1977). And later, in 1980s, Bruckner’s group suggests that the transition from resting chondrocytes to proliferative and hypertrophic chondrocytes depends on cell-seeded densities and fetal bovine serum (FBS) concentrations (Figure 3D; Bruckner et al., 1989). Moreover, Radomska et al. (1989) implied that chondrocytes could be used as the target in labeling cell-mediated cytotoxicity with immune organs. In vitro chondrocyte cultures were highly advocated in this period because of its obvious repairing capacity (Grande et al., 1989; Wakitani et al., 1989; Robinson et al., 1990). Kawamura et al. (1998) invented that the gel–chondrocyte composite could be used to treat cartilage defects better than rabbit articular cartilage. Aulthouse’s group successfully cultured human chondrocytes with ultrastructural features presented in vitro (Aulthouse et al., 1989). Tumor growth factor β (TGF-β) potentially modulates chondrocyte proliferation and matrix synthesis in endochondral calcification in an autocrine manner (Rosier et al., 1989; Li et al., 2010). The role of mechanical load in the development of osteoarthritis (OA) and the tissue engineering in cartilage repair are the focus of research in the last decade before the 21st century (Figure 3E; Mauck et al., 2000; Wilkins et al., 2000). Besides TGF-β, Studer et al. (2000) also indicated that chondrocytes are insensitive to anabolic actions in the presence of nitric oxide (NO), which is partially due to the inhibition of insulin-like growth factor I (IGF-I) receptor self-autophosphorylation (Figure 3E). Other studies also suggested some upstream mediators, such as interleukin 1β (IL-1β), electric fields, and thyroid hormones in the regulation of chondrocyte activities (Chao et al., 2000; Nerucci et al., 2000; Robson et al., 2000). After millennium, studies about chondrocytes were still focused on its role in bone homeostasis. Ichinose et al. (2010) well-depicted the differences among chondrocytes, bone marrow–mesenchymal stem cells (MSCs), and synovium–MSCs in cellular morphology, aggregation, and differentiation during in vitro chondrogenesis. Articular cartilage repair and OA remain to be a hot topic when exploring the function of chondrocytes. In addition, Dreier suggested that OA is initiated from vascularization and focal calcification of joint cartilage (Dreier, 2010). Kishimoto suggested oxidized low-density lipoprotein leads hypertrophic chondrocyte-like phenotype in OA through oxidative stress induction (Figure 3F; Kishimoto et al., 2010). Parathyroid hormone–related protein (PTHrP) and fibroblast growth factor (FGF) were found to be involved in chondrocyte proliferation and differentiation (Figure 3F; MacLean et al., 2004; Yamaoka et al., 2010). Bohensky et al. (2010) indicated that HIF-1 regulates chondrocyte autophagy via AMPK and mTOR signaling pathway (Figure 3F). By now, studies of chondrocytes were moving forward from macroregulation of cartilage integrity to the systemic mechanisms. Sharifi and Gharravi (2019) summarized a general properties of articular chondrocytes, such as matrix synthesis and its response to shear stimuli. Xing et al. (2019) indicated that osterix could mediate early postnatal growth during the formation of secondary ossification center. Bougault et al. (2014) indicated frizzled-related protein B could modulate matrix metalloproteinase induction in mouse chondrocytes via regulation of Wnt/β-catenin pathway (Figure 3G). Li and Dong (2016) conclude that bone morphogenetic protein (BMP), PTHrP, Ihh, FGFR3, Sox9, β-catenin, O2 tension, and reactive oxygen species (ROS) signaling pathways mediate chondrocyte formation, differentiation, maturation, and hypertrophic differentiation (Figure 3G). Other studies also mentioned the utilization of modern technique to explore the function of chondrocytes. For instance, Kim et al. (2020) found that equine bone marrow–derived cells with nanoparticles could promote the growth of chondrocytes and reduce cytokine-induced apoptosis on chondrocytes. Several other groups also illustrated that chondrocyte apoptosis was induced by NO from endoplasmic reticulum (ER) stress (Takada et al., 2011, 2013; Yamabe et al., 2013).
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FIGURE 3. Milestones of discoveries of chondrocytes and the role of AMPK in cartilage chondrocytes. (A) Eichelberger et al. (1951) proposed “chondrocyte” as a component of cartilage. (B) Godman and Porter applied electron microscope to reveal the evolution of chondrogenesis. (C) Vitamin A could inhibit chondrogenesis and limiting extracellular space. (D) Cell density and FBS concentrations determine the transitional fate of resting chondrocytes to proliferative and hypertrophic chondrocyte. (E) Understanding of chondrocytes associated with osteoarthritis and upstream mediators in regulating chondrocyte activities. (F) Factors involved in cartilage chondrocytes’ homeostasis by 2010. (G) Current signaling pathways mediate chondrocyte activities. (H) Mouse chondrocytes expressed energy sensor AMPK-1, which promotes chondrocyte autophagy associated with Akt activation, mTOR suppression, and HIF-1 expression. (I) Current AMPK-related signaling pathways in mediating chondrocyte homeostasis.


Chondrocyte is the only cell type in articular cartilage. AMPK signaling mainly affects chondrocyte functions during OA development, but not other cells. The roles of AMPK in chondrocyte function have been reported since 2009. It started from understanding the autophagy in chondrocytes. This might be related to the previous findings that AMPK activation was induced by ER stress leading to chondrocyte apoptosis. Srinivas et al. (2009) and Bohensky et al. (2010) found that mouse chondrocytes expressed energy sensor AMPK-1, which promotes chondrocyte autophagy associated with Akt activation, mTOR suppression, and HIF-1 expression (Figure 3H). AMPK/FoxO3a pathway was found to be involved in ASIC1α-mediated articular chondrocyte autophagy in rats (Figure 3I; Dai et al., 2017; Zhao et al., 2018; Ge et al., 2019). Bandow’s group indicated that significant decrease in phosphorylation of catalytic AMPK α subunit was found during chondrogenic differentiation of primary chondrocyte precursors (Bandow et al., 2015). Terkeltaub et al. (2011) suggest that AMPK restrained matrix degradation in chondrocytes in the presence of inflammatory cytokines IL-1β and tumor necrosis factor α (TNF-α) in both human and mouse (Figure 3I). Zheng et al. (2020) showed that activation of AMPK/Drp1/mitochondrial fission pathway mediates chondrocyte death and migration injury (Figure 3I). Moreover, AMPK participated in chondrocyte dysfunction, hypertrophy, and fibrotic differentiation (Liu N. et al., 2020; Liu Z. et al., 2020). Petursson et al. (2013) and Zhou et al. (2017) showed that downregulation of AMPK signaling resulted in inhibition of matrix catabolic responses in articular chondrocytes during OA development. Ma et al. (2018) stated that SIRT1/AMPK/PGC-1α signaling leads to mitochondrial dysfunction in chondrocytes with increased oxidative stress and apoptosis, which might be the etiology of OA (Figure 3I). Although these studies suggest that AMPK participates in the regulation of chondrocyte activity, more in-depth studies are required to further clarify the molecular mechanisms of AMPK in the regulation of chondrocyte homeostasis.



AMPK IN OA

Osteoarthritis is characterized as a degenerative joint disease and influenced 303 million people globally, as reported in 2017 (Chen et al., 2017; Kloppenburg and Berenbaum, 2020). OA has gained great attention due to its high prevalence worldwide. Studies about OA could retrospect back to the 18th century, and physicians did not recognize the inflammatory process of OA until the 18th century (Figure 4A; Suri et al., 2012; Hardcastle et al., 2015; Peter et al., 2015; Wallace et al., 2017). Bollet suggests that the pathogenesis of OA was related to cartilage degeneration via activation of proteolytic enzyme, decrease in matrix components, and increase in penetration of synovial fluid. Our recent studies demonstrated that AMPK expression was significantly reduced in articular cartilage tissues in OA mouse model. Inflammatory cytokines were found in synovial fluid and serum in patients with RA and OA since 1970 (Figures 4B,C; Gervis, 1949; Suri et al., 2012; Hardcastle et al., 2015; Peter et al., 2015). Physicians and researchers were still trying to exploring a better way to treat OA; thus, non-steroidal anti-inflammatory drugs (NSAIDs), and some herbal medicines were used to treat OA or relieve OA-related pain, which was the major complain in clinical OA (Figures 4D,E; Long et al., 2001; Seed et al., 2009; Hu et al., 2020; Yu et al., 2021). Meanwhile, other researchers were aiming to demonstrate the potential pathobiology of OA. Besides the well-known risk factors such as aging and obesity, Abramson indicated cartilage chondrocytes as mechanosensors and osmosensors to negatively charge cartilaginous extracellular matrix in response to mechanical and osmotic stresses. And degeneration of articular cartilage leads to the activation of cartilage anabolic factors, such as BMP, IGF-I, TGF-β, and FGFs, which were associated with the degradation of both proteoglycans and collagen type II and cleaving matrix metalloproteinase (Figure 4F; Abramson and Attur, 2009). By 2021, accumulated knowledge of OA has been reported with a more broaden horizon and a more significant depth (Figure 4G). Because of the fast pace of high techniques and their application in research, studies on OA have further emphasized on molecular biology in all aspects. Chen et al. (2017) listed a series mouse model in OA studies such as traditional DMM model, aging mouse model, and available transgenic mouse models. It provided a systemic understandings of the potential pathological mechanisms of OA related to its corresponding signaling pathways, including Wnt/β-catenin, TGF-β, Ihh, FGF, and NF-κB (Zhu et al., 2009; Weng et al., 2012; Shen et al., 2013, 2014; Chang et al., 2019; Kuang et al., 2020). Moreover, Rim et al. (2020) indicated that the shifting from anabolic to catabolic signaling due to chondrocyte dedifferentiation leads to OA initiation and progression. Xu et al. (2021) found that polysaccharide from Angelica sinensis could attenuate OA chondrocyte apoptosis via ERK1/2 inducing autophagy. Current medicines in the treatment of OA focus on reducing pain relief and limited drugs are available in impeding OA initiation and/or progression. Traditional medicines focus on pain relief and anti-inflammation, for example, NSAIDs and vitamin D. With the building-up evidence of signaling pathways in controlling OA pathology, novel drugs targeting specific signaling molecule were developed and have shown a therapeutic potential to some extent. For examples, BMP7 limits progression of OA, FGF-18 targets cartilage of knee OA, TGF-β inhibitor targets subchondral bone remodeling, and resveratrol participates in OA chondrocyte metabolism through upregulation of SIRT1 gene (Kim et al., 2014; Zhang et al., 2019). In addition, other reports indicate that several clinical trials have been conducted to evaluate the efficacy of OA treatment drugs like fisetin, colchicine, GSK3196165, SM04690, MIV-711, Tanezumab, Fasinumab, AmpionTM, and so on. (US National Library of Medicine).
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FIGURE 4. Milestones of discoveries of osteoarthritis and the role of AMPK in cartilage regeneration. (A) Physicians recognize the inflammatory process of OA by 18th century. (B) In 19th century, the knowledge of clinical OA became comprehensive. (C) X-rays applied in clinics helped Goldthwait distinguish OA from rheumatic arthritis (RA). (D) In 1900s, light microscope and electron microscope helped physicians in knee and hip OA treatment. (E) Knowledge of OA related in age, mechanical change, synovial fluid penetration, and water content binging. (F) NSAIDs and some herbal medicines were used to treat OA or relieve OA-related pain; activation of cartilage anabolic factors was associated with the degradation of proteoglycans, collagen type II, and cleaving matrix metalloproteinase. (G) Comprehensive understanding of OA by 2021. (H) Adiponectin mediates matrix degradation in human OA chondrocytes via AMPK and JNK pathways. (I) Molecules involved in OA homeostasis.


Although OA has been recognized as low-grade inflammatory disease with elevations in systemic inflammatory markers, such as IL-1, IL-6, IL-10, and TNF, cumulative evidence has indicated that OA is also a metabolic disorder where energy metabolic pathways, including glycolytic and TCA, are upregulated to meet the demand of the ATP for cartilage repair (Zhuo et al., 2012; Zhai, 2019). Also, diabetes could increase ROS and advanced glycosylation end products (AGEs), thus leading to further damage of articular cartilage in OA (Zhai, 2019). Accumulated studies of AMPK and OA were started to be reported since 2010. In detail, Kang et al. (2010) found that adiponectin mediates matrix degradation in human OA chondrocytes as the catabolic effect via AMPK and JNK pathways (Figure 4H). Liu-Bryan et al. (2015) summarized that inflammation disturbed cellular energy balance and increased cell stress via enhancing catabolic activities in degrading articular chondrocytes in OA (Liu-Bryan, 2015; June et al., 2016). Zhou’s group demonstrated that AMPK activity maintains joint homeostasis and OA development by enhancing IL-1β–stimulated catabolic response (Figure 4I; Zhou et al., 2017). Several groups illustrated thaactivationt of AMPK phosphorylation leads to suppressing NF-κB and its downstream molecule p65, which is involved in modulating OA cartilage in response to IL-1β–induced inflammation (Yang et al., 2019; Wang et al., 2020a; Zhu et al., 2020). Kong et al. (2020) suggest that AMPK-mTOR signaling pathway could reduce OA inflammation via activation of chondrocyte autophagy in the presence of active vitamin D. Several investigators at this time also observed the effect of metformin and resveratrol in the treatment of OA. Wei et al. (2018) showed that resveratrol suppresses induction of pAMPK and SIRT1 protein expression in OA rats. Metformin has been demonstrated to prevent cartilage degeneration and reduce pain behavior through activation of AMPK signaling (Feng et al., 2020; Li et al., 2020). Wang’s group concluded that decreased phosphorylation of AMPKα at T172 in chondrocytes aggravated a catabolic metabolism in response to inflammatory cytokines like IL-1β and TNF-α. And they also indicated that AMPK and its downstream molecule SIRT1 could switch chondrocyte metabolic activities from oxidative phosphorylation to glycolysis accompanied by increased production of inflammatory mediators and catabolic factors. Mitochondrial, autophagy, and ER stress may play a catabolic role in OA development through AMPK interacting with multiple signaling pathways (Wang et al., 2020b). Considering the presence of activation of AMPK in OA homeostasis associated with enhanced catabolic response, we suggest that AMPK could provide energy for the inflammatory reactions to OA as shown in metabolic syndrome and diabetes. Although the cumulative evidence has identified that AMPK activities are involved in OA pathogenesis, the exact and clear signaling pathways and molecular mechanisms are needed to be further investigated.



INTERACTION OF AMPK SIGNALING WITH OTHER PATHWAYS IN OA

Activated protein kinase is an evolutionarily conserved serine/threonine kinase that is vital for cellular energy metabolism homeostasis (Kahn et al., 2005). AMPK controls cellular energy status when nutrition variation sensed; once activated by low ATP status, it promotes ATP-producing catabolic pathways and shuts down ATP-consuming anabolic pathways to restore cellular energy metabolism homeostasis (Hardie, 2004). AMPK proteins are critical mediators of AMPK signaling activities and participate in extensive cross-talk with other signaling pathways. The cross-talk can occur at different levels by directly or indirectly interactions with AMPKs and three AMPK upstream kinases, which includes LKB1, TGF-β–activated kinase-1 (TAK1) and Ca2+/CaMKKβ. Here we discuss recent progress in our understanding of the cross-talk between AMPK signaling and signaling pathways of NF-κB, mTOR, phosphoinositide 3-kinase (PI3K)–Akt and glycogen synthesis kinase 3 (GSK3) in OA.



NF-κB

NF-κB signaling controls inflammatory responses that develop in OA (Baker et al., 2011; Rigoglou and Papavassiliou, 2013). Zhang et al. (2020) reported that metformin protects chondrocytes against IL-1β–induced injury by regulation of the AMPK/NF-κB signaling pathway. Piao et al. (2020) showed that protectin DX attenuates IL-1β–induced OA inflammation via inhibiting AMPK/NF-κB pathway in chondrocytes and ameliorates OA progression in a rat model. However, whether AMPK directly or indirectly regulates NF-κB is unknown. Activators of AMPK, such as metformin, have been identified to have anti-inflammatory roles, and several studies have proven that AMPK inhibits NF-κB signaling through regulating distinct metabolic pathways including SIRT1 in macrophage, FOXO3 in helper T- cell activation (Lin et al., 2004) and colonic injury and inflammation (Zhou et al., 2009), PGC-1α in aortic smooth muscle and endothelial cells (Alvarez-Guardia et al., 2010), and p53 in aging mice (Salminen and Kaarniranta, 2012). Of interest, AMPK could be a potent regulator of NF-κB function in immune cells, as adiponectin was found to suppress the activation of natural killer cells and IFN-γ secretion via AMPK-mediated inhibition of NF-κB signaling (Kim et al., 2006).



MTOR

The TOR (target of rapamycin) is a nutrient-sensing signaling pathway that is crucial for the regulation of cell growth and metabolism (Pal et al., 2015). Recent studies demonstrated that mTOR signaling plays a critical role in the development of OA. mTOR signaling pathway was suppressed by IL-1β and promotes chondrocyte autophagy and attenuates the inflammation response in rats with OA (Xue et al., 2017). Upregulation of mTOR in OA cartilage leads to increased chondrocyte apoptosis and reduced chondrocyte autophagy-related genes during OA (Zhang et al., 2015). Furthermore, miR-4262 and miR-27a have been shown to activate the PI3K/AKT/mTOR signaling pathway, indicating that targeting the mTOR signaling cascade by epigenetic regulation regulates chondrocyte viability, autophagy, and apoptosis (Sun et al., 2018; Cai et al., 2019). In addition, bioactive lipids, such as exogenous and endogenous n-3 polyunsaturated fatty acids, were reported to reduce mTORC1 and promote autophagy in chondrocytes (Huang et al., 2014). The AMPK and TOR pathways are interlinked, opposing signaling pathways involved in sensing nutrients and energy variation and regulation of cell growth (Hardie, 2014; Gonzalez et al., 2020). Previous studies have identified that activation of AMPK inhibits the mTORC1 complex by mechanisms of AMPK phosphorylating TSC2 at Thr1271 and Ser1387 (Inoki et al., 2003) and AMPK directly phosphorylating the RAPTOR component of mTORC1 at Ser722 and Ser792 (Gwinn et al., 2008). In OA, regulation of AMPK signaling pathway by mTOR may account for regulating autophagy signaling and the balance of cellular matrix metabolism in articular cartilage (Zhang et al., 2015). However, whether the above mechanism of AMPK switches off the mTOR signaling existing in chondrocytes remains to be determined.



PI3K-AKT and GSK3

Akt, also named protein kinase B, is a serine/threonine-specific protein kinase and plays a key role in cellular metabolism, proliferation, apoptosis, and migration. Akt is activated through a phosphorylation mechanism dependent on phosphatidylinositol 3-kinase (PI3K) by extracellular factors such as estrogen, serum, and insulin. Akt might play an important role in regulating chondrocyte apoptosis or survival and might be a potential target to prevent OA. Activation of PI3K/AKT signaling in synovial cells and in chondrocytes promoted synovial cell proliferation and the expression of collagenolytic matrix metalloprotease-13 and finally accelerated the hypertrophy and degradation of chondrocytes (Huang et al., 2013, 2019). Thus, it is not surprising that there should be mechanisms by which Akt downregulates AMPK in chondrocytes. Furthermore, recent research reported that treatment with asiatic acid activated AMPK and inhibited PI3K/AKT signaling in vitro in ACLT-induced rat OA model (Liu Z. et al., 2020). In addition, Akt also phosphorylates and inhibits GSK3 to facilitating glycogen synthesis (Cross et al., 1995). Disruption of GSK3 function within the AMPK complex leads to higher AMPK activity and cellular catabolic activities even under anabolic conditions, indicating that GSK3 also acts as a critical sensor for anabolic signaling to inhibit AMPK (Suzuki et al., 2013).



CONCLUSION

Sedentary at both work and home along with high-sugar and high-fat diet in the modern daily life caused a series of chronic metabolic diseases such as obesity and cancer. Considering the pursuit of higher life quality with longer life expectancy, public awareness of healthy lifestyle, regular diet structure, and fitness endurance are enhanced in every social aspect. OA has been observed for centuries but still has not been solved yet because of its unclear pathogenicity, although its association with age, mechanical loading, and hereditary has been explained to some extent. The clinical treatment of OA evolved from traditional surgical excision and knee joint replacement, anti-inflammation and relieving pain to blocking its initiation and progression, and focusing on prevention from intervening obesity and mechanical loading as well. Nevertheless, researchers are willing to invent therapeutic interventions to prevent or even cure OA. Hence, definitive pathological mechanisms causing OA need to be further clarified. AMPK, as it has been studied for decades, gained significant attention due to its vital role in maintaining energy balance in the body. Although its functional responsibilities in regulating skeletal developmental–related disease have not been well-depicted, its activities retaining chondrocyte balance have been well documented. Besides the well-established structure and function of AMPK at Ser79/Thr172, other allosteric activation sites of AMPK may also need to be identified and investigated. As mentioned previously, the therapeutic effects of metformin and resveratrol (AMPK activators) in the treatment of OA in mice and even in non-human primates have been demonstrated by several research groups (Wei et al., 2018; Feng et al., 2020; Li et al., 2020). Besides, metformin has been suggested as a novel drug to the patients with rheumatoid arthritis because it activates AMPK signaling, leading to the inhibition of mTOR and the differentiation of T cells in vitro and in vivo, thus reducing the invasion of fibroblast-like synovial cells (clinicaltrials.gov). These findings suggest that AMPK signaling molecules may serve as the potential drug targets for the treatment of arthritis. Although more evidence is still needed, promising results from clinical studies using AMPK-mimicking drugs with high efficacy and low toxicity have been used for OA treatment.
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The nasal septum cartilage is a specialized hyaline cartilage important for normal midfacial growth. Abnormal midfacial growth is associated with midfacial hypoplasia and nasal septum deviation (NSD). However, the underlying genetics and associated functional consequences of these two anomalies are poorly understood. We have previously shown that loss of Bone Morphogenetic Protein 7 (BMP7) from neural crest (BMP7ncko) leads to midfacial hypoplasia and subsequent septum deviation. In this study we elucidate the cellular and molecular abnormalities underlying NSD using comparative gene expression, quantitative proteomics, and immunofluorescence analysis. We show that reduced cartilage growth and septum deviation are associated with acquisition of elastic cartilage markers and share similarities with osteoarthritis (OA) of the knee. The genetic reduction of BMP2 in BMP7ncko mice was sufficient to rescue NSD and suppress elastic cartilage markers. To our knowledge this investigation provides the first genetic example of an in vivo cartilage fate switch showing that this is controlled by the relative balance of BMP2 and BMP7. Cellular and molecular changes similar between NSD and knee OA suggest a related etiology underlying these cartilage abnormalities.

Keywords: nasal septum deviation, hyaline cartilage, elastic cartilage, BMP7, BMP2, Wnt signaling, glucose metabolism, chondrocyte properties


INTRODUCTION

Nasal septum cartilage that divides the nasal cavity in two is a hyaline cartilage. It resists deformation, provides structural support to the midface, and is the pacemaker for midfacial growth. Nasal septum deviation (NSD) that describes a non-straight, deformed nasal septum is a common abnormality and can be observed in 80% of the population (Serifoglu et al., 2017). NSD might be inconspicuous but frequently is associated with various degrees of nasal airway obstruction resulting in Sleep Disordered Breathing (SDB) (Wang et al., 2016; Alsufyani et al., 2017; Mandour et al., 2019). Congenitally acquired deviation frequently develops during time of rapid midfacial growth and is associated with reduced midfacial growth and a strong predisposition for SDB (D’Ascanio et al., 2010). Another common etiology is trauma to the face and nose. Corrective septoplasties often require graft cartilage, which depending on the site of harvest is either limited in amount, associated with donor site morbidity, or both. Despite the ability to model surgical septoplasty outcomes virtually before surgery (Moghaddam et al., 2020), revision rates remain high and exceed 15% (Lavernia et al., 2019). This high rate may be a consequence of our limited understanding of the etiology of pediatric, congenital acquired NSD and its associated secondary complications (Baddam et al., 2020). It is currently unknown if NSD has an underlying molecular and cellular etiology, even though this might be implied from congenital cases that are associated with reduced midfacial growth.

Although the nasal septum cartilage is a hyaline cartilage, it differs from other hyaline cartilages in several aspects. First, it is an active center for midfacial growth and much of its growth occurs, at least in the mouse, through chondrocyte hypertrophy (Baddam et al., 2021b). Second, hypertrophic chondrocytes situated in the middle part of the septum do not undergo apoptosis or ossification, except in the posterior part to form the bony perpendicular plate of the ethmoid (Wealthall and Herring, 2006). Third, it is a mirrored structure with progenitor cells and immature chondrocytes located on either side of the septum, close to the perichondrium (Baddam et al., 2021b). Fourth, hypertrophic chondrocytes are surrounded by a dense collagen fibril matrix thought to provide rigidity and stiffness. To what degree any of these features are altered in NSD remains unexplored.

Changes to hyaline cartilage in the context of cartilage pathologies are best understood for osteoarthritis (OA) of the knee. There, common accepted features are loss of glycosaminoglycans (GAGs), increase in chondrocyte hypertrophy along with an increase in Collagen X (COL X), Indian Hedgehog (IHH) and Runt-related transcription factor 2 (RUNX2), increase in reactive oxygen species (ROS) production and increase in glucose metabolism (Tchetina and Markova, 2018). Other changes, such as altered elasticity remain controversial, as some studies report a decrease in elasticity while others propose an increase (Coles et al., 2010; Candela et al., 2016). On a molecular level, perturbations to several signaling networks can be observed in knee OA. Reduction of the WNT antagonists Dickkopf1 (DKK1) and Frizzled Related Protein (FRZB) concomitant with an increase in non-phosphorylated Beta-Catenin (NPBC) as readout for canonical WNT signaling have been described (Liu et al., 2016; Zhong et al., 2016b). Alterations to Bone Morphogenetic Protein (BMP) signaling are associated with chondrocyte hypertrophy. BMP7 suppresses while BMP2 promotes chondrocyte hypertrophy and matrix degradation (Caron et al., 2013) and decreased levels of BMP7 have been directly associated with OA (Merrihew et al., 2003; Huang et al., 2018). If and to what degree similar changes occur in cartilage of a deviated septum is not known.

We recently described that mice with neural crest-specific deletion of BMP7 (BMP7ncko) develop midfacial hypoplasia and nasal airway obstruction (Baddam et al., 2021a). A hallmark of this model is the development of a significantly deviated nasal septum at a juvenile age that is associated with progression to abnormal breathing. Deletion of BMP7 from developing limbs leads to articular cartilage degeneration and synovial inflammation (Abula et al., 2015). Proteoglycan content and aggrecan expression were reduced, while expression of matrix metalloproteinase-13 (MMP13) was increased. In this study, we asked whether similar molecular and cellular changes as observed in the knee are associated with the development of NSD in the BMP7ncko mouse.

We demonstrate that BMP7 is expressed in the perichondrium and nasal chondrocytes throughout postnatal development. Loss of BMP7 leads to histomorphological changes by 4 weeks of age, the time the NSD is established. Correlating those changes to molecular changes using gene expression analysis, quantitative shotgun proteomics and immunofluorescence analysis at various developmental time-points, we identified that alterations to chondrocyte properties precede NSD. This included acquisition of elastic cartilage markers, a switch to glucose metabolism, along with increase in molecular markers commonly associated with knee OA. Loss of BMP7 was also associated with a significant increase in canonical WNT signaling in mature chondrocytes. Concomitant reduction of BMP2 in BMP7ncko mice restored the change in WNT signaling, prevented the development of the deviation, and rescued the midfacial hypoplasia, demonstrating that the balance of BMP2 and BMP7 synergistically determines cartilage properties. As many of the cellular and molecular changes in NSD in BMP7ncko mice share pathophysiological similarities with knee OA, this study sets a precedent for the need to further understand nasal cartilage properties for use in tissue engineering or clinical applications relating to regeneration of damaged cartilage in knee OA.



MATERIALS AND METHODS


Animal Models

Both male and female mice were used for this study. All mice were maintained on the C57BL/6 background and backcrossed for at least 10 generations. BMP7 expression was identified using BMP7LacZ reporter mice (Malik et al., 2020). BMP7fl/fl mice also referred to as BMP7ctrl mice, were crossed to WNT1-cre mice to delete BMP7 from neural crest cells (subsequently referred to BMP7ncko mice) (Malik et al., 2020). To rescue the NSD, BMP7ncko mice were crossed with BMP2wt/fl (Malik et al., 2018) to obtain BMP2wt/flBMP7ncko, also referred to as BMP2hetBMP7ncko subsequently. Lineage tracing was done using mT/mG mice [Gt(ROSA)26SorTM 4(ACTB–tdTomato,–EGFP)Luo/J] (Muzumdar et al., 2007). BMP7 expression and identification of neural crest cells in the nasal septum was conducted at birth (postnatal day 0, P0), 2 weeks (postnatal day 14, P14) and 4 weeks (postnatal day 30, P30). Additionally, nasal septum of BMP7ctrl and BMP7ncko mice were also assessed at the abovementioned time-points. BMP2hetBMP7ncko mice were assessed only at P30.



Micro-Computed Tomography (μCT) Analysis

Morphological changes to nasal septum of BMP7ctrl and BMP7ncko (n = 3/genotype) were assessed at P14 and P30 using μCT. Acquisition and reconstruction of nasal septum using MILabs μCT at the School of Dentistry, University of Alberta was conducted as previously described (Baddam et al., 2021b). The degree and severity of NSD were quantified on coronal representations of the nasal septum using Amira software. Two landmarks were placed at the abutment where the perpendicular plate meets the cribriform plate of ethmoid bone and where the vomer articulates with the palatine bone, respectively. A straight line was drawn between these two points indicating a hypothetical straight septum, and its length was considered as its height (a). Next, the actual length of the septum was determined by tracing the actual length of the septum (b). The degree of deviation was determined as (b – a)/a and expressed as percentage. Longitudinal experiments to determine whether NSD becomes severe overtime were assessed by calculating the degree of NSD on the same mice twice at two different ages [4 weeks (P30) and 10 weeks (P74)].



RNA Sequencing

Total RNA from isolated nasal septum of P0 BMP7ctrl and BMP7ncko mice (n = 4/genotype) was extracted with TRIzol reagent (Invitrogen). RNAseq libraries were constructed from 500 ng of total RNA using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB). Polyadenylated mRNAs were enriched with oligo dTs conjugated to paramagnetic beads. Enriched mRNAs were fragmented chemically and used for cDNA synthesis. cDNA was end-repaired and A-tailed, ligated to linkers and finally indexed by PCR, to enable multiplexing during sequencing. Sequencing was done on a MiSeq instrument, following a paired-end 75 cycles protocol. Raw sequencing data is publicly available from the NCBI SRA portal under accession number PRJNA622501. The Bioinformatic analysis was conducted where fragments were mapped to the human cDNA database (GRCh38) using Kallisto (Bray et al., 2016), with 100 permutations during pseudo-alignments. Differential expression analysis of RNAseq data was conducted using negative binomial generalized linear models with the edgeR R package (Love et al., 2014). Gene abundance differences with a corrected p-value < 0.05 and a log fold change of ≤–2 or ≤2 were considered differentially expressed. Mean-differential plots were generated with edgeR and heatmaps were generated using the R package pheatmap. Gene ontologies were identified using PANTHER gene ontology consortium (Mi et al., 2019). Only significant ontologies were selected for representation (FDR < 0.05).



Shotgun Proteomics

Nasal septum of P14 and P30 BMP7ctrl and BMP7ncko mice (n = 4/genotype) were isolated and frozen until processing for proteomics experiments. Protein lysates were obtained by tissue lysis in buffer containing 1% SDS, in 200 mM HEPES (pH 8.0) and cOmpleteTM Protease Inhibitor Cocktail (MilliporeSigma, Oakville, ON, Canada). Samples were reduced with 10 mM dithiothreitol (DTT) for 30 min at 37°C. Once cooled at room temperature (RT), cysteine alkylation was achieved by incubation with a final concentration of 15 mM iodoacetamide for 25 min in the dark at RT. Next, samples were precipitated in acetone/methanol, washed three times in methanol, and trypsinized (Trypsin Gold from Promega, Madison, WI, United States). The pH was adjusted to 6.0 with HCl. To label peptide α- and ε-amines, samples were incubated for 18 h at 37°C with isotopically heavy [40 mM 13CD2O + 20 mM NaBH3CN (sodium cyanoborohydride)] or light labels [40 mM light formaldehyde (CH2O) + 20 mM NaBH3CN]. Next, samples were combined and subjected to C18 chromatography before being run on liquid chromatography and tandem mass spectrometry.


High-Performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS)

The liquid chromatography and mass spectrometry experiments were carried out by the Southern Alberta Mass Spectrometry (SAMS) core facility at the University of Calgary, Canada. The analysis was performed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Scientific) operated with Xcalibur (version 4.0.21.10) and coupled to a Thermo Scientific Easy-nLC (nanoflow liquid chromatography) 1200 system. Tryptic peptides (2 μg) were loaded onto a C18 column (75 μm × 2 cm; Acclaim PepMap 100, P/N 164946; Thermo Scientific) at a flow rate of 2 μL/min of solvent A (0.1% formic acid and 3% acetonitrile in LC-MS grade water). Peptides were then electrosprayed using 2.3 kV voltage into the ion transfer tube (300°C) of the Orbitrap Lumos operating in the positive mode. The Orbitrap first performed a full MS scan at a resolution of 120,000 fwhm to detect the precursor ion having a m/z between 375 and 1,575 and a +2 to +7 charge. The Orbitrap AGC (Auto Gain Control) and the maximum injection time were set at 4 × 105 and 50 ms, respectively. The Orbitrap was operated using the top speed mode with a 3 s cycle time for precursor selection. The most intense precursor ions presenting a peptidic isotopic profile and having an intensity threshold of at least 5,000 were isolated using the quadrupole and fragmented with HCD (30% collision energy) in the ion routing multipole. The fragment ions (MS2) were analyzed in the ion trap at a rapid scan rate. The AGC and the maximum injection time were set at 1 × 104 and 35 ms, respectively, for the ion trap. Dynamic exclusion was enabled for 45 s to avoid the acquisition of the same precursor ion having a similar m/z (±10 ppm).



Proteomic Data and Bioinformatics Analysis

Spectral data were matched to peptide sequences in the murine UniProt protein database using the Andromeda algorithm (Cox et al., 2011) as implemented in the MaxQuant software (Cox and Mann, 2008) package v.1.6.0.1, at a peptide-spectrum match false discovery rate (FDR) of <0.01. Search parameters included a mass tolerance of 20 ppm for the parent ion, 0.5 Da for the fragment ion, carbamidomethylation of cysteine residues (+57.021464 Da), variable N-terminal modification by acetylation (+42.010565 Da), and variable methionine oxidation (+15.994915 Da). N-terminal and lysine heavy (+34.063116 Da) and light (+28.031300 Da) dimethylation were defined as labels for relative quantification. The cleavage site specificity was set to Trypsin/P, with up to two missed cleavages allowed. Significant outlier cutoff values were determined after log(2) transformation by box-and-whisker analysis using the BoxPlotR tool (Altman and Krzywinski, 2016). A minimum of two distinct peptides per protein for the quantification was used. Following an interquartile boxplot analysis, proteins with a quantification ratio of under 0.65 and above 1.5 were considered for the analysis. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier px-submission PXD024813. A list of all differentially regulated proteins is provided in the Supplementary Tables 1, 2.



RNA Extraction Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Nasal septum from P0, P14 and P30 BMP7ctrl and BMP7ncko mice (n = 3/genotype) were dissected and processed for RNA extraction. RNA extraction and qRT-PCR were conducted as previously described (Malik et al., 2020). Fold difference was determined in relation to the housekeeping gene 36B4 using ΔΔCt method (Malik et al., 2020). Analysis was conducted on biological and technical triplicates. Data shown are representatives from three biological samples per genotype. A list of primer pairs used for gene expression analysis is outlined in Supplementary Table 3.



Tissue Processing and Histology

BMP7ctrl and BMP7ncko mice (n = 3/genotype/age) were fixed using 4% paraformaldehyde (PFA). Mice skulls were dissected and decalcified in 0.5M ethylenediaminetetraacetic acid (EDTA) as previously described (Malik et al., 2020). Mouse skulls were frontally embedded in paraffin and sectioned using 820 Spencer microtome at 7 microns. For histological staining, sections were deparaffinized as previously described (Baddam et al., 2021b).


Histological Stains

Medial nasal septum sections were used for histological and immunofluorescence analysis (Baddam et al., 2021b). Hematoxylin and Eosin (H&E) and Safranin O staining on nasal septum of P14 and P30 BMP7ctrl and BMP7ncko mice (n = 3/genotype/age) were performed as previously described (Malik et al., 2020; Baddam et al., 2021b). Picrosirius staining was performed using Sirius Red staining protocol from IHC world (Kiernan, 2001). H&E was performed to assess gross morphology. Safranin O staining was used to stain cartilage and Picrosirius Red staining was used to stain collagen fibers. Images were acquired on an Olympus IX73 microscope using 20X and 40X objectives.



Immunofluorescence

Immunofluorescent staining was performed on medial nasal septum paraffin sections of P0, P14, P30 BMP7ctrl and BMP7ncko and P30 BMP2hetBMP7ncko mice as previously described (Baddam et al., 2021b). Specifications of primary and secondary antibodies are provided in Supplementary Table 4. Images were acquired on an Olympus IX73 microscope using 20x objectives. Analysis was performed on three biological replicates. Negative controls demonstrating background staining were previously demonstrated (Baddam et al., 2021b).



LacZ Staining

P0, P14, and P30 BMP7LacZ reporter mice (n = 3/genotype/age) were stained using previously described staining procedure (Malik et al., 2020). Mouse skulls were fixed, decalcified, processed as described above. The paraffin sections were counterstained using Safranin O staining protocol.



Statistics

Graphs indicate individual measurements as well as mean ± standard deviation when applicable. A two-tailed independent t-test was conducted to test for statistical significance between BMP7ctrl and BMP7ncko mice. Microsoft Excel was used to display graphs and an independent unpaired t-test was conducted using online statistical software (Socscistatistics, 2020). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ns, not significant P > 0.05.



Study Approval

This study was approved by the Health Sciences Animal Care and Use Committee at the University of Alberta (protocol #: AUP1149). All experiments in this study were conducted in accordance with the Canadian Council on Animal Care guidelines.



RESULTS


BMP7 Is Expressed in Nasal Cartilage and Its Deletion Results in Nasal Septum Deviation

Anterior and medial nasal septum sections were used for histological assessment of the nasal septum (Baddam et al., 2021b). Images were acquired at the abutment of nasal septum with internasal suture as well as the middle of the nasal septum (Figure 1A). To identify when and where BMP7 is expressed in the nasal septum, we used BMP7LacZ reporter mice (n = 3/age). Expression was observed at the abutment at all ages investigated [Figures 1A’–C; Post-natal day 0 (P0), Post-natal day 14 (P14), Post-natal day 30 (P30)]. In the middle region of the septum, BMP7 was clearly expressed in chondrocytes as well as the perichondral lining from P0 onward (Figures 1D–F). The expression was variable over time, with least expression observed in chondrocytes at P14 (Figure 1E). Lineage tracing confirmed neural crest origin of septum chondrocytes and perichondrium (n = 3/age) (Figures 1G–I). As previously shown (Baddam et al., 2021a), the nasal septum in BMP7ncko mice becomes severely deviated by P30 (Figures 1J–O) (n = 3/age/genotype) with the degree of deviation reaching between 10 and 35% (Figure 1L; p < 0.001) and variable in severity over time (Figure 1O). The nasal septum in the mouse grows rapidly between P7–P14 and P21–P30 but shows a significant reduction between P14 and P21 (Vora et al., 2015; Baddam et al., 2021b). As BMP7ncko mice develop midfacial hypoplasia in addition to NSD, we suspected that changes to cartilage appearance and properties are associated with the development of these two pathologies.
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FIGURE 1. Deletion of BMP7 in neural crest cells results in nasal septum deviation (NSD). (A) μCT reconstruction of P30 mouse skull demonstrating the location of nasal septum where images were acquired from. LacZ stained (blue) nasal septum paraffin sections demonstrating BMP7 expression in P0 (A’,D), P14 (B,E), and P30 (C,F) Bmp7LacZ reporter mice. Neural crest cells in the nasal septum of P0 (G), P14 (H), and P30 (I) identified by Green Fluorescent Protein (GFP) (red) antibody. DAPI used to stain nuclei (gray). Scale bar = 50 μm. 3D frontal view of P30 Bmp7ctrl (J) and Bmp7ncko (K) mice demonstrating nasal septum deviation as outlined in white. (L) Quantification of NSD in P14 and P30 mice (n = 4/genotype/age). 2D frontal cross section of nasal septum in Bmp7ctrl (M) and Bmp7ncko (N) mice. (O) Quantification of nasal septum deviation in Bmp7ncko mice over time (n = 3/age). Data points represent individual mice with error bars demonstrating biological variation. ins, internasal suture; ns, nasal septum; p, perichondrium; i, incisor; m, mandible. P14, postnatal day 14; P30, postnatal day 30; P74, postnatal day 74. ***p < 0.001, two-tailed independent t-test. n.s., not significant. Scale bar (A–F): 20 μm and (G,H): 50 μm.




Apoptosis Precedes Nasal Septum Deviation and Reduced GAGs Observed in the Deviated Septum

At P14, histological analysis of the nasal septum using H&E, Safranin O and Picrosirius Red showed a comparable cellular organization with round (mature/hypertrophic) cells restricted to the middle and flat (immature/chondrocyte progenitors) cells located at the periphery (Figure 2A; n = 3/genotype). At P30, BMP7ncko cartilage had lost this clear organization. The degree of hypertrophy was reduced, fewer flat cells were evident at the periphery. Safranin O staining was reduced indicative of a reduction in GAGs. Deposition of collagen fibers was asymmetric with increased deposition on the outer side of the deviation and a reduction on the contralateral side (Figure 2B, n = 3/genotype). Cellular proliferation (PCNA) was unaffected. Apoptosis, measured by cleaved Caspase 3 staining, was increased at P14 only with no apparent differences at P30. Thus, a burst of cell apoptosis precedes cellular disorganization and reduction in GAGs, indicating that changes to chondrocyte properties might predispose to the development of NSD.
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FIGURE 2. Cell death altered glycosaminoglycan and collagen fibril organization observed in Bmp7ncko mice. Histological staining on nasal septum paraffin sections at P14 (A) and P30 (B) timepoints (n = 3/genotype/age). Hematoxylin (purple) and Eosin (pink) (H&E) staining for gross morphology of the nasal septum. Representative Safranin O (red) staining for cartilage and Picrosirius Red (pinkish-red) staining for collagen fibers. Reduction in Safranin O staining was observed only in P30 Bmp7ncko mice. To identify proliferation in the nasal septum, immunofluorescence staining using PCNA antibody (red) was performed with sections counterstained with DAPI for nuclei (gray). No changes to proliferation were observed. Apoptosis was characterized using CASP3 antibody (red) and counterstained with DAPI for nuclei (gray). Apoptosis precedes nasal septum deviation in Bmp7ncko mice. PCNA, proliferating cell nuclear antigen; CASP3, cleaved caspase 3. Arrows denoting positive stain/signal. Scale bar (histological stains) = 20 μm and (Immunos) = 50 μm.




Proteins Involved in Extracellular Matrix Organization and Cell Metabolism Deregulated Before Nasal Septum Deviation

We performed shotgun proteomics (Figure 3A) on isolated P14 and P30 BMP7ctrl and BMP7ncko nasal septum (n = 4/genotype/age) to identify potential proteome changes in the mutant septum before and following septum deviation. STRING database1 was used to assign ontology and map protein-protein interactions. At P14, several clusters reflecting a decrease in proteins involved in extracellular structure organization, cell adhesion, and degradation of extracellular matrix were identified (Figure 3B), exemplified by Elastin (ELN), Collagen I (COL 1), Collagen II (COL 2), Osteopontin (SPP1), and Aggrecan (ACAN). Several of those proteins as well as reduced mTOR associate with the PI3K-AKT signaling pathway, indicating a reduction of this important pathway regulating cell proliferation, survival, and metabolism (Yu and Cui, 2016). At the same time, a cluster of proteins involved in retinoic acid signaling and lipid metabolism, such as CYP1A2, and ALDH1A2, was upregulated. Together this suggested that loss of BMP7 is associated with a change in cell metabolism at P14.
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FIGURE 3. Altered extracellular matrix (ECM) organization and cell metabolism precede nasal septum deviation in Bmp7ncko mice. (A) Workflow of Proteomics experiment and analysis (n = 4/age/genotype). STRINGdb software was used to identify protein-protein interactions. (B) Differentially expressed proteins and their associated biological processes altered in P14 Bmp7ncko mice in comparison to Bmp7ctrl. (C) Differentially expressed proteins and their associated biological processes altered in P30 Bmp7ncko mice in comparison to Bmp7ctrl. * Denotes proteins upregulated in Bmp7ncko mice. Proteins involved in retinoic acid signaling and lipid metabolism were upregulated at 2 weeks whereas proteins involved in glucose metabolism were upregulated at 4 weeks. A list of all differentially regulated proteins is provided in the Supplementary Tables 1, 2.


At P30, when NSD is established, a rather different picture of proteome changes was observed (Figure 3C). An increase in proteins involved in the response to oxygen-containing compounds, catalytic activity, and cytoskeletal organization such as Decorin (DCN) was observed in BMP7ncko mice. In addition, changes in mRNA processing and nucleotide metabolic processes were observed. Of interest, the increase in Hexokinase 1 (HK1), Aldolase A (ALDOA) and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) indicated an increase in glycolysis and proteins involved in RNA metabolism, such as Heterogeneous nuclear ribonucleoprotein U (HNRPU), were also upregulated. In summary, we identified global dynamic changes to several cellular processes in BMP7-mutant nasal cartilage, most prominently extracellular matrix and cell metabolism both prior to and once NSD is established. However, spatial information on the expression of these proteins in the septum is not known.



Increase in Chondrocyte Hypertrophy and Acquisition of Elastic Cartilage Markers in Deviated Nasal Septum of BMP7ncko Mice

Gene expression analysis and immunofluorescence staining (n = 3/age/genotype) was performed using antibodies against proteins identified in the proteomics data. We assessed expression of extracellular matrix components associated with hyaline cartilage, cartilage hypertrophy, and OA at P0, P14, P30 to capture the timing of any changes. We additionally compared these protein changes to changes in gene expression (Figure 4A). COL II was significantly increased at P0 BMP7ncko mice (p < 0.05) but became comparable by P30. Expression of COL VI, a pericellular matrix gene (Zelenski et al., 2015), was initially comparable but showed a significant reduction at P30 (p < 0.05). However, protein expression was increased at the site of deviation. OPN, a gene involved in early chondrogenesis (Gerstenfeld and Shapiro, 1996; Baddam et al., 2021b), was significantly reduced in P14 mutant nasal septum. Additionally, at P30, OPN protein expression was lost in a subset of cells that appear to extend from the perichondrium at the site of deviation. Thus, loss of BMP7 alters expression of several extracellular matrix components associated with chondrogenesis.
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FIGURE 4. Bmp7ncko mice undergo chondrocyte hypertrophy and acquire elastic cartilage markers. (A) qRT-PCR of dissected nasal septum demonstrating differential gene expression of Collagen II (COL II), Collagen VI (COL VI), and Osteopontin (OPN) at P0, P14, and P30 timepoints. Immunofluorescence staining of COL II revealed an increase at P0 (top panel) and a decrease at P30 (bottom panel). Expression of COL VI was increased in the Bmp7ncko mice while reduced expression of OPN was observed in P30 mutant mice via immunofluorescence. (B) Differential gene expression of genes involved in chondrocyte hypertrophy RUNX2, Collagen X (COL X), Indian hedgehog (IHH), Cartilage acidic protein 1 (CRTAC1), Osteocalcin, and Bapx indicating Bmp7ncko mice undergo chondrocyte hypertrophy. Immunofluorescence staining of P0 nasal septum demonstrates an increase in RUNX2 expression in addition to an increase in expression of COL X and IHH in P30 Bmp7ncko mice. (C) Expression of Elastin (ELN) was observed in the abutment of the nasal septum and internasal suture (ins) as well as in the middle of the nasal septum in P30 Bmp7ncko mice. EMILIN3 expression was also significantly increased at P30 in the mutant mice. Expression of Decorin (DCN) and SERPINH1 (HSP47) were also identified to be increased in the mutant nasal septum. Independent two-tailed t-test was performed with significance denoted as *: p < 0.05, **: p < 0.01, ***: p < 0.001. (n = 3/genotype/age). Antibody expression demonstrated in red and DAPI stained nuclei in gray for all immunofluorescence images. Arrows denoting positive antibody signal. Scale bar = 50 μm.


RUNX2 (Caron et al., 2013), COL X, IHH, CRTAC1 (Sanchez et al., 2017), Osteocalcin, and BAPX (Caron et al., 2015) have all been associated with hypertrophic differentiation of chondrocytes, with RUNX2, COL X, and IHH being the most commonly assessed proteins for chondrocyte hypertrophy. Although RUNX2 gene expression (Figure 4B) was slightly increased at P0 (p < 0.01), it did not show the increase seen in control mice at P14 (p < 0.01). BMP7ncko mice indicate early induction of chondrocyte hypertrophy. Antibody staining for RUNX2 at P0 confirmed increased expression. While expression of COL X was comparable at all stages, expression of IHH was significantly increased (p < 0.05) in the mutant septum at P30. Antibody staining showed increased COL X and IHH in the deviated septum. Expression of both CRTAC1, a gene involved in chondrocyte differentiation (Sanchez et al., 2017), and BAPX, an inhibitor of chondrocyte hypertrophy (Caron et al., 2015), was significantly upregulated at P14 and P30 (∗p < 0.05, ∗∗∗p < 0.001). Osteocalcin previously described to accumulate at the onset of hypertrophy (Lian et al., 1993) was significantly decreased at P14 (p < 0.001) but increased at P30 (p < 0.05) in BMP7ncko mice. These observations indicate that the development of NSD appears to be associated with altered regulation of chondrocyte hypertrophy.

A key function of hyaline cartilage is to provide stiffness and rigidity to the nasal cavity. Given the significant molecular changes that precede the development of the deviation, we wondered whether the structural deformation might be associated with the acquisition of elastic cartilage markers that are not normally seen in hyaline cartilage. Immunofluorescence staining for Elastin (ELN), a protein abundant in elastic cartilage, revealed that loss of BMP7 resulted in Elastin expression at the abutment and the middle region of the septum, suggesting that at least parts of the nasal septum indeed might have acquired elastic cartilage properties (Figure 4C). This potential switch to elastic cartilage markers in P30 BMP7ncko mice was supported by an increase in Emilin3 expression (p < 0.01), another characteristic elastic cartilage gene (Schiavinato et al., 2012). Additional evidence for structural changes and alterations to collagen fibrils (Figure 2B) came from the altered distribution of Decorin (DCN) and HSP47 (Ishikawa et al., 2018) in P30 BMP7ncko mice.

Collectively, our data suggest that NSD is associated with altered cartilage properties, in particular a gain in expression of elastic cartilage markers.



Increase in Glycolytic Activity as a Consequence of Altered WNT and BMP Signaling

Proteome analysis at P30 revealed an increase in several key enzymes in the glycolysis pathway [(HK1, ALDOA, GAPDH, and Lactate Dehydrogenase B (LDHB)] (Lee et al., 2018) in the mutant septum (Figure 3C). Immunofluorescence analysis of HK1 confirmed the increased expression in the deviated nasal septum (Figure 5A). Proteins involved in RNA metabolism like HNRPU were also identified (Figure 3C), and its increased expression was confirmed in P30 BMP7ncko mice. The glycolysis pathway is under control of WNT and BMP signaling pathways (Lee et al., 2018). Probing for changes in these two pathways, we identified altered expression of various WNT ligands (WNT3A, WNT6, WNT7A), WNT antagonists (FRZB, DKK1) culminating in increased WNT signaling (NPBC) in mature chondrocytes of the P30 mutant septum (Figure 5B). In general, the changes were largest at P14. WNT3A involved in canonical WNT signaling was decreased at P14 (p < 0.001). The two other canonical WNT ligands WNT6 and WNT7A were upregulated at P14 (p < 0.05) and P30 (p < 0.01) (Huang et al., 2018). The WNT-antagonists FRZB and DKK1 were upregulated and downregulated, respectively, in P14 mutant mice (p < 0.001) and to a lesser degree at P30 (p < 0.05). Overall, canonical WNT signaling apparent by nuclear NPBC staining was increased in the mutant septum, particularly at the site of deviation, whereas cytoplasmic NPBC staining was observed in BMP7ctrl mice. Loss of BMP7 was associated with a reduction in MSX1, a gene downstream of BMP signaling that promotes chondrogenic differentiation of NCC (Méndez-Maldonado et al., 2018), at both P14 (p < 0.05) and P30 (p < 0.001) timepoints (Figure 5C). Gremlin 1 (GREM1), a BMP antagonist and inhibitor of chondrocyte hypertrophy (Zhong et al., 2016a), was significantly decreased once septum deviation was established. The BMP receptors ALK2 and ALK6, previously described to regulate chondrogenic differentiation (Caron et al., 2013), were decreased at P14 (ALK2; p < 0.001) and P30 (ALK6; p < 0.01), respectively.
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FIGURE 5. Altered metabolism and Wnt signaling in P30 Bmp7ncko mice. (A) Immunofluorescence staining of Hexokinase (HK1) and Heterogeneous nuclear ribonucleoprotein U (HNRPU) in P30 Bmp7ctrl and Bmp7ncko mice revealed an increase in expression of both proteins in the mutant mice. (B) qRT-PCR of dissected nasal septum at P0, P14 and P30 timepoints demonstrating differential gene expression of Wnt ligands (WNT3A, WNT6, WNT7A) and Wnt antagonists (FRZB, DKK1). Immunostaining of Wnt antagonists (FRZB, DKK1) in P30 Bmp7ctrl and Bmp7ncko mice demonstrate an increase in expression of FRZB and decrease in DKK1 expression in the mutant mice. Immunofluorescence staining using Non-phosphorylated Beta-Catenin (NPBC) in P30 mice demonstrates nuclear expression in Bmp7ncko and cytoplasmic expression in Bmp7ctrl mice. (C) qRT-PCR of nasal septum at P0, P14, and P30 ages revealed alterations to genes in the Bmp pathway (MSX1, GREM1, ALK2, ALK6). Independent two-tailed t-test was performed with significance denoted as *: p < 0.05, **: p < 0.01, ***: p < 0.001. (n = 3/genotype/age). Antibody expression demonstrated in red and DAPI stained nuclei in gray for all immunofluorescence images. Arrows denoting positive antibody signal. Scale bar = 50 μm.


Thus, the development of NSD in BMP7ncko mice is accompanied by a switch toward glycolysis along with dynamic changes in WNT and BMP signaling pathways.



Loss of BMP7 Affects Cell Differentiation and Cell Metabolism Already in P0 Nasal Septum

Above experiments revealed that the most significant changes to gene expression could be observed at P14. However, some changes were already evident at birth. To systematically identify gene expression changes at P0, RNA-sequencing was performed on dissected P0 BMP7ctrl and BMP7ncko nasal septa (n = 3/genotype). A Volcano plot identified both upregulated and downregulated genes, while the biological coefficient of variation within samples was between 0.4 and 0.5, within an acceptable range variation (Figure 6A). A heat map following unsupervised, hierarchical clustering was created (Figure 6B), and gene ontology (GO) was used to map differentially expressed genes to cellular processes, such as cell metabolism, cell differentiation, and cell and structure morphogenesis (Figure 6C). Validation of differentially expressed genes identified from RNA-Seq analysis demonstrated alterations to proliferation, apoptosis, cell metabolism, production of ROS, signs of chondrocyte hypertrophy and BMP signaling. Individual genes validated by RT-qPCR mapped to significantly altered gene ontologies are shown in Figure 6D.
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FIGURE 6. RNA Sequencing analysis of P0 Bmp7ctrl and Bmp7ncko mice demonstrating differentially expressed genes (n = 3/genotype). (A) Volcano plot demonstrating genes differentially upregulated and downregulated. Additionally, the biological coefficient of variation plot indicating biological variation within the samples to be between 0.4 and 0.5. (B) Heat-map outlining differentially expressed genes between Bmp7ctrl and Bmp7ncko mice. (C) Gene ontology (GO) terms of genes identified to be differentially expressed. (D) Specific GO terms and their associated genes. Altered metabolic was a prominent GO term identified in the RNASeq analysis. Genes in red have been validated using qRT-PCR (Figure 7).




Early Signs of Altered Cell Proliferation, Apoptosis, Metabolism and Chondrocyte Hypertrophy in BMP7ncko Mice

We first confirmed changes to proliferation and apoptosis in P0 septa from BMP7ctrl and BMP7ncko mice (n = 3/genotype). Heterogeneous Nuclear Ribonucleoprotein I (PTBP1) (Cheung et al., 2009), RALY Heterogeneous Nuclear Ribonucleoprotein (RALY) (Cornella et al., 2017) and Eukaryotic Translation Initiation Factor 5A (EIF5A) (Nishimura et al., 2005) known to promote cell proliferation were all significantly reduced in BMP7ncko mice (p < 0.01, p < 0.001, p < 0.05) (Figure 7A). Staining for PCNA confirmed the reduction in chondrocyte proliferation. In parallel, expression of genes promoting cell survival, such as Component Of Inhibitor Of Nuclear Factor Kappa B Kinase (CHUK) (Culley et al., 2019), TANK Binding Kinase 1 (TBK1) (Xu et al., 2018) and Upstream Transcription Factor 1 (USF1) (Guo et al., 2018), was also significantly reduced (p < 0.05) except for CHUK (Figure 7B). This was mirrored by increased levels of cleaved Caspase-3 (CASP3) and a reduction in mTOR (Guo et al., 2018).
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FIGURE 7. Altered cell proliferation, apoptosis and Bmp signaling precede nasal septum deviation. qRT-PCR validation on P0 dissected nasal septum of genes identified in RNASeq analysis and immunofluorescence staining revealed alteration to (A) cell proliferation as evident by reduced PTBP1, RALY, and EIF5a as well as PCNA expression in Bmp7ncko mice. (B) Increased cell apoptosis was observed as demonstrated by reduced expression of CHUK, TBK1, USF1, increased CASP3 expression and reduced mTOR expression. (C) Alterations to lipid metabolism were observed by a significant reduction in PRMT1, CHTOP, LIPE, and GPD2 with an increase in CD44 expression. (D) A reduction in expression of PRDX1 and an increase in expression of stress protein HSP47 was observed. (E) An increase in MMP13, RUNX2, and COL 1 was observed in Bmp7ncko mice. (F) Bmp signaling assessed using immunofluorescence staining of PSMAD revealed a decrease in pSMAD in P0 Bmp7ncko mice. PTBP1, Polypyrimidine tract-binding protein 1; RALY, Heterogeneous Nuclear Ribonucleoprotein; EIF5A, Eukaryotic Translation Initiation Factor 5A; CHUK, Component Of Inhibitor Of Nuclear Factor Kappa B Kinase Complex; TBK1, TANK Binding Kinase 1; USF1, Upstream Transcription Factor 1; PRMT1, Protein Arginine Methyltransferase 1; CHTOP, Chromatin Target Of PRMT1; GLI1, GLI Family Zinc Finger 1; LIPE, Lipase E; GPD2, Glycerol-3-Phosphate Dehydrogenase 2; PRDX1, Peroxiredoxin 1; MMP13, matrix metalloproteinase 13; RUNX2, RUNX Family Transcription Factor 2; COL 1, Collagen I; PCNA, Proliferating Cell Nuclear Antigen; CASP3, Cleaved Caspase 3; MTOR, Mammalian Target of Rapamycin; HSP47, SERPINH1; pSMAD, Phosphorylated Smad. Independent two-tailed t-test was performed with significance denoted as *: p < 0.05, **: p < 0.01, ***: p < 0.001. (n = 3/genotype/age). Antibody expression demonstrated in red and DAPI stained nuclei in gray for all immunofluorescence images. Arrows denoting positive antibody signal. Scale bar = 50 μm.


