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Editorial on the Research Topic
Finding New Epigenomics and Epigenetics Biomarkers for Complex Diseases and Significant Developmental Events with Machine Learning Methods
The epigenome has been regarded as one of the most important regulators for genome on its functioning and downstream regulation, therefore, the maintenance of stable and normal functioning epigenome is quite crucial for living organisms. However, the epigenome changes over time, either naturally or triggered by various endogenous and exogenous factors like environment, disease state and infections. The alteration of the epigenome may be crucial intermediate between environments and biological phenotypes during development and pathogenesis. Therefore, developmental or pathological alterations can also be monitored using epigenome characteristics, which is exactly what epigenetics and epigenomics studies focus on.
Currently, studies on epigenetics and epigenomics mainly focused on the plasticity of epigenome during two major biological processes: development and pathogenesis, both of which are inextricably linked to the environment through the epigenetic modifications. From the research layers, current epigenomic and epigenetic studies can be further divided into multiple layers: 1) direct methylation on DNA molecules; 2) histone protein modification; 3) chromatin structure and 4) related noncoding RNAs. Integration all layers of epigenomics and epigenetics studies, the ultimate research goal in this field is to reveal the specific role of epigenome during the development and pathogenesis of human beings and explain the related biological mechanisms using typical epigenetics/epigenomics biomarkers.
Biologically, epigenetics and epigenomics describe complex interactions between environment and genomics, resulting in diverse modifications on histone and DNA molecules. With the development of detecting techniques (like microarray and Methyl-Seq), an explosive increase occurs in epigenetics and epigenomics data. To handle such massive complex data, machine learning models have been introduced in the analyses on data at this omics-level and contribute to the identification of potential disease/developmental events associated epigenetic biomarkers. However, several restrictions and challenges still remain in current epigenetics and epigenomics studies:
(1) For most epigenomics studies, patients are hard to recruit (comparing to normal controls), lacking samples with diseases characteristics;
(2) For each epigenome, epigenomic alterations with biological significance is highly imbalanced distributed across the genome, making it hard for us to detect;
(3) Comparing to the sample number, methylation sites targeted by current probes are too many, forming a matrix with much more variables than samples. Larger datasets and pre-modeling features selection may be potential solutions for current restrictions on epigenetics and epigenomics studies.
In this research topic, we focused on the application of machine learning models on data at epigenomics and epigenetic levels to identify potential biomarkers for complex diseases/developmental events, including cancers. There are 33 studies in this special issue.
We hope this collection will inspire the epigenomics and epigenetics researchers to use machine learning methods for biomarker identification and regulatory mechanism investigation.
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Rice and maize are the principal food crop species worldwide. The mechanism of gene regulation for the yield of rice and maize is still the research focus at present. Seed size, weight and shape are important traits of crop yield in rice and maize. Most members of three gene families, APETALA2/ethylene response factor, auxin response factors and MADS, were identified to be involved in yield traits in rice and maize. Analysis of molecular regulation mechanisms related to yield traits provides theoretical support for the improvement of crop yield. Genetic regulatory network analysis can provide new insights into gene families with the improvement of sequencing technology. Here, we analyzed the evolutionary relationships and the genetic regulatory network for the gene family members to predicted genes that may be involved in yield-related traits in rice and maize. The results may provide some theoretical and application guidelines for future investigations of molecular biology, which may be helpful for developing new rice and maize varieties with high yield traits.

Keywords: crop yield, gene function, genetic network, phylogenetic, rice, maize


INTRODUCTION

It has been predicted that crop yields must double to meet the demands of the rising world population by 205 (Ray et al., 2013). However, it is difficult to increase the effective cultivated area, and increasing crop yield is the only way to ensure food supply. Rice and wheat are key food crops and have been the most widely consumed staple foods in most parts of the world. They are grown as annual grain and belong to the monocotyledonous grass family. At the same time, rice and maize are model crops studied in the fields of genetics and genomics of grasses. Grain yield is a complex trait multiplicatively determined by several component traits. The number of grains per panicle, panicle number per hull, and grain weight are common traits of rice and maize (Wang and Li, 2011; Bommert et al., 2013; Yang et al., 2018; Harrop et al., 2019). ZmGS5 as the vital gene to increase the grain weight and cell number in the transgenic plants of Arabidopsis thaliana L., suggesting that ZmGS5 may have a conserved function among different plant species that affects seed development (Liu et al., 2015a). It is shown that yield-related QTLs are conserved between maize and rice (Liu et al., 2017). Another yield-related QTL is kernel row number QTL, KRN4, which can enhance grain productivity by increasing KRN per ear (Liu et al., 2015c). The increasing of endosperm also plays a role in the crop yield, therefore, ZmGE2 gene has effect on the maize yield, which is associated with increase in embryo to endosperm ratio in maize (Zhang et al., 2012). The analysis of key genes for crop yield traits and their genetic regulatory networks is a scientific problem that must be solved for the improvement of crop yields. APETALA2/ethylene response factor (AP2/ERF), auxin response factors (ARFs) and MADS genes are key factors in grain yield traits and crop domestication (Harrop et al., 2019; Li et al., 2019; Wang et al., 2019).

The AP2/ERF superfamily contains key regulators in various pathways for development and yield in plants (Riechmann and Meyerowitz, 1998). For example, ZmRAP2.7 and ZmEREB94, AP2/ERF members, participated in root development and starch synthesis, respectively (Li et al., 2017, 2019). The function of ids1/Ts6 is the regulation of spikelet pair meristem development (Wang et al., 2019). Several AP2-like genes are key factors with respect to inflorescence branching and architecture in domesticated rice (Harrop et al., 2019). OsGL6 is involved in trichome formation in rice (Xie et al., 2020). ARFs can bind to auxin response DNA elements (AuxRE) of the genes to regulate plant development and growth (Li et al., 2016). Genes with MADS-box, a conserved sequence motif, can encode the transcription factors regulating various processes such as seed and flower development and organ differentiation in plants (Schwarz-Sommer et al., 1990; Becker and Theissen, 2003; Gramzow et al., 2010; Alvarez-Buylla et al., 2019). The ZmMADS69 allele controls maize flowering time (Liang et al., 2019). Overexpression of zmm28 is associated with a significant increase in grain yield in maize (Wu et al., 2019). MADS78 and MADS79 are key regulators in rice early seed development (Paul et al., 2020). The functions of OsMADS57 are related to plant vegetative growth in rice (Chu et al., 2019).

Until now, related research on crop yield traits focused on single gene and their upstream and downstream regulatory pathways. However, there are rarely studies pertaining to genetic control networks of multiple genes. A genetic regulatory network (GRN) is a collection of molecular regulators and is composed of nodes and edges. The nodes, namely, regulators, can be DNA, RNA, proteins or complexes of these. The edges are the functional interaction model, called regulatory relationships, which can be positive activation and negative inhibition. Regulators and their functional interactions form the backbone of the cellular machinery. The network is a mechanism for controlling morphogenesis and individual development. The characteristics of genetic control of crop yield for rice and maize development are helpful for applying the traits in crop breeding (Yan and Tan, 2019). This can promote research on the genetic basis of the formation of major crop traits, and even the theoretical basis for the in-depth understanding of the common transformation mechanism of the genetic structure of the complex traits of grasses.

As shown in Figure 1, we evaluated the evolutionary relationships of three gene families, AP2, ARF, and MADS, in rice and maize, respectively. We constructed the GRN of the gene families to predict yield-related uncharacterized genes, which can provide some theoretical guidelines for future molecular biology investigations involving high yield traits in rice and maize.
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FIGURE 1. The process of analysis for genetic regulation networks in rice and maize.




MATERIALS AND METHODS


DATA


RiceData

The information of gene families related to rice is derived from RiceData1. This database can be used to query resources, such as excellent rice germplasms, rice mutants, molecular markers, genes, and pedigrees. Relevant literature searches were also conducted. In 2005, the Institute of Crop Sciences and Chinese Rice Research Institute of the Chinese Academy of Agricultural Sciences proposed and chaired the construction of the rice gene database. The RiceData database mainly collects genetic rice information (including QTLs), including gene names, functions, locations, and relevant references.



National Center for Biotechnology Information (NCBI)

National Center for Biotechnology Information was established in 1988 to build academic information systems for molecular biology (Sayers et al., 2020). The resources of NCBI comprise six categories: literature, health, genomes, genes, proteins, and chemicals (Sayers et al., 2020). In addition to biological data, NCBI also provides an assortment of analysis and visualization software (Sayers et al., 2020). We obtained sequence data for MADS and AP2 families in maize from NCBI.



Tools


STRING

STRING is a web-server2 that is widely used to visualize data as interaction networks and to perform gene-set enrichment analysis (Szklarczyk et al., 2019). It collects and integrates known protein-protein interaction (PPI) data from all publicly available sources (Szklarczyk et al., 2019). The source databases include KEGG, Reactome, BioCyc, Gene Ontology and so on (Caspi et al., 2016; Fabregat et al., 2016; Kanehisa et al., 2017; The Gene Ontology Consortium, 2017). STRING interaction predictions are produced by computational prediction efforts, including protein co-expression systems analysis, shared genome shared signal measurement and PubMed abstracts for text mining from all databases, as well as OMIM, and so on.



IQ-TREE

Phylogenetic analyses have been widely used in molecular systematics. In biology, phylogenetics can be applied in the analysis of the evolutionary relationships among individuals or groups of organisms. IQ-TREE is freely available software for discovering these relationships through phylogenetic inference implementing Maximum likelihood (ML) (Nguyen et al., 2015). The substitution model was calculated with MODELFINDER (integrated in IQ-TREE; best-fit model: JTT + R5 chosen according to the Bayesian information criterion). We also constructed the phylogenetic trees for rice and maize by IQ-TREE.



MAFFT

Multiple sequence alignments (MSA) is widely used in the alignment of proteins and nucleotide sequences, which are assumed to be inherited from a common ancestor. Detecting co-evolution is a critical step in the prediction of protein-protein interactions (de Juan et al., 2013; Wang et al., 2017). MAFFT is MSA software that offers three alignment strategies, including the progressive method (PartTree, FFT-NS-1, and L-INS-1), iterative refinement methods (FFT-NS-i, L-INS-i, E-INS-i, and G-INS-i) and so on (Katoh and Standley, 2013; Katoh et al., 2019). We aligned protein sequences with their corresponding amino acid domains with MAFFT (Katoh and Standley, 2013; Katoh et al., 2019).



RESULTS


Identification of AP2 Domain, ARF Domain and MADS Genes in Rice and Maize

The AP2 domain, ARF domain and MADS gene candidate sequences from rice and maize genomes were derived from the China Rice Data Center (see text footnote 1) and NCBI3. 300, 69 and 143 potential sequences were identified as AP2 domain-containing genes, ARF domain-containing genes and MADS genes, respectively. Detailed information about these genes for rice and maize are provided in Supplementary Tables 1, 2.



Phylogenetic Analysis of AP2 Domain Proteins in Rice and Maize

We constructed the phylogenetic tree of the AP2 protein sequences in rice and maize to illustrate the phylogenetic relationship. The phylogenetic tree for an AP2 domain-containing gene family in rice and maize revealed four major clades grouping into 10 subfamilies (Figure 2A). Among the 300 AP2 proteins, 1 belongs to group I, 1 to group II, 3 to group III, and 2 to Group IV. The large groups for AP2 members are VII and VIII. Group VII can be further clustered into four subgroups, besides three subgroups in group VIII. Group I and group II only contain one respective gene each: OsRAV2 and ZmAP2-5. Group III includes three genes of maize, and these groups are the ancient clades. From the dataset, most of the proteins containing the AP2 domain were related to crop yield (Riechmann and Meyerowitz, 1998; Harrop et al., 2019). The yield-related gene OsEATB is in Group VIIIb. Group V includes three close clades, with one clade containing three well-known yield-related genes, OsRSR1, OsSNB, and OsIDS1 (Fu and Xue, 2010; Rashid et al., 2012; Lee et al., 2014; Rao et al., 2014; Ji et al., 2019). The existence of such yield-related proteins was one of the unusual features of the AP2 gene family in flowering plants, such as maize and rice. From the groups or subgroups, the crop yield-associated genes were randomly selected as representatives for further analysis. From previous research, OsEATB can reduce the plant height and panicle length during the maturity stage, promoting the branching potential of both tillers and spikelets (Qi et al., 2011). In rice, the absence of BBM1, BBM2, and BBM3 would result in embryo arrest and abortion in group V (Khanday et al., 2019). Overexpression of OsAP2-39 can cause a variety of phenotypic changes in transgenic rice, such as the reduction of plant height, tiller, leaf number and 1–2 weeks postponement for heading, ultimately resulting in a decrease in yield due to reduced biomass and grain number (Yaish et al., 2010). OsRSR1 regulates starch synthesis in rice (Fu and Xue, 2010). Compared with the wild type, the grain size is larger and the quality and yield are higher in rsr1 (Fu and Xue, 2010). OsIDS1 and OsSNB play important roles in the establishment of inflorescence morphology and floral meristems. There is a significant decrease in branches and spikelets of the inflorescence for the double mutant snb/osids1 plant (Lee and An, 2012). The function of the OsSNB gene was determined by decreased seed fall, a seed length increase of 7.0%, and a 1000-seed weight increase of 6.1% in the ssh1 mutants (Jiang et al., 2019). The SHAT1 gene, which encodes an AP2 transcription factor, is required for seed shattering in rice (Jiang et al., 2019).
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FIGURE 2. Phylogenetic trees of three gene families in rice and maize (A) Phylogenetic tree of the AP2 domain-containing proteins in rice and maize. Protein sequence alignment using E-INS-i algorithm. AP2 domain-containing proteins grouped into 10 subfamilies. (B) Phylogenetic tree of the ARF proteins in rice and maize. Protein sequence alignment using E-INS-i algorithm. Auxin response factor proteins grouped into 10 subfamilies. (C) Phylogenetic tree of the MADS-box proteins in rice and maize. Protein sequence alignment using E-INS-i algorithm. MADS-box proteins grouped into 17 subfamilies.




Phylogenetic Analysis of ARF Domain Proteins in Rice and Maize

The full-length amino acid sequences of ARF domain proteins were used for multiple sequence alignment and phylogenetic analyses, respectively. The phylogenetic tree of 69 members of ARF domain-containing genes for rice and maize was constructed (Figure 2B). These ARF domain-containing members can be distinctly divided into eight groups and 11 subfamilies. There is only one gene in groups I and II, OsARF5 and ZmARF20, respectively, besides two genes confirmed in groups III, IV, and V. Group VI has 10 genes, and group VIII is the largest one of all. The gene OsARF1 in group VIIId was indicated to be essential for growth in vegetative organs and seed development (Attia et al., 2009). Floral organ development is essential to plant yield and seed quality, so overexpression of OsARF19/OsARF7a resulted in high auxin content, dwarfism, shrunken grains and upregulated expression levels of OsMADS29 and OsMADS22, which are two floral organ regulators (Zhang et al., 2015). OsARF2 and OsARF4 are located in the same loci (Wang et al., 2007). During rice grain development, the interaction of OsARF4/OsARF2 and OsSK41 can repress the expression of some auxin responsive genes, and the grain size with respect to osarf4/osarf2 performance is larger (Hu et al., 2018).



Phylogenetic Analysis of MADS Proteins in Rice and Maize

To understand the evolutionary and phylogenetic relationships of MADS proteins, a phylogenetic tree using E-INS-i algorithm was constructed from rice and maize (Figure 2C). The 143 MADS protein sequences were aligned and classified into six well-supported groups and 17 subfamilies labeled with different colors. According to the phylogenetic tree, there is only one gene in group I, as well as five genes, 10 genes and four genes in groups II, III, and IV, respectively. Group V and VI are larger than others, with seven and six subfamilies, respectively. Based on previous studies, MADS protein functions are related to floral, ovule and seed organ development (Schwarz-Sommer et al., 1990; Becker and Theissen, 2003). For example, OsMADS3, OsMADS13, and DROOPING LEAF play various important roles in floral development (Dreni et al., 2007; Liu et al., 2011). Downregulated expression of OsMADS7 and OsMADS8 resulted in severe phenotype deterioration for plants, including late flowering, abnormal performance of lodicules, stamens and carpels, and a loss of floral determinacy (Cui et al., 2009). OsMADS1 is mainly expressed in flower organs and determines the formation of the lemma and palea (Chung et al., 1994). All of the OsMADS1 transgenic plants exhibited similar phenotypes, including dwarfism, distorted panicles, decreased numbers of branches and spikelets, and elongated sterile lemmas (Jang et al., 2017). The Gγ subunits interacting with GS3 and DEP1 can activate the expression of OsMADS1 to regulate grain shape (Liu et al., 2018). OsMADS17 expression is regulated by OsMADS1 and involved in hormone signaling and floral identity (Hu et al., 2015).



Prediction and Analysis of Genetic Network for Rice Yield-Related Genes

Here, the rice yield-related genes belonging to MADS-box, ARF, and AP2 domain-containing gene families were used to construct the genetic network. The AP2 domain-containing protein gene family contains nine proteins: OsEATB, OsRSR1, OsBBM1, OsBBM2, OsBBM3, OsSNB, OsIDS1, OsAP2-39, and OsERF078/FZP. There are three proteins, OsARF1, OsARF19/7a, and OsARF4/OsARF2, belonging to the ARF family. OsMADS1, OsMADS3, OsMADS7, OsMADS8, OsMADS13, and OsMADS17 belong to the MADS-box gene family. The protein sequences are provided in Supplementary File 5. The STRING database and Cytoscape_v3.7.2 were used to construct the protein-protein interaction network (PPI) (Szklarczyk et al., 2019) and the PPI network detail information is in Supplementary Table 3. From Figure 3A, there are 14 proteins from the three gene families, as well as seven proteins which have not been cloned. Among the seven proteins, OsqHd1, similar to SBP-domain protein 4, is a minor QTL with the functions of delaying heading and increasing the numbers of spikelets per panicle, grains per panicle and the grain yield per plant (Chen et al., 2014). OsEBP-89, OsERF62, OsERF71, OsAP2-20, and OsAP2-37 indicated that the AP2 domain-containing gene family plays an important role in rice yield. NRPB3-like (Os09g0110400) and OMTN4 (Os06g0675600) belong to the NAC gene family, and overexpression of OMTN4 negatively affected drought tolerance during the rice reproductive stage (Fang et al., 2014). The homologous gene for ABC1-like (Os01g0318700) protein is AtOSA1 (AT4G01660) in Arabidopsis, a member of the ATH subfamily which encodes an ABC transporter (Jasinski et al., 2008).
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FIGURE 3. The PPI networks of yield-related genes (A) The PPI network of yield-related genes in rice. (B) The PPI network of yield-related genes in maize.




Prediction and Analysis of Genetic Network for Maize Yield-Related Genes

Some yield-related genes were randomly selected from the MADS-box, ARF and AP2 domain-containing gene families in maize. The AP2 domain-containing protein gene family contains three proteins, ZmEREB94, ZmEREB156 and ZmRap2.7, as well as ZmMADS1, ZmMADS3, ZmMADS31, Zmm4, ZmMADS1a, and ZmMADS2, which belong to the MADS-box gene family. The protein sequences are provided in Supplementary File 5. The STRING database and Cytoscape_v3.7.2 were used to construct the protein-protein interaction network (PPI) (Szklarczyk et al., 2019) and the PPI network detail information is in Supplementary Table 3. From Figure 3B, there are seven cloned proteins from the three gene families and 21 unknown proteins. Among the 21 proteins, ZmMYBR66 and ZmMYBR106 belong to the MYB gene family, Zm00001d002684 has the function of flower locus D, and Zmhda108 and ZmHDA19 belong to the histone deacetylase family. A large number of uncloned genes were uncharacterized proteins.



Analysis of the Similar Genetic Network for Maize and Rice Yield-Related Genes

In this research, the yield-related genes were selected from total rice and maize in Supplementary Table 4 and Supplementary File 5. Twenty-eight protein sequences containing 18 rice protein sequences and 10 maize protein sequences were used to construct the co-network using the STRING database. Based on the previous research, there are 13 cloned proteins that interact with the other 18 new proteins (Figure 4).
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FIGURE 4. The PPI network of rice and maize yield-related genes.


OsERF71, OsAP2-20, OsAP2-37, NRPB3-like (Os09g0110400), and OMTN4 (Os06g0675600) suggested that the AP2 domain-containing and NAC gene family serve important roles in rice yield. OsqHd1 also takes part in increasing the number of grains per panicle and grain yield (Chen et al., 2014). Overexpression of OsMADS56 also resulted in delayed flowering in the situation of long days (Ryu et al., 2009). There is an aberrant phenotype of the mutant osmads34-t compared with the wild plants, such as more primary branch numbers, abnormal panicles, and the length of sterile lemmas: therefore, OsMADS34 is involved in rice yield and grain size (Kobayashi et al., 2009, 2012; Gao et al., 2010; Yu et al., 2016). Loss of OsMADS51 exerted little effect on flowering in long days, and OsMADS51 can transmit an SD promotion signal from OsGI to Ehd1 as a novel flowering promoter (Kim et al., 2008). The axillary buds exhibited accelerated development and frequently grew into effective tillers upon overexpression of OsMADS15. The panicles were large in the OsMADS15 transgenic rice (Lu et al., 2012). OsMET1A is a DNA methyltransferase which is primarily responsible for maintaining CpG methylation (Yamauchi et al., 2008). OsECHS, OsECHS1 and OsADA2 are three uncharacterized proteins. These results suggested that most proteins in the predicted network are yield-related genes.



DISCUSSION

A large diversity of agronomic traits are important determinants of yield in rice and maize, such as grain size, shape weight, spikelets and tillers per plant, among others. Brassinolide (BR) and auxin, as the most important plant hormones, serve important roles in grain development and regulate factors such as grain size, shape, and weight.

Maize and rice share a common ancestor. Similar traits were usually controlled by QTLs in syntenic regions among species. Many genes that may affect seed shape and weight have been mapped and cloned in rice, such as GS3, GW2, and GS5. GS3 and GW2 were isolated for maize orthologs genes of rice, and found that maize genes also controlled similar traits. AP2 domain, ARF domain, and MADS genes families are involved in the determinants of yield. Previous studies have suggested that AP2 functions as a nuclear transcription factor in plant cells. Auxin and BR serve important roles in the development of seeds and genes (Zuo and Li, 2014). The ARF family members function as transcriptional activators and repressors in plants (Guilfoyle, 2015). In addition, ARF18 impacts the expression of the downstream auxin-responsive genes and affects silique length and seed weight (Liu et al., 2015b). However, previous research indicates that rice grain weight, grain size, grain hull, endosperm development and activity in maternal tissues are negatively regulated by OsARF4 (Hu et al., 2018). In addition, WRINKLED1 (WRI1), as the AP2/EREBP transcription factor in Arabidopsis, also serves the function of seed storage metabolism (Maeo et al., 2009). In rice, OsERF2 mediated gene expression in the metabolism of sucrose and plant hormone signaling pathways affecting the accumulation of sucrose and UDPG (Maeo et al., 2009). The MADS family is a group of crucial regulatory factors that control the development of floral organs: for example, the OsMADS1 gene can induce flowering (Chung et al., 1994).

In our study, there were several genes predicted to participate in the yield-related network, and these genes were uncharacterized genes belonging to diverse gene families. Some genes were known as yield-related genes, OsqHd1, an SBP-domain protein, serves the function of delaying heading and increasing grain yield. NRPB3-like was a predicted gene of the NAC gene family, and ABC1-like was an aarF domain-containing protein kinase. These genes are novel, so further studies on the functions of these unknown genes are necessary.
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Objective: The aim of this study was to investigate the expression of cyclin-dependent kinase 1 (CDK1) in gastric cancer (GC), evaluate its relationship with the clinicopathological features and prognosis of GC, and analyze the advantage of CDK1 as a potential independent prognostic factor for GC.

Methods: The Cancer Genome Atlas (TCGA) data and corresponding clinical features of GC were collected. First, the aim gene was selected by combining five topological analysis methods, where the gene expression in paracancerous and GC tissues was analyzed by Limma package and Wilcox test. Second, the correlation between gene expression and clinical features was analyzed by logistic regression. Finally, the survival analysis was carried out by using the Kaplan–Meier. The gene prognostic value was evaluated by univariate and multivariate Cox analyses, and the gene potential biological function was explored by gene set enrichment analysis (GSEA).

Results: CDK1 was selected as one of the most important genes associated with GC. The expression level of CDK1 in GC tissues was significantly higher than that in paracancerous tissues, which was significantly correlated with pathological stage and grade. The survival rate of the CDK1 high expression group was significantly lower than that of the low expression group. CDK1 expression was significantly correlated with overall survival (OS). CDK1 expression was mainly involved in prostate cancer, small cell lung cancer, and GC and was enriched in the WNT signaling pathway and T cell receptor signaling pathway.

Conclusion: CDK1 may serve as an independent prognostic factor for GC. It is also expected to be a new target for molecular targeted therapy of GC.

Keywords: CDK1, prognosis, biomarker, gastric cancer, bioinformatics


BACKGROUND

Gastric cancer (GC) is a very common malignant tumor, and its prognosis is relatively poor. In 2015, it was found that the incidence rate of GC was second in all cancers (Chen et al., 2015; Lin et al., 2019; Mottini et al., 2019). Due to the hidden nature of the disease, the early symptoms are not obvious. Most of patients were in the advanced stage at the time of treatment, and the 5-year overall survival (OS) rate was only 28.3% (Siegel and Naishadham, 2012). GC was prone to lymph node metastasis and had strong invasive ability (Cutsem et al., 2015). At present, many studies have focused on identifying new biomarkers for early diagnosis and prognosis prediction of GC (Verma and Sharma, 2018; Ji et al., 2019; Li et al., 2019; Ma et al., 2019; Zheng et al., 2019). However, no widely accepted biomarkers have been found. Therefore, it is very important to identify effective biomarkers for the diagnosis and prognosis of GC (Zou et al., 2016; Zeng et al., 2017, 2018; Zhang et al., 2017; Tang et al., 2018; Xu et al., 2018, 2019).

Cyclin-dependent kinase 1 (CDK1) gene is a cyclin kinase, which can lead to malignant cell proliferation after activation (Ling et al., 2013). It was shown that CDK1 had a positive regulatory effect on the cell cycle of GC, and that its abnormal activation was involved in the malignant transformation of GC. Fu et al. focused on the relationship between the expression of CDC25A and CDK1 and lymph cancer patients. They found that CDC25A and CDK1 were highly expressed in GC tissues with lymph nodes and lowly expressed in GC without lymph nodes. Wang et al. revealed that the high expression of Cyclin B2 and CDK1 in GC patients may indicate that the biological ability of tumor invasion was strong and was related to the low OS rate of patients. Gao et al. (2014) investigated that the downregulation of CDK1 and cyclin B1 expression contributed to oridonin-induced cell cycle arrest at the G2/M phase and growth inhibition in SGC-7901 GC cells. However, so far, no study has proposed and tested CDK1 as an independent prognostic factor for GC, and the molecular mechanism of CDK1 in GC is still unclear. Therefore, the aim of this study is to explore the advantages of CDK1 as an independent prognostic factor for GC from the point of view of statistics and bioinformatics.

In this paper, CDK1 was selected by the intersection of five topological analysis methods in CytoHubba plug-in. The expression of CDK1 in paracancerous tissues and GC tissues was compared, and its correlation with clinical features was studied by non-parametric test. Then, we investigated the prognostic value of CDK1 from analyzing the correlation of its expression with OS by univariate and multivariate Cox analyses and explored the potential biological function of CDK1 using the gene set enrichment analysis (GSEA).



MATERIALS AND METHODS


Dataset

We collected the set of gene expression profiles of GC from the Gene Expression Omnibus database1. This dataset included 10 GC samples and 10 normal samples. The platform was GPL570 (Affymetrix Human Genome U133 Plus 2.0), and The Cancer Genome Atlas (TCGA) data with corresponding clinical features of GC were downloaded from TCGA database2 that contained 375 tumor tissue samples and 32 paracancerous tissue samples. Gene symbol annotation information was used to match the corresponding probe, gene expression (Workflow Type: HTSeq-FPKM), and related clinical information (Data Type: Clinical Supplement) data (Wang et al., 2016). TCGA database is publicly available and is an open access platform.



Gene Selection

First, the Limma method was used to identify differentially expressed genes (DEGs) between GC tissues and paracancerous tissues. Second, a protein–protein interaction (PPI) network of DEGs was constructed based on the STRING V11 database, and the clustering module of the hub genes was obtained using the Molecular Complex Detection (MCODE) method in Cytoscape software (Shannon et al., 2003). Finally, five topological analysis methods in the CytoHubba plug-in (Chin et al., 2014), including Closeness, Maximal Clique Centrality (MCC), Maximum Neighborhood Component (MNC), Degree, and Edge Percolated Component (EPC), were used to narrow down the gene shortlist further, and the top-ranked genes were compared and selected for downstream analysis.



Gene Expression in Paracancerous Tissues and GC Tissues

To compare the gene expression levels in GC and paracancerous tissues, first, the single-gene expression data were extracted using the Limma package, and the data were divided into the high and low expression groups using the median value (samples with the gene expression greater/less than the median value were considered as the high/low expression group). Second, the p-value of Wilcox test was calculated where p < 0.05 indicated that the gene expression was significantly different between GC tissues and paracancerous tissues. Beeswarm package was used to draw scatter plots for differential expression analysis. Finally, in order to prove the conclusion further, the Perl script was used to obtain the paired samples of paracancerous tissues and GC tissues, and the differential expression analysis plot of the paired samples was drawn.



Correlation Analysis Between Gene Expression and Clinical Features

A large amount of clinicopathological information including gender, age, tumor-node-metastasis (TNM) staging, grade, and pathological stage were collected from TCGA dataset. Logistic regression was used to test the correlation between gene expression and the clinical features where a p-value < 0.05 was considered statistically significant.



Survival Analysis

In the survival analysis, all the paracancerous tissue samples were removed, and only the GC tissue samples were retained. Based on the high and low expression groups, Kaplan–Meier was used to draw a survival analysis curve of the selected gene where a p-value of 0.05 was used as the statistical threshold.



Univariate and Multivariate Cox Analyses

Cox proportional hazard models of univariate and multivariate were used to calculate 95% confidence interval (CI) and hazard ratio (HR) where survival package was used for statistical analysis. Univariate Cox analysis model was used to compare the relationship between clinical features and survival rates. Multivariate Cox analysis model was used to evaluate how the gene expression and the clinical factors (gender, age, grade, and stage) affect OS. p < 0.05 was set as the threshold, and the forest boxplot was drawn using the survminer package.



Gene Enrichment Analysis

The data obtained from TCGA were divided into the high and low expression groups according to the expression of target gene for multi-factor GSEA (Subramanian, 2005). GSEA was carried out to explore the gene biological functions. The enrichment results that satisfied two conditions of FDR < 0.05 and p < 0.05 were considered statistically significant.



RESULTS


Selection of CDK1 Gene

Limma identified 1,599 DEGs in the dataset GSE79973 where 1,269 genes were upregulated and 330 genes were downregulated. These DEGs were imported into the STRING V11 database to obtain a TSV file of protein interactions. After the hub genes were calculated by CytoHubba plug-in, one cluster module of hub genes with the highest scoring was obtained that contained 92 nodes/genes and 3,628 edges (Figure 1A). The 92 hub genes were calculated by five topological analysis methods, and the top 10 ranked genes for each method were selected (Table 1), among which CDK1, VCAN, CCNB1, and AURKB were found in the intersection of the results of five methods (Figure 1B). All the four hub genes were upregulated. Besides, CDK1 was found to be ranked first by two topological methods (MNC and EPC) (Table 1). Therefore, in the downstream analysis, we focused on the expression and prognostic value of CDK1 in GC.


[image: image]

FIGURE 1. (A) The clustering module of the hub genes with the highest score generated by MCODE. (B) The intersection of the top 10 selected genes of five topological methods.



TABLE 1. Top 10 genes and their scores selected by Degree, MCC, EPC, MNC, and Closeness methods.
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Expression of CDK1 in Paracancerous Tissues and GC Tissues

Since the median value of the expression level of CDK1 in GC tissues was significantly higher than that in paracancerous tissues, CDK1 was considered to be highly expressed in GC tissues (Figure 2A). This conclusion could also be drawn from the differential expression analysis of paired tissue samples (Figure 2B), where the lines connected the paracancerous tissue and GC tissue of the same patient. Most lines had an upward trend indicating that the expression level of CDK1 was highly expressed in GC tissues.


[image: image]

FIGURE 2. Expression analysis of CDK1. (A) The scatter plot of differential expression analysis of CDK1 in two types of tissues. (B) The differential expression analysis map of paired samples. Blue dots represent the paracancerous tissues, and red dots represent the GC tissues.




Correlation Between CDK1 Expression Level and Clinicopathological Features

According to clinical and pathological information from TCGA, logistic regression analysis showed that CDK1 expression level was significantly correlated with stage (p-value < 0.05 for III vs I and IV vs I) and grade (p-value < 0.05 for III vs I), but not significantly correlated with age and gender (p > 0.05, Table 2).


TABLE 2. Correlation between CDK1 expression and clinicopathological features using logistic regression.
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Survival Analysis of CDK1

In the result of survival analysis of CDK1 (Figure 3), p < 0.05 indicated that the survival rates of the high and low expression groups were significantly different. The red line represented the high expression group, and the black line represented the low expression group. It was seen from the result in the figure that the survival rate of the high expression group was significantly lower than that of the low expression group.
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FIGURE 3. The overall survival rate of the high and low expression groups of CDK1.




Univariate and Multivariate Cox Analyses

The analysis results of the correlation between CDK1 expression and OS as well as other clinical features investigated by Cox models were shown in Table 3. In univariate survival analysis, some factors including age (HR = 1.269, p-value = 0.0056), pathological stage (HR = 1.3350, p-value = 0.0054), T (HR = 1.0975, p-value = 0.0317), N (HR = 1.6707, p-value = 0.0087), M (HR = 2.4306, p-value = 0.0245), and CDK1 expression (HR = 1.2182, p-value = 0.0023) were revealed to be significantly correlated with OS. And the multivariate Cox analysis, described by the forest boxplot (Figure 4), also suggested that age and CDK1 expression were significantly correlated with OS (p-value < 0.05). Therefore, CDK1 may serve as an independent prognostic factor for GC.


TABLE 3. Univariate and multivariate Cox analyses of the correlation between CDK1 expression and OS as well as other clinical features.
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FIGURE 4. Forest boxplot for multivariate Cox analysis of the correlation between CDK1 expression and OS as well as other clinical features.




Multi-Factor GSEA Enrichment Analysis

Gene set enrichment analysis was performed to explore the potential biological functions of CDK1, and it was used to analyze the high and low expression groups of CDK1 gene. Figure 5 shows the result of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with top five pathways positively related to CDK1 expression and top four negatively related pathways. These results implied that CDK1 expression was involved in prostate cancer, small cell lung cancer, and GC and was significantly correlated with the WNT signaling pathway and T cell receptor signaling pathway (Table 4).
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FIGURE 5. KEGG pathway shows five positive and four negative correlated groups.



TABLE 4. Enrichment parameters of CDK1 analyzed by GSEA.
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DISCUSSION

Gastric cancer is one of the common digestive malignancies that seriously threaten human health. However, the factors affecting the occurrence, development, and prognosis of GC are still unclear. Therefore, it is of great significance to explore the genes related to the prognosis of GC from the gene level and molecule level for the treatment and prognosis assessment of GC.

The Cancer Genome Atlas database contains abundant types of tumor data and complete clinical information, which provides an important resource for the study of GC. In this study, the significant role of CDK1 in the treatment and prognosis of GC was discussed by comprehensive statistical methods. First, CDK1 was selected as the aim gene by combing five topological methods. The results of Limma package and Wilcox test showed that CDK1 was highly expressed in GC samples. Second, logistic regression was used to analyze the correlation between CDK1 expression and the corresponding clinical features. It was concluded that CDK1 expression was significantly correlated with pathological stage and grade, but not with age or gender. Survival analysis using Kaplan–Meier showed that the survival rate of the CDK1 high expression group was significantly lower than that of the low expression group. And the prognostic value of CDK1 was analyzed by univariate and multivariate Cox proportional hazard models. The results showed that CDK1 may be an independent prognostic factor for GC. Finally, GSEA revealed that CDK1 expression was involved in prostate cancer, small cell lung cancer, and GC and was significantly correlated with the WNT signaling pathway and T cell receptor signaling pathway.

There were several literatures using the same dataset in this study (Chen et al., 2020; Chi et al., 2020; Li Z. et al., 2020; Tian et al., 2020; Wang F. et al., 2020; Wu et al., 2020). However, most of them selected multiple genes for GC by some routine methods and did not concentrate on one gene/biomarker. And CDK1 was not identified as a key gene associated with GC in those studies. In view of the important role of CDK1 in the prognosis evaluation of GC, it may become a new target for precise treatment of GC, which is worthy of further study. Some references have shown that the abnormal expression of CDK1 was associated with poor prognosis of some other cancers including colorectal cancer, lung cancer, and pleural mesothelioma. Zhang et al. found that the loss of cytoplasmic CDK1 predicted low survival rate of human lung cancer and induced chemotherapeutic resistance (Chunyu et al., 2011). Linton et al. (2014) revealed through an RNAi-based screen that PLK1, CDK1, and NDC80 may be the potential therapeutic targets in malignant pleural mesothelioma. Sung et al. (2014) showed that high nuclear/cytoplasmic ratio of CDK1 expression predicted poor prognosis in colorectal cancer. Nishida et al. (2015) found that cyclin-dependent kinase activity was related to the prognosis of gastrointestinal tumors. These studies provided theoretical support for CDK1 as a therapeutic target and a new prognostic factor for GC. However, the expression and role of CDK1 in GC are still not fully understood. Therefore, this study evaluated the correlation between CDK1 and prognosis of GC as well as other clinicopathological features from the point of view of statistics and bioinformatics (Wang et al., 2013; Wei et al., 2017a,b, 2018; Su et al., 2018; Zhang et al., 2018; Ding et al., 2019; Shen et al., 2019; Fan et al., 2020; Li H. Y. et al., 2020; Li J. et al., 2020; Tan et al., 2020; Wang H. et al., 2020; Wang Z. et al., 2020) and provided important clues for further exploring the biological function and molecular mechanism of CDK1. In future work, if condition permits, we hope to conduct some experiments to verify the important role of CDK1 in GC from biological point of view.
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Acute lymphoblastic leukemia (ALL) as a common cancer is a heterogeneous disease which is mainly divided into BCP-ALL and T-ALL, accounting for 80–85% and 15–20%, respectively. There are many differences between BCP-ALL and T-ALL, including prognosis, treatment, drug screening, gene research and so on. In this study, starting with methylation and gene expression data, we analyzed the molecular differences between BCP-ALL and T-ALL and identified the multi-omics signatures using Boruta and Monte Carlo feature selection methods. There were 7 expression signature genes (CD3D, VPREB3, HLA-DRA, PAX5, BLNK, GALNT6, SLC4A8) and 168 methylation sites corresponding to 175 methylation signature genes. The overall accuracy, accuracy of BCP-ALL, accuracy of T-ALL of the RIPPER (Repeated Incremental Pruning to Produce Error Reduction) classifier using these signatures evaluated with 10-fold cross validation repeated 3 times were 0.973, 0.990, and 0.933, respectively. Two overlapped genes between 175 methylation signature genes and 7 expression signature genes were CD3D and VPREB3. The network analysis of the methylation and expression signature genes suggested that their common gene, CD3D, was not only different on both methylation and expression levels, but also played a key regulatory role as hub on the network. Our results provided insights of understanding the underlying molecular mechanisms of ALL and facilitated more precision diagnosis and treatment of ALL.

Keywords: acute lymphoblastic leukemia, Boruta, Monte Carlo feature selection, network analysis, hub, multi-omics, expression, methylation


INTRODUCTION

Acute lymphoblastic leukemia (ALL) as a common cancer is a heterogeneous disease that originates from lymphocyte progenitor cells of B-cells or T-cells. It is a childhood malignant tumor that comprises >25% of pediatric neoplasia in American (Jabbour et al., 2015; Pui et al., 2015). Among adults, the incidence of ALL is much lower, accounting for only 0.2% of all cancers. However, the prognosis of ALL remains worrying, with an estimated 5-year overall survival (OS) of between 20 and 40% (Sive et al., 2012; Wolach et al., 2017). According to the World Health Organization (WHO) classification, ALL can be divided into B-cell ALL (B-ALL) and T-cell ALL (T-ALL). B-cell precursor ALL (BCP-ALL) is one of the B-ALL (Herold et al., 2014; Jones et al., 2016). In children’s ALL, it is mainly divided into BCP-ALL and T-ALL, accounting for 80–85% and 15–20%, respectively (Graux, 2011). These different subtypes are characterized by structural chromosomal rearrangements and repeated copy number alterations, which with great clinical significance (Goldberg et al., 2003).

There are prognosis, treatment and genetics differences between BCP-ALL and T-ALL (Gutierrez et al., 2014; Pui et al., 2015): (1) The prognosis of T-ALL patients is always worse than BCP-ALL patients (Goldberg et al., 2003; Eckert et al., 2013); (2) Many targeted immunotherapies have been developed for BCP-ALL patients but not for T-ALL patients (Pui et al., 2015); (3) T-ALL is associated with a wide range of acquired genetic abnormalities, which leads to abnormal proliferation and development stagnation of malignant lymphoid progenitor cells (Van Vlierberghe et al., 2008; Teitell and Pandolfi, 2009). This poses a challenge to the development of targeted therapy with wide application value. In the studies of the gene expression profile of ALL, the high expression of CD45 in leukemia cells was not only related to the poor prognosis of BCP-ALL patients but also to the poor prognosis of T-ALL patients. However, the prognostic correlation of CD45 expression in T-ALL was much higher than that in BCP-ALL (Hermiston et al., 2003; Cario et al., 2014). Moreover, PR-104 has been shown to specifically target hypoxic regions of leukemia infiltration, and was effective in the treatment of T-ALL xenotransplantation, but not in the treatment of BCP-ALL xenograft (Benito et al., 2011).

In this study, starting with methylation and gene expression data, we analyzed the molecular differences between BCP-ALL and T-ALL, screened out the molecular characteristics, and explored the relationship between these characteristics and the two subtypes of ALL.



MATERIALS AND METHODS


The Multi-Omics Dataset of ALL

We downloaded the methylation and expression data of 69 BCP-ALL and 30 T-ALL patients from GEO (Gene Expression Omnibus) under accession number of GSE49031 and GSE47051 (Nordlund et al., 2013, 2015; Borssen et al., 2018), respectively. It was a large study performed by Uppsala University. There were originally 945 methylation samples and 108 expression samples. But the overlapped sample size between methylation data and expression data was 99 and within the 99 samples, there were 69 BCP-ALL and 30 T-ALL patients. Our goal was to systematically investigate the molecular differences between BCP-ALL and T-ALL and try to use these molecular differences to explain the clinical differences.

The methylation data were generated with Illumina HumanMethylation450 BeadChip and there were 485,577 methylation probes. Since there were missing values, we filtered the probes with missing values in at least 20% samples and kept 485,096 probes. Since the probes out of gene ranges were hard to explain, we kept the 317,845 probes that can be annotated onto genes and imputed the missing values using KNN (K = 10) method. Meanwhile, the expression data were generated with Affymetrix Human Genome U133 Plus 2.0 Array. The expression values of probes corresponding to the same gene were averaged. At last, the dataset was the expression levels of 15,888 genes and methylation levels of 317,845 probes in 69 BCP-ALL and 30 T-ALL patients.



Filter the Irrelevant Features Using Boruta

As we mentioned before, there were 15,888+317,845 = 333,733 features for each ALL sample. The number of features was much larger than the sample size. If we directly analyze all these 333,733 features, there will be too much noise and too many random feature combinations that can classify the samples. Therefore, we filtered the irrelevant features using Boruta method (Kursa and Rudnicki, 2010). The Boruta method can find out the relevant features and significantly reduce the number of features based on ensemble learning of random forest classifiers. Boruta is a widely used method and has been proven to be an effective method to find all relevant features (Pan et al., 2020; Yuan et al., 2020; Zhang et al., 2020).



Identify the Important Features Using Monte Carlo Feature Selection

Although Boruta method can filter irrelevant features and keep the relevant features, usually the number of features was still too large and the importance of features were still unknown. We need more sophisticated feature selection method to calculate the importance of features and rank the features. In this study, we applied MCFS (Monte Carlo Feature Selection) (Draminski et al., 2008). The MCFS has been widely used for feature selection (Chen et al., 2018, 2019; Pan et al., 2018, 2019a,b; Li et al., 2020). It divided the whole dataset into many small subsets. The subsets had much less features and the data structure of these subsets were relatively simple. Decision trees can be easily constructed. Based on all the trees on all the subsets, the importance of each feature can be calculated. The basic idea was that if a feature appeared in many trees, it was important and if a feature can classify many samples correctly, it was important. Based on these two rules, the importance of each feature was calculated. What’s more, the data was shuffled to generate random importance of each feature, the significance of each feature can be estimated by comparing the random importance and actual importance. At last, the significant features with importance much greater than permutated importance can be selected. Meanwhile, the RIPPER (Repeated Incremental Pruning to Produce Error Reduction) rules within the trees can be cross-validated and their accuracy can be estimated.



RESULTS AND DISCUSSION


The Relevant Features Identified by Boruta

As we mentioned there were 333,733 features (15,888 expression feature and 317,845 methylation features) for each ALL sample. The number of features were much larger than the sample size (99 in this study). Most of the features were not relevant to ALL. Keeping such features in the dataset will introduce noise and make the analysis inaccurate. Therefore, we adopted Boruta method (Kursa and Rudnicki, 2010) to remove irrelevant features. After running Boruta, 1,398 features were kept. Within these 1,398 features, there were 1,374 methylation features and 24 expression features.



The Important Features Identified by MCFS

The number of features filtered by Boruta (1,398) was still too large to be biomarkers. Therefore, we further reduced the number of features with MCFS method and finally identified 175 significant features. Within the 175 features, there were 168 methylation features (probe IDs starting with “cg”) and 7 expression features (CD3D, VPREB3, HLA-DRA, PAX5, BLNK, GALNT6, SLC4A8). These 175 features were given in Table 1. The annotations of the 168 methylation probes of in Supplementary Table 1.


TABLE 1. The 175 important features identified by MCFS.

[image: Table 1]As we mentioned in section “Methods,” the MCFS method can also extract the classification rules. The confusion matrix of these RIPPER classification rules evaluated with 10-fold cross validation repeated 3 times was given in Table 2. The overall accuracy, accuracy of BCP-ALL, accuracy of T-ALL were 0.973, 0.990, and 0.933, respectively. These results meant that these features can classify the BCP-ALL and T-ALL very well.


TABLE 2. The confusion matrix of the RIPPER rules evaluated with 10-fold cross validation repeated 3 times.
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The Enrichment Analysis of the Selected Genes

Based on the annotations in Supplementary Table 1, we mapped the 168 methylation probes onto 175 genes. There were two overlapped genes (CD3D and VPREB3) between the 175 methylation signature genes and the 7 expression signature genes. We combined the 175 methylation signature genes and the 7 expression signature genes. Since there were two overlapped genes between them, there were 180 selected genes. We enriched the 180 selected genes onto KEGG pathways using WebGestalt1 (Wang et al., 2017). The KEGG enrichment results were shown in Figure 1. The x axis was log2 of enrichment ratio while the y axis was the -Log10 of FDR. The pathways on the top right corner were the significantly enrich pathways. It can be seen that hsa04640 Hematopoietic cell lineage was the enriched KEGG pathway. The were 11 selected genes on hsa04640 Hematopoietic cell lineage pathway: CD3D, CD3E, CD3G, CD59, FCER2, GP9, HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DRA and IL1B. The enrichment p value and FDR were 3.28e-9 and 5.35e-7, respectively. Its enrichment ratio was 11. As CD3D was dysfunctional on both methylation and gene expression levels, HLA-DRA was dysfunctional on gene expression levels and other genes were dysfunctional on methylation levels, the hsa04640 Hematopoietic cell lineage pathway was dysfunctional on both methylation and gene expression levels.


[image: image]

FIGURE 1. The enrichment results of the 180 selected genes using WebGestalt. The x axis was log2 of enrichment ratio while the y axis was the -Log10 of FDR. The pathways on the top right corner were the significantly enrich pathways. It can be seen that hsa04640 Hematopoietic cell lineage was the enriched KEGG pathway.




The Network of Methylation and Expression Signature Genes

We searched the methylation and expression signature genes in STRING database2 (Szklarczyk et al., 2019) and their network with highest confidence (confidence score >0.900) was shown in Figure 2. The confidence score integrated the information from multiple sources including text mining, experiments, databases, co-expression, neighborhood, gene fusion and co-occurrence. It ranged from 0 to 1. The higher the confidence score was, the more reliable the interaction was. The cutoff of confidence score was set to be 0.900 since 0.900 was considered to be highest confidence in the STRING database. It can be seen that CD3D was the hub of the whole network. CD3D and another neighbor gene on the network, HLA-DRA, both belonged to hsa04640 Hematopoietic cell lineage pathway. The protein encoded by CD3D is part of the T cell receptor / CD3 complex (TCR/CD3 complex) and is involved in T cell development and signal transduction (Shi et al., 2019). CD3D has been shown to work with PKRCQ as a model to distinguish between B-ALL and T-ALL (Ma et al., 2016).
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FIGURE 2. The network of methylation and expression signature genes. The methylation and expression signature genes were colored in gray and pink respectively. The red node, CD3D, was both methylation signature gene and expression signature gene. CD3D was the hub node of the network.




The Functional Analysis of the Selected Genes

Within the 7 expression signature genes, beside CD3D which was discussed above, VPREB3 and HLA-DRA also looked promising.

VPREB3 is the B-cell receptor component and its overexpression can activate the pro-survival PI3K pathway (Soldini et al., 2014). It has been reported as a biomarker for B-cell lymphoma by many studies (Heerema-McKenney et al., 2010; Rodig et al., 2010; Soldini et al., 2014).

HLA-DRA is related to the antigen presentation steps of the immune system (Hotchkiss et al., 2013). In the study of Morrison et al. (2010), women and children with multiple sclerosis (MS) had a fourfold increased risk of developing ALL. And, there was a certain correlation between MS and HLA-DRA single nucleotide polymorphism (SNP) (Morrison et al., 2010). Moreover, HLA genes are candidate genetic susceptibility loci for childhood ALL, HLA-DP1 was significantly correlated with ALL in children (Urayama et al., 2012). According to Ross et al. (2019), the ablation of POZ domain of ZBTB17 (Miz-1) interferes with its interaction with c-MYC and delays the occurrence of T-ALL and B-ALL.

Within the 175 methylation signature genes, there were many great candidates, such as HDAC4, HDAC9, LMO2, MEF2D, CD40, PAX5, BLNK and TLE1.

HDAC4 and HDAC9 are Histone deacetylases (HDACs) which may be a potential target for cancer treatment, including hematological malignancies. Moreno et al. (2010) detected the expression profile of HDAC gene in ALL samples by PCR. It was found that HDAC1 and HDAC4 were highly expressed in T-ALL and HDAC5 was highly expressed in B-ALL. Moreover, the expression of HDAC9 was correlated with B-ALL patients (Moreno et al., 2010).

LMO2 plays an essential role during early hematopoiesis and is frequently activated in T-ALL patients (Morishima et al., 2019). Wu et al. have deeply studied the mechanism of LMO2 in T-ALL and found that LMO2 can induce the transcriptional inhibition of ZEB1, while ZEB1 plays an important role in promoting T cell differentiation and may play an anti-cancer role in T-ALL (Wu et al., 2018). Several studies have also confirmed that LMO2 plays an important role in T-ALL (Curtis and McCormack, 2010; Homminga et al., 2012; Rahman et al., 2017).

MEF2D has been reported as a biomarker for a B-ALL subtype with a low survival rate. According to Zhang M et al., MEF2D-SS18 fusion gene blocks the differentiation of B cells, which plays an important role in the pathogenesis and prognosis of B-ALL (Zhang et al., 2018). Besides, Suzuki et al. (2016) confirmed that MEF2D-BCL9 fusion gene is associated with juvenile acute BCP-ALL.

CD40 is the member of the tumor necrosis factor receptor (TNFR) family, are critical regulators of lymphocyte growth and differentiation. Troeger et al. (2008) confirmed that the high expression of CD40 in BCP-ALL cells is an independent prognostic indicator, which indicates a better recurrence-free survival.

PAX5 is a haplotype tumor suppressor gene in human B-All, which is involved in a variety of chromosome translocation (Jamrog et al., 2018). In the investigation and analysis of Bastian et al. (2019), it was found that the army of patients with BCP-ALL subgroup carried PAX5 mutation.

BLNK is an adapter molecule essential to the development of normal B cells and is associated with increased pro-B/pre-B-cell expansion in mice. It was reported that BLNK deficiency was one of the main causes of B-ALL (Imai et al., 2004). The results of Nakayama et al. suggested that somatic loss of BLNK and concomitant mutations leading to constitutive activation of Jak/STAT5 pathway result in the generation of BCP-ALL (Nakayama et al., 2009).

TLE1 can be used as an indicator of poor prognosis of T-ALL (Brassesco et al., 2018) and the expression of ATP10A was up-regulated in BCP-ALL (Olsson et al., 2014).



CONCLUSION

Although there have been studies on the clinical differences between BCP-ALL and T-ALL, there has been no in-depth study of their underlying mechanism. In our study, the multi-omics profiles in BCP-ALL and T-ALL were analyzed. The discovered epigenetic changes of ALL and their possible effects on gene expression can help us understand the molecular mechanisms of the development, progression and recurrence of ALL. In ALL, those molecular characteristics have the function of differential diagnosis, targeted therapy and so on. At the same time, our research not only provides new information about the methylation and gene expression pattern of ALL, but also provides a selective reference for the study of ALL genes and methylation sites.
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Lung cancer is the first cause of cancer death, and gene copy number variation (CNV) is a vital cause of lung cancer progression. Prognosis prediction of patients followed by medication guidance by detecting CNV of lung cancer is emerging as a promising precise treatment in the future. In this paper, the differences in CNV and gene expression between cancer tissue and normal tissue of lung adenocarcinoma (LUAD) from The Cancer Genome Atlas Lung Adenocarcinoma data set were firstly analyzed, and greater differences were observed. Furthermore, CNV-driven differentially expressed long non-coding RNAs (lncRNAs) were screened out, and then, a competing endogenous RNA (ceRNA) regulatory network related to the gene CNV was established, which involved 9 lncRNAs, seven microRNAs, and 178 downstream messenger RNAs (mRNAs). Pathway enrichment analyses sequentially performed revealed that the downstream mRNAs were mainly enriched in biological pathways related to cell division, DNA repair, and so on, indicating that these mRNAs mainly affected the replication and growth of tumor cells. Besides, the relationship between lncRNAs and drug effects was explored based on previous studies, and it was found that LINC00511 and LINC00942 in the CNV-associated ceRNA network could be used to determine tumor response to drug treatment. As examined, the drugs affected by these two lncRNAs mainly targeted metabolism, target of rapamycin signaling pathway, phosphatidylinositol-3-kinase signaling pathway, epidermal growth factor receptor signaling pathway, and cell cycle. In summary, the present research was devoted to analyzing CNV, lncRNA, mRNA, and microRNA of lung cancer, and nine lncRNAs that could affect the CNV-associated ceRNA network we constructed were identified, two of which are promising in determining tumor response to drug treatment.

Keywords: lncRNA, copy number variation, TCGA, LUAD, ceRNA network


INTRODUCTION

Lung cancer is the leading cause of cancer death in modern times, and it has caused 140,000 deaths in the first three quarters of 2020, and ~220,000 people have suffered from lung adenocarcinoma (LUAD), according to the Surveillance, Epidemiology, and End Results database of the National Cancer Institute (Travert et al., 2020). Lung cancer has brought a great burden on patients, their families, and the whole society. Treatments for lung cancer mainly include surgical resection, radiotherapy, chemotherapy, and drug therapy (Lai et al., 2019; Leonetti et al., 2019; Yamada et al., 2019). LUAD is a common type of lung cancer, and surgical resection turns out to be the main treatment. Nevertheless, due to the characteristics of easy metastasis and difficulty in the radical cure, relapses often occur after surgery, and postoperative chemotherapy is hence needed for effective cancer control (Fedor et al., 2013; Salazar et al., 2017). At present, many drugs have been used for the treatment of LUAD, such as Osimertinib, a drug that targets epidermal growth factor receptor, and Brigatinib, which targets anaplastic lymphoma kinase (Mok et al., 2017; Camidge et al., 2018). In addition to targeted drugs, immune drugs are also emerging and becoming popular therapeutic drugs, such as Nivolumab and Ipilimumab (Yang et al., 2018; Pinto et al., 2019). However, due to various reasons, the control effect of these drugs on cancer is often not sustainable, and LUAD cells are prone to develop resistance to these drugs (Xia et al., 2019; Zhu X. et al., 2019). Therefore, looking for factors that affect drug treatment to improve drug treatment effect and prolong the effective inhibition of cancer with drugs is a possible solution to improve the prognosis of patients with LUAD.

Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA that exist in the cytoplasm with a length exceeding 200 bp (Perkel, 2013). LncRNAs, mainly produced by the interruption of protein-coding gene structure, exist in the cytoplasm and interact with other molecules in cells, thereby regulating the physiological and biochemical processes in organism (Fan and Hu, 2016). Existing studies found that lncRNAs can also be encapsulated in exosomes and secreted to the outside of cells, and lncRNAs can also remotely regulate the physiological and biochemical functions of other cells, thereby affecting the body's physiological functions (Dragomir et al., 2018). There are several ways in which lncRNAs affect physiology. For instance, lncRNAs can directly regulate gene expression through influencing RNA synthetase recruitment. In addition, lncRNAs can improve translation efficiency by maintaining mRNA activity and reduce translation speed by colliding ribosomes. Most importantly, lncRNAs can specifically bind with and sponge microRNAs (miRNAs) to block the miRNA-induced degradation of mRNAs (Long et al., 2017). Because cancer drugs often achieve their therapeutic effects by regulating the expression of mRNAs in cells, lncRNAs, which can also affect mRNA expression, are considered to be important factors affecting the therapeutic effect of drugs (Guo et al., 2018). A current study finds that lncRNA small nucleolar RNA host gene three can induce Sorafenib resistance through the miR-128/CD151 pathway (Zhang et al., 2019). Besides, lncRNA HOX antisense intergenic RNA can also affect the effect of medication on lung cancer patients through Wnt signaling pathway (Guo et al., 2018). Therefore, it is believed that the identification of lncRNAs that may affect the effect of drug treatment in LUAD is of great significance to improve the treatment and prognosis of LUAD patients.

DNA copy number variation (CNV), different from other variations, such as insertion, deletion, and dislocation, is a type of variation that results in an increase or a reduction of DNA copy number (Liang et al., 2016). Because DNA copy number is related to the expression of DNA-coding RNA, CNV is considered to be a factor responsible for the alteration in coding RNA expression (Liu et al., 2019). Present studies believe that copy number amplification can greatly elevate the expression of corresponding DNA-coding RNA, whereas copy number deletion will reduce the expression of the coding RNA (Liu et al., 2019). Currently, numerous studies that focus on the CNV of CNV-driven mRNA uncover that CNV of the mRNA can indeed affect prognosis and drug resistance of cancer, and it is reported that the copy number deletion of 17q22 can make prostate cancer develop resistant to Enzalutamide (Lu et al., 2014; Guan et al., 2020). With the understanding regarding the regulatory mechanism of lncRNA going deeper, it is found that DNA CNV of lncRNA is also one of the reasons that drive cells to show differences at the molecular level (Zheng et al., 2020). Additionally, given credit to the development of sequencing technology and bioinformatics methods, detection of CNVs in cancer tissue has become inexpensive and simple, and it has become a feasible detection method to determine the prognosis of patients and the effects of drug treatment.

In this study, CNV, lncRNAs, miRNAs, and mRNAs in The Cancer Genome Atlas Lung (TCGA)-LUAD data set were analyzed to explore a CNV-associated competing endogenous RNA (ceRNA) network related to cancer development, and lncRNAs related to drug treatment of LUAD patients were further explored. LUAD-related data were firstly downloaded from TCGA database, and differential analysis was performed to screen out genes and CNVs with significant differences between normal and tumor tissue. Then, CNV-driven lncRNAs, along with related miRNAs and mRNAs, were screened out. Furthermore, a ceRNA regulatory network based on the identified lncRNAs, miRNAs, and mRNAs was established, and the key lncRNAs and mRNAs were identified. Finally, the molecular biological functions that might be affected by the network mRNAs were analyzed, and lncRNAs related to drug treatment in LUAD were investigated.



