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Caeca Microbial Variation in Broiler 
Chickens as a Result of Dietary 
Combinations Using Two Cereal 
Types, Supplementation of Crude 
Protein and Sodium Butyrate
Daniel Borda-Molina 1, Gábor Mátis 2, Máté Mackei 2, Zsuzsanna Neogrády 2, 
Korinna Huber 1, Jana Seifert 1 and Amélia Camarinha-Silva 1*

1 Institute of Animal Science, University of Hohenheim, Stuttgart, Germany, 2 Division of Biochemistry, Department of 
Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary

The intestinal microbiome can influence the efficiency and the health status of its host’s 
digestive system. Indigestible non-starch polysaccharides (NSP) serve as substrates for 
bacterial fermentation, resulting in short-chain fatty acids like butyrate. In broiler’s nutrition, 
dietary crude protein (CP) and butyrate’s presence is of particular interest for its impact 
on intestinal health and growth performance. In this study, we evaluated the effect on the 
microbial ecology of the ceca of dietary supplementations, varying the cereal type (maize 
and wheat), adequate levels of CP and supplementation of sodium butyrate on broiler 
chickens with 21 days. The overall structure of bacterial communities was statistically 
affected by cereal type, CP, and sodium butyrate (p = 0.001). Wheat in the diet promoted 
the presence of Lactobacillaceae, Bifidobacteriaceae and Bacteroides xylanisolvens, 
which can degrade complex carbohydrates. Maize positively affected the abundance of 
Bacteroides vulgatus. The addition of CP promoted the family Rikenellaceae, while sodium 
butyrate as feed supplement was positively related to the family Lachnospiraceae. 
Functional predictions showed an effect of the cereal type and a statistical significance 
across all supplementations and their corresponding interactions. The composition of 
diets affected the overall structure of broilers’ intestinal microbiota. The source of NSP as 
a substrate for bacterial fermentation had a stronger stimulus on bacterial communities 
than CP content or supplementation of butyrate.

Keywords: broiler chickens, microbiota, non-starch polysaccharides, butyrate, functional prediction

INTRODUCTION

Diet composition has a significant impact on poultry due to its influence on digestibility, gut 
wall morphology, and microbial structure, which might affect the health status, carcass composition 
and meat quality (Teirlynck et  al., 2009). Maize-based (MB) diets have a higher positive impact 
on broilers’ performance than other cereals, which is attributed to the low presence of non-starch 
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polysaccharides (NSP). NSPs have adverse effects on nutrient 
digestion and absorption (Meng et al., 2004; Lentle and Janssen, 
2008; Teirlynck et  al., 2009). Other cereal-based diets with 
higher amounts of NSPs, such as wheat, are supplemented 
with additive enzymes like xylanase and glucanase. This facilitates 
the degradation of NSPs and the release of carbon sources 
that promote a favorable bacterial population in the 
gastrointestinal tract (GIT; Lentle and Janssen, 2008). 
Fermentation products, like short-chain fatty acids (SCFA), are 
essential for the host metabolism and have positive effects on 
gut health.

Growth parameters in broiler chicks are also influenced 
by the dietary concentration of crude protein (CP), which 
might affect carcass yield and breast meat yield and causes 
a decrease in pancreas weight (Alleman et  al., 2000; Lentle 
and Janssen, 2008; Abbasi et  al., 2014). Moreover, in the 
intestines, an adequate protein concentration is required to 
maintain its viability, mass and amount of energy, where low 
levels resulted in the reduction of jejunal villus height and 
crypt depth (Abbasi et  al., 2014).

The addition of butyrate in the form of sodium butyrate 
is seen as an alternative to promote broiler chickens’ development. 
This compound is solid, stable and is associated with the 
improvement of body weight, feed conversion ratio and the 
development of gut wall tissues by increasing villus height 
and crypt depth ratio of duodenum and jejunum (Leeson et al., 
2005; Jiang et  al., 2015; Ahsan et  al., 2016). Furthermore, it 
modifies immune and inflammatory responses by decreasing 
the production of pro-inflammatory cytokines and mitigates 
the increase of corticosterone concentration, which is present 
during stress conditions (Zhang et  al., 2011; Jiang et  al., 2015). 
Regarding gut intestinal microbiota, butyrate is associated with 
increased beneficial bacterial populations while the colonization 
of harmful species is reduced (Ahsan et  al., 2016).

To analyze the effects of dietary treatments in poultry, one 
of the most studied sections in the GIT is the ceca, where 
most fermentation processes occur, leading to the assimilation 
of complex substrates. This assimilation is facilitated by metabolic 
activities of the genera Ruminococcus, Streptococcus, 
Faecalibacterium, Lactobacillus, and Clostridium cluster IV, XIVa 
and XIVb (Borda-Molina et  al., 2016; Volf et  al., 2016), which 
colonize and maintain fermentation processes, together with 
the production of SCFA including butyrate.

This study aimed to describe the influence of two types of 
dietary cereals, two different crude protein contents, and butyrate 
supplementation on the cecal microbiota and its central metabolic 
functions in broiler chickens with 21  days.

MATERIALS AND METHODS

Birds and Experimental Procedures
The experiment was conducted in the Research Institute 
for Animal Breeding, Nutrition and Meat Science at 
Herceghalom, Hungary. All procedures regarding animal 
handling and treatments were approved by the Government 
Office of Pest County, Food Chain Safety, Plant Protection 

and Soil Conservation Directorate, Budapest, Hungary 
(permission number: PEI/001/1430-4/2015).

A total of 240 male one-day-old Ross 308 broiler chicks 
were obtained from a commercial hatchery (Gallus Poultry 
Farming and Hatching Ltd., Devecser, Hungary) and randomly 
allocated to eight dietary groups (n  =  30 per group). Specific 
details for experimental design have been previously published 
(Petrilla et  al., 2018). Four of the diets consisted of maize 
(MB) as the cereal type and the other four were assigned to 
wheat [wheat-based diet (WB)] as the cereal type, supplemented 
with xylanase-glucanase enzyme mixture. Crude protein content 
was set to an appropriate dietary phase [normal protein (NP)] 
or reduced by 15% [low protein (LP)], the latter supplemented 
with essential amino acids. The feed was formulated considering 
the presence of sodium butyrate (But) or its absence (Ctr; 
Supplementary Tables 1A,B). At 21  days, 10 chickens per 
group were randomly selected and slaughtered by decapitation 
after carbon dioxide anesthesia without any starving period 
before sampling. Samples from cecal digesta were immediately 
collected and shock-frozen in liquid nitrogen and stored at 
−80°C until analysis.

DNA Extraction, Illumina Amplicon 
Sequencing and Bioinformatic Analysis
DNA was extracted from approximately 250 mg of each digesta 
sample using FastDNA™ SPIN Kit for the soil from MP 
Biomedicals (Solon, OH, United  States) following the 
manufacturer’s instructions. The quality and concentration of 
DNA were assessed through NanoDrop 2000 Spectrophotometer 
(Thermo Scientific, Waltham, MA, United  States), and DNA 
was stored until use at −20°C. The V1-2 region of the 16S 
rRNA gene was amplified to produce Illumina sequencing 
library. The protocol followed the same methodology as 
Kaewtapee et  al. (Kaewtapee et  al., 2017). Briefly, 1  μl  
of DNA was used in a 20  μl reaction containing PrimeSTAR 
Hot Start DNA polymerase (2.5  U, Clontech Laboratories, 
Mountain View, CA, United  States), 2.5  mM dNTP  
mixture, and 0.2  μM primers; an initial denaturation at 95°C 
for 3  min was followed by 20  cycles of denaturation at 98°C 
for 10  s, subsequent annealing at 59°C for 10  s, extension 
step at 72°C for 45  s and a final extension for 2  min at 72°C; 
1  μl from the resultant product was taken to perform the 
second PCR with the aforementioned conditions in a 50  μl 
reaction for 15  cycles. Amplicons were verified by agarose gel 
electrophoresis, purified and normalized using SequalPrep 
Normalization Kit (Invitrogen Inc., Carlsbad, CA, United States). 
Samples were pooled and sequenced using 250  bp paired-end 
sequencing chemistry on an Illumina MiSeq platform.

Raw reads were quality filtered, assembled, and aligned using 
Mothur pipeline (Kozich et al., 2013). Sequences were excluded 
if they had any primer or barcode mismatch and an N character. 
A total of 5.314.942 reads were obtained, checked for chimeras 
using UCHIME, and clustered at 97% identity into 1,284 
operative taxonomic units (OTU). Only OTUs presenting on 
average, an abundance higher than 0.0001% and with a sequence 
length  >  250  bp were considered for further analysis. The 
closest representative was manually identified with RDP’s 
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seqmatch function (Wang et  al., 2007) and a species name 
was given if >97% similarity was observed with the closest 
representative sequence. Sequences were submitted to European 
Nucleotide Archive under the accession number PRJEB40780. 
Functional predictions were obtained with the R package 
Tax4Fun, which relies on the SILVA database (Quast et  al., 
2013). The biom table to assign this functionality was obtained 
from the mothur pipeline.

Correlation network analysis was done based on the SparCC 
algorithm (Friedman and Alm, 2012; Chong et  al., 2020), 
making log ratio transformations and including multiple iterations 
to exclude taxa pairs outliers. The algorithm determines the 
co-abundance and co-exclusion of bacteria present in the 
absolute abundance (Zhang et  al., 2018). The permutation was 
settled at 100 with a threshold value of p as 0.05 and a 
correlation threshold as 0.3 at the genus taxonomical level. 
Nodes indicated the genus and were colored based on their 
abundance for each treatment, while edges represented the 
correlations’ strength.

Statistical Analysis
Datasets were analyzed with the multivariate software PRIMER 
(version 7.0.9, PRIMER-E, Plymouth Marine Laboratory, 
Plymouth, United  Kingdom; Clarke and Warwick, 1994). Data 
were standardized by total, and similarity matrixes were created 
using the Bray-Curtis coefficient (Bray and Curtis, 1957). 
PERMANOVA analysis, using a permutation method under a 
reduced model, was used to study the significant differences 
between the dietary treatments and was considered significantly 
different if p  ≤  0.05. The community similarity structure was 
depicted through Principal Coordinates Analysis (PCoA). 
Similarity percentage (SIMPER) analysis was used to identify 
the OTUs responsible for the differences between the groups 
(Clarke and Warwick, 1994). Correlations were estimated with 
the Spearman coefficient using PRISM 6 (GraphPad Software, 
CA) and were considered significantly different if p  <  0.05. 
Diversity indices (Shannon diversity and Pielou’s evenness) 
were calculated based on abundance data with PRIMER software.

An univariate approach within the program JMP (JMP® 
Pro 15.0.0, Cary, NC, United  States) was used to test for 
individual effects on each output (OTU assignation, family 
assignation, or predicted function at the third KEGG level). 
Calculations were based on ANOVA and multiple comparisons 
based on the least-squares mean estimates and followed the model:

 

RESULTS

Notwithstanding that the present trial was not designed to study 
the animals’ growth performance, it should be  addressed that 

the growth of the broilers matched the standards of the Ross 
308 breed. Body weight and average daily body weight gain 
data are presented in [Supplementary Table  2; according to 
(Petrilla et al., 2018)]. The applied dietary strategies can effectively 
contribute to better growth performance and carcass characteristics 
of broilers. The body weight of the chickens increased significantly 
with the low protein diet with essential amino acid 
supplementation during the entire trial (Supplementary Table 2).

Taxonomical Distribution Based on Dietary 
Supplementations
A significant interaction between the type of cereal, the  
normal or decreased content of crude protein, and the  
presence or absence of sodium butyrate (CeXCPxSo) was  
found in the caecal microbial communities (p  =  0.001; 
Supplementary Table  3). Furthermore, pairwise comparisons 
showed that the microbial communities differed from each 
other in all diets (p  ≤  0.05; Supplementary Table  3). The 
sample average similarity ranged between 59% (NP MB Ctr) 
and 43% (LP WB But). A clustering of the caecal microbiota 
samples based on maize or wheat was observed sharing 54% 
similarity. (Figure  1 and Supplementary Figures  1, 2A).  
Even if significant differences were confirmed for the CP and 
sodium butyrate supplementation (Supplementary Table  3), 
there was no apparent clustering based on those criteria 
(Supplementary Figures  2B,C). Shannon diversity index did 
not show significant statistical differences between the different 
diets, which confirms the abundance of species as the driving 
factor for the variations (Supplementary Figure  3).

The most predominant phylum in all treatments was 
Firmicutes accounting for 57–71% of the total community and 
higher abundances were detected in diets with LP content 
(Supplementary Figure  4). Bacteroidetes was the second most 
abundant phylum (21–32%) with lower relative abundances in 
the WB diets than the maize and diets with LP contents. On 
the third position, Proteobacteria were 5 to 10% abundant, 
showing higher fractions with normal CP levels. Actinobacteria 
was promoted when WB diet was fed, with abundances ranging 
from 2 to 4% compared to 0.2–0.4% in maize-based diets. 
Furthermore, diets NP WB But and LP WB But, with butyrate 
supplementation, had more OTUs affiliated to the phylum 
Actinobacteria (Supplementary Figure  4).

The abundance of Bifidobacteriaceae and Lactobacillaceae 
increased for the WB diets (Supplementary Figure  5A). 
Rikenellaceae was more abundant in diets with a normal level 
of CP content, whereas Ruminococcaceae was promoted in 
the diet with low CP content (Supplementary Figure  5A and 
Supplementary Table  4). Additionally, sodium butyrate 
supplementation increased the presence of Lachnospiraceae 
(Supplementary Table  4). The abundance of Bacteroidaceae 
was affected by the interaction of CP content and sodium 
butyrate. This family was detected in higher abundance in the 
diet with normal CP and without sodium butyrate 
supplementation (Supplementary Table  4).

Thirty-two OTUs were the most important contributors 
to the differences observed across all diets. OTU1, closely 
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related to Bacteroides vulgatus, was detected in higher 
abundance in MB NP Ctr (23%), and in lower abundance 
in LP WB But (8%; Figure  2). It was significantly affected 
by all three factors and promoted by maize as the  
cereal type (p  <  0.0001), and no sodium butyrate 
supplementation (p = 0.0008; Supplementary Table 5). OTU1 
showed negative interactions with several other OTUs 
(Supplementary Table 6). Bacteroides xylanisolvens (OTU 3) 
was more abundant in case of diets LP WB But and LP 
MB Ctr (11 and 10%, respectively), whereas it was found 
with 4% abundance in diets NP MB Ctr, NP WB But,  
and LP WB Ctr (Figure  2). OTU3 was affected by the 
interaction of the three factors (p  =  0.0008): maize as cereal 
type, low CP, and no sodium butyrate supplementation 
(Supplementary Table  5). OTU8 assigned to an uncultured 
Ruminococcus registered the highest abundance in LP MB 
Ctr (10%; Figure  2) with a tendency to be  promoted by 
the wheat as the cereal type (p = 0.07) and positive correlations 
to other OTUs (Supplementary Table  6).

The genus Lactobacillus, represented by OTU2 – Lactobacillus 
crispatus and OTU11 – Lactobacillus vaginalis, showed a positive 
correlation with body weight (Figure  3). OTU2 was more 
abundant in WB diets such as in NP WB But (14%), while an 
average abundance of 6% was registered for MB diets (Figure 2). 
It is influenced by the interaction of crude protein level and 
sodium butyrate (p  =  0.03), and a tendency was detected for 
the cereal type and CP (p  =  0.07; Supplementary Table  5). 
OTU2 showed positive interactions with other OTUs assigned 
to Lactobacillus (Supplementary Table  6). OTU4, assigned to 
Lactobacillus salivarius, was registered in higher abundance NP 

MB Ctr (on average 7%) while it was detected in lower abundance 
in NP WB Ctr (in av. 3%). OTU4 was affected by the interaction 
of the three supplementations (p  =  0.011). L. vaginalis (OTU11) 
was more abundant when wheat was used as a cereal with 
highest abundance in diet LP WB But (4%). This result was 
supported by the significant effect found with the cereal type 
(p  =  0.048; Supplementary Table  5).

Streptococcus alactolyticus (OTU36) was 2% abundant in 
the LP MB Ctr diet, while the other registered percentages 
were lower than one. The interaction of cereal type and CP 
content was significant (p  =  0.02) for this OTU. In diets with 
maize and wheat supplementation and normal CP (NP MB 
Ctr and NP WB Ctr), an uncultured Parasutterella (OTU6) 
was found in higher abundance (4%) when compared to other 
diets. This OTU was significantly affected by crude protein 
(p  =  0.003) and sodium butyrate supplementation (p  =  0.007; 
Supplementary Table  5). The cereal type had a significant 
effect on Bifidobacterium pseudolongum (OTU22; p  =  0.0002; 
Supplementary Table 5) with registered abundances lower than 
1% in maize cereal diets, while 1.9% (NP WB Ctr), 3.6% (NP 
WB But), 1.4% (LP WB Ctr), and 3.5% (LP WB But) were 
detected in WB diets.

The connectivity level was further inspected by a network 
analysis based on the differences observed between maize and 
wheat. The approach was followed by estimating correlation 
values, restricting the components to the genus level, and 
decreasing compositional effects. A higher quantity of significant 
edges was observed with wheat as a cereal type (Figure  4). 
More connections to the Lactobacillus and Bacteroides genera 
were observed compared to the MB diet.

FIGURE 1 | Principal coordinate analysis showing the microbial community distribution of the eight dietary treatments. NP, normal protein diet; LP, low protein diet; 
MB, maize based diet, WB, wheat based diet; But, sodium butyrate; Ctr, no sodium butyrate.
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Functional Prediction of the Microbial 
Communities Influenced by the Diets
Functional predictions showed the strongest effect of the cereal 
type (Supplementary Table 7) and other statistical significances 
across all supplementations and their corresponding interactions 

(p ≤ 0.05; Supplementary Table 8). The influence of the cereal 
type was also observed in the microbial community composition 
(Supplementary Figure  1A). The pairwise comparison 
demonstrated that significant differences were present mainly 
when the cereal type changed. The broad categories of amino 

FIGURE 2 | Box-plots of the most relevant operative taxonomic units (OTUs) in the eight dietary treatments.
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acid metabolism, carbohydrate metabolism, biosynthesis of other 
secondary metabolites, protein export, lipid metabolism, 
membrane transport were identified as the cause of the  
changes in predicted functions between the cereal types 
(Supplementary Table 8). Moreover, maize influenced a higher 
abundance of the predicted functions of the carbohydrate 
metabolism and biosynthesis of other secondary metabolites 
(p  ≤  0.05; Figure  5).

Some functions within amino acid metabolism differed 
significantly with sodium butyrate supplementation. Specifically, 
glycine, serine, and threonine metabolism had more abundance 
of genes in the absence of butyrate, while cysteine and methionine 
metabolism and lysine biosynthesis were higher in the presence 
of butyrate (Supplementary Table  8).

Crude protein content was significantly different for lysine 
degradation (amino acid metabolism) and galactose metabolism 
(Carbohydrate metabolism), where normal levels induced a 
higher abundance of genes (Supplementary Table  8).

DISCUSSION

Cereal type, CP levels, and presence/absence of sodium butyrate 
have a decisive impact on the gut microbial structure. Diet 
is one of the main contributors that influence both the host 
and its microbes (Borda-Molina et  al., 2018; Makki et  al., 
2018). Therefore, different studies focused on the impact of 
cereal types on the gut microbiota (Maesschalck et  al., 2019; 
Paraskeuas and Mountzouris, 2019), different levels of CP 
(Apajalahti and Vienola, 2016; Cesare et al., 2019) and different 
concentrations of sodium butyrate (Bortoluzzi et  al., 2017; Wu 
et  al., 2018). However, until now, there was no study testing 
the influence of these three essential dietary components in 
the same experimental trial.

In this work, the main contributor to differences in the 
community structure was the cereal supplementation. Wheat-
based diets contain a high concentration of non-digestible 
polysaccharides, causing the need for supplementing enzymes 

FIGURE 3 | Positive correlations between body and the genus Lactobacillus, OTU 2 and OUT 11. (Spearman correlation resulted in positive value and p ≤ 0.05).
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like xylanase-glucanase mixtures to improve digestibility 
(Keyser et  al., 2016). This could influence the activities and 
the composition of the microbial structure. Bacteroides vulgatus 
is a common colonizer of the chicken cecum (Torok et  al., 
2011), and it is known to metabolize starch (McCarthy et  al., 
1988). The lower dominance of B. vulgatus in wheat diets 
could be determined for possible effects on variations in apparent 
metabolizable energy (Crisol-Martínez et  al., 2017).

Bacteroides xylanisolvens was promoted in the presence of 
WB diets. In the polysaccharides presented in cereals, there 
is a high content of xylans, which can be  degraded to 
glucoronoarabinoxylans and arabinoxylans, through the 
xylanolytic activity exerted by B. xylanisolvens (Despres et  al., 
2016). Xylans and their derived compounds are considered to 
be  prebiotic substrates that promote the presence of well-
described beneficial bacteria Lactobacillus and Bifidobacteria 

A

B

FIGURE 4 | Microbial network at genus level based on correlation analysis. (A) MB diets and (B) WB diets.
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(Despres et  al., 2016). In this study, wheat promoted the 
presence of Bifidobacterium pseudolongum. Bifidobacterium spp. 
have been previously reported in higher levels in WB diets 
(Paraskeuas and Mountzouris, 2019). These species can use 
oligosaccharides from complex plant cell wall substrates due 
to the high glycosidase activity (van Laere et  al., 2000). 
Lactobacillaceae is also known to develop fermentative activities 

with xylan and its compounds (Ratnadewi et  al., 2020), which 
is in line with this study’s findings. Two of the most abundant 
OTUs (2 and 11) related to Lactobacillus species were also 
more abundant in WB diets.

Co-occurrence patterns investigated through network  
analysis are used to depict the microbes’ co-existence and 
maintenance in a determined environment (Williams et al., 2014). 

FIGURE 5 | Predicted function for the categories carbohydrate metabolism and biosynthesis of other secondary metabolism. Only statistically significant features 
were included (p ≤ 0.05).
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In this study, wheat promotes more neighborhood connectivity 
in comparison to MB diets. It is suggested that high interactions 
are promoted in more stable communities (Cardona et  al., 
2016). Therefore, it is interesting to observe that in wheat 
diets, Lactobacillus, Bacteroides, and unclassified Lachnospiraceae 
behave like keystone genera (Cardona et  al., 2016) since they 
are detected in higher abundances and also have the more 
increased connectivity based on the microbial network analysis. 
Furthermore, Lactobacillus positively correlates with the birds’ 
body weight, and simultaneously high abundances were observed 
in those animals fed with WB diets.

Predicted functions determined cereal type as the most 
influencing factor. Biosynthesis of secondary metabolites and 
carbohydrate metabolites displayed more gene abundance for 
MB diets, which can be  associated with the high nutritional 
value and the dietary preference in chickens for this cereal 
type (Kiarie et  al., 2014). Maize has high concentrations of 
starch and lower contents of water-soluble NSP, antinutrient 
components that are much present in wheat (Ranjitkar et  al., 
2016). This could imply that more intense interactions need 
to be  established to degrade complex substrates present in 
wheat, while more metabolic activities can be followed in easily 
degradable substrates present in maize cereals.

This study showed the influence of CP content on the 
microbial structure. Crude protein is essential in chicken 
metabolism since it constitutes the source of amino acids 
that are further absorbed and transformed into body proteins 
(Nakphaichit, 2014). Family Ruminococcaceae, recognized as 
a late colonizer of the chicken caeca (Richards et  al., 2019), 
and family Lachnospiraceae were more abundant in the low 
level CP diets. Both families are major members of the phylum 
Firmicutes in the ceca; however, Ruminococcaceae is more 
abundant in birds with low feed conversion ratios (Singh 
et  al., 2012) that can be  associated in the present study to 
the lower levels of CP. The responses obtained by these  
family members confirm microbiota’s significant impact on 
feed digestion and assimilation of dietary components 
(Nakphaichit, 2014).

Butyrate is a source of energy to the intestinal epithelium, 
modulates the immune system, affects metabolism, and its 
depletion might cause the emergence of diseases by establishing 
enteric pathogens (Nicholson et  al., 2012; Smith et  al., 2013; 
Vital et  al., 2017). Species of the family Bacteroidaceae have 
a large genome, which favors their adaptation to different 
environmental factors. The presence of carbohydrate-degrading 
enzymes allows the digestion of substrates from plant, algae, 
or animal sources. Together with the high tolerance to bile 
salts in the gut, these conditions influence a beneficial relationship 
with the host (Wexler, 2014). In this study, this family was 
affected by sodium butyrate and CP as an indicator of the 
microbes’ response to gut environmental conditions.

The present study showed the close interactions between 
microbial community composition, including the predicted 
functions and the complex feedstuff ingredients. It was observed 
that higher impacts were observed for maize as the main 
dietary cereal type promoting more abundant species. At the 
same time, wheat was associated with a higher abundance of 

well-recognized beneficial microorganisms belonging to 
Lactobacillaceae and Bifidobacteriaceae. Predicted functions 
demonstrated that maize could be  considered the most potent 
cereal to promote the metabolism and biosynthesis of secondary 
metabolites. At the same time, genera in the WB diets have 
more interactions based on network connectivity due to the 
higher complexity of this cereal type.
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It is widely accepted that maintenance of microbial diversity is essential for the health
of the respiratory tract; however, there are limited reports on the correlation between
starvation and respiratory tract microbial diversity. In the present study, saline/β-
hydroxybutyric acid (BHBA) intravenous injection after dietary restriction was used to
imitate different degrees of starvation. A total of 13 healthy male yaks were imposed
to different dietary restrictions and intravenous injections, and their nasopharyngeal
microbiota profiles were obtained by metagenomic shotgun sequencing. In healthy
yaks, the main dominant phyla were Proteobacteria (33.0%), Firmicutes (22.6%),
Bacteroidetes (17.2%), and Actinobacteria (13.2%); the most dominated species was
Clostridium botulinum (10.8%). It was found that 9 days of dietary restriction and 2 days
of BHBA injection (imitating severe starvation) significantly decreased the microbial
diversity and disturbed its structure and functional composition, which increased the
risk of respiratory diseases. This study also implied that oral bacteria played an
important role in maintaining nasopharynx microbial homeostasis. In this study, the
correlation between starvation and nasopharynx microbial diversity and its potential
mechanism was investigated for the first time, providing new ideas for the prevention
of respiratory diseases.

Keywords: starvation, nasopharynx microbiota, respiratory tract, microbial diversity, metagenomics, yak

INTRODUCTION

Yak (Bos grunniens) is semidomesticated herbivore livestock on the Qinghai-Tibet Plateau (Qiu
et al., 2012). In the cold seasons, yaks often suffer from severe starvation, weight loss, high
morbidity, and mortality due to long-time lack of pasturage (Xue et al., 2005). Recently, it is widely
accepted that this high prevalence of diseases was associated with the harsh environment in the cold
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seasons (Xue et al., 2005). However, it is unclear whether
starvation affects the respiratory system and then results in the
high prevalence of diseases.

The respiratory tract is an important part of the respiratory
system, which harbors various microbial communities in every
ecological niche (Dickson et al., 2016). The respiratory tract
microbiome is highly dynamic and affected by many factors.
For instance, Woldehiwet et al. (1990) found that the upper
respiratory tract microbiota of calves was affected by individual
differences, age, and environmental temperature; Anand and
Mande (2018) summarized that diet could affect respiratory
microbiota, whereas Bosch et al. (2016) indicated that upper
respiratory tract microbiota in infancy was affected by delivery
mode. It was thought that these factors affected the proliferation
ability of certain bacteria and immunity of the host (Man et al.,
2017). In recent years, the correlations between microbiota and
the healthy of respiratory tract has attracted lots of attention.
Man and Wypych both believed that airway-related diseases
of both humans and cattle are caused by the disturbance
of the microbiome (Man et al., 2017; Wypych et al., 2019),
and Mohamed summarized that the mucosal microbiota had
substantial effects on the bovine respiratory health (Zeineldin
et al., 2019). Collectively, it is recognized that maintaining the
respiratory tract microbiota homeostasis played a vital role in
keeping the airway healthy (Man et al., 2017). There are also
many reports on the microbiota differences along the respiratory
tract. Bassis et al. (2015) and Nicola et al. (2017) found that the
microbiome of the lower respiratory tract was closely associated
with that of the upper respiratory tract. Charlson et al. (2011)
and Zeineldin et al. (2017) found that the microbiota in the
nasopharynx could affect the health of the entire respiratory
tract. The nasopharynx is the overlapping area of the oral cavity,
nasal cavity, and trachea, which explains why the nasopharyngeal
microbiota has a considerable overlap microbial composition of
anterior nares, nasopharynx, oropharynx, and trachea, including
Moraxella, Dolosigranulum, Staphylococcus, Corynebacterium,
etc. (Dickson et al., 2017; Man et al., 2017). Therefore, the
microbial community profiles of the nasopharynx can reflect
the comprehensive situation of the entire respiratory tract
(McMullen et al., 2020).

Traditional bacterial culture technology, 16S RNA sequencing,
etc., were once used to study nasopharyngeal microbial
communities, but these tools have their disadvantages; for
example, many bacteria are uncultivable, and 16S RNA
sequencing is not deep enough to be accurate to species level.
In the past decades, with the advances in the next-generation
sequencing technologies, metagenomics-based studies have been
widely applied to determine the composition of various
microbiomes and to analyze their functions at the DNA and RNA
levels (Wang et al., 2015; Gilbert et al., 2016). Metagenomics can
accurately detect all the species and their relative abundance in a
sample and allow us to precisely analyze and predict the structure
and function of the microbial community.

Previous research showed that the main features of starvation
are lower blood glucose and elevated blood ketones [acetone,
acetoacetate, and especially β-hydroxybutyric acid (BHBA)] due
to the fulsome catabolism of fat (Whiting et al., 2012; Dhatariya

et al., 2020). BHBA, the most primary (>70%) end products of
lipid decomposition, provides energy for animals when animals
suffer excessive starvation (Belkhou et al., 1991; Cahill, 2006;
Dhatariya et al., 2020).

Hence, to explore the correlation between starvation and
nasopharyngeal microbiota, we imitated mild and excessive
starvation state by fasting and BHBA solution intravenous
infusion. The nasopharyngeal microbiome was sampled and
sequenced, and their differences in diversity, structure, and
function among the experimental and control groups were
analyzed using a metagenomic shotgun sequencing approach.
Until now, there are limited studies on the correlation between
starvation and respiratory tract microbiome; our study will fill
this knowledge gap, enrich our understanding of the microbiota
of the respiratory tract, and provide new prevention and
treatment strategies for respiratory diseases.

MATERIALS AND METHODS

Experimental Animals
Before the experiment, 13 healthy (with no macroscopic
symptoms) and well-grown (with similar weights,
237.97 ± 11.75 kg) 2.5-year-old male Jiulong yaks were
adaptively fed (without any antibacterial agents) for 2 months
in independent cowsheds. All cowsheds were cleaned with
insect repellant and sanitizer every week. All fodder and water
were prepared according to Zou et al.s’ (2020) study. After
adaptively feeding, all yaks (n = 13) were randomly divided into
three groups: control group (n = 3), mild dietary restriction
(DR) group (n = 5), and excessive DR (n = 5) group. Yaks in
the control group were numbered Z1–Z3, yaks in the mild
DR group were numbered G1–G5, and yaks in the excessive
DR group were numbered GB1–GB5. Yaks in the mild DR
group and excessive DR group were starved (without any
fodder) for 9 days. The 9 days of dietary restriction time was
determined according to previous work (Zarrin et al., 2013;
Zou et al.s’, 2020) to ensure that yaks were in the state of
negative energy balance without health threatening. Yaks in the
control group were free to access fodder within the synchronous
9 days. All yaks received a continuous 48 hours of intravenous
infusion from 9:00 AM on the seventh day to 9:00 AM on
the ninth day. Yaks in the control group and mild DR group
were infused with 0.9% saline, whereas yaks in the excessive
DR group were infused with BHBA solution (1.7 mmol/L).
The experiment flow before sampling is visualized in
Supplementary Figure 1B.

BHBA Infusion
The BHBA solution was prepared following the previous
study (Zarrin et al., 2013). BHBA acid sodium salt (Sigma,
United States) was solvated into ultrapure water to the
concentration of 1.7 mmol/L. The pH value of this solution
was adjusted to 7.4 by HCl followed by autoclaving at
131◦C, 100 kPa for 50 min. Then, the prepared solution
was stored at 4◦C as soon as being filtered through the
0.22-µm filter. The indwelling intravenous catheters (Jinhuan
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Medical Supplies, China) were fitted on both of the ear
veins of each yak on day 7. The infusion was through
the left-side catheters of yaks by a peristaltic pump (Haoke
Medical Instrument, China). The initial infusion dose was
calculated based on the bodyweight of yaks (8.5 µmol/Kg/min).
During the first 2 h of infusion, the blood samples were
collected through the right-side catheters every 15 min and
then determined the BHBA concentration immediately using
a blood ketone meter (Dizhun Biotechnology, China). BHBA
infusion rate was instantly adjusted to maintain the blood BHBA
concentration between 1.5 and 2.0 mmol/L, whose aim was
to avoid ketosis caused by excess high BHBA concentration.
The yaks in the control group and mild DR group were
infused into 0.9% saline solution with the same infusion
time and rate. More details could be found in Zou et al.s’
(2020) work.

Sample Collection, DNA Extraction,
Sequencing, and Quality Control
When the intravenous infusion stopped, microbiota samples
were collected using 20-cm sterile deep nasopharyngeal
swabs (Merlin Technology, China) from the nasopharynx
mucosa and immediately stored in a dry icebox. DNA was
extracted using the MO BIO PowerSoil DNA Isolation Kit
(MO BIO Laboratories, United States) according to Earth
Microbiome Project standard protocols (Marotz et al., 2017).
DNA concentrations of all samples was detected by NanoDrop
(Thermo Scientific, United States), and the results ranged
from 15.2 to 75.4 ng/µL. DNA samples’ quality was estimated
on agarose gel electrophoresis. Only samples that meet the
following criteria were used for library construction: (1) DNA
concentration is >15 ng/µL; (2) the total weight of DNA
is >6 µg; (3) DNA band that was visualized on agarose gel
electrophoresis must be clear and of good quality. Finally,
1 µg DNA of each sample was pooled to an equimolar
concentration to construct the DNA libraries (DNA was
sheared to 350 bp) using the Illumina DNA Sample Preparation
Kit according to the manufacturer’s instructions. Amplified
libraries were sequenced on Illumina HiSeq 2500 platform
(2 × 250 bp). Adaptor contamination was removed using
Cutadapt 1.3 (Martin, 2011) with parameters “-o 4 -e 0.1.”
Quality control was performed using a sliding window (5-bp
bases) in Trimmomatic (Bolger et al., 2014) with the following
criteria: (1) cutting once the average quality within the window
falls below Q 20; (2) clean reads do not contain any N bases;
(3) trimming is applied to the 3’ end of reads, dropping those
reads that were of less than 50-bp length; (4) only paired-end
reads were retained for downstream analyses. To contigs
and scaffolds, the obtained paired-end clean reads of each
sample were performed de novo assembly using Megahit
with the parameter “K-mer∼ [27, 127]” (Li et al., 2010).
Detailed contigs/scaffolds statistical information was shown in
Supplementary Table 8 (Sheet 2).

The metagenome dataset used in this study was deposited
into the National Centre for Biotechnology Information’s
Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/

sra) under accession bioproject number: PRJNA681085 (SRA:
SAMN16932244-SAMN16932256)1.

Species Annotation
To analyze the species composition, the scaffolds/scaftigs of
each sample were subjected to BLASTN (“E < 0.00001”)
against the bacterial, archaeal, fungal, and virus sequences in
the NCBI-NT database (National Centre for Biotechnology
Information–Nucleotide Collection, v2016-6-19). Because each
target sequence could match different reference sequences
that belong to a different taxon, we performed the Lowest
Common Ancestor algorithm (Huson et al., 2018) using
MEGAN5 (MEta Genome Analyzer) (Huson et al., 2011)
software to increase the preciseness and dependability without
loss of biological significance. In brief, we classified the last
level of common classification before the reference sequences
branched into different species as the annotation information
of species classification of the target sequences. Then the
relative abundance of each taxon at every classification level
was obtained by combining the relative abundance of these
scaffolds/scaftigs sequences in each sample using Quantitative
Insights Into Microbial (QIIME) software (Caporaso et al.,
2010). To analyze the significance of species relative abundance
difference, we performed a two-tailed t-test against the average
relative abundance using the SciPy database (Virtanen et al.,
2020) in Python software and controlled the false discovery
rate (FDR) using the Benjamini-Hochberg method (Benjamini
and Hochberg, 1995). In brief, we calculated the fold change
value of every functional group between each sample and
demonstrated them using Log2 (fold-change value). Only those
functional groups with both | Log2 (fold-change value) | > 1
and p < 0.05 were considered having significant difference.
According to the composition structure of each sample at each
classification level and their relative abundance, we visualized
them in heat map using R software package. Through randomly
sampling a certain number of sequences in each sample, we
predicted the possible species total number and their relative
abundance within a set of given sequencing depths and drawn
rarefaction curve (Heck et al., 1975) using QIIME software.
To analyze the distribution of species abundance, the taxon
of each sample at species level was arranged from high to
low according to their relative abundance, and the relative
abundance value was transformed into vertical ordinate by
Log2, then we drew the rank abundance curve using R
software. We also calculated the Spearman rank correlation
coefficient (Sedgwick, 2014) of the top 50 species with the
highest relative abundance using Mothur software (Schloss
et al., 2009) and drew the connection networks (Faust and
Raes, 2012) of species (| ρ| > 0.8, p < 0.01) and visualized
them using Cytoscape software (Shannon et al., 2003). To
compare the diversity of different samples and correct the
diversity difference caused by the sequencing depth, we randomly
sampled the bottom functional group abundance spectrum of
all samples in each functional database or the species-level
composition spectrum according to the lowest sequencing depth.

1https://www.ncbi.nlm.nih.gov/bioproject/PRJNA681085
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And then we obtained the alpha diversity (including Chao1
index, ACE index, Shannon index, and Simpson index) of each
sample by QIIME software. To analyze the unsupervised β

diversity, principal complement analysis (Euclidean distance)
(Ramette, 2007) was performed on the abundance spectrum
of the bottom functional groups and species-level composition
spectrum annotated by each functional database in each sample
using QIIME software and R software. At last, to find a biomarker,
we performed linear discriminant analysis effect size (LEfSe)
analysis (Segata et al., 2011) by submitting the composition
spectrum data at species level to Galaxy online analysis platform
(huttenhower.sph.harvard.edu/galaxy/).

Function Annotation
Scaffolds/scaftigs sequences with more than 200 bp of each
sample were selected to predict genes at the MetaGeneMark
database (Zhu et al., 2010), and then we identified the open
reading frames and obtained the predicted protein sequences.
CD-HIT (Cluster Database at High Identity With Tolerance)
(Fu et al., 2012) was used to classify the obtained protein
sequences based on 90% sequence similarity and to remove
redundancy, and the longest sequence was selected as the
representative sequence to obtain the non-redundant protein
sequence sets. We used Soap.coverage (soap.genomics.org.cn/)
to determine the relative abundance of each protein of each
sample. By comparing the protein sequence sets with the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway
Database (Kanehisa et al., 2004), the proteins predicted by the
MetaGeneMark database could be annotated and classified. In
brief, the non-redundant protein sequence sets were uploaded to
KEGG Automatic Annotation Server for functional annotation
(in “GENES data set,” partially select “for Prokaryotes”;
the rest of the parameters are default), and the returned
annotation results were summarized so that the annotation
results at each classification level and their corresponding
relative abundance were obtained. And then we obtained the
relative abundance distribution of each functional classification
level at each sample in the KEGG database using QIIME
software. The enrichment analysis results were obtained by
hypergeometric distribution in the SciPy by a two-tailed t-
test against KEGG Orthology (KO) functional groups, and the
FDR was controlled.

Statistical Analysis
Relative abundances of the non-eukaryotic KO gene were
calculated by normalizing all the KOs of each sample to
sum to 1. Observation matrix tables containing relative
abundance information of KOs were used to calculate
Euclidean distance based on UPGMA algorithm, and
principal coordinates analysis plot was built using the
R data analysis package. The entire visualized figures
were drawn by an R package. The test of significance
based on a two-tailed t-test was performed to determine
whether there was a significant difference in abundance
of the gene between different diet groups by using
GraphPad Prism 5 software (GraphPad Software,
Inc., United States).

RESULTS

Data Quality and Diversity Analysis
All DNA samples of 13 nasopharyngeal swab samples were
qualified to be added to Illumina HiSeq 2500 high-throughput
sequencing platform. Then, the total metagenomic DNA was
randomly interrupted into short clips, which were subjected to
paired-end sequencing (2 × 250 bp) for library construction.
A total of 678,219,000 raw paired-end reads were generated, and
the average proportion of these sequences with high-quality reads
in each sample was 99.86 ± 0.01. Quality control analysis showed
that the assembled sequences were of high accuracy, which made
subsequent analysis results reliable enough. The detailed indexes
of quality control are shown in Supplementary Table 1A.

In the rarefaction curve, before reaching 18,000, the
rarefaction curves of 13 samples all fractured and trended to
flatten out, indicating that the sequencing depth was sufficient
to reveal their microorganism composition (Figure 1A). We
performed principal component analysis (PCA, Euclidean
distance) against all species of 13 samples. It was found that
although there were differences among the 13 samples, they could
be roughly clustered into two populations (pink and reseda areas)
(Figure 1B). A similar result was also found in the PCA of KO
analysis (Supplementary Figure 1A).

Then, we calculated the Shannon diversity index of all 13
samples and visualized the average means of each group using
an R package (Supplementary Table 1B and Figure 1C). There
was no significant difference between the control group and
mild DR group (p > 0.05); the Shannon index of the control
group was significantly higher than that of the excessive DR
group (p < 0.05), and the Shannon index of the mild DR group
was extremely higher than the excessive DR group (p < 0.01).
The detailed statistical data of diversity indexes are shown in
Supplementary Table 1B. We also analyzed the rank abundance
curves of all 13 samples (Figure 1D). Unlike what the Shannon
index indicated, it was found that both the richness and evenness
of the control group were higher than those of the mild
DR group (p < 0.05).

Functional Annotation Analysis
The predicted relative abundance of all KOs of each sample is
shown in Supplementary Table 2. We visualized the top 20
KOs with the highest average abundance of each group using
the R software. In the control group, K07316 (mod, adenine-
specific DNA methyltransferase) was the most dominant KO
followed by K03168 (top A, DNA topoisomerase I); in the mild
DR group, the abundance of K03168 increased and became
the most abundant, whereas the abundance K07316 decreased;
in the excessive DR group, the abundance of K07316 and
K03168 both significantly increased; K07316 became the most
abundant KO again and followed by K03168 (Supplementary
Figure 2). Then we compared the average relative abundance of
the same KOs among different groups. The relative abundance
of K07316 and K03168 significantly changed (p < 0.05), whereas
the other KOs (within the top 20) did not significantly change
(p > 0.05) (Figure 2A). The detailed data of the predicted
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FIGURE 1 | Data processing and diversity analyses. (A) Species rarefaction curves of 13 samples. X: number of randomly selected sequences in each sample, Y:
species number observed at corresponding depth. The curvature of the curve represents the possibility that observes new species, the smoother curves, the lower
probability of observing new species, and the deeper sequencing depth. (B) PCA (principal component analysis) of species in each sample. The distance between
the two samples represents the significance of the difference between them. (C) The average means of Shannon diversity index of each group. ns: non-significant,
p > 0.05; *0.01 < p < 0.05; **p < 0.01. (D) The rank abundance curves of each sample at the species level. X: taxon arranged in the order of abundance at the
species level, Y: the Log2 means which translated from the relative abundance of each species in the corresponding sample. The length of the curve represents the
richness of each sample; the curvature of the curve represents the evenness of each sample. OTUs: operational taxonomic units; two sequences with >97%
similarity at the species level were defined as the same OTU.

relative abundance of all KEGG third-level pathways of each
sample are shown in Supplementary Table 3. We also visualized
the top 20 KEGG third-level pathways with the highest average
abundance of each group using an R software (Figure 2B), and it
is difficult to sum up the changing patterns induced by DR among
the three groups at KEGG third-level pathways. Then KEGG
enrichment analysis was also performed to analyze the differences
of KEGG second-level pathways among the groups. We obtained
six enriched third-level pathways between the control group and
the mild DR group, eight enriched third-level pathways between
the mild DR group and the excessive DR group, and 11 enriched
third-level pathways between the control group and the excessive
DR group (p < 0.05) (Table 1). At last, we also visualized the

average abundance of 6 KEGG first-level pathways of each group
(Figure 2C). Interestingly, the average abundance of the disease
pathway of the excessive DR group was significantly higher than
the mild DR group (p < 0.05), but other pathways did not
significantly change (p > 0.05).

Species Composition
Annotation Analysis
At the species level, 4,271 microbial taxa were detected in all three
groups, and the detailed relative abundance data at the species
level in each sample are shown in Supplementary Table 4. We
counted the average number of detected species in each group
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FIGURE 2 | Protein functional annotation analysis. (A) KOs with a significant difference in the relative abundance between groups. Z for the control group, G for the
mild DR group, GB for the excessive DR group. ns: non-significant, *0.01 < p < 0.05, **p < 0.01. (B) The top 20 KEGG third-level pathways with the highest
average relative abundance of each group, different colors in the legend indicate different KEGG first-function-level pathways. (C) The difference of relative
abundance of each of six KEGG first-function-level pathways among groups. Z for the control group, G for the mild DR group, GB for the excessive DR group. ns:
non-significant, p > 0.05; *0.01 < p < 0.05.

and found that the number of detected species was significantly
lower in the excessive DR group than in the other two groups
(p < 0.05) and the species number of the mild DR group
also significantly lower than in the control group (p < 0.05)
(Figure 3A). At the phylum level, the top four phyla with the
highest average relative abundance in each group were identified
(Figure 3B), and their variations among the groups were analyzed
(Figure 3C). In the control group, Proteobacteria was the most
dominant phylum, followed by Firmicutes, Bacteroidetes, and
Actinobacteria; in the mild DR group and excessive DR group,
Proteobacteria was also the most dominant phylum and followed
by Firmicutes, Actinobacteria, and Bacteroidetes. It is found
that the abundance of Bacteroidetes varied most significantly
(p < 0.05), the abundance of Proteobacteria showed a trend of
variation (p < 0.07) between the control group and excessive
DR group, and the abundance of Firmicutes and Actinobacteria
did not differ significantly among groups (p > 0.05). The
detailed relative abundance data of each sample are shown in
Supplementary Table 5. To analyze the species composition
more intuitively, we visualized the top 20 species with the highest
relative abundance of each group (Figures 3B,E). Clostridium
botulinum was the most dominant species in the control group

and mild DR group, whereas Photorhabdus laumondii was the
most dominant species in the excessive DR group (Figures 3B,E).
The abundance of other species was distinctly decreased in the
mild DR group (G: 45% vs. Z: 69%) and excessive DR group
(GB: 25% vs. Z: 69%) (Figure 3E). And to analyze the difference
in species composition among groups, we compared the average
relative abundance of the same species among different groups
(a total of 34 different kinds of top 20 abundant species in
all three groups) (Supplementary Figure 3A). We identified
five species, which significantly changed among three groups:
P. laumondii, Avibacterium paragallinarum, Babesia bigemina,
Pseudomonas stutzeri, and Neisseria sp. 10022 (Supplementary
Figure 3A); 7 of these 34 species were at present in all three
groups of top 20 abundant species: C. botulinum, P. laumondii,
Corynebacterium maris, Bacteroides heparinolyticus, Neisseria sp.
10022, Corynebacterium vitaeruminis, and Moraxella bovoculi
(Figure 4B and Supplementary Figure 3B), which might be “the
core bacteria” for the yak nasopharynx microbial community. We
also detected the species number of viruses in each group and
their average relative abundance (Supplementary Table 6 and
Figure 3D). The average species number of viruses detected in the
mild DR group and excessive DR group was much lower than that
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in the control group (8, 9, and 23, respectively) (Supplementary
Table 6). However, the average relative abundance of detected
virus in the mild DR group was extremely lower than that in
the control group (p < 0.01), and the average relative abundance
of the excessive DR group was extremely higher than that in
the mild DR group (p < 0.01), whereas the average relative
abundance in the excessive DR group was significantly higher
than that in the control group (p < 0.05) (Supplementary
Table 6 and Figure 3D). Meanwhile, to analyze the abundance
variation among groups more generally, we also performed a
cluster analysis for the top 50 species with the highest significance
(p < 0.05) of variation and drew a heat map to visualize

the results (Figure 3F and Supplementary Table 7). Against
the control group, mild DR significantly altered 18 species (4
were decreased, 14 were increased); against the control group,
excessive DR significantly decreased 47 of the 50 species and
significantly increased the other 3 of them, and against the mild
DR group, excessive DR significantly decreased 44 of the 50
species and increased the other 6 of them. It is worth noting
that there were two alteration patterns: one is that the species
alteration induced by 7 days of DR quickly recovered after
2 days of BHBA intravenous injection treatment (P1 and P2 in
Supplementary Figure 3A); the other one is that the species
alteration induced by 7 days of DR was further enhanced after

TABLE 1 | The results of KEGG enrichment analysis.

Group Pathway Pathway name KEGG level 1 KEGG level 2

Control group vs. mild DR
group

ko99984 Nucleotide Not included in pathway or
BRITE

Unclassified: metabolism

ko00965 Betalain biosynthesis Metabolism Biosynthesis of other
secondary metabolites

ko04614 Renin-angiotensin system Organismal Systems Endocrine system

ko00240 Pyrimidine metabolism Metabolism Nucleotide metabolism

ko04622 RIG-I–like receptor signaling
pathway

Organismal Systems Immune system

ko00910 Nitrogen metabolism Metabolism Energy metabolism

Mild DR group vs.
excessive DR group

ko00010 Glycolysis/gluconeogenesis Metabolism Carbohydrate metabolism

ko00750 Vitamin B6 metabolism Metabolism Metabolism of cofactors and
vitamins

ko00520 Amino sugar and nucleotide
sugar metabolism

Metabolism Carbohydrate metabolism

ko00350 Tyrosine metabolism Metabolism Amino acid metabolism

ko00340 Histidine metabolism Metabolism Amino acid metabolism

ko99997 Function Not included in pathway or
BRITE

Poorly characterized

ko00780 Biotin metabolism Metabolism Metabolism of cofactors and
vitamins

ko99976 Replication Not included in pathway or
BRITE

Unclassified: gene2c
information processing

Control group vs. excessive
DR group

ko00760 Nicotinate and nicotinamide
metabolism

Metabolism Metabolism of cofactors and
vitamins

ko00590 Arachidonic acid metabolism Metabolism Lipid metabolism

ko04918 Thyroid hormone synthesis Organismal Systems Endocrine system

ko05133 Pertussis Diseases Infectious diseases: bacterial

ko00523 Polyketide sugar unit
biosynthesis

Metabolism Metabolism of terpenoids
and polyketides

ko00520 Amino sugar and nucleotide
sugar metabolism

Metabolism Carbohydrate metabolism

ko00521 Streptomycin biosynthesis Metabolism Biosynthesis of other
secondary metabolites

ko00051 Fructose and mannose
metabolism

Metabolism Carbohydrate metabolism

ko00480 Glutathione metabolism Metabolism Metabolism of other amino
acids

ko00720 Carbon fixation pathways in
prokaryotes

Metabolism Energy metabolism

ko00020 Citrate cycle (TCA cycle) Metabolism Carbohydrate metabolism

DR, dietary restriction; KO, KEGG Orthology.
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FIGURE 3 | Species annotation analysis. (A) The average detected species number of each group. Z for the control group, G for the mild DR group, GB for the
excessive DR group. ns: non-significant, p > 0.05; *0.01 < p < 0.05. (B) Inner: Top four dominant phyla with the highest average relative abundance in each group.
Outer: The top 20 dominant species with the highest average relative abundance in each group. Species with the same color belong to the phyla with the
corresponding color. Species name marked by orange means “core species.” (C) The difference of average relative abundance of each of four dominant phyla in
each group. Z for the control group, G for the mild DR group, GB for the excessive DR group. ns: non-significant, *0.01 < p < 0.05; **p < 0.01. (D) The difference of
average relative abundance of the detected virus number in each group. Z for the control group, G for the mild DR group, GB for the excessive DR group. ns:
non-significant, *0.01 < p < 0.05; **p < 0.01. (E) The top 20 dominant species with the highest average relative abundance in each sample and their percentages,
Z for the control group, G for the mild DR group, GB for the excessive DR group. (F) Heat map shows the top 50 species with the highest significance among
groups. Z for the control group, G for the mild DR group, GB for the excessive DR group. Red indicates that the species has higher relative abundance, whereas
green indicates that the species has lower relative abundance. The value is the result of the Z scoring of species relative abundance; the bigger value of color, the
higher relative abundance.

2 days of BHBA intravenous injection treatment (P3 and P4 in
Supplementary Figure 3A).

Microbial Interactions Prediction
Analysis
To understand the interrelationships among these
microorganisms in each group, we constructed co-connection

networks of the top 50 species with the most dominant
abundance in each group, and the results showed that the
species interconnection within the control group was tighter
than the mild DR group or excessive DR group (Figure 4A).
Interestingly, most of these species had a positive correlation
with each other (red line), whereas only a few of these species
had a negative correlation with other species (green line). In
the control group, there were four dominant teams (marked
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FIGURE 4 | (A) Co-correlation network of the top 50 species with the highest average relative abundance in each group. One circle indicates one species, and the
species with the same color belong to a phylum with the corresponding color. (B) The top 20 dominant phyla with the highest average relative abundance in each
sample and their percentages, Z for the control group, G for the mild DR group, GB for the excessive DR group. (C,D) The difference of average relative abundance
of some key species and genus in each group, Z for the control group, G for the mild DR group, GB for the excessive DR group. ns: non-significant;
*0.01 < p < 0.05; **p < 0.01. (E) Linear discriminant analysis (LDA) effect size (LEfSe) analysis between groups. The red square indicates that the relative
abundance increased, and the green square indicates that the relative abundance decreased. The length of the square indicates the magnitude of significance.
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by big circles), which mainly consisted of genus Prevotella,
Moraxella, and Corynebacterium. Within these 50 species,
Xenorhabdus nematophila, Escherichia coli, and C. botulinum
had a negative correlation with other species and could be
regarded as “key species.” In the mild DR group, similarly,
there were two dominant teams, which were mainly composed
of genus Bacteroides and Moraxella. Xenorhabdus doucetiae,
C. maris, and Streptococcus ruminantium were the “key species.”
In the excessive DR group, there were three dominant teams
(no major genera); P. laumondii and Paracoccus yeei were
the “key species.” We also counted and visualized the top 20
genera with the highest relative abundance of each sample.
It was found that Clostridium was the most dominant genus
in the control group, whereas Photorhabdus was the most
dominant genus in the mild DR group and excessive DR
group (Figure 4B). Then, we compared the average relative
abundance of the same genus (Figure 4C) and the “key
species” (Supplementary Figure 3A and Figure 4D), which
was mentioned previously. It was found that these major genera
did not significantly change (p > 0.05) among groups, but two
kinds of “key species” had been significantly changed (p < 0.05)
among groups: P. laumondii and E. coli. The detailed data
are shown in Supplementary Table 8 (Sheet 1). And finally,
to find a biomarker species of each group, we performed a
LEfSe analysis between groups and identified the five species
with the most significant relative abundance difference as the
biomarker species: Acinetobacter sp. SWBY1, Porphyromonas
asaccharolytica, Bacillus licheniformis, Moraxella catarrhalis, and
P. laumondii (Figure 4E).

DISCUSSION

In the present study, the influence of starvation on the
nasopharyngeal microbiome was explored, and its potential
mechanism was discussed. Metagenomic sequencing identified
the four most dominant phyla: Proteobacteria, Firmicutes,
Bacteroidetes, and Actinobacteria; five most dominant
genera: Clostridium, Bacteroides, Prevotella, Moraxella, and
Streptococcus; and the most dominant species: C. botulinum.
From a protein perspective, starvation mainly affected K07316
and K03168, which were once discussed by Desirazu et al.
(Rao et al., 2014) and Giovanni et al. (Capranico et al., 2017),
respectively. From a species perspective, starvation mainly
affected Proteobacteria and Bacteroidetes at the phyla level.
Whereas mild DR affected some KOs and species but had
no significant influence on the nasopharyngeal microbiota
community, excessive DR significantly decreased the diversity of
the community by affecting oral microorganisms, and disturbed
their composition and structure, implying a higher risk of
respiratory tract diseases.

Intravenous Injection of BHBA Simulates
Severe DR
The 9 days of DR group (G) and BHBA intravenous injection
group (GB) represented short-term mild DR and long-time
excessive DR, respectively. Generally, animals would go through

three stages as the degree of starvation increases. First, when
an animal cannot take sufficient food in, it will use stored
glycogen or synthesize glucose by gluconeogenesis to maintain
a certain concentration of blood glucose that supplies the
necessary energy for some essential physiological functions. Yu
et al. (2016) and Zou et al. (2019) found that in the first
9 days of starvation, the blood glucose concentration in the
yak would significantly decrease immediately and then remains
stable. Second, when the stored glycogen runs out, the animal
body will break fat down to provide energy. BHBA, the main
product of fat catabolism, is preferentially utilized by the brain
and nervous system (Prince et al., 2013). Zou et al.s’ (2020)
had confirmed that BHBA intake after 7 days of starvation
significantly increased the blood BHBA concentration in yaks.
For instance, in the perinatal period, cows often experience
ketoacidosis due to large amounts of fat catabolism induced
by severe nutrient deficiency (Suthar et al., 2013). The main
characteristics of ketoacidosis are the high concentration of
BHBA and low concentration of blood glucose (Frise et al.,
2013; Jezek et al., 2017; McIntyre et al., 2019). Third, when
the fat runs out, proteins in the animal tissues will begin
to be degraded, which can lead to serious consequences,
even death. Hence, BHBA intravenous injection treatment was
performed using the same procures as Zou et al.s’ (2020)
experiment of Zou and was similar to that induced by long-term
starvation or lactation.

Mild Starvation Slightly Affects the
Microbial Community of the
Nasopharynx Probably by Altering the
Oral Microbiota and Mucosal Mucins
Because we controlled environmental factors, the mucosal
immune system of the host and available energy resources are
the two major internal factors that determine the homeostasis
of the nasopharyngeal microbial community (Brugman and
Nieuwenhuis, 2010; David et al., 2014). The enrichment analysis
results showed that the expression level of the immune system,
nucleotide metabolism, and secondary metabolites pathways in
the mild DR group were significantly down-regulated when
compared with the control group, indicating that mild DR
affected the proliferation and metabolism of the community.
And the changes in energy metabolism also indicated that their
energy source had changed (Table 1). Besides there was a
more complex network consisting of Prevotella in the control
group (Figure 4A). Prevotella mainly exists in the digestive
system and absorbs nutrients by breaking down cellulose
(Suthar et al., 2013; Kovatcheva-Datchary et al., 2015). But
this network faded away gradually as the DR level increased
(Figure 4A). Although it is insignificant, the relative abundance
of genus Prevotella was decreased in both the mild DR
group and excessive DR group when compared to the control
group (Figure 4C).

Because of the topographical continuity between the oral
cavity and nasopharynx, the microorganisms of the oral
cavity can spread to the nasopharynx (Charlson et al.,
2011). Considering the main nutrient source of Prevotella
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is fiber (Kovatcheva-Datchary et al., 2015), which comes
from fodder, we speculated that the decrease of Prevotella
relative abundance in the oral cavity induced by DR led
to its decrease in the nasopharynx. When yaks cannot take
in fodder or pasture, Prevotella in the oral cavity cannot
obtain fiber, leading to the abundance of oral Prevotella
decrease, and so does the nasopharynx Prevotella. Also,
P. asaccharolytica, the common oral cavity bacteria, was the
common biomarker (Figure 4E) for the control group against
both the mild DR group and excessive DR group, also
indicating that oral microorganisms had a tighter connection
with nasopharyngeal bacteria.

It was also shown that the relative abundance of some
other species increased in the mild DR group, such as
Clostridium and Photorhabdus, which are resident bacteria in
cattle respiratory tracts (Holman et al., 2015; Lima et al., 2016).
In the mild DR group, the blood glucose concentration was
very low, indicating a decrease in mucosal mucin secretion
and insufficient mucosal immune function to manage the
microbiota (Marcos et al., 2003). Frenkel and Ribbeck (2017)
found that salivary mucins affected the bacterial viability
by promoting a less competitive growth mode, and Flynn
et al. (2016) confirmed that Pseudomonas aeruginosa could
degrade mucins into nutrients, and mucins are essential for
some pathogens. Therefore, we thought that the decrease of
normal fiber-degrading oropharynx bacteria would empty the
ecological niche in the nasopharynx. The empty ecological
niche could provide suitable proliferation resources for those
mucin-degrading bacteria and pathogens, resulting in those
already decreased mucins being further consumed. Finally,
the homeostasis of the nasopharyngeal microbial community
would be destroyed.

The co-connection network results also showed that DR
mainly affected the team in the pink big circle. Faecalibacterium
prausnitzii, which is a widely accepted probiotic for humans
(Ferreira-Halder et al., 2017; Lopez-Siles et al., 2017), and the
five other commensal oral fiber-degrading bacteria: Prevotella
dentalis, Fibrobacter succinogenes, Prevotella ruminicola,
Prevotella denticola, and Prevotella intermedia (Kobayashi
et al., 2008), consisting of the main team in the control
group. And the three biomarkers species, Acinetobacter sp.
SWBY1, P. asaccharolytica, and B. licheniformis, also were
common oral bacteria.

Taking all these evidence into account, two change
patterns were concluded. First, oropharynx-derived
microorganisms and their collaborators have decreased.
Second, microorganisms competing for the ecological niche with
oropharyngeal microbiota and microorganisms inhibited by
mucins have increased.

Excessive DR Significantly Altered the
Homeostasis of the Nasopharyngeal
Microbial Community Because of the
Presence of BHBA
BHBA treatment significantly decreased the diversity and affected
the homeostasis of the nasopharyngeal microbial community.

Compared with the control group, the pathways of energy
metabolism, secondary metabolites biosynthesis, and carbon
fixation in the excessive DR group were changed in a wider
range than those in the mild DR group (Table 1), indicating
that excessive DR had a stronger influence on the community
function. By combining the data of both the mild DR group and
excessive DR group, we concluded four alteration patterns: after
2 days of BHBA intravenous injection treatment, the increase and
decrease that induced by 7 days of DR were recovered or were
further enhanced (Supplementary Figure 3A). Yaks in the mild
DR group and excessive DR group were treated with the same
operations, except that those in the excessive DR group were
treated with intravenous infusion of BHBA instead of normal
saline. Therefore, we speculated that the presence of BHBA was
the reason for the diversity decreasing and homeostasis alteration
in the excessive DR group. Like subclinical ketosis, BHBA
treatment increased not only the glucose concentration but also
the BHBA concentration in blood (Andersson, 1988; Sturm et al.,
2020) and resulted in increased ketone bodies in the exhalant gas
(Dobbelaar et al., 1996), which could be used as nutrients by some
bacteria. Schulz et al. (2015) found that cows with subclinical
ketosis showed an enhanced immune response when compared
with metabolically healthy individuals. Zou et al.s’ (2020) study
also confirmed that BHBA treatment recovered the concentration
of blood sugar. This enhanced immune response and recovered
blood glucose indicated that BHBA treatment recovered the
immune system and the secretion of mucosal mucins, inhibiting
those bacteria without mucin resistance. Because the lack of
fodder and pasture doesn’t recover, the decrease of normal
oropharynx fiber-degrading bacteria continuous, and then this
empty ecological niche would be occupied by those bacteria
which could utilize mucins or ketone bodies as energy resources.
Ketones and mucins improved the proliferation of some bacteria,
while the enhanced immune response inhibited the proliferation
of some others, which resulted in these four alteration patterns
mentioned previously (Supplementary Figure 3A). Therefore,
BHBA, which is a more efficient energy resource, replenished
the energy needs of the DR yaks and enhanced the immune
system, but did not alter the lack of normal oropharynx bacteria,
finally resulting in the extremely complex alterations and these
significant influences.

Excessive DR Increased the Risk of
Respiratory Diseases
From a protein perspective, excessive DR down-regulated the
biosynthesis metabolism of streptomycin, which has a powerful
antibacterial effect (Schatz et al., 2005). Otherwise, excessive
DR up-regulated bacterial infection-related pathways such as
pertussis (de Gouw et al., 2011), which is a common bovine
respiratory disease, and the up-regulated KEGG first-level
pathway in the diseases (KEGG BRITE: 08402) (Figure 2C). All
these results indicated that BHBA treatment increased the risk of
diseases including respiratory tract diseases. The same conclusion
can be drawn from the view of observed species alteration.
Excessive DR treatment significantly decreased the microbial
diversity, which means the risks of respiratory flora disorders
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and respiratory diseases were increased (Koppen et al., 2015;
Dickson et al., 2016; Man et al., 2017; Zeineldin et al.,
2019). BHBA treatment also increased the relative abundance
of Proteobacteria (Figure 3C), which is considered as a
common factor of inflammation and lung diseases (Rizzatti
et al., 2017). Correlation network analysis (Figure 4A) results
showed that excessive DR destroyed the microbial community
interrelationship in the control group, and this disorder was
thought to contribute to respiratory diseases (Koppen et al., 2015;
Zeineldin et al., 2019). Our results showed that BHBA treatment
increased the relative abundance of Pseudomonas Acinetobacter,
Bacillus, Bacteroides, Clostridium, and Enterococcus, which are
common bovine respiratory pathogens (Klima et al., 2019).
Moreover, BHBA treatment significantly increased the relative
abundance of viruses (including bacteriophage) and decreased
their kind number (Supplementary Table 6), indicating that
BHBA treatment increased the risk of respiratory diseases. All
these evidences indicated that BHBA treatment could increase
the risk of respiratory diseases.

Furthermore, those “key species” negatively correlated with
most of the other species (within the top 50); it was speculated
that these species might play an important role in maintaining
the homeostasis of the nasopharyngeal microbial community.
F. prausnitzii and other Prevotella bacteria, which formed
the biggest connection network in the control group, were
considered to be probiotics by some researchers (Ley, 2016;
Lopez-Siles et al., 2017). They and those biomarkers of the control
group might be useful in the prevention and treatment of bovine
respiratory diseases. Nevertheless, further evidence is still needed.

CONCLUSION

In summary, although we simulated excessive DR by using
BHBA intravenous injection treatment instead of really testing
excessive starvation, the present study was sufficient to confirm
that starvation would affect the composition, function, and
diversity of the yak nasopharyngeal microbial community.
Starvation mainly affected Bacteroidetes and Proteobacteria at
the phylum level, whereas P. laumondii, A, paragallinarum,
B. bigemina, P. stutzeri, and Neisseria sp. 10022 at the species
level. The influence of mild starvation was insignificant. Excessive
starvation affected the oral microorganisms and mucosal mucins,
and significantly disturbed the nasopharynx microbiome, and
increased the risk of respiratory diseases. These results could
enrich our knowledge of the respiratory tract microenvironment
and provide us with new strategies for respiratory disease
prevention and treatment. However, because of the lack of
longitudinally following these yaks, physiological data, and the
limitation of sample size, further experiments are still required.
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Supplementary Figure 1 | (A) The PCA (principal component analysis) of KEGG
Orthology (KO). Fifteen samples can be roughly clustered into two groups (pink
and reseda) like species PCA. (B) The flowchart of procedures in the experiment
before sampling.

Supplementary Figure 2 | The average relative abundance of top 20 KOs with
the highest relative abundance in each group.

Supplementary Figure 3 | (A) The difference of average relative abundance of 34
top 20 species, which occurred in all three groups. Species with the same color
belong to the phyla with the corresponding color like Figure 4. Z for the control
group, G for the mild DR group, GB for the excessive DR group. ns:
non-significant, p > 0.05; *0.01 < p < 0.05. Marking by the red square means the
difference was significant. The yellow line divided these 34 species into four
groups according to their changing rule. P1: pattern 1, BHBA treatment enhanced
the increase of relative abundance; P2: pattern 2, BHBA treatment enhanced the
decrease of relative abundance; P3: pattern 3, BHBA recovered the decrease of
relative abundance; P4, pattern 4, BHBA treatment recovered the increase of
relative abundance. (B) Venn diagram analysis of 34 top 20 species of three
groups. Red words indicate that the relative abundance of this species increased;
purple words indicate that the relative abundance of this species decreased. The
overlapping parts of the circles represent the species that are shared in
corresponding groups.

Supplementary Table 1 | (A) Statistical table of reads data. N (%): the ratio of
fuzzy bases to total bases; GC (%): the ratio of G and C bases to total bases; Q20
(%): the proportion of bases with accuracy above 99% to total bases; Q30 (%):
the proportion of bases with accuracy above 99.9% to total bases; HQ reads (%):
the percentage of high-quality sequences in the raw sequences; HQ data (%): the
percentage of bases in high quality-sequences to the bases in raw sequences.
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(B) The detailed Simpson index, Chao1 index, ACE index, and Shannon index of
each sample and their average means of each group.

Supplementary Table 2 | Detailed relative abundance of KOs of each sample.

Supplementary Table 3 | Detailed relative abundance of all KEGG third-level
pathways of each sample.

Supplementary Table 4 | Detailed relative abundance of every species of each
sample.

Supplementary Table 5 | Detailed relative abundance data at the phyla level of
each sample.

Supplementary Table 6 | Detailed relative abundance data of detected viruses of
each group.

Supplementary Table 7 | Detailed relative abundance data of top 50 species
significantly changed species.

Supplementary Table 8 | (A) Detailed relative abundance data at the genus level
of each sample. (B) Detailed statistical information of contigs/scaffolds. Length of
N20/50/90: arranges all the assembled contigs/scaffolds sequences in order of
length from long to short and then added from long to short. When the addition
length reaches 20%/50%/90% of the total length of contigs/scaffolds sequences,
the corresponding length of the last series will be the length of N20/50/90.
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The Rumen Bacterial Community in
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Production Traits During Freshening
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1 State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety
Control, College of Animal Science and Technology, China Agricultural University, Beijing, China, 2 College of Animal Science
and Technology, Hebei Agricultural University, Baoding, China, 3 Department of Bacteriology, University
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The rumen microbiome plays a vital role in providing nutrition to the host animal, thereby
influencing ruminant production. Despite its importance, it is not fully understood how
variation in the ruminal bacteria community composition influences dry matter intake
(DMI), milk yield and ruminal fermentative parameters in dairy cows, especially during
freshening period. Here, we hypothesized that during early lactation, high DMI cows
having a different ruminal microbiota than low DMI cows, and that this difference persists
over time. To test this, we enrolled 65 fresh and determinzed their DMI using an auto-
feed intake recording system. Fourteen days after calving, the 10 animals with the lowest
(LFI) and the 10 animals with the highest (HFI)-average DMI were selected for further
analysis. Rumen fluid was collected from these two cohorts at 1 (Fresh1d) and 14 days
(Fresh14d) after calving and their ruminal microbiota were assessed using 16S rRNA
sequencing. Volatile fatty acid (VFA) concentrations were also quantified. Comparison of
the ruminal microbiotas between Fresh1d and Fresh14d showed that Fresh14d cows
had a significantly higher relative abundance of VFA—producing microbes (P < 0.05),
such as Prevotella_7 and Succinivibrionaceae_UCG-001. This was commensurate with
the concentrations of acetate, propionate, butyrate, valerate and total VFAs, were also
significantly (P < 0.05) increased in Fresh14d cows. We also found that the differences
in the ruminal microbiota between LFI and HFI cows was limited, but DMI significantly
altered (P < 0.05) the relative proportion of bacteria in the families Coriobacteriaceae,
and Succinivibrionaceae. Furthermore, specific operational taxonomic units belonging
to the Anaeroplasma was significantly (P < 0.05) correlated with DMI and milk yield.
Taking together, our findings provide a framework for future studies of freshening period
cow that seek to better understand the role of the ruminal microbiota during this critical
period in the lactation cycle.

Keywords: ruminal bacteria, fresh cows, dry matter intake, production traits, 16S rRNA sequencing

Abbreviations: ADF, Acid detergent fiber; AP, acetate-to-propionate ratio; DDGS, Dried distillers grains with soluble; DM,
Dry matter; DMI, Dry matter intake; Fresh1d, 1 day after calving of fresh cows; Fresh14d, 14 days after calving of fresh cows;
HFI, high average feed intake from the fresh cows; LFI, low average feed intake from the fresh cows; NDF, Neutral detergent
fiber; NMDS, Non-Metric Multidimensional Scaling; OTUs, Operational Taxonomic Units; TVFAs, total of volatile fatty
acids.
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INTRODUCTION

Dairy cows are important global contributors to agriculture
as sources of milk and milk products. A critical stage in the
dairy cow production lifecycle is the transition period, which
occurs between lactation cycles and spans from 3 weeks before
to 3 weeks after calving. During this period, cows undergo
dramatic changes in host physiology and nutrient metabolism,
which can result in health disorders, reduced dry matter intake
(DMI), and lower milk yield. Previous works has documented the
influence of diet on host metabolism and physiology during the
transition period, but far less is known regarding the impact of the
ruminal microbiome, which is a known driver of host production
(Weimer, 2015). Importantly, ruminal microbes ferment plant
polysaccharides into VFAs, including acetate, propionate, and
butyrate, which serve as the major energy source for the cow
(Reynolds et al., 1988; Flint et al., 2008). Recent studies reported
the difference of rumen microbiota under the different feed
intake of lactating dairy cows (Li et al., 2020) and yaks (Shi et al.,
2020). However, there are no studies focused on the difference
of rumen microbiota between low and high feed intake in dairy
cows during the freshening period.

Recently, studies have shown that the rumen microbiota
undergoes dramatic and distinct shifts from gestation to lactation.
Lima et al. (2015) described these shifts in 115 Holstein
dairy cows (67 multiparous and 48 primiparous) from 1
week before postpartum to 1 week after postpartum. Dynamic
changes in the structure of the metabolically active rumen
bacterial communities were found over the transition period
(parturition ± 3 weeks), likely in response to the dramatic
changes in physiology and nutritional factors like DMI and feed
composition (Zhu et al., 2017). These findings were supported
by another study of 10 primiparous Holstein dairy cows during
the transition period, which also found distinct changes in the
rumen bacterial composition in response to dietary changes (Zhu
et al., 2018). In contrast, a study by Pitta et al. (2014) showed
no difference in the dominant ruminal bacterial phyla, families
and genera in both primiparous and multiparous cows 1–3 d
post-calving and 4 weeks into lactation.

Given this paucity of data, it is clear that more work is
required to better understand the influence of the ruminal
microbiota during the transition period. In particular, a
deeper understanding of the freshening period (2 weeks after
parturition) is necessary, as∼50% of all cows experience low DMI
during this period, resulting in a state of negative energy balance
(Ferguson, 2001). Increasing evidence showed that improving
DMI of fresh cows can alleviate the negative energy balance
and increased the downstream milk production of dairy cows
(Roche et al., 2013).

Here, we hypothesized that the rumen microbiota of low
DMI cows is significantly different from high DMI cows, and
that this difference persists over time. To address this, we
conducted a study to explore the dynamics of the ruminal
microbial community during the freshening period in dairy
cows. Specifically, we compared the ruminal microbiota of low
DMI fresh cows to high DMI fresh cows in order to identify
potential relationships between the ruminal bacteria and DMI.

Understanding the differences between these groups will provide
a framework for fresh cows and thereby achieve improved
lactation efficiency while reducing the risk for the adverse
outcomes that usually persist in low DMI fresh cows.

MATERIALS AND METHODS

Animals Care and Management
Sixty-five fresh (2.40 ± 0.50 parity, body condition score
3.58± 0.12, body weight 612.13± 11.40 kg) Holstein dairy cows
were selected after calving from a commercial dairy farm herd
(Beijing, China). All cows were cohoused and kept in a free stall
barn. No drugs or antibiotics were used 3 months prior to the
study. All cows had ad libitum access to fresh water and were
fed three times daily (07:30, 14:30, and 19:00) with a total mixed
ration, as shown in Table 1.

Daily Milk Yield and Dry Matter Intake
Data Collection
Individual feed intake was measured by a roughage intake control
system (Insentec B.V., Marknesse, Netherlands). Cows were
milked thrice daily (07:00, 14:00, and 22:00) by farm staff. Milk

TABLE 1 | Composition and chemical components of the diet used in this study.

Items1 Pre-partum Fresh

Ingredients, kg

Oat grass 4.83 1.20

Alfalfa hay – 3.00

Whole corn silage 8.62 11.20

Flaked corn 0.87 2.00

Corn pellets 0.87 1.18

Soybean meal 1.84 2.97

Soybean hull 0.50 2.00

Sprayed corn husk 1.40 0.18

DDGS 1.20 1.50

5% premix 0.75 0.65

Cottonseed – 0.50

5% anion premix 0.13 –

Yeast culture XP 0.15 0.20

Molasses – 0.50

Contents,%

Dry matter as fed 53.39 49.32

Crude protein 14.23 16.56

Crude fat 2.04 3.40

ADF 20.37 20.58

NDF 40.84 34.63

NEL2(MCal/kg) 1.58 1.72

Ca 0.80 0.70

P 0.35 0.33

1DDGS dried distillers grains with solubles, DM dry matter, NDF neutral detergent
fiber, ADF acid detergent fiber, NFC non-fiber carbohydrates, Ca calcium, P
phosphorus.
2NEL: Nutrients contents was measured value and NEL was calculated value with
model from NRC (2001).
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yield was recorded by a milking machine (2 × 48, BouMatic
Company, Madison, WI, United States) for each cow.

Grouping and Sampling Period
All cows were transferred to a new barn from 10 days
before calving to allow the animals to acclimate to their new
surroundings. The experimental period was from 1 d to 14 d
after calving. During this period, the 10 cows with the lowest
average DMI (LFI) and the 10 cows with highest average DMI
(HFI) were selected from the 65 fresh cows. We note that a
previous study found that characterizing the ruminal microbiota
of 16 cows maintained on the same diet is sufficient to determine
meaningful differences within their microbial communities (Jami
and Mizrahi, 2012). Therefore, our selection of 20 disparate DMI
cows from a cohort of 65 early lactation cows is likely sufficient
to detect differences inthe their ruminal microbiotas as it relates
to host phenotype. Once lactation began, the LFI and HFI cows
were sampled at 1 (Fresh1d, n = 20) and 14 (Fresh14d, n = 20)
days after calving.

Blood Samples Collection and
Measurement
Blood samples were collected from each cow via tail vein
before morning feeding. Samples were centrifuged at 3,000 × g
for 10 min to obtain serum and stored at −20◦C untile
subsequent analysis of glucose, non-esterified fatty acid (NEFA),
and β-hydroxybutyrate (BHBA). Serum samples were analyzed
for NEFA and BHBA using a colorimetric kit (Nanjing
Jiancheng, Jiangsu, China), and glucose by a GF-D200 automatic
biochemical analyzer (Caihong, Shandong, China).

Rumen Fluid Collection and Processing
Rumen fluid samples were collected from each cow using an
oral gastric tube (Ancitech, Winnipeg, MB, Canada) prior to
morning feeding (07:00). The sampling device was cleaned
thoroughly with fresh warm water after each sampling to avoid
cow-to-cow contamination and the first 200 mL of collected
rumen fluid was discarded to avoid saliva contamination.
Subsequent rumen fluid was collected and filtered through
four layers of cheesecloth. Samples were placed into sterile
50 mL plastic tubes on wet ice and immediately transported
back to the farm office and frozen at −80◦C until DNA
extraction was performed.

An additional 30 mL of rumen fluid was transferred into
a centrifuge tube and stored at −20◦C until VFA analysis.
VFA determination was conducted as follows. Rumen fluid
was centrifuged at 8, 000 × g at 4◦C for 15 min to
obtain the supernatant, which was then quantified using gas
chromatography as described by Erwin et al. (1961).

Genomic DNA Extraction, Amplification,
and Sequencing
Total genomic DNA was extracted from 1 mL rumen fluid
samples using an OMEGA DNA kit (Omega Bio-Tek,
Norcross, GA, United States) according to the manufacturer’s
specifications. The quality of DNA was confirmed by

1% agarose gel electrophoresis. The amplicon library
preparation was performed by PCR amplification of the
V3-V4 region of the 16S rRNA gene using the primers
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R
(5′-GGACTACNNGGGTATCTAAT-3′) including NEBNext
adapters sequences, indices and Taq DNA Polymerase as well
as AMPure XP Beads (New England Biolabs Inc., Ipswich, MA,
United States) (Ren et al., 2017). PCR conditions are as follows:
5 min of denaturation at 95◦C, followed by 28 cycles of 45 s for
denaturation at 95◦C, 50 s for annealing at 55◦C and 45 s for
elongation at 72◦C with a final extension at 72◦C for 10 min.
PCRs were performed in triplicate 25 µL mixture containing 12.5
µL KAPA 2G Robust Hot Start Ready Mix (Kapa Biosystems,
Wilmington, MA, United States), 1 µL of each primer (5 µM), 5
µL template DNA (6 ng/uL) and 5.5 uL ddH2O. The amplified
PCR products were purified using an Agencourt AMPure XP Kit
(Beckman Coulter Genomics, Indianapolis, IN, United States),
and quantified using PCR (ABI 9700, Thermo Fisher Scientific,
Waltham, MA, United States). Purified PCR products were
pooled in equimolar amounts and sequenced on an Illumina
MiSeq (Illumina, San Diego, CA, United States) (Caporaso et al.,
2012) using a 2× 250 bp sequencing kit.

Quality Control and Sequencing Data
Analysis
Low quality (score ≤ 20) short reads (<200 bp) and reads
containing ambiguous bases or unmatched to primer sequences
and barcode tags were filtered out from dataset using QIIME
1.8 (Caporaso et al., 2010). The resulting reads were merged
using PEAR 0.9.6 (Zhang et al., 2014) and demultiplexed
using FLASH 1.20 (Magoc and Salzberg, 2011). Reads with
merged length less than 230 bp and chimeric sequences
were removed by UCHIME (UCHIME Algorithm) (Edgar
et al., 2011). In order to reduce the error caused by the
different sequencing depths of the samples, all samples were
subsampled to equal size of 23,902 sequences for downstream
alpha and beta diversity analysis. To ensure the comparability
of the species diversity between the samples, standardized
OTU documents were used to analyze the species and
diversity indexes.

The remaining sequences were clustered into operational
taxonomic units (OTUs) at a 97% similarity using the Ribosomal
Database Project classifier (Cole et al., 2009) with a confidence
threshold of 0.70 and compared against the SILVA 128
database (Release September 29, 2016) (Quast et al., 2013).
All were removed using UCLUST (Edgar, 2010) to generate a
representative OTU table.

The OTU level alpha diversity of bacterial communities was
determined using Shannon and Chao1 indices and calculated
using procedures within QIIME 1.8 and visualized using the
“ggplot2” package in R (version 3.6.1) (Wickham, 2009). The
non-metric multidimensional scaling (NMDS) ordination was
performed on Bray-Curtis dissimilarity distances calculated in
R. Analysis of similarities (ANOSIM) (999 permutations) using
Bray-Curtis distances were performed to compare the similarity
of microbial community among the observed microbial profiles
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based on different groups and sample time using the “vegan”
package in R (Oksanen et al., 2015).

Sequence and Statistics Analysis
Data on DMI, milk yield, rumen fermentation parameters and
serum biochemical parameters were analyzed using the linear
mixed models procedure of SAS 9.4 (Cary, North Carolina,
United States). Alpha-diversity indices, the significance of the
pairwise comparison between LFI and HFI groups and between
Fresh1d and Fresh14d groups were analyzed using the Wilcoxon
rank test using the “dplyr” package1 (author, H. Wickham, R.
François, L. Henry, K. Müller; published date, 2018; version,
0.7.6) in R. Spearman’s rank correlation was used to identify
the relationship between the relative abundance of OTUs and
production traits of LFI and HFI cows using the “Psych” package2

(author, W Revelle; published date, 2016; version, 1.6.9) and
visualized using the “corrplot” package3 (author, Taiyun Wei;
published date, 2017; version, 0.84) in R. All P-value was
corrected using a false discovery rate of 0.05 as described
by Benjamini and Hochberg (1995) and false discovery rate
corrected P < 0.05 were considered significant.

RESULTS

Measurement of Production Traits,
Rumen Fermentative Parameters, and
Blood Metabolites in Fresh Cows
DMI and milk yield for all cows across the entire trial period
are shown in Table 1. The levels of acetate, propionate, butyrate,
valerate and total VFAs were significantly (P < 0.05) higher in
Fresh14d compared to Fresh1d, whereas the acetate:propionate
(AP) ratio and serum glucose was significantly (P < 0.05) lower in
Fresh14d groups. We found that DMI increased and significantly
differed (P < 0.05) between LFI and HFI groups (Table 2).
No significant differences (P > 0.05) in milk yield, DMI/milk
yield, acetate, propionate, butyrate, valerate, isovalerate, total
VFAs, AP, NEFA, BHBA and glucose were observed between
LFI and HFI groups.

Sequencing Metrics for the Ruminal
Microbiota of Fresh Cows
A total of 1,087,457 raw sequences were generated with an
average of 27,186 ± 745 (mean ± SD) per sample, respectively.
An average of 1,532± 258 OTUs across all samples was identified
at 97% sequence similarity. Rarefaction curves showed a smaller
number of new OTU identification as the number of sequences
per sample increased (Supplementary Figure S1), implying
the adequate sampling depth for covering the rumen bacterial
composition that we tested. Good’s coverage for the fresh cow
samples was determined with a mean value of 0.982 across all 40
samples, indicating sufficient sequence coverage for all samples.

1https://cran.r-project.org/package/dplyr
2http://cran.r-project.org/web/packages/psych
3https://cran.r-project.org/web/packages/corrplot/

The mean Shannon’s diversity and Chao1’s richness for all fresh
cow samples was 8.38± 0.64 and 1963.94± 285.88, respectively.