Protein Arginine Methyltransferase 1 (PRMT1), Chromatin Target Of PRMT1 (CHTOP) and GLI Family Zinc Finger 1 (GLI1) impact glucose metabolism (Iwasaki and Yada, 2007; vanLieshout and Ljubicic, 2019). Both PRMT1 and CHTOP were significantly reduced (p < 0.001) suggestive of impaired glucose metabolism already at P0. Conversely, genes involved in lipid metabolism and production of triglycerides and cholesterol (CD44 (Jiang et al., 2020), Lipase E (LIPE) (Gu et al., 2019), mitochondrial Glycerol 3 Phosphate Dehydrogenase (GPD2) (Mráček et al., 2013) were also altered. While CD44 was significantly increased (p < 0.001), LIPE and GPD2 were significantly reduced (p < 0.01) in the mutant septa (Figure 7C). Altered cell metabolism in chondrocytes has been associated with the production of ROS and stress response (Gibson et al., 2008). Indeed, Peroxiredoxin-1 (PRDX1), a ROS scavenger (Kumar et al., 2018), was significantly reduced (p < 0.001). Heat shock protein 47 (HSP47), an endoplasmic collagen-binding stress protein, was increased in BMP7ncko septa (Figure 7D). ROS can induce chondrocyte hypertrophy (Morita et al., 2007) in a BMP-dependant manner (Kumar et al., 2018). Several indicators for chondrocyte hypertrophy were indeed increased [Matrix metalloproteinase-13 (MMP13) (p < 0.001), RUNX2 (p < 0.01), Collagen I (COL 1) (p < 0.001)] (Figure 7E), while phosphorylated SMAD1/5/8 (pSMAD1/5/8) was overall reduced (Figure 7F). Collectively, this establishes that loss of BMP7 changes the developmental trajectory of nasal chondrocytes already at birth long before septum deviation is manifested.



Reduction of BMP2 in BMP7ncko Mice Rescues Nasal Septum Deviation

While assessing changes to the BMP signaling pathway (Figure 5C), we also tested for changes in BMP2 expression, another BMP involved in cartilage development (Gamer et al., 2018). Indeed, BMP2 was increased at P0 (p < 0.01), failed to be induced at P14 but remained significantly increased at P30 (p < 0.05) (n = 3/age/genotype) (Figure 8A). BMP2 and BMP7 have been shown to exert opposite effects on chondrocyte hypertrophy induction (Caron et al., 2013). To assess if the increase in BMP2 directly contributes to the development of NSD, we genetically reduced BMP2 in BMP7ncko mice (subsequently BMP2hetBMP7ncko). To our surprise, the nasal septum in P30 BMP2hetBMP7ncko mice remained straight (Figures 8B,C), the deviation observed in BMP7ncko appeared to be completely rescued (p < 0.01) (Figure 8D). Some key changes identified in the deviated septum were also fully or partially rescued (Figures 8E–G). ELN was not induced anymore (Figure 8E), HNRPU and HK1 demonstrated a partial reversal (Figure 8F), while FRZB and NPBC were comparable to BMP7ctrl mice (Figure 8G). These findings indicate that the net balance of BMP signaling is critical for chondrocyte differentiation and that this balance also affects canonical WNT signaling, a key regulator of energy metabolism, including glycolysis.
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FIGURE 8. Reduction of BMP2 in Bmp7ncko mice rescues the nasal septum deviation. (A) qRT-PCR of P0, P14, P30 dissected nasal septum revealed an increase in BMP2 expression at P30 in Bmp7ncko mice. (B) 3D frontal view of P30 Bmp2hetBmp7ncko mouse demonstrating a straight nasal septum. (C) 2D overview of nasal septum (outlined in white). (D) Quantification of nasal septum deviation in Bmp2hetBmp7ncko mice revealed no significant difference between Bmp7ctrl and Bmp2hetBmp7ncko. Note that the data for Bmp7ctrl and Bmp7ncko is repeated from Figure 1L. (E) No expression of Elastin (ELN) was observed in P30 Bmp2hetBmp7ncko mouse. (F) Immunofluorescence staining of Heterogeneous nuclear ribonucleoprotein U (HNRPU) in P30 Bmp7ctrl and Bmp2hetBmp7ncko mice was comparable, however, staining with Hexokinase (HK1) showed a reduction in expression of HK1 in the Bmp2hetBmp7ncko mouse. (G) Expression of FRZB between P30 Bmp7ctrl and Bmp2hetBmp7ncko mice was comparable but a slight reduction in Non-Phosphorylated Beta-Catenin (NPBC) was observed in Bmp2hetBmp7ncko mice. However, both Bmp7ctrl and Bmp2hetBmp7ncko mice demonstrated cytoplasmic expression of NPBC. Ins, internasal suture; ns, nasal septum; i, incisor; m, mandible. Independent two-tailed t-test was performed with significance denoted as *: P < 0.05, **: P < 0.01, ***: P < 0.001. (n = 3/genotype/age). Antibody expression demonstrated in red and DAPI stained nuclei in gray for all immunofluorescence images. Arrows denoting positive antibody signal. Scale bar = 50 μm.


Together, our data establish an unexpected complex etiology for the development of NSD involving both BMP and WNT signaling. Changes to these pathways are associated with changes to chondrocyte specification, subsequent differentiation involving many cellular pathways including cell metabolism as summarized in Figure 9. Thus, a detailed assessment of extracellular matrix, cell metabolism and signaling properties are required when developing effective treatments and tissue engineering approaches for septoplasties.
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FIGURE 9. Cartilage changes observed in Bmp7ncko mice. (A) Altered cartilage properties, signaling and cellular processes observe over-time in Bmp7ncko mice. Proteomics analysis revealed proteins involved in retinoic acid signaling at 2 weeks (B) and glucose metabolic process at 4 weeks (C).




DISCUSSION

This study provides the first detailed characterization of the molecular and cellular etiology of NSD in a well-characterized model of midfacial hypoplasia associated with nasal airway obstruction (Baddam et al., 2021a). We uncovered that the deviated cartilage expressed several markers abundant in elastic cartilage and showed hallmarks commonly associated with osteoarthritic cartilage. This suggests a fundamental change in cartilage properties and highlights the complex etiology of NSD and likely has ramifications for other hyaline cartilage-related pathologies.

Nasal septum deviation is classified based on the type of shape changes (Teixeira et al., 2016; Taghiloo and Halimi, 2019). Some forms of NSD result from uncoordinated growth of the septum and its articulating structures (vomer, ethmoid, nasal bones) resulting frequently in facial asymmetries. While in those cases underlying cartilage defects are unlikely, cartilage defects have been proposed in other situations (Teixeira et al., 2016). Why in some cases the septal hyaline cartilage would catastrophically fail has remained unclear. In the BMP7ncko mouse, the initially straight septum gives way to a C-shaped kink, which is additionally associated with a growth defect resulting in midfacial hypoplasia (Baddam et al., 2021a). C or S-shaped deviations are commonly observed in neonates. It is unclear to what degree cartilage growth abnormalities are already pre-existing in utero or can be attributed to trauma to the face during birth (Harugop et al., 2012).

Nasal cartilage growth in mice occurs in two phases. Rapid growth between P0-P14 and from P21 onward (Hall and Precious, 2013; Baddam et al., 2021b) is interrupted by a period of limited to no growth in between. A similar bimodal nasal growth occurs also in humans with significant growth occurring between 3–4 years and 11–12 years (Albert et al., 2019). The onset of septum deviation in BMP7ncko mice prior to the second growth phase coincides with the increased prevalence of NSD in adolescents (Baddam et al., 2020). While the first phase of septum growth is governed by cell proliferation, growth during the second phase occurs predominantly through cell hypertrophy (Baddam et al., 2021b). BMP7 is expressed in and around the nasal cartilage at all stages, with the lowest expression observed at the P14 time-point. Given this cellular and molecular heterogeneity, we investigated three time-points (P0, P14, P30) to understand if and when changes to the nasal cartilage manifest. Discrete changes were already observed at birth when chondrocytes were still immature (Gómez-Picos and Eames, 2015; Baddam et al., 2021b) suggesting that BMP7 controls aspects of early chondrocyte differentiation, although the forming cartilage is histologically inconspicuous until at least P14. The largest proteome and gene expression differences were observed at P14. Substantial apoptosis was accompanied by reduced protein levels for markers promoting chondrocyte hypertrophy (RUNX2 and IHH) and increased presence of proteins inhibiting hypertrophy (BAPX, FRZB, GREM1) in BMP7ncko mice. This picture was changed at P30, where an increase in proteins indicative of chondrocyte hypertrophy (COLX and IHH) was observed. Thus, the earliest changes identified already suggest a change in chondrocyte properties toward an elastic cartilage phenotype. Around P14, when septum growth switches from proliferation to hypertrophic growth, this change leads to catastrophic apoptosis, midfacial hypoplasia, and because of altered chondrocyte properties, septum deviation. Our data is compatible with a transformation of hyaline cartilage to elastic cartilage and a subsequent loss of mechanical resistance. The reduction of collagen fibril network at the deviated side is suggestive of reduced stiffness (Wong et al., 2018). The contralateral increase in collagen fibrils might indicate an attempt to stabilize the septum. Interestingly, both BMP7 and GREM1 (Yu et al., 2017) are expressed at sites of Elastin expression, suggesting that these genes may contribute to chondrocyte remodeling and cartilage specification. Most of the changes were initially observed in the perichondrium rather than mature chondrocytes, the site where cartilage progenitor cells reside (Kaucka et al., 2017). Cell death within the cartilage may activate these chondrocyte progenitor cells to replace dying cells (Seol et al., 2012). These perichondrial cells express MFAP5, another gene found in elastic cartilage (Asnaghi et al., 2020). We propose that these MFAP5 expressing cells in the perichondrium precipitate the proposed switch from hyaline to elastic cartilage. More detailed lineage tracing of perichondrial-derived cells will be required to shed further insights into the mechanism underlying the cartilage switch.

We used quantitative shotgun proteomics to characterize cellular consequences of this change in cartilage properties and understand why chondrocytes might undergo apoptosis. Focusing on cellular metabolism, we found that mTOR, an established suppressor of autophagy (Chen and Long, 2018), was decreased at P14. Several members of the cytochrome P450 (CYP) family (Yoshinari et al., 2004; Mao and Zhang, 2018), which are involved in the maintenance of white adipose tissue, and other proteins involved in retinoic acid signaling and lipid metabolism were increased. BMP7 has an established role in adipocyte lineage determination, promoting brown adipogenesis at the expense of white adipocytes (Schulz and Tseng, 2009). These two adipocyte lineages are characterized by very different cell metabolism, with brown adipocytes specialized in thermogenesis through uncoupling mitochondrial energy production. It is thus possible that BMP7 in nasal chondrocytes similarly controls specification of different cartilage-types.

An increase in autophagy and metabolic changes have been described to delay the progression of OA (Luo et al., 2019). Thus, these two changes might reflect protective mechanisms to delay cartilage degradation in the septum. It is not clear whether all or only a subset of chondrocytes shows these changes, whether these changes occur within the same chondrocyte, and whether these changes are directly associated with the observed cell death. A clue might come from the P30 data where an increase in classical chondrocyte hypertrophy markers (IHH, COLX), as well as an upregulation of proteins involved in glycolysis, was observed. Hollander and Zeng (2019) demonstrated that hypertrophic chondrocytes express higher levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH), two proteins upregulated in P30 BMP7ncko mice. It is possible that the cells surviving at P14 might be those that switched to glycolysis, and the cells with increased lipid metabolism are destined to die. While further studies are required to resolve these possibilities, our data strongly suggest that BMP7 controls early chondrocyte differentiation along different developmental trajectories (hyaline versus elastic cartilage). Whether these trajectories correspond to truly different cell lineages as described for brown/white adipocytes needs to be shown.

It has been shown that BMP7 is not the only BMP controlling adipocyte differentiation. BMP2 is an inducer of white adipose tissue (Blázquez-Medela et al., 2019). BMP2 and BMP7 belong to different BMP subgroups. Whereas the former is the ortholog of Drosophila Melanogaster Decapentaplegic, latter is the ortholog of glass-bottom-boat and belongs to the 60A group (Malik et al., 2020). In BMP7 control septum, BMP2 was dynamically expressed during nasal septum maturation, with peak expression seen at P14, and expression was low at P30. In the BMP7ncko mouse, BMP2 induction at P14 was stunted, but expression was substantially increased at P30. The increase in BMP2 at P30 in BMP7-deficient cartilage might suggest an attempt of molecular compensation. If so, the reduction of BMP2 in BMP7ncko mice would be expected to lead to more severe NSD. BMP2/BMP7 double neural crest-knockout mice die at birth. We thus created BMP2 heterozygous/BMP7ncko mice. The reduction in BMP2 prevented acquisition of elastic markers and partially restored cell metabolism. In primary chondrocytes, BMP2 has been shown to increase glucose metabolism during endochondral ossification (Lee et al., 2018), hypertrophy in chondroprogenitor cells (Caron et al., 2013) and has been associated with cartilage degradation in OA cartilage (Mariani et al., 2014). We thus propose that the balance between BMP2 and BMP7 rather than the individual signals controls chondrocyte metabolism and differentiation. Our findings not only illustrate how metabolic requirements change during chondrocyte maturation, but that metabolic differences themselves appear to be associated with different cartilage properties. Whether altered metabolism drives the change in chondrocyte properties or is a consequence of altered chondrocyte properties remains to be established. Chondrocyte hypertrophy (COLX, IHH) and change to glucose metabolism observed in the deviated septum are hallmarks of knee OA (van der Kraan and van den Berg, 2012). In addition, several other similarities were observed. COL2 and OPN are reduced in both knee OA (Tsolis et al., 2015; Liu et al., 2020) and NSD. COL VI, a pericellular matrix protein upregulated in OA (Alexopoulos et al., 2009) was also increased in NSD. Alterations in the extracellular matrix may affect mechanosensation leading to cellular stress (Tsolis et al., 2015) and might directly contribute to an increase in apoptosis.

WNT signaling controls cell growth, differentiation, motility, and cell metabolism. In cartilage, canonical WNT signaling has been shown to promote chondrocyte hypertrophy (Mariani et al., 2014; Houben et al., 2016; Liu et al., 2016). As BMP and WNT signaling often cross-talk (Choe et al., 2013; Malik et al., 2020), we probed for changes in WNT pathway genes. Loss of BMP7 led to a changed expression of several WNT ligands (increase in WNT6 and WNT7A, decrease in WNT3A), WNT antagonists (increase in FRZB, decrease in DKK1), and overall activation of canonical WNT signaling evidenced by nuclear localization of non-phosphorylated β-catenin (Choe et al., 2013). The reduction in BMP2, in addition to preventing Elastin expression and metabolic changes, also readjusted canonical WNT signaling. Which of these effects is a direct consequence of restored WNT signaling or is the direct result of rebalanced BMP signaling is currently unclear. For instance, septum deviation is associated with increased mechanical strain (Yang et al., 2017), which itself is linked to an increase in canonical WNT signaling (Brunt et al., 2017). However, the rescue of NSD highlights the need to understand how this balanced signaling controls normal nasal and possibly wider midfacial growth. Identifying commonalities and differences between BMP and WNT signaling will be critical to get a better handle on this molecular complexity. Nevertheless, this study clearly establishes the critical involvement of BMP and WNT signaling in the etiology of NSD. The magnitude and timing of alterations in these signaling pathways might determine onset and severity of NSD and its associated symptoms.

In summary, our findings demonstrate that a multifactorial etiology underlies midfacial hypoplasia-associated NSD. At present, it is not clear which of these changes are a direct consequence of lack of BMP7, and which changes develop as consequence. It is also not clear whether cellular changes (e.g., cell metabolism, hypertrophy) or associated tissue level changes (e.g., thinner septum) predispose or lead to septum deviation. The BMP7ncko mouse model presents a genetic basis relevant for cartilage development and pathologies pertaining to not just the nasal septum but hyaline cartilage in general. It also points to the possibility that cartilage type is specified at an early developmental stage and that BMP7 might be a contributing factor. Our data further suggest that cartilage from different origins may share similarities but are differently programmed to meet the requirements of the location the cartilage resides in. The similarities observed in NSD to OA validate to some extent the beneficial outcomes observed when nasal cartilage is transplanted in place of articular cartilage to treat OA. Henceforth, the changes described in BMP7ncko mouse model pre- and post- establishment of septum deviation could be relevant for better understanding of OA and other cartilage pathologies. Significant advances in understanding endochondral ossification and cartilage transdifferentiation into bone have been made; however, it is still not clear how different types of cartilages are specified from chondrocyte progenitors. Understanding cartilage lineage specification will alleviate the clinical challenge of fibrocartilage being formed despite efforts to regenerate hyaline cartilage to treat OA (Armiento et al., 2019). Additionally, cell-based tissue engineering strategies such as autologous chondrocyte implantation (ACI) (Brittberg et al., 1994; Mumme et al., 2016) or its more recent variant, matrix-assisted chondrocyte implantation (MACI) (Behrens et al., 2006; Knutsen et al., 2007; Zheng et al., 2007), to repair focal articular cartilage lesions will benefit strongly from understanding the cellular processes that simultaneously promote hyaline cartilage and mitigate fibrocartilage formation.
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Objective: Articular cartilage of the knee joint is avascular, exists under a low oxygen tension microenvironment, and does not self-heal when injured. Human infrapatellar fat pad-sourced mesenchymal stem cells (IFP-MSC) are an arthroscopically accessible source of mesenchymal stem cells (MSC) for the repair of articular cartilage defects. Human IFP-MSC exists physiologically under a low oxygen tension (i.e., 1–5%) microenvironment. Human bone marrow mesenchymal stem cells (BM-MSC) exist physiologically within a similar range of oxygen tension. A low oxygen tension of 2% spontaneously induced chondrogenesis in micromass pellets of human BM-MSC. However, this is yet to be demonstrated in human IFP-MSC or other adipose tissue-sourced MSC. In this study, we explored the potential of low oxygen tension at 2% to drive the in vitro chondrogenesis of IFP-MSC. We hypothesized that 2% O2 will induce stable chondrogenesis in human IFP-MSC without the risk of undergoing endochondral ossification at ectopic sites of implantation.

Methods: Micromass pellets of human IFP-MSC were cultured under 2% O2 or 21% O2 (normal atmosphere O2) in the presence or absence of chondrogenic medium with transforming growth factor-β3 (TGFβ3) for 3 weeks. Following in vitro chondrogenesis, the resulting pellets were implanted in immunodeficient athymic nude mice for 3 weeks.

Results: A low oxygen tension of 2% was unable to induce chondrogenesis in human IFP-MSC. In contrast, chondrogenic medium with TGFβ3 induced in vitro chondrogenesis. All pellets were devoid of any evidence of undergoing endochondral ossification after subcutaneous implantation in athymic mice.

Keywords: chondrogenesis, adipose tissue, human mesenchymal stem cells, oxygen tension, xenograft, in vivo calcification


INTRODUCTION

Articular cartilage is avascular and exists under a low oxygen tension microenvironment (Lund-Olesen, 1970; Brighton and Heppenstall, 1971a, b). Articular cartilage injuries do not heal spontaneously due to its avascularity and the low mitotic activity of its resident articular chondrocytes (Martin and Buckwalter, 2003). If the injuries are left untreated, they become a risk factor for the early development of osteoarthritis (Muthuri et al., 2011). To this end, a variety of cell-based approaches including autologous chondrocyte implantation and multipotent mesenchymal stem cells (MSC) have been assessed to augment articular cartilage healing and mitigate the onset of osteoarthritis, in particular, knee osteoarthritis (Brittberg et al., 1994, 2001; Peterson et al., 2000; Hwang et al., 2011; Bornes et al., 2014, 2018; Mobasheri et al., 2014; Fellows et al., 2016).

The abundance of MSC in adipose tissue and their ease of accessibility have made adipose-derived MSC a cell source of significant interest for articular cartilage repair (Zuk et al., 2001, 2002; Huang et al., 2004; Fellows et al., 2016; Freitag et al., 2020). Although several studies have demonstrated the in vitro chondrogenesis of adipose-derived MSC with growth factors (i.e., TGFβ1, TGFβ3, and BMP-6) in the absence or presence of low oxygen tension, no study has investigated the potential of low oxygen tension alone to drive the in vitro chondrogenesis of adipose-derived MSC (Zuk et al., 2001; Erickson et al., 2002; Awad et al., 2003; Huang et al., 2004; Wang et al., 2005; Estes et al., 2006; Afizah et al., 2007; Hennig et al., 2007; Khan et al., 2007; Malladi et al., 2007; Mehlhorn et al., 2007; Cheng et al., 2009; Kim and Im, 2009; Martinez-Lorenzo et al., 2009; Diekman et al., 2010; Merceron et al., 2010).

Xu et al. (2007) demonstrated that expansion of adipose-derived MSC under 2% O2 prior to in vitro chondrogenic differentiation in three-dimensional micromass culture under 21% O2 enhanced early chondrogenic differentiation. Xu et al. (2007) concluded that the pre-expansion culture of the adipose MSC under the 2% O2 facilitated the selection of chondroprogenitors. More recently, Marsano et al. (2016) demonstrated the spontaneous in vitro chondrogenesis of bone marrow-derived MSC under a low oxygen tension of 2% O2. Interestingly, both bone marrow- and adipose-derived MSCs physiologically exist in a low oxygen tension microenvironment (Ceradini et al., 2004; Choi et al., 2014). Moreover, during embryonic development, cartilage formation is preceded by MSC condensation in an avascular microenvironment with gross hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α)-mediated signaling involvement (Robins et al., 2005; Provot and Schipani, 2007).

Thus, we ask the question: can low oxygen tension alone drive in vitro chondrogenesis of human adipose-derived MSCs? And will the chondrogenic outcome be hypertrophic in nature with the risk of undergoing endochondral ossification after subcutaneous implantation in an immunodeficient mouse model, as previously demonstrated with chondrogenically differentiated bone marrow MSC (Pelttari et al., 2006)?

In this study, we investigated the chondroinductive potential of low oxygen tension at 2% in human knee infrapatellar fat pad MSC (IFP-MSC). It is noteworthy that in vitro IFP-MSC has been reported to show stronger chondrogenic capacity than bone marrow-, subcutaneous adipose-, and umbilical cord-derived MSC (Ding et al., 2015). Moreover, further stratification of IFP-MSC into perivascular (i.e., pericytes) and non-perivascular (i.e., adventitial cells) subpopulations have revealed the superior chondrogenic capacity of the perivascular fraction (Hindle et al., 2017).

We hypothesized that low oxygen tension or hypoxia (HYP, 2% O2) would induce non-hypertrophic chondrogenesis. Additionally, we hypothesized that the hypoxic culture conditions would produce superior chondrogenesis relative to intermittent reoxygenation (Re-Ox).



MATERIALS AND METHODS


Ethics and Sample Collection

Infrapatellar fat pad (IFP) specimens with non-identifying information of donors were collected from the University of Alberta Hospital. The University of Alberta’s Health Research Ethics Board-Biomedical Panel (Study ID: Pro00018778) waived the need for written informed consent of the donors, as specimens were intended to be discarded in the normal course of the surgical procedures. All animal use and associated procedures were approved and undertaken under the direction and approval of the University of Alberta Animal Care and Use Committee (AUP 0001363).



Isolation and Expansion of Human Infrapatellar Fat Pad Mesenchymal Stem Cells

Tissue from the IFP was collected from male donors ages 21–59 (Table 1) who had experienced acute knee injuries and did not have osteoarthritis. The basic information of the donors is summarized in Table 1. IFP samples were first filtered through a sterile 100-μm cell strainer. We then treated the samples with type II collagenase (0.15% w/v; 300 U/mg solid; Worthington, Lakewood, NJ, United States) in phosphate-buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO, United States) for 1 h at 37°C to release the cells. Next, we filtered the digested tissue using a sterile 100-μm cell strainer (Falcon, BD Biosciences, Franklin Lakes, NJ, United States) to obtain the cell suspension. We neutralized the collagenase in the cell suspension by adding alpha-minimum essential medium (α-MEM) supplemented with 10% v/v heat-inactivated fetal bovine serum (FBS), 100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 1 mM sodium pyruvate (all from Sigma-Aldrich Co.), 100 U/ml penicillin, 100 μg/ml streptomycin, and 0.29 mg/ml glutamine (PSG; Life Technologies, Burlington, ON, Canada). Cells were then isolated by 10 min of centrifugation at 1,500 rpm and then resuspended in PBS. The number of mononucleated cells (MNCs) was then counted first by crystal violet (Sigma-Aldrich) nuclei staining and then by using a hemocytometer.


TABLE 1. IFP-MSC donor information along with cumulative population doubling (CPD).

[image: Table 1]The isolated nucleated cells were then expanded in one of two ways, using the medium described above with 5 ng/ml of fibroblast growth factor-2 (FGF-2) (Neuromics, Minneapolis, MN, United States, Catalog#: PR80001) to maintain the chondrogenic potential of the cells, in normoxia (21% O2; NRX) at 37°C in a humidified incubator with 5% CO2. Method 1: cells were either plated in culture flasks with 125,000 cells per 75 cm2 (donors: 5, 6, 7) at initial seeding and then flasks were duplicated at each passage (i.e., the cells of two flasks would be set up in four flasks and allowed to grow). Method 2: the cells were replated after each passage to have 5,000 cells per cm2 (donors: 1, 2, 3, 4). The nucleated cells grew and adhered for 7 days before the first medium change. After this, the medium was changed twice each week, until the cells were 80% confluent. The adherent IFP-MSC were then detached using 0.05% w/v trypsin-EDTA (Corning, Mediatech, Inc., Manassas, VA, United States) and expanded in normoxia until passage 2 as previously described (Weiss et al., 2017). To achieve this, we first expanded the cells in normoxia (21% O2) and then cultured them in hypoxia (2% O2); the choice to expand them in normoxia initially is to be able to see the effects due more clearly to the culture conditions of hypoxia.



Colony-Forming Unit Fibroblastic Assay

We performed a colony-forming unit fibroblastic assay to ascertain the clonogenic and population doubling characteristics of the IFP-MSC. We plated 500 nucleated cells each in three 100-mm sterile Petri dishes (Becton Dickinson, Mississauga, ON, Canada) and cultured them in NRX with α-MEM supplemented with 10% v/v heat-inactivated FBS, PSG, HEPES, sodium pyruvate, and 5 ng/ml FGF-2 (as above). After 1 week, the non-adherent population was removed by aspiration and the medium was changed twice each week. The culture time used for each IFP-MSC donor was the time needed to reach 80% confluence at P0 and subsequent detachment and splitting to P1 for expansion. The cell colonies were fixed with 10% w/v buffered formalin (3.8% w/v formaldehyde, Anachemia Canada Co., Montreal, QC, Canada), rinsed with PBS (Sigma-Aldrich), and stained with 0.25% w/v crystal violet. We then recorded the number of colonies and used the number of colonies to determine the cell population doubling (CPD; Table 1) of IFP-MSC as described by Solchaga et al. (2010).



In vitro Chondrogenic Differentiation

To test the effects of oxygen and growth factor supplementation on chondrogenic differentiation, we utilized a three-dimensional pellet culture model. After completing passage 2, 0.5 million cells of IFP-MSC were centrifuged for 7 min at 1,500 rpm to make pellets in 1.5 ml sterile conical microtubes (Bio Basic Inc., Markham, ON, Canada.). The pellets were subjected to one of two conditions for the medium (0.5 ml per pellet) during the culture period: with or without TGFβ3 supplementation.

Within each of these two conditions for the medium, the pellets were either cultured in NRX (∼21% O2), HYP (2% O2), or Re-Ox (2% with intermittent exposure to ∼21% O2). During both culture and media changes, the NRX pellets were constantly exposed to ∼21% oxygen tension, and HYP pellets were constantly exposed to 2% oxygen tension in an X3 Xvivo hypoxia workstation (BioSpherix, Parish, NY, United States). The Re-Ox pellets were cultured in 2% oxygen tension but were removed from the hypoxia workstation during media changes and exposed to ∼21% oxygen tension twice per week for 15 min. Pellets in the HYP group were changed with media equilibrated to 2% O2. Pellets in the Re-Ox and NRX groups were changed with media containing 21% O2. All pellets were cultured for 21 days at 37°C in a humidified incubator with 5% CO2, with media changes twice per week (3–4 days apart).

The serum-free media consisted of high glucose DMEM (Sigma-Aldrich) containing 100 units/ml penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine, 10 mM HEPES (Sigma-Aldrich) (all others from Life Technologies), ITS + 1 premix (Corning, Discovery Labware, Inc., Bedford, MA, United States), 100 nM dexamethasone, 365 μg/ml ascorbic acid 2-phosphate, 125 μg/ml human serum albumin, and 40 μg/ml L-proline (all from Sigma-Aldrich). The TGFβ3-supplemented condition had 10 ng/ml transforming growth factor β3 (TGFβ3; ProSpec, East Brunswick, NJ, United States, Catalog#: cyt-113) added to the serum-free media, while the group without TGFβ3 supplementation did not have this added to the media.

For each of the six conditions (± TGFβ3 supplementation and NRX/HYP/Re-Ox), two pellets were set up for each donor for biochemical analysis [glycosaminoglycan (GAG) and DNA analysis], histological analysis, and qPCR. For three (1, 2, 4) of the seven donors, two pellets were set up for each condition for subcutaneous implantation. At the start of the experiment, 0.5 million cells for each donor were suspended in 1 ml of TRIzol (Life Technologies) as a control for monolayer culture gene expression. Medium changes on the pellets were performed twice per week with the same type of serum-free media they were initially cultured in. After 21 days, the pellets were assessed using biochemistry for GAG and DNA content, histology and immunofluorescence for cartilage-specific matrix proteins, and real-time quantitative reverse transcription polymerase chain reaction (qPCR) for gene expression analysis.



Biochemical Analysis for IFP-MSC Chondrogenesis

After chondrogenic culture for 21 days, the pellets were rinsed with 500 μl of phosphate buffered saline (Sigma-Aldrich). The pellets were then digested overnight at 56°C with 250 μl of proteinase K (1 mg/ml in 50 mM Tris with 1 mM EDTA, 1 mM iodoacetamide, and 10 mg/ml pepstatin A; all from Sigma-Aldrich). The GAG content was measured using a spectrophotometer after 1,9-dimethylmethylene blue binding, with chondroitin sulfate used as standard (Sigma-Aldrich). To determine the DNA content, we used the CyQuant cell proliferation assay kit (Invitrogen, Burlington, ON, Canada) with supplied bacteriophage λ DNA as standard.



Histology for IFP-MSC Chondrogenesis

Pellets were taken after chondrogenic culture for 21 days or after chondrogenic culture and subcutaneous implantation for 3 weeks and fixed overnight in 10% (v/v) neutral buffered formalin at 4°C, then put in PBS. The pellets were then dehydrated by serially dipping into ethanol baths of increasing concentration and embedded in paraffin wax. These were then cut into 5-μm-thick sections and stained with 0.01% (w/v) Safranin O and counterstained with 0.02% (w/v) fast green (Sigma-Aldrich) with standard methods to reveal proteoglycan matrix deposition.



Immunofluorescence for IFP-MSC Chondrogenesis

Thick sections at 5 μm of paraffin-embedded pellets were mounted on VWR Microslides Superfrost glass slides (cat# 48311-703), then deparaffinized and rehydrated. The sections for type I, II, and X collagen were next treated with protease XXV (AP-9006-005, Thermo Scientific, Waltham, MA, United States), rinsed with PBS (Sigma-Aldrich), treated with hyaluronidase (H6254, Sigma-Aldrich), and then rinsed with PBS. Samples for collagen X were then treated with 0.2% Triton for 10 min. All samples were blocked for 30 min in 5% (w/v) bovine serum albumin (9998S, Cell Signaling Technology, Danvers, MA, United States) in PBS. For collagen I detection, sections were incubated with primary antibody:rabbit anti-collagen I (CL50111AP-1, Cedarlane, Burlington, ON, United States) (1:200 dilution); for collagen II detection, sections were incubated with primary antibody:mouse anti-collagen II (II-II6B3, Developmental Studies Hybridoma Bank, Iowa City, IA, United States) (1:200 dilution); and for collagen X detection, sections were incubated with primary antibody:rabbit anti-collagen X (58632, Abcam, Cambridge, United Kingdom) using a 1:100 dilution in 4°C overnight. This was followed by incubating collagen I and X slides with goat anti-mouse IgG (H&L Alexa Fluor 488, Abcam) (1:200 dilution) and collagen II slides with goat anti-rabbit IgG (H&L Alexa Fluor 594, Abcam) (1:200 dilution) for 30 min. Sections were then stained with DAPI (4′,6-diamidino-2-phenylindole, Cedarlane) and mounted with glycerol:PBS (1:1). The slides were visualized by an Eclipse Ti-S microscope (Nikon Canada, Mississauga, Canada).



Gene Expression Analysis

For pellets that were cultured with TGFβ3 supplementation, we ground the pellets with Molecular Grinding Resin (G-Biosciences, Saint Louis, MO, United States, 786-138PR) extracted total RNA using Tri-Reagent (Sigma-Aldrich). Due to the considerably smaller size of the pellets cultured without TGFβ3 supplementation, we ground the pellets using the same grinding resin as above and used the RNeasy mini kit (Qiagen, Toronto, ON, Canada); 100 ng of the isolated total RNA was reverse transcribed into cDNA for qPCR analysis using the gene-specific primers listed in Supplementary Table 1. Expression of genes of interest was normalized to the mean expression level of reference genes YWHAZ, β-actin, and B2M (Foldager et al., 2009; Munir et al., 2014) and presented using the 2ΔCt method (Schmittgen and Livak, 2008).



Subcutaneous Implantation in Nude Mice

To evaluate the phenotypic stability and potential for ossification, we implanted pellets subcutaneously at the back of nude mice for 21 days. Four small incisions were made subcutaneously in the back (two cranial and two caudal) of athymic male nude CD-1 mice (n = 5, Charles River, Wilmington, MA, United States). These incisions were closed by sutures and cyanoacrylate tissue adhesive. The pellets were placed in duplicates with pellets from the same donor with the same culture conditions (medium and oxygen condition) together; altogether 20 groups (40 pellets) were implanted. After the 21 days of implantation, the constructs were recovered while the animals were under anesthesia and then euthanized. There were no adverse events recorded with the five mice, and 19 of the 20 groups of implanted pellets were recovered; one group was unable to be found during harvest and was not recovered. After removing the pellets from the animal, we removed excess mouse connective tissue from the pellets using a scalpel. The samples were then fixed in 10% (w/v) formalin for 24 h and paraffin embedded as described above for histology. To reveal proteoglycan matrix deposition, we stained 5-μm-thick sections with 0.01% (w/v) Safranin O and counterstained with 0.02% (w/v) fast green (Sigma-Aldrich). To assess the phenotypic stability, we looked for signs of bone formation by deposition of calcium phosphate mineral via Alizarin Red staining (2% w/v, pH 4.2, Sigma-Aldrich).



Alizarin Red S Staining

Alizarin Red staining was used to visualize calcium phosphate mineral formation in pellets that had been cultured for 21 days and then implanted in a nude mouse for 21 days. The 5-μm-thick sections of paraffin-embedded pellets were deparaffinized by serially dipping into ethanol baths of increasing concentration, then rehydrating with distilled water, and transferred to Alizarin Red S solution (pH 4.2) for 5 min. Sections were then dehydrated with acetone, treated with an acetone:xylene substitute (1:1) solution, cleared in xylene substitute, and mounted.



Statistical Analysis

A total of seven independent experiments were performed with specimens from seven donors for IFP-MSC. Unless stated specifically, numerical data distribution represents data from these donors each measured at least in independent duplicates and is presented as a bar graph of the mean ± standard deviation. Statistical analyses were performed using SPSS (version 26; IBM Canada Ltd., Markham, ON, Canada), and boxplots were generated using Excel in Microsoft Office 365 ProPlus. Data were tested for normality using the Shapiro–Wilk test, and Levene’s test was used to assess homogeneity of error variances. Statistical differences between the measured parameters of pellets formed. The relationship between measured parameters was determined by Spearman rho correlation coefficient based on confirmation of non-normality of data distribution. Statistically significant differences between multiple groups were assessed by Kruskal–Wallis non-parametric test based on significance of the Levene’s test. Significance was considered when p < 0.05.



RESULTS


Hypoxia Alone Did Not Induce Chondrogenic Matrix Accumulation in IFP-MSC

After 3 weeks of culture in chondrogenic media supplemented with and without TGFβ3, pellets were harvested and in vitro chondrogenesis was first assessed histologically by Safranin O staining for cartilaginous sulfated GAG extracellular matrix (ECM) detection (Figure 1). All pellets appeared spherical, opaque, smooth, and glistening regardless of TGFβ3 supplementation (Figure 1A). The pellets cultured in the absence of TGFβ3 regardless of the oxygen tension during in vitro culture were negative for Safranin O staining (Figure 1B). In contrast, all pellets cultured in the presence of TGFβ3 were positive for Safranin O staining (Figure 1). Moreover, the pellets cultured with TGFβ3 under a constant hypoxia (i.e., 2% oxygen tension) had more intense Safranin O staining (Figure 1B).


[image: image]

FIGURE 1. Gross morphology of IFP-MSC pellets after 21 days of in vitro culture; Safranin O histochemical staining and biochemical assay for GAG and DNA content. (A) Gross morphology of pellets, (B) Safranin O staining, (C) total GAG content, (D) total DNA content, and (E) GAG/DNA content. Comparing pellets for seven donors done in duplicates (N = 7, n = 14 per experimental group) after 21 days of in vitro culture under six different conditions. Bar data are mean ± standard deviation. Statistical comparisons were based on Kruskal–Wallis test between without TGFβ3 (i.e., –T3) and with TGFβ3 (i.e., +T3) groups within an oxygen tension group. ∗Indicates statistical difference between compared groups with p-value < 0.05.


In order to quantitate the amount of GAG matrix accumulated in pellets across the different experimental groups, the GAG assay (Farndale et al., 1986) was performed. The GAG amounts measured in all pellets formed after culture in media supplemented with TGFβ3 were significantly higher relative to pellets cultured without TGFβ3 supplementation (Figure 1C). The mean GAG content of the pellets cultured under constant hypoxia in the presence of TGFβ3 was 7.8-fold higher (p = 0.027) relative to the pellets without TGFβ3 supplementation under hypoxia (Figure 1C). Similarly, under constant normoxia, the pellets cultured with TGFβ3 supplementation were 9.4-fold higher (p = 0.001) in mean GAG content relative to those without TGFβ3 (Figure 1C). Moreover, the highest fold change in mean GAG content between pellets cultured with and without TGFβ3 occurred in the hypoxia with reoxygenation experimental group (Figure 1C). The pellets with TGFβ3 supplementation had a 10.2-fold higher (p = 0.002) mean GAG content compared with the pellets without TGFβ3 supplementation (Figure 1C).

To determine if cell proliferation may have accounted for the differences between pellets in experimental groups with and without TGFβ3 supplementation, the DNA contents of all pellets were determined (Figure 1D). There was no significant difference in mean DNA contents between pellets cultured in the absence and presence of TGFβ3 under constant hypoxia (Figure 1D). Similarly, there was no significant difference between the mean DNA contents of pellets cultured in the absence and presence of TGFβ3 under hypoxic culture conditions with intermittent reoxygenation periods during in vitro culture (Figure 1D). In contrast, the mean DNA content of the pellets cultured with TGFβ3 supplementation under constant normoxia was significantly higher (1.6-fold; p = 0.021) than in pellets under normoxia but without TGFβ3 supplementation (Figure 1D).

As a metric for evaluating the chondrogenic capacity of the pellets formed after in vitro chondrogenesis of the IFP-MSC, we determined the GAG/DNA ratio for each pellet (Barbero et al., 2004). There was no significant difference between GAG per DNA contents of the pellets cultured under constant hypoxia regardless of the presence of TGFβ3 (Figure 2). However, there were significant differences between the GAG per DNA content of the pellets cultured with and without TGFβ3 supplementation in the constant normoxia and hypoxia with intermittent reoxygenation experimental groups (Figure 1E). The mean GAG per DNA content of the pellets with TGFβ3 supplementation under constant normoxia was 4.4-fold higher (p = 0.012) than in the pellets without TGFβ3. Similarly, the mean GAG per DNA contents of the pellets with TGFβ3 supplementation vs. the GAG per DNA contents of pellets without TGFβ3 supplementation under intermittent reoxygenation culture conditions was significantly 5.4-fold higher (p = 0.011) (Figure 1E).


[image: image]

FIGURE 2. Experimental setup for isolation, expansion, in vitro chondrogenesis, and in vivo implantation of infrapatellar fat pad-derived MSC (IFP-MSC) in a pellet culture (5 × 105 cells/pellet). Subcutaneous implantation of four groups of cultured pellets in duplicates (same donor) in the back of a male nude mice for 21 days; each group from the same donor was cultured in a different manner than the others (± TGFβ3 supplementation and HYP/NRX/Re-Ox).




Induction of Hypoxia-Responsive Genes Is Independent of TGFβ3

The expression of VEGF, P4Hα1, and LOX as hypoxia-responsive genes increased all pellets regardless of whether they were cultured in the presence or absence of chondrogenic media supplemented with TGFβ3 (Figures 3A–C). Furthermore, there was no significant difference in expression of the three genes between the pellets cultured in the presence or absence of TGFβ3. Moreover, the expression of HIF1α strongly correlated with the expression of VEGF, P4Hα1, and LOX (Figures 3D–F). The expression of HIF1α strongly correlated with the gene expressions of VEGF (Spearman ρ = 0.871; p-value = 2.93 × 10–13; Figure 3D), P4Hα1 (Spearman ρ = 0.872; p-value = 2.54 × 10–13; Figure 3E), and LOX (Spearman ρ = 0.856; p-value = 9.38 × 10–13; Figure 3E).


[image: image]

FIGURE 3. Induction of a biased panel of hypoxia-inducible genes and Spearman correlation plots with hypoxia-inducible factor-1α (HIF1α) expression in IFP-MSC pellets. Fold change of mRNA expression of VEGF, P4Hα1, and LOX for seven donors with independent duplicates (N = 7, n = 14 per experimental group) under hypoxia (2% O2) after normalization to the same gene expression under normoxia (21% O2): (A) vascular endothelial growth factor (VEGF), (B) prolyl-4-hydroxylase-α1 (P4Hα1), and (C) lysyl oxidase (LOX). Spearman correlation of HIF1α mRNA with (D) VEGF, (E) P4Hα1, and (F) LOX. The geometric mean of three housekeeping genes was used for initial normalization: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ), β-actin (β-actin), and β-2-microglobulin (B2M) were used. Bar data are mean ± standard deviation. Statistical comparisons were based on unpaired Student’s t-test between no TGFβ3 (i.e., –T3) and with TGFβ3 (i.e., +T3) groups.




Chondrogenic Gene Induction Is Only Observed With TGFβ3 Supplementation

The expression of a panel of chondrogenic genes including ACAN, COL1A2, COL2A1, and SOX9 was evaluated in the pellets formed from IFP-MSC after 3 weeks of in vitro chondrogenic culture (Figure 4). All pellets formed in the presence of chondrogenic media supplemented with TGFβ3 displayed a significant mRNA expression of ACAN, COL1A2, COL2A1, and SOX9 regardless of the oxygen tension during in vitro culture (Figure 4). Under constant hypoxia, the mean expression of ACAN in the pellets cultured with TGFβ3 supplementation was 78-fold higher (p = 0.005) than in pellets without TGFβ3 (Figure 4A). Furthermore, under constant normoxia, TGFβ3 induced a significant 429-fold higher mean ACAN expression in IFP-MSC pellets relative to pellets without TGFβ3 supplementation (Figure 4A). The mean ACAN expression in pellets with TGFβ3 under hypoxia with intermittent reoxygenation was 62-fold higher (p = 0.024) relative to pellets under the same oxygen tension but without TGFβ3 supplementation (Figure 4A).
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FIGURE 4. Chondrogenic gene expression and immunofluorescence of types I and II collagen. Relative mRNA expression of (A) aggrecan (ACAN), (B) type I collagen (COL1A2), (C) type II collagen (COL2A1), and (D) SRY-Box transcription factor 9 (SOX9) for seven donors with independent duplicates (N = 7, n = 14 per experimental group). Gene expression was normalized to the geometric mean of three housekeeping genes (YWHAZ, β-actin, and B2M). Bar data are mean ± standard deviation. Statistical comparisons were based on Kruskal–Wallis test between without TGFβ3 (i.e., –T3) and with TGFβ3 (i.e., +T3) groups within an oxygen tension group. ∗p-value < 0.05; ∗∗p-value < 0.01. (E) Immunofluorescence (IF) for collagens I and II and DAPI for cell nuclei. All immunostained pellet sections were prepared at 5 μm.


The mean expression of COL1A2, COL2A1, and SOX9 similarly followed the same trend as ACAN in the pellets with and without TGFβ3 supplementation (Figures 4B–D). COL1A2 expression was fourfold higher (p = 0.007) in pellets with TGFβ3 supplementation relative to pellets without TGFβ3 under constant hypoxia. Under constant normoxia, the mean expression of COL1A2 was fivefold higher (p = 0.001) in pellets with TGFβ3 relative to pellets without TGFβ3 (Figure 4B), while under hypoxia with intermittent reoxygenation, the mean expression of COL1A2 in pellets with TGFβ3 supplementation was fourfold higher (p = 0.010) than in pellets without TGFβ3 supplementation (Figure 4B). The mean expression of COL2A1 in pellets with TGFβ3 relative to pellets without TGFβ3 supplementation was ∼13,000-fold higher (p = 0.027) under constant hypoxia (Figure 4C). Under constant normoxia, the mean expression of COL2A1 in pellets with TGFβ3 supplementation was 7,413-fold higher (p = 0.002) compared with pellets without TGFβ3 (Figure 4C). The mean expression of COL2A1 in pellets with TGFβ3 treatment was ∼2,875-fold higher (p = 0.034) relative to pellets without TGFβ3 treatment under hypoxia with intermittent reoxygenation (Figure 4C). The mean expression of SOX9 in pellets treated with TGFβ3 was 13-fold higher (p = 0.001) under constant hypoxia, 9.7-fold higher (p = 0.007) under constant normoxia, and ∼17-fold higher (p = 4 × 10–4) under hypoxia with intermittent reoxygenation, respectively, relative to pellets without TGFβ3 treatment (Figure 4D).



COLII Immunostaining but Not COLI Is Observed in Pellets With TGFβ3 Supplementation

The pellets were fixed, paraffin wax embedded, and sectioned for immunostaining for types I (COLI) and II (COLII) collagen proteins and DAPI for cell nuclei identification (Figure 4E). COLI immunostaining along with DAPI staining was present in all pellets regardless of the presence of TGFβ3 and the oxygen tension during in vitro pellet culture (Figure 4E). In contrast, COLII was observed in pellets that had been cultured in the presence of TGFβ3 supplementation during in vitro culture (Figure 4E).



Hypertrophic Chondrogenesis Gene Induction Was Only Observed With TGFβ3 Supplementation

The expression of a panel of hypertrophic chondrogenesis-related genes including COL10A1, IHH, RUNX2, and ALPL was evaluated in IFP-MSC pellets after 3 weeks of in vitro chondrogenesis (Figure 5). The mean expression of COL10A1 was 5,550-fold higher (p = 0.034) in pellets treated with TGFβ3 relative to those without TGFβ3 treatment under constant hypoxia (Figure 5). Similarly, the mean expression of COL10A1 was 5,155-fold higher (p = 0.002) in pellets with TGFβ3 supplementation relative to those without supplementation under constant normoxia (Figure 5A). However, there was no statistical difference between the mean expression of COL10A1 in pellets with and without TGFβ3 treatment under hypoxia with intermittent reoxygenation during in vitro culture (Figure 5A). The mean expression of IHH and ALPL was not significantly different between pellets with and without TGFβ3 supplementation within the same oxygen tension and across all experimental groups (Figures 5B,D). The mean expression of RUNX2 in pellets with TGFβ3 supplementation under constant hypoxia was not significantly different from those without TGFβ3 supplementation (Figure 5C). However, the mean expression of RUNX2 in the pellets treated with TGFβ3 under constant normoxia was significantly 6.4-fold higher (p = 0.014) than in the pellets without TGFβ3 supplementation (Figure 5C). Similarly, the mean expression of RUNX2 was significantly 3.1-fold higher in pellets treated with TGFβ3 relative to those without TGFβ3 treatment under hypoxia with intermittent reoxygenation (Figure 5C).
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FIGURE 5. Hypertrophic chondrogenesis marker gene expression and immunofluorescence of type X collagen. Relative mRNA expression of (A) type X collagen (COL10A1), (B) Indian Hedgehog (IHH), (C) Runt-related transcription factor 2 (RUNX2), and (D) alkaline phosphatase (ALPL) for seven donors with independent duplicates (N = 7, n = 14 per experimental group). Gene expression was normalized to the geometric mean of three housekeeping genes (YWHAZ, β-actin, and B2M). Bar data are mean ± standard deviation. Statistical comparisons were based on Kruskal–Wallis test between without TGFβ3 (i.e., –T3) and with TGFβ3 (i.e., +T3) groups within an oxygen tension group. ∗p-value < 0.05; ∗∗p-value < 0.01. (E) Immunofluorescence (IF) for type X collagen and DAPI for cell nuclei. All immunostained pellet sections were prepared at 5 μm.




COLX Immunostaining Is Observed in Pellets With and Without TGFβ3 Supplementation

The pellets were fixed, paraffin wax embedded, and sectioned as before but tested immunofluorescently for type X (COLX) collagen and DAPI for cell nuclei identification (Figure 5E). COLX immunostaining was present in all pellets regardless of TGFβ3 supplementation and the oxygen tension during in vitro culture (Figure 5E). The COLX staining was diffusely distributed across the pellets formed with TGFβ3 supplementation during in vitro culture. In contrast, the COLX staining in the pellets without TGFβ3 supplementation appeared to be densely distributed (Figure 5E).



TGFβ1 and TGFβ3 Genes Are Induced but Not TGFβ2 in Pellets With TGFβ3 Supplementation

Hypoxia at 2% O2 induced in vitro chondrogenesis of bone marrow-derived mesenchymal stem cells (BM-MSC) in the absence of exogenous TGFβ3. The induction was associated with significant upregulation of TGFβ1 expression (Marsano et al., 2016). We therefore investigated the gene expression of the three isoforms of TGFβ in pellets across the different experimental groups (Figure 6). The mean expression of TGFβ1 and TGFβ3 was significantly higher in pellets formed with TGFβ3 supplementation during culture relative to pellets without exogenous TGFβ3 regardless of the oxygen tension (Figures 6A,C). However, TGFβ2 expression was not statistically different across experimental groups (Figure 6B). The mean expression of TGFβ1 was significantly higher (3.3-fold; p = 0.007) in pellets with TGFβ3 under constant hypoxia relative to those without TGFβ3 supplementation (Figure 6A). Similarly, under constant normoxia, the mean expression of TGFβ1 was significantly higher (4.4-fold; p = 0.001) in pellets with TGFβ3 supplementation compared with pellets without the supplementation (Figure 6A). A similar trend also continued in pellets cultured under hypoxia with intermittent reoxygenation. The mean expression of TGFβ1 in pellets with TGFβ3 supplementation was 3.8-fold higher (p = 0.002) relative to the pellets without TGFβ3 supplementation (Figure 6A). The mean expression of TGFβ3 was 5.4-fold higher (p = 0.015) under constant hypoxia, 5.9-fold higher (p = 0.006) under constant normoxia, and 5.2-fold higher (p = 0.004) under hypoxia with intermittent reoxygenation in pellets supplemented with exogenous TGFβ3 during culture relative to pellets under the respective oxygen conditions but without TGFβ3 supplementation (Figure 6C).
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FIGURE 6. Induction of the gene expression of transforming growth factor-β (TGFβ) isoforms in IFP-MSC pellets after 21 days of in vitro culture. Relative mRNA expression of (A) TGFβ1, (B) TGFβ2, and (C) TGFβ3 for seven donors with independent duplicates (N = 7, n = 14 per experimental group). Gene expression was normalized to the geometric mean of three housekeeping genes (YWHAZ, β-actin, and B2M). Bar data are mean ± standard deviation. Statistical comparisons were based on Kruskal–Wallis test between without TGFβ3 (i.e., –T3) and with TGFβ3 (i.e., +T3) supplementation groups within an oxygen tension group. ∗p-value < 0.05; ∗∗p-value < 0.01.




Normoxia-Cultured Pellets in the Presence of TGFβ3 Retained Chondrogenic Phenotype in vivo

The pellets from the different pretreatment groups differed in gross appearance after 3 weeks of subcutaneous implantation in mice (Figure 7A). Except for the pellets that were precultured under normoxia in the presence of TGFβ3 which appeared opaque, the remaining pellets appeared somewhat translucent (Figure 7A). The pellets that were precultured in the presence of TGFβ3 under hypoxia and normoxia were positive for Safranin O but not the pellets that underwent intermittent reoxygenation (Figure 7B). Moreover, except for the pellets that were precultured under normoxia in the presence of TGFβ3, there was trace to no COLII immunofluorescence in the rest of the pellets (Figure 7C and Supplementary Figure 1). All pellets were positive for COLI immunofluorescence albeit with varied relative fluorescence unit (Figure 7C and Supplementary Figure 1).
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FIGURE 7. Gross morphology of IFP-MSC pellets after 3 weeks of in vivo implantation in nude mice; Safranin O histochemical staining and immunofluorescence (IF) for types I and II collagen. (A) Gross morphology of pellets; (B) Safranin O staining; (C) IF for collagen I, II, and DAPI, for cell nuclei (×200 magnification). All Safranin O and immunostained pellet sections were prepared at 5 μm.




Collagen X Is Present but No Calcification in All in vivo Implanted Pellets

All pellets retained type X collagen (COLX) deposits after 3 weeks of implantation in mice but with varied levels between experimental groups (Figure 8A and Supplementary Figure 2). There was little to no evidence of calcification in the pellets based on the lack of Alizarin Red S staining after 3 weeks of subcutaneous implantation in mice (Figure 8B).
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FIGURE 8. Immunofluorescence (IF) and Alizarin Red S histochemical analysis of IFP-MSC pellets after 3 weeks of in vivo implantation in nude mice. (A) IF for collagen X and DAPI for cell nuclei; (B) Alizarin Red S staining for calcification. All immunostained and Alizarin Red S pellet sections were prepared at 5 μm.




Principal Component Analysis Shows a Predominantly Hypertrophic Chondrogenesis

Principal component analysis (PCA) was used to summarize pooled biochemical and gene expression data and determine the relationships between the measured variables (Figure 9). Initial PCA generated a four-component solution with eigenvalues exceeding 1: PC1, PC2, PC3, and PC4. The Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy to implement a PCA was 0.570. However, two of the components (i.e., PC3 and PC4) accounted for less than 10% of the variance in the pooled data, and the remaining two—PC1 and PC2—accounted for 50 and 13%, respectively. Therefore, the PCA was performed again to extract a two-component solution of PC1 and PC2. The KMO measure of sampling adequacy remained unchanged and CPD was equally aligned to PC1 and PC2. Therefore, CPD was removed as a variable and the PCA was ran again for a two-component solution. The KMO was 0.689 (Table 2). PC1 and PC2 accounted for 53 and ∼14% of the variance in the pooled data, respectively. PC1 was largely characterized by metrics of chondrogenesis: GAG, GAG/DNA, ACAN, COL1A2, COL2A1, and SOX9. In contrast, PC2 was characterized by variables associated with hypertrophic chondrogenesis: IHH, COL10A1, and ALPL (Table 3). Moreover, TGFβ1 correlated with PC2, while TGFβ2 and TGFβ3 aligned more closely with PC1 than PC2 (Table 3).
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FIGURE 9. A varimax rotated plot of a two-component solution of principal component analysis of measured variables. Measured variables are as follows: ACAN, age, ALPL, COL1A2, COL2A1, COL10A1, DNA, GAG, GAG/DNA (GAGDNA), IHH, RUNX2, SOX9, TGFβ1, TGFβ2, and TGFβ3. Principal component 1 (PC1) is on the x-axis and principal component 2 (PC2) is on the y-axis. The position of each variable on the plot indicates the degree to which it loads on the two different principal components.



TABLE 2. Kaiser–Meyer–Olkin and Bartlett’s test for principal component analysis (PCA).
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TABLE 3. Principal component analysis (PCA) correlation matrix.

[image: Table 3]


DISCUSSION

The IFP represents an arthroscopically accessible source of MSC for the repair of articular cartilage defects due to the high proliferative and chondrogenic potential of IFP-MSC within it (Wickham et al., 2003; Khan et al., 2007). However, in vitro chondrogenic protocols for IFP-MSC are either a direct transfer or a variant of protocols developed for BM-MSC and involve exogenous additions of TGFβ (Johnstone et al., 1998; Wickham et al., 2003; Khan et al., 2007; Buckley et al., 2011; Buckley and Kelly, 2012). In this study, we explored a low oxygen tension (hypoxia) of 2% as a driver of chondrogenic differentiation of IFP-MSC. We had hypothesized that 2% O2 would induce chondrogenesis in the IFP-MSC pellets based on the findings of Marsano et al. (2016) with FGF2-amplified human BM-MSC, which demonstrated that hypoxia at 2% O2 alone was sufficient to induce the in vitro chondrogenesis of the BM-MSC. We embarked to test the hypothesis using the pellet model of in vitro chondrogenesis MSC both in the presence and absence of TGFβ3 (Johnstone et al., 1998; Marsano et al., 2016).

Firstly, we demonstrated and validated the reality of hypoxia signaling in our pellet model under 2% O2 atmosphere. Our results showed that the IFP-MSC experienced a significant induction of hypoxia-responsive gene expression (HRE) of VEGF, PH4α1, and LOX as proof that the IFP-MSC experienced hypoxia relative to control IFP-MSC at 21% O2 (Semenza, 2001; Myllyharju, 2008; van Vlimmeren et al., 2010; Makris et al., 2014). Moreover, the expression of HIF1α correlated positively with the expression of the HREs, suggesting that the transcriptional activity of HIF1 was involved in the hypoxic response of the FGF2-amplified human IFP-MSC (Semenza, 2001).