MATERIALS AND METHODS


Data Downloading

Transcriptome expression data (normal: 59, tumor: 535), mature miRNA expression data (normal: 46, tumor: 521), and DNA copy number data (normal: 591, tumor: 556) of LUAD were downloaded from TCGA database. According to the annotation of the human genome GRCh38, corresponding mRNA and lncRNA expression data were extracted from the transcriptome expression data. Corresponding clinical data were downloaded on September 23, 2020, in the meanwhile (Supplementary Table 1). To explain the analytic process more clearly, a flow chart of this study was drawn (Figure 1).


[image: Figure 1]
FIGURE 1. Overall workflow of this study.




Differential Analysis

Samples were divided into the tumor or normal group. R package edgeR was applied to perform differential analysis to filter differentially expressed lncRNAs, miRNAs, and mRNAs (DElncRNAs, DEmiRNAs, and DEmRNAs), with |logFC| > 1.5 and FDR < 0.05 as thresholds.



Identification of Copy Number Variation-Driven Long Non-coding RNAs

The chi-square test was used to analyze whether there is a significant difference in the CNV of lncRNA in normal tissue samples and tumor samples. The Bonferroni method was used to correct the p-value and lncRNAs with CNVs with adjusted. p < 0.05 were screened. lncRNAs with copy number amplification and with differentially upregulated expression were intersected, whereas lncRNAs with copy number deletion and with differentially downregulated expression were intersected. Then, the Kruskal–Wallis test was used to analyze the correlation between the CNV and the differential expression to select CNV-driven DElncRNAs (p < 0.05).



Construction of Copy Number Variation-Driven Competing Endogenous RNA Network

miRNAs that interacted with CNV-driven DElncRNAs were predicted through LncBase database (http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex) and starBase database (http://starbase.sysu.edu.cn/index.php), and the predicted miRNAs were then intersected with DEmiRNAs to select the DEmiRNAs that interacted with CNV-driven DElncRNAs. Pearson correlation analysis was conducted to calculate the correlation between the expression of CNV-driven DElncRNAs and the DEmiRNAs mentioned earlier. The DEmiRNAs with r < −0.2 and p < 0.05 were selected as downstream CNV-associated DEmiRNAs regulated by lncRNAs.

Similarly, mRNAs that had an interactive relationship with CNV-associated DEmiRNAs (the mRNAs in at least two databases were considered to have an interactive relationship with CNV-associated DEmiRNAs) were predicted through starBase, miRDB (http://mirdb.org/), mirDIP (http://ophid.utoronto.ca/mirDIP/index.jsp), and TargetScan (http://www.targetscan.org/vert_72/) databases. The predicted mRNAs mentioned earlier were intersected with DEmRNAs, and the DEmRNAs with r < −0.2 and p < 0.05 were regarded as downstream CNV-associated DEmRNAs regulated by miRNAs.

Based on the results mentioned earlier, lncRNAs, miRNAs, and mRNAs with complete regulatory relationships were selected to establish a corresponding ceRNA network for subsequent analysis. The ceRNA network was the CNV-associated ceRNA network visualized by the Cytoscape, and the R package GISTIC2 was used to draw a chromosomal map showing CNV regions in coding genes of lncRNAs. Afterward, patients were divided into Amplification group, Deletion group, and Diploid group according to the CNV of lncRNAs in the ceRNA network. Box plots were used to show the relationship between CNV and lncRNA expression.



Kyoto Encyclopedia of Genes and Genomes and Gene Ontology Enrichment Analyses

Based on the mRNAs in the ceRNA network, R package ClusterProfiler was used to perform Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis to confirm the biological functions and signaling pathways that might be affected by the mRNAs in the ceRNA network.



Survival Analysis

For survival analysis, patients were grouped according to the CNV of corresponding lncRNAs. R package survival was used to draw survival curves of patients to evaluate the possible impact of CNV of lncRNAs on the prognosis.




RESULTS


Differential Analysis

Expression data of lncRNA, miRNA, and mRNA of LUAD were obtained from TCGA database, samples were grouped into normal or tumor sample, and differential analysis was performed. Finally, a total of 2,555 DElncRNAs, including 2,142 upregulated lncRNAs and 413 downregulated lncRNAs, were obtained from lncRNA data (Figure 2A). A total of 186 DEmiRNAs, including 147 upregulated miRNAs and 39 downregulated miRNAs, were obtained from miRNA data (Figure 2B). A total of 3,591 DEmRNAs, including 2,553 upregulated mRNAs and 1,038 downregulated mRNAs, were obtained from mRNA data (Figure 2C).


[image: Figure 2]
FIGURE 2. Differential analysis results. (A) Volcano plot of DElncRNAs; (B) volcano plot of DEmiRNAs; (C) volcano plot of DEmRNAs; green dots represent differentially downregulated genes, and red dots represent differentially upregulated genes.




Selection of Copy Number Variation-Driven Long Non-coding RNAs

To screen CNV-driven lncRNAs, the chi-square test was first used to analyze the difference in CNVs in cancer tissue and normal tissue. The results denoted significant CNVs in coding genes of 6,640 lncRNAs in LUAD tissue (Figure 3A). According to the lncRNA differential expression and CNV, the lncRNAs with consistent alteration in CNV and expression were screened out. Firstly, 167 differentially upregulated lncRNAs with copy number amplification and 20 differentially downregulated lncRNAs with copy number deletion were obtained (Figures 3B,C). Then, the correlation between CNV and lncRNA expression was tested, and finally, 67 CNV-driven DElncRNAs were obtained (Supplementary Table 2).


[image: Figure 3]
FIGURE 3. Filtering of CNV-driven DElncRNAs. (A) Circle map of lncRNA CNVs in LUAD (black dots represent duplication CNVs, and blue dots represent deletion CNVs; (B) Venn diagram filters upregulated lncRNAs with duplication CNVs; (C) Venn diagram filters downregulated lncRNAs with deletion CNVs.




Establishment of Competing Endogenous RNA Regulatory Network

Based on the CNV-driven DElncRNAs we identified earlier, a CNV-associated ceRNA network that contained nine lncRNAs, seven miRNAs, and 178 mRNAs was established through multiple databases (Table 1, Figures 4A–C). The Cytoscape was run to visualize the network to make the gene regulatory relationship more clearly (Figure 5A). Finally, chromosomal maps showing CNV regions were drawn, and some lncRNAs in the CNV-associated ceRNA network were marked (Figures 5B,C).


Table 1. Detailed information on CNV-driven DElncRNAs in the CNV-associated ceRNA network.
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FIGURE 4. Heatmaps of RNAs in CNV-associated ceRNA network. (A) Heatmap of lncRNAs in CNV-associated ceRNA network; (B) heatmap of miRNAs in CNV-associated ceRNA network; (C) heatmap of mRNAs in CNV-associated ceRNA network.
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FIGURE 5. Overview of CNV-associated ceRNA network and CNVs of lncRNAs. (A) Interaction between different RNAs in the CNV-associated ceRNA network; the shape of each node represents the type of RNA (squares represent lncRNAs, swallowtail quadrilaterals represent miRNAs, and circles represent mRNAs), and the color of each node represents the regulation type (the red represents upregulated, and the blue represents downregulated); (B,C) chromosomal view of amplification and deletion peaks between tumor and normal tissue; G-score (top) and p-value (bottom) were calculated by GISTIC2; right axis represents chromosomal position, and examples of CNV-driven DElncRNAs located in the peaks are labeled.




Pathway Enrichment Analyses of Copy Number Variation-Driven Differentially Expressed Messenger RNAs

After the ceRNA network was established, enrichment analyses were conducted on the network mRNAs to explore the biological functions and signaling pathways that might be affected. Gene Ontology annotation analysis revealed that these mRNAs were mainly enriched in biological functions such as organelle fission, nuclear division, DNA replication, mitotic nuclear division, and cell cycle checkpoint (Figure 6A). Kyoto Encyclopedia of Genes and Genomes enrichment analysis exhibited that these genes were mainly enriched in pathways involved in the cell cycle, cellular senescence, and p53 signaling pathway (Figure 6B). These results demonstrated that the mRNAs in the CNV-associated ceRNA network were mainly enriched in pathways related to cell division, DNA repair, and so on.


[image: Figure 6]
FIGURE 6. Functional enrichment analyses of mRNAs in CNV-associated ceRNA network. (A) Gene Ontology annotation of mRNAs in the CNV-associated ceRNA network; (B) Kyoto Encyclopedia of Genes and Genomes pathway enrichment of mRNAs in the CNV-associated ceRNA network.




Copy Number Variation-Driven Differentially Expressed Long Non-coding RNAs May Affect the Prognosis of Lung Adenocarcinoma Patients

Because the CNV-associated ceRNA network was built, the relationship between CNV in coding genes of lncRNA and lncRNA differential expression was simply plotted (Figure 7). The results displayed that changes in copy number of lncRNA coding genes were basically the same as the changes in expression levels. Among the nine lncRNAs in the network, there were eight high-expressed lncRNAs driven by copy number amplification and one low-expressed lncRNA driven by copy number deletion. Subsequently, survival analysis was performed using the corresponding clinical data in TCGA. The analysis results illustrated that CNVs of most lncRNAs did not directly affect the survival time of patients, whereas patients with copy number amplification in coding genes of AC092171.4 and LINC00942 had shorter overall survival time (Figure 8).


[image: Figure 7]
FIGURE 7. Association between expression and CNV of lncRNAs. Gray box represents the normal group, red box represents patients with amplification CNVs, and blue box represents patients with deletion CNVs.



[image: Figure 8]
FIGURE 8. Survival analysis of the 9 lncRNAs in CNV-associated ceRNA network. Gray line represents the normal group, red line represents patients with amplification CNVs, and blue line represents patients with deletion CNVs.




Expression of Copy Number Variation-Driven Differentially Expressed Long Non-coding RNAs May Affect the Effect of Drug Therapy

Finally, based on previous studies, lncRNAs related to drug treatment of LUAD patients were searched in the CNV-associated ceRNA network. It was found that there were two lncRNAs (LINC00511 and LINC00942) in the CNV-associated ceRNA network that were associated with cancer response to drugs (Table 2). As revealed, LINC00511 was related to FK866 and KIN001-055, whereas LINC00942 was related to AZD8055, Bexarotene, BEZ235, GDC0941, HG-5-88-01, LFM-A13, and PD-0332991.


Table 2. Drugs associated with lncRNAs in the ceRNA network.
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DISCUSSION

In this study, we explored a CNV-associated ceRNA network related to LUAD by analyzing changes in CNV and expression of lncRNAs, miRNAs, and mRNAs in tumor tissue of LUAD patients. On this basis, biological functions and signaling pathways that might be affected by the CNV-associated ceRNA network were analyzed, and lncRNAs related to drug therapy were further identified. Here, differential expression of lncRNAs, miRNAs, and mRNAs between tumor tissue and normal tissue was firstly explored, and the results clarified a greater difference. Previous studies showed that RNA expression in tumor tissue is dramatically different from that in normal tissue, and such huge changes can be observed in a variety of cancers, such as liver cancer and colon cancer (Chen et al., 2016; Cui et al., 2017). Such alteration of mRNAs in cancer has been studied extensively, whereas that of miRNAs and lncRNAs remains to be explored. It is now believed that the alteration of miRNAs in tumor tissue can regulate the expression of the corresponding mRNA and then promote or inhibit the occurrence and progression of cancer in various ways (Gao et al., 2015). In addition to miRNAs, lncRNAs, a type of long RNA that do not encode proteins, are also important molecules involved in intracellular regulation, and they have been considered to be related to the regulation of gene expression since they were discovered, and now, they are believed to play a regulatory role in cells by sponging miRNAs (Paraskevopoulou and Hatzigeorgiou, 2016). At present, as the research of the lncRNA–miRNA–mRNA network (ceRNA network) goes deeper, lncRNAs are considered to have an important relationship with the occurrence and progression of tumor (Wu et al., 2018). Studies found that lncRNAs may affect the therapeutic effect of drugs through the ceRNA network. For example, lncRNA homeobox A11-Antisense RNA can promote LUAD resistance to cisplatin by affecting Stat3 through influencing miR-454-3p (Zhao et al., 2018). Therefore, exploring changes in the three types of RNA is of great value to tumor therapy.

CNV is an important type of variation in cancer, and a large number of studies demonstrate that CNV can drive the occurrence and progression of cancer. For instance, copy number amplification of MAPKAPK2 is believed to elevate the prognostic risk of lung cancer patients, whereas copy number of MAPK kinase 3 is thought to increase breast cancer risk (Kuiper et al., 2010; Liu et al., 2012; MacNeil et al., 2014). Our research found that there were quite a few CNVs in cancer tissue of patients with LUAD, and many genes with CNVs were lncRNA coding genes. An existing study believes that changes in CNV-driven lncRNA expression can affect downstream gene expression, which in turn plays a physiological regulatory role (Liu et al., 2019). Therefore, here, genes with consistent changes in CNV and expression levels were screened out and considered to be CNV-driven DElncRNAs. CNV is also one of the emerging targets in cancer detection, and it is currently the most leading-edge cancer detection technology to determine the prognostic risk of patients by detecting blood circulating cell-free DNA CNVs (Peng et al., 2019). In this study, combined with differential analysis and correlation test, a total of 67 CNV-driven DElncRNAs were selected, and they were believed to be potential biomarkers closely related to cancer occurrence.

The ceRNA regulatory network is a popular biological regulatory network. Numerous studies prove that interactions of lncRNAs, miRNAs, and mRNAs can affect the occurrence and progression of cancer. In this research, nine CNV-driven DElncRNAs were found, and a CNV-associated ceRNA regulatory network, which was composed of 9 lncRNAs [AC092171.4, AF131215.6, cancer susceptibility 9 (CASC9), PVT1, LINC00942, LINC01234, LINC00511, LINC01270, and LINC01271], seven miRNAs, and 178 effector mRNAs, was established combined with several bioinformatics databases. Most of the nine lncRNAs are proven to play a vital role in the occurrence and progression of cancer. Among them, AC092171.4 is believed to promote the progression of liver cancer by sponging miR-1271 and upregulating the expression of growth factor receptor-bound protein 2 (Sun et al., 2020). LncRNA CASC9 is a widely studied lncRNA in cancer, and it is a common oncogene that can promote the growth and proliferation of cancer cells in esophageal cancer, oral cancer, rectal cancer, breast cancer, and so on (Pan et al., 2016; Liang et al., 2018; Luo et al., 2019). This study found that changes in the expression of lncRNA CASC9 may be caused by changes in DNA copy number. Similar to CASC9, PVT1 discovered earlier can promote the occurrence and progression of cancer. Studies now believe that PVT1 can stimulate the angiogenesis of non-small cell lung cancer (NSCLC) by sponging miRNA to promote the VEGF-type transduction pathway, thereby promoting lung cancer progression, and PVT1 can also promote the growth and metastasis of NSCLC through the Wnt/β-catenin axis (Mao et al., 2019; Qi and Li, 2020). LINC00942 is rarely studied in cancer, and it is believed to promote the expression of GCLC, thereby causing poor prognosis for patients (Bajic et al., 2019; Sun et al., 2019). LINC01234 is considered to be related to the drug resistance of cancer patients, and a study displayed that LINC01234 can increase the resistance of cancer cells to chemotherapeutic drugs by regulating the LINC01234/miR-31-5p/MAGEA3 axis (Chen et al., 2020). For LINC00511, it can combine with EZH2 and LSD1 in vivo, downregulate the expression of LATS2 and KLF2, and promote the progression of NSCLC (Zhu F. Y. et al., 2019). LINC01271 is believed to promote the diagnostic effect of breast cancer by regulating the expression of TNS1, and it is a potential target for breast cancer treatment (Chang et al., 2020). Interestingly, most of the lncRNAs screened in this study are with copy number amplification/deletion, which causes poor prognosis for patients. Previous studies are linking CNV to the good prognosis of patients. For example, a study of colorectal cancer by Bi et al. (2019) found that the copy number amplification of SKP2 reduces the prognostic risk of colorectal cancer patients. The reason for the present study results, we reasoned that, possibly is the strict screening conditions. In addition, we also screened out seven miRNAs that play a role in the ceRNA network: miR-130b-5p, miR-30a-5p, miR-30a-3p, miR-30c-2-3p, miR-218-5p, miR-1-3p, and miR-145-3p. Most of these miRNAs are proven to be related to the occurrence and progression of various cancers. For instance, miR-130b-5p is believed to promote the proliferation and migration of gastric cancer cells (Chen et al., 2018). MiR-30a-5p is also related to the progression of various cancers (Editors, 2020; He et al., 2020). The results mentioned earlier indicate that the screened ceRNA regulatory network in this study is closely related to the occurrence and progression of cancer, and these nine key lncRNAs are related to the prognosis of lung cancer.

Based on the results mentioned earlier, enrichment analyses were conducted on downstream mRNAs, and the results revealed that these genes were mainly related to cell division and DNA repair. These two pathways are common in cancer that can promote the growth and proliferation of cancer cells (Icard et al., 2019; Zhu F. Y. et al., 2019). Besides, based on previous studies, it was found that lncRNA LINC00511 in the CNV-associated ceRNA network screened in this study was related to the treatment response of FK866 and KIN001-055, and lncRNA LINC00942 was related to the treatment response of AZD8055, Bexarotene, BEZ235, GDC0941, HG-5-88-01, LFM-A13, and PD-0332991. AZD8055, Bexarotene, BEZ235, etc., are all effective antitumor drugs, and most of these drugs are related to the mammalian target of rapamycin (mTOR) pathway and phosphatidylinositol-3-kinase (PI3K) pathway (Talpur et al., 2002; Manara et al., 2010; Willems et al., 2012). Among them, AZD8055 is an inhibitor of mTORC1 and mTORC2, and it is now believed that AZD8055 has antitumor activity in acute myeloma leukemia (Willems et al., 2012); BEZ235 is a PI3K/mTOR inhibitor that is believed to suppress the growth of tumor cells with PI3K mutations (Serra et al., 2008). The results mentioned earlier demonstrate that LINC00942 is probably related to the PI3K/mTOR pathway. The interaction between lncRNAs and drugs is an emerging research direction. With the foundation of the research discussed, cancer medication can be guided by the results of the CNV test, and the therapeutic effect on cancer of nucleic acid drugs that target lncRNAs can be enhanced based on the results of the CNV test as well (Jiang et al., 2020).

Viewed in toto, the present research was conducted on the CNV, lncRNA, miRNA, and mRNA data of TCGA-LUAD database to establish a ceRNA regulatory network related to CNV-driven DElncRNAs, and this network was also proven to be related to cell division and DNA Repair. Further analysis also disclosed that these CNV-driven DElncRNAs were related to drug efficacy. The analysis results of this study were rigorous and reliable, whereas this study is purely a bioinformatics analysis without any experimental demonstration. Thus, more biochemical and clinical experiments are needed to support the results of this study to be applied to cancer treatment.
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Background: Acute myocardial infarction (AMI) has high morbidity and mortality worldwide. However, the pathogenesis of AMI is still unclear, and the impact of circular RNAs (circRNAs) on AMI has rarely been recognized and needs to be explored.

Materials and Methods: The circRNA array was applied to investigate the expression level of circRNAs in the blood samples of coronary arteries of three AMI patients and three normal persons. Principal component analysis (PCA) and unsupervised clustering analysis were performed to reveal the distinguished expression patterns of circRNAs. The miRNA expression profiles of AMI patients were identified from a public dataset from the Gene Expression Omnibus (GEO) database (GSE31568). The miRNA binding sites on the circRNAs were predicted by miRanda. The miRNA enrichment analysis and annotation tool were used to explore the pathways that the dysregulated circRNAs may participate in.

Results: In total, 142 differentially expressed circRNAs, including 89 upregulated and 53 downregulated in AMI samples, were identified by the differential expression analysis. AMI patients had quite different circRNA expression profiles to those of normal controls. Functional characterization revealed that circRNAs that had the potential to regulate miRNAs were mainly involved in seven pathways, such as the Runt-related transcription factor-1 (RUNX1) expression and activity-related pathway. Specifically, hsa_circRNA_001654, hsa_circRNA_091761, hsa_circRNA_405624, and hsa_circRNA_406698 were predicted to sponge four miRNAs including hsa-miR-491-3p, hsa-miR-646, hsa-miR-603, and hsa-miR-922, thereby regulating RUNX1 expression or activity.

Conclusion: We identified dysregulated blood circRNAs in the coronary arteries of AMI patients and predicted that four upregulated circRNAs were involved in the regulation of RUNX1 expression or activity through sponging four miRNAs.

Keywords: acute myocardial infarction, circRNA, miRNA, functional characterization, runt-related transcription factor-1


INTRODUCTION

Acute myocardial infarction (AMI) is a common life-threatening disease that is manifested as myocardial necrosis caused by a prolonged period of ischemia and hypoxia in coronary arteries (Hirschl et al., 1996). Early diagnosis and treatment are the keys to improve the survival and prognosis of AMI patients (Vogel et al., 2019). Although the mortality of AMI has decreased thanks to medical developments in the modern era, there is still no radical cure for AMI because of a poor understanding of its pathogenesis and underlying mechanisms (Sulo et al., 2019). Therefore, further experimental and clinical investigations are urgently needed to provide new targets for the therapy or diagnosis of AMI.

Circular RNAs (circRNAs) belonging to non-coding RNAs with a closed continuous loop are heterogeneous transcripts derived from reverse splicing, and they regulate gene expression through multiple mechanisms (Memczak et al., 2013; Aufiero et al., 2019). Although the functions of circRNAs are still elusive, a certain number of circRNAs have been validated as microRNA (miRNA) sponges to exert regulatory function. Under specific circumstances, they bind to target miRNAs, preventing their interaction with messenger RNA (mRNA), thus regulating gene expression and signaling pathways (Hansen et al., 2013; Aufiero et al., 2019). CircRNAs play important roles in cardiovascular diseases. For instance, the heart-related circRNA (HRCR) could prevent cardiac hypertrophy and heart failure through sponging miR-233 to regulate the apoptosis repressor with CARD (ARC) expression (Wang et al., 2016). Circ-Foxo3, which is highly expressed in myocardial samples of older mice, exerts regulatory roles in cellular senescence (Du et al., 2017). The first study on circRNA and AMI showed that myocardial infarction-associated circRNA (MICRA) in peripheral blood can predict the left ventricular function in patients with acute AMI (Vausort et al., 2016). Although more studies on circRNA and cardiovascular diseases have been reported, there are still few studies on the relationship between circRNAs and AMI.

Non-coding RNAs have been found to play important roles in the pathophysiological process of AMI. However, the existing studies only provide the functional circRNAs in animal AMI models or the overall dysregulated circRNAs in the peripheral blood of AMI (Sun et al., 2020; Zhang et al., 2020). Little research has probed into the predominant regulatory circRNAs in circRNA-miRNA networks that are involved in vital regulatory pathways for the pathogenesis of AMI. Moreover, the differential expressions of blood circRNAs in the coronary arteries of AMI patients, and normal controls have not been reported. Thus, we aimed to investigate the abnormally expressed circRNAs in coronary arteries to explore the potential circRNAs-miRNAs networks in AMI patients and to identify the critical regulatory circRNAs. This study provides novel therapeutic or diagnostic targets for further research.



MATERIALS AND METHODS


Ethics Statement

Written informed consent was obtained from all enrolled participants before applying the clinical records. All protocols adopted here were approved by the Ethics Committee at Shanghai East Hospital (ID: 2019057).



CircRNA Profiling From circRNA Array Analysis

Arraystar human circRNA array was applied to detect and quantify circRNAs in the six samples of three AMI patients and three normal controls. The clinical data of the six participants were summarized in Table 1.


TABLE 1. The clinical data of the six personals.

[image: Table 1]Blood samples were collected from the coronary arteries of six participants [three with ST-elevation myocardial infarction (STEMI) and three without AMI] undergoing percutaneous coronary intervention (PCI) due to undiagnosed chest pain, and they were then prepared according to the arraystar’s standard protocols. Total RNA was extracted from whole blood with TRIzol reagent and tested for purity and concentration on Nanodrop 3000. After purification with an RNase-Free DNase set, RNAs were treated with RNase R to digest and remove linear RNAs. Next, microarray hybridization was conducted according to the manufacturer’s instructions, and the array images were obtained and analyzed in Agilent supporting software. CircRNAs were identified by performing an annotation strategy from the microarray dataset. The circRNA data were categorized by using linear or circular when a circRNA absenting or presenting in a sample. The categorized circRNAs were suitable for a generalization of principal component analysis, which generates a combined plot showing both patients and circRNAs closer together. An R programming tool was applied to standardize the array profile. The differential expression analysis was conducted by student t-test and fold change methods.



The microRNA Expression Data From Gene Expression Omnibus (GEO) Database

The normalized miRNA expression data of blood samples from 18 AMI patients and 18 normal controls were downloaded from GEO database with accession GSE31568. The differentially expressed miRNAs were identified using the GEO2R analysis tool under a filter condition with adjusted P < 0.05 and fold change (FC) ≥2.



Prediction of miRNA Binding Sites on the circRNAs

The miRNA binding sites on the circRNAs were predicted by miRanda (Miranda et al., 2006) with default options. Specifically, the miRNA and circRNA sequences were collected from the miRbase (Griffiths-Jones et al., 2008)1 and circRNA microarray annotation file, respectively.



Functional Characterization of circRNAs by miRNA Enrichment Analysis

The miRNA enrichment analysis was conducted on the web server of miRNA Enrichment Analysis and Annotation Tool (miEAA)2 under a filter condition with adjusted P < 0.05. The interaction network between circRNAs and miRNAs was visualized by Cytoscape3.7.2.



Principal Component Analysis (PCA) and Hierarchical Clustering

Principal component analysis was conducted based on the expression profiles of all circRNAs and implemented in R packages FactoMineR and Facto Extra. Hierarchical clustering was conducted on the differentially expressed circRNAs and visualized by the R package heatmap.



Statistical Analysis

Statistical analyses were conducted by Student’s t-test, one-way analysis of variance (ANOVA), and a Tukey-Kramer multiple comparison test on R programming. All data are shown as mean ± standard deviation (SD).



RESULTS


CircRNA Expression Profiles in AMI Patients and Controls

The blood samples were collected from the coronary arteries of three STEMI patients and three normal controls during PCI, and the clinical characteristics are summarized in Table 1. Little difference was found in age, gender, underlying diseases, or smoking history between the two groups.

Principal component analysis based on circRNA expression profiles was performed to investigate whether the expression patterns of circRNA between AMI patients and normal controls can be distinguished. A clear separation between the AMI group and the control group was observed (Figure 1), suggesting that AMI patients had quite different circRNA expression profiles from the normal controls and that circRNAs may potentially regulate the pathogenesis of AMI. These data strongly imply that microarrays along with PCA are probably effective approaches for distinguishing AMI patients and normal people.
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FIGURE 1. Relative distances between samples from AMI patients (red symbol) and controls (green symbol) by PCA. The top two principal components of the circRNA expression profiles.




Identification of Differentially Expressed circRNAs

To further identify the dysregulated circRNAs in AMI patients, we conducted differential expression analysis on the circRNA expression profiles. Specifically, a total of 142 differentially expressed circRNAs were identified by microarray with fold change >2 and adjusted p < 0.05, including 89 upregulated and 53 downregulated circRNAs compared with the control group (Figure 2A). Consistently, the hierarchical clustering revealed that AMI patients and normal controls can be classified by the differentially expressed circRNAs, and which were significantly different between AMI patients and normal controls (Figure 2B), suggesting these circRNAs were involved in the progress of AMI.
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FIGURE 2. Differentially expressed circRNAs between AMI patients and controls. (A) The volcano plot of 142 circRNAs with a significant difference between groups. (B) Heatmap of dysregulated circRNAs by hierarchical clustering. N = 3, P < 0.05. ctrl, normal control (the same below).




CircRNA-miRNA Interaction Network Analysis

The predominant function of circRNA is to regulate gene expression by sponging specific miRNAs (Hansen et al., 2013). To further explore the biological function of the dysregulated circRNAs, we identified the differentially expressed miRNAs between AMI patients and controls from the Gene Expression Omnibus (GEO) database with accession GSE31568. Specifically, 97 interactive miRNA-circRNA pairs were predicted by miRanda (Supplementary Table 1), including 97 circRNAs and 54 miRNAs. With the miRNAs potentially binding to circRNAs, we applied miRNA set enrichment analysis to characterize the function of circRNAs. Specifically, the circRNAs were primarily enriched in signaling pathways of mesenchymal-to-epithelial transition, Golgi-to-endoplasmic reticulum retrograde transport, the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, inflammasomes, pre-NOTCH expression and processing, pre-NOTCH transcription and translation, and regulation of Runt-related transcription factor-1 (RUNX1) expression and activity (Figure 3A). In addition, seven downregulated miRNAs in AMI patients were predicted to participate in regulating one or more signaling pathways (Figure 3B). Notably, hsa-miR-603, hsa-miR-330-3p, hsa-miR-646, and hsa-miR-922 can be sponged by multiple circRNAs (Figure 3C). These results indicated that the circRNAs may regulate RUNX1 expression and activity via sponging hsa-miR-603, hsa-miR-330-3p, hsa-miR-646, and hsa-miR-922.


[image: image]

FIGURE 3. CircRNA-miRNA interaction networks of seven candidate miRNAs. (A) Signaling pathways enriched by the miRNAs interacting with circRNAs. (B) Networks between miRNAs and signaling pathways. (C) Interaction of seven candidate miRNAs with circRNAs.




CircRNAs Involved in RUNX1 Regulation

To further evaluate the regulatory circRNAs in circRNA-miRNA networks, we identified hsa_circRNA_001654, hsa_circRNA_091761, hsa_circRNA_405624, and hsa_circRNA_406698 as critical regulators in the networks, as they may sponge two or more miRNAs involved in the regulation of RUNX1 expression and activity (Figure 4A). Additionally, all of the four regulatory circRNAs were upregulated in AMI (Figure 4B). Particularly, three of the circRNAs were transcribed from the intragenic regions of protein-coding genes, including CNPY3, BCAP31, and ABCA5, while only hsa_circRNA_406698 was transcribed from intergenic regions. These results indicate that both intragenic and intergenic circRNAs have the potential to regulate RUNX1 expression and activity in the pathogenesis of AMI.
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FIGURE 4. CircRNA-miRNA networks involved in RUNX1 regulation. (A) Interaction networks between targeted miRNAs in the regulation of RUNX1 and circRNAs. (B) Expressions of four candidate circRNAs in AMI and ctrl.




DISCUSSION

Circular RNAs were identified to be key regulators in the pathogenesis of AMI, and their abnormal expressions can significantly affect the disease progression (Zhang et al., 2020). In this study, we profiled the differentially expressed circRNAs in the blood of AMI patients and predicted the dysregulated circRNA-miRNA pairs involved in the regulation of AMI related signaling pathways. Further bioinformatic analysis identified four upregulated circRNAs in AMI patients, which might regulate RUNX1 expression or activity through sponging the miRNAs. Unlike previous studies, blood samples taken from the coronary artery were not conventional. However, we aimed to investigate the underlying regulatory function of circRNAs in AMI. Peripheral blood is relatively easy to collect and is more susceptible to the internal environment. Thus, the ncRNAs in readily available peripheral blood were thought to be more representative as biomarkers but less helpful for the understanding of molecular mechanism in the pathogenetic process of AMI. The analysis of the ncRNAs in coronary blood is more useful and direct for us to understand their regulatory function in AMI. Even so, we still think that both coronary blood and peripheral blood could be used to study the functional roles of circRNAs in AMI. In future analysis, the research of circRNAs in both coronary blood and peripheral blood should compensate for each other.

We presented four candidate circRNAs and four miRNAs probably involved in RUNX1 expression, which is critical in the regulation of various cellular processes, especially in hematopoiesis (Okuda et al., 2001; Ichikawa et al., 2013). The RUNX1 expression in adult hearts is significantly lower than in neonatal hearts (Eulalio et al., 2012). However, the re-activated RUNX1 in the infarct border zone of AMI patients has been widely recognized (McCarroll et al., 2018). RUNX1 upregulation is related to impaired cardiac contractile function and cardiac remodeling (McCarroll et al., 2018). Runx1 knock-out can protect against adverse cardiac remodeling after AMI in mice (Riddell et al., 2020). Moreover, Runx1 mRNA expression increases in the blood of AMI patients (Mao et al., 2017). The RUNX1 dysregulation after AMI occurs as early as 1 day post-AMI and can serve as a marker of early myocardial injury (Kubin et al., 2011). Our study demonstrates that hsa-miR-491-3p, hsa-miR-646, hsa-miR-603, and hsa-miR-922 are involved in regulation of RUNX1. As is well-known, miRNAs can inhibit translation to regulate gene expression via inducing the degradation of target mRNA (Bartel, 2004). Moreover, the predominant function of circRNAs is to bind to target miRNAs and prevent their interaction with mRNA, thus regulating gene expression. These four candidate miRNAs were down-expressed in AMI patients and were involved in regulatory networks with four upregulated circRNAs. Thus, hsa_circRNA_001654, hsa_circRNA_091761, hsa_circRNA_405624, and hsa_circRNA_406698 were identified to participate in regulating RUNX1 through targeting miRNAs. The interactions between circRNAs and microRNAs will be detected by luciferase reporter assay and RNA pull-down assay in our future research.

Acute myocardial infarction can be hardly distinguished from diseases presented chest pain, such as acute pulmonary embolism, acute pericarditis, and aortic dissection. Until now, invasive coronary angiography is still the gold standard in diagnosing AMI, and the biological markers in blood such as CK-MB and cTnT have some deficiencies in AMI diagnosis. Thus, more approaches and biological markers should be identified for the development of AMI diagnosis. Herein, the circRNA expression patterns in the blood of AMI patients were separated from normal controls, providing the probability of microarray along with PCA as effective approaches for distinguishing AMI patients and normal persons. CircRNAs are stably and highly conserved across species and are valuable biomarkers in diagnosing diseases (Zhang et al., 2018; Miao et al., 2019). Hsa_circRNA_001654, hsa_circRNA_091761, hsa_circRNA_405624, and hsa_circRNA_406698 were significantly increased in the blood of AMI and can serve as potential biomarkers for early diagnosis of AMI. Nevertheless, the potential role of these circRNAs as biomarkers should be further validated.

Apart from the regulation of RUNX1 expression and activity, other candidate pathways were also identified. Hsa-miR-330-3p, hsa-miR-491-3p, and hsa-miR-139-5p were all predicted to be involved in regulating the NOTCH pathway, a crucial mediator of cardiac repair and regeneration after AMI (Li et al., 2010; Wu et al., 2017). Moreover, the NOTCH signaling pathway is strongly connected with the RUNX1 expression in various diseases (Richard et al., 2013; Rodriguez-Caparros et al., 2019), which further indicates the profound roles of the candidate circRNAs in AMI regulatory networks. All the underlying signaling pathways are critical in cardiomyocytes of AMI and interact among cardiovascular diseases, which trigger us to speculate that the candidate circRNAs are released into the blood during myocardial damage and then exert feedback function on cardiomyocytes. In this research, we have predicted four circRNAs that could regulate the RUNX1 expression by sponging four miRNAs in AMI. Nevertheless, the underlying mechanisms of these circRNAs in the regulation of AMI warrant further investigation, which may facilitate the development of new targets for the treatment of AMI. To further investigate this biological process, we will test the expression of these ncRNAs in more coronary blood from AMI patients and explore their function in experimental models in future works.



LIMITATIONS

There are some limitations in the study due to the limited research conditions: (1) The sample size in the circRNA array analysis was too small; (2) No experiment was conducted to verify the results of the circRNA array and bioinformatic analysis. In the future, more qualified samples should be enrolled into our analysis, and experiments will be carried out to validate our findings.



CONCLUSION

We identified the differentially expressed circRNAs and potential circRNA-miRNA networks in AMI patients. Four upregulated circRNAs (hsa_circRNA_001654, hsa_circRNA_091761, hsa_circRNA_405624, and hsa_circRNA_406698) in the blood of AMI patients exerted regulatory function on RUNX1 expression or activity through sponging four downregulated candidate miRNAs (hsa-miR-491-3p, hsa-miR-646, hsa-miR-603, and hsa-miR-922).
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Prostate cancer (PCa) is the most common malignant tumor affecting males worldwide. The substantial heterogeneity in PCa presents a major challenge with respect to molecular analyses, patient stratification, and treatment. Least absolute shrinkage and selection operator was used to select eight risk-CpG sites. Using an unsupervised clustering analysis, called consensus clustering, we found that patients with PCa could be divided into two subtypes (Methylation_H and Methylation_L) based on the DNA methylation status at these CpG sites. Differences in the epigenome, genome, transcriptome, disease status, immune cell composition, and function between the identified subtypes were explored using The Cancer Genome Atlas database. This analysis clearly revealed the risk characteristics of the Methylation_H subtype. Using a weighted correlation network analysis to select risk-related genes and least absolute shrinkage and selection operator, we constructed a prediction signature for prognosis based on the subtype classification. We further validated its effectiveness using four public datasets. The two novel PCa subtypes and risk predictive signature developed in this study may be effective indicators of prognosis.
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INTRODUCTION

As the most common cancer in males, prostate cancer (PCa) is a major public health threat (Siegel et al., 2020). Based on the latest global cancer data from the World Health Organization (WHO)1, the age-standardized rate for PCa ranks second, 5-year prevalence ranks first, and age-standardized mortality ranks sixth. Despite the ongoing development of therapeutic strategies, the heterogeneity of PCa contributes to treatment failure (Chang et al., 2014; Peng et al., 2018). Therefore, it is necessary to identify subtypes of PCa during diagnosis and treatment.

During the process of DNA methylation, methyl groups are added to CpG islands on the DNA molecule. Hypermethylation acts on promoters and could lead to gene silencing, whereas hypomethylation is associated with chromosomal instability and a loss of imprinting (Daura-Oller et al., 2009). In many diseases, including cancer, abnormal hypermethylation on gene promoters, which could be inherited by daughter cells, has been detected (Wang and Lei, 2018). Abnormal DNA methylation status is now considered a significant determinant of cancer development. Abundant stable DNA methylation in the genome is a candidate for diagnosis and treatment (Mikeska and Craig, 2014). Accordingly, the use of DNA methylation status to divide PCa into subtypes may provide important new insights.

Novel methylation-based subtypes have been reported in PCa. For example, the Cancer Genome Atlas Research Network (Abeshouse et al., 2015) conducted a comprehensive molecular analysis of 333 primary prostate carcinomas and identified different subtypes with highly diverse genomic, epigenomic, and transcriptomic patterns. In particular, an unsupervised hierarchical cluster analysis of the 5,000 most variable hypermethylated CpG sites revealed four epigenetically distinct subtypes of PCa. In another multicenter study, a new epigenetic CpG methylator phenotype in advanced PCa was reported, and this subtype is characterized by hypermethylation both within and outside CpG sites, shores, and shelves (Zhao et al., 2020). These important studies have improved our understanding of the DNA methylation landscape in PCa, providing a reference for future research. Recent studies have focused on revealing associations of novel DNA methylation subtypes with driver events in the genome and transcriptome. Utilizing a different approach, in this study, we identified DNA methylation subtypes based on clinical outcomes, with further analyses linking these subtypes with molecular mechanisms. In particular, we screened out eight CpG sites in which the DNA methylation status was associated with prognosis in PCa and identified two subtypes based on these DNA methylation statuses. Thereafter, differences in the epigenome, genome, transcriptome, disease status, immune cell infiltration, and function between these two subtypes were explored. Lastly, genes related to the high-risk subtype were selected and screened to construct an eight-gene signature with the ability to predict prognosis. The effectiveness of the signature was validated using four public datasets.



MATERIALS AND METHODS


Data Processing

RNA-seq data (in the form of HTSeq-Counts and HTSeq-FPKM), DNA methylation (450 K), somatic variation, copy number alterations (CNA), and clinical information for patients with PCa were downloaded from The Cancer Genome Atlas (TCGA) database2 (Blum et al., 2018). The gene annotation file was downloaded from the Ensembl database3 (Howe et al., 2020). RNA-seq data in FPKM were converted to TPM. The TPM and β-values for CpG sites were quantile-normalized. In total, 477 patients with both the data described above (RNA-seq and methylation data) and complete clinical information were included. Disease-related clinical information for these patients is provided in Table 1. To validate the effectiveness of the risk signature, gene expression profiles and clinical data from four public datasets were used, i.e., GSE70769 and GSE116918 from the Gene Expression Omnibus (GEO) database4 (Barrett et al., 2013; Ross-Adams et al., 2015; Jain et al., 2018) and DKF2018 and MSKCC2010 from cBioPortal for Cancer Genomics5 (Cerami et al., 2012; Gao et al., 2013). Information about these four datasets is provided in Table 2.


TABLE 1. The disease-related clinical information of patients with PCa included in the study.
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TABLE 2. Information of the four publicly available independent validation datasets.
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Identification of DNA Methylation-Based Subtypes

We previously identified 120 CpG sites that were differentially methylated between PCa and normal prostate tissues and were significantly associated with disease-free survival (DFS) (Zhang et al., 2020b). Least absolute shrinkage and selection operator (LASSO) regression enables variable selection and regularization, while fitting the generalized linear model. Therefore, LASSO regression was used to reduce the number of CpG sites as the input for subtype identification using the glmnet R package (Engebretsen and Bohlin, 2019). After the CpG sites were screened, the β values for these sites in 477 patients were used as inputs for consensus clustering, an unsupervised clustering analysis. Consensus clustering was performed using the ConsensusClusterPlus R package (Monti et al., 2003) and the following operating parameters: maxK = 10, reps = 1000, pItem = 0.8, pFeature = 1, clusterAlg = hc, and distance = pearson. A heatmap was generated to visualize the methylation status of the subtypes using the pheatmap R package (Kolde and Kolde, 2015). Furthermore, a survival analysis of the subtypes was performed by the log rank test using the survival R package (Therneau and Lumley, 2014). To further demonstrate the differences between subtypes, a principal component analysis was performed using the 477 patients. Finally, correlations between disease-related clinical information and subtype status were evaluated by the Mann–Whitney U test, χ2 test, or Fisher’s exact test.



Single Nucleotide Variation Between Subtypes

Simple nucleotide variants were compared between subtypes using the GenVisR R package (Skidmore et al., 2016). Genes with the top 10 mutation frequencies were displayed in a waterfall plot. According to the results of the waterfall plot, the difference between the mRNA levels of mutant and wild-type Speckle-type POZ Protein (SPOP) was evaluated. Then, the mRNA levels of SPOP in different subtypes were compared by Wilcoxon’s test.



Differences in Copy Number Alterations, TMPRSS2–ERG Fusion, and Androgen Receptor Scores Between Subtypes

To explore the difference in CNAs between subtypes, genes with significant differences in copy number between subtypes were identified by chi-squared tests. Among these genes, RND3 was differentially expressed between the subtypes, as determined by a Wilcoxon test. The type and frequency of CNAs in RND3 were explored. Furthermore, the relationship between CNA types and mRNA expression levels of RND3 were evaluated by the Wilcoxon test.

Data from The Tumor Fusion Gene Data Portal database (https://www.tumorfusions.org/) were used to analyze the difference in TMPRSS2–ERG fusion gene expression between the subtypes (Yoshihara et al., 2015). Finally, the androgen receptor (AR) score in each subtype was compared by the Wilcoxon test. AR scores were obtained from the cBioPortal database (Cancer Genome Atlas Research Network, 2015).



Immune Cells in the Tumor Microenvironment in Each Subtype

RNA-seq data in TPM format were uploaded to CIBERSORTx6 (Newman et al., 2019) to evaluate the infiltration of 22 types of immune cells in the tumor microenvironment. The abundances of these immune cells were compared between subtypes using a violin plot and the Wilcoxon test. Furthermore, survival curves were generated for these cells. The p-values for the survival analysis were calculated by a Cox regression and log-rank test using the survival R package (Therneau and Lumley, 2014).



Functional Enrichment Analysis of Subtypes

Fold change values for gene expression differences between the subtypes were used as the ranks in a gene set enrichment analysis (GSEA). To obtain fold changes, HTSeq-Counts were analyzed using the DESeq2 R package (Love et al., 2014). The hallmark gene set downloaded from the Molecular Signatures Database9 v7.17 was used as the reference gene list in the GSEA (Subramanian et al., 2005; Liberzon et al., 2011). Finally, the GSEA was completed using the clusterProfiler R package (Yu et al., 2012).

Furthermore, expression levels of genes that were crucial for PCa were compared between the subtypes by Wilcoxon tests.



Weighted Correlation Network Analysis of Subtypes

A weighted correlation network analysis (WGCNA) could be used find phenotype-associated gene modules (Langfelder and Horvath, 2008; Li et al., 2019). Therefore, TPM values from RNA-seq data were used as the input for a WGCNA. Eight was the soft power threshold to construct a network that simultaneously satisfied a scale-free topology and high connectivity. Pearson correlation coefficients for the relationships between phenotypes and gene modules were determined. The phenotypes included PSA (prostate-specific antigen), Gleason score, and the subtypes. The gene module most closely associated with the high-risk phenotypes was identified. Differentially expressed genes (DEGs) between PCa and normal prostate tissues in the selected gene module were identified. The conditions for DEGs were logarithmic fold changes (| LFCs|) > 1 and p < 0.05. Then, survival-associated genes were screened from the DEGs by Cox regression and log-rank tests. Finally, genes for LASSO were filtered out.



Identification of a Risk Signature in the Training Set

Before training, 477 patients were randomly divided into a training set and internal validation set using the caret R package (Kuhn, 2008). Information for patients in the training set is provided in Supplementary Table 1 and information for the internal validation set is provided in Supplementary Table 2. LASSO regression was used to construct a single signature for predicting prognosis with high performance (Svane et al., 2018). LASSO regression was applied to the training set; during the selection of genes, the C-index after 10-fold cross-validation reflected the effect of different screening strategies. Genes with the maximal C-index values were selected for the prognostic signature using the glmnet R package (Engebretsen and Bohlin, 2019) with the following parameter settings: family = Cox, type.measure = C, parallel = TRUE, with default settings for other parameters. Furthermore, the difference in the risk score between subtypes identified and the relationship between the risk score and survival were evaluated. Comparisons were performed using the Wilcoxon test.



Predictive Accuracy of the Signature

First, time-dependent receiver operating characteristic (tdROC) curves were used to evaluate the predictive accuracy of the signature in the training set, internal validation set, and external validation sets (DKFZ2018, GSE70769, GSE116918, and MSKCC2010) using the timeROC R package (Blanche and Blanche, 2013). Then, a survival analysis by Cox regression and the log-rank test was performed using these datasets. Survival curves were plotted using the Kaplan–Meier method and the survminer R package (Kassambara et al., 2017).

Univariate and multivariate Cox regression analyses were used to explore whether the risk score is an independent predictor of prognosis. Finally, the clinical diagnostic value of the signature was compared with that of clinical features (Gleason score and PSA) by a decision curve analysis (DCA) (Van Calster et al., 2018). DCA is used to compare prediction models that incorporate clinical outcomes; it requires only the dataset on which the models are tested and can be applied to models with either continuous or dichotomous results (Zhang et al., 2020a).



Statistical Analysis

R 3.6.3 was used for all statistical analyses. Values of p < 0.05 were defined as statistically significant. In the survival analysis, the survival outcome was defined as DFS or biochemical recurrence-free survival (BCR) based on clinical records.




RESULTS


Identification of Two DNA Methylation-Based Subtypes

The cumulative distribution function (CDF) and relative change in the area under the CDF curve are shown in Figures 1A,B, respectively. According to Monti et al. (2003), the optimal k value is determined by a number of factors. One of the criteria is that when the optimal k value is reached, the area under the CDF curve will not increase significantly with increases in k. Therefore we first assumed that the optimal value in this study was set to k = 5, indicating that the cohort could be divided into up to five subtypes. However, one cluster consisted of only a single patient when k = 4 or 5. Additionally, the cluster-consensus value for each cluster was not large enough under k = 4 or 5 (Supplementary Figure 1). Therefore, we focused on k = 2 or 3. For k = 3, patients in C1 showed a worse prognosis, and patients in C2 and C3 did not show an obvious difference in prognosis (Figure 1C). For k = 2, patients in Methylation_H had worse a prognosis than that of patients in Methylation_L (Figure 1D). Furthermore, the Methylation_H subtype and C1 subtype included the same patients and the Methylation_L subtype consisted of patients in the C2 and C3 subtypes. Groups for different k values are shown in Supplementary Table 3. Ultimately, we identified two subtypes with a difference in prognosis. The consensus matrix is displayed in the form of a heatmap in Figure 1E and the consensus clustering analysis is summarized in Supplementary Figure 1. A principal component analysis revealed clear separation between the Methylation_H subtype and the Methylation_L subtype (Figure 1F). As shown in Figure 1G, these two subtypes had different levels of DNA methylation at CpG sites. We defined the hypermethylated subtype as Methylation_H and the hypo methylated subtype as Methylation_L. As shown in Table 3, age, PSA, Gleason score, residual tumor status, pathological T, and clinical outcome of patients between Methylation_H and Methylation_L subtypes are different significantly.


[image: image]

FIGURE 1. Identification of two DNA-methylation-based subtypes. (A) The consensus matrix obtained when k = 2. Consistency values range from 0 to 1, 0 means never clustering together (white), one means always clustering together (dark blue). (B) The CDF curve under different values of k. The value of k represents the number of clusters during the consensus cluster. When the optimal k value is reached, the area under the CDF curve will not significantly increase with the increase of k value. (C) Relative change in area under CDF curve under different values of k. (D) Differences between the statuses of DNA methylation of the two subtypes. (E) PCA showed that patients in the different subtypes were significantly different from each other. (F) Survival curves for patients in the different subtypes (PCa, prostate cancer; CDF, cumulative distribution function; PCA, principal components analysis. And p < 0.05 was defined as statistically significant).



TABLE 3. The association between subtypes and disease-related clinical information of PCa.

[image: Table 3]


Single Nucleotide Variations in Methylation_H and Methylation_L

Single nucleotide variations in genes with the top 10 mutation frequencies in these two subtypes are shown in Figures 2A,B. We found that the frequency of single nucleotide variations in SPOP was higher in the Methylation_H subtype than in the Methylation_L subtype. SPOP is one of the most frequently mutated genes in primary PCa. Based on the tumor-suppressive role of SPOP in PCa and the results of loss-of-function assays, SPOP mutations are expected to include the invasion and proliferation of PCa cells (Barbieri et al., 2012; An et al., 2014). Furthermore, within the Methylation_H subtype, mRNA expression levels of SPOP in patients with mutations were significantly lower than those in patients with wild-type SPOP (Figure 2C). However, this pattern was not observed in the Methylation_L subtype (Figure 2D). Finally, we found that the mRNA expression level of SPOP in the Methylation_H subtype was significantly lower than that in the Methylation_L subtype (Figure 2E). These results supported the risk characteristics of Methylation_H.
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FIGURE 2. Differences of simple nucleotide variations between Methylation_H and Methylation_L subtypes. (A) The map of waterfall for the Methylation_H subtype. (B) The map of waterfall for the Methylation_L subtype. (C) In the Methylation_H subtype, SPOP transcription level of patients with SPOP mutation was significantly lower than that of patients with SPOP wild-type. (D) In the Methylation_L subtype, there was no significant difference in SPOP transcription between the mutant and the wild-type patients. (E) The differences in the transcription levels of SPOP between the Methylation_H and Methylation_L subtypes (PCa, prostate cancer; SPOP, speckle-type poz protein. And p < 0.05 was defined as statistically significant).




Copy Number Alterations of RND3, TMPRSS2–ERG Fusion, and Androgen Receptor Scores Between the Methylation_H and Methylation_L Subtypes

We identified a group of genes with a significant difference in copy number between subtypes. Among these genes, RND3, also called RhoE, is a tumor suppressor that is downregulated early in the development of PCa (Bektic et al., 2005). Interestingly, the expression of RND3 was significantly lower in the Methylation_H subtype than that in the Methylation_L subtype (Figure 3A). For RND3, the type of CNA and the frequency of CNAs are summarized in Figure 3B. In 477 patients, a single-copy deletion was the only CNA detected in RND3. This deletion was more frequent in the Methylation_H subtype. Additionally, RND3 was significantly down-regulated in cases with the single-copy deletion (Figure 3C).
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FIGURE 3. Copy number alterations, TMPRSS2-ERG fusion, and AR scores in each subtype. (A) RND3 had a lower expression level in Methylation_H subtype. (B) The frequency of CNA in RND3 in Methylation_H subtype was significantly higher than that in Methylation_L subtype. (C) The expression level of RND3 was significantly correlated with its CNA, and the expression level of RND3 was decreased with single deletion. (D) Patients in the Methylation_H subtype had a lower frequency of TMPRSS2-ERG fusion. (E) Patients in the Methylation_H subtype had higher AR scores (CAN, copy number alteration; RND3, rho family gtpase 3; AR, androgen receptor. And p < 0.05 was defined as statistically significant).


The frequency of the TMPRSS2–ERG fusion was significantly lower in the Methylation_H subtype than in the Methylation_L subtype (Figure 3D). Some studies have revealed that the TMPRSS2–ERG fusion is related to the invasiveness of PCa and a higher Gleason score (Perner et al., 2006; Mehra et al., 2007; Rajput et al., 2007; Cheville et al., 2008). However, other studies have reported that the TMPRSS2–ERG fusion is not related to prognosis in PCa (Yoshimoto et al., 2006; Tu et al., 2007; Darnel et al., 2009). Furthermore, AR scores for patients in the Methylation_H subtype were higher than those of patients in the Methylation_L subtype (Figure 3E).



Immune Cells in the Tumor Microenvironment in Each Subtype

In Figure 4A, the difference in the immune cell composition in the tumor microenvironment of each subtype is displayed in the form of a violin plot. Plasma cells and resting mast cells were significantly less abundant in the Methylation_H subtype and regulatory T cells (Tregs), M1 macrophages, and M2 macrophages were significantly more abundant in the Methylation_H subtype than in the Methylation_L subtype. Among these immune cells, greater M1 and M2 macrophage infiltration in the tumor microenvironment was related to a worse prognosis in PCa (Figures 4B,C).
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FIGURE 4. Immune infiltration in each subtype. (A) The violin diagram about infiltration degree of 22 kinds of immune cells between Methylation_H and Methylation_L subtypes. (B) Survival curves for different levels of Macrophages M1 cells. (C) Survival curves for different levels of Macrophages M2 cells (And p < 0.05 was defined as statistically significant).




Functional Enrichment Analysis of Each Subtype

Based on a GSEA, we ranked enriched terms in descending order of normalized enrichment scores. The top ten enriched terms are displayed in the Figure 5A. Among these terms, HALLMARK_E2F_TARGETS, HALLMARK_G2M_ CHECKPOINT, HALLMARK_MYC_TARGETS_V1, HALLMARK_MYC_TARGETS_V2, and HALLMARK_ MTORC1_SIGNALING were enriched in the Methylation_H subtype (Figures 5B–F).
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FIGURE 5. GSEA for these two subtypes. (A) Top ten enrichment terms (The enrichment terms were ranked in the descending order of NES). (B) HALLMARK_E2F_TARGETS. (C) HALLMARK_G2M_CHECKPOINT. (D) HALLMARK_MYC_TARGETS_V1. (E) HALLMARK_MYC_TARGETS_V2. (F) HALLMARK_MTORC1_SIGNALING (NES, normalized enrichment scores. And p < 0.05 was defined as statistically significant).


Furthermore, the mRNA expression levels of AURKA, DLGAP5, FOXD1, KIF4A, MELK, MYBL2, SPAG5, and TPX2 were significantly higher in the Methylation_H subtype than in the Methylation_L subtype (Figure 6). These genes have all been reported to facilitate the development and progression of PCa (Kuner et al., 2013; Zhang et al., 2016, 2020b; Akamatsu et al., 2018; Hewit et al., 2018; Zou et al., 2018; Cao et al., 2020; Li et al., 2020).


[image: image]

FIGURE 6. Differences of genes contributing to PCa between Methylation_H and Methylation_L subtypes. (A) The mRNA expression levels of AURKA. (B) The mRNA expression levels of DLGAP5. (C) The mRNA expression levels of FOXD1. (D) The mRNA expression levels of KIF4A. (E) The mRNA expression levels of MELK. (F) The mRNA expression levels of MYBL2. (G) The mRNA expression levels of SPAG5. (H) The mRNA expression levels of and TPX2 (PCa, prostate cancer. And p < 0.05 was defined as statistically significant).




WGCNA for the Identification of a Key Gene Module

Setting eight as the soft threshold, the independence of the scale-free topology and the mean connectivity in each module were sufficient (Figures 7A,B). After the dynamic cut and merge process, 15 gene modules were generated (Figure 7C). Among these, the MEgreen module was positively correlated with the PSA level, Gleason score, and the Methylation_H subtype (Figure 7D) and was negatively correlated with the Methylation_L subtype. Therefore, genes in this module were related to the development and progression of PCa. According to the flow diagram in Figure 7E, we then screened out the DEGs between PCa and normal prostate tissues in the MEgreen module. Survival-associated DEGs were further identified for LASSO regression.
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FIGURE 7. WGCNA to find the genes for the construction of the signature. (A) The relationship of soft threshold and TOM-based dissimilarity. (B) The relationship of soft threshold and mean connectivity. (C) After the dynamic of cut and merged, a total of 15 gene modules were finally generated. (D) Heat map for the correlation of gene modules and phenotypes. (E) The flow of selection of genes for the signature (WGCNA, weighted correlation network analysis; TOM, topological overlap matrix; DEGs, differentially expressed genes; LASSO, least absolute shrinkage and selection operator. And p < 0.05 was defined as statistically significant).




Construction of the Gene-Based Risk Signature

As shown in Figure 8A, when eight genes were included in the signature, the C-index value was maximized. Accordingly, the eight-gene signature had the best predictive value during the training process. Figure 8B presents the coefficients for each gene during the training process. Finally, an eight-gene signature for predicting the risk score was constructed as follows:
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FIGURE 8. Build the signature by LASSO. (A) Cross validation based on C-index to determine the best choice of genes in the signature. (B) Genes in the different signatures and their corresponding coefficients. (C–E) Patients of training set were arranged in the same ascending order of the risk score. (F–H) Patients of internal validation set were arranged in the same ascending order of the risk score. (C,F) Patients were divided into different risk levels according to the median of the risk scores in their respective data sets. (D,G) The relationship between the survival outcome and risk levels of patients. Low-risk patients were shown on the left side of the dotted line and high-risk patients were shown on the right side. (E,H) Heat maps for the genes in the signature. (I) Differences in risk scores between the two subtypes. (J) Patients with cancer-specific death or biochemical recurrence got higher risk scores in the training set. (K) Patients with cancer-specific death or biochemical recurrence got higher risk scores in the internal validation set (LASSO, least absolute shrinkage and selection operator. And p < 0.05 was defined as statistically significant).


Patients in the training and internal validation set were arranged in ascending order based on risk scores (Figures 8C,F). Setting the median risk score as the threshold, the frequencies of cancer-specific death or biochemical recurrence were higher in high-risk patients than in low-risk patients in the training and internal validation sets (Figures 8D,G). The expression modes of eight genes in the signature are displayed in Figures 8E,H. Furthermore, patients in the Methylation_H subtype had significantly higher risk scores than patients in the Methylation_L subtype (Figure 8I). Finally, we found that patients with cancer-specific death or biochemical recurrence had higher risk scores in the training set, internal validation set, and external validation sets (DKFZ2018, GSE70769, GSE116918, and MSKCC2010) (Figures 8G,K and Supplementary Figure 2).



Validation of the Signature

The areas under the curve of the tdROC (reflecting the effectiveness of a classifier) for the training set, internal validation set, and external validation sets (DKFZ2018, GSE70769, GSE116918, and MSKCC2010) were 0.72, 0.66, 0.76, 0.76, 0.84, and 0.74, respectively (Figures 9A–F). Furthermore, a survival analysis revealed that a higher risk score was associated with a worse prognosis. Similar results were observed for all data sets evaluated (Figures 9G–L).
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FIGURE 9. Verification of the effectiveness of the signature. (A–F) The ROC curve of 1-year follow-up time. (G–L) Kaplan–Meier curve for survival analysis. (A,G) The results in the training set. (B,H) The results in the internal validation set. (C,I) The results in DKFZ2018. (D,J) The results in GSE70769. (E,K) The results in GSE116918. (F,L) The results in MSKCC2010 (AUC, area under curve; DFS, disease-free survival; BCR, biochemical recurrence free survival. And p < 0.05 was defined as statistically significant).