The most highly abundant phyla for all fresh cow
samples included the Bacteroidetes (52.60%), Firmicutes
(34.90%), Proteobacteria (6.21%), with less contributions
from the Fibrobacteres (1.24%) and Spirochaetes
(1.23%) (Figures 1A,B). Within these phyla, the most
abundant families included the Prevotellaceae (40.17%),
Lachnospiraceae (12.19%), Ruminococcaceae (9.63%) and
Succinivibrionaceae (5.39%, Figures 1A,B). At the genus
level, 8 genera had >2% relative abundance: Prevotella_1
(31.29%), Succiniclasticum (4.37%), Christensenellaceae_R-
7_group (2.78%), Rikenellaceae_RC9_gut_group (2.69%),
Prevotella_7 (2.53%), Succinivibrionaceae_UCG-001 (2.22%),
Succinivibrionaceae_UCG-002 (2.04%), and Ruminococcus_1
(2.03%, Figures 1A,B).

Defining a Core Microbiota for Fresh
Cows and DMI Cows
We then sought to determine the core microbiota across all
fresh cows in our study and found 2,737 OTUs shared among
all fresh cow samples (Figure 2A). These included bacterial
families with >1% total relative abundance: Prevotellaceae
(26.39%), Lachnospiraceae (6.23%), Ruminococcaceae (4.26%),
Acidaminococcaceae (4.19%), Bacteroidales_S24-7_group
(3.01%), Veillonellaceae (2.61%), Christensenellaceae (1.85%),
and Fibrobacteraceae (1.05%, Supplementary Table S1). The
shared genera among all samples >1% of the total relative
abundance were the Prevotella_1 (23.39%), Succiniclasticum
(4.19%), unclassified_Bacteroidales_S24-7_group (3.01%),
Christensenellaceae_R-7_group (1.85%), Ruminocroccaceae_
NK4A214_group (1.27%), Lachnospiraceae_NK3A20_group
(1.11%), Selenomonas_1 (1.06%), and Fibrobacter (1.05%).

We then determined the core set of OTUs shared between the
LFI and HFI cows and found 2,392 OTUs shared across LFI and
HFI samples (Figure 2B). More unique OTUs were found in the
HFI group, relative to the LFI group. The LFI and HFI groups
shared 80% of the total number of identified OTUs. Of the 2,392
OTUs shared across both DMI groups, most of them belonged
to the genera Prevotella_1 (33.26%), unclassified_c_WCHB1-
41 (21.80%), Prevotella_7 (4.96%), Succinivibrionaceae_UCG-
001 (4.45%), unclassified_Bacteroidales_S24-7_group (4.20%),
Succiniclasticum (4.05%), unclassified_Lachnospiraceae (2.69%),
and Ruminococcus_1 (2.32%, Supplementary Table S1).

The Ruminal Bacterial Community in
Fresh Cows Differs Between Days 1 and
14 After Calving
To determine if differences exist between the ruminal microbiota
of fresh cows at Fresh1d and Fresh14d, we performed a Bray-
Curtis dissimilarity analysis and visualized this using an NMDS
plot as shown in Figure 3A. We found that the ruminal
microbiota differed between both groups upon visual inspection.
We then analyzed these data in greater detail using ANOSIM
and confirmed that these two groups were statistically different
(R2 = 0.65, P = 0.001). Moreover, we found that the ruminal
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TABLE 2 | DMI, milk yield, rumen fermentative parameters and blood metabolites.

Item1 Freshening period SEM P-value DMI SEM P-value

Fresh1d Fresh14d LFI HFI

(n = 20) (n = 20) (n = 10) (n = 10)

DMI, kg 6.43 15.36 0.60 < 0.001 16.52 19.57 0.59 0.023

Milk yield, kg 20.47 36.41 1.45 < 0.001 34.64 36.07 1.00 0.382

DMI/milk yield 0.74 0.50 0.05 < 0.001 0.53 0.61 0.03 0.586

Fermentation

Acetate, mmol/L 45.18 61.31 4.18 0.015 61.50 61.13 2.96 0.668

Propionate, mmol/L 10.96 20.22 1.63 0.002 20.74 19.64 1.75 0.781

Butyrate, mmol/L 5.77 10.25 0.75 < 0.001 10.34 10.14 0.64 0.884

Valerate, mmol/L 0.53 1.01 0.06 < 0.001 1.10 0.90 0.08 0.225

Isovalerate, mmol/L 2.10 2.05 0.12 0.779 2.18 1.92 0.12 0.269

TVFAs, mmol/L 63.14 94.20 6.89 0.005 93.86 94.74 4.95 0.936

AP 5.32 3.26 0.32 < 0.001 3.24 3.29 0.16 0.883

Metabolites

NEFA, mmol/L 0.20 0.21 0.002 0.058 0.21 0.20 0.005 0.170

BHBA, mmol/L 1.26 1.28 0.03 0.602 1.30 1.27 0.04 0.765

Glucose, mmol/L 3.65 3.11 0.12 0.025 3.14 3.08 0.12 0.815

1TVFAs, total of VFAs; AP, the acetate-to-propionate raito; NEFA, non-esterified fatty acid; BHBA, β-hydroxybutyrate.

microbiota of the Fresh14d cows had a significantly (P < 0.001)
lower number of OTUs, relative to Fresh1d cows, which was
further supported by significant differences in the Chao1 richness
and Shannon diversity index (P < 0.001) values for the two
groups (Supplementary Figure S2A).

At the phylum level, the relative abundance of phyla
Bacteroidetes, Firmicutes and Proteobacteria showed no
significant (P > 0.05) difference between Fresh1d and
Fresh14d. In contrast, the phyla Actinobacteria and Tenericutes
were significantly (P < 0.05) decreased (Table 3). At the
family level, the predominant family Ruminococcaceae,
Bacteroidales_BS11_gut_group, Christensenellaceae and
Rikenellaceae were significantly (P < 0.05) decreased from
Fresh1d to Fresh14 (Table 3). The relative abundance of the
families Prevotellaceae and Veillonellaceae were significantly
(P < 0.05) higher in Fresh14d compared to Fresh1d (Table 3).
At the genus level, the relative abundance of some genera
changed more than 10-fold, including Prevotella_7 (increasing
83.33-fold, P < 0.001), Erysipelotrichaceae_UCG-002 (increasing
3827.75-fold, P = 0.001), and Succinivibrionaceae_UCG-001
(increasing 42,380.95-fold, P < 0.001, Table 4).

Differences in the Ruminal Bacterial
Community Between LFI and HFI Cows
Is Limited
Considering the importance of DMI for the fresh group,
we compared LFI and HFI cows from the fresh cow group
at 14d to determine if differences exist between these cows.
First, we performed a Bray-Curtis dissimilarity analysis
of the microbiota for LFI and HFI cows and visualized
this using an NMDS plot as shown in Figure 3B. We
found that the ruminal microbiota was similar as both
groups did not show a clear separation, and this was also

confirmed using ANOSIM analysis (R2 = 0.006, P = 0.355).
In addition, we found that the ruminal microbiota from those
two groups had no significant differences in the Shannon
diversity index (P = 0.529), Chao1 richness (P = 0.684),
and number of OTUs (P = 0.481) for the two groups
(Supplementary Figure S2B).

We then quantified the difference between the community
composition of the LFI and HFI groups using the Wilcoxon
test on the relative abundances for all samples at the phylum
and family level. We found that phyla Proteobacteria was
significantly (P = 0.043) enriched in the LFI group relative to
the HFI group (Table 3). At the family level, Coriobacteriaceae
(phylum Actinobacteria), and Succinivibrionaceae (phylum
Proteobacteria) were significantly (P < 0.05) different
between groups (Table 3). A higher relative abundance
of Erysipelotrichaceae_UCG-002 in the LFI group, relative
to the HFI group (Table 4). The relative abundance of
Christensenellaceae_R-7_group and Ruminococcaceae_UCG-
010 were tended to higher (0.05 < P < 0.1) and the relative
abundance of Lachnospira was tended to lower (0.05 < P < 0.1)
in the HFI group relative to the LFI group (Table 4).

Correlation of Ruminal Bacteria With
Production and Rumen Fermentative
Parameters in LFI and HFI Cows
To explore the potential roles of ruminal bacteria on production
and fermentation, we analyzed the relationship between DMI,
milk yield, DMI/milk yield, VFAs (acetate, propionate, butyrate,
valerate, isovalerate, total VFAs and AP) and the relative
abundance of OTUs using Spearman’s rank correlations. All
OTUs with relative abundances <0.01% of all samples were
removed from this analysis. The relationship between OTUs and
production and fermentation traits were visualized in a heatmap,
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FIGURE 1 | The ruminal bacterial composition of fresh cows. (A) Relative distribution of the most dominant bacterial phyla, family and genera (relative
abundance >0.1% for all samples) for fresh cow samples. The pie chart inner ring represents the genus level, the middle ring represents the family level and the
outer ring represents the phylum level. Different shades of color represent different bacteria. Numbers in brackets denote the average relative abundance of the
bacteria across 40 samples. (B) Stacked bar graphs of the average relative abundances of phyla, family and genus (relative abundance >0.1% at least one sample)
for fresh cow on d1 and d14 after calving.

FIGURE 2 | (A) Venn diagram plot of fresh cow samples. The core community for all fresh cow is defined as those OTUs present in all fresh animals cows for all
sampling time. (B) Venn diagram plot of LFI and HFI cow samples. The core community for LFI and HFI cows is defined as those OTUs present in LFI and HFI cow at
14d after calving.

as showed in Figure 4. We found a total of 24 OTUs that
were significantly (P < 0.05) correlated with DMI; of them,
8 OTUs negatively correlated with DMI, 4 of which were in

the genus Prevotella_1 (P < 0.05) and 3 of which were in
the family Bacteroidales_S24-7_group (P < 0.05). There were
15 OTUs positively correlated with DMI, of which 3 were
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FIGURE 3 | (A) NMDS plots of the bacterial communities of fresh cows samples on 1 d (n = 20) and 14 d (n = 20) after calving. Fresh1d: fresh cows on 1d after
calving; Fresh14d: fresh cows on 14 d after calving. (B) NMDS plots of the ruminal bacterial communities of LFI (n = 10) and HFI (n = 10) cows based on Bray-Curtis
distance. LFI, low feed intake fresh cow group; HFI, high feed intake fresh cow group.

TABLE 3 | Significantly different phyla and families (relative abundance > 0.1%) within the rumen microbiota by lactation period and DMI as determined by
the Wilcoxon test.

Phylum/Family Lactation SEM P-value DMI SEM P-value

Fresh1 Fresh14d LFI HFI

Actinobacteria 0.74 0.51 0.06 0.040 0.39 0.63 0.07 0.089

Coriobacteriaceae 0.66 0.43 0.05 0.011 0.32 0.54 0.06 0.045

Bacteroidetes 50.65 54.56 1.17 0.210 52.04 57.07 1.68 0.143

Bacteroidales_BS11_gut_group 5.30 1.95 0.42 < 0.001 1.57 2.34 0.27 0.280

Bacteroidales_Incertae_Sedis 0.55 0.27 0.03 0.002 0.23 0.30 0.03 0.315

Bacteroidales_RF16_group 1.00 0.40 0.08 0.006 0.33 0.47 0.09 0.406

Bacteroidales_UCG-001 0.17 0.08 0.02 0.035 0.04 0.11 0.02 0.256

Marinilabiaceae 0.12 4.18E-03 0.02 0.002 2.09E-03 6.28E-03 1.49E-03 0.087

Porphyromonadaceae 0.21 0.02 0.04 0.002 7.53E-03 0.04 0.02 0.516

Prevotellaceae 34.89 45.45 1.70 0.002 44.07 46.82 2.07 0.315

Rikenellaceae 4.35 1.68 0.32 < 0.001 1.27 2.09 0.29 0.315

Firmicutes 37.11 32.69 1.47 0.054 34.16 31.22 1.40 0.481

Christensenellaceae 4.53 1.76 0.32 0.002 1.30 2.22 0.35 0.063

Clostridiales_vadinBB60_group 0.11 0.03 0.01 0.010 0.02 0.04 8.91E-03 0.092

Family_XIII 0.80 0.46 0.04 0.002 0.46 0.46 0.03 0.791

ODP1230B8.23 0.17 0.08 0.03 0.011 0.02 0.13 0.05 0.140

Ruminococcaceae 11.49 7.77 0.55 0.007 7.96 7.58 0.53 0.796

Veillonellaceae 3.03 5.16 0.34 0.003 5.46 4.86 0.45 0.529

Proteobacteria 5.53 6.90 1.17 0.840 9.36 4.43 1.23 0.043

Desulfovibrionaceae 0.34 0.14 0.03 < 0.001 0.13 0.15 0.02 0.940

Succinivibrionaceae 4.49 6.30 0.73 0.610 8.89 3.71 1.25 0.043

Synergistetes 0.18 0.19 0.08 0.005 0.10 0.28 0.09 0.186

Synergistaceae 0.18 0.19 0.04 0.060 0.10 0.28 0.09 0.186

Tenericutes 0.75 0.47 0.06 0.005 0.44 0.50 0.06 0.880

Anaeroplasmataceae 0.39 0.24 0.03 0.049 0.19 0.28 0.04 0.344

in the Treponema_2 (P < 0.05) and 2 were in the family
Prevotellaceae (P < 0.05). There was one OTUs identified as
belonging to the Defluviitaleaceae_UCG-011 that was negatively

(P < 0.05) associated with DMI. In addition, OTUs within the
Prevotellaceae_UCG-001, Lachnobacterium, and Olsenella were
significantly and positively (P < 0.05) correlated with DMI.
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TABLE 4 | Significantly different genera (relative abundance > 0.1%) within the rumen microbiota by lactation period and DMI as determined by the Wilcoxon test.

Genera Lactation SEM P-value DMI SEM P-value

Fresh1d Fresh14d LFI HFI

Phocaeicola 0.55 0.27 0.03 < 0.001 0.23 0.30 0.03 0.315

Prevotella_7 0.06 5.00 1.02 < 0.001 7.80 2.19 1.90 0.344

Prevotellaceae_Ga6A1_group 0.22 0.49 0.04 0.003 0.41 0.58 0.06 0.290

Prevotellaceae_UCG-003 1.37 0.91 0.09 0.017 0.70 1.13 0.12 0.112

Prevotellaceae_YAB2003_group 0.32 1.07 0.10 < 0.001 1.13 1.00 0.15 0.912

Rikenellaceae_RC9_gut_group 3.84 1.54 0.28 < 0.001 1.19 1.88 0.24 0.315

SP3-e08 0.20 0.06 0.03 < 0.001 0.01 0.11 0.05 0.494

Anaerotruncus 0.14 0.04 0.01 < 0.001 0.05 0.03 0.01 1.000

Anaerovorax 0.20 0.09 0.01 < 0.001 0.10 0.09 0.01 0.677

Butyrivibrio_2 1.57 0.66 0.10 < 0.001 0.65 0.68 0.06 0.971

Christensenellaceae_R-7_group 3.90 1.66 0.28 < 0.001 1.20 2.11 0.34 0.070

Coprococcus_2 0.02 0.06 0.01 0.003 0.07 0.06 0.01 0.426

Erysipelotrichaceae_UCG-002 2.09E-04 0.08 0.02 0.001 0.14 0.01 0.03 0.038

Eubacterium_coprostanoligenes_group 0.79 0.45 0.05 0.003 0.42 0.48 0.03 0.406

Eubacterium_hallii_group 0.16 0.12 0.01 0.018 0.09 0.14 0.02 0.173

Eubacterium_ruminantium_group 0.47 0.91 0.07 0.008 1.01 0.81 0.11 0.529

Eubacterium_uniforme 6.28E-04 0.10 0.02 < 0.001 0.13 0.08 0.03 0.344

Lachnoclostridium_1 0.11 0.17 0.01 0.006 0.18 0.15 0.01 0.344

Lachnoclostridium_12 0.03 0.09 0.01 0.017 0.10 0.07 0.02 0.384

Lachnospira 0.05 0.67 0.09 < 0.001 0.92 0.41 0.16 0.075

Lachnospiraceae_ND3007_group 0.39 0.18 0.04 0.001 0.21 0.16 0.05 0.850

Lachnospiraceae_NK4A136_group 0.13 0.07 0.01 0.013 0.08 0.06 0.01 0.449

Lachnospiraceae_XPB1014_group 0.47 0.14 0.03 < 0.001 0.10 0.17 0.03 0.256

Lactobacillus 0.01 0.07 0.01 0.002 0.10 0.04 0.03 0.677

Megasphaera 0.01 0.11 0.02 < 0.001 0.14 0.08 0.03 0.363

Moryella 0.31 0.22 0.02 0.010 0.22 0.23 0.02 0.970

Oribacterium 0.32 1.13 0.14 < 0.001 1.42 0.84 0.25 0.529

Papillibacter 0.42 0.06 0.05 < 0.001 0.05 0.07 0.01 0.384

probable_genus_10 0.18 0.11 0.01 0.039 0.12 0.11 0.02 0.850

Pseudobutyrivibrio 1.59 0.53 0.14 < 0.001 0.46 0.59 0.06 0.353

Ruminococcaceae_NK4A214_group 2.51 1.30 0.14 < 0.001 1.21 1.39 0.12 0.481

Ruminococcaceae_UCG-002 0.21 0.11 0.02 0.013 0.11 0.12 0.02 0.496

Ruminococcaceae_UCG-005 0.95 0.31 0.10 0.002 0.30 0.32 0.07 0.393

Ruminococcaceae_UCG-010 0.59 0.13 0.06 < 0.001 0.11 0.16 0.03 0.054

Schwartzia 0.32 0.52 0.04 0.004 0.53 0.51 0.04 0.623

Selenomonas 4.81E-03 0.50 0.07 < 0.001 0.65 0.35 0.13 0.315

Selenomonas_3 0.00 0.10 0.02 < 0.001 0.15 0.07 0.03 0.103

Veillonellaceae_UCG-001 1.24 0.47 0.09 < 0.001 0.44 0.50 0.05 0.473

Desulfovibrio 0.33 0.14 0.03 < 0.001 0.13 0.15 0.02 0.910

Ruminobacter 0.68 0.17 0.09 < 0.001 0.18 0.15 0.06 0.520

Succinivibrionaceae_UCG-001 1.05E-03 4.45 0.71 < 0.001 6.48 2.42 1.24 0.162

Succinivibrionaceae_UCG-002 2.92 1.16 0.36 0.005 1.59 0.72 0.40 0.472

Candidatus_Saccharimonas 0.98 0.60 0.06 0.005 0.57 0.63 0.05 0.529

Pyramidobacter 0.13 0.15 0.03 0.018 0.09 0.21 0.06 0.186

Anaeroplasma 0.39 0.24 0.03 0.036 0.19 0.28 0.04 0.344

We also found 11 OTUs that were significantly correlated
with milk yield; of them, 6 OTUs were significantly and
negatively (P < 0.05) associated with milk yield, and
belonged to the genera Lachnospiraceae_NK3A20_group,
Coprococcus_1, Oribacterium, Mogibacterium and family

Bacteroidales_BS11_gut_group and Prevotellaceae. There were 5
OTUs significantly and positively (P < 0.05) correlated with milk
yield and belonged to the genera Prevotella_1, Anaeroplasma,
Treponema_2, and Eubacterium_coprostanoligenes_group.
Additionally, we identified a significant and negative correlation
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between DMI/milk yield and the relative abundance of OTUs
within Prevotella_1 and the family Bacteroidales_S24-7_group
(P < 0.05).

For VFAs, we found that acetate concentration was
postively correlated with the relative abundance of OTU2072
(Anaeroplasma, r = 0.578, P = 0.007) and OTU587
(Treponema_2, r = 0.550, P = 0.012). We also found that
propionate concentration was negatively correlated with
the relative abundance of four OTUs, including OTU2019
(Butyrivibrio_2, r = −0.654, P = 0.003), OTU742 (Prevotella_1,
r = −0.469, P = 0.049), OTU928 (Prevotella_1, r = −0.523,
P = 0.026), and OTU2499 (Christensenellaceae_R-7_group,
r =−0.476, P = 0.046). The butyrate concentration was negatively
and significantly (P < 0.05) correlated with OTUs within
Butyrivibrio_2, Candidatus_Saccharimonas, and Prevotella_1.
OTUs within Anaeroplasma and the family Bacteroidales_S24-
7_group were significantly and positively (P < 0.05)
correlated with valerate concentration, while OTUs within
Acetitomaculum, Butyrivibrio_2, Candidatus_Saccharimonas,
and Christensenellaceae_R-7_group were significantly and
negatively (P < 0.05) correlated with valerate concentration.
The isovalerate concentration was positively correlated with
OTU1731 (Fibrobacter, r = 0.522, P = 0.018). The AP ratio
was positively correlated with the relative abundances of
OTU2019 (Butyrivibrio_2, r = 0.571, P = 0.013), OTU2297
(Christensenellaceae_R-7_group, r = 0.514, P = 0.029), OTU2499
(Christensenellaceae_R-7_group, r = 0.491, P = 0.038), OTU2457
(Mogibacterium, r = 0.502, P = 0.034) and OTU928 (Prevotella_1,
r = 0.504, P = 0.033).

DISCUSSION

The objective of this study was to characterize the ruminal
microbiota during the freshening period and to determine the
impact of DMI in shaping its dynamics. We designed this
experiment to follow the rumen microbiota within the first
14 days after calving in a group of fresh cows and to compare
low and high DMI cows from this group. Given that low
DMI in fresh cows is known to result in reduced lactation
efficiency and increased risk for host metabolic syndromes,
understanding the dynamics of the ruminal microbiota during
this period may provide a framework for managing this critical
transition period.

Consistent with the known changes in both host metabolism
and the endocrine system across gestation and lactation, it is
perhaps not surprising that we observed significant differences in
the ruminal bacterial community and rumen fermentation index
in fresh cows between days 1 and 14. This is also likely due to the
significant differences in the diet fed to transition animals, which
differs substantially from the beginning to the end of this period.
Recently it was shown that lactation has a far greater impact in
shaping the ruminal microbiota in dairy cows than host genetics
(Bainbridge et al., 2016). Additionally, Pitta et al. (2014) found
that the ruminal microbiota of lactation cows 1–3 days after
calving was most similar to the ruminal microbiota of prepartum
cows. Thus, the shifts in the ruminal bacterial community of

fresh cows from 1 to 14 days observed here is likely due to the
interaction of lactation and diet.

Compared to Fresh1d cows, the Fresh14d cows harbored
a higher relative abundance of Prevotellaceae, Veillonellaceae,
and bacteria within these families are known to degrade
and ferment carbohydrates into VFAs (Zhang et al., 2018).
We also found significantly higher relative abundances of
Succinivibrionaceae_UCG-001, which was increased more than
4,000-fold in Fresh14d cows. This is in agreement with
observations indicating that members of this genera utilize
hydrogen to produce succinate, which can be converted
to propionate (McCabe et al., 2015). This purported in
propionate may contribute to the observed decrease in AP.
Moreover, we found higher levels of acetate, propionate,
valerate, total VFAs, and a lower AP ratio in the rumen
from Fresh14d cows, relative to Fresh1d cows, which likely
reflects a stronger fermentation capacity of the Fresh14d
ruminal microbiota.

In addition to our findings on the temporal dynamics of
the rumen microbiota in fresh cows, our study also considered
the impact of DMI on the rumen microbiota of fresh cows.
Here, we found that increased DMI was associated with lower
relative abundances of Erysipelotrichaceae_UCG-002, within the
family Erysipelotrichaceae, and higher relative abundances of
Ruminococcaceae_UCG-010, within the family Ruminococcaceae.
These findings are in accordance with a previous study of
low, medium, and high feed intake cows during early lactation
which found decreased numbers of Erysipelotrichaceae and
increased numbers of Ruminococcaceae in high feed intake
cows (Li et al., 2020). More recently, a study on the feed
efficiency of dairy cows found that increased milk production
was associated with higher relative abundances of bacteria in the
Bacteroidales, Lachnospiraceae, Ruminococcaceae, and Prevotella
(Shabat et al., 2016).

Given the effect of DMI on the rumen bacterial community,
it is not surprising that specific bacterial species are strongly
correlated with DMI. Here, we observed a strong correlation
between DMI and bacteria in the families Prevotellaceae,
Ruminnococcaceae, unclassified_Bacteroidales_S11_gut_group,
and Lachnospiraceae. This is in accordance with other studies
that also found a strong correlation between DMI and bacteria
in the families Prevotellaceae and Ruminnococcaceae (Jami et al.,
2014). Other work demonstrating the heritability of OTUs
within the Succinivibrionaceae, Megasphaera, Selenonmonas,
Oscillospira, and unclassified BS11, as it relates to DMI in beef
cattle (Li et al., 2019), also support our findings. Related to this,
our study also found that OTUs associated with high DMI fresh
cows were the core microbiota in LFI and HFI cows. We note
that many of these are consistent with previously reported OTUs
found to be heritable in high DMI beef cattle, including bacteria
in the Prevotella and Lanchnospirraceae (Sasson et al., 2017).
In our study, we also found a strong and positive correlation
between milk yield and OTUs within Prevotella_1, Anaeroplasm
and Treponema_2. This is in accordance with other studies which
also found that Prevotella, unclassified_Bacteroidales_S24-7 and
Succinivibrionaceae were strongly and positively correlated with
milk yield in lactating dairy cows (Indugu et al., 2017). Given
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FIGURE 4 | Heatmap of OTUs (relative abundance >0.01% in at all samples) significantly associated with production and rumen fermentative parameters in LFI and
HFI cows, as determined by Spearman’s correlation analysis. *0.01 < P < 0.05, **0.001 < P < 0.01.

Frontiers in Microbiology | www.frontiersin.org 10 March 2021 | Volume 12 | Article 63060539

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-630605 February 26, 2021 Time: 20:12 # 11

Huang et al. Rumen Bacteria Correlated to Performance

these findings future work should further investigate these
bacteria as potential targets for improving DMI in fresh cows.

Considering the essential role of the rumen bacteria in
fermenting plant material into VFAs (Kittelmann et al., 2013),
which have a direct effect on milk production (Hurtaud
et al., 1995; Brulc et al., 2009), documenting the rumen
microbiota in early lactation may help in better understanding
the impact of the rumen microbiota on production traits.
Moreover, the rumen microbiota during the freshening period
may serve as a predictor of future production and may
allow for manipulation in order to improve long term milk
production. The results presented here have identified a
number of specific bacterial taxa associated with both low
and high DMI in fresh cows over time, and many of these
may serve as potential targets for mitigating the challenges
associated with low DMI cows during the freshening period.
However, future work using more functional approaches, such
as metagenomics and metatranscriptomics, should be conducted
to better understand the interaction between rumen microbiome
and DMI in fresh cows.

CONCLUSION

In summary, the results of this study provide novel evidence
for an alteration of the microbiome in the rumen of fresh
cows from 1 to 14 days after calving. We found that the
ruminal microbiota and its associated fermentation patterns
differed during this period and that the relative abundance
of many VFA—producing microbes within the Prevotellaceae,
Lactobacillaceae, and Veillonellaceae were dramatically increased
in Fresh14d cows compared with Fresh1d cows. These findings
indicate a potential stronger ability to ferment dietary substrates
by the rumen microbiota of Fresh14d cows than that of
Fresh1d cows. Additionally, we found limited differences
between the ruminal microbiota of LFI and HFI groups, thereby
reflecting the limited role of DMI on shaping the rumen
microbiota during the freshening period. Furthermore, a strong
relationship between the relative abundances of specific OTUs
and host production traits suggests the possibility to predict
downstream host production using the rumen microbiota.
This could lead to approaches for manipulating the rumen
microbiota to improve DMI and milk production in dairy
cows during the transition period. Future studies should
investigate the relationship between the rumen microbiota
and DMI across different environments in an integrative
manner that incorporates both host genetics and functional
metagenomics in the rumen.
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INTRODUCTION

Several Gram-negative bacteria, including Actinobacillus pleuropneumoniae and Haemophilus
parasuis, are responsible for respiratory diseases and cause huge economic losses to the
swine industry worldwide. Lipopolysaccharide (LPS) is a cell outer membrane component of
Gram-negative bacteria and serves as a major pro-inflammatory stimulus binding to pattern
recognition receptor Toll-like receptor 4 (TLR4) (Ciesielska et al., 2020). LPS is ubiquitous in
nature and exists in high concentrations in air pollution, soil, and organic dust. Inhalation of LPS
is involved in the pathogenesis of lung inflammation (Kaelberer et al., 2020).

Alveolar macrophages (AMs) are the predominant immune cells located at the air-surface
interface of alveoli. Resident AMs that arise during embryogenesis and recruited AMs that
originate postnatally from circulating monocytes coexist in the inflamed lung. Once infection
occurs, AMs move between alveoli to sense and phagocytose inhaled bacteria before they can
induce harmful lung inflammation (Neupane et al., 2020). Meanwhile, the Gram-negative bacterial
LPS binding to the TLR4 of AMs initiates multiple intracellular signaling pathways and induces
the production of some pro-inflammatory cytokines, such as interleukin 1β (IL-1β) (Li et al.,
2017). These pro-inflammatory cytokines induce superfluous neutrophil recruitment, leading
to continuous lung inflammation and injury. The activation states of AMs are divided into
classically activated (M1) and alternatively activated (M2). M1-type AMs generally induced by
TLR signaling and interferon-gamma (IFN-γ) secrete pro-inflammatory cytokines, and M2-type
AMs generally induced by interleukin-4 (IL-4) are anti-inflammatory and typically express the
transforming growth factor-β (TGF-β) (Hussell and Bell, 2014). However, the gene reprogramming
and polarization states of macrophages are also affected by stimulation intensity and tissue
origin. A meta-analysis of in vitro differentiated macrophages showed that macrophages display
distinguishing activation states even after early (2–4 h) or late (18–24 h) LPS infection (Chen et al.,
2019). In M1-type AMs, increased levels of reactive oxygen species, such as hydrogen peroxide,
superoxide, and hydroxyl, are implicated in DNA damage and membrane dysfunction (Riazanski
et al., 2020). Therefore, the cellular antioxidant capacity of AMs is indispensable for controlling the
homeostasis of intracellular oxidative stress and maintaining immune defense.

Selenium (Se) is considered as a functional element of thioredoxin reductase, glutathione
peroxidase, and other Se-containing enzymes and protects against oxidative injury (Silvestrini
et al., 2020). LPS infection impairs Se metabolism and leads to dysregulation of selenoprotein
expression in the spleen, thymus, and lymph node of pigs (Sun et al., 2017). An animal study
using a chicken model of Se deficiency has demonstrated the negative correlation between
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Se deficiency and inflammation-related gene expression in
skeletal muscles (Wu et al., 2014). Se supplementation can
attenuate inflammatory response and lung injury induced by a
variety of stimuli, including virus (Liu et al., 2015), bacteria (Xu
et al., 2020), and heavy metal (Ghorbel et al., 2017). It was also
reported that supplementation of Se to macrophages ameliorates
the pro-inflammatory response induced by LPS (Vunta et al.,
2008). However, the potential molecular mechanism of the anti-
inflammatory function of Se is still unclear. Transcriptome
sequencing is proven to be a powerful tool to comprehensively
view the immune response of porcine AMs (PAMs) to bacterial
or viral infection (Kim et al., 2019; Park et al., 2020). In this
study, we performed transcriptome sequencing to deepen the
understanding of the mechanism of Se protecting PAMs against
LPS infection.

MATERIALS AND METHODS

Cell Culture and Treatment
The porcine lung alveolar macrophage cell line 3D4/31
(ATCC CRL-2844) was cultured in RPMI 1640 medium
(Invitrogen, Carlsbad, CA, USA) supplemented with 10% heat-
inactivated fetal calf serum, 100U/ml of penicillin, 100µg/ml
of streptomycin, and 1mM of sodium pyruvate. Confluent
cell monolayers were treated under three different conditions:
(i) RPMI 1640 medium alone (CON group), (ii) LPS from
Escherichia coli O111:B4 (1µg/ml, 3ml) infection alone (LPS
group), and (iii) pretreatment with Se as sodium selenite
containing 0.1µM for 6 h followed by LPS infection (1µg/ml)
(SeL group).

RNA Extraction, Library Construction, and
Sequencing
At 12 h after LPS infection, total RNA was extracted, and the
RNA integrity number was further assessed using an RNA
6000 Nano kit (Agilent Technologies, Santa Clara, CA, USA).
PCR amplification was performed to obtain the final libraries.
The constructed library was quantified and pooled in the
flow cell. After cBot clustering, the RNA-seq libraries were
sequenced using Illumina high-throughput sequencing Novaseq
6000 platform, with a paired-end read length of 150 base
pairs (bp).

Genome Alignment and Gene Annotation
The clean reads were mapped to the pig reference genome
Sscrofa11 using TopHat v2.1.1. The mapped reads were
assembled into transcripts using StringTie v1.3.3b. The genes
were annotated by BLAST based on the Cluster of Orthologous
Groups of proteins (COG), Gene Ontology (GO), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases.

Analysis of Gene Expression Levels and
Identification of Differentially Expressed
Genes
The expression of genes was calculated and normalized to
fragments per kilobases per million reads (FPKM) using RSEM
v1.3.1. Differentially Expressed Genes (DEGs) were identified

using DESeq2 v1.24.0. The p-value was adjusted using Benjamini
and Hochberg’s (BH) approach for controlling the false discovery
rate. Genes with an adjusted p-value < 0.05 and fold change (FC)
> 1.5 were assigned as DEGs.

Enrichment, Venn, and Protein–Protein
Interaction Analysis of DEGs
GO enrichment analysis based on Fisher’s exact test was carried
out to specify the potential roles of DEGs using Goatools v0.6.5.
The p-value was adjusted by BH, and GO terms with adjusted
p-value < 0.05 were considered significantly enriched. KEGG
enrichment analysis was performed to evaluate significantly
enriched signal transduction or metabolic pathways using
KOBAS v2.1.1. A Venn diagram was generated using the R
package Venndiagram. The protein–protein interaction (PPI)
analysis of DEGs was based on the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) database v11.0, and the
minimum STRING score was set at 1,000. The interaction with
a combined score >0.4 was considered to be significant. The
protein network was visualized using NetworkX.

Data Accession Number
The raw transcriptome data have been deposited in the
US National Center for Biotechnology Information Sequence
Read Archive database under accession no. SRR13277478–
SRR13277486.

RESULTS AND DISCUSSION

Quality Control and Transcriptome
Assembly
A raw dataset consisting of 487.3 million reads (∼73.6 Gbps)
was yielded. After filtering low-quality reads, adaptor or
ambiguous sequences, and removal of contamination, 51.9
(98.73%, the percentage of clean reads), 57.1 (98.81%), and
51.9 (98.77%) million clean reads from the CON groups,
52 (98.82%), 49.2 (98.88%), and 58.3 (99.18%) million
clean reads from the LPS group, and 51.2 (99.21%), 56.3
(99.24%), and 54.7 (99.29%) million clean reads from the
SeL group were retained. The average of Q30 of clean reads
was >94.64%, indicating that the obtained clean reads were
of high quality (Supplementary Table 1). The saturation
curve of sequencing showed that the FPKM values of
∼22.18% of genes from the CON, LPS, and SeL groups
were expressed between 0.3 and 3.5, and that only a few
of 6.53% of genes were highly expressed with an FPKM
value >60. Most genes with medium or above expression
level (i.e., the genes with FPKM value >3.5) were nearly
saturated at 40% of the sequencing reads (ordinate value
tended to 1), indicating that the sequencing quantity can
cover most of the expressed genes (Supplementary Table 2;
Supplementary Figure 1).

Analysis of Gene Expression
A total of 27,576 genes were found across all samples,
including 25,880 (93.85%) annotated genes and 1,696
(6.15%) unannotated novel genes. Among 63,606 transcripts
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identified, there were 14,158 novel transcripts, including
538 transcripts with exonic overlap with reference on
the opposite strand, 666 transcripts with transfrag falling
entirely within a reference intron, 10,491 transcripts with
potentially novel isoform: at least one splice junction
was shared with a reference transcript, 2,058 unknown
transcripts, and intergenic transcripts, and 405 transcripts
with generic exonic overlap with a reference transcript
(Supplementary Figure 2).

A total of 964 (57.72%) novel transcripts and 12,473
(90.04%) novel genes were successfully annotated by BLAST,
with 437 transcripts and 7,437 genes in the GO database,
91 and 7,664 in the KEGG database, 331 and 11,080 in
the COG database, 955 and 12,451 in the NR database, 366
and 11,199 in the Swiss-Prot database, and 192 and 10,015
in the Pfam database, respectively (Supplementary Table 3).
According to GO analysis, catalytic activity (259 genes) in
molecular function, membrane (190 genes) and membrane
part (186 genes) in the cellular component, and cellular
process (122 genes) in the biological process were the most
enriched ontology terms (Supplementary Figure 3A). A total
of 91 novel genes were classified into 110 KEGG pathways
involving 32 KEGG functional categories, mainly functioning
in signal transduction, endocrine system, immune system,
digestive system, translation, and environmental adaptation
(Supplementary Figure 3B). The COG analysis showed that 37
novel genes were assigned into 13 COG functional categories
(Supplementary Figure 3C), mainly including “intracellular
trafficking, secretion, and vesicular transport” (Class U; 12 genes),
“posttranslational modification, protein turnover, chaperones”
(Class O; 9 genes), and “chromatin structure and dynamics”
(Class B; 8 genes).

Analysis of DEGs
In the CON relative to the LPS group (CON_LPS), a total
of 223 DEGs, including 28 up-regulated and 195 down-
regulated DEGs, were identified (Supplementary Figure 4A;
Supplementary Table 4). The top 10 known up-regulated genes
were RF00030, CTF1, CCDC103, STMN3, WIPI1, RELB,
PHLDA1, FLT3, CHCHD10, EXOSC6, HSD17B10, OTUD1,
PPP1R14B, YRDC, GMIP, SCLY, CEBPB, and SESN2. The
top 10 down-regulated genes were VMAC, ECM2, TMOD1,
C17orf78, IGSF6, COCH, NAALADL1, MILR1, GSDMC, and
SV2A. Out of 58 identified DEGs in LPS relative to the
SeL group (LPS_SeL), 25 DEGs were up-regulated, and
33 DEGs were down-regulated (Supplementary Figure 4B;
Supplementary Table 5). Se treatment induced the expression
of anti-apoptosis protein BCL-2 and antioxidant defense-related
glutathione peroxidase 1 (GPX1) and selenoprotein H and
P (SELENOP). Se acts as a rare amino acid selenocysteine
through incorporation into selenoproteins. It was reported
that Se supplementation protects against apoptosis induced
by reactive oxygen species or toxic heavy metal lead in a
BCL-2-dependent manner (Khera et al., 2017; Wang et al.,
2018). In CON relative to the SeL group (CON_SeL), out
of 252 identified DEGs, 27 DEGs were up-regulated, and

225 DEGs were down-regulated (Supplementary Figure 4C;
Supplementary Table 6).

Enrichment Analysis of DEGs
KEGG enrichment analysis of DEGs was performed. The
DEGs in the CON_LPS group were enriched in the IL-17
signaling pathway, tumor necrosis factor (TNF) signaling
pathway, cytokine–cytokine receptor interaction, lysine
degradation, and graft-versus-host disease (Figure 1A). The
“TGF-β signaling pathway” possessed the highest rich factor
in the up-regulated DEGs in the CON_LPS group. TGF-β
could skew LPS-stimulated M1-type macrophage polarization
toward the M2 phenotype via the Akt/FoxO1 pathway and
reduce inflammatory reactions in sepsis (Liu et al., 2019). In
a previous study, IFN-γ at a concentration of 50 ng/ml and
LPS at a concentration of 100 ng/ml classically induce M1
activation of PAMs, accompanied by enriched TNF pathway
and down-regulated TGF-β signaling pathway (Liu et al.,
2018). LPS stimulation intensity could significantly affect the
gene expression profile and polarization state of macrophages.
Compared with short exposure (2–4 h) to LPS, short exposure
(18–24 h) to LPS increases the expression of M2-related genes,
including the tyrosine protein kinase MER and arginase in
macrophages (Chen et al., 2019). Further study is needed
to explore the regulatory effect of a high concentration of
LPS on the polarization state of PAMs. Among the down-
regulated DEGs in the CON_LPS group, the enriched KEGG
pathways were related to “graft-versus-host disease,” followed
by “endocrine resistance” and “IL-17 signaling pathway,” and
“cytokine–cytokine receptor interaction” had the most DEGs.
Consistent with the transcriptome analysis of PAMs activated
by LPS, down-regulated genes involving cytokine–cytokine
receptor interaction suggested their important role in cellular
activation (Liu et al., 2018). In contrary to this study, co-
infection of Mycoplasma gallisepticum and E. coli leads to
inflammatory damage of chicken lung involving the enriched
IL-17 signaling pathway (Wu et al., 2019). Both genes encoding
matrix metallopeptidase 9 (MMP9, Log2FC = −1.44) and
CCAAT enhancer binding protein beta (CEBPβ, Log2FC =

0.60) were involved in the IL-17 signaling pathway and TNF
signaling pathway (Supplementary Figure 5A). The DEGs in
the LPS_SeL group were highly related to categories including
protein digestion and absorption, AGE–RAGE signaling pathway
in diabetic complications, TGF-β signaling pathway, thyroid
hormone synthesis, relaxin signaling pathway, amoebiasis,
glutathione metabolism, PI3K–Akt signaling pathway, and
arachidonic acid metabolism (Figure 1A). The “tryptophan
metabolism” and “phototransduction” pathway possessed the
highest rich factor in the up-regulated and down-regulated DEGs
in the LPS_SL group, respectively. LPS and IFN-γ-stimulated
RAW264.7 macrophages cultured in tryptophan-deficient
medium exhibit a significant reduction in iNOS expression
involved in pathogen killing (Poormasjedi-Meibod et al., 2013).
The expression of proteins involved in tryptophan metabolism
indoleamine 2,3-dioxygenase and kynurenic acid is activated
in pig bone marrow-derived macrophages infected with LPS
(Kapetanovic et al., 2012). The metabolomic analysis also showed
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FIGURE 1 | KEGG and GO enrichment analysis of DEGs. Enriched bubble chart showing the enrichment of the KEGG pathway in the CON_LPS, LPS_SeL, and

CON-SeL groups (A). X-axis represented the enrichment ratio, and Y-axis represented the top 20 KEGG pathways. Number: bubble size represented the number of

genes annotated to a KEGG pathway. Pvalue: color indicated the enriched p-value. Enriched bar chart showing the enrichment of the GO pathway in the CON_LPS,

LPS_SeL, and CON-SeL groups (B). The length of the X-axis column represents the p-value. The value of the box on the fold line above X is the number of DEGs

annotated to the GO terms.

that LPS stimulation reprograms metabolomic profiling of the
human M1-type AMs and induces tryptophan degradation in
tryptophan metabolism (Fall et al., 2020).

Compared with the LPS challenge, Se treatment up-
regulated the expression of GPX1 (Log2FC = 2.12) expression
and down-regulated the expression of GPX2 (Log2FC =

−0.72), which participated in thyroid hormone synthesis,
glutathione metabolism, and arachidonic acid metabolism
(Supplementary Figure 5B). The presence of prostaglandin E2
(PGE2), a main arachidonic acid derivative, is necessary to
the LPS-induced production of the pro-inflammatory cytokine
IL-1β (Zaslona et al., 2017). Up-regulated thrombospondin
1 (THBS1, Log2FC = 0.64) was involved in the TGF-
β signaling pathway and PI3K–Akt signaling pathway. The
enriched KEGG pathways for the CON_SeL group, out of
252 DEGs, were very similar to the CON_LPS group, but
ranked differently: amoebiasis, relaxin signaling pathway, PI3K–
Akt signaling pathway, extracellular matrix (ECM)–receptor
interaction, protein digestion and absorption, arachidonic acid
metabolism, MAPK signaling pathway, Ras signaling pathway,
and Legionellosis, which had many genes in common, including
up-regulated genes [GPX1, TLR4, nuclear factor kappa-B (NF-
κB) subunit RELβ, chemokine C-X-C motif ligand 2 (CXCL2),
platelet-derived growth factor subunit B (PDGFB), GRB2-
associated binding protein 1 (GAB1), etc.] and down-regulated
genes [phospholipase A2 group 1β (PLA2G1β), MMP9, muscle
RAS (MRAS), ephrin A2 (EFNA2), GPX2, etc.] (Figure 1A;
Supplementary Figure 5C). The main limitation of this study

was that the Se alone treatment group was not included, which
was limited to assess the effect of Se treatment on the gene
expression profile of PAMs. Se supplementation was proven to
attenuate the levels of oxidative stress and pro-inflammatory gene
expression in macrophages (Vunta et al., 2008; Ghorbel et al.,
2017). A comprehensive gene expression profile of Se-treated
PAMs is needed in further study.

GO enrichment analysis was performed. Among the DEGs
in the CON_LPS group, RNA-mediated transposition and
transposition classified into biological process class occupied
the strongest enrichment degree. The molecular function class
was the most abundant function groups, mainly including some
enzyme activity, such as polymerase activity, catalytic activity,
nucleotidyltransferase activity, transferase activity, hydrolase
activity, nuclease activity, and endonuclease activity. The
cytoplasmic stress granule was the main type in cellular
component (Figure 1B). The presence of CEBPB and CD28 was
directly related to the positive regulation of IL-4 production
(Supplementary Figure 6A). The DEGs in the LPS_SeL group
were predicted to be involved in the response to Se ion,
followed by a response to the symbiotic bacterium, regulation
of extrinsic apoptotic signaling pathway via death domain
receptors, and some oxidative stress-related functional terms,
including hydrogen peroxide metabolic process, glutathione
peroxidase activity, oxidation–reduction process, oxidoreductase
activity, peroxidase activity, and oxidoreductase activity acting on
peroxide as acceptor (Figure 1B). Up-regulated GPX1 (Log2FC
= 2.12) and SELENOP (Log2FC = 0.61) were related to the
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FIGURE 2 | Functional annotation of DEGs affected by both Se treatment and LPS infection. Venn diagram presenting co-expressed and uniquely expressed DEGs in

the CON_LPS, LPS_SeL, and CON_SeL groups (A). The KEGG (B) and GO (C) enrichment analysis of DEGs affected by both Se treatment and LPS infection was

indicated. PPI was performed to generate interaction analysis (D). Node color from white to green represents the lowest to highest betweenness centrality. The size of

each node corresponded to the number of connections (degree).

response to Se ion (Supplementary Figure 6B). Cytochrome
P450 1A1 (CYP1A1, Log2FC = 2.47), GPX1, GPX2 (Log2FC
= −0.72), and hydroxysteroid 17-beta dehydrogenase 10
(HSD17B10, Log2FC = −0.69) were related to oxidative stress-
related function. THBS1 (Log2FC = 0.64) was related to the
regulation of extrinsic apoptotic signaling pathway via death
domain receptors. The DEGs in the CON_SeL group were found
to be involved in the significant enrichment of GO biological
terms including enzyme activity and cell adhesion function
(Figure 1B; Supplementary Figure 6C).

Functional Annotation of DEGs Affected by
Both Se and LPS
According to the Venn analysis, a total of 113, 34, and 138
genes were specifically expressed in the CON_LPS, LPS_SeL, and
CON_SeL groups, respectively (Figure 2A). A total of 14 and 100
genes were shared by the LPS_SeL and CON_SeL groups and the
CON_LPS and CON_SeL groups, respectively. Moreover, only 10
DEGs were shared by the CON_LPS and LPS_SeL groups. The

KEGG enrichment analysis showed that the 10 DEGs shared by
the CON_LPS and LPS_SeL groups were enriched in Alzheimer
disease; valine, leucine, and isoleucine degradation; cardiac
muscle contraction; TGF-β signaling pathway; and Jak–STAT
signaling pathway (Figure 2B). Among the top 20 GO terms
identified by enrichment analysis based on 10 DEGs, the first
three topmost enriched were regulation of spongiotrophoblast
cell proliferation, regulation of cell proliferation involving
embryonic placenta development, and regulation of growth
hormone activity (Figure 2C). The other GO termswere involved
in mitochondrial RNA processing and modification.

Interaction Analysis of DEGs
The main protein interaction cluster derived from 409 DEGs
contained 84 nodes, each representing 1 protein and connected
by 84 edges (Figure 2D). TLR4, CXCL2, MMP9, and THBS1,
followed by SELENOP, had the highest scores for betweenness
centrality, indicating that they accounted for many direct
and indirect interactions within the network of PPI. TLR4,
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MMP9, CXCL2, and THBS1 had the highest number of direct
connections (degree). TLR4 and CXCL2 represented the immune
response ofM1-type PAMs to LPS infection (Herrera-Uribe et al.,
2020).

In this study, most DEGs in PAMs infected with LPS
compared with the control group are enriched in the IL-
17 signaling pathway, TNF signaling pathway, and cytokine–
cytokine receptor interaction. LPS promotes the early activation
of TLR4 and CXCL2. Se treatment enhances the antioxidant and
anti-inflammatory responses to LPS through integrating GPX1,
GPX2, SELENOP, CYP1A1, HSD17B10, and THBS1 genes. These
findings provide an important view of the mechanism of Se
protecting the host against infection. The study also suggests that
dietary Se supply to pigs may help prevent respiratory infection.
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Supplementary Figure 1 | Saturation curve of sequencing of each sample. Each

color line represented the saturation curve of gene expression at different

expression levels in the sample.

Supplementary Figure 2 | Classification of new transcripts. New transcripts were

classified according to the overlapping relationship between spliced transcripts

and known transcripts. The percentage of new transcripts were shown.

Supplementary Figure 3 | Annotation analysis of identified novel genes. The

novel genes were annotated using based on GO (A), KEGG (B), and COG (C)

databases.

Supplementary Figure 4 | DEGs in PAMs in response to Se treatment or LPS

infection. Volcano plots displaying DEGs in the CON_LPS (A), CON-SeL (B), and

LPS_SeL (C) groups. The longitudinal dashed lines indicated an expression level

of |FC| ≥ 1.5. The horizontal dashed lines indicated an expression level with a

p-value < 0.05. Blue dots (up) represented significantly up-regulated genes; gray

dots (down) represented significantly down-regulated genes; red dots (no

significance) represented insignificantly DEGs.

Supplementary Figure 5 | KEGGChord plot of top 20 ranked KEGG terms.

Chords indicated a detailed relationship between the expression levels of DEGs

(left semicircle perimeter) in the CON_LPS (A), LPS_SeL (B), and CON-SeL (C)

groups and their enriched KEGG pathways (right semicircle perimeter). The genes

were linked to their annotated KEGG terms via colored ribbons. Genes were

ordered according to log2FC.

Supplementary Figure 6 | GOChord plot of top 20 ranked GO terms. Chords

indicated a detailed relationship between the expression levels of DEGs (left

semicircle perimeter) in the CON_LPS (A), LPS_SeL (B), and CON-SeL (C)

groups and their enriched KEGG pathways (right semicircle perimeter). The genes

are linked to their annotated terms via colored ribbons.
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Brucellosis is an endemic zoonotic infectious disease in the majority of developing

countries, which causes huge economic losses. As immunogenic and protective antigens

at the surface ofBrucella spp., outer membrane proteins (Omps) are particularly attractive

for developing vaccine and could have more relevant role in host–pathogen interactions.

Omp16, a homolog to peptidoglycan-associated lipoproteins (Pals), is essential for

Brucella survival in vitro. At present, the functions of Omp16 have been poorly studied.

Here, the gene expression profile of RAW264.7 cells infected with Brucella suis vaccine

strain 2 (B. suis S2) and 1Omp16 was analyzed by RNA-seq to investigate the cellular

response immediately after Brucella entry. The RNA-sequence analysis revealed that

a total of 303 genes were significantly regulated by B. suis S2 24 h post-infection.

Of these, 273 differentially expressed genes (DEGs) were upregulated, and 30 DEGs

were downregulated. These DEGs were mainly involved in innate immune signaling

pathways, including pattern recognition receptors (PRRs), proinflammatory cytokines,

and chemokines by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.

In 1Omp16-infected cells, the expression of 52 total cells genes was significantly

upregulated and that of 9 total cells genes were downregulated compared to B.

suis S2-infected RAW264.7 cells. The KEGG pathway analysis showed that several

upregulated genes were proinflammatory cytokines and chemokines, such as interleukin

(IL)-6, IL-11, IL-12β, C–C motif chemokine (CCL2), and CCL22. All together, we clearly

demonstrate that 1Omp16 can alter macrophage immune-related pathways to increase

proinflammatory cytokines and chemokines, which provide insights into illuminating the

Brucella pathogenic strategies.

Keywords: B. suis S2, Omp16, RAW264.7, RNA-seq, interactions

INTRODUCTION

As zoonotic pathogens, Brucella spp. cause a serious infection known as brucellosis that results
in animal reproductive diseases and human chronic debilitating diseases (1, 2). A diverse array of
land and aquatic mammals, including swine, cattle, goats, sheep, dogs, and dolphins, are known
to serve as hosts for Brucella (1). It infects millions of livestock and more than half a million
people annually, causing economic loss and a public health burden (2). Although brucellosis causes
abortion and sterility in their hosts, the human disease is principally characterized by recurrent
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fever and osteoarticular complications during the chronic stage
of the infection (3). In animals, live attenuated vaccines,
including Brucella abortus S19 and Brucella melitensis Rev.
1, still have some disadvantages, such as serodiagnostic
interference and residual pathogenicity (4–6). In China, live
attenuated Brucella suis bv. 1 str. S2 vaccine (B. suis S2)
is an essential and critical component in the control of
brucellosis and also exhibits potential virulence reversion
(7). Based on the lack of licensed human vaccines to
protect against Brucella, safer and better vaccines need to be
developed (4, 8).

Brucella outer membrane proteins (Omps) are important
components of the cell wall (9). According to molecular weight
of Omps, the Brucella cell Omps contains three major proteins
ranging from 25 to 27, 31 to 34, and 36 to 38 kDa (10). At present,
some experiments have shown that Omp10, Omp19, Omp25,
and Omp31 are involved in Brucella virulence (11–13). The
Brucella Omp19, Omp25, and Omp31 mutant were attenuated
in cellular models and in mice, indicating that Omp19 and
Omp25 were important for bacterial survival in vitro and in
vivo (11, 14–17). Furthermore, Omp25 and Omp31 disrupt
the immune response by regulating the secretion of tumor
necrosis factor alpha (TNF-α) expression and apoptosis in
porcine andmurinemacrophages infectedmodels (18, 19). As the
homolog of peptidoglycan-associated lipoproteins (Pals), Omp16
plays a vital role in the maintenance of membrane integrity
and the import of certain organic molecules (20–22). Some
experiments have shown that Omp16 was involved in Brucella-
mediated immune response and can also be used as a protective
antigen (23–26). However, attempt to directly delete Omp16 was
unsuccessful, which also indicated that Omp16 is a vital gene
for Brucella and plays an important role in the maintenance of
membrane integrity and Brucella survival. In our previous study
using an indirect method to tightly control Omp16 expression,
Brucella cells lacking Omp16 presented defects in growth, outer
membrane integrity, and intracellular survival (20). However,
the role of Omp16 in Brucella–host interaction has not been
well-studied.

In the present study, we identified 303 differentially expressed
genes (DEGs) using RNA-seq in B. suis S2-infected RAW
264.7 cells compared to uninfected cells. In DEGs, most
upregulated genes were involved in the immune system
and cytokines, while downregulated genes were related to
metabolism and cell cycle. On the basis of ATc-induced
conditional complementation strain of the B. suis S2 Omp16,
61 DEGs were observed using RNA-seq in 1Omp16-infected
RAW 264.7 cells compared to B. suis S2-infected cells. The
52 upregulated genes were involving in pattern recognition
receptors (PRRs) signaling pathway, including nucleotide
oligomerization domain (NOD)-like receptor signaling pathway,
chemokines, and cytokines, while 9 downregulated genes
were related to metabolism. Real-time quantitative reverse
transcription PCR (qRT-PCR) analysis further verified DEGs.
The results presented here are expected to reveal the Omp16
roles during the Brucella infection process of RAW 264.7 cells
and generate a new insight to explore the pathogenic mechanism
of Brucella.

MATERIALS AND METHODS

Bacteria Strains and Culture
In the present study, wild-type B. suis S2 (CVCC reference
number, CVCC70502) bacteria strains were used. B. suis S2
1Omp16 have been constructed as described previously (20).
Wild-type B. suis S2 and its derivatives were grown on tryptic soy
agar (TSA; Sigma) for 72 h at 37◦C or in tryptic soy broth (TSB)
with shaking overnight to late-log growth phase.When indicated,
bacteria cultures were treated with 50µg/ml gentamicin and
50µg/ml ampicillin. Then, wild-type B. suis S2 and its derivatives
were collected by centrifugation, and the number of bacteria was
confirmed using a 10-gradient dilution.

Mammalian Cell Culture and Infection
RAW264.7 macrophage cells were cultured to monolayer in
6- or 24-well plates in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco; 1 g/L glucose) supplemented with 10% fetal
bovine serum (FBS, Gibco) at 37◦C with 5% CO2. For infection,
RAW264.7 cells were seeded at 1 × 106 cells/well (6-well plate)
or 2 × 105 cells/well (24-well plates) in complete medium
12 h before infection, then infected with wild-type B. suis S2
and its derivatives at the multiplicity of infection (MOI) of
200:1 for 4 h. Following 4 h of incubation at 37◦C in 5% CO2,
RAW264.7 cells were washed three times with 37◦C phosphate-
buffered saline (PBS) to remove extracellular Brucella and
incubated for 1 h with medium supplemented with 50µg/ml
kanamycin to kill the remaining extracellular bacteria. Afterward,
RAW264.7 cells were cultured in medium supplemented with
25µg/ml kanamycin to avert continuous infection. This time was
considered 0 h. RAW264.7 cells were collected for experiments at
specific times.

Collection of RAW264.7 Cells Samples for
Transcription Analysis
B. suis S2 and 1Omp16 were collected at late-log growth
phase by centrifugation at 6,000 rpm for 5min. The collected
bacteria were washed three times with PBS, then suspended
in PBS. The number of bacteria was confirmed using a
10-gradient dilution. RAW264.7 cells were infected with B.
suis S2 or 1Omp16 at MOI of 200:1; then, RAW264.7
cells were collected after 24 h with TRIzol RNA isolation
reagent (Invitrogen, Inc., Carlsbad, CA, USA) for total
RNA extraction.

RNA-Seq Analysis
Total RNA was prepared as described. Using the Illumina
Hiseq 2500 sequencer, RNA were sequenced separately. The
reference genome data were downloaded from the National
Center for Biotechnology Information (NCBI) database. Raw
sequencing reads were cleaned by removing low-quality
reads, reads containing poly-N sequences, and adaptor
sequences. Then, clean reads were aligned to the reference
genome using HISAT40. Using RESM software, the relative
transcript abundance was calculated in fragments in reads
per kilobase of exon sequence per million mapped sequence
reads (FPKM). The P ≤ 0.05 and the absolute value of log2
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ratio ≥1 were used to identify DEGs. The Gene Ontology
(GO) database and KEGG database was used to analyze
the pathway.

Isolation of RNA From RAW264.7
According to the manufacturer’s protocol, total RNA
was extracted from B. suis S2- or 1Omp16-infected

TABLE 1 | Major characteristics of mRNA libraries and database generated by

RNA-seq.

Sample Raw

bases (G)

Raw

reads

Clean

reads

Total

mapped (%)

Control-1 6.72 44779952 42686754 92.68

Control-2 8.58 57180964 54654018 92.81

Control-3 7.62 50818606 48638136 92.31

B. suis. S2-1 6.51 43430156 41599652 93.16

B. suis. S2-2 9.27 61783014 58951842 92.92

B. suis. S2-3 7.72 51497980 48974982 92.26

1DnaA <DnaA>-1 5.83 38846290 37181292 92.33

1DnaA <DnaA>-2 6.99 46600322 44546310 92.83

1DnaA <DnaA>-3 6.49 43256424 41389296 92.29

RAW264.7 cells using TRIzol RNA isolation reagent
(Invitrogen, Inc., Carlsbad, CA, USA). Total RNA
quality and quantity were evaluated using the NanoDrop
ND-1000 spectrophotometer (Thermo Scientific). RNA
integrity was assessed by standard denaturing 1% agarose
gel electrophoresis.

Quantitative Real-Time PCR
To validate the data generated from the RNA-seq experiment,
13 pathway genes were selected to further analyze via
quantitative real-time PCR (qRT-PCR). Total RNA were
prepared as described. Briefly, RNA was reverse transcribed
into complementary DNA (cDNA) using Maxima First-
Strand cDNA synthesis kit (Thermo Fisher Scientific)
according to the manufacturer’s protocol. qRT-PCR was
performed using SYBR Premix Ex TaqTM (Vazyme) and
an ABI 7500 Sequencing Detection System. Using the
2−11Ct method, qRT-PCR data were normalized, and
glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH)
was used an as internal control. All the primers was designed
according to mouse messenger RNAs (mRNAs) and are listed
in Supplementary Table 1.

FIGURE 1 | Assessment of gene data quality of all samples. (A) A box plot used to compared the intensity distribution of all bacterial samples. The distributions of

log10 [reads per kilobase per million mapped reads (RPKM)] ratios among bacterial samples are nearly the same; (B) similarities visualized among bacterial samples

using an multidimensional scaling (MDS) analysis. Red: uninfected RAW 264.7 cells. Green: B. suis S2-infected RAW 264.7 cells. Blue: 1Omp16-infected

RAW 264.7 cells.

Frontiers in Veterinary Science | www.frontiersin.org 3 March 2021 | Volume 8 | Article 64683951

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Zhou et al. Brucella Omp16 Interactions With Cells

FIGURE 2 | Expression of differentially expressed genes (DEGs) between the uninfected and B. suis S2-infected cells. (A) Histogram shows the number of DEGs and

non-regulated genes between the between the uninfected and B. suis S2-infected cells. (B) Scatter plot of coexpressed genes between the between the uninfected

and B. suis S2-infected cells. The red, blue, and gray colors denote upregulated, downregulated, and non-regulated genes, respectively, in the B. suis S2-infected

cells compared with the uninfected cells based on the following criteria: absolute log2 (fold change) ≥1 and adjusted P ≤ 0.05. (C) The heatmap shows the

expression levels of DEGs between the uninfected and B. suis S2-infected cells.

Statistical Analysis
SPSS software was used for all statistical analyses (version 22;
SPSS, Inc., Chicago, IL). All results were repeated at least three
times and are presented as the means ± standard deviations
(SDs). An unpaired, two-tailed Student’s t-test or one-way
analysis with group comparisons was used. A probability (P)
value of ≤0.05 was considered significant.

RESULTS

RNA Quality Analysis and Global Array
Data
RNA integrity was determined via denatured agarose gel
electrophoresis. Purity and concentration were measured using a
spectrophotometer. Electrophoresis showed distinct three bands
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FIGURE 3 | Kyoto Encyclopedia of Genes and Genomes (KEGG) classification of differentially expressed genes (DEGs) between the uninfected and B. suis

S2-infected cells. The rich factor represents the ratio of (A) upregulated genes and (B) downregulated genes differentially expressed gene numbers annotated in this

pathway term to all gene numbers annotated with this pathway term. A greater rich factor indicates a greater degree of pathway enrichment. The Q-value represents

the corrected P-value and ranges from 0 to 1, and a lower value indicates greater pathway enrichment.

of 5S, 16S, and 23S ribosomal RNA (rRNA), indicating that the
total RNA of RAW 264.7 cells were intact. Spectrophotometric
RNA analysis revealed an OD260/OD280 ratio of >1.8, indicating
superior quality of the RNA samples suitable for the RNA-
seq analysis.

Using RNA-seq, we conduct a comprehensive comparative

transcriptomic analysis of the gene expression profiles of

the uninfected, B. suis S2-infected-, and 1Omp16-infected-
RAW 264.7 cells. The major characteristics of these libraries

for each group are presented in Table 1. The box plot was

used to evaluate the intensity distribution of all samples. The
distributions of log10 (reads per kilobase per million mapped
reads, RPKM) among the uninfected, B. suis S2-infected-, and
1Omp16-infected-RAW 264.7 cells were similar (Figure 1A). In
addition, the multidimensional scaling (MDS) analysis was used
to evaluate the biological repetition of all samples, indicating
that three groups samples have a high reproducibility of the
data (Figure 1B).

Determination of DEGs Between in
Uninfected Cells and B. suis S2-Infected
Cells
The gene expression profiles were compared between uninfected
and B. suis S2-infected RAW 264.7 cells, and the whole gene
expression levels were analyzed by Illumina HiSeqTM 2500. Our
comparative transcriptomic analysis revealed 303 DEGs [false
discovery rate (FDR) <0.05, fold change ≥2]. Of the 303 DEGs,
273 genes were upregulated and 30 genes were downregulated
in B. suis S2-infected RAW 264.7 cells compared to uninfected
RAW 264.7 cells (Figure 2A and Supplementary Datasheet 1).
Furthermore, 303 DEGs were shown via Volcano Plot between
uninfected and B. suis S2-infected RAW 264.7 cells (Figure 2B).
To analyze gene expression data, hierarchical clustering is widely
used. On the basis of their expression levels, cluster analysis
arranges samples into groups to elucidate possible relationships
among samples. In our study, DEGs were analyzed by cluster
analysis. A heatmap of these DEGs was presented (Figure 2C).
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FIGURE 4 | Expression of differentially expressed genes (DEGs) between B. suis S2-infected and 1Omp16-infected cells. (A) Histogram shows the number of DEGs

and non-regulated genes between B. suis S2-infected and 1Omp16-infected cells. (B) Scatter plot of coexpressed genes between the between B. suis S2-infected

and 1Omp16-infected cells. The red, blue, and gray colors denote upregulated, downregulated, and non-regulated genes, respectively, in the B. suis S2-infected

cells compared with the uninfected cells based on the following criteria: absolute log2 (fold change) ≥1 and adjusted P ≤ 0.05. (C) The heatmap shows the

expression levels of DEGs between the between B. suis S2-infected and 1Omp16-infected cells.

The KEGG pathway enrichment analysis was performed

to analyze DEGs. Based on KEGG pathway enrichment
analysis, a majority of the most upregulated genes were

involved in immune response, including PRRs (Toll-like
receptor signaling pathway and NOD-like receptor signaling

pathway), cytokines (IL-1, IL-6, IL-23, and Cfs3), and

chemokines (Ccl2, Ccl3, Ccl4, Ccl5, and Ccl10; Figure 3A

and Supplementary Datasheet 2). In addition, apoptosis-related
genes, such as TNF, Traf1, Nfkbia, Bcl2, and Gadd45b, were
upregulated (Figure 3A and Supplementary Datasheet 2).

However, the major downregulated genes were involved
in metabolism and proliferation, including Rapgef3,
St6gal1, Cd109, Cish, Gm17041, and Cd24a (Figure 3B and
Supplementary Datasheet 2).

Determination of DEGs Between in B. suis

S2-Infected Cells and 1Omp16-Infected
Cells
Multiple attempts to delete Omp16 were unsuccessful in Brucella
ovis PA (13). We also made several attempts to delete Omp16
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FIGURE 5 | Kyoto Encyclopedia of Genes and Genomes (KEGG) classification of differentially expressed genes (DEGs) between B. suis S2-infected and

1Omp16-infected cells. The rich factor represents the ratio of (A) upregulated genes and (B) downregulated genes differentially expressed gene numbers annotated

in this pathway term to all gene numbers annotated with this pathway term. A greater rich factor indicates a greater degree of pathway enrichment. The Q-value

represents the corrected P-value and ranges from 0 to 1, and a lower value indicates greater pathway enrichment.

in B. suis S2 strain but were unsuccessful, which indicated that
Omp16 could be a vital gene. Therefore, we obtained 1Omp16
strain via conditional complementation using tetracycline-
induced gene expression system (20). On the basis of 1Omp16
strain, the gene expression profiles were compared between
B. suis S2-infected RAW 264.7 cells and 1Omp16-infected
RAW 264.7 cells, and the whole gene expression levels were
analyzed by Illumina HiSeqTM 2500. We revealed 61 DEGs (FDR
<0.05, fold change ≥2) via RNA-seq. Compared to B. suis S2-
infected RAW 264.7 cells, 52 genes were upregulated and 9 genes
were downregulated among the 61 DEGs in 1Omp16-infected
RAW 264.7 cells (Figure 4A and Supplementary Datasheet 3).
Moreover, 61 DEGs were shown via Volcano Plot between B.
suis S2- and 1Omp16-infected RAW 264.7 cells (Figure 4B). In
addition, a heatmap of the DEGs was drawn to directly observe
the DEGs expression (Figure 4C).

The DEGs were analyze via KEGG pathway
enrichment analysis. On the one hand, a majority of
the upregulated genes, including Tnfrsf8, Ccl2, IL-
12β, IL-11, Ccl22, Csf3, Lif, Tnfrsf1b, and IL-6, were
related to immune response, such as TNF signaling

pathway, NOD-like receptor signaling pathway, Jak-STAT
signaling pathway, cytosolic DNA-sensing pathway, and
cytokine–cytokine receptor interaction (Figure 5A and
Supplementary Datasheet 4). On the other hand, the
downregulated genes, such Bnip3 Gm45507 and Dgkg, were
involved in phosphatidylinositol signaling system, legionellosis,
glycerophospholipid metabolism, glycerolipid metabolism,
FoxD signaling pathway, and choline metabolism (Figure 5B
and Supplementary Datasheet 4).

qRT-PCR Verification of the RNA-Seq
Results
In order to validate the RNA-seq data and ensure
technical reproducibility, we selected and evaluated
expression of 11 upregulated genes (Gdnf, Ccl2, IL-
12β, IL-11, Ccl22, Csf3, Lif, Tnfrsf1b, Tnfrsf8, Slamf7,
and IL-6) and 2 downregulated genes (Dgkg and Bnip3)
from 1Omp16-infected RAW 264.7 cells by qRT-
PCR. The expressions of these genes obtained using
qRT-PCR were in good agreement with the RNA-seq
results (Figures 6A,B).
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FIGURE 6 | Differentially expressed genes (DEGs) were evaluated by quantitative reverse transcription PCR (qRT-PCR) assays between B. suis S2-infected and

1Omp16-infected cells. (A) The heatmap shows the expression levels of 13 DEGs between the between B. suis S2-infected and 1Omp16-infected cells. (B) The 10

DEGs expression levels were further detected by qRT-PCR. The results at each time point are expressed as the means ± standard deviations from at least three

independent experiments.

DISCUSSION

It has long been recognized that Brucella interaction with
macrophages is the key aspect of its pathogenesis (2).
Brucella can elude initial innate immune recognition through
modifications of virulence factors such as lipopolysaccharide
(LPS) and flagellin, resulting in a mild proinflammatory
response that leads to bacterial persistence (2). However, the
effects of Omps on host–pathogen interactions have not been
fully understood.

In this study, we conducted a comparative transcriptomic

analysis among uninfected, B. suis S2-infected, or 1Omp16-
infected RAW 264.7 cells to reveal the role of Omp16 during

Brucella-infected RAW 264.7 cells. After being challenged with

B. suis S2, we found that a majority of the most upregulated

genes were involved in immune response, including PRRs
(Toll-like receptor signaling pathway and NOD-like receptor
signaling pathway), cytokines (IL-1, IL-6, IL-23, and Cfs3),
and chemokines (Ccl2, Ccl3, Ccl4, Ccl5, and Ccl10), but
the major downregulated genes were involved in metabolic
and proliferation, including Rapgef3, St6gal1, Cd109, Cish,
Gm17041, and Cd24. On this basis, we used 1Omp16 that were
previously constructed via conditional complementation by ATc.
Compared to B. suis S2-infected RAW 264.7 cells, 61 DGEs
were found in 1Omp16-infected RAW 264.7 cells. Surprisingly,
some immune-function-related genes were upregulated and
were involved in multiple signaling pathways, such as TNF

signaling pathway, NOD-like receptor signaling pathway, Jak-
STAT signaling pathway, cytosolic DNA-sensing pathway, and
cytokine–cytokine receptor interaction. In conclusion, these data
provided evidence that Omp16 plays an important role in
Brucella-induced immune response during infection.

During infection, the host is able to quickly detect invading
pathogens to induce immune response to remove invasive
pathogens, including initial inflammatory response (2, 3, 27).
As a facultative intracellular pathogen, Brucella uses multiple
strategies to escape immune defense mechanism of the host
for survival, such as evading detection by pathogen-associated
molecular patterns (PAMPs) (2, 28), inhibiting apoptosis,
downregulating antigen presentation, and so on (29). In RNA-
seq data, some upregulated genes were involved in PRR signaling
pathway, including Toll-like receptor signaling pathway (TLRs)
and NOD-like receptor signaling pathway (NLRs), indicating
that Brucella can activate the host’s innate immune response.
However, the activation was very weak. Brucella, a chronic
pathogen, has developed special mechanisms to evade TLR and
NLR detection to maintain persistent infection. Brucella limits
the cell’s TLR4 detection of LPS with a longer fatty-acid chain,
resulting in a mild proinflammatory response (30). Brucella-
regulated flagellin synthesis to limit TLR5 detection is the stealthy
strategy of Brucella toward the innate immune system (31). In
addition, Brucella is able to degrade MyD88 adaptor-like (MAL)
by secreting effector proteins that contain a Toll-interleukin-1
receptor (TIR) domain, such as BtpA and BtpB (1, 32, 33).
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The intracellular nature of Brucella spp. makes it difficult
to eliminate these bacteria by antimicrobial response drugs
(29, 34). Thus, several cytokines and chemokines are key
players against brucellosis, inducing innate and adaptive immune
responses (3). The adaptive immune response to Brucella spp.
is characterized by elevated levels of proinflammatory cytokines
linked to Th1 responses, such as IL-1β and IL-6 (2, 3). In
RNA-seq, compared to uninfected group, the Th1-responses-
related cytokines, including IL-1 and IL-6, were increased in
B. suis S2-infected cells, indicating that Brucella was able to
activate RAW 264.7 macrophage cells to produce Th1 response-
related cytokines. In addition, NF-kB, a central transcription
factor, was responsible for controlling about 150 target genes
expression, including multiple cytokines, chemokines, and
receptors required for immune recognition (35). Thus, the NF-
kB signaling pathway plays an important role in resistance
to Brucella infection. In RNA-seq, KEGG pathway enrichment
analysis shows that upregulated gene is enriched in the NF-kB
signaling pathway, indicating that NF-kB signaling pathway is
involved in eliminating intracellular Brucella.

Brucella spp. Omps have been broadly characterized as
immunogenic and protective antigens (36, 37). Omp16, a
homolog to Pals, is vital for Brucella survival in vivo or in
vitro (13, 20). Compared to B. suis S2-infected RAW 264.7
cells, some inflammatory cytokines were upregulated, including
IL-6, IL-11, and IL-12β, indicating that Omp16 could inhibit
some inflammatory cytokines to promote Brucella intracellular
survival. The mRNA expression of IL-6 was enhanced in
1Omp16-infected RAW 264.7 cells compared to B. suis S2-
infected RAW 264.7 cells (20). These results are consistent
with the RNA-seq results. In previous studies, IL-6 contributes
to increasing susceptibility during infection (38, 39). Brucella
have some Omps that inhibit several cytokine secretions to
contribute to intracellular survival. In porcine and murine
macrophages, Brucella Omp25 inhibited TNF-α expression
to promote intracellular survival via regulating different
microRNA (18).

Interestingly, metabolic and proliferation-related genes are
downregulated in RNA-seq, indicating that the activity of
RAW 264.7 cells is decreased during Brucella infection. In
the past, studies were mainly focused on the pathogen
intracellular survival, inflammation response, immune response,
and apoptosis. Thus, exploring the role of metabolic and
proliferation-related genes is required.

CONCLUSION

The RNA-sequence analysis revealed that 303 genes were
significantly regulated by B. suis S2, and these DEGs were mainly

involved in innate immune signaling pathways, including PRRs
and proinflammatory cytokines and chemokines. In 1Omp1-
infected RAW 264.7 cells, the expressions of 52 total cell
genes were significantly upregulated and that of 9 total cells
genes were downregulated. The KEGG pathway analysis showed
that several upregulated genes were proinflammatory cytokines
and chemokines. All together, we clearly demonstrate that
1Omp16 can alter macrophage immune-related pathways to
increase proinflammatory cytokines and chemokines. Further
deep understanding of the regulation mechanisms of Omp16 in
Brucella-infected macrophage may help to provide insights into
illuminating the Brucella pathogenic strategies.
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Bovine respiratory disease (BRD) is one of the main factors leading to morbidity
and mortality in feedlot operations in North America. A complex of viral and
bacterial pathogens can individually or collectively establish BRD in cattle, and
to date, most disease characterization studies using transcriptomic techniques
examine bronchoalveolar and transtracheal fluids, lymph node, and lung tissue as
well as nasopharyngeal swabs, with limited studies investigating the whole-blood
transcriptome. Here, we aimed to identify differentially expressed (DE) genes involved in
the host immune response to BRD using whole blood and RNA sequencing. Samples
were collected from heifers (average arrival weight = 215.0 ± 5.3 kg) with (n = 25)
and without (n = 18) BRD at a commercial feedlot in Western Canada. RNAseq
analysis showed a distinct whole-blood transcriptome profile between BRD and non-
BRD heifers. Further examination of the DE genes revealed that those involved in
the host inflammatory response and infectious disease pathways were enriched in
the BRD animals, while gene networks associated with metabolism and cell growth
and maintenance were downregulated. Overall, the transcriptome profile derived from
whole blood provided evidence that a distinct antimicrobial peptide-driven host immune
response was occurring in the animals with BRD. The blood transcriptome of the
BRD animals shows similarities to the transcriptome profiles obtained from lung and
bronchial lymph nodes in other studies. This suggests that the blood transcriptome
is a potential diagnostic tool for the identification of biomarkers of BRD infection
and can be measured in live animals and used to further understand infection and
disease in cattle. It may also provide a useful tool to increase the understanding of the
genes involved in establishing BRD in beef cattle and be used to investigate potential
therapeutic applications.

Keywords: bovine respiratory disease, differentially expressed genes (DEGs), host immune response, innate
immunity, RNA sequencing
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INTRODUCTION

Bovine respiratory disease (BRD) is one of the main causes
of morbidity and mortality in beef cattle in North America
(USDA, 2011). Beef cattle of all ages can be affected with
BRD; however, they are most affected on or soon after
entry into the feedlot (Babcock et al., 2010). This timing
of infection is most likely due to the animal’s exposure to
a wide range of pathogens that takes place at a time when
various stressors (weaning, transportation, and commingling)
negatively affect their immune system (Caswell, 2014;
Timsit et al., 2016).

Although respiratory pathogens (mainly viruses and bacteria)
and factors predisposing cattle to BRD are relatively well
understood (Taylor et al., 2010), the host response and its
relationship with disease outcomes to BRD, such as the host’s
ability to maintain performance regardless of pathogen burden,
needs to be further investigated (Van Eenennaam et al., 2014;
Mulder and Rashidi, 2017). For instance, in cattle infected
with respiratory pathogens, it is currently difficult to determine
which cattle will exhibit visual and clinical signs of BRD or
even require an antimicrobial treatment (Timsit et al., 2011b;
Wolfger et al., 2015). Transcriptome analysis can lead to
insights into disease processes, and biomarkers to assess disease
states, progression, and prognosis. Thus far, transcriptomic
techniques have examined bronchoalveolar fluids, lung tissue,
and sputum samples of cattle with or without BRD (Aich
et al., 2009; Rai et al., 2015; Behura et al., 2017; Johnston
et al., 2019), but there is much less information on the
whole-blood transcriptome (Lindholm-Perry et al., 2018; Sun
et al., 2020). In comparison with lung tissue biopsies, blood
is easier to obtain and can be collected repeatedly throughout
the production period and can give real-time results, instead
of postmortem conclusions. Furthermore the host immune
response detected in the blood can reflect those responses
occurring at the site of infection (Kawayama et al., 2016;
Vinther et al., 2016).

Therefore, the objective of this study was to use RNA
sequencing to analyze the whole-blood transcriptome of feedlot
cattle with or without BRD. We hypothesized that animals
exhibiting BRD would show a specific pattern of response
in their blood transcriptome and that such patterns will
provide further insight into the host immune response.
Furthermore, variation in the blood transcriptome of animals
with and without BRD could potentially provide markers

Abbreviations: ADG, average daily gain; ALAS, aminolevulinic acid synthase;
BoHV-1, bovine herpes virus-1; BRD, bovine respiratory disease; BRSV, bovine
respiratory syncytial virus; BVDV, bovine viral diarrhea virus; CATH, cathelicidin;
CFB, complement factor B; CPM, counts per million; DE, differentially expressed;
DEFB, beta-defensin; DOF, days on feed; EBD, enteric beta defensin; FDR,
false discovery rate; GLM, general linear model; GZM, granzyme; HB, globin;
HP, haptoglobin; IL, interleukin; LCN, lipocalin; LTF, lactoferrin; MHC, major
histocompatibility complex; MMP, matrix metallopeptidase; NB, non-BRD; PCA,
principal component analysis; PCR, polymerase chain reaction; PI3V, bovine
parainfluenza-3; RIN, RNA integrity value; SERPINB, serpin peptidase inhibitor;
S100A, S100 calcium-binding protein; TLR, toll-like receptor; TMM, trimmed
mean of M-values; TNFAIP, tumor necrosis factor alpha induced protein; WC,
workshop cluster.

of resistance or resilience markers for future application in
breeding or management.

MATERIALS AND METHODS

Ethics Statement
This study was conducted in accordance to the Canadian Council
of Animal Care (2009) guidelines and recommendations (CCAC,
2009). All experimental procedures were reviewed and approved
by the University of Calgary Veterinary Sciences Animal Care
Committee (AC15-0109).

Animals
Mixed-breed beef heifers at high risk of developing BRD (i.e.,
recently weaned, commingled, and auction-market derived)
were enrolled between November 2015 and January 2016 at
a commercial feedlot in Southern Alberta, Canada. At on-
arrival processing, heifers received a subcutaneous injection of
a long-acting macrolide (tulathromycin, Draxxin, 2.5 mg/kg,
Zoetis, Kirkland, QC, Canada) and were weighed and vaccinated
against infectious bovine herpes virus-1 (BoHV-1), bovine viral
diarrhea virus (BVDV) (types I and II), bovine parainfluenza-3
(PI3V), bovine respiratory syncytial virus (BRSV), Mannheimia
haemolytica, Histophilus somni, and clostridial pathogens. They
were also dewormed with a pour-on ivermectin solution. In
addition, they received a prostaglandin F2α analog to induce
abortion, as per standard feedlot procedure. Heifers were fed
in large outdoor dirt-floor pens with approximately 250–300
animals per pen. They were fed twice daily, a concentrate
barley-based receiving/growing diet formulated to meet or exceed
nutrient requirements. This diet contained 25 ppm of monensin
(Rumensin 200, Elanco, Guelph, ON, Canada) and 35 ppm
of chlortetracycline (Aureomycin 220, Zoetis). Each morning
before feeding, bunks were visually inspected, and feed deliveries
were adjusted to ensure that sufficient feed was available for
ad libitum consumption. At approximately 30 days after arrival,
cattle received another vaccination against infectious BoHV-1,
BVDV types I and II, PI3V, BRSV, and a growth implant. Finally,
cattle were individually weighed at approximately 120 days on
feed (DOF). Average daily gain (ADG) was calculated using the
difference between arrival weight and weight at blood sampling,
divided by the DOF.

Case Definition
Animals were retrospectively identified as BRD positive based
on clinical examination and serum haptoglobin concentration.
Heifers with at least one visual BRD sign, a rectal temperature
≥40◦C, abnormal lung sounds detected at auscultation, a serum
haptoglobin concentration ≥0.25 g/L, and no prior treatment
against BRD or other diseases during the feeding period (i.e., first
BRD occurrence) were defined as BRD cases. Heifers that had no
visual signs of BRD, a rectal temperature <40◦C, no abnormal
lung sounds detected at auscultation, a serum haptoglobin
concentration <0.25 g/L, and no history of treatment against
BRD or other disease during the feeding period were treated as
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healthy controls, which were classified as non-BRD (NB) animals
for transcriptome analysis.

Study Design
Heifers were observed daily by experienced pen checkers for
detection of clinical illness during the first 60 days from entry.
Cattle with one or more visual signs of BRD (e.g., depression,
nasal or ocular discharge, cough, tachypnea, or dyspnea) were
removed from the pens by pen checkers and, if not previously
treated for BRD or another disease during the feeding period,
were clinically examined by an experienced veterinarian (ET) and
a blood sample collected. For every heifer suspected of having
BRD, one or two visually healthy cattle (no visual signs of BRD
or other disease) were selected as pen-matched contemporary
controls (for convenience, these animals were close to the gate
or to the apparently sick animal, etc.) examined as for the BRD
animals (if not previously treated for BRD or another disease
during the feeding period).

Clinical examinations included assessment of visual signs
of respiratory disease (cf. above), determination of respiratory
rate and rectal temperature, and a complete lung auscultation
using a conventional stethoscope to detect abnormal lung sounds
(e.g., increased bronchial sounds, crackles, and wheezes). Two
blood samples from each animal were collected at the same time
by jugular vein puncture to determine (i) serum haptoglobin
concentration [plastic serum tubes; Becton Dickinson, ON
(Timsit et al., 2011a)] and (ii) the whole-blood transcriptome
(Tempus tubes; Thermo Fisher Scientific, ON). Heifers with
at least one visual BRD sign and a rectal temperature ≥40◦C
received an antibiotic treatment intramuscularly in combination
with non-steroidal anti-inflammatory drugs (e.g., 40 mg/kg of
florfenicol and 2.2 mg/kg of flunixin, 2 ml/15 kg, Resflor, Merck
Animal Health) after sample collection, in accordance with
feedlot treatment protocols.

Determination of Serum Haptoglobin
Concentration
Serum haptoglobin concentrations were determined in duplicate
using a commercially available kit (Tridelta Phase Range
Haptoglobin assay, Tridelta Development) as described (Timsit
et al., 2011a). The working range was 0.0–2.5 g/L.