We confirmed in vitro chondrogenesis or the lack of it through gene expression of chondrogenic markers, biochemical (i.e., GAG/DNA) and histological assessments of cartilage-specific matrix (i.e., Safranin O, COLI, II, and X) in the microtissue pellets of the human IFP-MSC. Overall, our findings demonstrated that 2% O2 alone was inadequate to induce chondrogenesis in FGF2-expanded human IFP-MSC. The reason for this may be primarily due to the lack of induction of TGFβ1 or TGFβ3 by the 2% O2, relative to the pellets of the same FGF2-expanded human IFP-MSC which underwent chondrogenesis in the presence of TGFβ3 supplementation (Figures 6A,C). Mechanistically, Marsano et al. (2016) had demonstrated that pure 2% O2 induced TGFβ1 expression to affect the in vitro chondrogenesis of FGF2-expanded human BM-MSC without TGFβ3 supplementation. In this study, we observed significant induction of TGFβ1 and TGFβ3 mRNA along with evidence of chondrogenesis in the pellets of FGF2-expanded human IPF-MSC but only in the presence of TGFβ3 supplementation.

Thus, our findings suggest that the drivers of the in vitro chondrogenesis of the FGF2-expanded human IFP-MSC involved both TGFβ1- and TGFβ3-mediated signaling. Moreover, PCA revealed that TGFβ1 and TGFβ3 induction correlated more strongly with PC2 and PC1, respectively. Given that PC2 is characterized by the key markers/metrics of unstable hypertrophic chondrogenesis (IHH, COL10A1, and ALPL) (van der Kraan and van den Berg, 2012), while PC1 correlated more strongly with the markers of stable chondrogenesis (SOX9, ACAN, COL2A1, GAG, and GAG/DNA), it opens the perspective that selective inhibition of TGFβ1 during the in vitro chondrogenesis of FGF2-expanded human IFP-MSC under 2% O2 may result in stable chondrogenesis rather than to unstable hypertrophic chondrogenesis. However, the selective TGFβ1 inhibitor must outperform the local and high affinity interactions between TGFβ1 and its heteromeric TGFβ receptor complex (Bedinger et al., 2016; Martin et al., 2020).

The premature induction of markers of chondrocyte hypertrophy-related molecules such as type X collagen (COL10A1) and matrix metalloproteinase 13 (MMP13) prior to type II collagen (COL2A1) in human BM-MSC undergoing in vitro chondrogenesis in the presence of TGFβ3 correlated with the transformation of the chondrogenically induced human BM-MSC to bone-like tissue after 4–6 weeks of subcutaneous implantation in immunodeficient mice (Pelttari et al., 2006). While this study did not include a time course evaluation of the expression of type II collagen and type X collagen prior to the subcutaneous implantation of the chondrogenically induced IFP-MSC in immunodeficient mice, it revealed some mixed findings of Pelttari et al. (2006).

Our data supported the retention of Safranin O-positive proteoglycan and type II collagen matrix after in vivo implantation but only in the context of pellets formed under 21% O2 with TGFβ3 supplementation (Figures 7B,C), as reported also by Pelttari et al. (2006). There was retention of Safranin O-positive proteoglycan matrix after in vivo implantation of the pellets formed under hypoxia in the presence of TGFβ3 (Figures 7B,C), but this lacked the initial deposits of type II collagen prior to the implantation (Figure 4E). The mechanism underlying these findings is unclear but seem to suggest that the oxygen tension during the in vitro chondrogenesis of IFP-MSC may impact the stability of engineered cartilage in vivo. One possibility may be related to hypoxia-induced expression of the chemotactic agent, stromal derived factor-1 (SDF-1), which has been shown to facilitate the recruitment of inflammatory cells such as monocyte/macrophages, leading to subsequent breakdown of cartilage matrix (Hitchon et al., 2002; Ceradini et al., 2004; Schantz et al., 2007; Elkington et al., 2009; Lau and Wang, 2011; Sánchez-Martín et al., 2011). However, the existence of SDF-1 and its potential role in the loss of the type II collagen in the ECM of the IFP-MSC pellets formed under 2% O2 with TGFβ3 supplementation need to be verified.

In contrast to the findings of Pelttari et al. (2006), there was no evidence of calcification of the pellets in this study after subcutaneous implantation regardless of whether the IFP-MSC pellets were chondrogenically stimulated under 21% O2 or 2% O2 in the presence of TGFβ3 supplementation. This finding was unexpected and even surprising given the presence of type X collagen in the pellets. Type X collagen is known to bind calcium and participate in the calcification of growth plate cartilage during endochondral ossification (Kirsch and von der Mark, 1991). However, it is worthy of mention that the induction and deposition of type X collagen in the IFP-MSC pellets lacking chondrogenic induction was reported in the cell culture-amplified human BM-MSC (Barry et al., 2001; Tuli et al., 2003). This suggests that the mechanisms underlying type X collagen expression in MSC from bone marrow and adipose tissue are perhaps similar and independent of chondrogenic differentiation. Therefore, the association of type X collagen expression in in vitro cultured MSC with ectopic calcification may be more complex than previously thought. Moreover, there is the possibility that the 3 weeks of ectopic implantation of the pellets in this study vs. the 4–6 weeks of implantation by Pelttari et al. (2006) may have been a factor in the lack of observed calcification. It is also noteworthy that the human BM-MSC in the study of Pelttari et al. (2006) were sourced from patients at late stage of hip osteoarthritis, which Mwale et al. (2006) also demonstrated to express type X collagen prior to chondrogenic stimulation.

In conclusion, low oxygen tension of 2% O2 alone was unable to induce chondrogenesis in micromass pellet cultures of IFP-MSC. This finding contrasts with the findings of Marsano et al. (2016) which demonstrated that the same oxygen tension was capable of inducing chondrogenesis in pellet cultures of human BM-MSC. Moreover, the cartilage microtissues formed under normoxia with TGFβ3 supplementation retained their chondrogenic phenotype in vivo relative to their hypoxia counterparts. However, given the existence of two distinct populations of IFP-MSC within the IFP and their different chondrogenic potential (Hindle et al., 2017), further investigation is merited on the chondroinductive potential of low oxygen tension on the distinct populations of IFP-MSC.
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Knee osteoarthritis (KOA) is the most common form of joint degeneration with increasing prevalence and incidence in recent decades. KOA is a molecular disorder characterized by the interplay of numerous molecules, a considerable number of which can be detected in body fluids, including synovial fluid, urine, and blood. However, the current diagnosis and treatment of KOA mainly rely on clinical and imaging manifestations, neglecting its molecular pathophysiology. The mismatch between participants’ molecular characteristics and drug therapeutic mechanisms might explain the failure of some disease-modifying drugs in clinical trials. Hence, according to the temporal alteration of representative molecules, we propose a novel molecular classification of KOA divided into pre-KOA, early KOA, progressive KOA, and end-stage KOA. Then, progressive KOA is furtherly divided into four subtypes as cartilage degradation-driven, bone remodeling-driven, inflammation-driven, and pain-driven subtype, based on the major pathophysiology in patient clusters. Multiple clinical findings of representatively investigated molecules in recent years will be reviewed and categorized. This molecular classification allows for the prediction of high-risk KOA individuals, the diagnosis of early KOA patients, the assessment of therapeutic efficacy, and in particular, the selection of homogenous patients who may benefit most from the appropriate therapeutic agents.
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INTRODUCTION

Osteoarthritis (OA) is a common and disabling condition globally, within which knee OA (KOA) accounts for a large proportion and manifests several symptoms that weaken the quality of life, such as pain, stiffness, dysfunction, and even deformity (Martel-Pelletier et al., 2016). Combined with imaging methods, diagnosis for KOA is made on the basis of symptom assessment and a brief physical examination (Hunter and Bierma-Zeinstra, 2019). Plain radiograph is widely used to assess the Kellgren-Lawrence (KL) composite score, and magnetic resonance imaging (MRI) is usually performed to assess the cartilage, synovium and subchondral bone lesions. However, these symptomatic, physical and imaging methods are insensitive to reflect early pathophysiology (Menashe et al., 2012). Besides, current treatment of KOA highly relies on the identification of clinical information and, consequently, the evaluation of therapeutic efficacy is largely based on clinical, and frequently rater-dependent, outcomes (Figure 1A).
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FIGURE 1. Clinical information-based and molecule-based diagnosis and treatment algorithm of KOA. (A) In the clinical information-based KOA diagnosis and treatment algorithm, there is no symptoms, signs, and imaging information for pre-KOA. In early KOA, early symptoms and mild imaging results can be acquired. In progressive and late-stage KOA, the diagnosis is comparatively easy due to obvious clinical manifestations. Treatment decision making principally depends on clinical appearances and in turn, the evaluation of therapeutic efficacy is largely based on clinical outcomes. (B) In the molecule-based KOA diagnosis and treatment algorithm, the detection of KOA risk factors-related molecules in body fluids provides opportunity for the prediction of high-risk KOA individuals, and subsequently the preventive strategies. Although clinical information in early and progressive stage are acquirable, disease corresponding molecules permit the stratification of homogenous individuals and the classification of KOA into several subtypes. The molecular classification of KOA may help to reveal the pathogenesis of KOA, explore the molecule-based treatment, and further assess the therapeutic efficacy of treatment. For end-stage KOA, TKA might still be the best option. KOA, knee osteoarthritis; TKA, total knee arthroplasty.


Among the drugs applied clinically, some of them show acceptable outcomes in pain relief and joint function improvement, whereas, a fair portion of them with unclear results (Sharma, 2021). Clinical guidelines regarding the use of some pharmaceutics are usually inconsistent (Nguyen et al., 2016). This divergence may be due to the differences between clinical trials, in which the biologically heterogeneous subjects are included. In addition to the completed clinical trials, the inclusion criteria for ongoing clinical trials starting from 2016 to 2021 to explore the effects of a certain drug on KOA did not consider the molecular characteristics of participants (Table 1). Hence, a critical research gap in the matching of drug mechanisms with patients’ molecular features still exists and needs to be filled.


TABLE 1. Ongoing clinical trials investigating the efficacy of drugs against KOA.

[image: Table 1]Indeed, patients with KOA exhibit early molecular and structural changes before the disease shows any clinical manifestations (Goldring and Goldring, 2010). Recently, the Osteoarthritis Research Society International (OARSI) endorsed a new definition of OA, emphasizing the molecular derangement as the primary disorder followed by anatomic, and/or physiologic disarrays (Kraus et al., 2015), which highlights a molecular characterization of the pathological mechanisms responsible for KOA. One of the most imperative contributors of the diagnostic work-up of KOA toward a molecular based identification is the research on molecules acting as biomarkers. Indeed, a large amount of KOA-related molecules are detectable in body fluids (Akul et al., 2019), reflecting KOA pathogenesis. Biochemical analysis of body fluids in hospitals and clinics is frequently employed for effective disease diagnosis as they contain numerous valuable disease information (Sung et al., 2021), which provides the prospect of diagnosing and evaluating KOA at the molecular level.

Herein, according to the temporal alteration of representative molecules in body fluids, we propose a novel molecular classification of KOA (i.e., pre-KOA, early KOA, progressive KOA, and end-stage KOA), with a focus on its role in KOA prediction, diagnosis, and treatment efficacy evaluation. This classification criteria may allow for a molecule-based diagnosis and treatment algorithm (Figure 1B), for instance, facilitating the enrollment of biologically homogeneous patients in clinical trials and potentiate the therapeutic efficacy of disease-modifying drugs in a specific patient cluster.



KOA: A MOLECULAR DISORDER

Traditionally, KOA has been considered as a disorder of articular cartilage. However, the current view is that KOA is a whole-joint disease, or even a systemic disorder since it could be affected by various local and systemic risk factors. The major pathogenesis in KOA contains the molecular crosstalk between articular cartilage, synovium, subchondral bone, meniscus, tendon, muscle and infrapatellar fat pad (IFP) (Loeser et al., 2012; Fan et al., 2021). For instance, the accumulation of M1 macrophage in synovium is responsible for the secretion of proinflammatory cytokines, which facilitates the formation of inflammation microenvironment and aggravates cartilage degradation and synovitis (Robinson et al., 2016; Zhang et al., 2020). A variety of cytokines and adipokines secreted by IFP also participate the local inflammation and contribute to the development of KOA (Zeng et al., 2020). In turn, the debris released from degenerated cartilage can also boost the inflammatory response within the joint (Lambert et al., 2019). Such cross-linked molecular dysregulation is the basis of the visibly pathological events, making a strong case to outline its profile in KOA.

From a practical point of view, less invasive or non-invasive methods to obtain the molecular spectrum will have greater clinical significance. Interestingly, along with intense molecular crosstalk, the opportunity to assess molecular changes is presented by the molecular carrying medium, in which synovial fluid (SF), blood, and urine are included (Sung et al., 2021). SF is a gold standard fluid to identify molecules for KOA due to its intimate relationship with various joint tissues and important role in transmitting and receiving molecular signal in the joint cavity (Ingale et al., 2021). Blood and urine are easily withdrawn and reserve a cluster of molecules reflecting KOA pathogenesis (Attur et al., 2011; Bihlet et al., 2019). Given the widespread use of humoral tests, it would be anticipated to characterize the molecular profile of KOA patients by analyzing SF, blood, and urine.



PRE-KOA

Although the identification of early KOA has gained widespread popularity in the past decade (Madry et al., 2016), there is growing awareness of the necessity to identify the pre-stage of KOA, where the molecular and cellular processes have kicked into action due to the presence of risk factors but without structural changes. To describe the long transition from healthy to clinically assessable early KOA, Ryd et al. defined pre-KOA as “A knee exhibiting one or many risk factors without pain, normal standing radiographs, no structural changes on arthroscopy or standard MRI, that is, before early KOA can be diagnosed” (Ryd et al., 2015). At this symptom- and imaging-free stage, the corresponding molecules of risk factors warrant special attention in the predictive work-up and in the preventive decision making. In turn, risk factors-related molecules may become a proxy for evaluating the efficacy of preventive interventions.

Obesity is a well-established risk factor for KOA. Lifetime risk of KOA rises with increasing body mass index, and longitudinal study shows that two-thirds of obese adults will develop symptomatic OA (Wluka et al., 2013). Despite the excessive joint loading by weight, increasing data shows that adipokines secreted by white adipose tissue indicate the start of KOA before the emergence of clinical manifestations (Abella et al., 2017). As the precursor of adipokines, leptin has been shown to be related to KOA initiation, and a serum elevation of 5 μg/L is associated with a 30% increased risk of structural KOA in obese participants (Karvonen-Gutierrez et al., 2012; Kroon et al., 2019). Similarly, serum resistin starts to increase even 5 years before the onset of radiographic KOA (Van Spil et al., 2012). There is consistent data showing that both leptin and resistin are responsible for activating innate immune responses and stimulating the expression of inflammatory cytokines, which ultimately result in cartilage and bone metabolic disorder (Conde et al., 2010; Acquarone et al., 2019; Xie and Chen, 2019). Accordingly, based on increased adipokine level, in designated cohorts of asymptomatic individuals with high risk for KOA, weight control to reduce adipose tissue mass should be suggested. Leptin and resistin serum level monitoring may help to assess the volatility risk of KOA. Actually, the reduction of 5% body weight within a 20-week period in overweight KOA patients helps them to experience symptomatic relief (Christensen et al., 2007), but the data on decreasing the initial risk of KOA is lacking.

Previous injury is a predominant joint-level risk factor for KOA initiation. Among the injuries, direct articular cartilage damage, anterior cruciate ligament (ACL) injury, and meniscal tear have been reported to be closely associated with KOA development (Vina and Kwoh, 2018). Both ACL injury and meniscal tear can disrupt the stability of knee, alongside with the disturbance of biomechanics and uneven distribution of mechanical load in cartilage (Englund et al., 2012; Wang et al., 2020). Simultaneously, some biomarkers are produced in response to mechanical stimuli (Chu et al., 2018). Among the candidate molecules for mirroring knee injury, cartilage oligomeric matrix protein (COMP) and C-telopeptide of type II collagen (CTX-II) are the most promising. COMP is a pentameric glycoprotein, highly expressed in hyaline cartilage, and plays a vital role in maintaining chondrocyte proliferation and ECM network integrity (Posey et al., 2018). CTX-II is a well-established biomarker for collagen II (Col-II) breakdown (Lattermann et al., 2016). In a community-based cohort study, the highest quartile level of serum COMP at baseline was correlated with the increased risk of radiographic KOA over 20 years (Kluzek et al., 2015). After running 200 km, COMP in the runners’ serum increased threefold, indicating that COMP could be a sensitive indicator of cartilage damage (Kim et al., 2007). After acute ACL injury, COMP concentration in SF is twofold increased within 6 weeks after injury and remains elevated in 5-year follow-up (Struglics et al., 2018). Similarly, the level of CTX-II in SF is significantly increased immediately after ACL injury (Lattermann et al., 2016). Therefore, given that post-traumatic KOA begins at the time of injury (Lattermann et al., 2016), the combination of injury history and elevated COMP and/or CTX-II levels might be a sensitive and effective index in predicting injury-related pre-KOA.

Female sex is another major causal risk factor of KOA, with a prevalence 1.2–2.8 times higher than males (Hunter and Bierma-Zeinstra, 2019; Sasaki et al., 2020). Therefore, interest is growing in the relationship between sex hormones and KOA. In a study enrolling 842 women, Sowers et al. (2006) found that the concentrations of estradiol and its metabolite, 2-hydroxyestrone, in the lowest tertile were strongly associated with higher KOA prevalence and incidence. Considering the protective role of estrogen in cartilage and bone homeostasis, estrogen-related drugs may be favorable for postmenopausal patients against KOA onset, but further preclinical and clinical studies are needed to confirm this (Xiao et al., 2016).

Although KOA is not considered as an autoimmune disease, activated molecular and cellular processes may stimulate maladaptive repair responses, which often include pro-inflammatory pathways of innate immunity and subsequent production of autoantibodies (AAbs) (Leslie et al., 2001; Geurts et al., 2018). Recently, Camacho-Encina et al. (2019) found that the serum level of methionine adenosyltransferase two beta autoantibody (MAT2β-AAb) increased as early as 8 years before the incidence of radiographic KOA. They further verified that the addition of MAT2β-AAb improved the efficiency of clinical prognostic model to identify high risk KOA individuals (Camacho-Encina et al., 2019). This could be applicable in KOA prediction. In addition, although preliminary data suggest that dietary supplementation of the product of MAT2β, S-adenosylmethionine (SAMe), can relieve KOA pain (Kim et al., 2009), further studies are needed to determine whether SAMe has a preventive effect on pre-KOA, especially in people with relatively high serum MAT2β-AAb levels.

Taken together, these predictive molecules will help to discriminate individuals with high risk of KOA initiation (pre-KOA) and may suggest the molecular based interventions to prevent KOA occurrence.



EARLY KOA

Luyten et al. (2012) proposed the definition and classification of early KOA, in which physical examination and imaging findings were included. In detail, early KOA should fulfill the following three criteria: (i) knee pain; (ii) KL grade < 2; (iii) cartilage lesions by arthroscopy or MRI, or meniscal or subchondral lesions by MRI (Luyten et al., 2012). Early KOA is thought to be a complicated phase, with limited and sporadic signs or symptoms, usually without early radiographs in most cases. Among this condition, molecules in body fluids can objectively provide useful diagnostic and prognostic information by mirroring the disease relevant biological activity (Mobasheri et al., 2017).

The molecular disorder is a consequence of disturbed gene expression landscape, which is fine tuned by small, non-coding RNAs named microRNAs (miRNAs). By inhibiting the function of protein-coding transcripts, miRNAs alter multiple aspects of cell structure and function, including chondrocytes phenotype (Swingler et al., 2019). Dysregulation of the miRNAs system, driving the disturbances of molecular composition, has been shown as an early detectable mechanism underlies KOA.

Among the miRNAs in early KOA, miR-140 and miR-210 are probably the most representative. Increasing evidence shows that miR-140 is capable for maintaining both cartilage and bone formation and homeostasis (Luo et al., 2018; Swingler et al., 2019). Also, it mediates the inhibition of IL1-induced proteinases (Si et al., 2019). However, the expression levels of miR-140 in SF is significantly reduced in early KOA patients compared with healthy individuals (Si et al., 2016). Furthermore, the SF levels of miR-140 were negatively correlated with the KL grades (Si et al., 2016), suggesting that the protective effect of miR-140 continued to be lost. miR-210 has been recognized as a major hypoxia-induced miRNA that contributes to the induction of angiogenesis (Bavelloni et al., 2017). Xie et al. found that miR-210 was significantly upregulated in patients with early-stage and late-stage KOA compared with healthy subjects (Xie et al., 2019), suggesting that the beginning of an increase in miR-210 level was an indicator of early KOA. These findings allow for early molecular diagnosis of KOA by detecting miRNAs. Other differentially expressed miRNAs, such as miR-19, miR-122, miR-146a, miR-186, miR-210, miR-223 and miR-486, are potential biomarkers of early KOA and still warrant further studies (Kong et al., 2017; Xie et al., 2019; Rousseau et al., 2020). Additionally, the development of disease-modifying drugs, especially miRNA therapy, might be attributed to a well-developed miRNA spectrum in early-KOA.

Another highly promising SF biomarker of early KOA is IL-17. By inducing de novo gene transcription or stabilizing target mRNA transcripts, IL-17 upregulates inflammatory gene expression, including IL-1β and TNFα, two major players of KOA pathophysiology (Kapoor et al., 2011; Amatya et al., 2017). The level of IL-17 in SF of KOA patients was significantly higher than that of healthy individuals, but there was no statistically significant difference between KOA groups based on KL grades (Liu et al., 2015). In addition, IL-17 level tended to decrease as the severity of KOA increased. This dynamic signature of changes in IL-17 level may herald that the start of IL-17 elevation indicates the onset of KOA. These characteristics represent the potential efficacy of IL-17 in providing early biological fingerprint of KOA, allowing for early diagnosis and identification of the cluster with inflammation-based KOA onset. Accordingly, the therapeutic effect of IL-17 inhibitors, such as the widely used secukinumab (McInnes et al., 2020), may be strengthened in selected clusters of early KOA individuals with high IL-17 levels, which has not been tested in clinical trials yet.

In addition to IL-17, IL-15 is also detected and viewed as a biomarker for early KOA (Scanzello et al., 2009). Produced by several cell types within the knee, including fibroblasts and macrophages, IL-15 has been shown to stimulate matrix metalloproteinase (MMPs) production, specifically MMP1 and MMP9 (Constantinescu et al., 2001; Waldmann et al., 2001). It was observed that the level of IL-15 in SF was significantly increased in early KOA and decreased in late KOA (Scanzello et al., 2009). Moreover, serum IL-15 levels were significantly higher in KOA patients compared with healthy individuals, but there was no significant correlation with KL grads (Sun et al., 2013). These findings suggest a potential role for IL-15 in the diagnosis of early KOA. Further studies focused on evaluating the utility of IL-15 in clinical practice and delineating molecular pathways responsible for IL-15 secretion are essential.

The identification of a comprehensive molecular profile for early KOA, including miRNAs, IL-17, IL-15, and future identified molecules, provides insight into the pathogenesis of KOA initiation. This strategy could promote the pathological mechanism-based diagnosis and facilitate the molecule-based treatment of early KOA.



PROGRESSIVE KOA

Knee osteoarthritis is a heterogeneously progressive disease with different clinical phenotypes that eventually leading to a common final pathway of joint destruction (Castañeda et al., 2014). Persistent pathological factors contribute to the development of KOA from an early preventive stage toward an advanced, probably irreversible stage. Unlike accelerated KOA, which initiate and progress into advanced stage within 4 years (Driban et al., 2019), typical KOA is a slow-progressing disease, a process that usually takes decades. Whereas, the heterogeneous progression trajectories of KOA patients present as an obstacle in the development of disease-modifying drugs and the design of clinical trials (Halilaj et al., 2018). Furthermore, the current diagnosis and treatment strategies for KOA are still “one rule applies to all patients” (Yuan et al., 2020), highlighting the necessity for a more accurate molecular classification to provide evidence for targeted therapies. Hence, considering the characteristics of patients with KOA and the classification criteria for better clinical decision making (Dell’Isola and Steultjens, 2018), we classified progressive KOA into four subtypes based on the identified representative molecular profiles: cartilage degradation-driven, bone remodeling-driven, inflammation-driven, and pain-driven subtype (Figure 2). The pathogenesis-based first treatment options for different subgroups are also suggested (Table 2), but more solid data is indispensable to examine the correspondence between the altered molecules and therapeutic drugs.
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FIGURE 2. Molecular subtypes of progressive KOA. Increasing evidence suggests that progressive KOA patients fall into several subtypes based on the identified molecular profiles, including cartilage degradation-driven subtype, bone remodeling-driven subtype, inflammation-driven subtype, and pain-driven subtype. Representative molecules are listed in the box bellow the MRI manifestation of each subtype. ALP, alkaline phosphatase; CCL3, CC-chemokine ligand 3; CCL4, CC-chemokine ligand 4; Col 2-1 NO2, the nitrated form of Col 2-1; C-Col 10, C-terminus of collagen X; Col 10neo, a neoepitope of collagen 10; CGRP, calcitonin gene-related peptide; CRPM, the fragment of C-reactive protein; CTX-I, C-telopeptide of Col-I; CTX-II, C-telopeptide fragments of Col-II; C2C, the cleavage neoepitope of collagen II; C1M, the product of collagen I degraded by matrix metalloproteinases; C2M, the fragments of collagen II degraded by matrix metalloproteinases; hs-CRP, high sensitive C-reactive protein; IL-1β, interleukin 1β; IL-1Ra, IL-1 receptor antagonist; IL-6, interleukin 6; KOA, knee osteoarthritis; LPS, lipopolysaccharide; LPB, LPS binding protein; MRI, magnetic resonance imaging; NGF, nerve growth factor; NTX-I, N-telopeptide of Collagen I; PINP, N-terminal collagen type I extension propeptide; TNFα, tumor necrosis factor α; TRAP5b, tartrate resistant acid phosphatase 5b.



TABLE 2. Potential beneficial treatment options for progressive KOA subtypes.
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Cartilage Degradation-Driven Subtype

As the most typical phenotype of KOA lesions, cartilage loss is a dynamic alteration arising from an imbalance between its anabolism and catabolism, leading to changes in the properties of cartilage materials and increases its susceptibility to disruption by physical forces (Hunter and Bierma-Zeinstra, 2019). Detection of debris released from degraded cartilage provides the possibility of assessing cartilage loss during the progression of KOA.

Among the degradation of cartilage components, the most paradigmatic example derives from the disruption of Col-II because it is a major structural and highly specific molecule within cartilage (Martel-Pelletier et al., 2016). Numerous studies have shown that the urinary CTX-II was highly associated with the severity of KOA, mirroring the ongoing Col-II digestion by MMPs and cathepsins (Charni-Ben Tabassi et al., 2008; Xin et al., 2017; Sofat et al., 2019). Besides, CTX-II is an independent risk indicator of total knee arthroplasty (TKA) (Garnero et al., 2020), suggesting potential cartilage-targeting therapy attenuating KOA progression may delay TKA. Of particular interest, the magnitude of change in urinary CTX-II is responsive to the efficacy of conventional treatment measures, such as the chondroprotective glucosamine (Nagaoka et al., 2019). In this scenario, the assessment of CTX-II in urine might allow for the identification of patients who may benefit most from chondroprotective treatments, and CTX-II monitoring may help to evaluate the treatment efficacy dynamically. Notably, urinary CTX-II levels in women have been found significantly higher than in men (van Spil et al., 2013; Bihlet et al., 2019), highlighting its gender differences that need to be critically considered in clinical settings.

Other promising molecules reflecting the extent of Col-II degradation have been extensively explored as progressive KOA biomarkers. The fragments of Col-II degraded by MMPs (C2M) in serum have shown positive association with knee structural changes assessed by KL grades (Siebuhr et al., 2014). In a study enrolling 600 cases, Kraus et al. investigated that the cleavage neoepitope of Col-II (C2C) in urine was remarkably increased in established radiographic KOA individuals, and its time-integrated concentration on 24-month follow-up was predictive for KOA progression (Kraus et al., 2017a). Although detected in different body fluids, both C2M and C2C are suitable for the identification of Col-II degeneration.

After the denaturation of the triple helix of Col-II, Coll 2-1 is released and detectable in urine, as well as its nitrated form, Coll 2-1 NO2, which results from the nitration of aromatic amino acids by peroxynitrite under oxidative condition in KOA chondrocytes (Bolduc et al., 2019). In progressive KOA patients, both Coll 2-1 and Coll 2-1 NO2 are correlated with the severity of KOA, and their one-year changes are positively associated with joint space narrowing (Deberg et al., 2005), indicating Col-II degeneration and oxidative stress simultaneously happened in KOA pathophysiology. More importantly, the laboratory environment, sampling condition and circadian rhythm have no impact on the measurement of Coll 2-1 (Hick et al., 2019), ensuring Coll 2-1 as a reproducible and credible biomarker for evaluating Col-II degradation. Its responsiveness to treatment, such as intra-articular injection of hyaluronic acid (Henrotin et al., 2013), also warrants its use as an indicator for monitoring therapeutic efficacy.

Another promising strategy for evaluating cartilage degradation is the measurement of molecules reflecting the abnormally enhanced chondrocyte hypertrophy during cartilage destruction (Rim et al., 2020). Type X collagen (Col-X) is a major marker used to detect hypertrophic chondrocyte. In a cluster of 271 KOA patients stratified by KL grade, the serum levels of the C-terminus of Col-X (C-Col 10) were positively correlated with cartilage degeneration (He et al., 2014). In a recent investigation, the higher levels of a neoepitope of Col-X (Col 10neo), 479GIATKG, in urine were associated with greater KL scores (He et al., 2019), indicating the ongoing hypertrophic process of chondrocytes during KOA progression. Further validation of C-Col 10 and Col 10neo in large-scale clinical trials is needed with the purpose of their application in clinical practice.

Thus, in progressive KOA, molecules mirroring cartilage degenerative and chondrocyte hypertrophic process help to select cartilage degradation-driven subtype patients, who may benefit most from chondroprotective interventions.



Bone Remodeling-Driven Subtype

Bone remodeling is a result of the coupling of osteoblastic bone formation and osteoclastic bone resorption (Hu et al., 2021). For mechanically unstable joints, the subchondral bone may exhibit bone bruise, known as bone marrow edema on MRI, which has been shown to be a potent risk factor for disease structural and symptomatic progression in patients with KOA (Felson et al., 2003). Intriguingly, mounting evidence suggests that bone resorption activation mainly occurs in early-stage KOA, whereas, bone formation activation is the major characteristic of late-stage KOA (Funck-Brentano and Cohen-Solal, 2011). Although subchondral bone abnormality is not presented in all KOA individuals, it is indeed the earliest pathological change in a fraction of patients (Hu et al., 2021). Therefore, the identification of molecular profiles in progressive KOA would help to stratify patients to the bone remodeling-driven subtype and provide evidence for the application of pathogenesis-based pharmaceutical medications.

Type I collagen (Col-I) is the most abundant protein in bone, accounting for 90% of total bone protein (Eastell and Szulc, 2017). Attaching to bone with a sealing zone, osteoclasts secrete acid to dissolve the bone mineral (Martel-Pelletier et al., 2016). After that, osteoclasts release enzymes (e.g., cathepsin K) to digest proteins and release the fragments, such as C-telopeptide of Col-I (CTX-I) and N-telopeptide of Col-I (NTX-I), which are indicative of osteoclast activity (Eastell and Szulc, 2017). Several clinical trials with more than 1,000 participants have shown that both urinary CTX-I and serum NTX-I were positively correlated with the symptomatic and radiographic severity of KOA (Kraus et al., 2017b; Bihlet et al., 2019), indicating the activation of bone absorption. In parallel, C1M, the product of Col-I degraded by MMPs, is also suggestive for KOA progression (Siebuhr et al., 2014). Remarkably, monitoring the levels of CTX-I and NTX-I allows for assessing the therapeutic efficacy of targeting bone absorption treatment, as they are significantly reduced in a dose-dependent manner after the treatment of a selective cathepsin K inhibitor, MIV-711 (Lindström et al., 2018). Tartrate resistant acid phosphatase 5b (TRAP5b, also known as ACP5) is one of the osteoclasts produced enzymes. It is fairly specific to bone and its level is responsible for reflecting the number of osteoclasts (Lv et al., 2015). Serum levels of TRAP5b have been shown associated with the severity of knee symptoms in KOA individuals (Nwosu et al., 2017), providing evidence for the aggregation of osteoclasts during bone remodeling. Based on this, KOA patients with obviously active bone absorption may benefit most from the antiresorptive agents, such as bisphosphonates, cathepsin K inhibitor and calcitonin.

Osteoblasts express the highest concentration of collagen during their proliferative phase and of bone alkaline phosphatase (ALP) during matrix maturation (Stein and Lian, 1993). N-terminal collagen type I extension propeptide (PINP), primarily originates from bone, is derived from the post-translational cleavage of type I procollagen and has been well established as a bone formation biomarker (Eastell and Szulc, 2017). Increasing evidence supports that KOA progression, especially the osteophytosis progression, was preceded and accompanied by the enhanced bone formation as assessed by the values of serum PINP (Kumm et al., 2013). Besides, Park et al. (2020) demonstrated that serum ALP activity was independently and positively correlated with KOA severity by including 3,060 participants. The elevation of serum PINP and ALP might be useful in the assessment of abnormal bone formation, such as subchondral bone sclerosis and osteophyte formation, in progressive KOA. In such cases, antiresorptive treatment may be inappropriate and may aggravate the abnormal bone formation. Unfortunately, therapeutic agents targeting the abnormal activation of bone formation has been scarcely investigated.

Several clinical trials have been focused on evaluating the potential therapeutic efficacy of anti-absorption agents on KOA, regrettably, with scarce data on the beneficial effects. For instance, intravenous zoledronic acid, a classical antiresorptive agent, did not show a significant improvement of pain score and the reduction of cartilage volume loss in KOA patients, even in those with bone marrow lesions (Aitken et al., 2018; Cai et al., 2020). The most likely reason for the failure may be that their inclusion criteria were based only on clinical and radiographic diagnosis, which is heterogeneous in molecular level. Further molecular based stratification may help to enroll the biologically homogeneous KOA patients with active bone remodeling and facilitate the highest potential success of the remodeling targeting agents.



Inflammation-Driven Subtype

Accumulating evidence supports that the inflammation in KOA is chronic, comparatively low-grade, and primarily mediated by the innate immune system (Robinson et al., 2016). Clinically, many patients with KOA have symptoms of joint inflammation, such as pain, morning stiffness, and warmth (Sellam and Berenbaum, 2010). Hence, therapeutic strategies targeting the low-grade inflammation may be able to halt KOA progression. However, disappointing results have been described in several tested anti-inflammatory therapeutics (McAlindon et al., 2017; Deyle et al., 2020). Given the heterogeneity of KOA, revealing the molecular characteristics of inflammation during disease progression might help to recruit homogenous patients for clinical trials testing anti-inflammatory agents.

Highlighting the role of inflammation, much interest has been expressed in identifying secreted inflammatory cytokines in the pathophysiology of KOA progression. The most widely studied biomarkers are IL-1β and TNF-α, two major players of KOA inflammation. Increasing evidence shows that both the serum levels of IL-1β and TNF-α are highly associated with the symptomatic and radiographic progression of KOA (Attur et al., 2011, 2020; Larsson et al., 2015). Their effects can generally be described as the inhibition of cartilage anabolism, activation of cartilage catabolism, and perpetuation of inflammatory responses by inducing the production of other proinflammatory cytokines, such as IL-6 (Livshits et al., 2009; Kapoor et al., 2011). Despite the extensively available non-steroidal anti-inflammatory drugs (NSAIDs) and steroids showing no solid data of restoring the joint damage, anti-IL-1β and anti-TNF-α therapies in several clinical trials represent promising therapeutic efficacy as determined by the relief of pain (Grunke and Schulze-Koops, 2006; Wang et al., 2017). Whereas, the neglection of matching molecular profile with therapeutic mechanisms might be the reason of a recent failure attempting to target IL-1β (Fleischmann et al., 2019). Intriguingly, the plasmatic levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1, has been shown to be independently associated with the progression of symptomatic KOA (Attur et al., 2015). IL-1Ra possesses anti-inflammatory properties by competitively binding to IL-1 receptors with no signaling transduction effects. The elevation of IL-1Ra may indicate the burden of tissue exposure to inflammation and the endogenous attempt to antagonize the overproduced IL-1β. Techniques delivering IL-1Ra into joint cavity without altering its biological activity may provide new insight for KOA-modifying strategies (Agarwal et al., 2016).

Synovitis is highly associated with KOA progression. Indeed, growing evidence supports the role of immune cells, particularly macrophages, in KOA pathophysiology (Zhang et al., 2020). Some molecules reflecting the infiltration and accumulation of macrophages within the synovium have been proposed as biomarkers of KOA progression (Zhao et al., 2015). The levels of plasma chemokines, such as CCL3 and CCL4, are associated with KOA severity, indicating the infiltration of macrophages and the progression of synovitis in KOA (Zhao et al., 2015). Consequently, the SF levels of CD163 and CD14, two soluble markers for macrophages, are positively associated with the abundance of activated macrophages in synovium (Daghestani et al., 2015), allowing for the timely assessment of macrophage-mediated synovitis progression. The validation of these macrophage-related molecules is needed in view of their application in the development of macrophage targeting therapy.

In addition to local inflammation of the joint, systemic inflammation may also have a vital role in KOA pathogenesis (Huang and Kraus, 2016). For example, obesity is known as an important risk factor of KOA progression possibly not only by the increased mechanical load on the knee joint, but also by the perturbation of the intestinal microbiota and the harvest of persistent and low-grade inflammatory response (Berenbaum et al., 2013; Cox et al., 2015). Weight loss can alleviate KOA symptoms by the substantial reduction of systemic levels of C-reactive protein (CRP) and IL-6, two well-established biomarkers of KOA progression (Beavers et al., 2015). In this context, the assessment of weight loss may represent the decrease of systemic inflammation. Interestingly, lipopolysaccharide (LPS; also known as endotoxin) and LPS binding protein (LBP) are positively associated with the quantity of activated macrophages in knee joint (Huang et al., 2016). In line with this, their levels are also associated with clinical manifestations including total Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scores and self-reported knee pain (Huang et al., 2016).

Identifying the molecular profiles, including the local and systemic inflammatory cytokines, would help reveal the major inflammatory mechanisms and stratify KOA patients with different molecular characteristics. This strategy could facilitate the diagnosis of inflammation-driven subtype of KOA and the development of molecular based treatment strategies.



Pain-Driven Subtype

Pain is a major driver of health service use and clinical decision making of KOA (Neogi, 2013). However, the origin and mechanisms of pain remain enigmatic. At present, KOA pain is mainly controlled by NSAIDs and analgesics, with unsustainable pain relief and substantial adverse effects (O’Neil et al., 2012). The presence and severity of pain have been shown due to bone marrow lesions and synovitis, and in turn, a change in pain within a person relates to a change in synovitis or in the number or size of bone marrow lesions (Yusuf et al., 2011; Zhang et al., 2011), which may indicate inflammation or bone remodeling-related molecular mechanisms of pain. Therapeutic strategies might vary between patients depending on their underlying disease mechanisms.

Numerous works focused on the anti-inflammatory strategies that might be capable of alleviating KOA pain. Among the inflammatory molecules related to KOA pain, CRP is extensively and long-term used in reflecting the inflammatory response. Jin et al. included 32 studies in their meta-analysis and found that serum high sensitive CRP (hs-CRP) levels were significantly correlated with knee pain and physical function decline, but not with radiographic changes (Jin et al., 2015), indicating that hs-CRP could reflect KOA symptoms progression. Among KOA patients, elevated CRP levels were associated with heightened pain sensitivity (Lee et al., 2011). Of particular interest, the trends of CRP concentrations in serum and SF were consistent and responsive to KOA treatments (Rondanelli et al., 2019). Accordingly, CRP levels may contribute to the selection of patients with inflammatory pain and could monitor the analgesic effect of anti-inflammatory strategies. After degradation by MMPs, the fragment of CRP (CRPM) can be detected in body fluids. CRPM is related to the central pain sensitization and the risk of symptomatic KOA progression (Arendt-Nielsen et al., 2014). However, the levels of CRP and CRPM may be subject to a variety of pathophysiology disturbances, which reduced their specificity to KOA. Future work should address how to improve the specificity of CRP to KOA pain.

Bradykinin is another promising peptide involved in KOA inflammatory pain by exciting and sensitizing sensory nerve fibers (Wang et al., 2005). As a vasodilator and inflammatory nonapeptide, bradykinin is generated in synovium, and its level in SF is related to KOA progression (Bellucci et al., 2013). In KOA patients, intra-articular injection of a specific bradykinin B2 receptor antagonist showed a long-lasting analgesic effect (Meini and Maggi, 2008). Such molecular based analgesic treatment provides an exemplary therapeutic algorithm for KOA pain management.

Recent studies found that several neuronal factors related to bone remodeling played an important role in the innervation of sensory nerves (Martel-Pelletier et al., 2016). During bone absorption, osteoclasts secret H+ to induce an acidic microenvironment and then activate the acid-sensing receptor transient receptor potential vanilloid 1, which is responsible for the transcriptional activation of calcitonin gene-related peptide (CGRP), a well-established pain responder (Yoneda et al., 2015). The levels of CGRP have shown to be positively associated with KL grades and the WOMAC pain scores (Dong et al., 2015), suggesting its role in reflecting KOA progression. However, the humanized monoclonal antibody of CGRP, galcanezumab, failed to reduce KOA pain (Jin et al., 2018), which might be a result of the heterogeneity of CGRP levels in their participants. Preosteoclasts can produce nerve growth factor (NGF), which is a key driver of subchondral nerve innervation (Hu et al., 2021). Binding to its high affinity receptor TrKA, NGF excites TrKA+ sensory neurons, leading to the hypersensitivity and hyperexcitability of nociceptors, which is one of the most fundamental mechanisms of clinical pain (Schmelz et al., 2019; Malfait et al., 2020). In the serum and SF of KOA patients, the levels of NGF and TrKA showed a stage-dependent increase in KOA (Montagnoli et al., 2017), indicating their role in mirroring KOA progression. Several studies utilized NGF-neutralizing monoclonal antibodies showed imperative analgesic effects, but with adverse events of unclear etiology (Jayabalan and Schnitzer, 2017; Miller et al., 2017). Further studies should focus on the mechanisms of the side effects produced by NGF blockade therapy.

Collectively, further exploration of the molecular characteristics of KOA pain may allow for the identification of patients belonging to the pain-driven subtype. For these patients, analgesia will be the first treatment option. According to the major molecular mechanisms, the development of specific drugs for pain management will be an excellent approach.



END-STAGE KOA

End-stage KOA has been viewed as a knee with considerable pain and functional limitations, accompanied by structural damage and/or other complications, such as flexion contractures and joint laxity, that prohibit the normal use of a joint (Driban et al., 2016). Generally, end-stage KOA is characterized as KL grade 4 on radiography (Guermazi et al., 2015). For patients at this stage, TKA surgery should be considered if medical interventions failed to improve persistent debilitating symptom (Martel-Pelletier et al., 2016). Although it is easy to diagnose end-stage KOA by symptoms and imaging methods, the value of some molecules in predicting end-stage KOA and evaluating the prognosis of TKA cannot be underestimated.

As aforementioned, KOA is an inflammatory disease with persistent and low-grade inflammation. Among the indicators from blood test, neutrophil-lymphocyte ratio (NLR) has become a useful, economical and simple tool for reflecting inflammation. In a study enrolling 176 KOA patients, blood NLR was significantly higher in the severe (KL grade 4) group (2.18 ± 1.04) than in the mild to moderate group (1.79 ± 0.8), suggesting NLR as an indicator of end-stage KOA (Taşoğlu et al., 2016). Further analysis revealed that NLR ≥ 2.1 was an independent predictor of severe KOA, with a specificity of 77% and a sensitivity of 50% (Taşoğlu et al., 2016). Although these findings are provocative, further longitudinal studies are needed, given that a single blood sample does not provide a stable assessment of NLR.

To explore the relationship between serum miRNA levels and the occurrence of severe KOA, Beyer et al. identified differentially expressed miRNAs in a population-based cohort including 816 individuals (Beyer et al., 2015). They found that let-7e emerged as the most promising predictor of severe KOA necessitating arthroplasty, and that let-7e levels were negatively correlated with the frequency of surgical knee replacement in end-stage KOA (Beyer et al., 2015). This finding may bring light to a new method for the prognostic evaluation of TKA. Further exploration to validate the role of let-7e in different applications, such as KOA pathological mechanism, and disease activity, is warranted to assess its incremental value.



FUTURE DIRECTIONS

Given the emerging evidence demonstrating biomarkers for KOA (Mobasheri et al., 2017; van Spil and Szilagyi, 2020), it is conceivable that molecular diagnostic and therapeutic algorithm could be well developed. Based on the representative molecules, classifying KOA patients into different stages and subtypes should logically have an important effect on clinical decision making by presenting the ongoing pathological processes. We clearly recognize that the KOA subtypes are not necessarily mutually exclusive, and sometimes overlap, for example, patients with subchondral bone lesions usually suffer pain (Moisio et al., 2009). However, this does not diminish the clinical significance of molecular classification. A combination of treatments targeting different mechanisms may be effective. Before this, the effect of specific therapies targeting molecular characteristics firstly warrant further validation in longitudinal studies.

In the past decade, MRI has been rapidly evolved due to technical advances, and its application in clinical research has provided sufficient evidence regarding the feature of disease (Link et al., 2003; Li and Majumdar, 2013; Roemer et al., 2020). According to the predominant structural alterations under MRI, KOA has been previously stratified as five different phenotypes (Roemer et al., 2018). However, more accurate information about the pathological characteristics of each phenotype would help to promote the development of disease-modifying KOA drugs. In the future, the combination of clinical parameters, MRI, and molecular information would form a comprehensive diagnosis and treatment algorithm: clinical and imaging characteristics will be used for the initial screening of KOA subtypes, and molecular characteristics will play a dominant role in predicting high risk individuals and determining the drug selection.

In addition, in order to prevent the influence of other diseases, population with similar baseline conditions should be preferred in clinical trials evaluating the KOA molecules. Future studies should also focus on verifying the efficacy and threshold values of a single molecule, or a panel of molecules, in clinical settings, and exploring new molecules to improve the molecular classification to promote its clinical application.



CONCLUSION

In KOA, different interlinked molecules cause and sustain the pathogenesis, as early as before the clinical and radiographic manifestations are available. As such, based on the representatively investigated molecules, we proposed the novel KOA molecular classification (Figure 3), which offers the possibility to: (i) predict patients at high risk of KOA initiation; (ii) select patients in early and progressive stage, when disease-modifying drugs have the best chance of a successful outcome; (iii) stratify biologically homogenous patients, who may benefit most from therapeutic agents in clinical trials and clinical settings; (iv) provide monitoring biomarkers for the assessment of treatment efficacy; and (v) offer molecular evidence for the development of disease-modifying drugs. Although this molecular KOA classification is merely a simple concept that needs to be further refined, its impact on preclinical and clinical studies is increasing because of the growing need to match molecular mechanisms with treatment strategies.
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FIGURE 3. Molecular classification of KOA. According to the temporal alteration of representative molecules during disease initiation and progression, KOA could be classified into pre-KOA, early KOA, progressive KOA, and end-stage KOA. In pre-KOA, risk factors-related molecules, such as adipokines, COMP, and MAT2β-AAb, can be detected in body fluids, which may provide evidence for KOA prediction. In early KOA, molecules can reflect the ongoing pathogenesis, when symptoms and imaging information are ambiguous. Based on the major pathophysiology in patient clusters, progressive KOA is further classified into four subtypes, i.e., cartilage degradation-driven subtype, bone remodeling driven subtype, inflammation-driven subtype, and pain-driven subtype, suggesting different treatment options in future clinical setting. ADAMTSs, a disintegrin and metalloproteinase with thrombospondin motifs; ALP, alkaline phosphatase; CCL3, CC-chemokine ligand 3; CCL4, CC-chemokine ligand 4; C-Col 10, C-terminus of collagen X; CGRP, calcitonin gene-related peptide; COMP, cartilage oligomeric matrix protein; CRPM, the fragment of CRP; CTX-I, C-telopeptide of Col-I; CTX-II, C-telopeptide fragments of Col-II; C2C, the cleavage neoepitope of collagen II; C2M, the fragments of collagen II degraded by matrix metalloproteinases; hs-CRP, high sensitive CRP; IL-1β, interleukin 1β; IL-1Ra, IL-1 receptor antagonist; IL-6, interleukin 6; IL-15, interleukin 15; IL-17, interleukin 17; KOA, knee osteoarthritis; MAT2β-AAb, methionine adenosyltransferase two beta autoantibody; miRNAs, microRNAs; MMPs, matrix metalloproteinases; NGF, nerve growth factor; NTX-I, N-telopeptide of Collagen I; PINP, N-terminal collagen type I extension propeptide; TNFα, tumor necrosis factor α; TRAP5b, tartrate resistant acid phosphatase 5b.
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Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
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INTRODUCTION

The elderly population worldwide is increasing rapidly and aging at a high rate. At the same time, aging-related diseases are also on the rise. The global proportion of the population over 60 years old was 10% in 2000 and is expected to reach 21.8% by 2050 and 32.2% in 2100 (Lutz et al., 2008; Kanasi et al., 2016). This means that the world will become an aging society, which will not only increase burdens on the working-age population but also lead to transformation of the disease spectrum: in the past, infectious diseases and nutritional deficiencies were the primary global health issues, but soon, degenerative diseases, diabetes, cardiovascular disease, chronic respiratory diseases and cancer, which are chronic non-communicable diseases, will become the primary focus (Abegunde et al., 2007). The aging process can cause significant changes in many tissues and organs, especially skeletal muscle (Lauretani et al., 2003). For 40- to 80-year-old people, the total skeletal muscle mass was found to be reduced by 30 to 50%, regardless of sex (Deschenes, 2004; Faulkner et al., 2007). In 1988, Rosenberg noted that muscle mass gradually decreases with age and defined this disease as sarcopenia (Rosenberg, 1997). A meta-analysis showed that compared with younger subjects, sarcopenia had a higher impact on people 79 years of age or older (p = 0.02) and was not only related to decreased muscle function (total OR 3.03, 95% CI: 1.80–5.12) but also related to higher mortality (overall odds ratio [OR] is 3.596, 95%) CI: 2.96–4.37) (Beaudart et al., 2017). Sarcopenia also causes an increase in the risk of falls and fractures, reduces quality of life, and increases disease. The mortality rate brings a heavy burden on the economy and health care system. Therefore, this disease should be taken seriously and treatment methods should be explored.

Bones and muscles are important parts of the movement system. The bones throughout the whole body are connected in different ways to form the skeleton, support body weight, protect internal organs, maintain body posture, and form the basic shape of the human body. They also provides wide attachment points for skeletal muscles (Avin et al., 2015). Muscle is the power device of the motion system. Muscles straddle one or more joints, contract, and pull the bones attached to them, producing a lever motion via the bone connection under control of the nervous system (Avin et al., 2015). In our understanding, the coupling of bone and muscle is mechanical. However, in recent years, the understanding of bone and muscle has been further improved. It seems that the two are not simply connected but have a deeper level of communication. The present review discusses in detail the deep-level connection between bones and muscles. As an endocrine organ, what kind of effect do secreted bone factors have on muscle? Is there a certain therapeutic significance for sarcopenia?



WHAT IS SARCOPENIA?

In 1988, at a conference in Albuquerque, New Mexico, Rosenberg proposed sarcopenia as an age-related decrease in muscle mass (Rosenberg, 1997). With deepening of the understanding of sarcopenia, it was found that muscle loss includes not only a decrease in muscle mass but also a decrease in muscle strength (Mitchell et al., 2012). There are currently two main criteria for clinical diagnosis of sarcopenia: low muscle function (characterized by strength) and decreased muscle mass (Cruz-Jentoft et al., 2010, 2019; Chen et al., 2020).

Other syndromes, such as cachexia and starvation, will also show symptoms of muscle wasting, but sarcopenia is still different from these syndromes. In patients with primary sarcopenia, as age increases, for example, from the age of 20 to 80, muscle mass decreases by approximately 30%, and cross-sectional area decreases by approximately 20%, mainly due to the decrease in size and number of muscle fibers (Frontera et al., 2000). The cross-sectional area of muscle fibers is mainly occupied by type 2 muscle fibers. With age, type II fibers are preferentially lost, showing selective atrophy, while type I fibers are retained (Larsson et al., 1978). With age, motor units also decrease. Some scholars have confirmed that the number of motor units for people over 60 is approximately half that of people under 60 (Lexell et al., 1983; Brown et al., 1988). Due to insufficient protein and energy intake, starvation will lead to loss of body fat and non-fat substances, but through supplementation of protein and energy, the symptoms will be improved (da Silva et al., 2020). Cachexia is widely considered to be a disease state accompanied by severe weight loss caused by cancer and other chronic wasting diseases, and the main feature is muscle loss, with or without fat loss (Evans et al., 2008). In addition, cachexia is usually accompanied by inflammation, insulin resistance, and increased muscle protein breakdown (Durham et al., 2009; Morley et al., 2009). Therefore, most individuals with cachexia also present with sarcopenia, specifically, secondary sarcopenia, but most age-related primary sarcopenia is not considered cachexia. Sarcopenia is only one element of cachexia.

Currently, for sarcopenia, there are already some treatment measures; for example, some of the adverse effects of sarcopenia can be reduced by adaptive physical exercise (Anton et al., 2018; Liao et al., 2019; Nascimento et al., 2019; Billot et al., 2020). Evidence shows that the muscle mass and strength of patients with sarcopenia can be increased by participation in resistance exercise training (Csapo and Alegre, 2016; Vlietstra et al., 2018). Appropriate nutritional intervention can improve sarcopenia caused by nutritional deficiencies (such as a lack of protein or vitamin D) and improve muscle mass and strength (Bauer et al., 2015; Hickson, 2015). β-Hydroxy-β-methylbutyrate (HMB) has been shown to improve muscle mass and maintain muscle strength and function in elderly people with sarcopenia or weakness (Bear et al., 2019). With age, the endocrine factors that affect muscle protein synthesis will have an increasing impact, resulting in a decrease in the number of muscle fibers, muscle cross-sectional area, and skeletal muscle mass. Over the past decade, several studies have shown that the effect of bones on muscles exceeds the scope of machinery. In osteoblast/osteocyte-deficient connexin 43 (Cx43) mice, some defective muscle phenotypes and the cross-sectional area and grip strength of the extensor digitorum longus muscle were partially rescued via subcutaneous injection of the bone-specific factor carboxylated osteocalcin (Shen et al., 2015). The expression of the full propeptide (IGF-1Ea) of IGF-1 protects against age-related loss of muscle mass and strength (Ascenzi et al., 2019). Denosumab, a RANKL blocking antibody, prevents RANKL from binding to RANK, thereby reducing cytokines (such as TNF) that cause muscle wasting and apoptosis (Bonnet et al., 2019). Therefore, a better understanding of the molecular mechanism underlying the messenger action produced by bone tissues will help in future development of new treatments for sarcopenia (Table 1).


TABLE 1. Therapeutic directions for sarcopenia in the future.
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BONE-MUSCLE BIOCHEMICAL CROSSTALK

Muscles and bones interact to maintain their structures and functions. Thus far, we have realized that muscles and bones can receive and secrete biochemical signals in a two-way manner, thereby affecting the metabolism of the two tissues and the entire body (Lombardi, 2019; Gomarasca et al., 2020). These signals are coordinated by a set of cytokines and growth-like factors: muscle factors secreted by muscle cells and bone factors secreted by bone cells, both of which can exert autocrine, paracrine and endocrine functions to regulate muscle and bone metabolism.

Diseases characterized by changes in muscle physiology affect bone function and structure, and vice versa. The effects of muscle on bone have been intensively studied. Skeletal muscle can be identified as an endocrine organ that produces secretory factors. Muscle-derived factors are called myokines and were first proposed by Pedersen and colleagues in 2010 (Pedersen, 2011). These molecules include myostatin, interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 15 (IL-15), leukemia inhibitory factor (LIF), brain-derived neurotrophic factor (BDNF), follistatin-like protein 1, fibroblast growth factor 21 (FGF-21), and irisin, which act in an autocrine, paracrine or endocrine manner. Many of these muscle factors can significantly affect bone repair and bone metabolism. For example, myostatin can inhibit skeletal muscle mass and development (Lee and Jun, 2019) and has a negative regulatory effect on bone mass (Kaji, 2016; Qin et al., 2017). Sclerostin is a secreted glycoprotein expressed by bone or cartilage cells that inhibits bone formation via the Wnt/β-catenin pathway (van Bezooijen et al., 2004). The latest research has found that skeletal muscle is a new source of sclerostin. Muscle-derived sclerostin works synergistically with bone-derived sclerostin to strengthen the negative regulatory mechanism of osteogenesis (Magarò et al., 2021). This further strengthens the team of myogenic factors and gives us a better understanding of muscles.

There are three cellular components in adult bone. Osteoblasts and osteoclasts account for approximately 5 and 1% of the cells, respectively, whereas the remaining 90–95% are osteocytes (Figure 1). Osteoblasts are specialized mesenchymal cells that synthesize bone matrix and coordinate bone mineralization, which play a key role in regulating bone metabolism (Boskey, 1996; Neve et al., 2011). Transforming growth factor β (TGF-β), bone morphogenetic protein (BMP), osteocalcin and insulin-like growth factor (IGF1) are expressed in the bone matrix by osteoblasts and released by osteoclasts during the absorption process (Linkhart et al., 1996). However, bone cells are neglected and are considered to be true secretory osteocytes. It was first proposed that osteocytes are endocrine cells in 2006, and the first secreted factor identified was fibroblast growth factor 23 (FGF23), which is highly elevated in osteocytes of patients with hypophosphatemic rickets (Feng et al., 2006; Liu et al., 2006). After more than 10 years of exploration and research, bone has gradually been recognized as an endocrine organ that can secrete a variety of osteokines, such as sclerostin, PGE2, Dickkopf-1 (Dkk1), stromal extracellular phosphoglycoprotein (MEPE), and osteoprotegerin (OPG), and small molecule adenosine triphosphate (ATP) and nitric oxide (NO), which have important effects on bones (Dallas et al., 2013; Buenzli and Sims, 2015; Han et al., 2018). In addition, “osteokines,” such as osteocalcin, nuclear factor-kappa B receptor activator ligand (RANKL), insulin-like growth factor (IGF-1), and fibroblast growth factor 23 (FGF-23) play an important role in the quality and function of muscles (Figure 2). Notably, lipocalin 2 (LCN2), a fat factor that was previously considered to be associated with obesity (Soukas et al., 2000; Lin et al., 2001; Yan et al., 2007) was recently found to exhibit an expression level in osteoblasts that is at least 10 times higher than that in white fat. LCN2 crosses the blood–brain barrier and interacts with melanocortin 4 receptor (MC4R) in the hypothalamus to inhibit appetite after binding (Mosialou et al., 2017) which further supports the idea that bone can play a corresponding role as an endocrine organ.
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FIGURE 1. Bone is composed of osteoblasts, osteoclasts and osteocytes. Among them, osteoclasts account for about 1%, which can secrete BMP, TGF-β and other substances; osteoblasts account for 5%, secrete bone-derived factors such as MGF, VEGF, HGF, FGF-23, RANKL, and osteocalcin, and osteocytes account for the largest proportion, About 90–95%, can secrete FGF-23, RANKL, IGF-1, osteocalcin, etc.
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FIGURE 2. Various bone cells can secrete different bone-derived factors. Osteocalcin regulates exercise through Gprc6a signal transduction in muscle fibers, which also contributes to the nutrient absorption and catabolism of muscles during exercise; and IGF-1 acts on IGF-1R to activate downstream signaling pathways and determines its biological activity. IGFBPs sterically hindered the interaction of IGFs with the IGF-I receptor, and they were potent competitive inhibitors. Both thus have a positive effect on skeletal muscle. And FGF23 and RANKL can have a negative effect on skeletal muscle. The combination of FGF23 with FGFR1 and the co-receptor Klotho stimulates downstream effects, and the RANKL/RANK interaction activates NF-kB, and OPG, as a soluble receptor of RANKL, prevents it from binding to RANK.