In univariate Cox regression analyses, six variables (subtype, pathological N, pathological T, Gleason score, PSA, and risk score) were associated with a worse prognosis (Figure 10A). In a multivariate Cox regression, Gleason score and risk score were identified as independent indicators for prognosis (Figure 10B). Within a wider range of threshold probabilities, the clinical net benefit was greater for the risk score than for the PSA level or Gleason score (Figure 10C). Within this range of threshold probabilities, the signature provides a more accurate prediction, thereby reducing the number of patients with a worse prognosis (Figure 10D).
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FIGURE 10. The clinical value of the signature. (A) The forest map for univariate COX regression. (B) The forest map for multivariate COX regression. (C,D) Decision curve analyses suggested that the signature had good clinical benefits. (C) The model had higher net benefit and wider threshold probability range. The green line is the net benefit of providing all patients with intervention, and the horizontal black line is the net benefit of providing no patients with intervention. (D) The net reduction analyses demonstrated in how many patients an intervention could be avoided without missing any poor prognosis within the effective threshold probability range in (C).





DISCUSSION

We have recently described the advantages and necessity of multi-omics approaches for studies of PCa (Zhang et al., 2020c). In this study, we identified two subtypes with different DNA methylation statuses and found that the Methylation_H subtype was related to a worse prognosis. The subtypes were then comprehensively compared with respect to the epigenome, genome, transcriptome, disease status, immune cell infiltration, and function.

The mRNA levels of SPOP, which is the most frequently mutated tumor-suppressor gene in primary PCa, were lower in the Methylation_H subtype than in the Methylation_L subtype (Barbieri et al., 2012; An et al., 2014). Additionally, the mutation frequency in SPOP was higher in the Methylation_H subtype, and SPOP expression was lower in mutants. Another tumor suppressor that is downregulated early in the development of PCa, RND3, was expressed at significantly lower levels in the Methylation_H subtype than in the Methylation_H subtype (Bektic et al., 2005). The single-copy deletion of RND3 was more frequent in the Methylation_H subtype and this deletion corresponded with the downregulation of RND3. AR scores, which reflect disease progression, were also significantly higher in the Methylation_H subtype than in the Methylation_L subtype. M1 and M2 macrophages showed a greater degree of infiltration in Methylation_H. The polarization of macrophages into the M1 and M2 phenotypes plays a pivotal role in ovarian cancer initiation, progression, and metastasis and provides targets for macrophage-centered treatment in the cancer microenvironment (Cheng et al., 2019). Consistent with these previous findings, we found that increased levels of M1 and M2 macrophages in the tumor microenvironment were related to a worse prognosis in PCa.

In the Methylation_H subtype, E2F, MYC, mTORC1, and G2M checkpoint were activated. E2F, MYC, and mTORC1 have been shown to promote the development of PCa (Huang et al., 2017; Zhang et al., 2017; Labbé et al., 2019). Furthermore, G2M checkpoint activation is related to a reduced cancer sensitivity to chemotherapy or radiation (Morgan, 2007). Furthermore, the mRNA expression levels of AURKA, DLGAP5, FOXD1, KIF4A, MELK, MYBL2, SPAG5, and TPX2 were significantly higher in the Methylation_H subtype than in the Methylation_L subtype. The gain of the AURKA oncogene is an important genomic change related to treatment-related neuroendocrine PCa (Akamatsu et al., 2018). Androgen-dependent PCa cells need DLGAP5 to stabilize mitotic health and function, and the knockdown of DLGAP5 improves the efficacy of docetaxel (Hewit et al., 2018). The knockdown of FOXD1 and MYBL2 would inhibit the growth of androgen-independent PCa cells (Li et al., 2020; Zhang et al., 2020b). KIF4A plays an significant role in the progression of castration-resistant PCa and serves as a key determinant of resistance to endocrine therapy (Cao et al., 2020). MELK is associated with the cell survival rate and BCR in PCa (Jurmeister et al., 2018). SPAG5 expression is significantly associated with the clinical stage, lymph node metastasis, Gleason score, and BCR (Zhang et al., 2016). The knockdown of TPX2 increases chromosome mis-segregation and suppresses tumor cell growth in PCa (Pan et al., 2017). These genes driving the progression of PCa were all expressed more highly in the Methylation_H subtype than in the Methylation_L subtype, further supporting the high-risk characteristics of the Methylation_H subtype.

The conserved differences uncovered the high-risk characteristics of the Methylation_H subtype. We further employed WGCNA, a common method in systems biology, to identify a key gene module; this module was related to the Gleason score, PSA, and Methylation_H subtype. Survival-associated DEGs from this gene module were used to construct an eight-gene signature for predicting risk. The effectiveness of the signature was validated in TCGA and another four public datasets (DKFZ2018, GSE70769, GSE116918, and MSKCC2010). With respect to the clinical applications of these findings, we have the following suggestions. Because RNA-seq data in TPM format were used to train the signature, we suggest employing the same data format of data in clinical applications. Considering batch effects of measurement techniques, gene expression levels should be measured by similar techniques, even though the signature performed well in the validation data sets, in which genes were profiled by array-based methods. Furthermore, the risk levels were determined by the median risk score in the patient cohorts. In the future, the study cohort should be further expanded to obtain a more objective and stable threshold range.

Collectively, we identified two subtypes with different methylation statuses at eight CpG sites and evaluated the high-risk characteristics of the Methylation_H subtype based on epigenomics, genomics, transcriptomics, disease status, immune cell infiltration, and functional analyses. Finally, based on these two novel subtypes, an eight-gene predictive signature was constructed and validated using various public datasets.
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N6 methyladenosine (m6A) RNA methylation regulators play an important role in the development of tumors. However, their function in esophageal cancer (EC) has not been fully elucidated. Here, we analyzed the gene expression data of 24 major m6A RNA methylation regulators from 775 patients with EC from TCGA dataset. The present study showed the aberrations of m6A regulators in genome were correlated to prognosis in human ECs. Meanwhile, 17 m6A regulators showed increased expression in EC samples, including YTHDC1, IGF2BP2, FTO, METTL14, YTHDF3, RBM15, WTAP, HNRNPA2B1, HNRNPC, ALKBH5, YTHDF2, METTL16, IGF2BP3, VIRMA, RBM15B, YTHDF1, KIAA1429, HAKAI, and ZC3H13. Among them, we found HNRNPC, YTHDC2, WTAP, VIRMA, IGF2BP3, and HNRNPA2B1 were significantly correlated to worse outcomes and advanced stage in EC. Furthermore, we showed levels of m6A regulators is correlated with the expression of Immuno-regulators (Immunoinhibitors, Immunostimulators, and MHC molecules) and immune infiltration levels in EC. Bioinformatics further confirm m6A regulators were involved in regulating RNA splicing, RNA stability, and cell proliferation. Our study showed m6A regulators are promising targets and biomarkers for cancer immunotherapy in EC.
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INTRODUCTION

Esophageal cancer (EC) accounts for 1% of all cancer cases, had been the eighth most commonly diagnosed cancer (Malhotra et al., 2017; Fan et al., 2020). According to the anatomic location of the tumor, esophageal carcinoma can be divided into esophageal adenocarcinoma and esophageal squamous cell carcinoma (ESCC) (Salem et al., 2018). ESCC is the main subtype of EC in developing countries, accounting for more than 90% of all subtypes of EC in China (Liang et al., 2017). Esophagectomy is the standard treatment for EC. Radiotherapy is an effective treatment option to cure or control EC (Jin et al., 2017). Targeted therapy is a key step in the development of individualized treatment for EC. EC is one of the most immune-infiltrated tumors. Signals in immune microenvironment, including accumulation of tumor metabolites or T cell dysfunction, may significantly affect the response to immune checkpoint therapy (ICT) in EC patients (Wu et al., 2020). In recent years, the development of monoclonal antibodies against programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1) has achieved convincing efficacy and clinical benefits in a variety of malignant tumors including ESCC (Yuan et al., 2017; Baba et al., 2020).

m6A modification in RNA is a dynamic and reversible process, which is related to many diseases, such as cancer (Yue et al., 2015; He et al., 2017; Fan et al., 2019; Gu et al., 2020b). Recently, several progresses had been made in RNA splicing, stability and Translation regulation through the post-transcriptional modification of m6A (Zhang et al., 2019a). New evidences showed that m6A modification is associated with tumor proliferation, glycolysis, apoptosis, and metastasis (Dai et al., 2020). m6A modification could act as either an oncogenetic role or tumor suppressive role in malignant tumors. Studies have shown that m6A mRNA methylation modification is reversible and is dynamically regulated by methyltransferases that include METTL3/14, WTAP, and KIAA1429 (Bi et al., 2019). Meanwhile, several other RNA binding proteins were also reported to modulate m6A progression, such as HNRNPC, YTHDC2, WTAP, VIRMA, IGF2BP3, and HNRNPA2B1. These regulators had been demonstrated to have a crucial role in cancers. For example, HNRNPC facilitates progression of oral squamous cell carcinoma via EMT (Huang et al., 2020). WTAP could enhance the Warburg effect of gastric cancer through regulating HK2 stability (Yu et al., 2021). Although the m6A modification can affect the tumorigenesis in a variety of tumors, the mechanism of m6A in EC is still unclear.

This study used the data in the Tumor Genome Atlas (TCGA) database to analyze the expression of m6A methylation regulator in EC and its relationship with clinicopathological characteristics and we also used bioinformatics methods to predict the potential functions of these m6A regulators. The analysis showed that the m6A regulatory factor may be a potential immunotherapy target and biomarker for EC.



MATERIALS AND METHODS


Expression Analysis

Gepia 21 was used to compare the expression of m6A regulators (Tang et al., 2017). UALCAN was used to confirmed the correlation between m6A regulators and clinical parameters in EC (Chandrashekar et al., 2017).



Immune Response Prediction

In this study, we detected the correlation of m6A regulators with levels of immune cell infiltration (including Cancer associated fibroblast, Myeloid dendritic cell, CD4+ T cell, Neutrophil, T cell regulatory (Tregs), CD8+ T cell, Macrophage) in EC using the TIMER database (Li et al., 2017).

the correlations between the expression of m6A regulators and Immuno regulators (including Immunoinhibitors, Immunostimulator, and MHC molecules) were calculated using TISIDB database2 (Ru et al., 2019).


Protein-Protein Interaction PPI Networks and Hub Genes

A PPI network was constructed based on DEGs using the STRING database and visualized by the Cytoscape software (Gu et al., 2020c). The cut-off value was defined as an interaction score (median confidence) of 0.4.



Genetic Alteration of m6A Regulators in EC

CBioPortal3 is an open-access website that explores, visualizes, and analyzes multidimensional cancer genomics data, which was used to analyze the genetic alterations of m6A regulators in EC.



Survival Analysis

The correlation between m6A regulators aberrations and survival time in human cancers was determined using cBioPortal database (Unberath et al., 2019). The correlation between overalls survival time and m6A regulators expression are measured using KM diagrams and are determined by the previously reported endpoints4 (Gyorffy et al., 2013; Gu et al., 2020a).



GO and KEGG Analysis

Using The Database for Annotation, Visualization, and Integrated Discovery (DAVID)5, we performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis based on the co-expression genes. and a critical value of P << 0.05 is selected as cutoff (Shi et al., 2018a,b).



Statistical Data

For all the above analyses, except those specifically mentioned, a P-value less than 0.05 was regarded as statistically significant.



RESULTS


The Aberrations of m6A Regulators in Genome Were Correlated to Prognosis in Human Cancers

To evaluate the functional importance of m6A regulators in human cancers, we analyzed the correlation between m6A regulators aberrations and survival time in human cancers using cBioPortal database. As present in Figure 1, we observed the aberrations of m6A regulators in genome were remarkably correlated to worse prognosis in patients with breast cancer, kidney cancer and EC, however, were remarkably correlated to longer OS time in patients with bladder cancer, and colon cancer. In addition, we did not find a significantly correlation between m6A regulators genomic aberration and survival time in other types of human cancers.
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FIGURE 1. The aberrations of m6A regulators in genome were correlated to prognosis in human cancers. (A–O) The correlation between m6A regulators aberrations and overall survival time in patient with breast cancer, kidney cancer, EC, bladder cancer, colon cancer, ampulla of vater cancer (AVC), Thyroid cancer, skin cancer, liver cancer, uterus cancer, head and neck cancer, cervix cancer, glioblastoma, lung cancer, biliary cancer.




Amplification, Deletion, and Mutation of m6A Regulators in EC

The roles of m6A regulators in breast cancer and kidney cancer had been implied in previous studies. The present study focused on exploring the roles of m6A regulators in EC. Genetic variations of m6A regulators in 1,680 cases were detected using the cBioPortal database (Figure 2). We found varying degrees of genetic changes among the 23 m6A regulators, including, ALKBH5, FTO, HAKAI, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3, KIAA1429, METTL14, METTL16, METTL3, RBM15, RBM15B, VIRMA, WTAP, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, ZC3H13, ZCCHC4. As present in Figure 2, we revealed most of m6A regulators were amplified, deleted, mutated in EC, among which IGF2BP2displayed the highest incidence rate (11%).
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FIGURE 2. Amplification, deletion, and mutation of m6A regulators in EC. Genetic variations of m6A regulators in 1,680 cases were detected using the cBioPortal database.




Expression Profile of m6A Regulators in EC

The level of m6A regulators in TCGA was presented in the Figure 3. Among which, 17 m6A regulators showed increased expression in EC samples, including IGF2BP3 (Figure 3A), HAKAI (Figure 3B), KIAA1429 (Figure 3C), RBM15 (Figure 3D), METTL16 (Figure 3E), YTHDF2 (Figure 3F), YTHDF1 (Figure 3G), IGF2BP2 (Figure 3H), ZC3H13 (Figure 3I), FTO (Figure 3J), YTHDF3 (Figure 3K), RBM15B (Figure 3L), ALKBH5 (Figure 3M), HNRNPC (Figure 3N), HNRNPA2B1 (Figure 3O), WTAP (Figure 3P), METTL14 (Figure 3Q). Meanwhile, METTL3 (Figure 3R), and YTHDC2 (Figure 3S) were suppressed in tumor samples. However, we found YTHDC1 (Figure 3T), ZCCHC4 (Figure 3U), IGF2BP1 (Figure 3V) were not differently expressed between normal and tumor samples.
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FIGURE 3. Expression profile of m6A regulators in EC. (A–V) The expression levels of m6A regulators showed increased expression in EC samples, including IGF2BP3 (A), HAKAI (B), KIAA1429 (C), RBM15 (D), METTL16 (E), YTHDF2 (F), YTHDF1 (G), IGF2BP2 (H), ZC3H13 (I), FTO (J), YTHDF3 (K), RBM15B (L), ALKBH5 (M), HNRNPC (N), HNRNPA2B1 (O), WTAP (P), METTL14 (Q), METTL3 (R), and YTHDC2 (S), YTHDC1 (T), ZCCHC4 (U), IGF2BP1 (V). *P < 0.05 compared with normal tissues.




The Dysregulation of m6A Regulators Were Correlated to Shorter OS Time in EC

Then, Kaplan–Meier plot was used to detect the prognostic value of m6A regulators in EC. We revealed higher levels of HNRNPC (Figure 4A), YTHDC2 (Figure 4B), WTAP (Figure 4C), VIRMA (Figure 4D), IGF2BP3 (Figure 4E), and HNRNPA2B1 (Figure 4F) were significantly associated with worse outcomes in EC, indicating these m6A regulators had key roles in EC.
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FIGURE 4. The dysregulation of m6A regulators were correlated to shorter OS time in EC. (A–F) higher levels of HNRNPC (A), YTHDC2 (B), WTAP (C), VIRMA (D), IGF2BP3 (E), and HNRNPA2B1 (F) were significantly associated with worse outcomes in EC. *p < 0.05; **p < 0.01; ***p < 0.0001.




The Dysregulation of m6A Regulators Were Correlated to Advanced Clinical Stage in EC

We next confirmed the correlation between m6A regulators and clinical parameters in EC. As showed in Figure 4, the results showed all of 6 m6A regulators (HNRNPC, YTHDC2, WTAP, VIRMA, IGF2BP3, and HNRNPA2B1) were up-regulated in both Esophageal squamous cell carcinoma and esophageal adenocarcinoma compared to normal samples. Among these genes, IGF2BP3 showed the most significantly up-regulation in EC samples compared to normal tissues (Figure 5E). In addition, we found only WTAP (Figure 5A) and HNRNPC (Figure 5B) were up-regulated in squamous cell carcinoma compared to adenocarcinoma.
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FIGURE 5. The dysregulation of m6A regulators were correlated to advanced cinical stage in EC. (A–F) The expression of HNRNPC, YTHDC2, WTAP, VIRMA, IGF2BP3, and HNRNPA2B1 were detected in esophageal squamous cell carcinoma, esophageal adenocarcinoma, and stage 1/2/3/4, N 0/1/2/3. N: normal samples; A: esophageal adenocarcinoma; S: Esophageal squamous cell carcinoma. ***p < 0.0001.


The further analysis indicated that WTAP (Figure 5A), HNRNPC (Figure 5B), YTHDC2 (Figure 5C), VIRMA (Figure 5D), IGF2BP3 (Figure 5E), HNRNPA2B1 (Figure 5F) were up-regulated in all clinical stages and N stages of EC. Meanwhile, HNRNPC (Figure 5B), IGF2BP3 (Figure 5E), and HNRNPA2B1 (Figure 5F) were up-regulated in stage 2/3/4 samples compared to stage 1 sample, and up-regulated in N1/2/3 samples compared to N0 samples. YTHDC2 (Figure 5C) was revealed to be down-regulated in stage 2/3/4 samples compared to stage 1 sample, and down-regulated in N1/2/3 samples compared to N0 samples. WTAP (Figure 5A), VIRMA (Figure 5D) were not differently expressed among different stages of EC.



m6A Regulators Expression Is Correlated With Immune Infiltration Levels in EC

Based on the TIMER database, we detected the correlation of m6A regulators with levels of immune cell infiltration in EC. As present in Figure 6, WTAP (Figure 6A) was associated with Cancer associated fibroblast (r = 0.223, p = 2.58e–03), Myeloid dendritic cell (r = 0.349, p = 1.55e–06), CD4+ T cell (r = 0.213, p = 4.12e–03), Neutrophil (r = 0.369, p = 3.40e–07), T cell regulatory (Tregs) (r = −0.217, p = 3.36e–03), CD8+ T cell (r = 0.34, p = 2.98e–06), Macrophage (r = 0.351, p = 1.39e–06). IGF2BP3 (Figure 6B) was significantly associated with Cancer associated fibroblast (r = 0.2, p = 7.24e–03), Myeloid dendritic cell (r = 0.17, p = 2.22e–02). YTHDC2 (Figure 6C) was significantly associated with CD4+ T cell (r = 0.268, p = 2.68e–04), Neutrophil (r = 0.288, p = 8.87e–05), CD8+ T cell (r = 0.268, p = 2.76e–04). HNRNPA2B1 (Figure 6D) was significantly associated with Macrophage (r = 0.2, p = 7.02e–03). VIRMA (Figure 6E) was significantly associated with Cancer associated fibroblast (r = 0.285, p = 1.05e–04), Myeloid dendritic cell (r = 0.209, p = 4.92e–03), CD4+ T cell (r = 0.233, p = 1.61e–03), Neutrophil (r = 0.192, p = 9.91e–03). HNRNPC (Figure 6F) was significantly associated with Cancer associated fibroblast (r = 0.269, p = 2.59e–04), Myeloid dendritic cell (r = 0.193, p = 9.38e–03), Neutrophil (r = −0.329, p = 6.61e–06).
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FIGURE 6. m6A regulators expression is correlated with immune infiltration levels in EC. (A–F) Based on the TIMER database, we detected the correlation of WTAP (A), IGF2BP3 (B), YTHDC2 (C), HNRNPA2B1 (D), VIRMA (E), HNRNPC (F) with levels of Cancer associated fibroblast, Myeloid dendritic cell, CD4+ T cell, Neutrophil, T cell regulatory (Tregs), CD8+ T cell, Macrophage.




Correlations Between m6A Regulators Expression and the Expression of Immuno Regulators in EC

To further explore the effects of m6A regulators on tumor immune response, the correlations between the expression of m6A regulators and Immuno regulators were calculated. The results indicated that HNRNPC and VIRMA were negatively correlated to Immunoinhibitors (Figure 7A), Immunostimulators (Figure 7B), and MHC molecules (Figure 7C). However, we found WTAP were positively correlated to Immunoinhibitors, Immunostimulator, and MHC molecules in EC (Figure 7). In addition, YTHDC2 level was positively related to the expression levels of Immunoinhibitors, Immunostimulator, however, was negatively correlated to MHC molecules’ expression in EC (Figure 7).
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FIGURE 7. Correlations between m6A regulators Expression and the expression of Immuno regulators in EC. The correlations between the expression of HNRNPC, VIRMA, WTAP, andYTHDC2 and Immunoinhibitors (A), Immunostimulator (B), and MHC molecules (C) were calculated based on TISIDB database.




GO and KEGG Enrichments

For the sake of investigating the downstream pathways of hub m6A regulators in EC, we performed GO and KEGG analysis using co-expression genes of 6 m6A regulators. The results showed that YTHDC2 was related to cell-cell adhesion, protein ubiquitination, viral process, regulation of mRNA stability, protein phosphorylation, mRNA splicing, via spliceosome, protein polyubiquitination, spliceosomal snRNP assembly, mitochondrial translational elongation, mitochondrial translational termination, GTP biosynthetic process, NIK/NF-kappaB signaling, G1/S transition, translational initiation, anterograde synaptic vesicle transport, cell division, DNA integration, DNA repair, intracellular protein transport (Figure 8A). Wtap was related to RNA splicing, mRNA processing, RNA processing, global genome nucleotide-excision repair, RNA export from nucleus, mRNA splicing, viral process, protein K48-linked ubiquitination, RNA splicing, via transesterification reactions, protein K11-linked ubiquitination, spermatid nucleus differentiation, protein sumoylation (Figure 8B). VIRMA was related to regulation of p53 signal, sister chromatid cohesion, rRNA processing, transcription elongation, intracellular transport of virus, cell division, translational initiation, viral transcription, DNA duplex unwinding, mitotic nuclear division, mRNA export from nucleus, tRNA export from nucleus, DNA repair (Figure 8C). IGF2BP3 was related to Mitosis, Cell cycle, Cell division, DNA replication, nucleoplasm, Nucleus, DNA damage, cell division, Phosphoprotein, Kinetochore, DNA repair (Figure 8D). HNRNPC was related to mRNA splicing, spliceosomal snRNP assembly, regulation of mRNA stability, nuclear import, RNA export from nucleus, RNA splicing, NIK/NF-kappaB signaling, Wnt signaling, cell division, DNA replication (Figure 8E). HNRNPA2B1 was related to cell division, mitotic nuclear division, mRNA splicing, via spliceosome, DNA repair, G1/S transition, mitotic sister chromatid segregation, telomere maintenance via recombination, mitotic metaphase plate congression, CENP-A containing nucleosome assembly, DNA replication initiation, spindle organization, and RNA processing (Figure 8F).
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FIGURE 8. GO and KEGG enrichments. (A–F) Bioinformatics analysis of YTHDC2, Wtap, VIRMA, IGF2BP3, HNRNPC, HNRNPA2B1 in EC.




DISCUSSION

Over the past decades, the roles of m6A regulators in EC had been revealed in several previous studies. For example, METTL3 enhanced the progression of EC cells through the Akt signaling pathway (Hou et al., 2020). The up-regulation of METTL3 expression indicates a poor prognosis in patients with ESCC. RBM15 had been reported to be dysregulated in ESCC (Xu et al., 2020). The high expression of IGF2BP2 is related to the short-term survival and metastasis of EC (Xu et al., 2020). The m6A reader hnRNPA2B1 is reported to promote the progression of EC by up-regulating ACLY and ACC1 (Guo et al., 2020). The RNA-binding protein heterologous ribonucleoprotein C (HNRNPC) simultaneously interacts with LBX2-AS1, ZEB1, and ZEB2 (Zhang et al., 2019b; Wang et al., 2020). It is confirmed that HNRNPC has similar functions in regulating migration and EMT (Huang et al., 2020). IGF2BP3 is a radioresistance factor in squamous esophageal cancer cells. In this study, we observed the aberrations of m6A regulators in genome were remarkably correlated to worse prognosis in patients with breast cancer, kidney cancer and EC. The roles of m6A regulators in bladder cancer and colon cancer had been implied in previous studies. For example, Chen et al. (2019a) reported m6A RNA methylation regulators can participate in the malignant progression of bladder cancer. However, in EC, there was still lacking of comprehensively analysis of the correlation between m6A regulators and cancer progression. In this study, by using multiple data sets, a significant prognostic value of m6A modulators was observed in EC. In addition, the relationship between m6A regulatory factors and anti-tumor immune response is also investigated. Our research proved for the first time that m6A regulators can be used as potential biomarkers for the prognosis and immunotherapy in EC.

In this study, we found the aberrations of m6A regulators in genome were correlated to prognosis in human ECs. In this study, we revealed most of m6A regulators were amplified, deleted, mutated in EC, among which IGF2BP2 displayed the highest incidence rate (11%). IGF2BP2 is an RNA binding protein, which had a crucial role in m6A modification regulation, mRNA localization, stability and translation. Emerging studies report this protein was related to cancer cell growth and metastasis. For example, Up-regulation of IGF2BP2 promotes pancreatic cancer proliferation by activating the PI3K/Akt signaling pathway (Xu et al., 2019), enhances liver cancer growth through an m6A-FEN1-dependent mechanism. Meanwhile, 17 m6A regulators showed increased expression in EC samples, including ALKBH5, FTO, HAKAI, HNRNPA2B1, HNRNPC, IGF2BP2, IGF2BP3, KIAA1429, METTL14, METTL16, RBM15, RBM15B, VIRMA, WTAP, YTHDF1, YTHDF2, YTHDF3, ZC3H13. Among them, we found HNRNPC, YTHDC2, WTAP, VIRMA, IGF2BP3, and HNRNPA2B1 were significantly correlated to worse outcomes and advanced stage in EC, indicating these m6A regulators play important roles in EC and hold the key to the prognosis of patients. Among these genes, WTAP is the key subunit of the m(6)A methyltransferase complex, and had a crucial role in cancers. For example, WTAP suppressed HMBOX1 expression in an m6A-dependent manner in osteosarcoma tumorigenesis (Chen et al., 2020). Overexpression of WTAP contributed to poor prognosis of gastric cancer by affecting tumor-associated T lymphocyte infiltration (Zhang et al., 2020). In liver cancer, WTAP suppressed ETS1 expression via m6A-HuR-dependent epigenetic silencing (Chen et al., 2019b). IGF-2 mRNA binding proteins, including IGF2BP3, HnRNPA2B1, and HnRNPC, have been identified as m6A readers, which was involved in modulating RNA stability, translation, splicing, decay, and Subcellular localization. hNRNPA2B1 can bind to transcripts containing m6A modification via “m6A-switch” mechanisms (Liu and Pan, 2016). The results showed that HNRNPA2B1 was increased significantly in ESCA and positively associated with ESCA tumor stage and lymph node metastasis. In addition, knocking down hnRNPA2B1 can inhibit ESCA growth and metastasis (Guo et al., 2020). In non-small cell lung cancer, down-regulation of the m6A reader YTHDC2 promotes tumor progression and predicts poor prognosis (Sun et al., 2020). YTHDC2 activates the IGF1R/Akt/S6 signal axis to promote radiotherapy tolerance for nasopharyngeal carcinoma (He et al., 2020). A previous study also showed a single nucleotide polymorphism (SNP) rs2416282 in the YTHDC2 gene promoter region is significantly associated with ESCC susceptibility (Yang et al., 2020). KIAA1429 enhanced liver tumorigenesis through regulating GATA3 in a m6A-dependent manner and also act as an oncogene in breast cancer by modulating CDK1 (Qian et al., 2019).

ICT with anti-PD-1 and anti-PD-L1 therapy has completely changed the treatment of various advanced cancers (Bacot et al., 2020), including EC. Despite immune checkpoint inhibitors (ICI) can significantly improve the prognosis of patients with EC, there are still a considerable proportion of patients who have no response or resistance to ICT. There is increasing evidence that intrinsic factors in tumor cells (e.g., PD-L1 expression, TMB, and MSI-H) are associated with the efficacy of immune checkpoint inhibitors. In addition, external factors including tumor infiltrating lymphocytes (TIL) can also lead to cancer resistance to immunotherapy, tumor associated macrophages (TAM), and myeloid suppressor cells (MDSC). So as to deepen the understanding of tumor immune microenvironment. For example, PD-L1 expression, TIL, TAMs, and MDSCs play an increasingly important role. In present study, we evaluated the correlation between m6A and the level of immune cell infiltration in cancer from TISIDB. It is worth noting that WTAP is associated with cancer-related fibroblasts, myeloid dendritic cells, CD4+ T cells, neutrophil regulatory T cells, CD8+ T cells and macrophages. CD8+ T cells are the key undertakers of anti-tumor immunity, which will further proliferate and differentiate into effective cytotoxic cells with specific cancer killing ability after stimulated by tumor antigens and cytokines secreted by Th1 cells. We also performed bioinformatics analysis of m6A in ESCC. Our results showed that, except m6A and immune response, our results also showed that YTHDC2 was related to cell-cell adhesion, regulation of mRNA stability, NIK/NF-kappaB signaling, G1/S transition of mitotic cell cycle. Wtap was related to RNA splicing. VIRMA was related to p53 signal and sister chromatid cohesion. IGF2BP3 and HNRNPA2B1 were related to multiple proliferation related pathways, including Mitosis, Cell cycle, Cell division, DNA replication. HNRNPC was related to mRNA splicing. Our bioinformatics analysis were consistent with previous reports that these m6A regulators had a key role in regulating cancer cell proliferation. Interestingly, our study also revealed several novel functional roles of these m6A regulators in EC, such as NIK/NF-kappaB signaling. The classical activation pathway of NF-κB signaling has been identified to be related to gut development and repair, innate immunity and inflammation and have a regulatory role in inflammation-associated malignancies. In esophageal adenocarcinoma, elevated NF-κB expression was related to advanced stages and neoadjuvant chemotherapy and radiation response (Gambhir et al., 2015). Our findings indicated that m6A also modulate inflammation-related EC via NF-κB signaling.

Several limitations should be noted in this study. First, TCGA data is used for survival analysis. The validation of mRNA and protein levels in surgical samples from patients with EC further supports the work of m6A modulator as an executable clinical biomarker. Finally, the function of m6A regulatory factor in EC will be further explored using loss-of function assays.



CONCLUSION

In conclusion, our study confirmed the dysregulation of tumor associated m6A regulator through bioinformatics analysis, which is associated with prognosis of EC patients, so it can be used as a prognostic biomarker. Furthermore, we showed m6A regulators expression is correlated with immune infiltration levels and the expression of Immuno regulators in EC. Our study indicated m6A regulators may work as a putative drug target in EC.
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Esophageal squamous cell carcinoma (ESCC) turns out to be one of the most prevalent cancer types, leading to a relatively high mortality among worldwide sufferers. In this study, gene microarray data of ESCC patients were obtained from the GEO database, with the samples involved divided into a training set and a validation set. Based on the immune-related differential long non-coding RNAs (lncRNAs) we identified, a prognostic eight-lncRNA-based risk signature was constructed following regression analyses. Then, the predictive capacity of the model was evaluated in the training set and validation set using survival curves and receiver operation characteristic curves. In addition, univariate and multivariate regression analyses based on clinical information and the model-based risk score also demonstrated the ability of the risk score in independently determining the prognosis of patients. Besides, based on the CIBERSORT tool, the abundance of immune infiltrates in tumor samples was scored, and a significant difference was presented between the high- and low- risk groups. Correlation analysis with immune checkpoints (PD1, PDL1, and CTLA4) indicated that the eight-lncRNA signature–based risk score was negatively correlated with PD1 expression, suggesting that the eight-lncRNA signature may have an effect in immunotherapy for ESCC. Finally, GO annotation was performed for the differential mRNAs that were co-expressed with the eight lncRNAs, and it was uncovered that they were remarkably enriched in immune-related biological functions. These results suggested that the eight-lncRNA signature–based risk model could be employed as an independent biomarker for ESCC prognosis and might play a part in evaluating the response of ESCC to immunotherapy with immune checkpoint blockade.

Keywords: risk model, nomogram, immunity, long non-coding RNA, esophageal squamous cell carcinoma


INTRODUCTION

Esophageal cancer is the eighth most prevalent cancer worldwide and the sixth in cancer mortality (Siegel et al., 2017). There are two main histological types: esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), which differ in etiology, pathogenesis, and biological characteristics. Despite the rapid increase in the incidence of EAC in western countries, ESCC remains dominant in East Asia (Torre et al., 2015), with a poor 5-year overall survival (OS) rate and a high incidence of recurrence and metastasis (Aquino et al., 2013). Although the TNM staging system has been extensively employed as a factor indicating prognosis, due to the heterogeneity of ESCC, there still exist differences in the survival of patients at the same clinical stage. Hence, a comprehensive study of key molecular mechanisms related to the prognosis of ESCC is urgently needed.

Long non-coding RNAs (lncRNAs) as RNA transcripts are more than 200 nucleotides in length and are short of the ability to encode proteins (Gupta et al., 2010). As reported, lncRNAs are significant players in the regulation of a variety of biological processes, and they participate in gene expression regulation via chromatin modification and transcriptional and post-transcriptional processing (Rinn and Chang, 2012). In addition to regulating biological processes, recent studies reveal that lncRNAs have the potential to act as prognostic biomarkers, and multiple lncRNAs are identified and validated for prognostic use in many cancers (including gastric cancer, colorectal cancer, and renal clear cell carcinoma) (Hu et al., 2014; Zhu et al., 2016; Shi et al., 2017). Nevertheless, there have been few studies regarding the function of lncRNAs on ESCC prognosis, mainly attributed to the scarcity of relevant comprehensive and systematic analysis (Sun et al., 2014). Currently, ESCC gene expression data and related prognostic information are available in public databases, including the GEO database. Therefore, lncRNA and mRNA data of ESCC were downloaded from GEO for analysis here.

An increasing number of studies have displayed the importance of the immune microenvironment for the development of digestive tract cancers, including ESCC (Ahtiainen et al., 2019; Masugi et al., 2019; Xue et al., 2019), which can provide reliable potential biomarkers for cancer diagnosis and prognosis. The immune microenvironment, a promoter or a suppressor for the growth and progression of tumors, can efficiently target tumors through drugs and show an association with survival of cancer patients (Tamborero et al., 2018). Despite the immune microenvironment having recently been studied in pan-cancers or certain tumors (Tamborero et al., 2018; Thorsson et al., 2018), no study has provided a comprehensive immune spectrum specifically for cancers of the digestive system. In this study, lncRNAs associated with immune pathways in ESCC were identified through the ImmLnc website, and this method was previously verified in an independent data set (Li et al., 2020). CIBERSORT, a new algorithm employed to count immune cell subsets and provide the possibility of identifying immune biomarkers for diagnosis and prognosis (Newman et al., 2015), was carried out in this study as well.

Here, a prognostic model based on immune-related lncRNAs that could be applied to predict the prognosis of ESCC was determined through the GEO training set and ImmLnc, and a nomogram that could be applied in clinical practice was constructed. The prognostic value of the model and the nomogram was then verified in another independent data set. In addition, the distribution of immune infiltrates in groups with high/low risk scores was also revealed, and the possible role of the lncRNA signature we identified in immunotherapy was explored. In all, the results of this research will help to achieve an accurate prognosis for ESCC patients and may have the potential to predict patients’ response to immunotherapy with immune checkpoint blockade (ICB).



MATERIALS AND METHODS


Data Downloading and Preprocessing

Esophageal squamous cell carcinoma gene expression (normal: 119, tumor: 119) and clinical information (Supplementary Table 1) of microarray GSE53624 (GPL18109) were downloaded from the GEO database as the training set, and 8,975 lncRNAs (Supplementary Table 2) and 19,361 mRNAs (Supplementary Table 3) were obtained by data annotation. Similarly, ESCC gene expression data (normal: 60, tumor: 60) and clinical information (Supplementary Table 4) of GSE53622 (GPL18109) were downloaded from the GEO database as the validation set. In all, 8,975 lncRNAs (Supplementary Table 5) and 19,361 mRNAs (Supplementary Table 6) were gained by annotation.



Screening of Immune-Related Differentially Expressed lncRNAs

Expression levels of lncRNAs and mRNAs in tumor and normal groups were analyzed by the limma package, respectively, with the same parameters (| logFC| > 1, FDR < 0.05). The data set of Lnc_Pathways_Sig.txt was downloaded from ImmLnc1, and a total of 3,271 immune-related lncRNAs of ESCC were obtained (Supplementary Table 7). These 3,271 lncRNAs were intersected with differentially expressed lncRNAs (DElncRNAs) to obtain immune-related DElncRNAs.



Construction of Prognostic Risk Model

The survival package was employed to conduct a univariate regression analysis of immune-related DElncRNAs (p < 0.05), and lncRNAs related to prognosis were screened. Multivariate regression analysis was then conducted with the survminer package on ESCC survival-related genes to obtain a risk gene signature, and the risk score based on the signature was formulated as below:

[image: image]

where, Coefi represents the synergetic coefficient and xi represents the relative expression of genes standardized by Z-score.



Validation of the Prognostic Risk Model

Both the training and the validation sets were taken to testify to the validity of the model. Each patient was conferred a risk score based on the model. The median risk score of all samples in each set was used as the critical value to form high-risk and low-risk groups, and the survminer package was employed for survival analysis. Receiver operation characteristic (ROC) curves were drawn with the timeROC package for the model, and area under the curve (AUC) values corresponding to 1, 2, and 3 years were calculated, respectively. In addition, the model-based risk score was taken as a single characteristic factor, and clinical information was combined for further regression analyses to assess the independence of the risk model.



Construction and Evaluation of Nomogram

Considering both clinical information and the risk score (high/low), a nomogram was then drawn with the rms package to predict 1-, 2-, and 3-year mortality. The predictive performance of the nomogram was identified using calibration curves with the foreign package. In addition, the timeROC package was used to draw ROC curves and calculate corresponding AUC values in combination with clinical information and risk scores. Then, the same operation was conducted in the validation set GSE53622 to evaluate the predictive ability of the nomogram.



Correlation Between Risk Score and Immune Infiltration

In order to explore the abundance of immune infiltrates in the high- and low-risk groups, the CIBERSORT algorithm was used to score the infiltration abundance of each immune cell in samples to evaluate the proportion of 22 types of immune cells in each sample. A P value less than 0.05 was defined as the standard for successful deconvolution of samples, and the samples with CIBERSORT p < 0.05 were analyzed in the next step.



Correlation Between lncRNA Signature and Immune Checkpoints

It has been confirmed that PD1, PDL1, and CTLA4 can be used as immune checkpoints for ESCC (Jiao et al., 2019; Baba et al., 2020). Here, Pearson correlation analysis was performed for the signature-based risk score and immune checkpoint expression to search for the potential function of the lncRNA signature in immunotherapy.



GO Enrichment Analysis

Pearson correlation analysis was employed to assess the correlation of the signature lncRNAs with differentially expressed mRNAs (DEmRNAs). The mRNAs with | cor| > 0.5 were selected as the co-expressed mRNAs. The clusterProfiler package was used for GO biological annotation of the co-expressed mRNA gene set (q value < 0.05) to explore the biological function regulated by the lncRNA signature in ESCC.



RESULTS


Screening of Immune-Related DElncRNAs

The differential analysis results uncovered that a total of 972 DElncRNAs were obtained, including 404 upregulated and 568 downregulated genes (Figure 1A), while a total of 3,026 DEmRNAs were obtained, with 1,283 upregulated and 1,743 downregulated (Figure 1B). In order to obtain immune-related DElncRNAs, 3,271 immune-related lncRNAs in ESCC downloaded from the ImmLnc website were intersected with the DElncRNAs from GEO. Finally, a total of 111 lncRNAs were obtained (Figure 1C). It was considered that the above 111 lncRNAs were immune-related DElncRNAs in ESCC.
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FIGURE 1. Immune-related differentially expressed long non-coding RNAs (DElncRNAs) in esophageal squamous cell carcinoma (ESCC) cells. (A) Volcano plot of differential analysis of long non-coding RNAs (lncRNAs) in tumor group compared with normal group (red dots, upregulated genes; green dots, downregulated genes). (B) Volcano plot of differential analysis of mRNAs in tumor group compared with normal group (red dots, upregulated genes; green dots, downregulated genes). (C) Venn diagram of DElncRNAs and 3,271 immune-related lncRNAs.




Construction and Validation of Risk Model

For the purpose of identifying prognostic lncRNAs of ESCC patients, the 111 lncRNAs identified before were analyzed by univariate analysis, and finally, 14 lncRNAs markedly related to prognosis of ESCC were obtained (Supplementary Table 8). A series of multivariate regression models were constructed for these 14 lncRNAs, and eventually, an eight-lncRNA signature–based model was identified (SMC5-AS1, MAMDC2-AS1, LINC01828, CASC8, AC112721.1, LINC00626, MIR100HG, and LINC02159) (Figure 2A). The formula of the model-based risk score was: risk score = 0.241 × SMC5-AS1+0.362 × MAMDC2-AS1-0.361 × LINC01828-0.318 × CASC8 +0.139 × AC112721.1 +0.110 × LINC00626-0.194 × MIR100HG-0.192 × LINC02159. The score distribution diagrams (Figures 2B,C), survival status diagrams (Figures 2D,E) and survival curves (Figures 2F,G) of patients with high or low risk scores in the training set and validation set all indicated that patients with a high risk score had a prominently lower survival rate than those with a low risk score. The ROC curves revealed that the AUC values in the training set for survival in 1, 2, and 3 years were 0.82, 0.8, and 0.82, respectively (Figure 2H), while in the validation set, the values were 0.74, 0.69, and 0.66, respectively (Figure 2I). In view of these data, it was proved that the eight-lncRNA signature based on the training set possessed a certain power in predicting the prognosis of ESCC patients.
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FIGURE 2. Construction and validation of risk model. (A) Forest plot of multivariate regression analysis on eight-lncRNA signature. (B) Score distribution diagram of samples with high or low risk in GSE53624 data set (red: high risk; green: low risk). (C) Score distribution diagram of samples with high or low risk in GSE53622 data set (red, high risk; green, low risk). (D) Survival status diagram of samples in GSE53624 data set; red dots represent death, and green dots represent survival. (E) Survival status diagram of samples in GSE53622 data set; red dots represent death, and green dots represent survival. (F) Survival curves for samples with high or low risk in GSE53624 data set. (G) Survival curves for samples with high or low risk in GSE53622 data set. (H) Receiver operation characteristic (ROC) curves of GSE53624 data set. (I) ROC curves of GSE53622 data set. * indicates p < 0.05, while ** indicates p < 0.01.




The Risk Model Has the Ability to Independently Evaluate the Prognosis of LUAD Patients

To assess the independence of the model in predicting prognosis, the risk score was subjected to a univariate regression analysis, with clinical information of the training set taken into account as well. As analyzed, age, stage, and the risk score were of crucial significance in determining the prognosis (Figure 3A). Further multivariate analysis results suggested that tobacco, stage, and the risk score were of vital significance for prognosis prediction (Figure 3B). These results displayed that the risk model had the ability to assess prognosis independently of other clinical factors.
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FIGURE 3. The risk model has the ability to independently evaluate the prognosis of LUAD patients. (A) Forest plot of univariate regression analysis on the eight-lncRNA signature–based risk score and other clinical factors. (B) Forest plot of multivariate regression analysis on the eight-lncRNA signature–based risk score and other clinical factors.




Construction and Evaluation of Nomogram

In order to help clinicians better determine the prognosis of ESCC patients, a nomogram was drawn using the eight-lncRNA signature–based risk score plus clinical information in the training set. As revealed, tobacco, stage, and the risk score had considerable significance in the prognosis of patients. In the training set, the proportion of patients with a total score of 442 was the largest, and the corresponding risk of death at 1, 2, and 3 years was 0.289, 0.584, and 0.745, respectively (Figure 4A). The prognostic capability of the nomogram was further evaluated by ROC analysis visualized by calibration curves. The degree of fit of the calibration curves corresponding to 1, 2, and 3 years in the training set and validation set was good (Figures 4B–G). ROC curves were drawn by combining clinical information and risk scores. The AUC values corresponding to 1, 2, and 3 years in the training set were 0.79, 0.83, and 0.8, respectively (Figure 4H), while those in the validation set were 0.8, 0.78, and 0.73, respectively (Figure 4I). These results demonstrated that the nomogram had a good ability to predict the prognosis of patients.
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FIGURE 4. Construction and evaluation of nomogram. (A) Nomogram based on eight-lncRNA signature–based risk score and clinical information in GSE53624 data set. (B) Calibration curve of nomogram-predicted probability of 1-year survival in GSE53624 data set. (C) Calibration curve of nomogram-predicted probability of 1-year survival in GSE53622 data set. (D) Calibration curve of nomogram-predicted probability of 2-year survival in GSE53624 data set. (E) Calibration curve of nomogram-predicted probability of 2-year survival in GSE53622 data set. (F) Calibration curve of nomogram-predicted probability of 3-year survival in GSE53624 data set. (G) Calibration curve of nomogram-predicted probability of 3-year survival in GSE53622 data set. (H) ROC curves based on clinical information combined with risk score in GSE53624 data set. (I) ROC curves based on clinical information combined with risk score in GSE53622 data set. *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001, respectively.




Correlation Between Risk Score and Immunity

CIBERSORT was implemented to score the abundance of 22 kinds of immune infiltrates in tumor samples, and Pearson correlation analysis was then conducted among the immune cells (Figures 5A–C). With p value < 0.05 as the threshold, 59 cases having a low risk score and 57 cases having a high risk score were selected. As analyzed, remarkable differences in the abundance of immune infiltrates were noted in patients of the high- and low-risk groups, including resting memory CD4 T cells, NK cells activated, M0 macrophages, plasma cells, follicular helper T cells, and resting NK cells (Figure 5D). Then, correlation analysis was conducted between the eight-lncRNA signature–based risk score and expression levels of PD1, PDL1, and CTLA4 immune checkpoints, uncovering that there was a negative linkage between the risk score and PD1 expression (Cor = −0.33) (Figures 5E–G), which indicated that the eight-lncRNA signature may play a part in assessing patients’ response to ICB immunotherapy.
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FIGURE 5. Correlation between risk score and immunity. (A) Relative percent of 22 kinds of immune cells in tumor samples. (B) Heat map of infiltration abundance of 22 kinds of immune cells in tumor samples. (C) Heat map of correlation between infiltration abundance of 22 kinds of immune cells. (D) Violin plot of the infiltration abundance of 22 kinds of immune cells in the high-risk and low-risk groups. (E) Correlation diagram of eight-lncRNA signature and PD1. (F) Correlation diagram of eight-lncRNA signature and PDL1. (G) Correlation diagram of eight-lncRNA signature and CTLA4.




The Eight-lncRNA Signature Regulates Immune-Related Biological Functions

GO annotation analysis was employed to further clarify the biological functions that may be affected by the eight-lncRNA signature. Since lncRNAs could not be directly analyzed, 305 mRNAs were firstly obtained by co-expression analysis of the eight lncRNAs. Then, GO annotation of these 305 mRNAs was carried out and uncovered a notable enrichment in the biological functions involved in immunity, such as the extracellular matrix, endoplasmic reticulum, and basement membrane, etc (Figure 6). Since these mRNAs were markedly correlated with the eight-lncRNA signature we identified, it was inferred that the eight-lncRNA signature may participate in regulating the immune-related biological functions mentioned above.
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FIGURE 6. GO annotation analysis of mRNAs co-expressed with the eight signature lncRNAs.




DISCUSSION

For most cancers involving ESCC, TNM staging remains the primary reference that helps to guide therapeutic strategy and is identified to be a prognostic indicator. Nevertheless, due to the heterogeneity at both the molecular and the genetic levels, clinical outcomes and prognoses of tumors vary even when patients are diagnosed at the same stage and receive similar treatment (Navin et al., 2011; Gerlinger et al., 2012). At present, as high-throughput technologies, such as chip and RNA sequencing, develop continuously, gene expression profiling has turned out to be a potent tool that helps to discover molecular biomarkers associated with the phenotype or prognosis of esophageal cancer (Zhan et al., 2016). Multigene signatures that are identified for evaluating activity of cancer-associated genes, like Oncotype DX for breast cancer or ColoPrint chips for colon cancer, have been in the market, and the described signatures can be employed to aid in the treatment and prognostic management of tumors (Birnbaum et al., 2017).

Accumulating literature shows the abnormal expression of certain lncRNAs, which may be one of the main factors affecting the malignant progression of tumors. At present, most studies concentrate on lncRNA signatures, which can be potential markers in prognosis prediction of colorectal cancer, glioma, and pancreatic cancer in an independent manner (Zhang et al., 2012, 2013; Hu et al., 2014; Birnbaum et al., 2017). Despite the fact that multiple lncRNAs, such as HOTAIR (Lv et al., 2013), CCAT2 (Zhang et al., 2015), and MALAT1, display potential prognostic value in ESCC (Cao et al., 2015; Deng et al., 2016), the role of immune-related lncRNA signatures in prognosis has not been clarified in literature.

In recent years, the study of the tumor immune microenvironment has taken a leading position in cancer research (Fridman et al., 2012; Bhatia et al., 2019). In this study, an eight-lncRNA signature–based risk model was constructed. At present, there is no literature that reports on the SMC5-AS1, LINC00626, LINC01828, and LINC02159 genes. However, in this study, it was uncovered that SMC5-AS1 and LINC00626 were high-risk genes in ESCC, while LINC01828 and LINC02159 were low-risk genes. A study on MAMDC2-AS1 indicated that MAMDC2-AS1 can promote the progression of HSV-1 disease (Wang et al., 2020). Hu et al. (2017) revealed the role of CASC8 as a tumor suppressor in bladder cancer and revealed that CASC8 can be a promising biomarker for cancer diagnosis. Through the TCGA database, Wang et al. (2019) analyzed the correlation between AC112721.1 and the OS time of patients with bladder urothelial carcinoma, finding that AC112721.1 expression is negatively associated with the survival of patients. Li et al. (2019) observed that the upregulation or downregulation of MIR100HG depends on different tumor types, and elevated MIR100HG expression can be an independent indicator for poor OS of patients suffering from gastric cancer. In this paper, the predictive accuracy of the model was verified in both the training and the validation sets. A nomogram is a tool that can assist clinicians to better design the treatment strategy of patients according to medical condition and help to realize personalized treatment of patients (Long et al., 2018). Here, a nomogram was also established based on the risk score of the eight-lncRNA signature together with clinical information of ESCC patients, and the predictive power of the nomogram was evaluated as well.

Recently, there has been increasing evidence that some lncRNAs play a regulatory role in tumor immuno-response, including antigen release and immune cell infiltration (Carpenter and Fitzgerald, 2018; Denaro et al., 2019). In this study, CIBERSORT was implemented to score the abundance of immune infiltrates in tumor samples. It was found that the immune-related lncRNA signature was correlated to immune cell infiltration (M0 macrophages, T cells, and NK cells, etc.) in ESCC, indicating the vital role of the signature in immune infiltration in ESCC. Clara Di Vito (Di Vito et al., 2019) mentioned the dual role of NK cells regarding cancer progression or boosting the onset of immuno-suppressant tumor microenvironments, which might be the possible reason for the upregulation of NK cells activated in the high-risk group in the results of this paper. Literature showed that plasma cells are antibody producers and can promote immune response (Ribatti, 2017), which is consistent with the downward trend of plasma cells in the infiltrating abundance of the high-risk group in this paper. Immunotherapy offers a promising new treatment option for ESCC patients (Mimura et al., 2018). However, only some patients respond to ICB treatment, and the relevant literature and clinical trials both indicated that neither immune checkpoint gene expression nor mutational load can reliably predict the response of ESCC patients to ICB treatment (Fukuoka et al., 2019; Song et al., 2020). Therefore, identification of biomarkers to predict a patient’s response to ICB immunotherapy is critical. In addition, some lncRNAs were uncovered to be correlated with immune responses and can predict a patient’s response to immunotherapy (Xu et al., 2018; Vishnubalaji et al., 2020). In this study, Pearson correlation analysis was conducted between the eight-lncRNA signature–based risk score and three immune checkpoints. The results indicated that the signature-based risk score was remarkably negatively correlated with PD1 checkpoint. Therefore, it was speculated that the eight-lncRNA signature might have the potential to predict the response of ESCC patients to immunotherapy.

Finally, in order to further understand the biological processes of ESCC that might be regulated by the eight-lncRNA signature, mRNA co-expressed with the eight signature lncRNAs was analyzed by GO annotation. It turned out that the co-expressed mRNAs were remarkably enriched in biological functions, such as the extracellular matrix, endoplasmic reticulum lumen, and basement membrane, etc. Moreover, it can be seen in the literature that the dysregulation of the extracellular matrix can promote tumor immune escape (Pickup et al., 2014). Endoplasmic reticulum lumen stress can induce differentiation of immune cells (So, 2018). Therefore, combined with the results of this study, it is believed that the eight-lncRNA signature may participate in regulating immune-associated biological functions of ESCC.

In conclusion, in this study, DElncRNAs in ESCC were obtained from the GEO database, and DElncRNAs related to ESCC immunity were further identified after a consultation on the ImmLnc website. Eventually, an eight-lncRNA signature–based risk model and a nomogram that could be used to determine the prognosis of ESCC patients were established. However, it is still challenging to apply the eight-lncRNA signature in clinical treatment as a therapeutic target. In the future, a series of cell function experiments and clinical trials are required to advance the clinical application of the eight-lncRNA signature we constructed in treatment so as to improve the survival rate of ESCC patients.
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USP21 is a kind of deubiquitinating enzymes involved in the malignant progression of various cancers, while its role in gastric cancer (GC) and the specific molecular mechanism are still unclear. This study probed into the function of USP21 in vitro and in vivo, and discussed the regulatory mechanism of USP21 in GC in vitro. We reported that USP21 promoted GC cell proliferation, migration, invasion, and stemness in vitro, and regulated GC tumor growth and cell stemness in mice in vivo. USP21 stabilized the expression of GATA3 by binding to GATA3. Besides, GATA3 also regulated the expression of MAPK1 at the transcriptional level. A series of in vitro experiments testified that USP21 regulated the expression of MAPK1 by binding to transcription factor GATA3, thereby regulating the tumor growth and cell stemness of GC. Overall, this study identified a new USP21/GATA3/MAPK1 axis, which plays a pivotal role in promoting the malignant progression of GC and might provide a potential target for treatment.
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INTRODUCTION

Gastric cancer (GC) as one of the most common malignancies in the digestive system remains one of the top 10 cancer-related deaths in many Asian countries (Wu and Lin, 2020). Due to a lack of clinical symptoms in early GC, most patients are diagnosed at later stages with poor prognosis and low survival rate, and for patients with advanced GC, the average overall survival (OS) is even less than 12 months (Figueiredo et al., 2017; Padmanabhan et al., 2017; Zhang and Zhang, 2017). Surgical resection is currently considered to be the unique radical cure (Aurello et al., 2020), whereas it usually brings huge metabolic pressure to patients (Wu and Lin, 2020). As reported, molecular characterization of GC may bring us more effective therapeutic strategies, such as individualized therapies and novel clinical trial designs, which will eventually advance the medical management of the disease (Serra et al., 2019). However, the specific molecular mechanism underlying GC development described so far is not quite sufficient. Hence, an intensive study of the molecular mechanism of GC may be beneficial for further improvement of patient’s treatment and prognosis.

De-ubiquitinating enzymes (DUBs) can remove ubiquitin molecules from protein substrates and maintain their stability (Liu et al., 2016). The human genome encodes about 90 DUBs, of which 79 DUBs may possess catalytic activity (Urbe et al., 2012). DUBs can be classified into five families: ubiquitin C-terminal hydrolase (UCH), ubiquitin-specific protease (USP), ovarian tumor, Josephins (Machado–Joseph disease), and JAB1/MPN/Mov34 metalloenzymes (JAMM/MPN+). Membranes of the first four families are cysteine proteases, while the JAMM family is the family of zinc metalloproteases (Urbe et al., 2012). USP21 as an effective DUB can catalyze isopeptide bond hydrolysis between ubiquitin and histone H2A (Okuda et al., 2013). In tumor research, USP21 is noted to participate in the malignant processes of a variety of cancers. In non-small cell lung cancer, USP21 promotes tumor cell proliferation, migration, and invasion through the YY1/SNHG16 axis (Xu et al., 2020). In bladder cancer, USP21 is highly expressed and patients with high expression levels have poor survival, and USP21 can accelerate the proliferation and metastasis of bladder cancer cells via inhibiting EZH2 ubiquitination (Chen et al., 2017). While in hepatocellular carcinoma, USP21 binds to MEK2 and regulates the polyubiquitination at Lys48, thereby stabilizing MEK2 and up-regulating ERK1/2 to support sustained proliferation and oncogenic signals (Li et al., 2018). In basal-like breast cancer, USP21 can also regulate the cell cycle and paclitaxel sensitivity of cancer cells by deubiquitinating the transcription factor FOXM1 (Arceci et al., 2019). Besides, USP21 as a DUB plays an important role in regulating cell stemness. For instance, USP21 stimulates the stemness of pancreatic cancer cells by activating the Wnt pathway (Hou et al., 2019). USP21 interacts with Nanog protein in embryonic stem cells in vivo and in vitro to deubiquitylate the K48-type linkage of the ubiquitin chain of Nanog, thereby stabilizing Nanog and in turn maintaining the stemness of embryonic stem cells in mice (Liu et al., 2016). However, the molecular mechanism of USP21 in regulating GC cell stemness remains an open issue.

This study identified the expression pattern of USP21 in GC and clarified its role in regulating cell proliferation, metastasis, and cell stemness, along with possible molecular mechanisms further discussed. This research provides a previously unrecognized mechanism for the progression of GC and offers novel potential clues for GC therapy.



MATERIALS AND METHODS


Bioinformatics Analysis

USP21 expression in The Cancer Genome Atlas (TCGA) –STAD database was searched through Gene Expression Profiling Interactive Analysis (GEPIA) database1. Downstream regulatory factors of GATA3 were predicted through the hTFtarget database2. The R package “clusterprofiler” was used to analyze the significantly activated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the potential downstream target genes of GATA3. Gene functional association analysis was performed on the STRING database3, and a protein-protein interaction (PPI) network was established and further visualized using the Cytoscape v3.7.1. Core value of each gene in the network was counted. The possible binding sites between MAPK1 promoter region and GATA3 were predicted through the JASPAR database4.



Clinical Samples

GC tissue samples of 22 patients who underwent surgical resection from May to August in 2020 in the Second Affiliated Hospital of Zhejiang University School of Medicine were collected, and the matched adjacent non-tumor tissue was obtained from the part farthest (>5 cm) from the tumor in each excised specimen. All samples were immediately frozen in liquid nitrogen after excision and stored at -80°C. The included samples of patients were all diagnosed with clear pathology of GC. The patients did not receive preoperative radiotherapy or chemotherapy. All the patients were informed with the sample collection information, and signed informed consent. The project was approved by the Research Ethics Committee of the Second Affiliated Hospital of Zhejiang University School of Medicine.



Cell Culture

Human normal gastric mucosal epithelial cell line GES-1 (BNCC353464) and GC cell lines AGS (BNCC309318), MKN-28 (BNCC338339), MKN-45 (BNCC337682), and MGC-803 (BNCC100665) were accessed from BeNa Culture Collection (BNCC, Beijing, China). The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Corning) supplemented with 10% fetal bovine serum (FBS) (Gibco) at 37°C with 5% CO2.