Total RNA Isolation and mRNA Library
Preparation
Total RNA was isolated from bovine blood using a Preserved
Blood RNA Purification Kit (Norgen Biotek Corp, Thorold, ON,
Canada), and the quality of RNA was measured using the 2200
RNA ScreenTape TapeStation System (Agilent Technologies Inc.,
Cedar Creek, TX, United States) producing RNA integrity (RIN)
values ranging from 8.0 to 9.8. To prepare the mRNA cDNA
libraries, 1.0 µg of total RNA was used from each sample using
the TruSeq RNA Library Preparation kit v2 (Illumina, San Diego,
CA, United States). Poly A-containing mRNA was enriched
from the total RNA using poly-T oligo attached beads and
fragmented for first-strand cDNA synthesis, followed by second-
strand synthesis. The ends were repaired, and 3′ end adenylation

and adapter ligation were performed for each library. Following
these steps, libraries were polymerase chain reaction (PCR)
amplified, validated using the Bioanalyzer (Agilent Technologies
Inc., Cedar Creek, TX, United States), and finally normalized and
pooled. Unique indices were used for all samples, and libraries
were pooled and sequenced paired end (2 × 100 bp) on four
separate lanes on a HiSeq 4000 platform, and sequencing was
performed at McGill University and Genome Quebec Innovation
Center (Montreal, QC, Canada). In total, 43 samples were used to
generate paired-end sequences, and their raw reads were used for
downstream analyses.

Transcriptome Data Analysis
Raw reads were analyzed for quality and adapter sequence
presence using FastQC (v0.11.8), and adapter sequences
were removed using Trimmomatic (v0.39). These cleaned-up
sequences were mapped and aligned to the Bos taurus reference
genome (ARS-UCD1.2.98) using STAR (v2.7.1a) with default
settings (Dobin et al., 2013), and read counts were generated
using FeatureCounts (SubRead v1.6.4). The counts were then
analyzed using the Bioconductor packages EdgeR and DESeq in
the R (v3.5.2) software environment. Counts per million (CPM)
was used to evaluate expression, and transcripts with CPM > 2
were considered as expressed.

Differential Gene Expression Analysis
Differential gene expression results were obtained using EdgeR
to compare animals with BRD (n = 25) with NB (n = 18) using
the following parameters: P-value < 0.05 were adjusted to a 0.01
cutoff (P-adj), with a log fold change (Log2FC) > 2, with log
CPM > 2. The data were also filtered with the “keep” command
to keep samples with CPM ≥ 2 in at least 18 samples, as the
number of samples in the NB group was 18 (Robinson et al.,
2010). This value represents genes that are expressed in all the
samples measured, and the dataset was normalized with the
trimmed mean of M-values (TMM) normalization. To test for
differential expression between the BRD and NB animals, the
factors of “brd” and “pen” were used to test the difference in
expression between the animals. The NB animals were set as the
reference in this design model, and the read count data were fitted
to a negative binomial general linear model (GLM) representing
the design. Prior to fitting the model, the “Common,” “Trended,”
and “Tagwise” negative binomial dispersion were estimated, and
the biological coefficient of variation was calculated at 78% with
a dispersion ratio of 0.61. Statistical tests were then performed
for the coefficient relating to the BRD animals, and the top
differentially expressed (DE) genes (DEGs) between the BRD
and NB samples were ranked by P-value and absolute log2FC.
In total, three different DEG analyses were performed: the
total DEGs with read counts from both the BRD and NB
animals (total DEGs, n = 43, coef = pen); BRD DEGs (n = 25,
coef = cluster); and NB DEGs (n = 18, coef = pen). A “cluster”
coefficient was also added for the BRD animals representing the
three subgroups of the BRD samples differentiated by principal
component analysis (PCA) determination of clustered samples
(Cluster; n = 3).
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Ingenuity Pathway Analysis
Network and pathway analyses were analyzed using Ingenuity
Pathway Analysis (IPA)1 (Qiagen, 2000–2019) software. This core
analysis tool was used to identify gene pathways, disease, and
networks using the gene expression data calculated by EdgeR.
Input files of expression data included DEGs from all animals
(n = 43) and the BRD-only animals (n = 25).

Statistical Analyses
Statistical analysis used the R software package. P-values ≤ 0.05
were used to indicate significance, while false discovery rate
(FDR) values were set at 0.05 for the adjusted P-values, unless
otherwise stated. Both EdgeR and IPA incorporate statistical
analyses into their analysis packages, and those values were
reported. For ADG, rectal temperatures, and DOF, a Wilcoxon
rank sum test with continuity correction was used to compare
the BRD and NB animal values in the Dplyr package.

RESULTS

Confirmation of Disease Status
Forty-four heifers (average arrival weight = 215.0 ± 5.3 kg) were
enrolled to the study and were clinically examined and sampled
between November 11 and December 11, 2015. Of these, 25 were
classified as BRD positive and 18 were classified as NB based on
clinical examination and serum haptoglobin concentration. One
control heifer was removed from the study, as it had a serum
haptoglobin concentration of 3.6 g/L (i.e., ≥0.25 g/L). Heifers
with BRD had higher (P < 0.001) average rectal temperatures
of 40.6 ± 0.03◦C, than NB heifers averaging 39.3 ± 0.14◦C
(Supplementary Table 1). Furthermore, the ADG in the NB
heifers was considerably higher (P < 0.001) than in the BRD
heifers, which on average gained less weight (P < 0.001) from the
time they arrived to the feedlot to the time they were enrolled in
the study (Supplementary Table 1).

Total Gene Expression Data Summary of
All Bovine Respiratory Disease Animals
Compared With All Non-bovine
Respiratory Disease Animals
A total of 1.51 billion raw reads were generated for the mRNA
libraries, and after trimming, an average of 31 M reads per sample
was used for alignment (Supplementary Table 2). The read-
mapping rates ranged from 75.27 to 92.09%, and on average
approximately 25 M reads were uniquely mapped per sample
(Supplementary Table 3). In total, EdgeR analysis identified
11,966 genes, with 3,075 downregulated and 3,236 upregulated
when comparing the BRD with NB samples (n = 43) using
BRD as the coefficient to determine DEGs; 6,311 total DEG,
log2FC > 2, P-adj < 0.05. To explore the difference between the
expression profiles of the NB and BRD samples, PCA was used
to analyze the differences and similarities between the samples.
The PCA showed that whole-blood transcriptome profiles of

1http://www.ingenuity.com

BRD cattle were separated from the NB profiles with 54% of the
variation attributed to PC1 (Figure 1). Four samples appear as
outliers in the PCA plot: two BRD samples and two NB samples
(Figure 1). As might be expected from this result, the number
of DEGs in the NB group was relatively small (n = 33 DEGs;
total transcripts = 11, 787), whereas thousands of DEGs were
identified within the BRD samples, which had a total of 13,404
transcripts identified.

Identification of the Differentially
Expressed Genes Between Bovine
Respiratory Disease and Non-bovine
Respiratory Disease Animals
To investigate the host response due to BRD infection, the top
ranked DEGs were identified by comparing the DEGs between
the NB and BRD samples. Table 1 shows the genes with the
highest logFC values using the NB animal expression as the
reference. Major immune genes such as interleukin (IL)1 receptor
2 (IL1R2), complement factor B (CFB), and IL3 receptor subunit
alpha (IL3RA) were identified in the top 10 upregulated DEGs,
with TNF alpha induced protein 6 (TNFAIP6) and IL12B evident
in the top 30 upregulated DEGs. Furthermore, haptoglobin (HP),
lipocalin (LCN2), serpin peptidase inhibitor (SERPINB4), and
S100 calcium-binding proteins (S100A9 and S100A8) were also
among the top expressed genes in the BRD animals (Table 1).
The top downregulated DEGs when comparing the BRD with NB
animals (Table 2) belonged to hemoglobin synthesis pathways,
including alpha globin (HBA), beta globin (HBB), mu globin
(HBM), and aminolevulinic acid synthase (ALAS2). The enriched
genes (upregulated in the BRD animals) belong to immune
response pathways, as well as gastrointestinal, inflammatory,
infectious, and respiratory disease pathways (not shown).

Analysis of Bovine Respiratory Disease
Clusters and Differentially Expressed
Genes
As the BRD samples were more dispersed in the PCA than those
from NB (Figure 1), gene expression in the 25 BRD animals
was investigated further. Three distinct subsets or clusters were
identified within the BRD samples (Figure 2). These clusters were
not associated with serum haptoglobin level or rectal temperature
at clinical examination (Supplementary Table 1).

Differentially expressed gene values were calculated within
the BRD samples (n = 25) and compared with one another for
DEG profile, with cluster used as the coefficient to determine
DEGs; log2FC > 2, P-adj < 0.05. A total of 13,404 DEGs
were identified in these samples (Table 2). As Cluster A
appeared to be the most distinct, Cluster A read counts were
compared with those in Clusters B and C. With the use of
logFC > 2, P-value < 0.05, P-adj < 0.01, when compared with
A, 109 DEGs common to Clusters B and C were identified
(34 upregulated and 74 downregulated). There were 273 DEGs
unique to Cluster C and 18 to Cluster B when compared
with Cluster A. The top upregulated genes unique to Cluster
B included multidrug resistance protein 4, duodenase-1, and
trefoil factor 2, while the top downregulated genes were all from
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FIGURE 1 | Principal component analysis (PCA) plot comparing differences in total differentially expressed (DE) gene populations between bovine respiratory disease
(BRD) and non-BRD (NB) animals. PCA plot displaying differing clustering patterns between heifers displaying clinical signs of BRD (blue) and non-BRD animals (red).
Plot was designed using normalized counts (n = 43), using the variable stabilization transformation for the PlotPCA tool in DEGSeq.

TABLE 1 | Top enriched total differentially expressed (DE) genes identified when comparing all bovine respiratory disease (BRD) with all non-BRD (NB) animals.

Gene name Gene description LogFC P-Adjust

LRG1 Leucine-rich alpha-2-glycoprotein 1 [Source: VGNC Symbol; Acc: VGNC:30980] 7.84 5.55E-29

SERPINB4 Bos taurus serpin peptidase inhibitor, clade B like (LOC786410), mRNA. [Source: RefSeq mRNA; Acc:NM_001206713] 6.14 1.18E-19

IL1R2 Interleukin 1 receptor type 2 [Source: VGNC Symbol; Acc: VGNC:30132] 5.82 2.71E-20

EREG Epiregulin [Source: VGNC Symbol; Acc: VGNC:28575] 5.37 3.14E-22

THY1 thy-1 cell surface antigen [Source: VGNC Symbol; Acc: VGNC:35856] 5.26 8.05E-20

CFB Complement factor B [Source: NCBI gene; Acc: 514076] 4.74 1.05E-28

DCSTAMP Dendrocyte expressed seven transmembrane protein [Source: VGNC Symbol; Acc: VGNC:27925] 4.25 1.80E-22

BMX BMX non-receptor tyrosine kinase [Source: VGNC Symbol; Acc: VGNC:26529] 4.14 2.65E-30

DPYS Dihydropyrimidinase [Source: VGNC Symbol; Acc: VGNC:28194] 4.11 9.58E-19

IL3RA Interleukin 3 receptor subunit alpha [Source: NCBI gene; Acc: 100299249] 4.10 1.17E-31

ADGRG3 Adhesion G protein-coupled receptor G3 [Source: VGNC Symbol; Acc: VGNC:25667] 4.01 8.40E-37

TNFAIP6 TNF alpha induced protein 6 [Source: VGNC Symbol; Acc: VGNC:36156] 3.64 7.16E-17

MMP9 Matrix metallopeptidase 9 [Source: VGNC Symbol; Acc: VGNC:31531] 3.58 1.94E-14

CLEC1B C-type lectin domain family 1 member B [Source: VGNC Symbol; Acc: VGNC:58366] 3.50 3.98E-13

PLA2G4F Phospholipase A2 group IVF [Source: VGNC Symbol; Acc: VGNC:32962] 3.47 3.30E-25

LCN2 Lipocalin 2 [Source: VGNC Symbol; Acc: VGNC:30814] 3.45 2.62E-15

IL12B Interleukin 12B [Source: VGNC Symbol; Acc: VGNC:30111] 3.45 1.44E-19

S100A9 S100 calcium-binding protein A9 [Source: VGNC Symbol; Acc: VGNC:34247] 3.42 2.30E-21

S100A8 S100 calcium-binding protein A8 [Source: VGNC Symbol; Acc: VGNC:34246] 3.42 2.11E-19

RAB20 RAB20, member RAS oncogene family [Source: NCBI gene; Acc: 615760] 3.33 3.22E-32

HP Haptoglobin [Source: NCBI gene; Acc: 280692] 3.29 2.42E-15

DEFB10 Beta-defensin 10 [Source: NCBI gene; Acc: 100141457] 3.28 2.52E-14

HBB Hemoglobin, beta [Source: NCBI gene; Acc: 280813] −3.74 9.97E-25

ALAS2 5′-Aminolevulinate synthase 2 [Source: VGNC Symbol; Acc: VGNC:25804] −3.80 3.14E-32

HBA2 Hemoglobin, alpha 2 [Source: NCBI gene; Acc: 512439] −4.86 3.14E-22

HBA1 Hemoglobin, alpha 1 [Source: NCBI gene; Acc: 100140149] −4.88 2.13E-22
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FIGURE 2 | Principal component analysis (PCA) displaying clustering of bovine respiratory disease (BRD) samples. Cluster dendrogram identifying groups in the
BRD population (n = 25) that are similar to one another based on gene expression. The BRD data is further subdivided into three distinct clusters.

TABLE 2 | Summary of differentially expressed (DE) genes between bovine
respiratory disease (BRD) clusters.

Cluster comparison1

Item *B–A *C–A *C–B

Total transcripts 13,404 13,404 13,404

↑ Expression 1,739 3,806 581

↓ Expression 1,670 3,464 1,472

Total DEG 3,409 7,270 2,053

No significant changes 9,995 6,134 11,351

1Cluster with (*) annotation is upregulated compared with opposite cluster.
Transcripts in B upregulated compared with A. Transcripts in C upregulated when
compared with A. Transcripts in C upregulated when compared with B.

the keratin family (Table 3). For Cluster C, upregulated genes
included cornifin B-like, solute carrier family 6, and serine protease
50, while thy-1 cell surface antigen and leucine-rich alpha-2-
glycoproteins were downregulated (Table 3). When compared
with animals in Cluster B and C, animals in Cluster A showed
increased expression of genes encoding bovine antimicrobial
peptides. Specifically, cathelicidin-2 (CATH2), CATH3, CATH5,
and CATH6 were upregulated in Cluster A (Table 4). These genes
had high logFC values (>log2), and genes for other antimicrobial
peptides such as enteric beta defensin (EBD) and beta-defensin
4A (DEFB4) were also upregulated in Cluster A, when compared
with those in B and C. Genes downregulated in Cluster A
when compared with Cluster B and C are shown in Table 5.
Further analysis using the core analysis function in IPA shows
the pathway involved in viral infection as one of the top disease
pathways according to z-score in the comparison between Cluster
A animals with Clusters B and C (Figure 3). The highly activated

genes in this comparison include LCN2, S1008A, and CFB,
with bovine cathelicidin antimicrobial peptide (CAMP) having
the highest experimental log ratio value as identified through
IPA (Table 6).

Comparison With Related Studies
In order to determine the validity of our results, finding
similarities in gene expression to related studies was also a goal
of our analysis. Three studies in particular also investigated
gene expression in response to cattle with BRD using the
blood and bronchial lymph node transcriptome. The work
done by Johnston et al. (2019) showed similarities to our
work in the clear separation observed when plotting the gene
expression pattern between control and infected animals, and
also in the identification of genes related to acute phase protein
expression (Supplementary Table 4). Additionally, Sun et al.
(2020) identified enriched expression of genes belonging to heme
biosynthesis, acute phase response signaling, and granzyme B
signaling, which was also observed in our results (Supplementary
Table 4). Finally, Scott et al. (2020), who also investigated
the blood transcriptome, found similarities with the highly
upregulated genes found here including CATH2, LRG1, and CFB,
as well as decreased expression of ALOX15 and GZMB.

DISCUSSION

Most previous studies investigating BRD have used fluids and
tissues located at the main sites of infection for BRD pathogens,
such as bronchial lymph nodes (Tizioto et al., 2015; Johnston
et al., 2019), lung tissue (Rai et al., 2015; Chen et al., 2016;
Behura et al., 2017), and lymph fluid (Gershwin et al., 2015), and
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TABLE 3 | Unique genes of interest in Clusters B and C.

Cluster B Cluster C

Upregulated Downregulated Upregulated Downregulated

LOC521568: Multidrug
resistance associated protein 4
LOC508858:
Duodenase 1
SV2C: Synaptic vesicle
glycoprotein
VSIG2: V-set and
immunoglobulin domain
containing 2
TFF2: Trefoil factor 2

KRT85: Keratin 85
KRT83: Keratin 83
KRT33B: Keratin, type 1
cuticular Ha3-I-like
KRT33A: Keratin 33A

KRT86: Keratin 86

LOC507527: Cornifin-B-like

SLC6A15: Solute carrier family 6
ANK1: Ankyrin 1
KRT25: Keratin 25
PRSS50: Serine protease 50

BOLA-DQB: Major
histocompatibility complex, class II,
DQ beta

THY1: thy-1 cell surface antigen

LOC51110: Serpin peptidase
inhibitor, clade B like
PLIN5: Perilipin 5

ALPL: Alkaline phosphatase,
biomineralization associated

LRG1: Leucine-rich
alpha-2-glycoprotein

TABLE 4 | Top enriched bovine respiratory disease (BRD) differentially expressed (DE) genes in Cluster A compared with Clusters B and C.

Gene name Gene description LogFC P-Adjust

CATHL2 Cathelicidin 2 [Source: NCBI gene; Acc: 282165] 8.91 1.03E-33

CD177 CD177 molecule [Source: VGNC Symbol; Acc: VGNC:27006] 8.35 1.17E-34

CATHL6 Cathelicidin 6 [Source: NCBI gene; Acc: 317651] 7.71 2.28E-33

CATHL3 Cathelicidin 1 [Source: NCBI gene; Acc: 282164] 7.37 2.77E-26

CATHL5 Cathelicidin 5 [Source: NCBI gene; Acc: 282167] 7.04 1.48E-28

NGP Neutrophilic granule protein-like [Source: NCBI gene; Acc: 788112] 5.77 1.12E-13

LTF Lactotransferrin [Source: VGNC Symbol; Acc: VGNC:31077] 5.57 1.01E-30

MS4A3 Membrane spanning 4-domains A3 [Source: VGNC Symbol; Acc: VGNC:58392] 5.54 1.49E-16

EBD Enteric beta-defensin [Source: NCBI gene; Acc: 281743] 5.42 4.90E-20

ORM1 Orosomucoid 1 [Source: NCBI gene; Acc: 497200] 5.10 2.85E-23

DEFB4A Defensin, beta 4A [Source: NCBI gene; Acc: 286836] 5.01 4.34E-20

PGLYRP1 Peptidoglycan recognition protein 1 [Source: VGNC Symbol; Acc: VGNC:32791] 5.01 6.43E-29

MMP8 Matrix metallopeptidase 8 [Source: VGNC Symbol; Acc: VGNC:31530] 5.00 2.50E-18

CCL14 Chemokine (C-C motif) ligand 14 [Source: NCBI gene; Acc: 616723] 4.57 1.16E-22

FLT4 fms related tyrosine kinase 4 [Source: VGNC Symbol; Acc: VGNC:29044] 4.51 9.30E-13

EFNB2 Ephrin B2 [Source: VGNC Symbol; Acc: VGNC:28360] 4.34 2.04E-23

IL1R2 Interleukin 1 receptor type 2 [Source: VGNC Symbol; Acc: VGNC:30132] 4.32 8.21E-16

MMP27 Matrix metallopeptidase 27 [Source: VGNC Symbol; Acc: VGNC:54886] 4.25 8.38E-08

RETN Resistin [Source: VGNC Symbol; Acc: VGNC:33877] 4.13 1.63E-18

FOLR3 Folate receptor 3 [Source: NCBI gene; Acc: 516067] 4.07 6.08E-07

HSPG2 Heparan sulfate proteoglycan 2 [Source: VGNC Symbol; Acc: VGNC:29988] 3.82 2.72E-22

LCN2 Lipocalin 2 [Source: VGNC Symbol; Acc: VGNC:30814] 3.75 6.71E-18

MMP9 Matrix metallopeptidase 9 [Source: VGNC Symbol; Acc: VGNC:31531] 3.65 2.20E-12

TMEM217 Transmembrane protein 217 [Source: VGNC Symbol; Acc: VGNC:36039] 3.53 2.21E-16

LBP Lipopolysaccharide-binding protein [Source: VGNC Symbol; Acc: VGNC:56192] 3.48 4.27E-10

RAB3IL1 RAB3A interacting protein like 1 [Source: VGNC Symbol; Acc: VGNC:33655] 3.46 2.11E-09

ALOX5 Arachidonate 5-lipoxygenase [Source: VGNC Symbol; Acc: VGNC:25844] 3.34 3.28E-13

SERPINB2 Serpin family B member 2-like [Source: NCBI gene; Acc: 281376] 3.29 7.61E-11

BPI Bactericidal permeability increasing protein [Source: NCBI gene; Acc: 280734] 3.20 6.12E-08

CCL24 C-C motif chemokine ligand 24 [Source: VGNC Symbol; Acc: VGNC:26950] 3.18 5.34E-10

ITGA9 Integrin subunit alpha 9 [Source: VGNC Symbol; Acc: VGNC:30320] 3.18 4.25E-13

RGL1 Ral guanine nucleotide dissociation stimulator like 1 [Source: VGNC Symbol; Acc: VGNC:33903] 3.13 1.13E-19

EREG Epiregulin [Source: VGNC Symbol; Acc: VGNC:28575] 3.11 6.57E-12

SERPINB4 Bos taurus serpin peptidase inhibitor, clade B like (LOC786410), mRNA. [Source: RefSeq mRNA; Acc: NM_001206713] 3.07 1.15E-06

have reported various immune-related genes enriched at each
site of infection. In addition, these studies have collected these
fluids and tissues at postmortem examination. Only a few studies

(Lindholm-Perry et al., 2018; Scott et al., 2020) use RNA extracted
from blood for gene expression analysis despite the relative
ease of its sampling from live animals. We therefore applied
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TABLE 5 | Genes downregulated in Cluster A when compared with Clusters B and C.

Gene name Gene description LogFC P-Adjust

TAC3 Tachykinin 3 [Source: VGNC Symbol; Acc: VGNC:35556] −5.16 7.22E-08

LOC100139881 Mast cell protease 2 [Source: NCBI gene; Acc: 100139881] −3.76 4.82E-05

FOLH1B Folate hydrolase 1B [Source: NCBI gene; Acc: 505865] −3.52 5.78E-03

LOC100847119 Immunoglobulin lambda-1 light chain-like [Source: NCBI gene; Acc: 100847119] −3.48 4.12E-04

NRIP3 Nuclear receptor interacting protein 3 [Source: VGNC Symbol; Acc: VGNC:32264] −3.30 4.99E-04

LARP6 La ribonucleoprotein domain family member 6 [Source: VGNC Symbol; Acc: VGNC:30793] −3.06 3.09E-07

BREH1 Retinyl ester hydrolase type 1 [Source: NCBI gene; Acc: 497207] −2.95 1.30E-08

GABRD Gamma-aminobutyric acid type A receptor delta subunit [Source: VGNC Symbol; Acc: VGNC:29198] −2.91 2.94E-05

SEMA3G Semaphorin 3G [Source: VGNC Symbol; Acc: VGNC:34432] −2.82 1.72E-09

KLHDC8A Kelch domain containing 8A [Source: VGNC Symbol; Acc: VGNC:30639] −2.79 1.07E-08

ADGRA1 Adhesion G protein-coupled receptor A1 [Source: VGNC Symbol; Acc: VGNC:55933] −2.79 2.59E-06

PRG3 Proteoglycan 3 [Source: NCBI gene; Acc: 617374] −2.75 1.68E-02

WNT5A Wnt family member 5A [Source: VGNC Symbol; Acc: VGNC:36960] −2.73 2.99E-06

GATA2 GATA-binding protein 2 [Source: VGNC Symbol; Acc: VGNC:29266] −2.68 1.51E-04

GZMB Granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1) [Source: NCBI gene; Acc: 281731] −2.65 7.07E-04

KCNIP3 Potassium voltage-gated channel interacting protein 3 [Source: NCBI gene; Acc: 513316] −2.61 2.09E-12

WC1.1 Antigen WC1.1 [Source: NCBI gene; Acc: 786796] −2.59 1.58E-06

GCSAML Germinal center associated signaling and motility like [Source: HGNC Symbol; Acc: HGNC:29583] −2.56 3.99E-04

PRRS50 Serine protease 50 [Source: NCBI gene; Acc: 518845] −2.49 2.03E-05

CD163L1 CD163 molecule-like 1 [Source: NCBI gene; Acc: 338056] −2.49 9.03E-11

TGFB2 Transforming growth factor beta 2 [Source: VGNC Symbol; Acc: VGNC:35802] −2.48 7.07E-04

CD1E CD1e molecule [Source: VGNC Symbol; Acc: VGNC:27008] −2.45 1.74E-04

CXCL12 C-X-C motif chemokine ligand 12 [Source: VGNC Symbol; Acc: VGNC:27848] −2.44 6.06E-12

LY6G6C Lymphocyte antigen 6 family member G6C [Source: VGNC Symbol; Acc: VGNC:31090] −2.43 8.71E-09

KCNQ4 Potassium voltage-gated channel subfamily Q member 4 [Source: VGNC Symbol; Acc: VGNC:30489] −2.40 4.37E-08

SLC6A15 Solute carrier family 6 member 15 [Source: VGNC Symbol; Acc: VGNC:34918] −2.39 1.71E-02

BOLA-DQB Major histocompatibility complex, class II, DQ beta [Source: NCBI gene; Acc: 282495] −2.38 7.68E-03

CYGB Cytoglobin [Source: VGNC Symbol; Acc: VGNC:50268] −2.36 7.37E-08

ANK1 Ankyrin 1 [Source: NCBI gene; Acc: 353108] −2.35 5.22E-03

RTN4RL1 Reticulon 4 receptor like 1 [Source: VGNC Symbol; Acc: VGNC:34207] −2.34 4.80E-08

ENPP1 Ectonucleotide pyrophosphatase/phosphodiesterase 1 [Source: VGNC Symbol; Acc: VGNC:28504] −2.33 3.33E-08

CHCHD6 Coiled-coil-helix-coiled-coil-helix domain containing 6 [Source: VGNC Symbol; Acc: VGNC:27274] −2.33 3.33E-08

HRH4 Histamine receptor H4 [Source: VGNC Symbol; Acc: VGNC:29956] −2.33 8.85E-07

a functional genomics approach to investigate changes in the
whole-blood transcriptome, making two different comparisons;
the first examined the difference in gene expression between all
the BRD and NB animals, while the second explored the larger
variation observed among the BRD animals.

As anticipated, we found that gene expression profiles in whole
blood varied between animals diagnosed with BRD and those not
exhibiting clinical signs of BRD. Analysis of the differential gene
expression between phenotypically healthy cattle (NB) and those
with BRD showed that, as with the tissues at infection sites, the
major pathways activated in cattle with BRD were also associated
with the host immune response.

The BRD animals also had lower expression of genes involved
in hemoglobin synthesis. For example, HBA1, HBA2, HBB, and
ALAS2 were all downregulated in the BRD animals. These
genes are involved in erythropoiesis and are regulated by
iron availability (Chiabrando et al., 2014). Iron homeostasis
is involved in oxygen transport, cellular respiration, and
metabolic processes (Ali et al., 2017). The regulation of
iron concentration in blood also plays an important role in

modulating bacterial infection and contributes to the progression
of lung disease (Roehrig et al., 2006; Ali et al., 2017). During
bacterial infection, neutrophils maintain iron homeostasis by
releasing LCN2 and lactoferrin (LTF) to sequester free iron
(Ali et al., 2017) and protect the lung from oxidative stress
induced by iron and HBA and HBB molecules (Tubsuwan
et al., 2011). Furthermore, LCN2 decreases iron availability
to limit the growth of pathogenic bacteria (Xiao et al., 2017;
Pokorska et al., 2019). Pasteurella multocida express outer
membrane protein receptors for iron-binding proteins, and
the expression of these proteins increases during conditions
of iron restriction (Prado et al., 2005). Animals with BRD
show decreased expression of genes for hemoglobin and iron-
binding proteins and regulators and an increase in genes
for iron maintenance proteins (i.e., LCN2 and LTF) that are
released from neutrophils as a response to infection. In both
comparisons of gene expression (BRD vs. NB and within the
BRD animals), LCN2 expression was increased while in the BRD
vs. NB comparison, expression of genes encoding iron-binding
proteins was lowered.
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FIGURE 3 | Ingenuity Pathway Analysis (IPA). Cell signaling pathways involved in the viral response pathway identified as one of the top disease pathways according
to z-score in the comparison between Cluster A animals and Clusters B and C.

Bovine respiratory disease is multifactorial (Taylor et al.,
2010), and etiological diagnosis of BRD is difficult if not
impossible to reach in a field setting (Pardon and Buczinski,
2020). Major BRD pathogens such as Mannheimia haemolytica,
P. multocida, Haemophilus somnus, or Mycoplasma bovis can
be isolated from both healthy and sick animals (Angen et al.,
2009; Timsit et al., 2017, 2018). Furthermore, multiple BRD
pathogens (i.e., viruses and bacteria) are often detected at the
same time in the same animal (Angen et al., 2009; Fulton et al.,
2009), and it is impossible to determine which ones are causing
lung lesions and associated clinical signs without performing
a postmortem examination (Fulton and Confer, 2012). This
explains why identification of the individual microbial and viral
species was not performed in this study.

Although identification of the individual microbial and viral
species was not performed in this study, we may be able to
infer what agents were present by comparing the gene expression
results with those from specific challenge studies. For example,
Tizioto et al. (2015) performed single pathogen challenges with
the common pathogens in the BRD complex and examined
gene expression in bronchial lymph nodes of these animals
(Tizioto et al., 2015). The patterns of enriched genes in the blood
transcriptome in this study share similar gene characteristics

with previous investigations. For example, S100A8, S100A9, and
matrix metallopeptidase 9 were highly expressed in all of the
specific challenges independent of pathogen (Rai et al., 2015;
Tizioto et al., 2015). An increase in expression of S100A8
and S100A9 is also associated with toll-like receptor 4 (TLR4)
binding (Wang et al., 2016). TLR4 forms complexes that lead
to recruitment of members of IL1 receptor signaling to sites
of infection (Bhattacharyya et al., 2013). Interestingly we also
found upregulation of IL1R2 and IL1RAP in the blood of the
BRD animals. Expression of IL1 and IL1RAP become elevated
in the host when intracellular pathogens are present (Peters
et al., 2013), and both viral and bacterial pathogens can often
increase the expression of this cytokine to promote a cytotoxic
T cell-mediated response. We also found increased expression of
SERPINB4, which encodes a protein located in the skin, mucous
membranes, and respiratory system to prevent pathogens from
crossing epithelial barriers (Geiger et al., 2015).

A second comparison analyzed the differences within the BRD
samples and compared the differences between the identified
clusters. Expression of several genes encoding antimicrobial
peptides was increased in Cluster A compared with Clusters
B and C. These included the genes such as LTF, and
several encoding cathelicidins (CATH2, CATH3, CATH5, and
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TABLE 6 | Ingenuity Pathway Analysis (IPA) list of genes predicted to affect viral infection in Cluster A compared with B and C.

ID Genes in dataset Prediction Expr log ratio Findings

ENSBTAG00000024852 CAMP Affected 8.561 Affects (1)

ENSBTAG00000001292 LTF Affected 4.952 Affects (6)

ENSBTAG00000002635 PGLYRP1 Affected 4.617 Affects (1)

ENSBTAG00000016991 EFNB2© Increased 4.548 Increases (4)

ENSBTAG00000017294 ORM1 Affected 4.39 Affects (1)

ENSBTAG00000004716 RETN Increased 3.478 Increases (2)

ENSBTAG00000014149 LCN2 Increased 3.092 Increases (3)

ENSBTAG00000020676 MMP9 Affected 2.699 Affects (9)

ENSBTAG00000014046 BPI Affected 2.617 Affects (1)

ENSBTAG00000020319 ALOX5 Affected 2.536 Affects (3)

ENSBTAG00000017866 CD36 Increased 2.528 Increases (7)

ENSBTAG00000006354 HP Affected 2.511 Affects (1)

ENSBTAG00000005952 CEBPE Affected 2.251 Affects (1)

ENSBTAG00000008059 CHRM3 Affected 2.106 Affects (3)

ENSBTAG00000048591 THBD Affected 2.057 Affects (2)

ENSBTAG00000007169 P2RX1 Increased 2.052 Increases (2)

ENSBTAG00000039050 P2RY2 Increased 2.051 Increases (1)

ENSBTAG00000008951 ALPL Affected 1.991 Affects (3)

ENSBTAG00000001034 IL18R1 Decreased 1.966 Decreases (2)

ENSBTAG00000012640 S100A8 Increased 1.932 Increases (4)

ENSBTAG00000021994 CACNA2D4 Affected 1.908 Affects (3)

ENSBTAG00000046152 MGAM Affected 1.883 Affects (1)

ENSBTAG00000054057 NRG1 Affected 1.817 Affects (1)

ENSBTAG00000053072 EFHC2 Increased 1.78 Increases (1)

ENSBTAG00000014906 VCAN Affected 1.764 Affects (1)

ENSBTAG00000040151 GCH1 Affected 1.723 Affects (1)

ENSBTAG00000038490 CLEC4A Increased 1.593 Increases (22)

ENSBTAG00000012019 IRS2 Affected 1.544 Affects (1)

ENSBTAG00000020580 TCN1 Affected 1.538 Affects (1)

ENSBTAG00000046158 CFB Increased 1.519 Increases (2)

ENSBTAG00000018517 VLDLR Increased 1.499 Increases (1)

ENSBTAG00000006505 S100A9 Increased 1.489 Increases (6)

ENSBTAG00000019059 ATG16L2 Increased 1.487 Increases (2)

ENSBTAG00000012185 CLEC4E Affected 1.474 Affects (1)

ENSBTAG00000038048 MRC1 Increased 1.471 Increases (1)

ENSBTAG00000016414 VDR Increased 1.468 Increases (27)

ENSBTAG00000010763 DUSP16 Increased 1.468 Increases (2)

ENSBTAG00000014636 ZFHX3 Affected 1.428 Affects (1)

ENSBTAG00000006817 CBL Decreased 1.417 Decreases (3)

ENSBTAG00000016206 MAOA Affected 1.413 Affects (1)

ENSBTAG00000012052 PADI4 Increased 1.401 Increases (2)

ENSBTAG00000008592 FCGR1A Decreased 1.382 Decreases (13)

ENSBTAG00000047338 DCBLD1 Increased 1.327 Increases (1)

ENSBTAG00000018255 ACTN1 Affected 1.318 Affects (1)

ENSBTAG00000047238 ITGAM Increased 1.318 Increases (2)

ENSBTAG00000045565 NHSL2 Affected 1.316 Affects (1)

ENSBTAG00000013201 ALOX5AP Affected 1.295 Affects (1)

ENSBTAG00000012638 S100A12 Increased 1.264 Increases (3)

© 2000–2021 QIAGEN. All rights reserved.
Bolded rows identify genes predicted to have increased activity using the IPA analysis.

CATH6). LTF functions as an antimicrobial molecule but
also has immunomodulatory qualities (Drago-Serrano et al.,
2017), suggesting a potential therapeutic role for this protein.

Cathelicidins are defined as host defense peptides that are
highly expressed in bovine granulocytes and located at mucosal
surfaces in the lungs, lymphoid tissues, and intestines of the
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host (Baumann et al., 2017). Expression of four of the seven
known bovine cathelicidin genes, CATH2, 3, 5, and 6, was
increased in the BRD animals. These peptides have been detected
and isolated from sick animals and are generally not present
in healthy tissues (Tomasinsig et al., 2002). Therefore, their
identification as the top genes with the greatest fold-change
increases in the BRD Cluster A suggests a strong host immune
response in this group of affected animals. It has also been
reported that M. haemolytica causes the induction of bovine
beta-defensins, especially in animals with subacute and chronic
infection (Fales-Williams et al., 2002), and we observed enteric
beta-defensin as well as beta-defensin 4A among the top expressed
genes in the BRD animals. It can be concluded that the
expression of these defensin genes is indicative of chronic
infection (Bhattacharyya et al., 2013) or simply the result of the
host defense response stimulating helper T cell type 1 (TH1)
and helper T cell type 2 (TH2) responses to help clear infection
(Gurao et al., 2017).

The overall abundance of gamma delta T cells in ruminants
is higher than in other species, and in non-ruminants, this
cell subset has been associated with increasing production of
TH2 cytokines (Plattner and Hostetter, 2011). Although this
association has not been observed in ruminants, it has been
reported that a CD163 relative, Workshop Cluster 1 (WC1), plays
an important role in gamma delta T cell regulation in cattle
(Herzig et al., 2010; Plattner and Hostetter, 2011), especially
in young calves. This T cell subset also facilitates protective
immunity following vaccinations (Davis et al., 1996; Guzman
et al., 2012) and has been described to be involved in increased
expression of major histocompatibility complex (MHC) class II
on WC1+ cells through interaction with dendritic cells during
Mycobacterium bovis infection (Price and Hope, 2009). When
comparing Cluster A with Clusters B and C, expression of
WC1, WC1.1, WC1.3, and WC1-12 was significantly decreased
in Cluster A. Animals in Cluster A showed lowered expression
of WC1 genes that directly promote antigen presentation and
regulation of alpha beta T cells and CD4/CD8 antigens on WC1+
T cells (Ackermann et al., 2010). This suggests that the BRD
animals in Cluster A were displaying lower antigen presentation
and T cell regulation, suggesting that they may have been infected
with a greater pathogen load that hinders the host immune
response in comparison with that in the animals in Clusters B
and C. Furthermore, as there was also an increase in the host
antimicrobial response in Cluster A, these animals may also have
had a unique pathogen subset leading to BRD than the animals in
Clusters B and C.

Animals in Cluster A also exhibited a decrease in the
expression of GZMB, which has many established roles in
stimulating the cytotoxic T cell response and limiting viral
replication in the host (Johnston et al., 2019). Granzyme B,
in addition to leukotriene C4, IL4, and IL13, are involved
in mediating allergic and asthmatic reactions in humans
(Plattner and Hostetter, 2011). Basophil granulocytes are
the major effector molecules in a TH2 immune response
and are the source for leukotriene C4, IL4, and IL13. IL3
specifically leads to the synthesis of GZMB and contributes
to the basophil granule population in the TH2 immune

response (Tschopp et al., 2006), and it is one of the
most potent cytokines with the longest duration of action
(Tschopp et al., 2006). Therefore, the decreased expression
of GZMB suggests that the animals in Cluster A had a
lowered host immune response to infection than the animals in
Clusters B and C.

CONCLUSION

In conclusion, the results suggest that the blood transcriptome
provides a useful resource to investigate the biology of BRD
in feedlot cattle. The whole-blood transcriptome may only give
a general overview of the health status, e.g., severe infection
from a systemic immune response compared with that from
the response reported in tissues at the site of infection.
However, results from the BRD subsets (Clusters A, B, and C)
do show some similarities with gene expression results using
tissue and fluids isolated directly from the sites of infection,
as well as other studies that also used RNA sequencing to
identify BRD in tissues and blood. Analysis of the pathogens
present in the sampled animals may allow this commonality
to be explored further. For example, it may be that specific
pathways and genes expressed in whole blood are associated
with individual pathogens, which could assist in directing
targeted therapeutic treatments. Such transcriptome data may
also provide information on potential therapeutic targets for
BRD infection. Investigation of the WC1+ cell subset and
cathelicidin antimicrobial peptides could be useful in this respect.
Gene expression analysis of whole blood from BRD and NB
cases provides new insights for understanding host response to
infection and suggests that there is significant value in using
blood for BRD studies. This approach is supported by recent
results obtained by Scott et al. (2020) as well as Sun et al.
(2020); however, in the future, we could increase the validity of
our findings by screening more animals for the genes identified
in this study using qPCR. Furthermore, genes upregulated in
healthy animals may also be related to protective mechanisms
that reduce an individual’s susceptibility to BRD, and this
warrants further investigation, as our findings put genes related to
leukotriene biosynthesis and granzyme expression into this class
of protective genes.
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Genetically selected chickens with better growth and early maturation show an
incidental increase in abdominal fat deposition (AFD). Accumulating evidence reveals
a strong association between gut microbiota and adiposity. However, studies focusing
on the role of gut microbiota in chicken obesity in conventional breeds are limited.
Therefore, 400 random broilers with different levels of AFD were used to investigate the
gut microbial taxa related to AFD by 16S rRNA gene sequencing of 76 representative
samples, and to identify the specific microbial taxa contributing to fat-related metabolism
using shotgun metagenomic analyses of eight high and low AFD chickens. The results
demonstrated that the richness and diversity of the gut microbiota decrease as the
accumulation of chicken abdominal fat increases. The decrease of Bacteroidetes and
the increase of Firmicutes were correlated with the accumulation of chicken AFD.
The Bacteroidetes phylum, including the genera Bacteroides, Parabacteroides, and
the species, B. salanitronis, B. fragilis, and P. distasonis, were correlated to alleviate
obesity by producing secondary metabolites. Several genera of Firmicutes phylum with
circulating lipoprotein lipase activity were linked to the accumulation of chicken body fat.
Moreover, the genera, Olsenella and Slackia, might positively contribute to fat and energy
metabolism, whereas the genus, Methanobrevibacter, was possible to enhance energy
capture, and associated to accumulate chicken AFD. These findings provide insights
into the roles of the gut microbiota in complex traits and contribute to the development
of effective therapies for the reduction of chicken fat accumulation.

Keywords: chickens, abdominal fat deposition, cecal microbiota, microbial composition, microbial functional,
metabolism capacity

INTRODUCTION

Genetically selected chickens with better growth and early maturation are accompanied by an
incidental increase in abdominal fat accumulation (Abdalla et al., 2018). This results in a reduction
in the quality of meat that can be considered unhealthy, as well as in an increase in feed cost (Jiang
et al., 2017). To date, high-abdominal fat accumulation in commercial broilers hinders profitable
farming. In recent years, the focus of research has been on genetic and nutritional regulation of
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fatty acid synthesis and lipid deposition, and multiple genetic
factors, including quantitative trait loci, candidate genes, mRNA,
miRNA, and LncRNA, have been identified with the advances
in omics technologies (Zhang et al., 2012, 2014; Demeure et al.,
2013; Cui et al., 2018; Li H. et al., 2020; Zhang M. et al., 2020).

However, accumulating and emerging lines of evidence from
humans (Backhed et al., 2004; Ley et al., 2005), mice (Ridaura
et al., 2013), and livestock (Huang et al., 2020) have revealed
a strong association between the gut microbiota and adiposity.
For instance, the phylum Firmicutes is more abundant in obese
than lean individuals, and vice versa, for Bacteroidetes (Ley
et al., 2006). In contrast, after a weight loss program for obese
individuals, the relative abundance of Bacteroidetes increased
and was accompanied by a decrease in Firmicutes (Ley et al.,
2006). Furthermore, by transferring gut microbiota from obese
or lean mice to germ-free mice, it has been shown that a high
Firmicutes to Bacteroidetes ratio increased body fat accumulation
(Ley et al., 2005). For chickens, it has been revealed that the long-
term divergent selection of chicken with abdominal fat deposition
(AFD) not only altered the composition of gut microbiota, but
also influenced its functions by enriching its relative abundance
in certain microbial taxa (Ding et al., 2016; Hou et al., 2016).
Moreover, the gut microbiota has been suggested to be largely
independent of host genetics in regulating fat deposition in
chickens (Wen et al., 2019). Furthermore, the duodenal and
cecal microbiota have a greater contribution to fat deposition
and could separately account for 24% and 21% of the variance
in the abdominal fat mass after correcting for host genetic
effects (Wen et al., 2019). Therefore, the gut microbiota is
regarded as an important factor in modulating fat deposition in
broiler chickens.

However, most available data are based on human or mammal
models, which may not be completely suited in the case of
chickens, because of its unique anatomy and physiology. Most
currently published studies only describe the structure and
function of the chicken gut microbiota (Ding et al., 2016),
and the spatial and temporal changes upon specific stimulation
resulting from feed additives (Shang et al., 2015), heat stress
(Shi et al., 2019; Zaytsoff et al., 2020), and caged/free-range
(Chen et al., 2019; Xiang et al., 2021). Meanwhile, the limited
studies focusing on the possible contribution of gut microbiota
in modulating chicken obesity have mainly examined this aspect
using the divergently selected lean and fat broiler chicken lines
(Ding et al., 2016; Hou et al., 2016), lacking in the ability to
highlight the specific microbiota taxa associated with AFD in
conventional chicken breeds.

In this study, the same random flock consisting of 400
broilers differentiated on AFD was used in the Tiannong
Partridge Chickens commercial strain. AFD traits and fatty acid
composition of all birds were determined in the flock. Based
on their abdominal fat percentage (AFP), they were divided
into high AFP (HH) and low AFP (LL) groups. Representative
samples were then investigated using 16S rRNA gene sequencing
to provide a global perspective on the gut microbial taxa related
to AFD. Next, samples with extremely divergent AFP traits were
subjected to shotgun metagenomic analysis to identify the specific
gut microorganisms contributing to fat-related metabolism.

MATERIALS AND METHODS

Chicken and Sample Collection
A random commercial flock of Tiannong Partridge chickens,
consisting of 5,000 hens of the same age, was raised free on
a farm in Guangdong Tinoo’s Foods Co. Ltd., and fed with a
commercial standard diet during the age of 1 to 125 days. Then,
on day 126, 400 random hens were collected and slaughtered
using the mechanized slaughter line with moderate scalding
water temperature. The same part of the pectoral muscle was
collected from all hens and the cecum content was randomly
collected from 140 chickens. All samples were rapidly frozen
using dry ice and stored at −80◦C for subsequent analyses.

Phenotypic Trait Measurements
The phenotypic traits of chickens, including body weight (BW),
carcass weight (CW), eviscerated weight (EW), and abdominal
fat weight (AFW), were measured on the spot, and the AFP
was calculated later. A 2-g sample of each pectoral muscle tissue
was homogenized and lipids were extracted following the Folch’s
lipids extraction procedure. The contents of intramuscular fat
(IMF), triglycerides (TG), phospholipids (PL), and cholesterol
(CHO) were measured using commercial kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China).

16S and Shotgun Metagenomic
Sequencing
For 76 representative samples, total DNA was extracted
from the cecal samples using the QIAamp Fast DNA
Stool Mini Kit (QIAGEN, Hilden, Germany). The V3-
V4 region of 16S rRNA gene was amplified with primer
341F/806R (341F: CCTACGGGNGGCWGCAG, 806R:
GGACTACHVGGGTATCTAAT). The PCR reaction was
conducted using Phusion R© High-Fidelity PCR Master Mix (NEB,
Beverly, MA, United States) with 30 cycles. PCR products were
purified using the QIAquick Gel Extraction Kit (QIAGEN).
Libraries were generated using the TruSeq R© DNA PCR-Free
Sample Preparation Kit (Illumina, San Diego, CA, United States)
following the manufacturer’s recommendations. Sequencing was
conducted on the Illumina HiSeq2500 platform. For a subset
of eight individuals, the same DNA extracts were subjected to
shotgun metagenomic sequencing. Briefly, qualified genomic
DNA was fragmented by sonication to a size of 350bp, and then
end-repaired, A-tailed, and adaptor ligated using NEBNext R©

UltraTM DNA Library Prep Kit for Illumina (NEB, United States)
according to the preparation protocol. DNA fragments with
length of 300–400 bp were enriched by PCR. Then libraries were
paired-end sequenced on the Illumina HiSeq2500 platform.

16S rRNA Gene Data Processing
Paired-end reads were assembled using FLASH v1.2.11 (Magoc
and Salzberg, 2011) with a minimum overlap of 10 bp and
mismatch error rates of 2%. The QIIME2 pipeline was used
for data quality control and analyses (Bolyen et al., 2019). All
remaining high-quality reads were aligned and clustered into
operational taxonomic units (OTUs) using an open reference
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OTU picking protocol. Next, chimeras and singletons were
filtered from the dataset, and OTUs with an average relative
abundance of <10−6 were removed from the analysis. The OTU
abundance of each sample and taxonomic classification from
phylum to species were then determined. Spearman’s correlation
was calculated using the psych package (v1.8.4) in R without
further multiple testing. Microbes were analyzed at the kingdom,
phylum, class, order, family, genus, and species levels.

Shotgun Metagenomic Data Processing
Shotgun metagenomic sequencing data were quality controlled
by requiring a minimum of 4M paired-end reads per sample
after Nextera library adaptor removal using Trimmomatic
v0.39 (Bolger et al., 2014). Quality control methods were run
using default parameters. Then, the clean data were assembled
individually using MEGAHIT v1.1.2 (Li et al., 2015) stepping
over a k-mer range of 21 to 99 to generate sample-derived
assembly. Overall, de novo assembly statistics were evaluated as
a combination of percent paired or singleton reads realigning
to the assembly using BWA v0.7.17 (Li and Durbin, 2009). The
unmapped reads of each sample were pooled for re-assembly
using MEGAHIT v1.1.2 to generate a mixed assembly. Sample-
derived assembly and mixed assembly were combined to obtain
the final assembly for further analyses. After quality control, clean
reads were used to generate taxonomic profiles with taxonomic
classifier MetaOthello v1.0 using reads k-mer signatures of 31bp
length (Liu et al., 2018). The open reading frame (ORF) was
predicted based on the final assembly contigs (> 500 bp) using
MetaGeneMark v3.38 with default parameters (Zhu et al., 2010).
The predicted ORFs ≥ 300 bp in length from all samples were
pooled and combined based on ≥ 95% identity and 90% read
coverage using CD-HIT v4.6 (Li and Godzik, 2006) in order
to reduce the number of redundant genes for the downstream
assembly step. The reads were re-aligned to the predicted gene
using BWA to count read numbers.

Abundance Calculation and Function
Annotation
For 16S sequencing, the qualified OTU data were used to calculate
α-diversity metrics using one-way analysis of variance (ANOVA)
with the Duncan post hoc test using the vegan package v2.5.3.
Bray-Curtis dissimilarity was employed as β-diversity measure
and principal coordinate analysis (PCoA) plot was generated with
the ape package. The different sites were statistically compared
using analysis of similarity (ANOSIM) with 10,000 permutations.
The p-values were adjusted by the false discovery rate (FDR)
using the Benjamini-Hochberg method with the p.adjust function
in R. To construct the sample classifier in each group, the random
forest model was applied using the randomforest package v4.6.12
and pROC package v2.0.1 in R project.

The final gene catalog of shotgun metagenome analyses was
obtained from non-redundant genes with a gene read count > 2.
Clean reads were used to generate taxonomic profile using
Kaiju v1.6.3 (Menzel et al., 2016). Bray-Curtis distance matrix
based on gene, taxon and function abundance was calculated to
evaluate the microbial community differences between samples

(groups). The Welch’s t-test, Wilcoxon rank test, Adonis (also
called PERMANOVA), and the Anosim test were conducted
using R project Vegan package. Differential analyses of genes and
taxa were performed using metastats and LEfSe software v1.0
(Segata et al., 2011) based on the mean value of all annotated
genes. To predict gene function, all unique ORFs were annotated
using DIAMOND v0.9.24 (Buchfink et al., 2015) based on
the KEGG (release 94.0), CAZy, and eggNOG 5.0 databases.
And Welch’s t-test and ANOVA were used to investigate the
differences in gut functions including KEGG pathways, CAZy,
and eggNOG activities.

To reveal the consistency of the results of the shotgun
metagenomic and 16S rRNA gene sequencing, LEfSe software was
also used to construct a microbiota classification phylogenetic
tree based on the species with an average species abundance
greater than 1%.

Co-occurrence Network Construction
The Co-occurrence network of all annotated genes, depicting
the differentially enriched metagenomic microbial taxa and
functional capacities with all phenotypes, was constructed
according to their Pearson’s correlation coefficient in all samples.
Edges with Pearson’s correlation coefficient > 0.8 or < -0.8 and
P < 0.05 were used to construct the network. The resulting
network was visualized with gephi-0.9.2 software.

Statistical Analyses
The mean ± standard deviation (SD) was calculated for all data.
The data on host carcass phenotypes and fatty acid composition
were examined for normality and homogeneity of variance.
Normally distributed data were analyzed using ANOVA. Duncan
post hoc test was used to analyze differences among groups
when significance (P < 0.05) was detected using SPSS 23 (IBM,
Armonk, NY, United States). For data that were not normally
distributed, Kruskal-Wallis H and post hoc tests and Mann-
Whitney tests were conducted in SPSS 23. All values with P < 0.05
were considered statistically significant.

RESULTS

Characterization of Host Phenotypes
All phenotypic characteristics, including carcass traits (BW, CW,
and EW), AFW and AFP and pectoralis lipid composition
(IMF, TG, CHO, and PL), fit the normal distribution in this
study (Figure 1A and Supplementary Figure 1). Considerable
variations were observed regarding both AFW and AFP in
the Tiannong Partridge Chickens (Supplementary Table 1).
Specifically, the average AFW of Tiannong Partridge Chickens
was 43.59 g, and the top 10% of chickens had an average
AFW about quadruple over the LL group (77.52 g vs. 19.15 g).
Meanwhile, the average AFP was 4.23%, and the top 10% of
chickens had an average AFP 3.5 times over the LL group
(7.03% vs. 1.98%). The two AFD-related traits, namely, AFW
and AFP, exhibited a high correlation (r = 0.94, P = 0.000)
(Figure 1A). AFW was positively correlated with BW, CW, and
EW (r = 0.47−0.53, P < 0.01), and the correlations between AFP
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FIGURE 1 | Characterization of host phenotypes. (A) The statistic distribution of and correlations among each phenotype, while (B) shows the principal components
of the carcass traits, the abdominal fat deposition, and the pectoralis lipid composition. BW, body weight; CW, carcass weight; EW, eviscerated weight; AFW,
abdominal fat weight; AFP, abdominal fat percentage; IMF, intramuscular fat; TG, triglyceride; PL, phospholipid; CHO, cholesterol. The value in the upper triangular
matrix represents the correlation coefficient; two * represents P < 0.01, and three * represents P < 0.001.

and these traits were much weaker but also significant (r = 0.16-
0.26, P < 0.05) (Figure 1A). The pectoralis lipid composition
had a weak association with AFD (Supplementary Figure 1).
Furthermore, the variable principal component analyses on these
phenotypes further suggested that AFD-related traits (AFW and
AFP) were relatively independent of carcass traits and pectoralis
lipid composition (Figure 1B).

Correlation Between Gut Microbial
Composition and Abdominal Fat
Deposition
To analyze the influence of intestinal flora on AFD, 76 chickens
with different amounts of abdominal fat were selected for
subsequent 16S rRNA gene studies. The 16S rRNA gene
sequencing analysis produced a total of 7,745,067 quality-filtered
effective tags from these samples, and 2,023 OTUs were then
identified. The average Good’s-Coverage index for each sample
was 0.993 (0.991–0.994), implying sufficient sequencing depth
(Supplementary Figure 2).

All sequenced samples were divided into two groups based
on the AFP, namely, HH and LL chickens. The AFD, including
AFW and AFP, were significantly divergent between LL and
HH chickens (both P = 0.000), and the AFD in the HH group
was about twice that in the LL group (Supplementary Table 2).
The carcass traits, such as BW, CW, and EW, were significantly
different between the HH and LL groups (P < 0.05), but there was
only a 1.05-times change for HH to LL chickens (Supplementary
Table 2). None of the pectoralis lipid contents were significantly
different between the two groups (Supplementary Table 2).

The Spearman’s correlation coefficient of gut microbiota
diversity and AFP suggested that the richness and diversity
of the gut microbiota decreased with an increase in AFD
(Figure 2A). The difference in microbial flora structure
between the LL and HH groups further confirmed the close
relationship between the gut microbiome and AFD of Tiannong
Partridge Chickens. The alpha diversity suggested that AFD
had significant effects on the gut microbiome. Specifically, the
Shannon and Simpson indices of the two groups were not
significantly different (Supplementary Figures 3A, 2B), but
the Chao1 (Figure 2B), sobs (Supplementary Figure 2B), and
ACE (Supplementary Figure 2C) indices of the HH group
were all lower than those of the LL group (all P = 0.000).
Furthermore, beta diversity analyses revealed different gut
microbial communities among chickens with different levels
of AFD. Even though no distinct separation was observed
between the leaner and fatter chickens using PCoA (Figure 2C),
the Anosim and Adonis analyses (Figures 2D,E) demonstrated
greater inter-group diversity than inner-group diversity between
the LL and HH groups (P = 0.001), implying a different gut
microbial composition between Tiannong Partridge Chickens
with different levels of AFD.

Gut Microbes Associated With
Abdominal Fat Deposition
A total of 1577 and 1515 OTUs were identified in the LL and HH
groups, respectively, and 1375 of them were shared between the
two groups. Subsequently, the OTUs were classified into 26 phyla,
64 classes, 97 orders, 164 families, and 332 genera.
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FIGURE 2 | Gut microbial diversity and community with different abdominal fat deposition. (A) The Spearman’s correlation coefficient of the Chao1 index and the AFP
of Tiannong Partridge Chickens, each dot represents on samples. (B) The comparison of Chao1 index between the high and low AFP chickens. (C) Represents the
result of PCoA analysis based on OTUs of chickens with variant AF. (D,E) The results of Anosim and Adonis analyses. HH, high AFP chickens; LL, low AFP chickens.

To identify the microbes associated with the AFD in Tiannong
Partridge chickens, the relative abundance of microbes was
compared between LL and HH chickens. At phylum level,
Bacteroidetes and Firmicutes dominated the gut microbial
communities in both LL and HH chickens (Supplementary
Figure 4A). However, there was no significant difference in
the Bacteroidetes/Firmicutes ratio between the two groups
(Figure 3A). Although some of the top 10 most abundant phyla

had relatively great variation between the HH and LL groups
(Supplementary Figure 4B), only Actinobacteria was more
abundant in the HH chickens than in the LL chickens (P < 0.05)
(Figure 3B). The relative abundances and the comparison of
the top 10 abundant genera between the HH and LL groups
were shown in Supplementary Figures 4C,D. Furthermore, the
multi-test analysis revealed a total of 13 differentially enriched
genera between the two groups (Figure 3C). Consistent with
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FIGURE 3 | Correlation between gut microbes and abdominal fat deposition. (A) The Bacteroidetes/Firmicutes ratio between the HH and LL chickens. (B,C) The
differentially enriched microbial phylum and genera, respectively. (D) Represents the AUC of genus microbiota based on the AFP classification. (E) The Spearman’s
correlation network between genus microbiota and host phenotypes, the full line represents significant positive correlation (P < 0.05) while the dotted line represents
significant negative correlation (P < 0.05). HH, high AFP chickens; LL, low AFP chickens. BW, body weight; CW, carcass weight; EW, eviscerated weight; AFW,
abdominal fat weight; AFP, abdominal fat percentage; IMF, intramuscular fat; TG, triglyceride; PL, phospholipid; CHO, cholesterol.

the results of the phylum comparison, the genera, Olsenella
and Slackia, belonging to the phylum Actinobacteria were
more enriched in HH chickens. The genus, Sphaerochaeta,
belonging to phylum Spirochaetae, was the most significantly
enriched in the LL chickens. The remaining ten differentially
enriched genera were all classified as phylum Firmicutes, of
which genera Anaerofilum, Ruminiclostridium 5, Family XIII
AD3011 group, and Phascolarctobacterium were more abundant
in the HH group, while Lachnospiraceae XPB1014 group,
Lachnospiraceae AC2044 group, Flavonifractor, Candidatus
Soleaferrea, Erysipelatoclostridium, and ruminantium group were
more abundant in the LL group.

Furthermore, a random forest classifier based on the
microbial genus was constructed to evaluate the diagnostic
value of the AFP-associated microbiome. As a result, 14
genera, containing all 13 differentially enriched genera,

were complied with an area under the receiver operating
curve (AUC) of 79.2% (Figure 3D), suggesting that the gut
microbiota genera were distinguished between the HH and LL
chickens. Among them, the ten most indicative genera were
Sphaerochaeta, Anaerofilum, Erysipelatoclostridium, Family XIII
AD3011 group, Ruminiclostridium 5, Flavonifractor, Slackia,
Candidatus Soleaferrea, Olsenella, and Phascolarctobacterium
(Supplementary Figure 5). Figure 3E also illustrated the
multiple positive actions of the genera Ruminiclostridium
5 and the negative actions of the genera Flavonifractor on
chicken body growth and AFD. Meanwhile, the genera
Family XIII AD3011 group, Ruminiclostridium 5, Slackia,
Fusobacterium, and Phascolarctobacterium might positively
contribute to the AFD of Tiannong Partridge chickens.
Network analysis revealed that the genus Olsenella was
negatively associated with chicken pectoralis TG content
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and positively associated with BW and CW. The genera
Candidatus Soleaferrea was also negatively associated with
chicken BW. However, it also illustrated the multiple
positive actions of the genera Ruminiclostridium 5 and the
negative actions of the genera Flavonifractor on chicken body
growth and AFD. Additionally, the direct correlation analysis
between the 13 differentially enriched genera and the host
phenotype was completely consistent with the above results
(Supplementary Figure 6).

Shotgun Metagenomic Species
Associated With Extreme Abdominal Fat
Deposition Traits
To delve into the specific gut species associated with abdominal
fat deposition, shotgun metagenomic sequencing analysis was
performed on a subset of eight samples of LL and HH. These
samples represent 4.58- and 3.47-times diversity between LL and
HH for AFW and AFP, respectively (Supplementary Table 3).
A total of 30,099,632-46,034,303 clean reads were generated
for each sample. In total, 2,729,686 genes were annotated for
these samples. Subsequently, 39 phyla, 132 classes, 332 orders,
787 families, 1,772 genera, and 5,542 species were obtained
and compared between the LL and HH chickens. The co-
occurrence microbiota classification phylogenetic tree suggested
good consistency of the shotgun metagenomic and 16S rRNA
gene sequencing results (Supplementary Figure 7).

The greater inter-group diversity than the inner-group
diversity (P < 0.05) of the shotgun metagenomic microbiome
demonstrated distinct shotgun metagenomic species
composition between chickens with extreme AFD traits
(Supplementary Figure 8). LEfSe analysis of the taxonomic
profiling based on the clean reads was first performed to identify
the different shotgun metagenomic species between the high
and low AFP chickens. The results clearly showed that the
phylum Bacteroidetes, genus Bacteroides, Parabacteroides, and
Olsenella, species Bacteroides salanitronis (B. salanitronis),
Bacteroides fragilis (B. fragilis), and Parabacteroides distasonis
(P. distasonis) were differentially enriched in the LL versus HH
groups (Figure 4A). Specifically, the percentage of Bacteroidetes
was higher in the lean (19.61%) than in the fat chickens (16.18%).
The subordinate genera Bacteroides and Parabacteroides were
more enriched in the lean (12.10% and 0.80%) than in the
fat chickens (9.29% and 0.65%, respectively). Accordingly,
B. salanitronis and B. fragilis as well as P. distasonis, were also
more abundant in the lean (4.11%, 3.63%, and 0.80%) than in the
fat chickens (2.79%, 2.98%, and 0.65%), respectively. Conversely,
the percentage of genus Olsenella was higher in the fat (0.15%)
than in the lean line (0.06%).

In addition, taxonomic differences at genus and species levels
were identified based on the results of gene annotation between
the HH and LL groups. As a result, phylum Bacteroidetes
was notably more enriched in the LL group, while phylum
Euryarchaeota was more enriched in the HH group. Nine
genera were found to be significantly different between the
HH and LL chickens, and all of them were more abundant
in the HH group (Figure 4B). In order of significance,

the different enriched genera included Ruminococcus,
Methanobrevibacter, Blautia, Clostridia noname, Anaerotruncus,
Butyrivibrio, Ruminococcaceae noname, Faecalibacterium,
and Lachnospiraceae noname. In addition, a total of eight
differentially enriched species were identified between the
HH and LL groups (Figure 4C). Among them, B. fragilis and
B. sp. An279 were more abundant in the LL chickens, whereas
the remaining six species, Firmicutes bacterium CAG:110,
Methanobrevibacter woesei (M. woesei), Olsenella mediterranea
(O. mediterranea), Clostridia bacterium (C. bacterium),
Ruminococcaceae bacterium (R. bacterium), and uncultured
Clostridium sp. were more abundant in the HH chickens.

Alterations of Microbial Function
Associating to Abdominal Fat Deposition
To illustrate the functional alterations within the gut microbiome
between high and low AFP chickens, the shotgun metagenomic
genes were annotated to KO modules and KEGG pathways.
Most genes in both LL and HH groups were annotated to
carbohydrate metabolism, followed by amino acid metabolism
(Supplementary Figure 9). In terms of KEGG pathways,
Anosim and Adonis analyses demonstrated greater inter-
group than inner-group diversity between the LL and
HH groups (P = 0.03). NMDS analysis suggested distinct
microbial functions associated with different AFDs of
Tiannong Partridge Chickens (Supplementary Figure 10).
In detail, 19 pathways were annotated by the differentially
expressed KO modules between the LL and HH groups, and
all these pathways belonged to the functional classification
of metabolism (Table 1). Among them, seven pathways
were upregulated in the HH chickens, including “metabolic
pathways,” “degradation of aromatic compounds,” “sphingolipid
metabolism,” “galactose metabolism,” “methane metabolism,”
“oxidative phosphorylation,” and “phenylalanine, tyrosine,
and tryptophan biosynthesis.” Among them, six pathways
belonged to the functional classes of “global and overview
maps,” “lipid metabolism,” “carbohydrate metabolism,” and
“energy metabolism.” Six pathways, including “photosynthesis,”
“glycine, serine, and threonine metabolism,” “cyanoamino
acid metabolism,” “riboflavin metabolism,” “monobactam
biosynthesis,” and “dioxin degradation” were downregulated
in the HH chickens. These pathways are associated with
the metabolism of amino acids, cofactors, secondary
metabolites, and xenobiotics. In addition, six pathways,
mainly associated with the metabolism of glycan, amino acids,
cofactors, and vitamins, were annotated by both overexpressed
and downregulated genes, including “lipopolysaccharide
biosynthesis,” “other glycan degradation,” “phosphonate
and phosphinate metabolism,” “biotin metabolism,” “folate
biosynthesis,” and “ubiquinone and other terpenoid-quinone
biosynthesis.”

Furthermore, the shotgun metagenomic genes were annotated
to the eggNOG and CAZy databases. The Anosim and Adonis
analyses suggested different microbial functions in both eggNOG
(P = 0.04) and CAZy (P = 0.03) for the gut microbiota in
LL and HH chickens, which were further evidenced by the
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FIGURE 4 | The taxonomic differences between high and low AFP chickens. (A) Differentially enriched gut microorganism identified by the LEfSe analysis of the
taxonomic profiling based on the clean reads. (B) The differentially enriched gut microorganism genus based on gene annotation. (C) The differentially enriched gut
microorganism species based on gene annotation. HH, high AFP chickens; LL, low AFP chickens.
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TABLE 1 | The regulation of microbial function in the high AFP chickens comparing to the low AFP chickens.

Pathway ID KEGG pathway class Pathway Down expression genes Up expression genes

ko01100 Global and overview maps Metabolic pathways – 307

ko01220 Global and overview maps Degradation of aromatic compounds – 5

ko00600 Lipid metabolism Sphingolipid metabolism – 10

ko00052 Carbohydrate metabolism Galactose metabolism – 23

ko00680 Energy metabolism Methane metabolism – 24

ko00190 Energy metabolism Oxidative phosphorylation – 20

ko00400 Amino acid metabolism Phenylalanine, tyrosine and tryptophan biosynthesis – 18

ko00195 Energy metabolism Photosynthesis 1 –

ko00260 Amino acid metabolism Glycine, serine and threonine metabolism 12 –

ko00460 Metabolism of other amino acids Cyanoamino acid metabolism 6 –

ko00740 Metabolism of cofactors and vitamins Riboflavin metabolism 4 –

ko00261 Biosynthesis of other secondary
metabolites

Monobactam biosynthesis 5 –

ko00621 Xenobiotics biodegradation and
metabolism

Dioxin degradation 1 –

ko00540 Glycan biosynthesis and metabolism Lipopolysaccharide biosynthesis 6 8

ko00511 Glycan biosynthesis and metabolism Other glycan degradation 8 19

ko00440 Metabolism of other amino acids Phosphonate and phosphinate metabolism 3 4

ko00780 Metabolism of cofactors and vitamins Biotin metabolism 6 10

ko00790 Metabolism of cofactors and vitamins Folate biosynthesis 7 11

ko00130 Metabolism of cofactors and vitamins Ubiquinone and other terpenoid-quinone biosynthesis 4 5

NMDS analyses (Supplementary Figures 11, 12). Specifically,
200 orthologous groups (OG) were enriched, and 19 of
them were differentially expressed between the HH and LL
chickens (Supplementary Table 4). Among them, only three
OGs, representing cell wall/membrane/envelope biogenesis and
transcription, were high in HH chickens. The remaining OGs
were more highly expressed in the LL chickens, suggesting
more active microbial functions of carbohydrate transport and
metabolism, energy production and conversion, and inorganic
ion transport and metabolism in the LL chickens. However,
326 CAZy enzymes belonging to 6 CAZy activities were
enriched. Most shotgun metagenomic genes of Tiannong
Partridge Chickens were enriched in glycoside hydrolases
(GH), glycosyltransferases (GT), and carbohydrate-binding
modules (CBM) (Supplementary Figure 13). The HH and
LL chickens had 25 different CAZy enzymes (Supplementary
Table 5), of which 9 enzymes had high expression in HH
group, while 16 enzymes were highly expressed in the LL
groups. Four carbohydrate-binding modules (CBM), including
family 50 (CBM50), 13 (CBM13), 34 (CBM34), and 37
(CBM37), were all high in the HH chickens. Glycoside
hydrolase family 42 (GH42) and 49 (GH49), as well as
glycosyltransferase family 39 (GT39), 66 (GT66), and 7 (GT7),
were also highly expressed in the HH chickens. Meanwhile,
the two polysaccharide lyases (PL0 and PL33) and the
two carbohydrate esterases (CE2 and CE6) showed high
expression in the LL chickens. In addition, a total of nine
glycoside hydrolases (GH10, GH109, GH11, GH146, GH16,
GH29, GH30, GH35, and GH67) and three glycosyltransferases
(GT11, GT3, and GT30) were also highly expressed in
the LL chickens.

Co-occurrence Network of Microbial
Taxa and Function Capacities With
Phenotypic Traits
To understand the contribution of the gut microbiota in
chicken fat accumulation, a co-occurrence network representing
microbial interactions of differentiated microbial taxa function
capacities with phenotypic traits was constructed (Figure 5 and
Supplementary Table 6). Traits of AFW and AFP and carcass
traits (BW, CW, and EW) had strong correlation with gut
microbial community (Pearson’s correlation coefficient > 0.8
or < −0.8, and P < 0.05) while the pectoralis lipid
composition related traits (IMF, TG, CHO, and PL) were
weakly correlated to the gut microbiome. Nine microbial
taxa including three genera (Methanobrevibacter, Ruminococcus,
and Blautia) and six species (M. woesei, O. mediterranea,
B. fragilis, B. sp. An279, Firmicutes bacterium CAG:110, and
uncultured Clostridium sp.) based on differentially expressed
genes between the lean and fat chickens were enriched to
several lipid and carbohydrate metabolism pathways. The
most enriched pathways included “metabolism pathways,”
“methane metabolism,” “lipopolysaccharide biosynthesis,” “other
glycan degradatin,” “phenylalanine, tyrosine and tryptophan
biosynthesis,” “oxidative phosphorylation,” “Glycine, serine and
threonine metabolism,” and “galactose metabolism”. Notably,
genera Methanobrevibacter and its subordinate M. woesei and
O. mediterranea were shown participating to pathways including
“metabolism pathways,” “methane metabolism,” and “glycan
degradatin” and were strongly correlated to all AFD and carcass
traits. Firmicutes bacterium CAG:110 had close relationship with
both AFW and AFP. B. fragilis and B. sp. An279 only had close
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FIGURE 5 | Co-occurrence network of microbial taxa and function capacities with chicken phenotypic traits. The taxa (Red circles) and pathways (green circles)
were annotated based on the (yellow circles). The yellow circles represent the differentially expressed genes, red circles represent the differentially enriched taxa,
green circles in different size represent the enriched pathways with different degrees of enrichment, while blue circles represent the related chicken phenotypic traits.
The gray lines represent edges with Pearson’s correlation coefficient > 0.8 or < −0.8 and P < 0.05. BW, body weight; CW, carcass weight; EW, eviscerated weight;
AFW, abdominal fat weight; AFP, abdominal fat percentage.

relationship with AFW but not AFP, while Blautia had strong
correlation just with chicken carcass traits.

DISCUSSION

As the commercial line of the Chinese local chicken breed
Qingyuan Partridge Chickens and Guangxi Partridge Chickens,
Tiannong Partridge chickens completely retains the high quality
of meat and flavor and has been selected for automatic sexing,
early maturity, and better growth performance. By determining
the AFD, carcass traits, and pectoralis lipid compositions of
a random flock, this study revealed the differences in AFD
among Tiannong Partridge Chickens. Like those in previous
reports (Jiang et al., 2017; Abdalla et al., 2018), our results
show that chickens genetically selected for earlier maturation
and faster growth are characterized by increased AFD. The
great variation and normal distribution of AFW and AFP in
Tiannong Partridge Chickens suggest that this population is
representative for the studying the contribution of gut microbes
to AFD in the chicken industry. Meanwhile, the inconsistency
between AFD and carcass traits also indicates that it is possible
to manipulate the deposition of chicken abdominal fat while
maintaining carcass traits (Jiang et al., 2017).

With the global investigation on gut microbial abundance
related to AFD, our dataset shows that the richness and diversity

of gut microbiota decrease along with an increase in chicken
AFD, and that the gut microbial community is greatly affected
by different levels of AFD. These results are in line with those of
previous studies in humans (Li R. et al., 2020), mice (Ellekilde
et al., 2014; Kong et al., 2019), and pigs (Qi et al., 2019).
In this study, the comparison of the abundance of microbial
taxa reveals that several microbes could be markers of the
various levels of AFD. Although the Bacteroidetes/Firmicutes
ratio in the HH and LL chickens is not significantly different
based on the 16S analysis, a reduction in the abundance of
Bacteroidetes and a proportional increase in Firmicutes are
observed in HH chickens. Shotgun metagenomic analysis of
the extremely high and low AFP chickens also shows less
Bacteroidetes abundance in the fatter chickens. As two of the
most abundant and ubiquitous chicken gut microbiota taxa,
Firmicutes and Bacteroidetes have been widely reported to have
varying numbers of relative abundances in fat and lean mice,
and obesity has been correlated with a shift in the abundance
of both Bacteroidetes and Firmicutes (Ley et al., 2005, 2006).
Moreover, previous studies have shown that a high-fat diet
changes the relative composition of the gut microbiota by
increasing Firmicutes and decreasing Bacteroidetes at the phylum
levels in both humans and mice (Serino et al., 2012; David et al.,
2014; Zheng et al., 2017).

Different levels of selection-acquired obesity not only alters
the composition of the gut microbiota, but also influences their
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functional performance by enriching their relative abundance
in microbial taxa. One mechanism through which the gut
microbiota contribute to fat deposition is by providing microbial
metabolic pathways that are not encoded by the host genome,
and thus, regulating the host nutritional metabolism, including
nutrient integration and energy capture (Hou et al., 2016;
Schmidt et al., 2018).

Our results show that the Bacteroidetes phylum is closely
associated with chicken AFD and its subordinate genera
Bacteroides and Parabacteroides are more enriched in the lean
chickens. Accordingly, the species B. salanitronis, B. fragilis, and
P. distasonis, are less abundant in fat chickens. A previous study
has revealed that Bacteroidetes are involved in many metabolic
activities, including fermentation of carbohydrates, utilization
of nitrogenous substances, and biotransformation of bile acids
and steroids (Lan et al., 2006). In this study, the microbiota of
LL chickens had high CAZy enzyme activities in carbohydrate
esterase, polysaccharide lyase, and glycoside hydrolase for
glucans and galactans as well as glycosyltransferase for nucleotide
monophosphosugar. Furthermore, orthologous groups related
to carbohydrate and inorganic ion transport and metabolism,
as well as high energy production and conversion, show high
abundance in the LL chicken gut microbiome. Moreover,
pathways associated with the metabolism of amino acids,
cofactors, secondary metabolites, and xenobiotics are found to
be more enriched in LL chickens. These functional alternations
are closely related to the Bacteroidetes phylum, which is further
supported by correlation analyses of host phenotypes to different
gut microorganisms. As it has been reported (Gronow et al.,
2011), B. salanitronis contributes to the breakdown of food,
produces nutrients and energy needed by the chicken, and
can ferment glucose, sucrose, arabinose, cellobiose, lactose,
xylose, and raffinose. However, it does not utilize trehalose,
glycerol, mannitol, sorbitol, or melezitose (Gronow et al., 2011).
On the other hand, the presence of phosphoenolpyruvate-
oxaloacetate catalytic enzymes gene in B. fragilis genome
may indicate the potential for efficient propionate synthesis
(Xu et al., 2020). In the long-term evolutionary process,
B. fragilis colonizes the host intestine, participates in the
fermentation of glucose, fructose, galactose, lactose, sucrose,
dextrin, etc., and plays an important role, especially in obesity,
diabetes, and immunodeficiency diseases (Zhao et al., 2019;
Donaldson et al., 2020). Meanwhile, P. distasonis has also been
reported modulating host metabolism and alleviating obesity
and metabolic dysfunctions via the production of succinate and
secondary bile acids (Wang et al., 2019).

On the other hand, the subordinate genera of phylum
Firmicutes, Phascolarctobacterium, Family XIII AD3011 group,
and Ruminiclostridium 5, are found to be more abundant
in the high AFP chickens using 16S analyses. Moreover,
eight of the nine differentially enriched genera between the
extremely high and low AFP chickens, including Anaerotruncus,
Blautia, Butyrivibrio, Clostridia noname, Faecalibacterium,
Lachnospiraceae noname, Ruminococcaceae noname, and
Ruminococcus, belong to the phylum Firmicutes and all are
more abundant in the HH chickens. Phascolarctobacterium
has been suggested associating with host metabolic state and

mood by producing short-chain fatty acids (SCFA) such as
acetate and propionate (Wu et al., 2017). Meanwhile, taxa of two
predominantly butyrate-producing genus, Faecalibacterium and
Ruminococcus, are also reported significantly more prevalent
in obese individuals than in non-obese individuals (Maniar
et al., 2019). As shown in the cecum and colon of rats (Shi et al.,
2020), the increase in the Family XIII AD3011 group may be
involved in the production of skatole and indole. Moreover,
the families Lachnospiraceae, Clostridia, and Ruminococcaceae,
and genera Ruminiclostridium, Blautia, and Butyrivibrio, have
been suggested as high fat diet-dependent gut taxa and are
likely associated with lipid metabolism (Lin et al., 2016; Zietak
et al., 2016; Kong et al., 2019; Hou et al., 2020). Specifically,
the butyrate producing Lachnospiraceae and Ruminococcaceae
are suggested to reduce lipopolysaccharide biosynthesis in mice
(Kang et al., 2017). Therefore, it is reasonable for the both
up- and down-regulation of lipopolysaccharide biosynthesis
in the HH chickens, by considering the more abundant of
Lachnospiraceae noname and less abundant of Lachnospiraceae
XPB1014 group and Lachnospiraceae AC2044 group in the high
AFP chickens. And according to the C2–C18 fatty acid tests,
Clostridium perfringens has the highest activity toward lauric acid
(Kang et al., 2017). Owing to the widespread existence of these
taxa, the microbiota in the HH chickens have more activities of
carbohydrate-binding modules and high functional expression
of lipids, carbohydrates, and energy metabolism. This is in line
with the results that the increase in circulating lipoprotein lipase
activity caused by gut microbiota results, in turn, in a significant
increase in body fat deposition in the host.

Moreover, a high abundance of phylum Actinobacteria and
its subordinate genera, Olsenella and Slackia, are observed in
the HH chickens. A high abundance of Olsenella and Slackia
has been observed in mice fed a high-fat diet (Gohir et al., 2019;
Nagpal et al., 2019), suggesting their strong correlation with
fat and energy metabolism. Olsenella has been suggested to
positively correlate to methane metabolism and contribute to
the metabolic pathways of glycolysis/gluconeogenesis, carbon
fixation in photosynthetic organisms, pentose phosphate
pathway, and ascorbate and aldarate metabolism (Zhang Y.
et al., 2020). This may provide a potential mechanism for
the positive correlation between the abundance of genus
Olsenella to chicken BW, CW, and TG. In addition, phylum
Euryarchaeota and its subordinate genus Methanobrevibacter
and species M. woesei were also more abundant in the
high AFP chickens. Methanobrevibacter is a common and
important methanogenic taxon primarily inhabiting the
cecum of chickens. Chickens with fewer Methanobrevibacter
have significantly lower abdominal fat content than those
with a higher abundance of Methanobrevibacter (35.51 vs.
55.59 g, respectively) (Wen et al., 2019). Apart from bacteria,
the dominant gut species, Methanobrevibacter smithii, has
been found extensively colonizing the small bowel as well
as colon, and affects host calorie harvest and adiposity
through the digestion of dietary polysaccharides (Hansen
et al., 2011; Mathur et al., 2013). This subsequently improves
the efficiency of microbial fermentation and enhances host
energy capture. In addition, Methanobrevibacter has been
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suggested to improve acetate and butyrate production and
eliminate hydrogen and formate, which are vital carbon
sources for colon epithelial cells (Samuel et al., 2007; Hansen
et al., 2011). The increase in lipoprotein lipase activity in
the villi of epithelia caused by gut microbiota leads to
increased triglyceride uptake and peripheral fat storage. In
this study, the methanogenic taxa, genus Methanobrevibacter
and species M. woesei, were found to participate in the
regulation of gut metabolism including methane metabolism,
photosynthesis-antenna proteins, and various types of N-glycan
biosynthesis. Our results also suggest a limited association
of Methanobrevibacter abundance with other gut microbiota
or any carcass traits, further supporting the feasibility of
reducing fat deposition by inhibiting the caeca-associated genus,
Methanobrevibacter, without affecting the proportion of carcass
meat (Wen et al., 2019).

By revealing the strong correlations between the identified
bacterial groups and the phenotypes related to chicken
abdominal fat deposition, the present study demonstrates that
gut microbiota is an important factor involving AFD in
conventional chicken breeds. Moreover, some of the observed
differential taxa and potential genes/metabolic pathways are
suggested as possible biomarkers associated with chicken AFD.
However, we acknowledge that the current dataset lacks evidence
supporting the cause-effect relationship of specific taxon to
AFD, since it does not provide what microbes are doing
or the metabolites that they produce. Study using chickens
involving administration of the candidate microbes are needed
to further validate the contribution of these microbiota to
chicken abdominal fat deposition. Furthermore, studies on the
real expression of the suggested genes and metabolic pathways
are expected to investigate the mechanistic and functional
connection with AFD.

CONCLUSION

In conclusion, alterations in the gut microbiome and its
association with metabolism capacity have preliminarily
elucidated the contribution of gut microbiota to chicken
abdominal fat deposition. The richness and diversity of the gut
microbiota decrease as the accumulation of chicken abdominal
fat increases. The decrease of Bacteroidetes and the increase
of Firmicutes are correlated with the accumulation of chicken
abdominal fat deposition. The Bacteroidetes phylum, including
Bacteroides, Parabacteroides, and the species, B. salanitronis,
B. fragilis, and P. distasonis, were correlated to alleviate obesity by
producing secondary metabolites. Several genera of Firmicutes
phylum with circulating lipoprotein lipase activity were linked
to the accumulation of chicken body fat. Moreover, the genera,
Olsenella and Slackia, might positively contribute to fat and
energy metabolism, whereas the genus, Methanobrevibacter,
was possible to enhance energy capture, and associated to
accumulate chicken abdominal fat deposition. These findings
provide insights into the roles of the gut microbiota in complex
traits and contribute to the development of effective therapies for
the reduction of chicken fat accumulation.
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Supplementary Figure 1 | The statistic distribution of the abdominal fat
deposition and the pectoralis lipid composition and their correlations. BW, body
weight; CW, carcass weight; EW, eviscerated weight; AFW, abdominal fat weight;
AFP, abdominal fat percentage; IMF, intramuscular fat; TG, triglyceride;
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PL, phospholipid; CHO, cholesterol. The value in the upper triangular matrix
represents the correlation coefficient; one * represents P < 0.05, two * represents
P < 0.01 and three * represents P < 0.001.

Supplementary Figure 2 | Good’s-Coverage index for all samples.

Supplementary Figure 3 | Alpha diversity comparison between HH and LL. (A)
Shannon index. (B) Simpson index. (C) Sobs index. (D) ACE index. HH, high AFP
chickens; LL, low AFP chickens.

Supplementary Figure 4 | The top 10 abundant phyla and genera between HH
and LL groups. (A,B) The microbial composition and comparison of the top 10
abundant phyla, respectively. (C,D) show the microbial composition and
comparison of the top 10 abundant genera, respectively.

Supplementary Figure 5 | Random forest analyses on the of LL
and HH chickens.

Supplementary Figure 6 | Correlation analyses between the differentially
enriched genera and the host phenotype. BW, body weight; CW, carcass weight;
EW, eviscerated weight; AFW, abdominal fat weight; AFP, abdominal fat
percentage; IMF, intramuscular fat; TG, triglyceride; PL, phospholipid; CHO,
cholesterol. The background color represents the correlation coefficient; one *
represents P < 0.05 and two * represents P < 0.01.

Supplementary Figure 7 | The consistency of the results of the shotgun
metagenomic and 16S rRNA gene sequencing. The small dots represent species,

and the evolutionary branch tree represents the Kingdom, Phylum, Class, Order,
Family, Genus and Species from the inside to the outside accordingly. The
microorganisms with blue background were identified by both shotgun
metagenomic sequencing and 16S rRNA gene sequencing, the microorganisms
with green background were identified only by shotgun metagenomic sequencing,
while the microorganisms with red background were identified only by 16S rRNA
gene sequencing. The dot size indicates the average abundance of the
microorganisms in all samples.

Supplementary Figure 8 | The Anosim and Adonis comparison on Phylum
composition between chickens with extreme abdominal fat deposition traits. HH,
high AFP chickens; LL, low AFP chickens.

Supplementary Figure 9 | Number of genes annotated to KEGG pathways
for all samples.

Supplementary Figure 10 | NMDS analysis based on KEGG pathways. HH, high
AFP chickens; LL, low AFP chickens.