Although our understanding of the biochemical communication between bones and muscles has gradually increased and sarcopenia has become increasingly common in elderly patients, we currently have no specific measures or methods for treatment and prevention of sarcopenia; thus, it is necessary to explore whether osteokines can be used to treat and prevent this disease. Many bone-derived factors have been discovered, but here, we mainly focus on four bone factors that have a regulatory effect on muscles, namely, osteocalcin, IGF-1, RANKL and FGF-23, and seek to understand their possible therapeutic targets in sarcopenia.


Osteocalcin and Its Effect on Muscles

Osteocalcin is the most abundant non-collagen protein in the bone matrix and is mainly produced by mature osteoblasts (Hauschka et al., 1989). Osteocalcin has a high affinity for hydroxyapatite and is responsible for its storage in bone (Hauschka et al., 1989). However, due to its low pH and decarboxylation, it can be released into the circulation system. Its concentration level in the circulation system is controlled by the circadian rhythm. Human osteocalcin levels are very low in the morning and begin to rise in the afternoon, reaching a peak in the evening. The main form of osteocalcin in serum is incompletely carboxylated (OC with insufficient carboxyl groups) (ucOC) (Ferron et al., 2010), which is an uncarboxylated form and is related to glucose homeostasis in mice. The circulating level of ucOC is increased after exercise (Fernández-Real et al., 2009; Lin et al., 2012; Pernambuco et al., 2013; Kim et al., 2015; Ahn and Kim, 2016), and the increase in ucOC is related to the decrease in serum glucose levels after exercise (Lin et al., 2012). Since skeletal muscle is a major part of glucose processing (Holloszy, 2005; Funai et al., 2009), ucOC may be related to skeletal muscle function in both direct and indirect ways.

Osteocalcin has many functions in mice, such as regulating glucose metabolism, energy metabolism, fertility and ectopic calcification. Recent studies have shown that osteocalcin also has an effect on muscle (Levinger et al., 2014), thereby affecting the entire body’s physiology (Plant and Lynch, 2002; Karsenty and Ferron, 2012). Gprc6a may be the receptor of ucOCN (Mera et al., 2016a; Pi et al., 2016; Liu et al., 2017). Karsenty et al. analyzed mutant mouse strains lacking osteocalcin and/or its receptor Gprc6a in a cell-specific manner. Their results showed that muscle function during exercise requires Gprc6a calcium signaling in the bone and in muscle fibers. Exogenous osteocalcin cannot correct the poor exercise capacity in Gprc6aMck-/- mice and Ocn ± mice. Gprc6aMck ± mice showed the same decline in exercise capacity as Ocn-/- mice. In Gprc6aMck-/- mice, osteocalcin was identified as the main ligand of Gprc6a (responsible for the muscle function regulation and exercise adaptation activity of Gprc6a). Through the signal transduction of Gprc6a in muscle fibers, osteocalcin is a system modulator allowing adult mice to adapt to exercise (Mera et al., 2016a). Therefore, the osteocalcin signal in muscle fibers is not only necessary for adapting to exercise but also aids in muscle nutrient absorption and catabolism during exercise. First, osteocalcin signaling in muscle fibers contributes to the breakdown of glycogen, which is the main source of glucose for muscle contraction during exercise. Second, it promotes transport of the glucose transporter GLUT4 to the plasma membrane, thereby enhancing glucose uptake and glycolysis. Third, osteocalcin signal transduction in muscle fibers can increase the uptake and catabolism of fatty acids (FAs). Therefore, osteocalcin signaling in muscle fibers provides the necessary carbon atoms to promote the Tricarboxylic Acid Cycle (TCA) cycle and thereby generate ATP for increased muscle function (Mera et al., 2016a).

The maintenance of muscle mass depends on a balance between anabolic (protein synthesis) and catabolic (muscle breakdown) events, which together determine the level of muscle protein. Karsenty’s research team observed that osteocalcin signaling in the muscle fibers of aged mice promoted protein synthesis (Mera et al., 2016b). Other muscle anabolic hormones can activate the PI3K/Akt/mTOR pathway, thereby stimulating protein synthesis and muscle hypertrophy (Rommel et al., 2001). This is consistent with their previous results showing that osteocalcin plays a pivotal role in stimulating Akt phosphorylation in muscle during exercise (Mera et al., 2016a). Similarly, Suifeng Liu’s team discovered that ucOC promoted myoblast proliferation through the PI3K/Akt/p38 MAPK pathway. Gprc6a-Erk1/2 signaling promotes myogenic differentiation (Liu et al., 2017). Xuzhu Lin et al. found that in the extensor digitorum longus (EDL) muscle, osteocalcin enhances p-AktSer473 by increasing the total Akt expression level; in the soleus muscle, osteocalcin mimics the phosphorylation of PKC (protein kinase C), which may lead to increased activation of Akt and AS160 under insulin stimulation (Lin et al., 2017). In other organs of the human body, including pancreatic islets, testicular stromal cells and the brain, osteocalcin combines with its receptor Gprc6a to activate downstream signaling pathways, which is beneficial to protein synthesis and/or cell proliferation (Lee et al., 2007; Wei et al., 2014).

After a long period of regular exercise regardless of any form, body fat is reduced, insulin resistance is improved, and serum total osteocalcin and decarboxylated osteocalcin are significantly increased (Fernández-Real et al., 2009; Lin et al., 2012; Pernambuco et al., 2013; Kim et al., 2015; Ahn and Kim, 2016) but an increase in osteocalcin can also be observed after 5 min of exercise. The transient increase in the serum osteocalcin level does not appear to be an activity mediated by osteoblasts (Lin et al., 2012). This may be due to the influence of mechanical load. Studies have found interesting things; for example, with age, mice lacking insulin receptors (IRs) in osteoblasts showed significant peripheral obesity and insulin resistance compared with control mice in the same litter (Fulzele et al., 2010). At the same time, this phenotype was accompanied by a decrease in the lack of carboxylation of osteocalcin in the circulation. These conditions can also be observed in osteocalcin-deficient mice. Intermittent injection of exogenous osteocalcin promotes an increase in β-cell mass and insulin secretion, thereby significantly improving abnormal metabolism (Fulzele et al., 2010; Ferron et al., 2012; Huang et al., 2017). In mice taking osteocalcin daily, liver steatosis caused by a high-fat diet was completely cured, which also confirmed that daily injection of osteocalcin can improve the body’s ability to process glucose and prevent the development of type 2 diabetes.

Karsenty et al. found that IL-6 is a target gene for osteocalcin in muscle. Circulating levels of this muscle factor increase during exercise and enhance exercise capacity. In turn, IL-6 facilitates adaptation to exercise, in part by signaling in the bone to increase osteoclast differentiation and the production of bioactive osteocalcin (Mera et al., 2016a). Mice lacking IL-6 receptors in osteoblasts showed severe motor deficits, similar to mice lacking myogenic IL-6 (mIL-6). This deficiency can be caused by osteocalcin rather than IL-6. Recently, some researchers have used 3H-2-deoxyglucose (3H-2-DG) uptake to measure glucose uptake and found that the uptake of 3H-2-DG was decreased in oxidized muscle in both IL6Hsa–/– and IL6rOsb–/– mice compared with their respective control litters. Moreover, the expression of Pgma1, which is necessary for glycolysis in the oxidative muscles of IL6Hsa–/– mice, decreased after exercise, and a similar reduction in glucose uptake was observed in Ocn± IL6Hsa± and Ocn± IL6rOsb± mice. All these results indicate that osteocalcin-mediated mIL-6 has a positive effect on muscle fiber glucose uptake during exercise. Osteocalcin was injected into IL6Hsa–/–, IL6rOsb–/–, Ocn± IL6Hsa±, or Ocn± IL6rOsb± mice, and glucose uptake in the muscles of all the mutant mouse strains was found to be normalized. In addition, during exercise, mIL-6 promotes nutrient absorption and catabolism in muscle fibers in an osteocalcin-dependent manner. Compared with control litter mice before and after exercise, IL6Hsa–/– and IL6rOsb–/– mice have normal or increased circulating levels of non-esterified fatty acids (NEFAs) and triglycerides. Similarly, comparing IL6Hsa–/–, IL6rOsb–/–, Ocn± IL6Hsa±, or Ocn± IL6rOsb± mice with their respective control groups after exercise, it was found that the expression levels of FATP1, which promotes the uptake of long-chain FAs into cells, and of CPT1B, which facilitates FA transport across the mitochondrial membrane (Stahl et al., 2001), are significantly reduced in muscles (Chowdhury et al., 2020). Between humans and rodents, the crosstalk between osteocalcin and IL-6 is conserved, indicating that the musculoskeletal-muscle endocrine axis is an essential part of enhancing muscle function in humans and rodents.


The Future Direction of Osteocalcin in Treatment of Sarcopenia

Osteocalcin can actively regulate exercise capacity, and its level drops sharply during aging. This fact suggests that osteocalcin may regulate muscle mass. By analyzing mutant mice lacking osteocalcin or its receptor Gprc6a, it was found that this regulatory effect of troponin signaling in muscle fibers could not be detected in young mice, indicating the presence of other potential mechanisms besides osteocalcin signaling. Osteocalcin signaling works to maintain the muscle mass of young mice but also improves the exercise capacity of 3-month-old mice. As age increases, the circulating osteocalcin level decreases sharply. Thus, whether osteocalcin is administered acutely or chronically, the exercise ability of 9-, 12-, or even 15-month-old mice is restored to that of 3-month-old mice (Mera et al., 2016a). This result indicates that osteocalcin signal transduction in muscle fibers is a novel and powerful means to combat age-related declines in muscle function. However, due to the increasing number of molecules that affect muscle function (Baskin et al., 2015) it is important to determine whether osteocalcin works in synergy with some of these molecules to promote adaptation to exercise. Specific excision of the mouse osteoblast/osteocyte Cx43 gene (Gja1) affects the development of skeletal muscle, resulting in a decrease in rapid muscle weight, grip strength, and maximum absolute and specific tonicity, as well as differences in osteocalcin activity and insufficient carboxylation. The construct promoted the formation of myotubes in C2C12 myoblast cultures, and injection of osteocalcin into the mice rescued the cross-sectional area and grip strength of the extensor digitorum longus muscle (Shen et al., 2015). Hypocarboxylated osteocalcin was employed in mice receiving short-term glucocorticoids (GCs). It was found that ucOC treatment can improve the muscle insulin sensitivity of mice receiving short-term cortisol (CS) administration. The underlying mechanism of this ucOC effect involves enhancing the activation and abundance of key proteins in the distal insulin and ucOC signaling pathways in a distal muscle-specific manner (Lin et al., 2019). In animal and preclinical studies, ucOC has been found to have a promising role in improving muscle metabolism and function, but the role of ucOC in humans and its relationship with muscle function and metabolism are still unknown. Although many functions of osteocalcin are not very relevant, its ability to improve muscle function and promote an acute response to stress during exercise indicates that this unique bone-derived hormone presents a survival advantage. A deeper understanding of bone-derived hormones is still required. From a broader and longer-term perspective, this may slow or even reverse the onset of age-related diseases.




IGF-1 and Its Effect on Muscles

Insulin-like growth factor-1 (IGF-1) is a 70-amino acid single-chain peptide with a molecular weight of 7.6 kDa. IGF-1 contains three disulfide bonds between amino acids 6 and 48, 18 and 61, and 47 and 52, which form a tertiary structure (Sjögren et al., 1999; Yakar et al., 1999) and are essential for optimal binding to IGF-1R. IGF-1 commonly serves as an endocrine hormone that is mainly secreted by the liver and transported to target tissues. It is also produced by the local action of extrahepatic tissue in a paracrine manner; for example, bone tissue produces IGF-1 to act on skeletal muscle (Sheng et al., 2013). IGF-1 is used as a marker of medical conditions and diseases, such as acromegaly, breast cancer (Peyrat et al., 1993; Hankinson et al., 1998; Tanimoto et al., 2008; Murphy et al., 2020), prostate cancer (Stattin et al., 2004; Rowlands et al., 2009), type 1 and type 2 diabetes (T2DM) (Mastrandrea et al., 2008; Cubbon et al., 2016), heart disease (Laughlin et al., 2004), non-alcoholic fatty liver disease (NAFLD) (Brea et al., 2005) and sepsis (de Groof et al., 2002). Here, we discuss its effects on skeletal muscle.

The growth hormone/insulin-like growth factor (IGF) axis is an important determinant of muscle mass and function (Drey, 2011). IGF-1 is both hyperplastic and hypertrophic in skeletal muscle. The hyperplastic effect results in the proliferation of muscle satellite cells, which donate their nuclei to multinucleated myofibers. The hypertrophic effect results in increased synthesis of contractile proteins by existing myonuclei. Local IGF-1 is primarily secreted by bone cells, which has little effect on the level of IGF-1 in blood circulation and is mainly involved in bone transformation (Sheng et al., 2013). Bone cell-specific conditional IGF-1 gene knockout mice manifested decreased muscle mass, and the expression of IGF-1 mRNA in muscle was decreased by 59%, suggesting that local IGF-1 may be involved in regulating muscle metabolism. IGF-1Ec, an isoform of IGF-1, also called mechanical growth factor (MGF) (Matheny et al., 2010) is very sensitive to mechanical stimulation. It is significantly upregulated after exercise training and skeletal muscle injury (Matheny et al., 2010). MGF can activate muscle satellite cells, promote the proliferation of myoblasts, maintain the quality of local skeletal muscle, and promote the repair of damaged tissues.

IGF-1 binds to IGF-1 receptors (IGF-1Rs) on the muscle fiber membrane to initiate a signal for muscle protein synthesis. If the number of IGF-1 receptors decreases and the circulating IGF-1 hormone levels remain unchanged, downstream events will stop, thereby affecting protein synthesis. The activity of IGF-1 is tightly controlled by a family of plasmatic transportation proteins called insulin-like growth factor–binding proteins (IGFBPs) (Frystyk, 2004; Jogie-Brahim et al., 2009). The IGFBP family may help improve function and regulate the level of diversity, thereby promoting the fine-tuning of IGF biological activity and signal transduction (Allard and Duan, 2018). The IGFBP family consists of six IGFBPs, IGFBP1 to IGFBP6, and other proteins with low binding affinity to IGFs are called IGFBP7, IGFBP8, and IGFBP9 (Ding and Wu, 2018). Insulin-like growth factor binding protein-1 (IGFBP-1) can be a determinant of IGF-1 activity. In previous studies, it was found that the level of IGFBP-1 was negatively correlated with that of free IGF-1 (Frystyk, 2004). In a cross-sectional study of the relationship between serum IGFBP-1 and muscle mass in elderly women between 55 and 85 years old, researchers such as Alicja Wolk observed that IGFBP-1 is positively correlated with low relative muscle mass (Stilling et al., 2017). Compared with IGFBP-1, IGFBP-2 and IGFBP-3 not only participate in the pathological process of most human diseases, such as prostate cancer, lung cancer and other malignant diseases, blocking them seems to be an effective way to inhibit tumor growth and metastasis and can also improve metabolism, such as inhibiting fat production and enhancing insulin sensitivity. The IGFBP family has a certain ability to regulate IGF-1. Whether there are other members in addition to IGFBP-1 that affect muscles is worth our continued exploration.

Regulating protein synthesis in skeletal muscle and promoting body growth is one of the most important functions of IGF-1. Through in vitro experiments, Rommel, C. and other researchers found that the PI3K/Akt/mTOR and PI3K/Akt/GSK3 pathways mediate IGF-1-induced skeletal muscle hypertrophy. The main processes are as follows: After IGF-1 binds to the IGF-1 receptor (IGF-1R), it phosphorylates the intracellular adaptor protein insulin receptor substrate-1 (IRS-1), which recruits and phosphorylates phosphoinositide 3-kinase (PI3K); then, protein kinase B (Akt) is phosphorylated. Akt promotes hypertrophy by activating downstream signaling pathways involved in protein synthesis: one is to promote protein synthesis through the downstream pathway of the mammalian target of rapamycin (mTOR), and the other pathway activates phosphorylation to inhibit glycogen synthase kinase 3 (GSK3), thereby activating Eif2b and transcriptional activator β-catenin protein (Desbois-Mouthon et al., 2001; Rommel et al., 2001; Armstrong and Esser, 2005). In contrast, in addition to verifying that calcineurin does not mediate the hypertrophy induced by IGF-1, this study also demonstrated that IGF-1 unexpectedly antagonizes the calcineurin signal through Akt during myotube hypertrophy. At the same time, the results of in vivo studies have confirmed this. Researchers have found that activation of mTOR through PI3K/Akt may be an important regulator of muscle fiber growth in the body (Bodine et al., 2001). Activated Akt can not only increase the fiber size in normal muscles but can also maintain the size of muscle fibers in atrophic muscles. This shows that IGF-1 is a key intracellular signaling protein that promotes skeletal muscle growth and performance. In contrast, IGF-1-mediated phosphorylation of Forkhead box O (FoxO) inactivates this pathway, and dephosphorylated FoxO is translocated into the nucleus, where it induces the transcription of atrogin-1, MuRF-1 and other genes that cause muscle protein breakdown (Sandri et al., 2004; Stitt et al., 2004). Therefore, low levels of IGF-1 are related to a decrease in PKB/AKT and mTOR and an increase in the transcription factor FoxO. We can use IGF-I to reduce the effect of the cell cycle inhibitor p27Kip1 through the PI3K/Akt pathway, thereby promoting the proliferation of satellite cells and regeneration of aging muscles (Chakravarthy et al., 2001). In a recent study, Sullivan et al. (2020) found that both men and women with obesity had a lower IGF-1 level in skeletal muscle at rest and after acute resistance exercise compared with lean counterparts. However, lower IGF-1 expression was not related to lower downstream signaling through Akt and mTOR. A lower resting IGF-1 mRNA level was found to be correlated with a greater miR-206 level, indicating possible epigenetic regulation of muscle IGF-1 expression (Sullivan et al., 2020). In the disuse state (not with age), the IGF-1/PI3K/Akt signaling pathway is weakened. Meanwhile, the serum IGF-1 and IGFBP-3 concentrations can be detected in a low state (Silva-Couto Mde et al., 2014; Timmer et al., 2018). Therefore, the above pathway may alleviate skeletal muscle atrophy in some cases.

Adult non-growing skeletal muscle is difficult to hypertrophize in response to elevated IGF-1. In contrast, during muscle growth, the protein content of muscle fibers is increased through activation of signaling downstream of the IGF-1 receptor (Akt, phosphorylation of p70S6K) (Shavlakadze et al., 2010). In other words, stimulation of IGF-1 may induce skeletal muscle hypertrophy. Betaine supplementation may enhance the skeletal muscle differentiation of mouse myoblasts by activating IGF-1 signaling in vitro (Senesi et al., 2013). One of the factors potentially shared between muscle and bone is IGF-1. Thus, we must continue in-depth exploration of IGF-1.


The Future Direction of IGF-1 in Treatment of Sarcopenia

The circulating IGF-1 level decreases during the aging process (Bucci et al., 2013). In a cross-sectional study of elderly people in the community in Singapore, reduced IGF-1 levels coexisted with reduced vulnerability and muscle mass. In contrast, it is different in males, indicating that IGF-1-dependent anabolic pathways may be dominant in women (Chew et al., 2019). Serum IGF-1 was significantly lower among female sarcopenic subjects, with a demonstrable trend for a protective effect against sarcopenia in multiple regression models, such that each 1 ng/ml increase in IGF-1 was associated with a 1% decline in the odds of sarcopenia in women (p = 0.095) (Tay et al., 2015). In another cross-sectional study, it was found that women over 60 years of age with hip fractures had a high incidence of sarcopenia, and low serum IGF-1 and insulin-like growth factor binding protein-3 were detected in these women (Yee et al., 2020). This shows that IGF-1 may be used as a potential biomarker of sarcopenia. Age-related downregulation of the skeletal muscle IGF-1 system may be reversed to some extent with progressive resistance training (Urso et al., 2005; Chen et al., 2017; Yoon et al., 2019). A recent study confirmed that resistance interval training (RIT) and resistance aerobic exercise (RAE) can effectively improve physical health and sleep quality by increasing the area of skeletal muscle and IGF-1 in elderly women (Yoon et al., 2019). A supramolecular nanofiber/hydrogel formed by Nap-FFGSSSR mimics IGF-1 and can increase the phosphorylation of Akt by activating the insulin-mediated signaling pathway, which effectively promotes the proliferation of myoblasts, significantly reduces the apoptosis of myoblasts induced by dexamethasone, helps the myoblasts to differentiate into myotubes, and prevents the fibrosis of muscle tissue and the deposition of collagen;(Shang et al., 2020) these results show a prominent effect of IGF-1 in the treatment of sarcopenia. The expression of the full propeptide IGF-1Ea of IGF-1 promotes a significant hypertrophic phenotype in young mice and maintains this phenotype in older mice. However, inspections of aging transgenic mice showed that local expression of the IGF-1Ea or IGF-1Eb transgene has a protective effect on age-related loss of muscle mass and strength (Ascenzi et al., 2019). Losartan can counteract disuse atrophy in old mice with fixed hind limbs and prevent loss of muscle mass (Burks et al., 2011). This protective mechanism is due to increased activation of the IGF-1/Akt/mammalian Ray mTOR pathway, which blocks AT1 (vascular tension) (Prime type) receptors can improve muscle remodeling and prevent disuse atrophy and may prove to have clinical benefits against injury-related muscle remodeling and provide prevention of disuse atrophy for people with secondary sarcopenia protection.




RANKL and Its Effect on Muscles

Receptor activator of nuclear factor kappa-B ligand (RANKL), also known as tumor necrosis factor ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE) and bone protein-ligand (OPGL), was first identified as a product of immune cells. Moreover, it has also been considered an important indicator of osteoclast differentiation (a membrane-bound factor expressed by osteoclasts to form supporting cells, such as osteoblasts and osteocytes) (Yasuda et al., 1998; Nakashima et al., 2011; Xiong et al., 2011).

RANKL and its RANK are an upstream signaling pathway of nuclear factor-κB (NF-κB). NF-κB is a key transcription factor that induces many proinflammatory genes, and its expression is upregulated in muscular dystrophy. Specific inhibition of NF-κB activity can reduce damage, inflammation and fibrosis of dystrophic muscle (Kumar and Boriek, 2003; Mourkioti et al., 2006; Acharyya et al., 2007; Yin et al., 2017). In bone, the RANKL/RANK interaction activates NF-κB, induces the formation of multinucleated mature osteoclasts, and causes bone resorption (Boyce et al., 2015). Increased levels of RANKL in menopausal women play a major role in the occurrence of osteoporosis, since the molecule can activate cell differentiation by binding to its receptor (RANK) and improves the activity and survival rate of osteoclasts (Eghbali-Fatourechi et al., 2003; Lacey et al., 2012). Osteoprotegerin (OPG), a soluble receptor of RANKL, prevents it from binding to RANK, thereby inhibiting osteoclast production. RANK in muscle is a key regulator of Ca2 + storage, SERCA activity and the rapid contraction of skeletal muscle. The RANKL-RANK interaction regulates Ca2 + storage and thus has an effect on muscle performance (Dufresne et al., 2016b). It has been found that genetic deletion of dystrophic muscle RANK and short-term selective inhibition of RANKL can significantly improve the muscle strength and integrity of young dystrophic MDX mice, such as in the dystrophic extensor muscle (EDL) and soleus muscle (Sol) (Bonnet et al., 2019; Hamoudi et al., 2019). Among them, anti-RANKL treatment preserves muscle integrity, reduces the damage and fiber of the dystrophic muscle, and can increase the mechanical properties of the bone in dystrophic mice (Hamoudi et al., 2019). RANK and/or RANKL can also be expressed in skeletal muscle, and this activation mainly inhibits myogenic differentiation, resulting in skeletal muscle dysfunction (Langen et al., 2001; Lee and Goldberg, 2015). In turn, in MDX mice (Duchenne muscular dystrophy mouse model), exogenous OPG has been shown to reduce inflammation and restore skeletal muscle function (Dufresne et al., 2015, 2016b). Using full-length OPG-Fc to improve dystrophic muscle function has a certain superiority over use of truncated OPG-Fc, anti-RANKL antibody, or anti-TRAIL antibody and muscle RANK loss (Dufresne et al., 2018).


The Future Direction of RANKL in Treatment of Sarcopenia

Denosumab (Dmab), a RANKL blocking antibody that mimics the effects of OPG, has been demonstrated to reduce the risk of fractures and is widely used in the treatment of osteoporosis (McCloskey et al., 2012). A recent study found that there was no significant difference in bone or muscle parameters in postmenopausal women with osteoporosis treated with denosumab or bisphosphonate. However, only denosumab improved muscle strength. A higher level of RANKL expression not only induced bone loss but also concomitantly impaired muscle structure, strength, and glucose uptake in vivo (Bonnet et al., 2019). Moreover, RANKL inhibitors (such as OPG-Fc and Dmab) corrected these abnormalities in both RANKL mice and Pparb-/-osteo lipoprotein-deficient mice, which indicates that the RANKL-RANK system is ultimately related to muscle weakness (related to the development of the system, instead of the trigger mechanism) (Bonnet et al., 2019). Stanley S et al. used the fully human monoclonal antibody denosumab in a patient with facial scapular humeral muscular dystrophy and achieved good therapeutic effects (Lefkowitz et al., 2012). This may be explained by the function of denosumab, which prevents binding of the RANK receptor by RANKL, with a resultant reduction in cytokines (e.g., TNF can cause muscle wasting and cellular apoptosis). Prior to this, some researchers confirmed that conditional knockout of RANK in muscle could prevent denervation-induced muscle weakness (Dufresne et al., 2016a). Taken together, the RANK/RANKL/OPG system may play an important role in muscle metabolism and the development of sarcopenia.




FGF-23 and Its Effect on Muscles

Fibroblast growth factor 23 (FGF-23) is the first hormone-like osteokine found to be secreted by bone cells (Liu et al., 2006). FGF23 gene mutation is the cause of autosomal dominant hypophosphatemic rickets (ADHRs) (Econs et al., 1998). FGF23 and parathyroid hormone (PTH) can jointly regulate phosphate metabolism (Quarles, 2012). FGF-23 downregulates the expression of sodium/phosphorus co-transporter, which is responsible for the absorption and reabsorption of phosphate and acts on the proximal and distal tubules of the kidney to inhibit phosphate reabsorption (Gattineni et al., 2009). In addition, FGF23 can also inhibit the production of 1,25(OH)2 vitamin D3 by inhibiting 1a-hydroxylase (Nabeshima, 2008; Wolf, 2010) which can also lead to a phosphate waste effect, consequently resulting in poor bone mineralization under pathological conditions (children suffer from rickets, and adults suffer from osteomalacia). To regulate the reabsorption of phosphate, FGF23 binds to a complex of FGFR1 and the co-receptor Klotho to stimulate downstream effects (Kuro-o et al., 1997; Urakawa et al., 2006; Avin et al., 2018). Notably, FGF-23 and Klotho knockout mice exhibit the same premature aging phenotype, including vascular calcification (Desjardins et al., 2012), cardiac hypertrophy (Faul et al., 2011; Kuga et al., 2020), metabolic bone disease, and cognitive impairment (Shimada et al., 2004). A cross-sectional study of 2977 elderly people in the community showed that FGF23 levels were higher in older people, which was an independent risk factor for debilitating and pre debilitating states. This result suggests that FGF23 may have a certain negative biological effect (Beben et al., 2016). Skeletal muscle mesenchymal stem cells (MSCs) can not only promote the differentiation of co-cultured satellite cells into muscle-like cells (Joe et al., 2010) but also regulate the maintenance of muscle fibers (Roberts et al., 2013). Therefore, the interaction between MSCs from skeletal muscle and satellite cells may play an important role in skeletal muscle regeneration and homeostasis. Chisato Sato et al. conducted a study on the effects of FGF-23 on isolated human MSCs in vitro. They found that FGF-23 promoted the p53/p21 pathway to induce premature senescence of human skeletal muscle mesenchymal stem cells in a Klotho-independent manner, which supports its inhibitory effect (Sato et al., 2016). Studies have found that the FGF-23 concentration in hemodialysis patients is positively correlated with muscle mass index. Its effect on muscle is independent of s-Klotho, and it directly binds to FGF receptors in skeletal muscle (Fukasawa et al., 2014). Li et al. (2016) treated C57BL/6J mice with 100 mg/(kg⋅d) exogenous recombinant FGF23 twice a day for 3 consecutive days. They found that the exercise endurance of the mice improved. It was speculated that increased reactive oxygen species (ROS) expression and enhanced mitochondrial function might account for this finding.


The Future Direction of FGF-23 in Treatment of Sarcopenia

FGF-23 was the first endocrine factor found in bone; its level is higher in older people, and it has a certain negative effect on the body (Liu et al., 2006; Beben et al., 2016). Anti-FGF-23 neutralizing antibody can increase the blood phosphorus and 1,25(OH)2D levels in hypophosphatemia (Hyp) young mice and improve humerus and X-linked hypophosphatemic rickets/osteomalacia (XLH) in young Hyp mice (Aono et al., 2009). In addition, FGF-23Ab also increases muscle strength and spontaneous exercise frequency in adult Hyp mice (Aono et al., 2011). It is worth considering whether FGF23 has a direct effect on skeletal muscle and what kind of regulation it exerts. Does FGF-23 play a major role in aging muscle? Can these findings in mice also be applied to humans? Can inhibition of excessive FGF-23 activity help to improve biochemical, morphological and histological alterations in the muscle of patients with FGF-23-related hypophosphatemia? Does it improve the symptoms of muscle weakness and the quality of life? The answers to these questions remain unclear. Therefore, further research and deeper discussion are still needed to address the above issues.





CONCLUSION

During the aging process, loss of muscle mass is partially attributed to a gradual decrease in the cross-sectional area of muscle fibers. Several mechanisms have been proposed to account for this phenomenon, including decreased circulating levels of anabolic hormones and growth factors, internal changes in age-related muscle properties, and an age-related decrease in physical activity. Research on the underlying mechanisms of age-related muscle loss aims to identify targets for drug discovery and to develop novel and effective methods to combat muscle loss. In this review, we comprehensively summarized the latest research progress on the effects of the bone-derived cytokines FGF-23, IGF-1, RANKL, and osteocalcin on muscle and the prospects for treatment of sarcopenia. Understanding the mechanical, cellular and molecular mechanisms underlying the biochemical communication between bone and muscle is of great significance for discovering potential novel therapies for age-related disorders. In the future, bone-derived factors might be considered in the treatment of sarcopenia and other muscle disorders.
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FGF-23, fibroblast growth factor 23; IGF-1, insulin-like growth factor; RANKL, receptor activator of nuclear factor kappa-B ligand; OR, odds ratio; CI, confidence interval; HMB, β hydroxy β methyl butyrate; Cx43, connexin 43; IL-8, interleukin 8; IL-15, interleukin 15; LIF, leukemia inhibitory factor; BDNF, brain-derived neurotrophic factor; FGF-21, fibroblast growth factor 21; TGF-β, transforming growth factor β; BMP, bone morphogenetic protein; PGE2, Prostaglandin E2; Dkk1, Dickkopf-1; MEPE, stromal extracellular phosphoglycoprotein; OPG, osteoprotegerin; LCN2, lipocalin 2; MC4R, melanocortin 4 receptor; OC, osteocalcin; UcOC, uncarboxylated osteocalcin; FAs, fatty acids; TCA, tricarboxylic acid cycle; ATP, adenosine triphosphate; EDL, extensor digitorum longus; PKC, protein kinase C; IR, insulin receptors; mIL-6, myogenic IL-6; 3H-2-DG, 3H-2-deoxyglucose; IGF-1R, insulin-like growth factor-1 receptor; MGF, mechanical growth factor; IGFBPs, insulin-like growth factor–binding proteins; IRS-1, insulin receptor substrate-1; Akt, protein kinase B; mTOR, mammalian target of rapamycin; GSK3, glycogen synthase kinase 3; FoxO, Forkhead box O; TNFSF11, tumor necrosis factor ligand superfamily member 11; TRANCE, TNF-related activation-induced cytokine; NF-κB, Nuclear factor-κB; MSCs, mesenchymal stem cells; NF-κB, Nuclear factor-κB; OPG, osteoprotegerin; Sol, soleus muscles; ADHR, autosomal dominant hypophosphatemic rickets; PTH, parathyroid hormone; MSCs, mesenchymal stem cells; ROS, reactive oxygen species.
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To investigate the effects and mechanisms of irisin, a newly discovered myokine, in cartilage development, osteoarthritis (OA) pathophysiology and its therapeutic potential for treating OA we applied the following five strategical analyses using (1) murine joint tissues at different developmental stages; (2) human normal and OA pathological tissue samples; (3) experimental OA mouse model; (4) irisin gene knockout (KO) and knock in (KI) mouse lines and their cartilage cells; (5) in vitro mechanistic experiments. We found that Irisin was involved in all stages of cartilage development. Both human and mouse OA tissues showed a decreased expression of irisin. Intra-articular injection of irisin attenuated ACLT-induced OA progression. Irisin knockout mice developed severe OA while irisin overexpression in both irisin KI mice and intraarticular injection of irisin protein attenuated OA progression. Irisin inhibited inflammation and promoted anabolism in chondrogenic ADTC5 cells. Proliferative potential of primary chondrocytes from KI mice was found to be enhanced, while KO mice showed an inhibition under normal or inflammatory conditions. The primary chondrocytes from irisin KI mice showed reduced expression of inflammatory factors and the chondrocytes isolated from KO mice showed an opposite pattern. In conclusion, it is the first time to show that irisin is involved in cartilage development and OA pathogenesis. Irisin has the potential to ameliorate OA progression by decreasing cartilage degradation and inhibiting inflammation, which could lead to the development of a novel therapeutic target for treating bone and cartilage disorders including osteoarthritis.
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INTRODUCTION

Osteoarthritis (OA) is a chronic joint disease characterized by the degeneration of cartilage and subchondral bone within the joint. It afflicts about 10% of the population (Lawrence et al., 2008) and is currently a major cause of pain and disability worldwide. The major pathological changes of OA present in three ways: cartilage degradation and degeneration, aberrant subchondral bone metabolism, and synovial inflammation. However, the underlying mechanisms for the development of these changes are not fully understood.

Currently, there is no complete cure available for OA, only treatments designed to temporarily relieve pain and improve function. Conservative treatments, including weight loss, physical therapy/exercise, and activity modification, may not always elicit desired outcomes due to three major therapeutic limitations of conservative treatments: unsatisfactory clinical efficacy for pain relief, the potential for side effects with certain drug options, and the inability to delay disease progression (Zhang et al., 2011a). Interventional treatments include intra-articular (IA) injections and surgery. IA therapies seem likely to be more effective than systemic pharmacologic treatments such as non-steroidal anti-inflammatory drugs (NSAIDs), but part of the observed benefit of IA might be placebo effects (Yan et al., 2011). Surgical options include arthroscopic debridement, lavage and meniscectomy, high tibial osteotomy, and uni-compartmental and total knee arthroplasty (TKA). In joint replacement surgery (arthroplasty), surgical risks include infections and blood clots. Artificial joints can wear out or come loose and may eventually need to be replaced (Zhang et al., 2011a). Many of the current therapeutics for OA have limitations, drawbacks and side effects. Therefore, investigating the pathogenesis of OA and searching for an effective and robust therapy to prevent and treat OA is important and significant.

Irisin, a newly discovered myokine, is a polypeptide hormone derived from the proteolytic cleavage of fibronectin-type III domain-containing 5 (FNDC5) protein (Boström et al., 2012; Zhang et al., 2017). Previous studies have demonstrated that irisin has beneficial effects in various tissues and organs particularly in bone development and regeneration (Colaianni et al., 2015; Qiao et al., 2016; Mazur-Bialy et al., 2017a; Eslampour et al., 2019; Natalicchio et al., 2019). Irisin injections can improve cortical bone mineral density and skeletal remodeling (Colaianni et al., 2015, 2017). Also, irisin may suppress the pro-inflammatory activation of adipocyte 3T3 L1 cells and has potential anti-inflammatory properties connected with the downregulation of downstream pathways of TLR4/MyD88 (Mazur-Bialy et al., 2017b). Generally, there are both abnormal subchondral bone structures and enhanced inflammation in the OA joints. Here, we established the surgically induced OA mouse model and irisin genetic and transgenic mouse lines to investigate the roles of irisin in subchondral bone deterioration prevention, cartilage erosion containment and inflammation inhibition. Meanwhile, we have also initially validated its therapeutic potential for treating and reversing the OA pathologic features.



MATERIALS AND METHODS


Animals

We have generated floxed irisin conditional knockout mice (IRSf/f) (Zhu et al., 2021) and irisin over-expressing mice R26IRS/IRS, which were both on the C57BL/6J background. To created R26IRS/IRS mice, we constructed a transgenic cassette that carries a floxed stop codon fused to mouse IRS cDNA with a polyadenylation signal, under the control of the CAG promoter. The cassette was inserted into the intron1 of the Rosa26 locus. The function of the chimeric gene (floxed Stop-FNDC5-2A-tdTomato) was validated before microinjection. Transgene microinjection was performed at Biocytogen LLC (Worcester, MA) into C57BL/6 fertilized mouse eggs. We obtained C57BL/6J wide type mice and CMV-Cre mice from the Jackson Laboratory (stock No: 006054). To generate transgenic CMVCre+/R26IRS/IRS mice and CMVCre+/R26–/–, R26IRS/IRS mice were mated with CMVCre+ mice to obtain CMVCre+/R26IRS/– mice, which were then interbred. To generate CMVCre+/IRSf/f mice and CMVCre+/IRS–/– mice, IRSf/f mice were mated with CMVCre+ mice to obtain CMVCre+/IRSf/– mice, which were then interbred. Animals were housed in a condition at 23 ± 2°C, with 50 ± 10% humidity and a 12 h light-12 h dark cycle (light on from 07:00 to 19:00) with the number of 5 mice per cage. Mice can get free access to regular rodent chow and water while be monitored three times a week for health status at the Tufts Medical Center Animal Facility. At the start of the experiments, mice weighed (mean ± SD) 22 ± 2 g. The study was based on previous experiments performed by other researchers (the same model but different knockout genes) to estimate an effect size on Osteoarthritis Research Society International (OARSI) score of 2.1 (Yu et al., 2020). To test the genes expression change in OA patient cartilages compared with the normal human, the results of other genes of the same sample types tested in our laboratory suggested the effect size of 2.6. Then we chose three normal human articular cartilage samples and 6 OA patients to test the mRNA expression level of irisin. This study was approved by the Institutional Animal Care and Use Committee (IACUC) of Tufts University in accordance with NIH guidelines.



Cell Culture

Murine articular cartilages were isolated from CMVCre+/R26IRS/IRS, CMVCre+/R26–/–, CMVCre+/IRSf/f, and CMVCre+/IRS–/– mice (n = 6), respectively, and the mice were 2 days old. Primary murine chondrocytes were cultured as previously described (Gosset et al., 2008). Briefly, we placed the mice in the face-down position and fixed the anterior legs by needles. We removed the skin and soft tissues using scissors and princer. Then, dislocated the femurs and collected the femoral heads, femoral condyles and tibial plateau. Cartilages were separated and incubated in 10 ml digestion solution (3 mg/ml collagenase D) for 45 min at 37°C. Then, retrieved the cartilages and repeated the digestion step. After that, we retrieved the cartilages and put them into 0.5 mg/ml collagenase D overnight at 37°C. Finally, collected the suspension of isolated cells and cells were seeded at 3 × 105/well in 6-well culture plates in DMEM supplemented (Thermo Fisher Scientific Inc., Waltham, MA) with 10% fetal bovine serum (Thermo Fisher Scientific Inc.), 2% L-GIn (Sigma-Aldrich, St. Louis, MO) and 1%PS (penicillin and streptomycin, Thermo Fisher Scientific Inc.). ADTC5 cells (ATCC, Manassas, VA) were seeded at 1.2 × 105/well in 12-well culture plates and 3 × 105/well in 6-well culture plates in growth medium [Nutrient Mixture F-12, F-12/DMEM (1:1, Thermo Fisher Scientific Inc.) + 5% FBS + 1%PS + 10 μg/mL human transferrin (Sigma-Aldrich) + 30 nM sodium selenite (Sigma-Aldrich)]. To induce chondrogenic differentiation of ADTC5, we changed the growth medium to differentiation medium [Growth medium + 10 μg/mL insulin (Sigma-Aldrich) + 37.5 μg/mL ascorbic acid (Sigma-Aldrich)]. The cell culture medium was added into 10 ng/mL human recombinant proteins interleukin-1 beta (rhIL-1β, R&D Systems, Minneapolis, MN) to induce inflammation. Recombinant irisin (r-IRS, 100 ng/mL, AdipoGen, San Diego, CA) was added to the medium to detect its function in vitro, using the same volume PBS as control.



Human Normal Cartilage and OA Tissue Samples

Normal human articular cartilage was isolated from the knees of patients (n = 3) who had died of diseases unrelated to arthritis (specimens obtained en bloc from the Musculoskeletal Transplant Foundation). The Kellgren-Lawrence Grading System was used to determine the grade of osteoarthritis (Kellgren and Lawrence, 1957). Normal cartilage samples were without radiographic or intra-articular evidence of arthritic disease (Kellgren-Lawrence Grade 0). Arthritic cartilages were obtained from patients (n = 6) undergoing elective total knee arthroplasty for end-stage OA with Kellgren-Lawrence Grade of 3 or 4 from the distal femora of 8 patients (mean age 58.4 years, range 49–66 years). The samples were then stored at −80°C until analysis (Luan et al., 2008). In this study the relevant samples and cDNA extracted from human cartilage were obtained from Dr. Chuanju Liu’s Lab at the NYU Medical School with an IRB protocol number of 12758.



Mouse Limb Tissues at Different Developmental Stages

The limbs were isolated from embryonic (E14.5 and E16.5), new-born (D1, D4 and D7), adolescent C57BL/6J wide type mice (D28) (n = 6). Subsequently, the limbs were fixed in 4% buffered paraformaldehyde for 24 h, decalcified in 10% EDTA, then embedded in paraffin.



OA Mouse Models and Intraarticular Injection of r-IRS

Twelve-week-old adult male C57BL/6J wide type mice (n = 12) were randomly divided into two groups [anterior cruciate ligament transection (ACLT)-operated treated with PBS, and ACLT-operated treated with irisin] and anesthetized through intraperitoneal injection of both xylazine (5 mg/kg, Akorn, Lake Forest, IL) and ketamine (40 mg/kg, Zoetis, Parsippany, NJ). Then OA was surgically induced by ACLT on the right knee, leaving the left knee as a sham surgery control in which the meniscotibial ligament is localized but not transected as previously described (Kamekura et al., 2005; Glasson et al., 2007; Zhao et al., 2014). At 2 days post-OA surgery, intraarticular injection into the knee joint was performed by a trans-patellar tendon approach. Five microliters of r-IRS (1 μg/μl) or PBS were injected every 3 days in the laboratory. Mice were returned to the cage until the day of next injection. The experimental mice were sacrificed at 8 weeks after the surgery. Surgically induced destabilization of the medial meniscus (DMM) model was performed on the transgenic mice. Twelve-weeks-old adult male transgenic mice from the groups (CMVCre+, CMVCre+/R26IRS/IRS, CMVCre+/IRSf/f, CMVCre+/IRSf/f + IRS; n = 10 in each group) were anesthetized and unilateral joint instability will be induced by microsurgical transection of the medial meniscotibial ligament (MMTL) as previously described (Zhao et al., 2015). The DMM surgery were completed on the right knee. The polyester-based hydrogel was synthesized following previously published procedures (Tsou et al., 2018) with minor modifications. Briefly, the CHPO-Ser-ET oligomer was synthesized via polycondensation reaction between citric acid, serine and hexaethylene glycol. Polyester oligomers and 8-arm PEG-Maleimide (MW 10 KDa) were dissolved individually in PBS with r-IRS (1 μg/μl, pH = 7.4, AG-40B-0103, AdipoGen, San Diego, CA) to form pre-gel solutions with predetermined weight concentrations (5, 10%). By mixing two solutions, hydrogels were formed at physiological pH and temperature. The hydrogels with r-IRS were sent to evaluate the drug release profiles from hydrogel. Briefly, the IRS-loaded hydrogel was immersed in PBS. The suspension liquid was collected and analyzed for the release study using ELISA following the methods established in our lab and others that are designed specifically for IRS analysis (Efe et al., 2017; Tsou et al., 2018; Yuan et al., 2019). At 2 days post-OA surgery, the hydrogel (10 wt%, 1XPBS, pH = 7.4, 1 μg/μl IRS) was injected into the knee joints of KO mice by a trans-patellar tendon approach every 3-days in the laboratory. The experimental mice were sacrificed at 8 weeks after the surgery. The researchers participating in this study were blinded to the r-IRS treatment while analyzing and processing the data.



Assessment of Progression and Severity of Osteoarthritis

After being decalcified with 10% EDTA for 2 weeks, the mouse knee joint samples were processed into paraffin-embedded sections. To determine the extent of cartilage deterioration, the human cartilage and mouse knee joint sections were examined by hematoxylin and eosin (H&E) staining and Safranin-O staining (StatLab, McKinney, TX) as we previously described (Valverde et al., 2008). Images were obtained by a Nikon Eclipse 300 fluorescence microscope (Compix Media Inc., Irvine, CA). A semi-quantitative histological scoring system issued by OARSI was used for evaluating the OA severity as previously described (Glasson et al., 2010). Three sections from each mouse were randomly selected for quantification. The OARSI scoring was performed in a blinded manner by two researchers in our lab. The inter-rater reliability was indicated by the ICC (intraclass correlation coefficient). In our experiments, the ICC was 0.942 ± 0.015, which indicated that the scoring system used in our experiments is reliable. The OARSI scoring results in each group were presented in form of mean ± SD, which suggested the inter-experimental error in the following comparison of differences between groups.



Immunohistochemistry

To detect if irisin is involved in cartilage development, we collected the cartilage and surrounding tissues from embryonic, new-born, adolescent and adult mice, and performed immunohistochemistry (IHC) studies using irisin antibody (AG-25B-0027-C100, AdipoGen, San Diego, CA). The knee joints of transgenic mice were collected and performed IHC studies using COL2a1 (collagen type II alpha 1 chain) antibody (ab34712, Abcam, Cambridge, MA), Aggrecan antibody (ab186414, Abcam, Cambridge, MA) and COLX (collagen type X) antibody (14-977-82, Thermo Fisher Scientific, Waltham, MA). Images were obtained by a Nikon Eclipse 300 fluorescence microscope (Compix Media Inc.). Immunostaining positive chondrocytes in each field were counted. Three sections from each mouse were randomly selected for quantification.



Alcian Blue Staining

To induce chondrogenic differentiation, the ADTC5 cells were incubated in chondrogenic differentiation medium for 2 weeks. The cells were fixed with 4% polyoxymethylene for 15 min, then stained with 1% Alcian blue (Sigma Aldrich).



Cell-Counting Kit (CCK8) Assay

The ADTC5 cells were seeded in 96-well plates at a density of 3,000 cells/well in triplicate for each time point and unseeded wells were used as background controls. To determine the cell viability, a 5-day time course was implemented, and a 10-μl CCK-8 solution was added daily and incubated for 2 h. The absorbance at 450 nm was measured by a microplate reader as we previously described (Li et al., 2020).



RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qPCR)

Total RNA was extracted by TriZol (Invitrogen, Carlsbad, CA). cDNA was generated using oligo(dT)20 primer (Life Technologies, Carlsbad, CA) and SuperScript III reverse transcriptase (Life Technologies). Then, RNA quantification was performed using SYBR Green Supermix (Bio-Rad, Hercules, CA) on the Bio-Rad iQ5 thermal cycler according to the manufacturer’s protocol. The fold increase in PCR products by 2–ΔΔCt method was calculated using the housekeeping gene GAPDH as we previously described (Li et al., 2020).



Statistical Analysis

The data of the experiments are presented as means ± SD. The significance of differences in various categorical variables was evaluated using one-way analysis of variance (ANOVA) for multi-group comparisons and the t-test for two-group comparison. For all quantitative assays, each assay condition was repeated in triplicate. A value of P < 0.05 was considered statistically significant.



RESULTS


Irisin Is Involved in the Chondrogenesis and Shows Decreased Expression in Both Human and Mouse OA

We collected the cartilages and surrounding tissues from embryonic, new-born, adolescent mice, and performed immunohistochemical studies. We found for the first time that irisin is prominently expressed in the prehypertrophic and hypertrophic zones of growth plate cartilage as early as E14.5 and E16.5 (Figure 1A), while expression was absent in the proliferating and resting zones at those stages. The expression of irisin was also present in the articular cartilage of postnatal mice (Figure 1A). Irisin was expressed throughout all zones of the cartilage at D1 and D4. Later at D7 and particularly D28, irisin was mainly expressed in the superficial zone, and less in the middle zone. According to these findings, irisin exhibits differential expression patterns during cartilage development, which reveals that Irisin may be involved in the regulation of cartilage development.
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FIGURE 1. Irisin is involved in chondrogenesis and osteoarthritis (OA). (A) IHC shows irisin expression in cartilage cells at different developmental stages with distinct differential patterns (C57BL/6J wide type mice, n = 6). (B,C) The articular cartilage of OA patients (n = 6) showed a decreased expression of irisin (hematoxylin and eosin staining, Safranin-O staining, and immunohistochemical analyses). (D) Cartilage of OA patients (n = 6) exhibits decreased irisin mRNA expression compared with healthy humans (n = 3). (E,F) The articular cartilage of OA mice showed a decreased expression of irisin (C57BL/6J wide type mice with ACLT-model, n = 6). *p < 0.05, ***p < 0.001.


Cartilage tissues were collected from both healthy individuals and OA patients. Histomorphometry of the cartilage structure was observed in the H&E stained slides. Meanwhile, Safranin O staining was performed to identify the changes within the articular cartilage (Figure 1B). Safranin O staining revealed a decrease of cartilage matrix secretion in OA patients. Immunohistochemical results showed that irisin expression decreased in the cartilage of OA patients (Figures 1B,C). In addition, cartilage of OA patients had a decreased irisin mRNA expression compared with healthy humans (Figure 1D). There was also decreased expression of irisin in OA mice compared with sham-operated mice especially in areas of severe cartilage loss (Figures 1E,F). It appears that OA might make a contribution to the loss of cartilage in mice.



Irisin Inhibits OA Progression in Surgically Induced Mouse Model

The 12-week-old C57BL/6J mice were divided randomly into two groups: ACLT-operated treated with PBS (n = 6), and ACLT-operated treated with irisin (n = 6) by intraarticular injection (Figure 2A; Pitcher et al., 2016). The ACLT-operated mice treated with PBS group showed a significant decrease in the thickness of cartilage layers compared with the sham-operated group (Figure 2B). The thickness of cartilage of the ACLT-operated mice treated with irisin was similar to the sham-operated group. The OARSI scoring system (Glasson et al., 2010), which is a histologic semi-quantitative of cartilage erosion, showed OA mice exhibited significant erosion in PBS injection group, which was rescued by the irisin injection (Figure 2C). The results indicate that irisin attenuates OA progression in ACLT mice.
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FIGURE 2. Irisin can significantly inhibit cartilage degradation. (A) Timeline of recombinant irisin (r-IRS)/PBS intraarticular injection on anterior cruciate ligament transection (ACLT) mice model. (B) Cartilage of OA mice (C57BL/6J wide type mice with ACLT-model, n = 6) exhibited significant erosion compared with sham operated mice (C57BL/6J wide type mice, n = 6). When intraarticular injected with irisin, mouse cartilage erosion was inhibited (H&E staining and safranin-O staining). (C) Histologic score of mouse joints shows OA mice suffer significant erosion, which can be rescued with irisin injection. ***p < 0.001.




Irisin Inhibits Inflammation and Promotes Anabolism in ADTC5 Cells

ADTC5 cells were preincubated with 100 ng/mL of r-IRS for 24 h before treatment with 10 ng/mL rhIL-1β thereafter for another 8 h. Results revealed that irisin decreases the inflammatory genes expression of IL-1β (interleukin-1 beta), IL-6 (interleu5 cells were preincubated with 100 ng/mL of r-IRS for 24 h before treatment with 10 ng/mL rhIL-1β thereafter for another 8 h. Results revealed that irisin decreases the inflammatory genes expression of IL-1β (interleukin-1 beta), IL-6 (interleukin-6), TNF-α (tumor necrosis factor-alpha), COX2 (catalyzed by cyclooxygenase 2), iNOS (inducible nitric oxide synthase) and catabolic genes expression of MMP13 (matrix metalloproteinase 13) and Adamts5 (Figures 3D,E). Meanwhile, it rescued the proliferation decline caused by rhIL-1β, although irisin had no significant effect on the proliferation of ATDC5 cells (Figures 3B,C). Lastly, we tested the impact of irisin on cell differentiation and anabolism. Cells were incubated for 7and 14 days. Alcian blue staining and qPCR assays showed that irisin significantly promotes anabolism of chondrocytes indicated by the expression of marker genes including Col2a1, Aggrecan and SOX9 (Figures 3A,E).
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FIGURE 3. Chondrogenic differentiation, proliferation and inflammation changes in ADTC5 cells. (A) Alcian Blue staining of ADTC5. (B,C) CCK8 assay reveals the change of cell proliferation in vitro (nsp > 0.05, */**/*** means the comparison between group IL-1β + PBS and group IL-1β + irisin, #/##/### means the comparison between group IL-1β + PBS and group PBS, *,#p < 0.05, **,##p < 0.01, ***,###p < 0.001). (D–F) Gene expression of inflammatory cytokines, inflammatory mediators, catabolic enzymes and anabolic genes expression in ADTC5 cells (nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001).




Irisin Knock-Out Mice Develop Severe OA While Intra-Articular Injection of Irisin Attenuates DMM-Induced OA Progression

CMV-cre mediated IRS KI mice (Supplementary Appendix Figures 1A,B) and KO mice (Zhu et al., 2021) were generated and identified. Irisin was highly expressed in a variety of tissues and organs of CMVCre+; R26IRS/IRS mice, including cartilage, bone, tooth, adipose and muscle compared with control mice (Supplementary Appendix Figure 1C). Similarly, irisin expression was completely knocked out in the same tissues and organs of CMVCre+; IRSf/f mice with no mRNA expression of irisin (Supplementary Figure 1D). When analyzing the OA phenotypes, the IRS KO mice showed more severe OA characteristics than that of age-matched control mice as shown by safranin O staining (Figure 4A), upregulated COLX expression (Figures 4B,F), downregulated COL2a1 (Figures 4B,D) and Aggrecan (Figures 4B,E) expression and OARSI scores (Figure 4C). Then we performed intraarticular injection of r-IRS protein with a nano-hydrogel. The hydrogel possesses ideal biocompatibility, biodegradability, tunable stiffness, intrinsic photoluminescence and injectable properties (Tsou et al., 2018). Besides, the hydrogel has an excellent r-IRS protein release characteristic (Figure 5C) and can be detected under 360 UV light both in vitro (Figure 5A) and in vivo (Figure 5B). While overexpression IRS both in IRS KI transgenic mice and by intraarticular injection of r-IRS protein with a novel hydrogel (Figure 5), the OA phenotypes were attenuated (Figure 4). These data suggest that IRS plays a protective role in OA progression.
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FIGURE 4. Immunohistochemistry analyses of articular cartilages in medial meniscus (DMM) OA model mice (n = 6). (A) Safranin O staining. (B) IHC staining. (C) Osteoarthritis Research Society International (OARSI) scores in mouse DMM models. (D–F) Immunostaining positive cells were counted. The comparing data between groups shown in lowercases (a, b, c, and d) are mean values with statistical significance (P < 0.05).
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FIGURE 5. Intraarticular injection of r-IRS protein with a nano-hydrogel. (A,B) The injectable citrate-presenting polyester hydrogel can be detected under 360 nm UV light both in vitro and in vivo. (C) rIRS release profile from hydrogel.




Irisin Promotes Cartilage Proliferation and Matrix Gene Expression While Inhibiting Inflammation in Primary Mouse Chondrocytes

Primary chondrocytes were isolated from gene manipulated and wild type mice. The CCK8 assay showed that proliferation of the cells from irisin KI mice was increased compared with control both in normal and inflammation conditions (Figures 6A,B). Meanwhile, proliferation abilities of the cells from irisin KO mice were decreased compared with the control mice both in normal and inflammatory conditions induced by rhIL-1β, which was rescued by treating with r-IRS (Figures 6C,D). Inflammatory factors (IL-1, IL-6 and TNF-α) and inflammatory mediators (COX2 and iNOS) gene expression level were decreased in irisin KI chondrocytes and increased in irisin KO mice compared with the control under inflammatory condition induced by rhIL-1β (Figure 6E). A set of cartilage anabolic marker genes (COL2a1, Aggrecan and SOX9) expression were increased in irisin KI chondrocytes and decreased in irisin KO mice (Figure 6E).
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FIGURE 6. Proliferation and inflammation genes expression of primary chondrocytes isolated from irisin KO and KI mice. (A) Proliferation change in irisin KI mice in normal condition (*p < 0.05). (B) Proliferation change in irisin KI mice in inflammation conditions induced by IL-1β (nsp > 0.05, *CMVCre+; R26− /− + IL-1β vs. CMVCre+; R26IRS/IRS + IL-1β, #CMVCre+; R26− /− + PBS vs. CMVCre+; R26IRS/IRS + IL-1β, *,#p < 0.05). (C) Proliferation change in irisin KO mice in normal (nsp > 0.05, *CMVCre+; IRS− /− + PBS vs. CMVCre+; IRSf/f + PBS, #CMVCre+; IRSf/f + PBS vs. CMVCre+; IRSf/f + PBS + IRS, **,##p < 0.01, ***,###p < 0.001). (D) Proliferation change in irisin KO mice in inflammation conditions induced by IL-1β (ns p > 0.05, *CMVCre+; IRS− /− + IL-1β vs. CMVCre+; IRSf/f + IL-1β, #CMVCre+; IRSf/f + IL-1β vs. CMVCre+; IRSf/f + IL-1β + IRS, *,#p < 0.05, ***,###p < 0.001). (E) Some inflammatory cytokines, inflammatory mediators, catabolic enzymes and anabolic genes expression both in primary chondrocytes isolated from irisin KO and KI mice. The comparing data between groups shown in lowercases (a, b, c, and d) are mean values with statistical significance (P < 0.05).