Plasmid Construction and Transfection

The USP21 or GATA3 coding sequence was cloned into the pENTER plasmid (ViGene Biosciences Inc., Rockville, MD, United States) to overexpress USP21 or GATA3. The Flag or Myc labeled-empty plasmid vector (pENTER) was purchased from Vigene. The small interfering RNA (siRNA) targeting USP21, GATA3, or MAPK1 was designed and synthesized by RiboBio (Guangzhou, China). All transfections were performed using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, United States). For in vivo experiment, cells were seeded into a 6-well plate and cultured overnight, and an appropriate lentivirus-packing vector overexpressing USP21 synthesized by GenePharma (Shanghai, China) was added to the cells for infection.



Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from tissue and cell lines using RNeasy Mini Kit (QIAGEN), 1 μg of which was reverse-transcribed into complementary DNA (cDNA) using RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, United States). qRT-PCR was performed on the StepOne real-time PCR system (Thermo Fisher Scientific) using SYBR Green PCR kit (Takara Bio, Otsu, Japan). The 2–ΔΔCt method was employed to calculate the relative gene expression normalized by GAPDH. The primer sequences are detailed in Table 1.


TABLE 1. Primer sequences in qRT-PCR.

[image: Table 1]


Western Blotting

Total proteins were extracted from GC cells using enhanced radioimmunoprecipitation assay (RIPA) lysis buffer (Thermo Scientific, Waltham, MA, United States), and the obtained proteins were quantified using bicinchoninic acid (BCA) protein assay kit (Beyotime, Shanghai, China). The proteins were separated by polyacrylamide gel electrophoresis (PAGE) and transferred onto a polyvinylidene fluoride (PVDF) membrane (Millipore, Bedford, MA, United States). Then, the membrane was blocked with 5% skimmed milk powder prepared with Tris-buffered saline +Tween-20 (TBST) for 2 h. The membrane and the following primary antibodies, including rabbit anti-USP21, anti-GATA3, anti-MAPK1, anti-Flag, anti-Myc, anti-E-cadherin, anti-α-catenin, anti-fibronectin, anti-GAPDH, were incubated at 4°C overnight. After the membrane was washed, it was then incubated with secondary antibody goat anti-rabbit IgG H&L for 1 h at room temperature. Protein detection was carried out by the enhanced chemiluminescence (ECL) detection system (Amersham, RPN2132). ChemiDoc imaging system (BioRad) was run to obtain western blotting images. All antibodies used here were ordered from Abcam (Cambridge, United Kingdom).



MTT Assay

MTT assay was used to assess cell viability. The transfected cells (2 × 103 cells/well) were seeded into a 96-well plate. After cultured at 37°C for 24, 48, 72, or 96 h, they were treated with 0.5 mg/mL MTT solution (Sigma-Aldrich, Shanghai, China) for 2 h. The absorbance at 490 nm was measured with a microplate reader (Bio-Rad, Hercules, CA, United States) to evaluate the number of viable cells.



Colony Formation Assay

After 48 h of transfection, the cells were collected and counted. 2 × 103 cells were placed in a 6-well plate and incubated in complete medium for 14 days until clear colonies were formed. The colonies were fixed with 4% paraformaldehyde and stained with 0.5% crystal violet. Each well was washed with sterile water to remove residual crystal violet and the colonies were counted under a microscope.



Transwell Migration and Invasion Assays

A total of 5 × 104 cells prepared in a serum-free medium were seeded into the top chamber of the Transwell chamber (uncoated with Matrigel) (Corning Life Sciences, Corning, NY, United States) to assess cell migration. The invasion assay was performed using the Transwell chamber coated with Matrigel (BD, Franklin Lakes, United States). Complete medium was placed in the bottom chamber in both assays. After incubated at 37°C with 5% CO2 for 24 h, the cells on the upper surface of the filter were wiped off with a cotton swab. The cells in the bottom chamber were fixed in 4% paraformaldehyde, stained with 0.1% crystal violet, and counted in three random fields under a microscope (Zeiss, Germany).



Sphere Formation Detection

Cells (1 × 103) were seeded into Ultra Low Attachment 6-well plates (Corning Incorporated Life Sciences, Acton, MA, United States) and cultured in DMEM supplemented with B27, N2, 10 ng/mL epidermal growth factor, and 10 ng/mL basic fibroblast growth factor (Millipore). After 5 days of incubation, the spheres formed were counted with a stereomicroscope (Olympus, Tokyo, Japan). The sphere-forming capability of cells was evaluated by selecting three random fields under the microscope to count the number of spheres (>50 μm). To determine tumor cell-related sphere formation in nude mice, the tumor tissue was cut into pieces and digested with trypsin. Next, the digested cells were dispersed and filtered with a filter and were then washed with phosphate-buffered saline (PBS). Afterward, mice tumor cell separation solution (120909, Tiandz, Beijing) was used to separate tumor cells following the instructions.



Co-immunoprecipitation (Co-IP)

RIPA buffer (comprised of 0.5 mM EDTA; 10% glycerol; 20 mM Tris-Cl, pH 8.0; 100 mM NaCl; 1% protease inhibitor cocktail; 1 mm PMSF; 0.5% NP-40) was used to lyse cells, and the cell lysate was used for Co-IP assay. In short, the cell lysate was immunoprecipitated with anti-USP21 or anti-GATA3 antibodies at 4°C for 3 h and then incubated with A/G protein (Santa Cruz Inc.) overnight at 4°C. The protein A/G-Sepharose complex was washed three times with hydroxyethyl piperazine ethanesulfonic acid (HEPES) buffer. Finally, western blotting was performed for identification of the proteins.



Chromatin Immunoprecipitation (ChIP) and PCR Assay

ChIP analysis was carried out using the EZ ChiP kit (Merck Millipore, Bedford, MA, United States) per the manufacturer’s protocol to determine the interaction between GATA3 and the MAPK1 promoter region. The cells were cross-linked with 1% formaldehyde at 37°C for 10 min, and the cross-linking was quenched with glycine at room temperature. Then, the cells were collected and sonicated to cut the DNA into fragments of 200 bp to 1 kb, and the cell debris was centrifuged at 4°C. The sample was then incubated with target antibodies overnight at 4°C to obtain co-immunoprecipitate. Following washing and de-crosslinking, RT-PCR was used to determine the enrichment of GATA3 on the promoter region of MAPK1.



Dual-Luciferase Reporter Gene Assay

The MAPK1 promoter and GATA3 3′-untranslated region (UTR) were cloned into the pmirGlo reporter gene vector (Promega, Madison, WI, United States) and were validated through DNA sequencing. A KOD-Plus Mutagenesis Kit (Toyobo Biochemicals, Osaka, Japan) was used to mutate the presumed binding sites according to the protocols. Lipofectamine 2000 (Invitrogen) was employed for cell transfection in 6-well plates, and 48h later, a dual-luciferase reporter assay kit (Promega) was applied to detect luciferase activity following the manufacturer’s instructions.



Xenograft Tumor in vivo

Twelve male BALB/c nude mice (4 weeks old) were randomly divided into two groups (6 mice/group). The AGS cells transfected with the oe-USP21 lentivirus-packaging vector were washed with PBS and injected subcutaneously into the armpit area of either side of the nude mice. Tumor volume was calculated every 2 days through the formula V = 0.5 × ab2(a: tumor length, b: tumor width). The BALB/c nude mice were obtained from the Institute of Laboratory Animals Science, CAMS & PUMC (Beijing, China), and all experiments involving mice were approved by the Institute of Biophysics, Chinese Academy of Sciences. The grading classification of mice tumors referred to the standard adopted by Hou et al. (2019).



Hematoxylin-Eosin (H&E) Staining and Immunohistochemistry (IHC)

The tumor tissue from mice was fixed in formalin, embedded in paraffin, and cut into 6 μm sections for H&E staining and IHC. The tissue sections were rehydrated and taken for antigen retrieval. Then, the tissue sections were incubated with Ki67 antibody (Abcam, Cambridge, United Kingdom) at 4°C for 12 h. After washed several times, the sections were incubated with goat anti-rabbit IgG H&L (Abcam, Cambridge, United Kingdom) at room temperature for 1 h, and then exposed to 3,3’-diaminobenzidine (DAB) solution (Sigma, St. Louis, MO, United States) for observation.



Statistical Analysis

Statistical analysis was conducted using SPSS 22.0 (IBM Corp. Armonk, NY, United States) and GraphPad Prism 6.0 Software (GraphPad Inc., San Diego, CA, United States). All measurement data were expressed as mean ± SD. T-test was used for comparison between two groups, while the analysis of variance (ANOVA) was used for pairwise comparison among multiple groups. P < 0.05 indicated that the difference was statistically significant.



RESULTS


USP21 Is Highly Expressed in GC Tissue and Cells

To find out the role of DUBs in GC, the TCGA-STAD dataset was used to analyze the expression of USP21 in GC patients. It could be seen from Figure 1A that compared with normal tissue, USP21 was prominently highly expressed in GC tissue. qRT-PCR was performed to evaluate the mRNA expression of USP21 in clinical GC tissue and adjacent normal tissue from 22 GC patients. The results showed that the expression of USP21 in GC tissue was significantly higher than that in adjacent normal tissue (Figure 1B). Subsequently, the mRNA expression of USP21 determined in human normal gastric mucosal epithelial cell line and GC cell lines was presented in Figure 1C, showing that compared with normal gastric mucosal epithelial cell line GES-1, GC cell lines AGS, MKN-28, MKN-45, and MGC-803 had markedly increased USP21 mRNA. Figure 1D illustrated the results of IHC that tumor grading of GC was positively correlated with USP21 expression. Therefore, USP21 might play a regulatory role in the malignant progression of GC.
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FIGURE 1. USP21 is highly expressed in GC tissue and cells. (A) The gene expression of USP21 in TCGA-STAD dataset (X-axis: sample type; Y-axis: relative expression value; The red box: tumor sample; The gray box: normal sample); (B) USP21 mRNA expression in clinical GC tissue and adjacent normal tissue (n = 22); (C) USP21 mRNA expression in human normal gastric epithelial cell line GES-1 and GC cell lines AGS, MKN-28, MKN-45, MGC-803; (D) IHC image shows the tissue location of USP21 in different tumor grades (400×); *p < 0.05.




USP21 Promotes the Proliferation, Migration, Invasion, and Stemness of GC Cells

Due to the abnormal expression of USP21 in GC, AGS and MKN-45 cell lines which, respectively, had relatively low and high USP21 expression in all tumor cells were selected to study the relationship between USP21 and GC progression. First, USP21-targeted plasmid (oe-USP21) was transfected into AGS cells for overexpression, while USP21 siRNA (si-USP21) was transfected into MKN-45 cells for gene silencing. Then, the mRNA and protein expression of USP21 were detected by qRT-PCR and western blotting, respectively. The results displayed that the expression of USP21 in AGS cells transfected with oe-USP21 was dramatically increased, while the expression of USP21 in MKN-45 cells transfected with si-USP21 was remarkably decreased (Figures 2A,B). To detect the effect of USP21 on cell proliferation, MTT and colony formation assays were performed. The results exhibited that overexpression of USP21 notably improved the viability and colony forming ability of AGS cells while inhibiting the expression of USP21 conspicuously reduced the viability and colony forming ability of MKN-45 cells (Figures 2C,D). Afterward, the role of USP21 in cell migration and invasion was evaluated through Transwell assay, and the data in Figures 2E,F showed that overexpression of USP21 accelerated the migration and invasion of AGS cells, whereas knockdown of USP21 pronouncedly reduced the migration and invasion of MKN-45 cells. Western blotting was conducted to test whether USP21 regulates epithelial-mesenchymal transition (EMT) by detecting the expression of several EMT marker proteins E-cadherin, N-cadherin, α-catenin, and fibronectin. It was observed that E-cadherin and α-catenin in the oe-USP21 group of AGS cells were significantly reduced, while N-cadherin and fibronectin were prominently increased. The opposite result appeared in the si-USP21 group of MKN-45 cells (Figure 2G). It is known that when grown in non-adherent serum-free medium, CSCs can complete self-renewal and then form spheres. To further determine the role of USP21 in the growth and maintenance of CSCs, the sphere-forming capability of AGS cells treated with oe-USP21 or of MKN-45 cells treated with si-USP21 was studied. As shown in Figure 2H, the sphere-forming capability of AGS cells treated with oe-USP21 was conspicuously elevated, while that of MKN-45 cells treated with si-USP21 was restrained. These results demonstrated that USP21 stimulated cell proliferation, migration, invasion, and stemness of GC cells.
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FIGURE 2. USP21 promotes the proliferation, migration, invasion, and stemness of GC cells. (A) The USP21 mRNA expression in each transfection group was detected by qRT-PCR; (B) The USP21 protein expression in each transfection group was measured by western blotting; (C) The effect of overexpression or inhibition of USP21 on the viability of GC cells was assessed via MTT assay; (D) The effect of overexpression or inhibition of USP21 on the proliferation of GC cells was measured through colony formation assay; (E) The effect of overexpression or inhibition of USP21 on the migration of GC cells was detected by Transwell assay (100×); (F) The effect of overexpression or inhibition of USP21 on the invasion of GC cells was measured via Transwell assay (100×); (G) The effect of overexpression or inhibition of USP21 on the expression of EMT marker proteins E-cadherin, N-cadherin, α-catenin, and fibronectin was evaluated by western blotting; (H) The number of spheres formed by cells treated with oe-USP21 or si-USP21; *p < 0.05.




USP21 Can Interact With GATA3 in vitro

Previous investigations testified that USP21 could participate in the progression of cancer. However, there have been few reports about whether the role of USP21 in GC correlates with GATA3. Here, it was found through gene expression data in TCGA-STAD that GATA3 was highly expressed in GC (Figure 3A). Immunoprecipitation was performed to study whether USP21 interacts with GATA3. Expression vectors containing Flag-tagged GATA3 (Flag-GATA3) and Myc-tagged USP21 (Myc-USP21) were co-transfected into HEK 293T cells. Myc-USP21 was immunoprecipitated with anti-Myc antibody and GATA3 was immunoprecipitated with anti-Flag antibody, and it was found that USP21 and Flag-GATA3 were co-immunoprecipitated (Figure 3B). These findings signified that USP21 and GATA3 could interact directly.
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FIGURE 3. USP21 can interact with GATA3 in vitro. (A) The expression of GATA3 in TCGA-STAD dataset (X-axis: sample type; Y-axis: relative expression value; The red box: tumor sample; The gray box: normal sample); (B) Co-IP experiment verified the interaction between USP21 and GATA3; *p < 0.05.




MAPK1 Is the Transcriptional Target of GATA3

To understand the downstream regulatory mechanism of GATA3, downstream regulatory genes of GATA3 were predicted on the hTFtarget database, and KEGG enrichment analysis was performed and revealed that the predicted target genes were mainly enriched in MAPK signaling pathway (Figure 4A). The genes enriched in the MAPK signaling pathway were further extracted and subjected to PPI analysis (Figure 4B). Meanwhile, core value of each gene in the PPI network was counted. It was found that the MAPK1 gene had the highest core value (Figure 4C), suggesting that MAPK1 may play the most important role. After further searching the expression of MAPK1 in TCGA-STAD dataset, MAPK1 was found to be highly expressed in GC tissue (Figure 4D). Taken together, it was speculated that MAPK1 might be a downstream target of GATA3.
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FIGURE 4. GATA3 regulates the expression of MAPK1. (A) Enrichment analysis of GATA3 potential downstream target genes (X-axis: GeneRatio; Y-axis: KEGG pathway; the right side: the color scale); (B) PPI analysis of potential target genes enriched in the MAPK signaling pathway (The line between genes in the figure indicates that there is an interaction between the two genes; The rhomboid gene is the target gene MAPK1); (C) Statistics of the core value of some genes in the PPI network; the number of interacted genes of a gene in the network is positively correlated with core value of the gene (X-axis: the core value; Y-axis: the gene name); (D) The relative expression of MAPK1 gene in TCGA-STAD dataset; (E) MAPK1 mRNA expression in AGS cells with overexpression of GATA3 or in MKN-45 cells with knockdown of GATA3; (F) MAPK1 protein expression in AGS cells with overexpression of GATA3 or in MKN-45 cells with knockdown of GATA3; (G) Binding site between GATA3 and MAPK1 promoter; (H) Dual-luciferase reporter gene assay was used to detect promoter activity; (I) ChIP was performed using the specific anti-GATA3 antibodies and IgG antibodies located on both sides of the MAPK1 promoter region, and the promoter region contains a putative GATA3 binding site; *p < 0.05.


To verify the above prediction, GATA3 overexpression plasmid (oe-GATA3) and GATA3 siRNA (si-GATA3) were constructed, and then they were, respectively, transfected into AGS cells and MKN-45 cells. qRT-PCR and western blotting manifested that overexpression of GATA3 dramatically increased the expression of MAPK1, while knockdown of GATA3 markedly reduced the expression of MAPK1 (Figures 4E,F). Given that GATA3 acted as a transcription factor and both GATA3 and MAPK1 were highly expressed in GC tissue, it was hypothesized that GATA3 might directly promote MAPK1 transcription. To validate the hypothesis, the first step was to produce a MAPK1 promoter containing a GATA3 binding site and establish a MAPK1 mutation using site-directed mutagenesis technology (Figure 4G). The results of dual-luciferase assay pointed out that elevation of GATA3 prominently increased the MAPK1 promoter activity in AGS cells, while silenced GATA3 reduced the promoter activity in MKN-45 cells, with no significant effect on the mutation of the MAPK1 promoter in both two groups (Figure 4H). ChIP assay was further conducted to determine the direct interaction between GATA3 and MAPK1 promoter. Figure 4I presented positive bands in the transfection group using GATA3 antibody. Therefore, it could be seen that the transcription factor GATA3 could interact with the MAPK1 promoter to stimulate the expression of MAPK1 in GC cells.



USP21 Regulates the Expression of MAPK1 Through GATA3 and Affects Cell Proliferation, Migration, Invasion, and Stemness of GC

Since USP21 stimulated cell proliferation, migration, invasion, and stemness of GC, and could stabilize the expression of GATA3 by deubiquitinating GATA3, while MAPK1 was the transcription target of GATA3, it was further verified whether USP21 could play its oncogenic effect in GC through the GATA3/MAPK1 axis. Three groups were set up for rescue experiments, namely: si-NC+ oe-NC, si-MAPK1+oe-NC, si-MAPK1+oe-USP21. The mRNA and protein expression of USP21, GATA3, and MAPK1 in each group of cells were analyzed by qRT-PCR and western blotting. The results demonstrated that the expression of MAPK1 was prominently decreased with knockdown of MAPK1, whereas the expression of USP21 and GATA3 had no obvious variation. While simultaneous knockdown of MAPK1 and overexpression of USP21 could conspicuously increase the expression of GATA3 and MAPK1 (Figures 5A,B), indicating that USP21 could regulate MAPK1 through GATA3. Cell proliferation in each group was measured and it was found that si-MAPK1 could restrain the proliferation of AGS cells and MKN-45 cells, while simultaneous knockdown of MAPK1 and overexpression of USP21 could reverse the inhibitory effect of si-MAPK1 on cell proliferation (Figures 5C,D). Transwell and western blotting were performed to evaluate EMT-related proteins E-cadherin, N-cadherin, α-catenin, and fibronectin in AGS cells and MKN-45 cells, thereby studying cell migration and invasion in each group. It could be seen from Figures 5E,F that after knocking down MAPK1, the migratory and invasive abilities of cells decreased pronouncedly, the E-cadherin and α-catenin in the cells increased significantly, and the N-cadherin and fibronectin decreased notably, while overexpression of USP21 partially inhibited these effects. Besides, it was found that si-MAPK1 conspicuously restrained the sphere-forming capability of AGS cells and MKN-45 cells, yet simultaneous transfection of si-MAPK1 and oe-USP21 dramatically improved the sphere-forming capability of cells (Figure 5G). These results indicated that USP21 regulated the expression of MAPK1 through GATA3 and then affected the proliferation, migration, invasion, and stemness of GC cells.
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FIGURE 5. USP21 regulates the expression of MAPK1 through GATA3 and affects cell proliferation, migration, invasion, and stemness of GC. (A) qRT-PCR was used to detect the mRNA expression of USP21, GATA3, and MAPK1 in each group of cells; (B) Western blotting was performed to assess the protein expression of USP21, GATA3, and MAPK1 in each group of cells; (C) MTT assay was conducted to measure the viability of AGS cells and MKN-45 cells of each group; (D) Colony formation assay was carried on to determine the number of colonies of each group of AGS cells and MKN-45 cells; (E) Transwell assay was used to evaluate the migration and invasion of each group of AGS cells and MKN-45 cells; (F) Western blotting was conducted to evaluate the expression of EMT marker proteins E-cadherin, N-cadherin, α-catenin, and fibronectin in AGS cells and MKN-45 cells in each group; (G) The number of spheres formed by AGS cells and MKN-45 cells in different treatment groups; *p < 0.05.




USP21 Is Involved in Tumor Growth and Cell Stemness of GC in vivo

Mouse xenograft models were established to further analyze the effect of USP21 on tumor growth in vivo. AGS cells overexpressing USP21 were subcutaneously injected into the collected BALB/c nude mice, and then the tumorigenic effect of USP21 in vivo was examined. Compared with the negative control group, the tumor weight and volume in the USP21 overexpression group were dramatically increased (Figures 6A,B). Besides, it was apparent in Figure 6C that overexpression of USP21 markedly increased the ratio of CSC spheres. The expression of CSC markers CD44 and CD133 in mice GC tissue was evaluated by qRT-PCR. The results disclosed that overexpression of USP21 remarkably elevated the expression levels of CD44 and CD133 in GC tissue (Figure 6D), indicating that overexpression of USP21 enhanced the stemness of GC cells. It was also found that in the tumor tissue of the oe-USP21 group, USP21, GATA3, and MAPK1 were all pronouncedly highly expressed. Evaluation of cell proliferation in nude mice by H&E staining and IHC revealed that Ki-67-positive cells in tumors of the oe-USP21 group were notably more than those in the control group, and the tumor grade was positively correlated with the number of Ki-67-positive cells as well as the content of USP21 (Figure 6E). Taken these findings together, it could be seen that USP21 regulated tumor growth and cell stemness of GC in vivo.
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FIGURE 6. USP21 is involved in tumor growth and cell stemness of GC in vivo. (A) The effect of USP21 overexpression on tumor volume; (B) The effect of USP21 overexpression on tumor weight; (C) The effect of USP21 overexpression on cell sphere formation; (D) qRT-PCR was used to detect the influence of USP21 overexpression on the expression of CSC markers CD44, and CD133 as well as on the expression of USP21, GATA3, and MAPK1; (E) The expression of USP21 and Ki-67 in different grade of tumor tissue of mice in the control group and the oe-USP21 group; *p < 0.05.




DISCUSSION

The ubiquitin system regulates a variety of biological processes including cancer progression by changing the ubiquitination state of protein substrates, which is achieved by ubiquitin ligase and DUBs affecting ubiquitin of the substrate to change its stability, activity, localization, and interaction (Gallo et al., 2017; Saldana et al., 2019). Studies found that several members of the DUB family are involved in GC carcinogenesis. For example, USP28 restrains the proliferation and invasion of GC cells (Zhao et al., 2018). USP42 is highly expressed in GC tissue and conspicuously associated with the tumor size, TNM staging, lymph node metastasis, and OS rate of GC patients, while inhibition of USP42 can induce G0/G1 block and suppress cell proliferation and invasion (Hou et al., 2016). USP3 facilitates cell migration and invasion by interacting with SUZ12 in GC and deubiquitinating (Wu et al., 2019). All these suggest that DUBs play an important role in the progression of GC.

In this study, USP21, another member of the USP subfamily of DUBs, was reported to be highly expressed in GC tissue and cells. The expression trend is consistent with that in breast cancer (Arceci et al., 2019) and colorectal cancer (Yun et al., 2020). Previous research found that the nuclear localization of USP21 in pancreas cancer is positively correlated with advanced tumor grades and expression levels, and overexpression of USP21 promotes cell stemness (Hou et al., 2019). Thus far, a study (Peng et al., 2016) proved that USP21 can accelerate cell growth, invasion, and stemness of renal cell carcinoma. In this study, it was also found that in GC tissue, the expression of USP21 was positively correlated with the grade of GC. Accordingly, USP21 might also have the function of regulating the stemness of GC cells. Thence, in vitro cell experiments were performed and it was found that overexpression of USP21 promoted cell proliferation, migration, invasion, EMT, and stemness, whereas inhibiting its expression posed opposite effects. Furthermore, it was also proved in nude mice that overexpression of USP21 stimulated the tumor growth and cell stemness of GC in vivo. Considering all of this evidence, it could be seen that USP21 acts as an oncogene in GC.

USP21 is proven to deubiquitinate TCF7 (Hou et al., 2019), YY1 (Xu et al., 2020), FOXM1 (Arceci et al., 2019), EZH2 (Chen et al., 2017), RIG-1 (Fan et al., 2014), Fra-1 (Yun et al., 2020), IL-8 (Peng et al., 2016), and other genes to stabilize their expression. This study testified that USP21 in GC cells could bind to GATA3 to regulate its expression. Then, the downstream regulatory factors of GATA3 were predicted, and MAPK1 was identified. GATA3 could interact with the MAPK1 promoter and mediate its expression, which was confirmed by ChIP and dual-luciferase reporter gene assays.

It is reported that regulation of MAPK pathway affects the stemness of cancer cells (Otte et al., 2019; da Cunha Jaeger et al., 2020; Luk et al., 2020). MAPK1, a key regulatory gene of the MAPK signaling pathway, was substantiated here whether USP21 regulates MAPK1 by combining with GATA3 and thus affects the cell stemness of GC. Functionally, it was disclosed that knocking down MAPK1 inhibited cell proliferation, migration, invasion, and stemness of GC as well as the expression of N-cadherin and fibronectin in the cells, while promoted the expression of E-cadherin and α-catenin. Nevertheless, overexpression of USP21 in cells with MAPK1 knockdown reversed this effect, indicating that the oncogenic effect of USP21 was achieved through the GATA3/MAPK1 axis.

This study clarified that USP21 as an oncogene facilitated cell proliferation, migration, invasion, and stemness of GC. What stood out in this study was that this oncogenic effect of USP21 was mediated through the GATA3/MAPK1 axis. In conclusion, this research established, for the first time, the role of the USP21/GATA3/MAPK1 axis in GC, providing a new mechanism for the pathological function of GC and having potential significance for the development of new targeted therapies.
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SAPHO syndrome is a rare chronic inflammatory disease which is characterized by the comprehensive manifestations of bone, joint, and skin. However, little is known about the pathogenesis of SAPHO syndrome. A genome-wide association study (GWAS) of 49 patients and 121 control subjects have primarily focused on identification of common genetic variants associated with SAPHO, the data were analyzed by classical multiple logistic regression. Later, GWAS findings were further validated using whole exome sequencing (WES) in 16 patients and 15 controls to identify potentially functional pathways involved in SAPHO pathogenesis. In general, 40588 SNPs in genomic regions were associated with P < 0.05 after filter process, only 9 SNPs meet the expected cut-off P-value, however, none of them had association with SAPHO syndrome based on published literatures. And then, 15 pathways were found involved in SAPHO pathogenesis, of them, 6 pathways including osteoclast differentiation, bacterial invasion of epithelial cells, et al., had strong association with skin, osteoarticular manifestations of SAPHO or inflammatory reaction based published research. This study identified aberrant osteoclast differentiation and other pathways were involved in SAPHO syndrome. This finding may give insight into the understanding of pathogenic genes of SAPHO and provide the basis for SAPHO research and treatment.

Keywords: SAPHO syndrome, GWAS, WES, pathway analysis, immune-mediated conditions


INTRODUCTION

SAPHO (synovitis, acne, pustulosis, hyperostosis, and osteitis) syndrome, with the clinical manifestations including auto-inflammatory osteoarticular disorders and dermatological conditions, is a rare disease with an estimated prevalence of less than 1 in 10,000 (Magrey and Khan, 2009). It was first reported by the rheumatologist Chamot in 1987 (Kerrison et al., 2004); however, its etiology is still unknown. Previous research reported that the dysregulation of interleukin-1 (IL-1) signaling promoted sterile osteomyelitis in Pstpip2-deficient mice (Ferguson et al., 2006; Sharma and Ferguson, 2013). However, no specific variants were found using genetic screening in the PSTPIP1, PSTPIP2, NOD2 or LPIN2 genes in SAPHO samples (Hurtado-Nedelec et al., 2010; Colina et al., 2012; Guo et al., 2019). There are several factors considered to have the role in the development of SAPHO syndrome, including Propionibacterium acnes infection (Kotilainen et al., 1996; Colina et al., 2007), impaired immune responses, over-activated TH17 axis (Firinu et al., 2014). It was reported the proportion and absolute counts of Th17 cells in untreated SAPHO patients were significantly higher than in healthy controls, and the proportion and absolute counts of NK cells were significantly reduced in SAPHO patients compared with controls (Xu et al., 2019). Apart from these, the inflammatory factors including IL-18, IL-6, IL-8, IL-17A, TNF-α, and IL-1β were higher in SAPHO patients compared with healthy controls (Przepiera-Bedzak et al., 2016; Zhang et al., 2019). To date, no evidence-based therapeutic option has been proposed because of the elusive pathogenesis of this disease. Actual major therapeutic drugs are glucocorticoids, bisphosphonates, non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying antirheumatic drugs (DMARDs) to biologics, and antibiotics (Yang et al., 2018).

Genome-wide association studies (GWASs) has showed remarkable success in detecting the genetic factors of complex diseases by identifying multiple variants associated with complex clinical phenotypes (International Multiple Sclerosis Genetics Consortium, 2013). A commonly mentioned strategy in GWASs involves the evaluation of individual markers by setting a genome-wide significance cutoff p-value assuming-independence between markers. In this study, we set up a GWAS study in SAPHO patients, followed by pathway-based analyses of GWAS data that focused on the integrated effects of numerous loci, each making a small direct contribution to estimate of disease susceptibility, which might provide understanding the genetic basis of chronic diseases (International Multiple Sclerosis Genetics Consortium, 2013). The GWAS findings were further validated using whole exome sequencing (WES) to discover genetic variants and abnormal pathways involved in SAPHO patients.



MATERIALS AND METHODS


Patients and Study Design

The GWAS study contained 52 SAPHO patients and 124 healthy controls (detailed characteristics are shown in Table 1). All individuals were enrolled from the Beijing Chaoyang Hospital, and were ethnically and geographically matched. SAPHO syndrome was diagnosed according to the Kahn criteria (Kahn et al., 1994). The study was approved by the Ethics Committee of the National Research Institute for Family Planning, and all participants provided written informed consent for participation in this study. The WES study was composed of 16 SAPHO patients (6 males, 10 females; mean age, 41.4 ± 0.08 years, range 33 to 72 years; 12 patients diagnosed with ACW + S + PS (ACW, anterior chest wall; S, spine; PS, peripheral skeleton), 3 patients diagnosed with ACW + S, 1 patient diagnosed with ACW + PS) and 15 healthy controls (sex and age matched).


TABLE 1. General characteristics SAPHO patients in this study.
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DNA Isolation

Blood samples were collected from the peripheral blood of individuals into tubes containing EDTA. DNA extraction was carried out using the RelaxGene Blood DNA System Kit (Tiangen Biotech, Beijing, China) according to the manufacturer’s instructions. For the GWAS, all samples were genotyped individually using Illumina Infinium OmniZhongHua-8v1-3_A1 by the BioMiao Biological Technology Company (Beijing, China). For the WES, 3 μg of purified gDNA was fragmented to 180–280 bp and subjected to DNA library creation using established Illumina paired-end protocols. The Agilent SureSelect Human All ExonV6 Kit (Agilent Technologies, Santa Clara, CA, United States) was used for exome capture according to the manufacturer’s instructions. The Illumina Novaseq 6000 platform (Illumina Inc., San Diego, CA, United States) was utilized for genomic DNA sequencing by Novogene Bioinformatics Technology Co., Ltd (Beijing, China) to generate 150-bp paired-end reads with a minimum coverage of 10× for ∼99% of the genome (mean coverage of 100×).



Quality Control and Data Mining

Figure 1 shows the key steps in our analysis method. For the GWAS study, quality control (QC) and data analysis were performed using the software packages R version 3.6.01 and PLINK version 1.90 beta2. Genotype data were cleaned before analysis by excluding SNPs or individuals that did not fulfill the QC criteria, which included: SNP call proportion ≥ 95%, subject completeness proportion ≥ 95%, SNP minor allele frequency ≥ 0.01, and SNP conformity with Hardy-Weinberg equilibrium expectations (P ≥ 0.01 in controls). A comparison of cases and controls was made using Pearson’s chi-square tests or Fisher’s exact test. Because this study examined the functional relationships of genes and proteins, we considered gene-level significance rather than that of single SNP in the traditional GWAS studies. To that end, SNPs in the GWAS were mapped to functional genes according to SNP locations and gene locations by MAGMA software (v1.07beta) (de Leeuw et al., 2015). In order to capture gene regulatory regions, gene boundaries were defined as 5 kb beyond the 5′- UTRs and 1.5 kb beyond 3′-UTRs of each gene. Gene analysis on SNP P-value data was performed by MAGMA and candidate genes were listed according to the gene P-value. P < 0.05 was considered statistically significant. Genes with P < 0.05 were selected for pathway analysis by DAVID software (v6.8) (Huang da et al.,2009a,b), and protein-protein interactions (PPI) by String software (v11) (Szklarczyk et al., 2019).
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FIGURE 1. Flow chart of data mining based on GWAS and WES data for SAPHO syndrome.


For WES, after quality control (QC) and preprocessing of sequencing data, the clean data in fastq format was aligned to the human reference genome hg19 (GRCh37) using the Burrows-Wheeler Aligner (bwa) (Li and Durbin, 2009) along with Samtools (Li et al., 2009). Single nucleotide variants (SNVs) and indels were detected with the best-practices GATK/Picard Pipeline (McKenna et al., 2010; Van der Auwera et al., 2013). The VCF data of all samples were merged by bcftools software for further analysis. Annotation was performed using Ensembl Variant Effect Predictor (v91.3) (McLaren et al., 2016) and ANNOVAR (Wang et al., 2010). The annotation information used for further filtering included minor allele frequencies from public databases, deleteriousness and conservation scores, assessment of the likely pathogenicity of variants and consequence of every single variant identified. After preliminary filtering, we extracted the SNPs in genes involved in disease-related pathways selected by pathway analysis. The copy number variants (CNVs) were detected with ExomeDepth software (Plagnol et al., 2012) after being processed by Samtools and annotated with AnnotSV (Geoffroy et al., 2018).



RESULTS


Data Analysis of GWAS

This GWAS study contained 52 SAPHO patients (18 males, 34 females; mean age 43.29 years) and 124 controls (47 males, 77 females; mean age 46.95 years). The number of SNPs were reduced from 878,000 to 802,276 after filtering for low call rate (<90%), minor allele frequency (<0.01) and deviation from Hardy-Weinberg equilibrium (P < 0.00001). Six samples were deleted due to quality control, finally 49 cases and 121 controls were left for subsequent analysis. The mean genotyping rate in the remaining individuals was 99.73%.

To detect associations, we performed a preliminary analysis by Pearson’s chi-square test. Results were adjusted by multiple test correction and then rank ordered on the basis of their P values. Overall, 40,588 SNPs in genomic regions were associated with P < 0.05 without correction, 84 SNPs were associated with P < 5.6 × 10–7, and only 9 SNPs met the expected cut-off P-value (P < 6.24 × 10–8, Figure 2). Among 9 SNPs, rs4505038 was located in the intron region of the peroxisomal biogenesis factor 16 gene (PEX16), rs2243861 was located in the intron region of the IQ motif containing with AAA domain 1 like gene (IQCA1L), and the other 7 SNPs (rs4897770, rs12442139, rs13062589, rs2850133, rs10927436, rs9567768, and rs8007562) were mapped to genomic regions with no known functional genes. Based on previously published literature, none of the 9 SNPs had an association with SAPHO syndrome or other inflammatory disease. Next, we lowered the significance threshold and 84 SNPs with a P-value below 5.6 × 10–7, a level roughly 10-times the expected threshold, were selected for further analysis. However, no further SNPs or genes were identified (Table 2). Given the complex symptoms and etiology of SAPHO syndrome, we inferred no single genetic variant accounted for this entire complicated syndrome.
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FIGURE 2. Genome-wide overview of GWAS findings. The Manhattan plot shows genome-wide association analysis of 802,276 single-nucleotide polymorphisms (SNPs) in 49 SAPHO patients and 121 control subjects. The 2 log10 (P-value) for each SNP is plotted against their chromosomal position. All statistical tests were two-sided.



TABLE 2. Partial SNPs identified in this study (P < 5.6 × 10–7).

[image: Table 2]As in other GWAS studies of this kind, many SNPs that did not reach the statistical significance level were abandon in further analysis. There is a certain proportion of rejected associations that are actually false negative; meanwhile, many studies have showed some significant combinations of gene markers with only limited association if they were involved in the same biological pathway or molecular mechanism. Compared to single-locus associations identified by classical genome-wide analysis, this type of analysis is useful for identifying pathways and networks involved in disease susceptibility in accordance with current models of pathogenesis, as well as identifying statistically over-represented but unexpected pathways responsible for novel disease mechanisms (Baranzini et al., 2009; Ritchie, 2009; International Multiple Sclerosis Genetics Consortium, 2013).



Pathway Analysis of GWAS Data

To dissect the pathways involved in SAPHO disease, we proposed a pathway-oriented analysis of the GWAS result. We analyzed a list of differentially expressed genes and a P-value for each gene was performed on SNP that indicated the strength of the gene-disease associations. Many SNPs that were not annotated within gene regulatory regions were excluded from the present analysis. In this step, we computed gene-wise P-values for 18,151 genes for the GWAS, of which, 891 genes reached the significance threshold of P < 0.05 (Figure 3). For the pathway enrichment analysis, we mapped these screened genes to 15 KEGG pathways (Table 3) including osteoclast differentiation, glycosphingolipid biosynthesis, amyotrophic lateral sclerosis, cell-matrix interactions, and inflammatory associations, with a default threshold of the EASE Score (a modified Fisher Exact P-Value). Because of the multiple roles of some genes and complex interactions in cellular activities between protein pathway networks, candidate genes were always involved in different pathways. For example, mitogen-activated protein kinase 12 (MAPK12) gene, an important transduction factor of extracellular signals, was involved in osteoclast differentiation, amyotrophic lateral sclerosis (ALS), Fc epsilon RI signaling pathway, VEGF signaling pathway, Rap1 signaling pathway, MAPK signaling pathway, and T cell receptor signaling pathway (Figure 4). Previous studies report contradictory information regarding which pathways might be related to inflammatory reactions or symptoms of SAPHO syndrome, therefore, it is important to preclude potential misleading pathways. Based on published studies of identified pathways, we inferred osteoclast differentiation pathway (P = 0.002954, 15 genes involved), phagosome (P = 0.009788, 15 genes involved), Fc epsilon RI signaling pathway (P = 0.013035, 9 gene involved), Rap1 signaling pathway (P = 0.035055, 17 genes involved), Fc gamma R-mediated phagocytosis pathway (P = 0.040769, 9 genes involved), and bacterial invasion of epithelial cells pathway (P = 0.069759, 8 genes involved) were highly correlated with SAPHO syndrome based on bone and skin manifestations of SAPHO. Other pathways may affect the pathological process of SAPHO syndrome as well, but their direct association requires further research.
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FIGURE 3. A Manhattan plot showing the gene level P values of GWAS used in this study. Genes in each chromosome are represented by different colors.



TABLE 3. KEGG pathways Identified in SAPHO samples (P < 0.10).
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FIGURE 4. The interaction of mutated genes in SAPHO associated pathways identified in this study. The mutated genes of different pathways are shown by different colors. Each color represents a unique pathway and line thickness indicates the strength of data support (red, osteoclast differentiation; purple, phagosome; green, Fc epsilon RI signaling pathway; yellow, Fc gamma R-mediated phagocytosis; pink, Bacterial invasion of epithelial cells; blue, Rap1 signaling pathway).




Detect Genetic Variants Based on WES Data

Genome-wide association study has limited power in identifying low frequency and rare causal genetic variants with greater penetrance involved in complex diseases. To verify the association between aberrant signaling pathways and SAPHO syndrome, we performed WES analysis for 16 patients diagnosed with SAPHO and 15 healthy individuals. Results showed the coverage of target region was 99.91%, mean depth on target region was 181.52 ± 21.33× and the target coverage with at least 20× was 94 ± 2% (Table 4). After filtering, sequencing resulted in 176,181 SNP/INDEL and 55.31 CNV variants in each SAPHO cases and 179,145.5 SNP/INDEL and 33.57 CNV variants in healthy control samples (Table 5). First of all, we tried to identify the shared genetic variants or genes in SAPHO and control groups. Again, the result of the WES was inconsistent between individual samples, no single genetic variant or gene was highly conserved in more than three cases when compared with healthy controls. Next, we aligned these variants to KEGG pathways identified in the GWAS analysis. The result showed each SAPHO sample had at least one aberrant pathway involved: 15 samples had gene aberrations in osteoclast differentiation pathway (genetic variants were found in CSF1, FCGR2B, PIK3CD, MAP2K6, LILRB5, PPP3CA and MAPK12, CNV aberrations were found in LILRA3, FCGR2B, and CTSK genes); 7 samples had gene aberrations in the phagosome pathway (genetic variants were found in ITGA2, MARCO, FCGR2B and CD209, CNV aberrations were found in the CTSS gene); 6 samples had gene aberrations in the Fc epsilon RI signaling pathway (genetic variants were found in PIK3CD, MAP2K6 and MAPK12, CNV aberrations were found in the PDPK1 gene); 7 samples had gene aberrations in Rap1 signaling pathway (genetic variants were found in MAP2K6, MAPK12, CRK, CSF1, and GRIN1); 5 samples had gene aberrations in the Fc gamma R-mediated phagocytosis pathway (genetic variants were found in FCGR2B, PIK3CD, AMPH, SPHK2, and CRK); 11 samples had gene aberrations in the Bacterial invasion of epithelial cells pathway (genetic variants were found in PIK3CD, DOCK1, CRK, CTNNA3, and FN1) (Tables 6, 7).


TABLE 4. Basic results of the WES used in this study.
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TABLE 5. SNP/INDEL and CNV identified by WES in this study.
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TABLE 6. The clinical features of 16 SAPHO patients and genetic variants corresponding to GWAS results (P < 6.24 × 10–8).
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TABLE 7. Genetic variants identified in 6 pathways of 16 SAPHO patients.
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DISCUSSION

SAPHO syndrome is a systemic and recurrent disease with unknown etiology, characterized by chronic inflammatory osteoarticular lesions and dermatological disorders. The diagnosis and treatment of this rare disease have been limited by its complex etiology and phenotypic heterogeneity. In the last decade, many studies have demonstrated that comprehensive analyses of GWAS data and protein-protein interaction (PPI) networks can provide valuable biological clues (Cong et al., 2017). In this study, to identify genetic variants of SAPHO syndrome, we performed a novel genome-wide network-based integrative analysis of SAPHO syndrome based on GWAS and WES data. Using a basic GWAS analysis after filtering process, we found 9 SNPs (rs4505038, rs4897770, rs12442139, rs13062589, rs2850133, rs10927436, rs9567768, rs2243861, and rs8007562) that met the expected significance threshold (P < 6.24 × 10–8). Among them, 7 SNPs located in the regions without known functional genes, rs4505038 (PEX16) and rs2243861 (IQCA1L) located in the introns of known genes. Pex16 plays an critical role in adipose tissue peroxisomal biogenesis, and mice deficient for the Pex16 gene showed increased diet-induced obesity and impaired thermogenesis ability without skin or osteoarticular manifestations (Suzuki et al., 2001; Park et al., 2019). The IQCA1L gene is specifically expressed in the testis and has not been reported with immunity (Gaudet et al., 2011). Based on previous studies, none of the 9 SNPs had an association with SAPHO syndrome or other inflammatory diseases. Then we lowered the significance threshold to approximately 10-times the expected threshold, 84 SNPs with a P-value below 5.6 × 10–7 were selected for further analysis. However, no valuable SNP or candidate genes were identified.

Given the complex symptom and etiology of SAPHO syndrome, we speculate that no single genetic variant accounts for all the complicated manifestations of this disease. Thus, in the following analysis, we reanalyzed the GWAS data by adopting pathway and network-based analysis. We found several pathways were altered in SAPHO samples, and six of these had evidence with skin, osteoarticular manifestations of SAPHO syndrome or inflammatory reactions, including osteoclast differentiation pathway, phagosome pathway, Fc epsilon RI signaling pathway, Rap1 signaling pathway, Fc gamma R-mediated phagocytosis pathway, and bacterial invasion of epithelial cells pathway.

The osteoclast differentiation pathway, a key regulator of resorption and formation of bone tissue, was the most significant aberrant pathway in SAPHO patients. Previous studies reported disruption of the osteoclast differentiation or function leads to inhibited bone resorption, which further can result in bone marrow deficiency and no teething (Grigoriadis et al., 1994; Kong et al., 1999). On the contrary,enhancement of osteoclast differentiation or function in patients with osteoporosis and metastatic bone cancer resulted in the decrease of bone mass and destruction of bone, respectively (Miyamoto, 2011). Some important signaling molecules are essential for the correct fulfillment of osteoclastogenesis, for example, monocyte colony-stimulating factor (M-CSF) exert a proliferative and survival effect on early pre-monocyte phase and the entire process, respectively (Boyle et al., 2003; Edwards and Mundy, 2011; Anesi et al., 2019). The function of the second signaling molecule receptor activator NF-κB ligand (RANKL) is differentiation in the late post-monocyte phase of the process that is necessary to transform monocytes into osteoclasts (Takayanagi,2007b,a,c; Kim and Kim, 2016; Kim et al.,2016a,b; Anesi et al., 2019). Osteoarticular involvement, a characteristic sign of disease, was observed in nearly all SAPHO patients and mainly involved the anterior chest wall and lumbosacral and peripheral skeletal regions (Cao et al., 2019). Zhang et al. (2019) reported RANKL levels were significantly higher in active SAPHO patients than in non-active or healthy samples, suggesting the aberrant osteoclast differentiation pathway plays pivotal role in the pathology of SAPHO. Our findings reconfirmed the foregoing conclusion. In addition to the molecules mentioned above, mary other signaling molecules play important role in regulating osteoclastic differentiation process as well. Osteoclastogenic cytokines are represented by inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin-1 (IL-1), IL-6, IL-7, IL-8, IL-11, IL-15, IL-17, IL-23, and IL-34. Anti-osteoclastogenic cytokines are represented by IFN-α, IFN-β, IFN-γ as well as IL-3, IL-4, IL-10, IL-12, IL-27, and IL-33 (Amarasekara et al., 2018). Published research reported some inflammatory factors including IL-1β, IL-17A, IL-6, IL-8, IL-18, and TNF-α were higher in SAPHO patients than in healthy controls (Przepiera-Bedzak et al., 2016; Zhang et al., 2019), based on these findings, it is plausible that the combined actions of elevated cytokines and a disrupted osteoclast differentiation pathway might aggravate bone devastation and reconstruction, resulting in the osteoarticular symptoms.

Phagocytosis is an evolutionarily ancient process whereby cells engulf large particles. It is an important core mechanism in some immune processes, including defense against infectious agents, inflammation, tissue remodeling, and antigen degradation and presentation (Dean et al., 2019). Phagocytic cells such as monocytes and macrophages participate in host defense by forming phagosomes. During phagocytosis, the membrane on the surface of a phagocyte forms a phagosome when the receptors on it bind to the ligands on the surface of the particle surface. After its formation, the new phagosome gradually acquire digestive properties. In the process of phagosome maturation, there are other membrane organelles involved, including circulating endosomes, late endosomes, and lysosomes. By fusing lysosomes, phagosomes can activate enzymes and lower the pH value in the lumen that eventually degrades phagocytized micro-organisms into fragments (Kanehisa et al., 2017). Accordingly, disruptions to this process cause some bacteria such as Mycobacterium tuberculosis to escape bacterial killing and survive within host phagocytes (Ehrt and Schnappinger, 2009; Kanehisa et al., 2017). In this study, two phagocytosis-related pathways (phagosome, P = 0.0098, 15 genes; Fc gamma R-mediated phagocytosis, P = 0.041, 9 genes) were highly associated with SAPHO syndrome, suggesting phagocytosis has an important role in SAPHO syndrome. James et al. (2010) found the phagocytosis of disease-relevant particles (PMMA, titanium, and silica) inhibited the RANKL-mediated osteoclastogenesis of human monocytes. They demonstrated phagocytosis mediates this effect by down-regulation of RANK and c-Fms, receptors for the essential osteoclastogenic cytokines RANKL and M-CSF (James et al., 2010). However, the mechanisms involved in phagocytosis and SAPHO required further research.

Fc epsilon RI is the specific receptor for IgE, which has an important role in IgE-associated allergic reactions. A cascade of signaling events can be induced by the cross-linking of Fc epsilon RI on mast cells, leading to degranulation, proinflammatory cytokine production, and leukotriene release, which contribute to the emergence of allergic symptomology (Klemm and Ruland, 2006; Kambayashi and Koretzky, 2007). IFN-γ activates mast cells through FceRI to induce PGD2 and LTC4 release, and the subsequent up-regulation of mRNAs for IL-1a, IL-3, IL-8, G-CSF, LIF, CSF1, oncostatin M (OSM), SCF, TGF-β1, IP-10, I-309, MIP-1α, and MIP-1β (Okayama et al., 2001). Our results showed that the Fc epsilon RI signaling pathway was involved in the pathogenesis of SAPHO syndrome (P = 0.013035, 9 genes). In accordance, Li et al. reported a SAPHO patient with elevated serum immunoglobulin E levels, and demonstrated methylprednisolone treatment achieve long-term remarkable remission on clinical manifestations (Wang et al., 2019), which is consistent with our finding.

In this study, we found two pathways associated with aberrant cell barrier function in SAPHO patients, Rap1 signaling pathway (P = 0.035055, 17 genes) and bacterial invasion of epithelial cells (P = 0.069759, 8 genes), suggesting damage to the cell barrier contributes to the complicated manifestation of SAPHO syndrome. The function of the small G-protein Rap1 is to regulate endothelial barrier function controlled by cell–cell adhesion and the actin cytoskeleton. When this process is activated, numerous signaling cascades are induced by Rap1 to enhance the endothelial barrier function. Of note, Rap1 activation results inhibit of Rho to decrease radial stress fibers and activate Cdc42 to increase junctional actin (Pannekoek et al., 2014). These are some studies has proven the above results in human umbilical endothelial cells (Cullere et al., 2005; Citalan-Madrid et al., 2013) and retinal vascular endothelial cells (Ramos et al., 2018). Moreover, Rap1 deletion in mature osteoclasts caused osteopetrosis by reducing talin/β integrin recognition (Zou et al., 2013).

Unlike other immunologically relevant diseases, except chronic multifocal osteomyelitis, SAPHO patients suffer from recurrent demographic manifestations, including palmoplantar pustulosis, psoriasis vulgaris, and severe acne. On the base of the findings in this study, we inferred a single pathway was not responsible for this complicated syndrome, two or more pathways probably act simultaneously. For example, an impaired cell barrier or inflammatory cytokine release induced by allergic reactions might promote the demographic manifestations and elevated inflammatory factors, moreover aberrant phagocytosis and osteoclast differentiation pathways might cause alterations to bone resorption and formation, ultimately leading to osteoarticular deformation. These pathways are closely linked and might affect each other, for example, an impaired cell barrier and pathogen infection or allergic reaction might lead to the over-expression of inflammatory factors, which increase the permeability of the skin or endothelial cells, thus increasing infection. Moreover, the disruption of phagocytosis might allow bacteria to escape and enhance infection.



CONCLUSION

In conclusion, this GWAS study combined with pathway-based analysis and WES identified aberrant pathways including the osteoclast differentiation pathway involved in SAPHO syndrome. This finding may provide insights into the pathogenic genes of SAPHO and provide the basis for SAPHO research and treatment. Further studies should be conducted to validate this conclusion in a larger sample size and in other ethnic backgrounds.
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DNA methylation dysregulation during carcinogenesis has been widely discussed in recent years. However, the pan-cancer DNA methylation biomarkers and corresponding biological mechanisms were seldom investigated. We identified differentially methylated sites and regions from 5,056 The Cancer Genome Atlas (TCGA) samples across 10 cancer types and then validated the findings using 48 manually annotated datasets consisting of 3,394 samples across nine cancer types from Gene Expression Omnibus (GEO). All samples’ DNA methylation profile was evaluated with Illumina 450K microarray to narrow down the batch effect. Nine regions were identified as commonly differentially methylated regions across cancers in TCGA and GEO cohorts. Among these regions, a DNA fragment consisting of ∼1,400 bp detected inside the HOXA locus instead of the boundary may relate to the co-expression attenuation of genes inside the locus during carcinogenesis. We further analyzed the 3D DNA interaction profile by the publicly accessible Hi-C database. Consistently, the HOXA locus in normal cell lines compromised isolated topological domains while merging to the domain nearby in cancer cell lines. In conclusion, the dysregulation of the HOXA locus provides a novel insight into pan-cancer carcinogenesis.
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INTRODUCTION

Aberrant DNA methylation during carcinogenesis has been studied for a long period in the past decades. The roles of DNA methylation during carcinogenesis are complex (Patai et al., 2012; Moore et al., 2013; Duruisseaux and Esteller, 2018). A study revealed that gene body DNA methylation systematically enhanced gene expression, as hypermethylation in promoter regions inhibited transcription factor binding and silenced specific genes (Yang et al., 2014). Intergenic DNA methylation influences spurious transcription initiation (Neri et al., 2017). Moreover, DNA methylation in nuclear territories could transform euchromatin into heterochromatin and inhibit gene activation (Bártová and Kozubek, 2006). In addition to gene suppression, some studies also revealed that promoter DNA methylation also recruited specific transcription factors and promoted gene expression (Qiu et al., 2016).

Seeking DNA methylation biomarkers for cancer diagnosis has been emphasized in the past few years (Dor and Cedar, 2018; Pan et al., 2018; Ding et al., 2019; Li et al., 2019b). However, DNA methylation is characterized by tissue heterogeneity. The methylation signatures are maintained from cell-of-origin during carcinogenesis (Zhang and Huang, 2017; Bormann et al., 2018), leading to DNA methylation transformation among cancers that are different. Since the concept that the eight hallmarks of cancer are widely accepted (Hanahan and Weinberg, 2011), it is aimed to find common DNA methylation signatures as biomarkers. Xiaofei et al. (Yang et al., 2017) found four universal hypermethylated CpG sites in DRD5 promoter regions, while only one of them (cg22620090) was differentially methylated in all 15 cancers. Saghafinia et al. (2018) identified hyper- and hypomethylated sites and found converged pathways between genetic and epigenetic alterations. Researchers also developed an algorithm using deep learning for normal-cancer discrimination using DNA methylation sites and achieved about 90% sensitivity and specificity (Liu B. et al., 2019).

However, the past studies focused on the DNA methylation sites shared across cancer types or the DNA methylation pattern of a single gene in some specific cancers (Li et al., 2013, 2019b; Ding et al., 2019). The former cannot give insight into the putative mechanism that how the shared methylation sites occur (Saghafinia et al., 2018), while the latter fails to achieve a pan-cancer signature (Li et al., 2019b). In this study, we identified differentially methylated sites (DMSs) and regions (DMRs) across cancers. Then we analyzed the downstream gene expression and the three-dimensional (3D) chromatin structure to validate the findings. We found that HOXA locus DNA hypermethylation is a commonly shared signature across cancers. The signature causes aberrant chromatin structure and thus influences the co-expression pattern of genes in the HOXA locus.



MATERIALS AND METHODS


Data Collection

The Cancer Genome Atlas (TCGA) DNA methylation data evaluated by Illumina Human Methylation 450K BeadChip were collected in May 2020 to reduce the batch effect of different platforms. All samples and cohorts were enrolled in this step. The cohorts with a tumor or normal tissues sample size less than 30 were excluded in this step. Only primary tumors were enrolled in tumorous samples, while metastatic or recurrent tumors were omitted to reduce the redundancy with its primary tumor samples.

In Gene Expression Omnibus (GEO) datasets, the datasets were searched with keywords “cancer” or “tumor” and then filtered with Illumina Human Methylation 450K BeadChip. The “Entry type,” “Organisms,” and “Attribute name” were set as “Series,” “Homo Sapiens,” and “Tissue,” respectively, in May 2020. Subsequently, each dataset was annotated manually. The dataset with a sample size of less than 60 was excluded. The datasets that were annotated with the same cancer type but not in the same cohort were combined for further analyses.



Data Pre-processing and Normalization

The data were downloaded in the raw data format. The normalization method was selected as quantile. Due to the large sample size, the normalization step was not performed with current R or python packages, which are not available for the file size. In-house scripts were used in this step. Since all samples originated from TCGA and GEO datasets were evaluated with Illumina Human Methylation 450K BeadChip, the probes used were identical. The average values for each probe were calculated in all samples enrolled. The average probe values were sorted and assigned to each sample according to the ranks of probes.



Differentially Methylated Site and Region Identification

The normalized data were read, and the DMRs were identified using the R package “minfi” (Fortin et al., 2017). The adjusted p values were set as 0.01. Considering that CpG sites in the Illumina Human Methylation 450K BeadChip platform were predetermined and that the DMSs consist of a large proportion of all sites in the platform, another parameter for screening was used. To evaluate the diagnostic value of each CpG site to discriminate the cancerous and normal tissues, the area under the receiver operating characteristic (AUROC) curve (AUC) was employed for further identification. The average threshold AUCs of each probe across cancers were set as 0.75. Regions with over 10 coordinately contiguous CpG sites were identified as DMRs. Since the annotation of Illumina Human Methylation 450K BeadChip is based on hg18, the coordinates were converted to hg19 using the UCSC tool “liftover.”



Gene Expression and Hi-C Data Processing and Visualization

Gene expression data of TCGA cohorts were downloaded from UCSC Xena (Goldman et al., 2020)1 website. Gene expression was estimated as log2(x + 1) transformed RSEM normalized count. The expression values of HOXA genes (HOXA1, HOXA2, HOXA3, HOXA4, HOXA5, HOXA6, HOXA7, HOXA9, HOXA10, HOXA11, and HOXA13) were retrieved. The gene expression correlations of the genes were calculated using the “Pearson” correlation method on the R platform, and the result was visualized with heatmap plotted by R package “pheatmap.” The correlation matrix was plotted for all 11 cancer types.

Hi-C data were retrieved and visualized using “juicebox” (Robinson et al., 2018), which collected the Hi-C data of cell lines and tissues in September 2020. Among these datasets, only human cell lines mapped with the hg19 genome version were used for further analyses. If samples have replicates, the replicates were combined. The target region for display was selected as upstream 200 kb of DMRs to its downstream 200 kb (DMRs ± 200 kb). The normalization method for each sample was used as “Balanced.”



Statistical Analyses and Software

All analyses were performed with R language2 (version 4.0.2, 2020-6-20). The AUCs were calculated using the R package “pROC” (Robin et al., 2011). Survival analyses were implemented using package “survival.” The correlation matrix was plotted with package “pheatmap.” The Manhattan plot was drawn using the R package “qqman.” The Hi-C data were downloaded and visualized with software named “juicebox,” and relative regions of HOXA genes were visualized with UCSC genome browser (Kent et al., 2002). During analyses, p < 0.05 was considered to be statistically significant.



RESULTS


Data Collection

All DNA methylation datasets evaluated by Illumina Human Methylation 450K BeadChip in TCGA cohorts were used in this study. Datasets with a sample size of 30 or more per group (normal and tumor groups) were retained. As a result, 10 cancer types, including breast cancer, colorectal cancer, head and neck carcinoma, kidney clear cell carcinoma, kidney papillary cell carcinoma, liver cancer, lung adenocarcinoma, lung squamous cell carcinoma, prostate cancer, and thyroid cancer cohorts, were enrolled in this study. Only primary tumor and adjacent normal tissues were used, while metastatic and recurrent tissues were excluded. In addition to the TCGA cohort, cancerous datasets from GEO were also collected using keyword searching and manual annotation. The detailed sample size is shown in Table 1.


TABLE 1. Datasets and corresponding sample number in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) enrolled.

[image: Table 1]


Differentially Methylated Site and Region Identification

To reduce the false-positive rate, the normal or cancerous sample size of each cancer type was set to at least 30. The beta values of each CpG were calculated. In each cancer type, the methylation level of each site was compared between normal and cancerous tissues. The DMSs and DMRs were identified. As shown in Figure 1A, some DMRs were commonly shared by different cancer types in TCGA cohorts. The regions could also be detected in the GEO validation cohort (Figure 1B). In addition to the methylation difference, the diagnostic value of each CpG site’s beta value to discriminate the normal and cancerous tissues was evaluated by the AUC (Figures 1C,D). Consistently, these regions were proved to be good discriminators using AUROCs. Detailed information for some regions is shown in Supplementary Figure 1.