Supplementary Figure 11 | NMDS analysis for eggNOG.C annotation. HH, high
AFP chickens; LL, low AFP chickens.

Supplementary Figure 12 | NMDS analysis based on CAZy activities. HH, high
AFP chickens; LL, low AFP chickens.

Supplementary Figure 13 | Number of genes annotated to each CAZy activities
for all samples.
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This study aimed to investigate the effects of dietary yeast culture (YC) supplementation
on egg production, egg quality, reproductive performance, immune functions,
antioxidant capacity, and intestinal microbial structure of aged hens. A total of 224 Hy-
Line Brown layers (54 weeks old) were randomly assigned to two dietary treatments.
The control group was fed a basal diet and the YC group was supplemented with
YC at 2.0 g/kg of their diet. Each group had seven replicates with 16 hens each. The
study was conducted over a period of 8 weeks. Results indicated that YC addition
had no significant effect on laying performance. However, it significantly improved egg
quality and hatching rate, enhanced ileum crude fat digestibility, increased the serum
parameters of lysozyme (LZM) and total antioxidation capacity (T-AOC) (P < 0.05), and
reduced serum aspartate aminotransferase (AST) levels (P < 0.05). Using 16S rRNA
analysis, we found that addition of YC significantly altered ileum microbial composition.
Linear discriminant analysis of effect size (LEfSe) showed significant enrichment of
Bacilli and Lactobacilli in the YC group. PICRUSt analysis of the ileal microbiota found
that glutathione metabolism, ubiquinone, and other terpenoid-quinone biosynthesis and
lipopolysaccharide biosynthesis protein pathways were highly enriched in the YC group
compared with the basal diet group. In summary, the addition of YC can improve egg
quality, immune functions, antioxidant capacity, reproduction efficiency, and digestive
absorption by increasing the abundance of Lactobacilli and Bacilli. Furthermore, it also
improves the biosynthesis of lipopolysaccharide proteins, glutathione metabolism, and
the synthesis of ubiquinone and other terpenoid-quinone metabolic pathways.

Keywords: yeast culture, aged layer, performance, egg quality, microbiome, reproduction

INTRODUCTION

With an increase in large-scale layers, especially under conditions of high-density rearing, aged
layers are susceptible to various stress factors that can lead to several problems such as imbalance
in intestinal microbiota, reduction in antioxidant capacity (Liu et al., 2018), increase in immune
inflammatory responses (Attia et al., 2020), and a decline in performance (Bar et al., 1999),
egg quality (Bar et al., 1999), and reproductive efficiency (Liu et al., 2018). These changes
lead to economic losses to the poultry industry. Although antibiotics are often used to control
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and treat pathogenic bacterial infections, such as those caused
by pathogenic Escherichia coli, Clostridium perfringens, and
Salmonella in aged hens, their use has been gradually banned
during the laying period in many countries due to egg safety,
antibiotic resistance, and environmental pollution issues (Wang
et al., 2015). Thus, it is important and interesting to maintain gut
health, enhance antioxidant activity, and delay senescence of aged
hens through nutritional strategies, thus improving their laying
performance and egg quality, and extending their lifespan.

Yeast culture (YC) is a type of microecological product
produced under specific conditions of yeast fermentation. It
contains yeast and various metabolites. YC is rich in proteins,
small peptides, oligosaccharides, vitamins, minerals, enzymes
and a variety of unknown growth factors which can provide
abundant nutrition for gut microbes, stimulate the proliferation
of beneficial bacteria and inhibit the growth of harmful bacteria
(Liu et al., 2019). Several experiments have suggested that YC
has a positive effect on layers and broilers. For example, Zhang
J.C. et al. (2020) reported that YC addition at 3.0 g/kg of
feed improves the performance of aged layers by upregulating
intestinal digestive enzyme activity and intestinal health-related
gene expression. Another study in broilers showed that dietary
YC supplementation at 0.1 g/kg increases daily weight gain and
reduces Campylobacter in the cecum (Froebel et al., 2019). In
addition, yeast bioactive substances can alleviate the negative
effects of Eimeria infection on the growth of poultry, improving
the structure of the jejunum mucosa and increasing the content
of IgA in the egg yolk (Lu et al., 2019). The addition of YC
at 2.5 g/kg activates macrophages, thereby increasing lysozyme
content in the serum of laying hens, thus contributing to their
resistance of pathogenic bacteria and enhancing their immunity
(Gao et al., 2008). Further, studies have also reported that
this immunity induced by YC is passed on to offspring and
reduces symptoms of coccidiosis infection (Lu et al., 2019;
Sun and Kim, 2019). In addition, some previous studies have
shown that YC administration positively affects poultry laying
performance and intestinal health (Zhang J.C. et al., 2020). We
suspect that this is because of improvements within the intestinal
microbiota community, which then increase the proportion
of beneficial microorganisms and inhibit the reproduction
of harmful microorganisms. However, at present, there is
insufficient research on the influence of YC supplementation
on the productive and reproductive performance of aged layers,
and it is unclear whether YC affects these parameters by
regulating the layers’ intestinal microbiome. Therefore, this study
aimed to explore whether YC supplementation can improve
laying performance, egg quality, and reproductive performance
of breeder-aged layers by improving the intestinal microbial
flora structure.

MATERIALS AND METHODS

Birds, Diets, and Management
The present experiment was conducted according to the
principles of the Animal Care and Use Committee of China
Agricultural University. A total of 224 Hy-Line Brown laying

hens (54 weeks old) were randomly assigned to two dietary
treatments: a basal diet (control group, DC) and a basal
diet supplemented with 2.0 g/kg of YC (Tianxiangyuan
Biotechnology, Co., Ltd.), with seven replicates of 16 hens each
(four birds per cage). The YC contained the following: crude
protein, 53.71%; polypeptide, 12.53%; polypeptide/crude protein,
23.33%; amino acid, 1.06%; phosphorus, 7.1 mg/g; organic acid,
8.79%; pH, 4.43; and water, 46.12%. The study was conducted
for an experimental period of 9 weeks (commenced from
55 weeks old), including 1 week for adaptation (54 weeks old)
and 8 weeks for the experiments. The study was performed in
HuaYu Poultry Breeding Co., Ltd (Handan, Hebei). All bird
management was consistent with the recommendations of the
Hy-Line Brown laying hen management guide. The basal diets
(Table 1) comprised maize and soybean, and conformed to the
Nutrients Requirements of Laying Hens of China (NY/T33-
2004).

Performance Parameters
Egg numbers and weights were collected daily. Hens were
weighed individually at the beginning and end of the experiment.
The average egg yield, egg weight, broken egg ratio, abnormal
egg (including double yolk egg, sand-shell egg, soft-shell egg,
and those with obvious malformed-shell eggs) ratio during
the intervals of 55–59 and 59–63 weeks were measured. Feed
consumption was recorded, and the feed conversion ratio (FCR,
feed/egg, g/g) was calculated every 28 days (FCR = feed intake
per replicate/total weight of eggs laid per replicate). Mortality was
documented every day as it appeared.

TABLE 1 | Ingredients and nutrient composition of basal diet.

Ingredients Percent Nutrient levelc Percent

Corn (CP 8.3%) 64.0 ME (MJ/kg) 16.01

Soybean meal (CP 44.0%) 19.8 CP (%) 16.04

Soybean oil 0.7 CF (%) 3.24

Wheat bran 3.0 Methionine (%) 0.24

Limestone 9.5 Lysine (%) 0.70

Calcium hydrogen phosphate 1.00 Calcium (%) 3.49

Sodium chloride 0.30 Total P (%) 0.32

DL-Methionine (98%) 0.10

L-Lysine HCL (78%) 0.07

Vitamin premixa 0.03

Mineral premixb 0.20

Choline chloride (50%) 0.15

Phytase 0.02

NSP enzyme 0.02

Total 100.0

aSupplied per kilogram of diet: vitamin A, 13,500 IU; vitamin D3, 4,500 IU; vitamin
E, 75 IU; vitamin K3, 3.6 mg; vitamin B1, 3.0 mg; vitamin B2, 9.24 mg; vitamin
B6, 6.0 mg; nicotinic acid, 66 mg; pantothenic acid, 16.8 mg; biotin, 0.54 mg;
folic acid, 2.10 mg; vitamin B12, 0.03 mg; vitamin C, 135 mg; choline, 675 mg;
ethoxyquinoline, 15 mg.
bMineral premix provided per kilogram of complete diet: iron, 80 mg; copper,
10 mg; manganese, 100 mg; zinc, 100 mg; iodine, 0.35 mg; selenium, 0.30 mg.
cME, CP, and CF were measured values, and the other nutrients were
calculated values.
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Egg Quality Parameters
At the end of the study, 70 eggs were randomly collected per
group (10 eggs per replicate) to determine egg quality indices.
Egg index and eggshell color were measured using an egg-shaped
index tester and an eggshell color tester (Konicaminolta CM-
2600d), respectively. The color indices L∗, a∗, and b∗ represent
lightness, redness, and yellowness, respectively. Eggshell breaking
strength was measured using a quasi-static compression device
(Robotmation, Japan). Eggshell thickness was measured at three
locations, the lower end, middle end, and upper end, by using
a micrometer screw gauge. Albumen height, Haugh units, and
yolk color were measured using an automatic egg quality analysis
instrument (Robotmation EMT-5200, Japan).

Blood Biochemical Parameters
Blood samples from the wing vein were collected from one
hen per replicate at the end of the experiment. Serum was
collected and stored at −20◦C until analysis. The kits for
analyzing Immunoglobulin G (IgG), Immunoglobulin A (IgA),
Lysozyme (LZM), Malondialdehyde (MDA), Glutathione
(GSH), Glutathione Peroxidase (GSH-PX), total antioxidation
capacity (T-AOC), alanine aminotransferase (ALT), and
aspartate aminotransferase (AST) were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
The standard hemagglutination antigens H5N6, H5N8, and
Newcastle disease (ND) (Qingdao Yebio Bioengineering Co.,
Ltd., China) were used to detect serum antibody titers using the
hemagglutination-inhibition assay.

Ileal Nutrient Digestibility
From days 52 to 56 of the experiment, 0.5% titanium dioxide,
an indigestible marker, was mixed into the feed of each group.
At the end of the study, eight hens were slaughtered by cervical
dislocation, and their ileum samples were collected in a circular
aluminum box. These were immediately held on dry ice and
quickly transferred to a −80◦C refrigerator for storage until
analysis. In the same group, ileum contents of every two hens
were mixed, dried by baking at 105◦C for 24 h, removed, and
then placed in a desiccator for 4 h until the weight was constant.
The contents were then ground (0.5 mm screen) for later use.
The samples were used for analyzing crude protein, crude fat,
and gross energy according to the standard procedures of the
Association of Official Analytical Chemists (2006).

Reproductive Performance
All the hens were inseminated for two consecutive days, on the
51st and 52nd day, of the formal experiment. The semen was
mixed and came from the same group of cocks to ensure that
the semen quality would not affect fertilization and incubation.
Breeding eggs were then collected on the 55th day. The total
number of eggs produced on that day and the number of qualified
breeding eggs were recorded. The breeding eggs were uniformly
transferred to a commercial hatchery for incubation. On the 18th
day of incubation, the eggs were illuminated, and the number of
fertilized eggs in each group was recorded. The same repeating
group of fertilized eggs were then placed in a string bag with a

recording card. On the 21st day of incubation, the total number of
nestlings and healthy nestlings were recorded. Finally, the rates of
hatched eggs and fertilized eggs, the hatching rate, and the healthy
bird rate were calculated.

Intestinal Microbiome
Six birds were randomly selected per treatment at the end of
the experiment. The ileal microbial genomic DNA was extracted
using the QIAamp 96 PowerFecal QIAcube HT kit (5) (Cat. No.
51531) according to the manufacturer’s protocols. Quality and
quantity of DNA were verified using NanoDrop and agarose gel
electrophoresis. The extracted DNA was diluted to a standard
concentration of 1 ng/µL and stored at −20◦C until further
processing. The universal bacterial V3–V4 region of the 16S
rRNA genes was amplified using polymerase chain reaction
(PCR) bar-coded primers 343 F (5′-TACGGRAGGCAGCAG-3′)
and 798 R (5′-AGGGTATCTAATCCT-3′). PCR was performed at
95◦C for 2 min, followed by 30 cycles of 95◦C for 30 s, annealing
at 55◦C for 30 s and at 72◦C for 30 s, and a final extension at
72◦C for 5 min. PCR products were detected using 1% agarose
gel electrophoresis. They were further purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,
United States) and quantified using QuantiFluorTM ONE dsDNA
System (Promega, United States) according to the manufacturers’
protocols. The purified amplicons were pooled in equimolar
concentrations and loaded on an Illumina MiSeq platform
(Oebiotech, Shanghai, China). Sequencing was performed using
a paired-end (2 × 300) configuration. All operations followed
standard protocols. The raw data were uploaded to the National
Center for Biotechnology Information’s Sequence Read Archive
database (SRA accession: PRJNA675783).

Bioinformatics Analyses
Bacterial data were subjected to bioinformatics analyses.
Raw sequencing data, which were in the FASTQ format,
were demultiplexed and quality-filtered using QIIME software
(version 1.8.0) (Caporaso et al., 2010). First, trimmomatic
software (Bolger et al., 2014) was used to pre-process the paired-
end sequences and detect and remove ambiguous bases. Second,
FLASH software (Reyon et al., 2012) was used to assemble
paired-end reads. Reads with Q20 values greater than 75% were
retained, and chimaeras in reads were removed. Removed primer
sequences were subjected to the Vsearch software and clustered
with clean reads (Edgar et al., 2011). A sequence similarity of 97%
was used to classify and generate operational taxonomic units
(OTUs). All representative sequences were annotated and blasted
against the Silva database (version 123) with the RDP classifier
(confidence threshold of 70%) (Wang et al., 2007). Alpha and
beta diversity were calculated using QIIME 1.8 scripts. The Venn
diagram and species accumulation curves were implemented
using the R Vennerable and vegan packages, respectively.

Linear discriminant analysis of effect size (LEfSe) and
indicator analysis were used to identify iconic representative
species. LEfSe analysis1 was performed to identify taxonomic
compositions that were significantly altered by YC treatment.

1http://huttenhower.sph.harvard.edu/galaxy/
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A linear discriminant analysis value higher than 4.0 and alpha
value for the factorial Kruskal–Wallis test with P value below
0.05 were selected for plotting and analysis. Then, we performed
indicator species analysis, and the R indval package was used to
detect potential signature OTUs.

Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt 1.0.0) was used to predict
metagenome functions of each sample based on its 16S rRNA
marker gene sequences (Langille et al., 2013). We selected a
closed reference OTU and used the sampled reads against the
Greengenes 16S rRNA Gene Database (13.5). PICRUSt software
was used to normalize the resulting OTU table and make
metagenomic inferences with the Kyoto Encyclopaedia of Genes
and Genomes (KEGG) Orthologs databases. STAMP software
(Parks et al., 2014) was used to visualize significant differences
in KEGG functional pathways at level 2 or 3 by Welch’s t-test
using the Benjamini–Hochberg false discovery rate method. All
PICRUSt analyses were performed online: https://huttenhower.
sph.harvard.edu/galaxy/root.

Microbial network analysis was used to explore the
relationships among bacteria. The R psych package was
used to calculate the correlation coefficient and P value. Values
of P > 0.05 and r < 0.6 were treated with 0. Then, the Gephi
0.9.2 software was used to visualize the network correlation
diagram for microbes.

Statistics Analysis
All the apparent data were analyzed using the statistical
software SPSS 24.0 (SPSS Inc., Chicago, IL, United States).
Normalized data were analyzed with a normal distribution test
and homogeneity test of variance. Student’s t-test was used
for the indices that passed the test; otherwise, the Wilcoxon
non-parametric test was used. The measurement of the relative
abundance (%) of bacteria within the microbiome at phylum and

genus levels was performed using the non-parametric Kruskal–
Wallis test to validate the significant difference. The results were
expressed as the mean and standard error. Differences at P < 0.05
were considered significant, whereas P values between 0.05 and
0.1 were interpreted as trends.

RESULTS

Laying Performance and Egg Quality
The laying performance analysis data of hens are shown in
Table 2. No significant difference was observed in egg yield, egg
weight, FCR, and body weight among the groups (P > 0.05).
However, the damaged egg ratio at 55–59 weeks of age showed
a significant reduction trend (P = 0.059). The egg quality
index analysis data are shown in Table 3. During the 8-
week experimentation period, the addition of YC significantly
improved egg quality, thus increasing shell strength, yolk color,
egg albumen, height, and the Haugh unit.

Blood Biochemical Parameters
The blood biochemical parameters data are shown in Table 4.
The serum parameters of lysozyme and T-AOC significantly
increased, while AST levels significantly decreased in the YC
group. However, serum antibody responses were not significantly
influenced by YC addition.

Reproductive Performance
The reproductive performance analysis data are shown in Table 5.
Results showed that YC supplementation significantly increased
the hatching rate, showing an evident trend, thus augmenting
the rate of fertilization (P = 0.075) and number of healthy
chicks (P = 0.064). However, YC did not affect the rate of
qualified eggs.

TABLE 2 | Effect of supplemental yeast culture (YC) on performance of laying hens.

Items Egg production,
%

Egg weight, g Damaged egg,
%

Abnormal egg, % FCR, g feed/g
egg

Feed intake,
g/day/hen

Body weight,
kg

Values at 55–59 weeks of age Initial

DC 74.1 62.2 4.9 2.8 2.3 107.2 2.1

YC 78.3 62.2 3.5 3.4 2.3 109.4 2.1

SEM 1.58 0.32 0.39 0.46 0.44 0.99 0.02

P-value 0.2 1 0.06 0.55 0.36 0.29 0.74

Values at 59–63 weeks of age –

DC 76.5 62.6 4.4 5.3 2.4 115.3 –

YC 74.8 62.4 4.8 5.8 2.5 114.5 –

SEM 2 0.23 0.6 0.74 0.06 1.22 –

P-value 0.68 0.76 0.73 0.74 0.7 0.75 –

Values at 55–63 weeks of age Final

DC 75.3 62.4 4.6 4.1 2.4 111.2 2.2

YC 76.6 62.3 4.1 4.5 2.4 111.8 2.1

SEM 1.56 0.26 0.42 0.57 0.04 0.98 0.03

P-value 0.69 0.87 0.56 0.68 0.77 0.75 0.74

FCR, feed conversion ratio.
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TABLE 3 | Effect of supplemental YC on the egg quality of laying hens.

Item DC YC SEM P-value

Egg index 1.3 1.3 0.00 0.80

L 59.2 59.5 0.38 0.67

A 18.7 18.5 0.17 0.46

B 30.1a 29.5b 0.14 0.02

Shell strength, kg/cm2 4.0b 4.3a 0.07 0.02

Egg weight, g 61.1 61.6 0.38 0.57

Yolk color 7.7b 8.1a 0.09 0.01

Egg albumen height, mm 5.8b 6.1a 0.07 0.02

Haugh unit 74.6b 77.0a 0.53 0.02

Eggshell thickness, mm 0.4 0.4 0.00 0.26

a,bDifferent superscripts within a row means significantly different (P < 0.05).

TABLE 4 | Effect of supplemental YC on the serum parameters of laying hens.

Item1 DC YC SEM P-value

Blood biochemical parameters

IgG, g/L 4.4 4.5 0.15 0.93

IgA, g/L 2.2 2.2 0.04 0.65

LZM, µg/mL 4.4b 5.0a 0.14 0.03

MDA, nmol/mL 5.6 5.5 0.13 0.92

GSH, mg/L 3.2 3.1 0.04 0.46

GSH-PX, active unit 619.7 594.9 10.23 0.26

T-AOC, U/mL 6.2b 6.8a 0.15 0.05

ALT, U/L 0.9 0.7 0.15 0.66

AST, U/L 196.3 176.4 5.93 0.09

Antibody titers

H5-6, log2 7.5 6.7 0.26 0.11

H5-8, log2 8.8 8.5 0.19 0.40

ND, log2 11.5 12.0 0.22 0.27

H9, log2 11.5 11.8 0.19 0.40

a,bDifferent superscripts within a row means significantly different (P < 0.05).
1 IgG, Immunoglobulin G; IgA, Immunoglobulin A; LZM, Lysozyme; MDA,
Malondialdehyde; GSH, Glutathione; GSH-PX, Glutathione Peroxidase; T-AOC,
Total Antioxidant Capacity; ALT, Alanine Aminotransferase; AST, Aspartate
Aminotransferase; ND, Newcastle disease.

TABLE 5 | Effect of supplemental YC on hatching rate of laying hens.

Item Qualified egg
rate, %

Fertilization
rate,%

Hatching rate, % Healthy chick
rate, %

DC 88.6 87.9 87.0b 86.8

YC 88.8 93.2 94.9a 98.8

SEM 1.71 1.49 1.96 3.29

P-value 0.97 0.08 0.04 0.06

a,bDifferent superscripts within a column means significantly different (P < 0.05).

Ileum Nutrient Digestibility
The ileum nutrient digestibility analysis data are shown in
Table 6. Although YC supplementation significantly improved
the digestibility of ileum crude fat, the effect on digestibility of
crude protein and energy was of little significance.

TABLE 6 | Effect of supplemental YC on the nutrient digestibility of laying hens.

Item Crude protein, % Energy, % Crude fat, %

DC 77.3 76.7 64.0b

YC 79.8 77.3 81.3a

SEM 1.28 1.36 4.62

P-value 0.40 0.84 0.05

a,bDifferent superscripts within a column means significantly different (P < 0.05).

Intestinal Bacterial Richness, Diversity,
and Similarity
A total of 321,038 clean tags and 300,949 valid tags were obtained
through sequencing. Through these, an average of 27,359 high-
quality sequences were harvested for each ileal sample. Both the
Good’s coverage rarefaction curve and the species accumulation
curve indicated that the sequencing depth and sample quantity
were sufficient to fully reflect the ileum microbial community
composition (Figures 1A,B).

The DC and the YC groups harvested 468 and 454 OTUs,
respectively. Out of these, 248 were present in both groups
(Figure 1D). Alpha diversity was evaluated using the Chao1
diversity index, through observed species richness, the Simpson’s
diversity index, and the Shannon diversity index (Figure 1C).
Results indicated that the Shannon (P = 0.023) and Simpson’s
diversity indices (P = 0.001) of the YC group were significantly
higher than those for the DC group, indicating that the former
group’s intestinal flora is more evenly distributed.

Beta diversity, which was based on weighted UniFrac
distances, was calculated using principal coordinate analysis
through both 2D and 3D plots (Figure 2). The DC and
YC groups were well separated, with 63.35, 15.49, and
11.11% variation explained by principal components PC1, PC2,
and PC3, respectively (ANOSIM = 0.041). Results showed
that microorganism composition in the ileum of hens was
significantly altered by YC supplementation.

Ileal Microbial Community Structure
The ileal microbial community structure is shown in
Figures 3A,B. Figure 3A indicates the relative abundance
of microbial composition at the phylum level. Accounting
for more than 98% of the bacterial community, Firmicutes,
Proteobacteria, and Bacteroidetes were the predominant phyla
in the DC and YC groups. However, in the DC group only, the
relative abundance of Firmicutes decreased from 90.79 to 77.54%
(P = 0.144), while that of Proteobacteria increased from 5.94%
to 17.19% (P = 0.201). The relative abundance of other bacterial
phyla did not change significantly.

Figures 3B,C and Table 7 show the relative abundance of the
ileal microbial composition at the genus level. Results revealed
that Lactobacilli, Romboutsia, Tyzzerella_3, and Turicibacter
were the predominant genera, followed by Enterococcus,
Gallibacterium, Helicobacter, and Escherichia_Shigella. Among
them, the relative abundance of Lactobacilli increased from 14.38
to 49.83% (P = 0.032), while that of Romboutsia decreased from
58.68 to 19.54% (P = 0.028) when YC was added.
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FIGURE 1 | The overall description of gut microorganism in basal diet control group (DC) and yeast culture (YC) group. (A) The alpha diversity rarefaction curve of
16S rRNA gene sequence to estimate the rationality of sequencing depth (at 97% similarity). X-axis was the sequencing sampling depth, and the Y-axis was the
corresponding Good’s Coverage index. Different sample curves were represented by different colors. (B) Species accumulation curve is used to estimate the
rationality of sequencing sample quantity. The X-axis is the number of sequencing samples, and the Y-axis is the number of operational taxonomic unit (OTU)
detected. (C) Alpha-diversity evaluation of ileum flora richness and evenness. (D) Venn diagram is used to represent the amount of OUTs that is unique or common
to each group.

LEfSe analysis was conducted to determine differential
bacterial form. In the YC group, Bacilli, Lactobacilli, and
Gammaproteobacteria were significantly enriched; in the DC
group, Peptostreptococcaceae, Clostridia, and Romboutsia were
significantly enriched (Figures 4A,B).

To extend and confirm the LEfSe results, indicator analysis
was performed at the OTU level (Figure 4C). Results showed that
Lactobacilli (OTU_47, OTU_4) were the indicator species in the
YC group while Romboutsia (OTU_13), Roseburia (OTT_578),
Faecalibacterium (OTT_43), and Prevotellaceae_UCG_001
(OTU_208) were the indicator species in the DC group.

Ileal Microbial Network
A microbial interaction network was used to analyze the
reciprocity relationships among bacterial communities. Figure 5
describe the interaction networks of the YC and DC groups,
respectively. In the DC group, the bacterial network comprised
33 nodes and 72 edges, with an average node connectivity degree
of 4.364. In the YC group, the bacterial network comprised 71
nodes and 376 edges, with an average node connectivity degree
of 10.592. The network complexity of the YC group was higher
than that of the DC group, indicating that the microbiota of
the YC group was more closely related to each other. In the
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FIGURE 2 | Principal coordinate analysis of ileal microbial community.
(A) (PCoA)-2D. (B) (PCoA)-3D.

YC group, Neisseria and Odoribacter showed the highest node
connectivity degree (degree = 22), followed by Alloprevotella,
Rhizobium, Methylophilus, Prevotellaceae_NK3B31_group,
and Bacteroides (degree = 21). However, predominant
bacteria such as Lactobacilli (degree = 9) and Romboutsia
(degree = 2) had very low node connectivity degree. In the
DC group, Alloprevotella, Roseburia, and Bacteroides had the
highest node connectivity degree (degree = 11), followed by
Prevotellaceae_UCG_001, Rikenellaceae_RC9_gut_group, and
Lachnospiraceae_NK4A136_group (degree = 9). Similar to the
YC group, predominant bacteria such as Romboutsia (degree = 1)
and Lactobacilli (degree = 1) showed relatively low node
connectivity degree in the DC group.

In the YC and DC groups, Lactobacilli and Romboutsia
showed the highest proportions, respectively. The positive
correlation was more than the negative correlation. Moreover, in
the network interaction structure, the bacterial groups with the
highest and lowest relative abundance in the intestinal tract had a
lower degree of correlation with other bacteria.

Predicted Functions of Ileal Bacterial
Communities
PICRUSt analysis was used to predict metagenome functions
associated with bacterial communities based on 16S rRNA

sequencing data. Results showed significant differences between
groups at KEGG levels 2 and 3 (Figure 6). At KEGG level 2, the
glycan biosynthesis and metabolism pathways were significantly
enriched by YC supplementation, while the transcription
pathway was significantly downregulated. At KEGG level 3,
seven pathways were enriched through YC supplementation,
including the phosphatidylinositol signaling system,
glutathione metabolism, ubiquinone and other terpenoid-
quinone biosynthesis, chaperones, and folding catalysts,
lipopolysaccharide biosynthesis proteins, and cell motility and
secretion. Pathways such as ABC transporters, transporters, and
sporulation were overrepresented in the DC group.

DISCUSSION

Yeast culture did not significantly affect the laying performance
of layers, a result that was not in agreement with some previous
studies. Zhang J.C. et al. (2020) reported that adding 3.0 g/kg
YC to the feed of 67-week-old hens can improve their egg-laying
rate and the total egg weight, and reduce the feed/egg ratio.
Lu et al. (2019) found that the addition of YC alleviated laying
performance loss and intestinal damage caused by Eimeria in
broiler breeders. The variable results of the present study could be
attributed to the good health of the hens used in this experiment.
Additionally, some reports have indicated that differences may
be due to the changes in the treatment of YC, especially factors
such as administration time and period, diet, and environment
(Gadde et al., 2017).

In this study, YC was found to significantly increase eggshell
strength, egg albumen height and Haugh unit. However, it
significantly reduced the b∗ value of egg shell color. In line
with our findings, several previous studies have demonstrated
that adding yeast or yeast extract can significantly improve
egg weight, albumen height, Haugh unit, eggshell strength, and
nutrient content (Zhong et al., 2016; Özsoy et al., 2018; Gaboardi
et al., 2019); however, other studies have shown that dietary YC
supplementation has no significant effect on eggshell strength,
egg weight, albumen height, Haugh unit, and yolk color (Yalçin
et al., 2008; Zhang J.C. et al., 2020). The positive effect of YC
on egg quality may be associated with the presence of bioactive
substances such as enzymes, vitamins, amino acids, polypeptides,
and oligosaccharides in it (Jensen et al., 2008). Moreover, the
presence of many carotenoids in YC, which promote pigment
deposition in the egg yolk, may also be a factor in its effectiveness
(Kot et al., 2019). As our results indicate improvements in egg
quality, the increased hatching rate, the improved fertilization
rate, and the healthy chick rate can also be associated with the
egg quality and the increased eggshell strength and density, which
prevent pathogenic microorganisms from entering the eggs.
Moreover, YC also contains a large amount of trace elements,
such as selenium and zinc that improve embryonic and early
postnatal development of the aged layer (Hostetler et al., 2003;
Sun et al., 2012). A previous study has shown that adding yeast
bioactives significantly improves the level of IgA in the egg yolk
(Lu et al., 2019), resulting in enhanced chick immunity and
improved reproductive performance of the aged layers.
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FIGURE 3 | The microbial community structure in DC and YC groups. (A) Stacked bar chart of ileum microbial structure at phylum level. Top15 bacterial are shown
in the graph. (B) Stacked bar chart of ileum microbial structure at genus level. Top15 bacterial are shown in the graph. (C) Relative abundance of microbial which
was greater than 1% between DC and YC groups.

Hens in the late laying stage are considered to be affected by
oxidative stress and ovarian aging; furthermore, an increase in
lipid and protein oxidation substantially influences the normal
physiology of layers (Liu et al., 2018). To counter such oxidation,

T-AOC is an important integrative index that reflects antioxidant
capacity (Zhang S. et al., 2020). Our results indicated that YC
supplementation significantly increased lysozyme and T-AOC
in serum and reduced serum AST. Similarly, a previous study
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TABLE 7 | Effect of supplemental YC on the Ileum bacteria of laying hens at
genus level (%).

Classification levels of bacteria Diet1 SEM2 P-value

Phylum Genus DC YC

Firmicutes Lactobacillus 14.4b 49.8a 4.79 0.03

Firmicutes Romboutsia 58.7a 19.5b 8.88 0.03

Firmicutes Tyzzerella_3 0.4 9.1 3.23 0.31

Firmicutes Turicibacter 3.3 1.1 0.80 0.27

Firmicutes Enterococcus 0.4 1.0 0.34 0.36

Proteobacteria Gallibacterium 0.4 2.6 0.73 0.14

Proteobacteria Helicobacter 0.3 2.6 1.09 0.14

Proteobacteria Escherichia_Shigella 0.3 1.2 0.45 0.36

Bacteroidetes Uncultured_bacterium 0.7 1.4 0.51 0.86

– Other 16.1 11.1 5.48 0.86

1The relative abundance of Genus less than 1% are not listed. Values are means,
n = 6.
2SEM, standard error of the mean.
a,bDifferent superscripts within a row means significantly different (P < 0.05).

showed that supplemented yeast hydrolysates tended to increase
serum T-AOC (Fu et al., 2019). Thus, improvements in serum
T-AOC and lysozyme activity indicated that YC administration
can improve antioxidant capacity and enhance innate immunity

(Min et al., 2015) of layers. AST normally exists in liver cells,
and plasma AST and alanine aminotransferase contents are the
most sensitive indicators of liver injury in poultry (Lumeij,
1997; Yousefi et al., 2005). Under normal circumstances, the
upper limit of AST content in poultry plasma is 230 IU/L
(Jones, 1999). In our study, AST content in both groups
was within the normal range; however, it showed a trend of
significant decrease after YC addition, which is a positive signal
for liver function.

Feed digestibility and absorption gradually decreased as
the age of layer hens increased (Duan et al., 2015). Thus,
improving feed digestibility and availability through nutritional
strategies is important to maintain constant egg production,
egg quality, and health in aged hens. The results of this study
showed that YC supplementation significantly improved the
digestibility of crude fat, but its effect on the digestibility
of energy or crude protein was of little significance. The
digestion, absorption, and utilization of fat largely depend on
trypsin digestive enzymes and emulsifiers (Aloulou et al., 2015).
Additionally, studies have shown that the addition of YC can
significantly increase the activity of duodenal enzymes in aged
layers. Moreover, YC is known to contain enzymes and organic
acids. Thus, our results suggest that increased fat digestion and
absorption is possibly related to stimulating endogenous enzyme
secretion or enzymes contained in YC (Dawood et al., 2020;

FIGURE 4 | Ileal marker microbial in DC and YC groups. (A,B). Linear discriminant analysis coupled with effect size (LEfSe) is used to explore differences between
treatment groups. (A) Cladogram plot of LEfSe analysis. (B) Histogram of LDA value distribution between DC and YC groups. (C) Indicator analysis is used to search
for Indicator OTUs. The first column is phylum level annotation information, the second column is genus level annotation information, the third column represents the
corresponding OTU, the fourth column represents the relative abundance of each OTU, and the bubble diagram represents the indicator values. Only significant
(P < 0.05) OTUs are shown.
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FIGURE 5 | Microbial community network analysis is used to explore the relationship between the two groups. Each genus is represented by different nodes, the
size of which represents the relative abundance of the genus, and the color of the nodes represents the degree. The thickness of the edges represents the
correlation coefficient, the thicker, the greater of correlation. The red line represents positive correlation, and the cyan line represents negative correlation.

Zhang J.C. et al., 2020). Intestinal microorganisms can produce
bioactive substances and substantially influence health, nutrition,
and immunity (Hooper et al., 2002; Ley et al., 2008; Xu M.
et al., 2020). Our study showed that adding YC could alter
the ileum microbial community structure in aged layers. The
results of this study showed that Firmicutes, Bacteroides, and
Proteobacteria were the dominant microbial species in the
ileum, which was confirmed by other studies (Wang et al.,
2018; Spring et al., 2020). After YC supplementation, the
relative abundance of Firmicutes decreased (from 90.76 to
77.64%) while that of Proteobacteria (from 5.92 to 17.08%) and
Bacteroidetes (from 2.31 to 3.94%) increased. The proportion
of Firmicutes/Bacteroides (F/B) also increased (from 100.12
to 332.29). Studies have shown that the F/B ratio is related
to inflammatory bowel disease (Frank et al., 2007), obesity
(Turnbaugh et al., 2008), and type 2 diabetes mellitus (Remely
et al., 2014). In this study, the decrease in Firmicutes and the
increased F/B values indicated that YC might have a regulating
effect on lipid metabolism and gut health and also reduce fat
deposition in aged layers.

All the results of this study indicated that Lactobacilli were
the dominant genus in the ileum, accompanied by a significant
decrease in Romboutsia in the YC group. A study by Li et al.
(2018) found that in day-old sika deer, Halomonas (48.9%),
Lactobacilli (21.4%), and Escherichia Shigella (19.2%) were the
dominant genera in the jejunum and ileum; with increasing
age, the abundance of Lactobacilli began to reduce gradually
from 21.4 to 6.0%. Romboutsia appeared and gradually became
the dominant species with a relative abundance of 22.9%.
Since our results suggest higher abundance of Lactobacilli in
the intestinal tract after YC supplementation, it may be a

good indicator of aged layers as Lactobacilli are involved in
metabolic activity, such as decomposing proteins and sugars in
food, synthesizing vitamins and promoting the fermentation and
degradation of fat (Wu et al., 2015). Moreover, carbohydrates
can be converted by Lactobacilli into lactic acid for further
use by other bacteria (Wu et al., 2018). Lactobacilli have been
shown to be negatively correlated with lipid metabolism. They
accelerate the synthesis of lipid peroxidation metabolites and
are positively related to intestinal health (Chen et al., 2020).
Some experiments related to the addition of Lactobacilli also
revealed that they have the potential to improve the performance,
digestion, and feed utilization efficiency of broilers and laying
hens (Saleh et al., 2017, 2020). Romboutsia can metabolize
carbohydrates, synthesize amino acids and vitamins, and are
sensitive to bile acids (Gerritsen et al., 2017). Some studies suggest
that Romboutsia may be linked to obesity (Hu et al., 2019)
and liver injury (Yu et al., 2020). Furthermore, a large number
of studies have directly or indirectly proved that Romboutsia
and Lactobacilli show opposing trends in relative abundance
(Chen et al., 2019; Lee et al., 2019; Qiao et al., 2019; Xu S.
et al., 2020). Based on these results, we can speculate that these
two bacteria have especially strong competitive exclusion effects.
The increased abundance of Lactobacilli following a decrease in
Romboutsia may be due to polysaccharides in YC being used by
Lactobacilli to produce a large number of short-chain fatty acids
and lactic acid, which reduce intestinal pH. Another reason may
be the increased shedding of Romboutsia due to the occupied
effect of Lactobacilli (Baldwin et al., 2018; Qiao et al., 2018;
Bunte et al., 2020).

Gut microbes can convert indigestible glycans into short-
chain fatty acids such as butyrate, propionate, and acetate
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FIGURE 6 | The microorganism function prediction in DC and YC groups. The second level (A) and third level (B) of Kyoto Encyclopaedia of Genes and Genomes
(KEGG) pathway are shown in the extended error bar. The corrected p-value is listed at the right. Blue and yellow represent DC and YC, respectively.

as nutrients for hindgut intestinal epithelial cells (Koropatkin
et al., 2012; Sun et al., 2016). YC contains a large amount
of glucan and mannooligosaccharides, which can induce the
upregulation of glycan biosynthesis and metabolism pathways in
microorganisms. Glutathione metabolism is generally considered
to be related to the promotion of cell redox balance. It has
antioxidant and detoxifying effects and provides a protective
response (Xu et al., 2015). Glutathione-S-transferase and
glutathione peroxidase are two important enzymes involved in
glutathione metabolism (Schneider et al., 2016). In this study,
we found that serum T-AOC content in the YC group increased
significantly, which may be associated with improvement in
intestinal microbial glutathione metabolic function. Ubiquinone
and other terpenoid-quinone usually refer to hydrocarbon or
terpenoid derivatives, and their oligomers, such as coenzyme
Q10, squalene, farnesol, vitamin A, E, and K, are necessary for life
activities. The upregulation of ubiquinone and other terpenoid-
quinone biosynthesis pathways in YC-treated hens may be related
to improvement in laying performance. Lipopolysaccharides, also
known as endotoxins, are not only the main component of the
outer membrane of Gram-negative bacteria but are also the
main cause of inflammation and part of the natural immune
response of animals. The upregulation of the lipopolysaccharide

biosynthesis protein pathway after YC supplementation may
be associated with an increase in lysozyme activity in the
serum. Furthermore, we found that the sporulation pathway
was significantly downregulated by YC. Spores are formed by
bacteria in a near-dormant state. They can store the bacteria’s
hereditary material in an unsuitable and harmful environment
(Huang and Hull, 2017; Bressuire-Isoard et al., 2018). Metabolism
in the spore state is 10 million times slower than that in
normally growing bacteria. YC supplementation may contribute
toward improving the original harsh ecological environment
within which microorganisms live, along with increasing the
vitality of bacterial communities and strengthening network
relationships. ABC transporters use the energy generated through
ATP binding and hydrolysis to transport various substrates on
the cell membrane. They have transport and excretion roles in
prokaryotes and eukaryotes, and can remove toxins and drugs
from cells. Research has shown that the ABC transporter system
plays a very important role in the adaptation of Escherichia
coli to unsuitable environments (Moussatova et al., 2008; Cario,
2017). Hence, the upregulation of the ABC transporter pathway
in the DC group in our study could be due to the poor
ecological environment, which need to excrete a large amount of
toxic substrates.
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Interestingly, we found that YC supplementation substantially
improved the relationships among bacteria in the ileum. An
increase in Lactobacilli abundance in the YC group led to
more complex interactions among the bacteria. Such a complex
network has been suggested to increase resistance against
pathogen invasions because the pathogens would have to adapt to
the external environment and compete for the original ecological
niche with the existing bacteria (Wei et al., 2015; Mendes et al.,
2018). As the DC group had very low bacterial connectivity,
and based on its function prediction, we speculated that many
bacteria may be in the resting state, and the loss of one niche will
substantially influence the whole microbial community. On the
contrary, the YC group had very high bacterial connectivity; even
when it suffered from a pathogen invasion or was missing one
niche, the neighboring niches supplemented any gaps. Moreover,
connectivity among bacteria limits the nutrient supply for any
invasive microorganisms, causing their extinction. Therefore,
a complex network of microbes shows stronger resistance to
external influences.

In addition, we found that within networks of intestinal
microbial relationships, bacteria that were in high abundance
showed a lower degree of correlation. Furthermore, the number
of positive correlation was significantly more than negative
correlation in the whole network relationship. Interestingly,
common probiotics such as Lactobacilli, Enterococcus, and
Acetobacter were mostly found to be negatively correlated with
other bacteria, which may be because they produce bacteriocin to
inhibit the growth and reproduction of other bacteria (Corr et al.,
2009). Lactobacilli enhance the degree of correlation between
bacteria and improve the consistency of bacterial flora. An
increase in Lactobacilli abundance after YC administration was
accompanied by a more complex correlation between bacterial
communities. Lactobacilli could thus improve the intestinal
microenvironment of layers and inhibit the growth of some
pathogenic bacteria. Therefore, YC supplementation can result in
good health of layers.

CONCLUSION

In conclusion, this study suggested that adding 2.0 g/kg YC
to the diet of breeder-aged layers can improve their egg
quality and reproductive efficiency. It may also be beneficial for

their antioxidant capacity and systemic immunity. Moreover, it
can improve the structure of aged layers’ intestinal microbial
flora by increasing the abundance of Lactobacilli and the
consistency of bacterial flora, resulting in improved feed
digestion, absorption, and gut health.
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INTRODUCTION

Sheep industry is a major branch of animal husbandry throughout the north and central parts
of China mainly for mutton and wool production (1, 2). Body weight gain during the fattening
period is an important determinant for carcass weight. Sheep average daily gain (ADG) refers to the
average weight gain of sheep during a certain period and is an important economic growth trait that
improves production efficiency and economic benefits. Specifically, ADG has been reported to have
a positive correlation coefficient (r = 0.53) with final body weight in growing lambs (3). The ADG
of lamb or sheep is affected by genetic basis, nutrition level, growth stage, and management system
(4–6). In sheep feedlots, lambs with the same genetic basis, same age, same management system,
and very similar initial body weight often develop a large standard deviation in ADG, accounting
for unwanted differences in final body weights (7, 8). To our knowledge, few studies reported the
underlying metabolic mechanism of such an inter-individual difference.

Selecting those lambs expected to have high ADG, at the earliest as possible in their longevity,
or at least before the fattening period, could obviously increase the profitability of sheep feedlots (9,
10). Recently, several serum components (hormones, metabolites, hematological, and biochemical
parameters) have been identified as biomarkers to evaluate the residual feed intake of sheep (11, 12),
an indicator of feed conversion efficiency. Metabolomics can qualitatively and quantitatively
analyze hundreds of metabolites in diverse samples, which can be extensively used to study
physiological and pathophysiological process such as starving and intrauterine growth restriction
in sheep (13, 14). Blood is considered as an ideal sample in sheep metabolomics research and is
potentially used to reflect the metabolic status on a whole body level (15). As we have known,
alterations in the blood metabolome profiles of sheep during the fattening period, particularly in
fattening sheep with the same genetic basis, same age, same management system, but high or low
ADG, are still unclear. Therefore, the aims of the present study were (i) to reveal the metabolic
characteristics of lambs with high or low ADG under the same management system and (ii) to
investigate the potential metabolic pathways related to the growth performance of sheep.

METHODS

Experiments were performed at the Experimental Station of Beijing Academy of Agriculture and
Forestry Sciences in the Yangyuan county, Zhangjiakou city, Heibei province, northeast of China.
A total of 200 crossbreed male lambs (Ovis aries) of Dorper rams and Mongolia ewes after weaning
(45 days of age) were housed in eight sheltered outdoor paddocks and fed total mixed ration (TMR).
Clean water and mineralized salt licks were available ad libitum. From 75 days of age, 50 lambs with
similar body weight were selected and reared in individual pens indoors (0.7× 1.0m) until 120 days
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of age. Briefly, the lambs were acclimatized, lasting 15 days before
formal assessment. At 90 days, 40 lambs with similar body weight
were selected to doADG research lasting 30 days. Lamb TMRwas
compounded based on the recommendations of sheep feeding
standard in China (NY/T816-2004) and contained digestible
energy of 11.83 MJ·kg−1, metabolic energy of 9.73 MJ·kg−1,
14.61% crude protein, 0.39% calcium, and 0.25% phosphorus.
Body weight of lambs was accurately measured in the morning
before feeding, and at 75, 90, and 120 days of age, using calibrated
electronic scales. ADG was calculated based on body weight.
Differences in ADG between the high ADG and low ADG
lamb group were analyzed using a t-test. A P < 0.05 indicated
statistical significance.

At 120 days of age, after weighting, blood samples were
drawn from the jugular vein of the top seven lambs with the
greatest ADG and the bottom seven lambs with the lowest ADG
using needles and vacutainers covered with anti-coagulant (BD
Vacutainer, USA) for a minimum of 6ml. The blood was placed
at room temperature for 4 h and then centrifuged at 2,000 g for
30min at 4◦C. Serum separation was carefully proceeded. The
serum was aliquoted and rapidly frozen by dry ice. Frozen serum
samples were stored at−80◦C until metabolomics analyses.

FIGURE 1 | Serum metabolite profile of lambs with different average daily gain (ADG). (A) PCA score plot for serum metabolites of high ADG lambs (H) and low ADG

lambs (L). (B) PLS-DA score plot for serum metabolites of high ADG lambs (H) and low ADG lambs (L), and model overview showing high R2Y and Q2. (C) Enhanced

Volcano plots of OPLS-DA showing fold changes (log2FC) and the negative logarithm (base 10) of the P-values of 57 differential serum metabolites in high ADG lambs

compared with low ADG lambs. (D) Expression profile, VIP score, and P-value of the top 30 differential serum metabolites in high ADG lambs compared with low ADG

lambs.

Using 100 µl of serum, metabolites were extracted using
methanol. Extracts were sonicated, and after centrifugation, the
supernatant was gently added to sample vials for LC-MS/MS
analysis. A pooled quality control sample (QC) was performed
for system conditioning and quality control. Chromatographic
separation of the metabolites was operated on a Thermo UHPLC
system equipped with an ACQUITY UPLC HSS T3 (100mm ×

2.1mm i.d., 1.8µm; Waters, Milford, USA).
Following LC-MS/MS analyses, the raw data were inputted

into the Progenesis QI 2.3 (Non-linear Dynamics, Waters, USA)
for peak picking and alignment. Mass spectra of these metabolic
characteristics were discerned through the accuratemass,MS/MS
fragments spectra, and isotope ratio difference, by scanning
in public available biochemical databases such as the Human
Metabolome Database (HMDB) (http://www.hmdb.ca/) and the
Metlin database (https://metlin.scripps.edu/). A multivariate
statistical analysis was conducted using “ropls” (Version
1.6.2, http://bioconductor.org/packages/release/bioc/html/ropls.
html) R package from Bioconductor on Majorbio Cloud
Platform (https://cloud.majorbio.com). Principal component
analysis (PCA) was applied to check outliers and present trends.
Partial least squares discriminate analysis (PLS-DA) was used to
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identify the general metabolic changes in serum of sheep between
high and low ADG. Variable importance in the projection (VIP)
was computed by an orthogonal partial least squares discriminate
analysis (OPLS-DA) model. Differential metabolites among ESI
groups were summarized and annotated into their biochemical
pathways through metabolic enrichment and pathway analysis
based on database matching (KEGG, http://www.genome.jp/
kegg/). Furthermore, Volcano plot was used to compare the size
of the fold change to statistical significance.

RESULTS

At the beginning of the lamb fattening trial, when lambs were
90 days of age, the mean (SD in parentheses) body weight
of seven original lambs corresponding to the high ADG was
26.7 (0.9) kg, while the mean body weight of seven original
lambs corresponding to the low ADG was 26.8 (0.8) kg. At
the end of the lamb trial, the body weight of the seven
lambs with the highest weight gain was 35.67 (0.8) kg and
the body weight of the seven lambs with the lower weight
gain was 32.56 (1.0) kg. The ADG of high weight gain lambs
was 298.1 (15.9) g·day−1, which differed (P < 0.01) from the
ADG of low weight gain lambs 191.9 (23.6) g·day−1, while the
average ADG of all lambs tested was 239.5 (34.8) g·day−1 (n
= 40).

Variation of ADG depends on sheep breeds and ages. Previous
studies showed that crossbreed of specialized mutton breeds
and local sheep breeds had greater ADG than local sheep.
For local sheep breeds under a barn feeding fattening system,
6-month Altay and Hu lambs presented ADG from 100 to
200 g·day−1 (16), while ADG of 3-month Ningxia Tan sheep
lambs was between 90 and 130 g·day−1 (17) and ADG of
Small Tail Han sheep lambs was between 140 and 180 g·day−1

(18). Furthermore, the ADG of crossbreed lambs of Dorper
and Small Tailed Han sheep was between 265 and 322 g·day−1

in pens (19). In our study, crossbreed lambs of Dorper rams
and Mongolia ewes at 4-month age exhibited excellent growth
performance with an average ADG of 240 g·day−1. Crossbreed
lambs are recommended to produce lamb meat in the north part
of China.

In the LC-MS spectra of lamb serum with high or low
ADG, 10,231 metabolites were initially found. After quality
control and discernment, 462 compounds were reliably detected.
The PCA score plot presented that the first and second
principal components (PCs) clarified 22.3 and 12.6% of the
variation, respectively (Figure 1A). As expected, the separated
plot representing high and low ADG can be observed in the
PCA plot. Next, PLS-DA was executed to exhibit the variations
between the high and low ADG lambs. As shown in Figure 1B,
the PLS-DA analysis demonstrated that the serum metabolites
of the low ADG lambs distinctly differed from those of the
high ADG lambs. Correspondingly, the values of R2Y and Q2
were 0.998 and 0.796, respectively (Figure 1), indicating good
interpretability and predictability by this PLS-DAmodel. A value
of Q2 = 1 indicates a perfect discrimination of metabolites
profiles between groups.

In comparison, a total 57 differential serum metabolites were
found according to the Volcano plot (P < 0.05, VIP > 1.0,
and log2FC > 1 or < 1.0), of which 35 metabolites showed
up-regulation and 22 showed down-regulation (Figure 1C
and Supplementary Table 1). A total of 50 differential serum
metabolites were annotated in six superclasses according to
the HMDB database, of which 36 belonged to lipids and lipid-
like molecules, 5 belonged to organic nitrogen compounds,
4 belonged to organic acids and derivatives, 2 belonged to
benzenoids, 2 belonged to organic oxygen compounds, and
1 belonged to organoheterocyclic compounds. Expression
profile and VIP of the top 30 metabolites based on the OPLS-
DA model are shown in Figure 1D. Regarding the KEGG
pathway, the four pathways including at least two differential
serum metabolites annotated were metabolic pathways [L-
Histidinol, Myristic acid, D-Sedoheptulose 7-phosphate,
L-Arginine, and PC(14:1(9Z)/20:2(11Z,14Z))], biosynthesis
of amino acids (L-Histidinol, D-Sedoheptulose 7-phosphate,
and L-Arginine), glycerophospholipid metabolism [PC(14
:1(9Z)/20:2(11Z,14Z)), LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)),
and LysoPC(18:3(6Z,9Z,12Z))], and histidine metabolism (L-
Histidinol and 3-Methyl-L-histidine), respectively. Based on our
results, the serum metabolome prolife of lambs was affected by
high or low ADG.

As shown in Figure 1D and Supplementary Table 1,
most of the lipids and lipid-like molecules were
accumulated in serum samples of high ADG lambs
compared with low ADG ones, including LysoPC(20:5
(5Z,8Z,11Z,14Z,17Z)) and PC(14:1(9Z)/20:2 (11Z,14Z)),
which are metabolites involved in glycerophospholipid
metabolism. In detail, LysoPC(20:5(5Z,8Z,11Z,14Z,17Z))
and PC(14:1(9Z)/20:2(11Z,14Z)) had a high concentration
in serum of high ADG lambs [log2(FC) = 1.04
and 1.02]. Lysophospholipids (LPL) mainly include
lysophosphatidylcholine (LPC), lysophosphatidic acid
(LPA), lysophosphatidylethanolamine (LPE), and
lysophosphatidylinositol (LPI), which are derivatives of
phospholipid with absence of a fatty acid chain by hydrolysis
(20). LPL could be a potent feed additive to improve production
and feed efficiency according to studies in non-ruminant animals
(21, 22), as well as in ruminants (23, 24). Recently, research
showed that LPL supplementation could increase ADG in
lambs, potentially through altering feed digestion (25), and
intermediating bacterial phospholipid turnover as one of the
cellular growth factor or potent lipid mediator in bacteria (26).
Moreover, LPC could alter enterocyte monolayer permeability
via protein kinase C (27).

Amino acids in tissue and in serum seemed to change
under various physiological status, such as starvation, fasting,
grazing, and stress in sheep (14) and dairy cows (28). During
starvation in sheep, circulating amino acids had a general trend
to increase mainly because muscle proteins were mobilized
to improve gluconeogenesis in the livers by enhancing amino
acids supply (14). Three metabolites (L-Arginine, L-Histidinol,
and D-Sedoheptulose 7-phosphate) were identified to increase
in circulation of low ADG lambs (Supplementary Table 1).
Arginine is a conditionally essential amino acid in livestock
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and has a potential role on regulating energy partitioning
between fat and lean deposition (29). Intriguingly, in lower body
weight suckling lambs affected by intrauterine growth restriction,
arginine supplementation increased ADG and decreased feed
conversion rate (30). In the growing period in Dorper and
Damara sheep, seasonal weight loss resulting from dietary
restriction resulted in an increased arginine level in liver,
but a decreased level in Australia Merino, while histidine
level increased in all three sheep studied during dietary
restriction (14). Plasma arginine was reported to increase in
feed-restricted dairy cows, too (28). Collectively, these results
showed that circulating amino acid concentrations changed to
satisfy requirements of growth needs and normal metabolism
in sheep.

Histidine can be a substrate for gluconeogenesis and
protein synthesis; however, it can also affect the active site of
enzymes (31). L-Histidinol and 3-Methyl-L-histidine (annotated
in histidine metabolism pathway) were down-regulated in
lambs with high ADG (Figure 1D and Supplementary Table 1),
indicating that histidine metabolism had a trend of less activity,
potentially to support faster growth and development in lambs
in an intensive fattening system. Moreover, histidine metabolism
seems to be up-regulated under nutritional restriction. It
was reported that plasma L-histidine level decreased in barn
confinement sheep compared with free grazing sheep due to high
body weight gain (32).

Collectively, the purpose of this report was to reveal
serum metabolome profiles of fattening lambs in a barn
feeding fattening system, with particular attention to unique
metabolites in lambs with high or low ADG. Our findings
showed that differential metabolites affected by ADG belonged
to lipids and lipid-like molecules, organic nitrogen compounds,
organic acids and derivatives, benzenoids, organic oxygen
compounds, and organoheterocyclic compounds. The identified
metabolites have an effect on regulating metabolic pathways,
biosynthesis of amino acids, glycerophospholipid metabolism,
and histidine metabolism. These results indicate that selected
serum metabolites could have potential application to estimate
sheep with different ADG. Further larger-size studies with
more various cohorts of sheep are desired to validate
our finding.
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While the interactions of the gut microbiome and blood metabolome have been
widely studied in polycystic ovary disease in women, follicular cysts of ewes have
been scarcely investigated using these methods. In this study, the fecal microbiome
and serum metabolome were used to compare between ewes diagnosed with
ovarian cystic follicles and ewes with normal follicles, to investigate alterations of
the fecal bacterial community composition and metabolic parameters in relation to
follicular cystogenesis. Ewes from the same feeding and management system were
diagnosed with a follicular cyst (n = 6) or confirmed to have normal follicles (n = 6)
by using a B-mode ultrasound scanner. Blood serum and fresh fecal samples of
all ewes were collected and analyzed. The α-diversity of fecal microbiome did not
differ significantly between follicular cyst ewes and normal follicle ewes. Three genera
(Bacteroides, Anaerosporobacter, and Angelakisella) were identified and their balance
differentiated between follicular cyst and normal follicle ewes. Alterations of several
serum metabolite concentrations, belonging to lipids and lipid-like molecules, organic
acids and derivatives, organic oxygen compounds, benzenoids, phenylpropanoids and
polyketides, and organoheterocyclic compounds, were associated with the presence
of a follicular cyst. Correlation analysis between fecal bacterial communities and serum
metabolites indicated a positive correlation between Anaerosporobacter and several
fatty acids, and a negative correlation between Bacteroides and L-proline. These
observations provide new insights for the complex interactions of the gut microbiota
and the host serum lipid profiles, and support gut microbiota as a potential strategy to
treat and prevent follicular cysts in sheep.

Keywords: sheep, follicular cysts, microbial diversity, metabolome, host-microbiota interactions

INTRODUCTION

Cystic ovarian follicle is one of the ovarian dysfunctions in humans and livestock, resulting
mainly from several alterations in follicle development and ovulatory mechanisms, causing female
infertility (Mutinati et al., 2013; Ortega et al., 2016). It is generally recognized that functional
alterations of the hypothalamus-pituitary-gonadal axis caused by imbalance of ovarian endocrine
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homeostasis is the main cause of follicular cysts (Christman
et al., 2000; Medan et al., 2004; Mutinati et al., 2013). Absence
or abnormal release of hypothalamic gonadotropin-releasing
hormone (GnRH) or lack of luteinizing hormone (LH) surge
were considered as one of the endocrine reasons to induce a
follicular cyst, identified as a target for symptomatic therapies
to treat infertility (Medan et al., 2004; Abdalla et al., 2020). In
humans, ovarian diseases with a phenotype of follicular cysts are
collectively referred to as polycystic ovary syndrome (PCOS). For
the past few years, the relationship between the gut microbiota
and metabolic status attracted significant attention to reveal
the etiology and pathological mechanisms of PCOS, based on
intestinal bacterial communities influencing energy absorption,
short chain fatty acid production, and lipopolysaccharide release
(Liu et al., 2017; Zhao et al., 2020). Previous studies also showed
that bacterial diversity of gut microbial communities had an effect
on PCOS depending on host metabolic parameters (Lüll et al.,
2020). Additionally, altered fecal microbiome and metabolome
and their associations with diseases, such as kidney disease and
chronic obstructive pulmonary disease, were reported in humans
(Chen et al., 2019; Bowerman et al., 2020). Further associations
were revealed between cysteine levels on pregnancy outcome in
sows and myostatin phenotype affecting lean meat proportion in
pigs (Ding et al., 2019; Pei et al., 2021).

Ovarian cyst is one of the reasons of infertility in sheep
and goat (Medan et al., 2004; Palmieri et al., 2011). The
incidence of follicular cysts in sheep was reported highly variable,
ranging from 0.2 to 6% (Smith et al., 1999; Palmieri et al.,
2011). According to the previous studies, the reason of ewes’
follicular cysts includes inhibition of preovulatory LH surge by
adrenocorticotrophic hormone (ATCH) (Palmieri et al., 2011),
lower concentration of plasma progesterone (Medan et al.,
2004), overweight (Christman et al., 2000), and Toxoplasma
gondii infection (Moraes et al., 2010). As far as we know,
there were few studies about the relationship between the
gut microbiota or blood metabolome and follicular cysts in
ewes, and about the associations of the gut microbiota and
the blood metabolome in relation to cystogenesis in sheep.
Thus, the aims of the present study were: (1) to characterize
the alterations of fecal microbial communities, (2) to identify
patterns of serum metabolome profiles, and (3) to reveal the
associations of gut microbiota and metabolome in follicular cysts
ewes compared with normal follicle ewes. The objective of this
research was to provide potential targets of gut microbiota or
metabolic pathways for therapeutic and preventive interventions
of follicular cyst in sheep.

MATERIALS AND METHODS

Experimental Station
Experiments were performed at the Experimental Station of
Beijing Academy of Agriculture and Forestry Sciences in
Yangyuan County, Zhangjiakou City, Hebei Province, Northeast
of China. All the experiments were carried out according to
the International Guiding Principles for Biomedical Research
Involving Animals, and the respective permit was granted

by Beijing Academy of Agriculture and Forestry Sciences
(SYXQ-2012-0034).

Ewes and Reproduction Management
A total of 320 crossbreed ewes (Ovis aries) of Merino rams
and Small Tailed Han ewes aged 2–4 years were housed in a
four sheltered outdoor paddocks and were fed a total mixed
ration (TMR) of 2,000 g per head per day after weaning. The
TMR composition was based on the recommendations of sheep
feeding standards in China (NY/T816-2004). Clean water and
mineralized salt licks were available ad libitum. From 1 May to
31 May, eight rams were put into each ewe paddock to mate
ewes naturally. On 5 July, conception was identified by pregnancy
diagnosis using a B-mode ultrasound scanner (Honda HS-1600V,
Honda Electronics, Tokyo, Japan).

Ultrasonography
Besides pregnancy diagnosis, the B-mode scanner was used to
diagnose ovarian follicular cyst by transrectal ultrasonography
collaborated with a 7.5 MHz transducer as mentioned by Steckler
et al. (2008) and Palmieri et al. (2011). Based on the follicular
diameter and the presence or absence of a fetal sac, ewes
were divided into three groups: pregnant, follicular cyst, and
non-pregnant with normal follicles. Ewes were diagnosed with
follicular cyst when the follicle diameter was greater than 10 mm
(Medan et al., 2004; Palmieri et al., 2011). Ewes diagnosed with
ovarian follicular cyst were re-evaluated after 8 days, and animals
were enrolled for sample collection if the follicular cyst was
confirmed to still be greater than 10 mm.

Fecal Sample Collection and Microbiota
Analysis
Fresh fecal samples were individually collected from six
ewes with a follicular cyst diameter greater than 10 mm,
after the second ultrasonography. Fresh fecal samples of six
non-pregnant ewes with normal follicles from the same herd
were collected at the same time. The samples were quickly
frozen in liquid nitrogen and submitted to the laboratory.
Genomic DNA of the 12 samples were extracted using
an E.Z.N.A. Stool DNA Isolation Kit (Omega Bio-tek,
Norcross, GA, United States) following the recommended
instructions and confirmed with 1.2% agarose gel, of which
the DNA yield and purity were measurement of absorbance
using NanoDrop 2000 UV-vis spectrophotometer (Thermo
Fisher Scientific, Wilmington, United States). A pair
of barcode-modified universal primer 338F and 806R
(forward: 5′-ACTCCTACGGGAGGCAGCA-3′; reverse: 5′-
GGACTACHVGGGTWTCTAAT-3′) was used to amplify the
V3 + V4 hypervariable fragments from the bacterial 16S rDNA
(Wang et al., 2018). The PCR products were purified using
an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, United States), following the manufacturer’s
instructions. The DNA fragment amplicons were sequenced on
an Illumina MiSeq PE300 platform/NovaSeq PE250 platform
(Illumina, San Diego, United States) according to the standard
procedures of Majorbio Bio-Pharm Technology Co. Ltd.
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(Shanghai, China). The raw reads were approved by the
NCBI Sequence Read Archive (SRA) database with accession
number SRP308293.

The raw sequencing reads of 16S rRNA gene were
demultiplexed, quality-filtered by fastp version 0.20.0 (Chen
et al., 2018) and merged by FLASH version 1.2.7 (Magoč
and Salzberg, 2011). Optimized, high-quality sequences were
clustered using UPARSE version 7.1 into operational taxonomic
units (OTUs) at 97% sequence identity, and chimeric sequences
were discerned and filtered out. The taxonomy of each OTU
representative sequence was analyzed by Ribosomal Database
Project (RDP) naive Bayesian classifier against the 16S rRNA
database (Release 138)1 (Wang et al., 2018). Alpha diversity
(Shannon and Simpson estimators for diversity evaluation, Chao
and ACE estimators for abundance evaluation) was analyzed
by Mothur v. 1.31.2. Principle coordinates analysis (PCoA) was
used to visualize differences in fecal community composition
reflecting its beta diversity. The linear discriminant analysis
effect size (LEfSe) algorithm was performed to identify the taxa
differences responsible for different groups. The biomarkers
of LEfSe analysis conducted in the microbiota study had an
effect-size threshold of two. PICRUSt2 was used to identify
metabolic activities of the gut microbiota (Zhang et al., 2021).
Predicted metabolic profile for Kyoto Encyclopedia of Genes and
Genomes (KEGG) Orthologs (KO) were mapped on database
matching2.

Blood Sample Collection and
Metabolomics Analysis
Blood was collected from the same ewes enrolled for fecal
microbiome analysis (n = 6 with follicle cyst, n = 6 with normal
follicles) via jugular venipuncture into 10-mL vacuum tubes.
Blood samples were undisturbed and kept at room temperature
for 4 h and then centrifuged at 2,000 g for 30 min at 4◦C to
isolate the sera, which were subsequently stored at −80◦C until
further analysis.

Using 100 µL serum, metabolites were extracted using
methanol. Extracts were sonicated, and after centrifugation,
the supernatants were gently added to sample vials for LC-
MS/MS analysis. A pooled quality control sample (QC) was used
for system conditioning and quality control. Chromatographic
separation of the metabolites was operated on a Thermo
UHPLC system equipped with an ACQUITY UPLC HSS
T3 (100 mm × 2.1 mm i.d., 1.8 µm; Waters, Milford,
United States). Following LC-MS/MS analyses, the raw data
were inputted into the Progenesis QI 2.3 (Non-linear Dynamics,
Waters, United States) for peak picking and alignment.
Mass spectra of these metabolic characteristics were discerned
through the accurate mass, MS/MS fragments spectra, and
isotope ratio difference, by scanning in publicly available
biochemical databases such as the Human metabolome database
(HMDB)3 and Metlin database4. A multivariate statistical

1http://www.arb-silva.de
2http://www.genome.jp/kegg/
3http://www.hmdb.ca/
4https://metlin.scripps.edu/

analysis was conducted using “ropls” (Version1.6.2)5 R package
from Bioconductor on Majorbio Cloud Platform6. Principle
component analysis (PCA) was applied to check outliers and
present trends. Partial least squares-discriminant analysis (PLS-
DA) was used to identify the general metabolic changes in serum
of sheep with or without follicular cyst. Variable importance in
the projection (VIP) was computed by an orthogonal partial least
squares discriminant analysis (OPLS-DA) model. Differential
metabolites between groups were identified (P < 0.05, VIP-
value > 1), and annotated into their biochemical pathways
through metabolic enrichment and pathway analysis based
on database matching (KEGG) (see text footnote 2). Further,
Volcano plot was used to compare the size of the fold change
to statistical significance. Regarding VIP value of metabolites,
∗ means significant difference between ewes with follicular cyst
and normal follicle (P < 0.05), ∗∗ means significant difference
(P < 0.01), and ∗∗∗ means significant difference (P < 0.001).

Correlation Between Serum Metabolites
and Fecal Microbial Taxa
The cooperativity of two-dimensional shapes produced from
superimposition of PCA from microbiome and metabolome was
conducted by Procrustes analysis (PA). Mainly, the correlation
between relative abundance of fecal microbiota at genus levels
and differential metabolites was analyzed by R package ggplot2
(McHardy et al., 2013; Mazhar et al., 2021). P <0.05 were
considered to have significant difference. Representation of the
P-value is as follows: ∗ P < 0.05, ∗∗ P < 0.01, and ∗∗∗ P < 0.001.

RESULTS

Cysts Diagnosis
In the present study, transrectal ultrasonography by a B-mode
scanner identified ovarian follicular cysts clearly and effectively
in sheep. Ewes diagnosed with a follicular cyst demonstrated a
sharp image of anechoic (round and black) structure with an
antrum greater than 10 mm in diameter (Figure 1A), while sheep
with normal follicles showed a smaller antrum (Figure 1B). The
average diameter of the follicles in cyst and normal sheep were
11.6± 0.5 mm and 3.6± 0.3 mm, respectively.

Fecal 16S rRNA Sequencing
A total of 545,894 reads were sequenced in the amplified 16S
rRNA genes, after quality checks in 12 samples. As for follicular
cyst ewes, the mean (SD in parentheses) reads was 46,627 (2,407),
while 44,355 (4,980) reads were obtained in normal follicle ewes.
Among the high-quality sequences, the minimum length was
248 bp and the maximum length was 511 bp. The read length
for all samples was 413 bp on average, in which more than
99.9% of reads exceeded 400 bp. Reads were clustered into 2,000
OTUs using a 97% similarity threshold. OTUs ranged from 346 to
778 per sample were obtained. Based on sequencing results and
rarefaction analysis, the depth of sequence obtained was adequate

5http://bioconductor.org/packages/release/bioc/html/ropls.html
6https://cloud.majorbio.com
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FIGURE 1 | Ultrasound photos of ovaries of ewes imaged using a 7.5 MHz transducer and B-mode scanner. (A) Follicular cyst with 10.70 mm in diameter in sheep.
(B) Normal follicle with 3.72 mm in diameter. Scale bars represent 10 mm. Follicles (round black structures) marked with yellow crosses showed anechoic structure.

FIGURE 2 | Alpha diversity for the fecal microbiota in follicular cyst and normal follicle ewes. (A) Chao index; (B) Simpson index; (C) ACE index; (D) Shannon index.

to reflect species richness, indicating that the sequencing system
(Illumina Miseq) we used identified most of the fecal bacterial
diversity in the present study.

Alpha Diversity of Fecal Microbiota
The Chao, Simpson, ACE, and Shannon estimators were used
to evaluate fecal microbiome taxon abundance and diversity

(Figure 2). No significant difference was found in the fecal
microbiome diversity comparing the follicular cyst ewes with
the normal follicle ewes by student’s t-test (all P > 0.05).
Meanwhile, the Good’s coverage estimator was more than 99%
for fecal samples of follicular cyst ewes and normal follicle
ewes, indicating that the dominant bacterial phenotypes were
included in our study.
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FIGURE 3 | Phylum-level and genus-level fecal microbiota profiles in follicular cyst ewes and normal follicle ewes. (A) Stacked column chart showing the relative
phylum-level bacterial abundance (>1%) per fecal sample. (B) The heatmap shows the relative genera-level bacterial abundance. FC represents ewes with follicular
cysts and CON represents ewes with normal follicle. Numbers represent individual animals.

Fecal Microbiota Composition
A total of 2,000 OTUs were identified in fecal samples of follicular
cyst ewes and normal follicle ewes, in which 1,645 OTUs were co-
existent, 195 OTUs were follicular cyst ewes only, and 160 OTUs
were normal follicle ewes only.

At phylum level, Firmicutes and Bacteroidetes
(Firmicutes > Bacteroidetes) were the two dominant taxa
in both groups and accounted for 92.41% for follicular cyst
ewes and 92.35% for normal follicle ewes of total phylum, on
average. Other three phyla were present at lower frequencies,
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FIGURE 4 | Differences between bacterial taxa in follicular cyst ewes and normal follicle ewes. (A) The linear discriminant analysis (LDA) effect size (LEfSe) algorithm
displayed significant differences between follicular cyst ewes and normal follicle ewes at genus level. (B) The principal coordinate analysis (PCoA) plots of the fecal
microbiota based on the unweighted UniFrac showed the extent of variation in fecal microbial community between follicular cyst ewes and normal follicle ewes at
OUT level. FC represents ewes with follicular cysts and CON represents ewes with normal follicle. Red bars represent OTU that are more abundant in follicular cyst
ewes’ fecal samples than in normal follicle controls.

including Spirochaetota, Patescibateria, and Verrucomicrobiota.
In fecal samples of follicular cyst ewes, these three taxa
(Spirochaetota > Verrucomicrobiota > Patescibateria)
accounted for 5.42% on average, while in normal follicle
ewes they (Spirochaetota > Patescibateria > Verrucomicrobiota)
accounted for 5.70% on average (Figure 3A).

At genus level, a hierarchically clustered heatmap of
the fecal microbiota composition of ewes was shown in
Figure 3B. UCG-005 (10.37%), Christensenellaceae_R-
7_group (7.48%), Rikenellaceae_RC9_gut_group (6.20%),
Prevotellaceae_UCG-003 (5.18%), and Bacteroides (4.05)
were the top five dominant genera in follicular cyst ewes
on average, while UCG-005 (9.64%), Christensenellaceae_R-
7_group (8.81%), Rikenellaceae_RC9_gut_group (6.78%),
Bacteroides (6.26%), and Treponema (3.30%) were
the top five dominant genera in normal follicle
ewes on average.

LEfSe analysis manifested significant differences between
follicular cyst ewes and normal follicle ewes from phylum
to genus level according to relative OTU abundance
(Supplementary Figure 1). Ewes with follicular cyst
had enriched Bacteroidaceae at family level, Bacteroides,
Anaerosporobacter, and Angelakisella at genus level.
However, ewes with normal follicle were abundant with
1 at phylum level, 1 at class level, 3 at order level, 5
at family level, and 12 at genus level (Figure 4A and
Supplementary Figure 1).

Principle coordinates analysis (PCoA) indicated differences of
fecal bacterial communities between ewes with follicular cyst and
normal follicle (Figure 4B).

A total of 204 functional pathways were predicted with
PICRUSt2 by comparing against KEGG orthologs. KEGG
pathways including ABC transporters, purine metabolism and
aminoacyl-tRNA biosynthesis were higher in follicular cyst ewes
than normal follicle ewes, which showed a good response to
KEGG pathways enrichment in metabolomics.

Serum Metabolite Profile
In the serum LC-MS spectra of ewes with follicular cyst or with
normal follicle, 10,598 metabolites were initially found. After
quality control and discernment, 948 compounds were reliably
detected. The PCA score plot presented that the first and second
principal components (PCs) covered 25.50% and 18.20% of the
variation, respectively (Figure 5A). Scores representing follicular
cyst and normal follicle samples were separated in the PCA
plot. PLS-DA was performed to analyze the serum metabolome
profile variations between the follicular cyst and normal follicle
ewes. As shown in Figure 5B, the PLS-DA analysis demonstrated
that the serum metabolites of the follicular cyst ewes distinctly
differed from those of the normal follicle ewes. Correspondingly,
the values of R2Y and Q2 were 0.998 and 0.878, respectively
(Figure 5C), indicating good interpretability and predictability
by this PLS-DA model. A value of Q2 = 1 indicates a perfect
discrimination of metabolite profiles between groups.

Difference in Serum Metabolite
In comparison, a total of 44 differential serum metabolites were
found according to the Volcano plot, of which 16 metabolites
showed up-regulation and 28 showed down-regulation in ewes
with follicle cyst (Figure 6A and Supplementary Table 1).
A total of 40 differential serum metabolites were annotated in 7
superclasses according to HMDB database, of which 20 belonged
to lipids and lipid-like molecules, 7 belonged to organic acids
and derivatives, 4 belonged to organic oxygen compounds, 3
belonged to benzenoids, 3 belonged to phenylpropanoids and
polyketides, 2 belonged to nucleosides, nucleotides, and analogs,
and 1 belonged to organoheterocyclic compounds. Expression
profile and VIP of top 30 metabolites based on the OPLS-DA
model was shown in Figure 6B.

Regarding KEGG pathway, the four pathways including
at least two differential serum metabolites annotated were
aminoacyl-tRNA biosynthesis (L-proline and L-histidine),
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FIGURE 5 | Difference of serum metabolite profiles of ewes with follicular cyst or normal follicle. (A) PCA score plot for serum metabolites of ewes with follicular cyst
or normal follicle. (B) PLS-DA score plot for serum metabolites of ewes with follicular cyst or normal follicle. (C) The model overview showing high R2Y and Q2 in
PLS-DA. The values of R2Y and Q2 were 0.998 and 0.878, respectively. FC represents ewes with follicular cysts and CON represents ewes with normal follicle.

FIGURE 6 | Serum metabolite profiles of ewes with follicular cyst or normal follicle. (A) Enhanced Volcano plots of OPLS-DA showing fold changes (log2FC) and the
negative logarithm (base 10) of the P-values of 44 differential serum metabolites in follicular cyst ewes compared with normal follicle ewes. (B) Expression profile, VIP
score, and P-value of the top 30 differential serum metabolites in follicular cyst ewes compared with normal follicle ewes. *Significant difference in serum
metabolome between ewes with follicular cyst and normal follicle (P < 0.05), **significant difference (P < 0.01), and ***significant difference (P < 0.001).

protein digestion and absorption (L-proline and L-histidine),
purine metabolism (Diadenosine tetraphosphate and
Guanosine), and ABC transporters (L-proline and L-histidine),
respectively. Based on our results, the serum metabolome
profiles of ewes were affected by the presence or absence of
follicular cyst.

Correlation Between Serum Metabolites
and Fecal Microbial Taxa
In order to identify if there was any inter-omic syntropy, a
two-dimensional principal component distribution plot (30.43%
in PC1 and 17.68% in PC2) was generated with square
(microbe) or dot (metabolome) (Figure 7A). Procrustes analysis
showed a strong cooperativity of fecal microbiome profiles
and serum metabolome (Figure 7A: Monte Carlo P < 0.01).
To further investigate the relationship between metabolites
and microbes, a correlation matrix was conducted based
on the Pearson’s correlation coefficient (Figure 7B). A total
of 11 genera of microorganisms and 29 metabolites were
included in the heatmap matrix. The results demonstrated
several significant metabolite–microbe relationships, such as

L-proline had a strong positive correlation (P < 0.05) with
Anaerorhabdus but had a strong negative correlation (P < 0.01)
with Bacteroides.

DISCUSSION

Alteration of Fecal Microbiota in Ewes
With Follicular Cyst or Normal Follicle
Polycystic ovary syndrome (PCOS) is a common ovarian
disease in women with a prevalence of 8–13% (Zhao et al.,
2020). Multiple studies have confirmed the close relationship
between the gut microbiota and PCOS (Mammadova et al.,
2020; Zhao et al., 2020). Follicular cysts were also discovered
in sheep (Christman et al., 2000; Palmieri et al., 2011) and
goat (Medan et al., 2004; Maia et al., 2018). To our knowledge,
there has been no scientific report on the correlation between
gut microbiota and follicular cyst in sheep. Several studies
were reviewed that PCOS patients had a decreased α-diversity
and different β-diversity composition in gut microbiota
compared with healthy controls (Guo et al., 2021). In the
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FIGURE 7 | Correlation between serum metabolites and fecal microbial taxa in ewes. (A) Procrustes analysis of fecal microbiome and serum metabolome in ewes
with follicular cyst and normal follicle. Fecal and serum samples are showed as squares and dots, respectively. Fecal and serum samples from the same individual
are connected by red (control ewes) and blue (follicular cyst ewes) lines. (B) Correlation analysis between fecal microbiome and serum metabolome in the ewes with
follicular cyst and normal follicle. Red represents a positive correlation, while blue represents a negative correlation. *Significant correlation between fecal microbiome
and serum metabolome (P < 0.05), **significant correlation (P < 0.01), and ***significant correlation (P < 0.001).

present study, no significant change was identified for α-diversity
index of OTU level in fecal microbiota of follicular cyst
ewes compared with normal follicle ewes. As for β-diversity
composition in fecal microbial community, ewes with a
follicular cyst were enriched at family level (Bacteroidaceae)
and at genus level (Bacteroides, Anaerosporobacter, and
Angelakisella). Bacteroidaceae was reported with a lower percent
of relative abundance in gastrointestinal microbiota of PCOS
girls (Jobira et al., 2020), while the family Bacteroidaceae
had a higher level either in gut microbial community of
women phenotyped as PCOS with insulin resistance or
PCOS alone (Zeng et al., 2019). At genus level, bacterial taxa
including Coprococcus, Bacteroides, Prevotella, Lactobacillus,
Parabacteroides, Escherichia/Shigella, and Faecalibacterium
prausnitzii were reviewed to be clearly altered in the gut
microbiota of PCOS patients (Guo et al., 2021), of which
Bacteroides was the most significant alteration in fecal
microbiota of follicular cyst ewes in our study. Up to date,
there has been no report on the relationship between fecal
Anaerosporobacter genus or Angelakisella genus and follicular
cysts. It was speculated that Anaerosporobacter may cause
vascular damage and worsen renal function in murine
models (Li et al., 2020), and the alteration in abundance of
Anaerosporobacter in gut microbiome composition may cause
coronary artery diseases (Toya et al., 2020). Angelakisella,
a new bacterial species isolated from human ileum (Mailhe
et al., 2017), was identified to regulate short chain fatty acids
production in gut microbiota (Qiu et al., 2021). Alterations
of Anaerosporobacter genus and Angelakisella genus in gut
microbiota are firstly reported to have potential effects on
follicular cyst in sheep, however, the precise mechanism of the
two bacterial taxa in cyst development and cyst maintenance
warrants further studies.

Alterations of Serum Metabolites in Ewes
With Follicular Cyst or Normal Follicle
The serum metabolome profile of ewes with follicular cyst or
normal follicle were found to be different using LC-MS/MS
metabolomics analysis in our study. Alterations of serum
compounds belonging to lipids and lipid-like molecules, organic
acids and derivatives, organic oxygen compounds, benzenoids,
phenylpropanoids and polyketides, and organoheterocyclic
compounds were highlighted between follicular cyst and normal
follicle ewes. Furthermore, according to the OPLS-DA model
and VIP values, several metabolites are suggested as potential
biomarkers or key metabolites to indicate the metabolic basis of
follicular cysts development and maintenance in sheep.

PCOS was considered to be associated with turbulence of lipid
metabolism in females (RoyChoudhury et al., 2016). As shown in
Figure 6B and Supplementary Table 1, compounds annotated
to lipids and lipid-like molecules were the most dominantly
altered metabolites in follicular cyst ewes, according to HMDB
database classification in our study. Linoleic acid (C18:2, n-6) is
a common fatty acid in plasma and in granulosa cells in sheep,
which is an essential fatty acid for arachidonic acid (C20:4, n-
6) and eicosanoids synthesis (Mattos et al., 2000; Wonnacott
et al., 2010). Linoleic acid inhibited oocyte maturation in cattle
both in vivo and in vitro (Homa and Brown, 1992; Marei et al.,
2010). However, in sheep, linoleic acid had an inhibitory effect on
embryo development in vitro (Amini et al., 2016).

3,4-dimethyl-5-pentyl-2-furannonanoic acid, furan fatty acids
with pentyl side chain, was produced from linoleic acid (Batna
et al., 1993), and had a capacity to confront the intracellular
negative effects consequences resulting from oxidative stress
(Teixeira et al., 2013). The effect of 3,4-dimethyl-5-pentyl-2-
furannonanoic acid on follicular cyst in sheep is still unknown
and requires further studies.
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Amino acids and their metabolic intermediates are of
huge influence on anabolism and metabolic pathways.
A disequilibrium of normal amino acid levels could trigger
pathophysiological changes causing of infertility (Wu, 2009).
In PCOS patients, serum levels of two amino acids, including
proline and histidine, were reported to be down-regulated,
compared with healthy controls (Atiomo and Daykin, 2012;
Unni et al., 2015; RoyChoudhury et al., 2016). Proline and
histidine were demonstrated to have negative association with
inflammation and oxidative stress (Niu et al., 2012). Low
levels of proline and histidine in PCOS patients might be
a result of an increased utilization of proline and histidine
to counteract oxidative stress during follicular cysts (Unni
et al., 2015). Therefore, strategies to increase the levels
of proline and histidine are anticipated to counteract the
disorders caused by inflammation and oxidative stress during
follicular development.

Indoleacetic acid, an organoheterocyclic compounds, is a
major degradation product of L-tryptophan (an essential amino
acids for ruminant animals), found in ruminal bacteria, as well as
in blood and in several tissues in sheep and goats (Mohammed
et al., 2003; Andrade et al., 2005). In ovarian tissues, indoleacetic
acid was suspected to bind to growth factors (Ferreira et al., 2001),
consequently improving the enzyme activity of the peroxidases
during lipid peroxidation (Candeias et al., 1995). An in vitro
study showed that lower concentration of indoleacetic acid
improved follicle development, while higher doses demonstrated
cytotoxicity in the absence of follicle-stimulating hormone (FSH)
(Costa et al., 2010). In the present study, high abundance
of indoleacetic acid likely had a negative effect on normal
follicle development.

Correlation Between Fecal Bacterial
Communities and Serum Metabolites in
Ewes
Potential mechanisms of follicular cyst development may include
circulating lipid and amino acid levels, affected by gut microbial
composition. Little is known about the relationship between
Anaerosporobacter and fatty acid absorption and metabolism.
In the present study, positive correlations were identified
between Anaerosporobacter and six serum compounds including
6-deoxohomodolichosterone, 3-(acetyloxy)-2-hydroxypropyl
icosanoate, 3,4-dimethyl-5-pentyl-2-furanpentadecanoic acid,
indoleacetic acid, asparaginyl-alanine, and D-pipecolic acid.
Negative correlations were found between Bacteroides and
L-proline and 3-indolepropionic acid. Changed abundance of
Anaerosporobacter in fecal bacterial community and fatty acid
composition in blood had been proved to associate with artery
function (Toya et al., 2020; Samson et al., 2021). Coccidiosis,
a disease due to Eimeria infection, was characterized by an
increased abundance of Bacteroides and a decreased serum
concentration of histidine and proline in mice (Huang et al.,
2018). Alterations of gut microbiota and serum metabolome
and their correlations could better explain the formation and
maintenance of follicle cysts in ewes. Nevertheless, the causes of
sheep follicular cyst were found by statistical analysis of omics

data and from a relatively small number of samples. Further
studies with evaluation the effects of microbiology or/and
metabolites identified in the present study on ewe follicular cyst,
and with larger size samples, are desired to validate our findings.