DISCUSSION

Traditionally, OA was considered as a “wear-and-tear” disease that led to the loss of articular cartilage as patients age. It is accepted that OA is a multifactorial disorder in origin. Both chronic low-grade inflammatory and biomechanical whole-organ disease processes play an important role in OA pathogenesis. Family history, gender, genetics, diabetes, systemic infection, and innate immunity can also contribute to OA development (Wu et al., 2014). The theory of a “self-perpetuating cycle of joint degeneration” characterizes the pathogenesis of OA. The breakdown of the extracellular matrix (ECM) activates innate immunity and a cyclic cascade of inflammatory events, leading to further joint damage (Zhang et al., 2011b; Luo et al., 2012; Meng et al., 2014; Wu et al., 2014). In general, the cartilage degradation and degeneration, aberrant subchondral bone metabolism, and synovial inflammation contribute together to the pathophysiology of OA. These attributes are also the main targets of multiple OA drugs and therapies. In our study, we investigated the therapeutic impact of irisin and its underlying mechanism. We focused on reducing cartilage degeneration, promoting chondrocyte proliferation and inhibiting inflammation. We first detected the irisin expression pattern during cartilage development, which indicated that irisin is potentially involved in this process. Then, the decreased expression of irisin in OA in both human and mouse indicated that irisin has a negative correlation with OA features. Our irisin intraarticular injection experiment verified our hypothesis that irisin can attenuate pathological features of osteoarthritis and may possess therapeutic potential in treating OA.

To characterize the specific functions of irisin in OA pathogenesis in vivo, we generated irisin conditional knockout mice (IRSf/f) and irisin over-expressing mice (R26IRS/IRS). When mated with CMVCre+ mice, irisin was knocked out or overexpressed systemically, which led to the deletion or overexpression of irisin in the offspring mice. We chose the mice from CMVcre+, the CMVcre+/IRS–/–and the CMVcre+/R26–/– lines as the control groups for the KO or KI groups. Deletion of irisin resulted in increased cartilage erosion and collagen degradation, which was in accord with the lessened cartilage damage and collagen degradation in the irisin KI mice.

Two different osteoarthritis surgical models were performed in this study, ACLT and DMM. There is a poorer joint stability in ACLT-model mice compared with the DMM-model mice. Thus, the ACLT-model mice have a faster disease progression in which we can test whether the rh-irisin has an effect in a short period of time. Thus, we used this model in the beginning of the experiments. Compared with the ACLT-model, the DMM-model has a more moderate disease progression which is more like the disease progression of OA patients. Thus, we used the DMM-model mice to test the effect of the rh-irisin in the transgenic mice and the following experiment.

In our study, we used the hydrogel to deliver the rh-irisin. A hydrogel is a 3D network of polymer chains that are hydrophilic, a colloidal gel in which water is the dispersion medium. It is widely used for tissue engineering and drug delivery. In our experiment, by combining irisin-hydrogel and IA injection, we took advantage of the hydrogel with its drug release and biologically active features. With hydrogel-facilitated sustained release, optimal concentration, frequency, and duration, the recombinant irisin was delivered locally to the OA disease site. Injectable hydrogels can be administered via minimally invasive procedures, appropriately fill irregular-shaped defects by acting as 3D scaffolds, and provided a highly hydrated tissue-like environment for cell and tissue growth in our case for promoting cartilage surface repair. However, there are some limitations in this study. We treated the ACLT/DMM model mice with the rh-irisin nearly immediately after injury, which suggested the role of irisin in disease progression rather than a disease treatment.

According to the literature, irisin has distinct effects on cell proliferation of different cell types. For example, irisin can promote the proliferation of C2C12 myoblasts and human periodontal ligament cells (Lee et al., 2019; Pullisaar et al., 2020). Irisin stimulates cell proliferation by targeting the PI3K/AKT pathway in human hepatocellular carcinoma (Shi et al., 2017), while it suppresses cell proliferation of MCF-7 and MDA-MB-231 breast cancer malignant cell lines (Gannon et al., 2015) and pancreatic cancer cells (Liu et al., 2018). In our research, the cell proliferation promoted by irisin in the ADTC5 cells and primary chondrocytes exhibited distinct patterns, indicating that irisin can promote primary chondrocyte proliferation both in normal and inflammatory conditions (Figure 6). However, irisin can only promote ADTC5 cell proliferation under inflammatory conditions (Figures 1B,C). This may partially be due to inhibitory effects of inflammation on the actions of irisin (Figure 1D). Irisin is a multifunctional protein that has beneficial impact on tissue and organ homeostasis (Korta et al., 2019). Irisin has been previously reported to reduce systemic inflammation (Korta et al., 2019), and the expression and release of pro-inflammatory cytokines can be suppressed by irisin in obese individuals (Mazur-Bialy et al., 2017a), where chondrocyte proliferation was promoted, and inflammation inhibited.

The role of irisin in bone formation and regeneration has been examined in previous studies including ours (Zhang et al., 2017; Zhu et al., 2021). Its potential role in chondrocyte metabolism and the various facets of pathogenesis of OA is just emerging. According to the literature, irisin can maintain chondrocyte survival and ECM synthesis by repressing Wnt3a to control autophagic and apoptotic programs. Beyond that, irisin may stimulate proliferation and anabolism inhibiting catabolism of human osteoarthritic chondrocytes (Vadalà et al., 2020). Although the actions and biological functions of irisin in cartilage cells associated with OA were revealed in this study, the potential pathways related to chondrogenesis, proliferation and inflammation during OA pathogenesis are still to be elucidated in details. To clearly delineate the underlying mechanisms, signal pathways such as Wnt, MAPK, AMPK, TGF-β, and NF-KB will be further investigated in our ongoing experiments. It was recently reported that irisin functions through integrin receptors αV/β5 to promote osteocyte survival with relevant sclerostin secretion (Kim et al., 2019). Similar studies for chondrocytes are underway in our laboratory.



CONCLUSION

In conclusion, our findings demonstrate that irisin is involved in cartilage development and OA pathogenesis, and that the aberrant alteration of irisin expression in OA cartilage may imply that irisin could be a promising therapeutic target for treating bone and cartilage disorders including OA and rheumatoid arthritis (RA).
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G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that trigger numerous intracellular signaling pathways in response to the extracellular stimuli. The GPCRs superfamily contains enormous structural and functional diversity and mediates extensive biological processes. Until now, critical roles have been established in many diseases, including osteoarthritis (OA). Existing studies have shown that GPCRs play an important role in some OA-related pathogenesis, such as cartilage matrix degradation, synovitis, subchondral bone remodeling, and osteophyte formation. However, current pharmacological treatments are mostly symptomatic and there is a paucity of disease-modifying OA drugs so far. Targeting GPCRs is capable of inhibiting cartilage matrix degradation and synovitis and up-regulating cartilage matrix synthesis, providing a new therapeutic strategy for OA. In this review, we have comprehensively summarized the structures, biofunctions, and the novel roles of GPCRs in the pathogenesis and treatment of OA, which is expected to lay the foundation for the development of novel therapeutics against OA. Even though targeting GPCRs may ameliorate OA progression, many GPCRs-related therapeutic strategies are still in the pre-clinical stage and require further investigation.
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INTRODUCTION

Osteoarthritis (OA) is one of the most prevalent forms of arthritis and causes chronic pain, stiffness, swelling and loss of locomotion in the knees, hips, and hands (Xu et al., 2012). OA affects several joint structures and is characterized by articular cartilage degradation, subchondral bone sclerosis, osteophyte formation and synovial inflammation (Hunter and Bierma-Zeinstra, 2019). Age, obesity, sex, race, and genetics are considered the main risk factors for OA (Sharma, 2021). Drug intake, hospitalizations and joint surgeries related to the management of knee OA cost health care systems billions of dollars each year, which has caused a heavy socioeconomic burden (Dantas et al., 2021). However, current treatment modalities, including lifestyle changes, utilization of non-steroidal anti-inflammatory drugs (NSAIDs) and diacerein, and intra-articular injection of hyaluronic acid (HA), can only temporarily ameliorate local symptoms. Advanced OA patients inevitably have to undergo surgical interventions, such as artificial joint replacement (Wieland et al., 2005; Roos and Arden, 2016; Jones et al., 2019; Mlost et al., 2021). Therefore, OA is gradually becoming a global public health problem that requires further investigation.

G-protein-coupled receptors (GPCRs) are a family of more than 800 transmembrane proteins expressed in humans that regulate numerous physical processes, such as synaptic signaling, chemotaxis and metabolism (Wingler and Lefkowitz, 2020). The binding of extracellular ligands initiates the transduction of transmembrane signals by activating heterotrimeric G proteins, the phosphorylation of GPCRs, and the coupling of arrestin mediated by G-protein-coupled receptor kinases (GRKs) (Staus et al., 2016; Wang W. et al., 2018). Therefore, GPCRs are the most classic targets of two-thirds of existing therapeutic drugs used to treat a wide range of diseases, such as bone diseases, heart diseases, digestive diseases, and cancer (Kahsai et al., 2018; Nieto Gutierrez and McDonald, 2018; Wang J. et al., 2018; Gottesman-Katz et al., 2021).

In addition, it is worth noting that GPCRs play a critical role in the pathogenesis and treatment of OA. Destruction or mutation of GPCRs can lead to bone and joint dysfunction or diseases in humans, and most of these phenotypes have been validated in mouse models (Luo et al., 2019). Furthermore, emerging evidence has shown that GPCRs regulate the progression of OA by modulating cartilage matrix degradation, synovial inflammation, subchondral bone remodeling, osteophyte formation, chondrocyte hypertrophy, cartilage angiogenesis, and chondrocyte apoptosis (Jones et al., 2006; Yan et al., 2020; Mlost et al., 2021; Wang et al., 2021). However, the detailed mechanisms underlying the regulatory responses remain unclear. Therefore, this article will comprehensively review the novel roles of GPCRs in the pathogenesis and treatment of OA, aiming to explore the clinical application value of GPCRs.



NOVEL ROLES OF G PROTEIN-COUPLED RECEPTORS IN OSTEOARTHRITIS

Many studies have shown that targeting GPCRs can influence the pathogenesis and progression of OA (Neumann et al., 2014; Figure 1). However, the detailed mechanisms underlying the regulatory processes are still unclear. Moreover, the current treatment mainly relieves symptoms (it is unable to control the progression of the disease). A better understanding of the roles of GPCRs in OA is critical for developing a novel therapeutic strategy against OA. Therefore, we summarize known GPCRs that play important roles in OA (Table 1).
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FIGURE 1. Pathogenesis in OA related to GPCRs. Different GPCRs are widely expressed on various cells and play a key role in transmembrane signal transmission. Extracellular stimuli initiate a series of intracellular signaling pathways by activating GPCRs, leading to a variety of physiological and pathological processes, such as cartilage matrix degradation, synovial inflammation, subchondral bone remodeling, osteophyte formation, chondrocyte hypertrophy, cartilage angiogenesis, and chondrocyte apoptosis. These processes greatly promote the occurrence and progression of OA.



TABLE 1. Novel roles of GPCRs in OA.
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CHEMOKINE RECEPTORS

There are two kinds of seven-helical molecules that bind chemokines: conventional chemokine receptors (cCKRs) and atypical chemokine receptors (ACKRs) (Hughes and Nibbs, 2018). cCKRs usually transduce signals through pertussis toxin-sensitive Gai G proteins and β-arrestins, eventually resulting in cell migration, adhesion, and other biological responses. Although four ACKRs are structurally related to cCKRs, they are not coupled to many signaling pathways activated by cCKRs.

CCR3 is a C-C chemokine receptor that functions by binding to its specific ligand eotaxin-1 (CXCL11) (Chang et al., 2016). Several studies have reported that increased eotaxin-1 secretion by chondrocytes and fibroblast-like synoviocytes (FLSs) can lead to the upregulation of matrix metalloproteinase 3 (MMP-3), matrix metalloproteinase 9 (MMP-9) and matrix metalloproteinase 13 (MMP-13) expression by binding to CCR3 but cannot induce eosinophil infiltration (Hsu et al., 2004; Neumann et al., 2014; Chang et al., 2016). In particular, high concentrations of eotaxin-1 can inhibit cAMP/PKA and activate ERK and p38 MAPK to regulate MMP expression, while at low concentrations, eotaxin-1 can activate PI3K and JNK MAPK to facilitate MMP secretion (Chao et al., 2011). Therefore, an ERK inhibitor (U0126) and p38 inhibitor (SB203580) can significantly reduce the expression of MMPs. The increased expression of MMPs plays a positive regulatory role in the progression of OA by promoting the degradation of cartilage matrix, suggesting that the eotaxin-1/CCR3 signaling pathway is a feasible target for treating OA.

CXCR4 is a C-X-C chemokine receptor that is related to the activation, differentiation and migration of immune cells by binding to the 8-kDa peptide stromal cell derived factor-1 (SDF-1/CXCL12) (Dong et al., 2016). A number of researchers have found a significant increase in SDF-1 concentrations in the synovial fluid of OA patients (Dong et al., 2016; Li et al., 2016). Moreover, the binding of SDF-1 and CXCR4 can upregulate the expression and release of MMP-3, MMP-9 and MMP-13, thus promoting the degradation and destruction of cartilage matrix (Yang et al., 2020). AMD3100, a class of bicyclams that influences HIV binding to normal cells, functions as a CXCR4 antagonist (Neumann et al., 2014; Dong et al., 2016). It can be used to inhibit the SDF-1/CXCR4 signaling pathway and protect chondrocytes and cartilage matrix from invasion. However, the expression levels of MMP-3, MMP-9 and MMP-13 were not reduced to normal levels by AMD3100 (Li et al., 2012). These results suggest that blocking the SDF-1/CXCR4 signaling pathway via AMD3100 is a possible treatment strategy.

CXCR7, also known as RDC1 and CCX-CKR2, formerly belonged to the class A orphan receptor GPCR and had certain homology with CKRs (Jones et al., 2006). CXCR7 was deorphanized and shown to be a CKR that binds to chemokines CXCL11 and CXCL12 (Miao et al., 2007). The activation of CXCR7 in cartilage tissue can promote cartilage matrix degradation, cartilage angiogenesis and chondrocyte hypertrophy, which facilitate the progression of OA. Furthermore, enhanced cartilage angiogenesis can result in a severe inflammatory response and endochondral ossification, driving chondrocytes to enter the early OA state (Jones et al., 2006). In addition to increased degradation of the cartilage matrix, the activation of CXCR7 reduces matrix synthesis and the production of the type 2A variant of type II collagen (Yang et al., 2015). Therefore, CXCR7 is a potential target to inhibit cartilage matrix degradation, cartilage angiogenesis, chondrocyte hypertrophy, and inflammation and improve chondral matrix synthesis in OA.



ENDOTHELIAL DIFFERENTIATION G-PROTEIN COUPLED RECEPTORS

The eight receptors of the EDG family can be activated by the phospholipid growth factors lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). The EDG family is divided into two groups based on their ligands. The S1P1/3/2/4/5 receptors (formerly EDG1/3/5/6/8) are specifically activated by S1P, while the LPA1/2/3 receptors (formerly EDG2/4/7) are specifically activated by LPA (Wang et al., 2001). The functions of EDGs vary, such as prolonging cell survival time, promoting cell proliferation and regulating deformability, adhesion, and chemotaxis (An et al., 1998; Wang et al., 2001).

EDG1/3/5/6/8, also known as S1P receptors, are GPCRs of the EDG family. S1P is a bioactive sphingolipid metabolite produced through phosphorylation of sphingosine. Sphingolipids are components of cell membranes and cellular signaling mediators, and almost all cells metabolize sphingolipids (Obinata and Hla, 2019). The S1P/EDG signaling pathway participates in a variety of cellular functions, such as proliferation, differentiation, migration, cytoskeletal rearrangement, adhesion, inflammation, and angiogenesis (Masuko et al., 2007; Obinata and Hla, 2019). Moreover, it has been reported that S1P receptors on human articular chondrocytes respond to S1P stimulation by significantly increasing the prostaglandin E2 (PGE2) production induced by COX-2 and MAPK, thereby inhibiting proteoglycan expression (Masuko et al., 2007). With the downregulation of proteoglycan expression, the cartilage matrix will not be able to renew normally and will therefore lose its original function and promote OA development.

Endothelial differentiation G-protein coupled receptor 2, also named the LPA1 receptor, is a GPCR of the EDG family. LPA can induce a variety of cellular responses in numerous types of cells, including proliferation and differentiation, morphological changes, chemotaxis, aggregation, and tissue invasion (Moolenaar et al., 1997). A stepwise association study reported that an SNP located in the promoter region of EDG2 was significantly associated with OA (Mototani et al., 2008). The LPA1 receptor encoded by EDG2 increases the expression of inflammatory cytokines and MMPs in synovial cells and may contribute to susceptibility to Japanese knee OA (Mototani et al., 2008).



CANNABINOID RECEPTORS

Cannabinoid receptors are the receptors of cannabinoid Δ9-tetrahydrocannabinol (THC), which is the bioactive component of marijuana. Currently, two major cannabinoid receptors have been identified, CB1 and CB2. CB1 receptors are mainly located in central and peripheral neurons, and their activation is primarily related to the downregulation of neuronal excitability, while CB2 receptors are mainly located in immune cells, and their activation is associated with reduced immune cell function, including decreased release of proinflammatory factors (Pertwee, 2008; Yang et al., 2015). CB1 is involved in mediating the psychoactivity of cannabis and the analgesic and antiemetic effects of THC, while CB2 plays a critical role in the pathophysiology of systemic inflammation, osteoporosis, central nervous system diseases and cancer (Atwood et al., 2012).

Cannabinoid receptor 2, a member of the GPCR family, responds to THC stimulation by modulating the inflammatory response (Howlett and Abood, 2017). Preclinical studies have revealed the important role of CB2 receptors in decreasing OA susceptibility, as the knockout of CB2 receptors leads to more serious cartilage degradation in surgical models of OA (Sophocleous et al., 2015). Long-term treatment with the CB2 selective agonist HU308 helps to relieve OA in the joint (Sophocleous et al., 2015). In addition, the mixed CB1 and CB2 agonists WIN55,212-2 have been shown to protect the cartilage matrix from degradation by reducing the expression of MMP-3 and MMP-13 in chondrocytes (Dunn et al., 2014). Compared with COX2 inhibitors, CB2 agonists can significantly reduce pain responses in OA patients, possibly because they offset central sensitization in OA patients at the molecular level (Mlost et al., 2021). CB2 agonists can improve subchondral bone morphology and underlying cartilage biochemical changes (Mlost et al., 2021). These results suggest that CB2 has great potential in the treatment and analgesia of OA. However, the existence of distinct differences between human and rat OA models must be taken into consideration. As a result, CB2 agonists should be studied in animal models, which are closer to the actual situation in humans, to verify their therapeutic effect in treating human OA.



PROTEASE-ACTIVATED RECEPTORS

Protease-activated receptors (PARs) are important members of the GPCR family that are activated by serine proteases, such as thrombin, trypsin, and MMPs (Elste and Petersen, 2010; Neumann et al., 2014). PARs have been divided into four subtypes (PAR1–PAR4). In contrast to canonical receptors, PARs can be activated by N-terminal proteolytic cleavage. The resulting N-terminal peptides without a particular peptide act as tethered activation ligands, interacting with the ECL2 domain, and initiating downstream signaling (Heuberger and Schuepbach, 2019). In the classical signaling pathway, activated receptors transduce signals by recruiting G proteins. However, the alternative activation of PARs can induce the transactivation and signal transduction of receptors, including colocalized PAR (Heuberger and Schuepbach, 2019).

Protease-activated receptor-2 is a critical factor affecting the pathogenesis of several diseases, such as inflammatory, gastrointestinal, respiratory and metabolic diseases (Yau et al., 2016). Activation of PAR-2 may stimulate the secretion of the inflammatory cytokines IL-1β, IL-6, and IL-8 in peripheral blood mononuclear cells (Johansson et al., 2005). Furthermore, researchers have observed that the expression of PAR-2 in OA chondrocytes is markedly upregulated compared to that in normal chondrocytes (Xiang et al., 2006). Similarly, PAR-2-deficient (PAR2–/–) mice have been reported to be conspicuously protected against cartilage damage and osteosclerosis in an OA model caused by destabilization of the medial meniscus (DMM) (Huesa et al., 2016). The results above suggest that PAR-2 plays a vital role in the occurrence and progression of OA. Therefore, the PAR-2 antagonist AZ3451 inhibits chondrocyte apoptosis to improve OA by activating chondrocyte autophagy by regulating the P38/MAPK, NF-κB, and PI3K/AKT/mTOR signaling pathways (Huang et al., 2019; Yan et al., 2020).



BRADYKININ RECEPTORS

Two bradykinin receptor subtypes, B1 receptor and B2 receptor, have been identified and are classified as Class I GPCRs (IUPHARs) (De Falco et al., 2013; Neumann et al., 2014). B1 receptors mediate the action of C-terminal desArg metabolites, while B2 receptors mediate the action of bradykinin (BK) and Lys-BK (De Falco et al., 2013). The +9/−9 polymorphism of the B2 receptor (BDKRB2 +9/−9 polymorphism) has been reported to be a genetic marker for the pathogenesis and development of OA (De Falco et al., 2013). BK is formed in plasma and inflammatory tissues and initiates several processes, including vasodilation, plasma extravasation, immune system activation and chemotaxis induction of leukocytes by activating B2 receptors present in the membranes of various cell types (Meini and Maggi, 2008). BK in particular has a great effect on the occurrence of pain and the inflammatory response.

The B2 receptor can trigger a signaling cascade that leads to pain and inflammatory effects in the synovium when activated (Neumann et al., 2014). B2 receptors have been identified on synovial lining cells, fibroblasts, and endothelial lining cells in the vessels of patients with OA, while there is no evidence to support the existence of B1 receptors (Meini and Maggi, 2008). In addition, icatibant is a synthetic decapeptide and antagonist of the B2 receptor that is currently used for angioedema attacks. A clinical study reported that icatibant was effective in reducing pain intensity in patients with OA, and its analgesic activity was more significant during activity than at rest (De Falco et al., 2013). However, no anti-inflammatory effect has been observed (Song et al., 2009). MEN16132 is a novel potent and selective B2 receptor antagonist that is also known as fasitibant (Cucchi et al., 2005). It can block inflammatory responses in human synovial fibroblasts, especially the BK-induced release of IL-6 and IL-8 (Neumann et al., 2014). A clinical study called ALBATROSS confirmed the effects of MEN16132 in humans (De Falco et al., 2013).



MELANOCORTIN RECEPTORS

Melanocortin receptors are receptors of proopiomelanocortin (POMC) and its derived peptides, and five MCR subtypes, MC1R-MC5R, have been cloned thus far (Renquist et al., 2011; Lorenz et al., 2014). POMC is a versatile precursor protein for a variety of hormones, including melanocyte-stimulating hormones (α-MSH, β-MSH, and γ-MSH) and adrenocorticotropic hormone (ACTH) (Lowry, 2016; Wang et al., 2019). POMC is involved in a variety of biological processes, such as the maintenance of energy metabolism balance, nociceptive sensation and the regulation of exocrine gland function and the immune system (Wang et al., 2019). Although original neurohormones were induced by stress in the classic hypothalamic-pituitary-adrenal (HPA) axis, it has now been shown that POMC and its derived peptides can also be generated autonomously in many peripheral tissues, such as skin and joints (Lorenz et al., 2014).MC1R is a member of the GPCR family. The transcripts of MC1R, MC2R, and MC5R have been shown to be present in articular chondrocytes derived from patients with OA. A study reported that the activation of MC1R leads to antiarthritic effects by inducing synovial tissue aging and cartilage protection in vivo (Montero-Melendez et al., 2020). In contrast, another study found that MC1R signal-deficient mice showed an OA-related cartilage phenotype prior to OA induction, suggesting an early stage of OA (Lorenz et al., 2014). Specifically, a lack of MC1R signaling facilitates age-related cartilage matrix changes, such as loss of collagen II and an increase in the number of MMP-13-positive chondrocytes (Lorenz et al., 2014). Given the important role of MC1R in OA, MC1R agonists such as BMS-470539 dihydrochloride and C-terminal KPV can delay the progression of OA. Moreover, it was observed that the MC3R agonists [DTrp8]-γ-MSH and PG-990 inhibited the release of proinflammatory cytokines and MMPs to a greater extent than the MC1R agonist when administered prophylactically and therapeutically, suggesting greater potential than MC1R (Can et al., 2020). Therefore, activation of MC1R and MC3R may be effective therapeutic strategies against OA.



CALCITONIN RECEPTOR

Calcitonin receptor, also known as CALCR, is one of the oldest members of the class B GPCR family. CTR has been considered a common therapeutic target for osteoporosis, as CTR is involved in the regulation of bone loss and osteoclast survival (Lee et al., 2020). Moreover, a study observed that the expression of CTR in OA patients was obviously higher than that in normal controls (Zupan et al., 2012). However, another previous controlled study of OA patients and cadavers found no difference in CTR expression (Kuliwaba et al., 2000). Therefore, whether there are differences in the expression of CTR between OA patients and normal controls and the role of CTR in the pathogenesis of OA remain to be researched.



OTHER 7TM RECEPTORS

Several GPCRs do not belong to any family of the GRAFS classification system. Therefore, these receptors are named by other 7TM receptors. Most of them belong to orphan receptors of GPCRs. Seven GPCRs relevant to OA belong to other 7TM receptors (Table 2).


TABLE 2. Novel roles of other 7TM receptors in OA.

[image: Table 2]GPR17 is a GPCR coupled to the Gi subunit and is also an orphan receptor, primarily confined to the oligodendrocyte lineage, which is critical for the timing of oligodendrocyte myelination (Ou et al., 2019; Wang et al., 2020). Due to the wide distribution of GPR17 in the CNS, it is often considered a classic target for brain diseases, including multiple sclerosis (MS) and neuronal damage (Zhao et al., 2018; Nyamoya et al., 2019). The structure of GPR17 is phylogenetically related to P2Y and cysteinyl-leukotriene (CysLT) receptors and consists of seven transmembrane domains connected by loops (Saravanan et al., 2018; Wang et al., 2020). Moreover, it has been reported that MDL29951, T0510-3657 and AC1MLNKK are possible ligands of GPR17 (Eberini et al., 2011; Hennen et al., 2013; Saravanan et al., 2018).

Tumor necrosis factor α (TNF-α) is one of the most pivotal proinflammatory cytokines in the progression of OA (Zhao et al., 2019). TNF-α triggers a series of responses through the JAK2/STAT1/IRF-1 signaling pathway to upregulate the expression of MMP-3 and MMP-13, thereby promoting the degradation of type II collagen (Richardson and Dodge, 2000; Xu et al., 2018). Pranlukast is a leukotriene receptor antagonist (LTRA) used as a therapeutic drug in asthma patients (Trinh et al., 2019). Moreover, pranlukast has been considered a synthetic inhibitor of GPR17 (Wang et al., 2020). It has been demonstrated that pranlukast has protective effects on TNF-α-induced degradation of type II collagen by blocking GPR17 expression, which suggests that targeting GPR17 may be a possible therapeutic strategy for OA.

GPR22 is also an orphan receptor. A recent genome-wide association scan (GWAS) of Dutch Caucasian OA patients found a locus on GPR22 that was related to knee and/or hand OA (Raine et al., 2012). Similarly, a study found the existence of GPR22 in cartilage and osteophytes of mouse OA models, while it was absent in normal cartilage (Kerkhof et al., 2010). Therefore, these results suggest that GPR22 is engaged in the pathogenesis of OA.

GPR39 is a conserved protein expressed in vertebrates and is associated with insulin secretion, synaptic signaling, gastric emptying, and depression (Zhao et al., 2015). Formerly considered an orphan receptor, zinc ions were later identified as endogenous agonists of GPR39 and are potential targets for selective zinc ion regulation (Holst et al., 2007; Lu et al., 2019; Shan et al., 2019). TC-G 1008, chemically known as 2-pyridine pyridine, was originally developed to improve GLP-1 levels in people with type 2 diabetes. Currently, TC-G 1008 has been confirmed to activate GPR39 and hence alleviate IL-1β-induced chondrocyte senescence, showing a protective effect on chondrocytes (Lu et al., 2019). In addition, the activation of GPR39 can downregulate the expression of MMP-3, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), reduce the degradation of type II collagen and aggrecan and reverse the decrease in TIMP-1 and TIMP-2 expression (Shan et al., 2019). However, the expression of GPR39 in SW1353 chondrocytes is inhibited by contact with advanced glycation end products (AGEs), promoting the progression of OA. Therefore, GPR39 plays an important role in OA, and targeted activation of GPR39 can inhibit the progression of OA.

GPR40, a long-chain fatty acid receptor, is the most highly expressed GPCR in islet β cells and is also abundantly expressed in intestinal L cells (Syed et al., 2018). It can promote the release of GLP-1 together with GPR120. In addition, GPR40 is also expressed in leukocytes, macrophages and bone marrow stromal cells, which share a common precursor with the bone and cartilage lineages (Monfoulet et al., 2015; Philippe et al., 2017). It has been shown that GPR40 knockout (GPR40–/–) mice exhibit symptoms of osteoporosis, while activation of GPR40 improves bone mineral density (Wauquier et al., 2013). Even so, the lack of GPR40 alone is insufficient to induce significant histological changes in cartilage or changes in basal chondrocyte metabolism related to OA (Monfoulet et al., 2015). However, the characteristics of induced OA were much more serious in GPR40-deficient models, suggesting that GPR40 activation could alleviate or slow the progression of OA. GW9508, the selective agonist of GPR40, could significantly downregulate the expression of MMP-3 and MMP-13 to inhibit the degradation of type II collagen against the stimulation of AGEs and suppress the activation of the NF-κB signaling pathway, showing a protective effect on OA (Gu et al., 2020).

GPR43, a GPCR commonly existing in human adipocytes, colonic epithelial cells and peripheral blood mononuclear cells, can be activated by short-chain fatty acids (SCFAs) (Ang and Ding, 2016). SCFAs such as acetate (C2), propionate (C3), and butyrate (C4) are generated by gut bacteria during the fermentation of dietary fiber. Butyrate can regulate inflammatory diseases both inside and outside the intestine through GPR43. In addition, binding between GPR43 and butyrate has been shown to be effective against acute arthritis by inhibiting the expression of proinflammatory mediators, adhesion factors, and MMPs and maintaining the homeostasis of bone metabolism (Young et al., 2005; Chabane et al., 2008; Canani et al., 2011; Pirozzi et al., 2018). However, there is little evidence of its therapeutic effect on OA. Therefore, further research on the roles of GPR43 in the pathogenesis of OA is needed.

GPR84, a member of the metabolic GPCR family, is a medium-chain fatty acid (MCFA) receptor that can be specifically activated by C9-C12 saturated fatty acids. It was first identified in 2001, binds to the toxin-sensitive Gαi protein of Bordetella pertussis and inhibits adenylate cyclase activity (Wang et al., 2006; Nicol et al., 2015). GPR84 is not a formal “deorphanized” receptor because whether MCFAs are the primary endogenous ligands that activate is controversial GPR84 (Mahmud et al., 2017). GPR84 is primarily expressed in immune cells and is involved in the inflammatory response, but its mechanism of modulating inflammation has not been fully described (Recio et al., 2018). In addition, GPR84–/– mice exhibit increased catabolism and decreased anabolism, significantly aggravating articular cartilage degradation, osteophyte development, and subchondral bone remodeling; these results prove that GPR84 is involved in the pathogenesis of OA in mice (Wang et al., 2021). In contrast, the GPR84 agonist 6-OAU or lauric acid could protect human OA cartilage explants by upregulating the expression of genes related to cartilage anabolic metabolism. Therefore, GPR84 is a therapeutic target with great potential.

GPR120, also known as free fatty acid receptor 4 (FFAR4), is the receptor of ω-3 fatty acids. It is widely distributed in various tissues and cells, such as intestinal tissue, adipose tissue, macrophages, and pancreas, and performs a wide range of physiological functions, such as regulating the secretion of gut hormones and insulin (Oh et al., 2010; Mo et al., 2013; Ichimura et al., 2014). The main components of fish oil, ω-3 FA (docosahexaenoic acid (C22:6N3 and DHA) and eicosapentaenoic acid (C20:5N3 and EPA), can produce potent anti-inflammatory effects through GPR120 (Oh et al., 2010). Moreover, activation of GPR120 can inhibit inflammation by downregulating IL-1β-induced expression of IL-6 and IL-8 and protect type II collagen and aggrecan against degradation by reversing the decrease in SOX9 expression (Chen et al., 2018; Xu et al., 2020). In general, GPR120 is involved in the pathogenesis of OA by controlling the inflammatory response, metabolic homeostasis, and osteoclast differentiation. Therefore, the increase in miR-15b-5p caused by the downregulation of LINC00662 is able to downregulate the expression of GPR120, thereby promoting the progression of OA (Lu and Zhou, 2020). In conclusion, some receptors of the GPCR family have a critical effect on the occurrence and progression of OA by regulating the destruction of the cartilage matrix, subchondral bone remodeling, inflammation, and chondrocyte autophagy. We can delay the progression and alleviate the symptoms of OA to some extent by targeting these important GPCRs. However, many of these therapeutic strategies are still in the preclinical stage, and whether they are effective in patients with OA remains unknown. Given the key role of GPCRs in OA, it is significant to explore the specific mechanism by which GPCRs influence OA in order to facilitate the early diagnosis and treatment of OA.



CONCLUSION

G protein-coupled receptors are ubiquitously expressed seven-transmembrane-domain receptors and mediate the transduction of transmembrane signals. Activated GPCRs induce a series of downstream signaling cascades and subsequent pathophysiological responses by interacting with G proteins, GRKs, and arrestin. GPCRs are involved in the occurrence and progression of OA by regulating some pathological processes, such as cartilage matrix degradation, synovitis, subchondral bone remodeling, and osteophyte formation. Most importantly, GPCRs play a key role in cartilage matrix degradation and synovial inflammation. Current evidence has demonstrated that GPCRs can enhance the expression of MMPs (e.g., MMP-3, MMP-9, and MMP-13), ADAMTS and proinflammatory cytokines (e.g., IL-1β, IL-6, IL-8, and TNF-α) and promote cartilage matrix degradation and synovial inflammation in OA. Moreover, targeting GPCRs principally by inhibiting cartilage matrix degradation and synovial inflammation and by upregulating cartilage matrix synthesis could mitigate OA. However, most of the current GPCR-related therapeutic strategies are still at early stages, and the safety and efficiency of in vivo experiments remain unknown. Further studies are still warranted to further explore the issues discussed in this review.
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Microtubule Stabilization Enhances the Chondrogenesis of Synovial Mesenchymal Stem Cells
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Mesenchymal stem cells (MSCs) are well known for their multi-directional differentiation potential and are widely applied in cartilage and bone disease. Synovial mesenchymal stem cells (SMSCs) exhibit a high proliferation rate, low immunogenicity, and greater chondrogenic differentiation potential. Microtubule (MT) plays a key role in various cellular processes. Perturbation of MT stability and their associated proteins is an underlying cause for diseases. Little is known about the role of MT stabilization in the differentiation and homeostasis of SMSCs. In this study, we demonstrated that MT stabilization via docetaxel treatment had a significant effect on enhancing the chondrogenic differentiation of SMSCs. MT stabilization inhibited the expression of Yes-associated proteins (YAP) and the formation of primary cilia in SMSCs to drive chondrogenesis. This finding suggested that MT stabilization might be a promising therapeutic target of cartilage regeneration.
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INTRODUCTION

Articular cartilage locates at the end surface of the bone and is responsible for the load-bearing as well as lubricating the friction in the joint. Cartilage exhibits poor ability to spontaneously repair due to its aneural and avascular characteristics (Huey et al., 2012). Current strategies for cartilage repair, including microfracture, autologous chondrocyte implantation (ACI), and matrix-induced autologous chondrocyte implantation, are unable to reemerge the biomechanical properties of cartilage (Vasara et al., 2005; Gille et al., 2010). Although a variety of attempts to manipulate stem cells and tissue engineering scaffolds have been made, there is still no ideal therapy to repair articular cartilage (Shi et al., 2016; Chuah et al., 2017; Li et al., 2019). Mesenchymal stem cells (MSCs) are well known for their multi-directional differentiation potential to chondrocytes, adipocytes, and osteocytes (Gale et al., 2019). Previous researches mainly focused on bone marrow–derived MSC (BM-MSC). However, bone marrow is a kind of tissue that is difficult to obtain and the quantity is also insufficient, which limits the wide application of BM-MSCs in the clinic. The cells isolated from the synovium of human knee joints exhibited the stem cell characteristics, which were named synovial mesenchymal stem cells (SMSCs) (De Bari et al., 2001). Besides, SMSCs have been attracted a lot of attention because they had more accessible sources, a high proliferation rate, low immunogenicity, and greater chondrogenic differentiation potential (Li et al., 2020). Based on these, current studies demonstrated the promising therapeutic effect of SMSCs in cartilage and bone disease. However, the differentiation of SMSCs is affected by a variety of biological factors and signaling pathways. Therefore, exploring how to regulate the differentiation of SMSCs is a vital factor to effectively play its role.

The cytoskeleton is a three-dimensional, highly organized network comprising actin, intermediate filament, and microtubule (MT) (Moujaber and Stochaj, 2020). They are kind of a driver and a regulator of signaling pathways that sense and transduce a variety of cellular information involved in mechano-transduction. An intact intermediate filament network played a key role in the maintenance of the chondrocyte phenotype and chondrogenesis (Blain et al., 2006). In addition, the actin organization of SMSCs was involved in the regulation of transforming growth factor-β1 (TGF-β1) and SMAD pathway to induce chondrogenesis (Xu et al., 2012). As for MT, it involves various cellular processes, including maintenance of cell shape, motility, transport, and interactions with extracellular matrix (ECM). MT is assembled with heterodimers of α- and β-tubulin to form a long hollow polymer. MT is constantly remodeled through alternating growth and shrinkage of their extremities (Borisy et al., 2016). The status of MT (dynamic instabilized or stabilized) helps to decide cell shape and organization and acts as a substrate for motor-driven intracellular transport. Stable MT undergoes the consistent polymerization or growth, but without drastic catastrophe (Goodson and Jonasson, 2018). Perturbation of MT stability and their associated proteins was an underlying cause for diseases such as Alzheimer’s disease and various cancers (Ilan, 2018). However, little is known about the role of MT stabilization in the differentiation and homeostasis of SMSCs.

Yes-associated protein (YAP), an important mechano-transduction protein, is an effector in the Hippo signaling pathway and is regulated by cytoskeleton remodeling (Deng et al., 2018; Elbediwy and Thompson, 2018). It was reported that YAP suppressed chondrogenic differentiation (Karystinou et al., 2015; Deng et al., 2016). Moreover, primary cilium is the key mechano-signaling sensor in chondrocytes, which mainly consists of MTs (Ruhlen and Marberry, 2014), and is where the complex IHH signaling pathway is anchored (Bangs and Anderson, 2017). Previous studies demonstrated that primary cilium was critical for regulating cytoskeleton organization and YAP activity (Ruhlen and Marberry, 2014; Kim et al., 2015). However, the mechanism that regulates YAP activity and primary cilium in the context of MT stabilization to influence the chondrogenesis of SMSCs remains to be elucidated.

In this study, we examined the role of MT stabilization in chondrogenic differentiation of SMSCs by using docetaxel (MT stabilizer) and nocodazole (MT destabilizer). We demonstrated that MT stabilization by docetaxel treatment maintained cartilage functions and promoted chondrogenesis of SMSCs. MT stabilization inhibited YAP activity and ciliogenesis in SMSCs to drive chondrogenic differentiation. Our results indicate that MT stabilization would be a potential therapeutic target for promoting articular cartilage repair.



MATERIALS AND METHODS


Ethics Statement

The collection of human synovium and experimental protocols were approved by the Ethical Committee of the Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School (2009022). All experimental procedures followed the guidelines established by the Declaration of Helsinki (General Assembly of the World Medical Association, 2014).



Human Samples

Human OA synovium samples were collected from seven OA patients (56–78 years old; Kellgren–Lawrence grade IV) when they underwent total knee arthroplasties. All of them were processed to establish the primary cultures of SMSC.



Cell Culture

Human OA synovium samples (n = 7) were processed to establish primary cell cultures. To establish SMSC culture, the synovium fragments were subsequently lysed with 0.2% collagenase I in DMEM/F12 at 37°C for 6 h. After filtration and centrifugation, the synovium internal cellular mass was placed in a chondrogenic medium (CM). The cells were cultivated in a humidified environment at 37°C and 5% CO2 followed by regular replacement of the culture medium every 2 days.



Flow Cytometric Analysis

The cell samples of SMSCs were collected at the second passage and then washed with 5% bovine serum albumin three times. The cells were distributed approximately at 500,000 cells per tube. After centrifugation (500 × g, 5 min), the pellets were resuspended and incubated with the 100 μl solution containing different antibodies [CD68-FITC (#562117-BioLegend, United States)/CD90-APC (#561971-BioLegend), and CD34-PE (#560941-BioLegend)/CD105-APC (#562408-BioLegend)] or 100 μl blocking solution as negative control for 30 min under the temperature at 37°C. Then, the samples were washed with phosphate buffered saline (PBS) three times and analyzed to BD AccuriC6 Plus Flow Cytometer (BD, Biosciences, United States). Data were further analyzed by the FlowJo software.



5-Ethynyl-2′-Deoxyuridine Assay

The EdU Reagent Kit (Ribobio, Guangzhou, China) was used to investigate cell proliferation according to the manufacturer’s instructions. After being treated with nocodazole and docetaxel for 1 week, the SMSCs were incubated with 10 μM EdU for 2 h. The images were obtained with a fluorescence microscope (Zeiss, Heidelberg, Germany).



Cell Counting Kit-8 Assay

The cell viability of SMSCs was assessed by CCK8 assay (Dojindo, Japan, Kumamoto) according to the manufacturer’s instructions. After being washed with PBS, the cells in each well were incubated with DMEM/F12 comprising 10% (v/v) CCK-8 solution at 37°C for 2 h. The absorbance was measured at 450 nm with a microplate reader (Thermo Scientific, Logan, UT, United States).



Multiple Differentiation Induction of Synovial Mesenchymal Stem Cells


Chondrogenesis

The SMSCs were cultivated in chondrogenic medium, which consisted of 10 ng/ml TGF-β1 (Peprotech, New Jersey, United States), 50 μg/ml L-ascorbic acid 2-phosphate (Aladdin, Shanghai, China), 100 mM sodium pyruvate (Aladdin), 40 μg/ml proline (Aladdin), 10–7 M dexamethasone (Sigma, Missouri, United States), 2% fetal bovine serum (FBS, Gibco, MA, United States), 1% penicillin–streptomycin (Gibco), and ITS + premix (Sigma) in DMEM-HG (4.5 g/L; Gibco) basic medium. After 14 days of culture, the cells were fixed in 4% paraformaldehyde for 30 min, and then safranin O staining (SO) was performed.



Osteogenesis

The SMSCs was cultivated in osteogenic medium, which consisted of 50 μg/ml L-ascorbic acid 2-phosphate (Sigma), 10–7 M dexamethosone (Sigma), 10 mM β-glycerophosphate (Sigma), 2 mM glutamine (Gibco), 110 μg/ml sodium pyruvate (Gibco), 10% fetal bovine serum (FBS, Gibco), and 1% penicillin–streptomycin (Gibco) in DMEM-HG (4.5 g/L; Gibco) basic medium. After 14 days of culture, the cells were fixed in 4% paraformaldehyde for 30 min and then alizarin red S (ARS) staining was performed.



Adipogenesis

The SMSCs was cultivated in adipogenic growth medium for 2 days, which consisted of 10 μg/ml insulin, 10–7 M dexamethasone, 0.5 mM isobutylmethylxanthine, 10% FBS (Gibco), and 1% penicillin–streptomycin (Gibco) in DMEM-HG (4.5 g/L; Gibco) basic medium. After 2 days, the cells were kept in medium supplemented with 10 μg/ml insulin for 2 days. Then the culture medium was replaced with fresh DMEM-HG containing 10% FBS for 2–3 days. Then the cells were fixed in 4% paraformaldehyde for 30 min and then Oil red O staining was performed.



Microarray Data Collection and Processing

A gene expression profile (GSE82107) was downloaded from the Gene Expression Omnibus (GEO) database.1 The microarray dataset was based on HGU133plus2.0 platform and contained synovium from 10 OA donors and 7 healthy donors. Raw data were normalized by robust multi-array average algorithm. There were 54,675 probes and combined into 20,161 gene symbols. Inflammatory genes and stem cell–related genes were extracted and filtered by | log(fold change)| > 1.25 with p-value < 0.05. Heatmap and GO dotplot were conducted with R pheatmap (v1.0.12) and gglpot2 (v3.32) packages.



Quantitative Real-Time PCR

Cellular mRNA was isolated from SMSCs using TRIzol reagent (Thermo Fisher Scientific, Logan, UT, United States). Complementary DNA (cDNA) was synthesized from mRNA using reverse transcription reagents (Vazyme Biotech, Nanjing, China) and quantitative PCR assays were carried out using a LightCycler 480 II (Roche Molecular Biochemicals, Indianapolis, IN, United States). The primer sequences are listed in Supplementary Material.



Western Blot Analysis

Proteins were extracted from the cells using RIPA lysis buffer supplemented with 1 mM phenylmethanesulfonyl fluoride and 1 mM protein phosphatase inhibitor. After lysis, samples were centrifuged for 10 min at 12,000 rpm at 4°C. The protein concentration of the samples was determined by the BCA protein assay kit (Thermo Scientific). Proteins from the prepared lysates were then separated on 10% (w/v) SDS-polyacrylamide gels and transferred onto a polyvinylidene fluoride membrane (Bio-Rad, Hercules, CA, United States). The membranes were blocked with 5% (w/v) milk (Bio-Rad) for 2 h at room temperature and then incubated overnight at 4°C with primary antibodies for either Ace-tubulin (1:1,000; #5335s-Cell Signaling Technology, Boston, United States), Col II (1:5,000; #ab34712-Abcam, Cambridge, United Kingdom), SOX9 (1:1,000; #82630s-Cell Signaling Technology), SMAD3 (1:1,000; #9513s-Cell Signaling Technology), phosphorylated SMAD3 (1:1,000; #9520s-Cell Signaling Technology), phosphorylated YAP (1:1,000; #4911s-Cell Signaling Technology), YAP (1:1,000; #4912s-Cell Signaling Technology), TAZ (1:1,000; #4883s-Cell Signaling Technology), IFT88 (1:1,000; #60227-1-lg-Proteintech, Wuhan, China), SMO (1:1,000; #66851-1-lg-Proteintech), GLI1 (1:1,000; #66905-1-lg-Proteintech), and GAPDH (1:1,000; #5174s-Cell Signaling Technology). The membranes were then washed using TBS with 0.05% Tween 20 (TBST) three times and incubated with horseradish peroxidase-conjugated secondary antibodies for 60 min. All protein signals were detected using a ChemiDocXRS + Imaging System (Tanon, Shanghai, China). All experiments were repeated five times.



Cell Immunofluorescence

Cells were washed with PBS, fixed in 4% paraformaldehyde, and permeated in 0.1% Triton X-100 for 15 min. After blocking with 5% bovine serum albumin for 1 h at 37°C, the cells were incubated with primary antibodies overnight at 4°C. The cells were then washed with PBS and incubated with FITC or TRITC conjugated second antibodies for 1 h at 37°C and labeled with DAPI for 7 min. Twenty fields from each slide were chosen randomly for observation with a fluorescence microscope (Zeiss).



Pellet Cultures and Micro-Mass Cultures

A pellet consisting of 5 × 105 cells was cultured in a microfuge tube for 4 weeks in a humidified environment at 37°C and 5% CO2 with chondrogenic differentiation medium. The medium was supplemented with 10 ng/ml TGF-β1 (Peprotech) and 500 ng/ml BMP2 (Peprotech). The medium was refreshed twice per week.

For micro-mass culture, 5 × 105 cells were seeded at the center of the 24-well plate avoiding touching the sides of the wells. The cells were cultivated in a humidified environment at 37°C and 5% CO2 with chondrogenic differentiation medium. The medium was supplemented with 10 ng/ml TGF-β1. The medium was refreshed twice per week.



Histological and Microscopy Analysis

The micro-mass of SMSCs were fixed in 4% (v/v) paraformaldehyde for 15 min, and after being washed by phosphate buffer saline (PBS), crystal violet staining, SO staining, and alcian blue staining (AB) were performed on the specimens according to the manufacturer’s instructions. The pellets were fixed in 4% (v/v) paraformaldehyde for 1 day, and after dehydration, the specimens were embedded in paraffin and cut into 3-μm coronal sections. Sections of each tissue were then processed and stained with SO and toluidine blue staining (TB). Photomicrographs of results were captured with a microscope (Zeiss, Heidelberg, Germany).



Immunohistochemical Staining and Immunofluorescent Analysis

Immunohistochemical staining and immunofluorescent analysis were performed according to the manufacturer’s instructions. Serial sections were incubated with primary antibodies for Col II (1:500; #ab34712-Abcam) and Col I (1:300; #BA0325-Boster, Wuhan, China) overnight at 4°C. For immunohistochemical staining, HRP conjugated secondary antibodies were added to the slides and incubated at 37°C for 1 h. For immunofluorescent staining, FITC or TRITC conjugated secondary antibodies were added to the slides and incubated at room temperature for 1 h in the dark. Photomicrographs of sections were captured with a fluorescence microscope (Zeiss).



Short Interfering RNA Transfection

siRNA against the human YAP1 gene was designed and synthesized as the following sequence: 5-GGUGAUACUAUCAACCAAATT-3 (Hippobio). SMSCs were seeded in 6-well plates and grown to approximately 70% confluence. Cells were then transfected with either 50 nM siRNA-YAP or negative control in Lipofectamine 3000 (Thermo Fisher Scientific) for 12 h according to the manufacturer’s instructions.



Statistical Analysis

All data were expressed as means ± SEMs. Statistical analysis was performed with one-way ANOVA using GraphPad Prism 8 for Windows. Differences were considered statistically significant when p < 0.05.



RESULTS


Characterization and Differential Potency of Synovial Mesenchymal Stem Cells

First, to harvest SMSCs, we isolated the cells from the human knee joint synovium after total knee arthroplasty and cultured them to the second passage (P2). The characterization of surface epitopes on SMSCs (P2) was performed and revealed satisfactory stem cell potency (Figure 1A). The results of flow cytometry showed that the cells were negative for the hematopoietic marker (CD34) and macrophage marker (CD68) while positive for MSC markers such as CD105 and CD90. To verify the multi-differential potency of the isolated synovial cells, we cultured the cells with chondrogenic, osteogenic, and adipogenic medium, respectively, to induce trilineage differentiation. The results of histological analysis, including Safranin O staining (SO), ARS staining, and Oil red O staining, elucidated the expected multi-differential capacity of SMSCs (Figure 1B). Moreover, mRNA expressions of inflammatory genes and stem cell–related markers in knee joint synovium were compared between OA and healthy donors in a public data. The expression of matrix metalloproteinases (MMPs), including MMP1, MMP2, MMP3, MMP9, and MMP13, were increased in OA synovium. However, the genes in stem cell–related markers, including LY6E, NT5E (CD73), and THY1 (CD90), were also increased in OA synovium (Supplementary Figure 1A). The biological processes of ECM organization, extracellular structure organization, and collagen metabolism were enriched (Supplementary Figure 1B).
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FIGURE 1. Characterization and trilineage differential potency of SMSCs from osteoarthritis (OA) keen synovium. (A) Surface marker expression of synovial mesenchymal stem cells (SMSCs). Results showed negativity for hematopoietic marker (CD34) and macrophage marker (CD68) and showed positivity for mesenchymal stem cell (MSC) markers like CD105 and CD90. (B) Multi-directional differentiation of SMSCs; chondrogenesis was accessed by safranin O staining (SO), osteogenesis was accessed by alizarin red S staining (ARS), and adipogenesis was accessed by Oil red O staining. (C) The EdU staining of SMSCs after the treatment of different concentrations of nocodazole (N) (5, 10, 25, 50, 100 nM) and docetaxel (D) (0.5, 1, 2.5, 5, 10 nM) in chondrogenic medium (CM) for 1 week. Scale bar, 100 μm. (D) Quantification of the data of (C). n = 5. (E) The cell viability of SMSCs after the treatment of different concentrations of nocodazole (N) (5, 10, 25, 50, 100 nM) and docetaxel (D) (0.5, 1, 2.5, 5, 10 nM) in chondrogenic medium (CM) for 1 week. (F) Crystal violet staining of SMSCs after the treatment of different concentrations of nocodazole (N) (5, 10, 25, 50, 100 nM) and docetaxel (D) (0.5, 1, 2.5, 5, 10 nM) in chondrogenic medium (CM) for 1 week. Scale bar, 100 μm. (G) RT-qPCR analyses of SOX9, COL2A1, ACAN, RUNX2, COL1A1, and COL10A1 in SMSCs treated with nocodazole (N) and docetaxel (D) in chondrogenic medium (CM) for 1 week. 2.5 nM of docetaxel had significant effects on chondrogenesis in SMSCs. Data are represented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.




Microtubule Stabilization Promotes Chondrogenesis of Synovial Mesenchymal Stem Cell

Nocodazole and docetaxel were used to destabilize and stabilize microtubule (MT), respectively. To determine the optimal drug concentration, we performed subsequent experiments to assess the proliferation and cell viability of SMSCs that were treated with different concentrations of nocodazole and docetaxel. First, the results of EdU staining revealed that the proliferation of SMSCs was not significantly affected with the treatment of nocodazole (5, 10, and 25 nM) and docetaxel (0.5, 1, and 2.5 nM), while it was significantly enhanced with a higher concentration of nocodazole (50 and 100 nM) and inhibited with a higher concentration of docetaxel (5 and 10 nM) (Figures 1C,D). Cell viability of SMSCs was assessed by CCK-8 assay. The results indicated that 25 nM nocodazole had a slight enhancement in the proliferation of SMSCs, while docetaxel had no significant effect on the cell viability within 2.5 nM (Figure 1E). The crystal violet staining demonstrated a similar result with EdU staining and CCK8 assay (Figure 1F). To avoid the impact of excessive differences in cell proliferation, nocodazole within 25 nM and docetaxel within 2.5 nM were chosen for further investigation of the effect of MT stabilization on the differentiation of SMSCs. Compared with the chondrogenic medium (CM) group, RT-PCR analysis revealed that MT stabilization (docetaxel treated) upregulated the mRNA expression of SOX9 and COL2A1 and decreased the level of COL1A1 (Figure 1G). However, the nocodazole treatment inhibited the mRNA expression of SOX9 and COL2A1 (Figure 1G). Besides, the expression of RUNX2 and COL10A1 was unchanged when the concentration of docetaxel was 2.5 nM (Figure 1G).

Based on the data of the RT-PCR analysis, 25 nM nocodazole and 2.5 nM docetaxel were chosen for the treatment of SMSCs under CM for 2 weeks. Acetylated tubulin (Ace-Tubulin) was the marker of stabilized MT because it was demonstrated that this kind of tubulins was characterized as long-lived, polymerized, and stable MTs (Westermann and Weber, 2003). In the results of western blot and immunofluorescence staining, the expression of Ace-Tubulin was enhanced in SMSCs treated with docetaxel (Figures 2A–C). As the MT stability increased, the expression of Col II, SOX9, and the activity of SMAD3 was upregulated, and Col I was decreased at the protein level (Figures 2A,B). The ratio of Col II to Col I also was improved by the treatment of docetaxel, which was confirmed by co-immunofluorescence staining (Figure 2D). The micro-mass and pellet cultures were performed to further verify the chondrogenesis of SMSCs in 2D and 3D environment by MT stabilization. The results of SO staining and alcian blue (AB) staining in the SMSC micro-mass culture exhibited a stronger chondrogenic effect of docetaxel treatment when compared with nocodazole and control groups (Figure 2E). Moreover, the positive results in SO staining, toluidine blue staining (TB), and immunohistochemical staining for Col II and negative for Col I revealed that more cartilage-like ECM was formed in the pellet that was treated with docetaxel compared with the CM control and nocodazole treatment groups (Figure 2F).
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FIGURE 2. The effect of microtubule (MT) stabilization in the chondrogenesis of SMSCs. (A) Western blot analysis of Ace-Tubulin, Col I, Col II, SOX9, SMAD3, and phosphorylated SMAD3 expression in synovial mesenchymal stem cells (SMSCs) treated with nocodazole (N) and docetaxel (D) in chondrogenic medium (CM) for 1 week. (B) Quantification of the data of (A). n = 5. (C) Immunofluorescence staining of Ace-Tubulin and F-actin. Scale bar, 50 μm. The docetaxel treatment increased the expression level of Ace-Tubulin. (D) Co-immunofluorescence staining of Col I and Col II. Scale bar, 100 μm. (E) Safranin O staining (SO) and Alcian blue (AB) staining of SMSC micro-mass culture grown in chondrogenic medium (CM) treated with nocodazole (N) and docetaxel (D) for 4 weeks. (F) pellet cultures of SMSCs in chondrogenic medium (CM) treated with nocodazole and docetaxel for 4 weeks. SO staining, toluidine blue (TB) staining, and immunohistochemical staining of Col II and Col I were performed to access the chondrogenesis of SMSC pellets. Scale bar, 100 μm. Data are represented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.




Microtubule Stabilization Inhibits Yes-Associated Proteins Expression and Activity in Synovial Mesenchymal Stem Cell

YAP plays an important role in sensing and transducing the signal from mechanical stimuli and cytoskeleton remodeling. When YAP was inactivated, it was transported to the outside of the nucleus and phosphorylated. We investigated the phosphorylation and expression level of YAP, and its paralog transcriptional co-activator (TAZ) in SMSCs to demonstrate whether MT stabilization was involved in the regulation in YAP. Western blot analyses showed that both total and phosphorylated YAP in SMSCs were significantly decreased, while the ratio of phosphorylated YAP in total increased by docetaxel treatment compared with the control group (Figures 3A,B). Besides, MT destabilization by nocodazole treatment promoted the total expression of YAP (Figures 3A,B). The expression of TAZ both decreased by docetaxel and nocodazole treatment in SMSCs (Figures 3A,B). In the image of immunofluorescence, the nocodazole treatment significantly increased total YAP, while it was hardly observed in both nucleus and cytoplasm after the docetaxel treatment (Figures 3C,D).
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FIGURE 3. The effect of microtubule (MT) stabilization in YAP expression in SMSCs. (A) Western blot analysis of phosphorylated Yes-associated protein (YAP), total YAP and TAZ expression in synovial mesenchymal stem cells (SMSCs) treated with nocodazole (N) and docetaxel (D) in chondrogenic medium (CM) for 1 week. (B) Quantification of the data of (A). n = 5. (C) Immunofluorescence staining for YAP of SMSCs. Scale bar, 100 μm. (D) Quantification of YAP in nucleus. n = 5. MT stabilization inhibited the YAP expression in SMSCs. (E) Co-immunofluorescence staining images of F-actin and YAP in SMSCs without docetaxel or nocodazole treatment (upper panel: view 1; lower panel: view 2). Scale bar, 200 μm. (F) RT-qPCR analysis of MST1, MST2, LATS1, LATS2, RHOA, ROCK1, and ROCK2 in SMSCs treated with either nocodazole (N) or docetaxel (D) for 1 week. Data are represented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.