[image: image]

FIGURE 1. The differentially methylated sites (DMSs) and regions (DMRs) identified in cancers in Manhattan plot. Some DMSs are identified according to the false discovery rate (FDR) in The Cancer Genome Atlas (TCGA) dataset (A) and Gene Expression Omnibus (GEO) dataset (B). The area under the receiver operating characteristic (AUROC) curves (AUCs) are also consistent with this [(C) AUCs in TCGA; (D) AUCs in GEO]. The x-axis is the coordinates in the chromosomes, and the y-axis is the FDR values (A,B) and AUROCs (C,D).


Afterward, the DMRs were also identified according to the AUROCs and DMSs determined by the false discovery rate. The DMRs were defined as at least 10 coordinately continuous DMSs, whose AUROCs on discriminating the normal and cancerous tissues were at least 0.75. The candidate regions should also contain at least three CpG sites per kilobase. Accordingly, nine DMRs were identified (Table 2).


TABLE 2. Differentially methylated regions (DMRs) identified as common DMRs across cancers.
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DNA Hypermethylation at Differentially Methylated Regions

Among the DMRs identified, we noticed that two regions in chromosome 7 were coordinately close. These two regions spanning 1,334 kb, containing 23 DMSs, formed the highest DMS density region (CpG/kb). In the following steps, these regions were combined for further analyses. The methylation levels of CpG sites were compared between normal and cancerous tissues across cancer types. As shown in Figure 2A, CpG sites in this combined region were significantly differentially methylated in TCGA cohorts. These results could also be consistently observed in the GEO cohort (Figure 2B), despite that some cancer types were not overlapping. Most CpG sites in this region were hypermethylated in TCGA cancer cohorts, compared with the normal cohorts. This finding is reproductive in GEO cohorts. These results collectively indicate that aberrant DNA methylation in the selected region is a common signature during carcinogenesis.


[image: image]

FIGURE 2. The continuous differentially methylated sites in the HOXA locus across cancers. The significance of each site in each cancer [including (A) The Cancer Genome Atlas (TCGA) and (B) Gene Expression Omnibus (GEO)] is listed. The a-axis is the CpG sites in normal and cancer (black, normal; red, cancer), and the y-axis is the relative beta-values. The CpG sites were sorted according the coordinate. “NS” indicates not significant, and “*” is statistically significant.




Genes Inside HOXA Locus Have Dysregulated Co-expression Pattern

Next, the region was mapped to the human reference genome and was found to be located at the HOXA locus. Interestingly, instead of the HOXA locus boundary, this region was mapped inside the locus (Figure 3A) by separating the HOXA genes into two parts. One part contains HOXA1, HOXA2, HOXA3, HOXA4, and HOXA5, while the other part consists of HOXA7, HOXA9, HOXA10, HOXA11, and HOXA13. The three prime untranslated region (UTR) of HOXA6 is inside this region (Figure 3B).


[image: image]

FIGURE 3. HOXA locus and gene expression. The differentially methylated regions (DMRs) located in the HOXA locus (A,B), between HOXA5 and HOXA6. Despite that the genes were not consistently up- or down-regulated across cancers (C), the co-regulation pattern decreased during carcinogenesis (D). “Down,” “Up,” and “NS” refer to significantly down-regulated, significantly up-regulated, and not significant.


Classically, aberrant DNA methylation is related to dysregulated gene expression. Thus, the gene expression differences between normal and cancers were compared to evaluate the impact of hypermethylation in this region. The results were somewhat controversial. On the one hand, HOXA genes were differently expressed across cancers, which was consistent with the aberrant DNA methylation profile in this region. On the other hand, the gene expression trends during carcinogenesis across cancers were not similar, while some genes were up-regulated and some were down-regulated (Figure 3C) across cancers.

An important role for DNA hypermethylation is euchromatin–heterochromatin transformation, which is reflected by gene co-expression patterns. Thus, gene co-expression patterns of the HOXA locus across cancers were analyzed. As shown in Figure 3D, HOXA gene expression was modularized in normal tissues but transformed to be stochastic in cancerous tissues. In normal tissue, HOXA2, HOXA3, HOXA4, HOXA5, and HOXA6 were strongly co-expressed, and so were HOXA9, HOXA10, HOXA11, and HOXA13. However, the co-expression pattern was disrupted in cancerous tissues. The modularized co-expression clusters were separated at HOXA6 or HOXA7, which was consistent with our finding that UTR of HOXA6 was hypermethylated. Thus, we suspected that DNA hypermethylation of this region disrupted the modularized co-expression pattern in cancers.



3D Chromatin Structure of HOXA Locus During Carcinogenesis

Observing the disrupted modularized co-expression pattern, which may be caused by hypermethylation of this region, we seek to investigate if there exists 3D DNA structure transformation in this region during carcinogenesis of cancers. Several cancer cell lines and normal cell lines from public database were used for validation. As shown in Figure 4A, downstream of the topologically associating domain (TAD) contains a part of the HOXA locus in normal tissues while the other part is not. The boundary between the parts is located at the DMR we identified. However, the boundary inside the HOXA locus cannot be detected in cancerous tissues. Since the HOXA family locus was combined with the downstream TAD, it was promoted to investigate the co-expression correlation between this gene and the downstream genes. Here, we selected the nearest gene TAX1BP1, locating about ∼700 kb away from the HOXA locus. As shown in Figures 4B,C, the expression of TAX1BP1 was significantly associated with most HOXA family genes across cancers, but not in normal tissues. Besides, the TAD upstream is also changed. These results collectively indicate that the hypermethylation at the HOXA locus affects 3D chromatin structure and regulates gene expression.
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FIGURE 4. Gene regulation pattern in cancerous and normal cell lines. The topological regions (A), relative sites of differentially methylated regions (DMRs), and the HOXA locus was shown. The upper panel is cancer cell lines, and the lower panel is normal cell lines. The Pearson correlation between TAX1BP1 (B) and p values (C) is shown. “NS” indicates not significant and “Sig” statistically significant.




DISCUSSION

DNA alterations are considered to be a driving force for carcinogenesis. The correlation between genetic alteration and 3D nuclear structure has been investigated. The spatially proximate somatic co-mutations tend to affect cancer driver genes and benefit cancer cells in growth and metastasis (Shi et al., 2016). Further classifying somatic mutations into active and inactive domains help discover the interplay between 3D genome organization and carcinogenesis (Akdemir et al., 2020). In addition to genetic alterations, epigenetic alterations are also reported to re-configure nuclear territories (Lee et al., 2019; McLaughlin et al., 2019). This study aims to find commonly altered methylation regions during carcinogenesis.

HOXA family has been widely reported for their prognostic role in tumorigenesis. For example, HOXA1 gene expression level is reported to enhance proliferation and metastasis in prostate cancer (Wang et al., 2015), breast cancer (Liu J. et al., 2019), and gastric cancer (Yuan C. et al., 2016) and predict poor prognosis in non-small-cell carcinoma (Zhang Y. et al., 2018). Abnormal DNA methylation of HOXA2 promoter regions causes dysregulation of gene expression, therefore influencing the invasion, prognosis, and clinical characteristics of colorectal cancer, glioma, and nasopharyngeal carcinoma (Li et al., 2013, 2019a; Liu et al., 2020). The reports regarding HOXA3 are controversial across cancers. It is shown to promote tumor growth in colon cancer (Zhang X. et al., 2018). However, it is down-regulated in lung cancer during carcinogenesis (Gan et al., 2018). In the meantime, abnormal promoter DNA methylation was also reported. Similarly, the role of HOXA4 gene expression during carcinogenesis, prognosis, and drug resistance is also different among cancers (Bhatlekar et al., 2018; Miller et al., 2018; Tang et al., 2019). The gene expressions and functions of HOXA5 (Ordóñez-Morán et al., 2015; Zhang et al., 2017; Peng et al., 2018), HOXA6 (Wu et al., 2018, 2019), HOXA7 (Tang et al., 2016), HOXA9 (Fu et al., 2017; de Bock et al., 2018), HOXA10 (Chen et al., 2019; Hatanaka et al., 2019), and HOXA11 (Zhang R. et al., 2018) are also controversial across cancers, except for HOXA13 (He et al., 2017). Specifically, 3′ non-coding HOXA mutation was detected in acute myeloid leukemia (Akdemir et al., 2020). In this work, our results revealed that the inconsistency resulted from a universal 3D chromatin transformation in the HOXA locus that may be caused by hypermethylation in this region.

The epigenetic alteration may be used as a biomarker for cancer diagnosis. In recent years, epigenetics, especially DNA methylation, has been emphasized (Tsou et al., 2002; Hao et al., 2017). Due to the tissue-specific pattern, DNA methylation was used to discriminate the tissue of origin for cancers (Yuan Y. et al., 2016; Kang et al., 2017), along with genomic signatures (Yuan et al., 2018). However, cancer alert is an essential step for an accurate diagnosis. Thus, the pan-cancer biomarker is still a crucial issue for cancer diagnosis. Our study may be used for cancer alert if the ctDNA of HOXA regions can be detected in the plasma.

One of the limitations of this study is that the direct causality between DNA methylation and chromatin structure cannot be validated due to current technology limitations. Another limitation is that despite global DNA methylation normalization among batches, the batch effect caused by operations during experiments, especially in the same cancer type derived from the GEO database, in which a cohort may consist of several datasets, cannot be removed.
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Lung adenocarcinoma is one of the most malignant diseases worldwide. The immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1) have changed the paradigm of lung cancer treatment; however, there are still patients who are resistant. Further exploration of the immune infiltration status of lung adenocarcinoma (LUAD) is necessary for better clinical management. In our study, the CIBERSORT method was used to calculate the infiltration status of 22 immune cells in LUAD patients from The Cancer Genome Atlas (TCGA). We clustered LUAD based on immune infiltration status by consensus clustering. The differentially expressed genes (DEGs) between cold and hot tumor group were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Last, we constructed a Cox regression model. We found that the infiltration of M0 macrophage cells and follicular helper T cells predicted an unfavorable overall survival of patients. Consensus clustering of 22 immune cells identified 5 clusters with different patterns of immune cells infiltration, stromal cells infiltration, and tumor purity. Based on the immune scores, we classified these five clusters into hot and cold tumors, which are different in transcription profiles. Hot tumors are enriched in cytokine–cytokine receptor interaction, while cold tumors are enriched in metabolic pathways. Based on the hub genes and prognostic-related genes, we developed a Cox regression model to predict the overall survival of patients with LUAD and validated in other three datasets. In conclusion, we developed an immune-related signature that can predict the prognosis of patients, which might facilitate the clinical application of immunotherapy in LUAD.
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INTRODUCTION

Lung cancer is the most common fatal disease in the world, causing most cancer-related death every year. Eighty-five percent of lung cancer are non-small cell lung cancer (NSCLC) (Siegel et al., 2020). As the most frequently diagnosed subtype of NSCLC, lung adenocarcinoma (LUAD) has high inter-/intratumor heterogeneity, and its carcinogenic mechanisms have not been fully illustrated (Calvayrac et al., 2017). Before the introduction of immunotherapy, the outcomes of LUAD patients were dismal due to its malignant nature and limited effect of chemotherapy. However, with the rapid development of immune checkpoint inhibitors and target therapy, the prognosis of patients has improved significantly (Herbst et al., 2018). To diagnose and treat patients more precisely and economically, effective and stable models that can predict and stratify the prognosis of LUAD patients is warranted (Tang et al., 2017).

The introduction of immunotherapy revolutionized the paradigm of cancer treatment, and it brought hope to patients who were formerly untreatable and improved the survival status of many LUAD patients (Doroshow et al., 2019). However, there are still some patients who are resistant to and cannot benefit from immune check point blocker (ICB). Among patients who are resistant to ICB, some of them do not respond to immunotherapy (innate resistance), and others initially respond to ICB but turned to be insensitive as the disease progresses (acquired resistance) (Pitt et al., 2016). One of the main mechanisms underlying the immunotherapy resistance is immune evasion, which is utilized by tumor cells to escape the immune surveillance and elimination (Vinay et al., 2015; Herbst et al., 2018). Under this aberrant situation, immune responses aroused by the tumor antigen can be suppressed in tumor microenvironment (TME), which is dynamic and complex, consisting of several immune cells, stromal cells, cytokines and chemokines, and extracellular molecules, and immune cell infiltration status is the key determinant of TME (Altorki et al., 2019). Like a double-edged sword, TME is able to lead to both beneficial and adverse consequences in tumorigenesis, and TME can change continually in the process of tumor progression (Quail and Joyce, 2013).

The development of next-generation sequencing enabled us to characterize tumor heterogeneity from the gene level, and the public databases such as TCGA provide us with a chance to guide and design basic experiments (Devarakonda et al., 2015). Using bioinformatic technology, we can analyze the immune infiltration in tumors and calculate the value of the immune/stromal score for LUAD.

In our study, we calculate 22 immune cells in LUAD and identified 5 clusters of LUAD based on the infiltration status of immune cells. To further explore the mechanism behind the infiltration of immune cells, we defined two groups, cold tumor and hot tumor, based on the five clusters. We developed a Cox regression model based on the DEGs and made validation in three external cohorts. Overall, we are the first to classify patients in LUAD based on immune cell infiltration retrieved from TCGA and construct a stable predicting model for survival of LUAD patients. Our findings may give guidance to the application of immunotherapy and facilitate the clinical management of LUAD.



MATERIALS AND METHODS


Data Collection

The RNA-sequencing data and clinical information of LUAD were downloaded from UCSC XENA (http://xena.ucsc.edu/). The RNA-sequencing data for LUAD with immunotherapy were downloaded from the platform supplied in the articles (Hugo et al., 2016; Riaz et al., 2017; Mariathasan et al., 2018). The processed count data of the bladder cancer were download from an online website (http://research-pub.gene.com/IMvigor210CoreBiologies/) supplied in the article. The processed count and fragments per kilobase of transcript per million mapped reads (FPKM) data were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/) with accession numbers: GSE78220 and GSE91061. These three data sets were transformed into transcripts per million (TPM) and made a log(x + 1) normalization.



Immune Infiltration Estimation

The estimation of 22 immune cells of LUAD was calculated by R package “CIBERSORT;” the samples with p < 0.05 were included for further analysis (Newman et al., 2015; Thorsson et al., 2018). The 28 immune cells were calculated by R package “ssGSEA” with supplied cell makers (Tamborero et al., 2018). The six-cell types were accessed from an online tool TIMER (https://cistrome.shinyapps.io/timer/) (Li et al., 2020). The R package “ESTIMATE” was applied to calculate the immune score, stromal score, and tumor purity. To explore the immune infiltration in LUAD, we used CIBERSORT to calculate the proportion of 22 immune cells and revealed the function of immune infiltration through multiple strategies.



Differentially Expressed Genes Selection

The samples were divided into two main groups based on the immune score and immune cell infiltration. The R package “limma” was used to calculate DEGs with criteria as follows: logFC > 1 or < -1 and adjust p < 0.05. Visualization of DEGs was conducted by volcano diagram and heatmap.



Enrichment and Protein–Protein Network Analysis

For the enrichment analysis, genes with p < 0.05 that were differentially expressed in hot and cold tumors were selected. We use the R package “clusterprofile” to perform GO enrichment categories. The Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov/), an online tool, was used to perform KEGG pathway analysis. STRING (https://string-db.org/) was used to conduct a protein–protein interaction (PPI) network and further visualized by Cytoscape.



Consensus Clustering

The consensus clustering of 22 immune cells was performed by the R packages “ConsensusClusterPlus” with reps = 100, pItem = 0.8, and pfeature = 1. The optimal number of clusters is determined by heat map and delta diagram.



Construction of Predicting Model

The LUAD RNA-sequencing data with survival information were randomly divided into training and testing cohort by R package “caret.” Genes differently expressed in hot and cold tumors were used to perform univariate survival analysis, and genes with p < 0.05 were selected. Then, the R packages “glmnet” was used to perform least absolute shrinkage and selection operator (LASSO) analysis. To optimize the model, a step-wised proportional hazards model was used. The survival analysis was analyzed by R packages “survival,” and receiver operating characteristic (ROC) was analyzed by R package “survivalROC.”



Statistical Analysis

All analyses used in this study were performed by R software (version 3.5.1). For the analysis of the correlation of immune infiltration and clinical–pathological parameters, cells were divided into two groups based on the clinical parameters, and chi-square test was used to analyze the correlation. WilcoxTest was used to compare the infiltration of immune cells in normal and tumor tissues, as well as in cold and hot tumors. ANOVA was used to compare immune score, stromal score, and tumor purity among the five clusters. For the survival analysis, p-value was calculated with log-rank test. p < 0.05 was considered as statistically significant.




RESULTS


Correlation of Immune Infiltration and Clinical Parameters in LUAD

The design and process of our study are shown in the flow chart in Figure 1. Survival analysis revealed that higher infiltration of dendritic cells, mast cells, monocytes, and plasma cells was associated with better overall survival of patients, while macrophages predicted an unfavorable outcome. In terms of progression-free interval (PFI), higher infiltration of dendritic cell, mast cell, monocyte, CD4+ T cell, and regulatory T cell (Tregs) were significantly correlated with longer survival, while follicular helper T cell points to negative prognosis. These results indicate that immune cells status can reflect tumor features, and the infiltration of immune cells has prognosis predicting function (Figure 2).


[image: Figure 1]
FIGURE 1. Schematic flowchart showed the analysis strategy.



[image: Figure 2]
FIGURE 2. Correlation of immune infiltration and clinical parameters in lung adenocarcinoma (LUAD). (A) Forest plot showed the correlation of immune infiltration and overall survival (OS). (B) Forest plot showed the correlation of immune infiltration progression-free interval (PFI). (C–G) The Kaplan–Meier diagram showed the correlation of infiltration of immune cells and overall survival (OS).




Different Immune Cell Infiltration Patterns in Normal and Tumor Tissues

We analyzed the proportion of immune cells in tumors and normal tissues, respectively, to explore the infiltration of immune cells. Heterogeneity of LUAD was shown by the different ratios of each cell type (Figures 3A,B). Then, we compared the infiltration of immune cells in tumors and normal tissues. Results showed that several cells involved with tumor immunity have higher immune infiltration level in tumor tissues, including naive B cell, memory B cell, plasma cell, CD8+ T cell, activated CD4+ memory T cell, follicular helper T cell, regulatory T cell, M1 macrophage cell, and resting dendritic cell. In contrast, some types of cells in the resting status are abundant in normal tissues, including natural killer (NK) resting cell, mast resting cell, and resting CD4+ memory T cell. These results indicate that most immune cells accumulated in tumor tissues are in response to the tumor neoantigen (Figure 3C).


[image: Figure 3]
FIGURE 3. Immune cell infiltration pattern in tumor and normal tissue. (A) Barplot showed the distribution of 22 immune cells in normal tissue. (B) Barplot showed the distribution of 22 immune cells in tumor tissue. (C) Boxplot showed the 22 immune cells infiltration in normal and tumor tissue.




Correlation of Immune Cells in Tumors and Normal Tissues

Cancer immune interaction is a process that involves multiple cell types, so it is important to characterize the synergistic or antagonistic relationships between different cells. Therefore, we performed a correlation analysis of the 22 immune cells in tumors and normal tissues. In tumor samples, we found that CD8+ T cells were positively associated with activated memory CD4+ T cell, follicular helper T cell, and M1 macrophage cells, indicating the cooperation among these cells. On the contrary, results showed that CD8+ T cells were negatively correlated with M2 macrophage cells in tumor samples, indicating that M1 and M2 macrophage cells exhibit different ability in regulating immune responses mediated by CD8+ T cells. Generally, immune cells showed much weaker correlation in normal samples compared with tumor samples. In normal samples, we found that naive B cells were positively correlated with regulatory T cells, plasma cells, and regulatory T cells, while follicular helper T cells were negatively associated with resting NK cells and activated dendritic cells.

Among all 22 immune cell types, CD8+ T cells are the cell type that has diverse relationships with other cell types, indicating its pivotal role in immune regulation of LUAD. Positive correlations were also found between naive B cells and plasma B cells; mast cells and neutrophil were also positively correlated, suggesting a synergistic relationship between them (Figures 4A,B). Delta results and heatmap revealed that the LUAD could be divided into five clusters according to the different immune infiltration patterns (Figures 4C,D).


[image: Figure 4]
FIGURE 4. Correlation of immune cells in the tumor and normal tissues. (A) Corrplot showed the correlation of 22 immune cells in tumor tissues. (B) Corrplot showed the correlation of 22 immune cells in normal tissues. (C) Heatmap showed the clusters of immune cells. (D) Delta diagram showed the clusters with under area.




Immune Subtyping of LUAD

Heatmap was performed to show the distribution of 22 immune cells in the 5 clusters in LUAD. Cluster 1 was mainly enriched in adopted immune cells, which were naive B cells and plasma cells. Cluster 2 was highly enriched in M0 macrophages of innate immune and activated NK cell and follicular helper T cell of adopted immune. Cluster 3 was strongly enriched in M2 macrophage and moderately enriched in neutrophils, resting dendritic cells, and resting mast cells. Cluster 4 was highly enriched in resting memory CD4+ T cells. Cluster 5 was mainly enriched in several kinds of T cell, including CD8+ T cell, activated memory CD4+ T cell, Tregs, follicular helper T cells, and two cell types from innate immune, which are M1 macrophages and activated NK cells, suggesting that innate immune and adopted immune may have a synergistic effect in the immune interaction (Figure 5A). The immune score, stromal score, and tumor purity were calculated to further profile the five clusters. Consistent with heatmap, cluster 5 had the highest immune score among all five clusters; while it had the lowest tumor purity, its stromal score was lower than that of cluster 4. The immune scores of the five clusters increased from cluster 1 to 5; consistent with this, the tumor purity of the five clusters decreased from cluster 1 to 5 gradually. The same tendency can be found in the stromal score, but cluster 4 had the highest stromal score (Figures 5B–D).


[image: Figure 5]
FIGURE 5. Immune subtyping of lung adenocarcinoma (LUAD). (A) Heatmap showed the immune clusters of LUAD. (B–D) Expression of the immune score, stromal score, and tumor purity in the five clusters.




Differences in Hot and Cold Tumor

Hot tumors indicate tumors that have high immune infiltration; accumulating evidence has suggested that patients with hot tumors are more likely to benefit from immunotherapy. On the contrary, cold tumor with a low level of immune infiltration is prone to be resistant to ICB (Jiang et al., 2018; Mariathasan et al., 2018). Results showed that clusters 4 and 5 had higher immune scores than other clusters; although there are several immune cells enriched in clusters 1–3, they lacked the enrichment of CD8+ T cells, which was an important cell type related to immune therapy response. To further elaborate the mechanism that dictates the immune cell infiltration in tumors, we divided the five clusters of LUAD into two major groups: clusters 1–3 were cold tumors; clusters 4 and 5 were hot tumors. First, we estimate and compare immune cell infiltration levels in the cold and hot tumor groups. Both methods showed that compared to cold tumors, antigen-presenting cells and other important immune cells are highly infiltrated in hot tumors, which further approve our definition of LUAD (Figure 6A). Then, we explored the difference between the two groups at the transcriptional level. Volcano and heatmap showed that hot and cold tumors are different in transcription patterns (Figure 6B). Consistent with all above the results, immune-related genes were highly expressed in hot tumor, for instance, CXCL9, TCL1A, CCL19, CXCL13, MS4A1, and C4orf7. Although few immune-related genes had a high expression in cold tumor, such as MMP8, most genes highly express in cold tumor are not so closely related to immune responses, including CGA, INHA, IBSP, and CHRNA9 (Figure 6B). Both two steps showed that compared to cold tumors, antigen-presenting cells and other important immune-related factors are highly infiltrated in hot tumors, which further approve our definition of them (Figures 6A,B).


[image: Figure 6]
FIGURE 6. Alterations of signaling in hot and cold tumors. (A) Immune infiltration in hot and cold tumors analyzed by TIMER. (B) Differentially expressed genes between hot and cold tumors. (C,D) Gene Ontology (GO) enrichment analysis in hot and cold tumors. (E,F) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in hot and cold tumors. ****p < 0.001; ns, not significant.


We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to further confirm the high immune activation level in hot tumors. We found that cytokine–cytokine receptor interaction, allograft rejection, and antigen processing and presentation were enriched in the hot tumor. In the cold tumor, the DEGs were mainly enriched in metabolic pathways, biosynthesis of antibiotics, and neuroactive ligand–receptor interactions. These results suggest that metabolism may influence the immune status of the tumor (Figures 6C–F).



Identification of Hub Genes for Prognostic and Construction of Predicting Model

PPI network analysis was performed to further explore the function of DEGs between hot and cold tumors, and then, we identified hub genes through MCODE in Cytoscape software. The top 10 hub genes in hot tumors mainly regulate the activity of immunocyte chemotactic factors such as CXCL10 and CCL5. The top genes in cold tumor are ARF1, PDIA3, ALDOA, FKBP2, NDUFS5, NDUFC1, COX7A2, C14orf2, LNX1, and BTBD6 (Figures 7A,B).


[image: Figure 7]
FIGURE 7. Identification of hub and prognostic-related genes. (A) Protein–protein interaction (PPI) network of upregulated genes in the hot tumor. (B) PPI network of downregulated genes in the hot tumor. (C,D) Least absolute shrinkage and selection operator (LASSO) and partial likelihood deviance coefficient profiles of the selected genes. (E) Multivariate Cox analysis showed the hazard ratios (HRs) of selected genes with forest plots.


To evaluate the value of these genes in predicting survival in LUAD, we used the TCGA dataset as a training cohort based on the equal mortality rate. Then, we used a LASSO regression model to identify genes that predict the overall survival in the training cohort. Meanwhile, we also performed a stepwise multi-Cox regression model to identify the genes with the strongest predicting ability. We identified a gene set containing nine genes, in which seven of eight genes were unregulated in the hot tumor, and one of eight was unregulated in the cold tumor; the details in the formation of the nine genes are listed in Figure 7E. We also calculated a risk value as follows: risk value = (−0.1773 × PLEKHB1 expression) + (−0.2011 × LY75 expression) + (0.08690 × PHGR1 expression) + (0.4450 × TMEM194B expression) + (00.1999 × APOL1 expression) + (−0.1034 × PPP2R2B expression) + (−0.1767 × CD160 expression) + (−0.2573 × GPR31 expression) + (−0.2125 × CLEC12B expression). This formula was used to calculate the risk score for each patient in the TCGA and validation cohort (Figures 7C–E).



Validation of Predicting Model for Overall Survival

As we mentioned before, we use TCGA data as a training cohort, and to further test our model, we used data generated by previous researchers as validation cohort. We built three validation cohorts in total. Survival status showed that the risk score could distinguish the patients well; patients with high-risk score showed unfavorable overall survival in both training and three validation cohort. The areas under the curve (AUCs) of 1, 2, and 3 years for the training cohort were 0.76, 0.73, and 0.72, respectively. These results indicated that the predicting model performed well in predicting overall survival and can be used to guide the clinical management (Figures 8A–E).


[image: Figure 8]
FIGURE 8. Construction and validation of risk predicting model for overall survival. (A) Survival status in the training cohort. (B) Receiver operating characteristic (ROC) curve of 1, 2, and 3 years of the training cohort. (C–E) Kaplan–Meier survival curve showed the validation of risk predicting model in three external datasets.





DISCUSSION

Lung cancer is a public health concern for its high morbidity and mortality (Herbst et al., 2018). Due to the high tumor heterogeneity and complex tumorigenic mechanism of lung adenocarcinoma, several challenges exist in developing individual and precise treatment strategies (Fukui et al., 2013); therefore, robust prognosis predicting models is warranted. Accumulating evidence has indicated that prognosis of cancer patients was related to tumor immune infiltration level (Barnes and Amir, 2017; Yang et al., 2019; Zhou et al., 2019), and immune infiltration statuses in tumor microenvironment are key determinants of tumor invasiveness and progression (Gajewski et al., 2013; Ge et al., 2019). With the introduction of immunotherapy, it has been well-established that ICB changed the treatment paradigm of lung cancer, and the application of ICB alone or ICB combined with target therapy/chemotherapy offered hope to many patients who were doomed to death (Karasaki et al., 2017; Mathew et al., 2018). However, there are still patients who are initially or gradually resistant to ICB, and their management is still challenging (Syn et al., 2017). Heterogeneous tumor microenvironment, which is composed of various types of cells that regulated tumor progression, plays an important role in drug resistance (Quail and Joyce, 2013; Wu and Dai, 2017). Therefore, exploring the mechanisms underlying different tumor microenvironment by profiling the cell components are warranted.

In this study, we calculated the immune infiltration of 22 immune cells to comprehensively characterize the functions of these immune cells in the biological process of LUAD. We observed that resting dendritic cells, resting mast cells, and monocytes were positively correlated with both overall survival and progression-free interval of LUAD patients.

The common feature of these cells is that they are involved in antigen presentation process directly or indirectly (Worbs et al., 2017; Murray, 2018; Olivera et al., 2018). While M0 macrophage and follicular helper T cells are associated with poor survival, however, the major function of follicular helper T cells is to help B cells and participate in antibody responses (Crotty, 2019), which seems to be opposite to poor survival. The mechanism behind this phenomenon needs further exploration. Survival results indicate that infiltration status of immune cells can predict patients' survival. In immune-inflamed tumors, we found that several kinds of T cells including CD8+ T cells, CD4+ T cells, regulatory T cells, and follicular helper T cells are highly infiltrated, consistent with a previous study that T cells are the target of immune checkpoint blocker and Chimeric antigen receptor T cell (CAR-T) therapy, and the status of T cells can exert strong influence on patients' prognosis (Guo et al., 2018). Our results also found that activated immune cells were mainly enriched in tumor tissues, for instance the activated memory CD4+ T cell, while naive cells, such as naive B cells, were more abundant in the normal tissue than in tumor tissues.

Synergy and cooperation among different immune cells are essential in the activation of immune response; for example, the process of antigen presentation, recruitment, and stimulation of CD8+ T cells are involved with several cell types, chemokines and cytokines (Sánchez-Paulete et al., 2017). We observed that CD8+ T cells were correlated with activated memory CD4+ T cell, follicular helper T cell, and M1 macrophage cells. However, these correlations were not seen in normal tissues, indicating that immune activation promotes CD8+ T cells infiltration. Previous studies have shown that cancer patients of different immune subtypes have distinct prognosis (Denkert et al., 2018; Li et al., 2019; Xu et al., 2020). Based on that, we divided the LUAD into different groups according to the infiltration of 22 immune cells. We identified five clusters with different immune infiltration patterns. Additionally, the immune score, stromal score, and tumor purity of the five clusters are calculated. Immune cell enrichments of clusters 4 and 5 are mainly in several types of T cells, suggesting that this pattern may be more responsive to immunotherapy. Although diversity existed among clusters 1–3, they are similar in general for they shared some features in immune, stromal scores, and tumor purity. Accumulating evidence has indicated that the diversity and density of immune cells in tumor environment play important roles in patients' immune response and prognosis. Based on the status of T cell infiltration and expression of specific cytokine, the tumor microenvironment can be simply defined into hot and cold tumors. In our study, we redefined clusters 4 and 5 as hot tumor group and others as cold tumor group. Results showed that the two types of tumors behaved differently at the transcriptome level. Consistent with the high immune score observed in hot tumors, immune-related genes were highly expressed in hot tumors, including CXCL9, TCL1A, CCL19, CXCL13, MS4A1, and C4orf7. Matrix metallopeptidase 8 (MMP8) is one of the highly expressed genes in cold tumors, and it encodes a member of the matrix metalloproteinase (MMP) family, which is involved in the breakdown of extracellular matrix including extracellular molecules and a number of bioactive molecules (Juurikka et al., 2019). Go annotations related to this gene include metalloendopeptidase activity. It has been reported that MMP8 behaved differently in cancers depending on their tissue of origin and was a potential prognostic factor (Juurikka et al., 2019). In lung cancer, MMP8 is believed to be associated with a decreased lung cancer risk, and its profile was distinctly different according to histological types and patient recurrence status (Shah et al., 2010). The function of MMP8 in cold tumors needs further exploration. GO and KEGG enrichment analysis revealed that hot tumor was enriched in cytokine–cytokine receptor interaction and antigen processing and presentation. As to cold tumors, the DEGs were mainly enriched in metabolic pathways; metabolic dysfunction is the mechanism behind many malignant behaviors of tumor (Chen et al., 2019).

Hub genes in hot tumors mainly were involved with immunocyte chemotaxis, such as chemotactic factors CXCL10 and CCL5; however, it was difficult to link most hub genes in cold tumors with immune activities. Previous studies have evaluated the ability of immune cells in predicting prognosis of cancer (Gentles et al., 2015; Shen et al., 2019), and based on that, we explored the prognostic value of DEGs in our study. We developed a risk model containing nine genes. After detailed exploration of the nine genes, we identified three genes, APOL1, CD160, and PPP2R2B, for further study. Apolipoprotein L1 (APOL1) is a protein-coding gene that is associated with focal segmental glomerulosclerosis and glomerulonephritis. It is correlated with lipid binding and chloride channel activity, and in our model, it is associated with unfavorable prognosis. Previous studies have reported that the AOPL1 is a protective factor for renal carcinoma (Hu et al., 2012), but the function of APOL1 in LUAD has not been fully illustrated. CD160 molecule (CD160) is a protein-coding gene associated with neurotrophic keratopathy and cone-rod dystrophy 1. It has been reported that CD160 is expressed on activated NK or T cells in humans and regulated the cytokine production of NK cells, therefore regulating its function (Tu et al., 2015). It has also been reported that CD160 is involved in T-cell regulation in immune response of the virus (Cai and Freeman, 2009). GO annotation results suggest that CD160 is related to innate immunity. In our model, CD160 is associated with a better prognosis. Protein phosphatase 2 regulatory subunit B beta (PPP2R2B) is a protein-coding gene associated with diseases including spinocerebellar ataxia, and in our study, it is associated with favorable survival. It has been reported that, in colorectal cancer, PPP2R2B, encoding the B55β regulatory subunit of the PP2A complex, is epigenetically inactivated by DNA hypermethylation and is related to the rapamycin sensitization (Tan et al., 2010). The roles of PPP2R2B in lung cancer need further exploration.

We used the TCGA dataset as a training cohort, and our risk-predicting model showed satisfying efficacy in external datasets. Three credible datasets were chosen as external validation, which was a large phase 2 trial (IMvigor210) investigating the clinical activity of atezolizumab in metastatic urothelial cancer (Mariathasan et al., 2018), 38 pretreatment (pembrolizumab and nivolumab) melanoma tumors (Hugo et al., 2016), and 68 patients with advanced melanoma (CA209-038 study) (Riaz et al., 2017). Although our predicting model was constructed based on the LUAD data, it behaved well in other cancer types (urothelial cancer and malignant melanoma) and other datasets, which further indicated the stability and reliability of our model, and implied the potentiality that our model could be utilized in more cancer types. In conclusion, we constructed a risk prediction model using immune cell infiltration status. Since it is the era of immune therapy and lung cancer is one of the most malignant cancer in the world, it is reasonable and prompt to construct risk prediction model using immune-related information. Our model can spot patients with high risk in immunotherapy resistance accurately and therefore may guide the clinical use of immune therapy.
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Background: There have been limited treatment therapies for lung squamous cell carcinoma (LUSC). M6A-related genes may be the next therapeutic targets for LUSC. In this study, we explored the prognostic role and mutational characteristics of m6A-related genes in LUSC.

Methods: LUSC gene expression data, mutational data, and corresponding clinical information were extracted from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) were identified, and the mutation characteristics of LUSC patients were explored. Then, m6A-related genes were extracted and the correlations among the genes were detected. Finally, the prognostic roles of the genes were investigated and the nomogram model was developed. Besides, the protein–protein interaction (PPI) network was used to explore the potential interactions among the genes.

Results: In total, there are 551 LUSC samples enrolled in our study, containing 502 LUSC tumor samples and 49 adjacent normal LUSC samples, respectively. There were 2970 upregulated DEGs and 1806 downregulated DEGs were further explored. IGF2BP1 and RBM15 had significant co-occurrence frequency (p < 0.05). Besides, METTL14 and ZC3H13 or YTHDF3 also had significant co-occurrence frequency (p < 0.05). All the m6A-related genes represent the positive correlation. WTAP was identified as a prognostic gene in the TCGA database while YTHDC1 and YTHDF1 were identified as prognostic genes. In multivariate Cox analysis, YTHDF1, age, pN stage, pTNM stage, and smoking were all identified as significant prognostic factors for OS.

Conclusion: We investigated the expression patterns and mutational characteristics of LUSC patients and identified three potential independent prognostic m6A-related genes (WTAP, YTHDC1, and YTHDF1) for OS in LUSC patients.

Keywords: m6A, prognosis, lung squamous cell carcinoma, RNA methylation, nomogram


INTRODUCTION

Lung cancer is one of the main causes of cancer-related deaths worldwide, with an approximate 5 year overall survival rate of 16–20% (Gu et al., 2017, 2018a,b, 2020a). Non-small cell lung cancer (NSCLC) accounts for four-fifths of all lung cancer types (Gu et al., 2016, 2018a; Chen et al., 2020). Of these, lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) account for the vast majority, reaching about 55 and 30% of all NSCLCs, respectively (Gu et al., 2016). In recent years, there have been many targeted therapies for LUAD, whereas the targeted schemes for LUSC are still limited (Yuan et al., 2017).

N6-Methyladenosine (m6A) RNA modification is defined as an adenosine methylation at the N6 position, identifying as the most abundant mRNA modification, widely discovered in a vast number of eukaryotic species, including yeast, mammals, insects, plants, and certain viruses (Beemon and Keith, 1977; Levis and Penman, 1978; Aloni et al., 1979; Nichols, 1979; Schafer, 1982; Clancy et al., 2002). Besides, m6A modifications exist on almost all types of coding and non-coding RNAs and dynamically regulate their relevant molecular processes and physiological and pathological functions (Gu et al., 2020b). According to the characteristics of m6A proteins, they are divided as “writer,” “eraser,” and “reader” proteins, which dynamically regulate tumor-related pathological and physiological functions (Gu et al., 2020b). Many previous researches have proved the effects of N6-methyladenosine (m6A) RNA modification and its ability to regulate and coordinate related gene expression, whose level will profoundly affect cancer characteristics (Gu et al., 2020b; Shen et al., 2020; Wei et al., 2020). For example, in lung cancer, METTL3 acts as an oncogene, which increases the growth, survival, and invasion of lung adenocarcinoma cells (Lin et al., 2016). This phenomenon suggests that m6A modifications and related genes may play important roles in tumor inhibition or tumorigenesis, which means that m6A modifications or m6A-related genes may be the next tumor therapeutic targets, especially for LUSC (Pei et al., 2020).

Recently, studies on the prognostic role of m6A genes have emerged, including LUAD (Zhang Y. et al., 2020), renal cell carcinoma (Gao et al., 2020), cervical cancer (Yang et al., 2020), colorectal cancer (Sun et al., 2020), and breast cancer (Wei et al., 2020). However, few research focus on LUSC. Herein, we explored the m6A-related genes and the m6A gene-related mutations using The Cancer Genome Atlas (TCGA) databases, attempting to unearth the underlying molecular mechanisms of LUSC tumorigenesis and progression, and then helping develop new and effective targeted therapy regimens.



MATERIALS AND METHODS


Data Source

LUSC gene expression data, mutational data, and corresponding clinical information were obtained from the TCGA database1. All the data were available online and defined as open-access. In total, there are 551 LUSC samples were enrolled in our study, containing 502 LUSC tumor samples and 49 adjacent normal LUSC samples, respectively. We conducted the study with the TCGA publication guidelines.



Differentially Expressed Gene (DEG) Identification

Firstly, 49 LUSC tumor samples and the corresponding 49 adjacent normal LUSC samples were selected. Second, the Ensembl database2 was used for identifying the gene IDs. Then, principal component analysis (PCA) was performed to confirm the heterogeneity of the two groups. The PCA graph was obtained. Finally, differentially expressed mRNAs were obtained utilizing the package of “edge R” with absolute log fold change (FC) > 2 and the false discovery rate (FDR)-adjusted P < 0.05 by R software (Version 4.0.3) (Gu et al., 2020d). After obtaining the lists of DEGs, the volcano map and corresponding heat map were drawn.



m6A Gene Extraction

The m6A-related genes are derived from Gu’s review (Gu et al., 2020b) on RNA m6A modification in cancers, including “writer” proteins (METTL3, METTL5, METTL14, METTL16, ZC3H13, RBM15, WTAP, KIAA1429), “reader” proteins (YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3), and “eraser” proteins (FTO, ALKBH5).



Mutational Analyses

The LUSC mutational data were also downloaded from the TCGA database, with samples’ clinical information. In order to identify the somatic mutations of LUSC patients, we analyzed the mutational data and visualized the data using the R package “maftools.” Besides, we further explored the somatic interactions among the m6A genes, along with the status of single-nucleotide polymorphism (SNP) and hypermutated genomic regions (Shi et al., 2018a,b; Zhang L. et al., 2020).



Survival Analysis and Subtyping

All the mRNA expressions of m6A-related genes were calculated, and patients were separated by the median expression level of each gene (highly expressed group and lowly expressed group). The Kaplan–Meier (KM) survival analyses were used to compare the survival difference between lowly and highly expressed groups based on each m6A-related gene group, with log-rank test. Besides, all the m6A-related genes were validated using Kaplan–Meier Plotter3. Then, the univariate and multivariate Cox analyses were performed to predict the prognostic significance for overall survival (OS). R package “ConsensusClusterPlus” was used for consistency analysis, and the maximum number of clusters is 6. Besides, four-fifths of the total sample is drawn 100 times, clusterAlg = “hc,” innerLinkage=“ward D2.” Clustering heat maps were then drawn by R package “pheatmap.” The gene expression heat map retains genes with SD > 0.1. If the number of input genes is more than 1,000, it will extract the top 25% genes after sorting the SD.



Nomogram for Predicting OS

After obtaining prognostic m6A-related genes in multivariate Cox analysis, all the prognostic genes and relevant clinical characteristics were included for the nomogram modeling, with 1, 2, 3, and 5 survival prediction scores. Then, the calibration curves for each year were also drawn.



Protein–Protein Interaction (PPI) Network

After identifying the key prognostic m6A-related genes, STRING database4 was used for exploring the interactions among the genes (Gu et al., 2020c).



RESULTS

In total, there are 551 LUSC samples enrolled in our study, containing 502 LUSC tumor samples and 49 adjacent normal LUSC samples, respectively. The baseline characteristics of the patients were listed (Supplementary Table 1). After matching the paired normal samples for tumor samples, 49 LUSC pairs were finally obtained. The PCA graph showed the significant difference between LUSC tumor and adjacent normal LUSC samples (Figure 1A). There were 2970 upregulated DEGs and 1806 downregulated DEGs further explored (Figure 1B). The heat map of DEGs in the 49 paired samples were also drawn (Figure 1C). Besides, the m6A-related genes were extracted from all the 551 LUSC samples; the expressed patterns are shown in Figure 1D.
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FIGURE 1. Differentially expressed genes (DEGs) in patients with lung squamous cell carcinoma (LUSC). (A) Principal component analysis (PCA) for tumor and normal tissues. (B) DEGs between tumor and normal tissues. (C) Heat map for DEGs in paired samples. (D) The expression of m6A-related genes in total LUSC patients in TCGA database.


In mutational data, 89 patients contained the mutational m6A-related genes in 492 LUSC patients. The top 10 mutational m6A-related genes were KIAA1429 (3%), ZC3H13 (2%), FTO (2%), YTHDC2 (2%), RBM15 (2%), IGF2BP1 (2%), HNRNPC (1%), YTHDF1 (1%), YTHDF3 (1%), and METTL16 (1%), respectively (Figure 2A). Furthermore, the somatic interactions among the m6A genes were detected (Figure 2B). We found that IGF2BP1 and RBM15 had significant co-occurrence frequency (p < 0.05). Besides, METTL14 and ZC3H13 or YTHDF3 also had significant co-occurrence frequency (p < 0.05). The status of single-nucleotide polymorphism (SNP) and hypermutated genomic regions was also investigated; C>A and C>T were the major two types of mutations, and the convention rates in each samples were also shown in the stacking bar chart (Figure 2C). A rainfall plot showed hypermutated genomic regions according to different SNP mutational types (Figure 2D).
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FIGURE 2. Mutation patterns of LUSC patients. (A) Oncoplot displays the mutational patterns of m6A-related genes in 89 LUSC patients. (B) The co-expression patterns of m6A-related genes in LUSC patients. (C) The SNP patterns of LUSC patients. (D) Rainfall plot shows hypermutated genomic regions. *p < 0.05.


The major m6A-related genes were utilized to explore the relationships among these genes by a correlation analysis. All the m6A-related genes represent the positive correlation (Figure 3). In subtyping analyses, we selected k = 3 as the cutoff value to develop subtyping groups (Figure 4). Then, we explored the prognostic roles of each m6A-related gene by KM curves with the log-rank test. WTAP (log-rank p = 0.012, HR = 0.703, 95% CI = 0.535–0.925) was identified as a prognostic gene in the TCGA database while YTHDC1 (log-rank p = 0.046, HR = 0.79, 95% CI = 0.62–1) and YTHDF1 (log-rank p = 0.037, HR = 0.78, 95% CI = 0.61–0.99) were identified as prognostic genes in microarray samples using KM Plotter (Figure 5).


[image: image]

FIGURE 3. Correlation analysis among m6A related genes. (A) The distributions of each sample and the correlation coefficients were calculated. (B) The correlation coefficients were drawn by pie charts.
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FIGURE 4. Identification of consensus clusters according to the expression similarity of m6A-related genes. (A) Cumulative distribution function (CDF) (k = 2–6). (B) Relative change in area under the CDF curve (k = 2–6). (C) The matrix of consensus clustering (k = 3). (D) Heat map of m6A-related gene expression in different subgroups; red represents high expression while blue represents low expression.
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FIGURE 5. Survival curves according to the expression of (A) WTAP; (B) YTHDC1; and (C) YTHDF1.


In univariate Cox proportional hazard regression, only the pTNM stage (p = 0.0060, HR = 1.258, 95% CI = 1.068–1.482) was identified as a significant prognostic factor for OS while in multivariate Cox proportional hazards regression, YTHDF1 (p = 0.0117, HR = 2.473, 95% CI = 1.223–5.001), age (p = 0.0159, HR = 0.957, 95% CI = 0.923–0.992), pN stage (p = 0.0099, HR = 0.491, 95% CI = 0.286–0.843), pTNM stage (p = 0.0209, HR = 1.619, 95% CI = 1.076–2.437), and smoking (p = 0.0220, HR = 0.171, 95% CI = 0.038–0.775) were all identified as significant prognostic factors for OS. Afterward, we built a nomogram for LUSC patients using YTHDF1, age, pN stage, and smoking, with the c index as 0.67 (p < 0.001, 95% CI 0.589–1) (Figure 6).
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FIGURE 6. The identification of prognostic factor for OS and the development of the nomogram. (A) Univariate Cox analysis. (B) Multivariate Cox analysis. (C) Nomogram for OS in LUSC patients. (D) The calibration curves for each year.


After obtaining the three prognostic m6A-related genes, the representative immunohistochemical images (Supplementary Figure 1) and PPI network (Supplementary Figure 2) were explored. Besides, for YTHDF1, the box plot (Supplementary Figure 3) and stage plot (Supplementary Figure 4) were further investigated.



DISCUSSION

There is limited treatment strategy for LUSC, and the prognosis of LUSC patients remains gloomy. In recent years, targeted therapies and immunotherapy are emerging and shed some light on tumor treatment. Many biomarkers, including specific genes, mRNA/lncRNA/miRNA signatures, and DNA methylation markers, have been identified and used in clinic (Gu and Chen, 2020; Jiao and Yang, 2020). RNA m6A modifications and m6A-related genes were verified as credible markers for different diseases (Gu et al., 2020b). In this article, we explored the prognostic role of m6A-related genes and the mutational status of LUSC patients using the TCGA database, which suggest that WTAP, YTHDC1, and YTHDF1 act as promising prognostic factors and biomarker for LUSC.

In survival analyses, we found that WTAP (log-rank p = 0.012, HR = 0.703, 95% CI = 0.535–0.925) were identified as a prognostic gene in the TCGA database while YTHDC1 (log-rank p = 0.046, HR = 0.79, 95% CI = 0.62–1) and YTHDF1 (log-rank p = 0.037, HR = 0.78, 95% CI = 0.61–0.99) were identified as prognostic genes in microarray samples using KM Plotter. For WTAP, WT1-associated protein, the accumulation of METTL3 and METTL14 requires WTAP, which can bind to the METTL3/METTL14 complex. Besides, WTAP helps recruit optimal substrate and localize the METTL3/METTL14 complex (Zhong et al., 2008; Ping et al., 2014). Yu et al. (2019) demonstrated that, in high-grade serous ovarian carcinoma, WTAP is highly expressed and the higher expression of WTAP is associated with poor survival. After validation in SKOV3 and 3AO cell lines, they found that WTAP may act as a prognostic factor for patients with high-grade serous ovarian carcinoma. YTHDC1, YTH domain-containing proteins 1, regulates the process of mRNA splicing by recruiting and combining serine/arginine-rich splicing factor 3 (SRSF3) in the cell nucleus (Xiao et al., 2016). Moreover, YTHDC1 assists in mRNA exportation from the nucleus to the cytoplasm (Roundtree et al., 2017). In bladder urothelial carcinoma (BLCA), a study screened and validated 9 RNA-binding proteins for prognostic model establishment using the TCGA database and found that YTHDC1 is important for oncogenesis, development, and metastasis in BLCA (Guo et al., 2020). YTHDF1, the YT521-B homology (YTH) domain family protein 1, is reported to recruit translation initiation factors for facilitating translation (Wang et al., 2015). YTHDF1 also has a controversial role in NSCLC; Shi et al. (2019) showed that lack of YTHDF1 inhibits lung adenocarcinoma cell proliferation and tumor formation in xenograft by affecting the translational efficiency of cyclin D1, CDK4, and CDK2 and a high expression level of YTHDF1 is relevant to better prognosis, which is similar to our results.

There are many differences between LUSC and LUAD in m6A-related gene expression patterns. Therefore, there also exist some differences in the significant m6A-related genes for patient outcomes. In LUAD, Zhang Y. et al. (2020) demonstrated that METTL3, YTHDF1, and YTHDF2 were identified as prognostic genes and associated with better relapse-free survival (RFS) and OS. Li et al. (2020) analyzed the TCGA database combined with the Genotype-Tissue Expression (GTEx) database and calculated the prognostic signature-based risk scores of RBM15, HNRNPC, and KIAA1429. They found that the three m6A-related genes not only have strong associations with clinicopathological features and clinical prognosis of LUAD but also act as significant prognostic factors for LUAD. Similarly, Li and Zhan (2020) investigated the m6A-related gene signature for predictive, preventive, and personalized medicine using 511 LUAD samples, 502 LUSC samples, and 109 normal samples obtained from the TCGA database; they found in the whole NSCLC cohort that the three-m6A-related signature (METTL3, KIAA1429, and IGF2BP1) was developed as a prognostic model, which helped in classifying NSCLC patients into low-risk and high-risk groups. In our study, we found that WTAP, YTHDC1, and YTHDF1 were identified as prognostic genes in LUSC, which means that LUAD and LUSC share different prognostic m6A-related gene signatures.

There are some limitations in this study. First, this study is an analysis that uses public databases and lacks some validation by our own cohort; we will further investigate the three m6A-related genes in our own LUSC cohort. Second, the targeted downstream genes of the three genes were not further explored, which may cause some bias in estimating the targeted drugs, which also need further investigation. Third, the number of LUSC patients is still small for selecting the appropriate model and the results still need further validation.



CONCLUSION

In conclusion, this study explored the expression patterns and mutational characteristics of LUSC patients and identified three potential independent prognostic m6A-related genes (WTAP, YTHDC1, and YTHDF1) for OS in LUSC patients, which may be helpful for molecular subtyping of LUSC and providing new insight into the potential molecular mechanisms of the ontogenesis, development, and metastasis of LUSC.
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Background: Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor with substantial somatic mutations and genome instability, which are emerging hallmarks of cancer. Long non-coding RNAs (lncRNAs) are promising cancer biomarkers that are reportedly involved in genomic instability. However, the identification of genome instability-related lncRNAs (GInLncRNAs) and their clinical significance has not been investigated in LUAD.

Methods: We determined GInLncRNAs by combining somatic mutation and transcriptome data of 457 patients with LUAD and probed their potential function using co-expression network and Gene Ontology (GO) enrichment analyses. We then filtered GInLncRNAs by Cox regression and LASSO regression to construct a genome instability-related lncRNA signature (GInLncSig). We subsequently evaluated GInLncSig using correlation analyses with mutations, external validation, model comparisons, independent prognostic significance analyses, and clinical stratification analyses. Finally, we established a nomogram for prognosis prediction in patients with LUAD and validated it in the testing set and the entire TCGA dataset.

Results: We identified 161 GInLncRNAs, of which seven were screened to develop a prognostic GInLncSig model (LINC01133, LINC01116, LINC01671, FAM83A-AS1, PLAC4, MIR223HG, and AL590226.1). GInLncSig independently predicted the overall survival of patients with LUAD and displayed an improved performance compared to other similar signatures. Furthermore, GInLncSig was related to somatic mutation patterns, suggesting its ability to reflect genome instability in LUAD. Finally, a nomogram comprising the GInLncSig and tumor stage exhibited improved robustness and clinical practicability for predicting patient prognosis.

Conclusion: Our study identified a signature for prognostic prediction in LUAD comprising seven lncRNAs associated with genome instability, which may provide a useful indicator for clinical stratification management and treatment decisions for patients with LUAD.

Keywords: genome instability, somatic mutation, lung adenocarcinoma, long non-coding RNA, prognostic signature, survival


INTRODUCTION

Genome instability and mutations are the enabling characteristics of cancer. Widespread destabilization of the nucleotide sequences is inherent in most human cancers (Hanahan and Weinberg, 2011). Genomic changes occur at different levels, from mutations in single or few nucleotides to gains or losses of entire chromosomes, which may trigger aberrant divisions, multinucleation, and tripolar mitosis (Mackay et al., 2018; S. Zhang et al., 2019). Different cancer types exhibit distinct somatic mutational profiles corresponding to varying numbers of genetic mutations, indicating tissue and cell-specific carcinogenic mechanisms (Lee J. K. et al., 2016; Anandakrishnan et al., 2019). Moreover, as an evolving hallmark of cancer, genomic instability, mainly derived from mutations in DNA repair genes, drives cancer progression and has been identified as a critical prognostic factor (Suzuki et al., 2003; Ottini et al., 2006; Negrini et al., 2010). Therefore, it is of great significance to determine the underlying molecular characteristics of genomic instability in different cancer types and explore their relevant clinical importance.

With the highest morbidity and mortality rates in malignancies, lung cancer is a complex disease characterized by extensive genomic instability (Varella-Garcia, 2010; de Bruin et al., 2014; Bray et al., 2018; Siegel et al., 2020). Risk factors include tobacco smoking, air pollution, and radiation exposure, potentially damaging DNA, resulting in a high rate of genomic alterations (Varella-Garcia, 2010; Dela Cruz et al., 2011). Lung adenocarcinoma (LUAD), the primary subtype of lung cancer, exhibits frequent alterations in proto-oncogenes (e.g., TP53, KRAS, CDKN2A, and STK11), DNA repair defects, and genomic instability (Burgess et al., 2020). Whole-exome sequencing (WES) analysis showed that low genomic instability was associated with better survival in patients with LUAD (Chen Y. et al., 2020). Given that the poor prognosis and clinical heterogeneity of LUAD, developing new biomarkers based on its mutant phenotypes may offer a better read-out for risk stratification and prognostic assessment of patients with LUAD.

It is evident that many genomic mutations in cancer reside in non-coding regions, most of which are further transcribed into transcripts of more than 200 nucleotides, known as long non-coding RNAs (lncRNAs) (Huarte, 2015). In the past decades, increasing evidence has showed that lncRNAs play a critical role in gene regulation, cell proliferation, survival, migration, and genomic stability. These versatile biological functions and their cell- and tissue-specific distribution patterns render them promising cancer biomarkers (Huarte, 2015; Chen et al., 2018b; Statello et al., 2020). Of note, lncRNAs associated with genetic alterations exert a tumor-promoting effect and affect genome instability. For example, a novel lncRNA CCAT2 encompassing the rs6983267 SNP is highly overexpressed in microsatellite-stable colorectal cancer and has neem shown to promote tumor growth, metastasis, and chromosomal instability (Ling et al., 2013). A genome-wide survey assessing somatic copy number alterations (SCNAs) of lncRNAs showed that lncRNAs with high-frequency genomic alterations or residing in focal alteration loci were candidates for carcinogenic lncRNAs (Hu X. et al., 2014). Moreover, cancer-testis lncRNAs reactivated in cancers can promote genome instability and malignant transformation (Qin et al., 2017). Conversely, some lncRNAs, such as NORAD, CUPID1, CUPID2, and DDSR1, promote DNA damage repair and facilitate genome stability (Polo et al., 2012; Lee S. et al., 2016; Betts et al., 2017). Although lncRNAs are critical in regulating genome instability, the clinical significance of genome instability-related lncRNAs (GInLncRNAs) has not been investigated in LUAD. In this study, we identified a group of lncRNA signatures related to genome instability from the genomic and transcriptional levels and probed their prognostic significance in patients with LUAD, with the aim of providing an alternative evaluation of the genome instability-conferred mortality risk of cancer.



MATERIALS AND METHODS


Research Roadmap

The research procedure of this study is depicted in Figure 1. After data collection, GInLncRNAs were identified in combination with somatic mutations and transcriptome data. Co-expression analyses and functional enrichment analyses were conducted to probe the potential function of the above lncRNAs. The patient cohort was then randomly divided into two datasets for training and testing analyses. The GInLncRNAs were further analyzed by Cox regression and LASSO regression to construct a prognostic lncRNA risk signature. The signature was subsequently evaluated using mutation correlation analyses, independent prognostic prediction value analyses, clinical stratification analyses, model comparisons, and external dataset validation. Finally, an optimized model and nomogram were established. The testing set and entire TCGA dataset were subjected to validation of all results.
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FIGURE 1. Research roadmap of this study.




Data Collection and Preprocessing

We downloaded the somatic mutation information of 561 patients with LUAD (VarScan version), mRNA and lncRNA transcriptional profiles of 551 patients with LUAD (fragments per kilobase million, FPKM), and clinicopathological features of 486 patients with LUAD from The Cancer Genome Atlas (TCGA) database1. We then matched these three parts of the data according to the sample names and removed patients without survival information or with a survival time of less than 30 days to eliminate the interference of non-cancerous causes of death. mRNAs and lncRNAs were annotated using the HUGO Gene Nomenclature Committee (HGNC2) database. Finally, a total of 457 samples with complete survival information, somatic mutation data, mRNA and lncRNA expression profiles, and other clinicopathological features were retained for our analysis. To make our study more convincing, we randomly divided the 457 patients into two groups at a ratio of 1:1 using the “caret” package of R software, named as the training set and testing set, respectively. The training set with 229 samples was to identify the genome instability-related lncRNA signature (GInLncSig) and construct a prognostic model. The testing set with 228 samples was used to test the performance of the model. Table 1 shows the clinicopathological characteristics of the cohorts (P > 0.05, Chi-squared test).


TABLE 1. Clinicopathological information of the patients with LUAD in TCGA cohort.

[image: Table 1]For external validation, another independent dataset GSE31210 with a large sample size (N = 226), basic clinical and survival information, and based on the GPL570 Affymetrix HG-U133_Plus 2.0 platform was retrieved from the Gene Expression Omnibus (GEO) database3. Series matrix files containing clinical information and normalized expression profiles of GSE31210 were obtained for our research analysis. We re-annotated the probes of the Affymetrix HG-U133_Plus 2.0 platform into gene symbols by matching the sequence files (HG-U133_Plus_2 Probe Sequences, FASTA format, August 20, 2008) of the probe sets and the annotation files of GENCODE (release 37). The expression levels of probes mapping to the same gene were averaged to obtain a unique value.