CONCLUSION

To conclude, we found correlations between the gut microbiome
composition and various circulating metabolites in relation
to follicle cyst development in ewes, suggesting complex
interactions between gut microbiota, serum metabolome, and
ovarian follicle dysfunction. Ewes’ follicular cyst development
may be affected by three pathways: (1) a high intestinal
abundance of Bacteroides, Anaerosporobacter and Angelakisella;
(2) accumulation of organic acids and derivatives (such as
D-pipecolic acid, asparaginyl-alanine, fumonisin B3) and lipids
and lipid-like molecules (linoleic acid, 2-hydroxyhexadecanoic
acid, 3,4-dimethyl-5-pentyl-2-furanpentadecanoic acid) in
serum; and (3) a respective interactions of fecal microbiota and
serum metabolites. A bacteria-metabolite multilayer can enhance
our comprehension of the metabolite pathways significantly
associated to the microbial communities of follicular cysts in
sheep. Based on the present multi-omics study, further studies
are needed to verify the results.
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Probiotics Bacillus licheniformis
Improves Intestinal Health of
Subclinical Necrotic
Enteritis-Challenged Broilers
Liugang Kan†, Fangshen Guo†, Yan Liu, Van Hieu Pham, Yuming Guo and Zhong Wang*

State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing,
China

Necrotic enteritis infection poses a serious threat to poultry production, and there is an
urgent need for searching effective antibiotic alternatives to control it with the global ban
on in-feed antibiotics. This study was conducted to investigate the effects of dietary
Bacillus licheniformis replacing enramycin on the growth performance and intestinal
health of subclinical necrotic enteritis (SNE)-challenged broilers. In total, 504 1-day-
old Arbor Acres male chickens were selected and subsequently assigned into three
treatments, including PC (basal diet + SNE challenge), PA (basal diet extra 10 mg/kg
enramycin + SNE challenge), and PG (basal diet extra 3.20 × 109 and 1.60 × 109 CFU
B. licheniformis per kg diet during 1–21 days and 22–42 days, respectively + SNE
challenge). Results showed that B. licheniformis significantly decreased the intestinal
lesion scores and down-regulated the Claudin-3 mRNA levels in jejunum of SNE-
infected broilers on day 25, but increased the mucin-2 gene expression in broilers
on day 42. In addition, B. licheniformis significantly up-regulated the mRNA levels
of TRIF and NF-κB of SNE-challenged broilers compared with the control group on
day 25 and TLR-4, TRIF compared with the control and the antibiotic group on
day 42. The mRNA expression of growth factors (GLP-2 and TGF-β2) and HSPs
(HSP60, HSP70, and HSP90) were up-regulated in B. licheniformis supplementary
group on days 25 and 42 compared with group PC. LEfSe analysis showed that
the relative abundance of Lachnospiraceae_UCG_010 was enriched in the PG group;
nevertheless, Clostridiales_vadinBB60 and Rnminococcaceae_NK4A214 were in PA.
PICRUSt analysis found that the metabolism of cofactors and vitamins, amino acid
metabolism, and carbohydrate metabolism pathways were enriched, whereas energy
metabolism, membrane transport, cell motility, and lipid metabolism were suppressed in
B. licheniformis-supplemented groups as compared with the PC control. In conclusion,
dietary supplementation of B. licheniformis alleviated the intestinal damage caused by
SNE challenge that coincided with modulating intestinal microflora structure and barrier
function as well as regulating intestinal mucosal immune responses.

Keywords: subclinical necrotic enteritis, Bacillus licheniformis, intestinal health, immune response, microflora,
broiler chicken
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INTRODUCTION

Necrotic enteritis (NE) is an intestinal bacterial disease in poultry
caused by Clostridium perfringens infection and annually costs
up to six billion US dollars in production globally (Wade
and Keyburn, 2015). C. perfringens is a spore-forming, strictly
anaerobic Gram-positive bacterium which could produce up to
17 kinds of toxins (Parish, 1961). According to the secreted
toxins, C. perfringens can be divided into five types: types
A, B, C, D, and E. NE was caused by C. perfringens type
A and/or C infection (Engström et al., 2003; Prescott et al.,
2016). NE is typically divided into clinical NE and subclinical
NE. Clinical NE usually exhibits mass death with a mortality
rate up to 50% and causes intestinal ulcer erosion, bloody
feces, and so on (Lee et al., 2011; Alnassan et al., 2014).
However, SNE leads to mild intestinal damage in the flock,
resulting in inappetence, malabsorption, poor digestion, and
further impaired growth performance with a mortality generally
less than 5% (Timbermont et al., 2011). Therefore, chronic
intestinal mucosal damage in SNE-infected broilers causes more
serious economic losses than clinical NE infections due to the
difficulty in detection. Previous studies have demonstrated that
NE infection is usually accompanied by intestinal lesions in
broilers, disorders in intestinal microflora (Latorre et al., 2018),
intestinal inflammation (Collier et al., 2008; Park et al., 2008),
and damages of intestinal tight junction and mucus barrier in
broilers (Golder et al., 2011; Forder et al., 2012; Guo et al.,
2014). Therefore, modulation on intestinal health may be a great
strategy to control NE infection in broiler.

In the post-antibiotic era, apart from plant extracts (Abudabos
et al., 2017; Yin et al., 2017), organic acids (Song et al., 2017),
polysaccharides (Tian et al., 2016), and vaccines (Mishra and
Smyth, 2017), probiotics had been demonstrated to be an effective
measure to promote animal growth (Khan and Naz, 2013;
Mingmongkolchai and Panbangred, 2018). Evidences indicated
that probiotics were one of the effective methods to prevent
SNE infection in poultry for its protection on intestinal health
(Venessa et al., 2016; Wang Y. et al., 2017). Bacillus licheniformis
is a Gram-positive bacterium and characterized by high
temperature and stress resistance. Previous studies had found
that B. licheniformis could produce a variety of biologically active
substances, such as digestive enzymes, lysozyme, bacteriocin,
and antibacterial peptides, which promote animal performance
by improving feed digestibility, stimulating the development of
immune system, enhancing intestinal mucosal barrier function,
inhibiting the colonization of pathogenic bacteria, promoting
the proliferation of potentially beneficial microorganisms, and
maintaining the balance of intestinal microflora (Rozs et al.,
2001; Kim et al., 2004; Zhou et al., 2016). For example, Wang Y.
et al. (2017) reported that B. licheniformis up-regulated the
gene expression of tight junction proteins (TJP) and mucin-
2 in laying hens, thus maintaining the intestinal mechanical
barrier and reducing intestinal permeability. Other research
noted that probiotics Bacillus spp. strengthened host intestinal
mucosal immunity through increasing the mRNA expression
levels of TLRs, associated downstream adaptor proteins, and
NF-κB in broiler chickens (Rajput et al., 2017), up-regulating

the mRNA levels of cytokines and sIgA (Baikui et al., 2016).
In addition, diets supplemented with B. licheniformis could
also modulate the composition and structure of intestinal
microbiota in broiler chickens challenged with NE (Lin et al.,
2017; Xu et al., 2018). Some researchers have confirmed that
probiotics Bacillus spp. as feed additives had achieved promising
results in preventing and controlling NE infection in poultry
(Jayaraman et al., 2013; Zhou et al., 2016; Wu et al., 2018).
However, probiotic strains differ regarding their properties
and clinical effects that they elicit; these differences are even
observed when the strains belong to the same bacterial species.
Therefore, the aim of this study was to explore whether
B. licheniformis could alleviate the SNE infection similar to
enramycin and reveal its action mechanism by determining
intestinal barrier function, the immune responses as well as
intestinal microflora.

MATERIALS AND METHODS

Experimental Animals, Diets, and
Treatments
A total of 504 1-day-old male Arbor Acres chicks with an
average weight at 43.9 g (SD 0.87) were purchased from
Beijing Arbor Acres Poultry Breeding Company (Beijing, China).
On arrival, chicks were weighed and randomly assigned to
three groups. Each group contained 12 replicates with 14
birds per replicate. Each replicate was reared in a separate
isolator (240 × 60 × 60 cm3). The treatment groups were
as follows: (1) positive control group (PC, basal diet + SNE
infection); (2) antibiotic group (PA, basal diet extra 10 mg/kg
enramycin + SNE infection); (3) B. licheniformis-treated group
(PG, basal diet extra 3.20 × 109 CFU B. licheniformis per kg
diet [days 1–21], 1.60 × 109 CFU B. licheniformis per kg diet
[days 21–42] + SNE infection). B. licheniformis used in this
study was provided by Chr. Hansen Co., Ltd. (Denmark) at a
density of 3.20 × 109 CFU/g. Antibiotic-free and coccidiostat-
free corn–soybean meal basal diets were formulated according
to National Research Council (1994) requirements for starter
(days 1 to 21) and grower (days 22 to 42) periods. The
composition and nutrient levels of the basal diet are presented
in Table 1. The experimental diet was formulated by mixing
the basal diet with B. licheniformis to reach 3.20 × 109

and 1.60 × 109 CFU/kg of diet in the starter and grower
periods, respectively. To ensure the homogeneity of the additives,
approximately 5 kg of the basal diet mixed with the additive
was thoroughly mixed using a plastic bucket. Starter diets
were pelleted and crumbled, whereas grower diets were just
pelleted. All birds were reared in a farm and fed ad libitum and
allowed to access water freely throughout the entire experimental
period. Room temperature was maintained at 33◦C during
first 5 days and then gradually decreased by 2◦C weekly
until a final room temperature of 24◦C was reached. Artificial
light was provided in a 23 h light/1 h dark program. In
addition, all birds were immunized with Newcastle disease virus
vaccine plus infectious bronchitis virus vaccine via drinking
water on day 21.
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Experimental Induction of SNE
Avian C. perfringens type A strain CVCC2030 (China Veterinary
Culture Collection Center, Beijing, China) was used for
infection in this study. C. perfringens was anaerobically cultured
in thioglycolate broth for 24 h at 37◦C, then aseptically
transferred into a cooked meat medium (CM605; Beijing
Land Bridge Technology Co., Ltd.) supplemented with dried
meat particles (CM607; Beijing Land Bridge Technology
Co., Ltd.) and iron powders (Shanghai Kefeng Industry
& Commerce Co., Ltd.) and incubated anaerobically for
18 h at 37◦C. Establishment of SNE model in broilers
referenced Wu et al. (2018) with little modifications.
Briefly, each bird in this study was orally gavaged with
12,000 Eimeria maxima oocysts (College of Veterinary
Medicine, China Agricultural University, Beijing, China) at
12 days of age, and subsequently with 1 ml of C. perfringens
(1 × 109 CFU/ml) once a day during days 17 to 23 to
establish the SNE model.

Growth Performance
On days 21 and 42, the body weight (BW) and feed intake
of each replicate were recorded. Then the average gain

TABLE 1 | Composition and nutrient levels of the basal diets.

Items Weeks 0–3 Weeks 4–6

Ingredient, %

Corn (CP 7.8%) 37.15 55.33

Wheat middlings 0 5.00

Wheat 20.00 0

Soybean meal (CP 46.8%) 34.00 31.00

Soybean oil 4.80 5.00

Limestone 0.90 0.70

Dicalcium phosphate 2.00 2.00

DL-Methionine, 98% 0.23 0.19

L-Lysine sulfate, 78% 0.15 0.10

Sodium chloride 0.30 0.30

Ethoxyquinoline, 33% 0.05 0.05

Choline chloride, 50% 0.24 0.15

Vitamin premixa 0.03 0.03

Mineral premixb 0.15 0.15

Total 100 100

Nutrient levels

Metabolizable energy, Mcal/kg 3.03 3.10

Crude protein, % 21.77 19.80

Calcium, % 1.06 0.95

Non-phytate, % 0.45 0.42

Lysine, % 1.23 1.10

Methionine, % 0.52 0.46

Met + Cys, % 0.83 0.74

aVitamin premix provided per kilogram of complete diet: vitamin A 12,500 IU;
vitamin D3 2500 IU; vitamin E 30 IU; vitamin K3 2.65 mg; vitamin B12 0.025 mg;
biotin 0.0325 mg; folic acid 1.25 mg; nicotinic acid 50 mg; pantothenic acid 12 mg;
riboflavin 6 mg; thiamine mononitrate 2 mg.
bMineral premix provided per kilogram of complete diet: iron 80 mg; copper 8 mg;
manganese 100 mg; zinc 75 mg; iodine 0.35 mg; selenium 0.15 mg.

(AG), feed intake (FI), and feed conversion ratio (FCR) were
calculated for days 1–21, 22–42, and 1–42, respectively. Death
of birds in each replicate was recorded daily and was used for
determining the mortality.

Intestinal Lesion Score and Sample
Collection
On days 25 and 42, one bird per replicate was randomly
selected, weighed, and euthanized by jugular exsanguination.
The middle segments of jejunum (approximately 1 cm) were
cut off carefully and gently rinsed with ice-cold sterile saline
to remove internal digesta. Subsequently, the jejunum segments
were fixed in 4% paraformaldehyde immediately for further
morphology analysis. Another jejunum sample was collected
and washed, then frozen in liquid nitrogen immediately and
stored at −80◦C for the subsequent gene expression analysis.
Liver and cecal digesta samples were put into sterile tubes,
snap-frozen in liquid nitrogen, and transferred to −80◦C. Liver
samples were used to determine microbial translocation, while
cecal samples were used to determine bacterial populations,
short-chain fatty acid (SCFA) contents, and DNA extraction.
The duodenum, jejunum, and ileum of each bird were
cut longitudinally and scored 0 (none) to 4 (severe) for
NE gut lesions by three independent observers blindly as
previously described by Gholamiandehkordi et al. (2007) with
some modifications.

The scoring criteria are as follows: 0 = no obvious lesions;
1 = thin and friable intestine with hemorrhagic spots (1–5
foci); 2 = small gas production and focal necrosis or ulceration
(hemorrhagic spots 6–15); 3 = gas-filled intestine and patches of
necrosis 1 to 2 cm long; 4 = diffuse necrosis with great amounts
of gas in the intestine.

Bacterial Population of Cecal Digesta
and Liver Bacterial Translocation
Quantification of bacterial population in cecal digesta (or
liver) was done with techniques as previously described (Wu
et al., 2018). Briefly, approximately 1 g of each sample was
diluted with 9 ml ice-cold sterile buffered peptone water
(CM201; Land Bridge Technology Ltd.) and homogenized.
The homogenized suspension of each sample was serially
diluted up to 10−7, then 100 µl of each dilution was plated
on selective ager plates for bacterial quantification. Each
sample was plated in duplicate. Commercial media were used
for cultivation of C. perfringens (tryptose–sulfite–cycloserine
agar, TSC, CM 138; Beijing Land Bridge Technology Co.,
Ltd.), coliform bacteria (Eosin–Methylene Blue Agar, EMB,
CM105; Beijing Land Bridge Technology Co., Ltd.) and lactic
acid bacteria (de Man, Rogosa, and Sharpe agar, MRS, CM
188; Land Bridge Technology Co., Ltd.). C. perfringens and
lactic acid bacteria were incubated anaerobically for 48 h
at 37◦C, while coliform bacteria were incubated aerobically
for 24 h at 37◦C. The number of colony-forming units was
expressed as a logarithmic transformation per gram of cecal
digesta (or liver).
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Intestinal Morphology Observation and
Analysis
Fixed jejunum tissues were embedded in paraffin, then sliced
into 5-µm thickness, deparaffinized in xylene, rehydrated, and
mounted on glass slides. Periodic acid–Schiff (PAS) stain was
used to stain the sections for determining the number of goblet
cells, whereas H&E stain was used for villous morphology
measurement. Five intact villi in every slide were chosen for
measurement of goblet cells, villus height (VH), and crypt depth
(CD) with Image-pro plus 6.0 (Media Cybernetics, Inc., Rockville,
MD, United States) at ×40 magnification. The means of villus
height and crypt depth were calculated and subsequently were
used to obtain the VH/CD.

Gene Expression in Jejunum
Extraction of total RNA in jejunum was performed using
Trizol reagent (Invitrogen Life Technologies, Carlsbad, CA,
United States) according to the manufacturer’s instructions.
The concentration and purity of total RNA were determined
by using a NanoDrop-2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, United States). Then, complementary
DNA (cDNA) was synthesized by using Primer Script RT Reagent
kit (Takara Bio Inc.) according to the manufacturer’s instructions.
Using the synthesized cDNA as a template, quantitative real-
time PCR (qRT-PCR) was performed in Applied Biosystems’
7500 Fast Real-Time PCR System with SYBR Premix Ex Taq
kit (Takara Bio Inc.) in accordance with the manufacturer’s
guidelines. Thermocycling protocol was as follows: 95◦C for 30 s,
followed by 40 cycles of 95◦C for 5 s and 60◦C for 34 s for
denaturation and annealing/extension, respectively. The purity
and specificity of PCR products were determined by melt curve
analysis. All data were analyzed using the 2−11Ct method,
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
β-actin were used to normalize the relative mRNA levels (Livak
and Schmittgen, 2001). All samples (n = 6) from each group on
days 25 and 42 were done in triplicate. Target genes include TJP
genes (Occludin, Claudin-1, Claudin-3, Zonula occludens-1[ZO-
1], mucin-2), TLR signal pathway-related genes (TLR-4, TLR-2,
TRIF, MyD88, NF-κB, IL-1β, IL-10, IL-17, IFN-γ, TNF-α), heat
shock protein genes (HSP60, HSP70, HSP90), and growth factor
genes (IGF-2, GLP-2, TGF-β2). Primers of target genes used in
this study are presented in Supplementary Tables 1, 2.

SCFA Concentration in Cecal Content
A total of 0.5–1.0 g cecal digesta from day 42 sample was
weighed and put into a 10-ml polypropylene tube with 8 ml
deionized water, then an ultrasonic bath was performed for
30 min, the suspension subsequently was centrifuged at 8000 rpm
for 10 min. The supernatant was collected and diluted 10-
fold, and then filtered with a 0.22-µm filtrator. Next, 25 µl
of filtered solution was subjected to high-performance ion
chromatography system (ICS-3000; Dionex, United States) for
conductivity detection analysis. Organic acids were separated on
an AS11 analytical column (250 × 4 mm2) and an AG11 guard
column under the following gradient conditions (the gradient

was based on potassium hydroxide): 0–5 min, 0.8–1.5 mM; 5–
10 min, 1.5–2.5 mM; and 10–15 min, 2.5 mM; the flow rate was
1.0 ml/min. The results of SCFAs were expressed as milligrams
per kilogram of digesta.

Microbial DNA Extraction, 16S rRNA
Gene Amplification, Sequencing, and
Bioinformatics Analysis
Bacterial DNA extraction of day 25 cecal digesta was performed
by using PowerSoil DNA Isolation Kit (ANBIOSCI Tech Ltd.,
United States) according to the manufacturer’s instructions.
Integrity of DNA was appraised by agarose gel electrophoresis,
then the qualified DNA was used as template for the V3–V4
region of bacterial 16S rRNA gene amplification with barcoded
primer pair 338F: 5′-ACTCCTACGGGAGGCAGCA-3′ and
806R: 5′-GGACTACHVGGGTWTCTAAT-3′. The KAPA HiFi
Hotstart ReadyMix PCR kit (Kapa Biosystems, United States)
was used in the PCR amplification and the procedures were
as follows: 98◦C for 2 min (1 cycle), 98◦C for 30 s/50◦C for
30 s/72◦C for 1 min (25 cycles), and finally 72◦C lasts for
5 min. The amplification products were determined by 2%
agarose gel and purified with AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, United States).
Amplicon libraries were sequenced on Illumina HiSeq 2500
platform (Illumina, San Diego, CA, United States) at Biomarker
Technologies Co., Ltd. (Beijing, China). The sequencing data
were merged using FLASH (version 1.2.11) to get raw tags.
Raw tags were then subjected to filtration (Trimmomatic,
version 0.33) and chimera sequences removed (UCHIME,
version 8.1) to obtain effective tags. UCLUST (Edgar, 2010)
was used to cluster effective tags into operational taxonomic
units (OTUs) at a similarity level of 97% with QIIME software
(version 1.8.0) (Caporaso et al., 2010). Afterward, basing on
the Silva taxonomic database, OTUs were annotated. Venn
diagram, rarefaction curve, and bacteria relative abundance
were created with R software (version 2.15.3). Alpha diversity,
including ACE, Chao1, Simpson, and Shannon index, were
investigated by Mothur (version 1.30), and the significance
of these items was determined using a Mann–Whitney U
test. β Diversity was calculated from binary_jaccard distance
(PERMANOVA/ANOSIM analysis) in QIIME software. A two-
sided Student’s t-test was used to determine the significance of
the differences between groups. Line discriminant analysis (LDA)
effect size (LEfSe1) (Segata et al., 2011) tool was used to determine
statistically different biomarkers between groups (LDA value: 2)
based on the taxonomic files obtained from the QIIME analysis.
The raw sequences used in our study had been uploaded at the
Sequence Read Archive of the National Center for Biotechnology
Information, with the study accession number PRJNA574872.
The functions of the cecum metagenomes were predicted
using PICRUSt (Phylogenetic investigation of communities by
reconstruction of unobserved states) analysis based on high-
quality sequences (Langille et al., 2013).

1http://huttenhower.sph.harvard.edu/lefse/
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Statistical Analysis
All results were displayed as means ± SEM. Statistical
significance of growth performance, intestinal lesion scores,
bacterial population, intestinal morphology, gene expression, and
SCFA content were determined by one-way ANOVA, followed
by Duncan’s multiple comparison test (SPSS, version 20.0,
Chicago, IL, United States). Kruskal–Wallis test was employed to
analyze the difference in bacterial relative abundance. Significant
difference was declared when P < 0.05.

RESULTS

Growth Performance
We measured four indexes concerning broiler chickens’
productivity as shown in Table 2. There was no significant
difference in BW, AG, FI, and FCR between groups, while
numerically higher BW, AG, and lower FCR were observed in PA
and PG groups when compared with PC group at days 21–42 and
days 1–42, and the value of those indexes of PA and PG group
were close to each other. There was no significant difference in
mortality among groups.

Small Intestine Lesion Scores and
Jejunum Morphology
As shown in Table 3, lesion scores of duodenum and small
intestine in PG group were significantly lower than those in
PC and PA group and jejunum lesion score in PG group was

TABLE 2 | Effects of B. licheniformis and enramycin on growth performance of
broilers challenged with SNE.

Items PC PA PG SEM P values

Days 1–21

BW (g/bird) 641 652 640 5.7 0.623

AG (g/bird) 598 609 597 5.7 0.624

FI (g/bird) 856 866 853 6.4 0.694

FCR 1.43 1.42 1.43 0.005 0.631

Mortality (%) 0.00 1.19 0.60 0.439 0.555

Days 21–42

BW (g/bird) 2346 2394 2395 11.1 0.103

AG (g/bird) 1705 1734 1753 10.8 0.178

FI (g/bird) 2996 2991 3036 14.4 0.384

FCR 1.76 1.73 1.73 0.008 0.221

Mortality (%) 1.19 1.19 0.60 0.418 0.807

Days 1–42

BW (g/bird) 2346 2394 2395 11.1 0.103

AG (g/bird) 2303 2351 2352 11.1 0.103

FI (g/bird) 3852 3865 3892 16.8 0.614

FCR 1.67 1.64 1.65 0.006 0.101

Mortality (%) 1.19 2.38 1.19 0.577 0.636

Data are presented as means ± SEM (n = 12; cage was used as experimental
unit). PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet
extra B. licheniformis + SNE.
BW, body weight; AG, average gain; FI, feed intake; FCR, feed
conversion rate (FI/AG).

TABLE 3 | Effects of B. licheniformis and enramycin on intestinal lesion scores of
broilers challenged with SNE.

Items PC PA PG SEM P values

Day 25

Duodenum 1.13a 1.08a 0.38b 0.081 0.000

Jejunum 0.75ab 1.04a 0.67b 0.060 0.022

Ileum 0.29 0.38 0.08 0.061 0.097

Small intestine 2.17a 2.50a 1.13b 0.927 0.000

Day 42

Duodenum 0.58 0.42 0.50 0.049 0.378

Jejunum 0.29 0.29 0.25 0.051 0.856

Ileum 0.04 0.00 0.13 0.027 0.147

Small intestine 0.92 0.71 0.88 0.080 0.541

Data are presented as means± SEM (n = 12; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).

TABLE 4 | Effects of B. licheniformis and enramycin on jejunal morphology of
25-day-old broilers challenged with SNE.

Items PC PA PG SEM P values

Goblet cells 194.8a 149.5b 204.6a 8.196 0.005

VH (µm) 706.8 692.3 738.1 30.014 0.828

CD (µm) 180.5 191.8 196.4 6.964 0.953

VH/CD 4.12 3.65 3.68 0.159 0.459

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).
Goblet cells, the number of goblet cells on a villus; VH, villus height;
CD, crypt depth.

lower than PA group on 2 days post-infection (DPI) (P < 0.05).
Similarly, there was a tendency that lesion scores of ileum in
PG were lower than in PC and PA groups (0.05 < P < 0.1).
In addition, lesion scores of duodenum, jejunum, and small
intestine in PA group were comparable with PC group. At
42 days of age (19 DPI), no significant difference was detected
of intestinal lesion scores in the three experiment groups. We
also investigated the jejunum morphology of broilers at 2 DPI
(Table 4). It was found that the number of goblet cells were
significantly decreased in PA group compared with PC and
PG group (P < 0.05). However, the jejunum villus height
(VH), crypt depth (CD), and VH/CD values were not changed
significantly among groups.

Cecal Bacterial Population and Liver
Clostridium perfringens Translocation
Table 5 shows the results of cecal bacterial population and
liver C. perfringens translocation. At 25 days of age (2 DPI),
SNE-infected birds fed diets supplemented with enramycin
exhibited significantly reduced population of C. perfringens in
cecum and liver in contrast to that in PC and PG groups
(P < 0.05). However, probiotic supplementation failed to
decrease the population of C. perfringens in both cecum and
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TABLE 5 | Effects of B. licheniformis and enramycin the amounts of bacteria (lg
CFU/g1) in cecal digesta of broilers challenged with SNE.

Items PC PA PG SEM P values

Day 25

Cecal digesta Clostridium perfringens 4.62a 1.75b 4.11a 0.423 0.004

Escherichia coli 6.67 7.51 6.52 0.229 0.166

Lactobacillus 10.15 9.83 9.48 0.222 0.495

Liver Clostridium perfringens 1.56a 0.17b 1.46a 0.233 0.011

Day 42

Cecal digesta Clostridium perfringens 1.24 1.53 0.90 0.270 0.657

Escherichia coli 6.75b 7.73a 6.83b 0.154 0.007

Lactobacillus 8.69 8.16 8.26 0.178 0.469

Liver Clostridium perfringens 0.38 0.17 0.27 0.127 0.804

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).
1 lg CFU/g, log 10 colony-forming units per gram of cecal digesta.

liver. Furthermore, no significant differences were observed in
Escherichia coli and Lactobacilli population in cecum between
PC, PA, and PG groups. At 42 days of age, the cecal
Escherichia coli population in the PA group was significantly
higher than that in the PC and PG groups (P < 0.05).
Similarly, the difference between PG and PC group was not
statistically significant.

Jejunal Tight Junction Protein Gene and
Mucin Gene Expression
As depicted in Table 6, the expression of Claudin-3 in the
jejunum of SNE-infected chickens fed with B. licheniformis was
lower than that in the PC group at day 25 (P < 0.05), but
no significant difference was seen between PG and PA group.
Only a downtrend of Claudin-3 levels was detected in PA group
when compared with PC group. At 42 days of age, Claudin-3
mRNA levels in PA group were significantly up-regulated when
compared with the PC and PG groups (P < 0.05). Besides, a
tendency was detected that the ZO-1 expression of PA and PG
group was higher than PC group (0.05 < P < 0.1). Similar
with the results of the number of goblet cells on villus, mucin-
2 expression levels in the PA and PG groups were significantly
increased when compared with the PC group at day 42 (P< 0.05).
Moreover, the gene expression of mucin-2 in the PG group was
much higher than that in the antibiotic supplemented group
(P < 0.05).

Jejunal Toll-Like Receptors Signaling
Pathway and Immune-Related Cytokine
Gene Expression
Table 7 presents the results of jejunal TLRs signaling pathway
and immune-related cytokine gene expression in broilers. On

TABLE 6 | Effects of B. licheniformis and enramycin on tight junction protein and
mucin-2 gene expression in jejunum of broilers challenged with SNE.

Items PC PA PG SEM P values

Day 25

Occludin 1.03 0.82 0.83 0.048 0.128

Claudin-1 1.08 1.05 0.87 0.081 0.555

Claudin-3 1.01a 0.87b 0.72b 0.045 0.026

ZO-1 1.02 1.18 0.93 0.059 0.239

Mucin-2 1.01 0.94 1.01 0.036 0.677

Day 42

Occludin 1.02 1.13 1.12 0.049 0.629

Claudin-1 1.03 1.04 0.90 0.051 0.505

Claudin-3 1.01b 1.48a 1.10b 0.073 0.008

ZO-1 1.01 1.22 1.23 0.044 0.064

Mucin-2 1.04c 1.79b 2.80a 0.202 0.000

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).
ZO, zonula occludens.

TABLE 7 | Effects of B. licheniformis and enramycin on TLR signal
pathway-related gene expression in jejunum of broilers challenged with SNE.

Items PC PA PG SEM P values

Day 25

TLR-4 1.02 1.35 1.29 0.077 0.174

TLR-2 1.02 1.21 1.18 0.077 0.592

TRIF 1.00b 1.24a 1.33a 0.045 0.002

MyD88 1.07 1.17 0.88 0.067 0.227

NF-κB 1.01b 1.52a 1.42a 0.080 0.012

IL-1β 1.11 1.85 1.66 0.218 0.378

IL-10 1.07 1.19 0.90 0.094 0.475

IL-17 1.10b 2.72a 1.40b 0.262 0.021

IFN-γ 1.05 1.12 1.05 0.089 0.932

TNF-α 1.02 1.37 1.35 0.074 0.084

Day 42

TLR-4 1.02b 1.04b 1.52a 0.075 0.002

TLR-2 1.05 0.84 1.10 0.068 0.299

TRIF 1.02b 0.76c 1.30a 0.061 0.000

MyD88 1.01 1.09 0.98 0.045 0.590

NF-κB 1.04b 1.16b 1.48a 0.072 0.024

IL-1β 1.03ab 0.61b 1.17a 0.097 0.039

IL-10 1.07 0.74 1.04 0.092 0.276

IL-17 0.98a 0.45b 0.99a 0.097 0.016

IFN-γ 1.03 0.85 0.96 0.055 0.445

TNF-α 1.04 1.13 1.35 0.066 0.151

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).

day 25, dietary antibiotics and B. licheniformis significantly up-
regulated the mRNA levels of TRIF and NF-κB in jejunum
of SNE-infected broiler chickens compared with the PC group
(P < 0.05). Moreover, the mRNA expression level of IL-17
gene was significantly up-regulated in the PA group than that
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TABLE 8 | Effects of B. licheniformis and enramycin on recovery protein gene
expression in jejunum of broilers challenged with SNE.

Items PC PA PG SEM P values

Day 25

HSP60 1.04b 1.24b 2.53a 0.183 0.000

HSP70 1.03 1.17 1.19 0.046 0.309

HSP90 1.01c 1.83b 2.51a 0.177 0.000

IGF-2 1.04b 1.65a 1.05b 0.102 0.010

GLP-2 1.04b 1.81a 2.22a 0.175 0.010

TGF-β2 1.02b 1.65a 1.37ab 0.097 0.018

Day 42

HSP60 1.03b 1.13b 1.58a 0.075 0.001

HSP70 1.01b 0.95b 1.37a 0.055 0.000

HSP90 1.02b 0.65c 1.37 0.083 0.000

IGF-2 1.04 1.13 1.47 0.093 0.141

GLP-2 1.09b 1.34b 1.83a 0.108 0.011

TGF-β2 1.02b 1.24b 1.65a 0.081 0.001

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).
HSP, heat shock protein; IGF, insulin-like growth factors; GLP, glucagon-
like peptide.

in the PC and PG groups (P < 0.05). On day 42, jejunal
mRNA expression levels of TLR-4, TRIF, and NF-κB were
significantly increased in the PG group when compared with
the PC and PA groups (P < 0.05). Interestingly, birds fed diet
supplemented with antibiotics had significantly lower IL-17 and
TRIF mRNA levels in contrast to the PC group (P < 0.05). In
addition, supplementation of B. licheniformis also significantly
up-regulated IL-1β mRNA levels compared with the PA group
(P < 0.05).

Gene Expression of Jejunal Heat Shock
Proteins and Growth Factors
On day 25, when compared with the PC group, addition of
antibiotics in feed significantly up-regulated the relative gene
expressions of HSP90, IGF-2, GLP-2, and TGF-β2 in the jejunum
of SNE-infected broilers (P < 0.05, Table 8). Meanwhile, higher
mRNA levels of HSP60, HSP90, and GLP-2 were also detected in
the PG group when compared with the PC group (P < 0.05).
On day 42, dietary antibiotics had significantly lower mRNA
levels of HSP90 than that in PC group (P < 0.05), whereas
birds fed diets supplemented with B. licheniformis exhibited
significantly higher gene expression of HSP60, HSP70, HSP90,
GLP-2, and TGF-β2 when compared with the PC and PA groups
(P < 0.05).

Short-Chain Fatty Acids in Cecal Content
On day 42, we investigated the SCFA concentrations in cecal
content of SNE-infected broilers (Table 9). Significant changes
were only observed in the formic acid concentration between
groups. The concentration of formic acid in the PA and PG
groups were significantly increased compared with the PC group

TABLE 9 | Effects of B. licheniformis and enramycin on concentration of
short-chain fatty acids in cecal content of 42-day-old broilers (mg/kg).

Items PC PA PG SEM P values

Lactic acid 297.2 216.6 390.1 69.34 0.619

Formic acid 215.7b 276.1a 273.9a 12.74 0.027

Acetic acid 3958.7 3886.8 3737.9 138.68 0.822

Propionic acid 2467.9 1843.1 2091.2 135.81 0.170

Butyric acid 1584.2 1284.4 1415.1 97.46 0.480

Isobutyric acid 61.5 52.9 69.3 6.780 0.655

Valeric acid 121.7 101.7 125.1 6.547 0.305

Isovaleric acid 66.0 92.7 73.2 9.328 0.508

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).

TABLE 10 | Effects of B. licheniformis and enramycin on alpha diversity of cecal
microbiota of 25-day-old broilers challenged with SNE.

Items PC PA PG SEM P values

ACE 417.1 365.8 393.1 15.123 0.407

Chao1 423.6 384.7 397.5 19.036 0.280

Simpson 0.115 0.126 0.101 0.019 0.870

Shannon 3.46 3.21 3.40 0.167 0.746

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).

(P < 0.05), but no significant differences were detected between
PA and PG groups (P > 0.05).

Cecal Microbiome
A total of 1,440,717 pairs of reads were generated after
16S rRNA sequencing of 18 cecal digesta samples. Then, we
obtained 1,191,203 effective Tags after splicing, filtering, and
removal of chimeras, and an average of 66,178 effective Tags
were obtained from each sample. Based on 97% sequence
similarity, Tags were clustered into 510 OTUs, of which 475
OTUs were shared by three groups, and only 2, 4, and 1
OTUs were exclusive in PC, PA, and PG groups, respectively
(Supplementary Figure 1). Furthermore, the alpha diversity
analysis of cecal microbiota showed that no significant difference
in ACE, Chao1, Simpson, and Shannon index between groups
(P > 0.05 and Table 10).

The representative sequences of OTUs were annotated with
Silva database. Then we analyzed the bacterial composition
in phylum and genus level of samples. The most abundant
(top 6) phyla of bacteria are presented in Supplementary
Figure 2A. At the phylum level, the cecal microbiota was
dominated by Firmicutes, Bacteroidetes, Proteobacteria, and
Tenericutes, together accounting for over 99.7% of the total
sequences. However, no significant differences were detected
in those phyla between groups (P > 0.05, Table 11). The top
10 abundant bacteria in genus level were Faecalibacterium,
Lactobacillus, Barnesiella, [Ruminococcus]_torques_group,
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TABLE 11 | Effects of B. licheniformis and enramycin on relative abundances of
phyla in cecal microbiota of 25-day-old broilers challenged with SNE (%).

Items PC PA PG SEM P values

Firmicutes 72.68 72.41 86.55 3.751 0.203

Bacteroidetes 23.27 20.71 10.47 3.938 0.519

Proteobacteria 2.20 4.61 1.01 1.012 0.325

Tenericutes 1.68 1.84 1.70 0.388 0.805

Actinobacteria 0.12 0.44 0.26 0.094 0.805

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE.

TABLE 12 | Effects of B. licheniformis and enramycin on relative abundances of
genus in cecal microbiota of 25-day-old broilers challenged with SNE (%).

Items PC PA PG SEM P values

Faecalibacterium 11.29 10.89 17.44 2.955 0.366

Lactobacillus 6.38 15.43 5.75 4.093 0.414

Barnesiella 12.68 9.45 0.17 3.304 0.116

[Ruminococcus]_torques_group 5.67 5.34 8.33 1.024 0.587

Alistipes 5.21 3.58 8.60 1.462 0.399

Ruminococcaceae_UCG-014 5.57 4.27 6.67 0.817 0.484

uncultured_bacterium_f_Lachnospiraceae 3.95 4.60 5.13 0.762 0.738

uncultured_bacterium_f_Ruminococcaceae 5.58 4.10 3.71 0.601 0.444

Bacteroides 4.26 7.06 0.01 1.364 0.244

Megamonas 0.00 2.47 8.37 1.954 0.419

Data are presented as means ± SEM (n = 6; cage was used as experimental unit).
PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra
B. licheniformis + SNE. Means within a row lacking a common superscript differ
significantly (P < 0.05).

Alistipes, Ruminococcaceae_UCG-014, uncultured_bacte
rium_f_Lachnospiraceae, uncultured_bacterium_f_Rumi-noc
occaceae, Bacteroides, and Megamonas. The relative abundance of
Others and Unclassified bacterium were 36.0% (Supplementary
Figure 2B). Similarly, no significant differences were detected in
abundance of those genera between groups (P > 0.05, Table 12).
Then binary_jaccard algorithm for PERMANOVA/ANOSIM
analysis (Beta diversity box plot, Figure 1) was used to evaluate
differences in cecal bacterial community structure between
different groups. As shown in Figure 1, β diversity of the PC
group was significantly different from the PA and PG groups;
nevertheless, no significant differences were detected in β

diversity between the PA and PG groups.
LEfSe analysis was used to determine the statistically

different biomarkers between groups. As presented in Figure 2,
when compared with the PC group, Peptostreptococcaceae,
Intestinibacter, and Eisenbergiella were less abundant in the PA
group (Figure 2A); nevertheless, Lachnospiraceae_UCG_010
were enriched in the PG group when compared with group
PC (Figure 2B). Furthermore, Clostridiales_vadinBB60_group,
g_uncultured_bacterium_f_Clostridiales_vadinBB60_group,
Family_XIII_AD3011_group, and
Ruminococcaceae_NK4A214_group were more abundant in
the PG group in contrast to the PA group (Figure 2C).

Predicting the Function of Intestinal
Bacteria
PICRUSt analysis showed a significant functional gene difference
between group PC and PA or PG (Figure 3). We found
that six pathways were enriched in group PC and eight
pathways were in group PA and PG altogether. Besides, 10
pathways were enriched in group PA and 12 pathways in group
PA uniquely explaining the fact that the functional profiles
representing the microbial communities in group PA and PG
were relatively similar and different. Notably, metabolic pathways
were mostly common among the significantly differentially
represented pathways, which indicated the different metabolic
status between groups. Comparing with the group PA, energy
metabolism, amino metabolism, and cell motility were enriched
in the PC group (P < 0.01, Figure 3A), whereas carbohydrate
metabolism, nucleotide metabolism, xenobiotics biodegradation
and metabolism, and membrane transport were significantly
enriched in PA group (P < 0.001). Compared with the group PG,
translation, membrane transport, signal transduction, and cell
motility were enriched in the PC group (P < 0.001, Figure 3B),
and metabolism of cofactors and vitamins, biosynthesis of
other secondary metabolites, amino acid metabolism, folding
sorting and degradation, endocrine system, excretory system,
immune system, nervous system, transport, and catabolism were
enhanced in group PG (P < 0.001).

DISCUSSION

Necrotic enteritis caused by C. perfringens infection destroys the
gut integrity of chickens and seriously damages the intestinal
function of poultry, leading to a decline in the growth
performance (Abudabos et al., 2017). Related studies had shown
that probiotics play a positive role on animal health and
prevention of NE diseases. Zhou et al. (2016) reported that the
body weight decreased significantly after broilers were infected
with NE, while FCR increased. However, the improved growth
performance was observed when broilers were pre-treated with
B. licheniformis H2. Whelan et al. (2018) also demonstrated
that Bacillus subtilis DSM32315 alleviated the adverse impact on
growth performance of broiler chickens caused by NE infection.
Interestingly, Lin et al. (2017) found that diets supplemented with
B. licheniformis H2 which was used in Zhou et al. (2016) research
had no significant improvement on body weight, feed intake,
and FCR of C. perfringens challenged broilers. In accordance
with Lin’s study, our results showed that pre-treatment with
B. licheniformis had no improvement on growth performance of
SNE-infected broilers. B. licheniformis was believed to prevent
NE in broilers, but the mechanism of action of B. licheniformis
as a probiotic for the control and prevention of NE is not totally
clear. In addition, the function of B. licheniformis may differ from
different strains and dietary concentrations (Knap et al., 2010).
Thus, the optimum application rate of B. licheniformis used in
studies may need further identified. Furthermore, differences
in housing environment, broiler breed, administration route of
probiotic B. licheniformis as well as the way to establish NE
model may influence the outcome of B. licheniformis addition
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FIGURE 1 | Differential cecum microbiota community (β diversity) between groups in 25-day-old broilers. PC, basal diet + SNE; PA, basal diet extra
antibiotics + SNE; PG, basal diet extra B. licheniformis + SNE. Values are means with their standard errors. *P < 0.05, **P < 0.01.

(Ramlucken et al., 2020). However, an improved body weight and
FCR of 21–42 days and 1–42 days were seen in the PG and PA
group although statistical difference was not reached, indicating
that B. licheniformis and enramycin may protect broilers from
SNE infection and alleviated growth performance loss caused by
SNE to a certain degree. Studies had reported that probiotics
Bacillus spp. increased the activity of digestive enzymes such
as amylase and protease, and secreted some unknown growth-
promoting factors which were helpful for intestinal development,
feed degradation, and animal growth (Wang and Gu, 2010; Zhou
et al., 2010). This may be one of the potential mechanisms by
which probiotics Bacillus spp. improved the growth performance
of SNE-infected broilers (Bai et al., 2016).

Intestinal lesion scores, intestinal microbiota balance,
bacterial translocation, and intestinal morphology were
important indicators for evaluating intestinal integrity and
barrier function of broilers. The results of intestinal lesion
scores in this study showed that the addition of B. licheniformis
significantly reduced the duodenal and total intestinal lesion
scores of SNE-infected broilers, which proved that the addition
of B. licheniformis to diets effectively alleviated intestine damage
caused by SNE infection in broilers. Consistent with our results,
Wu et al. (2018) reported that B. coagulans significantly reduced
intestinal lesion scores of broilers. The results from Jayaraman
et al. (2013) also showed that the addition of B. subtilis PB6
significantly decreased the incidence and severity of intestinal
lesions in C. perfringens-challenged broilers. In addition, in
line with previous studies (Jayaraman et al., 2013; Wang H.
et al., 2017; Wu et al., 2018), our results showed that SNE
infection led to increased proliferation of cecal C. perfringens
and higher C. perfringens invasion in the liver, indicating
the imbalance of intestinal microflora and barrier damage of

intestinal in broilers. After the supplementation of enramycin,
lower C. perfringens load in the cecal contents and liver
were observed compared with SNE-challenged birds, which
proved that enramycin can effectively inhibit the growth of
C. perfringens, thereby preventing pathogens or endotoxins
from entering the systemic circulation. At 42 days of age, cecal
E. coli numbers of broiler chickens in the antibiotics (enramycin)
supplement group were significantly higher than that in the
other groups. This may mainly be due to the growth inhibiting
effect of enramycin on Gram-positive bacteria, especially to
the harmful Clostridium in the intestinal tract, thus leading
to the mass proliferation of Gram-negative bacteria such as
E. coli (Sanjay et al., 2018). The intestinal mucus layer is the
first defense barrier dialogued with microorganisms. The
mucins secreted by goblet cells are important components of
the mucus layer, providing a series of potential recognition
sites for intestinal common microorganisms. At the same time,
research noted that C. perfringens could not synthesize a variety
of amino acids (Shimizu et al., 2002) so that the intestinal
mucins served as an amino acid source of C. perfringens (Collier
et al., 2008). In the present study, the addition of enramycin
reduced the goblet cells in the jejunum, which may result
in a decline in intestinal mucin secretion and a decreased
availability of amino acids for C. perfringens, thereby inhibiting
the growth and proliferation and translocation of C. perfringens.
The morphological structure and integrity of intestine were
associated with growth performance. Consistent with the growth
performance that there was only numerically improvement
between groups rather than differing significantly, the addition
of B. licheniformis or enramycin had no significant improvement
in the VH, CD, and VH/CD ratios in the jejunum of SNE-
infected broilers. Inversely, Jayaraman et al. (2013) reported
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FIGURE 2 | The different phylotypes differed between groups using LEfSe analysis. These figures show the bacteria of which the LDA Score is greater than the set
value (the default setting is 2.0) between groups PC and PA. (A) Groups PC and PG. (B) Groups PG and PA. (C) The length of the histogram represents the size of
the difference species (i.e., LDA Score), and the different colors represent the different groups. PC, basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG,
basal diet extra B. licheniformis + SNE.

that diets added with B. subtilis PB6 significantly increased
the intestinal VH and VH/CD ratio of NE-infected broilers,
protected the intact villi structure of intestine, and reduced
the FCR. As we know that the biofunction of probiotics varies
from strain to strain, even the probiotic strains from the same
species may work differently (Wang H. et al., 2017). Therefore,
the contradictory results may partially be due to the different
probiotic strains used in different studies. The aforementioned
results also demonstrated that B. licheniformis and enramycin

could mitigate intestinal injury of SNE-infected broilers in
different aspects.

To determine the underlying mechanism responsible for
this result, we further investigated the gene expression of tight
junction proteins, mucin-2 and TLR signaling pathway related
factors, and the alterations in cecal microbiota. The intestinal
tight junction (TJ) complex composed of occludins, claudins,
ZOs, and other TJ proteins that control the intestinal paracellular
permeability facilitates the exchange of water, ions, and other
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FIGURE 3 | The microbial pathways grouped into level-2 functional categories using PICRUSt. PC between groups PC and PA (A), and groups PC and PG (B). PC,
basal diet + SNE; PA, basal diet extra antibiotics + SNE; PG, basal diet extra B. licheniformis + SNE.
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nutrients with external environment, and also plays an important
role in resisting the invasion of intestinal pathogens and toxins
(Awad et al., 2017). Many pathogens indirectly impair the TJ
structures of the intestinal tract by activating the signaling
cascades of the host cells (Wageha et al., 2017), while the
C. perfringens enterotoxin directly uses the TJ proteins Claudin-
3 and Claudin-4 as cellular receptors to attach, leading to TJ
degradation and increased paracellular permeability (Fujita et al.,
2000; Veshnyakova et al., 2010). In the present study, results
showed that addition of B. licheniformis significantly down-
regulated the expression of Claudin-3 mRNA in the jejunum of
SNE-infected broilers on day 25 and a decreasing trend was also
observed in the enramycin group, indicating that B. licheniformis
and enramycin can reduce the intestinal C. perfringens adhesion
by down-regulating Claudin-3 mRNA levels, thereby protecting
the intestinal mechanical barrier and paracellular permeability.
Mucin-2 is one of the mucins which participates in the formation
of mucous layer and protects intestinal mucosal barrier integrity
(Michael McGuckin et al., 2011). On day 42, C. perfringens loads
in the cecal contents of SNE-infected broilers was decreased, and
broilers in each group were in the late stage of SNE infection or
in the normal health status as can be seen from the results of
intestinal lesion scores. At this time point, the gene expressions
of Claudin-3 and mucin-2 were significantly up-regulated in the
enramycin supplemented group, and the mRNA levels of mucin-
2 were also increased in the B. licheniformis supplemented group,
indicating that B. licheniformis and enramycin may convey a
protection on the intestinal TJs and mucus layers of broilers
(Aliakbarpour et al., 2012; Rajput et al., 2013). In addition,
the results also showed that the addition of B. licheniformis or
enramycin significantly increased the content of cecal formic
acid in 42-day-old broilers. Formic acid, a kind of SCFA, is
produced by intestinal bacteria fermenting undigested starch or
fiber polysaccharides that are unused to the host. SCFAs have
important physiological significance to the host (Meimandipour
et al., 2010; Rinttila and Apajalahti, 2013), of which formic acid
could improve the intestinal morphology of broilers (Garcia et al.,
2007) and inhibit the growth of pathogens (Bourassa et al., 2018).
The results of the present study showed that B. licheniformis or
enramycin can maintain the intestinal health by increasing the
content of cecal formic acid in SNE-infected broilers.

When intestinal pathogens invade the host, they can be
recognized by pattern recognition receptors. For example, TLRs
can identify various pathogen-related molecular patterns and
transmit the signals downstream through their linker proteins
such as TRIF and MyD88 to activate NF-κB, which can be
transferred into the nucleus and thus induce the expression of
target genes to regulate the immune and inflammation response,
cell proliferation, and regeneration (Wertz and Dixit, 2010;
Huebener and Schwabe, 2013). In line with other studies (Jung
et al., 2015; Rajput et al., 2017), we found that at the peak period
of C. perfringens infection (2 DPI), adding B. licheniformis or
enramycin to the diet significantly increased the jejunal mRNA
expression of TRIF and NF-κB in broilers, which indicates the
activation of TLR-NF-κB signaling pathway, although the mRNA
levels of TLR-4 and TLR-2 were not changed. The TLR-NF-κB
signaling pathway is included in the innate immune response.

Its activation causes a series of signal transductions, which leads
to the activation and cellular responses of immune-related cells,
and subsequently induces the secretion of cytokines, growth
factors (TGF-β, IGF-2, GLP-2), type I IFNs, and chemokines
(Kawai and Akira, 2007). Cytokines are effector molecules that
transmit information between immune cells and determine
the nature of the immune response at the infection site. For
example, IL-17 secreted by Th17 cells is an inflammatory cytokine
that stimulates the production of granulocytes, promotes the
production of antimicrobial peptides by epithelial cells, and
enhances innate immunity (Eyerich et al., 2017). Consistent with
previous studies (Fasina and Lillehoj, 2018), in this experiment,
the addition of enramycin significantly up-regulated the mRNA
levels of IL-17, indicating that the innate immune function
of the broiler intestines was enhanced and effectively resisted
the C. perfringens infection. However, unlike previous results
(Rajput et al., 2013, 2017; Wang Y. et al., 2017), our results
found that B. licheniformis did not significantly affect the gene
expression of cytokines, such as IL-1β, IL-10, IL-17, and TNF-α
after activation of TLR-NF-κB signaling pathway. This may be
due to the different physiological functions of different probiotic
strains (Kang and Sin-Hyeog, 2015). Although there were no
significant changes detected on the expression of cytokines,
adding B. licheniformis significantly up-regulated the expression
of growth factors (GLP-2, TGF-β2), HSP60, HSP70, and HSP90,
which was consistent with previous studies (Selvam et al., 2009;
Okamoto et al., 2012; Rajput et al., 2017; Tang et al., 2019).
Growth factors can promote the cell differentiation, mucosal
development, and repair of damaged tissues (Bulut et al., 2008;
Massagué, 2012; Camati et al., 2017), while HSPs are anti-stress
proteins with molecular chaperone activity that protects cells
and tissues from temperature stress or protein denaturation
caused by infection, enhancing the resistance to environmental
stress (Lindquist and Craig, 1988; Malago et al., 2001). In this
experiment, B. licheniformis activated the TLR-NF-κB signaling
pathway in jejunum of SNE-infected broilers, and afterward up-
regulating the expression of jejunal growth factors and HSPs,
enhancing the ability of tissue repairing and anti-stress of host,
but did not affect the gene expression of pro-inflammatory
cytokines. Similarly, adding enramycin also activated the TLR-
NF-κB signaling pathway in jejunum of 25-day-old SNE-infected
broilers, and also increased the gene expression of growth factors
(IGF-2, GLP-2, TGF-β2) and HSP90. Furthermore, the gene
expression of the proinflammatory cytokine IL-17 was also up-
regulated in broilers. Therefore, B. licheniformis had an effect
of enhancing immunity in contrast to the enramycin. However,
the results on day 42 showed that enramycin down-regulated
the TLR-NF-κB signaling pathway, the gene expression of pro-
inflammatory cytokines and HSPs in jejunum of healthy broilers,
indicating that enramycin decreased the level of immunity and
anti-stress of broilers and thus transferred more energy and
nutrients to animals for growing. Based on the aforementioned
results, we suggested that the impact of B. licheniformis on
broiler challenged with SNE was focused on the repair and
anti-stress of intestine which was different from enramycin’s pro-
inflammatory effects although they all activated the TLR-NF-κB
signaling pathway.
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Intestinal microbiota affects animal gut development,
immune maturation, intestinal barrier, and host susceptibility
to pathogens (Sekirov et al., 2010). Therefore, it is important
to investigate infection, pre-treatment of B. licheniformis, or
enramycin on intestinal microflora in broilers infected with SNE.
Results showed that there was no significant difference in cecal
microbiota α-diversity between groups. In accordance with our
study, researchers found that α-diversity of gut microbiota was
not affected by NE infection (Lin et al., 2017; Latorre et al., 2018),
antibiotics supplementation (Sanjay et al., 2018), or probiotics
Bacillus spp. (Qin et al., 2018) supplementation in broilers. We
speculated that C. perfringens infection (Lin et al., 2017), and
pre-treatment with antibiotics (Costa et al., 2017; Sanjay et al.,
2018) or probiotics Bacillus spp. (Ahmed et al., 2014; Prieto
et al., 2014) regulated the proliferation of minor microorganisms
in the intestine of broilers thus the α-diversity in each group
tended to be consistent. In terms of cecal bacterial community
structure (β diversity), B. licheniformis adding group was similar
to the enramycin group, but significantly different from the
PC group, indicating that SNE infection caused a disturbance
in cecal microflora in broilers, while adding B. licheniformis
or enramycin modulated the bacterial community structure.
Consistent with our results, Lin et al. (2017) and Xu et al. (2018)
demonstrated that NE infection destroyed the community
structure of intestinal microbes in broiler chickens and deviated
it from normal state, whereas adding probiotics Bacillus spp.
alleviated the disorder of intestinal microflora and restored it
into homeostasis.

LEfSe analysis showed that the addition of enramycin reduced
the relative abundance of Peptostreptococcaceae, Intestinibacter,
and Eisenbergiella in SNE-infected broilers. It was reported that
Peptostreptococcaceae were commensal bacteria in the intestine
whose proportion in healthy animals was higher than that of
diseased animals (Ma et al., 2011; Leng et al., 2016). However,
other studies had also reported the presence of opportunistic
pathogens in Peptostreptococcaceae may cause host disease (Ma
et al., 2011). D’Andreano et al. (2017) compared the jejunal
microflora of healthy and hemorrhagic enteritis turkeys, finding
that Peptostreptococcaceae were only detected in the jejunum
of hemorrhagic enteritis turkeys, which suggested that certain
bacteria in Peptostreptococcaceae may also act as harmful bacteria
and destroy the intestinal health of the host. For example,
Intestinibacter, a genus of Peptostreptococcaceae, was significantly
higher in the feces of patients with inflammatory diseases (such
as Crohn’s disease) than that in healthy individuals (Forbes et al.,
2018), which further confirmed our hypothesis. In addition, some
studies suggested that the genus Eisenbergiella contains potential
pathogenic bacteria (Bernard et al., 2017). Bao et al. (2018)
reported that the abundance of Eisenbergiella was significantly
increased in the feces of Echinococcus granulosus-infected rats,
and speculated that Eisenbergiella might be associated with the
host’s Th2 immune response. Therefore, in the present study, the
enhanced intestinal barrier function and decreased C. perfringens
liver translocation of broilers in enramycin group may partially
relate to the decreased abundance of Peptostreptococcaceae,
Intestinibacter, and Eisenbergiella. Compared with the PC
group, we noted that the addition of B. licheniformis increased

the abundance of Lachnospiraceae_UCG_010 in the cecum
of SNE-infected broilers. Researchers reported that the
abundance of Lachnospiraceae_UCG_010 was significantly
reduced in feces of patients with irritable bowel syndrome,
while it was increased in healthy individuals (Zhuang et al.,
2018), suggesting that Lachnospiraceae_UCG_010 may be
beneficial intestinal bacteria and positively correlate with
intestinal health. In this experiment, the increased abundance of
Lachnospiraceae_UCG_010 in the B. licheniformis supplement
group was consistent with an increase in intestinal barrier
function and a decline in intestinal lesion scores. In line with
our results, many studies reported that probiotics Bacillus
spp. modified the intestinal microflora of NE-infected broilers
(Langille et al., 2013; Lin et al., 2017; Xu et al., 2018). Moreover,
Clostridiales_vadinBB60_group and one of its genera were
enriched in the B. licheniformis group when compared with the
enramycin group. Clostridiales_vadinBB60_group contains a
variety of bacteria producing butyric acid. Studies had reported
that the increased abundance of Clostridiales_vadinBB60_group
was accompanied by the enhanced serum antioxidant capacity
in mice (Shimizu et al., 2002). In addition, Zhang et al. (2018)
noted that the presence of Clostridiales_vadinBB60_group was
detected in the feces of diabetic rats after treated with liraglutide.
It was speculated that Clostridiales_vadinBB60_group may also
be beneficial bacteria in intestinal tract, which was good for
host health. Ruminococcaceae_NK4A214_group may also be
a potentially beneficial bacterium. Studies had demonstrated
that the abundance of Ruminococcaceae_NK4A214_group was
reduced in obese rats and gout patients (Shao et al., 2017;
Zhao et al., 2017). In contrast, Family_XIII_AD3011_group
is considered to be a potential pathogen, and many studies
reported that the abundance of Family_XIII_AD3011_group
is positively associated with the diabetes (Zhang et al., 2018).
Our results showed that the addition of B. licheniformis
increased the abundance of Clostridiales_vadinBB60_group,
g_uncultured_bacterium_f_Clostridiales_vadinBB60_group,
Family_XIII_AD3011_group, and Ruminococcaceae_NK4A214_
group were enriched in B. licheniformis supplemented group
compared with the enramycin group, indicating that the
recovery effect of B. licheniformis on cecal microbiome disorders
of SNE-infected broilers is better than enramycin.

The observed shifts in the intestinal microbiota may regulate
gut physiological function, host health, and growth. The PICRUSt
aims to predict the unobserved characters from phylogenetic
information regarding the organisms in the community.
Vitamins are organic compounds which could be produced
by bacteria notably vitamin K and B groups, regulating the
construction and supporting normal physiological function of
host (Rowland et al., 2018). An important role it serves is
being cofactors for enzymes. Results presented the metabolism
of cofactors and vitamins pathway was enriched in group PG,
indicating a positive regulative effect of B. licheniformis on the
activity of enzymatic metabolism (Rozs et al., 2001). However,
it was lower in group PA which may result from the antibiotic
effect of enramycin. Membrane transport, a vital pathway for
the survival of bacteria in the gut ecosystem (Lyons et al.,
2017), was increased in group PA, which may point out an
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attempt to compensate for the antibiotic effect of enramycin.
Regarding energy metabolism pathway, it was enriched in group
PC comparing with group PG and PA, showing an energy
metabolites disorder in SNE infection broilers (Chan et al.,
2020). Cell motility is the determinant step of pathogen bacteria
in early local invasion (Lin et al., 2017). The abundance of
cell motility was enriched in PC group as compared with
the PA and PG group, indicating the anti-infective effect of
B. licheniformis and enramycin. In addition, it was found that
carbohydrate metabolism pathways were enriched in group
PA and PG, according with increased concentration of formic
acid in cecum content. As reported, carbohydrate could be
metabolized by microflora into SCFAs which were known to
boost intestinal health by its trophic and anti-inflammatory
effects (Kles and Chang, 2006; Lamas et al., 2018). Qing et al.
(2018) noted that SNE infection could affect the hepatic lipid
metabolism of chickens and probiotic pretreatment may provide
a prophylaxis strategy against SNE infection through regulating
lipid metabolism (Zhou et al., 2016; Lin et al., 2017). Agreed with
those reports, we found that B. licheniformis supplement down-
regulated the abundance of lipid metabolism pathway; however,
enramycin up-regulated it, showing the different regulative
effect of B. licheniformis and enramycin on cecum microbial
function in the SNE-challenged broilers. Amino acid metabolite
polyamines such as putrescine, spermidine, and spermine are
harmful to hosts (Stevanato et al., 2012; Bonaiuto et al.,
2015). Nevertheless, it was revealed that polyamines support
gut physiology by strengthening barrier function, promoting
gut maturation, increasing anti-oxidant capacity, and regulating
immune function (Lagishetty and Naik, 2008; Bekebrede et al.,
2020). As shown that amino acid metabolism pathway was
enriched in group PG, this may confirm the hypothesis
that B. licheniformis could adjust immune function through
activating TLR-NF-κB signaling pathway. Therefore, the effect
of B. licheniformis or enramycin on SNE-challenged broilers
needs to be further investigated. Thus, dietary supplementation
with antibiotic enramycin and probiotic B. licheniformis affected
important predicted functions of the intestinal microbiota of the
NE-challenged birds.

CONCLUSION

Dietary supplementation with B. licheniformis or enramycin
mitigated the negative effects of SNE infection in broilers
and alleviated intestinal damage, suggesting B. licheniformis
could be used as an antibiotic alternative. B. licheniformis
protected the intestinal health of SNE-infected broilers mainly
mediated by increasing the number of beneficial bacteria
Lachnospiraceae_UCG_010 and formate acid content in the

cecum, modulating TLR-NF-κB signaling pathway, and up-
regulating jejunal mucin-2, growth factor (GLP-2 and TGF-β2),
and HSP (HSP60, HSP70, and HSP90) mRNA levels. However,
the addition of enramycin maintained the intestinal barrier
function mediated by reducing intestinal and liver C. perfringens
load, increasing the cecal formate acid concentration, affecting
the TLR-NF-κB signaling pathway, and up-regulating intestinal
tight junction protein Claudin-3, mucin-2, pro-inflammatory
cytokines together with growth factors and HSPs. This study
showed that there are similarities and differences on the
mechanism of B. licheniformis and enramycin in relieving
intestinal damage of SNE-infected broilers. More studies are
needed to confirm these results in the future.
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A major goal for the dairy industry is to improve overall milk production efficiency
(MPE). With the advent of next-generation sequencing and advanced methods
for characterizing microbial communities, efforts are underway to improve MPE by
manipulating the rumen microbiome. Our previous work demonstrated that a near-total
exchange of whole rumen contents between pairs of lactating Holstein dairy cows of
disparate MPE resulted in a reversal of MPE status for ∼10 days: historically high-
efficiency cows decreased in MPE, and historically low-efficiency cows increased in
MPE. Importantly, this switch in MPE status was concomitant with a reversal in the
ruminal bacterial microbiota, with the newly exchanged bacterial communities reverting
to their pre-exchange state. However, this work did not include an in-depth analysis
of the microbial community response or an interrogation of specific taxa correlating
to production metrics. Here, we sought to better understand the response of rumen
communities to this exchange protocol, including consideration of the rumen fungi.
Rumen samples were collected from 8 days prior to, and 56 days following the exchange
and were subjected to 16S rRNA and ITS amplicon sequencing to assess bacterial
and fungal community composition, respectively. Our results show that the ruminal
fungal community did not differ significantly between hosts of disparate efficiency
prior to the exchange, and no change in community structure was observed over the
time course. Correlation of microbial taxa to production metrics identified one fungal
operational taxonomic unit (OTU) in the genus Neocallimastix that correlated positively
to MPE, and several bacterial OTUs classified to the genus Prevotella. Within the
Prevotella, Prevotella_1 was found to be more abundant in high-efficiency cows whereas
Prevotella_7 was more abundant in low-efficiency cows. Overall, our results suggest
that the rumen bacterial community is a primary microbial driver of host efficiency, that
the ruminal fungi may not have as significant a role in MPE as previously thought, and
that more work is needed to better understand the functional roles of specific ruminal
microbial community members in modulating MPE.

Keywords: ruminal contents exchange, ruminal microbiota, milk production efficiency, dairy cattle, rumen
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INTRODUCTION

Tremendous gains have been made in dairy cattle efficiency and
productivity through efforts in breeding and management over
the last several decades (Miglior et al., 2017). However, breeding
for high production has resulted in consequent decreases in
animal health and longevity (Knaus, 2009). This has led to
an interest in breeding-independent strategies for improving
milk production efficiency (MPE) to ensure a sustainable and
economically viable future for the dairy industry. One promising
avenue for improving MPE is through modulation of the rumen
microbial community. The rumen microbiota is essential for the
degradation of feed components into volatile fatty acids (VFAs),
which have various fates once absorbed by the host. Inter-animal
variability in rumen microbial metabolism can therefore result
in differences in both milk volume and components by altering
the pool of precursors available to the host. Importantly, the
rumen microbial community has been repeatedly implicated in
milk efficiency variability and production metrics in dairy cattle
(Jami et al., 2014; Jewell et al., 2015; Shabat et al., 2016; Wallace
et al., 2019).

The rumen contains a diverse, multi-domain microbial
consortium of archaea, bacteria, fungi, and ciliate protozoa.
Bacteria are the most abundant and diverse members of this
community, with 1010–1011 cells/gram (Choudhury et al., 2015),
and are the most thoroughly studied group in the rumen
ecosystem. Fungi, which are much less abundant in the rumen at
103–105 cells/gram, are remarkably efficient fiber degraders that
play an important role in the initial colonization and physical
disruption of feed particles (Russell and Hespell, 1981; Akin
and Borneman, 1990; Gordon and Phillips, 1998). Protozoa are
known to have a role in VFA production, but in concert with
archaea, are thought to have a greater importance in methane
production, leading to a net energy loss.

The majority of studies that seek to implicate members of the
rumen microbiome in host efficiency have focused primarily on
the bacteria. However, due to the functional importance of the
fungal community in digestion, recent consideration has been
paid to the role of the ruminal fungi in overall fermentation
(Puniya et al., 2015). For example, removal of anaerobic fungal
populations in sheep has been demonstrated to negatively
impact feed digestibility in vivo (Gao et al., 2013). Additionally,
supplementation with rumen-derived fungal isolates increased
feed digestibility and weight gain in buffalo calves (Tripathi
et al., 2007). However, no studies to date have specifically
linked native rumen fungal communities to performance metrics
in dairy cattle.

Our previous study sought to provide evidence that near
complete replacement of the rumen microbiota alone is sufficient
to alter MPE (Weimer et al., 2017). In that study, an exchange
of rumen contents was performed between three pairs of
lactating Holstein cows with disparate MPE. For 7–10 days
following the exchange, 5 of the 6 cows saw a reversal in MPE
status from the pre-exchange baseline. This change in efficiency
status was accompanied by a concurrent change in bacterial
community structure. Within 10 days, MPE status and bacterial
community structure returned to the expected baseline for the

5 affected hosts. This suggested a strong link between bacterial
community composition and MPE, but also underscored the
strong host-specificity of the adult rumen bacterial community,
which apparently was able to re-establish even after extreme
perturbation. We note that our previous study only included
a cursory analysis of the ruminal bacterial community and
did not consider other microbial community members such as
the ruminal fungi.

Here, we expand on our previous findings by providing a
more comprehensive analysis of the recovery of the rumen
microbial community following near complete whole rumen
contents exchange, including a focus on the ruminal fungal
community. Given the demonstrated importance of the rumen
fungal community in fiber degradation, we expect that high-
and low-efficiency hosts would have distinct fungal communities
prior to the exchange, and that the response of the rumen
fungal community to the exchange protocol would mirror
that of the bacterial community. Additionally, we sought to
identify specific microbial community features, within both the
bacteria and the fungi, that could be implicated in the observed
differences in MPE.

MATERIALS AND METHODS

Animal Trial and Sample Collection
The animal trial, DNA extraction, and bacterial community
sequencing were performed as previously published in Weimer
et al. (2017) under protocol A01427, as approved by the College of
Agricultural and Life Sciences’ Animal Care and Use Committee,
University of Wisconsin–Madison. Briefly, three pairs of healthy,
lactating, ruminally cannulated 3rd-lactation Holstein dairy cows
were selected on the basis of disparate dry matter intake
(DMI) with similar energy corrected milk (ECM) over their
first two lactation cycles, designated as either high or low milk
production efficiency within each pair (HE and LE, respectively).
An exchange of whole rumen contents was performed between
the HE and LE member of each pair (∼95% of rumen contents
removed), and ECM and DMI were recorded from 8 days prior to
and 56 days following the exchange. Gross feed efficiency (GFE)
was calculated as ECM/DMI. Solid- and liquid-phase rumen
contents were collected at 18 timepoints relative to the exchange
for characterization of microbial communities (sampling days
relative to the exchange:−8,−7,−5,−4,−1, day 0 pre-exchange,
day 0 post-exchange, 1, 2, 3, 7, 10, 14, 21, 28, 35, 42, 56).

Amplicon Sequencing
Bacterial communities were characterized by sequencing
of the variable 4 (V4) region of the 16S rRNA gene
using a one-step protocol with barcoded primers (Kozich
et al., 2013) and as previously described (Weimer et al.,
2017). Fungal community sequencing was performed
using custom barcoded primers designed according to
the protocol outlined in Kozich et al. (2013). Barcodes
were added to universal ITS4 primers (Taylor et al., 2016)
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(ITS4-Fun (5′-AATGATACGGCGACCACCGAGATCTACAC-
TATGGTAATT-AA-AGCCTCCGCTTATTGATATGCTTAART-
3′). Full sequences of barcoded primers can be found in
Supplementary Data Sheet 1. A total of 50 ng of template
DNA, 5 pmol of each primer, and 12.5 µL of 2X HotStart Ready
Mix (KAPA Biosystems, Wilmington, MA, United States) and
water to a total reaction volume of 25 µL were used for each
PCR reaction. PCR conditions were: 3 min at 95◦C for initial
denaturation, 35 cycles of 30 s at 95◦C, 30 s at 58◦C, 30 s at
72◦C, then 5 min at 72◦C for final extension. Samples were run
on a 1% low-melt agarose gel, and amplified DNA was extracted
from the gel using the ZR-96 Zymoclean Gel DNA Recovery
Kit (Zymo Research, Irvine, CA, United States). Extracts were
equimolarly pooled and combined with the PhiX control library
(Illumina, Inc., San Diego, CA, United States) at a 9:1 ratio. The
combined library was loaded onto the Illumina MiSeq (Illumina,
Inc., San Diego, CA, United States) for paired-end sequencing
using the 2 × 300 bp v3 sequencing kit. Bacterial sequences
from this project are deposited in the National Center for
Biotechnology Information (NCBI) Short Read Archive (SRA)
under the BioProject number PRJNA329260. Fungal sequences
are deposited under BioProject number PRJNA695353.

Sequence Cleanup
For both bacterial and fungal amplicons, sequences were
demultiplexed by sample-specific indices on the Illumina MiSeq.
Further processing and quality controls were performed in the
program mothur v1.42.1 according to the most recent versions
of our lab’s standard analysis pipelines (Supplementary Data
Sheet 2), as adapted from the Schloss lab protocol (Kozich et al.,
2013). Paired-end sequences were combined to form contigs
and poor-quality contigs were removed from analysis. Bacterial
sequences were aligned to the SILVA 16S rRNA gene reference
alignment database v132 (Pruesse et al., 2007), and contigs that
did not align to the V4 region were eliminated. Preclustering
was performed (bacteria: diff = 2, fungi: diff = 4) to account
for sequencing error, and fungal sequences were subjected to an
internal Needleman alignment during this process (Needleman
and Wunsch, 1970). Chimeric sequences were identified and
removed using the UCHIME algorithm in mothur (Edgar et al.,
2011). Sequences that could not be classified at the Kingdom
level were eliminated. Singleton sequences were removed from
the dataset prior to operational taxonomic unit (OTU) clustering.

Sequence and Statistical Analysis
Clustering of OTUs at a sequence similarity of 97% was
performed for both amplicons using the OptiClust algorithm
in mothur (Westcott and Schloss, 2017). Bacterial sequences
were classified using the SILVA 16S rRNA gene reference
database v132 and fungal sequences were categorized using the
UNITE v6.0 database (Nilsson et al., 2019), with a bootstrap
cutoff of 80. Good’s coverage was calculated in mothur (Good,
1953). Normalization was applied in mothur (bacteria: 10,000
sequences/sample, fungi: 2,450 sequences/sample). Shannon’s
Diversity (Shannon, 1948), Chao’s Richness (Chao, 1984), and
post-normalization Good’s coverage were calculated in mothur.
Representative sequences for each OTU were generated using the

get.oturep command in mothur. The NCBI’s online nucleotide
BLAST server was used to identify cultured isolates with high
sequence similarity to representative sequences of select OTUs
(Madden, 2002).

Statistical analysis was performed in R v3.6.3 (R Core
Team, 2020) using RStudio v1.2.5033 (R Studio Team, 2020).
Differences in alpha diversity statistics by time period and initial
host efficiency status were assessed by two-way ANOVA, with
Tukey’s HSD used as a post hoc test in the case of significance
(p< 0.05). Non-significant interaction terms were removed from
model formulae to better characterize main effects.

Beta diversity was calculated as Bray-Curtis dissimilarity
(Bray and Curtis, 1957) and visualized with non-metric
multidimensional scaling (NMDS) with square root transformed
data in the R package vegan, v2.5-6 (Okansen et al., 2016).
Differences in community structure between groups of
samples were assessed by permutational multivariate ANOVA
(vegan:adonis2, by = “margin”). Samples were assessed within
sample type (solid or liquid fraction of the rumen contents)
and amplicon (bacterial or fungal), with permutations stratified
within individual to control for multiple sampling. Samples
were assessed by initial efficiency status and categorical time
within the sample period, as previously described (Weimer
et al., 2017) (Pre = day -8 to day 0 pre-exchange, Post1 = day
0 post-exchange to day 7, Post2 = day 10 to day 56). These
time periods were selected by Weimer et al. (2017) to capture
the change in MPE status, which persisted for ∼7 days post-
exchange, and the return to baseline MPE at 10–56 days
post-exchange. Non-significant interaction terms were removed
from model formulae to better characterize main effects. Pairwise
comparisons between groups of samples were also calculated
using the adonis function, with P-values FDR-corrected for
multiple comparisons.

To streamline visualization of correlation networks, OTUs
with <0.1% overall abundance were removed from the analysis
(bacterial abundance cutoff: 2,146; fungal abundance cutoff: 522).
Matrices of Pearson’s correlation coefficients were generated for
within sample type, initial efficiency, and time period (Pre, Post1,
Post2) using the rcorr function in the Hmisc package for R
(Harrell Jr., 2020). Correlations that were weak (<0.70) or not
highly significant (α < 0.001) were removed, and correlation
matrices were used to generate correlation networks using
igraph (Csardi and Nepusz, 2006). The degree-centrality of
networks was calculated by domain using igraph. Differences
in degree over time within initial efficiency status and domain
were assessed using Kruskal-Wallis tests. Pairwise Wilcoxon
tests were performed with FDR-correction applied to resultant
P-values. Beanplots were generated using beanplot:beanplot in
R (Kampstra, 2008). The 10 OTUs with the greatest degree
centrality were selected from each of the pre-exchange networks
(HE liquids, HE solids, LE liquids, and LE solids) and were
subjected to Kruskal-Wallis testing to assess change over time,
within sample type and host efficiency. Post hoc testing was
performed as pairwise Wilcoxon rank sum tests with FDR
correction applied to P-values. These OTUs were also correlated
to production variables (ECM and GFE). Spearman’s ρ statistic
was calculated between normalized OTU abundance and the
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phenotypic variable across all animals and time points, separated
by sample type (liquids and solids). FDR correction was applied
to P-values.

Individual species which differed between the categorical
time periods were identified using the similarity percentages
(SIMPER) function in vegan (vegan:simper) within amplicon,
sample type, and initial efficiency status (Okansen et al., 2016).
OTUs that explained >1% of the difference between time points
were subjected to Kruskal-Wallis tests, with FDR-correction
applied to resultant P-values.

Operational taxonomic units that were identified in the
SIMPER analysis were correlated to phenotypic variables (ECM,
GFE, molar fraction acetate, molar fraction propionate, molar
fraction butyrate), as previously determined in Weimer et al.
(2017). Spearman’s ρ statistic was calculated between OTU
abundance and the variable of interest across all cows and time
points, separated by amplicon (bacterial and fungal) and sample
type. FDR-corrected P-values were calculated for each of these
correlations using the cor.test function from the R package stats
(R Core Team, 2020).

Linear discriminant analysis effect size (LEfSe) was performed
on abundance-filtered, relative-abundance-transformed OTU
matrices for Pre-exchange samples, within sample type and
domain (Segata et al., 2011). The Huttenhower lab’s Galaxy
instance was used with default parameters (Kruskal-Wallis
P < 0.05, Pairwise Wilcoxon P < 0.05, logarithmic LDA
score > 2.0)1 to obtain a list of candidate OTUs which were
diagnostic of initial efficiency. Implicated OTUs were regressed
against ECM and GFE, and P-values were FDR-corrected.

RESULTS

Sequencing
Solid and liquid rumen samples were taken from three pairs
of healthy lactating Holstein dairy cows at 18 timepoints
over 64 days. These 216 samples were subjected to bacterial
and fungal amplicon sequencing. Two samples were not
subjected to fungal community sequencing because of insufficient
DNA yields (RSL61d42 and RSL97d42). Bacterial sequencing
generated 7,996,986 high-quality sequences with an average
of 37,023 ± 2491 SE sequences per sample and a range of
10,049–328,315 sequences per sample. Fungal sequencing yielded
2,168,129 high-quality sequences an average of 10,131 ± 276
SE sequences per sample and a range of 2450–23,811 sequences
per sample. Pre-normalization Good’s coverage was >97% for all
bacterial samples, and >99% for all fungal samples, indicating
that the sequencing depth was adequate to accurately characterize
the communities of interest. Post-normalization there were
a total of 2,147,014 bacterial and 523,784 fungal sequences
used in analysis. Post-normalization Good’s coverage was >93%
for all bacterial samples and >98% for all fungal samples.
Sequencing results are summarized in Supplementary Data
Sheet 3. Normalized OTU tables and taxonomic classification of
OTUs can be found in Supplementary Data Sheet 4.

1http://huttenhower.sph.harvard.edu/galaxy

Alpha Diversity
Alpha diversity analysis was performed for each amplicon
and sample type separately (Supplementary Figure 1). In the
liquid phase, changes in Shannon’s diversity for the bacterial
community over the time course were not dependent on
efficiency status (F2,102 = 1.679, P = 0.192). Ignoring efficiency
status, there was no change in bacterial Shannon’s index by
time period (F2,104 = 0.346, P = 0.708). Rumen liquids derived
from HE animals had lower bacterial Shannon’s diversity than
those derived from LE liquids (F2,104 = 18.353, P < 0.001). For
the rumen solids, there was no significant interaction between
efficiency status and time period for Shannon’s diversity of
bacterial communities (F2,102 = 2.258, P = 0.110), and no
significant difference between timepoints, irrespective of initial
efficiency status (F2,104 = 0.359, P = 0.699). Similar to the liquid-
derived samples, rumen solids derived from initially HE animals
were less bacterially diverse than those derived from LE animals
(F2,104 = 10.038, P = 0.002).

The impact of study period on Chao’s richness in liquid phase
samples did not differ by initial efficiency status (F2,102 = 0.566,
P = 0.569). Without consideration of efficiency, there was no
change in bacterial species richness over time in the liquid
samples (F2,104 = 1.023, P = 0.363). Overall, bacterial species
richness in liquid samples did not differ by efficiency status
(F2,104 = 1.228, P = 0.270). In solid-derived rumen samples,
time period and efficiency status were not independent in their
effect on Chao’s richness of bacterial communities (F2,102 = 3.883,
P = 0.024). In these samples, HE cows had lower Chao’s richness
than LE cows in the Post2 period (P = 0.037), and LE cows
differed from Pre to Post2 (P = 0.025). All other pairwise
comparisons were not significant (P > 0.05).

In the liquid phase, changes in fungal community Shannon’s
diversity over time was independent of efficiency status
(F2,100 = 2.069, P = 0.132). There was no change in liquid
fungal community richness over time (F2,102 = 1.562, P = 0.215)
or by efficiency status (F2,102 = 0.111, P = 0.739). In solid-
phase samples, there was no significant interaction between study
period and efficiency status (F2,102 = 0.111, P = 0.895). There
was overall no change in richness by time period (F2,104 = 0.713,
P = 0.493) or efficiency status (F2,104 = 0.410, P = 0.523).

The impact of time on fungal community richness
liquid-phase samples was independent of efficiency status
(F2,100 = 0.651, P = 0.524). There was no impact of study
period on fungal community species richness in liquids
(F2,102 = 1.423, P = 0.246), nor was there an impact of initial
efficiency status on richness (F2,102 = 0.535, P = 0.466).
Solid-phase fungal community richness likewise did not
show an interaction between time period and efficiency status
(F2,102 = 2.406, P = 0.095). There was no impact on fungal species
richness in rumen solids-derived samples by either time period
(F2,104 = 0.611, P = 0.545) or efficiency status (F2,104 = 0.304,
P = 0.583).

Beta Diversity
Beta diversity analysis was performed for each amplicon and
sample type separately. For ease of interpretation, pairs of animals
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FIGURE 1 | Non-metric multidimensional scaling plot depicting Bray-Curtis dissimilarity of bacterial and fungal communities by pair of host animals. Standard error
ellipses are color coded by initial MPE of host and time within study.

were plotted separately (Figure 1). Between-sample diversity
was calculated as Bray-Curtis dissimilarity and visualized with
standard error ellipses to better illustrate the behavior of groups
of points within a given host animal across the time series.

For the bacterial communities in the liquid phase (all three
pairs of animals considered together), the change in community
structure over time differed by efficiency status (P = 0.007).
HE Pre was distinct from HE Post1 (P = 0.016), but not from
HE Post2 (P = 1.000). LE Pre was not distinct from LE Post1
(P = 0.183) or LE Post2 (P = 0.708), but LE Post1 was distinct
from LE Post2 (P = 0.016). All other pairwise comparisons were

non-significant (P > 0.05). For the ruminal solids, the change
in bacterial community structure over time was also dependent
on efficiency status (P < 0.001). HE Pre was distinct from HE
Post1 (P < 0.001), but only marginally distinct from HE Post2
(P = 0.090). HE Post1 was distinct from HE Post2 (P < 0.001). LE
Pre was distinct from LE Post1 (P< 0.001), but not from LE Post2
(P = 0.178). LE Post1 was distinct from LE Post2 (P = 0.015). No
other pairwise comparisons were significant (P > 0.05).

Fungal community structure change over time was dependent
on efficiency status in rumen liquids (P = 0.012). HE Pre was not
distinct from HE Post1 (P = 0.109) or HE Post2 (P = 0.510).

Frontiers in Microbiology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 665776137

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-665776 May 26, 2021 Time: 18:31 # 6

Cox et al. Microbiota Response to Rumen Exchange

FIGURE 2 | Beanplots expressing average degree-centrality of nodes by domain and over time for HE and LE-derived rumen liquids and solids. Shared letters
indicate no difference in degree between timepoints (P > 0.05).

HE Post1 was marginally distinct from HE Post2 (P = 0.054).
LE Pre was marginally distinct from LE Post1 (P = 0.054), but
not distinct from LE Post2 (P = 0.225). LE Post1 was distinct
from LE Post2 (P = 0.044). All other pairwise comparisons were
non-significant (P > 0.05). For the rumen solids, the impact of
time period on fungal community structure differed by efficiency
(P = 0.006). HE Pre was distinct from HE Post1 (P = 0.048), but
not from HE Post2 (P = 338). HE Post1 was distinct from HE
Post2 (P = 0.048). LE Pre was distinct from LE Post1 (P = 0.041),
but not from LE Post2 (P = 0.114). LE Post1 was distinct from
LE Post2 (P = 0.041). All other pairwise comparisons were non-
significant (P > 0.05).

Network Analysis
To better understand the interactions of the ruminal bacterial
and fungal communities, as it relates to MPE, we conducted
a correlation network analysis. Correlation networks were
generated by time period (Pre, Post1, and Post2), separately
for liquid and solids samples and for initial host efficiency
(Supplementary Figure 2). Degree-centrality, which is the
number of edges connected to a node in a network, was averaged
within sample type, time point, host efficiency, and domain for
each of the networks as summarized in Figure 2. In HE samples
for both solid and liquid phases, the average degree-centrality of
bacterial nodes in the network decreased from Pre to Post1, then
recovered in Post2. This pattern was not upheld in LE samples,
where the average bacterial node centrality either decreased and
failed to recover (LE liquids) or did not decrease appreciably
until Post2 (LE solids). The average degree-centrality of fungal
nodes in these networks was largely unaffected by the exchange,

except in the case of LE solids where there was a decrease
from Pre to Post2.

The 10 nodes with the highest degree centrality scores were
extracted from each of the four pre-exchange networks (HE
Liquids, HE solids, LE Liquids, and LE Solids) and their variation
over time was assessed (Table 1). Notably, many of the OTUs
which increased significantly in Post1 in HE samples were
classified to the genus Prevotella_1 (B_OTU 4, B_OTU 5, B_OTU
6, B_OTU 10, B_OTU 24, B_OTU 54, B_OTU 70, and B_OTU
144). All of these OTUs also decreased in LE samples in this
period, with the exception of B_OTU 6 and B_OTU 70, which
did not change in these samples over the time course. Conversely,
B_OTU 52, which classified to the genus Prevotella_7, increased
in LE samples in Post1 and decreased in HE samples. One fungal
genus was identified as a highly influential node in all four of the
pre-exchange networks: F_OTU 3, which classified to the genus
Piromyces. The abundance of this OTU increased in HE solids in
the Post1 period but was unaffected in HE liquids and LE samples.
The degree-implicated OTUs were also correlated to ECM and
GFE, but no significant correlations resulted from this analysis
(Supplementary Table 1).