It has been reported that triggering F-actin polymerization and stress fiber formation promotes YAP/TAZ activity (Dupont et al., 2011), while treatment with cytochalasin D, a reagent that promoted actin filament depolymerization, induced cytoplasmic re-localization of YAP (Kim et al., 2015). Our findings in SMSCs revealed that the nocodazole treatment not only increased the polymerization of F-actin but also increased the expression and nuclear re-localization of YAP (Figures 2C, 3A), which was consistent with other findings regarding the role of YAP/TAZ in mechano-transduction for sensing cytoskeletal tension (Dupont et al., 2011). Moreover, we found that F-actin was depolymerized when SMSCs were treated with docetaxel, which was similar with the effect reported for cytochalasin D (Figure 2C), and YAP expression was diminished in both cytoplasm and nucleus (Figure 3A). We captured two interesting views of YAP and F-actin co-immunofluorescence in the control SMSC group (Figure 3E). YAP was enriched in the area where F-actin was highly polymerized, and weak cytoplasmic YAP was observed where F-actin was depolymerized (upper panels). The YAP expression was stable when the status of F-actin was fluctuating between polymerization and depolymerization (lower panels). Furthermore, we investigated the components of upstream signaling components from YAP, including the negative regulative Hippo pathway (MST1/2, LATS1/2) and the positive regulative Rho pathway (RHOA, ROCK1/2). The mRNA levels of MST2 and LATS2 were upregulated and those of RHOA, ROCK1, and ROCK2 were diminished in SMSCs with the docetaxel treatment compared with the control group (Figure 3F). These results illustrated that MT stabilization in SMSCs inhibited the YAP expression via actin depolymerization and repressed the YAP activity via regulating Hippo pathway and Rho pathway.



Microtubule Stabilization Restrains the Formation of Primary Cilia in Synovial Mesenchymal Stem Cell

The Ace-Tubulin-rich small rod-like structures were observed in co-immunofluorescence staining for F-actin and Ace-tubulin in SMSCs, which represented primary cilia (Figure 2C). The primary cilium is a special structure that plays a key role in sensing biomechanical signal, transporting substance between cell membrane, and regulating several signaling pathways, including the hedgehog (HH) pathway (Ruhlen and Marberry, 2014; Bangs and Anderson, 2017). Because MT consists of the main component of primary cilium, we investigated the effect of MT stabilization in primary cilia formation and the Indian hedgehog pathway (IHH) in the chondrogenic differential process of SMSCs. We performed the immunofluorescence staining for ARL13B (a marker for primary cilia within the ADP-ribosylation factor) (Larkins et al., 2011) to investigate the length and quantity of primary cilia. As shown in the image of Figures 4A,B, the length and number of primary cilia were both inhibited with the docetaxel treatment in SMSCs, when compared with the nocodazole treatment group. The western blot results revealed that the docetaxel treatment markedly reduced the expression levels of IFT88 (a protein involved in the transport process in cilia) (Wang et al., 2016), SMO, and GLI1 (member proteins of IHH) (Briscoe and Therond, 2013), similar to its effect on ciliogenesis (Figures 4C,D). These findings indicated that MT stabilization had a negative effect on the regulation of the formation of primary cilia and the IHH pathway.
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FIGURE 4. The inhibition of microtubule (MT) stabilization in the formation of primary cilia in SMSCs. (A) Immunofluorescence staining of ARL13B (for representing primary cilia) in synovial mesenchymal stem cells (SMSCs) treated with nocodazole (N) and docetaxel (D) in chondrogenic medium (CM) for 1 week. (B) Quantification of (A) for the number and length of primary cilia in SMSCs. n = 6. (C) Western blot analysis of IFT88, SMO, and GLI1 in SMSC. (D) Quantification of the data of (C). n = 5. Data are represented as the mean ± SEM. **p < 0.01, ***p < 0.001.




The Relationship Between Yes-Associated Proteins and Primary Cilia in the Chondrogenesis of Synovial Mesenchymal Stem Cell Regulated by Microtubule Stabilization

To demonstrated the role of YAP expression in chondrogenesis and primary cilia formation of SMSCs on MT stabilization, we performed the knockdown of YAP by siRNA and the promotion of nucleus re-localization of YAP by lysophosphatidic acid (LPA) through Rho GTPase activity (Yu et al., 2012). As the total and phosphorylated YAP both decreased by YAP siRNA transfection, the level of cartilage-related proteins (SOX9 and Col II) was upregulated, and the Ace-Tubulin expression was not significantly changed (Figures 5A,B). Subsequently, the expression of IFT88, SMO, and GLI1 (Figures 5C,D), and the number and the length of primary cilia (Figures 5E,F) were decreased on YAP knock-down, with or without docetaxel in SMSCs. Besides, western blot analysis showed that the decrease of the level of phosphorylated YAP by LPA treatment was detrimental for the expression of SOX9 and Col II but did not affect the Ace-Tubulin level (Figures 6A,B). However, MT stabilization by docetaxel treatment in SMSCs still had a slight effect in improving the expression of SOX9 and Col II when treated by LPA (Figures 6A,B). The LPA treatment to SMSCs did not influence the expression of IFT88 and IHH pathway, while they were inhibited in the LPA+docetaxel group due to the inhibition of MT stabilization driven by YAP expression (Figures 6C,D). The alteration in the phosphorylation of YAP via LPA treatment changed the length of primary cilia without affecting the formation of primary cilia (Figures 6E,F). Therefore, the chondrogenesis effect induced by MT stabilization was mainly through the regulation on YAP, and the expression of YAP was necessary for primary cilia formation.


[image: image]

FIGURE 5. Knockdown of YAP promotes chondrogenesis and inhibits primary cilia formation in SMSCs. (A) Western blot analysis of Ace-Tubulin, phosphorylated Yes-associated protein (YAP), YAP, Col II, and SOX9 in synovial mesenchymal stem cells (SMSCs) transfected with siRNA-YAP and treated with docetaxel (D) for 1 week. (B) Quantification of the data of (A). n = 5. (C) Western blot analysis of IFT88, SMO, and GLI1 in SMSCs transfected with siRNA-YAP and treated with docetaxel (D) for 1 week. (D) Quantification of the data of (C). n = 5. (E) Immunofluorescence staining for ARL13B in SMSCs. (F) Quantification of (E) for the number and length of primary cilia in SMSCs. n = 5. Data are represented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 6. Activation of YAP diminishes chondrogenesis and cilium elongation in SMSCs. (A) Western blot analysis of Ace-Tubulin, phosphorylated Yes-associated protein (YAP), YAP, Col II, and SOX9 in synovial mesenchymal stem cells (SMSCs) treated with lysophosphatidic acid (LPA) and treated with docetaxel (D) for 1 week. (B) Quantification of the data of (A). n = 5. (C) Western blot analysis of IFT88, SMO, and GLI1 in SMSCs treated with lysophosphatidic acid (LPA) and treated with docetaxel (D) for 1 week. (D) Quantification of the data of (C). n = 5. (E) Immunofluorescence staining for ARL13B in SMSCs. (F) Quantification of (E) for the number and length of primary cilia in SMSCs. n = 5. Data are represented as the mean ± SEM. *p < 0.05, ***p < 0.001.




DISCUSSION

This study demonstrated that MT stabilization had a significant effect in enhancing the chondrogenic differentiation of SMSCs (Figure 7). By inhibiting YAP expression and activity, stabilized MT activated the TGF-β/SMAD pathway and enhanced the expression of SOX9 and Col II. MT stabilization repressed primary cilia formation, inhibited the IHH signal, and promoted chondrogenic differentiation of SMSCs.
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FIGURE 7. Schematic of the mechanism by which microtubule stabilization potentiates chondrogenic differentiation of synovial mesenchymal stem cells. By inhibiting Yes-associated protein (YAP) expression and activity, stabilized microtubule (MT) activated the chondrogenesis. MT stabilization repressed primary cilia formation, inhibited the Indian hedgehog (IHH) signal, and promoted chondrogenic differentiation of SMSCs.


MTs play a role as “railways” for intracellular transport, and interact with several proteins to assemble to larger and intact structures (Goodson and Jonasson, 2018). In most cell types, MT displays a dynamic instability, in which the ends of individual polymers transition randomly between periods of growth and shortening (Goodson and Jonasson, 2018). The dynamic nature of the MTs allows cells to adapt to changes in cell shape and environment. However, the excessive turnover of MTs might seem wasteful in energy. Furthermore, stabilization of dynamic MTs provides a mechanism for responding to internal or external signals (Kirschner and Mitchison, 1986). Acetylation of MTs protected them from mechanical breakage and represented the statues of the stability of MT (Xu et al., 2017). Ace-Tubulin were mainly bundled and polymerized that allowed the augment of kinesin run distances and protein transport. The drugs docetaxel and nocodazole are known for their effect on MT stabilization and destabilization, respectively (Cao et al., 2018). We found that the MT stability of SMSCs with docetaxel treatment increased in correlation with the enhancement of cartilage-related proteins, SMAD3 signaling, and the promotion of chondrogenic differentiation. Interestingly, our results showed that MT effectively inhibited the fibrotic phenotype during the chondrogenic differential process of SMSCs. This finding suggested that MT stabilization would be a promising strategy for prevent the fibrocartilage formation and generated the hyaline cartilage in the cartilage regeneration process. Moreover, a satisfactory source of SMSCs will strengthen the effect of SMSCs in cartilage therapeutic process. In bioinformatic results, although the synovium in the knee joint of OA donors had higher stem cell potential, their metabolism was activated. For more effective utilization of SMSCs in the clinic, further research about the characterization of SMSCs from different sources (species, basic disease, age, position of synovium, etc.) is necessary.

YAP is an important factor in the homeostasis and maturation of chondrocytes; it promotes early chondrocyte proliferation, but inhibits chondrogenesis through the TGF-β/SMAD signaling (Ferrigno et al., 2002; Karystinou et al., 2015; Deng et al., 2016). Mechanical forces between cells or cell and ECM, and the cytoskeleton are the main factors to regulate the activity and expression of YAP. However, the role of MT stabilization in regulating YAP, especially in the differentiation of SMSCs, was still elusive before. In our results, the expression of YAP was significantly inhibited in SMSCs because of increased MT stability and the further depolymerization of actin. We investigated the two opposite upstream signaling pathways of YAP, the Hippo pathway that acts as a negative regulator and the RhoA/Rock pathway that acts as a positive regulator. The increased Hippo pathway activity and inhibition of the RhoA/Rock pathway mediated by MT stabilization in vivo supported the increased ratio of phosphorylated YAP in total observed in SMSCs. Moreover, the chondrogenic effect induced by MT stabilization in SMSCs was through the repression of YAP, which was identified by the YAP knockdown by siRNA and treatment with the YAP agonist, LPA. A recent study revealed that YAP has a reciprocal antagonistic effect on NF-κB signaling that results in reduced matrix-degrading enzyme expression and cartilage degradation during OA (Deng et al., 2018). In addition, connective tissue growth factor (CTGF) was identified as a direct YAP target (Zhao et al., 2008), which was responsible for promoting Col I synthesis and fibrous tissue formation (Lee et al., 2014). Therefore, in cartilage injury repair, the YAP activity in the early stage could ensure proliferation of chondrocytes and their resistance to inflammatory factors. However, its continued existence would contribute to formation of fibrocartilage rather than hyaline cartilage due to the promotion of CTGF activity and inhibitory effect of TGF-β on YAP. Collectively, these findings suggest that MT stabilization inhibits YAP activity to drive a cartilaginous phenotype and chondrogenic differentiation of SMSCs.

In this study, stabilized MT in SMSCs mainly displayed as a form of primary cilia, which was responsible for biomechanical signal sensing and substance transportation. Moreover, the main complex and components of IHH signaling pathway are located at the primary cilia, which is involved in the regulation of chondrocyte hypertrophy and osteogenic differentiation through RUNX2 and Wnt/β-catenin signaling pathway (Katoh, 2007; Bangs and Anderson, 2017). In SMSCs, MT stabilization reduced primary cilia formation and inhibited the IHH pathway with further osteogenic differentiation. Knock-down of YAP decreased the formation of primary cilia. However, LPA treatment enhanced the re-localization of YAP to the nucleus and led to the shortening of primary cilia but did not change the activity of the IHH pathway. We observed that the IHH pathway was attenuated in SMSCs by MT stabilization, which suggested that the level of IHH pathway activity was mainly affected by the quantity of primary cilia rather than their length. It was reported that cytoplasmic retention of YAP correlated with active ciliogenesis in human retinal pigmented epithelial cells (Kim et al., 2015). However, in pronephros development in zebrafish, YAP was necessary for ciliogenesis and morphogenesis (He et al., 2015). We speculated that YAP is required for formation of primary cilium even though increased YAP activity inhibits its elongation. Moreover, although primary cilia might be not beneficial during the chondrogenic differentiation of MSCs, it was an important structure for the function of mechanical transduction in chondrocytes. Herein, more specific research about the role of MT stabilization in the regulation primary cilia and YAP during the transformation from MSC to chondrocyte remain to be elucidated.

Taken together, our study highlights a novel mechanism for chondrogenesis of SMSCs and presents a promising therapeutic target for articular cartilage regeneration. First, drugs that affect the stability and polymerization of MTs have been extensively studied, and some have been commercialized (Cao et al., 2018) and can be directly used as candidates for treating cartilage injury or exploring its underlying mechanism. Then, there are many signaling pathways, including PI3K-Akt, ERK1/2, RhoA, CDC42, Rock, and RTKs (Roostalu and Surrey, 2017; Stanganello et al., 2019; Moujaber and Stochaj, 2020), as well as MT stabilization associated proteins, including Tau, MAPs, and fibroblast growth factor 13 (FGF13) (Wu et al., 2012; Prezel et al., 2018; Melkova et al., 2019), that can directly or indirectly affect MT stability, making this class of molecules potential therapeutic targets. We believe that MT stabilization is a profound mechanism and target in the therapy of cartilage disease.



DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethical Committee of the Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School. The patients/participants provided their written informed consent to participate in this study.



AUTHOR CONTRIBUTIONS

DS and JL: conceptualization. JL, ZL, ZS, MW, HJ, GT, AL, HS, XX, and WY: methodology. JL, DS, SI, ZL, and ZS: visualization. DS and QJ: funding acquisition. DS, RW, and QJ: project administration. DS, QJ, and SI: supervision. JL: writing—original draft. DS, SI, and JL: writing—review and editing. All authors contributed to the article and approved the submitted version.



FUNDING

This work was supported by the National Key R&D Program of China (2018YFC1105904), the Key Program of NSFC (81730067), the National Science Foundation of China (81772335, 81941009, and 81802196), the Natural Science Foundation of Jiangsu Province, China (BK20180127), and the Jiangsu Provincial Key Medical Talent Foundation, Six Talent Peaks Project of Jiangsu Province (WSW-079).



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.748804/full#supplementary-material


FOOTNOTES

1
http://www.ncbi.nlm.nih.gov/geo/


REFERENCES

Bangs, F., and Anderson, K. V. (2017). Primary cilia and mammalian hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9:a028175. doi: 10.1101/cshperspect.a028175

Blain, E. J., Gilbert, S. J., Hayes, A. J., and Duance, V. C. (2006). Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis. Matrix Biol. 25, 398–408. doi: 10.1016/j.matbio.2006.06.002

Borisy, G., Heald, R., Howard, J., Janke, C., Musacchio, A., and Nogales, E. (2016). Microtubules: 50 years on from the discovery of tubulin. Nat. Rev. Mol. Cell Biol. 17, 322–328. doi: 10.1038/nrm.2016.45

Briscoe, J., and Therond, P. P. (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429. doi: 10.1038/nrm3598

Cao, Y. N., Zheng, L. L., Wang, D., Liang, X. X., Gao, F., and Zhou, X. L. (2018). Recent advances in microtubule-stabilizing agents. Eur. J. Med. Chem. 143, 806–828. doi: 10.1016/j.ejmech.2017.11.062

Chuah, Y. J., Peck, Y., Lau, J. E., Hee, H. T., and Wang, D. A. (2017). Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater. Sci. 5, 613–631. doi: 10.1039/c6bm00863a

De Bari, C., Dell’Accio, F., Tylzanowski, P., and Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44, 1928–1942. doi: 10.1002/1529-0131(200108)44:8<1928::AID-ART331<3.0.CO;2-P

Deng, Y., Lu, J., Li, W., Wu, A., Zhang, X., Tong, W., et al. (2018). Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat. Commun. 9:4564. doi: 10.1038/s41467-018-07022-2

Deng, Y., Wu, A., Li, P., Li, G., Qin, L., Song, H., et al. (2016). Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Rep. 14, 2224–2237. doi: 10.1016/j.celrep.2016.02.021

Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183. doi: 10.1038/nature10137

Elbediwy, A., and Thompson, B. J. (2018). Evolution of mechanotransduction via YAP/TAZ in animal epithelia. Curr. Opin. Cell Biol. 51, 117–123. doi: 10.1016/j.ceb.2018.02.003

Ferrigno, O., Lallemand, F., Verrecchia, F., L’Hoste, S., Camonis, J., Atfi, A., et al. (2002). Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 21, 4879–4884. doi: 10.1038/sj.onc.1205623

Gale, A. L., Mammone, R. M., Dodson, M. E., Linardi, R. L., and Ortved, K. F. (2019). The effect of hypoxia on chondrogenesis of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. BMC Vet. Res. 15:201. doi: 10.1186/s12917-019-1954-1

General Assembly of the World Medical Association (2014). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 81, 14–18.

Gille, J., Kunow, J., Boisch, L., Behrens, P., Bos, I., Hoffmann, C., et al. (2010). Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular cartilage defects: a histological and biomechanical study in sheep. Cartilage 1, 29–42. doi: 10.1177/1947603509358721

Goodson, H. V., and Jonasson, E. M. (2018). Microtubules and microtubule-associated proteins. Cold Spring Harb. Perspect. Biol. 10:a022608. doi: 10.1101/cshperspect.a022608

He, L., Xu, W., Jing, Y., Wu, M., Song, S., Cao, Y., et al. (2015). Yes-associated protein (Yap) is necessary for ciliogenesis and morphogenesis during pronephros development in zebrafish (Danio rerio). Int. J. Biol. Sci. 11, 935–947. doi: 10.7150/ijbs.11346

Huey, D. J., Hu, J. C., and Athanasiou, K. A. (2012). Unlike bone, cartilage regeneration remains elusive. Science 338, 917–921. doi: 10.1126/science.1222454

Ilan, Y. (2018). Microtubules: from understanding their dynamics to using them as potential therapeutic targets. J. Cell. Physiol. 234, 7923–7937. doi: 10.1002/jcp.27978

Karystinou, A., Roelofs, A. J., Neve, A., Cantatore, F. P., Wackerhage, H., and De Bari, C. (2015). Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells. Arthritis Res. Ther. 17:147. doi: 10.1186/s13075-015-0639-9

Katoh, M. (2007). Networking of WNT, FGF, Notch, BMP, and hedgehog signaling pathways during carcinogenesis. Stem Cell Rev. 3, 30–38. doi: 10.1007/s12015-007-0006-6

Kim, J., Jo, H., Hong, H., Kim, M. H., Kim, J. M., Lee, J. K., et al. (2015). Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat. Commun. 6:6781. doi: 10.1038/ncomms7781

Kirschner, M., and Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342. doi: 10.1016/0092-8674(86)90318-1

Larkins, C. E., Aviles, G. D., East, M. P., Kahn, R. A., and Caspary, T. (2011). Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol. Biol. Cell 22, 4694–4703. doi: 10.1091/mbc.E10-12-0994

Lee, C. H., Rodeo, S. A., Fortier, L. A., Lu, C., Erisken, C., and Mao, J. J. (2014). Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl. Med. 6:266ra171. doi: 10.1126/scitranslmed.3009696

Li, J., Chen, G., Xu, X., Abdou, P., Jiang, Q., Shi, D., et al. (2019). Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen. Biomater. 6, 129–140. doi: 10.1093/rb/rbz022

Li, N., Gao, J., Mi, L., Zhang, G., Zhang, L., Zhang, N., et al. (2020). Synovial membrane mesenchymal stem cells: past life, current situation, and application in bone and joint diseases. Stem Cell Res. Ther. 11:381. doi: 10.1186/s13287-020-01885-3

Melkova, K., Zapletal, V., Narasimhan, S., Jansen, S., Hritz, J., Skrabana, R., et al. (2019). Structure and functions of microtubule associated proteins Tau and MAP2c: similarities and differences. Biomolecules 9:105. doi: 10.3390/biom9030105

Moujaber, O., and Stochaj, U. (2020). The cytoskeleton as regulator of cell signaling pathways. Trends Biochem. Sci. 45, 96–107. doi: 10.1016/j.tibs.2019.11.003

Prezel, E., Elie, A., Delaroche, J., Stoppin-Mellet, V., Bosc, C., Serre, L., et al. (2018). Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles. Mol. Biol. Cell 29, 154–165. doi: 10.1091/mbc.E17-06-0429

Roostalu, J., and Surrey, T. (2017). Microtubule nucleation: beyond the template. Nat. Rev. Mol. Cell Biol. 18, 702–710. doi: 10.1038/nrm.2017.75

Ruhlen, R., and Marberry, K. (2014). The chondrocyte primary cilium. Osteoarthritis Cartilage 22, 1071–1076. doi: 10.1016/j.joca.2014.05.011

Shi, D., Xu, X., Ye, Y., Song, K., Cheng, Y., Di, J., et al. (2016). Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano 10, 1292–1299. doi: 10.1021/acsnano.5b06663

Stanganello, E., Zahavi, E. E., Burute, M., Smits, J., Jordens, I., Maurice, M. M., et al. (2019). Wnt signaling directs neuronal polarity and axonal growth. iScience 13, 318–327. doi: 10.1016/j.isci.2019.02.029

Vasara, A. I., Nieminen, M. T., Jurvelin, J. S., Peterson, L., Lindahl, A., and Kiviranta, I. (2005). Indentation stiffness of repair tissue after autologous chondrocyte transplantation. Clin. Orthop. Relat. Res. 433, 233–242. doi: 10.1097/01.blo.0000150567.00022.2e

Wang, Z., Wann, A. K., Thompson, C. L., Hassen, A., Wang, W., and Knight, M. M. (2016). IFT88 influences chondrocyte actin organization and biomechanics. Osteoarthritis Cartilage 24, 544–554. doi: 10.1016/j.joca.2015.10.003

Westermann, S., and Weber, K. (2003). Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol. 4, 938–947. doi: 10.1038/nrm1260

Wu, Q. F., Yang, L., Li, S., Wang, Q., Yuan, X. B., Gao, X., et al. (2012). Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell 149, 1549–1564. doi: 10.1016/j.cell.2012.04.046

Xu, T., Wu, M., Feng, J., Lin, X., and Gu, Z. (2012). RhoA/Rho kinase signaling regulates transforming growth factor-beta1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway. Int. J. Mol. Med. 30, 1119–1125. doi: 10.3892/ijmm.2012.1107

Xu, Z., Schaedel, L., Portran, D., Aguilar, A., Gaillard, J., Marinkovich, M. P., et al. (2017). Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356, 328–332. doi: 10.1126/science.aai8764

Yu, F. X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791. doi: 10.1016/j.cell.2012.06.037

Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971. doi: 10.1101/gad.1664408


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Li, Sun, Lv, Jiang, Liu, Wang, Tan, Guo, Sun, Wu, Xu, Yan, Jiang, Ikegawa and Shi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


		REVIEW
published: 30 November 2021
doi: 10.3389/fcell.2021.777697


[image: image2]
Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment
Cheng Huang1†, Zeqin Wen2†, Junjie Niu3*, Subin Lin4* and Weiguo Wang1*
1Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
2Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
3Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
4Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
Edited by:
Phillip Trevor Newton, Karolinska Institutet (KI), Sweden
Reviewed by:
Toshiki Kato, University of Tsukuba, Japan
Marco Ponzetti, University of L’Aquila, Italy
* Correspondence: Junjie Niu, jjnewzzzx@sina.com; Subin Lin, tonylin23@126.com; Weiguo Wang, wangweiguo@zryhyy.com.cn
†These authors have contributed equally to this work and share first authorship
Specialty section: This article was submitted to Stem Cell Research, a section of the journal Frontiers in Cell and Developmental Biology
Received: 15 September 2021
Accepted: 16 November 2021
Published: 30 November 2021
Citation: Huang C, Wen Z, Niu J, Lin S and Wang W (2021) Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front. Cell Dev. Biol. 9:777697. doi: 10.3389/fcell.2021.777697

Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by the collapse of the femoral head. SONFH occurs due to the overuse of glucocorticoids (GCs) in patients with immune-related diseases. Among various pathogenesis proposed, the mechanism related to impaired blood vessels is gradually becoming the most convincing hypothesis. Bone endothelial cells including bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) play a crucial role in the maintenance of vascular homeostasis. Therefore, bone endothelial cells are key regulators in the occurrence and progression of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. In addition, even with high disability rates, SONFH lacks effective therapeutic approach. Icariin (ICA, a flavonoid extracted from Epimedii Herba), pravastatin, and VO-OHpic (a potent inhibitor of PTEN) are candidate reagents to prevent and treat SONFH through improving above pathological processes. However, these reagents are still in the preclinical stage and will not be widely used temporarily. In this case, bone tissue engineering represented by co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be another feasible therapeutic strategy.
Keywords: steroid-induced osteonecrosis of the femoral head, bone endothelial cells, bone microvascular endothelial cells, bone progenitor cells, angiogenesis, pathogenesis, treatment
INTRODUCTION
Glucocorticoids have been widely used in the treatment of rheumatic diseases, autoimmune diseases and allergic diseases (Yao et al., 2020). However, long-term or extensive GCs use may lead to steroid-induced osteonecrosis of the femoral head (SONFH). SONFH is a disabling orthopedic disease, which is characterized by the progressive deterioration of the hip joint in individuals aged 20–50 years old (Kong et al., 2020; Yu et al., 2020). Although many pathophysiological mechanisms for SONFH have been proposed, such as impaired microcirculation, imbalance between osteogenic and adipogenic differentiation, fat embolism, coagulation disorder and intramedullary pressure change, significant gaps remain in the understanding of the pathogenesis of SONFH (Li et al., 2005; Murata et al., 2007; Yeh et al., 2008; Yue et al., 2021). Among several existing mechanisms for SONFH, the vascular hypothesis seems to be the most convincing and influential (Kerachian et al., 2006).
As long ago as 1935, Phemister raised that vascular impairment led to thrombosis and embolism contributing to the progression of avascular necrosis of the femoral head (ANFH) (Phemister, 1935). It was not until Hirano et al. that direct histological evidence, severe luminal stenosis of the draining vein in the early stages of ANFH, was observed (Hirano et al., 1997). In another study, Starklint et al. have found a wide obstruction of vessels in the late stages of ANFH and the venous outflow is further damaged by thrombus and perivenous concentric fibrosis, which immensely reduces the lumen of veins (Starklint et al., 1995). In addition, osteocytes cannot survive more than 100 mm from blood vessels, so it is widely believed that vascular development always precedes osteogenesis (Yu et al., 2009). However, with the deepening understanding of bone formation and repair, “angiogenic-osteogenic coupling” concept has been established (Riddle et al., 2009). SONFH is a type of ANFH. As a result, blood vessels play a key role in the pathogenesis and repair of SONFH. Currently, vascular hypothesis assumes that GCs could reduce the number of blood vessels, decrease the regional blood flow of femoral head and lead to SONFH (Kerachian et al., 2006; Kerachian et al., 2009a).
Bone endothelial cells mainly refer to bone microvascular endothelial cells (BMECs) and endothelial progenitor cells (EPCs) that can differentiate into BMECs. BMECs line the sinusoids and inner layer of blood vessels, which play a crucial role in vascular homeostasis and angiogenesis (Kusumbe et al., 2014). It is reported that femoral head microcirculation disorder secondary to BMECs dysfunction is of great significance in the occurrence and progression of SONFH (Nishimura et al., 1997; Kerachian et al., 2009b). Similarly, as the precursor cells of BMECs, EPCs are involved in maintaining the physiological structure and function of vascular endothelium (Yao et al., 2020). Several studies have shown that the number and function of circulating EPCs in patients with SONFH are impaired (Feng et al., 2010; Chen et al., 2013; Ding P. et al., 2019). Given to the importance of vascular hypothesis in SONFH, researches about the effects of BMECs and EPCs on the blood supply of femoral head are helpful to further understand the pathogenesis of SONFH.
Moreover, drug treatment (e.g., anticoagulants, fibrinolysis-enhancing drugs, blood vessel dilatators and lipid-reducing drugs) combined with hip-preserving surgery (e.g., core decompression, bone transplantation and osteotomy) can be applied to treat early ONFH (Zhao et al., 2020). However, these treatments are less effective, as more than 80% of patients with ONFH eventually require total hip arthroplasty (THA) (Johnson et al., 2014). Although THA significantly improves the living quality of patients, it cannot be considered as the best therapy for ONFH because of dislocation, periprosthetic fracture, infection and prosthesis loosening after THA, especially in relatively young patients (Xu et al., 2021). Therapeutic strategies designed according to the pathophysiological role of BMECs and EPCs in SONFH pathogenesis may be effective.
In this review, we summarize the novel roles of bone endothelial cells in the pathogenesis and treatment of SONFH. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunctions of bone endothelial cells are considered to be the pathogenesis of SONFH. Targeting to repair the amount and function of bone endothelial cells or co-transplantation of bone endothelial cells and bone marrow mesenchymal stem cells (BMSCs) may be effective therapeutic approaches with great application potential. Furthermore, it is promising to point out the direction of future studies on the pathogenesis and treatment of SONFH.
BONE MICROVASCULAR ENDOTHELIAL CELLS
As previously mentioned, BMECs line the interior surface of bone microvessels and sinuses, maintaining local blood supply in femoral head. Besides, the reduction of blood flow in femoral head plays a vital role in the pathogenesis of ANFH (Kerachian et al., 2006). Therefore, BMECs damage may be the critical factor to promote the progression of SONFH.
Recent studies have demonstrated the existence of two types of BMECs: type H and type L endothelial cells (Kusumbe et al., 2014). Type H BMECs are mainly located in metaphysis and highly express CD31 and endomucin (EMCN), while type L BMECs are mainly located in the diaphysis and lowly express CD31 and EMCN (Zhang J. et al., 2020). Runx2+ osteoprogenitors and collagen type 1α+ osteoblasts are abundant around the type H BMECs in the metaphysis and endosteum, suggesting type H BMECs could promote bone repair and regeneration (Kusumbe et al., 2014). However, there is almost no osteoprogenitor surrounding type L BMECs (Kusumbe et al., 2014; Xu et al., 2018). At present, there are few studies on the role of type H BMECs in the pathogenesis of SONFH. Some studies have even shown contradictory results, which may be attributed to the differences in preclinical animal models (Zhou et al., 2017; Lane et al., 2018; Peng et al., 2020). And whether targeting type H BMECs can reverse the pathological processes of SONFH remains unclear. Hence this review mainly focuses on recent research progresses of BMECs in SONFH.
Animal Experiments of Bone Microvascular Endothelial Cells
Patients with SONFH have common pathological features of allergic vasculitis prior to hormone administration (Saito et al., 1992). Lipopolysaccharide (LPS) stimulates the immune system and induces the pathological changes of the blood system. Therefore, the combination of LPS and methylprednisolone (MPS) to induce SONFH in Sprague-Dawley (SD) rats is consistent with human clinical pathological features (Saito et al., 1992). At the same time, femoral tissues of SD rats are collected for pathological examination to determine whether SONFH models are successfully established (Drescher et al., 2011). And the BMECs used in vitro were isolated from the femoral head of SONFH rat models. Animal experiments including in vivo and in vitro SONFH models were established using the above methods.
So far, mechanisms regarding how the glucocorticoid takes effect on BMECs in animal experiments mainly focused on MicroRNAs (miRNAs). miRNAs are a group of small 18–25-nt-long non-coding RNAs (Krol et al., 2010). They are involved in plenty of physiological and pathological processes by modulating the transcription or post-transcriptional translation to silence the expression of their target genes (Ambros, 2004; Lan et al., 2015). Four miRNAs differentially expressed in BMECs of SONFH rats were identified by real-time quantitative polymerase chain reaction (qPCR) and gene microarray, including two up-regulated (miR-335, miR-132-3p) and two down-regulated (miR-466b-2-3p, let-7c-1-3p) (Yue et al., 2018). Moreover, Yue et al. reported that miR-335 could down-regulate the expression of endothelial nitric oxide synthase (eNOS), superoxide dismutase 2 (SOD2) and Ras p21 protein activator 1 (RASA1) (Yue et al., 2018). eNOS is a specific protease in BMECs, which has a variety of physiological effects, such as vasodilation, anti-platelet aggregation, and promoting functional repair of impaired BMECs (Yue et al., 2018). SOD is an antioxidant enzyme that catalyzes the reactive oxygen species (ROS) into hydrogen peroxide and oxygen molecules to inhibit senescence and apoptosis (Nguyen et al., 2020). RASA1 is a modulator of Ras GDP and GTP and plays an important role in several physiological processes such as angiogenesis, cell proliferation and apoptosis (Zhang Y. et al., 2020). In addition, Lei et al. observed that miR-132-3p expression was significantly up-regulated after femoral artery occlusion, and the hind limb perfusion recovery after ischemia was slower in knockout mice compared with wild-type mice (Lei et al., 2015; Yue et al., 2018). Therefore, miR-335 and miR-132-3p may be involved in regulating the functional repair of impaired BMECs and angiogenesis in SONFH. However, the effects of rno-let-7c-1-3p and rno-miR-466b2-3p on proliferation and apoptosis of BMECs have not been reported (Yue et al., 2018). In the meantime, no studies have evaluated the role of glucocorticoid receptor (GR) on BMECs in the pathogenesis of SONFH. Whereas, a recent study investigated GR on mouse endothelial cells, identifying the pivotal role of Wnt signaling pathway in suppressing vascular inflammation via GR (Zhou et al., 2020). This result may guide the further research of signaling pathways mediated by GR on BMECs, which function as key factors in SONFH pathogenesis.
As a flavonoid extracted from Epimedii Herba, Icariin (ICA) has been widely used to promote bone healing, improve osteoporosis and SONFH in China, Japan and Korea (Brandi and Collin-Osdoby, 2006; Zhang et al., 2007; Zhu et al., 2012; Sun et al., 2015). Yue et al. (2021) observed that though still higher than the control group, the expression of miR-335 was markedly decreased after ICA treatment in vivo. What’s more, they also found ICA had a modulatory effect on 101 unconventionally expressed target genes of miR-335 (Yue et al., 2021). As a result, down-regulating the expression of miR-335 may be the mechanism of ICA to prevent and therapy SONFH. In addition, Wen et al. (2008a) observed the increased ratio of empty lacunae, the sparse capillary network, and the partially blocked blood vessels in necrotic femoral head tissue from SONFH rabbits. However, ICA treatment can significantly decrease the rate of empty lacunae and relatively up-regulate the expression of angiogenic biomarker CD31 in vivo (Yu et al., 2019). And the tube formation and osteogenesis-related cytokines expression of BMECs can be stimulated by ICA in vitro (Yu et al., 2019). These results both in vitro and in vivo suggest that ICA may be a potential drug in the treatment of SONFH. However, rat models are far too different from human beings to infer similar therapeutic roles in humans.
Human Experiments of Bone Microvascular Endothelial Cells
There are two ways to establish the BMECs model with SONFH used in human experiments (Lu et al., 2020; Yu et al., 2020). One is to isolate BMECs from patients with SONFH and indications for THA, the other is to extract BMECs from patients with femoral neck fractures who have undergone THA. Yu et al. (2020) demonstrated that BMECs from SONFH patients had down-regulated angiogenic abilities. Endothelial function has been reported to decline with an increasing age in healthy individuals (Yavuz et al., 2008). However, dysfunction of BMECs was observed even when the mean age of the control group was significantly older than that of the SONFH group (Yu et al., 2020). This fully confirms that GCs can promote the progression of the dysfunction of BMECs from SONFH patients. However, the research results might not be replicated in the local microenvironment of the femoral head in the presence of SONFH because the study was conducted in vitro (Yu et al., 2020).
Similarly, Yu et al. (2019) also reported that hydrocortisone significantly inhibited the expression of angiogenic cytokines and the activation of Akt in BMECs, which decreased the migration and tube formation activities of BMECs. Angiogenic cytokines including vascular endothelial growth factor (VEGF), CD31, von Willebrand factor (vWF) and platelet-derived growth factor-B (PDGF-B) are promotors or markers of angiogenesis mainly expressed in BMECs (Yang et al., 2003; Muraoka et al., 2005; Uras et al., 2012; Mittermayr et al., 2016). It has been reported that the activation of survival signal PI3K/Akt pathway is related to angiogenesis (Lee et al., 2014). Since blood supply is critical to the maintenance of femoral head structure and function, dysfunction of BMECs and inhibited angiogenesis are potential mechanisms for SONFH (Kerachian et al., 2006).
Besides, some studies have found that GCs-induced apoptosis of BMECs can activate thrombosis and decrease angiogenesis, secondary by infarction and ischemia (Vogt and Schmid-Schönbein, 2001; Kerachian et al., 2006). B cell lymphoma-2 (Bcl-2), as an oncoprotein, has a significant effect on inhibiting apoptosis, while Bcl-2 associated X (Bax) has an obvious effect on promoting apoptosis (Nomura et al., 1999; Delbridge et al., 2016). Therefore, it’s the balance between Bcl-2 and Bax that determines apoptosis. Furthermore, caspase-3 is a key factor in the activation of apoptosis (Porter and Jänicke, 1999). Yu et al. found the expression of Bcl-2 was significantly down-regulated, while the expression of Bax and cleaved caspase-3 were increased in BMECs with SONFH (Yu et al., 2019; Yu et al., 2020). These results demonstrate that the apoptosis of BMECs functions a lot in the progression of SONFH.
In addition to impaired angiogenesis and increased apoptosis of BMECs, Li et al. (2004) reported that the hypercoagulability and hypofibrinolysis state induced by dysfunction of BMECs may be the pathological mechanism of SONFH as well. eNOS and endothelin 1 (ET-1) are two vasoactive factors with opposite functions secreted by BMECs, whose balance plays an important role in regulating vasomotor (Lu et al., 2020). ET-1 is the strongest vasoconstrictor until now and acts by binding to receptors on BMECs and vascular smooth muscle cells, while eNOS is a vasodilator and anticoagulation that acts by inhibiting the secretion and function of ET-1, platelet aggregation and intercellular adhesion (Houde et al., 2016; Hong et al., 2019). Angiotensin II (Ang II) binds to receptors on BMECs to inhibit eNOS expression and damage BMECs (Shatanawi et al., 2015). Prostaglandin I2 (PGI2) is secreted by BMECs and significantly expands blood vessels and suppresses platelet aggregation by activating prostacyclin receptors (IP receptors) in BMECs and platelets (Shatanawi et al., 2015). Prostaglandin E (PGE) is capable of expanding blood vessels, protecting BMECs and increasing the expression of eNOS (Fang et al., 2010). Plasminogen activator inhibitor-1 (PAI-1) is the inhibitor of tissue plasminogen activator (t-PA) primarily produced by BMECs, the increased expression of which can promote intravascular thrombosis (Ghosh and Vaughan, 2012). Intercellular adhesion molecule 1 (ICAM-1), an important adhesion molecule, mediates adhesion between leukocytes, inflammatory cells and BMECs (Bui et al., 2020). Lu et al. found that the expressions of ET-1 receptor, Ang II receptor and ICAM-1 were dramatically increased and the expressions of eNOS, PGI2 synthase, PGE synthase, PGE receptor and VEGF were dramatically decreased after 24-h GCs treatment (Lu et al., 2020). However, the expression of ET-1 was dramatically down-regulated, suggesting that the effect of GCs on BMECs is complex and needs further investigations. In other words, vasoconstriction and thrombosis were promoted after GCs-induced BMECs damage.
Yu et al. (2019) reported that ICA could promote angiogenesis by up-regulating the expression of CD31, vWF, PDGF-B in BMECs and activating Akt and reduce the apoptosis of BMECs by up-regulating Bax and down-regulating the expression of Bcl-2. Circular RNAs (circRNAs), serve as endogenous RNAs competing for miRNA binding sites, are regarded as new modulators of diseases (Wu et al., 2019). Mao et al. (2021) reported that CircCDR1as, functioning as a sponge for miR-135b/factor inhibiting hypoxia inducible factor 1 (FIH-1), reduced the expression of hypoxia inducible factor-1α (HIF-1α) and VEGF, and thereby inhibited the angiogenesis of BMECs. Research results above suggest that the administration of ICA or targeting to inhibit CircCDR1 as may be effective therapeutic strategies for SONFH. However, the therapeutic approaches are still in the pre-clinical stage and lack the support of clinical trials. In addition, there is a short of therapeutic strategies targeting thrombosis caused by BMECs damage. Therefore, further investigations are needed in the future in regard to the thrombosis of SONFH.
ENDOTHELIAL PROGENITOR CELLS
EPCs are considered to be critical participants in endogenous vascular repair and regeneration by differentiating into mature endothelial cells (Kim et al., 2010; Balistreri et al., 2015). EPCs are primarily derived from bone marrow (Asahara et al., 2011). In addition, a small amount of EPCs are also found in umbilical cord blood, circulating blood and arterial walls (Doyle and Caplice, 2005; Wu et al., 2005; Finney et al., 2006; Pacilli and Pasquinelli, 2009). According to the difference in culture time, EPCs can be divided into two subgroups: early EPCs (eEPCs) and late EPCs (lEPCs) (Patel et al., 2016). In terms of maturation time, eEPCs appeared 4–7 days after culture, while lEPCs appeared 14–21 days after culture (Yang et al., 2018). eEPCs are characterized by several surface markers of progenitor cells, including CD14, CD31, CD34, CD45, CD133 and vWF (Recchioni et al., 2016). eEPCs have a weak proliferation capacity, but can secrete a variety of cytokines, such as VEGF, hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and interleukin-8 (IL-8) (Rehman et al., 2003). However, lEPCs express endothelial markers such as KDR, VE-cadherin and CD146 with a strong capacity of proliferation and differentiation (Hirschi et al., 2008; Madonna and De Caterina, 2015). In fact, the antigen expression profile on the surface of EPCs remains controversial (Werner and Nickenig, 2006; Chen et al., 2013). When different combinations of surface antigens are selected, there may be some differences in experimental results (Ding P. et al., 2019).
EPCs have the potential to differentiate into any kinds of capillary endothelial cells, including BMECs (Peters, 2018). In addition, EPCs can be isolated noninvasively from the donors’ own peripheral blood and umbilical cord blood, as well as from human induced pluripotent stem cells (hiPSCs) to avoid immunogenicity problems (Boyer et al., 2000; Ingram et al., 2004; Mead et al., 2008). EPCs-differentiated endothelial in vitro and in vivo have similar permeability to vessel-derived endothelial, and are superior to vessel-derived endothelial in vascular network formation (Peters, 2018). Therefore, EPCs transplantation to promote angiogenesis at the lesion region has great prospects. One of the most important pathogenesis of SONFH is the suppression of angiogenesis caused by dysfunction of BMECs, so most of the previous studies on SONFH focused on the changes of BMECs. However, recent studies have found that EPCs are more involved in vascular repair and regeneration than BMECs, which makes EPCs the focus of interest in the pathogenesis and treatment of SONFH (Ding S. et al., 2019).
Animal Experiments of Endothelial Progenitor Cells
Animal models for EPCs-related experiments were established by rats or rabbits treated with LPS and MPS/dexamethasone (Dex). Reduced blood flow and impaired blood supply to the femoral head caused by SONFH can lead to increased lactic acid levels resulting in an acidic local microenvironment (Song et al., 2010). Ovarian cancer G-protein-coupled Receptor 1 (OGR1) is a key receptor involved in sensing proton. Ding S. et al. (2019) found that OGR1 inhibited the proliferation, migration and angiogenesis of EPCs induced by acidic environment in SONFH. It means OGR1 may be a new breakthrough in treating SONFH. Moreover, it is well-known that stromal cell-derived factor-1α (SDF-1α), the product of CXCL12, promotes angiogenesis through the CXCL12/CXCR4 or CXCL12/CXCR7 signaling pathway (Dimova et al., 2019; Zhang et al., 2019). Kong et al. (2020) demonstrated that transplantation of miR-137-3p-silenced BMSCs can promote angiogenesis by up-regulating CXCL12/SDF-1α to mobilize EPCs into circulation. However, whether CXCL12/CXCR4 or CXCL12/CXCR7 signaling pathways is involved in the mobilization of EPCs remains unknown.
In addition to the impaired angiogenesis caused by the damage of EPCs, the apoptosis of EPCs is also one of the possible pathogenesises of SONFH. Liao et al. (2017) reported that suppressed mammalian target of rapamycin (mTOR) signal induced by the activations of glucocorticoid receptors down-regulates the HIF pathway and induces EPCs apoptosis, which may be the pathophysiological mechanism of SONFH. Meanwhile, there may be certain therapeutic potential in enhancing mTOR signal. Autophagy is a complex process in which cells adapt to degrade and recycle intracellular components under stress conditions, thus promoting cell survival (Hamacher-Brady et al., 2006; Eisenberg-Lerner et al., 2009). It was observed that autophagy increased in EPCs treated with Dex, but this change gradually attenuated with the prolongation of Dex treatment (Liao et al., 2018). At the same time, prolonged Dex treatment reduced cell viability, indicating that autophagy is beneficial for EPCs to respond to Dex stimulation and avoid damage (Liao et al., 2018). Liao et al. also reported that pravastatin activated AMP-activated protein kinase (AMPK) mediated by liver kinase B1 (LKB1), thereby inhibiting the mTOR signaling pathway, recovering autophagy of EPCs and protecting them from Dex-induced apoptosis (Liao et al., 2018). The above studies on mTOR signaling pathway have produced opposite conclusions, so the mechanism of mTOR signaling pathway in apoptosis of EPCs remains to be explored.
The extrinsic death receptor pathway and the intrinsic mitochondrial pathway are two main systems that initiate apoptosis (Thorburn, 2004). Phosphatase and tensin homolog (PTEN), a tumor-suppressor gene that enhances apoptosis, has recently been observed to be significantly elevated in the serum of patients with SONFH (Kotelevets et al., 2018; Li et al., 2018; Li et al., 2019). Moreover, Yao et al. (2020) found that GCs can induce EPCs apoptosis by activating mitochondrial pathway. VO-OHpic, a potent inhibitor of PTEN, could protect EPCs from apoptosis through inhibiting mitochondrial pathway (Yao et al., 2020). They also observed that GCs exposure resulted in mitochondrial fission and conspicuous abnormalities of ROS production and mitochondrial membrane potential (MMP), which promote the apoptosis of EPCs (Yao et al., 2020). Similarly, VO-OHpic could reverse these changes and protect EPCs. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the production of several antioxidant enzymes (Tavakkoli et al., 2019). VO-OHpic promotes angiogenesis and suppresses apoptosis of EPCs by activating Nrf2 (Yao et al., 2020). Therefore, VO-OHpic may be an effective strategy for the prevention and therapy of SONFH.
Bone tissue engineering is getting increasingly attractive to researchers because of the enormous potential for osteogenesis and angiogenesis. To enhance bone regeneration and angiogenesis at SONFH lesions, transplantation of BMSCs, EPCs and co-transplantation of both have been reported so far. BMSCs are considered to be ideal seed cells for SONFH treatment due to the enormous potential for self-renewal and multilineage differentiation, including osteogenesis and angiogenesis (Chen et al., 2019). However, several studies have reported that BMSCs isolated from proximal femur and iliac crest in SONFH patients have decreased osteogenic differentiation ability, limiting the application of BMSCs transplantation in SONFH treatment (Hernigou et al., 1999; Houdek et al., 2016). Although researchers have used gene transfection and established sustainable-release growth factor biomaterials to enhance BMSCs’ osteogenic and angiogenic abilities, the harm of gene transfection to human body and the construction of suitable biomaterials remain incomplete problems (Wen et al., 2008b; Wen et al., 2012; Amsden, 2015; Shapiro et al., 2018; Kong et al., 2019). For EPCs, they are not directly involved in osteogenesis because they cannot differentiate into osteoblasts (Xu et al., 2021). Both carboxymethyl chitosan (CMC) and alginate (ALG) possess outstanding biocompatibility in enhancing osteogenesis (Upadhyaya et al., 2013; Jain and Bar-Shalom, 2014). The composite scaffold can not only transport stem cells, but also provide a beneficial microenvironment for cell proliferation and intercellular communications (Xu et al., 2021). Therefore, CMC/ALG/BMSC/EPC composite scaffold have been developed for SONFH treatment and prevention.
Co-cultured BMECs and EPCs interact with each other through paracrine and direct intercellular contact to promote osteogenesis and angiogenesis has been verified as the main mechanism. Xu et al. demonstrated that BMSCs and EPCs mutually promote osteogenesis and angiogenesis through the secretion of various growth factors, such as VEGF and PDGF (Xu et al., 2021). Moreover, direct contact between EPCs and BMSCs can lead to endothelial-like phenotypic differentiation of BMSCs (Joddar et al., 2018). Implanted cells can promote tissue regeneration through proliferation, differentiation and paracrine (García-Sánchez et al., 2019). In addition to impaired osteogenesis and angiogenesis, lipid metabolism disturbance is another key promotor contributing to SONFH (Zhang et al., 2018). The imbalance between osteogenic and adipogenic differentiation of BMSCs may lead to adipocyte hypertrophy and fat embolism, reducing blood supply to the femoral head (Fukui et al., 2006). Transcription factors play a critical role in determining the fate of BMSCs. For instance, Runx2 and BMP-2 are crucial transcription factors that promote osteogenic differentiation of BMSCs, while PPARγ and C/EBPα are pivotal transcription factors that enhance adipogenic differentiation of BMSCs (Xu et al., 2021). The expression of Runx2 and BMP-2 was up-regulated in the co-cultured cells, while the expression of PPARγ and C/EBPα was down-regulated, resulting in BMSCs tending to differentiate into osteoblasts (Xu et al., 2021). However, the optimal ratio between BMSCs and EPCs in a co-transplantation system has yet to be determined. The SONFH lesion is in a state of hypoxia due to blood supply disorder, and the ability of proliferation, differentiation and cytokine secretion of co-cultured cells under hypoxia circumstances remains to be studied. In conclusion, BMSCs and EPCs co-transplantation is a promising therapeutic approach for SONFH.
Human Experiments of Endothelial Progenitor Cells
Endothelial Progenitor Cells used in human experiments were isolated and extracted from patients with SONFH. Feng et al. observed a decrease in the number and function of circulating EPCs in patients with SONFH, such as suppressed migration, impaired angiogenesis, and increased senescence (Feng et al., 2010). Similarly, Ding P. et al. (2019) reported that low doses of GCs significantly inhibited angiogenesis of EPCs, while only large doses of GCs could significantly inhibited cell proliferation. Clinical routine doses of GCs may never reach the threshold of serum concentration that inhibit EPCs proliferation (Rouster-Stevens et al., 2008). And the decreased number of EPCs in patients with SONFH may as a result of the indirect effects of long-term exposure to GCs (Ding P. et al., 2019). In addition, GCs can down-regulate the expression of CXCR7 in EPCs and inhibit the downstream Akt and GSK-3β/Fyn signaling pathways of SDF-1/CXCR7 (Ding P. et al., 2019). Akt and GSK-3β/Fyn are involved in the angiogenesis of EPCs, and the up-regulation of Fyn caused by the decreased phosphorylation of GSK-3β can promote the degradation of Nrf2 (Torossian et al., 2014; Chen et al., 2015; Dai et al., 2017).
In addition, Chen et al. (2013) found that the migration and secretion of eEPCs were inhibited, while the proliferation and angiogenesis of lEPCs were significantly suppressed, which was appropriate for their different physiological functions. At the same time, the number of eEPCs and lEPCs were lower than that of the control group with similar conditions. Therefore, lEPCs may be a superior graft for SONFH compared to EPCs. Recent studies have reported successful enrichment and cultivation of lEPCs on a large scale, which greatly expanded the application prospect of lEPCs in bone tissue engineering (Reinisch et al., 2009; Kolbe et al., 2010).
In injured tissue, cells expressing CXCR4 are recruited through SDF-1 secreted by surrounding cells to promote healing of the injury (Ding and Tredget, 2015). Carolina et al. (2018) reported that GCs inhibited the migration and homing of umbilical cord blood (UCB) derived human EPCs to injury by down-regulating CXCR4 expression in both normoxic and hypoxic conditions. In normoxic conditions, GCs down-regulate CXCR4 expression in EPCs by damaging prostaglandin E2 (PGE2) synthases cyclooxygenase (COX2) and microsomal PGE2 synthase 1 (mPEGS1) and prostaglandin receptor EP4. While in hypoxic conditions, GCs down-regulate CXCR4 expression in EPCs through both PGE2 pathway and HIF2α pathway. However, whether GCs could influence the migration and homing ability of bone marrow derived EPCs in SONFH patients remains to be further investigated.
CONCLUSION
SONFH is a disabling joint disease without effective drug treatment so far. Severe advanced SONFH can only be treated with THA, which may be accompanied by a series of side effects, including dislocation, periprosthetic fracture, infection and prosthesis loosening especially for young, active population. Impaired blood vessels is a key factor in many of the proposed pathogenesis of SONFH. Bone endothelial cells, including BMECs and their precursors, EPCs, both play a critical role in maintaining the normal structure and function of blood vessels. Impaired angiogenesis, abnormal apoptosis, thrombosis and fat embolism caused by the dysfunction of bone endothelial cells are involved in the occurrence and progression of SONFH (Figure 1). Therefore, ICA, pravastatin, and VO-OHpic are candidate reagents for the prevention and treatment of SONFH by promoting angiogenesis and inhibiting apoptosis and vascular embolization (Table 1). However, these reagents are still in the preclinical stage and are not yet sufficient for widespread clinical use. In addition, bone tissue engineering such as bone endothelial cells and BMSCs co-transplantation is one of the most promising strategies for treating SONFH. The optimal ratio between cultured cells of co-grafts and scaffolds with excellent biocompatibility need further investigations.
[image: Figure 1]FIGURE 1 | Pathogenesis in SONFH related to bone endothelial cells. Blood vessels play a critical role in the occurrence and progression of SONFH. And bone endothelial cells are essential for maintaining vascular homeostasis and angiogenesis. Therefore, bone endothelial cells are key regulatory factors in the pathogenesis of SONFH. SONFH is affected by GCs regulating mobilization, angiogenesis, apoptosis and thrombosis of bone endothelial cells through several signaling pathways or cytokines such as PI3K/Akt, GSK-3β/Fyn, Bcl-2 and Bax.
TABLE 1 | Candidate reagents targeting bone endothelial cells to treat SONFH.
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When suffering from osteoarthritis (OA), articular cartilage homeostasis is out of balance and the living quality declines. The treatment of knee OA has always been an unsolved problem in the world. At present, symptomatic treatment is mainly adopted for OA. Drug therapy is mainly used to relieve pain symptoms, but often accompanied with adverse reactions; surgical treatment involves the problem of poor integration between the repaired or transplanted tissues and the natural cartilage, leading to the failure of repair. Biotherapy which aims to promote cartilage in situ regeneration and to restore endochondral homeostasis is expected to be an effective method for the prevention and treatment of OA. Disease-modifying osteoarthritis drugs (DMOADs) are intended for targeted treatment of OA. The DMOADs prevent excessive destruction of articular cartilage through anti-catabolism and stimulate tissue regeneration via excitoanabolic effects. Sprifermin (recombinant human FGF18, rhFGF18) is an effective DMOAD, which can not only promote the proliferation of articular chondrocyte and the synthesis of extracellular matrix, increase the thickness of cartilage in a dose-dependent manner, but also inhibit the activity of proteolytic enzymes and remarkedly slow down the degeneration of cartilage. This paper reviews the unique advantages of Sprifermin in repairing cartilage injury and improving cartilage homeostasis, aiming to provide an important strategy for the effective prevention and treatment of cartilage injury-related diseases.
Keywords: sprifermin, FGF18, cartilage homeostasis, disease modifying osteoarthritis drugs, osteoarthritis, cartilage-related diseases
INTRODUCTION
The pathogenesis of OA mostly involves the whole joint, mainly including cartilage, subchondral bone, joint capsule, synovial membrane and surrounding muscles, most manifested as cartilage injury, subchondral osteosclerosis and synovial inflammation (Karsdal et al., 2016; Mehana et al., 2019; Wu et al., 2020). Cartilage, a kind of connective tissue without nerves and blood vessels, exists in joint, intervertebral disc, ear, nose, etc., and plays an important role in the normal structural composition of human joint and movement (Krishnan and Grodzinsky, 2018; Vincent and Wann, 2019; Żylińska et al., 2021). Articular cartilage is mainly composed of chondrocytes and extracellular matrix (ECM), the ECM mainly contains water, type II collagen (COL2), proteoglycan and glycosaminoglycan (GAG) (Muller et al., 2020). Cartilage is extremely vulnerable to overloading, inflammation, trauma, etc., and articular cartilage damage is one of the major pathological changes of OA.
Articular cartilage has a poor ability to repair itself due to inadequate blood supply and low metabolism. The cartilage in femorotibial joint can relieve pressure and maintain frictionless movement of joint. If the injury of cartilage in OA is not repaired in time, it will further aggravate and involve the surrounding tissues (Martínez-Moreno et al., 2019; Zhao et al., 2019; Zhang S. et al., 2020). Results of microscopy studies showed that the cartilage structure is disorganized, the number of chondrocytes decreased, and the synthesis of COL2, proteoglycan and GAG is obviously reduced during the occurrence of OA, and eventually lead to cartilage tear. The ulcerated surface is easily formed following cartilage tear, which can be covered by connective tissue or fibrocartilage, accompanied by neovascularization, resulting in damage of articular cartilage with the loss of its full-thickness and damage to the biomechanics of articular cartilage (Brody, 2015; McCulloch et al., 2019; Chen et al., 2020). With the further progression of OA, more matrix degradation related enzymes, such as matrix metalloproteinase-13 (MMP-13) and metalloproteinase-5 (ADAMTS-5), inflammatory factors such as tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) are produced, eventually leading to deteriorative biochemical changes in articular cartilage (van den Berg, 2011; Malemud, 2019; Pu et al., 2021; Zhang et al., 2021). The above biomechanical and biochemical changes ignite each other, forming a “positive feedback” effect similar to a vicious cycle, synergistically disturbing cartilage homeostasis, aggravating the damage of cartilage and its surrounding tissues, eventually accelerating the development of OA (Kapoor et al., 2011; Varady and Grodzinsky, 2016).
Symptomatic treatment is mainly adopted for knee OA, but lacks effective targeted treatment options (Katz et al., 2021). The treatment plan mainly includes: 1. Drug intervention, such as oral acetaminophen, non-steroidal anti-inflammatory drugs, glucosamine, chondroitin sulfate and intraarticular injection of sodium hyaluronate (Alexander et al., 2020; Wolff et al., 2021). 2. Exercise, proper exercise helps strengthen muscle strength and improves joint function (Skou et al., 2018). 3. Weight management, encouraging overweight patients to lose weight, thereby reducing the pressure load and inflammation state in the joints (Springer et al., 2017; Harasymowicz et al., 2020; Oliveira et al., 2020). 4. Traditional Chinese medicine treatment, such as Chinese medicine ointment, massage, acupuncture and moxibustion, which are mainly used to improve blood circulation (Walsh et al., 2017; Zhang Z. et al., 2020; Park et al., 2021). 5. Surgical treatment, such as microfracture surgery, arthroscopic debridement, unicompartmental knee arthroplasty (UKA), total knee arthroplasty, etc. (Deng et al., 2021; Katz et al., 2021) (Table 1). Conservative treatment is mainly used to relieve pain symptoms, but cannot effectively prevent or reverse the progression of OA (Hochberg et al., 2012). There are also some shortcomings in surgical treatment, such as postoperative prosthesis infection, prosthesis loosening, and limited prosthesis life (not suitable for young patients) (Quinn et al., 2018; Xu et al., 2019). Relevant techniques for promoting cartilage repair through cell or cartilage transplantation have once attracted the attention of many scholars (Lv et al., 2020). However, most of these technologies have the problem of poor integration between the repaired or transplanted tissue and the natural cartilage, which changes the stress distribution during the joint load and causes the repaired or transplanted tissues to degrade, ultimately leading to failure of transplantation repair (Li Z. et al., 2016; Ernstbrunner et al., 2018). If biological therapy can effectively promote cartilage repair in situ and restore cartilage homeostasis, it will provide a powerful means for the effective prevention and treatment of OA. Disease-modifying osteoarthritis drugs (DMOADs) are a class of drugs that can be used to treat OA. DMOADs mainly include fibroblast growth factor 18 (FGF18), bone morphogenetic protein-7 (BMP-7), C-type natriuretic peptide (CNP), insulin like growth factor-1 (IGF-1) etc. (Davies et al., 2008; Hunter et al., 2010; Bükülmez et al., 2014; Zhang et al., 2017; Muller et al., 2020; Shah and Mithoefer, 2020b). (Table2). Sprifermin (recombinant human FGF18, rhFGF18) is an effective DMOAD. In the literature Sprifermin is the only DMOAD which can strongly and effectively maintain the chondrocyte phenotype in cell culture models (Gigout et al., 2017; Antunes et al., 2020; Muller et al., 2020). Sprifermin markedly promotes the proliferation of articular chondrocytes and the synthesis of ECM, and thus increases cartilage thickness in a dose-dependent manner (Hochberg et al., 2019). Also, it can efficiently inhibit proteolytic enzyme activity (such as MMP-13 and ADAMTS-5) and significantly reduce articular cartilage degeneration (Hochberg et al., 2018; Hochberg et al., 2019; Muller et al., 2020). Sprifermin is currently in phase III clinical trial, and no local or systemic safety concerns have been reported (Mori et al., 2014; Li et al., 2021; Zeng et al., 2021). In view of this, we reviewed the unique advantages of Sprifermin in promoting chondrocyte proliferation and ECM synthesis, repairing articular cartilage injury and improving cartilage homeostasis, as well as analyzed its possible molecular mechanisms, aiming to provide an important guidance for the effective prevention and treatment of articular cartilage injury related diseases with OA as a typical example.
TABLE 1 | Treatment options for OA.
[image: Table 1]TABLE 2 | Comparison of various DMOADs.
[image: Table 2]BASIC STRUCTURE AND FUNCTION OF SPRIFERMIN
The fibroblast growth factor (FGF) family is a group of proteins with homology in nuclear acid sequences, which plays an important role in many pathophysiological processes such as embryo development, cell growth, tissue repair, tumor growth and invasion etc. (Hung et al., 2016; Khosravi et al., 2021; Liu et al., 2021). There are currently 19 members in the FGF family. In the late 1990s, FGF18 was identified as a new member of the FGF family (Hu et al., 1998). FGF18 was firstly isolated from mouse embryos by Maruoka et al. (Hu et al., 1998; Maruoka et al., 1998). Structurally, it is similar to FGF8 and FGF17 and is a member of the same subfamily, with 70–80% amino acid homology sequence. FGF18 is a highly conserved protein composed of 207 amino acids, and the gene encoding this protein is located on chromosome 5q34 (Whitmore et al., 2000). Yang et al. confirmed that FGF18 overexpression effectively inhibits the epithelial-mesenchymal transformation of renal clear cell carcinoma through PI3K/Akt signaling pathway (Yang et al., 2020). Boylan et al. documented that FGF8, FGF17 and FGF18 are crucial for the formation of the fetal abdominal wall (Boylan et al., 2020). Current studies in the field of OA have reported that FGF18 remarkedly stimulates the proliferation of chondrocytes and synthesis of ECM (Muller et al., 2020). Intraarticular injection of FGF18 attenuates the degradation of GAG, proteoglycan and COL2, inhibits the expression of MMP-13, reduces cartilage degeneration, down-regulates OARSI score, and ultimately promotes the regeneration and repairs of degenerated cartilage (Yao et al., 2019; Muller et al., 2020).
Sprifermin is a new truncated rhFGF18 which acts through the fibroblast growth factor receptor 3 (FGFR3). Sprifermin is roughly five times more potent in binding to this receptor compared to the natural FGF18 (Reker et al., 2020). Sprifermin exhibits strong capability in stimulating chondrocyte proliferation, stabilizing anabolic chondrocyte phenotype, promoting ECM synthesis, inhibiting proteolytic enzyme activity, increasing cartilage thickness, etc. (Hochberg et al., 2019; Muller et al., 2020; Reker et al., 2020). Sprifermin displays great potential in the treatment of OA and is expected to be marketed soon.
Sprifermin not only stimulates chondrocyte proliferation and chondrogenesis in vitro, but also effectively promotes cartilage repair in vivo (Ellsworth et al., 2002; Moore et al., 2005). Intraarticular administration of Sprifermin boosts chondrocyte proliferation, promotes cartilage anabolism, and improves cartilage biomechanical and histological properties in OA patients who are scheduled to undergo knee arthroplasty (Dahlberg et al., 2016). Through MRI observation, Roemer et al. confirmed that Sprifermin not only promotes chondrocyte proliferation in OA patients, but also plays an effective therapeutic role on bone marrow injury (Roemer et al., 2016). Animal experimental model has demonstrated that intraarticular injection of Sprifermin markedly prevents cartilage degradation and promotes the repair of damaged cartilage in traumatic OA model (Moore et al., 2005). In summary, clinical trials, in vitro experiments and animal experiments all indicate that Sprifermin possesses powerful performance in boosting chondrocyte proliferation and cartilage repair.
Sprifermin has exhibited outstanding prospects in promoting cartilage repair, and intraarticular application of Sprifermin is safe and reliable (Zeng et al., 2021). A comprehensive assessment of the specific role of Sprifermin in promoting cartilage repair and the evaluation of its potential molecular mechanisms are conducive to further improvement of Sprifermin.
MECHANISM OF ACTION OF SPRIFERMIN
Sprifermin can activate FGFR3 on the surface of chondrocytes and drive chondrocyte proliferation and ECM synthesis (Davidson et al., 2005). In both monolayer and three-dimensional culture models of porcine chondrocytes, it was observed that Sprifermin not only increased the expression of chondrocyte markers, but also decreased COL1 expression level, increased the proportion of COL2:COL1, and maintained the chondrocyte phenotype (Gigout et al., 2017). In addition, Sprifermin does not increase the activity of proteolytic enzymes and expression of hypertrophy markers in three-dimensional culture, indicating that Sprifermin does not exacerbate catabolism and chondrocyte hypertrophy, and is able to safely and effectively maintain endochondral homeostasis (Kapoor et al., 2011; Reker et al., 2017).
The effect of Sprifermin on cartilage repair may be closely related to its ability to promote biphasic ECM remodeling process. Initially, Reker et al. reported that there may be a biphasic ECM remodeling process when Sprifermin acts on bovine articular cartilage explant, which is specifically manifested as the production of proteoglycan degradation enzyme is earlier than that of COL2 synthesis enzyme (Reker et al., 2017). In addition, chondrocytes monolayer and three-dimensional culture both displayed an inverse linear relationship between early chondrocyte proliferation and ECM synthesis, which further corroborated the above point of view (Gigout et al., 2017). In 2020, Reker and colleagues further elaborated the details of Sprifermin-induced biphasic process of ECM remodeling in human knee OA articular cartilage ex vivo (Reker et al., 2020). When Sprifermin promotes chondrogenesis, chondrocyte proliferation occurs in the early-phase and ECM synthesis occurs in the late-phase. The biphasic ECM remodeling process is firstly characterized by increased aggrecanase activity, leading to degradation of proteoglycan and COL2, followed by enlarged compartment and chondrocyte proliferation space, and thus synthesis of a growing amount of proteoglycan and COL2, while the metabolic activity is maintained. Perhaps the biphasic ECM remodeling is because of the expansion of chondrocyte population is limited by the surrounding ECM. When Sprifermin stimulates the resting chondrocytes in the ECM, the chondrocytes will induce ECM degradation to enlarge the compartment and allow chondrocytes to proliferate, which in turn produces more ECM and ultimately promotes chondrogenesis. Reker and colleagues speculated that matrix degradation is a prerequisite for the initiation of chondrocyte proliferation during ECM remodeling, the maintenance of the delicate balance between chondrocyte proliferation and ECM synthesis synergistically promotes cartilage regeneration (Reker et al., 2017; Reker et al., 2020) (Figure 1).
[image: Figure 1]FIGURE 1 | When Sprifermin acts on chondrocytes, there is a biphasic ECM remodeling process. The chondrocyte proliferation and ECM degradation occurs in the early-phase and ECM synthesis occurs in the late-phase. The biphasic ECM remodeling ensures that Sprifermin efficiently boosts chondrocyte proliferation, ECM synthesis, and ultimately promotes cartilage regeneration (The figure is made by adobe illustrator 2021).
The retention time of Sprifermin in joint capsule is limited, and the therapeutic effect can be maximized by injection at reasonable time intervals. Studies have demonstrated that the application of Sprifermin for three consecutive weeks with repetition every 6 months exerts the best therapeutic effect on promoting cartilage proliferation (Hochberg et al., 2019; Sieber and Gigout, 2020). As for the long-term continuous medication of Sprifermin, although it promotes the chondrocytes proliferation to a certain extent, the acceleration of chondrogenic anabolism is not as good as intermittent repeated exposure. Similarly, it was reported that different exposure times of Sprifermin can lead to completely different or even opposite effect (Gigout et al., 2017). Long-term exposure to Sprifermin has a weaker down-regulation effect on COL1 than once a week exposure mode, discontinuation after initial exposure is necessary for maximizing Sprifermin’s anabolic potential (Gigout et al., 2017). For example, in the three-dimensional culture of porcine chondrocytes, after exposure to Sprifermin once a week for 4 weeks, the chondrocytes in the culture evidently increased and more GAG and hydroxyproline were synthesized (Sieber and Gigout, 2020); however, when the culture was continuously exposed to Sprifermin, the ECM synthesis was notably reduced (Rozenblatt-Rosen et al., 2002; Gigout et al., 2017). In conclusion, the intermittent exposure of Sprifermin activates the anabolic response instantly, which is beneficial to cartilage repair. However, permanent exposure might act on other signaling pathways and eventually exert a weaker role in promoting cartilage repair. This phenomenon may be attributed to desensitization (or negative feedback loop) of Sprifermin during long term exposure.
FGF18 acts via the FGFR in the cell membrane and regulates the runt-related transcription factor 2 (Runx2) via signaling molecules such as mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K), thereby regulating cartilage formation at the molecular level (Ellsworth et al., 2002; Jeon et al., 2012; Catheline et al., 2019). Gigout et al. confirmed that extracellular signal-regulated kinases 1 (ERK1) and ERK2 play an important role in Sprifermin signaling, such as promoting the formation of chondrocyte morphology and reducing the expression of COL1 (Gigout et al., 2017). FGF18 plays a crucial role in the development of bone and cartilage, as well as the dynamic balance of bone mineralization. Ohbayashi et al. documented that FGF18 has the highest affinity to FGFR3 and moderate affinity to FGFR2 (Ohbayashi et al., 2002). FGF18 directly regulates cartilage formation by acting on FGFR3. Besides, FGF18 regulates cartilage formation through other signaling pathways indirectly, for instance, FGF18 down-regulates the hedgehog signaling pathway activity in the interarticular region (Barnard et al., 2005; Clarke, 2020).
At the cellular and molecular level, apoptosis is closely related to the occurrence and development of OA (Hwang and Kim, 2015). Mitochondria are organelles within the cytoplasm, bound by a double membrane. The membrane space and mitochondrial matrix jointly formed by outer membrane and inner membrane are capable of sensing and responding to external stressors. Generally speaking, mitochondria maintain cell homeostasis by generating energy and activating intracellular signaling pathways (Eisner et al., 2018). Reduced mitochondrial membrane potential and leakage of cytochrome C from mitochondria are landmark events of apoptosis. Under the stress environment, mitochondrial dysfunction may occur, which results in the inability to maintain enough protons to power oxidative phosphorylation (Shen et al., 2021). The PI3K/Akt pathway is a classical anti-apoptotic signal transduction pathway, which is regulated by a variety of upstream inflammatory mediators and could inhibit apoptosis and autophagy of chondrocytes (Xue et al., 2017). The activated Akt depolymerizes tuberous sclerosis complex 1 (TSC1)/TSC2 dimer, thereby abolishing the inhibitory effect on Rheb, and eventually activates mammalian target of rapamycin (mTOR) and downstream transcription factor eIF4E, regulates the expression of apoptosis-related genes (Xu et al., 2015). Phosphorylation of PI3K and Akt down-regulates the levels of various apoptotic factors such as Bax, Bim (Bcl-2-interacting mediator of cell death) and FoxO1 induced by IL-1β, thereby inhibiting cell apoptosis, restoring mitochondrial membrane potential and reducing the generation of ROS, finally promoting the proliferation and migration of chondrocytes. In most cases, the activity of PI3K/Akt signaling pathway is remarkedly blocked during the progression of OA (Wang et al., 2018; Zhang Y. et al., 2020). The balance of mitochondrial fusion and fission (MFF) can timely and effectively remove damaged mitochondria and restore the normal mechanism or function of mitochondria (Youle and van der Bliek, 2012). By maintaining MFF balance, FGF18 evidently restores the function and morphology of mitochondria, enhances the phosphorylation of PI3K and Akt, and exerts an efficient anti-osteoarthritis efficacy. Excessive activation of autophagy will exacerbate chondrocytes damage (Wang J. et al., 2020). The mTOR, an important downstream signaling molecule of PI3K/Akt, is involved in the negative regulation of autophagy (Li Y.-S. et al., 2016). After cytochrome C enters the cytoplasm, it will activate caspase-3 and induce apoptosis through cascading amplification reaction (Zhou et al., 2015). Bcl-2 is an important anti-apoptotic molecule, which can reduce the permeability of mitochondrial membrane to cytochrome C and inhibit the release of cytochrome C from mitochondria into the cytoplasm (Karaliotas et al., 2015). From the literature it is known that FGF18 activates the PI3/Akt signaling pathway to inhibit IL-1β-induced caspase-3 activation and Bcl-2 expression, thus playing an anti-apoptotic effect (Li Z. et al., 2016; Koundouros and Poulogiannis, 2018; Yao et al., 2019) (Figure 2).
[image: Figure 2]FIGURE 2 | FGF18 acts on FGFR on the cell membrane and regulates chondrocyte proliferation through MAPK, ERK1/2 and hedgehog signaling pathways. The reduction of mitochondrial membrane potential and the leakage of cytochrome C into cytoplasm are closely related to cell apoptosis. FGF18 can maintain the balance of mitochondrial fusion and fission (MFF), restore the function and morphology of mitochondria, enhance the phosphorylation of PI3K and AKT, thereby depolymerizing TSC1/TSC2 and activating mTOR, ultimately inhibit apoptosis and autophagy of chondrocytes. After cytochrome C is released from mitochondria into the cytoplasm, it activates caspase-3 and causes apoptosis through a cascaded amplification reaction. FGF18 inhibits IL-1β-induced caspase3 activation through PI3K/AKT signaling pathway, enhances the expression of Bcl-2, and exerts an anti-apoptotic effect. Protein phosphatase1 (PHLPP1) is widely presented in chondrocytes during OA, and inhibits the proliferation of chondrocytes, differentiation, and matrix production. The decrease of PHLPP1 enhances the activity of Akt, and then down-regulates the transcription factor FoxO1 expression, followed by the increased expression of FGF18, and the enhanced phosphorylation of ERK1 or ERK2 through FGFR, and finally accelerates the proliferation of chondrocytes (The figure is made by adobe illustrator 2021).
CARTILAGE HOMEOSTASIS
Cartilage is mainly composed of chondrocytes and gelatinous ECM. The natural ECM consists of COL2, COL1, GAG, etc. (Peng et al., 2021). The unique structure and composition of the cartilage ECM are important factors in maintaining cartilage homeostasis, providing a smooth joint articulation and enabling articular cartilage to withstand loads several times the body weight (Bailey et al., 2021; Peng et al., 2021). COL2 is the most abundant component in the ECM of cartilage, where it forms a fibrous network structure; while GAG absorbs a large amount of water to form gel, and thus maintaining the dilatability and elasticity of cartilage (Sherwood et al., 2014). Cartilage lacks blood vessels and nerves, and its self-repair ability is limited. Chondrocytes are the singular cell type of cartilage which maintain and regulate the osmotic pressure of cartilage. Death, abnormal activation and differentiation of chondrocytes, increased degradation of ECM, and excessive generation of proteolytic enzymes or inflammatory mediators can destruct cartilage homeostasis and induce or aggravate OA (Sandya et al., 2007; Muntyanu et al., 2016; Rim et al., 2020).
The imbalance of cartilage homeostasis is mainly the result of cartilage degeneration and inflammation (Ritter et al., 2013; Redondo et al., 2018; Xie et al., 2021). During OA, the initial stage of cartilage degeneration is manifested as superficial cartilage defect or fibrosis, followed by the formation of ulcers and cracks, and gradually expands to subchondral bone, making the cartilage thinner and thinner, leading to full-thickness cartilage defect (McCulloch et al., 2019; Chen et al., 2020). As the above events worsen, it can lead to subchondral bone exposure and intensified degeneration. Chondrodegeneration is an important event in the early stage of OA, and the articular inflammatory environment caused by degradation and destruction of cartilage in the middle and late stage ultimately lead to synovial hyperplasia and angiogenesis (Yu et al., 2016). Inflammatory factors produced in the pathological process directly act on chondrocytes and ECM, which can further destroy the cartilage homeostasis. Mechanical stress and acute injury up-regulate the gene expression of inflammatory factors IL-1, IL-6 and TNFα, thereby promoting the expression of ADAMTs, MMP-3, MMP-9 and MMP-13, leading to the degradation of COL2A1 and GAG (Yang et al., 2017). Proteolytic enzymes are involved in the synthesis, recombination, and repair of connective tissue. The external or internal injury, genetic abnormalities and irregular mechanical loading of cartilage could result in the imbalance of metabolic activity by overly enhancing the activity of proteolytic enzymes, and ultimately accelerate cartilage degradation (Choi et al., 2019). IL-1 has a strong ability to induce aggrecanolysis and up-regulate the synthesis of chondrodegrading enzymes, such as MMP-3, ADAMTS-4, and ADAMTS-5 (Kapoor et al., 2011; Na et al., 2020). IL-6 can efficiently reduce proteoglycan synthesis in normal cartilage in vitro (Wang W. et al., 2020). TNFα induces the synthesis of MMPs and other proteases in chondrocytes, meanwhile increases prostaglandin E2 (PGE2) level by stimulating the synthesis of cyclooxygenase-2, microsomal PGE synthase-1 and soluble phospholipase A2 (Fitzgerald et al., 2004). The cartilage degeneration and inflammatory microenvironment of cartilage can activate each other and jointly aggravate the destruction of cartilage homeostasis.
RESEARCH PROGRESS OF SPRIFERMIN IN THE TREATMENT OF CARTILAGE RELATED DISEASES
OA is a heterogeneous disease involving the whole joint, and cartilage degeneration is the main feature (Shah and Mithoefer, 2020a). Under the microscope, articular cartilage damage can be assessed by analysis of tissue sections. OA cartilage can be characterized by the appearance of clusters of chondrocytes near the superficial layer, chondrocyte apoptosis in the deep and calcified layer, and disruption of ECM due to the degradation of collagen and proteoglycan. Although the proliferative activity of chondrocytes is also activated, the catabolic activity is much higher than the proliferative activity (Sandell and Aigner, 2001; Carlo and Loeser, 2008). As the disease progresses, the degrading enzymes produced by articular chondrocytes gradually increase, further aggravating the destruction of articular biomechanics and biochemistry (Dreier, 2010) (Figure 3).
[image: Figure 3]FIGURE 3 | During OA, the synthesis of ECM (GAG, COL2) decreases, and cartilage degeneration occurs. Microscopically, the spatial arrangement of chondrocytes is changed from single to double strings, then to clusters. With the development of OA, chondrocytes undergo abnormal activation and even death, which intensifies the degradation and destruction of cartilage. The inflammatory environment of the joint may lead to synovial proliferation, biochemical and biomechanical changes in the articular cartilage, compensatory osteophyte formation, muscle atrophy and meniscus tears of the knee (The figure is made by adobe illustrator 2021).
A first-in-human study showed that intraarticular injection of Sprifermin efficiently promotes chondrocytes proliferation and has a positive effect on histological and biomechanical cartilage properties (Dahlberg et al., 2016). Quantitative measurement and ultrastructural analysis indicated that treatment with Sprifermin increases the synthesis of GAG and COL2 and promotes the formation of ECM connections across the cartilage, which helps damaged cartilage to complete the repair process (Gigout et al., 2017). In the in vitro repair model, mechanical and biochemical analysis displayed that the adhesion strength between cartilage surfaces is stronger and the contact area between core cartilage and cartilage rings is larger in the Sprifermin treatment group, indicating that Sprifermin effectively promotes the healing of articular cartilage defects and the integration between lateral cartilage (Sennett et al., 2018). In a sheep model, Power and colleagues compared the efficacy between Microfracture (MFX) and MFX with rhFGF18 in the treatment of articular cartilage defects, and they observed significant statistical differences in International Cartilage Repair Society (ICRS) tissue repair scores, tissue fill scores, and improved O'Driscoll scores at 6 months between the two groups. MFX combined with rhFGF18 promotes the formation of hyaline chondroid tissue compared to the MFX group (Power et al., 2014). Sennett et al. also reported that, compared with the control group, the Sprifermin treatment group has stronger cartilage-to-cartilage interface adhesion strength, more COL2 content, and larger contact area between core cartilage and annular cartilage, which indicates that Sprifermin can effectively promote the repair of damaged cartilage (Sennett et al., 2018).
The current literature shows that, compared with placebo treatment, administration of Sprifermin not only increases cartilage thickness in some locations of the joint (adds cartilage volume and thickness globally, or at some regions where cartilage thickness is expected to be static), but also notably reduces cartilage loss (Lohmander et al., 2014; Eckstein et al., 2015). Similarly, following Sprifermin treatment, the percentage of cartilage thickness of medial central tibia, lateral central tibia and medial central femoral condylar has the largest changes, indicating a strong sensitivity to Sprifermin, and the most obvious difference between Sprifermin and placebo group is in medial central tibia (Hochberg et al., 2019). This indicates that the high bearing area of the joint and the area where cartilage is prone to damage are more sensitive to Sprifermin (Hochberg et al., 2018; Eckstein et al., 2020). Roemer et al. confirmed that Sprifermin exerts a positive effect on cartilage morphology and improvement of bone marrow-induced lesions (BML), and no negative effects associated with Sprifermin are reported in other joint tissues (Roemer et al., 2016).
Sprifermin can specifically target FGFR3 of chondrocytes. Since FGFR3 is expressed in meniscus, Sprifermin is expected to achieve a therapeutical effect when meniscus is injured (Roemer et al., 2020). Studies by Lohmander et al. showed that after intra-articular injection of Sprifermin, cartilage thickness significantly increases in a dose-dependent manner (Lohmander et al., 2014). Gigout and colleagues confirmed that in monolayer culture of porcine chondrocytes and 3D culture of human and porcine chondrocytes, Sprifermin could promote chondrocyte proliferation dose-dependently (Gigout et al., 2017). (Lohmander et al., 2014). Intra-articular injection of FGF18 can activate FGFR3C, alleviate the cartilage degradation of rat post-traumatic osteoarthritis (PTOA), increase the deposition of COL2, and inhibit the expression of MMP-13 (Karuppaiah et al., 2016; Onuora, 2021). When OA occurs, the expression of FGFR3 in chondrocytes is down-regulated, usually accompanied by increased FGFR1 level, while FGF18 can up-regulate the expression of FGFR3 and down-regulate FGFR1 level in chondrocytes (Yao et al., 2019). In addition, FGF18 expression and FGFR3 activation in growth plate chondrocytes inhibit proliferation and hypertrophy of chondrocytes (Karuppaiah et al., 2016). Ohbayashi et al. reported that FGF18 is required for both osteogenesis and chondrogenesis in bone development, it promotes both proliferation of osteogenic mesenchymal cells and terminal differentiation to mature osteoblasts (Ohbayashi et al., 2002).
There are many studies which focused on the anti-OA effect of FGF18 in vivo. Power et al. found that, through animal experiments, microfracture surgery combined with intraarticular injection of rhFGF18 effectively can promote the repair of articular cartilage defects of the medial femoral condyle (Power et al., 2014). Moore et al. also demonstrated that intraarticular injection of FGF18 stimulates cartilage repair in a rat meniscus tear model, giving rise to a dose-dependent increase in cartilage thickness and a significant reduction in cartilage degeneration scores (Moore et al., 2005). Similarly, in another OA rat model, administration of rhFGF18 could prevent cartilage degeneration (Mori et al., 2014). RhFGF18 is expected to protect articular cartilage from injury. In a five-year phase II clinical trial, Eckstein et al. have proved that intra-articular injection of Sprifermin can promote knee cartilage regeneration in OA patients. Sprifermin is the first DMOAD candidate drug that can promote the regeneration of damaged articular cartilage (Hochberg et al., 2019; Eckstein et al., 2020; Eckstein et al., 2021). Initially, Hochberg et al. reported that intra-articular injection of Sprifermin efficiently increases the cartilage thickness of femorotibial joint, compared with other doses and frequencies, the intra-articular administration of 100 μg every 6 months is most effective (Hochberg et al., 2019). Through a large sample study, they further confirmed that Sprifermin increases the thickness of the cartilage in all parts of the femorotibial joint in OA patients, and the effect is more obvious in high load-bearing areas such as the central medial tibia (Eckstein et al., 2020). Based on above, Eckstein et al. further evaluated the effectiveness and safety of Sprifermin in patients with OA. Following treatment with Sprifermin, the WOMAC pain score improved by approximately 50% in all groups with different doses and frequencies. Sprifermin treatment can maintain long-term structural modification of articular cartilage, hereby they confirmed that Sprifermin can not only modify the structure of articular cartilage, but also effectively alleviate clinical symptoms (Eckstein et al., 2021).
The promotion effect of Sprifermin on chondrogenesis depends on the inflammatory environment to some extent. Under inflammatory state, the regulative effect of Sprifermin on articular cartilage anabolism is obviously attenuated (Reker et al., 2017). For instance, when explants are co-cultured with pro-inflammatory cytokines prior to Sprifermin, almost no changes in COL2 synthesis and ECM degradation markers are observed following Sprifermin treatment. Other studies have confirmed that continuous co-culture of oncostatin M + TNFα almost eliminates Sprifermin-stimulated COL2 synthesis during the whole culture period (Reker et al., 2017). In clinical work, matching the appropriate treatment method with the corresponding patient is very important for the effective treatment of OA, due to that the cartilage regeneration effect of Sprifermin may be largely affected by the inflammation of the joint cavity. In view of the above studies, Sprifermin may be a more effective DMOAD for OA patients with mild synovitis or low levels of pro-inflammatory factors. Sprifermin injection in the knee cavity in patients with early OA (Kellgren-Lawrence grade 1 or 2) combined with other oral agents can delay or even reverse the progression of OA. For severe OA patients (Kellgren-Lawrence grade 3 or 4), Sprifermin is expected to delay the time to total knee replacement (Table 3).
TABLE 3 | Table of the transition from animal experiment to clinical trial.
[image: Table 3]LIMITATION
At present, most of the experiments on Sprifermin are still in the animal stage, and the application of Sprifermin in human body is rare. The effect of Sprifermin may be different between human and animal cartilage. Although Sprifermin can promote cartilage regeneration and increase cartilage thickness, it remains unclear whether cartilage can regenerate according to the natural cartilage structure. Additionally, the dose and method of administration of Sprifermin are still controversial. Due to the limited volume of articular cavity, there is no consensus on how to achieve the maximum therapeutic effect with the minimum dose of Sprifermin. For patients with symptomatic knee OA, the follow up time after intraarticular injection of Sprifermin is yet not long enough, and its clinical effectiveness remains uncertain. The long-term effect of Sprifermin in clinical patients requires longer follow-up time and more clinical samples, and more clinical trials are needed to prove that articular cartilage structural modification in OA patients can be translated into symptomatic benefit.
CONCLUSION
Thus far, there is no satisfactory drug or method for the treatment of OA. Sprifermin is a promising drug of DMOAD, displaying unique advantage in maintaining cartilage homeostasis. Sprifermin can effectively promote chondrocyte proliferation and ECM synthesis, maintain chondrocyte phenotype. Following Sprifermin treatment, the enlarged chondrocyte population produce transparent ECM, and there is a biphasic ECM remodeling process, which remarkably amplifies the efficiency of cartilage regeneration. The functions of Sprifermin might be closely related to its anti-inflammatory and maintenance of mitochondrial performance. Clinical trials have confirmed that intermittent injections of Sprifermin in the knee joint once a week can maximize the effect of anti-OA. Therefore, Sprifermin is expected to become a safe and effective drug for delaying or even reversing cartilage damage-related diseases. Although some progress has been made, the specific mechanism of its action is still unclear. Before Sprifermin can be used on a large scale in clinical treatment of cartilage injury-related diseases, its long-term safety and effectiveness still need to be evaluated by further studies.
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N6-methyladenosine (m6A) is an important modification of eukaryotic mRNA. Since the first discovery of the corresponding demethylase and the subsequent identification of m6A as a dynamic modification, the function and mechanism of m6A in mammalian gene regulation have been extensively investigated. “Writer”, “eraser” and “reader” proteins are key proteins involved in the dynamic regulation of m6A modifications, through the anchoring, removal, and interpretation of m6A modifications, respectively. Remarkably, such dynamic modifications can regulate the progression of many diseases by affecting RNA splicing, translation, export and degradation. Emerging evidence has identified the relationship between m6A modifications and degenerative musculoskeletal diseases, such as osteoarthritis, osteoporosis, sarcopenia and degenerative spinal disorders. Here, we have comprehensively summarized the evidence of the pathogenesis of m6A modifications in degenerative musculoskeletal diseases. Moreover, the potential molecular mechanisms, regulatory functions and clinical implications of m6A modifications are thoroughly discussed. Our review may provide potential prospects for addressing key issues in further studies.
Keywords: N6-methyladenosine, degenerative musculoskeletal diseases, osteoarthritis, osteoporosis, sarcopenia, degenerative spinal disorders
INTRODUCTION
Emerging evidence has shown that methylation modifications have regulatory effects on the RNA of eukaryotic cells, and the common modifications include N1-methyladenosine (m1A), N6-methyladenosine (m6A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), m1G, m2G, m6G, etc. (Shi et al., 2020). m6A is the most common of these modifications, accounting for the largest proportion, and approximately 20–40% of all transcripts encoded in mammalian cells are m6A-methylated (Frye et al., 2018). Each mammalian mRNA contains more than three m6A sites on average, in the consistent sequence of G (m6A) C (70%) and A (m6A) C (30%) (Wei et al., 1976; Wei and Moss, 1977). The m6A modification was first discovered by Prof. Desrosiers. R and his group in a groundbreaking experiment in the 1970s (Desrosiers et al., 1974). Subsequent studies have shown that it is a dynamic and reversible modification that is widely involved in physiological and pathological processes (Cao et al., 2016), including cellular aging (Casella et al., 2019), cancer progression (Lan et al., 2019) and inflammatory response (Zong et al., 2019). Specifically, m6A manipulates the splicing, export, translation and degradation of RNA through methylation and demethylation, controlled by a variety of enzymes, which in turn affect various physiological and pathological processes.
Degenerative musculoskeletal diseases are associated with aging and inflammatory conditions. These diseases include osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration disease (IVDD), ossification of the ligamentum flavum (OLF) and sarcopenia (Ikegawa, 2013; Tabebordbar et al., 2013). Currently, a considerable body of epigenetic research is available in this area (Tu et al., 2019; Wijnen and Westendorf, 2019). Alterations in the levels of m6A play an important role in the progression of degenerative musculoskeletal diseases (Wu et al., 2018; Liu et al., 2019).
In this review, we present a broad summary of the functions of m6A in the development and progression of various degenerative musculoskeletal diseases, with the aim of deepening our understanding of the association between m6A and degenerative lesions and exploring the preconceived idea that m6A can be a diagnostic marker and therapeutic target for degenerative musculoskeletal diseases in the future.
RNA m6A Modification
As mentioned above, the m6A modification is a dynamic and reversible epigenetic alteration and controls disease progression by affecting mRNA stability and functionality (Chen et al., 2019a; Li et al., 2020a; Qin et al., 2020). The position of m6A in the gene is highly conserved, and it is enriched in the consensus RRACH sequence of stop codons and long internal exons (R = G or A, H = A, C or U) (Dominissini et al., 2012). Current research shows that m6A can affect the splicing, translation, export, and degradation of mRNA through three types of key proteins. These three types of proteins are known as m6A writers, erasers and readers (Chen et al., 2019b). The writer and eraser proteins dynamically regulate m6A levels, while the readers determine the ultimate fate of mRNA (Shi et al., 2019). In this section, we will analyze and summarize the functions of these three types of proteins (Figure 1).
[image: Figure 1]FIGURE 1 | Dynamic regulation of RNA m6A modification. The dynamic regulation of RNA m6 A modifications relies on writers (including METTL3, METTL14, WTAP, etc.) erasers (including FTO, ALKBH5, etc.), and readers (including YTHDFs, YTHDCs, HNRNPs, etc.). Adenosine located in RNA is recognized by writers for methylation, while erasers can catalyze the demethylation of m6A. Finally, the modification is recognized by the reader protein, allowing it to perform its function. ALKBH5, alkB homolog 5; FTO, fat mass and obesity-associated protein. m6A, N6-methyladenosine; YTHDF, YTH N6-methyladenosine, RNA binding protein, YTHDC, YTH domain containing protein, HNRNP, heterogenous nuclear ribonucleoprotein.
m6A Writer
m6A is incorporated into RNA by a multisubunit writing complex in a highly specific manner (Bokar et al., 1997). This multisubunit writing complex is the m6A writer, and the following subunits have been identified: METTL3, METTL14, WTAP, VIRMA, METTl16, etc. METTL3 and METTL14 dominate most of the m6A modifications and are the core components of the entire complex. Both of them contain S-adenosylmethionine binding sequences, which can add methyl groups to adenosine and form a heterodimeric complex to regulate m6A (Geula et al., 2015; Wang et al., 2016a). Analysis has shown that METTL3 functions as a catalytic subunit, while METTL14 is an important component facilitating binding to RNA (Wang et al., 2016b). WTAP itself does not have methyltransferase activity; it binds to METTL3/14 as a cofactor that helps METTL3/14 localize to nuclear patches and is an essential protein for recruiting substrates (Ping et al., 2014). In addition, it has been shown that WTAP relies on METTL3 to regulate its homeostasis (Sorci et al., 2018). On the other hand, VIRMA functions to promote the binding of m6A to the 3′UTR (Yue et al., 2018).
m6A Eraser
In contrast to the function of the m6A writer, the m6A eraser is responsible for the demethylation of m6A to adenosine (Jia et al., 2011). It is important for realization of the dynamic and reversible modification function of m6A (Zhao et al., 2017). Demethylation enzymes include fat mass and obesity-associated protein (FTO) and alkB homolog5 (ALKBH5).
The demethylase activity of FTO was first discovered by Prof. He’s group (Jia et al., 2011). It shows homology to the ALKB dioxygenase family. The demethylation function of FTO occurs by oxidizing m6A to N6-hydroxymethyladenosine (hm6A) and N6-formyladenosine (f6A), which eventually becomes simply A (Fu et al., 2013). Although the actual substrate for the action of FTO is N6,2-O-dimethyladenosine (m6Am), a modification with a chemical structure identical to that of m6A in the base part is found near the 5′ cap in mRNA (Mauer et al., 2017). However, a follow-up study showed that FTO had demethylation activity for both m6A and m6Am: m6A is mainly located in the nucleus, whereas the major substrate in the cytoplasm is m6Am (Wei et al., 2018).
ALKBH5 was the second enzyme to be discovered as an m6A-based demethylase (Zheng et al., 2013). The role of ALKBH5 can be summarized as follows: 1. Knockdown of the ALKBH5 gene has no effect on the normal growth and development of mice but has an impact on their spermatogenesis. ALKBH5 is enriched in testes and female ovaries, which suggests that the demethylase activity of ALKBH5 is important for germ cell development (Zheng et al., 2013). 2. The altered expression levels of ALKBH5 affect m6A modifications, which play an important role in several diseases via the regulation of m6A. For example, ALKBH5 expression is decreased in bladder cancer tissues and cells, which correlate with poor patient prognosis. The overexpression of ALKBH5 could inhibit disease progression through the m6A-CK2a-mediated glycolytic pathway and increase the sensitivity of bladder cancer to cisplatin (Yu et al., 2021).
m6A Reader
m6A readers are a class of proteins that recognize m6A modifications on RNA and determine the function of transcripts. These readers include the YT521-B homology (YTH) domain, heterogeneous nuclear ribonucleoproteins, and insulin-like growth factor 2 mRNA-binding proteins.
The crystal structure of the human YTH domain revealed that it contains a recognition pocket consisting of three conserved tryptophan residues for specific recognition of methylation modifications (Luo and Tong, 2014; Xu et al., 2014; Zhu et al., 2014). The most widely studied YT521-B homology (YTH) domains include YTH N6-methyladenosine RNA binding protein 1–3 (YTHDF1-3) and YTH domain containing protein 1–2 (YTHDC1-2). YTH N6-methyladenosine RNA binding protein is mainly localized in the cytoplasm, while YTH domain-containing protein is localized in the nucleus (Reichel et al., 2019). Among them, YTHDF1 promotes the translation of mRNA mainly by affecting the translation mechanism (Wang et al., 2015). On the other hand, YTHDF2 can mediate the degradation of its target m6A transcripts by reducing their stability (Li et al., 2018). As a cofactor of YTHDF1 and YTHDF2, YTHDF3 can synergize with both YTHDF1 and YTHDF2 to promote translation and degradation, respectively (Ni et al., 2019). However, YTH domain-containing proteins have other functions. YTHDC1 interacts with m6A in nuclear RNA to regulate splicing of premRNA (Kasowitz et al., 2018) and promotes nuclear export of m6A-modified RNA (Roundtree, 2017). Interestingly, YTHDC2 seems to be quite important for fertility, as it is mainly enriched in the testis, mediates mRNA stability and translation and regulates spermatogenesis (Hsu et al., 2017). In addition, it promotes the translation of the m6A methylation-modified RNA coding region (Mao et al., 2019).
HNRNP is a group of RNA binding proteins responsible for precursor mRNA shearing and stabilization of newly transcribed precursor RNA (Geuens et al., 2016). For instance, hnRNPA2B1 can affect the shear processing of precursor miRNAs by recognizing and binding to sites containing RGm6AC sequences (Alarcón et al., 2015). HNRNPC was one of the first HNRNP proteins identified to be involved in shearing, and it requires oligomerization with other HNRNPC monomers to form a specific binding RNA interaction (Cieniková et al., 2015). HNRNPC preferentially binds single-stranded U-tracts (5 or more contiguous uridines) and affects nascent RNA shearing, translation, etc. (Liu et al., 2015). Finally, HNRNPG contains a low-complexity region that recognizes structural changes mediated by m6A modifications involved in the shearing of cotranscribed precursor mRNAs (Liu et al., 2017; Zhou et al., 2019).