Screening of lncRNAs Related to Genome Instability

We extracted lncRNA expression profiles of samples from the whole annotated transcriptome data and combined them with somatic mutation profiles according to a mutator hypothesis-derived computational workflow (Bao et al., 2020). After computing the cumulative counts of somatic mutations in each sample, we designated the top 25% of the patients and the bottom 25% of the patients having the cumulative number of mutations as genome unstable-like (GUL) group and genome stable-like (GSL) group, respectively. We subsequently compared the mean expression of each lncRNA between the two groups using the Wilcoxon rank-sum test in “limma” package of R software. Consequently, we identified the differentially expressed lncRNAs [|Fold Change| > 1.0 and false discovery rate (FDR) adjusted P < 0.05] as ultimate GInLncRNAs. Volcano plot of differentially expressed lncRNAs between GUL group and GSL group was performed using “ggpubr” and “ggthemes” packages of R software.



Hierarchical Clustering Analyses

We normalized the expression data of GInLncRNAs from all 457 samples using a Z-score analysis. Then we conducted hierarchical clustering analyses with “sparcl,” “pheatmap” and “limma” packages of R software by computing Euclidean distances and cutting the tree into two clusters. The cluster with higher mutation counts was defined as a GU-like cluster, whereas the other was described as a GS-like cluster (P < 0.05, Mann–Whitney U test).



Gene Co-expression Network

We performed the Pearson correlation analysis of the expression levels of lncRNA and mRNA using “limma” package of R software to determine the potential functional mRNA partners co-expressed with GInLncRNAs. The top 10 mRNAs co-expressed with each GInLncRNA were selected according to the Pearson correlation coefficient. We visualized their co-expression network using Cytoscape software and noted the name of GInLncRNAs and their top three co-expressed mRNAs ranked by Pearson correlation coefficient.



Functional Enrichment Analysis

To identify the possible functions of GInLncRNAs, we carried out Gene Ontology (GO) functional enrichment analysis of their mRNA partners (Chen L. et al., 2017) using “clusterProfiler,” “org.Hs.eg.db,” “enrichplot,” and “ggplot2” packages of R software. Clusters with P < 0.05 and P.adjust < 0.05 were considered significantly enriched.



Construction of GInLncRNA-Based Prognostic Signature and Performance Evaluation

First, we conducted univariate Cox regression analysis in the training set using “survival” package of R software to evaluate the relationship between the expression level of GInLncRNAs and patients’ overall survival. The lncRNAs with a Cox P-value < 0.05 were considered as candidates with prognostic value. Second, we further filtered candidate GInLncRNAs using the least absolute shrinkage and selection operator (LASSO) regression algorithm with penalty parameter tuning conducted by 10−fold cross−validation with “glmnet” and “survival” packages. Third, the screened GInLncRNAs from LASSO were subjected to stepwise multivariate Cox proportional hazard regression analysis to obtain the optimal candidates and construct a prognostic model of GInLncRNAs. The Receiver Operating Characteristic (ROC) curve analysis was conducted and the Areas Under Curve (AUC) values were obtained to evaluate the prognostic model’s predictability using “survivalROC” package. Then, the GInLncSig for prognosis prediction was developed based on the coefficient of each prognostic GInLncRNAs in the model and their expression levels. The formula for calculating the GInLncSig risk score was as follows:
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The “coefi” and “Xi” represent the coefficient and expression level of each prognostic lncRNAs, respectively. Patients with LUAD were classified into high-risk and low-risk groups based on the median GInLncSig score as the risk cut-off point. The survival curves of the two groups were plotted using the Kaplan–Meier method and compared by the log-rank test using “survival” and “survminer” packages in R with a p < 0.05 indicating significance. Finally, the GInLncSig risk model was applied to the testing set and the entire TCGA set to evaluate its performance.



External Validation and Model Comparison

The GInLncSig model was further validated using another independent GEO cohort of 226 patients profiled using microarray platform. We retrieved the expression of lncRNAs in GInLncSig in the GSE31210 dataset and calculated the risk score of patients based on the aforementioned formula. Patients with LUAD were classified into high-risk and low-risk groups based on the median GInLncSig score. Survival analysis of the two groups were conducted using the Kaplan–Meier method and the log-rank test using “survival” and “survminer” packages in R. P < 0.05 indicated statistical significance. Comparison analysis of the expressions of UBQLN4 between two risk groups and correlation analysis between GInLncSig and clinical parameters in GSE31210 dataset were performed using “limma” and “ggpubr” packages. Moreover, we retrieved the LncRNA signature model from other reports and compared their prediction performance by drawing the ROC curve and calculating the AUC values.



Independent Analysis of GInLncSig in Prognostic Value and Clinical Stratification Analysis

To test whether the GInLncSig is an independent prognostic factor of other key clinicopathological features, we implemented univariate and multivariate Cox regression analyses for each variable in training, testing, TCGA, and GSE31210 datasets using “survival” package of R software. Statistical significance was set at P < 0.05. Then, a clinical stratification analysis was conducted further to assess the stability of the prognostic efficacy of GInLncSig. Patients in the whole TCGA set were stratified into subgroups according to clinical parameters, including age (≤65 and >65), gender (female and male), and tumor stage (I-II and III-IV). Patients in each clinical subgroup were further divided into high-risk and low-risk groups based on the median GInLncSig score. Kaplan–Meier analysis and the log-rank test were performed to compare survival differences between the high- and low-risk groups in each subgroup.



Building and Validation of a Nomogram Score System

Based on multivariate Cox regression analysis in assessing the independent prognostic significance of GInLncSig and clinical variables, we constructed a nomogram in the training set to predict the survival of patients with LUAD. Each variable was allocated a point in the nomogram score system, adding up to a total point for each sample that predicts 1-, 2-, and 3-year survival (Iasonos et al., 2008). The ROC curve, concordance index (C-index), and calibration plot were used to assess the predictive performance and discriminating ability of the nomogram score system. The nonogram was also applied to the testing set and the entire set to verify the above results.



Statistical Analyses

Chi-squared and Mann–Whitney U test were implemented to explore the differences in categorical and quantitative data between different datasets or groups, respectively. Statistical significance was defined when two-tailed p < 0.05. R version 4.0.2 (Institute for Statistics and Mathematics, Vienna, Austria4) executed all the statistical analysis and visualization with the corresponding functional package.



RESULTS


Screening of Genome Instability-Related lncRNAs in Combination With Somatic Mutation Profiles and Transcriptome Data

As is shown in Figure 1, we first identified 130 patients with the top 25% of mutations in the cohort as belonging to the GUL group (mean of somatic mutations was 57), and 125 patients with the bottom 25% of mutations in the cohort as belonging to the GSL group (mean of somatic mutations was 539). The clinical information of patients with LUAD in the GSL and GUL groups is depicted in Supplementary Table 1. We found 161 lncRNAs were differentially expressed significantly between the two groups, among which 87 lncRNAs were upregulated, and 74 lncRNAs were downregulated in the GUL group (P < 0.05, |logFC| > 1, Figure 2A and Supplementary Table 2).
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FIGURE 2. Screening of genomic instability-related lncRNAs and their functional annotation in patients with LUAD. (A) Volcano plot of 161 differential expressed lncRNAs between GUL group and GSL group designated as genome instability-related lncRNAs (GInLncRNAs). (B) Heatmap of unsupervised hierarchical clustering analyses of 457 patients with LUAD according to the expression levels of 161 GInLncRNAs. The resulting two clusters were determined based on comparing their mean of mutations, with the higher one designated as genome unstable-like (GU-like) cluster (red) and low one termed as genome stable-like (GS-like) cluster (blue). (C) Boxplot of comparison of cumulative somatic mutation counts between GU-like cluster and GS-like cluster. The mutation counts of GU-like group were significantly higher than that of the GS-like group (P < 0.001, Mann–Whitney U test). (D) Boxplot of comparison of the expression levels of UBQLN4 between GU-like cluster and GS-like cluster. UBQLN4 expression levels of the GU-like group were significantly higher than that of the GS-like group (P < 0.001, Mann–Whitney U test). (E) Network presentation of the relationship between genome instability-related lncRNAs (GInLncRNAs) and their top 10 co-expressed protein-coding genes according to the Pearson correlation coefficient. The orange and blue circles represented the GInLncRNAs and protein-coding mRNAs, respectively. The name of GInlncRNAs and their top three co-expressed mRNAs ranked using Pearson correlation coefficient were plotted in the network. (F) Barplot of Go enrichment analyses of the co-expressed protein genes with lncRNAs (P < 0.05).


To determine whether these 161 lncRNAs reflected patients’ genome instability, we applied an unsupervised hierarchical clustering analysis for the expression levels of the 161 lncRNAs in the entire cohort. As shown in Figure 2B, all 457 samples were clustered into two clusters with significantly differential mutation counts, in which the cluster with higher number of mutations was termed the GU-like cluster and that with low number of mutations was termed the GS-like cluster (P < 0.05, Mann–Whitney U test; Figure 2C). Moreover, a gene named UBQLN4, which has been reported to drive genomic instability and is overexpressed in aggressive tumors, was also upregulated in the GS-like cluster (P < 0.05, Mann–Whitney U test; Figure 2D) (Jachimowicz et al., 2019). These results demonstrated that the 161 lncRNAs could be identified as candidate GInLncRNAs.

We next explored the potential functions of the GInlncRNAs using co-expression analysis with coding genes and the GO functional enrichment analysis. An lncRNA—mRNAs co-expression network that reflected the relationship between the two is displayed in Figure 2E. The name of top three mRNAs co-expressed with each GInlncRNA according to the Pearson correlation coefficient was marked. GO functional enrichment analysis of GInlncRNA-related genes indicated that they were mainly enriched in chromosomes and nucleoplasm in the cellular component (CC), DNA binding in the molecular function (MF), and the transcription and compound synthesis and metabolism in the biological process (BP, P < 0.05, Figure 2F and Supplementary Table 3). To prevent DNA damage and to maintain genome stability, exogenous compound synthesis is required to scavenge the excess free radicals or enhance the structural integrity of DNA through binding (Sharma et al., 2020). These results suggested that changes in GInlncRNAs expression may affect genome stability.



Establishment of a Prognostic Signature Based on Seven Genome Instability-Related lncRNAs and Predictability Evaluation

To explore the clinical significance of GInlncRNAs, we randomly separate the 457 patients into two sets: the training set (N = 229) and testing set (N = 228), respectively. We then screened 11 lncRNAs significantly associated with the overall survival of patients from the 161 GInlncRNAs in the training set using univariate Cox proportional hazard regression analysis (P < 0.05, Figure 3A and Supplementary Table 4). LASSO regression and stepwise multivariate Cox proportional hazard regression analyses were performed to construct a risk model for survival prediction. Consequently, seven of 11 GInlncRNAs that retained prognostic significance (P < 0.05) were included in the risk model (Figures 3B–D and Supplementary Table 5). A prognostic signature was then constructed based on the expression levels of seven GInlncRNAs and their coefficients in the multivariate Cox proportional hazard model with the following computational formula: genome instability-related signature (GInLncSig) score = (0.0307 × Expression LINC01133) + (0.0806 × Expression LINC01116) + (0.0409 × Expression LINC01671)+ (0.0408 × Expression FAM83A- AS1) + (0.02998 × Expression PLAC4) + (−0.3974 × Expression MIR223HG) + (−0.7572 × Expression AL590226.1). In the equation of GInLncSig, five lncRNAs (LINC01133, LINC01116, LINC01671, FAM83A-AS1, and PLAC4) have positive coefficient suggesting that they are risk factors and their upregulated expression is associated with poor prognosis, while two lncRNAs (MIR223HG, AL590226.1) with a negative coefficient in the equation worked as protective factors indicating a better survival relevance of their upregulated expression. According to the median GInLncSig score of 1.025, patients with scores higher than the median in the training set were classified as the high-risk group, and those with scores equal to or below the median were classified as the low-risk group (Supplementary Table 6). We found that patients with LUAD in the low-risk group had better survival outcomes than patients in the high-risk group (P < 0.001, log-rank test; Figure 4A). The AUC of the ROC curves in the training set was 0.772 for the 1-year survival prediction of GInLncSig (Figure 4B).
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FIGURE 3. Construction of prognostic risk signature of patients with LUAD using genome instability-related lncRNAs (GInLncRNAs) in the training set. (A) Forest plot of eleven GInLncRNAs associated with patients’ overall survival based on univariate Cox regression analyses. Four GInLncRNAs were protecting factors for patients’ survival (MIR223HG, AL590226.1, LINC01936, and FENDRR), while the other seven GInLncRNAs were the risk factors for patients’ survival (LINC01116, LINC01133, FAM83A–AS1, PLAC4, LINC01671, AC003092.1, and AL139023.1). (B) The distribution plot of the partial likelihood deviation of the LASSO coefficient. Nine variables were retained when the partial likelihood deviation reached the minimum (Log Lambda = –4.1). (C) The distribution plot of the LASSO coefficient. Nine variables were retained when Log Lambda was equal to –4.1. (D) The risk signature’s forest plot used seven GInLncRNAs associated with patients’ overall survival (GInLncSig) based on stepwise multivariate Cox proportional hazard regression. Two GInLncRNAs were protecting factors for patients’ survival (MIR223HG and AL590226.1), while the other five GInLncRNAs were the risk factors for patients’ survival (LINC01116, LINC01133, FAM83A–AS1, PLAC4, and LINC01671).
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FIGURE 4. Evaluation and validation of genome instability-related lncRNA signature (GInLncSig)’s predictive performance of overall survival in patients with LUAD in three datasets. Kaplan–Meier survival curves of patients in the high- and low-risk groups separated by GInLncSig score in the training set (A), the testing set (C), and the TCGA set (E). Patients in the low-risk group have prolonged survival than patients in the high-risk group (log-rank test, P < 0.05). ROC curves for 1-year survival prediction of the GInLncSig in the training set (B), the testing set (D), and the TCGA set (F).


To verify the performance of the GInLncSig for survival prediction, we calculated the GInLncSig scores of the testing set and the entire TCGA set and drew their ROC curve. The median GInLncSig score in the testing set was 1.021. Patients in the low-risk group showed a more prolonged survival than patients in the high-risk group with an AUC value of 0.73 in the testing set (P = 0.027, log-rank test; Figures 4C,D and Supplementary Table 7). Similar results were also observed in the entire TCGA set, where the AUC of the ROC curves for GInLncSig was 0.739 (P < 0.001, log-rank test; Figures 4E,F and Supplementary Table 8). These results indicate that GInLncSig has a good survival prediction efficacy.



The GInLncSig Was Associated With the Somatic Mutation Pattern

To test whether GInLncSig is associated with somatic mutation pattern such as the count of somatic mutations and the expression levels of UBQLN4, and the mutation status of the titin gene (TTN). We first performed a group of risk plots for three datasets, including the heat map of lncRNA expression, the distribution of patients’ mutations, and the expression patterns of UBQLN4. As is shown in Figure 5A, the expression levels of LINC01133, LINC01671, LINC01116, FAM83A-AS1, and PLAC4 in the training set increased with the increase in GInLncSig score, whereas the expression of MIR223HG and AL590226.1 decreased with increasing GInLncSig score. Notably, the count of somatic mutations and the expression levels of UBQLN4 also exhibited a growth pattern with the increasing GInLncSig score. As is shown in Figure 5B, the count of somatic mutations in patients in the high-risk group was significantly higher than that of patients in the low-risk group (median ± standard deviation of somatic mutation counts 279.5 ± 373.95 vs. 174 ± 306.58, P < 0.01, Mann–Whitney U test; Figure 5B). The expression level of UBQLN4 was significantly higher in the high-risk group than that in the low-risk group (median ± standard deviation of the expression levels of UBQLN4 18.41 ± 7.19 vs. 15.80 ± 6.87, P < 0.01, Mann–Whitney U test; Figure 5B). These results were further verified in the testing and the entire TCGA dataset (Figures 5C–F). Similarly, we observed an increasing distribution of somatic mutation counts and the expression of UBQLN4 with increasing GInLncSig scores in both the testing (Figure 5C) and entire TCGA cohort (Figure 5E). Comparison analysis showed that there were significant differences in the number of somatic mutations between the high-risk and low-risk groups in both the testing (median ± standard deviation of somatic mutation counts 304.5 ± 302.86 vs. 143 ± 220.20, P < 0.001, Mann–Whitney U test; Figure 5D) and the entire TCGA set (median ± standard deviation of somatic mutation counts 295 ± 347.88 vs. 154.5 ± 314.69, P < 0.001, Mann–Whitney U test; Figure 5F). Moreover, we observed a slightly higher expression level of UBQLN4 in the high-risk group than that in the low-risk group in the testing set (median ± standard deviation of the expression levels of UBQLN4 17.71 ± 6.88 vs. 16.23 ± 6.87, P = 0.25, Mann–Whitney U test; Figure 5D), and a significantly higher expression level of UBQLN4 in high-risk group than in the low-risk group in the entire TCGA set (median ± standard deviation of the expression levels of UBQLN4 17.84 ± 7.02 vs. 16.23 ± 6.87, P < 0.01, Mann–Whitney U test; Figure 5F).
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FIGURE 5. Relationship between genome instability-related lncRNA signature (GInLncSig) and somatic mutation patterns of patients with LUAD in three datasets. (A,C,E) A group of risk plots of the training set (A), the testing set (C), and the TCGA set (E), including the heat map of lncRNAs expression, the mutation distribution pattern, and the expression pattern of UBQLN4. The somatic mutation distribution and the expression of lncRNAs and UBQLN4 were changed with the GInLncSig score increasing. (B,D,F) Boxplots of comparison of somatic mutation counts and the UBQLN4 expression levels between high- and low-risk groups in the training set [(B) P < 0.01, Mann–Whitney U test], the testing set [(D) P < 0.001, Mann–Whitney U test], and the TCGA set [(F) P < 0.01, Mann–Whitney U test]. (G) Boxplots of comparison of the proportion of TTN mutation between the high- and low-risk groups in the training set, the testing set, and the TCGA set (Chi-squared test, P < 0.05). (H) Kaplan–Meier survival curves of patients in groups divided based on TTN mutation status and the GInLncSig score. The overall survival of the four groups was significantly different (log-rank test, P < 0.001).


In addition, we observed a high rate of mutation of TTN in our LUAD cohort. Previous studies have reported that somatic mutations in TTN were frequently occur in many cancer types and reflect the status of the tumor mutation burden (Kim et al., 2013; Oh et al., 2020). Therefore, we further assessed the association between the GInLncSig and TTN mutation status. We compared the differences between the high-risk group and low-risk group in three datasets using the chi-square test. The results showed that patients in the high-risk group displayed a significantly higher proportion of TTN mutations than those in the low-risk group among the three datasets (P < 0.01, Chi-squared test; Figure 5G). TTN was identified to be associated with platinum resistance in non-small cell lung cancer and prognosis in gastric cancer (Guo et al., 2020; Yang Y. et al., 2020). We further conducted a survival analysis on the risk groups determined using the GInLncSig and the mutation status of TTN, which were TTN Mutaion/ High-risk, TTN Mutaion/ Low-risk, TTN wild/ High-risk, TTN wild / Low-risk groups. As shown in Figure 5H, there was a significant difference among the four groups (P < 0.001, log-rank test). These results indicate that the GInLncSig is correlated with TTN mutation status. Taken together, the above results showed that the GInLncSig score was associated with somatic mutation patterns.



External Validation and Predictability Comparison of the GInLncSig With Other Prognostic lncRNA Signatures

To further validate the prognostic significance of GInLncSig, we investigated the value of GInLncSig in another independent dataset, GSE31210 (N = 226), from the GPL570 microarray platform. Although we re-annotated the probes of GPL570 platform, only six of seven lncRNAs in the GInLncSig were covered by the GSE31210 dataset because of the different depths of detection in GPL570 and IlluminaHiSeq platforms. Therefore, we evaluated the significance of GInLncSig scores calculated only based on the expression of six lncRNAs (LINC01133, LINC01116, LINC01671, PLAC4, PLAC4, AP001626.1) according to the aforementioned formula. Survival analysis showed that patients in the low-risk group had a better prognosis than those in the high-risk group (P = 0.02, log-rank test; Figure 6A). We also investigated the difference in the expression of UBQLN4 between the two risk groups, and the results showed that the expression level of UBQLN4 in the high-risk group was significantly higher than that in the low-risk group which was consistent with the results of TCGA dataset (P = 0.021, Mann–Whitney U test; Figure 6B). Correlation analyses with clinical features demonstrated that the GInLncSig score was associated with gender and tumor stage in patients with LUAD (Figures 6C,D). Male patients tended to have higher GInLncSig scores than female patients (P = 0.03, Mann–Whitney U test, Figure 6C). Patients in stage II had significantly higher GInLncSig scores than patients in stage I (P = 0.0036, Mann–Whitney U test, Figure 6D). Together, these results further validated the robustness of GInLncSig in LUAD.


[image: image]

FIGURE 6. External validation and model comparison. (A) Kaplan–Meier survival curves of patients with LUAD in the high- and low-risk groups in GSE31210 dataset. Patients with low GInLncSig score had better survival outcomes than patients with high GInLncSig score (log-rank test, P = 0.02). (B) Boxplot of comparison of the UBQLN4 expression levels between high- and low-risk groups in GSE31210 dataset (P = 0.021, Mann–Whitney U test). (C) Boxplot of correlation between GInLncSig score and gender of patients (P = 0.03, Mann–Whitney U test). (D) Boxplot of correlation between GInLncSig score and tumor stage of patients (P = 0.0036, Mann–Whitney U test). (E) ROC curves for 1-year survival prediction of the GInLncSig and the other four existing signatures, respectively.


Moreover, we also carried out a predictability comparison between GInLncSig and four recently reported lncRNA signatures using the same patients cohort of TCGA for survival prediction of patients with LUAD: thirteen-lncRNA prognostic signature reported by Zhou et al. (2020) (ZhoulncSig), five-lncRNA prognostic signature reported by Zeng et al. (2019) (ZenglncSig), five-lncRNA prognostic signature documented by Liao et al. (2018) (LiaolncSig), and the seven-lncRNA prognostic signature reported by Jin et al. (2020) (JinlncSig). As is depicted in Figure 6E, our GInLncSig with an AUC of ROC for the 1-year OS of 0.739 was more effective in predicting patients’ survival than ZhoulncSig (AUC = 0.656), ZenglncSig (AUC = 0.639), LiaolncSig (AUC = 0.649), and JinlncSig (AUC = 0.655). Together, the above results indicate the credibility and effectiveness of our GInLncSig in predicting the prognosis of patients with LUAD.



Assessment of Independent Prognostic Significance of GInLncSig and Clinical Stratification Analysis

To explore whether GInLncSig is an independent prognostic factor from the clinicopathological features, we implemented univariate and multivariate Cox regression analyses on four datasets (training, testing, TCGA and GSE31210 dataset) for variables including age, gender, tumor stage, and GInLncSig. The results of univariate Cox regression showed that GInLncSig and tumor stage were significantly correlated with the patients’ overall survival in four datasets (P < 0.001), and they retained prognostic significance in multivariate Cox regression analyses across four datasets (P < 0.01). Other variables, such as age and gender, showed no significant correlation with the patients’ overall survival. Table 2 presents these findings. Clinical stratification analyses of the prognostic performance of GInLncSig in TCGA dataset after adjusted by other clinical factors, including age, gender and tumor stage showed that patients in the low-risk group had better survival outcomes than those in the high-risk group across all clinically stratified subgroups (P < 0.05, log-rank test; Figure 7). Together, these results suggested that the prognostic significance of GInLncSig in patients with LUAD is independent of other clinicopathological variables.


TABLE 2. Univariate and Multivariate Cox regression analysis of the GInLncSig and clinical features for the independent prognostic significance in four datasets.
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FIGURE 7. Clinical stratification analysis of the survival difference between patients with LUAD in the high- and low-risk groups by the age, gender, and tumor stage. Kaplan–Meier survival curves of patients in the high- and low-risk groups within six clinically stratified subgroups, including patients with age under 65 years (A), age over 65 (B), the gender of female (C), the gender of male (D), the tumor stage of I–II (E), and the tumor stage of III–IV (F), respectively. Patients in the low-risk group had better survival outcomes than in the high-risk group across all clinically stratified subgroups (log-rank test, P < 0.05).




Construction and Validation of a Nomogram for Survival Prediction of Patients With LUAD

To improve the model’s clinical practicability, we established a statistical nomogram model in the training set by integrating GInLncSig and tumor stage using “rms” and “survival” packages in R (Figure 8A). The nomogram’s C-index was 0.757, and AUCs of ROC for 1-, 2-, and 3-year survival predictions were 0.823, 0.786, and 0.780, respectively (Figure 8B). Similarly, the C-index was 0.693 in the testing set and the 1-, 2-, and 3-year AUCs were 0.776, 0.719, and 0.702, respectively (Figure 8C). The C-index was 0.720 in the whole TCGA set and the 1-, 2-, and 3-year AUCs were 0.788, 0.744, and 0.737, respectively (Figure 8D). The calibration plot for survival prediction showed good agreement between the actual survival rate and predictions in the three datasets (Supplementary Figure 1). Therefore, these findings indicate improved prediction performance of the nomogram.
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FIGURE 8. Construction and evaluation of a nomogram for survival prediction of patients with LUAD based on GInLncSig and clinicopathological variables. (A) The nomogram developed in training set for predicting 1-, 2-, and 3-year survival of patients. (B–D) ROC curves for 1-, 2-, and 3-year survival prediction of the nomogram in the training set (B), testing set (C), and TCGA set (D), respectively.




DISCUSSION

Genome instability is a substantial factor that facilitates the acquisition of multiple cancer-related hallmarks (Hanahan and Weinberg, 2011). Constant mutations drive carcinogenesis, tumor progression, and resistance to treatment, endowing the diagnostic and prognostic significance of genomic instability in cancer (Kronenwett et al., 2006; Mettu et al., 2010; Andor et al., 2017). Previous studies have shown that aberrant transcriptional and epigenetic regulation affects genome instability (Ferguson et al., 2015). mRNA and miRNA signatures have been investigated to assess the degree of genome instability in cancer (Habermann et al., 2009; Wang et al., 2017; Chen et al., 2018a). In recent years, lncRNAs, as a promising cancer biomarkers, have also been shown to be involved in genome stability (Qin et al., 2017; Munschauer et al., 2018; Hu W. L. et al., 2018). As a highly heterogeneous disease, lung cancer exhibits a unique genomic profile, with a scattered mutation pattern and widespread somatic mutations (Kandoth et al., 2013). LUAD is the most common carcinoma of the lungs, and no relevant studies have investigated the lncRNA signatures of genome instability in LUAD. Here, we identified a group of GInLncRNAs in LUAD and revealed their significance in predicting patients survival.

In our study, by comparing the expression levels of lncRNAs between patients with differential mutation counts, we first found 161 GInLncRNAs. These lncRNAs were further verified to be associated with genomic instability by hierarchical clustering analyses and following differential analysis of mutation counts and the driver gene of genome instability. We then evaluated the prognostic significance of the 161 GInLncRNAs in patients with LUAD and constructed a GInLncSig consisting of seven lncRNAs (LINC01133, LINC01671, LINC01116, FAM83A-AS1, PLAC4, MIR223HG, and AL590226.1) in the training set. GInLncSig was further proven to be a prognostic factor independent of other clinicopathological characteristics. Patients with a high GInLncSig score tended to have a dismal outcome, which was validated in the testing cohort and GSE31210 dataset. In addition, we observed a significant association between GInLncSig and tumor mutation patterns in LUAD, with a high-risk score being related to high mutations and genome instability. Notably, GInLncSig displayed a robust relationship with prognosis in different clinical subpopulations. Although some effective lncRNA signatures have been developed from GEO microarray datasets for prognosis prediction of lung cancer in recent years, such as the relapse-related lncRNA signature of LUAD (Zhou et al., 2016), tumor immune infiltration-associated lncRNA signature of non-small cell lung cancer (Sun et al., 2020), and the eight prognostic lncRNA signature of non-small cell lung cancer (Zhou et al., 2015). However, we could not conduct a model comparison because the expression profiles from the IlluminaHiSeq platform only covered some of the lncRNAs from the above prognostic signatures. Here, GInLncSig showed an improved prediction performance compared to several existing lncRNA signatures discovered based on the same TCGA cohort. These findings suggest that our GInLncSig is a useful biomarker for predicting patient outcomes and an indicator of genome instability. Given that the tumor stage was also an independent prognostic factor for patients with LUAD in our multivariate cox regression analysis, we finally constructed a nomogram in the training set combining GInLncSig with tumor stage, which further enhanced the prediction model’s comprehension and accuracy. Good performance was further validated in the testing set and the whole TCGA dataset.

Among the seven GInlncRNAs, LINC01133, LINC01671, LINC01116, FAM83A-AS1, and PLAC4 were risk factors for survival, whereas MIR223HG and AL590226.1 were protective factors for patient prognosis. Of note, LINC01133 (Zhang et al., 2015; Zhai et al., 2020; Li et al., 2020; Liu and Xi, 2020; Yang W. et al., 2020), LINC01116 (Cui et al., 2020; Meng et al., 2020), and FAM83A-AS1 (He and Yu, 2019; Shi et al., 2019; Huang et al., 2020) have already been identified to be involved in tumorigenesis and malignant progression in lung cancer or other tumors. For example, Zang et al. (2016) reported that the upregulated expression of LINC01133 in NSCLC was associated with poor patient survival. It can repress KLF2, P21, and E-cadherin transcription through binding to EZH2 and LSD1, thus possessing an oncogenic function in NSCLC (Zang et al., 2016). Zeng et al. (2020) found that LINC01116, overexpressed in LUAD, promoted tumor proliferation and metastasis. Xiao et al. (2019) revealed that FAM83A-AS1 accelerated tumor migration and invasion by targeting miR-150-5p and modifying MMP14 in LUAD. PLAC4, located in 21q22.2, is documented highly expressed in the placenta, and SNPs in the transcriptional regions are associated with fetal trisomy 21 (Lo et al., 2007). The other three lncRNAs, LINC01671, MIR223HG, and AL590226.1, were first reported in our study. The mechanisms of their function in LUAD require further investigation.

This study has several limitations. First, although we investigated the potential value of GInLncSig using bioinformatics analysis and conducted external validation using another independent GEO dataset, experimental validation of our lncRNA signature it still lacking. Therefore, further studies are warranted. Second, the four genomic instability-related lncRNAs (LINC01671, MIR223HG, AL590226.1, and PLAC4) were first reported to be associated with LUAD prognosis, and further investigation is required to clarify their mechanism in carcinogensis and progression of LUAD.



CONCLUSION

In summary, our study identified a risk prognostic signature comprising seven genomic instability-related lncRNAs. The GInLncSig could predict the overall survival of patients with LUAD and indicate genomic instability. Moreover, we achieved an improved predictive performance by combining GInLncSig with the tumor stage to construct a nomogram. This is the first study to investigate lncRNA signatures as genomic instability-related biomarkers for predicting the survival of patients with LUAD. Our study may provide a useful indicator for clinical stratification management and treatment decisions for patients with LUAD and a cornerstone for future mechanistic studies of their relationship.
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Background: Traumatic brain injury (TBI) is a brain function change caused by external forces, which is one of the main causes of death and disability worldwide. The aim of this study was to identify early diagnostic markers and potential therapeutic targets for TBI.

Methods: Differences between TBI and controls in GSE89866 and GSE104687 were analyzed. The two groups of differentially expressed genes (DEGs) were combined for coexpression analysis, and the modules of interest were performed using enrichment analysis. Hub genes were identified by calculating area under curve (AUC) values of module genes, PPI network analysis, and functional similarity. Finally, the difference in immune cell infiltration between TBI and control was calculated by ssGSEA.

Results: A total of 4,817 DEGs were identified in GSE89866 and 1,329 DEGs in GSE104687. They were clustered into nine modules. The genes of modules 1, 4, and 7 had the most crosstalk and were identified as important modules. Enrichment analysis revealed that they were mainly associated with neurodevelopment and immune inflammation. In the PPI network constructed by genes with top 50 AUC values in module genes, we identified the top 10 genes with the greatest connectivity. Among them, down-regulated RPL27, RPS4X, RPL23A, RPS15A, and RPL7A had similar functions and were identified as hub genes. In addition, DC and Tem were significantly up-regulated and down-regulated between TBI and control, respectively.

Conclusion: We found that hub genes may have a diagnostic role for TBI. Molecular dysregulation mechanisms of TBI are associated with neurological and immune inflammation. These results may provide new ideas for the diagnosis and treatment of TBI.

Keywords: traumatic brain injury, biomarkers, neuroimmunology, bioinformatics, signature genes


INTRODUCTION

Traumatic brain injury (TBI) is an important public health problem as it is one of the leading causes of death and disability in the world (Hyder et al., 2007). Globally, more than 50 million people suffer from TBIs every year (Maas et al., 2017). The pooled annual incidence for mild, moderate, and severe TBI are 224, 23, and 13 per 100,000, respectively (Nguyen et al., 2016). The peak incidence of TBI occurs in youth and older life, and it will cause morbidity and mortality in young people under 45 years of age. The huge expenditure on clinical management of TBI patients and related socio-economic problems have brought a heavy burden to the medical system and society (Peters and Gardner, 2018).

Explosion and impact are the main causes of TBI, which lead to a certain degree of cerebrovascular injury, white and gray matter damage, and neuronal and/or glial cell damage (Rodriguez et al., 2018). TBI has now been associated with post-traumatic stress disorder, memory deficit, chronic traumatic encephalopathy (CTE), and chronic neuroinflammation (Goldstein et al., 2012). In addition, TBI also increases the risk of additional health problems for individuals, such as depression, neurodegenerative diseases, and post-traumatic epilepsy (Bolton-Hall et al., 2019). TBI is a diverse process that involves the interaction of many pathophysiological events and processes (Povlishock and Katz, 2005). This poses a major challenge in identifying reliable and sensitive biomarkers in TBI. At present, no TBI biomarker has been found that can be reliably used for clinical diagnosis and prognosis.

Mitochondrial dysfunction is one of the characteristic events of TBI (Xiong et al., 1997). Increasing evidence suggests that oxidative stress plays an important role in the pathogenesis of TBI (Ansari et al., 2008). In TBI patients, the sustained up-regulation of various inflammatory factors is associated with changes in permeability, edema formation, and neurological deficits during the process of blood–brain barrier damage (Ng and Lee, 2019). The role of the immune system in the pathogenesis of TBI has attracted increasing attention. It has been suggested that immune regulation may significantly alter the clinical outcomes of TBI patients (Jassam et al., 2017).

Bioinformatics analysis tools can both identify key molecules and elucidate their interactions. This study explores potential biomarkers and therapeutic targets through TBI-related gene expression in public databases. Further understanding of specific pathophysiological mechanisms leads to TBI-related dysfunction. These results provided opportunities for preclinical and clinical research to improve our understanding of the pathogenesis of TBI and promoted the development of effective treatments.



MATERIALS AND METHODS


Data Sources

We collected TBI-related data from the gene expression omnibus (GEO) database. The gene expression profiling processed on GPL16791 of GSE89866 included blood samples from 29 individuals at baseline and after experiencing a moderate blast exposure, respectively. GSE104687 included gene expression profiling of brain samples from 93 TBI to 103 no TBI individuals without loss of consciousness processed on GPL16791. Cortical gray (parietal and temporal) and white matter (parietal) and hippocampus samples were included. FPKM data matrix was first adjusted for the total transcript count using TbT normalization and then log-transformed.



Analysis of Differentially Expressed Genes

The DEGs were obtained from TBI and control subjects through limma R software package (Ritchie et al., 2015). The P-value < 0.05 was the threshold for nominally significant differential expression.



Weighted Correlation Network Analysis

The coexpression network analysis was performed on TBI and control samples using WGCNA R software package (Langfelder and Horvath, 2008). Selected a power of β value and set the minimum module size as per the standard scale-free networks. Following eigengene calculation, correlation of eigengenes was identified by WGCNA to the clinical traits.



Enrichment Analysis

The enrichment analysis of gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed for important module genes through clusterProfiler R software package (Yu et al., 2012; Gu et al., 2020a,b). The results of gene enrichment were quantified using gene set variation analysis (GSVA) R package. GSVA scores were calculated using a Kolmogorov–Smirnoff-like random walk statistic and a negative value for a particular sample and gene set. Gene Set Enrichment Analysis (GSEA) of genes in TBI and control was carried out using GSEA software. The P-value < 0.05 was considered statistically significant.



Protein–Protein Interaction Network

The protein–protein interaction (PPI) network was constructed by putting selected genes into Search Tool for the Retrieval of Interacting Genes (STRING) (https://string-db.org) (Shi et al., 2018a,b). Hub genes were obtained through degrees of connections with other genes in PPI network. PPI network is displayed through Cytoscape.



Infiltration of Immune Cells

The marker gene set for immune cell types was obtained from Bindea et al. (2013). Single-Sample Gene Set Enrichment Analysis (ssGSEA) program was used to quantify the infiltration levels of immune cell types. The ssGSEA applies gene signatures expressed by immune cell populations to individual samples.




RESULTS


Coexpression Network of DEGs

The flowchart of this study is shown in Figure 1. To identify the gene expression characteristics of TBI, we compared the differences between TBI and control in the two datasets. We found 4817 DEGs in GSE89866 (Figure 2A; Supplementary Table 1), including 2,239 up-regulated DEGs and 2,578 down-regulated DEGs. There were 1,329 DEGs in GSE104687, including 518 DEGs up-regulated and 811 DEGs down-regulated (Figure 2B; Supplementary Table 2). The combined genes of two groups of DEGs were subjected to WGCNA, and the soft-thresholding power was selected as 16 (Figure 2C). We identified a total of nine modules (Figure 2D).


[image: Figure 1]
FIGURE 1. The flowchart of this study.
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FIGURE 2. WGCNA network of differentially expressed genes. (A) The differentially expressed genes between TBI and control in GSE89866 data. Red nodes were significantly up-regulated genes, and green nodes were significantly down-regulated genes. (B) The differentially expressed genes between TBI and control in GSE104687 data. Red nodes were significantly up-regulated genes and green nodes were significantly down-regulated genes. (C) Scale free fitting index analysis and average connectivity analysis of different soft threshold (β). The left image shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right image shows the average connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). (D) The coexpression modules were constructed by the amalgamation of differentially expressed genes in two groups. Different colors represent different modules.




Function of Important Modules

By analyzing the crosstalk between different module genes, we found that the genes in MEturquoise (module 1), MEbrown (module 4), and MEred (module 7) had the most crosstalk with other module genes, respectively (Figure 3A). Therefore, these modules were identified as important modules. The correlation analysis results showed a negative correlation between these modules and TBI (Figure 3B). There were four identical KEGG pathways in the results of GSEA and enrichment [amyotrophic lateral sclerosis, Parkinson's disease (PD), pathways of neurodegeneration-multiple disease, and ribosome] (Figure 3C). In the enrichment results of GO, we found a large number of TBI-related biological processes (BP), and calculated the up- or down-regulation of terms by GSVA (Figure 3D). Among them, central nervous system neuron development, hippocampus development, nerve growth factor signaling pathway, and microglia differentiation significantly up-regulated enrichment. Interleukin-9,−12,−27, and−35-mediated signaling pathway and regulation of response to interferon-γ were significantly down-regulated. In addition, the main KEGG enrichment results were also evaluated by GSVA (Figure 3E). Spinocerebellar ataxia, pyruvate metabolism, mTOR signaling pathway, mitophagy animal, and HIF-1 signaling pathway were significantly up-regulated. Ribosome, cell cycle, oxidative phosphorylation, and PD were significantly down-regulated.


[image: Figure 3]
FIGURE 3. Enrichment analysis of module genes with the most crosstalk. (A) Crosstalk between module genes. (B) The correlation between module and clinical trait. Red node represents up-regulation, and blue node represents down-regulation. (C) The same KEGG signaling pathway in GSEA results as enrichment results. Different colors represent different signaling pathways. (D) The up- or down-regulation of major biological processes in important modules calculated by GSVA. (E) The up- or down-regulation of the major KEGG pathway in important modules calculated by GSVA.




Identification of Key Module Genes

By calculating the area under curve (AUC) values of important module genes in GSE104687, we screened the top 50 genes. Further, we performed PPI network analysis for 50 genes (Figure 4A). Genes with connectivity >10 in the PPI network were subjected to perform functional similarity analysis (Figure 4B). We found that RPL27, RPS4X, RPL23A, RPS15A, and RPL7A had high functional similarities (>0.8) and were then identified as hub genes. By performing principal component analysis (PCA) on TBI and control samples in GSE104687 data, we found that the sample distances between the two groups were close (Figure 4C). When using hub genes for PCA, the discrimination between TBI and control can be improved (Figure 4D). Compared with control, hub genes were significantly down-regulated in TBI (Figure 4E). This down-regulation difference was also validated in GSE89866 (Supplementary Figure 1). In addition, the AUC values of hub genes were all >0.6, which may have a diagnostic role for TBI (Figure 4F). Using five hub genes as a gene set, they also down-regulated expression in TBI (Figure 4G).


[image: Figure 4]
FIGURE 4. Key genes with potential diagnostic role for TBI. (A) The PPI network of 50 genes with larger AUC values. The darker the color, the more connected the gene is in the network. (B) GO functional similarity of the top 10 genes with the greatest connectivity. (C) Primary component analysis of TBI and control in GSE104687. (D) Distinguishing TBI and control samples in GSE104687 using hub genes expression. (E) The differential expression of hub genes between TBI and control in GSE104687. *P < 0.05, **P < 0.01, ***P < 0.001. (F) The AUC values of hub genes. (G) Gene set analysis barcode plot. The differential gene expression in hub genes is shown as a shaded rectangle; genes up-regulated are shaded pink.




Immune Cell Infiltration in TBI

By comparing the immune cell infiltration between TBI and control, we found that DC was significantly up-regulated and Tem was significantly down-regulated (Figure 5A). By calculating the correlation between immune cells, we found a positive or negative interaction relationship between differentially infiltrated immune cells (Figure 5B). Immune cells were further clustered into four categories by cluster analysis (Figure 5C). The results of correlation analysis showed that the correlation between these immune cells and hub genes was similar (Figure 5D). Among them, RPL23A and RPS15A have strong correlation with immune cells.


[image: Figure 5]
FIGURE 5. Differences in immune infiltration between TBI and control. (A) Differences of immune cell infiltration between TBI and control in GSE104687. Red line represents up-regulation, and blue line represents down-regulation. (B) The correlation between immune cells. (C) The immune cells were clustered into four groups. (D) The correlation between immune cells and hub genes. Red is positive correlation, and blue is negative correlation. *P < 0.05, **P < 0.01.





DISCUSSION

Since the process of numerous pathophysiological events occurring after brain injury is extremely complex, it is a great challenge to find the mechanism of molecular changes of TBI. Our study identifies potential therapeutic targets and corresponding molecular mechanisms by exploring the gene expression characteristics of TBI. The novelty of this work lies in the fact that we not only identified potential key genes using multiple sets of data but also associated with immune cells to provide more possibilities for the treatment of TBI.

By coexpression analysis for DEGs, we identified gene sets (modules) with coexpression patterns. Each module may characterize different molecular mechanisms of action (Castranio et al., 2018). Among them, the crosstalk between modules 1, 4, and 7 was the most obvious. There was a negative correlation between these modules and TBI. These module genes were positively associated with the nervous system development and negatively correlated with inflammatory response. The genes of these modules may have a protective effect on the damaged brain. Explosive and non-explosive-induced TBI usually causes white matter and gray matter damage, which may lead to neuronal and/or glial cell damage (Cernak and Noble-Haeusslein, 2010). Apoptosis of neurons and oligodendrocytes is a hallmark of secondary brain injury (Grady et al., 2003). TBI has been reported to cause loss of cortical and hippocampal neurons and alterations in neurotransmitter expression and function (Bondi et al., 2015). Recently, immune inflammation has received extensive attention in the process of TBI. Sterile immune responses can be generated within minutes after TBI, including local signals from neurons, glial cells, and peripheral immune cells, which induce an inflammatory cascade (Corps et al., 2015). After TBI, peripheral blood leukocytes increased significantly, releasing complement factors and proinflammatory cytokines (Dalle Lucca et al., 2012). The sustained up-regulation of various cytokines is associated with changes in blood–brain barrier permeability, edema formation, and neurological deficits (Royes and Gomez-Pinilla, 2019). Interferon-γ can regulate neuronal networks and is associated with more severe disability in the acute phase after brain injury (Kramer et al., 2019).

On the other hand, the mammalian target of rapamycin (mTOR) pathway plays an important role in a variety of physiological functions of the nervous system, such as nerve cell growth, survival, development of dendritic cells during differentiation, and synaptic plasticity (Don et al., 2012). Some studies have shown that mTOR inhibition prevents neuronal injury and death after TBI, while others have shown that increased mTOR signaling after injury promotes cell regeneration and functional recovery (Rana et al., 2019). The occurrence of mitochondrial autophagy has been reported after TBI and is a powerful target (Chu et al., 2013). Oxidative stress response may also be a potential therapeutic target for TBI (Kochanek et al., 2015). Hypoxia may be the driving force of angiogenesis after moderate and severe TBI (Salehi et al., 2017). Experimental TBI animal models revealed the up-regulation of HIF-1 in the injured brain (Park et al., 2009). In fact, TBI is considered as an environmental risk factor for many neurodegenerative diseases, such as PD (Jafari et al., 2013).

The hub genes we identified were all ribosomal subunits. Ribosomal defects can lead to elevated ROS and activation of the TP53 pathway, which have important links with TBI (Sulima et al., 2019). The differential expression of RPL27 and RPS15A was validated in TBI mice (Harper et al., 2020). Recent studies have shown that RPL7 and RPL23A are differentially expressed in senile dementia and may be potential biomarkers (Shigemizu et al., 2020). RPS4X interacts with exogenous lactate dehydrogenase A (LDHA) in the central nervous system and is critical for the proliferation of vascular endothelial cells (Lin et al., 2018). The differential down-regulated expression of hub genes was verified in the two datasets. Importantly, although not completely separated, the hub genes we identified allow more distinct discrimination between samples and will benefit for the diagnosis of TBI in our analysis results.

TBI can induce cell-mediated immune response; however, the role of immunity after TBI is not fully understood. The post-traumatic immune response is rapid and attracts immune cells into the injury site mainly through the early release of cytokines and chemokines (Mayer et al., 2019). Although this inflammatory cascade is necessary for tissue repair and immune defense at the site of injury, an excessive inflammatory response may lead to an inflammatory state (Hildebrand et al., 2006). Dendritic cells can release chemokines and cytokines and promote intercellular and distal signaling at the site of injury through the circulatory system, thereby amplifying the immune response (Jassam et al., 2017). Unlike our analysis, effector memory T cells (Tem) populations were up-regulated in TBI (Ritzel et al., 2018). Immune responses in TBI are now considered both damaging and beneficial (Jarrahi et al., 2020). If regulated, the traumatized brain can benefit from inflammation.

This study also had some limitations. Firstly, the data sample size of our analysis was small, and we needed to expand the sample size for validation analysis. Secondly, our main analysis results lacked the validation of molecular experiments. Finally, whether the identified potential markers have clinical diagnostic role remains to be further studied and verified.



CONCLUSION

TBI remains a complex, multisystem pathology with potential for a wide range of short- and long-term harmful outcomes. We identified possible biomarkers and therapeutic targets using gene expression features of TBI in public databases. The RPL27, RPS4X, RPL23A, RPS15A, and RPL7A we identified may have differential effects on TBI. In addition, neurological and immunoinflammatory responses are the main dysregulated mechanisms of TBI. New understanding of these genes will lead to new therapeutic targets with the hope of improving outcomes for TBI patients.
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Seven Glycolysis-Related Genes Predict the Prognosis of Patients With Pancreatic Cancer
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Objectives: To identify the key glycolysis-related genes (GRGs) in the occurrence and development of pancreatic ductal carcinoma (PDAC), and to construct a glycolysis-related gene model for predicting the prognosis of PDAC patients.

Methodology: Pancreatic ductal carcinoma (PDAC) data and that of normal individuals were downloaded from the TCGA database and Genotype-Tissue Expression database, respectively. GSEA analysis of glycolysis-related pathways was then performed on PDAC data to identify significantly enriched GRGs. The genes were combined with other patient’s clinical information and used to construct a glycolysis-related gene model using cox regression analysis. The model was further evaluated using data from the validation group. Mutations in the model genes were subsequently identified using the cBioPortal. In the same line, the expression levels of glycolysis related model genes in PDAC were analyzed and verified using immunohistochemical images. Model prediction for PDAC patients with different clinical characteristics was then done and the relationship between gene expression level, clinical stage and prognosis further discussed. Finally, a nomogram map of the predictive model was constructed to evaluate the prognosis of patients with PDAC.

Results: GSEA results of the training set revealed that genes in the training set were significantly related to glycolysis pathway and iconic glycolysis pathway. There were 108 differentially expressed GRGs. Among them, 29 GRGs were closely related to prognosis based on clinical survival time. Risk regression analysis further revealed that there were seven significantly expressed glycolysis related genes. The genes were subsequently used to construct a predictive model. The model had an AUC value of more than 0.85. It was also significantly correlated with survival time. Further expression analysis revealed that CDK1, DSC2, ERO1A, MET, PYGL, and SLC35A3 were highly expressed in PDAC and CHST12 was highly expressed in normal pancreatic tissues. These results were confirmed using immunohistochemistry images of normal and diseases cells. The model could effectively evaluate the prognosis of PDAC patients with different clinical characteristics.

Conclusion: The constructed glycolysis-related gene model effectively predicts the occurrence and development of PDAC. As such, it can be used as a prognostic marker to diagnose patients with PDAC.

Keywords: glycolysis-related genes, pancreatic ductal carcinoma, prognosis, model, predict


INTRODUCTION

Pancreatic ductal carcinoma (PDAC) is one of the most fatal malignant tumors. It is ranks fourth in cancer related deaths in the United States. Its 5-year survival rate is as low as 6% (Siegel et al., 2019). The low survival rate of PDAC is attributed to the location of the pancreas (adjacent to many organs) which makes it difficult to detect pancreas anomalies by routine examination. As such, most PDAC patients have metastases by the time they are diagnosed. Currently, surgical resection is the main treatment method for early PDAC. The 5-year survival rate of PDAC patients undergoing surgical resection is only 20%. Combination chemotherapy such as FOLFIRINOX combination therapy that consists of folic acid, fluorouracil, irinotecan and oxaliplatin (Conroy et al., 2011), and combined use of gemcitabine and nab- paclitaxel (von Hoff et al., 2013) have become the preferred treatment option for patients with advanced PDAC.

However, the survival time of patients using these combination regimens is still very low. The survival time averages at only 11 months when FOLFIRINOX is used and 8 months when there is combined use of gemcitabine and nab-paclitaxel. There is therefore a need to identify early diagnosis and more effective treatment strategies.

The metabolic processes of tumor environments have gradually become research hot spots in tumor research and treatment in recent decades (Vander Heiden et al., 2009; Jones and Schulze, 2012). The Warburg effect is the hallmark of cancer research play an important role in promoting the occurrence and development of tumors (Hanahan and Weinberg, 2011). It is the observation that most tumor cells still rely on aerobic glycolysis for energy even with adequate oxygen and nutrition. As such, it promotes rapid proliferation of cancer cells, cancer progression, and resistance to apoptotic cell death. PDAC cells adjust their metabolic pathways to meet the conditions needed for growth (Commisso et al., 2013; Chen et al., 2015; Mayerle et al., 2018).

Cognizant to this, studying glycolysis-related processes and key genes of pancreatic cancer may provide new insights that can aid in identification of potential targets for PDAC treatment. Herein, glycolysis genes that are significantly related to the prognosis of pancreatic cancer were identified. A genetic model based on these genes was then constructed and used to verify the unique prognostic markers of pancreatic cancer.



MATERIALS AND METHODS


Data Acquisition and Processing

The gene expression profiles and clinical data of 148 patients with pancreatic ductal adenocarcinoma was obtained from the cancer and tumor gene profile database (TCGA)1. In the same line, pancreatic gene expression profile data of 168 normal individuals was obtained from Genotype-Tissue Expression database (GTEx)2. Gene expression profile data from both databases was then fused and corrected using “sva” package (Leek et al., 2019) of the R software (v3.61) as the training set.



Gene Set Enrichment Analysis (GSEA) Analysis of Glycolysis-Related Pathways

Data of five pathways related to glycolysis was obtained from GSEA official website3. The five pathways were: GLYCOLYSIS_PATHWAY, HALLMARK_GLYCOLYSIS, GLY COLYSIS_GLUCONEOGENESIS, GLYCOLYTIC_PROCESS, and REACTOME_GLYCOLYSIS. Subsequent analysis of the training data was also done using GSEA.



Differential Expression Analysis and Model Construction of Glycolysis Related Genes

Glycolysis pathways with a significantly close relationship with pancreatic cancer (P < 0.05) were selected based on the results of GSEA. The expression level of genes in these pathways was then summarized as glycolysis related genes (GRGs). The expression level of GRGs from the training set was subsequently extracted and the significant differences in the expression profiles (P < 0.05, logFC ≥ 1 or ≤ -1)between GRGs from the glycolysis pathways and those from the training set analyzed using the limma software package in the R v3.61 software. GRGs closely related to survival were further analyzed using the Cox risk regression analysis to screen out the most significant genes for construction of a GRGs model. The relative expression levels of the genes in the model were extracted and used to construct a heat map. In the same line, a receiver operating characteristic curve (ROC) was used to evaluate the accuracy of the model. The critical value of the model was then used as a basis to distinguish high-risk and low-risk groups.



GRGs Model Verification

TCGA pancreatic ductal adenocarcinoma samples were randomly divided into two groups: a training and verification set. The GRGs model was then verified using single-factor and multi-factor COX proportional hazard analysis and survival analysis of the training set and verification set.



Expression and Mutation of Model Genes

The expression levels of seven model genes in the training group were extracted using the limma package of the R software v3.61 and divided into the normal group and the tumor group based on the sample information. The expression data of both groups was then transformed to log2(TPM + 1) for differential expression analysis. The log2FC was defined as median (Tumor)—median (Normal). As such, the differential expression of genes was determined by comparing the values of log2FC. In addition, the immunohistochemical images of the seven genes in pancreatic cancer tissues and normal pancreatic tissues were searched in the Human Protein Atlas (HPA)4 to enable verification of differential gene expression between the two groups by immunohistochemical staining. Mutations in the seven model genes were identified using the mutation function in the cBioPortal website5.



GRGs Model and Clinical Characteristics—Nomogram Diagram of the Model

The relationship between clinical characteristics and survival rate of patients in the training group was analyzed based on the model classification. A nomogram diagram was then constructed based on the GRGs model to evaluate the survival rates of patients with pancreatic cancer.



Data Analysis

Data was expressed as mean ± standard deviation (x ± s), and compared using the student’s t-test. Subsequent survival analysis was performed using the Kaplan-Meier method. In addition, the ROC analysis was performed using the survivalROC program v1.0.3. The Cox proportional hazard regression model was used for both univariate and multivariate analysis. P-values less than 0.05 (p < 0.05) indicated that there were significant differences between groups. Values less than 0.01 (p < 0.01) indicated that the difference was highly significant.



RESULTS


GSEA Analysis of Glycolysis-Related Pathways

GSEA analysis revealed that the genes in the training set were significantly enriched in the glycolysis pathway (Figure 1A) and the iconic glycolysis pathway (Figure 1B) (p < 0.05) (Figure 1 and Table 1).
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FIGURE 1. (A) GSEA analysis of the GLYCOLYSIS_PATHWAY. (B) GSEA analysis of HALLMARK_GLYCOLYSIS. (C) GSEA analysis of GLYCOLYSIS_GLUCONEOGENESIS. (D) GSEA analysis of GLYCOLYTIC_PROCESS. (E) GSEA analysis of REACTOME_GLYCOLYSIS.



TABLE 1. Details of GSEA results.
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Differential Expression Analysis and Model Construction of Glycolysis Related Genes

Genes enriched in the glycolysis and iconic glycolysis pathways were extracted from the training set for differential expression analysis. There were 108 differentially expressed GRGs. Among them, 29 GRGs were closely related to prognosis based on clinical survival time (Figure 2A). COX risk regression analysis further identified the seven optimal GRGs (CDK1, DSC2, MET, PYGL, CHST12, ERO1A, and SLC35A3) among the 29. A 10-fold cross-validation of the genes was then done and the prognostic model constructed. CDK1, DSC2, MET, and PYGL were found to be poor prognostic genes, while CHST12, ERO1A, and SLC35A3 were good prognostic genes (Figure 2B). The ROC curve of the model further revealed that the AUC (Area Under Curve) value was as high as 0.869 (Figure 2C). This was a strong indication that the model had high accuracy. The two groups are evaluated and the samples are divided into high and low risk groups after calculating the risk value according to the GRGs model. Figure 2D shows the expression of seven model genes in high and low risk groups.
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FIGURE 2. (A) GRGs associated with prognosis. (B) Key model GRGs. (C) Time-dependent ROC curve for GRGs in the training cohort. (D) Relative expression of model gene.




GRGs Model Verification

The GRGs model was verified using data from the training group. The OS of the high risk group was significantly lower than that of the low risk group in the training set (Figures 3A,B; The green dot in the upper part of Figure 3A represents the patients with low risk, red represents the patients with high risk, the y-axis represents the risk score, and the dotted line represents the grouping. The green dot in the lower part of Figure 3A represents the alive patients in the group, the red represents the dead patients in the group, and the y-axis represents the survival time. We have marked the meaning of the green and red dots in the upper and lower part of Figure 3A in the upper left corner of the figure. Combining the upper and lower parts of Figure 3A, it can be clearly seen that the number of deaths in the high-risk group is significantly higher than that in the low-risk group.). In the same line, univariate risk regression analysis revealed that age, grade, and GRGs model were significantly correlated with prognosis (Figure 3C). Multivariate risk regression analysis further revealed that only age and GRGs model could be used as significant independent prognostic factors (Figure 3D). In addition, the survival analysis of the verification set demonstrated that the OS of patients in the high risk group was significantly lower than that of the low risk group (Figures 4A,B). The AUC value of the ROC curve of this model was more than 0.85 (Figure 4C) thus further confirming that the model had high accuracy. Univariate risk regression analysis of the validation set also confirmed that age and GRGs model were significantly correlated with prognosis (Figure 4D). Similarly, multivariate risk regression analysis of the validation set confirmed that only the GRGs model could be used as significant independent prognostic factors (Figure 4E).
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FIGURE 3. (A) The model divides the training set patients into low-risk or high-risk groups. (B) Kaplan Meier curve between high and low risk groups. (C) Training set single factor Cox regression analysis forest map. (D) Training set multivariate Cox regression analysis forest map.
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FIGURE 4. (A) The model divides the testing set patients into low-risk or high-risk groups. (B) Kaplan Meier curve between high and low risk groups. (C) Time-dependent ROC curve for GRGs in the testing cohort. (D) Testing set single factor Cox regression analysis forest map. (E) Testing set multivariate Cox regression analysis forest map.




Expression and Mutation of Model Genes

The expression levels of the seven model genes in the training set were analyzed. CDK1 (Figure 5A), DSC2 (Figure 5B), ERO1A (Figure 5C), MET (Figure 5D), PYGL (Figure 5E), and SLC35A3 (Figure 5F) were highly expressed while CHST12 (Figure 5G) was decreased in pancreatic cancer. These findings were verified by analyzing the immunohistochemical images of the seven genes in pancreatic cancer and normal pancreatic tissues obtained from the HPA website6 (Uhlén et al., 2015). Figures 6, 7 shows the immunohistochemical images of the seven genes obtained from the Human Protein Atlas version 19.3. Identification of mutations in model genes further revealed that DSC2 and CHST12 had higher mutation rates compared to CDK1, ERO1A, MET, PYGL, and SLC35A3 (Figures 8A–H).
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FIGURE 5. (A) Expression of CDK1 in PDAC and normal tissues. (B) Expression of DSC2 in PDAC and normal tissues. (C) Expression of ERO1A in PDAC and normal tissues. (D) Expression of MET in PDAC and normal tissues. (E) Expression of PYGL in PDAC and normal tissues. (F) Expression of SLC35A3 in PDAC and normal tissues. (G) Expression of CHST12 in PDAC and normal tissues. ***p < 0.001.
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FIGURE 6. Validation of model GRGs IHC images obtained from the Human Protein Atlas database (A–D).
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FIGURE 7. Validation of model GRGs IHC images obtained from the Human Protein Atlas database (A–C).
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FIGURE 8. (A) Mutations of model genes. (B) Mutation of CDK1. (C) Mutation of CHST12. (D) Mutation of DSC2. (E) Mutation of ERO1A. (F) Mutation of MET. (G) Mutation of PYGL. (H) Mutation of SLC35A3. *p < 0.05.