Individual Taxa
We then sought to identify individual taxa within the bacterial
and fungal communities that contributed to the observed
phenotypic reversal of MPE by conducting a SIMPER analysis
on two sets of contrasting time periods: Pre vs. Post1 and Post1
vs. Post2. This analysis was designed to identify taxa that were
transferred into the new host from the donor, and that were
present during the reversal of efficiency status, as previously
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TABLE 1 | Kruskal-Wallis tests of influential OTUs in Pre-exchange networks.

Block OTU Taxonomy IN Pre mean ± SE Post1 mean ± SE Post2 mean ± SE χ2
df=2 P-value

HE Liquids B_OTU 5 Prevotellaceae;Prevotella_1 both 208.3 ± 33.0a 374.3 ± 36.5 235.2 ± 34.2a 9.669 0.020

B_OTU 20 Lachnospiraceae;Oribacterium both 72.0 ± 16.8a,b 19.0 ± 6.5a 92.2 ± 21.3b 9.540 0.020

B_OTU 52 Prevotellaceae;Prevotella_7 both 115.7 ± 30.7a,b 44.3 ± 15.8a 132.9 ± 24.4b 5.870 0.078

B_OTU 1 Succinivibrionaceae;Succinivibrionaceae_UCG-001 HE 1904.6 ± 301.4ab 1181.3 ± 362.6a 2153.0 ± 291.9b 6.314 0.067

F_OTU 3 Neocallimastigaceae;Piromyces HE 195.6 ± 27.0a 377.8 ± 36.8a 232.6 ± 25.4a 12.297 0.008

B_OTU 4 Prevotellaceae;Prevotella_1 HE 122.1 ± 39.8a 200.1 ± 59.1 137.8 ± 50.2a 4.565 0.129

B_OTU 7 Succinivibrionaceae;Succinivibrionaceae_UCG-002 HE 21.7 ± 7.3a 85.7 ± 16.8a 28.3 ± 8.7a 14.933 0.005

B_OTU 24 Prevotellaceae;Prevotella_1 HE 22.6 ± 3.4a 48.5 ± 6.2 24.3 ± 4.3a 12.779 0.008

B_OTU 54 Prevotellaceae;Prevotella_1 HE 8.1 ± 1.3a 9.7 ± 1.7 5.8 ± 0.9a 3.685 0.188

B_OTU 65 Lachnospiraceae;Lachnospiraceae_XPB1014_group HE 16.2 ± 4.1a 37.8 ± 4.0a 14.2 ± 3.6a 14.632 0.005

B_OTU 70 Prevotellaceae;Prevotella_1 HE 3.8 ± 0.9a 6.7 ± 1.2 2.6 ± 0.7a 9.002 0.023

B_OTU 131 Lachnospiraceae;Lachnospiraceae_XPB1014_group HE 380.4 ± 73.6a,b 364.9 ± 43.8a 357.5 ± 70.2b 0.044 0.978

B_OTU 6 Prevotellaceae;Prevotella_1 LE 153.0 ± 22.9a 268.1 ± 24.6 166.0 ± 20.2a 10.526 0.016

B_OTU 27 Prevotellaceae;Prevotella_7 LE 220.6 ± 52.0a 129.3 ± 49.6a 220.5 ± 44.2a 1.483 0.503

B_OTU 49 Veillonellaceae;Veillonellaceae_unclassified LE 25.5 ± 5.5a,b 16.5 ± 5.7a 38.7 ± 6.6b 6.352 0.067

B_OTU 81 Prevotellaceae;Prevotella_1 LE 23.4 ± 5.9a 9.0 ± 2.0a 21.8 ± 4.5a 5.299 0.096

B_OTU 134 Lachnospiraceae_unclassified LE 61.8 ± 26.7a 10.0 ± 4.7a 25.7 ± 10.1a 2.358 0.344

B_OTU 168 Lachnospiraceae_unclassified LE 9.9 ± 3.0a,b 5.1 ± 2.3a 13.5 ± 2.7b 6.455 0.067

B_OTU 171 Prevotellaceae;Prevotellaceae_unclassified LE 25.8 ± 5.3a 5.7 ± 2.3 27.0 ± 6.1a 14.313 0.005

HE Solids B_OTU 24 Prevotellaceae;Prevotella_1 both 24.5 ± 7.7a 70.3 ± 14.2 27.7 ± 8.1a 11.713 0.020

B_OTU 70 Prevotellaceae;Prevotella_1 both 10.4 ± 2.6a 19.4 ± 2.4 9.4 ± 1.7a 9.303 0.029

B_OTU 131 Lachnospiraceae;Lachnospiraceae_XPB1014_group both 7.6 ± 1.9a 16.8 ± 2.8 7.3 ± 1.5a 9.654 0.029

B_OTU 17 Prevotellaceae;Prevotella_1 HE 72.2 ± 7.2a 77.6 ± 4.4a 73.6 ± 3.6a 0.894 0.639

B_OTU 20 Lachnospiraceae;Oribacterium HE 175.9 ± 35.0a,b 101.0 ± 39.9a 186.5 ± 29.2b 7.190 0.056

B_OTU 35 Prevotellaceae;Prevotella_7 HE 103.6 ± 22.6a 38.7 ± 19.0a 75.4 ± 14.1a 4.590 0.121

B_OTU 42 Ruminococcaceae_NK4A214_group HE 41.7 ± 4.5a 54.2 ± 5.3a 42.0 ± 3.3a 5.606 0.083

B_OTU 52 Prevotellaceae;Prevotella_7 HE 32.9 ± 7.5a 11.5 ± 4.3a 24.5 ± 4.1a 6.086 0.077

B_OTU 83 Prevotellaceae;Prevotella_1 HE 14.3 ± 1.7a 9.2 ± 1.5a 9.3 ± 1.2a 5.469 0.083

B_OTU 144 Prevotellaceae;Prevotella_1 HE 2.2 ± 0.5a 4.5 ± 0.7b 2.8 ± 0.5a,b 7.159 0.056

F_OTU 3 Neocallimastigaceae;Piromyces LE 107.2 ± 8.5a 150.4 ± 11.3 106.2 ± 5.9a 11.374 0.020

B_OTU 10 Prevotellaceae;Prevotella_1 LE 60.0 ± 10.7a 53.3 ± 16.4 61.1 ± 7.3a 2.173 0.357

B_OTU 49 Veillonellaceae;Veillonellaceae_unclassified LE 25.3 ± 2.9a 35.5 ± 3.9a 25.1 ± 1.7a 5.945 0.077

B_OTU 65 Lachnospiraceae_XPB1014_group LE 8.6 ± 0.8a 5.4 ± 0.9a 7.3 ± 0.8a 5.981 0.077

B_OTU 97 Bacteroidia_unclassified;Bacteroidia_unclassified LE 10.4 ± 1.5a 24.8 ± 4.2a 12.3 ± 1.0a 13.470 0.020

B_OTU 109 Lachnospiraceae;probable_genus_10 LE 24.4 ± 3.9a 24.7 ± 3.6 31.2 ± 2.7a 2.833 0.273

B_OTU 1 Succinivibrionaceae;Succinivibrionaceae_UCG-001 HE 690.4 ± 205.6a 1106.7 ± 259.7a 422.1 ± 147.2a 6.464 0.068

F_OTU 3 Neocallimastigaceae;Piromyces HE 521.9 ± 58.9a 325.1 ± 82.2a 447.2 ± 68.9a 3.129 0.234

B_OTU 4 Prevotellaceae;Prevotella_1 HE 359.6 ± 27.3a 261.3 ± 28.7 426.9 ± 36.7a 11.256 0.008

B_OTU 7 Succinivibrionaceae;Succinivibrionaceae_UCG-002 HE 224.9 ± 30.1a 221.1 ± 79.5a 288.2 ± 64.4a 1.630 0.443

(Continued)

Frontiers
in

M
icrobiology

|w
w

w
.frontiersin.org

June
2021

|Volum
e

12
|A

rticle
665776

139

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fm
icb-12-665776

M
ay

26,2021
Tim

e:18:31
#

8

C
ox

etal.
M

icrobiota
R

esponse
to

R
um

en
E

xchange

TABLE 1 | Continued

Block OTU Taxonomy IN Pre mean ± SE Post1 mean ± SE Post2 mean ± SE χ2
df=2 P-value

B_OTU 24 Prevotellaceae;Prevotella_1 HE 72.6 ± 10.5a 31.7 ± 8.6 73.8 ± 8.5a 11.143 0.008

B_OTU 54 Prevotellaceae;Prevotella_1 HE 53.4 ± 6.0a 31.7 ± 5.4 47.9 ± 3.2a 6.743 0.065

B_OTU 65 Lachnospiraceae;Lachnospiraceae_XPB1014_group HE 8.7 ± 1.2a 7.4 ± 1.3a 10.6 ± 1.1a 4.052 0.157

B_OTU 70 Prevotellaceae;Prevotella_1 HE 29.8 ± 4.2a 20.8 ± 4.2a 30.6 ± 3.8a 2.115 0.367

B_OTU 131 Lachnospiraceae;Lachnospiraceae_XPB1014_group HE 7.2 ± 1.6a,b 3.9 ± 1.1a 8.0 ± 1.2b 5.656 0.080

B_OTU 6 Prevotellaceae;Prevotella_1 LE 272.9 ± 21.4a 212.2 ± 25.7a 282.6 ± 18.9a 4.643 0.124

B_OTU 27 Prevotellaceae;Prevotella_7 LE 37.5 ± 23.1a 103.1 ± 36.4a 33.0 ± 27.2 13.348 0.005

B_OTU 49 Veillonellaceae;Veillonellaceae_unclassified LE 9.9 ± 3.8a 20.0 ± 6.2a 7.0 ± 2.4a 5.854 0.080

B_OTU 81 Prevotellaceae;Prevotella_1 LE 9.6 ± 3.4a 26.3 ± 5.6 10.1 ± 1.6a 12.639 0.005

B_OTU 134 Lachnospiraceae_unclassified LE 14.3 ± 10.0a 38.6 ± 21.7a 0.0 ± 0.0a 5.782 0.080

B_OTU 168 Lachnospiraceae_unclassified LE 2.0 ± 1.2a 6.5 ± 2.4 0.9 ± 0.5a 15.963 0.002

B_OTU 171 Prevotellaceae;Prevotellaceae_unclassified LE 5.1 ± 2.5a 30.2 ± 8.2 6.4 ± 1.8a 17.392 0.002

LESolids B_OTU 24 Prevotellaceae;Prevotella_1 both 84.2 ± 9.4a 26.7 ± 7.3 66.6 ± 9.4a 15.590 0.002

B_OTU 70 Prevotellaceae;Prevotella_1 both 22.7 ± 1.9a 10.3 ± 2.0 19.2 ± 2.2a 13.784 0.003

B_OTU 131 Lachnospiraceae;Lachnospiraceae_XPB1014_group both 26.3 ± 2.4a 18.6 ± 3.1a 24.5 ± 2.7a 4.449 0.150

B_OTU 17 Prevotellaceae;Prevotella_1 HE 90.8 ± 5.4a 87.8 ± 4.1a 90.3 ± 6.2a 0.058 0.972

B_OTU 20 Lachnospiraceae;Oribacterium HE 9.8 ± 3.4a 110.4 ± 30.2 36.8 ± 24.2a 21.334 <0.001

B_OTU 35 Prevotellaceae;Prevotella_7 HE 0.8 ± 0.3a 42.1 ± 12.9 13.7 ± 10.3a 11.099 0.010

B_OTU 42 Ruminococcaceae_NK4A214_group HE 62.1 ± 2.4a 41.4 ± 4.3 59.0 ± 3.4a 14.230 0.003

B_OTU 52 Prevotellaceae;Prevotella_7 HE 1.2 ± 0.5a 15.9 ± 6.1 4.4 ± 2.6a 10.034 0.013

B_OTU 83 Prevotellaceae;Prevotella_1 HE 6.6 ± 0.7a 9.9 ± 1.9a 6.4 ± 0.8a 2.083 0.424

B_OTU 144 Prevotellaceae;Prevotella_1 HE 5.5 ± 0.6a 2.5 ± 0.5 5.3 ± 0.9a 15.398 0.002

F_OTU 3 Neocallimastigaceae;Piromyces LE 123.3 ± 23.8a 105.3 ± 26.6a 133.1 ± 23.2a 0.462 0.840

B_OTU 10 Prevotellaceae;Prevotella_1 LE 170.4 ± 11.2a 128.7 ± 6.8b 146.9 ± 7.3a,b 9.451 0.015

B_OTU 49 Veillonellaceae;Veillonellaceae_unclassified LE 16.6 ± 4.7a 39.1 ± 8.0 15.0 ± 5.1a 10.450 0.012

B_OTU 65 Lachnospiraceae_XPB1014_group LE 47.1 ± 4.1a 41.9 ± 3.7a 43.4 ± 3.0a 0.820 0.747

B_OTU 97 Bacteroidia_unclassified;Bacteroidia_unclassified LE 5.3 ± 0.9a 7.3 ± 0.8a 5.0 ± 0.6a 4.444 0.150

B_OTU 109 Lachnospiraceae;probable_genus_10 LE 31.4 ± 3.8a 18.7 ± 2.3 34.6 ± 3.9a 9.538 0.015

B_OTU 110 Lachnospiraceae;Lachnospiraceae_unclassified LE 13.3 ± 2.6a 18.5 ± 2.9a 14.9 ± 2.9a 2.329 0.401

B_OTU 171 Prevotellaceae;Prevotellaceae_unclassified LE 0.8 ± 0.2a 7.5 ± 1.2 2.9 ± 1.2a 25.028 <0.001

The nodes with the 10 greatest values for degree centrality were selected. The implicating network is listed under “IN.” Tests were performed within blocks of sample type and efficiency status. Post hoc testing
was performed as Wilcoxon rank sum tests with FDR correction applied to P-values. Means sharing letters are not significantly different (α = 0.05). All samples normalized to prior to analysis (bacteria: 10,000
sequences/sample, fungi: 2,450 sequences/sample).
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TABLE 2 | Kruskal-Wallis tests of SIMPER-implicated taxa.

Amplicon Testing Block Implicating contrast(s) OTU Classification Pre Mean ± SE Post1 Mean ± SE Post2 Mean ± SE χ2
df=2 P-value

Bacteria HE Liquids Pre/Post1 B_OTU 19 Prevotellaceae; Prevotella_1 55.6 ± 8.2a 139.7 ± 15.1 75.2 ± 10.4a 16.349 <0.001

Pre/Post1, Post1/Post2 B_OTU 3 Prevotellaceae; Prevotella_1 322.3 ± 27.3a 414.3 ± 29.4 320.2 ± 20.5a 6.953 0.031

B_OTU 4 Prevotellaceae; Prevotella_1 195.6 ± 27.0a 377.8 ± 36.8 232.6 ± 25.4a 12.297 0.002

B_OTU 5 Prevotellaceae; Prevotella_1 208.3 ± 33.0a 374.3 ± 36.5 235.2 ± 34.2a 9.669 0.007

B_OTU 6 Prevotellaceae; Prevotella_1 153.0 ± 22.9a 268.1 ± 24.6 166.0 ± 20.2a 10.526 0.005

Post1/Post2 B_OTU 1 Succinivibrionaceae; Succinivibrionaceae
UCG-001

1904.6 ± 301.4a,b 1181.3 ± 362.6a 2153.0 ± 291.9b 6.314 0.043

B_OTU 2 Prevotellaceae; Prevotella_1 653.5 ± 77.8a 759.8 ± 53.9a 593.2 ± 59.9a 5.012 0.082

B_OTU 29 Prevotellaceae; Prevotella_7 145.7 ± 33.6a 119.6 ± 55.8a 251.1 ± 46.7a 7.214 0.027

B_OTU 52 Prevotellaceae; Prevotella_7 115.7 ± 30.7a,b 44.3 ± 15.8a 132.9 ± 24.4b 5.870 0.053

HE Solids Pre/Post1, Post1/Post2 B_OTU 18 Lachnospiraceae; Butyrivibrio_2 61.4 ± 8.6a 124.0 ± 19.7 62.5 ± 6.6a 10.512 0.005

Post1/Post2 B_OTU 7 Succinivibrionaceae; Succinivibrionaceae
UCG-002

56.3 ± 19.2a 151.5 ± 35.0 62.2 ± 21.9a 7.181 0.028

B_OTU 20 Lachnospiraceae; Oribacterium 175.9 ± 35.0a,b 101.0 ± 39.9a 186.5 ± 29.2b 7.190 0.027

LE Liquids Post1/Post2 B_OTU 1 Succinivibrionaceae; Succinivibrionaceae
UCG-001

690.4 ± 205.6a,b 1106.7 ± 259.7a 422.1 ± 147.2b 6.464 0.039

B_OTU 3 Prevotellaceae; Prevotella_1 423.9 ± 26.3a,b 367.7 ± 23.5a 462.8 ± 27.6b 6.930 0.031

B_OTU 4 Prevotellaceae; Prevotella_1 359.6 ± 27.3a 261.3 ± 28.7 426.9 ± 36.7a 11.256 0.004

B_OTU 5 Prevotellaceae; Prevotella_1 398.8 ± 33.1a 278.2 ± 35.1 462.3 ± 31.8a 12.875 0.002

B_OTU 27 Prevotellaceae; Prevotella_7 37.5 ± 23.1a 103.1 ± 36.4a 33.0 ± 27.2 13.348 0.001

B_OTU 29 Prevotellaceae; Prevotella_7 38.1 ± 23.8a 112.0 ± 44.5 47.0 ± 35.3a 12.078 0.002

B_OTU 52 Prevotellaceae; Prevotella_7 33.9 ± 21.4a 74.8 ± 26.6 20.2 ± 15.4a 14.165 <0.001

LE Solids Pre/Post1 B_OTU 5 Prevotellaceae; Prevotella_1 153.8 ± 20.7 79.4 ± 13.4a 100.7 ± 14.6a 9.063 0.011

Pre/Post1, Post1/Post2 B_OTU 20 Lachnospiraceae; Oribacterium 9.8 ± 3.4a 110.4 ± 30.2 36.8 ± 24.2a 21.334 <0.001

Fungi HE Liquids Pre/Post1 F_OTU 5 Neocallimastigaceae; Neocallimastix 141.2 ± 22.5a 61.5 ± 8.3b 117.0 ± 23.0a,b 9.305 0.010

Pre/Post1, Post1/Post2 F_OTU 7 Saccharomycetales Incertae sedis;
Wickerhamomyces anomalus

149.1 ± 29.7a 45.0 ± 19.3 170.0 ± 48.4a 14.854 <0.001

Post1/Post2 F_OTU 2 Neocallimastigaceae; unclassified 277.9 ± 46.2a 513.8 ± 74.2 239.4 ± 38.9a 9.678 0.008

F_OTU 9 Neocallimastigaceae; Piromyces 44.6 ± 13.2a,b 44.3 ± 7.5a 20.1 ± 3.8b 6.436 0.040

HE Solids Pre/Post1 F_OTU 5 Neocallimastigaceae; Neocallimastix 209.9 ± 28.4 75.3 ± 7.9a 111.3 ± 17.3a 20.020 <0.001

F_OTU 6 Neocallimastigaceae; Neocallimastix 88.1 ± 14.3a 145.5 ± 8.1b 121.0 ± 13.8a,b 7.192 0.027

F_OTU 10 Saccharomycetales Incertae sedis;
Debaryomyces prosopidis

64.2 ± 36.7a 5.1 ± 3.3 15.6 ± 5.1a 9.556 0.008

Pre/Post1, Post1/Post2 F_OTU 2 Neocallimastigaceae; unclassified 310.5 ± 62.8a 518.9 ± 52.4 242.6 ± 60.8a 10.504 0.005

F_OTU 3 Neocallimastigaceae; Piromyces 67.5 ± 23.0a 92.3 ± 13.8 41.1 ± 13.1a 9.950 0.007

F_OTU 7 Saccharomycetales Incertae sedis;
Wickerhamomyces anomalus

141.1 ± 68.6a 7.6 ± 1.9 238.4 ± 84.9a 18.930 <0.001

Post1/Post2 F_OTU 4 Neocallimastigaceae; Piromyces 182.6 ± 28.7a,b 186.9 ± 14.9a 110.4 ± 22.7b 7.749 0.021

F_OTU 11 Trichocomaceae; Penicillium roqueforti 2.9 ± 1.6a 0.3 ± 0.2a 173.0 ± 81.7 32.528 <0.001

(Continued)
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described (Weimer et al., 2017). SIMPER-identified taxa that
explained at least 1% of the variation in between any two time
periods within efficiency status, rumen phase, and amplicon type
were subjected to Kruskal-Wallis tests as summarized in Table 2.

Similar to the OTUs implicated in the above network analysis,
many of the bacterial OTUs in the liquid phase derived from
HE cows that increased significantly in Post1, relative to Pre
and Post2, were classified to the genus Prevotella_1 (B_OTU 3,
B_OTU 4,B_OTU 5, B_OTU 6, and B_OTU 19). In addition,
many OTUs that tended to decrease in Post1 were classified
to Prevotella_7 (B_OTU 29 and B_OTU 52). The opposite
pattern was observed in LE liquid samples: OTUs classifying to
Prevotella_1 tended to decrease in Post1 relative to Pre and Post2
(B_OTU 3, B_OTU 4, and B_OTU 5), and those classifying to
Prevotella_7 tended to increase (B_OTU 29 and B_OTU 52). In
solid-derived samples from HE animals, an OTU classifying to
the genus Oribacterium (B_OTU 20) was more abundant in Post2
than Post1, though neither differed from Pre. This OTU showed
a marked increase in Post1 in LE solids, then returned to baseline
abundance in Post2. An OTU classified to Succinivibrionaceae
UCG_002 (B_OTU 7) and another classified to Butyrivibrio_2
(B_OTU 18) were more abundant in HE solid samples in Post1
relative to Pre and Post2.

The summed abundance of all OTUs classified to genera
Prevotella_1 and Prevotella_7 was assessed over the time course
in rumen liquids (Figure 3). Pre-exchange, Prevotella_1was more
abundant in LE cows, while Prevotella_7 was more abundant
in HE cows (P < 0.05). Prevotella_1 increased in HE cows in
the Post1 period, then returned to pre-exchange abundance.
Conversely, Prevotella_7 increased in LE cows in the Post1 period
before returning to pre-exchange abundance in Post2.

In liquid phase samples from HE cows, a fungal OTU classified
to the genus Neocallimastix decreased from the Pre to Post1
period (Table 1, F_OTU 5), and increased significantly and
remained greater than pre-exchange abundance in Post2. The
inverse was seen in LE liquids: F_OTU 5 increased from Pre to
Post1 and was at an intermediate abundance in Post2. In both
HE and LE animals for both solid and liquid rumen fractions, an
OTU classified to Wickerhamomyces anomalus decreased sharply
in Post1 relative to Pre and Post2 (F_OTU 7). Our fungal
sequencing was also able to detect the presence of a known silage
spoilage organism, Penicillium roqueforti (F_OTU 11), in HE
solids and in LE liquids and solids. It was present at very low
abundance in Pre and Post1, then increased sharply in Post2.

Phenotypic Correlations
We then performed a correlation analysis of our SIMPER-
implicated OTUs with a number of phenotypic variables. Two
production-associated variables (ECM and GFE) and the molar
fractions of the three most abundant ruminal VFAs (acetate,
propionate, and butyrate) were considered. The results of this
correlation analysis are summarized in Figure 4.

Bacterial OTUs correlated to production metrics tended to
be weak and non-significant, except for a trend toward a
negative relationship between B_OTU 3 (Prevotella_1) and both
ECM and GFE, and also between B_OTU 2 (Prevotella_1)
and B_OTU 4 (Prevotella_1) with GFE in rumen liquids
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FIGURE 3 | Beanplots expressing abundance of normalized bacterial reads classifying to genera Prevotella_1 and Prevotella_7 in liquid-derived rumen samples by
time within the study and initial host efficiency. Shared letters indicate no difference in read abundance (p > 0.05).

(P < 0.001). Significant and relatively stronger correlations
were observed between bacterial OTUs and the relative
abundance of specific VFAs. Several bacterial OTUs had
highly significant positive correlations to the molar fraction of
acetate in rumen liquids (B_OTU 2: Prevotella_1, B_OTU 3:
Prevotella_1, B_OTU 4: Prevotella_1, B_OTU 5: Prevotella_1,
B_OTU 6: Prevotella_1, and B_OTU 19: Prevotella_1), and
several had significant negative correlations to acetate (B_OTU 1:
Succinivibrionaceae UCG-001, B_OTU 27: Prevotella_7, B_OTU
29: Prevotella_7, and B_OTU 52: Prevotella_7). Similarly, a
number of bacterial OTUs were significantly positively (B_OTU
3: Prevotella_1, B_OTU 4: Prevotella_1, B_OTU 5: Prevotella_1,
B_OTU 6: Prevotella_1, and B_OTU 19: Prevotella_1) and
negatively (B_OTU 1: Succinivibrionaceae UCG-001, B_OTU
27: Prevotella_7, B_OTU 29: Prevotella_7, and B_OTU 52:
Prevotella_7) correlated to butyrate abundance in rumen liquids.
Propionate tended to have the strongest correlation coefficients in
rumen liquids, and followed the exact inverse pattern of acetate
in terms of direction of correlation to OTUs the interrogated
(positive: B_OTU 1: Succinivibrionaceae UCG-001, B_OTU 27:
Prevotella_7, B_OTU 29: Prevotella_7, B_OTU 52: Prevotella_7;
negative: B_OTU 2: Prevotella_1, B_OTU 3: Prevotella_1,
B_OTU 4: Prevotella_1, B_OTU 5: Prevotella_1, B_OTU 6:
Prevotella_1, and B_OTU 19: Prevotella_1). No significant
correlation was seen between ECM or GFE and the SIMPER-
implicated OTUs in rumen solids (P > 0.05). Acetate was
significantly positively correlated with B_OTU 5 (Prevotella_1),
B_OTU 7 (Prevotella_1), B_OTU 18 (Butyrivibrio_2), and

negatively correlated with B_OTU 20 (Oribacterium) in rumen
solids. Butyrate had a positive relationship with B_OTU 7
(Succinivibrionaceae UCG-002) and B_OTU 18 (Butyrivibrio_2)
and a negative relationship with B_OTU 20 (Oribacterium).
Conversely, propionate was negatively correlated with B_OTU
5 (Prevotella_1), B_OTU 7 (Succinivibrionaceae UCG-002), and
B_OTU 18 (Butyrivibrio_2) and strongly positively correlated
with B_OTU 20 (Oribacterium).

Overall, correlations between the production metrics
and the abundance of SIMPER-implicated fungal OTUs
were weaker. In rumen liquids, F_OTU 9 (Piromyces) was
weakly but significantly negatively correlated with GFE.
Acetate was positively correlated to F_OTU 2 (unclassified
Neocallimastigaceae) and F_OTU 4 (Piromyces), and negatively
correlated to F_OTU 7 (Wickerhamomyces anomalus) in
rumen liquids. Negative correlation was observed between
butyrate abundance and F_OTU 4 (Piromyces) and F_OTU 5
(Neocallimastix) in rumen liquids. F_OTU 5 (Neocallimastix)
was positively correlated to propionate abundance in rumen
solids, and F_OTU 2 (unclassified Neocallimastigaceae) and
F_OTU 9 (Piromyces) were negatively correlated. In rumen
solids, F_OTU 6 (Neocallimastix) showed a strong positive
correlation with ECM, and was the strongest correlation
seen between any SIMPER-implicated OTU (bacterial or
fungal) and a production metric. F_OTU 6 (Neocallimastix)
was also positively correlated with GFE in these samples.
No other fungal OTUs showed significant correlations with
production metrics in rumen solids. In solid samples, acetate
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FIGURE 4 | Heatmaps summarizing correlations between SIMPER-implicated OTUs and phenotypic variables of interest within amplicon and sample type. Variables
are energy corrected milk (ECM), gross feed efficiency (GFE), and molar fraction acetate (MF ACE), propionate (MF PRO) and butyrate (MF BUT). Genera displayed
beneath OTU names. Color scale reflects strength and direction of correlation (Spearman’s ρ statistic), and asterisks within the heatmap indicate statistical
significance (*P < 0.05, **P < 0.01, ***P < 0.001).

was positively correlated with F_OTU 4 (Piromyces), F_OTU 5
(Neocallimastix), and F_OTU 6 (Neocallimastix) and negatively
correlated with F_OTU 7 (Wickerhamomyces anomalus), F_OTU
10 (Debaryomyces prosopidis), and F_OTU 11 (Penicillium
roqueforti). Butyrate had a positive correlation with F_OTU 3
(Piromyces), and no other significant correlations. F_OTU 2
(unclassified Neocallimastigaceae), F_OTU 3 (Piromyces), and
F_OTU 4 (Piromyces) were negatively correlated with propionate
abundance in rumen solids, and F_OTU 7 (Wickerhamomyces

anomalus) and F_OTU 10 (Debaryomyces prosopidis) were
negatively correlated.

Linear Discriminant Analysis
Linear discriminant analysis effect size implicated several OTUs
as diagnostic of HE or LE rumen solids and liquids in the
Pre-exchange samples. Implicated OTUs and their effect size
are shown in Supplementary Figures 3–6. Within sample
type and domain, all LEfSe-implicated OTUs were individually
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FIGURE 5 | Scatterplots of LEfSe-implicated OTUs with significant correlations to production metrics. FDR-corrected p-values and the R2 values for the linear mode
(black) are expressed on each plot. Points are color coded by initial efficiency of host and time within trial. Genus-level classification of the OTUs are as follows:
B_OTU 43: Prevotellaceae_UCG-003; B_OTU 93: Prevotella_1; B_OTU 34: Prevotella_1; B_OTU 108: Lachnobacterium; B_OTU 150: Ruminobacter; B_OTU 142:
Selenomonas_1; F_OTU 6: Neocallimastix.

correlated to ECM and GFE (Liquids: 51 B_OTUs, 4 F_OTUs;
Solids: 93 B_OTUs, 5 F_OTUs, Supplementary Table 2).
Significant correlations are shown in Figure 5. GFE did not show
significant correlations with any of the LEfSe-implicated OTUs.
In rumen liquids, B_OTU 43 (Prevotella_UCG3) and B_OTU 93
(Prevotella_1) were significantly positively correlated with ECM.
In rumen solids, B_OTU 108 (Lachnobacterium), B_OTU 150
(Ruminobacter), B_OTU 142 (Selenomonas_1), and F_OTU 6
(Neocallimastix) were positively correlated with ECM; B_OTU 34
(Prevotella_1) was significantly negatively correlated with ECM.

DISCUSSION

Manipulation of the rumen microbial community is a promising
approach for improving MPE (Jami et al., 2014; Bickhart
and Weimer, 2017; Weimer et al., 2017). Our previous work
demonstrated the ability to alter MPE though wholesale exchange
of ruminal contents, but also underscored the resistance of the
mature rumen microbiota to long-term perturbation (Weimer
et al., 2017). The mechanism behind the re-establishment of the
native microbiota following the exchange is not known, but it
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is likely a confluence of several factors, which may include re-
seeding of the lumen by the epimural community; differences in
physical factors such as rumen retention, meal frequency, and
fluid intake; bioactive compounds in saliva; and host modulation
of ruminal VFA profiles. The goal of this work was to more
thoroughly investigate rumen microbial community recovery
with an emphasis on the ruminal fungal community, and to
identify specific microbial taxa that may have contributed to the
observed shift in host efficiency.

Weimer et al. (2017) established that ruminal bacterial
diversity, richness, and community structure tended to shift from
the pre-exchange baseline to reflect the donor community in
the Post1 period, then returned to a more similar pre-exchange
community in Post2. Here, we reprocessed the original bacterial
sequence data using updated analysis methodologies and found
that the conclusions drawn from alpha and beta diversity analysis,
in response to the exchange, are upheld in this study.

The rumen fungal community, although functionally
important in fiber degradation, did not differ pre-exchange
between HE and LE hosts by either alpha or beta diversity
metrics in our analysis. This contradicts our initial hypothesis
and was unexpected given the known importance of anaerobic
fungi in improving the digestibility of lignocellulosic feed in
the rumen (Russell and Hespell, 1981; Tripathi et al., 2007;
Sehgal et al., 2008; Gao et al., 2013; Puniya et al., 2015). Given
this lack of contrast pre-exchange, it is perhaps not unexpected
that changes over the time course were not observed. As such,
while the ruminal bacterial community, as a whole, has been
demonstrated to correlate to efficiency metrics in dairy cattle
(Jewell et al., 2015; Shabat et al., 2016), the contributions of the
ruminal fungal community to efficiency phenotypes appears
to be through the action of individual influential taxa, rather
than through more complex community-scale function. This
community-scale similarity between hosts of differing efficiency
status may indicate that ruminal fungi play a narrower role
in vivo than previously thought. This supports the widely held
assumption that the primary function of the anaerobic fungi is
physical disruption of fibrous tissues in the earliest stages of feed
particle colonization. In later colonization, slow-growing fungi
are thought to be outcompeted by fiber-adherent bacteria, which
would likely have a greater impact on the pool of metabolites
available to the host, and therefore have a greater impact on
efficiency metrics.

Our analysis of network connectivity quantified by degree-
centrality revealed that bacterial communities were more
disturbed by the exchange than fungal communities. The degree-
centrality of a node in a correlation network is calculated as the
number of edges connecting to the node. In our analysis, this
represents the number of strong positive correlations a given
OTU has to other bacterial and fungal OTUs. In HE samples,
both liquid- and solid-associated bacterial communities saw a
decrease in average degree-centrality in Post1 relative to Pre, and
a recovery in Post2 (though only partially in the case of HE
solids). In contrast, LE bacterial communities had less average
degree connectivity at the outset and did not recover after the
exchange. Generally, it appears that HE communities are more
resilient and are more able than the LE communities to recover

complex network interactions following a major disturbance.
This indicates that the HE microbial community may display
greater elasticity and resilience in the face of perturbation, which
may underlie the relatively lower bacterial community diversity
which has been reported in HE cows (Shabat et al., 2016; Weimer
et al., 2017).

This finding points to the potential for establishing
exogenous microbial communities in historically LE cows:
if LE communities have inherently lower resilience, then it
may be possible to introduce long-term, high-resilience HE
communities. We note that the exchange protocol used in
this study was insufficient to achieve a new stable state in LE
cows despite this disparity, and further work should focus on
identifying and overcoming barriers to exogenous community
introduction. This may include a greater understanding of
the influence of both host immunity and genetics on ruminal
microbial community maintenance, a consideration of the
metabolic capacities of the ruminal microbiota in HE and LE
cows, and methodological changes that may aid exogenous
community establishment (i.e., rinsing the rumen prior to
introducing the new community or intervening early in life prior
to the establishment of the adult ruminal microbial community).
Additionally, fungal communities tended to have lower degree
connectivity than bacterial communities, irrespective of host
efficiency status or study phase, which suggests that fungi do not
exert a strong influence on efficiency at the community-level.
This reinforces the theory that fungi are not major contributors
to the pool of metabolites that serve as milk precursors
(Russell and Hespell, 1981).

Many of the bacterial OTUs that were found to change over the
time course in either LE or HE cows were classified to the genus
Prevotella. This observation agrees with Jewell et al. (2015) who
showed that some members of this genus are strongly correlated
(either positively or negatively) to feed efficiency. Recent updates
to the SILVA taxonomic classification database allowed for a more
thorough taxonomic division of the Prevotella based on sequence
identity. Prevotella_1, which was more abundant in LE cows in
the Pre period and was transferred to HE cows in the Post1
period, contains the type species Prevotella melaninogenica and
the rumen-derived isolate P. ruminicola (Henderson et al., 2019).
In the Global Rumen Census dataset (Henderson et al., 2019),
which was used to resolve these taxa, Prevotella_1 accounted
for approximately 18% of all reads and was present in 100%
of the samples. Prevotella_7 was much less abundant, with an
average of 1% of reads and a prevalence of∼68%. BLAST analysis
of the representative sequences of the two SIMPER-implicated
OTUs classifying to Prevotella_7 revealed that they do not have
high sequence similarity (>97%) with any cultured isolates of
Prevotella. The Prevotella_1 are better characterized, and three
of these OTUs have >97% sequence identity with isolates of
P. ruminicola (B_OTU 2, B_OTU 3, and B_OTU 5), but the
rest have below species-level sequence identity with cultured
isolates. Because these genus designations were created based on
sequence identity, rather than genomic or phenotypic analysis,
very little is known about the variation in metabolism that may
impact precursors available to the host. Prevotella are generally
thought to be major producers of propionate and can utilize a
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diverse range of substrates (Krause et al., 2003), which is reflected
in the strong positive correlations between OTUs classified to
Prevotella_7 and the molar fraction of propionate in the rumen
fluid in this study. However, our data also shows a negative
relationship between OTUs classified to Prevotella_1 and the
molar fraction of propionate, indicating that more research is
needed to determine the specific role of members of this genus
in the rumen community. The high prevalence of Prevotella_1
as a member of highly influential nodes in our network analysis
implies that this group may play a role in maintenance and
recovery of microbial community structures in the rumen.

F_OTU 3 is a member of the genus Piromyces and was found
to be highly central to pre-exchange networks regardless of
efficiency status or sample type. This OTU accounted for 10% of
total fungal reads overall (range: 0–42%). This genus, like others
in the Neocallimastigomycota, is known to host a large suite of
cellulolytic and hemicellulolytic species (Gruninger et al., 2014).
However, the large amount of functional redundancy among
the rumen anaerobic fungi makes it difficult to determine how
this specific OTU might be exerting influence over the larger
microbial community network (Gruninger et al., 2018).

The only fungal OTU with a relatively strong, significant
positive correlation to any production metric was F_OTU 6,
which is classified to the genus Neocallimastix in the phylum
Neocallimastigomycota and accounted for 4% of fungal reads
(range: 0–8.3%). Members of this phylum are obligate anaerobic
fungi that are common in the gastrointestinal tracts of herbivores
(Akin et al., 1988; Akin and Borneman, 1990; Lee et al., 2000).
Cultured representatives of the Neocallimastix ferment sugars
to lactate, ethanol, formate, and hydrogen (Lowe et al., 1987).
In the rumen, they are among a number of anaerobic fungi
whose fermentation of cellulose and hemicellulose are crucial
to exposing plant surface area to allow bacterial adherence to
plant fiber (Akin and Borneman, 1990). In one study, a culture
of Neocallimastix fed to buffalo calves led to an increase in feed
efficiency, which was attributed to improved fermentation of feed
(Sehgal et al., 2008). These fungi are difficult to isolate in the
lab, which confounds detailed study of metabolism and microbe-
microbe interactions. The representative sequence for F_OTU 6
has high sequence identity with Neocallimastix lanati, a recent
sheep fecal isolate (99.4% identity, JGI MycoCosm BLAST)2. This
isolate is a promising candidate for probiotic development due
to its ability to grow quickly on defined media. Future work
assessing the use of N. lanati as a probiotic for increasing milk
production and feed efficiency should consider the community-
level factors that may help this species to establish and be
maintained in the rumen.

It is important to note that the fungal primers used in this
study were general primers, as opposed to primers specific to
rumen anaerobic fungi in the phylum Neocallimastigomycota.
As such, our community analysis included organisms which
originate in the diet and do not have a known role in feed
degradation in the rumen, such as Penicillium roqueforti and
Wickerhamomyces anomalus. In doing so, this work captures
the impact of the exchange protocol on the whole fungal

2https://mycocosm.jgi.doe.gov/Neolan1/Neolan1.home.html

community, including but not limited to those members of
the community known to be fibrolytic. However, the inclusion
of feed-derived fungal taxa in the analysis may have limited
our ability to detect differences in functionally important
taxa. Future work could include fungal community sequencing
with Neocallimastigomycota-specific primers to determine if
focusing on this subset of the community might reveal some
interesting contrasts.

In this study, we demonstrate that changes in MPE that
result from near-total whole rumen contents exchange in dairy
cows is driven primarily by the ruminal bacterial community.
Surprisingly, we found that the ruminal fungal community did
not differ significantly between hosts of disparate historic MPE,
indicating that they were not markedly impacted by the exchange
protocol. This supports the hypothesis that the primary role of
rumen fungi is in physical disruption of feed particles rather
than large and impactful contributions to the pool of metabolites
that impact downstream production. Two important exceptions
are a specific OTU of Neocallimastix, which appears to have a
positive impact on MPE and whose recent isolation will allow
closer study of its unique role in rumen function, and one OTU
of Piromyces that appears to exert an outsized influence on
microbial community networks in the rumen. Future work in
whole-rumen probiotics to improve MPE should focus primarily
on the bacterial community with particular attention to the
bacterial genera Prevotella_1 and Prevotella_7 and the fungal
genera Neocallimastix and Piromyces.
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Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea

(PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In

this study, to understand the pathogenesis, the transcriptomic analysis was performed

to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected

with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the

criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total

of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified

after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs.

The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically

involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular

signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis revealed that immune response-related pathways were mainly enriched in J2

cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and

mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest

rich factor, followed by nucleotide-binding and oligomerization domain-like receptor

(NLRs), C-type lectin receptor (CLR), cytokine–cytokine receptor interaction, and Toll-like

receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30

of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB,

participate in the immune response to infection through an integral signal cascade

and can be target molecules for prevention and control of enteric ETEC infection by

probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune

response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the

identification of targets for prevention and control of ETEC-related PWD.

Keywords: transcriptome (RNA-seq), intestinal epithelia cell, immune response, Escherichia coli, porcine,

enrichment analysis
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INTRODUCTION

Enterotoxigenic Escherichia coli (ETEC) is one of the
most common causes of diarrhea in animals and humans.
Enterotoxigenic Escherichia coli is responsible for an estimated
75 million diarrheal episodes and approximately 50,000 deaths
in children younger than 5 years annually (1). The breakout of
ETEC infection in farm animals often attracts a lot of attention
due to the possibility of spreading to humans through animal
productions. In neonatal and weaned pigs, diarrhea associated
with ETEC results in huge economic losses in the pig industry
because of high morbidity, mortality, and growth retardation
(2, 3). Enterotoxigenic Escherichia coli-expressing F4 fimbriae are
the most prevalent strains in pigs (4) and include three fimbrial
variants of F4ab, F4ac, and F4ad (5). F4ab and F4ac variants are
typically associated with diarrhea in pigs (6). The incidence of
ETEC infection has become a more frequent reason for severe
diarrhea in global swine production. Across Europe, ETEC is
detected in 60% of post-weaning diarrhea (PWD)-affected farms
(7). Enterotoxigenic Escherichia coli is also responsible for the
spread of antibiotic resistance in the environment (8). Thus,
clarifying the pathogenesis of ETEC is essential for identifying
effective prevention strategies for ETEC-related pig diarrhea.

Intestinal epithelial cells (IECs) are in the front line of host
defense against pathogens and possess as the crucial mediators of
barrier function. Enterotoxigenic Escherichia coli interacts with
IECs and secretes heat-labile (LT) or heat-stable enterotoxin
(ST) enterotoxins, leading to acute intestinal inflammation and
diarrhea (9). Besides, IECs are also indispensable for activating
innate immune responses and subsequently for inducing
adaptive immunity (10). Lipopolysaccharide (LPS) is generally
the most potent immunostimulant from Gram-negative bacteria.
In general, the innate immune response of IECs is initiated
by bind of the pathogen-associated molecular pattern to
specialized pattern recognition receptors, including membrane-
bound Toll-like receptors (TLRs) and cytoplasmic nucleotide-
binding and oligomerization domain-like receptors (NLRs) (11).
The detection of pathogen-associated molecular patterns by
pattern recognition receptors activates nuclear factor kappa-B
(NF-κB) andmitogen-activated protein kinase (MAPK) signaling
pathways and triggers transcriptional expression of various pro-
inflammatory chemokines, cytokines, and antimicrobial peptides
for recruitment and activation of inflammatory cells, thereby
inducing host immune responses (12, 13). However, the immune
response-related pathogenesis of ETEC, especially the ETEC
clinical isolates, is still unclear.

Transcriptome analysis is a useful approach to reveal the
comprehensive expression profile of genes involving the host
response to pathogen infection. The transcriptomic response of
porcine IECs to ETEC reference strains was previously reported.
Comparative transcriptomic analysis observed strong differential
responses of porcine IECs to F4ab, F4ac, or F18ac ETEC and
confirmed that the apical membrane of the IECs represents
a first barrier against enteric pathogen infection (9, 14).
Enterotoxigenic Escherichia coli K88 (serotype O149:K91:K88ac)
challenge induces differential expression of genes encoding
intestinal ion transporters and water channel aquaporins in

young piglets, probably by regulation of the cyclic adenosine
monophosphate–protein kinase A signaling pathway (15). The
differential genes confirmed by transcriptome analysis can be a
potential target for preventing pathogen infection. For example,
a soluble and highly fermentable dietary fiber with carbohydrases
improves growth performance in pigs infected with F18 ETEC,
in part due to a reduction in inflammatory intermediates (16).
Dietary supplementation with live yeast limits the early activation
of the gene sets related to the impairment of the jejunal mucosa,
thus counteracting the detrimental effect of F4 ETEC infection in
susceptible pigs (17).

This study aimed to explore the transcriptional change profile
of porcine intestinal epithelial J2 cells after infection with a pig
diarrhea-related ETEC isolate and determine the potential target
for prevention and control for ETEC infection.

MATERIALS AND METHODS

Bacterial Strains
Enterotoxigenic Escherichia coli BUA2008 was isolated from the
intestinal contents of weaned pigs with diarrhea in our laboratory
and used in this study. The ETEC BUA2008 harbors the genes
encoding virulence factor E. coli-secreted protein A, STa, STb,
and LTa.

Lactobacillus reuteri BP325 was originally isolated from
the gastrointestinal tract of a healthy weaning piglet in
our laboratory. The strain was identified through standard
morphological, biochemical, and physiological tests and
by 16s rRNA gene sequence analysis. Lactobacillus reuteri
BP325 could inhibit the growth of ETEC BUA2008 and be
tolerant to acid and bile salt in vitro. Lactobacillus reuteri
BP325 was grown in De Man, Rogosa, and Sharpe broth
(Oxoid, Hampshire, United Kingdom) for 24 h at 37◦C under
microaerophilic conditions. After overnight incubation, bacteria
were inoculated 1:100 in fresh De Man, Rogosa, and Sharpe
broth and grown for approximately 8 h until reaching the
mid-log phase.

Intestinal Epithelial Cell Line J2 Cell
Culture Condition and Treatment
The porcine intestinal epithelial cell line (IPEC)-J2 cells were
cultured in Dulbecco’s modified Eagle medium/F12 medium
(Invitrogen, Carlsbad, CA, USA) supplemented with 10% heat-
inactivated fetal calf serum, 100µg/ml of streptomycin, and
100 U/ml of penicillin at 37◦C in an atmosphere of 5%
carbon dioxide and 95% air at 95% relative humidity. Cells
(1 × 105 cells/well) were seeded onto a six-well collagen-
coated polytetrafluoroethylene transwell filter, and confluent cell
monolayers were treated under two different conditions: (i)
medium alone (CN); (ii) ETEC infection alone [3 × 106 colony-
forming unit (CFU)] at a multiplicity of infection of 30:1 (EC).
At 2 h after ETEC infection, the IPEC-J2 cells were washed
three times with phosphate-buffered saline (PBS), and then, total
RNA was extracted using TRIzol (Invitrogen) according to the
manufacturer’s instructions for subsequent library construction
and sequencing.
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For validating whether the genes related to differential
inflammatory pathways obtained from RNA-seq were the targets
in controlling ETEC infection, confluent J2 cell monolayers were
treated under four different conditions: (i) medium alone; (ii)
ETEC infection alone (3 × 106 CFU); (iii) incubation with
BP325 (3 × 107 CFU) only for 2 h; or (iv) preincubation
with BP325 (3 × 107 CFU) for 2 h before exposure to ETEC
infection. At 2 h after preincubation with BP325, the IPEC-
J2 cells were washed three times with PBS and immediately
infected with ETEC (3 × 106 CFU) for 2 h. After infection,
the IPEC-J2 cells were washed three times with PBS, and
then, total RNA was harvested using TRIzol for quantitative
real-time polymerase chain reaction (qRT-PCR) analysis, and
the supernatant samples were collected for enzyme-linked
immunosorbent assay (ELISA) analysis.

Library Construction and Sequencing
The RNA integrity was tested by 1% agarose gel electrophoresis,
and RNA quality and quantity were evaluated using NanoDrop
2000. The RNA integrity number was further assessed
with Agilent 2100 using an RNA 6000 Nano kit (Agilent
Technologies, Santa Clara, CA, USA). Samples with qualified
purity (RNA integrity number ≥9, OD260/280 ≥1.9, and
OD260/230 ≥1.5) were used for subsequent sequencing
library preparation. Poly-(A)-containing messenger RNA
(mRNA) was enriched using oligo (dT) beads and were
broken into short fragments using mentation buffer. The
first-strand complementary DNA was synthesized with reverse
transcriptase and random hexamer primers using mRNA as
templates. Then, the second-strand complementary DNA was
synthesized using the buffer, DNA polymerase I, deoxynucleoside
triphosphates, and RNase H, followed by end-repair and adapter
ligation. Finally, PCR amplification was carried out to obtain
the final libraries. The constructed library was quantified
and pooled in the flow cell. After cBot clustering using a
cBotCluster Generation System, the library preparations
were sequenced using Illumina high-throughput sequencing
platform Novaseq 6000, and paired-end reads of 150-bp length
were generated.

Genome Alignment and Gene Annotation
The raw reads were quality filtered using Trimmomatic software.
The clean reads were obtained after discarding reads containing
adapter sequences, low-quality reads with Q10 <30, reads
with undetermined base information >10%, and reads that
were shorter than 50 bp after the adapter was removed and
truncated. The clean reads were aligned to the reference
genome Sscrofa11 of the pig (http://asia.ensembl.org/Sus_scrofa/
Info/Index) using TopHat v2.1.1 (http://ccb.jhu.edu/software/
tophat/index.shtml). The mapped reads were assembled into
transcripts using StringTie v1.3.3b (http://ccb.jhu.edu/software/
stringtie/). The genes were annotated by BLAST based on Gene
Ontology (GO), Cluster of Orthologous Groups of proteins
(COG), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases.

Analysis of Gene Expression Levels and
Identification of Differentially Expressed
Genes
The expression of genes was calculated and normalized to
fragments per kilobases per million reads (FPKMs) using RSEM
v1.3.1 (http://deweylab.biostat.wisc.edu/rsem/). Differentially
expressed genes (DEGs) between CN and EC groups were
identified using DESeq2 v1.24.0 (http://bioconductor.org/
packages/stats/bioc/DESeq2/). The P-value was adjusted using
Benjamini and Hochberg’s approach (BH) for controlling the
false discovery rate. Genes with an adjusted P < 0.05 and fold
change (FC) ≥ 2 or ≤ −2 were assigned as DEGs. A heatmap
of DEGs was constructed using the heatmap.2 implemented
in the R package gplots (https://cran.r-project.org/web/
packages/gplots).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analysis
of Differentially Expressed Genes
Gene Ontology enrichment analysis was carried out to specify
the potential roles of DEGs based on Fisher’s exact test using
Goatools v0.6.5 (https://github.com/tanghaibao/GOatools). The
P-value was adjusted by BH, and GO terms with adjusted
P < 0.05 were considered significantly enriched. Furthermore,
KEGG enrichment analysis was carried out to assess significantly
enriched metabolic or signal transduction pathways using
KOBAS v2.1.1 (http://kobas.cbi.pku.edu.cn/download.php).

Venn, Correlation Analysis of Expression,
and Protein–Protein Interaction Analysis
A Venn diagram was generated using the Venndiagram R
package (https://cran.r-project.org/web/packages/Venndiagram)
to obtain EC-unique genes and an overview of the DEGs
among different annotation levels. Correlation analysis of gene
expression was performed, and differential correlation was
calculated using Fisher’s transformation of Spearman rank
correlation to determine the significance of a change in
correlation between two conditions. The statistic P-value was
corrected by the BH method. Correlations with an absolute
Spearman’s correlation >0.8 and adjusted P < 0.05 were
transformed into links between two DEGs, and correlation
networks were displayed with Cytoscape v2.8.2. Protein–protein
interaction (PPI) analysis of DEGs was carried out based on
the Search Tool for the Retrieval of Interacting Genes/Proteins
database v11.0 (http://string-db.org/), and the minimum Search
Tool for the Retrieval of Interacting Genes/Proteins score was
set at 1,000. The interaction with a combined score >0.4 was
considered to be significant. The protein network was visualized
using Cytoscape v2.8.2.

Quantitative Real-Time Polymerase Chain
Reaction
Quantitative real-time polymerase chain reaction was performed
using a QuantStudio 3 RT-PCR system (ThermoFisher
Scientific, Waltham, MA, USA). Primer sequences are listed in
Supplementary Table 1. Complementary DNA was synthesized

Frontiers in Veterinary Science | www.frontiersin.org 3 August 2021 | Volume 8 | Article 677897152

http://asia.ensembl.org/Sus_scrofa/Info/Index
http://asia.ensembl.org/Sus_scrofa/Info/Index
http://ccb.jhu.edu/software/tophat/index.shtml
http://ccb.jhu.edu/software/tophat/index.shtml
http://ccb.jhu.edu/software/stringtie/
http://ccb.jhu.edu/software/stringtie/
http://deweylab.biostat.wisc.edu/rsem/
http://bioconductor.org/packages/stats/bioc/DESeq2/
http://bioconductor.org/packages/stats/bioc/DESeq2/
https://cran.r-project.org/web/packages/gplots
https://github.com/tanghaibao/GOatools
http://kobas.cbi.pku.edu.cn/download.php
https://cran.r-project.org/web/packages/Venndiagram
http://string-db.org/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Wu et al. J2 Cell Response to ETEC

and amplified with SYBR Premix DimerEraser (TakaRa
Biotechnology Inc., Shiga, Japan). Each sample was assayed
in duplicate. Relative quantification of mRNA expression was
performed by normalizing the cycle threshold values of the target
genes to the cycle threshold values of the housekeeping gene
encoding. The 2−11CT method relative to the reference gene
encoding glyceraldehyde-3-phosphate dehydrogenase was used
to analyze the FC of target genes between CN and EC groups.

Enzyme-Linked Immunosorbent Assay
The concentrations of interleukin (IL)-1β and IL-6 were
determined using commercially available porcine-specific ELISA
kits (IL-1β: #PLB00B, IL-6: #P6000B; R&D Systems,Minneapolis,
MN, USA) according to the manufacturer’s instructions.

Data Accession Number
The raw transcriptome data have been deposited in the
US National Center for Biotechnology Information Sequence
Read Archive database under accession no. SRR13291685–
SRR13291693.

Statistical Analysis
Statistical analysis was performed using the IBM SPSS Statistics
21 (SPSS Inc., Chicago, IL, USA) software package. Natural
logarithm transformation was performed before analysis
for ELISA data of IL-1β and IL-6 to achieve a normal
distribution. Differences between means were compared
using one-way analysis of variance, followed by Tukey’s
honestly significant difference post-hoc test. A P-value of <0.05
was considered statistically significant. Data were visualized
using GraphPad Prism 5 software (Graphpad Software Inc.,
San Diego, CA, USA). All experiments were performed
three times.

RESULTS

Quality Control and Transcriptome
Assembly
A total of 348.2 million raw reads (approximately 52.6 Gbps)
were yielded across six samples. After removing low-quality
reads, ambiguous and adaptor reads, retaining 344 million high-
quality clean reads (approximately 51.2 Gbps, 50.6–61.7 million
reads for each sample) were used for subsequent assembly
and analysis. The average of Q20 and Q30 of clean reads
across all samples was above 98.3 and 94.9%, respectively,
indicating that the obtained clean reads were of high quality.
Compared with the pig reference genome Sscrofa11, 93.5 and
93.2% of total reads for CN and EC groups were uniquely
mapped on the sus scrofa genome, respectively, and the
GC content for CN and EC groups was more than 51.2%
(Supplementary Table 2).

The clean reads of genes were normalized to FPKM values to
precisely evaluate the gene expression levels. The saturation curve
of sequencing showed that the FPKM values of approximately
42% of genes in CN and EC groups were below 3.5, and
only a few of 7% genes were highly expressed with FPKM

values higher than 60. Most of the genes with medium or
above expression levels (i.e., the genes with FPKM value of
3.5–60) were nearly saturated at 51% of the sequencing reads
(ordinate value tended to 1), indicating that the overall quality
of saturation was high, and the sequencing quantity could
cover most of the expressed genes (Supplementary Table 3

and Supplementary Figure 1). A Spearman’s correlation matrix
analysis of the FPKM distribution among biological replicates
for all six samples showed that the correlation indices of
the mapped genes in different groups were different, but the
differences within the groups were small, indicating a high
consistency of measurements within each group and high
reproducibility of the sequencing data (Figure 1A). Principal
component analysis was carried out to evaluate the clustering
nature of these samples. Principal components 1 and 2
explained 32.4 and 23.3% of the distributions of the different
groups, respectively (Figure 1B). The samples of each group
were clustered together, and data showed good correlation
and repeatability.

Analysis of Gene Expression and
Functional Annotation
A total of 27,001 genes were found from all samples, including
25,880 (95.8%) referenced genes and 1,121 (4.2%) unannotated
novel genes. Of 25,880 referenced genes, a total of 23,375
genes could be annotated using GO (20,488), KEGG (16,308),
COG (22,389), NR (23,133), Swiss-Prot (22,155), and Pfam
(20,554) databases (Figure 2A). The COG database contains
orthologous proteins and is used to classify and predict
their possible function. The referenced genes were assigned
into 22 orthologous COG clusters (Figure 2B). Some genes
may be assigned into several clusters in COG categories,
whereas some were assigned to the same cluster but with
different protein orthologous similarities. A total of 10,628
genes were assigned to “unknown function” (class S). The
majority of genes were distributed in “intracellular trafficking,
secretion, and vesicular transport” (class U; 3,861 genes),
followed by “post-translational modification, protein turnover,
chaperones” (class O; 2,149 genes), and “transcription” (class K;
1,252 genes).

Gene Ontology analysis revealed that a total of 20,481
genes were mapped to 64 GO terms, with 17,454 genes
assigned to biological process (BP), 18,2023 genes assigned
to cellular component (CC), and 17,580 genes assigned to
molecular function (MF). In the BP ontology, cellular processes
(15,647 genes) and single-organism processes (13,216 genes)
were the most enriched GO terms. In the CC ontology,
the most enriched terms were cell (15,592 genes), and
cell part (15,476 genes) was the most enriched GO term.
In the MF ontology, binding (12,651 genes) and catalytic
activities (5,743 genes) were the most enriched GO terms
(Figure 2C).

Kyoto Encyclopedia of Genes and Genomes pathway analysis
helps to better understand the biological functions of genes.
A total of 3,209 genes were annotated and classified into six
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FIGURE 1 | Correlation analysis and principal component analysis of samples. (A) Heatmap of hierarchical clustering for six samples using Spearman method. Bold

values represented R2 for replicates of each sample. (B) Principal component analysis plot of samples. Each point represented one sample. Percentages were

contribution ratios.

FIGURE 2 | Analysis of referenced gene expression and functional annotation. (A) Number of genes annotated using KEGG, GO, Pfam, Swiss-Prot, COG, and NR

datasets. (B) COG, (C) GO, and (D) KEGG classifications of referenced genes were summarized.

first KEGG categories (metabolism, environmental information
processing, cellular processes, genetic information processing,
human diseases, and organismal system) and 335 second KEGG

categories. Signal transduction (2,257 genes) was the most
abundant KEGG pathway, followed by the sensory system (2,240
genes) (Figure 2D).
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FIGURE 3 | Identification of EC-unique genes and functional analysis. (A) Venn diagram of shared referenced genes between CN and EC groups. (B) COG, (C) GO,

and (D) KEGG classifications of 134 EC-unique genes were summarized.

A total of 12,227 novel transcripts were found in the
61,408 transcripts identified, including 389 transcripts
with exonic overlap with reference on the opposite strand,
506 with transfer falling entirely within a reference
intron, 9,450 with potentially novel isoform: at least one
splice junction was shared with a reference transcript,
1,265 unknown and intergenic transcripts, and 350
with generic exonic overlap with a reference transcript
(Supplementary Figure 2).

A total of 1,106 novel genes (accounting for 98.7% of all
novel genes) and 11,670 novel transcripts (accounting for
95.4% of all novel transcripts) were successfully annotated
after BLAST, with 242 and 8,280 in the GO database, 63
and 6,932 in the KEGG database, 289 and 9,906 in COG
database, 757 and 10,909 in the NR database, 187 and
9,782 in the Swiss-Prot database, and 122 and 8,907 in the
Pfam database, respectively (Supplementary Figure 3A,
Supplementary Table 4). The COG analysis showed that
307 novel genes were assigned into nine COG functional
categories (Supplementary Figure 3B), including “chromatin
structure and dynamics” (class B; 21 genes), “post-translational
modification, protein turnover, chaperones” (class O; 11
genes), “intracellular trafficking, secretion, and vesicular
transport” (class U; 7 genes), “translation, ribosomal structure,

and biogenesis” (class J; 6 genes), “energy production and
conversion” (class C; 4 genes), “transcription” (class K; 3
genes), “signal transduction mechanisms” (class T; 3 genes),
and “cytoskeleton” (class Z; 2 genes). Importantly, 814 genes
not assigned to any COG class, as well as 250 genes of
unknown function (class S), were enriched in the novel genes.
According to the GO analysis, the novel genes were divided
into multiple functional groups (Supplementary Figure 3C),
in which MF, BP, and CC were the most enriched terms.
Catalytic activity (131 genes) and binding (96 genes) in MF,
membrane (108 genes) and membrane part (104 genes) in
a CC, and cellular process (87 genes) and metabolic process
(76 genes) in the BP were the most enriched ontology terms.
A total of 40 novel genes were classified into 112 KEGG
pathways, mainly functioning in the phagosome, Ras signaling
pathway, cyclic adenosine monophosphate signaling pathway,
calcium signaling pathway, endocytosis, and tuberculosis
(Supplementary Figure 3D).

Identification of EC-Unique Genes and
Functional Analysis
From the Venn diagram, 134 referenced genes were uniquely
present in the EC group (Figure 3A). A total of 55 EC-
unique genes could be annotated to 15 COG functional
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FIGURE 4 | Identification and expression of DEGs. (A) Volcano plot of DEGs between CN and EC groups. X-axis represented fold change of expression of DEGs, and

Y-axis represented statistical significance of fold change. Each point represented a DEG. Red dots represented significantly upregulated DEGs; blue dots represented

significantly downregulated genes; gray dots represented insignificantly DEGs. (B) Cluster heatmap of DEGs. Rows and columns represented genes and samples.

Legend represented Log2FC of gene abundance. Red and blue indicated high and low expression of DEGs, respectively.

categories, including “intracellular trafficking, secretion, and
vesicular transport” (class U; 9 genes), “post-translational
modification, protein turnover, chaperones” (class O; 8 genes),
“translation, ribosomal structure, and biogenesis” (Class J; 7
genes), “signal transduction mechanisms” (class T; 7 genes),
“transcription” (class K; 6 genes), and so on (Figure 3B).
According to the GO analysis, 96 of 134 EC-unique genes
were assigned to 45 GO terms and were specific to the
cellular process, cell, cell parts, and binding (Figure 3C). A
total of 47 EC-unique genes were assigned to 86 second KEGG
categories, mainly functioning in signal transduction, immune
diseases, substance dependence, immune system, and translation
(Figure 3D).

Analysis of Differentially Expressed Genes
A rigorous comparison at adjusted P < 0.05 and log2FC ≥

1 for upregulated genes or log2FC ≤ −1 for downregulated
genes using the DESeq method were carried out to identify the
DEGs. The list of DEGs, along with their FCs and annotations,
were presented in Supplementary Table 5. A total of 150
DEGs (131 referenced genes and 19 novel genes) between CN
and EC groups were found, including 96 upregulated DEGs
and 54 downregulated DEGs (Figure 4A). The hierarchical
cluster heatmap showed that expression profiles of DEGs after
ETEC infection were distinctly different (Figure 4B). The top
10 upregulated genes were CCL20, NR4A1, NR4A3, FOSB,
NR4A2, EGR1, FOS, RCAN1, DDIT4, and CXCL2. The top 10
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FIGURE 5 | GO enrichment analysis of DEGs. (A) GO functional annotation of DEGs. (B) GO enrichment analysis of DEGs. Enriched bubble chart showing

enrichment of GO functions. X-axis represented enrichment ratio, and Y-axis represented top 20 GO terms. Number: Bubble size represented number of genes

annotated to a KEGG Pathway. Padjust: color indicated enriched adjusted p-value. (C) GOChord plot of top 10 ranked GO terms. Chords indicated a detailed

relationship between expression levels of DEGs (left semicircle perimeter) and their enriched GO terms (right semicircle perimeter). Genes are linked to their annotated

terms via colored ribbons. (D) Heatmap of DEGs enriched in GO term “the response to LPS” showing the expression profile.

downregulated genes were GBA3, POU3F2, CFAP69, MASP2,
ND5, USP27X, FIGNL1, CBX2, KBTBD7, and LCMT2.

Gene Ontology Function Analysis of
Differentially Expressed Genes
Gene Ontology analysis was performed to characterize the
functional terms of gene expression changes exposure to ETEC
infection. Among the 131 referenced DEGs mentioned earlier,
113 were divided into three principal GO terms of level 2
(Figure 5A): MF (101 genes, 9 GO terms of level 2), CC (101
genes, 13 GO terms of level 2), and BP (101 genes, 24 GO terms
of level 2). The DEGs assigned to the cellular process (97 genes)
occupied the maximum proportion, followed by that assigned to
cell (92 genes), cell part (92 genes), and metabolic process (91
genes). The GO enrichment analysis was performed at the level
of adjusted P < 0.05. The top 20 ranked GO terms of DEGs are
shown in Figure 5B. The response to LPS and negative regulation
of intracellular signal transduction terms classified into BP class

occupied the strongest enrichment degrees. The nine DEGs
encoding NF-κB inhibitor alpha, tribbles pseudokinase 1, tumor
necrosis factor (TNF) alpha-induced protein 3, C-X-C motif
chemokine ligand 8, AP-1 transcription factor subunit JunD
proto-oncogene and JunB proto-oncogene, ZFP36 ring finger
protein, zinc finger CCCH-type containing 12A, and IL-6 were
directly related to response to LPS and were unregulated in the
EC group (Figures 5C,D). The regulation of proteinmodification
process term (34 genes) contained the most abundant DEGs,
followed by cellular developmental process (32 genes), and
regulation of developmental process (31 genes).

Kyoto Encyclopedia of Genes and
Genomes Pathway Analysis of
Differentially Expressed Genes
Of 131 referenced DEGs, 55 upregulated and 15 downregulated
DEGs were annotated to 152 second KEGG categories. The
KEGG pathways enriched in the upregulated DEGs were mainly
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FIGURE 6 | KEGG enrichment analysis of DEGs. (A) KEGG pathway annotation of DEGs. (B) KEGG enrichment analysis of DEGs. Enriched bubble chart showing

enrichment of KEGG pathways. X-axis represented enrichment ratio, and Y-axis represented top 20 KEGG pathways. Number: Bubble size represented number of

genes annotated to a KEGG Pathway. Padjust: color indicated enriched adjusted p-value. (C) KEGGChord plot of top 10 ranked KEGG pathways. Chords indicated a

detailed relationship between expression levels of DEGs (left semicircle perimeter) and their enriched KEGG pathways (right semicircle perimeter). Genes are linked to

their annotated terms via colored ribbons. (D) Heatmap of DEGs enriched in immune response-related KEGG pathways showing expression profile in CN and

EC groups.

specific to signal transduction (32 genes) and immune system (21
genes), and the KEGG pathways enriched in the downregulated
DEGs were mainly specific to environmental adaptation (four
genes) and energy metabolism (four genes) (Figure 6A). Kyoto
Encyclopedia of Genes and Genomes Pathway enrichment
analysis was performed to identify differential genes-related
signal transduction and biochemical metabolic pathways. As a

result, a total of 33 KEGG pathways were significantly enriched
and were mainly involved in the immune response. Among
these pathways, the TNF (adjusted P-value of 2.52E−11), IL-
17 (adjusted P-value of 5.29E−11), and MAPK (adjusted P-
value of 9.06E−5) signaling pathways possessed the highest
rich factor (Figure 6B). Besides, some immune response-
associated KEGG pathways were also enriched, including
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FIGURE 7 | Expression pattern of “core DEGs.” (A) Heatmap of “core DEGs” showing expression profile in CN and EC groups. (B) Venn diagram of “core DEGs”

enriched in immune response-related pathways. (C) Correlation analysis and (D) protein–protein interaction of gene expression of 131 referenced DEGs providing a

rationale for functional significance of “core DEGs.” Size of each node corresponded to number of connections (degree).

NLR (adjusted P-value of 6.61E−5), C-type lectin receptor
(CLR) (adjusted P-value of 2.56E−5), cytokine–cytokine receptor
interaction (adjusted P-value of 2.52E−11), TLR (adjusted P-
value of 4.63E−4), and NF-κB (adjusted P-value of 6.4E−3)
signaling pathways. Furthermore, the DEGs mapped to the
immune response-associated KEGG pathways mentioned earlier
and their expression patterns were identified (Figure 6C).
Of the 131 DEGs, a total of 30 DEGs were involved in
the immune response-associated KEGG pathways discussed
earlier (Figure 6D), including TNF (13 genes), IL-17 (12
genes), MAPK (11 genes), NLR (7 genes), CLR (8 genes),
cytokine–cytokine receptor interaction (8 genes), TLR (5
genes), and NF-κB (5 genes) signaling pathways. These 30

“core DEGs” determined the IPEC-J2 cell immune response
to ETEC infection.

Correlation Analysis of Expression of
“Core Differentially Expressed Genes” and
Protein–Protein Interaction
Among the 30 “core DEGs,” only the RNAsel gene encoding
ribonuclease L was downregulated, and the other 29 genes
were upregulated after ETEC infection (Figure 7A and
Supplementary Table 6). According to the Venn diagram
(Figure 7B), some “core DEGs” were directly related to several
inflammatory signaling pathways, whereas some were assigned
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FIGURE 8 | qRT-PCR and ELISA validation of selected DEGs. (A) qRT-PCR was performed to validate immune response-related 12 selected DEGs. (B) ELISA was

performed to measure concentration of IL-1β and IL-6.

to the specific signaling pathways. For example, two genes (FOS
and ENSSSCG00000031912) participated in ETEC-induced
activation of TNF, IL-17, and MAPK signaling pathways. Five
genes (NFKBIA, FOS, CXCL8, IL-6, and ENSSSCG00000031912)
were involved in the TLR and NF-κB signaling pathways.
No gene was related to all inflammatory signaling pathways.
Correlation analysis of gene expression in the 131 DEGs
provided a rationale for the functional significance of “core
DEGs” (Figure 7C). Some genes in the “core DEGs,” such as
MAPK15, IL-6, CXCL2, NFKBIA, FOS, and TNFAIP3, had the

strongest correlation with other genes, indicating that the “core
DEGs” had a coordinating function in the J2 cell response to
ETEC infection. Protein products of DEGs among CN and EC
groups identified multiple interactions with medium to high
confidence (scores ranging from 0.4 to 1). The main protein
interaction cluster derived from the 131 DEGs contained 40
nodes, each representing one protein and connected by 89
edges (Figure 7D). The IL-6, FOS, MAPK15, JUNB, EDN1,
DUSP1, and the gene with unknown function (gene id:
ENSSSCG00000031912) had the highest scores for betweenness
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centrality, indicating they were most important for connections
with other proteins.

Quantitative Real-Time Polymerase Chain
Reaction and Enzyme-Linked
Immunosorbent Assay Validation of “Core
Differentially Expressed Genes”
According to the KEGG enrichment analysis, correlation analysis
of gene expression, and PPI results, 12 “core DEGs” (CCL20,
CXCL2, CXCL8, IL-1β , IL-6, NFKBIA, MAP3K12, MAPK15,
TNFAIP3, FOSB, FOS, and JUNB) involving the inflammatory
signaling pathways were chosen for qRT-PCR to validate
the RNA-seq results. The results showed that the differential
expression patterns of the 12 “core DEGs” were in accord with
those detected by RNA-seq analysis (Figure 8A), indicating that
the RNA-seq data could reliably reflect the alteration of gene
expression. The operational errors in experimental treatments
may result in differences in FC expression.

To further validate whether these “core DEGs” were the
targets in controlling ETEC infection, the J2 cells were pre-
incubated with probiotic L. reuteri BP325, followed by ETEC
infection. Figure 8A shows that pretreatment with probiotic
L. reuteri BP325 significantly attenuated the ETEC-induced
increasedmRNA expression in the 12 “core DEGs.” Furthermore,
pretreatment with probiotic L. reuteri BP325 significantly
suppressed the elevated IL-1β and IL-6 levels in the supernatant
of J2 cells caused by ETEC (Figure 8B).

DISCUSSION

Enterotoxigenic Escherichia coli’s are the most prevalent
intestinal pathogen strains causing PWD in pigs (18).
Understanding the pathogenic mechanism of ETEC is the
primary task of prevention and control of PWD. The criteria
set of P-value and FC significantly affects the number of DEGs
and results of functional and pathway enrichment analysis. A
previous study showed that 2,443 DEGs were found in J2 cells
infected F4ab ETEC with under the criteria of |FC| > 1.5 and
P < 0.05 with FDR < 0.252, whereas only 1,188 DEGs were
found under the criteria of |FC| > 2 and P < 0.05 (9). This
study was attempted to identify the main response pathways
induced by ETEC as prevention targets in the future, and
thus a rigorous comparison at |FC| ≥ 2 and P < 0.05 with
FDR < 0.05 was carried out. A total of 96 upregulated and 54
downregulated DEGs mainly functioned in response to LPS
and negative regulation of intracellular signal transduction
terms. Pathway enrichment analysis revealed that the DEGs were
mostly enriched in TNF, IL-17, and MAPK signaling pathways,
followed by immune response-associated NLR, CLR, cytokine–
cytokine receptor interaction, TLR, and NF-κB signaling
pathways. Of 131 referenced DEGs, 30 DEGs were involved in
the immune response-related pathways discussed earlier, namely
“core DEGs,” and could represent the target molecules for the
prevention and control of enteric ETEC infection. Correlation
analysis of gene expression and PPI showed that IL-6 was located
in the center of the protein interaction network, with the most

connections with other proteins. Furthermore, the RNA-seq
data were validated using qRT-PCR and ELISA methods.
Finally, we verified the potential of the DEGs as targets of
prevention and control for ETEC infection through pretreating
J2 cells with a probiotic L. reuteri strain isolated from a healthy
swine gut.

By comparing the gene expression level in CN and EC groups
to produce a Venn diagram, we found 134 referenced genes
uniquely present in the EC group. These EC-unique genes
mainly functioned in cellular processes, such as nucleosome
assembly, DNA packaging complex, or protein–DNA complex.
Nucleosomes serve as the repeating units of cellular chromatin
and play an important role in innate immune responses (19).
Physiologically, nucleosome assembly is typically associated with
DNA replication. It was reported that adenovirus-encoding
protein VII interacts with cellular chromatin and binds
nucleosomes, leading to sequestration of the high-mobility group
protein B family members and abrogation of immune responses
(20). These EC-unique gene functions may represent an immune
evasion strategy of pathogens in which nucleosome binding is
exploited to control the immune response.

Gene Ontology enrichment analysis of 131 referenced DEGs
revealed the regulation of protein modification process term
(34 genes) contained the most abundant DEGs, whereas the
response to LPS and negative regulation of intracellular signal
transduction terms classified into BP class occupied the strongest
enrichment degrees. Comparable studies have shown that ETEC
induced typical immune-related signaling pathways in porcine
IECs, but the extent of the inflammatory response is different
due to the difference in ETEC strain, infection time, infection
concentration, and cell lines. The cell junction organization and
extracellular matrix organization terms are enriched in the DEGs
of ETEC strain 11501-infected IPEC-1 cells (21).

By KEGG analysis, 33 KEGG pathways enriched were mainly
involved in the immune response. Toll-like receptor, NF-
κB, and TNF signaling pathways were significantly enriched
in the EC group. Toll-like receptor signaling pathway is
crucial for the regulation and activation of numerous pro-
inflammatory molecules. Escherichia coli LPS binding to
TLR4 promotes activation of downstream TRIF-dependent and
MyD88-dependent pathways, which in turn induces production
of a cascade of activated molecules, such as NF-κB, AP-1,
and inflammatory cytokines (22). Consistent with the present
study, enriched TLR and NF-κB signaling pathways are also
found in porcine IECs infected with various ETEC strains (9,
21). NF-κB contains a family of transcription factors, which
functions in regulating various biological responses, including
proliferation, cell apoptosis, and invasiveness. Phosphorylated
IκB (an inhibitor of p65) activates p65 and induces the
activation of NF-κB. In our study, UBC encoding ubiquitin
C and TNFAIP3 encoding TNF alpha-induced protein 3 were
significantly regulated after ETEC infection. Ubiquitin is a highly
conserved protein, functioning as a tag in the selective proteolysis
of 26S proteasome to abnormal proteins. UBC serves as an
intermediary molecule in the activation of NF-κB signaling by
TNF (23). UBS could modify many cytosolic proteins recruited
by TNF/TNF-R1 and then regulates the activity of the NF-κB
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pathway. These data indicate that ETEC may modulate the TLR
and NF-κB pathways via TNF-UBC pathways.

C-type lectin receptor constitutes a large superfamily of
proteins that act as pattern-recognition receptors for pathogen-
derived carbohydrates (24). C-type lectin receptor pathway is
enriched in the IPEC-1 cells infected with ETEC strain 11501
(21). Mitogen-activated protein kinase is a downstream cascade
pathway of many growth-factor receptors (25), which is activated
by a broad array of extracellular stimuli. Mitogen-activated
protein kinase pathway regulates and participates in various
BPs, such as immune response to pathogen infection and focal
adhesion (26) that also controlling cell communication (27).
In this study, MAP3K12 and MAPK15 genes were related
to the enriched MAPK pathway. MAP3K12 and MAPK15
genes are associated with p38 and ERK MAPK signaling
pathways, respectively. MAP3K21 is a negative regulator of
TLR4 signaling (28). MAP3K21 is strongly correlated with
F4ac ETEC-related diarrhea in pigs (14). Activation of p38
MAPK induces phosphorylation of c-Jun and promotes its
transactivation activity; in turn, c-Jun combines to target gene
promoters as heterodimers, AP-1, with c-Fos (29). ERK MAPK
pathway mediates the production of pro-inflammatory cytokine
IL-8, IL-1β, and TNF-α via TLR2/TLR4 (30).

IL-17 is a pro-inflammatory cytokine family and exerts unique
functions to bridge the innate and adaptive immune systems (31).
In the context of infectious diseases, IL-17 initiates innate repair
responses and host defense against bacterial infections at the
mucosa, but, intriguingly, upregulated production of IL-17 can
also exacerbate the severity of some inflammation (32). Interest
in the efficacy and safety of novel therapeutic strategies based
around IL-17 dramatically increases (33). IL-17 family consists of
six members: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (also called
IL-25), and IL-17F (34). It is well known that IL-17A and IL-
17F from T helper17 cells induce pro-inflammatory chemokines,
cytokines, and antimicrobial peptides, such as calprotectin, β-
defensin, and cathelicidins (35). IL-17B and IL-17F participate in
the immune response to protect pigs against F4+ ETEC infection
and could aid in the design of future ETEC vaccines (36). IL-
17C and its receptor IL-17RE are preferentially expressed in
IECs and can be directly induced by bacteria (37). IL-17C can
also trigger the production of inflammatory mediators, tight
junctions, chemokines, and antimicrobial peptides, protecting
host defense against microbial infection (38). LPS activation
of TLR4 or flagellin activation of TLR5 can induce IL-17C
production in small IECs (39, 40). Recently, Luo et al. reported
that TLR5-mediated IL-17C expression in IECs enhances pig
epithelial defense against F4+ ETEC infection by inducing the
expression of antimicrobial peptides and tight junctions (41). In
this study, NFKBIA, AP-1 (FOS and FOSB), pro-inflammatory
cytokine IL-6, chemokine CXCL2, CXCL8, and CCL20 were
directly related to the IL-17 pathway. In the peripheral blood
leukocytes, the recombinant IL-17C could activate the NF-κB
signaling and strongly promote the expression of chemokines
(CXCL8, CXCL12, and CXCL13), pro-inflammatory factors
(TNF-α, IL-1β, IL-6, and IFN-γ), and antibacterial peptide
hepcidin (42). RNA-seq showed that the IL-17 pathway is
enriched in the chicken lungs co-infected with Mycoplasma

gallisepticum and ETEC, and IL-17 and some inflammasome-
related genes (CXCL1, CXCL2, CXCL8, NF-κB, and AP-1) are
significantly upregulated (43). Our data illustrate the importance
of the IL-17 pathway in the pathogenesis of ETEC.

Furthermore, of the 131 DEGs, a total of 30 DEGs were
involved in the immune response-associated KEGG pathways
discussed earlier. These 30 “core DEGs” determined the IPEC-
J2 cell immune response to ETEC infection. Correlation analysis
of gene expression results showed that some genes in the
“core DEGs,” such as MAPK15, IL-6, CXCL2, NFKBIA, FOS,
and TNFAIP3, had the strongest correlation with other genes,
indicating that the “core DEGs” had a coordinating function
in the J2 cell response to ETEC infection. IL-6 was identified
as a differential node protein exerting the highest degree in
the PPI network, which was likely to act as a key regulator
in ETEC-mediated immune response in J2 cells. Besides, FOS,
MAPK15, JUNB, EDN1, DUSP1, and the gene with unknown
function (gene id: ENSSSCG00000031912) belonging to the 30
“core DEGs” had the highest scores for betweenness centrality,
indicating they were most important for connections with other
proteins. The FOS gene family consists of four members: FOS,
FOSB, FOSL1, and FOSL2. These genes could encode leucine
zipper proteins that can dimerize with proteins of the JUN
family, thereby forming the transcription factor complex AP-1.
Genes for AP-1 are immediate-early genes that regulate a wide
range of physiological responses such as cell death, inflammation,
and proliferation. In this study, FOS, FOSB, and JUNB genes
were significantly upregulated and directly related to multiple
enriched pathways, such as TLR, NF-κB, IL-17, MAPK, and
TNF pathways, as shown by Venn analysis. Further qRT-PCR
analysis validated the RNA-seq data. Our findings indicate
that immune response-related signaling pathways mediated by
nuclear transcription factor AP-1 and NF-κB determine the fate
of ETEC-infected J2 cells and may also be the targets for further
prevention and control.

The main strategies for preventing and controlling intestinal
infection involve the overuse and misuse of antibiotics, which
leads to the development of antibiotic resistance to commensal
and opportunistic bacteria in both animals and humans. With
China’s ban on the addition of non-therapeutic antibiotics
to animal feeds since January 1, 2020, the development of
alternatives to conventional antibiotics is urgent. Probiotics
are defined as “live microorganisms, which when administered
in adequate amounts confer a health benefit to the host;”
therefore, they represent a promising alternative to antibiotics
for controlling enteric infections. Probiotic Lactobacillus is a
major component of the gut microbiota and can protect the
host against enteric pathogens through modulation of both local
and systemic host immune responses (44, 45). In this study,
we explored the regulatory effect of L. reuteri on the targeted
genes and immune-related pathways obtained by RNA-seq. qRT-
PCR resulted showed that ETEC infection significantly increased
the expression of CCL20, CXCL2, CXCL8, AP-1, IL-1, IL-6,
IL-11, NFKBIA, MAP3K12, MAPK15, PTGS2, and TNFAIP3,
which pretreatment with L. reuteri inhibited these increases.
Lactobacillus reuteri also attenuated the production of IL-6
induced by ETEC in the supernatant of J2 cells. The previous
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study using microarray analysis reported that L. jensenii TL2937
exerts anti-inflammatory immunobiotics for the prevention of
inflammatory intestinal disorders in pigs by inhibiting the ETEC-
induced high expression of chemokines (CCL8, CXCL5, CXCL9,
CXCL10, andCXCL11) (46). Lactobacillus rhamnosusATCC 7469
protects IECs from ETEC-induced damage, partly through the
anti-inflammatory response involving synergism between TLR2
and nucleotide-binding and oligomerization domain 1 (47). Our
previous study also showed that L. rhamnosus GR-1 ameliorates
E. coli-induced inflammation and cell damage via attenuation
of NLR NLRP3 and NLRC4 inflammasome activation (48,
49). Swine-derived probiotic Lactobacillus plantarum modulates
porcine intestinal endogenous host defense peptide synthesis
through TLR2/MAPK/AP-1 signaling pathway (50). Our data
suggest that immune response-related signaling pathways
obtained by RNA-seq represent the targets for preventing and
controlling enteric ETEC infection in pigs.

In conclusion, ETEC infection elicits a strong immune
response of porcine IECs, which is a result of the cooperation of
multiple signaling pathways, including TNF, IL-17, MAPK, NF-
κB, NLR, CLR, TLR, and cytokine–cytokine receptor interaction
signaling pathways. Some key node genes, especially the nuclear
transcription factor AP-1 and NF-κB, participate in the immune
response to ETEC infection through an integral signal cascade
and can be target molecules for prevention and control of enteric
infection by probiotics.
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Gut and Vagina Microbiota
Associated With Estrus Return of
Weaning Sows and Its Correlation
With the Changes in Serum
Metabolites
Jia Zhang†, Min Liu†, Shanlin Ke, Xiaochang Huang, Shaoming Fang, Maozhang He,
Hao Fu, Congying Chen* and Lusheng Huang*

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang,
China

More and more studies have indicated that gut microbiota takes part in the biosynthesis
and metabolism of sex hormones. Inversely, sex hormones influence the composition
of gut microbiota. However, whether microbiota in the gut and vagina is associated
with estrus return of weaning sows is largely unknown. Here, using 16S rRNA gene
sequencing in 158 fecal and 50 vaginal samples, we reported the shifts in the gut
and vaginal microbiota between normal return and non-return sows. In fecal samples,
Lactobacillus and S24-7 were enriched in normal return sows, while Streptococcus
luteciae, Lachnospiraceae, Clostridium, and Mogibacterium had higher abundance in
non-return sows. In vaginal swabs, the operational taxonomic units (OTUs) annotated
to Clostridiales, Ruminoccaceae, and Oscillospira were enriched in normal return
sows, while those OTUs annotated to Campylobacter, Anaerococcus, Parvimonas,
Finegoldia, and Dorea had higher abundances in non-return sows. Co-abundance
group (CAG) analysis repeated the identification of the bacterial taxa associated with
the estrus return of weaning sows. The predicted functional capacities in both gut
and vaginal microbiome were changed between normal return and non-return sows.
Serum metabolome profiles were determined by non-targeted metabolome analysis in
seven normal return and six non-return sows. The metabolite features having higher
abundance in normal return sows were enriched in the pathways Steroid hormone
biosynthesis, Starch and sucrose metabolism, Galactose metabolism, and Vitamin B6
metabolism, while the metabolite features belonging to organic acids and derivatives,
indoles and derivatives, sulfoxides, and lignans and neolignans had significantly higher
abundance in non-return sows. Correlation analysis found that the changes in gut
microbiota were associated with the shifts of serum metabolites and suggested that
certain bacteria might affect estrus return of weaning sow through serum metabolites.
These findings may provide new insights for understanding the role of the gut and vaginal
microbiota in sow return to estrus after weaning.