Finally, IGF2BP is able to target transcripts by recognizing GGAC sequences rich in m6A modifications; it promotes the translation of mRNA by recruiting mRNA stabilizers such as HuR and MATR3, which enhance the stability of mRNA (Huang et al., 2018).
Roles of m6A in Degenerative Musculoskeletal Disorders
Degenerative musculoskeletal diseases are associated with aging and inflammatory conditions. m6A modifications have been considered to be involved in degenerative musculoskeletal diseases. However, the molecular mechanisms and functional details are not fully understood. Thus, we summarize the current evidence on the pleiotropic function of m6A in degenerative musculoskeletal diseases (Figure 2, Table 1).
[image: Figure 2]FIGURE 2 |  m6A is correlated with the progression of multiple degenerative diseases including osteoarthritis, osteoporosis, sarcopenia, and degenarative spinal diseases.
TABLE 1 | The role of m6A in degenerative musculoskeletal diseases.
[image: Table 1]m6A in Osteoarthritis
Osteoarthritis (OA) is a chronic joint disease represented by symptoms such as pain, stiffness, joint deformity and limited joint movement. Elderly females and overweight people are most affected (Sharma, 2021). Tang. X et al. indicated that the prevalence of knee OA in China was 8.1%, while a later study by Li. Z et al. showed that the prevalence of patellofemoral OA had increased to 23.9% (Tang et al., 2016; Li et al., 2020b). A worldwide study showed that there were approximately 301.1 million prevalent cases of hip and knee OA, which was a 9.3% increase from 1990 to 2017 (Safiri et al., 2020). As the aged population becomes more sophisticated, OA has become one of the most important diseases affecting quality of life, which imposes a huge economic burden on society (Hunter et al., 2014). Pathologically, the main mechanism of OA is the degradation of the articular cartilage matrix, including type II collagen and a small amount of type IX and XI collagen, which ultimately causes total joint damage (Hunter and Bierma-Zeinstra, 2019). In addition, the development of OA is associated with senescent cells, which are linked to aging-related mitochondrial dysfunction and associated oxidative stress (Coryell et al., 2021). Inflammatory factors such as IL-1[image: image] and TNF-[image: image] cooperate with chemokines to participate in the progression of OA (Chen et al., 2017). It is now believed that the study of the relationship between epigenetic regulation and inflammatory factors will be the way forward for OA treatment. Thus, the relationship between m6A modifications and OA has attracted the attention of researchers.
Although both Liu. Q et al. and Sang. W et al. concluded that METTL3 affects OA development by regulating the inflammatory response and extracellular matrix (ECM) degradation, and their experiments presented different results. Liu. Q et al. showed that METTL3 expression was increased in IL-1[image: image]-treated ATDC5 cells. Silencing METTL3 expression inhibited the level of inflammatory cytokines and the transactivation of the NF-[image: image]B signaling pathway, which delayed the progression of OA. Moreover, it could inhibit the synthesis of ECM by downregulating the expression of MMP13 and COII-X (Liu et al., 2019). Sang. W et al. showed that METTL3 expression was reduced in patient tissues and in IL-1[image: image]-treated SW1353 cells. Overexpression of METTL3 resulted in decreased levels of inflammatory cytokines and promoted the expression of p-65 protein and p-ERK to activate the NF-[image: image]B signaling pathway. Overexpression of METTL3 also regulated the balance between TIMPs and MMPs to affect the degradation of ECM (Sang et al., 2021). The discrepancy in experimental results was speculated to be due to the following two reasons: 1. differences in the selection of cell models: ATDC5 cells and SW1353 cells have a limited ability to mimic primary articular chondrocytes; 2. the normal control selected by Sang. W et al. collected articular cartilage from patients who underwent replacement for femoral neck fractures (for ethical reasons), although whether this is fully consistent with normal human METTL3 expression needs to be reconsidered; 3. Liu. Q et al. verified the expression of METTL3 in experimental osteoarthritis, which might not reflect the actual expression of OP patients. In addition to the methylation enzyme METTL3, the demethylase FTO has also been studied for its effect on the development of OA. It was shown that FTO-mediated overweight could lead to increased susceptibility to OA (arc et al., 2012; Panoutsopoulou et al., 2014). However, both Wang. Y et al. and Dai. J et al. demonstrated that the single nucleotide polymorphism (SNP) rs8044769 of FTO was not associated with OA in the Chinese population, and some other genes may account for it. Therefore, the correlation between FTO and OA needs further investigation (Wang et al., 2016c; Dai et al., 2018).
m6A in Osteoporosis
Osteoporosis (OP), a disease characterized by low bone mass and altered bone microarchitecture (Johnston and Dagar, 2020), is a complex multifactorial disease. Age, sex, BMI (body mass index), postmenopausal women, and previous history of fracture are considered risk factors (Rubin et al., 2013). Altered bone quality and bone microarchitecture in OP cause increased bone brittleness and susceptibility to fracture (Compston et al., 2019), which seriously affect quality of life (Cauley, 2017). Zeng. Q et al. hypothesized that an estimated 10.9 million men and 49.3 million women suffered from OP in China by 2019, and the age-standardized prevalence rates of OP in Chinese men and women over 50 years old were 6.46 and 29.13%, respectively (Zeng et al., 2019). The United States and the United Kingdom spend approximately US$17.9 billion and £4 billion each year on osteoporosis-related fractures (Clynes et al., 2020), which is a huge economic burden for society. However, the current treatment protocols for OP have some issues, such as a long treatment cycle time and poor patient compliance (Qaseem et al., 2017; Estell and Rosen, 2021). Therefore, it is important and intriguing to explore OP treatment from the perspective of epigenetics (de Nigris et al., 2021).
A genome-wide identification study showed that 138, 125 and 993 m6A SNPs were associated with density issues of the femoral neck, lumbar spine and heel, respectively, at significant levels (Mo et al., 2018). The differentiation tendency of bone marrow mesenchymal stem cells (BMSCs) is closely associated with the development of OP, and the imbalance between osteogenic and lipogenic differentiation of BMSCs is often considered the basis for the development of OP. BMSC differentiation into adipocytes may lead to decreased bone formation, which contributes to the development of OP (Chen et al., 2016; Qadir et al., 2020). Coincidentally, as an m6A-modified demethylase, FTO mediates demethylation to regulate mRNA shearing, which is required for lipogenesis (Zhao et al., 2014). Importantly, Guo. Y et al. found an association between FTO and OP phenotype (Guo et al., 2011). Shen. G et al. found that the GDF11-FTO-PPARγ (peroxisome proliferator-activated receptor γ) axis controls the differentiation of BMSCs to adipocytes and reduces bone formation in OP patients. The main mechanism is that the upregulated GDF11-FTO signaling targets PPAR[image: image], which is dependent on FTO demethylase activity. This can reduce m6A modification of the mRNA encoding PPAR[image: image], prolong the half-life period, and ultimately contribute to differentiation of BMSCs into adipocytes (Shen et al., 2018). In addition, miR-149-3p can promote the differentiation of BMSCs into osteoblasts by binding to the mRNA 3′UTR of FTO, which in turn inhibits its own expression (Li et al., 2019). Notably, to investigate the effect of extracellular capsule-encapsulated miR-22-3p from bone marrow mesenchymal stem cells on osteogenic differentiation, Zhang. X et al. performed a series of experiments. They found that miR-22-3p in BMSC-derived EVs can inhibit the MYC/PI3K/AKT signaling pathway by targeting FTO to stimulate osteogenic differentiation (Zhang et al., 2020a). Interestingly, although FTO could inhibit the differentiation of BMSCs to osteoblasts in OP, it had a protective effect on differentiated cells. Studies in normal mouse models showed that the demethylase activity of FTO is required for normal bone growth and calcification in mice (Sachse et al., 2018). FTO is also able to avoid genotoxic damage to osteoblasts by stabilizing endoplasmic reticulum stress pathway components, such as Hsp70 (which inhibits NF-[image: image]B signaling pathway activation) (Zhang et al., 2019). As another demethylase, ALKBH5 could also negatively regulate the osteogenic differentiation of MSCs through PRMT6 (protein arginine methyltransferase 6) (Li et al., 2021).
As m6A-modified methylesterases, METTL3 and METTL14 have likewise received the attention of researchers. METTL3-and METTL14-mediated m6A methylation affects the differentiation of BMSCs through multiple pathways. On the one hand, METTL3 knockdown in mice could decrease the translation efficiency of PTH1r (parathyroid hormone receptor-1) and reduce its expression in vivo, which interferes with the osteogenesis of PTH (parathyroid hormone) via the PTH/PTH1r signaling axis to induce an OP-related pathological phenotype (Wu et al., 2018). Moreover, knockdown of METTl3 could inhibit osteogenic differentiation of BMSCs by suppressing VEGF-a expression and activation of the PI3K-AKT signaling pathway in vivo (Tian et al., 2019). On the other hand, METTL3 could promote the modification of m6A in JAK1 mRNA and reduce JAK1 expression by recognizing and destabilizing JAK1 through YTHDF2, thereby inhibiting the activation of the JAK1/STAT5/C/EBP[image: image] signaling pathway. METTL3 could also suppress the early lipid differentiation of BMSCs (Yao et al., 2019). In addition, Yan. G et al. showed that the downregulation of METTL3 in BMSCs could reduce the expression of RUNX2 and PremiR320 by inhibiting their methylation (Yan et al., 2020). RUNX2 is an important regulator of osteogenic precursor cells in vivo and is involved in bone mineral deposition and the progression of OP (Komori, 2019). As another m6A-modified methylation enzyme, METTL14 can be targeted by miR-103-3p to inhibit osteogenic differentiation. Moreover, it can also modulate miRNA activity through DGCR8 in a feedback-dependent manner, which suggests that the miR-103-3p/METTL14/m6A signaling axis is a potential target in the treatment of OP (Sun et al., 2021).
Emerging evidence has shown that the knockdown of the m6A-modified reader protein YTHDF2 can enhance the phosphorylation of IKKα/β, IκBα, ERK, p38 and JNK in the NF-[image: image]B and MAPK signaling pathways and then mediate LPS-induced osteoclast formation and inflammation (Fang et al., 2021). This indicates that the role of m6A reader proteins in OP is important, which provides a novel pathway for future research.
In summary, the relationship between m6A modifications and OP is closely associated with the regulation of BMSC differentiation. The modalities can be summarized as follows: 1. METTL3 and MEETTL14 can mediate the differentiation of BMSCs toward osteoblasts; 2. FTO can mediate the differentiation of BMSCs toward adipocytes; 3. FTO can protect the cells from genotoxic injury; 4. ALKBH5 negatively regulates the osteogenic differentiation of BMSCs; 5. YTHDF2 reader protein can mediate osteoclast formation. Current research on the relationship between m6A and osteoporosis mainly focuses on the differentiation and regulation of BMSCs. Given that the imbalance of bone remodeling due to abnormal differentiation of osteoclasts is an important pathological basis of osteoporosis and that METTL3 has been shown to regulate osteoclast differentiation (Li et al., 2020c), the mechanism by which m6A modification regulates osteoclast differentiation in osteoporotic patients needs to be further addressed in the future.
Thus, it appears that there may be a dual role of m6A modification in the progression of OP. Understanding the mechanism associated with m6A modification with this dual relationship could provide promising insight for the prevention and treatment of OP.
m6A in Sarcopenia
Sarcopenia, a disease characterized by a decrease in muscle mass and function associated with age-related progression, was first identified by Rosenberg et al., in 1997 (Rosenberg, 1997). Sarcopenia often results in many adverse outcomes, such as falls, decreased function, fractures and even death. These adverse outcomes can lead to increased hospital stays and exacerbate the sarcopenia process (Coker and Wolfe, 2012; Dhillon and Hasni, 2017; Yeung et al., 2019). The etiology of sarcopenia can be described as follows: 1. Age: muscle content decreases with age and reflects the trend of development. However, the speed of muscle loss in sarcopenia patients is far beyond that in the normal population (Larsson et al., 2019); 2. Chronic low-titer systemic inflammatory state of the body: the body of a sarcopenia patient always presents a chronic low-titer systemic inflammatory state with cachexia, which could increase physical exertion and accelerate muscle decrease (Muscaritoli et al., 2010). Nevertheless, the mechanism of sarcopenia pathogenesis is not yet well understood.
With regard to the relationship between m6A modification and sarcopenia, current research has mainly focused on muscle stem cell differentiation. Kudou et al. found that muscle stem cells require MyoD regulators to maintain differentiation potential, and m6A modifications of mRNA encoding MyoD are enriched in the 5′UTR. The m6A methylation enzyme METTl3 can stabilize MyoD RNA by promoting pro-myogenic differentiation mRNA processing in proliferating cells. Knockdown of METTL3 can significantly downregulate processed MyoD mRNA expression in adult myoblasts (Kudou et al., 2017). Knockdown of METTL3 in mouse C2C12 cells and muscle stem cells can reduce the level of m6A modification and lead to premature differentiation of adult myoblasts, suggesting an important role of METTL3 in m6A regulation (Gheller et al., 2020). METTL3 can enhance protein expression by increasing mRNA m6A modification via the Notch signaling pathway and increase the translation efficiency of mRNAs through the YTHDF1 reader protein. This suggests that METTL3 is essential for regulating muscle stem cells and promoting muscle injury recovery (Liang et al., 2021).
Similarly, FTO demethylases have also been found to be involved in the regulation of muscle stem cells. Increased expression of FTO is observed during muscle cell differentiation and regulates mTOR-PGC-1a-mediated intramitochondrial synthesis through its own demethylase activity (affecting muscle cell differentiation) (Wang et al., 2017). In addition, the expression of AMPK (AMP-activated protein kinases) is a key regulator of skeletal muscle lipid metabolism and m6A modification in skeletal muscle. These proteins showed a negative correlation with lipid accumulation in skeletal muscle. Lipid accumulation may be reduced by inhibiting the demethylase activity of FTO and increasing the level of m6A modification (Wu et al., 2017).
In summary, although the existing evidence does not directly verify the relationship between m6A modification and sarcopenia, the ability of m6A to regulate the differentiation of muscle stem cells will provide us with a future direction. Given the variety of sarcopenia mouse models that have been established (Xie et al., 2021), novel methods of sarcopenia research can be developed. Interestingly, given the regulatory role of FTO in muscle differentiation and lipid accumulation in skeletal muscle, FTO may be considered a key regulatory factor specifically in sarcopenic obesity (high-risk disease characterized by both sarcopenia and obesity (Batsis and Villareal, 2018)).
m6A in Degenerative Spinal Disease
Degenerative spinal disorders are a group of age- and aging-related structural abnormalities of the spine, including cervical spondylosis, lumbar disc herniation, spinal stenosis and posterior longitudinal ligament calcification (Ailon et al., 2015; Davies et al., 2018). These constitute a type of clinical syndrome caused by degenerative alternations or long-term strain as age increases. A structural imbalance in the spine initiates repair in the body and stimulates bone hyperplasia, ligament thickening and ossification, which eventually lead to the emergence of spinal cord, nerve root or vertebral dynamic compression. This imbalance can seriously affect the quality of life of patients and even endanger life (Wang et al., 2016d; Badhiwala et al., 2020). Abnormal nucleus pulposus cells are a crucial cause of lower back pain (a common chronic inflammatory pain closely related to disc degeneration in which IL-1 and TNF-[image: image] are key factors (Cunha et al., 2018; Wang et al., 2020a)). Zhu. H et al. showed that TNF-[image: image] and TNF-[image: image] can promote the expression of miR-34a-5p through the methylation enzyme activity of METTL14 in myeloid cells, which may increase the m6A modification of the mRNA encoding miR-34a-5p (targeting the utility of SIRT1 inhibition). Eventually, this promotes the senescence of nucleus pulposus cells (Zhu et al., 2021). As another methylesterase, METTL3 is able to promote inflammation by binding DGCR8 to positively regulate the m6A modification level of pri-miR-365-3p in a CFA-induced chronic inflammation model (Zhang et al., 2020b). In IVDD, degeneration of endplate chondrocytes may also lead to pathological alterations. Xiao. L et al. found that METTL3-mediated m6A modification was closely associated with degeneration (Xiao et al., 2020). METTL3 expression was upregulated in IL-1[image: image]-mediated inflammatory cells: METTL3 upregulation promoted the breakdown of pri-miR-126-5p to increase miR-126-5p expression. Subsequently, miR-126 could downregulate PIK3R2 expression to inhibit the protective effect of the PI3K/Akt signaling pathway (Xiao et al., 2020). METTl3 increases the level of m6A modification of lncRNA XIST during posterior longitudinal ligament ossification and subsequently affects the ossification of primary ligament fibroblasts by influencing the miR-302a-3p/USP8 axis (Yuan et al., 2021). During ligamentum flavum ossification, the ALKBH5 demethylase can promote ligamentum flavum cell osteogenesis by decreasing BMP2 demethylation and activating the Akt signaling pathway (Wang et al., 2020b).
Thus, although research on the role of m6A in the process of spinal degeneration is still in its infancy, a close association between the regulation of m6A modifications and spinal degeneration has been identified. Both the METTL3 and METTL14 methylation enzymes and the ALKBH5 demethylase can influence the progression of spinal degeneration by regulating the level of m6A modifications (affecting the level of inflammation or differentiation tendency). The excellent studies described here provide novel insight for the diagnosis and treatment of degenerative spinal disorders in the future.
Perspective
Currently, accurately describing the specific mechanisms of m6A in degenerative musculoskeletal diseases remains a great challenge. The impact of m6A modifications on degenerative musculoskeletal diseases remains to be addressed. First, the current SNP detection methods, such as high-resolution and high-throughput detection, need to be improved. Second, research on OA, sarcopenia and degenerative spinal diseases is relatively limited, and we hope that subsequent investigators will more thoroughly examine the mechanisms involved. Third, although an important role of YTHDF2 in degenerative musculoskeletal diseases has been observed, the role of the reader protein has been less well investigated (Fang et al., 2021). Finally, current evidence suggests that targeting m6A modifications may be a promising therapeutic option (Peng et al., 2019; Bedi et al., 2020). However, more in-depth studies on safety and efficacy are still needed.
CONCLUSION
Recently, researchers have begun to investigate the role and importance of m6A modifications in a variety of diseases. However, only a small number of these studies have focused on degenerative issues. In this review, we summarize the role and regulatory mechanisms of m6A in the pathogenesis of degenerative musculoskeletal diseases. During transcription, the level of transcript m6A modification is closely associated with the development and repair of bones, muscles and soft tissues. The regulation of the m6A modification level at the lesion site requires functional coordination among writer, eraser and reader proteins, and the abnormal expression of each of these proteins may contribute to exacerbating degeneration. Therefore, the dynamic balance of m6A modifications is crucial for degenerative musculoskeletal diseases. Unfortunately, the current treatment options for degenerative musculoskeletal diseases are not yet well understood, and most patients are ultimately likely to receive surgical treatment. Research on the relationship between m6A modifications and degenerative musculoskeletal diseases will provide us with novel insights for the diagnosis and treatment of these diseases to control their progression and long-term prognosis by regulating m6A modification.
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In the past 3 decades, the cartilage repair potential of mesenchymal stromal cells, or mesenchymal stem cells (MSCs), has been widely examined in animal studies. Unfortunately, the phenotype and physical properties of MSC-derived cartilage tissue are not comparable to native hyaline cartilage. In particular, chondrocytic hypertrophy, a phenotype that is not observed in healthy hyaline cartilage, is concomitant with MSC chondrogenesis. Given that hypertrophic chondrocytes potentially undergo apoptosis or convert into osteoblasts, this undesired phenotype needs to be prevented or minimized before MSCs can be used to repair cartilage injuries in the clinic. In this review, we first provide an overview of chondrocytic hypertrophy and briefly summarize current methods for suppressing hypertrophy in MSC-derived cartilage. We then highlight recent progress on modulating the canonical Wnt/β-catenin pathway for inhibiting hypertrophy. Specially, we discuss the potential crosstalk between Wnt/β-catenin with other pathways in regulating hypertrophy. Lastly, we explore future perspectives to further understand the role of Wnt/β-catenin in chondrocytic hypertrophy.
Keywords: mesenchymal stem cells, hyaline cartilage, chondrocytic hypertrophy, chondrogenesis, cartilage tissue engineering
INTRODUCTION
Articular cartilage, an essential component of the joint organ, helps maintain stability, distribute force and reduce friction during physical activity. Once damaged by trauma, disease, or aging, it is unable to fully self-heal due to its avascular nature (Shi et al., 2016). Consequently, focal cartilage defects may gradually destroy adjacent cartilage and negatively influence other joint components, eventually leading to the onset of osteoarthritis (OA) (Chen et al., 2006; Deng et al., 2019b).
Currently, several strategies are clinically used to treat focal cartilage defects, including autograft and allograft transplantation, microfracture, and autologous chondrocyte transplantation (ACI) (Chen et al., 2015). However, each of these techniques has its own limitations (Ahmed and Hincke, 2010). For example, autograft transplantation relies on the transfer of osteochondral tissue from a non-weight-bearing or lesser weight-bearing region to the defective area, for which the donor tissue may not be mechanically suited (Kon et al., 2013). The use of allografts may induce immunological rejection (Bugbee et al., 2012). The core technology of microfracture is drilling into the subchondral bone to release bone marrow, allowing marrow-derived stem cells to migrate into the defective area to facilitate the healing process. Unfortunately, the neo-cartilage generated after microfracture consists mainly of fibrocartilage, not hyaline cartilage (Mithoefer et al., 2009). Consequently, the neo-cartilage degrades in several years. ACI involves the extraction of chondrocytes from a non-weight-bearing area, expansion of the cells in vitro, and re-introduction into the defect area. This technique eliminates the possibility of an immune response, but the proliferation process is always accompanied by the loss of chondrocytic phenotype and function, known as dedifferentiation (Kon et al., 2009). In addition, the quality control for chondrocytes before implantation has not been established, which likely results in highly variable reparative outcomes (Pietschmann et al., 2012).
In the past 3 decades, the chondroinduction of mesenchymal stem/stromal cells (MSCs) has become a popular method to generate cartilage tissue for the repair of cartilage injury in animal models (Caplan, 1991). Furthermore, some clinical trials have shown the potential of MSC-based cartilage tissue engineering in the repair of chondral defects in humans (Gupta et al., 2016; Park et al., 2017; Qiao et al., 2020), but a greater sample size is required to confirm the reparative results and phenotype of newly formed cartilage. In spite of this exciting progress, extensive in vitro data and animal studies have shown that MSC-derived cartilage does not fully recapitulate the structure or composition of hyaline cartilage matrix (Bian et al., 2013; Watts et al., 2013; Yang et al., 2018). In particular, chondrocytic hypertrophy-relevant molecules, such as collagen type X (COL10) and Indian hedgehog (IHH), are found to be highly expressed in MSCs-derived cartilage (Chen et al., 2015), which are not observed in healthy hyaline cartilage. This undesired phenotype represents one of the major obstacles to the clinical application of MSCs for repairing articular cartilage. In this review, we first provide an overview of hypertrophy in MSC-derived cartilage, and briefly summarize current methods used in suppressing hypertrophy. Second, we focus on recent progress in the modulation of the canonical Wnt/β-catenin pathway for inhibiting hypertrophy. Lastly, we discuss the crosstalk between Wnt/β-catenin and other pathways in regulating hypertrophy.
Hypertrophic Chondrocytes in Growth Plate
During endochondral ossification in skeletal development, several sequential events are observed, including cellular condensation of mesenchymal precursor cells, chondrogenic differentiation, hypertrophy and vascularization/osteogenesis (Sun and Beier, 2014). These stages are also clearly observed within the fetal growth plate, in which resting zone, proliferating zone, hypertrophic zone and osteogenic zones are clearly and simultaneously observed (Figure 1A). Hypertrophic chondrocytes contribute to skeletal development by increasing cell volume and tissue size. These cells also remodel the matrix to support osteogenesis, which is mainly characterized by the expression of runt-related transcription factor 2 (RUNX2), matrix metalloproteinase (MMP)-13, COL10, alkaline phosphatase (ALP) and osteogenic growth factors, such as bone morphogenetic protein (BMPs), IHH, and vascular endothelial growth factor (VEGF) among others (Sun and Beier, 2014).
[image: Figure 1]FIGURE 1 | (A). Hypertrophic chondrocytes observed in growth plate. Cells in the resting-zone, located at the end of bone, are round and small. Proliferating zone is adjacent to the resting-zone, and chondrocytes in this zone have the ability to proliferate and differentiate. The differentiation is also accompanied by the increase of cell size and the acquisition of hypertrophic phenotype, which is mainly characterized by the expression of hypertrophic markers, such as COL10, MMP-13, ALP, and IHH. (B). In vitro MSC chondrogenesis and hypertrophic transition. In the initiation stage (∼7 days) of chondrogenesis, MSCs are differentiated into nascent chondrocytes, which then undergo hypertrophy and the following ossification or apoptosis. It is important to note that nascent MSCs-derived chondrocytes may have the potential to become stable chondrocytes, yet this has not been completely achieved. (C). COL10 immunostaining for MSCs-laden hyaluronic acid (HA) construct that was subjected to 21 days of chondrogenic culture. The hypertrophic chondrocytes were characterized by large cell volume and the deposition of COL10 (brown staining, red arrows). Scale bar = 100 μm.
Cellular Hypertrophy in MSC Chondrogenesis
When MSCs are induced to undergo chondrogenesis with medium containing transforming growth factor (TGF-β), the newly formed cartilage recapitulates many features observed in hypertrophic chondrocytes in bone development, such as large cell size and high expression of hypertrophy-relevant markers (Chen et al., 2015) (Figures 1B,C). Therefore, the term “hypertrophy” was adapted to describe the phenotype of chondroinduced MSCs. Of note, the health states of donors and tissue sources affect MSC hypertrophy levels in both naïve and chondroinduced conditions. For example, the basal COL10 protein level in MSCs from donors with osteoarthritis (OA) was systematically (4.9 ± 1.2-fold) higher than that in normal MSCs (Mwale et al., 2010). After chondroinduction, articular cartilage-derived MSCs from osteoarthritis patients (OA-MSC) displayed higher expression of RUNX2 when compared to the cells cultured in the growth medium (Hu et al., 2019). In comparison, the level of RUNX2 in MSCs from bone marrow (BMSCs) did not change after chondrogenic culture. Moreover, the peak of COL10A1 expression in chondroinduced OA-MSCs appeared earlier (on day 7) than BMSCs (on day 14), implying their intrinsic difference in hypertrophy potential (Liu et al., 2020). Therefore, the selection of MSC for cartilage repair requires careful considerations, which may significantly influence the quality of regenerated cartilage.
Currently, the mechanistic or physiologic sameness of in vivo and in vitro hypertrophy is not clear. A comprehensive and in-depth comparison of hypertrophy between these two processes is lacking. It has been demonstrated that hypertrophic transition in bone development is spatiotemporally regulated. For instance, IHH, released by hypertrophic chondrocytes, stimulates the production of Parathyroid hormone-related peptide (PTHrP), which not only induces resting chondrocytes into proliferating chondrocytes, but also negatively suppresses hypertrophy (Kronenberg, 2003). Panexxin3 and CCAAT enhancer binding protein beta (C/EBPβ), generated by pre-hypertrophic chondrocytes, and plays an essential role in promoting the transition of proliferative chondrocytes to hypertrophic chondrocytes (Marino, 2011). This well-orchestrated regulation and feedback network does not exist in MSC-derived chondrogenesis and hypertrophic transition.
As of now, it is not clear if MSCs can form stable chondrocytes with features similar to cells in hyaline cartilage. Many studies have shown that the hypertrophic chondrocytes derived form TGFβ-stimulated MSCs undergo ossification and apoptosis when tested in murine subcutaneous or intramuscular implantation experiments (Mueller and Tuan, 2008; Bian et al., 2013; Lee et al., 2013; Zhu et al., 2017). However, whether intraarticularly implanted MSCs-derived chondrocytes also undergo osteogenesis and/or apoptosis in humans is not conclusively known.
Currently, the exact mechanism underlying hypertrophy is not clear. Based on current evidence, it is hypothesized that chondrocytic hypertrophy is associated with high level of RUNX2 and activation of Smad1/5 signaling upon TGF-β treatment (Mueller and Tuan, 2008; Chen et al., 2015). Several pathways, including the BMP, TGF-β, fibroblast growth factor (FGF) and wingless-related integration site (Wnt) pathways (Yang et al., 2001; Yu et al., 2010; Shen et al., 2013; Wang et al., 2014; Zhong et al., 2015), were shown to regulate this process. In particular, low TGFβ type I receptor/BMP type I receptor ratio was shown to account for the high hypertrophy potential of naïve OA-MSCs (Liu et al., 2020). In the past two decades, numerous strategies have been tested to suppress hypertrophy during MSC chondrogenesis. For example, supplementing fibroblast growth factor (FGF)-9 or 18 after the initiation of chondrogenesis (≥14 days) suppressed hypertrophy-related changes, which functioned through FGF receptor-3 (Correa et al., 2015). Browe et al., found that hypoxia culture attenuated the hypertrophy phenotype during MSCs chondrogenesis through modulating the parathyroid hormone-related peptide (PTHrP)-Myocyte Enhancer Factor 2C (MEF2C) pathway (Browe et al., 2019). Curcumin also suppressed MSC hypertrophy through inhibiting IHH and Notch signaling (Cao et al., 2017). Among these methods, treatments that suppress Wnt/β-catenin signaling pathway have showed the most promising results in reducing hypertrophy level (Yang et al., 2012; Narcisi et al., 2015; Zhong et al., 2016), which are specifically discussed in this review.
Canonical Wnt/β-Catenin Pathway in Chondrogenesis
The expansion of MSCs is partially driven by the Wnt pathway, which also maintains their potential (ten Berge et al., 2008; Cooper et al., 2011). Of note, the regulation of Wnt signaling depends not only on the presence of ligands but also on the action of endogenous antagonists of Wnt signaling (Usami et al., 2016). Numerous studies have shown that β-catenin-mediated canonical Wnt signaling exhibits the suppression of chondrogenesis (Day et al., 2005; Dong et al., 2007; Churchman et al., 2012; Wang et al., 2021). However, Deng et al. showed that de novo inhibiting β-catenin with XAV939 throughout a 21-days MSC chondrogenic pellet culture completely blocked the deposition of cartilage matrix and expression of chondrogenic markers (Deng et al., 2019a). Therefore, the exact role of the canonical Wnt/β-catenin pathway in MSCs chondrogenesis needs further investigation.
Inhibition of Hypertrophy Through Modulating Wnt/β-Catenin Pathway
Extensive evidence has shown that Wnt pathway participates in chondrocytic hypertrophy during MSC chondrogenesis. For instance, the study from Yang et al. found that transient stimulation of the Wnt pathway promoted the expression of hypertrophic phenotype during the chondrogenic differentiation of MSCs in pellet culture (Yang et al., 2012). Melatonin induced chondrogenic hypertrophy, which resulted from upregulated Wnt/β-catenin signaling (Wang et al., 2021). Interestingly, the basal level of β-catenin protein in BMSCs isolated from OA patients was also significantly higher than BMSCs from healthy donors (Tornero-Esteban et al., 2015), suggesting Wnt/β-catenin may also account for the high hypertrophy level in native OA MSCs. However, the relevant studies have not been reported yet.
In contrast, inhibiting Wnt signaling with IWP2 (Narcisi et al., 2015; Diederichs et al., 2019b), DKK1 (Rojas et al., 2019), XAV939 (Deng et al., 2019a; Wang et al., 2021), PKF (Huang et al., 2018) prevented hypertrophic maturation of MSC-derived cartilage. It is important to note that the timing of introducing Wnt inhibitors needs to be carefully considered. Deng et al. found that the addition of XAV939 from the beginning of chondrogenic culture blocked both hypertrophy and chondrogenesis (Deng et al., 2019a). In this study, MSCs were encapsulated in hyaluronic acid-based scaffolds, so it is not clear whether such a phenomenon translates to other culture systems.
Regarding the mechanism, there are not too many relevant studies. The study by Deng et al. demonstrated that XAV939 reduced hypertrophy level by inhibiting the Smad1/5-RUNX2 pathway (Deng et al., 2019a). In another study, IWP-2 was found to suppress hypertrophy through inhibiting the gene expression of BMP7 and Gli1, which are associated with BMP and IHH pathways (Diederichs et al., 2019b). Dreher et al. also reported a reduction in MSC-derived chondrocyte hypertrophy following IWP-2 inhibition of Wnt signaling. However, the mechanism discovered was different (Dreher et al., 2020). Specifically, IWP-2 was shown to inhibit hypertrophy through decreasing levels of myocyte enhancer factor 2C (MEF2C) and RUNX3. Interestingly, this study also showed that the absence of RUNX2 did not prevent hypertrophy. Therefore, Wnt inhibitors suppress hypertrophy through different mechanisms, which highly depend on their respective direct target(s). The resulting inhibition is also dependent on the cell types and culture platforms, such as two-dimensional versus three-dimensional cultures, and pellet versus scaffold cultures.
Interaction of Wnt/β-Catenin Signaling With Other Pathways in Hypertrophy
Currently, the network between Wnt signaling and other pathways during hypertrophy has not been established. In this review, we would like to summarize current findings from different studies and map the network. In the study of Bouaziz et al., it was found that the hypoxia-inducible factor 1α (HIF1α)-β-catenin interaction was a negative regulator of Wnt signaling and MMP-13 transcription (Bouaziz et al., 2016). Co-transfection of lymphoid enhancer binding factor 1 (LEF1) and β-catenin in chicken sternal chondrocytes induced hypertrophy through activating RUNX2, which was inhibited by high-mobility group box 2 (HMGB2) (Taniguchi et al., 2011). Zhu et al. found that downregulation of α-B-crystallin (CRYAB) reduced RUNX2 level through canonical Wnt/β-catenin pathway, resulting in a lower potential level of hypertrophy/osteogenesis. They also determined that CRYAB can interact with β-catenin and protect it from ubiquitination and degradation (Zhu et al., 2020). Recently, Riedl et al. reported that MSC-based pellet cultures underwent hypertrophy when retinoic acid receptor (RAR) pathway was activated. As a result of RAR activation, there was increased expression of Wnt2b and Wnt5a, which subsequently increased Wnt/β-catenin pathway activity (Riedl et al., 2020).
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) signaling are important in the development of cartilage (Vanyai et al., 2020). Specifically, low level of yes-associated protein (YAP), a transcription factor of the Hippo pathway, was associated with the formation of articular cartilage from MSCs (Lee et al., 2020). Using murine models, Deng et al. demonstrated that Yap1 overexpression significantly reduced COL10A1 level, which however was at the expense of reduced chondrogenesis. In contrast, suppressing YAP with siRNA promoted the expression of both COL2A1 and COL10A1 without selection (Deng et al., 2016). Recently, mechanical loading, under certain conditions, was shown to suppress hypertrophy (Aisenbrey et al., 2019). In the study by Lee et al., MSCs cultured in 3D chondrogenic combinatorial system with 40% strain showed a trend toward hypertrophic chondrocytes, indicated by the high level of RUNX2, which was also accompanied with more YAP expression (Lee et al., 2020). Of note, the association between mechanical loading and Wnt/β-catenin has been previously demonstrated (Sen et al., 2011; He et al., 2020). These observations raise the question, how does the YAP pathway interact with Wnt/β-catenin in hypertrophy? To the best of our knowledge, no relevant study has been published that directly addresses this question. However, interactions between YAP and Wnt/β-catenin have been previously explored in other cell types. In studies of colon cancer, the inhibition of Wnt signaling suppressed the expression of YAP. Conversely, YAP could be upregulated by activating Wnt pathway (Konsavage et al., 2012; Park et al., 2015). During the fibrosis process, stimulation of Wnt pathway caused dissociation of YAP from β-catenin destruction complex after they translocate to nucleus and modulate downstream target genes (Piersma et al., 2015). Unfortunately, the Wnt/β-catenin pathway was not simultaneously investigated in this study. Based on the findings above, we speculate that Wnt/β-catenin is upstream of the YAP pathway in regulating chondrocytic hypertrophy, which should be further explored in the future.
The molecules related to histone modification were also shown to participate in hypertrophy through Wnt pathways. Cornelis et al. found that Disruptor of telomeric silencing 1-like (Dot1L)-deficient mice could present Wnt signaling hyper-activation and ectopic chondrocyte hypertrophy (Cornelis et al., 2019). The study by Chen et al. demonstrated that inhibition of histone methyltransferase enhancer of zeste homologue 2 (EZH2) inhibited IHH, MMP-13, ADAMTS-5 and COL10A1 expression, thus ameliorating OA development (Chen et al., 2016). Interestingly, this study also showed that inhibition of EZH2 silenced β-catenin signaling. A genome-wide analysis has shown that the Wnt/β-catenin transcriptome was inhibited after regulating of HDAC (Chen et al., 2011). Moreover, in the study of Smith et al., the Wnt-related pathway’s transcription levels were restricted by overexpression of HDAC (Smith and Frenkel, 2005). In light of these findings, we summarized the potential interaction of Wnt pathways and other molecules and pathways controlling hypertrophy in Figure 2. In brief, when TGF-β binds to its receptor Activin-receptor like kinase (ALK) 1 accompanied with its co-receptor CD105, it phosphorylates Smad1/5 and stimulates the transcription of RUNX2, RUNX3 and MEF2, initiating the hypertrophy process. The activation of Smad1/5 is also regulated by Wnt-β-catenin, YAP (Gabriel et al., 2016) and IHH (Handorf et al., 2015). Particularly, the Wnt/β-catenin pathway plays an essential role in regulating chondrocytic hypertrophy, which is activated by EZH2 and inhibited by DOT1L, HDAC4, DKK1. XAV939 and other β-catenin inhibitors, such as IWP-2 and PKF, eventually inhibit Smad1/5, IHH and YAP, which collectively reduce chondrocytic hypertrophy.
[image: Figure 2]FIGURE 2 | Interactions of Wnt/β-catenin signaling with other molecules/pathways in governing chondrogenic hypertrophy in MSC chondrogenesis. LRP5/6: Lipoprotein Receptor-Related Protein 5/6; FZD: Frizzled; ALK1: Activin Receptor-Like kinase 1; CD105: Endoglin; TGFR2: TGF-Receptor 2; PTCH: Patched; SMO: Smoothened; GlI: Cubitus interruptus; MEF2: Myocyte enhancer factor; DC: Destruction Complex; APC: Adenomatous Polyposis Coli; CK1: Casein kinase 1; GSK3: Glycogen synthase kinase 3; EZH2: Zeste homologue 2; DOT1L: Disruptor of telomeric silencing 1-like; HDAC4: Histone deacetylase 4; IHH: Indian Hedgehog; YAP: Yes-associated protein; SIRT1: Silent mating type information regulator 2 homolog 1; XAV939, IWP-2, PKF and DKK1 are representative Wnt/β-catenin inhibitors in suppressing hypertrophy.
CONCLUSION AND FUTURE PERSPECTIVES
Chondrocytic hypertrophy remains a crucial obstacle when developing MSC-based therapy for the repair of hyaline cartilage injury. The hypertrophic phenotype in MSC-derived cartilage is most identified and characterized in vitro, or in animal models that are often used to assess bone formation, such as subcutaneous or intramuscular implantation. Whether MSC-derived chondrocytes also maintain hypertrophic features after long-term intraarticular implantation in humans is not clear. Of note, the concentration of active TGF-β in native synovial is around 60 pg/ml (de Sousa et al., 2019), which is significantly lower than that are used in inducing MSC chondrogenesis in vitro (1–10 ng/ml). In addition, the hypoxic environment found in the knee joint may also suppress hypertrophy. Therefore, the potential to generate hyaline cartilage from MSCs within native joints is still possible, which however needs to be validated in clinical studies.
The critical role of Wnt/β-catenin in promoting hypertrophy has been reviewed above. Largely due to our limited knowledge about the pathways controlling hypertrophy, the molecular mediation of Wnt and hypertrophic gene expression need further study. Current evidence suggests that RUNX2 may account for the hypertrophy phenotype. However, knocking down RUNX2 did not entirely suppress COL10A1 expression (Chen et al., 2020), which suggests that RUNX2 may not be the only transcriptional factor controlling COL10A1 expression (Dreher et al., 2020). As described above, activation of the IHH pathway and YAP upregulated RUNX2 expression and function (Shimoyama et al., 2007). Studying the interactions of the Wnt pathway, IHH, and YAP in the context of MSC hypertrophy will shed light on the network that dictates hypertrophy. Recently, iPSCs-derived multipotent cells displayed lower hypertrophy potential than MSCs after chondroinduction (Diederichs et al., 2019a). However, the underlying mechanism is unknown. Comparison of these two types of cells through an omics-based method, such as RNA-Sequencing, may enable the identification of new molecules that dictate the hypertrophy process.
Although the similarity of these two processes requires further investigation, knowledge from cells within the epiphyseal growth plate should still be informative for future study of in vitro hypertrophy of chondroinduced MSCs. The comparison between resting and hypertrophic chondrocytes in the growth plate confirmed that the cells in the resting zone are maintained in a Wnt-inhibitory environment (Hallett et al., 2021).
The use of spatial transcriptomics and/or proteomics in the growth plate can precisely define gene and protein levels in these 2 cell types. These findings can potentially identify the molecules involved in the network that governs hypertrophy. Presently, similar studies have not been reported.
Another strategy is to mine publicly available data, in particular omics data. Current studies associated with these datasets only investigated a small fraction of data points. We can use machine learning and other bioinformatic strategies to analyze large quantities of data that may assist in improved mapping of the hypertrophic development network. For example, Ochsner et al. developed a web knowledgebase, which incorporates the nodes of signaling pathways (receptors, enzymes, transcription factors and co-nodes) and their cognate bioactive small molecules (Ochsner et al., 2019). This tool enabled the prediction of pathway node-gene target transcriptional regulatory relationships.
Currently, extensive Wnt inhibitors that target different components in this pathway have been reported. Screening Wnt inhibitors that displayed high hypertrophy-suppressing potential with low side-effect is also critical. Recently, SM04690, a kind of small-molecule Wnt pathway inhibitor, was shown to be effective in treating OA. In particular, SM04690 may protect chondrocytes from dedifferentiation and hypertrophic chondrocyte conversion (Deshmukh et al., 2018). Given the demonstrated safety of SM04690, this new type of Wnt inhibitor is ready for clinical trials to enhance MSCs-based therapy for repairing articular cartilage in humans.
Lastly, the Wnt pathway is critical in maintaining cell function and viability. For example, long-term treatment with PKF, a Wnt inhibitor, induced cell apoptosis in MSCs-derived cartilage (Huang et al., 2018). Therefore, the timing and duration of suppressing Wnt/β-catenin pathway to reduce hypertrophy require careful investigation.
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Bone morphogenetic proteins (BMPs) have been clinically applied for induction of bone formation in musculoskeletal disorders such as critical-sized bone defects, nonunions, and spinal fusion surgeries. However, the use of supraphysiological doses of BMP caused adverse events, which were sometimes life-threatening. Therefore, safer treatment strategies for bone regeneration have been sought for decades. Systemic administration of a potent selective antagonist of retinoic acid nuclear receptor gamma (RARγ) (7C) stimulated BMP-induced ectopic bone formation. In this study, we developed 7C-loaded poly lactic nanoparticles (7C-NPs) and examined whether local application of 7C enhances BMP-induced bone regeneration. The collagen sponge discs that absorbed recombinant human (rh) BMP-2 were implanted into the dorsal fascia of young adult mice to induce ectopic bone. The combination of rhBMP-2 and 7C-NP markedly increased the total bone volume and thickness of the bone shell of the ectopic bone in a dose-dependent manner compared to those with rhBMP-2 only. 7C stimulated sulfated proteoglycan production, expression of chondrogenic marker genes, and Sox9 reporter activity in both chondrogenic cells and MSCs. The findings suggest that selective RARγ antagonist 7C or the related compounds potentiate the bone inductive ability of rhBMP-2, as well as support any future research to improve the BMP-2 based bone regeneration procedures in a safe and efficient manner.
Keywords: bone morphogenetic protein, retinoic acid receptor γ, endochondral bone formation, bone regeneration, Bmp/Smad signaling, RARγ inverse agonist
1 INTRODUCTION
Treatment for large bone defects caused by tumor resection or complex fracture remains a challenge in the field of orthopedics. Autogenous bone grafting has been the gold standard, but the application is hampered by limited availability and donor site morbidity (Laurie et al., 1984; Betz, 2002). Bone morphogenetic proteins (BMPs) which belong to the transforming growth factor superfamily have been attracting attention as a novel osteoinductive grafting material (Urist, 1965; Wozney et al., 1988; Burkus et al., 2002; Lo et al., 2012).
However, it is challenging to strike a balance between ensuring sufficient BMP bone-inducing capacity and suppressing the side effects of BMP. The use of BMP with supra-physiological high dose is reported to correlate with dose-dependent side effects such as inflammation, soft tissue edema, unintended ectopic bone formation, and the deteriorated quality of newly formed bone (Cahill et al., 2009; Zara et al., 2011; James et al., 2016). On the other hand, in a study of human open tibial fractures, the rate of non-union was increased by more than 40% after low-dose BMP treatment (Govender et al., 2002). There is a strong need for a method that efficiently induces bone regeneration with low doses of BMPs.
Retinoic acid is an active metabolite of vitamin A, and it plays a critical role in cellular differentiation, embryogenesis, and maintaining homeostasis (Chambon, 1996; Henning et al., 2015). Among three types of retinoic acid receptors (RARα, RARβ, and RARγ) (Chambon, 1996), the signal mediated via RARγ plays a major role in chondro-osteogenesis (Williams et al., 2009; Shimono et al., 2011; Uchibe et al., 2017). Systemic administration of selective RARγ agonists effectively blocks heterotopic ossification in BMP-induced ectopic bone formation model and fibrodysplasia ossificans progressive (FOP) model animals (Shimono et al., 2011; Chakkalakal et al., 2016). Conversely, administration of RARγ antagonists enhanced cartilage tissue formation and ectopic bone, respectively (Uchibe et al., 2017). Neither selective RARγ agonist nor antagonist exhibit their effects in RARγ null mice.
In this study, we hypothesized that local treatment of RARγ antagonists potentiates bone inductive activity of BMP-2. We synthesized 7C (described in WO 2005/066115 A2) and loaded into polylactide-nanoparticles (PLA-NPs). This 7C contains 7a and 7a enantiomer, where 7a enhanced BMP-2 induced ectopic bone formation (Uchibe et al., 2017). The 7C is an inverse agonist that activates repressor function of RARγ but does not competitively inhibit the binding of retinoic acid with RARγ. Therefore, 7C does not show agonistic activity even when applied at high concentrations, while other RARγ antagonists may show agonist activity at high doses. We evaluated the therapeutic potential of 7C as an enhancer of BMP-2 in a mouse ectopic bone formation model and characterized its action in the process of endochondral ossification.
2 MATERIALS AND METHODS
2.1 Retinoids and Nanoparticles
NRX 204647 (selective RARγ agonist, CAS 1351452-80-6) and 7C (selective RARγ antagonist, described in WO 2005/066115 A2) were synthesized by Atomax Chemicals (Shenzhen, China). Structures of those compounds are shown in Supplementary Figure S1. CD2665 (RARγ antagonists, CAS 170355-78-9) and CD1530 (RARγ agonist, CAS:107,430-66-0) were purchased from Cayman Chemical Company (Ann Arbor, MI, United States). For the in vitro study, synthetic retinoids were dissolved in DMSO to make a 1 mM stock solution, which was further diluted with 200 proof ethanol. For the animal study, NRX204647 or 7C were loaded into polylactide-nanoparticles (PLA-NPs) for sustained local delivery. Retinoid-loaded NPs were formulated using a modification of the emulsification-solvent evaporation method with albumin as a colloidal stabilizer (Chorny et al., 2010; Chorny et al., 2012). Synthetic retinoid loaded PLA-NPs are biodegradable and release the active drug for a prolonged time period (Shield et al., 2020).
2.2 Mouse Ectopic Bone Formation Model
2.2.1 Experimental Design
All animal experiments were approved by the Animal Experimental Committee of our institution. Six-week-old C57BL/6J mice were purchased from Charles River Laboratories Japan, Inc. (Kanagawa, Japan). Briefly, collagen sponge discs (pellets) with 5.0 mm of diameter were prepared by punching out absorbable collagen sponges (CollaTape; Zimmer Dental, Carlsbad, CA, United States). In total, 20 μl of PBS containing 1.5 μg of recombinant human (rh) BMP-2 and NPs (blank-NP, 7C-NP, or NRX204647-NP) was soaked into the pellets. The pellets were implanted underneath the left and right dorsal fascia. The mice were divided into six groups: 1) blank-NP (control, n = 25), 2) 0.3 μg of 7C-NP (7C-0.3, n = 17), 3) 1.0 μg of 7C-NP (7C-1.0, n = 17), 4) 5.0 μg of 7C-NP (7C-5.0, n = 25), 5) 1.0 μg of NRX204647-NP (NRX-1.0, n = 7), and 6) 5.0 μg of NRX204647-NP (NRX-5.0, n = 7). Unless specified, the 7C group refers to the 7C-5.0 group. The pellets were explanted 14 days after surgery followed by micro-CT imaging and histological analysis. In the control and 7C-5.0 groups, the pellets were also explanted at Day 7 for histological analysis and quantification of sulfated glycosaminoglycan (sGAG) (n = 8 per group).
2.2.2 Micro-CT Analysis
The pellets were explanted at Day 14 and scanned using the ex vivo high-resolution micro-CT (SkyScan 1272; Bruker, Billerica, MA, United States) with a source voltage of 80 kV, source current of 125 μA, and pixel size of 10 μm. Then, they were analyzed using micro-CT software (CT-Analyzer, Bruker).
2.2.3 Histological Analyses and Immunohistochemistry
The dissected and formalin-fixed tissue samples were decalcified in 10% ethylenediaminetetraacetic acid, dehydrated via an ethanol series, embedded in paraffin wax, and serially sectioned at 3-μm thickness. Hematoxylin and eosin (H&E), safranin O staining, and immunohistochemical staining were performed. The list of antibodies and their detection conditions are listed in Supplementary Table S1. The antibodies for osteocalcin (OCN), p-Smad1, p-Smad2, Sox9, and CD163 were visualized using Histofine® Simple Stain MAX PO (Nichirei Bioscience, Tokyo, Japan) and Simple Stain DAB Solution (Nichirei Bioscience). The antibodies for αSMA and OCN were stained with Alexa Fluor Plus 488–conjugated goat anti-rabbit secondary antibody (A32731, 1:1000; Thermo Fisher Scientific, Waltham, MA, United States) and Alexa Fluor 555-conjugated goat anti-rat secondary antibody (A21434, 1:1000; Thermo Fisher Scientific) for 1 h, followed by nuclear staining with 4′,6-diamidino-2-phenylindole solution (Dojindo Laboratories, Kumamoto, Japan) and mounting with Prolong Diamond Antifade Mountant (Thermo Fisher Scientific). BZ-X700 All-in-one Fluorescence Microscope (Keyence Corp., Osaka, Japan) was used to observe and capture the fluorescence images. To evaluate cartilage tissues, the area stained by safranin O staining was quantified using ImageJ (version 1.52q; U. S. National Institutes of Health; https://imagej.nih.gov/ij/) (Schneider et al., 2012). The bone shell thickness of the BMP-2 pellets was measured at randomly selected sites (eight sites/pellets). The immunopositive cells for p-Smad1, p-Smad2, and Sox9 were counted within cartilaginous tissue in BMP-2 pellets (300 × 300 μm, 2 fields/pellet), as previously described (Uchibe et al., 2017).
2.2.4 Sulfated Glycosaminoglycans in BMP Pellets
The BMP-2 pellets were digested with 0.05% papain (Sigma-Aldrich, St. Louis, MO, United States) for 18 h at 65°C. Then, the amounts of the sulfated glycosaminoglycans (sGAGs) were measured using a dimethylmethylene blue dye-binding assay (Blyscan™ Glycosaminoglycan Assay Kit, Biocolor, Westbury, NY, United States).
2.2.5 Evaluation of Inflammatory Response
The BMP-2 pellets, 1.5 μg rhBMP-2 (BMP 1.5 μg, n = 6), 2.25 μg rhBMP-2 (BMP 2.25 μg, n = 4), 3.0 μg rhBMP-2 (BMP 3.0 μg, n = 4), 1.5 μg rhBMP-2, and 5.0 μg of 7C-NP (BMP 1.5 μg + 7C, n = 6) were harvested on Day 7 and stained with H&E. The pellets without rhBMP-2, 5.0 μg of blank-NP (Blank, n = 6), 1.0 μg or 5.0 μg of 7C-NP (7C, n = 6 each) were also harvested. The area of the inflammatory zones, defined by infiltration of inflammatory cells such as histiocytes and fibroblasts (Lee et al., 2012; Huang et al., 2014), were measured using ImageJ. In addition, mRNAs were prepared from the pellets of the BMP 1.5 μg and BMP 1.5 μg + 7C groups (n = 12 per each group), and the gene expression levels of inflammatory cytokines were measured by real-time polymerase chain reaction.
2.3 In Vitro Experiment
2.3.1 In Vitro Chondrogenic Differentiation
ATDC5 cells (Riken Cell Bank, Tsukuba, Japan) and mesenchymal stem cells (MSCs; Cyagen, Guangdong, China) were cultured as micromass cultures as described previously (Seriwatanachai et al., 2012). Briefly, ATDC5 cells and MSCs were spotted at 1 × 105 cells in 10 μl and cultured in chondrogenic medium [DMEM containing 1% ITS + Premix Universal Supplement (Corning Inc., NY, United States), 50 μg/ml ascorbic acid (Sigma-Aldrich), 40 μg/ml L-proline (Wako, Osaka, Japan), 100 nM dexamethasone (Sigma-Aldrich), 10 ng/ml transforming growth factor β3 (PeproTech, Rocky Hill, NJ, United States), and 1% antibiotic-antimitotic solution (Sigma-Aldrich)]. The cultures were treated with 20 ng/ml of rhBMP-2 and DMSO or retinoid reagents (50 nM 7C or 100 nM NRX 204647) for 6 days, and fixed with 4% paraformaldehyde, stained with Alcian blue (pH 1.0). The staining intensity was quantified using ImageJ (Schneider et al., 2012).
2.3.2 Immunoblotting
ATDC5 cells were grown to approximately 70% confluence in six-well plates in Dulbecco’s modified Eagle’s medium/Ham’s nutrient mixture F-12 containing 5% fetal bovine serum (FBS). Next, serum deprivation (0.3% FBS) was performed for 16 h. Subsequently, cells were treated with 20 ng/ml of rhBMP-2 and 7C (0–0.2 μM), CD2665 (0–1.0 μM), NRX204647 (0–0.2 μM), or CD1530 (0–1.0 μM) for 45 min. The total cellular proteins were harvested in radioimmunoprecipitation assay buffer (Thermo Scientific) supplemented with 1% protease/phosphatase inhibitor cocktail (Cell Signaling Technology, Inc., Danvers, MA, United States). Then, the protein concentrations were measured using the bicinchoninic acid method. Cell proteins were separated into 4–12% Bis-Tris gels (Life Technologies) and were transferred to polyvinylidene difluoride membranes (Nippon Genetics, Tokyo, Japan). After blocking with 5% skim milk, membranes were incubated overnight at 4°C with dilutions of antibodies against phospho-Smad1 (5753, 1:1000, Cell Signaling Technology), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (2118, 1:1000, Cell Signaling Technology), followed by incubation with a horseradish peroxidase-conjugated secondary antibody (7074, 1:1000, Cell Signaling Technology). The ECL plus Western Blotting Detection System kit (GE Healthcare, Chicago, IL, United States) was used to detect immunoreactive proteins.
2.3.3 Real-Time Polymerase Chain Reaction
ATDC5 cells and MSCs were cultured in 24-well plates in chondrogenic medium supplemented with rhBMP-2 (20 ng/ml) and 7C (50 nM) or NRX (100 nM) for 5 days. Cells or BMP-2 pellets were homogenized in TRIzol Reagent (Invitrogen, Carlsbad, CA, United States). Total RNA was extracted using the Direct-zol RNA kit (Zymo Research, Orange, CA, United States) and was reverse-transcribed to cDNA using ReverTra Ace qPCR RT Master Mix (Toyobo, Osaka, Japan). Gene expression was measured using real-time PCR with SYBR green master mix (Applied Biosystems, Foster City, CA, United States) in the Step One Plus Real-Time PCR System (Applied Biosystems, Foster City, CA, United States). Target gene expression levels were normalized to those of GAPDH, and fold changes were calculated relative to the control group using the 2−∆∆ Ct method. Supplementary Table S2 shows the primer sequences.
2.3.4 Reporter Assay
Cignal Finder 45-pathway reporter array plate (CCA 901L; Qiagen, Germany) was used to profile the action of selective RARγ ligands on other signaling pathways. The details and further information about the array plate and experimental protocol are described in the handbook, which is downloadable from the manufacturer’s website (www.qiagen.com). In brief, we prepared a transfection reagent mixture for the entire plate and mixed the mixture with DNA (per well: 20 ng RARγ-pSG5 expression vector, 200 ng pathway specific firefly-luc reporter and 5 ng constitutively active Renilla-luc reporter). We then dispensed a single cell suspension of AD293 cells (TaKaRa Bio, Japan) at a density of 40,000 cells per well. On the next day, medium was replaced and the drug treatment started. The reporter array plate was subjected to dual luciferase assay 24 h after the drug treatment. Changes of pathway-specific activity was expressed by Log2 of fold changes of relative reporter activity of the drug treated wells over those of the control wells. Another transient transfection assay was carried out as described previously (Uchibe et al., 2017). 4xA1-p89-luc contains four tandem copies of Sox9 binding cartilage-specific enhancer of the mouse aggrecan gene connected to Col2a1 derived minimal promoter. This reporter plasmid was used to monitor activity of Sox9 and L-Sox5/Sox6 (Han and Lefebvre, 2008). Id1-luc (Katagiri et al., 2002) and RARE-luc reporter RARE-luc (retinoic acid response element reporter) (Hoffman et al., 2006) were used to monitor BMP-Smad signaling and retinoic acid receptor signaling, respectively.
2.4 Statistical Analysis
Two groups were compared using the unpaired Student’s t-test, and three or more groups with one-way analysis of variance (ANOVA), followed by the Bonferroni multiple comparison test. Data were expressed as mean ± standard deviation and were analyzed using GraphPad Prism 8.0. p-Values of <0.05 were considered statistically significant.
3 RESULT
3.1 A Mouse Model of Ectopic Bone Formation
We first characterize our ectopic bone formation model. The BMP-2 pellets implanted underneath the dorsal fascia were harvested on Day 7, 10, and 14 and were subjected to radiological, histochemical, and molecular biological assessments (Figures 1A,B). Figure 1C showed the endochondral bone formation process in the BMP-2 pellets on Days 7, 10, and 14. By Day 7, chondrocytes appeared around the pellet forming cartilaginous tissue. By Day 10, cartilage tissue began to replace bone tissue with signs of angiogenesis inside the pellets (Figure 1D). By Day 14, the majority of the pellets were composed of mature bone tissue. The results validated that this ectopic bone formation model was a reproducible model for ectopic bone formation and suitable to examine the drug effectiveness in a quantitative manner.
[image: Figure 1]FIGURE 1 | A mouse model of BMP-2-induced ectopic bone formation. (A) BMP-2 pellets 14 days after implantation. (B) The experiment outline. (C) Histology and μCT images of the BMP-2 pellets on Days 7, 10, and 14 (scale bar = 1 mm or 100 μm for whole view and the magnified view, respectively). (D) The BMP-2 pellet on Day 10. Cartilage tissue was replaced by new bone (OCN, red) and vasculature (αSMA, green).
3.2 The Effects of 7C-NPs on Ectopic Bone Formation
We first tested whether local application of RARγ antagonists stimulated ectopic bone formation. We selected the 7C compounds for this purpose because 7C stimulates the ectopic bone formation via systemic administration (Uchibe et al., 2017) and has similar chemical properties in size, organophilicity and structure to those of NRX204647 (Supplementary Figure S1). The NRX204647 loaded PLA-NPs successfully inhibit chondrosarcoma growth with minimum local tissue damage (Shield et al., 2020). To examine the action of 7C-NPs on bone formation, 7C-NPs or blank-NPs were mixed into the BMP-2 pellets. Figures 2A,B show the representative ex vivo and in vivo CT images of the BMP-2 pellets with 7C-NPs or blank NPs. The BV of the pellets was significantly higher in the 7C group than that in the control group, and the effect of 7C-NPs was in a dose-dependent manner. In contrast, NRX204647-NPs reduced the bone volume (Figure 2C, NRX). The 7C-NP group formed more dense microstructural bone compared to the blank-NP group (Figure 2D, Control vs. 7C). The histology revealed that the 7C group had a thicker bone shell than the control group (Figures 2E,F).
[image: Figure 2]FIGURE 2 | Analysis of bone induced in the BMP-2 pellets on Day 14. (A) Ex vivo 3D micro-CT images of the ectopic bone (scale bar = 1 mm). (B) In vivo micro-CT images of ectopic bones (scale bar = 2 mm). (C) The BV of the ectopic bone in the 7C and NRX groups. The BV was significantly higher in the 7C groups and lower in the NRX groups in a dose-dependent manner compared to the control value (control; n = 25, 7C-0.3; n = 17, 7C-1.0; n = 17, 7C-5.0; n = 25, NRX-1.0; n = 7, and NRX-5.0; n = 7; *p < 0.05, ***p < 0.001, and ****p < 0.0001). (D) Comparison of microstructural bone parameters between the control and 7C groups. n = 5, *p < 0.05, and **p < 0.01. (E) Histological sections (H&E staining) of BMP-2 pellets (whole view, scale bar = 1 mm; magnified view, scale bar = 400 μm). 7C group formed thicker bone shell. (F) Comparison of bone shell thickness. n = 5, *p < 0.05 and **p < 0.01.
3.3 The Effect of 7C on Cartilage Formation
To understand the action of 7C, cartilage formation was examined on Day 7 (Figure 1C). The average of the wet weight of BMP-2 pellets was significantly heavier, and the sGAG amounts were significantly higher in the 7C group than the control group (Figures 3A,B). The Safranin O-stained cartilage tissue area of the BMP-2 pellets was also larger in the 7C group than that in the control group (Figures 3C,D). These results suggest that 7C enhanced cartilage formation during the BMP-induced endochondral ossification. Activation of the BMP/Smad signaling is closely linked to cartilage formation (Hoffmann and Gross, 2001; Thielen et al., 2019). In vivo enhancement of BMP/Smad signaling pathway by 7C was investigated by immunohistochemical staining of p-Smad1. In the cartilage tissue of BMP-2 pellets on day 7, the number of p-Smad1-positive cells in the nucleus was observed to be higher in the 7C group than in the control group (Figures 4A,B). Higher positivity rates were also detected for p-Smad2 and Sox9 in the 7C group compared to the control group, suggesting that 7C stimulates the Smad2 pathway (Figures 4A,B). These analyses were performed only in cartilaginous tissue areas (not including bone tissue).
[image: Figure 3]FIGURE 3 | Evaluation of cartilage components in BMP pellets on Day 7. (A) Macroscopic appearance and wet weight of the BMP-2 pellets with 7C-NPs (7C) and blank-NP (Control) (scale bar = 5 mm). (B) The sGAG amount in the BMP-2 pellets. (C) Safranin O staining of the BMP-2 pellets (whole view, scale bar = 1 mm; magnified view, scale bar = 200 μm). (D) Comparison of cartilage tissue area. The red stained area was measured using ImageJ (version 1.52q, U. S. National Institutes of Health; https://imagej.nih.gov/ij/). n = 8 per group, **p < 0.01.
[image: Figure 4]FIGURE 4 | Immunohistochemical staining of BMP-2 pellets on Day 7. (A) p-Smad1, p-Smad2, and Sox9 positive cells in the cartilage tissue of the BMP-2 pellets with blank-NPs (Control) and 7C-NPs (7C). (B) Quantitative analysis of positive cells. The immunopositive cells for p-Smad1, p-Smad2, and Sox9 were counted only in cartilaginous tissue formed in BMP-2 pellets. n = 8 per group, *p < 0.05, and **p < 0.01.
3.4 Analyses of Inflammation Around BMP Pellets
Previous reports have demonstrated that BMP-2 exaggerates inflammatory response, which may result in undesirable adverse events (Cahill et al., 2009; James et al., 2016; Zara et al., 2011). If 7C increases BMP-2-induced endochondral ossification solely by activating BMP signaling, we should see a more severe inflammatory reaction by applying 7C together with BMP-2. To elucidate this, we examined the histology of the pellets with 7C-NP or blank-NP in the presence or absence of BMP-2 (Figure 5A). The aggregation of inflammatory cells including histiocytes, granulocytes, and fibroblasts was observed at the margin of the pellet (inflammatory zone), as reported (Lee et al., 2012; Huang et al., 2014) (Figure 5B). We observed infiltration of inflammatory cells within the pellets and in the surrounding muscle tissue in all BMP-2 pellets. BMP-2 increased the area of inflammation in a dose-dependent manner (Figure 5C). In blank-NP and 7C-NP pellets without BMP-2, a thin line of inflammation was observed near the surface of the pellets. There was no noticeable difference in the size of inflammatory zones between blank-NP and 7C-NP pellets, indicating that 7C has no proinflammatory action (Figures 5A,C). The inflammatory zones of 7C-NP + 1.5 μg BMP-2 pellets were slightly larger than those of 1.5 μg BMP-2 only pellets, but the difference was not statistically significant. The expression levels of major inflammatory cytokines (TNF-α, IL1-β, and IL-6) were similar between 1.5 μg BMP-2 only and 7C-NP + 1.5 μg BMP-2 pellets, indicating that 7C-NP did not affect local inflammation caused by BMP-2 (Figure 5D).
[image: Figure 5]FIGURE 5 | Effect of 7C on inflammatory response. (A) Representative microscopic images of the inflammatory zone stained with H&E in the pellets; the inflammatory zone expanded depending on the BMP amount, and the pellets without BMP (containing only blank-NP or 7C-NP) showed a small inflammatory zone. Whole view, scale bar = 1 mm; magnified view, scale bar = 200 μm. (B) Histological analysis of the inflammatory zone. The tissue (inflammatory zone) surrounding the collagen sponge (CS) was infiltrated with inflammatory cells such as macrophages (yellow arrow), fibroblasts (white arrow), leukocytes (black arrow) and lymphocytes (red arrow). Immunohistochemistry for CD163 that is positive in histiocytes. (C) The analysis of the inflammatory zone. *p < 0.05, ****p < 0.0001, and ns, not significant. (D) The mRNA expression levels of inflammatory cytokines (TNF-α, IL1-β, and IL-6) in the BMP-2 (1.5 μg) pellets with or without 7C-NPs. n = 12 per group. ns, not significant.
3.5 Effects of RARγ Antagonists and Agonists on ATDC5 Cells
To study cellular actions of RARγ antagonists, we performed in vitro studies using ATDC5 cells. ATDC5 cells can exhibit similar activity to chondrogenic differentiation—initiation of cartilage matrix synthesis, accumulation of cartilage matrix, and terminal differentiation, corresponding to the early, mid, and late phases of chondrocyte differentiation seen during endochondral bone formation in vivo (Shukunami et al., 1997). To study the actions of 7C on chondrogenic differentiation, we used this ATCD5 culture system. 7C treatment enhanced sulfated proteoglycan accumulation in micromass culture and increased the gene expression of Col2a1 and Acan (Figures 6A,B). Conversely, treatment with RARγ agonist, NRX204647 suppressed the proteoglycan accumulation and gene expression of Col2a1 and Acan, and further upregulated the gene expression of matrix degradation enzymes, Adamts4, Adamts5 and Mmp9 (Figures 6A,B). We also examined the effect on the BMP-Smad signaling pathway. The RARγ antagonists 7C and CD2665 moderately stimulated BMP/Smad signaling and also enhanced the action of BMP-2, as determined by the Id-luc reporter assay (Figure 7A). The immunoblot analysis with anti-pSmad1 antibody revealed that the phosphorylation of Smad1 was enhanced by RARγ antagonists (7C and CD2665) and suppressed by RARγ agonists (NRX204647 and CD1530) (Figure 7B).
[image: Figure 6]FIGURE 6 | Effect of RARγ agonist/antagonist on ATDC5 cells and MSCs. (A) Alcian blue staining of ATDC5 cells in micromass (scale bar = 1 mm). The blue stained area was extracted using ImageJ (version 1.52q, U. S. National Institutes of Health; https://imagej.nih.gov/ij/) (n = 4 per group). (B) Quantitative RT-PCR analysis of ATDC5 cells cultured in chondrogenic medium supplemented with BMP-2 (20 ng/ml) and 7C (50 nM) or NRX (100 nM) (n = 4 per group). (C) Alcian blue staining of MSCs in micromass (scale bar = 1 mm). The blue stained area was extracted using ImageJ (n = 4 per group). (D) The gene expression level of Sox9 in MSCs cultured in chondrogenic medium. Sox9 expression was upregulated by 7C, even in the absence of BMP-2 (n = 3 per group). *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 and ns, not significant.
[image: Figure 7]FIGURE 7 | Effect of RARγ antagonists and agonists on BMP signaling. (A) Id1-luc reporter activity in ATDC5 cells treated with RARγ antagonists (CD2665 and 7C) with or without 10 ng/ml rhBMP-2. n = 4 per group. **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant. (B) Immunoblotting analysis with p-Smad1 antibody. The ATDC5 cells were treated with BMP-2 and increasing concentrations of RARγ antagonists (CD2665 and 7C) and RARγ agonists (NRX204647 and CD1530). The cell lysates were prepared 45 min after treatment and subjected to immunoblot analysis for p-Smad1 and GAPDH.
3.6 Effects of RARγ Antagonists and Agonists on MSCs
Condensations of MSCs and their chondrogenic differentiation play a key role in endochondral bone formation (Kronenberg, 2003; Scotti et al., 2010; Freeman et al., 2015; Knuth et al., 2017). The actions of RARγ antagonists and agonists on chondrogenesis were also examined in the MSC cultures. As seen in the ATDC5 culture, 7C also enhanced the proteoglycan accumulation in MSCs in micromass while NRX204647 suppressed it (Figure 6C). In addition, 7C upregulated the expression of Sox9, a master regulator of chondrogenic differentiation, with or without BMP-2, indicating that 7C might enhance chondrogenic differentiation of MSCs even in the absence of BMP-2 (Figure 6D). To complement this work, we performed reporter assays with 4xA1-p89-luc (repoter for Sox9) and Id1-luc. RARγ antagonists enhanced the BMP-2 stimulatory action of the aggrecan promoter activity and stimulated Id1-luc activity (Supplementary Figures S2A,B). The retinoid reporter assay confirmed inhibitory action of RARγ antagonists on retinoid signaling (Supplementary Figure S2C).
4 DISCUSSION
In this study, we demonstrated that in the mouse ectopic bone formation model, the co-administration of 7C-NP with BMP-2 increased the volume of newly formed bone after increased cartilage tissue formation (Figure 2). When BMP is applied locally to induce bone, it causes inflammation. Indeed, the size of the inflammatory zone was enlarged accordingly with increasing dosage of BMP-2 (Figure 5). Interestingly, 7C has no proinflammatory effect by itself and promoted BMP-2-induced bone formation without exaggerating BMP-2 induced local inflammation (Figure 5). Current problems of the BMP-based bone regeneration therapy include the high cost of the drugs and their adverse effects such as tissue edema and increased bone resorption, mainly due to local inflammation (James et al., 2016). 7C might solve such problems because BMP combination with 7C enhances bone induction with lower doses of BMPs, which may reduce drug costs and adverse effects. However, further studies, including histological and molecular assessments to elucidate the cellular and molecular effects of 7C and testing for efficacy in larger animal models should be conducted to conclude the therapeutic efficacy of this approach.
One possible mechanism of the enhancement of BMP bone-inducing action by 7C is the enhancement of BMP-Smad signaling activity on chondrogenesis. It has been reported that RA promotes the degradation of p-Smad1 (Sheng et al., 2010), and that selective RARγ agonists strongly reduce pSmad1/5/8 protein levels (Shimono et al., 2011). In line with those previous works, we confirmed that the selective RARγ antagonist 7C stimulated canonical BMP-Smad signaling in vivo and in vitro (Figures 4, 7). 7C did not significantly enhance the BMP-2-induced inflammatory response although it marginally widened the inflammatory zone in the presence of BMP-2. In contrast, 7C strongly stimulated BMP-2 induced bone formation in a dose-dependent manner. Therefore, it is unlikely that the stimulatory effect of 7C on bone formation is solely dependent on BMP-Smad signaling. The slight enlargement of the inflammatory zone by 7C is an acceptable reaction, given the potentiating effect of 7C on bone formation. 7C may stimulate non-canonical BMP signaling, which stimulates ectopic cartilage formation (Jin et al., 2006; Nepal et al., 2013). Additionally, stimulation of inflammation by BMP-2 may be dominantly mediated by the Smad signaling pathway. Notably, RARγ is reported to be a positive regulator of the inflammatory cytokine production of macrophages and CD8+ T cells (Dzhagalov et al., 2007; Gordy et al., 2009; Duong and Rochette-Egly, 2011). These reports suggest that RARγ antagonists may possess anti-inflammatory effects. Rather than increasing the BMP dose, co-administration of 7C enables efficient bone regeneration without an accompanying severe inflammatory response. However, the effect of 7C alone on the local inflammatory response should be pursued in the future.
Inhibition of RARγ signaling by 7C could stimulate chondrogenesis of mesenchymal cells in a BMP-independent manner after the mesenchymal cells are primed by exposure to BMP. The 7C used in this study are one of the most potent and highly selective RARγ antagonists. However, it should be noted that the biological effects of such compounds may be the sum of the RARγ-mediated on-target effects and compound specific off-target effects that are caused by interactions with other molecules. Indeed, we found that various intercellular pathways were affected by 7C and NRX204647 using the Cignal Finder 45-pathway reporter array plate (Supplementary Figure S3). 7C and NRX204647 predominantly demonstrated opposite effects on the affected pathways, suggesting that actions on those pathways were likely mediated by RARγ. Interestingly, NRX204647 suppressed cAMP-PKA-CREB, HIF1a, and TGFβ signaling pathways, whereas 7C enhanced them. These pathways are known to be involved in cartilage formation (Rosengart et al., 1975; Kosher and Savage, 1980; Seyedin et al., 1986; Johnstone et al., 1998; Nöth et al., 2002; Schipani, 2006; Yokoyama et al., 2015). The results are consistent with the immunohistochemistry results of BMP-2 pellets combined with 7C, which show a larger positive ratio of p-Smad2 and Sox9 positive cells, because p-Smad2 plays an important role in TGFβ signaling, and Sox9, a master regulator of chondrocytes, is closely regulated by cAMP-PKA-CREB and HIF1a (Amarilio et al., 2007; Zhao et al., 2009; Fernández-Torres et al., 2017). Taken together, the pro-chondrogenic effects via multiple signaling pathways, in addition to the mild enhancement of BMP signaling, may play roles in enhancing BMP-2 induced bone formation by 7C. Contribution of those signaling pathways in cartilage formation should be future studied. In addition, some off-target effects may be involved.
Because the 7C-NPs enable extended release of 7C, 7C could regulate bone formation and maintenance. Analysis of ectopic bone by micro-CT showed an increase in bone volume in the 7C + BMP-administered group compared with that of the BMP alone group. In addition, the thickness of the ectopic bone shell was markedly increased. To date, many animal studies have shown that administration of retinoic acid or its precursor leads to bone loss (Lind et al., 2013; Green et al., 2016). The mechanism has not been understood well, but it has been reported that retinoids promote osteoclastgenesis indirectly via other retinoid target cells such as BMSC (Conaway et al., 2011; Green et al., 2018). On the other hand, global knock down or Prrx-1Cre mediated limb specific ablation of RARγ gene results in bone loss (Green et al., 2018), importantly suggesting that RARγ is required for normal skeletal formation and homeostasis and that the non-liganded RARγ functions as a repressor of both. Selective RARγ antagonist 7C is classified as an inverse agonist (Klein et al., 1996; Nagpal and Chandraratna, 2000). It binds to RARγ with high affinity, stabilizes the heterodimer structure with RXR, and facilitates recruitment of co-repressors. Thus, enhancing the repressor function of RARγ might be an additional mechanism by which 7C increased bone formation.
In the animal experiment conducted, we chose the PLA-nanoparticle as the vehicle to locally deliver 7C in a sustained manner. The reason is that PLA-NP is a widely used drug carrier and is FDA approved. In addition, by applying the drug locally, we could minimize systemic side-effects. Furthermore, we recently formulated NRX204647-loaded PLA-NP which successfully inhibited chondrosarcoma growth with minimum local tissue damage (Shield et al., 2020). Since the chemical properties of NRX204647 and 7C are quite similar in size, organophilicity, and structure (Supplementary Figure S1), we predicted that PLA-NP is a suitable drug vehicle for our study. In fact, enhancement of BMP-induced bone formation by 7C was quite reproducible.
Before translation to clinical work, multiple studies must be conducted. Thorough investigation of drug safety, especially regarding local toxicity and systemic effects (liver and kidney function), is needed. In addition, it is important to prove its effectiveness in more clinically relevant experimental systems such as large bone defect, fracture, and spinal fusion. We are currently testing 7C in a rat spinal fusion model. We hope the experiment further validates the therapeutic value of the 7C for BMP-based bone regeneration. This study supports future studies on the cost, effectiveness, and safety of BMP-bases therapies.
5 CONCLUSION
Novel local drugs, specifically the PLA-NPs loaded with the synthetic selective RARγ antagonist, 7C, efficiently promoted BMP-2 induced endochondral bone formation. This establishes the potential of local co-administration of 7C-NPs and BMP-2 and its potential to develop a novel bone regeneration therapy by enhancing both bone quantity and quality while minimizing BMP-2-related adverse events.
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