GRGs Model and Clinical Characteristics—Nomogram Diagram of the Model

The relationship between clinical traits (Table 2) and survival rates of pancreatic cancer patients was analyzed. The analysis revealed that only T stage (Figure 9D) and N stage (Figure 9E) were significantly related to the survival rate of patients. However, age, gender, grade, stage, and survival rate were not statistically significant (Figures 9A–C,F,G). The clinical traits were divided into groups based on the GRGs model and the subsequent survival rates of patients in each group analyzed. The GRGs model could explicitly distinguish 11 patients with different clinical characteristics (Figures 10A–C,G,H,J,K,M). Nonetheless, distinguishing patients using G3-G4 (Figure 10F), M1 (Figure 10L), and Stage III-IV (Figure 10N) was not significant. The GRGs model was further used to construct a nomogram to intuitively evaluate the prognosis of patients with pancreatic cancer (Figure 10O).


TABLE 2. TCGA clinical information.
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FIGURE 9. (A) Relationship between age and survival of patients with PDAC. (B) Relationship between gender and survival of patients with PDAC. (C) Relationship between grade and survival of patients with PDAC. (D) Relationship between T stage and survival of patients with PDAC. (E) Relationship between N stage and survival of patients with PDAC. (F) Relationship between M stage and survival of patients with PDAC. (G) Relationship between stage and survival of patients with PDAC.
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FIGURE 10. Relationship between clinical features and survival of patients with pancreatic cancer after model grouping (A–N). (O) Nomogram of the GRGs model.




DISCUSSION

Pancreatic ductal carcinoma (PDAC) is one of the most rapidly progressive and lethal malignant tumors (Siegel et al., 2020). Its 5-year survival rate is less than 6%. Moreover, the overall survival rate of PDAC patients has not changed significantly despite numerous tumor molecular studies being conducted in the last 20 years (Rahib et al., 2014; Makohon-Moore and Iacobuzio-Donahue, 2016). There are no significant symptoms at the initial stage of the disease because of the special anatomical location and physiological function of the pancreas. Moreover, routine examination is difficult to clearly show the state of the pancreas. This causes most PDAC patients to be diagnosed at an advanced stage. It is therefore important to find effective biological targets for prediction and treatment of PDAC.

Notably, PDAC tissues often develop connective tissue hyperplasia thereby forming a significantly dense matrix on the pancreas because of its location (Chu et al., 2007). The dense matrix can compress the space between tumor and normal pancreas consequently leading to nutritional deficiency and high hypoxia (Ma et al., 2011; Hingorani, 2014). In addition, the microenvironment of mesenchymal tumors can greatly promote progress of PDAC. The Warburg effect also plays a key role in PDAC cell proliferation and survival (Jiang et al., 2017; Zhang et al., 2019). Cognizant to this, studying PDAC glycolysis-related pathways and genes is a potential method to find possible biological targets for prediction, diagnosis and treatment of PDAC. To date, only a few studies have been done to decipher the relationship between macrophages, organic ferritin, miRNAs and glycolysis, and their role in pancreatic cancer (Rademaker et al., 2018; Ye et al., 2018; Yang et al., 2019). Moreover, there are no studies on the PDAC glycolysis pathway as well as the use of clinical patient sample sequencing to analyze GRGs related to the survival rate of PDAC patients.

Herein, PDAC data from TCGA and GTEx databases was integrated and analyzed to identify the correlation between the data and glycolysis. Seven GRGs: CDK1, DSC2, MET, PYGL, CHST12, ERO1A, and SLC35A3 were selected to construct the prognostic model related to the overall survival rate of patients with pancreatic cancer. The AUC value of the model was greater than 0.85 in both the TCGA training group and the verification group. Moreover, the OS of the high-risk group was significantly lower than that of the low-risk group in both the training group and verification group based on the seven GRGs. This was an indication that the seven GRGs had a good discrimination effect on the samples. Expression analysis further revealed that CDK1, DSC2, ERO1A, MET, PYGL, and SLC35A3 were highly expressed in pancreatic cancer while CHST12 was highly expressed in normal pancreatic tissues. These findings suggested that the six GRGs highly expressed in pancreatic cancer were related to poor progression of PDAC while CHST12 was related to good prognosis. Previous studies postulate that high expression of CDK1 is related to poor prognosis of PDAC (Piao et al., 2019). In addition, interactions between CDK1 and KRAS have a synergistic strong lethal effect (Costa-Cabral et al., 2018). Expression of DSC2 is significantly correlated with the survival time of high-grade colorectal cancer patients (Knösel et al., 2012). In addition, Saunus et al. (2017). Studied brain metastasis samples including lung cancer, breast cancer, esophageal cancer and melanoma, and found that the mutation rate of DSC2 is very high, and it may be a new marker in the development of brain metastasis. Our results also show that the mutation rate of DSC2 is high in PDAC, which may be one of the reasons why DSC2 plays a role in PDAC. MET is one of the important carcinogenic receptors (Omote et al., 2020). As such, high expression of MET indicates rapid progression of lymphoma in gastric mucosa-associated lymphoid tissues (Xu et al., 2020). In the same line, PYGL is a key gene in the glycolysis pathway. Expression of PYGL increases the reactive oxygen species thereby inducing p53-dependent senescence and significant damage to tumorigenesis in vivo (Favaro et al., 2012). PYGL was found to be highly associated with disease recurrence in a study of childhood acute lymphoblastic leukemia. Moreover, the risk of recurrence of the C allele in the PYGL gene was 3.6 times higher than that of the T allele (Yang et al., 2012). These findings were similar to those of this study (Figure 8G). Yan et al. (2019) and Yan et al. (2019) reported that high expression of ERO1A in cholangiocarcinoma (CCA) was associated with clinical and pathological stages of CCA. It is also postulated that ERO1A promotes growth, migration and invasion of tumor cells through the Wnt/catenin pathway (Han et al., 2018). SLC35A3 is a pathogenic gene of T-cell lympho-blastoma (López-Nieva et al., 2019). In a toxicity test of amphetamine, most transcripts specific to T cells were found to decrease by 50–70% after exposure to amphetamine. CHST12 was the only exception which strongly suggested that it played a protective role in the event of damage. Similarly, CHST12 was found to be a favorable prognostic factor for pancreatic cancer in this study. Generally, the highly expressed model genes in PDAC play a key role in PDAC and other tumors. As such, they are closely related to tumor progression and patient survival. Nonetheless, decreased expression of the CHST12 gene in tumor cells produces an anti-tumor effect by acting on the immune cells.

TNM staging and clinical staging are currently the most widely used methods to evaluate tumor malignant potential and disease progression, but this method also has some shortcomings, for example: after radical resection of patients with the same disease and the same stage, the patient’s prognosis The situation will also be very different. In addition, this staging method largely depends on the location, size, lymph node invasion and whether there is distant metastasis of the tumor, and fails to take into account the heterogeneity of various tumors, age, gender and other clinical information. Our results also showed that only the T and N stages of the analyzed PDAC samples were significantly associated with patient survival (Figures 10D,E). The patient’s survival rate is not significantly related to the age, sex, grade and stage of the cancer. This result may be due to the high degree of malignancy of pancreatic cancer and the short survival time of patients, resulting in the lack of statistically significant differences in the analysis of these clinical features and survival, but it is enough to see that these evaluation methods have significant deficiencies Place. However, we use the GRGs model constructed in this study to predict the prognosis of PDAC samples, 11 clinical groups showed a close correlation with patients’ survival after grouping using the GRGs model. These findings demonstrated that the GRGs model had high accuracy and could better predict the prognosis of PDAC patients than the current generally applicable grading and staging methods.

Moreover, most of the previous studies focused on the role of a certain gene in PDAC, and most of them studied the effect of genes on the function of PDAC cells, for example: Yang et al. (2020) found that chlorogenic acid can inhibit cell bioenergy by regulating the c-Myc-TFR1 axis, thereby inhibiting pancreatic cancer. The study by Wang et al. (2020) shows that p38γ links KRAS oncogene signal transduction and Warburg effect through PFBBF3 and Glut2 to promote the occurrence of pancreatic cancer. But our study creatively studied the relationship between glycolysis-related genes (GRGs) and the clinical risk of PDAC patients, and the constructed model can predict the prognosis of PDAC patients well. Evidently, the GRGs model constructed herein can play an important role determining the occurrence and development of PDAC as well as the prognosis of PDAC patients.

There are also some deficiencies in our research. Although we select data samples from two databases for analysis, and evaluated the results by immunohistochemistry, this is still a retrospective analysis. If we can carry out a prospective study by using GRGs model to conduct prospective research in multi center, it will be more convincing.



CONCLUSION

A glycolysis gene model which is closely related to the prognosis of pancreatic ductal adenocarcinoma patients was successfully constructed. The model contains seven GRGs whose biological functions are closely related to the occurrence and development of pancreatic ductal adenocarcinoma. Cognizant to this, these GRGs may be potential targets for predicting or diagnosing PDAC. They can also be regulated to improve the prognosis of PDAC patients.
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Trophoblast stem cells (TSCs) are critical to mammalian embryogenesis by providing the cell source of the placenta. TSCs can be derived from trophoblast cells. However, the efficiency of TSC derivation from somatic cell nuclear transfer (NT) blastocysts is low. The regulatory mechanisms underlying transcription dynamics and epigenetic landscape remodeling during TSC derivation remain elusive. Here, we derived TSCs from the blastocysts by natural fertilization (NF), NT, and a histone deacetylase inhibitor Scriptaid-treated NT (SNT). Profiling of the transcriptomes across the stages of TSC derivation revealed that fibroblast growth factor 4 (FGF4) treatment resulted in many differentially expressed genes (DEGs) at outgrowth and initiated transcription program for TSC formation. We identified 75 transcription factors (TFs) that are continuously upregulated during NF TSC derivation, whose transcription profiles can infer the time course of NF not NT TSC derivation. Most DEGs in NT outgrowth are rescued in SNT outgrowth. The correct time course of SNT TSC derivation is inferred accordingly. Moreover, these TFs comprise an interaction network important to TSC stemness. Profiling of DNA methylation dynamics showed an extremely low level before FGF4 treatment and gradual increases afterward. FGF4 treatment results in a distinct DNA methylation remodeling process committed to TSC formation. We further identified 1,293 CpG islands (CGIs) whose DNA methylation difference is more than 0.25 during NF TSC derivation. The majority of these CGIs become highly methylated upon FGF4 treatment and remain in high levels. This may create a barrier for lineage commitment to restrict embryonic development, and ensure TSC formation. There exist hundreds of aberrantly methylated CGIs during NT TSC derivation, most of which are corrected during SNT TSC derivation. More than half of the aberrantly methylated CGIs before NT TSC formation are inherited from the donor genome. In contrast, the aberrantly methylated CGIs upon TSC formation are mainly from the highly methylated CGIs induced by FGF4 treatment. Functional annotation indicates that the aberrantly highly methylated CGIs play a role in repressing placenta development genes, etc., related to post-implantation development and maintaining TSC pluripotency. Collectively, our findings provide novel insights into the transcription dynamics, DNA methylation remodeling, and the role of FGF4 during TSC derivation.
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INTRODUCTION

Somatic cell nuclear transfer (NT) enables somatic nuclear to reprogram from the differentiated identity to a totipotent state, which allows the generation of cloned animals (Matoba and Zhang, 2018). It not only plays an important role in animal cloning but also shows great potential for human therapeutics. Despite its importance, the extremely low cloning efficiency has limited the development and application of NT (Yang et al., 2007). Recently, many studies found breakthroughs in improving NT efficiency, such as increasing histone acetylation levels by a histone deacetylase inhibitor (HDACi), for example, trichostatin A (TSA) (Kishigami et al., 2006; Rybouchkin et al., 2006; Zhao et al., 2010), reducing H3K9 and H3K4 methylation levels by overexpressing H3K9 and H3K4 demethylases (Chung et al., 2015; Hörmanseder et al., 2017), correcting abnormal Xist gene expression in donor nuclear or artificial zygotes (Inoue et al., 2010; Matoba et al., 2011). A recent study found that the transcription factor (TF) DUX can improve NT efficiency through mediating correct aberrant H3K9ac (Yang et al., 2021). By combining multiple epigenetic approaches, the blastocyst development rate reaches 95%, which is comparable to that of in vitro fertilized (IVF) embryos (Matoba et al., 2014; Liu et al., 2016). However, although the blastocyst rate of NT embryos largely improves from ∼1% to ∼20%, there exists a remarkable lag in pub rate of NT and IVF (Matoba et al., 2014; Liu et al., 2016), indicating that the post-implantation development barrier is still resistant, and these approaches function little on it.

The anatomical analysis reveals that placentomegaly is a common problem in NT post-implantation development (Palmieri et al., 2008). The cloned pups are frequently with large placentas, which also constitute expanded spongiotrophoblast layers, increased glycogen cells, restricted labyrinthine, and irregular borderlines between labyrinthine and spongiotrophoblast layers (Tanaka et al., 2001). It rescues abnormal placentas and improves the full-term development rate of NT by replacing NT trophectoderm (TE) with fertilized embryos by tetraploid complementation assay (Lin et al., 2011). Therefore, poor placental development of NT embryos may be a key factor contributing to the low rate of post-implantation development.

Many epigenetic reprogramming errors are related to abnormal placentas (Hemberger et al., 2020). Although HDACi treatment promotes the epigenetic reprogramming of donor nuclear and pre-implantation embryo development, it is helpless in improving post-implantation development (Gao R. et al., 2018). Recently, it has been reported that loss of maternal imprinting in NT placentas disrupts post-implantation development, and correcting their expression improves placenta development (Matoba et al., 2018; Inoue et al., 2020; Wang et al., 2020). Abnormal DNA methylation is an epigenetic barrier throughout the NT embryo development (Teperek and Miyamoto, 2013). Inhibiting aberrant DNA re-methylation by knockdown Dnmt3a and Dnmt3b ameliorates NT placentas (Gao R. et al., 2018), suggesting that aberrant re-methylation is another epigenetic cue for abnormal NT placenta.

Trophoblast stem cells (TSCs), located within the extraembryonic ectoderm (EXE) adjacent to the epiblast (EPI), are the precursors of the trophoblast cells in the placenta. TSC, which can be maintained from either blastocyst TE or EXE in vitro, is an invaluable model for placenta development, enabling researches on epigenetic regulation of self-renewal and differentiation (Oda et al., 2006). Fibroblast growth factor 4 (FGF4) signaling is a key to derivate TSCs in vitro; meanwhile, many TFs are essential including Cdx2, Eomes, Esrrb, Elf5, Tfap2c, and Sox2 (Ishiuchi et al., 2019). However, it still remains elusive how the regulatory networks organize and function in TSC derivation. Several groups established NT-TSCs and found that the transcriptome of NT-TSCs is globally similar to that of TSCs from natural fertilization (NF) embryos (Oda et al., 2009; Rielland et al., 2009; Soares and Asanoma, 2009). Besides, the targeted sequencing analysis revealed that there is loss of imprinting in NT-TSCs (Hirose et al., 2018). The efficiency of isolating NT-TSC colonies from NT blastocysts is predicted to be low compared with that from NF blastocysts (Oda et al., 2010). Whether HDACi treatment can improve TSC derivation as it improves NT cloning is unknown. The global DNA methylation remodeling has not been reported, either. Answers to these questions will facilitate TSC derivation and its application in stem cell research, especially in the study of placenta development.

Therefore, in this study, we collected cell samples at five time points during the derivation of TSCs from NF, NT, and NT embryos with HDACi (Scriptaid) treatment (SNT). We investigated the changes in gene expressions and DNA methylation during TSC derivation, and the difference between TSC derivation from NF, NT, and SNT blastocysts. Our study identified a set of 75 TFs whose transcription profiles can infer the time course of TSC derivation. Moreover, a tight interaction network containing the TF ZFP281 is important to TSC formation. Scriptaid treatment rescues the expression of these TFs. FGF4 treatment increases DNA methylation in outgrowth directing progress to TSC formation. Interestingly, the specifically highly methylated CpG islands (CGIs) in the outgrowth derived from inner cell mass (ICM) cultured with FGF4 become aberrantly highly methylated (AHM) in NT and SNT TSCs. This suggests that high methylation induced by FGF4 is critical to TSC derivation and maintenance. These findings shed new light on the transcription and DNA methylation reprograming and the concomitant regulatory mechanisms underlying TSC formation and maintenance.



RESULTS


Generation of Trophoblast Stem Cells From Natural Fertilization, Nuclear Transfer, and Scriptaid-Treated NT Embryos and Profiling of the Transcriptomes

We first generated TSC lines from the embryos produced by NF, NT, and NT with HDAC inhibitor (Scriptaid) treatment (SNT) (Figure 1A). The E3.5 blastocysts were collected and continued to expand in vitro until the zona pellucida was broken, that is, E4.5 blastocysts. The TE of E3.5 blastocysts (TE3.5) and E4.5 blastocysts (TE4.5) were collected, respectively. The TE4.5 were cultivated in vitro and attached to form an outgrowth on the second day with exogenous FGF4 supplement to derive TSCs. The first appeared TSC colonies were designated as passage-1 TSC (termed as TSC_P1). TSC_P1 were cultured for three to four passages and became the virtually immortal TSC lines (termed as TSC_Pn) without significant differentiation. (see section “Materials and Methods” for details.) Collectively, there are five samples TE3.5, TE4.5, outgrowth, TSC_P1, and TSC_Pn derived from NF, NT, and SNT embryos. Of note, only NF TE3.5 is developed in vivo, others are cultivated in vitro. These samples were used to explore the changes in gene expressions and DNA methylation, their difference between NF, NT, and SNT approaches, and potential rescue mechanisms of HDAC inhibitor.
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FIGURE 1. Trophoblast stem cell (TSC) derivation and profiling of the transcriptomes. (A) Schematic diagram for TSC derivation from natural fertilization (NF), nuclear transfer (NT), and Scriptaid-treated NT (SNT) blastocysts, which NF represents the embryos from natural fertilization; NT, somatic cell nuclear transfer; SNT, NT with histone deacetylase (HDAC) inhibitor (Scriptaid) treatment. TSC_P1: TSC formation (passage 1). TSC_Pn are TSCs cultured for three to four passages (see section “Materials and Methods” for details). (B) A heat map showing the normalized expression of pluripotency genes (top), and differentiation genes (bottom). Of note, the marker genes for the different trophoblast subtypes are Gcm1, labyrinthine trophoblast marker; Tpbpa, spongiotrophoblast marker; Prl3b1, giant cell marker. (C) A dendrogram showing clustering of gene expressions of all samples. The replicates of each sample are merged using the mean values. (D) The statistics of the differentially expressed genes (DEGs) between adjacent stages during TSC derivation. Red, upregulated DEGs; blue, downregulated DEGs.


We next profiled the gene expressions using RNA-seq with two to five biological replicates for each sample with high reproducibility (Supplementary Figure 1A). The pluripotency genes, including TSC marker genes Fgfr2, Sox2, and Esrrb, are highly expressed. Contrarily, the differentiation genes, including the marker genes for different trophoblast subtypes Gcm1, Tpbpa, and Prl3b1, are lowly expressed or silenced throughout the TSC generation (Figure 1B). This is consistent with the previous results (Ji et al., 2013; Latos and Hemberger, 2014). This confirms the pluripotency of the TSCs derived from NF, NT, and SNT embryos.

The unsupervised hierarchical clustering analysis of the transcriptome data results in two major groups: TE3.5 and TE4.5, outgrowth, and TSCs for NF, NT, and SNT samples, respectively (Supplementary Figures 1B–D). This pattern holds when NF, NT, and SNT samples are combined (Figure 1C). Notably, outgrowth is grouped with TSCs rather than TE. This indicates that FGF4 treatment initiates the transcription program toward TSCs.

To understand the changes in gene expressions during the TSC derivation, we identified the differentially expressed genes (DEGs) between the adjacent stages. The results show that the number of DEGs from TE3.5 to TE4.5 and from TE4.5 to outgrowth is much more than that between later adjacent stages during NF TSC generation (Figure 1D). In contrast, the number of DEGs from TE4.5 to outgrowth and from outgrowth to TSC_P1 is the largest during both NT and SNT TSC generation. However, the changes in gene expressions during SNT TSC generation have a lesser extent (Figure 1D). This indicates the rescue effect of the HDACi Scriptaid. The prominent changes in gene expressions from TE3.5 to TE4.5 only during NF TSC generation are likely due to the TE4.5 cultured in vitro from TE3.5 in vivo. The dramatic changes in gene expression after TE4.5 during the three types of TSC generation are likely due to FGF4 treatment. These different transcriptome dynamics suggest the distinct transcription programing during the three types of TSC generation. To understand the functions of these DEGs, we collected specifically expressed genes of tissues and cell lines from paGenBase (Pan et al., 2013) and performed gene ontology (GO) analysis (Zhou et al., 2019). The results show that the overall trend of transcription programing toward TSC derivation is to activate placenta genes and to inactivate blastocyst genes upon FGF4 treatment. Once TSC is formed, both placenta and blastocyst genes are inactivated to maintain pluripotency. However, both placenta and blastocyst genes remain downregulated only during NF TSC passaging (Supplementary Figure 1E). This partially explains the higher quality of NF TSCs.



The Key Transcription Factors Reveal the Derivation Progression of Natural Fertilization Trophoblast Stem Cells

The principal component analysis (PCA) of the transcriptomes recapitulated the time course of TSC derivation from TE3.5 (Figure 2A). To further identify the key dynamically expressed genes critical to TSC derivation, we collected the genes in the top 5% of absolute principal component loadings (Supplementary Figure 2A). The unsupervised hierarchical clustering of these dynamically expressed genes resulted in six clusters (Supplementary Figure 2B). Clusters 1–3 are continuously upregulated from TE4.5 or outgrowth (termed as Pro-genes). Cluster 4 is continuously downregulated from outgrowth (termed as Down-genes). Clusters 5 and 6 are transiently down- and upregulated, respectively (together termed as transient genes) (Supplementary Figure 2B). The functional annotation of these genes revealed that Clusters 1–3 are enriched for GO terms promotional to TSC derivation (Supplementary Figure 2C). Particularly, Cluster 1 is enriched for embryonic placenta development, epithelial cell differentiation, signaling pathways, regulating pluripotency of stem cells, and mesenchyme development. Moreover, many TFs in Custer 1 are direct targets of FGF4/ERK signaling pathway (Adachi et al., 2013; Latos et al., 2015). This together consists of the upregulation upon FGF4 treatment (Supplementary Figure 2B). Clusters 2 and 3 are mainly enriched for cell cycle-related GO terms (Supplementary Figure 2C), which are important to the acquisition of pluripotency.
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FIGURE 2. The key transcription factors critical to the derivation of NF TSCs. (A) Principal component analysis (PCA) of the transcriptomic data of NF samples. (B) Expression patterns of the 75 transcription factors in Clusters 1–3 (Supplementary Figure 2B). (C) The pseudotime of NF TSC derivation inferred from the transcriptomes of the 75 transcription factors (TFs) in (B). (D) Protein–protein interaction (PPI) networks of the 75 TFs in (B). The thickness of the lines represents the PPI scores, and the color represents the gene cluster in Supplementary Figure 2B.


Transcription factors regulate gene expression and control cellular function and cell fate. Thus, we identified a total of 106 TFs in the six clusters of genes (Supplementary Figure 2B). The 75 TFs from the Pro-genes (Clusters 1–3) (termed Pro-TFs) show a continuously upregulated expression (Figure 2B). Surprisingly, we inferred the pseudotime only from the 75 TFs’ transcriptomic data, which exactly matches the time course of TSC derivation (Figure 2C). However, when we used random 75 TFs to perform the same analysis, we failed to obtain the trajectory to TSC derivation (Supplementary Figure 2D). This suggests that these 75 TFs are informative to explore the progression of TSC derivation. Then, we attempted to identify interaction networks between these TFs. The results showed a tight interaction network consisting of 37 TFs (Figure 2D). The network was partially shared by the pluripotency network in ESCs. The TFs in network ESRRB, SOX2, and NR0B1 were reported to confer the pluripotency of ESCs (Adachi et al., 2013; Gao H. et al., 2018). However, the TFs ZFP281 and ELF5 are specifically related to TSC stemness (Gao H. et al., 2018; Ishiuchi et al., 2019).



Scriptaid Treatment Largely Rescues Abnormal Gene Expressions in the Derivation of Scriptaid-Treated Nuclear Transfer Trophoblast Stem Cells

The PCA of all the transcriptomic data in the derivation process of TSCs shows that the NF, NT, and SNT TE3.5 samples are separate from one another. In contrast, NF outgrowth samples are separate from NT outgrowth but close to SNT outgrowth (Supplementary Figure 3A). Consistently, the number of DEGs between NT/SNT and NF TE3.5 samples is much larger than that between NT/SNT and NF outgrowth samples. Moreover, most of DEGs between NT/SNT and NF TE3.5 samples are common, while most of the DEGs between NT/SNT and NF outgrowth samples are different (Supplementary Figures 3B,C). Interestingly, most of the downregulated DEGs between NT and NF outgrowth samples are rescued in SNT samples (Figure 3A). These findings suggest that the TE3.5 transcription program is very different between the NF, NT, and SNT approaches. The outgrowth transcription program is close between the NF and SNT approach.
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FIGURE 3. Downregulated genes in NT outgrowth are largely rescued in SNT outgrowth. (A) Venn diagrams showing the intersection between the downregulated genes in NT outgrowth compared with NF outgrowth and the upregulated gene SNT outgrowth compared with NT outgrowth. Representation factor (RF) was calculated using real observation/expected observation. The statistical analysis is hypergeometric test with all expressed genes at outgrowth as background. The intersection genes are defined as the rescued genes. (B) The pseudotime of NT (top) or SNT (bottom) TSC derivation inferred from the transcriptomes of the 75 TFs in Clusters 1–3 (Supplementary Figure 3D). (C) Boxplots showing the expression of the 75 TFs in Clusters 1–3. Paired t-test is performed for statistical comparisons, and “holm” is used for adjusting p-values. (D) Expression changes of the component TFs in the PPI network (Figure 2D) in NT outgrowth are recued in SNT outgrowth. Each box is divided into two parts. Left part represents the expression difference between NT and NF outgrowth. Right part represents the expression difference between SNT and NF outgrowth. Color scale bar indicates the fold change of gene expression between NT/SNT and NF in the form of Log2. Red indicates increased expression. Blue indicates decreased expression. (E) Scatterplot showing the significance of the motif enrichment in the proximal TSS regions of the two gene sets in (A). (F) Bubble plot showing gene expressions of the TFs whose motifs are identified in (E). The size of the bubble indicates the mean gene expression at NF, NT, and SNT outgrowths. The color indicates the difference from the mean. (G) ZFP281 ChIP-seq signal distribution around transcript start sites (TSSs) in the rescued genes [the intersection part in (A)]. TSC ZFP281 ChIP-seq data is from GSE111824 (Ishiuchi et al., 2019). The dark blue line indicates ZFP281 ChIP-seq data, while the gray line indicates the input signal.


We next examined the expression patterns in NT and SNT TSC derivation of the key dynamically expressed genes identified in NF TSC derivation. The results show that the expression patterns of gene Clusters 1–3 in NT and SNT TSC derivation are distinct from NF TSC derivation (Supplementary Figure 3D). The expressions of TFs in gene Clusters 1–3 succeed in inferring the trajectory to NF TSC derivation (Figure 2C). However, the similar analysis in NT and SNT TSC derivation led to incorrect time course (Figure 3B). Compared with NF TSC derivation, TE3.5 is erroneously put after TE4.5 in both NT and SNT TSC derivation. Besides, outgrowth is a narrow peak not overlapping TSC_P1, indicating a gap between the transition from outgrowth to TSC formation. Conversely, like NF outgrowth, SNT outgrowth is a broad peak overlapping with TSC_P1, suggesting that certain transcription programs for TSC formation have been initiated in outgrowth (Figures 2C, 3B). Further analysis reveals that the expressions of TFs in Cluster 1 are significantly increased in NT TE3.5 but rescued in SNT TE3.5. However, the expressions of TFs in Clusters 2 and 3 are significantly increased in both NT and SNT TE3.5 (Supplementary Figure 3E). Due to the number of TFs in Clusters 2 and 3 that is much larger than that in Cluster 1, the overall expressions of TFs in Clusters 1–3 are significantly increased in both NT and SNT TE3.5 (Figure 3C). Therefore, TE3.5 is incorrectly put in the inferred pseudotime of NT and SNT TSC derivation. Conversely, the expressions of TFs in Cluster 1 remain unchanged in both NT and SNT outgrowth. However, the expressions of TFs in Clusters 2 and 3 are significantly decreased in NT but rescued in SNT outgrowth (Supplementary Figure 3E). Due to the number of TFs in Clusters 2 and 3 that is much larger than that in Cluster 1, the overall expressions of TFs in Clusters 1–3 are significantly decreased in NT but rescued in SNT outgrowth (Figure 3C). Thus, SNT outgrowth has a pattern similar to NF outgrowth in the inferred pseudotime of TSC derivation, while NT outgrowth has an aberrant pattern (Figure 3B). Intriguingly, most of the component TFs in the interaction network are downregulated in NT but partially or fully rescued in SNT (Figure 3D). These findings further indicate that the correct transcription programs of these key TFs play an important role in TSC derivation.


ZFP281 Is Critical to Outgrowth Formation

We observed that most of the downregulated DEGs between NT and NF outgrowth are rescued in SNT outgrowth (Figure 3A). This likely contributes to the aberrant pattern of NT outgrowth in the pseudotime of TSC derivation (Figure 3B). Thus, it is important to identify the potential upregulators that rescue the DEGs. To this end, we analyzed motif enrichment in the promoter regions of the downregulated DEGs between NT and NF outgrowth that are rescued in SNT outgrowth. The results identified 18 motifs significantly enriched in both sets of DEGs (Figure 3E). Examination of the expressions of the TFs corresponding to the 18 motifs shows that TF ZFP281 is significantly downregulated in NT outgrowth but rescued in SNT outgrowth (Figure 3F). Moreover, Zfp281 is downregulated only in NT outgrowth in the TSC derivation (Supplementary Figure 4A). Previous studies had reported that Zfp281 is essential for early placenta development and TSC maintaining, and it interacts with MLL/COMPASS subunits to bind to the promoters of target genes to activate transcription (Ishiuchi et al., 2019). Therefore, we explored ZFP281 ChIP-seq signals around the transcription start sites (TSSs) of the 653 rescued genes in outgrowth defined in Figure 3A. The results show enrichment of ZFP281 ChIP-seq signals around the TSSs, indicating ZFP281 binding in the promoter regions of the rescued genes (Figure 3G). Consistently, a set of key dynamically changed TFs in Clusters 1–3 are significantly downregulated in NT outgrowth, whose promoter regions are bound by ZFP281 (Supplementary Figures 4B,C). Downregulation of Zfp281 expression in NT outgrowth also contributes to the reduced interaction in the network (Figure 3D). Collectively, ZFP281 is a core factor critical to outgrowth formation.



DNA Methylation Dynamics in CpG Islands During the Derivation of Trophoblast Stem Cells

DNA methylation is important in early trophoblast development (Branco et al., 2016), and it had been reported that HDACi treatment accelerates the DNA methylation reprogramming of SCNT (Jin et al., 2017). To understand the dynamics and the role of DNA methylation during TSC derivation, we took advantage of reduced representation bisulfite sequencing (RRBS) to profile the DNA methylomes across TSC derivation. A previous study identified two groups of sites: methylated in TSCs not in ESCs, unmethylated in both TSCs and ESCs (Oda et al., 2009). Consistently, the TSC-specific methylation sites are gradually methylated and the unmethylated sites remain unmethylated during TSC derivation (Supplementary Figure 5A). The DNA methylomes show that TE3.5 and TE4.5 are unmethylated, while the global DNA methylation levels increase from outgrowth to TSC (Figure 4A). RRBS mainly covers the majority of CGIs, especially DNA methylation in the promoters (Meissner et al., 2008). We therefore examined the dynamics of DNA methylation in CGIs during TSC derivation. The results show that the majority of CGIs (∼75%) exhibited low methylation across TSC derivation. A small fraction of CGIs become highly methylated in outgrowth. More CGIs (∼10%) are highly methylated upon TSC formation (Supplementary Figure 5B). Approximately 70% of mouse gene promoters are associated with a CGI (Deaton and Bird, 2011). High-CpG-density promoters (HCPs) remain unmethylated or lowly methylated. Low-CpG-density promoters (LCPs) remain lowly methylated at TE3.5 and TE4.5 but gradually methylated from outgrowth. Intermediate-CpG-density promoters (ICPs) have DNA methylation dynamics between that of HCPs and LCPs (Supplementary Figure 5C).
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FIGURE 4. Fibroblast growth factor 4 (FGF4) functions in methylation remodeling during TSC derivation. (A) CpG methylation levels at each stage of TSC derivation. The line indicates the medians. The shaded area represents the 25th to 75th percentiles. (B) Principal component analysis (PCA) of CpG island (CGI) methylation. The reduced representation bisulfite sequencing (RRBS) data of perturbingly cultured inner cell mass (ICM) are from GSE98963 (Smith et al., 2017). FGF4/WNT.in and FGF4/WNT.out represent the internal and outer part of the outgrowth derived from ICM cultured in the basal media supplemented with FGF4 and WNT agonist CHIR99021, respectively. FGF4 and CHIR99021 do not reach FGF4/WNT.in; FGF4/WNT.out, the outer layer of the outgrowth, responded to FGF4 and CHIR99021. PD represents ICM cultured in the basal media supplemented with MAPKK or MEK inhibitor PD0325901 and FGF4. The RRBS data of ESCs are from GSE47343 (Guo et al., 2013). (C) Heat maps showing K-mean clustering of the PHIM-CGIs during TSC derivation, whose DNA methylation level difference between adjacent stages is larger than 25%. Left heatmap showing CGI DNA methylation level difference between adjacent stages. Right heatmap showing CGI DNA methylation levels in each sample. (D) A heat map showing the intersection between the PHIM-CGIs (C) and the highly methylated CGIs (>0.25). Filled colors indicate the significance of the intersection (hypergeometric test). Numbers indicate CGI count. “EXE/EPI-com” denotes the CGIs that are highly methylated in both EXE and EPI. “EXE-specific” and “EPI-specific” denote the CGIs that are highly methylated specifically in EXE and EPI, respectively. “FGF4.out-sp” denotes the CGIs that are highly methylated in ICM treated with FGF4 but not in EXE and EPI. “FGF4/WNT.out-sp” denotes the CGIs that are highly methylated in outgrowth outer layers derived from ICM treated with FGF4 and WNT agonist CHIR99021 but not in EXE and EPI. (E) Bubble plots showing the gene ontology (GO) terms significantly enriched in the PHIM-CGIs (C).


It was reported that dense CpG methylation in CGIs represses the nearby gene transcription (Deaton and Bird, 2011). Our results show that CGI methylation has weak correlation with gene expression at TE3.5 and TE4.5 due to global DNA demethylation process in pre-implantation embryo development (Messerschmidt et al., 2014), and the regulation of CGI methylation strengthens as DNA methylation is gradually established from outgrowth (Supplementary Figures 5D,E). Of note, DNA methylation level is very low and unchanged in the promoters of the Pro-genes during TSC derivation. However, the Pro-genes are continuously upregulated from TE4.5 or outgrowth (Supplementary Figures 2B,5F). This indicates that the DNA methylation has no correlation with the transcription of the Pro-genes.



FGF4 Contributes to High Methylation in CGIs During the Derivation of Trophoblast Stem Cells

To understand the potential role of FGF4 in DNA methylation dynamics during TSC derivation, we performed the PCA of DNA methylation in CGIs. The results show the divergent trajectories of embryonic and extraembryonic development as in previous studies (Senner et al., 2012; Figure 4B). Specifically, the early stages (TE3.5, TE4.5, and ICM) of embryonic and extraembryonic development are clustered together. However, when outgrowth was derived from ICM cultured with FGF4 and WNT agonist CHIR99021, the outer layers (termed as FGF4/WNT.out) and the inner parts (termed as FGF4/WNT.in) of this outgrowth have differential methylome profiles. FGF4/WNT.out is clustered with our outgrowth and follows the TSC derivation path. Conversely, FGF4/WNT.in is clustered with PD and follows the path to EPI (Figure 4B). PD is the outgrowth derived from ICM cultured with FGF4 plus MAPKK or MEK inhibitor PD0325901 that blocks the downstream pathways of FGF4. Of note, FGF4 and CHIR99021 can reach the outer layers of outgrowth. That is, FGF4/WNT.out is similar to our outgrowth. In contrast, FGF4 and CHIR99021 cannot reach the inner layers of outgrowth. These findings suggest that FGF4 coordinates with WNT in remodeling and establishing a unique DNA methylation landscape in TSCs. This is consistent with the previous report that FGF4 and WNT are the main signaling pathways, involved in early placenta development and TSC derivation (El-Hashash et al., 2010; Lanner and Rossant, 2010).

We next identified 1,293 CGIs whose max difference of the DNA methylation ratio is larger than 25% during TSC derivation (termed as progressively highly increased methylation CGIs, PHIM-CGIs), which were clustered into five groups. Basically, DNA methylation levels increase in each group of CGIs at a certain stage of TSC derivation. Interestingly, DNA methylation levels in the Group 1 of PHIM-CGIs transiently increase at TE4.5 and decrease back to the original levels of TE3.5 at outgrowth. Notably, these 1,293 CGIs remain a high level of DNA methylation in TSCs (Figure 4C). This indicates that high DNA methylation levels in these CGIs are critical to TSCs. We further identified all highly methylated CGIs (>0.25) across TSC derivation and in EXE, EPI, and ESCs. The results manifest that the majority of these CGIs are de novo highly methylated upon TSC formation. Moreover, these CGIs include all highly methylated CGIs in EXE, EPI, and ESCs. Of note, most of these CGIs have a higher methylation ratio in TSCs than in EXE, EPI, and ESCs (Supplementary Figure 5G). Collectively, high methylation levels in these CGIs are important to TSC and make TSCs different from EXE, EPI, and ESCs.

Comparing the PHIM-CGIs with the highly methylated CGIs, we found that EXE-specific highly methylated CGIs are significantly enriched in the Group 3 of PHIM-CGIs. Similarly, EXE and EPI common highly methylated CGIs are significantly enriched in Groups 2 and 3 (Figure 4D). This indicates that high methylation in the Groups 2 and 3 of PHIM-CGIs may contribute to the lineage boundary of EXE and EPI (Yang et al., 2018), and their divergent development (Figure 4B). In contrast, compared with EPI, CGIs that are specifically highly methylated in the outgrowth derived from ICM cultured with FGF4 (termed as FGF4.out) are significantly enriched in the Groups 3–5 of PHIM-CGIs (Figure 4D). The Groups 3–5 of PHIM-CGIs are de novo highly methylated upon TSC formation (Figure 4C). Therefore, the high methylation in the Groups 3–5 of PHIM-CGIs likely plays a critical role in TSC formation and maintenance. Intriguingly, the GO analysis of these highly differentially methylated CGIs reveals that the Groups 3–5 of PHIM-CGIs are enriched for GO terms related to lineage differentiation, such as cell fate commitment, neuron fate commitment, appendage development, etc. (Figure 4E). This finding suggests that the high methylation in the Groups 3–5 of PHIM-CGIs may also create a barrier for lineage commitment to restrict embryonic development, and ensure TSC formation.



Scriptaid Treatment Largely Rescues Abnormally High Methylation in the Derivation of Nuclear Transfer Trophoblast Stem Cells

What is the scenario of DNA methylation dynamics during NT TSC derivation? Does HDAC inhibitor Scriptaid have a rescue effect in DNA methylation? To address this, we first compared the DNA methylation landscapes between NF, NT, and SNT TSC derivations. The results show that the global DNA methylation ratios remain low and are not significantly different between NF, NT, and SNT TSC derivations (Supplementary Figures 6A,B). However, PCA results of DNA methylation in CGIs revealed that NT TE3.5 is an outlier to NF and SNT TE3.5, although overall, there is a similar trajectory to the derivation path of NF, NT, and SNT TSCs. Besides, NT and SNT TSC_Pn deviate from NF TSC_Pn (Figure 5A).


[image: image]

FIGURE 5. Abnormal methylation in the donor genome is a barrier to methylation remodeling during NT TSC derivation. (A) PCA results of CGI methylation during NF, NT, and SNT TSC derivation. CC (cumulus cell), MII oocyte, and sperm are also included for comparison. Their methylation data are from GSE56697 (Wang et al., 2014). (B) A heat map showing methylation difference of aberrantly highly methylated (AHM)- and aberrantly lowly methylated (ALM)-CGIs (Definitions are in section “Results”). (C) A heat map showing the intersection between NT and SNT AHM-CGIs. Filled colors indicate the significance of the intersection (hypergeometric test). Numbers indicate CGI count. (D) CC AHM-CGIs are enriched in early stages (TE3.5, TE4.5, and outgrowth) of NT/SNT TSC derivation. (E) “FGF4.out-sp” CGIs are specifically enriched in AHM-CGIs of NT and SNT TSC_P1, and TSC_Pn. “FGF4.out-sp” denotes the CGIs that are highly methylated in ICM treated with FGF4 but not in EXE and EPI. (F) Venn diagram showing the intersection the GO terms for which NT/SNT AHM-CGIs and the Group 5 of PHIM-CGIs (Figure 4C) are significantly enriched. The numbers indicate GO term count. The bubble plot showing the six GO terms specifically common to the GO terms for which NT/SNT AHM-CGIs are significantly enriched.


We next identified aberrantly methylated CGIs during NT and SNT TSC derivation compared with the counterparts during NF TSC derivation. The CGIs whose DNA methylation ratios increase by more than 0.25 in NT or SNT TSC derivation are defined as AHM-CGIs. Similarly, the CGIs whose DNA methylation ratios decrease by more than 0.25 in NT or SNT TSC derivation are defined as aberrantly lowly methylated CGIs (ALM-CGIs). There are more than 200 AHM-CGIs in TE3.5, TSC_P1, and TSC_Pn and less than 50 AHM-CGIs in TE4.5 and outgrowth during NT TSC derivation. In contrast, only TSC_Pn exists in a large number of AHM-CGIs during SNT TSC derivation (Supplementary Figure 6C). TE3.5 AHM-CGIs are significantly enriched in the Groups 2 and 3 of PHIM-CGIs, while TSC_Pn AHM-CGIs are significantly enriched in Group 5 (Supplementary Figure 6D). Further analyses show that most AHM CGIs in NT TE3.5 are corrected in SNT TE3.5; so are AHM CGIs in NT TSC_P1 (Figure 5B). Quantification results reveal that only 38 out of 216 AHM CGIs in NT TE3.5 are not corrected in SNT TE3.5. Moreover, these 38 AHM CGIs account for 39 AHM CGIs in SNT TE3.5. Most of these 38 AHM CGIs remain uncorrected in SNT TE4.5 and outgrowth. Besides, more than half of AHM CGIs in NT TSC_Pn remain uncorrected in SNT TSC_Pn (Figure 5C). Surprisingly, when we replaced NT TE3.5 AHM-CGIs with the methylation ratios in NF TE3.5 and redid PCA, the results turn out that NF, NT, and SNT TE3.5 were clustered together. When we performed similar analysis for NT and SNT TSC_Pn AHM-CGIs, NF, NT, and SNT TSC_Pn were clustered closer (Supplementary Figure 6E). This indicates that correct DNA methylation is critical to TSC derivation. Scriptaid treatment can greatly rescue aberrant methylation, especially in TE3.5.



Abnormal High DNA Methylation in Donor Nuclear Genome Contributes to Aberrantly Highly Methylated CGIs During Nuclear Transfer Trophoblast Stem Cell Derivation

It had been reported that epigenetic reprogramming is incomplete in NT. DNA methylation in many genomic regions of the donor cell are resistant to be reprogrammed even in early NT blastocysts (Gao R. et al., 2018). HDAC inhibitor treatment improves the donor epigenome reprograming (Jin et al., 2017). To explore how methylome of the donor cell (cumulus cell, CC) impacts the DNA methylome remodeling during NT TSC derivation, we identified AHM- and ALM-CGIs between CC and MII oocyte because CGIs lack methylation in sperm (Wang et al., 2014). More than half of AHM- and ALM-CGIs in NT and SNT TE3.5, TE4.5, and outgrowth are from the counterparts in CC while the majority of AHM- and ALM-CGIs in NT and SNT TSC_P1 and TSC_Pn are de novo ones (Figure 5B and Supplementary Figure 6C). Further analyses show that CC AHM- and ALM-CGIs are enriched in the counterparts in NT and SNT TE3.5, TE4.5, and outgrowth (Figure 5D and Supplementary Figure 6F). Contrarily, the specifically highly methylated CGIs in the outgrowth cultured with FGF4 are specifically enriched in AHM-CGIs of NT and SNT TSC_P1 and TSC_Pn (Figure 5E). Collectively, the aberrantly high DNA methylation in the donor genome failed to be remodeled and results in AHM- and ALM-CGIs during NT TSC derivation. Besides, FGF4 introduces abnormally high methylation in CGIs upon TSC formation and passaging.



Functions of the Aberrantly Highly Methylated CGIs in Nuclear Transfer Trophoblast Stem Cell

Trophoblast stem cells are the resource library of cells for placenta development (Oda et al., 2006), and abnormal methylation may affect TSC differentiation. TSCs are maintained through passaging. Thus, it is important to understand the potential functions which TSC_Pn AHM-CGIs impact. Therefore, we performed GO analysis of AHM-CGIs of NT and SNT TSC_Pn. It is notable that AHM-CGIs of TSC_Pn largely intersected with Group 5 of PHIM-CGIs (Supplementary Figure 6D). The Group 5 of PHIM-CGIs became highly methylated upon TSC formation, while AHM-CGIs of NT and SNT TSC_Pn took place during passaging (Figure 4C and Supplementary Figure 6C). Therefore, we retained the common GO terms significantly enriched in AHM-CGIs of NT and SNT TSC_Pn, excluding those significantly enriched in the Group 5 of PHIM-CGIs, and obtained six GO terms (Figure 5F). Intriguingly, the six GO terms include signal transduction, energy reserve, angiogenesis, and placenta, which are all important to post-implantation development (Reynolds and Redmer, 2001). The CGIs related to the genes defining the six GO terms are significantly higher methylated in NT and SNT TSC_Pn than in NF TSC_Pn. Moreover, they remain low methylated post-implantation [e.g., EXE6.5, E10.5p (Legault et al., 2020), E15p (Decato et al., 2017), and placenta (Hon et al., 2013)] (Supplementary Figure 6G). Consistently, the 218 downregulated genes in NT + TSA placenta compared with IVF placenta have significantly higher methylation in both NT and SNT TSC_Pn than in NF TSC_Pn (Supplementary Figure 6H). Together, HDAC inhibitor treatment fails to correct many AHM-CGIs in NT TSC_Pn, which play a critical role in TSC differentiation and placenta development.



DISCUSSION

Trophoblast stem cells produce the cell source of trophoblasts and are important to placenta development. TSCs can be derived from blastocysts cultured with FGF4. Our study revealed that FGF4 treatment led to transcription and DNA methylation reprogramming that facilitates NF TSC derivation. However, there exist many variations in gene expressions and DNA methylation establishment during NT TSC derivation. The native DNA methylation landscape of the donor genome results in the aberrant methylation before NT TSC formation. In contrast, FGF4 treatment contributes to the aberrant methylation upon NT TSC formation and afterward. Most of the aberrant methylations are rescued during SNT TSC derivation. These findings will facilitate to improve NT and SNT TSC derivation.

DNA methylation is a key epigenetic factor regulating embryonic development. It has been reported that aberrant re-methylation impedes post-implantation of NT embryos (Gao R. et al., 2018). We found that the methylation profiles of NT and SNT TSC_P1 are closer to NF TSC_Pn than to NF TSC_P1. This implies that the earlier high methylation in the related CGIs accelerates the stem cell senescence process (Ohm and Baylin, 2007; Beerman et al., 2013) in NT and SNT TSCs. Besides, the aberrant high methylation in NT TSCs also disturbs gene imprinting. Recently, studies have proved that DNA methylation-independent H3K27me3 imprinting differentiates in embryonic and extra-embryonic cell lineage and is an epigenetic barrier impeding post-implantation development of NT embryos. Monoallelic imprinting gene (e.g., Sfmbt2) deletions in donor cells prevent the placental overgrowth defect and greatly improves fibroblast cloning efficiency (Inoue et al., 2017; Wang et al., 2020). Coincidently, our study showed that aberrant high methylation in the CGIs is associated with Sfmbt2 in NT TSCs. This is consistent with the previous finding that NT placentas lose maternal H3K27me3 imprinting at the Sfmbt2 loci (Matoba et al., 2018; Inoue et al., 2020; Wang et al., 2020). Of note, in addition to DNA methylation, there are other epigenetic factors that affect post-implantation development of NT embryos. For example, the native H3K9me3 landscape in the donor genome impedes the remodeling of chromatin state and 3D structure during NT embryo development (Chen et al., 2020; Yang et al., 2021). Therefore, DNA methylation alone has no or weak correlation with gene expressions during TSC derivation.

We identified a set of TFs comprising a tight interaction network that is important to TSC derivation. The network component TF ZFP281 has been reported as a protein factor that regulates the transcription programs of TSCs and early placenta development, which is sufficient to induce TSC-like cells (Ishiuchi et al., 2019). Consistently, the activity of this network is downregulated in NT TSC derivation but largely rescued in SNT TSC derivation. This further confirms the important functions of TF ZFP281 in TSC derivation. Intriguingly, ZFP281 also coordinates with TET1 and TET2 to establish and maintain primed pluripotency (Fidalgo et al., 2016). However, DNA methylation at the Zfp281 locus remains a low level and has no correlation with its transcription. Therefore, the molecular basis underlying the transcription dynamics of Zfp281 during TSC derivation remains unresolved. Besides, it is unclear whether ZFP281 is the core factor in the network. How does ZFP281 regulate the other network members comprising specific signaling pathways? To address these issues requires further study.



MATERIALS AND METHODS


Mice

Mice were raised under SPF conditions under a 12-h light/dark cycle at 22 ± 2°C and with free access to standard mouse chow and tap water in the animal facility at Tongji University, Shanghai, China. We performed all mouse experiments according to the University of Health Guide for the Care and Use of Laboratory Animals.



Blastocyst Collection

We obtained NF blastocysts by flushing on day 3.5 blastocysts from NF mice of B6D2F1 (8–10 weeks old) and then cultured blastocysts in G1 medium (Vitrolife, Göteborg, Sweden) with amino acids under 5% CO2 at 37°C.



Somatic Cell Nuclear Transfer

We collected both oocytes and CCs from 8- to 10-week-old B6D2F1 female mice by superovulation. Superovulation was induced by sequentially injecting 7 IU of PMSG and 5 IU of hCG (San-Sheng Pharmaceutical, China) at an interval of 48 h. Then, cumulus–oocyte complexes were collected from oviducts 14 h after hCG injection and treated with hyaluronidase from bovine testes (Sigma, St. Louis, MO, United States) to obtain dissociated CCs and oocytes.

The oocytes were enucleated in a chamber containing oil-covered HCZB supplemented with 5 μg/ml of CB (Sigma) by Piezo-driven pipette (PrimeT 130 each) of an Olympus inverted microscope (Tokyo, Japan). The nuclei of donor CCs were transferred into enucleated oocytes by direct injection and activated through 5 h incubation in Ca2+-free CZB containing 1 mM SrCl2 and 5 μg/ml CB. The reconstructed embryos were thoroughly washed and cultured in G1 medium under 5% CO2 at 37°C.

For NT with the HDACi treatment, Scriptaid (Sigma, United States) was employed for a total of 10 h with a concentration of 5 nM by adding to the culture medium at the beginning of zygote activation.



Derivation and Culture of Trophoblast Stem Cells

The derivation of TSCs was performed as published before (Gao H. et al., 2018). In brief, we transferred E4.5 blastocysts onto MMC-treated MEFs and first culture in TSC medium composed of 70% FCM, 30% TSM, and 1× F4H medium (TSM: RPMI1640 supplemented with 20% FBS, 1 mM sodium pyruvate, 100 μM β-mercaptoethanol, and 2 mM L-glutamine; 1× F4H: 25 ng/ml of FGF4, and 1 μg/ml of heparin). The time when the E3.5 blastocysts were placed into culture was designated as day 0. Once the embryos were attached, they would form an outgrowth on the second day, or an additional 1 to 2 days are required for attaching to occur. Thorough disaggregation of the blastocyst/TSC outgrowths by trypsin on days 5, 6, or 7 when the outgrowth is 800 to 1,000 μm in diameter was performed, and the resulting cell aggregates in fresh 70% FCM + 1.5× F4H medium were further cultured. Tight epithelial TSC colonies will become apparent 3 to 7 days after disaggregation is completed. The time when the TSC colonies appeared was designated as passage 1. When the TSC colonies appear overgrown or reach 80% confluency, TSCs were passaged with trypsin in 1× F4H medium. The culture of TSCs was gradually expanded every 4–6 days for several passages. The time when the virtually immortal TSC lines without significant differentiation were established was designated as passage n. Of note, all E3.5 and E4.5 blastocysts were cultured in vitro except that NF E3.5 blastocysts were developed in the uterus of B6D2F1 pregnant female mice.



Sequencing Samples

We harvested samples: day 3.5 blastocysts TE (TE3.5), day 4.5 blastocysts (TE4.5), outgrowths (outgrowth), TSCs passage 1 (TSC_P1), and TSCs passages 3–4 (TSC_Pn) from NF, somatic cell NT, and HDACi Scriptaid-treated NT (SNT) blastocysts. For TE isolation, we treated blastocysts in Ca2+-free CZB for 20 min and separated the junctions of TE and ICM by multiple pipetting using a pipette with a diameter of 40–60 μm. Besides, the zona pellucida were removed from E3.5 blastocysts by 0.5% pronase. To collect cells of outgrowth, TSC_P1, and TSC_Pn, we washed the collected cells three times using DPBS and then disaggregated the cells using 0.05% Trypsin-EDTA.



Reduced Representation Bisulfite Sequencing and RNA-seq

We performed RRBS and RNA-seq following a previously published study (Liu et al., 2016). Briefly, we washed cells three times in 0.5% BSA-PBS (Sigma) solution and hereafter transferred cells into a lysate buffer using a mouth pipette.

For the RRBS sequencing library, we digested nuclear proteins and extracted the DNA from the nuclei of the samples. Then, we added unmethylated lambda DNA (Fermentas) and took a one-tube reaction, treating the DNA with MspI digestion (Fermentas, United States), end repair, dA tailing, adaptor ligation, and bisulfite conversion using a MethylCode Bisulfite Conversion Kit (Invitrogen, United States, MECOV-50). We purified the converted DNA libraries by Agencourt AMPure XP beads (Beckman A63881, United States) and amplified the DNA using a two-round PCR enrichment. Only 200- to 500-bp DNA fragments were retained for sequencing.

For RNA-seq, we performed reverse transcription directly on the cytoplasmic lysate and used terminal deoxynucleotidyl transferase to add a poly(A) tail to the 3′ end of the first-strand cDNAs. We amplified the total cDNA library by 18–20 cycles. Afterward, we fragmented the amplified cDNA by Covaris sonicator (Covaris S220, United States) and used the TruSeq Library Prep Pooling kit (Illumina 15042173, United States) to generate the RNA sequence libraries.

We performed paired-end 125- or 100-bp sequencing on HiSeq 2000 or 2500 (Illumina) at the Peking University and Berry Genomics Corporation.



Reduced Representation Bisulfite Sequencing and RNA-seq Data Processing

Reduced representation bisulfite sequencing reads were first processed using trim_galore (0.4.2) to trim adaptor and low-quality reads by parameters -fastqc -illumina -rrbs -paired, and then aligned to a combined genome with mm 10 and lambda sequence using bsmap (1.3.2) (Xi and Li, 2009) by parameters -D C-CGG -s 12 -v 0.1 -R -r 0. The methylation level of each CpG was estimated using mcall (1.3.2) (Sun et al., 2014) by default parameters. Only the CpGs with coverage >4 in replicates were retained for later analysis.

The adaptors and low-quality reads were removed from the RNA-seq data using cutadapt (1.11) (Martin, 2011) by parameters -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATC TCGGTGGTCGCCGTATCATT -m 50 -q 20. Then the RNA-seq reads were aligned to mm 10 transcript genome using STAR (020201) (Dobin et al., 2013) by parameters -readFilesCommand zcat -runThreadN 8 -outFilterMismatchNmax 3. The uniquely mapped reads were subsequently assembled into known transcripts (iGenome mm10) with featureCounts (v1.6.1) (Liao et al., 2014).



Reduced Representation Bisulfite Sequencing Data Analysis

CpG density is calculated 300 bp around the center CpG site using “linear” weighting by compEpiTools (1.12.0) (Kishore et al., 2015). HCP, ICP, and LCP were defined as previously published (Weber et al., 2007). For CGI analysis, we collected mm10 CGI table from UCSC table browser and only retained the CGIs with detected CpG > 4 among all samples. We calculated CGI methylation using the mean ratio of all CpGs contained. We used a robust cutoff with methylation difference >25% and p-value of Fisher’s test <0.05 to define the differential CGIs. Highly methylated CGIs have a methylation ratio >25%. Of all genes whose transcript start sites (TSSs) are located within 5 kb of a CGI, the closest gene is associated with the CGI.



Normalized Gene Expression and Differentially Expressed Genes

We calculated log2 (RPM+1) as the normalized expression using edgeR (3.20.9) (Robinson et al., 2009) and retained the genes with normalized expression larger than one at least in one sample for further analysis. We identified the genes that were differentially expressed (DE-genes) using DESeq2 (1.18.1) (Love et al., 2014). We required the adjusted p-value to be <0.01 and the log2 fold change to be >2. For public data, we defined DEGs using a cutoff of FDR <0.01 and log2 fold change >1.



Motif Analysis

We performed motif analysis for the 748 vertebrate motifs in the JASPAR_CORE_2018_vertebrate database (Khan et al., 2018) using findMontifs.pl from HOMER (v4.10) by searching motifs in the regions that are −500 to +300 bp relative to the TSSs.



Statistical Test

For statistical comparison between two samples, we performed paired t-test and used “Holm” to adjust p-values. As for the intersection of two sets, we performed hypergeometric test. We weighed the enrichment of the intersection using the representation factor (RF), which was calculated using real observation/expected observation. We also defined the Over-representation Score to count the enrichment and p-value together by calculating log2(RF) × log10(p-value). Besides, we used edgeR to test the significance of gene expression differences from public data.



Gene Ontology Analysis

We performed enrichment analysis of GO terms and tissue pattern genes collected from PaGenBase (Pan et al., 2013) using metascape (Zhou et al., 2019). The enrichment was calculated by the (ratio of term genes in hit/ratio of all term genes in total). Only the results with p < 0.01 were retained as enriched terms.



Pseudotime Inference

We inferred the pseudotime of a replicate using T = Σi75 Expi × λi. Expi indicated the normalized expression of the i-th TF in the replicate. λ indicated the coefficients of the TFs. We used the corresponding PC1 loadings of PCA analysis on NF samples as λ. We also randomly sampled the same number of TFs and did pseudotime inference for 5,000 iterations to get a mean result.