Keywords: return to estrus, fecal microbiota, vaginal microbiota, sow, 16S rRNA gene sequencing, serum
metabolome
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INTRODUCTION

In the past decades, the reproductive performance of the pig has
been improved dramatically. Weaned pigs per sow per year (PSY)
in Denmark increased from 23.5 in 2000 to 33.6 in 2018 (Board,
2020). Among the reproduction traits of sows, delayed return
to estrus or even non-return after weaning has been becoming
one of the main problems influencing pig production. In the
modern pig industry, more than 85% of sows will return to
estrus within 7 days after weaning (Poleze et al., 2006; Leite
et al., 2011). The interval from weaning to heat is a key indicator
representing sow ability of return to reproduction after weaning
and also a decisive factor affecting non-production days (NPDs)
and therefore reducing PSY. The failed estrus return brings a big
economic loss to the swine industry. The interval from weaning
to estrus is affected by numerous factors, including nutrition,
genetics, environment, management, weight loss, boar exposure,
health, and mycotoxins (Levis and Hogg, 1989; Poleze et al.,
2006). The heritability estimated for the interval from weaning
to estrus in sows is low (0.07, 0.02, and 0.07 for the first three
parities) (Leite et al., 2011), suggesting that genetics is not the
major factor influencing the estrus return of weaning sows.

In recent years, more and more studies have reported
the important roles of gut microbiota in pig production
performances, e.g., growth, health, and even reproduction (Suo
et al., 2012; Hermann-Bank et al., 2015; Ramayo-Caldas et al.,
2016; Yang et al., 2018; Wang et al., 2019). Sow estrus is
initiated by follicular development and the synthesis and release
of sex hormones, especially estrogens. Studies have revealed
that the gut microbial community plays an important role in
estrogen metabolism. The use of antibiotics and the change of
gut microbial community will affect host steroid hormone level
in older adults (Adlercreutz et al., 1984). The decrease in the
diversity of gut microbiota will impair the estrogen level (Baker
et al., 2017). In humans, the systemic estrogens and estrogen
metabolites are significantly affected by the composition of gut
microbiota (Flores et al., 2012). In contrast, the changes of sex
hormones affect the gut microbiota community in female mice
(Acharya et al., 2019). Estrogen can mediate the changes of
the gut microbiome in mice, which causes sex differences in
obesity and metabolic syndrome (Kaliannan et al., 2018). Higher
abundance of Lactobacillus was found in the fecal microbiota
of the mice fed diet containing estrogenic isoflavones (Menon
et al., 2013). To our knowledge, whether the interval from
weaning to estrus is associated with the gut microbiome is largely
unknown at present.

The microbiota in vagina may also relate to the reproductive
performance of sows. The structure and composition of the
vaginal and cervix microbiota will undergo a dramatic change in
response to the pregnant condition of sows (Shuo, 2016). Miller
et al. (2017) found that the bacterial composition in baboon
vagina was changed profoundly under the different reproductive
conditions and during ovarian cycle phases. Meanwhile, the
vaginal microbiota has an important influence on human
reproduction physiology including menstrual cycle (Henderson
and Nibali, 2016). However, whether the vaginal microbiota is
associated with the return of weaned sows is also unknown.

Therefore, in this study, we profiled the composition of gut
and vaginal microbiota in more than 150 sows to analyze the
relationship of the gut and vagina microbiota with sow non-
return after weaning. Furthermore, we determined and compared
serum metabolite profiles between normal estrus return and non-
return sows to identify metabolite biomarkers associated with
the failed estrus return. By integrating microbiota and metabolite
data, we suggested that the changes in gut microbiota were
associated with the shifts of serum metabolites and may further
influence the interval from weaning to estrus.

MATERIALS AND METHODS

Experimental Animals and Sample
Collection
A total of 158 Landrace × Yorkshire F1 sows were used in this
study. Most of experimental sows were at the parity 2 (58 sows), 3
(40), 4 (26), and 5 (25). The other nine sows were at the parity 6–7.
All experimental sows were housed in pens with concrete slatted
floor, natural light, and power ventilation, and provided corn–
soybean formula diets. Sows were fed two times per day. Water
was ad libitum available from nipple drinkers. Fecal samples were
manually collected from each animal’s anus and dispensed in
2-ml tubes on the date of weaning. At the same time, a total
of 50 vaginal samples were also collected from these 158 sows
at the posterior region of the vagina by the sterile swabs. All
samples were immediately frozen in liquid nitrogen, and stored
at −80◦C until use. The experimental sows had been observed
estrus twice per day (8:00 a.m. and 4:00 p.m.) since their offspring
were weaned at the age of 28 days. According to the interval
from weaning to return to estrus, the 158 sows were classified
into two groups: normal return group (144 feces samples and
39 vagina samples), sows in this group returned to estrus within
7 days after weaning; and non-return group (14 feces and 11
vaginal samples), sows in this group did not return to estrus in
more than 14 days after weaning. All sows were healthy and did
not receive probiotic or antibiotic therapy within 2 months of
sample collection. A total of 13 blood samples were collected from
the sows described above, including seven samples from normal
return group, and six samples from non-return group. Serum was
isolated from these 13 blood samples by centrifuging at 1500 × g
(rcf) for 15 min and stored at−80◦C until use.

Ethics Statement
All procedures involving experimental animals satisfied the
requirement of the guidelines for the care and use of experimental
animals established by the Ministry of Agriculture and Rural
Affairs of China. This study was approved by the Animal Care
and Use Committee (ACUC) at Jiangxi Agricultural University
(No. JXAU2011-006).

Microbial DNA Extraction and 16S rRNA
Gene Sequencing
Microbial DNA was extracted from feces and vaginal swab
samples with the QIAamp DNA Stool Mini Kit (Qiagen,
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Germany) following the manufacturer’s manuals (McOrist et al.,
2002). The concentration and integrity of DNA samples were
measured by a Nanodrop-1000 (Thermo Fisher Scientific,
United States) and 0.8% agarose gel electrophoresis. The barcode
fusion primer 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′) were used to
amplify the V4 hypervariable region of the 16S rRNA gene.
After purification, the PCR products were used to construct the
libraries and sequenced by the paired-end method on an Illumina
MiSeq platform (Illumina, United States).

Sequencing Data Analysis
Raw data of 16S rRNA gene sequencing were cleaned by
filtering low-quality reads and removing the primers and barcode
sequences (Fadrosh et al., 2014). Tags were assembled from
high-quality paired-end clean reads by FLASH (v.1.2.11) (Magoč
and Salzberg, 2011). To avoid statistical bias caused by uneven
sequencing depth, the sequencing data were rarefied to 24,913
tags for each fecal sample and 27,070 tags for each vaginal sample
(the lowest number of tags per sample). Operational taxonomic
units (OTUs) were clustered at the cutoff of 97% sequence
identity using the USEARCH (v7.0.1090) (Majaneva et al.,
2015). The taxonomic assignments of OTUs were performed
using the RDP classifier program (v2.2) (Wang et al., 2007).
The α-diversity including observed OTUs and Chao index was
analyzed by Mothur (v.1.39.5) (Schloss et al., 2009). The β-
diversity was analyzed by QIIME (v.1.9.1) (Caporaso et al., 2010).
A normalized OTU abundance table was used for principal
coordinate analysis (PCoA) based on weighted and unweighted
UniFrac distances via Vegan package in R (Dixon, 2003). The
effect of parity on gut and vagina microbial composition of
sows was also evaluated by PCoA based on weighted UniFrac
distances. The PICRUSt software (v.1.0.0) was used to predict the
functional capacities of the gut microbiome (KEGG Orthology)
from 16S rRNA gene sequencing data against the Greengenes
database (Langille et al., 2013).

Comparisons of the α- and β-diversity of the gut microbiota
between normal return and non-return sows were performed
using the Wilcoxon rank-sum test and PREMANOVA.
Permutation was set at 10,000 times. The significance threshold
was set at p-value < 0.05. Linear discriminant analysis effect size
(LEfSe) analysis was used to identify OTUs, genus, and KEGG
pathways showing differential abundances between normal
return and non-return sows with the standard parameters
(p < 0.05 and | LDA| score > 2.0) (Segata et al., 2011).

Construction of Co-abundance Groups
(CAGs) of the Gut Microbiota
Microbes that likely work together to contribute to the
same ecological function could be identified by clustering
co-abundance groups (CAGs) based on their co-variation of
abundance (Wu et al., 2021). We constructed CAGs of the gut
microbiota in experimental sows. A total of 517 OTUs that
existed in at least 20% of the tested samples were used for
the construction of CAGs. The correlations among 517 OTUs
were calculated by the SparCC algorithm via the SpiecEasi

package in R (Kurtz et al., 2015). Only those OTUs with SparCC
correlation scores greater than 0.2 were clustered into CAGs.
The correlation values were converted to a correlation distance
(1–correlation value), and the OTUs were clustered using the
Ward clustering algorithm via WGCNA package in R (Langfelder
and Horvath, 2008). Similar clusters were subsequently merged
if the correlation between the CAG’s eigenvectors exceeded
0.8. The CAG network was visualized in Cytoscape (v.3.7.2)
(Shannon et al., 2003).

Determination of Serum Untargeted
Metabolomic Profiling and Data Analysis
Serum untargeted metabolomic analysis was performed by
UPLC-QTOF-MS (ultra-performance liquid chromatography
method with quadrupole time-of-flight mass spectrometry). In
brief, all serum samples were thawed at 4◦C and precipitated
using precool methanol (Merck Corporation, Germany) at 1:3
of serum:methanol at room temperature. The mixtures were
vortexed for 1 min, and then incubated at −20◦C for 20 min.
After centrifuged at 15,000 × g (rcf) for 15 min at 4◦C, the
supernatants were transferred into clean EP tubes and dried
using a vacuum evaporator. The samples were resolved in
150 µl of water:methanol (85%:15% v/v) and stored at 4◦C
until measurement. A standard quality control (QC) sample was
prepared by mixing and blending equal volume of each of 13
tested serum samples.

The samples were run on a 100 mm × 2.1 mm Bridged
ethyl hybrid (BEH) C18 UPLC column (Waters Corporation,
United States) that was packed with 1.7-µm particles by using
a gradient elution of water +0.1% formic acid and acetonitrile as
mobile phases. The capillary voltage was set at 3.0 kV for positive
electrospray ion mode (ES+) and 2.5 kV for negative electrospray
ion mode (ES−). The source and desolvation temperature were
set at 120 and 350◦C, respectively. Leucine enkephalin was used
as the lock mass (m/z 556.2771 in ES+, and 554.2615 in ES−)
at a concentration of 100 ng/ml and a flow rate of 5 µl/min for
all analyses. The serum samples were eluted at a flow rate of
0.3 ml/min and a column temperature of 40◦C on ES+ model for
22 min and ES−model for 18 min.

Mass spectrometry analysis was performed in both ES+ and
ES− models with Waters QTOF Premier (Waters Corporation,
United States). The mass range was set at 50–1200 m/z in a scan
time of 0.3 s and an interscan delay of 0.02 s. System control and
data collection were performed by MassLynx software (Waters
Corporation, United States). The Progenesis QI software (v2.0)
(Non-linear Dynamics, United Kingdom) was used for non-
targeted signal detection, signal integration and feature alignment
(Rusilowicz, 2016). MetaScope embedded in the Progenesis QI
was used to annotate metabolites not only based on neutral mass,
isotope distribution and retention time, but also based on the
collisional cross-sectional area and MS/MS fragmentation data
in the HMDB database. Each retained peak was then normalized
to the QC sample using MetNormalize (Shen et al., 2016). The
relative RSD value of the metabolites in the QC samples was set
at a threshold of 30% to standardize the reproducibility of the
metabolomic datasets.
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FIGURE 1 | Sankey diagram showing the bacterial composition of feces samples from experimental sows. The colored columns from left to right represent the
proportions of bacterial taxa from phylum to genus levels.

Considering the limited number of metabolites (only 278
serum metabolites from pigs) in the Livestock Metabolome
Database (LMDB), molecular mass data (m/z) was compared
to the HMDB database (Wishart et al., 2018) to annotate the
serum metabolites. If the difference between the observed mass
and the theoretical mass is less than 10 ppm, the metabolite
was labeled as the mass. Partial Least Squares Discriminant
Analysis (PLS-DA) was performed to evaluate the differentiation
of the untargeted metabolome between two groups of sows by
online MetaboAnalyst (V4.0). Metabolites selected as differential
candidates for further statistical analysis were identified based on
variable importance in the projection (VIP) at the threshold of 1
from the PLS-DA model, which was validated at the significance
threshold of p < 0.05, by the non-parametric univariate method
(Mann–Whitney–Wilcoxon test).

Clustering of Serum Metabolite Modules
Topological networks were constructed for serum metabolites
using WGCNA in R package (Langfelder and Horvath, 2008)
at a soft threshold of 9 and 5 for positive ion mode and
negative ion, according to the scale-free topology criterion

(R2 = 0.9). At the threshold of deepSplit of 4 and minimum
cluster size of 5, metabolite modules were isolated from
the topological network with the dynamic hybrid tree-cutting
algorithm (Langfelder et al., 2008). The first principal component
of each module was chosen as the representative measurement of
its metabolic profile. Modules were subsequently merged if the
correlation between the first principal components of the serum
metabolite clusters exceeded 0.8. Wilcoxon rank-sum tests were
performed to identify the differential metabolic modules between
normal return and non-return sows at a significant threshold
of p-value ≤ 0.05. Further pathway enrichment analysis was
performed for the metabolites in differentially metabolic modules
using the “untargeted metabolomic pathway analysis” function
section in online MetaboAnalyst (v4.0) (Chong et al., 2019).

Spearman Correlation Analysis Between
Gut Microbiome and Serum Metabolome
A total of 13 sows (7 normal return sows and 6 non-return
sows) with both serum metabolome and gut microbiome data
were used to evaluate the correlation between the changes of
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FIGURE 2 | Bacterial taxa and OTUs showing different abundances between normal return and non-return sows identified by Linear discriminant analysis effect size
(LEfSe) analysis. The cycles from inside to outside represent kingdom, phylum, class, order, family, and genus. (A) Bacterial taxa showing different abundances
between normal return and non-return sows in fecal samples (| LDA| score > 2, p < 0.05). (B) Differential OTUs in fecal samples (| LDA| score > 3, p < 0.05).
(C) Differential bacterial taxa in vaginal samples (| LDA| score > 2, p < 0.05). (D) Differential OTUs in vaginal samples (| LDA| score > 2, p < 0.05).

the gut microbiome and the shifts of serum metabolome. The
CAGs and metabolite modules showing differential abundances
between two groups were identified by the Wilcoxon rank-sum
test. Spearman correlations between CAGs and serum metabolite
modules or between differential OTUs and metabolites were
calculated using R software (v.3.6.1). The Benjamini–Hochberg
method was used to control the false discovery rate (FDR). The
visualization of the correlations was plotted using the ggplot2
package in R software (v.3.6.1).

RESULTS

Comparison of Gut Microbial
Composition Between Normal Return
and Non-return Sows
To evaluate the changes of fecal microbiota composition
between normal return and non-return sows, a total of
158 fecal samples were collected and 16S rRNA gene
sequencing was performed. The rarefaction curve suggested

an adequate amount of sequencing data for the microbial
diversity analysis (Supplementary Figure 1). Based on
97% similarity of the sequence identity, a total of 3,036
OTUs were obtained in fecal samples. At the phylum
level, Firmicutes (49.26%), Bacteroidetes (31.74%), and
Spirochaetes (13.61%) were most abundant in fecal samples.
At the genus level, the relative abundances of Treponema
(13.33%), SMB53 (4.33%), Lactobacillus (3.76%), Oscillospira
(3.68%), and Prevotella (3.68%) were listed in the top
five (Figure 1).

We then compared the gut microbiota composition between
normal return and non-return sows. Compared to normal
return sows, the sows showing non-return of heat cycle
after weaning had the higher observed species and Chao
index, but this difference did not achieve a significant level
(p > 0.05) (Supplementary Figure 2A). PCoA based on
Weighted UniFrac distance showed a significant difference
in the β-diversity of gut microbiota between normal
return and non-return sows (p = 0.013), but not for the
PCoA based on Unweighted UniFrac distances (p = 0.247)
(Supplementary Figure 2B).
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FIGURE 3 | Sankey diagram showing the bacterial composition of vagina swab samples from experimental sows. The colored columns from left to right represent
the proportions of bacterial taxa from phylum to genus levels.

Linear discriminant analysis effect size was used to identify
gut bacterial taxa showing different abundances between normal
return and non-return sows. At the taxonomy level, we identified
that Bacteroidia, Lactobacillaceae, and Lactobacillus were
enriched in sows showing normal return, while Actinobacteria,
Clostridiales, Lachnospiraceae, Streptococcaceae, Streptococcus,
Clostridium, Mogibacterium, Ruminococcus, and Paludibacter
had higher abundances in non-return sows (Figure 2A). At the
OTU level, we identified a total of 55 OTUs showing different
abundances between normal return and non-return sows at the
significance thresholds of p < 0.05 and LDA > 2, including
13 OTUs with LDA > 3 (Supplementary Table 1). Among
these 13 OTUs, two OTUs were annotated to Lactobacillus
and S24-7 (Bacteroidetes), respectively, and enriched in
normal return sows, and the other 11 OTUs were annotated
to Mogibacteriaceae, Lachnospiraceae, Christensenellaceae,
Clostridium, and Streptococcus luteciae, and enriched in
non-return sows (Figure 2B).

The Composition of Vagina Microbiota
and Identification of Bacterial Taxa
Associated With Non-return of Estrus in
Weaned Sows
A total of 50 vaginal swab samples were collected and 16S rRNA
gene sequencing was performed. We obtained a total of 2,170
OTUs in these samples. Firmicutes (44.51%), Proteobacteria
(33.68%), and Bacteroidetes (9.26%) had the highest abundance
in the vagina of tested sows, and Psychrobacter (12.22%),
Escherichia (5.92%), Pseudomonas (5.82%), SMB53 (5.72%),
and Anaerococcus (4.03%) were the most abundant bacterial
genera (Figure 3).

We did not observe a significant difference of the α-diversity of
vaginal microbial composition between normal return and non-
return sows (p > 0.05) (Supplementary Figure 3A). PCoA based
on both Weighted UniFrac distance and Unweighted UniFrac
distances showed a significant difference in the β-diversity of
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FIGURE 4 | Identification of differential Co-abundance group (CAGs) between normal return and non-return sows. (A) Three CAGs showing different enrichments
between normal return and non-return sows. Wilcoxon rank-sum test was used to test the different enrichments, *p ≤ 0.1, **p ≤ 0.05. (B) The horizontal network
diagram of three CAGs showing different abundances between normal return and non-return sows. The diagram shows that the OTUs were enriched between
normal return and non-return sows. The name of each OTU node was annotated based on the RDP classifier and the size of the nodes represent the abundance of
OTU. The thickness of the connections between nodes indicates the weight of the correlation coefficient between OTUs. Lines were drawn only when its correlation
coefficient is greater than 0.2. The red lines represent a positive correlation and the gray lines represent a negative correlation. The colors of the nodes represent
different types of CAG.

FIGURE 5 | The predicted function capacities of the gut and vaginal microbiome showing different abundances between normal return and non-return sows. Linear
discriminant analysis effect size (LEfSe) analysis was used to identify differential KEGG pathways (level 3). (A) Differential KEGG pathways identified in fecal samples (|
LDA| score > 2, p < 0.05). (B) Differential KEGG pathways identified in vaginal samples (| LDA| score > 2, p < 0.05).

vaginal microbiota between two groups of sows (p = 0.02 and
0.03) (Supplementary Figure 3B).

The bacterial taxa showing different abundances in
vaginal samples between normal return and non-return
sows were identified by LEfSe. Epsilonproteobacteria (including
campypylobacterales, campylobacteraceae, and Campylobacter),
Anaerococcus, and Parvimonas had higher abundances in
non-return sows (Figure 2C). At the OTU level, a total of 13
OTUs showed different abundances between normal return
and non-return sows (p < 0.05 and LDA > 2). Among them,

five OTUs annotated to Clostridiales, Ruminoccaceae, and
Oscillospira were enriched in normal return sows, while those
OTUs annotated to Campylobacter, Anaerococcus, Parvimonas,
Finegoldia, and Dorea had higher abundances in non-return
sows (Figure 2D).

Some bacterial taxa showing different abundances between
normal return and non-return sows were identified in
both feces and vagina samples. For example, Oscillospira
and Ruminococcaceae were enriched in normal return
sows, while Coprococcus, Lachnospiraceae, and Dorea
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FIGURE 6 | Identification of differential metabolic profiles between normal return and non-return Sows. (A) PLS-DA diagram of serum metabolic profiles shows
significant differences of serum metabolites profiles between normal return and non-return sows. (B) Box plots indicate 10 co-abundance clusters of serum
metabolites between normal return and non-return sows. t-test was used for difference analysis, * p < 0.05, ** p < 0.01. (C) The KEGG pathway enriched by serum
metabolite features having higher abundance in serum of normal sows. (D) The KEGG pathways enriched by serum metabolite features having higher abundance in
serum of non-return sows. The x-axis and the size of dots indicate the KEGG pathway impact of differential serum metabolite features, and the y-axis shows the
–log10 of significant p-value in metabolite enrichment analysis. The size and color of dots represent the value of the KEGG pathway impact.

were enriched in non-return sows (Supplementary Table 1
and Figure 2D).

CAGs of OTUs Associated With the
Return of Estrus in Weaned Sows
As a complex microecological system, gut microbes interact with
each other and form functional groups. A co-abundance network
of OTUs was constructed in 13 samples from the sows, which also

had serum metabolomic data (to further analyze the correlation
between CAGs and metabolite modules). The 517 OTUs present
in at least 20% of the samples were co-clustered based on the
SparCC correlation coefficient. A total of 30 CAGs were obtained
(Supplementary Table 2). Among them, CAG7 and CAG17
showed significantly different enrichments between normal
return and non-return sows (Figure 4A, p = 0.01 and 0.05,
respectively), and CAG13 showed the tendency of association
with normal return of estrus (Figure 4A, p = 0.1). CAG13,
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FIGURE 7 | The correlations between fecal microbiota and host serum metabolite profile. (A) The heatmap of the correlations between differential fecal microbiota
and serum metabolites. Spearman correlation coefficients were calculated. Red represents positive correlation and blue represents negative correlation. The star in
the grid indicates the significant threshold *FDR < 0.05. (B) Spearman correlation analysis between the CAGs and the metabolite modules. The connections with a
coefficient greater than 0.4 were plotted. The thickness of the connections between CAGs and metabolic modules represents the weight of the correlation
coefficient. Red connections represent positive correlation, and blue connections represent negative correlation. In the column of CAGs, the green box represents
the CAGs that were significantly enriched in non-return sows, and the purple boxes represent the CAGs that were significantly enriched in normal return sows. In the
metabolome column, the orange boxes represent metabolic modules that were significantly enriched in non-return sows, and the pink boxes represent metabolic
modules significantly enriched in normal return sows. *FDR < 0.05, **FDR < 0.01.

which included the OTUs that were annotated to Oscillospira,
Ruminococcaceae, Clostridiales, and Parabacteroides, and the
CAG 17, which was composed of the OTUs that were
annotated to Lachnospiraceae, Treponema, and Bacteroidales,
were significantly enriched in normal return sows. Conversely,
CAG7, which was composed of 21 OTUs, including OTU 89
(S. luteciae), OTU 2428 (Ruminococcus flavefaciens), OTU 2577
(Ruminococcus gnavus), OTU 2512 (Lachnospiraceae), OTU 1928
(Lachnospiraceae), OTU 552 (Prevotella copri), and OTU 2393
(Clostridium perfringens), was significantly enriched in non-
return sows (Figure 4B). Particularly, OTU 89 (S. luteciae) was
the hub OTU in the CAG7 and also identified to enrich in
non-return sows at the OTU level (Supplementary Figure 4).

The Changes of Potential Functional
Capacity of Fecal Microbiome and
Vaginal Microbiome Between Normal
Return and Non-return Sows
The potential functional capacities of both fecal and vaginal
microbiome were predicted by PICRUSt based on 16S rRNA gene
sequencing data. We investigated the shifts of potential functional
capacities of gut and vaginal microbiome between normal return
and non-return sows. At level 3 of KEGG pathways, we
identified a total of eight pathways in the fecal microbiome
showing differential abundances between two groups of sows.
Among them, seven pathways had higher relative abundances
in non-return sows, namely, Lysine biosynthesis; Fatty acid
metabolism; Valine, leucine, and isoleucine biosynthesis;

Lysine degradation; Oxidative phosphorylation; Butanoate
metabolism; and Porphyrin and chlorophyll metabolism (LDA
score > 2), while only one pathway (Pentose and glucuronate
interconversions) was significantly enriched in normal return
sows (Figure 5A). In the vaginal microbiome, 19 KEGG
pathways had different enrichments between two groups of sows,
namely, 11 pathways significantly enriched in normal return
sows, such as Pantothenate and CoA biosynthesis, Metabolism
of cofactors and vitamins; Glycine, serine, and threonine
metabolism; NOD-like receptor signaling pathway; and Other
glycan degradation, and 8 pathways enriched in non-return
sows, including Bacterial toxins, Staphylococcus aureus infection,
Glycerolipid metabolism, and Dioxin degradation (Figure 5B
and Supplementary Table 3).

Comparison of Serum Metabolome
Profiles Between Normal Return and
Non-return Sows
To evaluate the shifts of serum metabolites between normal
return and non-return sows, non-targeted metabolomics analysis
was performed in 13 serum samples described above (method).
After quality control, a total of 3,813 metabolite features were
obtained for subsequent analysis, including 2,402 metabolite
features from positive ion mode and 1,411 features from negative
ion mode. Significant shifts of serum metabolites were observed
between normal return and non-return sows (Figure 6A). We
identified a total of 32 metabolites showing different abundances
between normal return and non-return sows. These metabolite
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features were annotated according to the HMDB database. The
metabolite features enriched in normal return sows were mainly
annotated to carbohydrates and carbohydrate conjugates, fatty
alcohol esters, zearalenones, and hydropyridines, while those
metabolite features enriched in non-return sows were annotated
to diterpenoids, fatty acids and conjugates, hydroxycinnamic
acids and derivatives, fatty alcohols, tropane alkaloids, indoles,
and derivatives (Supplementary Table 4).

Considering the complex relationships among serum
metabolites, 3,813 metabolite features in all 13 samples were
clustered into 273 co-abundance modules using WGCNA,
including 208 modules in positive ion mode and 65 modules
in negative ion mode. Among these modules, 10 modules
showed differential enrichments between normal return and
non-return sows (Figure 6B). Seven metabolite modules
containing 57 metabolite features were significantly enriched
in normal return sows. These 57 metabolite features were
annotated to organic compounds, flavonoids, lipids and lipid-
like molecules, carbohydrates and carbohydrate conjugates,
indolyl carboxylic acids and derivatives, and vitamin D and
derivatives (Supplementary Table 5), and were enriched in the
pathways Steroid hormone biosynthesis, Starch and sucrose
metabolism, Galactose metabolism, and Vitamin B6 metabolism
(Figure 6C). Three metabolite modules containing 23 metabolite
features had significantly higher abundance in non-return sows.
These 23 metabolite features belonged to tropane alkaloids,
indoles and derivatives, sulfoxides, lignans, and neolignans
(Supplementary Table 5), and were significantly enriched in
Pentose phosphate pathway (Figure 6D).

The Correlation Between the Changes in
Gut Microbiota and the Shifts of Serum
Metabolites
We further evaluated the correlation between the shifts of
fecal microbiota and the changes of host serum metabolites in
13 sows described above. LEfSe analysis identified 43 OTUs
showing differential abundance between normal return and
non-return sows (Supplementary Figure 4, | LDA| > 2,
p < 0.05). Most of these differential OTUs (27/43) were also
identified in the whole dataset (158 samples), such as those
OTUs annotated to Bacteroidales, S24-7, Ruminococcaceae,
Oscillospira, Christensenellaceae, Sphaerochaeta, Ruminococcus,
Clostridiales, Ruminococcaceae, Lachnospiraceae, Clostridium
butyricum, Clostridium, and S. luteciae. We then analyzed the
correlations between 43 differential OTUs and 32 differential
serum metabolites described above. At the significance threshold
of FDR < 0.05, we identified 20 significant correlations.
OTU 2526 (C. butyricum), OTU 2589 (R. gnavus), OTU
2027 (Clostridiales), OTU 2512 (Lachnospiraceae), OTU 547
(Bacteroidetes) and OTU 2533 (Lachnospiraceae), all of which
had higher abundances in the gut microbiota of non-
return sows, were positively correlated with (3 beta, 17
alpha, 23S)-17,23-Epoxy-3,28,29-trihydroxy-27-norlanost-8-en-
24-one (6.65_455.3159 m/z), Alosetron (15.23_312.1845 m/z),
3-Feruloyl-1,5-quinolactone (15.43_373.0907 m/z), Erythrose
(9.21_241.0928 m/z), and Ecgonine (14.68_371.2136 m/z),

respectively (FDR < 0.05). These five metabolites also had higher
abundances in non-return sows (Supplementary Table 4). The
OTU 2 (GMD14H09), OTU 2566 (Clostridiales), OTU 1762
(Ruminococcaceae), and OTU 2573 (Ruminococcaceae), which
showed enrichments in normal return sows, showed positive
correlations with the metabolites enriched in normal return sows
[3′-Sialyllactose (0.88_632.2033 m/z), Lactulose (0.90_341.1082
m/z), and Metixene (9.85_327.1887 m/z), respectively]. We also
observed the significant correlations between those differential
OTUs and serum metabolites, which showed different directions
of enrichment between normal return and non-return sows.
For example, OTU 2589 (Ruminococcus gnavus) was negatively
correlated with Metixene (9.85_3.27.1887 m/z) and 2,4,6-
Triethyl-1,3,5-trioxane (14.78_17 5.1319 m/z) (Figure 7A).

We then evaluated the correlations between three differential
CAGs (CAG7, CAG13, and CAG17) and 10 differential
metabolite modules (ME32, ME19, ME42, ME134, ME160,
ME175, ME202, ME45, ME59, and ME87). Those correlations
with coefficient (r2) > 0.4 were selected. CAG17 was positively
correlated with ME45 (mainly including Carbohydrates and
carbohydrate conjugates, and Vitamin D and derivatives),
ME32 (Carbohydrates and carbohydrate conjugates, and Indolyl
carboxylic acids and derivatives), and ME19 (Lipids and lipid-like
molecules, related to Vitamin B6 metabolism), and CAG13 was
negatively correlated with ME134 (Organic acids and derivatives)
(FDR < 0.05, Figure 7B). However, no significant correlation
was identified between CAG7 and metabolite modules. It implies
that the changes in the fecal microbiota might lead to the
shift of serum metabolites and was further associated with non-
return in weaned sows.

DISCUSSION

The interval from weaning to heat return has a significant effect
on sows PSY. It affects the economic benefit of the pig industry.
In this study, we explored the relationship between fecal and
vaginal microbiota and the heat return of weaned sows. The
serum metabolome was also measured to identify metabolites
associated with non-return of estrus in weaned sows. We found
that the changes in gut microbiota contributed to the shifts of
serum metabolites and may further affect sow estrus return after
weaning. To our knowledge, we firstly investigated the effect of
gut and vaginal microbiota composition with sow estrus return
of weaned sows by integrating serum metabolome analyses.

Consistent with the previous reports (Xiao et al., 2017; Dong-
Jie et al., 2018), Firmicutes, Bacteroidetes, and Spirochaetes
are the most abundant phyla in the fecal microbiota of
sows. However, different from that in the gut, Firmicutes,
Proteobacteria, and Bacteroidetes were the dominant phyla in
vaginal bacterial communities, and this result was consistent
with Kwawukume’s observation (Kwawukume, 2017). Recent
studies have demonstrated that the prevalence and relative
abundance of the genus Lactobacillus, which is the most abundant
genus in women’s vagina and helps host against pathogens
and infection (Ventolini, 2015), varied in the vagina across
different mammalian species (Miller et al., 2016). In this study,
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Lactobacillus only accounts for an average of 1.31% of relative
abundance in all tested vaginal samples. A previous study
indicated that Lactobacillaceae had high abundances in the
vaginal of Göttingen minipigs and showed no significant changes
during heat cycle (Lorenzen et al., 2015).

Different parities may affect the gut microbial composition of
sows (Gaukroger et al., 2021). However, in this study, we did not
observe the significant difference of the microbial compositions
of the gut and vagina among parities (Supplementary Figure 5).
This should be due to the fact that most experimental sows were
at the parity 2 to 5 (94.3%). Their ages were not significantly
different. Similar to the result reported previously (Xu et al.,
2020), non-return sows had higher observed species (p = 0.08)
and Chao index (p < 0.05) of fecal microbiota than normal
return sows. This may be due to the fact that sex hormones in
normal return sows reduced the diversity of gut microbiota. We
identified gut and vaginal microbes associated with the return
to estrus of weaned sows. Lactobacillus, S27-4, and Bacteroidia
were enriched in the gut of normal return sows. Lactobacillus
was associated with low body mass index (BMI) or normal
weight (Choi et al., 2019; Zhu et al., 2019). It has also been
reported that both feed-induced obese Ossabaw miniature pigs
and genetically obese Iberian pigs exhibit poor reproductive
performance (Gonzalez-Añover et al., 2011; Newell-Fugate et al.,
2014). Severely obese women show a higher probability of
hormonal disorders, menstrual disorders, anovulatory cycles, and
ovulation abnormalities than normal-weight women (Hartz et al.,
1979). Mouse model experiments show that obesity is negatively
correlated with estrus performance and leads to infertility
(Bermejo-Alvarez et al., 2012). S24-7 is a family belonging
to Bacteroidetes, which widely exists in the intestinal tract of
animals. It is now named Muribaculaceae (Lagkouvardos et al.,
2019). The abundance of S24-7 in the gut of sows is increased
during pregnancy and decreased during weaning (Ji et al., 2019).
The S24-7 has the capacity to degrade complex carbohydrates
(Lagkouvardos et al., 2019), and members of Bacteroides have
plant polysaccharide degrading enzymes, which can participate
in polysaccharide degradation (Zou et al., 2019). CAG13 and
CAG17 were enriched in normal return sows. These two CAGs
were composed of OTUs belonging to the bacteria mainly
related to anti-inflammatory and polysaccharide metabolism,
including Ruminococcaceae, Lachnospiraceae, and Oscillospira
(Scott et al., 2014; Konikoff and Gophna, 2016; Esquivel-Elizondo
et al., 2017). Ruminococcaceae and Lachnospiraceae have been
reported to produce butyrate, which plays the roles in anti-
inflammatory response (Liu et al., 2019). Oscillospira can use the
host glycogen to produce energy (Kohl et al., 2014), and the
abundance of Oscillospira was significantly reduced in patients
with inflammation (Gophna et al., 2017). Studies have shown that
Ruminococcaceae, Lachnospiraceae, Oscillospira, and Treponema
can ferment dietary fiber (Niu et al., 2015; Upadhyaya et al., 2016;
Yu-Jiao et al., 2016). Conversely, Streptococcus luteciae (Liang
et al., 2014), Ruminococcus gnavus (Hall et al., 2017), Prevotella
copri (Pedersen et al., 2016), and Clostridium perfringens (Cree
et al., 2016), which were annotated to the OTUs in the CAG7 have
been reported to associate pro-inflammatory.

We showed that serum metabolites had a significant shift
between normal return and non-return sows. This result was
consistent with a previous report (Xu et al., 2020). Carbohydrates
and their conjugates, and lipids and lipid-like molecules were
enriched in normal return sows, Carbohydrates and lipids
can compensate for the energy loss and meet the nutritional
requirements during sow lactation. Generally, most sows will
encounter energy loss and weight loss during lactation. After
weaning, sows need to replenish energy and nutrition for
estrus again. The metabolites showing different abundances
between normal return and non-return sows were enriched
to the pathways of galactose metabolism, starch and sucrose
metabolism, and vitamin B6 metabolism. This result suggested
that the differential metabolites may provide sows with the energy
and vitamin requirements for estrus. The supplement of vitamin
B6 can significantly increase the production of luteinizing
hormone (LH) in sows during estrus (Dalto et al., 2015).
Unexpectedly, the metabolites of Metixene (9.85_3.27.1887 m/z)
and Astemizole (15.88_459.2560 m/z) were enriched in normal
return sows. Both Metixene and Astemizole can be used to relieve
or treat Parkinson’s disease (Moller et al., 2005; Styczynska-
Soczka et al., 2017). Some studies speculated that Parkinson’s
disease may be related to estrogen secretion (Shulman, 2002).
Women with higher lifetime estrogen levels have a lower risk of
Parkinson’s disease (Gatto et al., 2014). However, the relationship
between these metabolites and the sow heat return needs to be
further confirmed.

The module composed of vitamin D and its derivatives
was enriched in normal return sows, and positively correlated
with the CAG17, which was also enriched in normal return
sows. Several studies have shown that vitamin D, especially
1α, 25-(OH)2-vitamin D3, has a great influence on the
reproductive performance of sows (Lauridsen et al., 2010). 1α,
25-(OH)2-vitamin D3 can regulate the calcium and phosphorus
metabolism, and enhance calcium and phosphorus absorption,
which benefits sows by quickly restoring body condition after
weaning and shortening the interval from weaning to estrus
(Jie et al., 2018). The metabolites having the higher abundances
in normal return sows were also enriched in the pathway of
Steriod hormone biosynthesis. As we have known, many steroid
hormones, including sex hormones, play a very important role in
the reproductive physiology of pigs. Steroid hormones regulate
the endocrine balance through the hypothalamic–pituitary–
gonadal axis (HPGA) (Hengevoss et al., 2015), thereby affecting
the sow’s sexual cycle and estrus. The metabolites enriched in
the serum of non-return sows have been reported to inhibit
estrus expressions, such as tropane alkaloids, indole and its
derivatives, sulfoxides, lignans, and neolignans. Atropine belongs
to tropane alkaloids that can inhibit the effect of oxytocin
in goats during estrus (Fodor and Dharanipragada, 1994).
Indoles have anti-gonadotropin effects (Reiter and Vaughan,
1977). All these metabolites were correlated with heat return-
associated gut microbiota. We speculate that the gut microbiota
can participate in the physiological processes of estrus in
sows through another manner by regulating the metabolites
related to the steriod hormone biosynthesis or influencing
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the effect of sex hormone. However, the causality and the
underlying mechanisms have not been elucidated. Further studies
are needed to investigate the mechanism of the key microbiota
and metabolites identified in this study affecting estrus return of
sows after weaning.

In summary, this study innovatively investigated the effect
of sow gut and vaginal microbiota on non-return of sows after
weaning and found several microbes that may affect the return
of sow estrus. The metabolites and metabolic modules show
different abundances between normal return and non-return
sows and may be used as markers associated with the return
of sow estrus after weaning. The correlation analysis between
the gut microbiota and serum metabolites indicated that the
changes of gut microbiome should be related to the shifts of
serum metabolites between normal return and non-return sows.
These results provide new insights into the understanding of the
effect of gut and vaginal microbiota on sow estrus return after
weaning and suggest that gut and vaginal microbiota may be
treated as a target regulating sow estrus. Unfortunately, only 13
serum samples were collected and the metabolomics analysis was
performed. In a future study, we will collect more serum samples
for metabolomics analysis to further confirm the relationship of
fecal microbiota and serum metabolites and elucidate the possible
mechanism of the gut and vagina microbes affecting sow estrus
return by integrating the multi-omics data.
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Supplementary Figure 2 | Comparison of α-diversity and β-diversity of gut
microbiota between normal return and non-return Sows. (A) Comparison of the
α-diversity (observed species and Chao index) in the fecal samples between
normal return and non-return sows. Wilcoxon rank-sum test was used for
comparison analysis. (B) PCoA of gut microbiota based on Weighted UniFrac
distance and Unweighted UniFrac distance between the normal return and
non-return sows. PERMANOVA was used for significant test. The number of
permutations was set at 10000 times. p < 0.05 means achievement of significant
level, R2 value suggested the degree of interpretation of the differences in the
sample by the grouping factors.

Supplementary Figure 3 | Comparative analysis of the α-diversity and β-diversity
of microbiota between normal return and non-return sows in vaginal swab
samples. (A) Comparison of the α-diversity (observed species and Chao index) in
the vaginal samples between normal return and non-return sows. (B) PCoA of
vaginal microbiota based on Weighted UniFrac distance and Unweighted UniFrac
distance between the normal return and non-return sows.

Supplementary Figure 4 | The OTUs showing different abundances between
normal return and return and non-return sows in 13 feces samples from sows that
had serum metabolome data. LEfSe analysis was used to identify the differential
OTUs between the two groups (| LDA| score > 2, p < 0.05).

Supplementary Figure 5 | Comparison of the microbial compositions of feces
and vaginal swab samples among seven parities by PCoA based on weighted
UniFrac distance. (A) Feces samples; (B) vaginal swab samples. The results
showed that the effect of parity on the microbial compositions of feces and vaginal
swab samples was not significant. The effect size (R2) was estimated via envfit
(vegan) based on weighted UniFrac distance.

Supplementary Table 1 | The OTUs showing differential abundances between
normal return and non-return sows in 158 fecal samples.

Supplementary Table 2 | The OTUs are clustered into co-abundance groups
(CAGs) by the SparCC Algorithm.

Supplementary Table 3 | Differential KEGG pathways of fecal and vaginal
microbiome between normal return and non-return sows.

Supplementary Table 4 | Differential serum metabolites between normal return
and non-return sows.

Supplementary Table 5 | Differential metabolite modules of serum compounds
via WGCNA method between normal return and non-return sows.
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In industrial animal production, breeding strategies are essential to produce offspring of 
better quality and vitality. It is also known that host microbiome has a bearing on its health. 
Here, we report for the first time the influence of crossbreeding strategy, inbreeding or 
outbreeding, on the buccal and intestinal bacterial communities in female Nile tilapia 
(Oreochromis niloticus). Crossbreeding was performed within a family and between 
different fish families to obtain the inbred and outbred study groups, respectively. The 
genetic relationship and structure analysis revealed significant genetic differentiation 
between the inbred and outbred groups. We also employed a 16S rRNA gene sequencing 
technique to understand the significant differences between the diversities of the bacterial 
communities of the inbred and outbred groups. The core microbiota composition in the 
mouth and the intestine was not affected by the crossbreeding strategy but their abundance 
varied between the two groups. Furthermore, opportunistic bacteria were abundant in 
the buccal cavity and intestine of the outbred group, whereas beneficial bacteria were 
abundant in the intestine of the inbred group. The present study indicates that crossbreeding 
can influence the abundance of beneficial bacteria, core microbiome and the inter-individual 
variation in the microbiome.

Keywords: breeding, Nile tilapia, microbiome, 16S amplicon, whole-genome sequencing, core microbiome

INTRODUCTION

Animals are bred for food, fibers, transport, protection, company as well as for other 
purposes such as scientific research (Flint and Woolliams, 2008). Domestication of different 
animals, mainly livestock species started several years ago and presently crossbreeding 
programs are essential tools to improve the productivity, efficiency, and sustainability 
of domesticated animals (Hill, 2014, 2016). Initially, livestock were selected based on 
desired phenotypic traits. Over the past 50 years, there has been a remarkable increase 
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in livestock production due to the improvement in breeding 
practices and better understanding of genetics. Genetics 
plays an important role in modern breeding programs, 
which combine basic breeding concepts and emerging 
technologies (Schultz et  al., 2020).

Crossbreeding of farmed animals and agricultural plants 
is well-established compared to those of farmed aquatic 
animals (D’ambrosio et  al., 2019; Gratacap et  al., 2019). 
However, the production of fish based on crossbreeding 
programs is expected to increase as the farming of fish 
such as Nile tilapia (Oreochromis niloticus) and Atlantic 
salmon (Salmo salar) is expanding rapidly (Gjedrem et  al., 
2012; Gjedrem and Rye, 2018; Mehar et  al., 2019). Several 
strategies such as selective breeding have been implemented 
to increase the production of fast-growing fish species and 
their disease resistance (Lind et  al., 2012; Ina-Salwany et  al., 
2019). Nevertheless, outbreak of many diseases such as 
Tenacibaculosis (yellow mouth), Streptococcosis and Vibriosis 
has led to high mortality in fish farms and the industry 
has suffered huge economic losses (Jantrakajorn et  al., 2014; 
Ina-Salwany et  al., 2019; Wynne et  al., 2020). The industry 
has hardly taken steps to selectively breed fishes in order 
to shape the microbiota as an indicator of health. It has 
been reported that selective breeding can produce fishes 
with microbiota that can be  manipulated to improve disease 
resistance (Piazzon et  al., 2020).

Currently, there are many genetically improved tilapia and 
GIFT (Genetically Improved Farmed Tilapia) is the most 
known breed. Although many studies have employed genetically 
improved tilapia (Bolivar and Newkirk, 2002; Romana-Eguia 
et  al., 2005; Santos et  al., 2013; Mehar et  al., 2019), to our 
knowledge there are only a couple of reports about the 
microbiome composition in selectively bred fish (Kokou et al., 
2018; Brown et  al., 2019). In mouse, selective breeding is 
known to increase the inter-individual gut microbiota similarity 
(Pang et  al., 2012); variation is less in the case of inbred 
animals compared to their outbred counterparts (Hufeldt 
et  al., 2010). Researchers have also succeeded in producing 
outbred mice with stable gut microbiota (Hart et  al., 2018). 
Furthermore, the association between the gut microbiome 
and breeding was studied in mouse models by analysing the 
effect of the gut microbiome on different breeds (Pang et  al., 
2012; Kreisinger et  al., 2014; Ericsson et  al., 2015; Oriá et  al., 
2018). This link was also explored in plants by examining 
the impact of the microorganisms on host phenotype (Wagner 
et  al., 2020). Moreover, the microbial taxa that is widespread 
among the host population is vertically transmitted, and host 
factors provide them with the optimum ecosystem for 
colonization (Risely, 2020).

Selective breeding affects host genetic selection, which in 
turn shapes the gut microbiome (Kokou et  al., 2018) that has 
an important role in, among others, maintaining the host 
health. The paucity of information regarding the mating strategy-
caused changes in fish microbiome that can signal disease 
propensity led us to examine the differences in the bacteria 
associated with inbred and outbred Nile tilapia using next-
generation sequencing technology.

MATERIALS AND METHODS

Fish Husbandry and Sample Collection
Fertilized eggs (n = 180) of Nile tilapia, were obtained from 
wild fish captured from the Nile river, Luxor, Egypt (location 
GPS: 25°39'56'' N, 32°37'07'' E). These eggs were disinfected 
with hydrogen peroxide for 10 min and placed in egg rockers 
(Cobalt Aquatics, Rock Hill, South Carolina, United  States) 
installed in a 60 L tank with UV treated water, containing 
5% NaCl. Around 85% of the eggs were hatched at 28°C 
within 4 days. The hatched larvae were placed in fish transport 
bags filled with UV treated and 100% oxygen saturated water. 
These larvae were shipped, within approximately 18 h, to the 
Research Station of Nord University, Bodø, Norway via air 
and their survival rate exceeded 95%. The transported larvae 
were reared at a maximum density of 27 fish/m3 for 5 months 
in a freshwater recirculating system. The rearing conditions 
were: dissolved oxygen – 100%, water temperature –28°C, 
photoperiod – LD 13:11. The fish were fed Amber Neptun 
pellets (0.15–0.8 mm, Skretting, Stavanger, Norway) during 
the rearing period. These fish were designated as the F0 
generation and were used for the breeding study.

We randomly chose males and females and produced the 
inbred and outbred groups. When the fish reached 3,570 
degree·days, we  anesthetized and PIT-tagged them for tracing 
the individual families.

Prior to sampling, fish were not fed for 48 h. They were 
sacrificed by immersion in an emulsion containing 12 ml of 
clove oil (Sigma Aldrich, St. Louis, Missouri, United  States), 
96% ethanol (1:10 v/v) and 10 L of water (Simões et  al., 2011; 
Konstantinidis et  al., 2020). Female fish were used for the 
study as they are maternal mouthbrooders. Twenty fish each 
from the inbred and outbred groups were used in this study, 
and three body sites (mouth, anterior and posterior intestine) 
of female Nile tilapia were targeted for examining the bacterial 
communities. Mucus samples from the buccal cavity were taken 
using swabs (Copan Italia, Brescia, Italy), which were transferred 
to cryotubes and immediately frozen in liquid nitrogen. Then, 
the same fish were aseptically dissected to collect the anterior 
and posterior intestine. The intestine samples were also transferred 
to cryotubes and snap-frozen in liquid nitrogen. The collected 
samples were stored at −80°C until further use.

DNA Extraction for Whole-Genome 
Sequencing
DNA was extracted from fast muscle using DNeasy Blood and 
Tissue Kit based on the guidelines provided by the manufacturer 
(Qiagen, Hilden, Germany). The Invitrogen Qubit 3.0 fluorometer 
(ThermoFisher Scientific, Waltham, Massachusetts, United States) 
was used to quantify the concentration of DNA in the samples. 
Quality (based on 260/280 and 260/230 absorbance ratios) 
and integrity (based on DIN values) of the extracted DNA 
samples were checked using Nanodrop 1000 Spectrophotometer 
(ThermoFisher Scientific) and TapeStation 2200 DNA screen 
(Agilent Technologies, Santa Clara, California, United  States), 
respectively.
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DNA Extraction for 16S Amplicon Analysis
All the procedures mentioned here were performed under 
sterile conditions. Before extracting the DNA, intestine samples 
were transferred to a sterile Petri dish and placed on a cool-
pack on dry ice. The intestine was opened and transferred to 
a 5 ml tube containing 1.4 mm Zirconium oxide beads (Cayman 
Chemical, Ann Arbor, Michigan, United  States) and 2 ml of 
InhibitEX buffer (Qiagen). Thereafter, DNA was extracted 
immediately using QIAamp DNA stool Mini Kit (Qiagen) 
according to the manufacturer’s protocol. The final elution 
volume was 75 μl (ATE buffer). The same extraction method 
was employed for the mouth samples. The quality and quantity 
of the extracted DNA were checked with NanoDrop 
spectrophotometer ND-8000 (ThermoFisher Scientific).

Libraries Preparation and Sequencing
Whole-Genome Sequences
The Nextera DNA Flex library preparation kit with dual 
indices was used to prepare whole genome libraries based 
on the manufacturer’s protocol (Illumina, San Diego, 
California, United States). After tagmentation of the extracted 
gDNA samples using Bead-linked transposomes at 55°C for 
15 min, the sheared and tagmented gDNA was washed at 
30°C for 15 min. Amplification of the tagmented gDNA was 
performed using a 5-cycle PCR programme wherein the 
index 1 (i7) and index 2 (i5) adapters were added for 
sequencing cluster formation. The PCR program was started 
with an incubation at 68°C for 3 min and a subsequent 
pre-denaturation at 98°C for 3 min. In the following step, 
5 cycles of denaturation at 98°C for 45 s, annealing at 62°C  
for 30 s and extension at 68°C for 2 min were first performed, 
followed by a final extension at 68°C for 1 min. In the final 
step of the library preparation, the amplified libraries were 
purified through a double-sided bead (Bead-linked 
transposome; Illumina) purification procedure. The quality 
and normality of the libraries were assessed with the Agilent 
Tapestation instrument using High Sensitivity D1000 screen 
tape. After normalization based on the minimum observed 
molarity, the barcoded samples were pooled before the 
sequencing run. The 75 bp paired-end sequencing was done 
on a NextSeq  500 sequencer (Illumina) at the sequencing 
platform of Nord University.

Bacterial 16S Sequences
Under sterile conditions, 16S rRNA gene libraries were 
constructed from DNA extracts using the specific bacterial 
primers 341F (5'CCTACGGGNGGCWGCAG 3') and 805R 
(5'GACTACNVGGGTWTCTAATCC 3'; Klindworth et al., 2013) 
flanked by overhang Illumina adapters targeting the hypervariable 
V3–V4 region (~460 bp). PCR reactions were performed for 
each sample in 25 μl, using Q5® High-Fidelity 2X Master Mix 
(New England Biolabs, Ipswich, Massachusetts, United  States) 
and 2.5 μl of DNA template (5 ng/μl). PCR conditions consisted 
of an initial denaturation step at 95°C for 10 min (1 cycle), 
30 cycles at 95°C for 30 s, 57°C for 30 s, 72°C for 1 min, and 
a final extension step at 72°C for 7 min (1 cycle).

An agarose gel (1.5%) was employed to check the amplified 
products. The PCR products were purified using the CleanNGS 
system (CleanNA, Waddinxveen, Netherlands) following the 
manufacturer’s instructions. The purified product was subjected 
to a second PCR (8 cycles, 16S Metagenomic Sequencing Library 
Preparation, Illumina); this step was done to add dual indices 
and Illumina sequencing adapters Nextera XT Index Primer 
(Illumina). CleanNGS (CleanNA) was used to purify the obtained 
amplicon libraries. The quality of the libraries was checked 
on a Tapestation 2200 platform (Agilent Technologies). Thereafter, 
the libraries were quantified using the Quant-IT PicoGreen 
dsDNA assay kit (ThermoFisher Scientific) by the Synergy2 
microplate reader (Biotek, Winooski, Vermont, United  States). 
Next, the pooled libraries were quantified using the KAPA 
Library quantification kit (Roche, Basel, Switzerland). The 
libraries were checked by realtime qPCR LightCycler 480 (Roche) 
and then sequenced on an Illumina® MiSeq (PE300) platform 
(MiSeq Control Software 2.5.0.5 and Real-Time Analysis software 
1.18.54.0).

Sequence Analysis
Whole-Genome Sequences
In order to perform demultiplexing and obtain the fastq files, 
the Illumina Experiment Manager v1.18.1 along with bcl2fastq 
v2.20.0.422 was used. Thereafter, dual adapter indexes and Ns 
from the 3' end of the raw reads were trimmed and the  
quality of the cleaned fastq files was assessed employing 
Trime_galore v0.4.4 (Babraham Bioinformatics; http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). The clean 
reads were then aligned to the reference genome O_niloticus_
UMD_NMBU, GCA_001858045.3 (Conte et  al., 2017) using 
Bowtie2 v0.12.8 with the --very-sensitive option (Langmead 
and Salzberg, 2012). The bcftools pipeline was applied for 
variant calling (Li, 2011), and the generated SAM files were 
converted to the binary format and sorted based on coordinates 
using samtools v1.9. Also, the samtools markedup command 
was used to mark duplicate reads. Then variants were called 
using bcftools mpileup command (bcftools 1.9) with the minimum 
base and mapping quality of 20 (−q 20 −Q 20). Using bcftools 
filter command accompanied by the options --SnpGap  5 -i 
‘MQ > 20 and QUAL>20 and DP > 100 and DP < 450 and 
TYPE = “snp,” only SNP variants were kept in the Variant Call 
Format (VCF). The missing genotypes were imputed using 
imp-states = 1,600 option in Beagle v5.0 (Browning and Browning, 
2016). Thereafter, using vcftools, the non-biallelic SNP variants 
were omitted so that the generated VCF file had only the 
biallelic SNPs (Danecek et  al., 2011). This VCF file was read 
by vcfR package (Knaus and Grünwald, 2017).

Bacterial 16S Amplicon Sequences
The generated reads were truncated at 270 bp using VSEARCH 
(Rognes et al., 2016), and then processed using MICCA pipeline 
(v1.7.2; Albanese et  al., 2015). Sequences with a minimum 
overlap length of 60 bp and a maximum mismatch of 20 bp 
were merged. Next, the forward and reverse primers were 
trimmed off the merged reads and reads which did not contain 
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the primers were discarded. Thereafter, the sequences with an 
expected error rate (Edgar and Flyvbjerg, 2015) >0.75 were 
filtered out and shorter than 400 bp sequences were discarded. 
Filtered reads were denoised using the “de novo unoise” method 
implemented in MICCA, which utilise UNOISE3 algorithm 
(Edgar, 2016). The denoising method generates amplicon sequence 
variants (ASVs) which is based on correcting sequencing errors 
and determining true biological sequences at single-nucleotide 
resolution. The taxonomic assignment of the representative 
bacterial ASVs was performed using RDP classifier. The sequences 
were aligned using the NAST (Desantis et  al., 2006) multiple 
sequence aligner, and a phylogenetic tree was prepared using 
the FastTree software available in the MICCA pipeline.

Statistical Analysis of Host Genetic Data
To quantify the genetic diversity of the inbred and outbred 
groups, we first determined the genetic diversity within members 
of the crossbred groups, and then the between groups genetic 
diversity. For this, we  quantified the level of heterozygosity, 
using the population package of the Stacks 2.3b. Next, to assess 
the level of genetic differentiation based on allele frequencies 
between different groups, the Fst index was calculated using 
the StAMPP package (Pembleton et  al., 2013). In order to 
quantify the genetic relationship between the inbred and outbred 
groups, Nei-based genetic distance between individuals was 
estimated using poppr (Kamvar et  al., 2015) and adegenet 
(Jombart, 2008) packages and visualized using pheatmap package 
(Kolde and Kolde, 2015). Then the genetic relationship between 
the crossbred groups was assessed by PCoA (employing the 
abovementioned Nei-based genetic distance), also using the 
ape package (Paradis and Schliep, 2019). PERMANOVA 
(Permutational Multivariate Analysis of Variance) was performed 
to decipher the significance of genetic differences between the 
inbred and outbred groups. To further analyze the population 
structure of the inbred and outbred groups, admixture analysis 
was performed in adegenet for values of ancestries (K) from 
1 to 10 with 10 repeats for each value of K, decided based 
on Bayesian Information Criteria. Four samples were removed 
due to the low quality of sequences.

Statistical Analysis of 16S Amplicon Data
Statistical analysis was conducted using R (version 3.6.3) software. 
The packages phyloseq (McMurdie and Holmes, 2013) and 
vegan (Oksanen et  al., 2013) were employed to analyse the 
data. All plots were made using ggplot2 package (Wickham, 2011).

To understand the differences between the proportions 
of different bacteria in the inbred and outbred groups, 
we  performed chi-square test and the associated post hoc 
analyses. A subset of the most dominant phyla was employed 
for this analysis. The similarities/differences in α-diversity 
were checked by Wilcoxon rank-sum test. Bacterial β-diversity 
was determined using unweighted and weighted UniFrac 
distances (Lozupone and Knight, 2005). Differences between 
the bacterial communities of the two groups were visualized 
by PCoA. After checking the dispersions within the data 
set of each group, statistically significant differences between 

the groups were assessed using PERMANOVA (Anderson, 
2001; with 9,999 permutations), implemented in adonis 
function of the vegan R-package (Oksanen et  al., 2013). 
DESeq2 (Love et  al., 2014) package was employed to detect 
the differentially abundant ASVs in the non-rarefied data 
(McMurdie and Holmes, 2014). The core microbiota was 
analysed using the packages microbiome and microbiome 
utilities; at a detection level of 0.2% and prevalence level 
of 90%. The differences in the core bacterial community 
in the two crossbred groups were analysed by performing 
PERMANOVA on weighted and unweighted UniFrac distances. 
The abundances in the different ASVs which made up the 
core microbiome were analyzed using Spearman test (Zar, 
2014) and correlation plot package (Wei and Simko, 2017).

RESULTS

Genetic Background-Associated Changes 
in the Microbiome of Nile Tilapia
A total of 11,578,530 SNPs were obtained after the initial SNP 
calling. Bcftools was employed to first calculate genotype 
likelihoods for each position and then filter out every position 
with actual sequence variant. Thus, 4,693,720 SNPs were filtered 
out and finally after biallelic filtration, 6,825,083 SNP variants 
with an average coverage of 1.74 per sample were used in the 
final VCF file.

The genetic diversity analysis based on nucleotide sequences 
revealed that the observed heterozygosity (Ho) values were 
slightly higher compared to the expected heterozygosity values 
(He; Table  1).

The fixation index (Fst) value within groups was 0.04 for 
both Inbred-S1 vs. Inbred-C6 and Outbred-S3 vs. Outbred-C9 
comparisons. On the other hand, the Fst values between crossbred 
groups were in the range 0.06–0.08 (Table  2).

The Nei-based genetic distances between the inbred and 
outbred groups were employed to generate a heatmap to 
understand their genetic relationships; differences between the 

TABLE 1 | Observed (Ho) and expected (He) heterozygosity of the crossbred 
female Nile tilapia.

Ho He

Outbred-S3 0.171 0.157
Inbred-S1 0.164 0.153
Inbred-C6 0.167 0.155
Outbred-C9 0.166 0.149

TABLE 2 | Genetic differentiation, based on Fst index, of the crossbred female 
Nile tilapia.

Outbred-S3 Inbred-S1 Inbred-C6 Outbred-C9

Outbred-S3 -
Inbred-S1 0.061 -
Inbred-C6 0.077 0.041 -
Outbred-C9 0.044 0.058 0.074 -
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groups are seen in Supplementary Figure  1. Principal 
Coordinates Analysis (PCoA) based on the Nei-based genetic 
distance indicated that the first two components captured 17.7 
and 7.8% of the variation in the data set (Figure  1A). 
Furthermore, a PERMANOVA test based on the same genetic 
distance showed that the inbred and outbred groups were 
significantly different (p = 0.001). The genetic sub-population 
clustering based on admixture analysis revealed that K = 2 was 
the optimal number to explain the genetic structure of the 
inbred and outbred groups (Supplementary Figure  2). The 
results also indicated that 4 inbred individuals are genetically 
similar to the outbred population.

To delineate the effect of genetic selection on gut microbiota 
composition, the inbred and outbred Nile tilapia were reared 
in a common garden and the environmental and nutritional 
factors that affect the microbiota were kept constant throughout 

the experimental period. The amplicon library of 16S rRNA 
gene, generated 12,034,190 high-quality reads with an average 
coverage of 54,016 reads per sample. Due to the variation in 
sample size, the reads were rarefied to 18,000 reads per sample 
(without replacement). Out of the 120 samples, six libraries 
with a number of reads below the cut off were discarded. 
After normalization we obtained 14,228 ASVs, distributed among 
30 phyla and 695 genera.

First, we  investigated the dominant communities in the two 
groups. In their order of dominance, the most dominant bacterial 
phyla in both the inbred and outbred fish groups were 
Proteobacteria, Fusobacteria, Firmicutes, Bacteroidetes, and 
Actinobacteria (Figure  1B). This order of dominance was 
reflected in the microbial composition at the genus level also. 
Most of the dominant genera in the two crossbred groups 
belonged to the phylum Proteobacteria (Acinetobacter, 

A

B C

FIGURE 1 | Genetic differentiation and microbiome in the inbred and outbred groups of Nile tilapia. (A) Principal coordinates analysis (PCoA) plot based on 
6,825,083 SNPs of the inbred and outbred groups. The ellipses were generated assuming that the data are from a multivariate normal distribution. (B) Phylum-
level relative abundance of the microbial composition in the inbred and outbred groups. (C) Relative abundance of top 12 genera in the inbred and outbred 
groups.
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Curvibacter, Enhydrobacter, Escherichia/Shigella, Plesiomonas, 
Pseudomonas, Psychrobacter, and Undibacterium). The most 
abundant genus was Cetobacterium which belongs to the phylum 
Fusobacteria (Figure  1C).

To understand the differences in proportions of the dominant 
communities in each study group, we  performed chi-square 
test. The analyses revealed that the abundances of the most 
dominant phyla in both the inbred and outbred groups were 
significantly different (Supplementary Table  1).

To characterize the microbial diversity within the samples, 
we  calculated three ecological indexes, namely the Chao1 
estimator of the number of species, which is a measure of 
richness, the Shannon diversity which measures the evenness 
of the microbial populations and the Simpson diversity, which 
measures the importance of dominant species (Marcon and 
Hérault, 2015; Hsieh et  al., 2016). Shannon diversity analysis 
showed that the microbial diversity in the mouth of the inbred 
group was lower compared to the outbred group (Figure  2, 
p = 0.01). The Simpson diversity analysis indicated that there 
were fewer dominant ASVs in the posterior intestine of the 
inbred group (Figure  3, p = 0.04). Although there were no 
significant differences in species richness of the communities 
associated with the two groups, in each body site 
(Supplementary Table 2), there was an increasing trend (p = 0.08; 
inbred higher richness) in the case of the anterior intestine 
(Figure  4). Furthermore, the diversity analysis of dominant 
bacteria (Simpson diversity) in the mouth and anterior intestine 
revealed a trend in differences (p = 0.08 and 0.06, respectively; 
Figures  2, 4).

Beta diversity analysis was performed to evaluate the overall 
dissimilarity between the two crossbred groups (Figure 5). The 
results of PERMANOVA on the unweighted UniFrac distances 
showed a significant difference between the bacterial composition 

in the posterior intestine of the inbred and outbred groups 
(p = 0.003). There was no significant difference between the 
communities in the mouth or the anterior intestine of the 
two groups (p = 0.082 and 0.311, respectively). In the mouth, 
there may exist a difference in composition between the two 
groups, based on the observed trend (Table  3).

Considering the weighted UniFrac distance, there was a 
significant difference in the community composition of the 
anterior intestine (p = 0.001). In addition, there was a significant 
difference in the community of posterior intestine (p = 0.003), 
but not in the case of mouth (p = 0.37; Table  3).

Differential Abundance of ASVs: Outbred 
Group vs. Inbred Group
The package DESeq2 was used to identify the ASVs with a 
significantly different abundance in the outbred group compared 
to the inbred group. In the mouth, the bacteria belonging to 
Actinobacteria, Armatimonadetes, Firmicutes, and Proteobacteria 
were differentially abundant. There were six genera that belonged 
to the phylum Proteobacteria. Bacteria belonging to two genera 
(Psychrobacter and Polaromonas) were 5-fold higher in the 
outbred group, while those of Pseudomonas and Acinetobacter 
were 20-fold higher in the same group. Furthermore, an ASV 
of the genus Limnohabitans was about 9-fold lower and 
Comamonas was 20-fold lower in the outbred group. 
Lachnospiracea_incertae_sedis were about 5-fold higher in the 
outbred group, whereas the genus Bacillus was 20-fold lower. 
These two genera belong to the phylum Firmicutes. Also, 
Armatimonadetes_gp5 was 20-fold lower in the outbred group 
(Supplementary Figure 3). In the anterior intestine, the majority 
of the ASVs that were differentially abundant in the outbred 
group had fold changes between −5 and − 15 

FIGURE 2 | Alpha diversity of the bacteria in the mouth of the inbred and outbred groups of Nile tilapia. Species richness of the groups is not significantly different. 
Shannon diversity is higher in the outbred group (p = 0.007, indicated with an asterisk). Simpson diversity indicated an increasing trend in the dominant ASVs of the 
outbred group (p = 0.08). The boxplots show minimum, lower quartile, median, upper quartile and maximum values.
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FIGURE 3 | Alpha diversity of the bacteria in the posterior intestine of the inbred and outbred groups of Nile tilapia. Simpson diversity analysis showed that the 
dominant ASVs are higher in the outbred groups (p = 0.04, indicated with an asterisk). The boxplots show minimum, lower quartile, median, upper quartile and 
maximum values.

FIGURE 4 | Alpha diversity of the bacteria in the anterior intestine of the inbred and outbred groups of Nile tilapia. There is an increasing trend in the species 
richness of the inbred group (p = 0.07). Simpson diversity shows an increasing trend in the dominant ASVs of the outbred group (p = 0.06). The boxplots show 
minimum, lower quartile, median, upper quartile and maximum values.
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(Supplementary Figures  4, 5) compared to the inbred group. 
However, the fold changes of the differentially abundant ASVs 
of Bacteroidetes, Fusobacteria, and Proteobacteria in the anterior 
intestine were between −5 and − 10 (Supplementary Figure  4 
shows selected differentially abundant ASVs; 
Supplementary Figure  5 shows all the differentially abundant 
ASVs). Similarly, in the posterior intestine, out of 31 ASVs 
that were differentially abundant, 30 ASVs had fold changes 
between −5 and − 28  in the outbred group, while only one 
ASV that belongs to Acinetobacter was 20-fold higher in the 

outbred group (Supplementary Figure  6). Moreover, ASVs of 
Pediococcus and Bifidobacterium which belong to Firmicutes 
and Actinobacteria, respectively, were lower (log fold change; 
−5 and − 8, respectively) in the posterior intestine of the outbred 
group (Supplementary Figure  6).

Core Microbiome and Variability in Taxa
In the mouth, 9 ASVs of the core microbiota belonged to the 
genera Staphylococcus, Curvibacter, Undibacterium, 
Escherichia/Shigella, Enhydrobacter, Propionibacterium, and 

FIGURE 5 | Principal coordinates analyses (PCoA) using unweighted and weighted UniFrac distance matrices of the bacteria in the different body sites of the 
inbred and outbred groups of Nile tilapia. The ellipses were generated assuming that the data are from a multivariate normal distribution.
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Cetobacterium. However, two bacteria were classified only up 
to the order level – Actinomycetales, Sphingobacteriales (Figure 6). 
Taking all the 9 ASVs together, we observed a significant difference 
in the core microbiome in the inbred and outbred groups; only 
for unweighted UniFrac distance (R2 = 0.073, p = 0.043; weighted 
UniFrac distance showed no significant difference; R2 = 0.024, 
p = 0.445; Table  4). In the anterior and posterior intestine, the 
core ASVs were Staphylococcus, Plesiomonas, Undibacterium, 
Enhydrobacter, Propionibacterium, and Cetobacterium 
(Figures  7A,B). One extra genus was a member of the core 
microbiota in the anterior intestine (Escherichia/Shigella). One 
ASV in the anterior and posterior intestine was not classified 
up to the genus level, but was annotated as Actinomycetales 
(Figures  7A,B). The core microbiota in the anterior intestine 
of the inbred group was different from that of the outbred 
group; the weighted UniFrac distances-based assessment indicated 
the significant difference (PERMANOVA test; R2 = 0.155, p = 0.001) 
between the two crossbred groups. As for the posterior intestine, 
we  cannot specify that there is a significant difference between 
the crossbred groups (Table  4). The inter-individual variation 
in the abundance of the core microbiota in the intestine samples 
of the inbred group was less pronounced compared to the 
outbred groups (Supplementary Figure  7). On the other hand, 
the inter-individual variation in the abundances was more 
pronounced in the mouth of the inbred compared to the outbred 
group (Supplementary Figure  8).

DISCUSSION

The genetic structure of wild/domestic/experimental animals 
can be  altered through breeding to retain desired phenotypic 
and genotypic traits across generations. It is known that selective 
breeding can preserve desired traits, which can affect the 
bacterial profile that is highly correlated to host health.

Gut microbiota in fish has been studied extensively in recent 
years considering mainly its importance in host health. In the 
present study, we used genetically distinct (based on SNP analysis) 
inbred and outbred Nile tilapia to investigate the impact of 
crossbreeding on the composition of the mouth and intestine bacteria.

Mouth and Intestine Bacterial Community 
Composition and Diversity in the Inbred 
and Outbred Groups
Although male Nile tilapia are widely farmed because of their 
higher growth rate, in the present study, we  analyzed the 

microbial community in females, which are mouthbrooders. 
Hence, we  believe that studying the microbial communities 
in its mouth will yield interesting results. In humans, microbiota 
is transferred from different body sites of mothers to infants 
(Ferretti et  al., 2018). Moreover, microbial symbionts from 
discus (Symphysodon aequifasciata, another fish of the family 
Cichlidae) parents are vertically transferred to fry through 
feeding of a cutaneous mucus secretion (Sylvain and Derome, 
2017). The most dominant phyla found in our samples were 
Proteobacteria, Fusobacteria, Firmicutes, Bacteroidetes, and 
Actinobacteria (Supplementary Figure  9). These are known 
to be  the most represented phyla in model fishes such as 
zebrafish and threespine stickleback (Legrand et  al., 2020). 
They are also dominant in farmed fishes like Nile tilapia even 
though many factors including diet (Ray et  al., 2017; Souza 
et al., 2020), rearing systems (Giatsis et  al., 2015; Yukgehnaish 
et  al., 2020), and salinity (Zhang et  al., 2016; Yukgehnaish 
et  al., 2020) affect the abundance of these phyla in the gut. 
However, the role of crossbreeding in shaping microbial 
communities has not yet been reported in fish although it is 
studied in mice (Pang et  al., 2012; Kreisinger et  al., 2014), 
mammals (Alessandri et  al., 2019), and plants 
(Wagner et  al., 2020).

The dominant phyla were the same in both the inbred and 
outbred groups of Nile tilapia. Proteobacteria are facultative 
anaerobes, and they are the most abundant bacterial phylum 
in fish gut (Egerton et  al., 2018). Furthermore, bacteria such 
as Escherichia and Enhydrobacter belonging to this phylum 
have the ability to make the gut environment conducive to 
strict anaerobes which colonize healthy gut (Shin et  al., 2015). 
Although the aforementioned genera were present in the mouth 
and intestine of both the outbred and inbred fish, their 
abundances in the two groups were different. In addition, the 
genus Curvibacter which was present in both groups is known 
to have a critical role in colonization in freshwater invertebrates 
(Wein et  al., 2018).

Alpha diversity analysis revealed that our crossbreeding 
strategy increased the microbial evenness in the mouth of the 
outbred group, in which we observed apparently higher species 
richness. The increasing trend in the dominant bacteria in the 
mouth and the anterior intestine of the outbred group along 
with the significant increase in the posterior intestine suggests 
that the dominant bacteria in the outbred groups are more 
diverse compared to the inbred group. On the other hand, 
the increasing trend in the species richness in the anterior 
intestine of the inbred group suggests that the bacterial 

TABLE 3 | Results of the analysis of homogeneity of group dispersions and PERMANOVA using distance (unweighted and weighted UniFrac) matrices.

Unweighted UniFrac distance Weighted UniFrac distance

Comparison Variable p-value 
dispersions

R2 p-value adonis p-value 
dispersions

R2 p-value adonis

Outbred vs. Inbred Mouth 0.86 0.08 0.08 0.62 0.029 0.37
Anterior intestine 0.20 0.03 0.31 0.27 0.14 0.001**

Posterior intestine 0.60 0.05 0.003** 0.05 0.10 0.003**

**Indicates p < 0.05.
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community is more diverse in this intestinal segment of the 
inbred group compared to the outbred group. The 
abovementioned findings are similar to the results of the PCoA 
analysis that used UniFrac distances. Microbial diversity is 
believed to have a positive correlation with host health (Deng 
et  al., 2019). However, Reese and Dunn (2018) have stated 
that “understanding diversity in host-associated microbial 
communities will not be as simple as ‘more diversity is better’.” 
Hence, it is not ideal to correlate host health with the diversity 
in the outbred group. Studies in Nile tilapia have not reported 
a significant difference in the diversity of gut microbiota as 
a pathogenic effect (Suphoronski et al., 2019; Silva et al., 2020). 
On the other hand, while diet was shown to increase the 
species richness of bacteria in the gut, another environmental 
factor, salinity, was found to decrease the richness of bacteria 
in Nile tilapia (Zhang et  al., 2016). The implication of the 
increasing trend in diversity in the anterior intestine of the 
inbred group should be  clarified by conducting studies on the 
bacteria in this segment and their effect on nutritional physiology 
(Hallali et  al., 2018). Thus, in addition to the aforementioned 
factors, we  suggest that crossbreeding is a determinant of both 
the mouth and intestine bacterial diversity in female Nile tilapia.

Significant Differences Between the ASV 
Abundance of the Inbred and Outbred 
Groups
Fish gut harbors complex and diverse microbial communities, 
and the site is a reservoir of many opportunistic pathogens 
belonging to the genera Acinetobacter, Aeromonas, Psychrobacter, 
Flavobacterium, Pseudomonas, and Pleisomonas. Many commensal 
bacteria including Cetobacterium, Methylobacterium, Sphingomonas, 
and Propionibacterium (Suphoronski et  al., 2019; Legrand et  al., 
2020; Silva et  al., 2020) that colonise the fish gut are essential 
for the production of vitamin B12 and antimicrobial metabolites 
(Suphoronski et al., 2019; Legrand et al., 2020), protection against 
pathogens such as Flavobacterium (Boutin et  al., 2014), and 
improving host health (Boutin et al., 2013). The differential ASV 
analysis revealed that the abundances of some of these opportunistic 
pathogens (Psychrobacter, Pseudomonas, and Acinetobacter) were 
more than 5-fold in the mouth of the outbred group compared 
to the inbred group. In the anterior and posterior intestine of 
the outbred group, although the opportunistic pathogens belonging 
to the genera Acinetobacter, Aeromonas, Pleisomonas, Psychrobacter, 
Pseudomonas, and Flavobacterium were differentially abundant, 

FIGURE 6 | Core microbiota in the mouth of the inbred and outbred groups of Nile tilapia. NAs: Not classified at the genus level, but at the order level, they are 
classified as Actinomycetales, Sphingobacteriales, in both groups.

TABLE 4 | Results of the analysis of homogeneity of group dispersions and PERMANOVA using distance (unweighted and weighted UniFrac) matrices of the core 
microbiota.

Unweighted UniFrac distance Weighted UniFrac distance

Comparision Variable p-value 
dispersions

R2 p-value adonis p-value 
dispersions

R2 p-value adonis

Outbred vs. Inbred Mouth 0.834 0.0734 0.043* 0.742 0.0241 0.445
Anterior intestine 0.08 0.0355 0.352 0.323 0.1553 0.0011**

Posterior intestine 0.208 0.0181 0.541 0.003** 0.1238 0.0025**

*Indicates p < 0.05 and **indicates p < 0.01.
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their fold changes were less than 5-fold. The bacterial community 
in the mouth is extensively exposed to the external environment, 
and we  found that the opportunistic pathogens in the mouth 
are more abundant in the outbred group. On the other hand, 
the abundance of potential pathogens was lower in the intestine 
of the inbred group. Pseudomonas sp. are opportunistic pathogens 
and they cause high mortality in farmed fishes (Oh et al., 2019). 
Moreover, bacteria belonging to Flavobacterium were reported 
to cause acute bacteremia primarily in small fishes or more 
chronic disease in larger fishes (Semple et  al., 2020). Although 
the outbred fish had a more diverse microbiome, they appear 
to harbor potential opportunistic bacteria also.

Interestingly, the abundance of potential beneficial bacteria 
(Cetobacterium, Methylobacterium, Sphingomonas, and 
Propionibacterium; Boutin et al., 2013, 2014; Suphoronski et al., 2019;  
Legrand et al., 2020) was higher in the inbred group. Many studies 
report that commensal microbiota in the gut plays an important 
role in regulating the growth of other microbes by competing 
for space and nutrition. The mouth of the inbred fish had 
higher abundance of Aeromonas sp. which was found to compete 

for nutrients and play a negative role during infection (Wiles 
et  al., 2016; Legrand et  al., 2020). On the other hand, the 
bacteria that had higher abundance in the posterior intestine 
of the inbred tilapia, namely Enhydrobacter sp., is a commensal 
microbe in rainbow trout (Oncorhynchus mykiss), which is 
known to produce entericidin, and this antitoxin peptide inhibits 
the growth of certain pathogens such as those belonging to 
Flavobacterium (Legrand et al., 2020). Furthermore, Pediococcus 
and Bifidobacterium which were found to be  more abundant 
in the anterior and posterior intestine of the inbred groups 
compared to the outbred group are known to outcompete 
some invasive pathogens, associated with tilapia intestinal mucosa 
(Ferguson et  al., 2010; Standen et  al., 2013) and promote fish 
growth (Ayyat et  al., 2014). Thus, the inbred group had a 
higher abundance of potential beneficial commensal bacteria.

Changes in Core Microbiome
The transient allochthonous microbiome of fish is associated 
with digesta and is usually expelled after some period as they 
are predominantly influenced by diet. On the other hand, the 

A

B

FIGURE 7 | Core microbiota in the anterior and posterior intestine of the inbred and outbred groups of Nile  tilapia. (A) anterior intestine and (B) posterior intestine.  
NA: at the order level is classified as Actinomycetales.
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resident microbes that belong to the autochthonous microbiome 
colonise the mucus surface in the gut and make up the core 
microbiome (Egerton et al., 2018). These microbial communities, 
which are known to be  vertically transmitted (Risely, 2020), 
associate with the host’s cells (Egerton et  al., 2018; Legrand 
et  al., 2020). In the present study, the core microbiome in 
each body site was determined based on the ASVs present in 
all samples in each group. However, the inter-individual variation 
in abundance that we  observed is similar to the learning from 
studies on zebrafish (Burns et  al., 2016) and mice (Pang et  al., 
2012). In mice, inbreeding was found to reduce the inter-
individual variation (Pang et  al., 2012). The inter-individual 
variation in the core microbiome in the intestine of the inbred 
group is much lesser compared to the outbred group. In contrast, 
such similarity was not observed in the mouth of the inbred 
fish; this was attributed to the effect of external environment 
in other studies (Lokesh and Kiron, 2016; Krotman et  al., 
2020). However, in the present study, environmental factors 
were kept constant throughout the study period. In humans, 
the initial oral colonizers from the vagina and mother’s milk 
and mouth can be  perturbed by environmental factors 
(Kilian, 2018).

The most dominant bacterial phylum in the two study groups 
was Proteobacteria. Nevertheless, Cetobacterium (phylum 
Fusobacteria) was found to be  dominant in the anterior and 
posterior intestine of the inbred group, while its proportion 
was reduced in the outbred group. Previous studies conducted 
on Nile tilapia showed that the composition of Cetobacterium 
spp., the most prevalent genera in tilapia gut, was not affected 
by diets (Ray et al., 2017) or presence of pathogens (Suphoronski 
et  al., 2019; Silva et  al., 2020). Other reports that studied the 
influence of factors including rearing environment (Giatsis 
et  al., 2015), and salinity (Zhang et  al., 2016) on the gut 
microbial composition substantiates our finding that 
Cetobacterium is a core member of the bacterial community. 
Based on the present study, it appears that the crossbreeding 
strategy does not impact the presence of this core member 
in the mouth and intestine of Nile tilapia.

Some of the commonly reported bacteria in the intestine 
of Nile tilapia (Staphylococcus, Cetobacterium, Plesiomonas, 
Enhydrobacter, Undibacterium, and Propionibacterium) were 
present in both groups. However, some core microbiome 
members such as Pseudomonas and Curvibacter were present 
only in the mouth of both groups. A study employing turbot 
(Scophthalmus maximus) showed that a similar microbiome 
community was present in the intestine of different breeds 
fed with different diets and reared in different water environments. 
In addition, it was reported that core microbiome could colonize 
fish gut for a long term and it could have a vital physiological 
significance to the host (Zhang et  al., 2020). This suggests 
that fishes preserve their core microbiome community despite 
differences in environmental factors.

Host Genetics and Intestine Microbiome
Growing evidence shows that host genetics plays a key role 
in shaping the gut microbiome of mammals (Hufeldt et  al., 
2010; Miller et  al., 2018; Alessandri et  al., 2019), but not to 

the same degree as that of environmental factors (Davenport, 
2016). While there are many reports on diet-based microbiota 
differences in fish, evidences of fish genetics-associated microbiota 
are sparse (Li et  al., 2014; Kokou et  al., 2018).

Our genetic diversity analysis indicated a small but significant 
difference between the inbred and outbred fish. Unexpectedly, 
the observed heterozygosity was slightly higher than the expected 
heterozygosity, probably arising from the low genetic diversity 
values in both the inbred and outbred groups. The Ho, He, 
and Fst results that we obtained are likely due to small number 
of founders with a similar genetic background since the F0 
generation of the fish were caught from the same area. The 
F0 itself may have lost considerable genetic diversity, as noted 
for birds; a small number of founders in a population increased 
the probability of inbreeding and associated gene diversity loss 
(Jamieson, 2011).

Wild Nile tilapia populations in West Africa are reported 
to have low diversity, especially, the species within a particular 
region; for example in Gambia River and the far western region 
of the Niger River (Lind et  al., 2019). Nile tilapia is seen as 
a range-limited species in these areas, and founder effect was 
reported to be  the reason for their genetic diversity reduction 
(Lind et  al., 2019). In addition, Fst results also indicated the 
low genetic differentiation within the inbred groups as well 
as the outbred groups.

Anthropogenic needs not only alter species behavior, feeding 
habits, rearing environment, and traits within the host genotype 
but also reshape the gut microbiota of domesticated/captivated 
animals (Li et  al., 2014; Alessandri et  al., 2019). A study on 
blue tilapia, which was selectively bred to retain a host genotype, 
has reported that gut microbiome was linked to host genotype 
as well as specific bacteria such as Cetobacterium somerae 
(Kokou et  al., 2018). This bacterium is a cobalamin producer 
(Tsuchiya et  al., 2008; Degnan et  al., 2014) and fishes with 
high abundance of C. somerae do not require dietary vitamin 
B12 (Sugita et  al., 1991; Tsuchiya et  al., 2008).

In order to analyse the genetic effect (by controlling the 
mating strategy) on the mouth and gut microbiota, the fish 
were kept in the same environmental conditions and fed the 
same diet, since both these factors are determinants of host 
microbial communities. Thus, crossing strategy influenced the 
microbial alpha diversity and composition in Nile tilapia. A 
similar effect on the midgut microbiota composition was observed 
in selectively bred trout (Brown et  al., 2019). In addition, a 
study conducted on mice suggested that the alpha diversity of 
the gastrointestinal tract microbiota is slightly decreased in the 
inbred individuals (Kreisinger et  al., 2014). Thus, the differences 
in the diversities of the microbial communities of the two groups 
could be  attributed to crossbreeding strategy.

