Exotic plant species often negatively affect native herbivores due to the lack of palatability of the invading plant. Although often unsuitable as food, certain invasive species may provide non-nutritional ecological benefits through increased habitat structural complexity. To understand the potential for common invasive forest plant species of the eastern United States to benefit invertebrate communities, we examined the functional and taxonomic community composition of forest insects and spiders in long-term monitoring plots that contained invasive plant species. The extent of invasive plant species ground cover significantly altered spider community composition as categorized by hunting guild. Areas with higher invasive herbaceous and grass cover contained a higher abundance of space web-weaving and hunting spiders, respectively. Spider species richness and total invertebrate abundance also increased with greater invasive grass cover. Still, these trends were driven by just two invasive plant species, garlic mustard and Japanese stiltgrass, both of which have previously been shown to provide structural benefits to native invertebrate taxa. While these two species may improve the structural component of understory forest habitat, many invertebrate groups were not significantly correlated with other prevalent invasive plants and one species, mock strawberry, negatively affected the abundance of certain insect taxa. Particularly in forests with reduced native plant structure, invasive plant management must be conducted with consideration for holistic habitat quality, including both plant palatability and structure.
The marbled crayfish (Procambarus virginalis) is a recently discovered freshwater crayfish species, which reproduces by apomictic parthenogenesis, resulting in a monoclonal, and all-female population. The animals were widely distributed through the aquarium trade and have established numerous stable wild populations through anthropogenic releases. They are highly prevalent in Madagascar, where they have become a popular source of nutritional protein. As freshwater crayfish aquaculture in open systems is a thriving, but ecologically damaging global industry, alternatives are urgently needed. Although marbled crayfish are often branded by their invasive mode of reproduction, their overall invasiveness is not higher than for other cultured crayfish species. Furthermore, their resiliency and high adaptability provide a strong rationale for evaluating them for closed, and environmentally safe aquaculture approaches. Here we describe a novel population of marbled crayfish in a former German coal mining area that is characterized by acid and polluted water. Even under these adverse conditions, animals grew to sizes, and weights that are comparable to commercially farmed freshwater crayfish. Tailored feed development and laboratory testing demonstrated highly efficient feed conversion, suggesting a considerable capacity for sustainable production in closed systems. We further show that marbled crayfish meat can be readily introduced into European meals. Finally, chemical analysis of marbled crayfish exoskeletons revealed comparably high amounts of chitin, which is a valuable source for the synthesis of chitosan and bioplastics. Our results thus suggest that production of marbled crayfish in closed systems may represent a sustainable alternative for crayfish aquaculture.