The differences in abundance of the microbial composition of 
the core microbiome in the individual samples from the mouth 
of the inbred fish were more pronounced compared to the outbred 
groups. In the mouth, influence of an external environmental 
factor (water) appears to surpass that of the host genetics. On 
the other hand, there was more similarity in the abundance of 
the bacterial communities in the individual intestine samples of 
the inbred group compared to the outbred group of Nile tilapia. 
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Host genetics is known to have a long-lasting effect on the gut 
microbial communities and this is due to maternal transfer during 
early development (Kreisinger et  al., 2014). A core microbiota is 
heritable in several species (Hauffe and Barelli, 2019), including 
cichlids (Baldo et  al., 2017). The similarities in the abundances 
of the taxa in the inbred group of Nile tilapia, which is also a 
cichlid fish, suggest that the microbial composition in the gut is 
more established without being affected by the external environment. 
A study conducted in mice showed that the inter-individual 
variation in the gut microbiome of the inbred group is lower 
compared to the outbred animals (Hufeldt et al., 2010). Furthermore, 
in humans the similarity of the gut microbiome is higher among 
closer relatives in families (Zoetendal et  al., 2001). Therefore, this 
finding suggests that the genetic factor is more prominent in the 
intestine of the inbred groups and the effect is likely the inheritance 
of the microbial profile to the offspring of the fish, especially 
the core microbiome.

We report for the first time the effect of inbreeding and 
outbreeding on the mouth and intestine microbiome in Nile 
tilapia. The genetic relationship and structure analysis indicated 
the genetic differentiation between the inbred and outbred 
groups. Differential ASV analysis revealed the abundance of 
the potential opportunistic pathogens such as Flavobacterium 
in the outbred group and beneficial bacteria like Bifidobacterium 
and Pediococcus in the inbred group. We  also found that 
Cetobacterium is the core member in both groups, but its 
abundance was higher in the intestine of the inbred group. 
The inbred fish which has less inter-individual microbiome 
variability, could be  a better choice for controlled studies that 
examine the maternal transfer of intestine microbiome to 
offspring. We  highlight that crossbreeding can influence Nile 
tilapia bacterial communities.
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Metagenomics Reveals That Proper
Placement After Long-Distance
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Calf Nasopharyngeal Microbiota and
Is Critical for the Prevention of
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Yaocheng Cui1†, Jiancheng Qi1†, Dongjie Cai1, Jing Fang1, Yue Xie1, Hongrui Guo1,
Shiyi Chen2, Xiaoping Ma1, Liping Gou1, Hengmin Cui1, Yi Geng1, Gang Ye1,
Zhijun Zhong1, Zhihua Ren1, Yanchun Hu1, Ya Wang1, Junliang Deng1, Shuming Yu1,
Suizhong Cao1, Huawei Zou3, Zhisheng Wang3* and Zhicai Zuo1*
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Agricultural University, Chengdu, China, 2 College of Animal Science and Technology, Sichuan Agricultural University,
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Transportation is an inevitable phase for the cattle industry, and its effect on the
respiratory system of transported cattle remains controversial. To reveal cattle’s
nasopharyngeal microbiota dynamics, we tracked a batch of beef calves purchased
from an auction market, transported to a farm by vehicle within 3 days, and adaptively
fed for 7 days. Before and after the transport and after the placement, a total of 18
nasopharyngeal mucosal samples were collected, and microbial profiles were obtained
using a metagenomic shotgun sequencing approach. The diversity, composition,
structure, and function of the microbiota were collected at each time point, and
their difference was analyzed. The results showed that, before the transportation,
there were a great abundance of potential bovine respiratory disease (BRD)-related
pathogens, and the transportation did not significantly change their abundance. After
the transportation, 7 days of placement significantly decreased the risk of BRD by
decreasing the abundance of potential BRD-related pathogens even if the diversity
was decreased. We also discussed the controversial results of transportation’s effect in
previous works and the decrease in diversity induced by placement. Our work provided
more accurate information about the effect of transportation and the followed placement
on the calf nasopharyngeal microbial community, indicated the importance of adaptive
placement after long-distance transport, and is helpful to prevent BRD induced by
transportation stress.

Keywords: beef calf, transportation, nasopharyngeal microbial community, metagenomic shot-gun sequencing,
adaptive placement, microbiota
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INTRODUCTION

The homeostasis of microflora colonized in the respiratory
tract plays a vital role in maintaining airway health
(Man et al., 2017). Emerging evidence indicated that, in
cattle, the lung microbial community was more familiar with
those in the nasopharynx than other upper respiratory niches
(Mcmullen et al., 2020). Losing the balance of beef cattle’s
nasopharyngeal microorganisms contributes to the morbidity
and mortality associated with bovine respiratory diseases
(BRDs) (Holman et al., 2015; Zeineldin et al., 2017). Hence, the
nasopharynx microbial community is regarded as the respiratory
health situation indicator, especially BRD (Qi et al., 2021;
Zeineldin et al., 2020).

The composition and diversity of cattle’s nasopharynx
microbial community are affected by many factors, including
diet (Qi et al., 2021), vaccination and environment (Mcmullen
et al., 2018), and transport (Pratelli et al., 2021). In China
and North America, long-distance transport was an inevitable
phase for the cattle industry (Cirone et al., 2019). Besides
affecting the nervous, endocrine, immune, and energy supply
systems (Van Engen and Coetzee, 2018), the latest research found
that transportation also affected cattle’s blood transcriptome,
indicating that transport affected B cells’ activity (Zhao
et al., 2021). It is not surprising that transport was widely
considered an intense BRD trigger (Earley et al., 2017; Zeineldin
et al., 2019). Hence, exploring the effect of transport on the
cattle’s nasopharynx microbial community is of great value
in cattle farming.

To date, there is limited research regarding the cattle’s
nasopharynx microbial community during transportation.
Utilizing 16S rRNA sequencing technology, Holman et al. (2017)
found that 2 days of transportation significantly decreased
the diversity and richness of cattle’s nasopharynx microbial
community, and the decrease of diversity and richness recovered
after a few days of adaptive feeding. Their team also implied
a connection between the diversity of transported cattle’s
nasopharynx microbial community, especially lactic acid-
producing bacteria and BRD (Amat et al., 2019). It is accepted
that the susceptibility of BRD significantly increased in the first
week after transport (Holman et al., 2017; Zeineldin et al., 2017),
and selenium-biofortified alfalfa hay treatment in this period
was found to benefit the recovery of microbial diversity and to
help prevent BRD (Hall et al., 2017). However, these limited
references are not enough to draw a convincing conclusion.

Besides the lack of references, technologies such as traditional
bacterial culture technology and 16S rRNA sequencing also
weaken the drawn conclusion. Although they are widely used to
study respiratory tract microflora, they have their disadvantages.
For example, many important bacteria are uncultivable, and
the depth of 16S rRNA sequencing is not enough to identify
microorganisms at the species level. In the past years, with
the progress in the next-generation sequencing technologies,
metagenomics-based studies are being widely applied to
determine the composition of various microbiomes and analyze
their functions at the DNA and RNA levels (Wang et al., 2015;
Gilbert et al., 2016; Qi et al., 2021).

Therefore, to access the longitudinal dynamics of the
transported beef calf nasopharynx microbial community before
and after long-distance transport and the following adaptive
placement, we collected the nasopharynx swab samples of 18
healthy beef calf before and after 3 days of transportation and
1 week after transportation. The nasopharyngeal microbiome
profiles were obtained by the Whole Genome Shotgun (WGS)
sequencing approach, and the dynamics in composition,
diversity, structure, and function of these nasopharynx microbial
communities were analyzed. As far as we know, this is the
first time that a metagenomic shotgun sequencing approach is
used in studying the dynamics of the nasopharynx microbial
community during long-distance transportation. Our study will
help understand the effect of transport and the followed adaptive
placement on calf respiratory tract microflora and provide
a reference for preventing respiratory system diseases related
to transportation.

MATERIALS AND METHODS

All protocols used in the study referred to the Guidelines for
the Care and Use of Laboratory Animals (National Institutes
of Health, Bethesda, MD, United States) and were approved
by the Ethics Committee of Sichuan Agricultural University
(Chengdu, China). All methods were carried out following
relevant guidelines and regulations.

Animals
In the auction market of Qiqihaer, 112 clinical healthy male
Simmental calves (0.5 years old and 206 ± 9 kg) were purchased
and then transported to a farm in Guangan for fattening by
vehicles through the expressway. The criteria of clinical healthy
are based on previous studies (Mcguirk and Peek, 2014), and the
specific criteria are as follows: the mental outlook and appetite
for food and water must be good; the shape of feces and the color
of urine must be normal; and the secretion of eyes, mouth, and
nose must be normal. The distance was approximately 3,000 km,
and the transportation took three consecutive days, and all the
calves were restricted from eating and drinking. As soon as the
vehicles arrived at the farm, the calves were unloaded and then
housed in a single pen for adaptive feeding for 1 week. All the
calves were supplied with 3 L of drinking water, which contained
brown sugar (0.5 kg/10 L) and ginger (0.3 kg/10 L) for the first
three consecutive days and with regular drinking water for the
other 4 days. The fodders were free to access in all 7 days. All
these adaptive placement measures are conducted according to
the farm management manual.

Sample Collection, DNA Extraction,
Sequencing, and Quality Control
Eighteen calves were randomly selected and marked for
sampling. Nasopharynx swabs of each selected calf were
collected at three respective points: 6 h before loading, named
group A, unloading, named group B, and the last day of
the adaptive feeding, named group C. The nasopharyngeal
swabs samples were collected using a 20-cm DNA-free sterile
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swab (Meiruikelin Technology, China) from the nasopharynx
mucosa and immediately stored in a dry icebox. Swab samples
were kept in a dry ice box and were sent to Chengdu
Beisibaier Biotechnology Co., Ltd. (Chengdu, China) for
subsequent progress. Every three swab samples were combined
into one sample to eliminate the difference induced by
individual sampling and reduce sequencing cost by cutting
down samples size.

According to Earth Microbiome Project standard protocols
(Marotz et al., 2017), DNA was extracted using the MO
BIO PowerSoilTM DNA Isolation Kit (MO BIO Laboratories,
United States). DNA concentration of all samples was detected
by NanoDrop (Thermo Scientific, United States), and the results
ranged from 15.2 to 75.4 ng/µl. The qualities of extracted
DNA samples were estimated on agarose gel electrophoresis,
and only samples that meet the following criteria were used for
library construction: (1) DNA concentration was > 15 ng/µl;
(2) the total weight of DNA was > 6 µg; and (3) the DNA
band that was visualized on agarose gel electrophoresis must be
clear and of good quality. Finally, 1 µg DNA of each qualified
DNA sample was pooled to an equimolar concentration to
construct the DNA libraries (DNA was sheared to 350 bp)
using the Illumina DNA Sample Preparation Kit according
to the manufacturer’s instructions. Eighteen libraries were
constructed, and the amplified libraries were then sequenced on
Illumina HiSeq 2500 platform (2 bp × 250 bp). The adaptor
contamination was removed using Cutadapt 1.3 (Martin, 2011)
with parameters “-o 4 -e 0.1.” Quality control was performed
using a sliding window (5 bp bases) in Trimmomatic (Bolger
et al., 2014) with the following criteria: (1) cutting once the
average quality within the window falls below Q 20; (2) clean
reads do not contain any N-bases; (3) trimming is applied to
the 3′ end of reads, dropping those reads that were below
50 bp length; (4) only paired-end reads were retained for
subsequent analyses. The obtained paired-end clean reads of
each sample were performed by de novo assembly using Megahit
(Li et al., 2010) with the parameter “K-mer ∼ [27, 127]” to
contig and scaffold.

Species and Function Annotation and
Analyzation
The species and function annotation procedures were the same
as we described in our previous work (Qi et al., 2021). Briefly,
the scaffolds/scaftigs sequence of each sample was subjected to
BLASTN against bacterial, archaeal, fungal, and viral sequences
in the NCBI-NT database (Nucleotide Collection, 1, v2016-6-
19, E value was set to < 0.00001). The “Lowest Common
Ancestor” algorithm (Huson et al., 2018) in the MEGAN (MEta
Genome Analyzer) software (Huson et al., 2011) was used
to distinguish the reference sequence as the last level of a
different species before branching and as classification annotation
information of the target sequence species. Principal Component
Analysis (PCA, Euclidean Distance) (Ramette, 2007) was used
to determine whether there was a significant difference between
the composition of samples from the same experimental group.

1ftp://ftp.ncbi.bih.gov/blast/db/

A two-tailed t-test against the average relative abundance was
performed using the SciPy database (Virtanen et al., 2020)
in Python software, and the false discovery rate (FDR) was
controlled using the Benjamini–Hochberg method (Benjamini
and Hochberg, 1995). Only those functional groups with both
|Log2 (fold change value)| > 1 and p < 0.05 were considered
having a significant difference. The species with the significant
difference among groups and the top 50 most abundant species
were clustered and analyzed using R software. We visualized each
sample’s composition structure at each classification level and
their relative abundance in heat maps using R software. The linear
discriminant analysis (LDA) effect size (LEfSe) (Segata et al.,
2011) analysis was performed by submitting the composition
spectrum data at the species level to Galaxy online analysis
platform2. Mothur (Schloss et al., 2009) software was used
to calculate Spearman’s grade correlation coefficients (Faust
and Raes, 2012) among the 50 most abundant species. The
related dominant species with | rho > 0.8| and p < 0.01 were
used to construct the association network, and the networks
were visualized by Cytoscape software (Shannon et al., 2003).
The proteins predicted by the MetaGeneMark database (Zhu
et al., 2010) were annotated and classified by comparing the
protein sequence sets with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Database (Kanehisa et al.,
2004). The non-redundant protein sequence set was uploaded
to the KEGG Automatic Annotation Server for functional
annotation (parameters: “GENES data set” partially selected
“for prokaryotes”; the rest of the parameters were default).
The returned annotation results were summarized so that each
level’s annotation results and the corresponding abundance
information were obtained. Detailed information about the
analysis methods we used could be found in our previous paper
(Qi et al., 2021).

Statistical Analysis
The Non-eukaryotic KEGG Orthology (KO) gene’s relative
abundances were calculated by normalizing all the KOs of each
sample to sum to 1. Observation matrix tables that contain
relative abundance information of KOs were used to calculate
the Euclidean Distance (Ramette, 2007) based on the UPGMA
algorithm (Hua et al., 2017), and the Principal Coordinate
Analysis (PCoA) plot was built using the R data analysis package.
All figures were drawn by R software and modification by Adobe
Illustrator cc (United States). The p-value was calculated based
on ANOVA and was used to determine whether there was a
significant difference in the gene’s abundance between different
groups using R software packages and GraphPad Prism 8.0
(United States).

RESULTS

Quality Analysis of Sequencing Data
Eighteen libraries were conducted, and a total of 1.23 × 1011

bases and 819,054,624 reads were generated. The average base

2huttenhower.sph.harvard.edu/galaxy/
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number and reads were 6,825,455,200 and 45,503,035. The
average proportion of fuzzy bases (N %) was 0.00423%, and
the average percentage of bases with 99.9% accuracy (Q30)
was 92.02%. After quality control, 121.38 Mb of high-quality
sequencing data were generated for all samples, with averages of
6.21, 7.11, and 6.9 Mb for group A, B, and C samples, respectively.
The detailed statistical table of sequencing data is shown in
Supplementary Table 1.

To estimate whether our sample size was big enough to reflect
the difference in microbial communities’ composition between
samples and estimate microbial communities’ richness, we draw
a Specaccum species accumulation curve (Bevilacqua et al., 2018)
according to the total number of taxa of each sample at the species
level. The curve was flattened when the sample size was 18, which
indicated that our sample size was big enough. The curve also
implied that the upper limit of the sample species number was
approximately 1,300 (Figure 1A). Besides, to determine whether
the sequencing depth was deep enough to identify all species, all
samples’ rarefaction curves at the species level were drawn. When
the sequencing depth reached 20,000 sequences per sample, all
the curves trended to flat, which indicated that the sequencing
depth was deep enough (Figure 1B).

Species Composition Analysis
In all 18 samples, a total of 1,301 species from 39 phyla
were identified. In group A, the most dominant phylum
was Proteobacteria (45.5%), followed by Firmicutes (13.1%),
Tenericutes (2.1%), Actinobacteria (1.3%), and Deinococcus-
Thermus (1.26%). In group B, the top five phyla were,
respectively, Proteobacteria (47.5%), followed by Firmicutes
(12.2%), Tenericutes (3.04%), Actinobacteria (0.92%), and
Bacteroidetes (0.61%). In group C, they were, respectively,
Firmicutes (17.6%), Proteobacteria (10.7%), Tenericutes (9.76%),
Actinobacteria (4.18%), and Bacteroidetes (0.52%) (Figure 1C
and Supplementary Table 2). In group A, the top five genera
were Moraxella (17.6%), Clostridium (11.8%), Mannheimia
(9.86%), Acinetobacter (4.41%), and Psychrobacter (2.95%). In
group B, they were, respectively, Moraxella (19.3%), Clostridium
(11.1%), Mannheimia (10.6%), Acinetobacter (3.92%), and
Mycoplasma (3.01%). In group C, they were, respectively,
Clostridium (15.3%), Mycoplasma (9.73%), Acinetobacter
(3.92%), Corynebacterium (3.39%), and Moraxella (1.61%)
(Figure 1D and Supplementary Table 2). The top 30 species with
the highest average abundance of each group are, respectively,
visualized in Figure 1E. As shown, 1,301 taxa were identified
at the species level. In group A, the top five species were,
respectively, Clostridium botulinum (11.8%), Moraxella bovoculi
(5.13%), Moraxella catarrhalis (3.60%), Moraxella osloensis
(3.41%), and M. haemolytica (2.81%). In group B, they were,
respectively, C. botulinum (11.1%), M. bovoculi (5.68%),
M. catarrhalis (3.71%), M. osloensis (3.56%), and M. haemolytica
(3.15%). In group C, they were, respectively, C. botulinum
(15.3%), Mycoplasma bovoculi (9.32%), Acinetobacter pittii
(3.51%), Corynebacterium maris (1.40%), and Psychrobacter sp.
PRwf-1 (0.586%) (Supplementary Table 2). The detailed
species annotation data for each sample are shown in
Supplementary Figure 1 and Supplementary Table 3.

Function Composition Analysis
To analyze the function composition of each sample and
each group, the predicted non-redundant protein sets were
compared with the KEGG protein database, and a total of 17,120
KEGG orthologs (KOs) and their abundance were identified
(Supplementary Table 4). Then, the enrichment analysis of these
KOs was performed at the third, second, and first levels among
the groups (Supplementary Table 5). Figure 1F visualized
the enrichment analysis at the first level for each group. As
shown, in group A, the relative abundances of six first-level
pathways were, respectively, 57.86% for Metabolism, 12.79%
for Genetic Information Processing, 8.07% for Environmental
Information Processing, 5.95% for Human Diseases, 4.80% for
Cellular Processes, and 3.53% for Organismal Systems. In group
B, the relative abundances were 53.9% for Metabolism, 12.9%
for Genetic Information Processing, 8.93% for Environmental
Information Processing, 7.44% for Human Diseases, 5.38%
for Cellular Processes, and 4.17% for Organismal Systems. In
group C, they were 63.7% for Metabolism, 14.3% for Genetic
Information Processing, 5.28% for Environmental Information
Processing, 5.18% for Human Diseases, 3.57% for Cellular
Processes, and 3.26% for Organismal Systems.

Analysis of Interconnection Network of
Dominant Species
To investigate the interconnection of the dominant species in
each group, we calculated the correlation coefficient of Spearman
grade of the top 50 species in each group based on the
species abundance composition and visualized the conducted co-
correlation networks using Cytoscape. In group A, a network
containing 25 kinds of species was obtained. In this network,
22 of them had positive interconnection with each other, except
A. pittii, C. botulinum, and Eimeria necatrix, which had negative
interconnections with other (Figure 2A). In group B, a smaller
network containing 14 kinds of species and three micro-networks
were obtained. C. botulinum and A. pittii also had negative
interconnections with others (Figure 2B). In group C, two
dominant networks and a micro-network were obtained, which
contained less Moraxella or Acinetobacter (Figure 2C).

Difference Analysis in Species
Composition
To compare the differences in species composition among
groups, firstly, we compared the abundance differences of each
taxon among the three groups, and the statistical test was used
to evaluate whether the differences were significant. The statistics
data of abundance difference results are shown in Table 1. The
detailed statistics data are shown in Supplementary Table 6.
Then, using the R script, we conducted a cluster analysis on
the top 50 taxa with significant differences among groups at
the species level, and the results were shown in heat map form
(Figures 3A–C). As shown, there were dominant populations for
both groups A and B, but the relative abundance of populations
in group C was almost significantly lower than that in group A
or B, which indicated that the richness of the microflora of group
C was lower than groups A and B. The cluster analysis results at
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FIGURE 1 | (A) The Specaccum species accumulation curve at the species level. The horizontal axis represents the sequencing sample size; the longitudinal axis
represents the detected species number at the species level; the blue shadow reflects the curve’s confidence interval; the slope of the curve represents the rate of
newly discovered species with expanding samples size. (B) Rarefaction curves at the species level of all samples. The horizontal axis represents the number of
randomly selected sequences; the longitudinal axis represents the number of detected species in a sequencing depth; the length of the curves represents
sequencing depth. If the curve is longer, the sequencing is more deep, and the possibility of detecting new species is higher; the slope of the curve represents the
strength of the effect of sample size on the sequencing result, and if the curve is gentler, the sequencing result is more credible for reflecting the composition of the
sample. (C–E) The top 20 taxon composition with the highest relative abundance of each group at the phylum, genus, and species level, respectively. (F) The relative
abundances of the first KEGG pathways for each group.

the genus level are shown in Supplementary Figure 2, showing a
similar phenotype. Considering that most of these significantly
changed species had an extremely low relative abundance, we
counted the significance of differences in those species and genus,

which possessed the top 10 relative abundance between groups.
At the species level, the differences in the relative abundance of
the top 10 species were all non-significant between groups A and
B, but between groups B and C and between groups A and C,
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FIGURE 2 | (A–C) The interconnection networks of the top 50 species in groups A, B, and C, respectively. Red lines mean positive correlations, green lines mean
negative correlations, and the size of circles represents the relative abundance of the corresponding species.
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TABLE 1 | Statistical table of abundance difference analysis.

Group Phylum Genus Species

A vs. B 5 31 48

B vs. C 13 190 378

A vs. C 11 166 330

A vs. B denotes that the comparison was performed in groups A and B; the number
means the size of phylum/genus/species with a significant difference.

the differences were almost all significant (Figure 3D). At the
genus level, except Aspergillus, the relative abundances of all other
nine genera had non-significant changes between groups A and B.
However, between groups B and C and between groups A and C,
the relative abundances of Moraxella, Clostridium, Mannheimia,
and Mycoplasma were significantly changed (Figure 3E).

Difference Analysis in Function
Composition
To compare the differences in function composition among
groups, we compared the abundance differences of each
functional taxon among the three groups. The p-value and FDR
were used to evaluate whether the differences were significant,
and it was found that 64, 905, and 1,008 KOs were significantly
changed between groups A and B, B and C, and A and C,
respectively. The detailed data are shown in Supplementary
Table 7. We also conducted a cluster analysis on the top 50 taxa
with significant differences in KOs among groups, and the results
are shown in Supplementary Figures 2D–F. Then, we performed
a KEGG pathway enrichment analysis for the significantly
changed KOs among groups, and the results are shown in Table 2.
The KOs related to the Immune system, Immune diseases, and
Infectious diseases were significantly enriched (p < 0.05) in group
A against group B. The KOs related to Lipid metabolism and
Carbohydrate metabolism were significantly enriched in group
B against group C (p < 0.05). The KOs related to the Amino
acid metabolism and Glycan biosynthesis and metabolism were
significantly enriched in group C against group B (p < 0.05).
The KOs related to Ribosome and Starch and sucrose metabolism
were significantly enriched in group C against group A (p < 0.05).

Diversity Analysis
To compare the α diversity of each group, using QIIME software,
we calculated the diversity indexes of Chao l, ACE, Simpson, and
Shannon based on the abundance spectrum of bottom functional
groups and species groups. All these four indexes of group C were
significantly lower (p < 0.05) than groups A and B (Figure 4A).
The detailed statistical data of α diversity indexes are shown in
Supplementary Table 8. The unsupervised β diversity analysis
was also performed. PCA of species and KOs were performed,
and the results are shown in Figures 4B,C, respectively. Both
species and KO PCA results showed no significant difference
between groups A and B (p > 0.05) and that the differences
between groups B and C or between groups A and C were highly
significant (p < 0.01). To further evaluate whether the patterns of
differences in the functional and species levels among groups are
correlated, we also performed a Pearson correlation analysis to

the Shannon indexes of species and function (Figure 4D). The
results showed that the function difference among groups was
highly correlated with the species difference (R = 0.96, p < 0.01).

DISCUSSION

In the present study, the dynamics of nasopharyngeal microflora
of 3 days of transportation and 7 days of adaptive feeding was
studied by a metagenomic shotgun sequencing approach. We
analyzed the composition of a taxon at the species and genus
level, the composition of function at different KO levels, and the
α diversities for both samples and groups. Then, to investigate
whether the influence of transportation and adaptive feeding
on the nasopharynx microflora was significant, we calculated
the difference based on the species and functional composition
using multiple statistical methods. The structure of beef cattle’s
nasopharyngeal microflora has been clarified in previous work
(Zeineldin et al., 2017; Amat et al., 2019; Mcmullen et al.,
2020). Here, we focused on the dynamic variation induced by
transportation or placement.

Tracking Sampling Without Interference
and Metagenomic Shotgun Sequencing
Allow Us to Analyze the Dynamics More
Precisely
In the experiment, we never take part in the transportation
or placement, and the farmer determined all the processes
as he usually did. This study’s transportation and placement
procedures might represent a widely used process in Southwest
China, including choosing the auction market and calves, the
uninterrupted vehicle transportation, and the brown sugar and
ginger in the water during the placement. Holman et al.
(2017) performed a very similar experiment in which they
specified the source of cattle and excluded cattle with specific
pathogens, which might affect its results. Hence, the dynamics
we observed could be more similar to the actual situation.
Besides, the sequencing approach we used was a recently
developed next-generation sequencing approach with higher
accuracy than 16S rRNA sequencing technology. For example,
Timsit and colleagues observed 963 taxa in the nasopharynx
sample (Mcmullen et al., 2018) while identifying 1,301 species.
For now, metagenomic shotgun sequencing has been widely used
to explore the respiratory system (Qi et al., 2021) or the digestive
system microorganism communities (Wang et al., 2015). In our
study, the taxonomic level we identified even reached subspecies,
which allowed us to analyze the composition and dynamics
of the microorganism community more precisely. With these
advantages, our results could be a more valuable reference.

Three Days of Transportation From an
Auction Market to a Feedlot Did Not
Significantly Change the Calves’
Nasopharyngeal Microflora Community
In species PCA and KOs PCA (Figures 4B,C), there was
no significant difference observed between groups A and B,
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FIGURE 3 | (A–C) The results of cluster analysis on the top 50 taxa with significant differences between groups A and B, between groups B and C, and between
groups A and C, respectively, at the species level. The red box denotes that the relative abundance was higher, and the green box indicates that the relative
abundance was lower. (D,E) The relative abundance of these top 10 species and genus, respectively, in all groups. ns: non-significant; ∗0.01 < p < 0.05; ∗∗p < 0.01.

and the α diversity of groups A and B had no significant
difference either (Figure 4A). Besides, there were no significant
differences in the relative abundances of the top 10 species

or genus between groups A and B (Figures 3D,E). Therefore,
our results generally showed that 3 days of transportation
had no significant effect on the structure or function of the
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TABLE 2 | Results of KEGG enrichment analysis on significantly changed KOs among groups.

Group Pathway Pathway name KO level 2

A vs. B ko04650 Natural killer cell-mediated cytotoxicity Immune system

ko04144 Endocytosis Transport and catabolism

ko05170 Human immunodeficiency virus 1 infection Infectious diseases: Viral

ko04970 Salivary secretion Digestive system

ko04664 Fc epsilon RI signaling pathway Immune system

ko04662 B cell receptor signaling pathway Immune system

ko04666 Fc gamma R-mediated phagocytosis Immune system

ko05322 Systemic lupus erythematosus Immune diseases

ko05320 Autoimmune thyroid disease Immune diseases

ko00627 Aminobenzoate degradation Xenobiotics biodegradation and metabolism

ko04672 Intestinal immune network for IgA production Immune system

ko05330 Allograft rejection Immune diseases

ko04145 Phagosome Transport and catabolism

ko05146 Amoebiasis Infectious diseases: Parasitic

ko04612 Antigen processing and presentation Immune system

ko05150 Staphylococcus aureus infection Infectious diseases: Bacterial

ko05414 Dilated cardiomyopathy (DCM) Cardiovascular diseases

ko05416 Viral myocarditis Cardiovascular diseases

ko05166 Human T-cell leukemia virus 1 infection Infectious diseases: Viral

ko05163 Human cytomegalovirus infection Infectious diseases: Viral

ko05162 Measles Infectious diseases: Viral

ko05169 Epstein–Barr virus infection Infectious diseases: Viral

B vs. C ko00760 Nicotinate and nicotinamide metabolism Metabolism of cofactors and vitamins

ko00750 Vitamin B6 metabolism Metabolism of cofactors and vitamins

ko00500 Starch and sucrose metabolism Carbohydrate metabolism

ko00071 Fatty acid degradation Lipid metabolism

ko02010 ABC transporters Membrane transport

ko00400 Phenylalanine, tyrosine and tryptophan biosynthesis Amino acid metabolism

ko00350 Tyrosine metabolism Amino acid metabolism

ko00340 Histidine metabolism Amino acid metabolism

ko00540 Lipopolysaccharide biosynthesis Glycan biosynthesis and metabolism

ko00770 Pantothenate and CoA biosynthesis Metabolism of cofactors and vitamins

A vs. C ko00300 Lysine biosynthesis Amino acid metabolism

ko00750 Vitamin B6 metabolism Metabolism of cofactors and vitamins

ko00500 Starch and sucrose metabolism Carbohydrate metabolism

ko00364 Fluorobenzoate degradation Xenobiotics biodegradation and metabolism

ko02010 ABC transporters Membrane transport

ko03013 RNA transport Translation

ko04626 Plant–pathogen interaction Environmental adaptation

ko01502 Vancomycin resistance Drug resistance: Antimicrobial

ko00400 Phenylalanine, tyrosine, and tryptophan biosynthesis Amino acid metabolism

ko00480 Glutathione metabolism Metabolism of other amino acids

ko00340 Histidine metabolism Amino acid metabolism

ko00785 Lipoic acid metabolism Metabolism of cofactors and vitamins

ko00550 Peptidoglycan biosynthesis Glycan biosynthesis and metabolism

ko00540 Lipopolysaccharide biosynthesis Glycan biosynthesis and metabolism

ko03010 Ribosome Translation

Red pathways mean that the pathway was enriched in the front group; green pathways mean that the pathway was enriched in the back group.

nasopharyngeal microorganism community of beef calves. The
same conclusion was also shared by some previous works. For
example, Ribble et al. (1995) found that the transport distance
did not affect the risk of developing fatal fibrinous pneumonia
by observing the pathological features of 45,243 spring-born
steer calves purchased from auction markets. Timsit’s team
also found that the transportation from a feedlot to another
feedlot directly or 24 h of co-mingling at an auction market
did not significantly change cattle’s nasopharyngeal microbial
community (Stroebel et al., 2018). However, it cannot be ignored

that we did not know how long these calves had been in
this market, which means that we did not have the baseline
information of the nasopharyngeal microbial community. It is
unclear whether long-term exposure in the auction market has
a significant effect on the microbial community, because the
structure and diversity could have already been significantly
affected before transportation, which weakened the influence
of transportation and resulted in the non-significance. The
difference of baseline might explain why some other works
found that transportation significantly altered the composition
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FIGURE 4 | (A) α diversity indexes of each group. ns, non-significant; ∗0.01 < p < 0.05; ∗∗p < 0.01. (B,C) The species PCA and KOs PCA, respectively, of each
sample. (D) The Pearson correlation analysis of the Shannon diversity indexes of KOs and species. The abscissa represents the Shannon diversity index
corresponding to the KO abundance spectrum of each sample, and the ordinate represents the Shannon index corresponding to the composition spectrum of each
sample at the species level. The straight line represents the fitting results by Pearson correlation analysis.

and structure of the microbial community (Holman et al., 2017;
Pratelli et al., 2021). The baseline they used was in the sourced
feedlot, and the calves were healthy, while the baseline we used
(group A) was in the market, and the calves were probably
not as healthy as they were, and the nasopharynx microbiota
might have been significantly altered already. However, this
hypothesis needs to be verified. In groups A and B, we noticed
a high abundance of Moraxella, Mannheimia, and Acinetobacter,
which were considered potential pathogenic bacteria of BRD
(Holman et al., 2015; Zeineldin et al., 2017) (Figures 3D,E),
forming an interconnection network (Figures 2A,B), and this
microbial community structure was similar to those cattle with
BRD (Holman et al., 2015; Zeineldin et al., 2017). This structure
might be a certification that the microbial community of these
calves were already affected before transportation. In short,
based on our results, 3 days of transportation from an auction

market to a feedlot did not significantly change the calves’
nasopharyngeal microflora community, probably because these
calves’ nasopharynx microbiota was already significantly altered
in the auction market.

Transportation Affected the Interaction
Between the Nasopharyngeal Microbial
Community and the Host
Though our results showed that transportation had no significant
effect on microbial community, some of these changes in species
and KOs might provide us detailed information during the
transport. Firstly, we noticed that the relative abundance
of M. haemolytica, Pasteurella multocida, Haemophilus
somni, M. bovoculi, etc., which are widely considered BRD
pathogens (Holman et al., 2015; Amat et al., 2019), increased
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after transportation (Figure 3D), though the increase was
non-significant. Besides, the relative abundance of C. botulinum
decreased, though the decrease was non-significant either
(Figure 3D). C. botulinum is the most dominant species in
cattle’s nasopharynx (Mcmullen et al., 2020; Qi et al., 2021), which
negatively correlated with most of the other dominant species
in the network consisting of many BRD pathogens (Figure 2A).
Furthermore, the interconnection among the top 50 species is
more tight in group A than in group B (Figures 2A,B). Hence,
from the perspective of species, the decrease of C. botulinum
and the increase of BRD pathogens implied that if the exposure
in the market altered the baseline, the transportation probably
increased the risk of BRD. From the perspective of KOs, in
the KEGG enrichment analysis, we noticed that many KOs
that associated with the Immune system, Immune diseases,
and Infectious diseases were enriched in group A compared
with group B (Table 2), which implied that the microbial
community after transportation had less connection with the
host’s immune system. The balance between the microflora
and host was broken up by the 3 days of transportation, which
also means the higher risk of BRD (Zeineldin et al., 2019).
Considering these results, though the 3 days of transportation
did not significantly change the composition or structure of
the microbial community, it affected the interaction between
the nasopharyngeal microbial community and the host and
increased the risk of BRD.

Proper Adaptive Placement Is Necessary
for the Health of Transported Calf
In the present study, the adaptive feeding with brown sugar
and ginger after transportation significantly altered the diversity,
structure, and composition of the transported calf ’s nasopharynx
microbial community. In the PCA, the species and KOs of
group C were both significantly (p < 0.05) different from
groups A and B (Figures 4B,C). The α diversity indexes of
group C were extremely different (p < 0.01) from groups A
and B (Figure 4A). The relative abundances of the top 10
species and genus in group C were almost all significantly
different (p < 0.05) from groups A and B (Figures 3D,E).
The size of significantly changed species/genus/phylum between
groups A and C or between groups B and C was much bigger
than between groups A and B (Table 1). All these results
indicated that an adaptive placement significantly affected the
microbial community, supported by previous works (Hall et al.,
2017; Schuetze et al., 2017; Amat et al., 2019). However, the
consequence of this alteration seemed to be incomprehensible.
Normally, the α diversity is positively related to the health of
the cattle’s respiratory system (Man et al., 2017; Zeineldin et al.,
2019), but our results showed that the α diversity was extremely
(p < 0.01) decreased after 7 days of placement (Figure 4A), which
was contrary to previous work (Hall et al., 2017; Pratelli et al.,
2021) and seemed to be harmful to the transported calves. We
concluded the following reasons for the significant decrease in
α diversity. Firstly, ginger was found to possess antimicrobial
activity (Noori et al., 2018; Beristain-Bauza et al., 2019), so 3 days
of ginger supply might inhibit the growth of some high abundant

microorganisms, most of which were potential BRD-related
pathogens. We noticed that the significantly decreased species
(M. bovoculi, M. catarrhalis, M. osloensis, M. haemolytica,
P. multocida, etc.) and genus (Moraxella, Mannheimia, and
Pasteurella) were widely accepted to be related to the progress of
BRD (Holman et al., 2015; Cirone et al., 2019; Mcmullen et al.,
2019). Secondly, the recovered immune function inhibited the
growth of pathogens. During the placement, calves were released
from transport stress and were free to drink and eat, which
supplied the deficiency in energy and enhanced the immune
function (Earley et al., 2017; Qi et al., 2021). Besides, the relative
abundance of Peptidoglycan biosynthesis (Bouhss et al., 2008)
and Lipopolysaccharide biosynthesis (Heinrichs et al., 1998) in
group A was enriched, implying that the synthesis level of the
cell wall in group C was lower than that in group A and that
the renewal of bacteria was inhibited. Furthermore, brown sugar
is widely used in Chinese livestock’s breeding industry, such as
chicken and calf, which is thought to quickly replenish energy
and contribute to the recovery of calf immune function (State
Pharmacopoeia Commission of the PRC, 2005). However, there
are few studies regarding the beneficial influence of brown sugar
on the calf and these default roles of brown sugar are not
confirmed and need to be investigated. Thirdly, as discussed in
previous work (Qi et al., 2021), because of the supply of fodder,
the absolute abundance of oral bacteria significantly increased,
and they would compete for living resources (ecological locus,
energy, etc.) with pathogens in the nasopharynx, which resulted
in the decrease of pathogens. Moreover, the interconnection
among group C was tighter and diversified. Hence, although the
α diversity of the microbial community was decreased, the risk
of BRD was also decreased. We speculated that the development
of symbiotic bacteria needs to remove the existing pathogens,
and 7 days of placement of brown sugar and ginger supply
were not long enough to reestablish the balance between host
and microbiota. This hypothesis explained why the α diversity
of our microbial community decreased while it was increased
in previous work (Hall et al., 2017; Pratelli et al., 2021) and
enlightened us that this placement might not be appropriate.
Nevertheless, further evidence is still needed.

CONCLUSION

In summary, after long-distance transportation, in the
nasopharynx, the most abundant phylum was Proteobacteria
(45.5%), followed by Firmicutes (13.1%), and the most dominant
genus was Moraxella (17.6%), followed by Clostridium
(11.8%) and Mannheimia (9.86%). Like previous works, the
nasopharyngeal microbial community of transported calves was
of a great abundance of potential BRD-related pathogens, which
was closed to the cattle diagnosed with BRD. Probably because
of the difference in baseline, our results showed that 3 days of
transportation had no significant effect on the nasopharyngeal
microbial community, which some other researchers also
observed. The placement of brown sugar and ginger significantly
decreased the relative abundance of those potential BRD-related
pathogens and altered the functional composition of
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the microbial community, which confirmed that the adaptive
placement had a stronger influence on the calf nasopharynx
microbiome than transportation itself and indicated that the
risk of BRD was decreased and that proper adaptive placement
was critical for the transported calf respiratory system’s health.
Interestingly, the α diversity of the microbial community was
significantly decreased after the placement, which is contrary to
previous work. The reason for this phenotype was hypothesized,
but it needs to be further verified. Because of the lack of
physiological data, sample size limitation, and the lack of baseline
information, further experiments are still needed.
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Laying and reproductive performance, egg quality, and disease resistance of hens
decrease during the late laying period. Exogenous enzymes promote nutrient digestibility
and utilization and improve the intestinal environment. However, the specific regulation
of the gut microbiome and metabolome by exogenous enzymes remains unelucidated.
This study was conducted to evaluate effects of dietary multi-enzyme supplementation
on egg and reproductive performance, egg quality, ileum microbiome, and metabolome
of breeders. Here, 224 Hy-Line Brown breeding hens (55 weeks old) were randomly
allocated to two groups: dietary controls fed basal diet (DC), and test hens fed 0.2 g/kg
corn enzyme diet (CE). Serum levels of total protein, globulin, immunoglobulin Y, and
antibodies against the Newcastle disease virus and avian influenza H9 strain were
significantly increased (p < 0.05). Egg albumen height, Haugh unit, and fertilization
and hatching rates were also significantly increased (p < 0.05) in the CE-fed group.
16S rRNA sequence analysis showed that CE strongly affected both α- and β-diversity
of the ileal microbiota. LEfSe analysis revealed that the potentially beneficial genera
Lactobacillus, Enterococcus, Faecalicoccus, and Streptococcus were enriched as
biomarkers in the CE-fed group. Microbial functional analysis revealed that the functional
genes associated with harmful-substance biodegradation was significantly increased in
the CE-fed group. Additionally, Spearman correlation analysis indicated that changes
in microbial genera were correlated with differential metabolites. In summary, dietary
multi-enzyme addition can improve egg quality, humoral immunity, and reproductive
performance and regulate the intestinal microbiome and metabolome in breeders.
Therefore, multi-enzymes could be used as feed additive to extend breeder service life.

Keywords: multi-enzyme, aged layers, immunity, reproduction performance, microbiome, metabolome

INTRODUCTION

With increasing age, physiological function and digestive enzyme activity decrease and are always
accompanied by gut microbiota disorder after the peak laying period in breeding hens, causing
significant economic loss (Liu et al., 2013; Jing et al., 2014; Gu et al., 2021). Exogenous addition
of enzymes was considered to improve the degradation of harmful macromolecules and activity of
endogenous enzymes to assist in the degradation of starch and protein (Gu et al., 2021).

Starch is a complex polysaccharide composed of amylose and amylopectin (AP). AP accounts
for 70–80% of most starch sources and requires pullulanase for hydrolysis (Scott et al., 2013;
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Yin et al., 2018). Pullulanase is an important debranching
enzyme that originates from bacteria, plants, and less commonly,
fungi. Specifically, it could often attack α-1,6 linkages, thereby
efficiently converting branched polysaccharides into small
molecular sugars (Hii et al., 2012; Tomasik and Horton,
2012). In contrast to pullulanase, α-amylases split the α-1,4
glycosidic linkages in amylose to yield maltose and glucose
(Sarian et al., 2017). Studies have demonstrated that the addition
of α-amylase to a corn-soybean diet can release more feed
energy and significantly improve apparent nutrient digestibility,
digestive enzyme activity, and production performance of
poultry (Aderibigbe et al., 2020). Glucoamylase (also known as
amyloglucosidase or AMG) is an important digestive enzyme
that mainly saccharifies partially processed starch/dextrin to
glucose, which helps poultry absorb nutrients (da Costa Luchiari
et al., 2021). Previous research indicated that supplementation
with glucoamylase or protease combined with amylase could
improve starch digestibility and gut microbiota diversity and
promote the growth of broilers (Yin et al., 2018). Proteases can
enhance protein and amino acid digestibility and reduce the
adverse effects of heat-stabilized trypsin inhibitors or lectins, thus
improving forage quality (Cowieson et al., 2017; Walk et al.,
2018). A significant increase in the ileal digestibility of protein
and amino acids occurs with proteases in poultry diets (Romero
et al., 2014). Overall, exogenous enzymes can communicate
with the host by utilizing indigestible dietary components
and providing nutrients to regulate digestive, immune, and
antioxidant functions to facilitate production performance and
benefit the host (Pan and Yu, 2014; Cowieson and Kluenter, 2019;
Monier, 2020; Giacobbo et al., 2021).

The use of enzymes in poultry feed is not uncommon.
However, the role of enzymes in feed digestibility, productivity,
and health of chickens is influenced by several factors, including
the source, type, characteristics, dosage, and composition of
complex enzymes as well as the diet structure, composition, and
physiological status of chickens. In this study, we first evaluated
the effects of new multi-enzymes (proteases, pullulanase,
α-amylase, and glucoamylases) on laying performance, egg
quality, reproductive performance, and immunity of older
breeding hens and investigated the underlying mechanism
through in-depth microbiome and metabolome analyses. Our
objective was to develop a new nutritional strategy to improve
health and extend the service life of breeding hens in their
later laying stage.

MATERIALS AND METHODS

Birds, Diets, and Management
The Animal Welfare Policy has approved the bird management
and handling procedures. All animal procedures were performed
according to the principles of the Animal Care and Use
Committee of the China Agricultural University. A total of
224 Hy-Line Brown breeding hens (55-week-old) with similar
production performances and weights were randomly divided
into two treatment groups with seven replicates of 16 hens each
(4 hens per cage, 40 cm wide, 62 cm long, and 45 cm high). One

is the dietary control fed with basal diet (DC), and the other
with 0.2 g/kg corn enzyme diet (CE). The CE diet contained
11,000 u/g proteases, 20 u/g pullulanase, 1,000 u/g α-amylase,
and 1,000 u/g glucoamylases, and was provided by the Wuhan
SunHY Biological Co., Ltd. All hens were handled following the
Hy-Line Brown Laying Hens Management Guide, and the hens
were housed at the HuaYu Poultry Breeding Co., Ltd. (Handan,
Hebei). All experimental hens were vaccinated with inactivated
Newcastle virus (NDV) plus avian influenza virus (H9 subtype)
strain vaccine by intermuscular injection at 55 weeks of age. The
essential diet is shown in Table 1 and meets the Chinese standards
of agricultural trade standardization (NY/T33-2004).

Laying Performance Parameters
Eggs were collected daily during the experiment. The number
of eggs laid, abnormal eggs, broken eggs, and egg weights were
recorded on a replicate basis. The feed intake for each repetition
was counted every 2 weeks. The average egg production rate,
average egg weight, broken egg rate, abnormal egg rate, and feed
egg ratio were calculated for 1–4, 5–8, and 1–8 weeks. Mortality
was recorded daily as it appeared.

Egg Quality Parameters
Ten eggs were randomly collected from each replicate (70
eggs/group) for internal and external quality analyses during
the last 2 days of the experiment. An egg-shaped index tester
was used to measure the egg length and shortest diameter. An
eggshell color tester was used to measure the eggshell color
value (Konicaminolta CM-2600d). A quasi-static compression
device (Robotmation, Japan) was used to measure the eggshell
breaking strength. After removing the inner shell membrane,

TABLE 1 | Ingredients and nutrient composition of basal diet.

Ingredients Percent Nutrient levelc Percent

Corn (CP 8.3%) 64.00 ME (MJ/Kg) 16.01

Soybean meal (CP 44.0%) 20.93 CP (%) 16.04

Soybean oil 0.70 CF (%) 3.24

Wheat bran 3.00 Methionine (%) 0.24

Limestone 9.50 Lysine (%) 0.70

Calcium hydrogen phosphate 1.00 Calcium (%) 3.49

Sodium chloride 0.30 Total P (%) 0.32

DL-Methionine (98%) 0.10

L-Lysine HCL (78%) 0.07

Vitamin premixa 0.03

Mineral premixb 0.20

Choline chloride (50%) 0.15

Phytase 0.02

Total 100.00

aSupplied per kilogram of complete diet: vitamin A, 13,500 IU; vitamin D3, 4,500
IU; vitamin E, 75 IU; vitamin K3, 3.6 mg; vitamin B1, 3.0 mg; vitamin B2, 9.24 mg;
vitamin B6, 6.0 mg; nicotinic acid, 66 mg; pantothenic acid, 16.8 mg; biotin,
0.54 mg; folic acid, 2.10 mg; vitamin B12, 0.03 mg; vitamin C, 135 mg; choline,
675 mg; ethoxyquinoline, 15 mg.
bMineral premix provided per kilogram of complete diet: iron, 80 mg; copper,
10 mg; manganese, 100 mg; zinc, 100 mg; iodine, 0.35 mg; selenium, 0.30 mg.
cCP and CF were measured values, and the other nutrients were calculated values.
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the eggshell thickness was measured using a micrometer screw
gauge at three different locations (lower, middle, and upper
ends). Egg weight, albumen height, Haugh units, and yolk color
were measured using an automatic egg quality analysis device
(EMT-5200, Japan).

Blood Biochemical Parameters
Blood samples were collected for analyzing blood biochemistry
and detecting serum antibody titers for 1 day before the end
of the experiment. After fasting for 8 h, one hen per replicate
was randomly selected (a total of 7 hens/group), and whole
blood was collected from the wing vein using sterile blood
collection tubes. The blood was centrifuged at 3,000 rpm for
10 min. The serum was extracted into a sterile 2 mL centrifuge
tube and stored at −20◦C until detection. Serum was used
to detect aspartate aminotransferase (AST), total protein (TP),
albumin (ALB), globulin (GLB), albumin/globulin, high-density
lipoprotein cholesterol (HDL-C), immunoglobulin Y (IgY), and
total antioxidant capacity (T-AOC). All indexes were tested
using kits purchased from the Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). Other serum samples were used to
detect antibody titers of NDV and avian influenza H9 strains by
hemagglutination and hemagglutination inhibition assays. The
virus, antigen, and positive control sera were purchased from
Qingdao Yebio Biological Engineering Co., Ltd.

Reproductive Performance
All hens were inseminated on days 49 and 50 for 2 consecutive
days of the formal phase. The semen was mixed and came from
the same 12 cocks to ensure consistent semen quality. Eggs
were collected on the 53rd–54th days. The total number of eggs
produced and eligible hatching eggs were recorded and placed
into pre-fumigated incubators. On the 18th day of incubation,
the number of fertilized eggs was recorded by candling, and the
eggs of identical replicates were placed in one string bag. On the
21st day of incubation, the number of newborn chicks in each
replicate was recorded. Lastly, the rates of fertilized eggs and
hatch of fertile (HoF) were calculated.

Gut Microbiota Sequencing
One hen per replicate was randomly selected (a total of 6
hens/group, one sample less than the number of replicates
was due to unqualified DNA amplification), and euthanasia
was performed using carbon dioxide on the last day of this
trial (56 days). The ileum contents from each bird were
collected and immediately frozen in liquid nitrogen until DNA
extraction. Microbial genomic DNA extraction was conducted
according to the manufacturer’s instructions using the QIAamp
96 Powerfecal Qiacube HT Kit (5) (CatNo. 51531). DNA
purity and concentration were detected using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States) and agarose gel electrophoresis. The purified DNA
targeted the V3–V4 region of the 16S rDNA gene according
to PCR bar-coded primers (343F: 5′-TACGGRAGGCAGCAG-
3′ and 798R: 5′-AGGGTATCTAATCCT-3′). PCR was conducted
using the KAPA HiFi Hot Start Ready Mix (KAPA Biosystems,
Wilmington, MA, United States). Both reverse primers included

a barcode and an Illumina sequencing adapter. The PCR
products were visualized using 1% agarose gel electrophoresis,
purified, and quantified using Agencourt AMPure XP beads
(Beckman Coulter Co., United States) and Qubit dsDNA HS
assay kit (Thermo Fisher Scientific), respectively. Sequencing was
performed using an Illumina MiSeq platform with two paired-
end read cycles of 300 bases each (Illumina Inc., San Diego, CA;
OE Biotech Company, Shanghai, China).

Bioinformatic Analysis of the Microbiome
Microbiota data were subjected to bioinformatics analysis
using QIIME software (version 1.8.0) (Caporaso et al., 2010).
Data quality filtering, ambiguous bases, low-quality sequence
removal, paired-end read assembly, and detachment of chimeric
sequences were conducted using QIIME (Caporaso et al., 2010),
Trimmomatic (Bolger et al., 2014), FLASH (Reyon et al., 2012),
and UCHIME algorithms (Edgar et al., 2011), respectively. Reads
with a similarity threshold of ≥ 97% were assigned to the same
operational taxonomic unit (OTU) using the Vsearch pipeline
(Rognes et al., 2016). Taxonomy was assigned to the OTUs using
the SILVA database (v.123) with the RDP classifier at a 70%
confidence threshold (Quast et al., 2012). Alpha diversity (Chao1,
Observed, Shannon, Simpson’s diversity) and beta diversity
(principal coordinate analysis; PCoA) were calculated using
QIIME 1.8 scripts.

Linear discriminant analysis (LDA) effect size (LEfSe) (Segata
et al., 2011)1 was used to identify representative species. LDA was
performed from the phylum to genus level, and LDA scores≥ 4.0
and p-values < 0.05 were considered signature taxa and selected
for plotting and further analysis. The predicted metagenomic
functional content was determined using PICRUSt2 software
by combining 16s rRNA data against the Greengenes database
and the normalized data were analyzed to predict metagenomes
using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Orthology database.3 Pairwise statistical comparative analysis
(Welch’s t-test, storey FDR correction) of microbial function
was performed using STAMP (V2.1.3) (Parks et al., 2014). The
microbial co-occurrence network analysis was performed using
the CCLasso, sparCC, and NAMAP with Spearman correlation
inference algorithm to elucidate gut microbiota interactions by
MetagenoNets with default parameters (Nagpal et al., 2020). Only
significant correlations (p < 0.05) based on the bootstrapping of
100 iterations were plotted.

Untargeted Metabolomics by Liquid
Chromatography-Mass Spectrometry
The ileal chyme (30 mg) was precisely weighed and transferred
to 1.5 mL microcentrifuge tubes (Eppendorf), to which two
3 mm stainless steel beads were added. Then, 20 µL of
L-2-chlorophenylalanine (0.3 mg/mL) and 17:0 Lyso PC (1-
heptadecanoyl-sn-glycero-3-phosphocholine, 0.01 mg/mL) were
used as the internal standard. Both were configured with
methanol. An internal standard mixed with 400 µL of methanol

1http://huttenhower.sph.harvard.edu/galaxy/
2http://picrust.github.io/picrust/
3https://www.genome.jp/kegg/ko.html
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aqueous solution (CH3OH: H2O, V: V = 4:1) was added
to each sample and pre-cooled at −20◦C for 2 min. The
sample was then ground in a fully automatic sample fast
grinding machine (60 Hz, 2 min; Shanghai Jingxin Industrial
Development Co., Ltd., Shanghai, China) and placed in an
ultrasonic bath with ice water for 10 min. The sample was placed
in a −20◦C refrigerator for 20 min before centrifugation at
13,000 rpm at 4◦C for 10 min. The supernatant was removed
with a syringe and filtered by passing through a 0.22 µm-
membrane filter to an LC-MS vial and stored at −80◦C for
subsequent analysis by LC-MS. Water, acetonitrile, formic acid,
and methanol were purchased from CNW Technologies GmbH
(Düsseldorf, Germany). L-2-chlorophenylalanine was purchased
from Shanghai Hengchuang Bio-Technology Co., Ltd. (Shanghai,
China). LysoPC17:0 was purchased from Avanti (Avanti Polar
Lipids Inc., United States). All solvents and chemicals were of
analytical or high-performance LC grade.

Metabolomics analysis was conducted using the Dionex
U3000 UHPLC system (Waltham, MA, United States) coupled
to a high-resolution QE plus mass spectrometer (Thermo Fisher
Scientific) to analyze the metabolic profiles of the positive
and negative ion modes. The LC system was fitted with an
ACQUITY UPLC BEH C18 (100 × 2.1 mm, 1.7 µm) and a
binary gradient elution system consisting of A) water (containing
0.1% formic acid) and B) acetonitrile (containing 0.1% formic
acid) by the following separation gradient: 0 min 5% B, 1 min
5% B, 11 min 100% B, 13 min 100% B, 13.1 min 5% B, and
15 min 5% B. The column temperature was 50◦C, and the
flow rate was 0.35 mL/min. The injection volume was 5 µL,
and the samples were randomized to avoid systematic errors.
The mass spectrometer conditions and parameters were as
follows: spray voltage, 3,800 V in positive mode, and 3,000 V
in negative mode; capillary temperature, 320◦C; aux gas heater
temperature, 350◦C; sheath gas flow rate, 35 arbitrary units;
Aux gas flow rate, 8 arbitrary units; mass range: 70–1,000
m/z; full ms resolution, 70,000; MS/MS resolution, 17,500;
and NCE, 20 and 40.

LC-MS raw data were collected by UNIFI (version 1.8.1)
and then processed using Progenesis QI (version 2.3) with the
following threshold parameters: precursor tolerance of 5 ppm,
product tolerance of 10 ppm, and production threshold of
5%. Metabolites were identified by retention time, exact mass,
and tandem MS data against the Human Metabolome Project,4

Lipidmaps (v2.3)5 and METLIN6 databases. All metabolites with
a percentage of missing values>50% and quality scores<30 were
discarded by qualitative screening.

Metabolome Bioinformatics Analysis
Metabolome data were subjected to bioinformatics analysis using
the SIMCA software (version 14.0, Umetrics, Umeå, Sweden).
Principal component analysis (PCA) and orthogonal partial least
squares discriminant analysis (OPLS-DA) models and plots were
constructed using SIMCA. Volcano plots were plotted using the

4https://hmdb.ca/
5http://www.lipidmaps.org
6http://metlin.scripps.edu

R package ggplot2. The differential metabolites were converted
from names to KEGG compound IDs using MetaboAnalyst
software (version 5.0),7 CTS (Wohlgemuth et al., 2010), and
MBRole software (version 2.0).8 These IDs were used as input
files for metabolite set enrichment analysis using MetaboAnalyst
5.0 software [annotations: KEGG pathway; Organism: Homo
sapiens (human)] and MBRole 2.0 software [annotations:
KEGG pathway; Organism: Gallus gallus (chicken)]. We also
applied the pathway topology analysis [annotations: KEGG
pathway; Organism: G. gallus (chicken)] to verify our findings
using MetaboAnalyst with the default setting. Considering the
relative lack of lipid information in the KEGG database, the
differential metabolites that were annotated in the LipidMaps
database were enriched by LIPEA9 [annotations: KEGG pathway;
Organism: G. gallus (chicken)]. Spearman’s correlation between
the differential microbial biomarkers and metabolites and the
three identified metabolites and six microbial biomarkers were
analyzed using R software. Only correlation coefficients with an
absolute value of | r| > 0.6 (Adj P-value < 0.05) were considered
a significant relationship. Network visualizations were performed
using Gephi software (version 0.9.2, The Gephi Consortium,
Paris, France) (Dalcin and Jackson, 2018).

Statistical Analysis
All graphs and data calculations were generated using R software
(version 4.0.2), Prism8 (GraphPad, United States) software, and
SPSS 24.0 (SPSS Inc., Chicago, IL, United States) software.
Measurement data are expressed as the mean and standard
error. A normal distribution and homogeneity of variance
were performed. Comparisons between the two groups were
performed using Student’s t-test when it conformed to normal
distribution and homogeneity of variance; otherwise, the non-
parametric Wilcoxon rank-sum test was performed. P < 0.05
were considered as significant and 0.05 < p < 0.1 was
considered a trend.

RESULTS

Production Performance and Egg Quality
The laying performance of breeding hens fed the CE diet is
presented in Table 2. Egg production, egg weight ratio, damaged
egg ratio, abnormal egg ratio, FCR, mortality, and feed intake
were not affected by CE administration at 55–59, 59–63, and
55–63 weeks (p > 0.05). The egg quality results are presented
in Table 3. CE administration significantly increased the egg
albumen height and Haugh unit (p < 0.05) but weakened the
yolk color (p < 0.05) compared with those in the DC-fed
group at week 63.

Blood Biochemical Parameters
Serum biochemical and antibody levels are physiological indices
commonly used to evaluate animal health and immunity.

7https://www.metaboanalyst.ca/
8http://csbg.cnb.csic.es/mbrole2/
9https://lipea.biotec.tu-dresden.de/home
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TABLE 2 | Effect of supplemental multi-enzyme on the performance of aged breeding hens.

Item Egg production (%) Egg weight (g) Damaged egg (%) Abnormal egg (%) FCRa (g feed/g egg) Mortality (%) Feed intake (g/d/hen)

55–59 weeks

DCb 74.1 62.2 4.9 2.8 2.3 1.8 107.2

CEc 76.0 63.1 4.5 3.2 2.2 0.9 105.0

SEM 1.7 0.4 0.5 0.4 0.1 0.7 1.0

P-value 0.59 0.25 0.70 0.61 0.20 0.55 0.32

59–63 weeks

DCb 76.5 62.6 4.4 5.2 2.4 0.9 115.3

CEc 77.2 63.8 4.7 4.3 2.4 3.6 115.4

SEM 1.8 0.3 0.7 0.4 0.1 0.8 1.2

P-value 0.86 0.08 0.83 0.33 0.52 0.11 0.95

55–63 weeks

DCb 75.3 62.4 4.6 4.0 2.4 2.7 111.2

CEc 76.6 63.4 4.6 3.8 2.3 4.5 110.1

SEM 1.5 0.3 0.6 0.4 0.0 0.9 1.0

P-value 0.67 0.13 0.99 0.71 0.21 0.32 0.61

aFCR, feed conversion ratio.
bDC, dietary control (basal diet).
cCE, basal diet + 0.2 g/kg complex enzymes.

CE administration significantly increased serum TP, GLB,
IgY, HDL-C, and T-AOC levels. Serum AST levels were also
markedly reduced, and a non-significant trend of decreased
A/G (p = 0.055) was observed after supplementation with
CE (Figure 1A). Furthermore, CE administration could
enhance humoral immunity in hens by increasing serum-
specific antibody titers against NDV and avian influenza H9
strains (Figure 1B).

Reproductive Performance
Reproductive performance is a vital indicator in breeding poultry,
which affects the economic effectiveness of breeder companies.
Descriptive data on the reproductive performance of aged
breeder hens are shown in Figure 1C. The rate of fertilization and
hatching of fertile (HoF) value was significantly improved upon
CE supplementation (p < 0.05).

TABLE 3 | Effect of supplemental multi-enzyme on the egg quality of aged
breeding hens (n = 70/group).

Item DC1 CE2 SEM P-value

Egg index 1.3 1.3 0.0 0.36

L 59.2 59.2 0.3 0.93

a 18.7 18.5 0.2 0.53

b 30.1 29.6 0.1 0.07

Shell strength (kg/cm2) 4.0 4.0 0.1 0.67

Egg weight (g) 61.1 61.7 0.4 0.48

Yolk color 7.7a 7.0b 0.1 0.00

Egg albumen height 5.9b 6.2a 0.1 0.02

Haugh Unit 75.0b 77.5a 0.6 0.03

Eggshell thickness 0.4 0.4 0.0 0.67

a,bDifferent superscript within a row means significantly different (P < 0.05).
1DC, dietary control (basal diet).
2CE, basal diet + 0.2 g/kg complex enzymes.

Intestinal Bacterial Richness, Diversity,
and Similarity
After size filtering, quality control, and chimera removal, an
average of 29,200 clean tags and 27,376 valid tags were harvested
from each sample for subsequent analysis through 16S amplicon
sequencing. The species accumulation curve (Figure 2A) and
alpha diversity rarefaction curve (Figure 2B) reached a stable
plateau under the sample size and sequencing depth. The alpha
diversity index reflects the richness and uniformity of the species
composition. The Chao1 and Observed species indices are
estimators of phylotype richness, and Shannon and Simpson’s
diversity indices reflect both richness and community uniformity.
In this study, Shannon and Simpson’s diversity indices were
significantly enhanced (p < 0.05), while Chao1 and Observed
species had a minimal effect on the addition of CE (Figure 2C).
The Venn diagram showed that 635 distinct OTUs were clustered
based on 97% sequence similarity, among which 258 were shared
by both groups (Figure 2D). PCoA based on weighted UniFrac
similarity showed a separation of each group (Figure 2E),
with 61.33, 19.76, and 10.34% variation explained by principal
components: PC1, PC2, and PC3, respectively (Adonis, p = 0.009,
R2 = 0.49).

Ileal Microbial Community Structure
Firmicutes, Proteobacteria, and Bacteroidetes were the dominant
phyla in the aged breeder hens (relative abundance>1%),
accounting for more than 98% of the total bacterial community
(Figure 3A). The relative abundance of Proteobacteria increased
from 5.94 to 21.05%, and the proportion of Firmicutes decreased
from 90.79 to 75.87% with CE supplementation.

At the family level, the phyla of Firmicutes mainly contained
Lactobacillaceae, Peptostreptococcaceae, Enterococcaceae,
Erysipelotrichaceae, and Lachnospiraceae. Proteobacteria
consisted of Helicobacteraceae, Pasteurellaceae, and
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FIGURE 1 | CE can increase the level of serum immunity, antioxidant, and liver-related indicators and significantly improve breeding hens’ reproduction performance
(n = 7 hens/group). (A) The levels of biochemical parameters of breeding hens. (B) Serum antibody titers of NDV and avian influenza H9 strain of breeding hens.
(C) The reproduction performance efficiency of breeding hens. Left: representative fertilized eggs rate; Right: representative the hatching of fertile (HoF) rate. ALB,
Albumin; AST, Aspartate Aminotransferase; GLB, Globulin; HDL-C, High-density lipoprotein cholesterol; IgY, Immunoglobulin Y; ND, Newcastle disease. T-AOC, Total
Antioxidant Capacity; TP, Total protein. *P < 0.05 compared to two groups.

mitochondria, while Bacteroidetes specifically included
the Bacteroidales_S24_7_group (Figure 3B) (relative
abundance>1%). Lactobacillaceae and Peptostreptococcaceae
were the dominant bacteria in the two groups, and their relative
abundances in CE and DC were 44.42 vs. 14.38% and 25.07 vs.
70.57%, respectively.

At the genus level, Romboutsia, Lactobacillus, Turicibacter,
Enterococcus, Gallibacterium, and Helicobacter were the
predominant genera in the two groups (Figure 3C) (relative
abundance>1%). With the addition of CE, the relative abundance
of Lactobacillus and Enterococcus increased, while the relative
abundance of Romboutsia decreased.

Key Microbial Identification
LDA and effective size comparisons (LEfSe) were conducted
to identify the core taxa most likely to explain the differences
between the groups. The CE-treated samples appeared to be
dominated by Lactobacillus, Enterococcus, Faecalicoccus, and
Streptococcus, whereas DC samples showed Romboutsia,
Faecalibacterium, and Burkholderia as the dominant
genera (Figure 4A).

Predicted Functions of Ileal Bacterial
Communities
Significant differences in the gut microbiota were observed
between the two groups; however, their functions remain
unknown. Hence, we performed a PICRUSt analysis to predict
the potential functions of the gut microbiota. All functional

genes were divided at level 3. When filtered for non-
bacterial functional pathway, the predicted metabolic functional
categories in the CE-fed group were related to pathways of
biodegradation and metabolism of several xenobiotics, such as
“polycyclic aromatic hydrocarbon degradation,” “aminobenzoate
degradation,” and “ethylbenzene degradation.” The CE group
was also enriched for pathways such as “glycosyltransferases,”
“carbohydrate digestion and absorption,” and “D-Arginine,
and D-ornithine metabolism.” Pathways such as “sporulation,”
“cyanoamino acid metabolism,” “biosynthesis of ansamycins,”
“thiamin metabolism,” and “methane metabolism” were enriched
in the DC group (Figure 4B).

Response of Ileum Metabolomic Profiles
to Corn Enzyme Diet
The ileal metabolome was analyzed in both groups to investigate
the effect of multi-enzyme supplementation on the ileal chyme.
LC-MS detected 23,595 untargeted peaks, and 4,884 metabolites
were annotated. To reduce dimensionality, we applied PCA
and OPLS-DA to leverage both unsupervised and supervised
dimensionality reduction techniques to achieve this goal. Both
PCA and OPLS-DA showed separation and discrimination
(Figures 5A,B). The quality parameter values of the OPLS-
DA model were predicted to be [R2X (cum) = 0.733, R2Y
(cum) = 0.947] and fitness [Q2 (cum) = 0.698], which indicated
that the model had good reliability and predictability (Figure 5C).
The volcano plot indicated up-and downregulated differential
metabolites based on statistical values (p < 0.05, | log2FC| > 1),
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FIGURE 2 | The microbial community structure in the ileum was significantly altered by adding CE (n = 6 hens/group). (A) Species accumulation curve is used to
estimate the rationality of sequencing sample quantity. (B) Alpha diversity Rarefaction curve based on Good’s Coverage value, which reflects the rationale of
sequencing depth. (C) Alpha-diversity evaluation of ileum microbial richness and evenness by measuring chao1, observe-species, Shannon, and Simpson’s diversity
indexes. (D) Venn diagram is used to represent the amount of shared and unique OTUs numbers. (E) Principal coordinate analysis (PCoA) is used to determine the
similarities of microbial communities between different groups. *P < 0.05 compared to two groups.

and p < 0.001, | log2FC| > 2 was considered to have higher
significance (Figure 5D).

Identification of Differential Metabolites
and Critical Metabolic Pathways
In total, 180 differential metabolites were assigned based on VIP
values (VIP > 1) and p-values (p < 0.05). The results of MBRole
and MetaboAnalyst (Figure 6A) showed that the differential
metabolites were enriched in the “aminoacyl-tRNA biosynthesis,”
“ABC transporters,” “D-glutamine and D-glutamate metabolism,”
and “arginine biosynthesis pathway.” Moreover, the “arginine
biosynthesis pathway” was the most prominent position in the

topological analysis (Figure 6B). The LIPEA results (Figure 6A)
indicated that the following pathways were significantly enriched
by inputting differential lipid metabolites: “glycerophospholipid
metabolism,” “glycosylphosphatidylinositol (GPI)-anchor
biosynthesis,” “autophagy—other,” “autophagy—animal,” and
“ferroptosis” pathways.

Co-occurrence Patterns of Microbial
Communities
To further explore the complex microbial community structures
in the DC and CE groups, we performed co-occurrence network
analysis by calculating CCLasso (Fang et al., 2015), sparCC
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FIGURE 3 | The stacked graph of microbial community structure at (A) phylum level, (B) family level and (C) genus level (n = 6 hens/group). The bar chart on the
right represents the relative abundance distribution of TOP 10 bacteria at different taxonomic levels, respectively.

(Friedman and Alm, 2012), and NAMAP with Spearman
correlation inference algorithm via MetagenoNets between
microbial taxa at the genus level based on 16S sequencing
(Nagpal et al., 2020; Figure 7A). The results showed that
the addition of CE significantly increased the interrelationship
between bacteria under all three algorithms [edges: 2,541 vs. 954;
815 vs. 425; 137 vs. 33, CE vs. DC (CCLasson, SparCC, Spearman,
respectively)], while the number of correlated nodes did not
change significantly [nodes: 91 vs. 90; 88 vs. 89; 47 vs. 39, CE
vs. DC (CCLasson, SparCC, Spearman, respectively)]. CCLasso
obtained the highest number of interrelationships, followed by
the SparCC and Spearman algorithms. All three algorithms
indicated that CE activated the interactions between bacteria.
Different algorithms have unique advantages and shortcomings.

SparCC (Friedman and Alm, 2012) is a microbial network
algorithm developed based on the log-ratio transformation
of compositional data, which solves the problem of poor
performance of the Spearman algorithm under the sparsity
condition of bacterial communities; however, it did not
consider the influence of errors in the compositional data
(Fang et al., 2015). CCLasso made improvements based on such
issues and had the characteristic of better edge recovery.

Correlations Among Differential
Microbiota and Metabolites
Constructing a network between differential microbiota and
metabolites is important for understanding their interaction
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FIGURE 4 | DC and CE have differential bacteria composition and functional preferences (n = 6 hens/group). (A) LEfSe analysis was performed to identify the
bacteria that are differentially represented among the two groups. (B) Microbial functional analysis was conducted by PICRUSt software under different experimental
conditions.

relationships. Spearman correlation analysis of six microbiota (by
LEfSe, LDA > 4, p < 0.05) and 180 metabolites (by p < 0.05,
VIP > 1) was conducted (Figure 7B). The results showed
that the bacteria enriched in CE were remarkably correlated
with the upregulated metabolites. In contrast, the bacteria
enriched in DCs were remarkably correlated with downregulated

metabolites, reflecting a clear differential interaction pattern. This
result further demonstrated a significant change in microbe-
mediated metabolic patterns after the addition of CE.

To further identify more specific and sensitive markers of
metabolites, we performed a more stringent threshold criteria
(p < 0.001, | FC| > 4, VIP > 1) (Figure 8A). The top focus
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FIGURE 5 | The gut metabolites were remarkably perturbed by adding CE (n = 6 hens/group). (A) Principal component analyses (PCA) of ileum metabolome.
(B) Orthogonal projections to latent structures-discriminate analysis (OPLS-DA) score plot was performed on ileum in DC and CE groups. In the permutation
validation plot (C) (200 cycles) the Y-axis intercepts of R2 and Q2 are 0.855 and −0.517, respectively, indicating that the model is valid. (D) Volcano plots of ileum
profiles showing log2(fold-change) and −log10(p-value) in metabolites levels induced by adding CE (up-regulated in red and down-regulated in green). The labeled
metabolites were of particular interest (| fold change| > 4, p < 0.001).

FIGURE 6 | Differential metabolites were significantly enriched in multiple pathways, suggesting that the addition of CE remarkably perturbed gut metabolic activities
(n = 6 hens/group). (A) Functional KEGG pathway enrichment analysis of the differential expressed metabolites was carried out through three different platforms
(LIPEA, MBRole, and MetaboAnalyst). (B) Analysis of metabolic pathways of DC and CE groups of differentially expressed metabolites was shown by bubble plot,
each dot represents a metabolic pathway. X-axis and Y-axis stand for pathway impact and −log10(P-value), respectively.
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FIGURE 7 | CE enhanced co-expression correlation among the microbial community and the differential metabolites were tightly associated with the signature
microbiota. (A) Microbial community co-expression network analysis explores the relationship between CE and DC groups through three standard algorithms.
Different nodes represent different bacterial genera, colors represent phyla, and the dots size represent node degree. (B) A network diagram of differential
microbiota-metabolites demonstrates that the up-regulated microbial were closely related with the up-regulated metabolites while down-regulated microbial were
closely related with the down-regulated metabolites.

metabolites were used to perform correlation analysis with the
signature microbiota (LDA > 4, p < 0.05) (Figure 8B). The
results showed that Lactobacillus was significantly positively
correlated with 6-hydroxy-5-methoxyindole glucuronide and
negatively correlated with doxycycline and cinchonidine, while
Romboutsia and Burkholderia had the opposite regulation pattern
to Lactobacillus. In addition, both Enterococcus and Faecalicoccus
were negatively correlated with cinchonidine, and Enterococcus
was also significantly positively correlated with 6-hydroxy-5-
methoxyindole glucuronide.

DISCUSSION

Enzyme supplementation of poultry feed is of great significance
in nutrition, economics, and the environment. Enzymes can
improve the utilization of carbohydrates, proteins, lipids, and
phytate phosphorus in feed to reduce the waste of fodder values
and pollutant emissions (Douglas et al., 2000; Dosković et al.,
2013). Our study showed that supplementation with multiple
enzymes had no significant effect on laying performance, which
contrasted with the results of previous studies. Studies by
Khan et al. (2011) showed that adding 2.0 g/kg multi-enzyme

preparation can increase egg production, egg weight, and egg
mass; and improve the feed conversion ratio and bodyweight
of layers without changing feed intake. Although enzymes
have a significant impact on the performance of poultry, their
application is greatly limited by the wide variety of enzymes
and harsh application conditions. A previous study showed that
the addition of complex enzymes (phytase, xylanase, cellulase,
α-amylase, and acid-protease) had little effect on the production
performance of aged hens (60–68 weeks old) but increased
intestinal enzyme activity and nutrient retention (Wen et al.,
2012). Interestingly, adding enzymes to low-protein and low-
AME diets significantly improves hen and broiler performance
and digestive enzyme activities (Zhou et al., 2009; Zhu et al.,
2014; Rehman et al., 2018). Therefore, we supposed that adding
multi-enzyme preparations has little impact on production
performance, partly due to the balanced nutrition diet and the
health status of breeding hens.

Blood biochemical indices reflect the health status of hens. CE
administration increased the levels of TP and GLB in the serum.
This was probably due to the adequate degradation of proteins
promoted by the enzymes, which improve the absorption and
utilization of amino acids in the small intestine (Al-Homidan
et al., 2020). IgY is the primary serum antibody mainly distributed
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FIGURE 8 | Correlation analysis was conducted between the top focus metabolites and the signature microbiota to explore the key factors influencing organismal
fitness by adding CE. (A) Heat map of differential metabolites with a bar graph of VIP values from previous OPLS-DA model. Only if the metabolites were a satisfied
condition of VIP > 1 were selected for the following association analysis. (B) The correlation of top focus metabolites and the signature microbiota.

in poultry serum and egg yolk to protect the hens and
their offspring from pathogens (Thirumalai et al., 2019). The
improvement of in the titers of IgY and serum NDV and avian
influenza H9 strain antibodies was associated with enhanced
disease resistance. Enhanced humoral immunity was possibly
related to the immune-regulatory effects of some oligosaccharides
and beneficial microbiota in the gut after feeding with multiple
enzymes. Additionally, CE administration significantly increased
the serum HDL-C and T-AOC content and decreased the
AST content. The T-AOC reflects the cumulative effect of all
antioxidants in the blood and body fluids (Suresh et al., 2009;
Liu et al., 2021). Breeding hens frequently face oxidative stress
and ovarian aging problems in the later laying stage, which
considerably affect their performance and physiology (Liu et al.,
2018). AST is a sensitive marker for detecting liver injury,
and high levels of AST indicate liver damage (Yousefi et al.,
2005). HDL-C is considered “good cholesterol” and is associated
with cardiovascular health. It can accelerate lipid migration
from peripheral tissues to the liver, where cholesterol can be
metabolized into bile acids (Li et al., 2018; Duan et al., 2019).
Therefore, adding multiple enzymes to the diet enhances host

systemic immunity, improves antioxidant capacity, and has no
adverse effects on liver function.

Egg quality and reproductive performance, two important
economic traits for breeding hens, tend to decrease rapidly
because of the lower efficiency of absorption and immunity
with age (Liu et al., 2001; Bain et al., 2016). We found that
adding multiple enzymes can significantly increase albumen
height and Haugh unit, indicating that the addition of
multiple enzymes improves egg freshness. We then analyzed
reproductive performance and found that CE administration also
significantly enhanced the rate of fertilization and HoF value.
The improvement of these two reproduction indexes may be
related to the high-quality protein of the eggs and increased
deposition of IgY in the yolk, thereby improving the reproductive
performance of aged breeding hens (Thirumalai et al., 2019).
In summary, CE supplementation can effectively enhance egg
quality and reproductive performance of breeding hens.

To further discern the underlying mechanism of the enzyme
on the productive performance and immune function of hens.
The gut microbiota and metabolome after enzyme treatment
were analyzed. Our results showed that adding CE had minimal
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effect on Chao1 and Observed species, but significantly increased
Shannon and Simpson’s diversity indices. Meanwhile, the PCoA
showed a clear separation between the CE and DC groups,
which indicated that multiple enzymes could dramatically alter
the gut microbiota with increasing microbial evenness without
decreasing microbial richness (Zhang et al., 2017). Consistent
with the results of previous studies, Firmicutes, Proteobacteria,
and Bacteroidetes were the dominant phyla in the ileum of hens,
accounting for more than 98% of the total bacteria (Pan and Yu,
2014; Liu et al., 2021). The genera Lactobacillus, Enterococcus,
Streptococcus, and Faecalicoccus were the signature taxa of the CE
group determined using LEfSe (LDA > 4, p < 0.05). Lactobacillus
spp. contribute to intestinal health, immunity enhancement,
nutrient absorption, and bile acid hydrolysis (Staley et al., 2017;
Xiao et al., 2017). Enterococcus spp. are lactic acid bacteria that
produce bacteriocins against pathogenic bacteria and regulate
nutrient metabolism (Hanchi et al., 2018). Streptococcus spp.
such as S. thermophiles and S. salivarius are often considered to
have probiotic effects, which help establish intestinal immune
homeostasis and regulate the inflammatory response of the host
(Akpinar et al., 2011; Kaci et al., 2014). Analysis of microbial
co-occurrence network patterns suggested that the addition of
multi-enzymes remarkably increased the interactions between
gut microbiota without affecting the number of interacting
bacteria, illustrating that adding multiple enzymes enhanced
the communication between bacteria. Correlation analysis of
differential microbiota and metabolites demonstrated that the gut
microbiota signature genera were strongly correlated with altered
metabolites. Therefore, the addition of multi-enzyme modulated
immune function and metabolism may be related to altering
the intestinal microbiota, increasing the relative abundance of
potentially beneficial bacteria, and enhancing the interaction
between bacteria.

The gene function analysis of the predicted metagenomes
from the DC group suggested that the microbial pathways were
significantly enriched in the sporulation and biosynthesis of
ansamycins. Spores can store the microbiota’s hereditary material
in a harmful or unsuitable environment so that their metabolism
in this state is 10 million times slower than in normally growing
bacteria (Huang and Hull, 2017; Bressuire-Isoard et al., 2018).
Ansamycins are antibiotics produced by several Actinomycetes
strains and have an inhibitory effect on the growth of many
bacteria (Vardanyan and Hruby, 2016). Bacteria inhibit the
growth of their surrounding bacteria by synthesizing antibiotics
to compete for limited resources, leading to a vicious cycle in
the gut environment. Metabolic pathway enrichment analysis
showed significant enrichment of several pathways, including
glycerophospholipid metabolism, autophagy, and ferroptosis.
This could be because the bacteria in the DC group lacked genes
related to the degradation of harmful substances and the higher
concentration of antibiotics surrounding them. Hence, bacteria
may degrade their components or excess proteins through
autophagy to provide nutrition for survival or directly induce
ferroptosis-like death in the DC group (Deretic and Levine,
2009; Xu et al., 2019; Shen et al., 2020). Spearman correlation
analysis revealed that two top-focused metabolites, doxycycline,
and cinchonidine, enriched in the DC group, were positively

correlated with the DC signature bacteria Romboutsia spp. and
Burkholderia spp. Doxycycline, a tetracycline, has a bacteriostatic
effect by inhibiting the synthesis of bacterial proteins by
destroying transfer RNA and messenger RNA at ribosomal
sites (Raval et al., 2018). Because doxycycline is significant for
maintaining animal health and controlling vertically transmitted
diseases, it has been widely used in the breeding industry (Yan
et al., 2018). Studies have shown that doxycycline mainly affects
the relative abundance of Firmicutes and Proteobacteria and
reduces the richness and evenness of the flora (Boynton et al.,
2017; Stavroulaki et al., 2021). Cinchonidine is an alkaloid
found in several foods such as fruits, herbs, spices, and olives
(Olea europaea) (Eyal, 2018). However, the biosynthetic pathway
of cinchonidine remains unclear (Maldonado et al., 2017).
Overall, the bacteria in the DC group enriched genes related
to sporulation and biosynthesis of ansamycins pathways and
lacked communication. The intestinal environment had a higher
doxycycline content than the CE group, which would affect
the microbial community structure and reduce the evenness
(Stavroulaki et al., 2021).

The gene function analysis of the predicted metagenomes
from the CE group suggested that the microbial pathways were
significantly enriched in the biodegradation and metabolism of
multiple harmful substances. Polycyclic aromatic hydrocarbons
(PAHs) are widely distributed organic pollutants with genetic
toxicity and carcinogenicity that can significantly interfere
with gut microbiota and are associated with harmful effects
on host health (Ghosal et al., 2016; Redfern et al., 2021).
Ethylbenzene is a toxic aromatic organic compound metabolized
by the organism, and the accumulation of xenobiotics in an
organism may cause tissue damage and harm the host (Pan
et al., 2020). The addition of multiple enzymes significantly
enriched microbial functional genes related to the degradation
of the aforementioned harmful substances, which suggested that
the microbes of the CE group may have a better ability to
degrade toxic organic compounds and maintain homeostasis of
the gut environment to create a better intestinal environment.
Meanwhile, the ileum microbiota in the CE group also enriched
“glycosyltransferases” pathways, which may promote bacterial
surface antigen formation, thus stimulating the host immune
system and improving humoral immunity (Hong et al., 2019).
Spearman correlation analysis revealed that one top-focused
metabolite, 6-hydroxy-5-methoxyindole glucuronide, enriched
in the CE group, was positively correlated with the CE signature
bacteria Lactobacillus spp., and Enterococcus spp. 6-Hydroxy-
5-methoxyindole glucuronide, a member of the glucuronide
family. It is a natural metabolite of 6-hydroxy-5-methoxyindole
generated in the liver by UDP glucuronyltransferase, which
assists with the excretion of toxic substances, drugs, or other
substances that cannot be used as an energy source (Zhao et al.,
2012; Liu et al., 2019). Collectively, the addition of multiple
enzymes can improve the ability of microbes to degrade harmful
substances, and the potentially beneficial bacteria enriched in
the CE group are closely related to the metabolite 6-Hydroxy-5-
methoxyindole glucuronide that facilitates the excretion of toxic
substances. Thus, CE addition can benefit hen health, possibly by
affecting the metabolic function of intestinal bacteria.

Frontiers in Microbiology | www.frontiersin.org 13 December 2021 | Volume 12 | Article 711905221

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-711905 November 29, 2021 Time: 20:58 # 14

Liu et al. Multi-Enzymes Modify Gut Microbiome and Metabolome

Taken together, the results showed that CE supplementation
may provide a nutrient-rich environment for bacteria by
improving the digestion and absorption of starch and protein,
elevating the excretion of toxins and harmful substances, and
reshaping the structure of the ileal microbial community such
that Lactobacillus spp. are the dominant bacteria and the
relative abundance of common potentially beneficial bacteria,
such as Enterococcus and Streptococcus, is increased. Follow-
up studies are needed to ascertain the changes in the gut
microbiome and metabolome induced by complex enzymes on
intestinal cell function.

CONCLUSION

Overall, administration of 0.2 g/kg of dietary multi-enzyme
could enhance humoral immunity and improve egg quality
and reproductive efficiency together with intestinal microbial
community structure and metabolite composition of aged
breeding hens. Multi-enzymes could be used to enhance the
immunity and reproductive performance of old breeding hens
and extend their service life.
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