ChIP-seq Analysis

We aligned public ChIP-seq data to mm10 using bwa (0.7.12-r1039) (Li and Durbin, 2009) and then we discarded PCR duplicates and multiply-mapped reads. We performed peak calling using macs2 (2.1.1.20160309) (Zhang et al., 2008) with parameters -g mm -B -SPMR -nomodel -shift 37 -extsize 73 and transformed the fragment pileup and control lambda to bigwig format. Then, we computed the ChIP-seq signal around TSSs using computeMatrix from deeptools (2.5.7) (Ramírez et al., 2016).
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Alzheimer’s disease (AD), a nervous system disease, lacks effective therapies at present. RNA expression is the basic way to regulate life activities, and identifying related characteristics in AD patients may aid the exploration of AD pathogenesis and treatment. This study developed a classifier that could accurately classify AD patients and healthy people, and then obtained 3 core genes that may be related to the pathogenesis of AD. To this end, RNA expression data of the middle temporal gyrus of AD patients were firstly downloaded from GEO database, and the data were then normalized using limma package following a supplementation of missing data by k-Nearest Neighbor (KNN) algorithm. Afterwards, the top 500 genes of the most feature importance were obtained through Max-Relevance and Min-Redundancy (mRMR) analysis, and based on these genes, a series of AD classifiers were constructed through Support Vector Machine (SVM), Random Forest (RF), and KNN algorithms. Then, the KNN classifier with the highest Matthews correlation coefficient (MCC) value composed of 14 genes in incremental feature selection (IFS) analysis was identified as the best AD classifier. As analyzed, the 14 genes played a pivotal role in determination of AD and may be core genes associated with the pathogenesis of AD. Finally, protein-protein interaction (PPI) network and Random Walk with Restart (RWR) analysis were applied to obtain core gene-associated genes, and key pathways related to AD were further analyzed. Overall, this study contributed to a deeper understanding of AD pathogenesis and provided theoretical guidance for related research and experiments.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is almost incurable. According to the World Alzheimer Report 2018, there were approximately 50 million patients worldwide who suffered from AD, and AD became a major cause of death among old people (Patterson, 2018). Its main features are the deposit of β-amyloid (Aβ) plaques and neurofibrillary agglomerates (Dos Santos Picanco et al., 2018). A recent genetic study unearthed that Aβ deposition frequently occurs in people with ApoE4 (Genin et al., 2011). People with ApoE4 gene have high plasma cholesterol, which in turn stimulates the deposition of Aβ and tau proteins in the brain, thereby leading to AD (Greenberg et al., 2020). It is reported that the pathogenesis of AD is associated with heredity and gene expression like TREM2, PLCG2, ABI3 (Sims et al., 2017; Ulland and Colonna, 2018). Besides, circRNA and miRNA are also found to be related to the pathogenesis of AD (Dube et al., 2019; Iranifar et al., 2019).

Gene expression regulation is the most critical way of life regulating. Aberrant gene expression in brain tissue accounts for diverse diseases. For instance, ROCK1 gene expression is relevant to AD progression (Li X. et al., 2020). While aberrant expression of genes such as LRRK induces the occurrence of Parkinson’s disease (Wang et al., 2017). Researchers disclosed that gene expression in the MTG is probably closely related to the pathogenesis of AD, and the blockage of GABA signaling pathway in the MTG may result in cognitive decline (Govindpani et al., 2020). Given the above studies, this study surmised that the gene expression of the MTG is closely related to the pathogenesis of AD. This study attempted to probe into the critical factors affecting the pathogenesis of AD by analyzing the gene expression related to the MTG of AD sufferers.

Machine learning is a pivotal means of modern medical research, by which researchers always explore core genes that affect the occurrence of diseases. In the field of bioinformatics, machine learning is mainly applied in construction of diagnostic or prognostic models for disease, screening for biomarkers indicating disease outcome, etc., while linear-regression analysis is the common one in prognostic model establishment. For example, Feng and Jin (2018) constructed a risk model for prognostic prediction of patients with breast cancer through bioinformatics methods. Additionally, in algorithms that help for model construction, Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and K-Nearest Neighbor (KNN) are frequently used (Zhang, 2016; Huang et al., 2018; Chowdhury et al., 2019; Kulkarni et al., 2021). A previous study combined the KNN with genetic algorithm to greatly improve the accuracy of heart disease diagnosis (Jabbar et al., 2013). Max-Relevance and Min-Redundancy (mRMR) is an effective analytical method used to identify core genes in diseases. For example, Xu et al. (2014) identified core genes with mRMR to establish a model for determining malignant thyroid epithelioma. Regarding the identification of feature genes, the genes that are screened out to establish prognostic models or classifiers for disease are recognized potential biomarkers for outcome prediction. Besides, methods like mRMR, Boruta and ReliefF are also practicable (Zhang et al., 2008; Degenhardt et al., 2019). The mRMR method is instrumental for discovering core genes that affect Guillain-Barré syndrome (GBS) (Xu et al., 2016). This study selected the best AD classifier among SVM, RF, and KNN classifiers following the mRMR analysis and incremental feature selection (IFS) algorithm. Afterwards, functions of related genes in the optimal classifier were further explored. These findings may provide a deeper insight into the research and treatment of AD.



ANALYTICAL METHODS


Dataset Preparing

As presented in Figure 1, the overall workflow of this study was drawn to clarify our research design. RNA expression data (GSE132903) of the AD MTG were downloaded from the Gene Expression Omnibus (GEO) database1. The samples in this dataset were collected from Brain and Body Donation Program (BBDP) volunteers, including 98 healthy subjects (ND) and 97 AD patients. The corresponding platform annotation file was downloaded to annotate the RNA expression dataset, and an expression matrix with gene ids was created with the probe annotation categories. Afterwards, the missing data were supplemented with KNN (K = 10) (Troyanskaya et al., 2001; de Brevern et al., 2004), and the final data were standardized using the R package limma for further analysis.
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FIGURE 1. Overall workflow of this study.




Feature Selection by mRMR

The mRMR algorithm was implemented to rank feature importance in standardized cohort as previously reported (Xu et al., 2014, 2016; He et al., 2019). The mRMR feature selection method can compute relevance between features and sample phenotypes, and can comprehensively rank features according to the redundancy between features. Features at the top have a better trade-off between the relevance and redundancy than features at the bottom. Here, feature genes with the maximum relevance with AD and the minimum redundancy with other features were found through the mRMR algorithm (Peng et al., 2005). Mutual information (MI) represents the relevance between a random variable and another random variable. MI function was applied to assess the relevance between features and quantify the relevance and redundancy. The MI function was defined as follows (1),
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where x and y represent two vectors, p (x, y) represents joint probabilistic density, p(x) and p(y) represent marginal probabilistic densities. Thereafter, the relevance between genes and sample phenotypes were computed following the MI function (2),
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where D represents the relevance between genes and phenotypes, f represents gene, and c represents phenotype. The redundancy between genes was identified as R and was computed by the following formula (3),
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where m represents the total number of genes in the dataset, and T represents the gene set containing all genes. Then, the trade-off between the relevance and redundancy was computed by the following formula (4),
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After repeated computation per the above formula, the trade-off of each feature gene in the dataset was sorted. A new gene list was obtained (5),
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where the subscript index of each feature gene in S was selected. A feature that was selected earlier had a smaller index and could have high feature importance. Finally, the top 500 genes in the ranked feature list were selected for subsequent research.



Classifier Selection by IFS Method

Following mRMR analysis, IFS was sequentially applied to identify genes for the optimal AD classifier (Chen et al., 2017; Li M. et al., 2020). Firstly, based on the ranked feature list, a series of feature subsets were set as F1, F2, F3…Fn, where Fi = {f1, f2…fi} and fi refers to the top 500 genes in the ranked feature list. Secondly, the Python package sklearn was applied to establish a series of AD classifiers using the above feature subsets with SVM, RF, and KNN algorithms. SVM, RF, and KNN classifiers all can compute the expression of feature genes to identify AD patients (Zhang, 2016; Sarica et al., 2017; Huang et al., 2018). IFS curves were then plotted under 10-fold cross-validation to obtain the Matthews correlation coefficient (MCC), a parameter able to reflect classifier effectiveness (Chicco and Jurman, 2020), of each candidate classifier. Eventually, the classifier with the greatest MCC value was identified as the optimal AD classifier, and the genes involved in were taken as the optimal feature genes.



Principal Component Analysis (PCA) and Heatmap Construction

The R package FactoMineR was applied for dimensionality reduction of the two downloaded cohort based on the features of the optimal classifier following PCA. In brief, PCA can reduce the dimensionality of the data in two datasets and map the data into 2 representative dimensions. A scatter plot was drawn based on the distribution of samples in the two dimensions to present the variance between samples and between groups. Furthermore, the expression of feature genes of the classifier in ND and AD populations was compared through clustering analysis using the R package pheatmap.



Random Walk With Restart (RWR) and Enrichment Analyses

To explore core genes from the optimal classifier and their potential functions, R package limma was firstly employed to analyze the difference in gene expression between the ND and AD groups in GEO, and differentially expressed genes (DEGs) were screened (| Log2FC| > 0.585, FDR < 0.05). The DEGs were then intersected with the feature genes in the identified classifier to obtain core genes. Wilcox test was implemented to test the differential expression of the core genes in ND and AD samples. Additionally, the DEGs were projected onto the STRING website to construct a protein-protein interaction (PPI) network (Interaction Score > 0.4). RWR algorithm stimulates a random walking starting from a seed node or several seed nodes to a randomly selected neighbor node or to return to the origin in a constructed network. This walking is iterative and terminates when all nodes in the network are walked, and finally a relevance score between each node and the seed node is obtained (Kohler et al., 2008; Zhang et al., 2018). Here, RWR algorithm was run to calculate the relevance score between each node gene and the seed node gene, and the node gene with a score > 10–5 was taken as the core gene-associated gene.

Gene Ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were sequentially carried out for the core gene-associated genes using the R package ClusterProfiler, thereby to explore the critical functions that may affect the pathogenesis of AD. The results were finally visualized using the R package enrichplot.



RESULTS


Results of the mRMR and IFS Analyses

Following data downloading and normalization, 28,844 genes were obtained for feature importance analysis through mRMR analysis. The top 500 feature genes in the mRMR analysis were selected (Supplementary Table 1), by which a series of AD classifiers were constructed. Then, IFS analysis was implemented to select the optimal classifier. As illustrated in Figure 2A, the KNN classifier composed of 14 feature genes had the highest Matthews correlation coefficient (MCC) value. Then, the diagnostic efficacy of the KNN classifier was validated using receiver operation characteristic (ROC) curves. The results presented the sensitivity was 0.907, the specificity was 0.929, the accuracy was 0.918, the MCC value was 0.836, and the area under the curve (AUC) value was 0.935, indicating the high diagnostic efficacy of the KNN classifier in classifying AD patients accurately (Figure 2B).
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FIGURE 2. IFS and ROC analyses. (A) IFS curves of SVM, RF and KNN classifiers. The black curves indicate SVM classifiers; The blue curves indicate RF classifiers; The red curves indicate KNN classifiers; (B) ROC curve of the KNN classifier.




Results of PCA and Heatmap Analysis

Principal Component analysis was conducted for two groups of patients (ND/AD) according to the expression of 14 feature genes in the optimal KNN classifier. The results revealed that PCA analysis could markedly classify AD patients and normal subjects (Figure 3A). Besides, a clustering heat map was drawn to analyze the expression of the 14 feature genes in different populations. The results denoted that the 14 feature genes in the KNN model could distinguish AD patients from healthy subjects (Figure 3B). These findings manifested that the 14 feature genes in the KNN model exhibited a favorable performance in classifying AD patients from normal individuals, indicating an outstanding diagnostic efficacy.
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FIGURE 3. PCA and heatmap analysis based on the feature genes in the KNN classifier. (A) PCA showed diagnostic efficiency of the KNN classifier in ND and AD populations; (B) Heatmap showed expression of feature genes in the KNN classifier in ND and AD populations. The red means high expression while the green means low expression.




Results of RWR and Enrichment Analysis

Differentially expressed genes screened from the downloaded gene expression data in GEO and feature genes in the KNN classifier were intersected to obtain 3 core genes, including heat shock protein family B (small) member 3 (HSPB3), adipocyte enhancer binding protein 1 (AEBP1), RNA U1 Small Nuclear 4 (RNU1G2) (Figure 4A). Based on the DEGs, a PPI network was constructed. Since the Interaction Score of RNU1G2 in the PPI network was less than 0.4, AEBP1 and HSPB3 were picked up as seed nodes to perform RWR algorithm. Eventually, 52 core gene-associated genes were obtained (Supplementary Table 2). Then, the 52 core gene-associated genes were subjected to enrichment analysis. As analyzed, the genes were related to biological processes, such as synaptic vesicle cycle, transport vesicle, protein kinase C binding (Figure 4B), and activated in pathways such as MAPK signaling pathway, B cell receptor signaling pathway, and T cell receptor signaling pathway (Figure 4C). Finally, expression of the 3 core genes in AD was detected. As shown in Figure 4D, HSPB3 was conspicuously down-regulated, while AEBP1 and RNU1G2 were notably up-regulated in the AD group. Taken together, these results demonstrated that the 3 core genes were closely associated with the pathogenesis of AD, and were mainly related to cell functions involved in immunity and cell transportation.
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FIGURE 4. Core gene selection and functional enrichment analysis. (A) Venn diagram was drawn to select core genes between DEGs and feature genes in the KNN classifier; (B,C) Results of GO and KEGG enrichment analyses. The dot size means the number of genes enriched in corresponding terms; The dot color represents the significance of corresponding terms; (D) Expression of core genes (HSPB3, AEBP1, RNU1G2) in ND (green) and AD (red) populations.




DISCUSSION

The cause of AD is thought to be correlated with Aβ deposition and the hyperphosphorylation of tau proteins, whereas the cause of the above processes remains a mystery, which puzzles researchers for treatment and prevention of AD (Park et al., 2019; Busche and Hyman, 2020). There are many hypotheses about AD, including Aβ cascade hypothesis, tau hypothesis, inflammation hypothesis, cholinergic and oxidative stress hypothesis and glucose hypometabolism (Du et al., 2018). Aβ hypothesis considered as a major cause of AD believes that Aβ deposition is the major cause of AD, and Aβ deposition in the nervous system makes nerve cells lack necessary nutrients and cell apoptosis (Du et al., 2018). Neurofibrillary tangles are another pathological feature of AD patients, besides, phosphorylated tau aggregates proteins to cause neuron damage, and drugs targeting tau are promising for AD therapy (Brier et al., 2016; Gauthier et al., 2016; Li and Gotz, 2017; Novak et al., 2017). In addition, several investigations considered that inflammation and oxidative stress are central to AD pathogenesis. The sustained activation of the brain’s resident macrophages (microglia) exacerbates both Aβ and tau pathology and hastens AD pathogenesis (Kinney et al., 2018). Besides, the Aβ clearance disorder caused by oxidative stress also hastens AD pathogenesis (Cheignon et al., 2018). The deepening of study on the pathogenesis of AD has revealed numerous key genes affecting the pathogenesis of AD. For instance, MS4A and somatic APP are involved in the above pathways to influence AD pathogenesis (Lee et al., 2018; Deming et al., 2019). Moreover, lncRNA and miRNA also participate in AD pathogenesis (Dube et al., 2019; Iranifar et al., 2019). In this study, publicly available gene expression data of AD patients were analyzed, and the top 500 feature genes that may affect AD pathogenesis were screened out from 28,844 genes with the mRMR algorithm. This study speculated that expression of these genes may be closely related to AD pathogenesis.

Based on mRMR analysis, this study constructed an optimal AD classifier that could accurately classify AD patients and healthy individuals among SVM, RF, and KNN classifiers via IFS analysis, and then a 14-gene signature was obtained. These feature genes were then intersected with DEGs to obtain 3 core genes (HSPB3, AEBP1, RNU1G2) which may function in AD pathogenesis. Heat shock proteins (HSPs) are important molecular chaperones that prevent protein misfolding and promote the degradation of improperly folded proteins (van Noort et al., 2017). HSPs play a role in protecting multiple sclerosis, protein folding diseases, and genetic white matter diseases (van Noort et al., 2017). Although there is no direct evidence that HSPB3, a member of the HSP family, participates in AD pathogenesis, this study observed that HSPB3 was conspicuously lowly expressed and may be critical in AD (Boelens et al., 1998). Consulting to other members of the HSPs in the nervous system, HSPB3 may protect the nervous system from Aβ by degrading Aβ, whereas HSPB3 deletion may lead to AD (Calderwood and Murshid, 2017). AEBP1 plays an important role in lipid metabolism, which activates inflammatory responses through the NF-κB pathway and regulates adipogenesis in preadipocytes (Majdalawieh and Ro, 2010; Shijo et al., 2018; Gerhard et al., 2019). AEBP1 is up-regulated in AD patients, which promotes the inflammatory response around the nucleus in hippocampal pyramidal neurons, the formation of neurofibrillary tangles, and the progression of AD (Shijo et al., 2018). This study revealed that AEBP1 was up-regulated in the MTG of AD patients. This result denoted that the inflammatory stress and adipogenesis in the MTG may result in the pathogenesis of AD. RNU1G2 is a kind of small nuclear RNA molecule (snRNA) that cannot translate itself into protein, but it participates in pre-mRNA processing. So far, there has been few discussions about the mechanism of RNU1G2 and its biological functions. However, a study manifested the changes of RNU1G2 expression in the brain of AD patients (Piras et al., 2019). This study disclosed that RNU1G2 was highly expressed in the brain of AD patients and may be critical in AD pathogenesis, indicating that alternative RNA splicing is promising to disclose the pathogenesis of AD. In conclusion, whilst some research on HSPB3 and AEBP1 has presented their roles in the pathogenesis of AD, these investigations are still insufficient. It is worth exploring the role of the above three genes in the occurrence and progression of AD.

Furthermore, RWR analysis was conducted here on a DEGs-based PPI network with the above core genes as seed genes, and the core gene-associated genes screened out were then subjected to GO and KEGG enrichment analyses. The results illustrated that these core gene-associated genes were mainly related to biological processes such as synaptic vesicle cycle, transport vesicle, and protein kinase C binding, and activated in functional pathways such as MAPK signaling pathway, B cell receptor signaling pathway, and T cell receptor signaling pathway. The above results indicated that AD may be associated with neurotransmitter transmission. The decrease of neurotransmitter and activity is an essential phenotype of AD, whereas neurotransmitter supplementation is pivotal to the treatment of AD (Kandimalla and Reddy, 2017). In this study, the three core genes we identified were related to neurotransmitter transmission, suggesting that these genes may affect AD pathogenesis by modulating neurotransmitter secretion. Moreover, the results of enrichment analysis clarified that AD was associated with immune cell stress response. Inflammation is considered to be a key factor influencing the progression of AD, and microglia activation exacerbates both Aβ and tau deposition (Kinney et al., 2018). T cells function in AD and multiple sclerosis. An investigation displayed that hippocampal T cell infiltration leads to neuroinflammation and cognitive impairments (Laurent et al., 2017). Another study suggested that Aβ serves as an antigenic factor of T cells to potentiate encephalitis (Leoutsakos et al., 2018). As such, this study exhibited that the core genes we identified were related to B cell and T cell receptor signaling pathways, indicating that the three core genes may regulate immune cell activity, thereby affecting the pathogenesis of AD.

In summary, gene expression data of AD were firstly downloaded here from GEO database. Next, an AD classifier with favorable diagnostic efficacy was screened out through mRMR and IFS. The feature genes in the classifier were intersected with DEGs to obtain three core genes (HSPB3, AEBP1, RNU1G2) closely related to AD pathogenesis. Among the three core genes, HSPB3 may regulate protein folding processes and degrade misfolded proteins. AEBP1 stimulates adipogenesis in preadipocytes to induce inflammation and activates inflammatory responses to facilitate the pathogenesis of AD. Although our studies are reliable, these results are still in need of verification by molecular biological experiments. Further research could explore the biological functions of the three genes and the pathogenesis of AD to produce findings that account more for clinical therapy, thereby benefiting AD patients.
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Ubiquitin-protein ligase E3A (UBE3A) has dual functions as a E3 ubiquitin-protein ligase and coactivator of nuclear hormone receptors. Mutations or deletions of the maternally inherited UBE3A gene cause Angelman syndrome. Here, we performed transcriptome profiling in the hippocampus of Ube3am+/p+ and Ube3am–/p+ mice, and determined that the expression of the retinoic acid (RA) signalling pathway was downregulated in Ube3a-deficient mice compared to WT mice. Furthermore, we demonstrated that UBE3A directly interacts with RARα and may function as a coactivator of the nuclear receptor RARα to participate in the regulation of gene expression. Loss of UBE3A expression caused the downregulation of the expression of RA-related genes, including Erbb4, Dpysl3, Calb1, Pten, and Arhgap5 in Ube3am–/p+ mice brain tissues. This work revealed a new role for UBE3A in regulating retinoic acid (RA) signalling downstream genes and hopefully to shed light on the potential drug target of AS.

Keywords: UBE3A, RA signalling pathway, RARα, coactivator, Angelman Syndrome


INTRODUCTION

The UBE3A (also known as E6AP) gene is located on the proximal arm of the 15th chromosome at the q11–q13 site in humans (Kishino and Wagstaff, 1998). The UBE3A gene encodes three isoforms: UBE3A-isoform I, UBE3A-isoform II, and UBE3A-isoform III. UBE3A exerts two independent functions in vivo, with the HECT domain mainly functioning as a ubiquitin ligase, with LxxLL motif as a nuclear receptor coactivator (Khan et al., 2006; Wang et al., 2017). The LxxLL motif is a highly conserved signature sequence that binds nuclear receptors to activate gene expression. UBE3A is biallelically expressed in most tissues except nerve tissues, where it is imprinted with maternal allelic expression (Yamasaki et al., 2003). In most neurons, UBE3A is expressed only from the maternal allele, while the paternal allele is epigenetically silent (paternal imprinting) (Albrecht et al., 1997). Researchers have identified loss-of-function mutations of maternal UBE3A in 8% Angelman syndrome (AS) cases (Maranga et al., 2020). Angelman syndrome prevalence ranges from approximately 1 in 12,000 to 1 in 20,000 (Buiting et al., 2015). The behavioural characteristics of AS include intellectual disability, seizures, short attention span, excessive exercise behaviour, sleep disturbance, happy disposition and fascination with water (Williams et al., 2006; Tan et al., 2011; Gu et al., 2019).

All-trans retinoic acid (RA) is the active metabolite of vitamin A, which regulates the expression of many different genes in embryonic and adult organisms (Ross et al., 2000). RA can activate or repress transcription of key developmental genes, regulates the expression of many different genes in embryonic and adult organisms. At present, more than 600 genes have been reported to respond to RA (Balmer and Blomhoff, 2002; Savory et al., 2014). RA activates gene transcription by interacting with a transcription factor complex that includes RA receptor (RAR) and retinoic acid X receptor (RXR) heterodimers (Mark et al., 2006). The RAR superfamily members include RAR alpha, RAR beta, and RAR gamma; and RXRs superfamily includes RXR alpha, RXR beta, and RXR gamma in mammals. The heterodimer binds to the RARE (RA responding element) sequence and recruits a series of corepressors (NCoR and SMRT) to repress gene transcription in the absence of RA (Bastien and Rochette-Egly, 2004; Balmer and Blomhoff, 2005; Amann et al., 2011). To activate gene expression, RAR-RXR must change the structure of suppressed chromatin in the presence of RA and then dissociate from the corepressor and recruit coactivator to promote the binding of the transcription complex in the promoter region (Egea et al., 2001). RAR alpha (RARα) is commonly found in embryonic and adult tissues, and the RARα gene is located on chromosome 17q21. RARα is involved in regulating cell differentiation, embryonic development, vision formation, metabolism and many other life processes. RARα plays a key role in the adult brain, participating in the homeostatic control of synaptic plasticity, which is essential for memory function (Zhu et al., 2010; Bosch et al., 2012; Goncalves et al., 2013).

In our study, we performed RNA-seq on the hippocampus of UBE3A maternal deficient mice and found that loss of UBE3A expression affected many genes involved in the RA signalling pathway, which disruption led to dysregulate of development of many organs and nervous system signalling pathways. We further demonstrated that UBE3A regulates RARE-luciferase expression as a coactivator of the nuclear receptor RARα and directly interacts with RARα. Moreover, loss of UBE3A expression led to dysregulation of Erbb4, Dpysl3, Calb1, Pten, Arhgap5. Our results reveal the novel role of UBE3A in the regulation of RA signalling and provide insight into potential therapeutic targets for Angelman syndrome.



MATERIALS AND METHODS


GeneMANIA

GeneMANIA1 is a website that provides information about protein and genetic interactions, coexpression, pathways, colocalization, and protein domain similarity of the submitted genes (Warde-Farley et al., 2010). GeneMANIA generates a list of genes with similar functions to the query gene and constructs an interactive functional-association network to illustrate relationships between genes and datasets.



Cell Culture and Transfection

HEK-293T (Life Technologies), SH-SY5Y (ATCC), H1299 (ATCC), and mouse embryonic fibroblast (MEF) cells were maintained in DMEM (Corning) supplemented with 10% FBS (Gibco) and 50 μg/mL penicillin/streptomycin (Life Technologies). MEF cells were isolated at embryonic day 11.5. All cells were cultured in a humidified 5% CO2 air incubator at 37°C. Plasmid transfections into SH-SY5Y cells and HEK-293T cells were achieved with polyethylenimine (PEI) (Sigma-Aldrich, United States). H1299 cells were transfected with Lipofectamine 2000 (Life Technologies, United States) according to the manual.



Plasmid Construction

Briefly, restriction enzyme digestion and ligation reactions (NEB) were performed using traditional cloning methods. In this work, human UBE3A (iso1 unless otherwise indicated) and RARα were used as the initial templates, and the indicated plasmids were constructed on different backbones. Point mutations of the indicated plasmids were generated by site-directed mutagenesis. The following plasmids were constructed in this work: pGEX4T-1-UBE3A-GST, pCDNA3.0-Flag-UBE3A, pCDNA3.0-Myc-UBE3A, pCDNA3.0-Myc-UBE3A(iso2), pCDNA3.0-Myc-UBE3A(iso3), pCDNA3.0-Myc-UBE3A-C843A, pCDNA3.0-RARα-HA, pRK5-His6-UB, pCDNA3.0-Myc-UBE3A-L260A/V261A(L1A), pCDNA3.0-Myc-UBE3A-L412A/L413A(L2A), pCDNA3.0-Myc -UBE3A-V457A/L458A(L3A), pCDNA3.0-Myc-UBE3A-L513A/V514A(L4A), pCDNA3.0-Myc-UBE3A-L665A/L666A(L5A), and pCDNA3.0-Myc-UBE3A-L260A/V261A/L412A/L413A/V457A/L458A/L513A/V514A/L665A/L666A(LA).



Reagents

All-trans-retinoic acid was obtained from Sigma-Aldrich (R2625).



RNA Sequencing

RNA samples were extracted from the hippocampal tissues of 6- to 8-week-old mice using an RNA simple total RNA kit (Tiangen, China) and were subjected to high-throughput sequencing. The minimum clean data size of each group was 6 GB.



Luciferase Assay

To generate the pGL4.22-RARE luciferase construct, 3 × RARE (retinoic acid responsive elements) was cloned into the pGL4.22 vector (Promega). RARE-specific luciferase reporter assays were performed using VP-SFM (Gibco). After treatment with 1 μM RA for 8 h, the total luciferase activities of the cultured cells were measured following the manufacturer’s instructions (Promega).



Quantitative Real-Time PCR (qPCR)

Total RNA was extracted using the RNA simple Total RNA Extraction Kit (DP-419, TIANGEN), and then total RNA was reverse transcribed into cDNA using ReverTra Ace qPCR RT Master Mix with gDNA Remover (FSQ-301, TOYOBO). Cham Q Universal SYBR qPCR Master Mix (Vazyme, China) was used to perform RT-qPCR. All primers in this work are shown in Supplementary Table 6. The relative expression values of selected genes were calculated using the 2–Δ Δ Ct method and normalized to the Gapdh relative expression values.



Immunofluorescence

Brains were obtained from 8-week-old mice, fixed with 4% paraformaldehyde, and immersed in PBS supplemented with 30% sucrose (Sigma-Aldrich, United States) until setting. Coronal sections of the brain were obtained using a Lecia CM3050 S Research Cryostat (Leica Biosystems). The brain slices were treated with 0.3% Triton X-100 for 15 min at room temperature and then blocked with 3% normal goat serum (Boster, China). Ube3a and Erbb4 were visualized by staining with rabbit monoclonal Ube3a (7526S, CST, 1:200 dilution) and mouse monoclonal Erbb4 (sc-8050, Santa Cruz, 1:50 dilution) primary antibodies, followed by FITC-conjugated rabbit secondary antibody and Cy3-conjugated mouse secondary antibody, respectively. The brain sections were counterstained with DAPI for nuclear staining. Fluorescent images were obtained using an Olympus FV1200 confocal microscope (Olympus).



Co-immunoprecipitation Assay

HEK-293T cells with endogenous or exogenous protein expression were lysed in Co-IP buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% NP-40) with proteasome inhibitor cocktail (Roche, Switzerland). Cell pellets were sonicated and centrifuged at 15,000 rpm for 10 min at 4°C. The supernatant was incubated with specific antibody beads or protein G agarose beads overnight at 4°C. The beads were washed with Co-IP buffer five times. Then, the recovered beads were boiled in 2 × SDS-PAGE loading buffer, and the indicated antibodies were used for immunoblotting analysis. The primary antibodies were as follows: anti-Flag (F1804, Sigma-Aldrich, 1:2,000 dilution), anti-HA (H6908, Sigma-Aldrich, 1:2,000 dilution), anti-actin (A2228, Sigma-Aldrich, 1:8,000 dilution), anti-UBE3A (sc-166689, Santa Cruz, 1:500 dilution), anti-RARα (ab275745, Abcam, 1:1,000 dilution), anti-GAPDH (sc-32233, Santa Cruz, 1:4,000 dilution), anti-His (66005-1lg, Proteintech, 1:1,000 dilution), anti-Myc (67447-1-lg, Proteintech, 1:1,000 dilution), anti-GST(66001-1-lg, Proteintech, 1:5,000 dilution).



Ubiquitination Assay

HEK-293T cells transiently transfected with the indicated plasmids were lysed with IP buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) with a proteasome inhibitor cocktail. The precipitation process was performed as described above. The beads were washed three times with IP buffer and subjected to immunoblotting.



Expression and Purification of Recombinant Proteins

GST-RARα- and UBE3A-His-tagged proteins were expressed in E. coli (BL21) cells. The expression of tagged proteins was induced by incubation with 400 mM IPTG for 16 h at 16°C. The cells were pelleted, lysed in PBS (phosphate-buffered saline) buffer and incubated with glutathione beads (GE, United Kingdom) or Ni-NTA agarose beads (Qiagen, United States) to enrich the respective proteins. The bound proteins were eluted with 20 mM reduced L-glutathione or 300 mM imidazole dissolved in PBS buffer (pH 8.0) and then dialyzed in PBS buffer supplemented with 20% glycerol. The purified proteins were aliquoted and stored at −80°C.



GST Pull-Down Assay

Purified recombinant GST-RARα and UBE3A-His proteins and Glutathione Sepharose 4B beads (GE) were incubated in 500 μl pull-down buffer (50 mM Tris–HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, 1% NP-40, 1 mM DTT, 10 mM MgCl2) for 2 h at 4°C. The beads were washed three times with pull-down buffer, resuspended in 2 × SDS-PAGE loading buffer and then subjected to western blotting.



Western Blotting

Total protein was dissolved in SDS loading buffer, boiled for 10 min, and subjected to SDS-PAGE. The proteins were transferred to polyvinylidene difluoride membranes (Millipore, Bedford, MA, United States). The membranes were blocked in 10% fat-free milk for 1 h at RT and incubated with primary antibodies in primary antibody dilution buffer (Beyotime, China) overnight at 4°C. Then, the membranes were further incubated with the corresponding secondary antibody at RT for 1 h and washed three times with TBST. The protein bands were visualized using Quantity One Software (Bio-Rad, United States) after incubation with enhanced chemiluminescence reagent (Millipore).



Animals

Angelman syndrome (Ube3am–/p+) mice were kindly provided by Dr. Zhiqi Xiong, Chinese Academy of Sciences, Shanghai. All mice involved in the study were in the C57BL/6 background (SLAC, China). All animal experiments strictly followed the instructions of the Institutional Animal Care and Use Committee (IACUC) at the Center for Excellence in Molecular Cell Science, CAS.



Statistical Analysis

Three independent experiments were performed, and the results are expressed as the mean ± standard error of the mean (SEM). Data were compared using unpaired Student’s t tests and ordinary one-way ANOVA in GraphPad Prism 8 software (GraphPad Software). A P value < 0.05 was considered statistically significant and is indicated as follows: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ****P < 0.0001.



Accession Number

The RNA-seq data have been deposited in the Gene Expression Omnibus database at NCBI under accession number GSE168889.



RESULTS


Loss of UBE3A Expression Affects the RA Signalling Pathway

As a versatile protein, UBE3A participates in many processes involving in the nervous development and plasticity. However, little mechanistic insight into the role of UBE3A in RA signalling has been revealed. In this work, to determine whether UBE3A is associated with RA signalling pathway, first, the UBE3A regulatory network was constructed using the GeneMANIA web-based utility. A total of 101 genes were identified most related to UBE3A involved in physical interactions, co-expression, colocalization, pathway, genetic interactions, shared protein domains and others (Supplementary Figure 1 and Supplementary Table 1). Meanwhile, we collected 628 RA-targeted genes from the literature (Supplementary Table 3). There were total 12 overlapping genes between UBE3A network and RA-targeted genes (Figure 1B and Supplementary Table 4), indicating UBE3A may play a role in regulation RA signalling pathway. The hippocampus, which is located in the centre of the brain and is of crucial importance in memory regulation, fear condition, anxiety and cognition, is receiving increasing attention in the study of AS (Maranga et al., 2020). Using hippocampal tissues obtaining from Ube3am–/p+ mice and Ube3am+/p+ mice, we performed whole-genome transcriptome profiling to characterize the differentially expressed genes. A total of 886 genes were screened with the threshold of significance at P < 0.05 and foldchange > 1.2, among which 463 genes were up-regulated and 423 genes were down-regulated in the Ube3am–/p+ group compared to WT control group, shown in volcano plot (Figure 1A and Supplementary Table 2). To explore the potential role of RA signalling pathway in Ube3am–/p+ mice, we specifically selected the convergent genes both in differentially expressed genes and in the RA-targeted genes. We found that 28 RA-targeted genes are differentially expressed in Ube3am–/p+ male mice compared to WT male mice (Figure 1B). The detailed results were displayed in heatmap. Compared to Ube3am–/p+ mice from WT mice, most genes exhibited lower expression including Erbb4, Dpysl3, Calb1, Pten, Arhgap5 (Figure 1C). In order to better understand the potential functions of convergent differentially expressed genes, Gene Ontology (GO) enrichment analysis was carried out to assess the involved pathways. Biological process pathway in GO analysis results showed that multiple development pathway was enriched and the locomotory behaviour which abnormal is common AS patients was also enriched (Figure 1D). The results showed that UBE3A is closely related to the RA signalling pathway, and dysregulated RA signalling may play a role in the pathogenesis in AS.
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FIGURE 1. Gene expression profiling in the hippocampus of mice. (A) Volcano plot analysis from the hippocampus of Ube3am–/p+ mice and Ube3am+/p+ mice (Foldchange > 1.2; P < 0.05). (B) Venn analysis was used for enrichment between the most related to UBE3A and RA-regulated genes or differentially expressed genes. (C) Comparison of convergent differential RA-targeted genes expression between Ube3am+/p+ and Ube3am–/p+ mice. The mean numbers of reads were used. Mouse samples were divided into two groups: Ube3am+/p+ mice (n = 3) and Ube3am–/p+ mice (n = 3). (D) Enriched Biological Process pathway in GO analysis (P < 0.05).




UBE3A Regulates RARE-Luciferase Reporter Expression as a Coactivator of RARα

Previous gene enrichment analysis and RNA-seq data indicated that the absence of UBE3A may affect the RA signalling pathway. We constructed a RARE-luciferase reporter system to directly detect the transcriptional activity of the RA signalling pathway. In H1299 cells, upon the knockdown of endogenous UBE3A expression, RARE-luciferase activities were significantly inhibited with RA treatment (Figures 2B,C). Using the CRISPR-Cas9 method, we constructed a UBE3A-knockout H1299 cell line to avoid interference from endogenous proteins. There are three isoforms of UBE3A in vivo. When all three isoforms were overexpressed in H1299 UBE3A KO cells, the RARE-luciferase results indicated that all three isoforms showed activation with RA stimulation compared to the vector (Figure 2D). Considering that UBE3A acts as a coactivator, we wondered whether the activation effects could increase with increasing protein levels. To this end, increasing doses of UBE3A were overexpressed in H1299 KO cells, and the luciferase results indicated that the activation positively correlated with the protein dosages (Figure 2E).
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FIGURE 2. UBE3A acts as a coactivator regulating RARE-luciferase expression. (A) Schematic structure of UBE3A protein. UBE3A is an 862-amino acid protein that mainly includes five LxxLL domains, a zinc finger domain and a HECT domain. (B) Endogenous UBE3A protein was knocked down upon siRNA treatment. siRNA-UBE3A1, siRNA-UBE3A2 and negative control were transfected into H1299 lung cancer cells, and the protein expression of UBE3A was assessed by western blotting. (C) UBE3A knockdown decreased luciferase activities. H1299 cells were transfected with siUBE3As (the indicated siRNA sequences are listed in Supplementary Table 5), and RARE luciferase activities were tested after stimulation with 1 μM ATRA for 8 h. (D) All isoforms of UBE3A showed activation of RARE-luciferase activities. H1299-KO-UBE3A cells were transfected with vector or different isoforms of UBE3A and then treated with 1 μM ATRA for 8 h. (E) UBE3A could activate luciferase activities in a dose-dependent manner. SH-SY5Y cells were transfected with the indicated dosages of UBE3A followed by 1 μM ATRA treatment for 8 h, and the luciferase ratios were detected. (F) UBE3A and RARα showed coactivation of RARE-luciferase activities. H1299-KO-UBE3A cells were transfected with vector, UBE3A, RARα or UBE3A + RARα and then treated with 1 μM ATRA for 8 h. (G) Mutant in the LxxLL domain compromised the activation of UBE3A. H1299-KO-UBE3A cells were transfected with the indicated LxxLL mutation (L1A or L2A or L3A or L4A or L5A or LA, labelled in method 2.2) followed by 1 μM ATRA treatment for 8 h. (H) The ligase mutant C843A mutant did not affect luciferase activity. Wild-type UBE3A and ligase mutants were overexpressed in H1299-KO-UBE3A cell lines followed by 1 μM ATRA treatment for 8 h. The normalized luciferase activities represent ratios of firefly to Renilla values. The values are expressed as the means ± SEM from at least three independent repetitions. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (C–H) one-way ANOVA with Bonferroni post hoc test.


Previous studies have demonstrated that UBE3A can act as a coactivator in the hormone signalling pathway (Ramamoorthy and Nawaz, 2008). We hypothesized that UBE3A may act as a coactivator to activate RA downstream genes. The UBE3A protein has five predicted coactivator domains located mainly in the middle region of the protein structure, with the amino acid sequence LxxL/VL (L represents leucine residue, x represents any residue, V represents valine residue) (Figure 2A). RARα is an important receptor of retinoic acid that binds all-trans and 9-cis RA. Our experiments show that UBE3A regulates RARE-luciferase expression by acting as a coactivator of RARα (Figure 2F). Overall, these results suggested that UBE3A could regulate RA signalling as a coactivator.

Then, to determine the involvement of the putative LxxLL motif in the regulation process, we constructed six different mutants referred to as UBE3AL260A/V261A, UBE3AL412A/L413A, UBE3AV457A/L458A, UBE3AL513A/V514A, UBE3AL665A/L666A, and UBE3AL260A/V261A/L412A/L413A/V457A/L458A/L513A/V514A/L665A/ L666A. When individual mutant plasmids were overexpressed in H1299-KO-UBE3A cells, the RARE-luciferase results showed that a single UBE3A LxxLL motif mutant could decrease UBE3A coactivator activity compared to the UBE3A wild-type group, with all mutants almost losing activation activity (Figure 2G). UBE3A could function as a ubiquitin ligase; thus, we wondered whether ubiquitin ligase activity was involved in regulating the RA signalling pathway. Therefore, an E3 ubiquitin ligase-dead mutant UBE3AC384A was constructed, and the results showed that the luciferase activity was not significantly changed (Figure 2H). Together, these data indicated that UBE3A regulates RA signalling in a LxxLL-dependent and E3 ligase-independent manner.



Human UBE3A Interacts With Nuclear Receptor RARα

In the RA signalling pathway, RARα is a receptor that responds to retinoid acid and exerts a transcriptional regulatory function (Maranga et al., 2020). We tested whether UBE3A affects the RA signalling pathway through interaction with the nuclear receptor RARα. Coimmunoprecipitation assays showed that both endogenous and ectopically expressed UBE3A and RARα proteins could form a complex in HEK-293T cells with or without RA treatment (Figures 3A,B). To further assess whether UBE3A is directly associated with RARα, we carried out glutathione S-transferase (GST) pull-down assays. When recombinant GST-fused RARα protein was mixed with His-tagged UBE3A protein, UBE3A protein was efficiently pulled down by RARα, which was immobilized on glutathione-agarose beads (Figure 3C). To determine which truncated fragment of RARα interacts with UBE3A, we purified the truncated protein of RARα and found that it mainly binds to RARα-88-153, which is the DNA binding domain of RARα. These data indicate that UBE3A can bind to RARα mainly through the RARα-88-153 domain (Supplementary Figure 2). To further verify whether UBE3A could conjugate ubiquitination modification on RARα, wild-type UBE3A or its E3 ligase-dead mutant (C843A) mutant was ectopically expressed in HEK-293T cells. Immunoprecipitation results showed that UBE3A did not further increase the ubiquitylation level of RARα compared to the vector or ligase-mutant group (Supplementary Figure 2), which correlated with the RARE-luciferase results (Figure 2H). Furthermore, the endogenous RARα protein level remained unchanged upon treatment with different dosages of UBE3A or the proteasome inhibitor BTZ in HEK-293T cells (Figure 3D). Moreover, in MEFs with different Ube3a genotypes, the endogenous Rarα protein level was also almost equal among the groups (Figure 3E). Overall results demonstrated that UBE3A mainly function as a coactivator of RARα rather than E3 ligase to participate regulating in RA signalling pathway.
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FIGURE 3. UBE3A directly interacts with RARα. (A,B) The interaction of UBE3A and RARα in both endogenous and ectopically expressed HEK-293T cells. Co-immunoprecipitation (Co-IP) was performed for ectopically expressed (A) or endogenous (B) UBE3A and RARα in HEK-293T cells treated with 1 μM RA or DMSO for 8 h. (C) The directly interaction of UBE3A and RARα. GST pull-down assays were performed with GST or GST-RARα and UBE3A-His. (D,E) Endogenous RARα (D) or Rarα (E) remained unchanged upon different dosages of UBE3A (D) in HEK-293T cells or Ube3a (E) protein levels in MEFs.




Loss of UBE3A Expression Led to Dysregulation of RA Downstream Genes

Since UBE3A could function as a coactivator to upregulate RA-related signalling pathways, we wondered whether the neuron-related gene expression pattern would change upon the loss of UBE3A expression in Ube3am–/p+ mice. Therefore, we intended to measure the expression levels of genes related to the RA signalling pathway which were also involved in developmental progression. In the hippocampus tissue from Ube3am–/p+ mice and wild-type mice, real-time qPCR results showed that Erbb4, Dpysl3, Calb1, Pten, Arhgap5 levels were decreased upon the loss of Ube3a expression (Figure 4A). Immunofluorescence analysis of brain slices showed that ERBB4 expression levels were significantly decreased in CA1 region of hippocampus of Ube3am–/p+ mice compared to WT mice (Figures 4B,C). Overall, we found that loss of UBE3A expression in the Ube3am–/p+ mouse brain could lead to dysregulation of the endogenous RA downstream gene expression pattern. These data demonstrated that UBE3A could interact with the RA receptor RARα in a non-ubiquitinating manner to participate in RA signalling pathway regulation (Figure 4D).
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FIGURE 4. Loss of UBE3A expression leads to the dysregulation of RA-targeted genes. (A) Endogenous RA-related genes were reduced in the Ube3a deficient hippocampus. The mRNA levels of target genes were quantitated by real-time qPCR in mouse hippocampal tissues. (B) Representative images of Erbb4 staining in hippocampal coronal slices. CA1 region was marked by the red dotted line. Scale bar, 50 μm. (C) Quantitated intensities of ERBB4 in the hippocampal region of wild-type and Ube3a deficient mice. (D) A working model depicting how UBE3A acts as a coactivator of RARα to participate in the regulation of RA signalling. The values are expressed as the means ± SEM from at least three independent repetitions. *P < 0.05, **P < 0.01, ***P < 0.001. (B,D) Unpaired two-tailed t test, (A) one-way ANOVA with Bonferroni post hoc test.




DISCUSSION

Recent studies have showed that UBE3A was involved in the etiology of many human tumors and neurological diseases (Sell and Margolis, 2015; Vatsa and Jana, 2018; Maranga et al., 2020). In the present of E6 protein, UBE3A (also known as E6AP) could function as E3 ligase and degrade P53 protein leading to occurrence of cervical cancer (Martinez-Zapien et al., 2016). With hyperfunction or overdosage of UBE3A protein, many synaptic proteins were disrupted, thus causing autism in humans (Greer et al., 2010; Lopez et al., 2018; Sun et al., 2019). However, the coactivator function of UBE3A in the Angelman syndrome was little explored. In current study, we found UBE3A could function as a coactivator in RARE-luciferase reporter assay (Figure 3), confirmed by the network overlap of UBE3A and RA signalling (Figure 1C).

In the broader literature, there is increasing researches showing that disrupted RA signalling pathway might be associated with neurological diseases. Retinoic acid (RA) is a metabolite of retinol (vitamin A), functions as a ligand for nuclear RA receptors (RARs) that regulate development of chordate animals (Ghyselinck and Duester, 2019). RARα is expressed in many tissues and organs and is involved in embryonic development and many other life processes. In current study, we demonstrated that UBE3A could directly interacts with RARα, and facilitate the gene expression regulated by RARα. The protein stability of RARα is rather stable as it stayed almost unchanged upon BTZ treatment (Figure 3D). In one way, it showed that RARα is ready to response to any stimuli efficiently. In another way, it might suggest that RARα might form a complex and undergo other pathway to achieve the protein turnover. Upon loss of UBE3A, the neural development related gene expression levels were compromised (Figure 4A). ErbB4 is a member of the EGF receptor (EGFR) family of RTKs, which are activated by neuregulins and other growth factors on the cell membrane. Like other RTKs, ErbB4 contains an extracellular ligand binding domain which connected to the cytoplasmic portion by a single transmembrane (TM) domain. Nuclear ErbB4 can represses transcription of neuronal differentiation genes. Moreover, NRG1-ErbB4 signalling have a role in neuronal migration, axon guidance, glial cell development, axon myelination and axon ensheathment, Synapse formation. It is possible that the decreased expression of ErbB4 disrupts the developmental processes mentioned above to affects the progression of the Angelman syndrome. Perhaps this can provide us with new insights in the treatment of Angelman Syndrome. Researchers may apply the drugs that increase the overall transcription level to up-regulate the expression of target genes in the RA signalling pathway, which may have a therapeutic benefit.

Angelman syndrome is a neurological disease with extremely complicated mechanisms which many pathways were altered including development of nervous system, neurophysiological activity, neuron morphology and other aspects (Sun et al., 2019; Maranga et al., 2020). Angelman syndrome is a neurodevelopmental disease caused by the loss of function of maternal inherited UBE3A, while paternal UBE3A remains intact (Maranga et al., 2020). Therefore, current mainstream strategy for AS treatment is to activate silent paternal genes, including attempts to reactivate the paternal Ube3a allele in mice through gene therapy, using the topoisomerase inhibitor topotecan [12], or using ASOs to interfere with RNA to combat SNHG14 [13]. However, the toxicity and side effects of the drug are non-negligible. At the same time, interfering RNA has a short duration and cannot permanently activate the expression of paternal UBE3A, while the safety of gene therapy is still negotiating (Wolter et al., 2020). The lack of effective treatment options highlights the need to understand AS pathogenesis and downstream targets of UBE3A. The answers to these questions may lead to the development of new therapies.

In this work, we used RNA-seq to analyse the differential expression levels of RNA in the hippocampus of UBE3A-deficient mice and WT mice and performed other relevant experiments. The results indicated that UBE3A could act as a coactivator to regulate the RA signalling pathway. When UBE3A was lost, the downstream target gene expression levels were significantly decreased (Figure 4D). Perhaps this finding can provide new insights into the treatment of Angelman syndrome. Researchers may apply drugs that increase the overall transcription level to upregulate the expression of target genes in the RA signalling pathway, which may have a therapeutic benefit.

It is also important to note the limitations of our current research. Our experimental study does not rule out additional mechanisms that UBE3A function as E3 ligase regulating other substrates involving brain development (Greer et al., 2010; Sun et al., 2019). Therefore, the roles of UBE3A would need to be explored in follow-up study.

In summary, our work revealed a novel role of UBE3A in RA signalling regulation. Considering the great potential of chemicals and compounds already in the clinical trial related to RA signalling, our findings might facilitate the development of mechanism-based therapeutics for AS patients in the near future.
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Carcinoma of unknown primary (CUP) is a type of metastatic cancer, the primary tumor site of which cannot be identified. CUP occupies approximately 5% of cancer incidences in the United States with usually unfavorable prognosis, making it a big threat to public health. Traditional methods to identify the tissue-of-origin (TOO) of CUP like immunohistochemistry can only deal with around 20% CUP patients. In recent years, more and more studies suggest that it is promising to solve the problem by integrating machine learning techniques with big biomedical data involving multiple types of biomarkers including epigenetic, genetic, and gene expression profiles, such as DNA methylation. Different biomarkers play different roles in cancer research; for example, genomic mutations in a patient’s tumor could lead to specific anticancer drugs for treatment; DNA methylation and copy number variation could reveal tumor tissue of origin and molecular classification. However, there is no systematic comparison on which biomarker is better at identifying the cancer type and site of origin. In addition, it might also be possible to further improve the inference accuracy by integrating multiple types of biomarkers. In this study, we used primary tumor data rather than metastatic tumor data. Although the use of primary tumors may lead to some biases in our classification model, their tumor-of-origins are known. In addition, previous studies have suggested that the CUP prediction model built from primary tumors could efficiently predict TOO of metastatic cancers (Lal et al., 2013; Brachtel et al., 2016). We systematically compared the performances of three types of biomarkers including DNA methylation, gene expression profile, and somatic mutation as well as their combinations in inferring the TOO of CUP patients. First, we downloaded the gene expression profile, somatic mutation and DNA methylation data of 7,224 tumor samples across 21 common cancer types from the cancer genome atlas (TCGA) and generated seven different feature matrices through various combinations. Second, we performed feature selection by the Pearson correlation method. The selected features for each matrix were used to build up an XGBoost multi-label classification model to infer cancer TOO, an algorithm proven to be effective in a few previous studies. The performance of each biomarker and combination was compared by the 10-fold cross-validation process. Our results showed that the TOO tracing accuracy using gene expression profile was the highest, followed by DNA methylation, while somatic mutation performed the worst. Meanwhile, we found that simply combining multiple biomarkers does not have much effect in improving prediction accuracy.

Keywords: tumor tissue-of-origin, DNA methylation, gene expression, somatic mutation, multi-classifier XGBoost, pearson correlation algorithm


INTRODUCTION

Carcinoma of unknown primary (CUP) is a type of metastatic carcinoma whose primary tumor site is unknown. CUP accounts for approximately 3–5% of all human malignancies (Shaw et al., 2007; Conway et al., 2019; Xu et al., 2019). Since the treatment cannot be determined based on primary tumor site, CUP patients usually have poor prognosis. The median survival time of a CUP patient is 6–16 months even when empiric combination chemotherapy is employed (Pavlidis and Fizazi, 2005; Pentheroudakis et al., 2011; Jeyaram et al., 2019).

In order to improve the treatment of CUP patients and prolong their survival time, an accurate identification of tumor tissue-of-origin (TOO) is essential. Currently, there is a clinical practice for tracing the tissue origin of CUP, which involves physical examination, laboratory testing, immunohistochemistry, pathological imaging, and endoscopic examination. However, the results could be highly subjective and only the TOO of about 20–30% CUP patients could be revealed (Horlings et al., 2008; Bender and Erlander, 2009). For the past few years, molecular profiling of tissue-specific genes had become a promising technique for TOO tracing, due to its good diagnostic accuracy on poorly differentiated or undifferentiated tumors (Oien and Dennis, 2012).

With the increasing availability of high-throughput genomic and transcriptional data, there are several molecular biomarkers in The Cancer Genome Atlas (TCGA) including somatic mutation, copy number variation (CNV), gene expression, microRNA expression, and DNA methylation, which were used to trace cancer TOO (Li et al., 2017; Tang et al., 2018). The most popular biomarker used in TOO inference is gene expression. For example, Ma et al. (2006) demonstrated an overall success rate of 87% by using a 92-gene RT-PCR assay to identify the tissue origin of 32 different tumor types. Xu et al. (2016) identified a 154-gene expression signature that could discriminate the origin of 22 common human tumor types with an overall accuracy of 92%. DNA somatic mutation and CNVs are also frequently used to infer TOO. For instance, genomic profiling revealed an IDH1 somatic mutation, supporting the diagnosis of cholangiocarcinoma in a malignancy of unknown origin (Sheffield et al., 2016). In some reports, the tumor-specific enrichment for mutations in certain genes (sometimes mutations at specific locations within genes) had also been observed and used to infer tumor location (Dietlein and Eschner, 2014; Lawrence et al., 2014). Based on this observation, mutation burden in genes were used to infer tumor TOO; however, the performances are usually not very well (He et al., 2020; Liu et al., 2020). In addition, Küsters-Vandevelde et al. found that particular CNVs may be associated with cancer metastasis (Küsters-Vandevelde et al., 2017; Zhu et al., 2019). As such, Liang et al. compared several computational methods using CNV features and achieved good performances in inferring TOO for six cancer types (Liang et al., 2020).

Finally, there are also a few methods to trace tumor TOO by integrating multiple biomarkers. For example, Hoadley et al. proposed a method to trace the origin of 12 cancer types based on methylation and CNV (Hoadley et al., 2014; Zhang et al., 2019). Marquard et al. (2015) applied both point mutations and copy number aberrations (PM + CN) classifiers to obtain a classification accuracy of 85% across six primary cancers. He et al. (2020) combined molecular data of somatic mutation and gene expression profiling to infer cancer TOO and achieved a 10-fold cross-validation prediction accuracy of around 96% using the random forest classification method across 20 solid tumors.

Although many previous studies have used molecular profiles such as DNA methylation, somatic mutation, gene expression, and their combinations to predict the tissue origin of CUP, there is still no systematic comparison among them to our best knowledge. In addition, the epigenetic studies on CUP are more or less ignored. To address this need, we aim to compare the predictive ability of these biomarkers and combinations in a unified background. In addition, we aim to investigate whether multi-biomarkers can significantly improve prediction accuracy compared to single biomarkers.



MATERIALS AND METHODS


Data Preparation

The publicly available datasets for gene expression profile (assembly_version: GRCh37, platform: Illumina HiSeq, experimental_protocol: RNASeqV2_RSEM_genes1), somatic mutation (assembly_version: GRCh37, platform: Illumina GA sequencing, variation_calling_algorithm:TCGA-MC32), and 450 k DNA methylation array data (HumanMethylation450_after_2011_08_02) of the 21 different tumor types were collected from the ICGC data portal3. We used samples from 21 primary tumors as training and validation datasets to construct and validate models for inferring CUP. The data from raw TSV files were pre-processed by extracting and deduplicating, respectively, generating three feature matrices with “p” rows of the tumor samples numbers and “q” columns of gene numbers across aforementioned three categories of biomarkers. Each sample with histologically confirmed origins was tagged for its type of cancer. In particular, the somatic mutation data was extracted and deduplicated to form a feature matrix according to information of icgc_donor_id, chromosome, chromosome_start, and gene_affected before the feature value divided by the length of the gene. In total, 7,224 TCGA samples originating from 21 cancer types were downloaded in our work. Detailed information on the number of samples of each cancer type can be found in Table 1.


TABLE 1. Sample information of each cancer from TCGA database.
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Data Combination

We combined the feature matrix of gene expression, somatic mutation, and DNA methylation, respectively, and generated seven different feature matrices, including a 7,224 × 20,501 gene expression feature matrix, a 7,224 × 34,618 somatic mutation feature matrix, a 7,224 × 13,869 DNA methylation feature matrix, a 7,224 × 55,119 both gene expression and somatic mutation feature matrix, a 7,224 × 34,370 both gene expression and DNA methylation feature matrix, a 7,224 × 48,487 both DNA methylation and somatic mutation feature matrix, as well as a 7,224 × 68,988 the feature matrix that combines these three biomarkers. Then, only the samples shared in the seven feature matrices were selected for a fair comparison. In addition, we performed the L1 normalization on the columns of each feature matrix such that each entry was divided by the sum of the corresponding column. So, the samples data of 7,224 tumor samples in these 21 different tumor types after filtering data and normalizing each feature matrix are obtained.



Gene Feature Identification

In order to minimize the number of genes while maintaining the highest primary tracing accuracy possible, we employed Pearson correlation algorithm as the feature selection method. According to the mechanism of feature selection, we screened out the sets of genes by Pearson correlation algorithm (Hall, 1998; Saeys et al., 2007) using one-vs-all method where one cancer was used as positive and the other cancer types were together used as negative. Next, the selected genes were ranked in descending order according to their importance, with the most informative ones appearing at the top of the list. We identified the top N genes from each cancer type and merged into a list after removing the redundant ones, and then we further used all of the identified genes to classify each sample among all the TCGA samples separately for internal cross-validation.



Multi-Classifier XGBoost

XGBoost (Extreme Gradient Boosting) was a learning framework based on boosting tree models for solving supervised learning problems. In this study, all genes obtained from the above step were used to train the classification model based on XGBoost because of its excellent scalability and operation (Ji et al., 2019; Lv et al., 2020; Yu et al., 2020). XGBoost performed a second-order Taylor expansion on the loss function and it could automatically use the CPU’s multithreading for parallel computing. We first used bootstrap method to generate k training sets and then each train set that consists of a set of samples was used to construct a tree. After XGBoost mapped each sample to its corresponding leaf node, its final predicted value was the sum of the corresponding leaf node values for each tree. To control the complexity of the model and prevent overfitting, the L2 regularization term was applied and the maximum depth was set to three. Normally, we could not enumerate all possible tree structures and pick the best, so we chose a greedy algorithm instead: we started with a single leaf and iterated and split to add nodes to the tree. When splitting a node, in order to restrain the growth of the tree and help avoid overfitting of the model, a splitting threshold for information gain was added. The leaf node was allowed to split if and only if the information gain is greater than the splitting threshold. In addition, for obtaining relatively stable and reliable results, possibly minimizing the percentage of false positives and false negatives, 10 times 10-fold cross-validation based on the whole dataset was used. The XGBoost method for classification had proper separation of training and test data during features selection; in other words, feature selection is performed from the training set once in each 10-fold cross-validation.



RESULTS


Datasets Used in This Study

To compare the accuracy and robustness of different biomarkers in terms of cancer type prediction, publicly available gene expression profile, somatic mutation, and DNA methylation data from 7,224 samples were collected from TCGA for this study. The complete workflow is shown in Figure 1. We first download the original data from the TCGA database and generate the feature matrix after pre-processing such as extraction and de-duplication, respectively. Second, 7,224 tumor samples were left after the sample filtration. Third, the generated feature matrix underwent the normalization treatment. Table 1 shows sample information for each cancer, and we found that each of the 21 cancer types had a sample size of more than 100, while the largest sample size was breast cancer (942 samples) and the smallest was pancreatic cancer (111 samples).
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FIGURE 1. Flow diagram of prediction on cancer tissue origin and performance evaluation. Seven different feature matrices, respectively, are gene expression feature matrix, somatic mutation feature matrix, DNA methylation feature matrix, both gene expression and somatic mutation feature matrix, both gene expression and DNA methylation feature matrix, both DNA methylation and somatic mutation feature matrix, and the feature matrix that combines these three biomarkers.




A General Framework of This Study

Due to the intra-tumor heterogeneity, it was critical to identify the most informative genes from the high-dimensional datasets in order to better distinguish true mutation from background noise. Pearson correlation-based feature selection was characterized by fastness in operation speed and simple in complex calculation, which made it a successful multi-variable filtering method for high-dimensional data analysis. It was used to assess correlations between cancer types and corresponding gene features. Hence, we adopted Pearson correlation to select the most informative genes from the generated seven different feature matrices for classification detection. This process consisted of the following four steps: First, we created an array and binarized each row and column of 7,224 tumor samples. If the samples belonged to the tumor type, they would be labeled as “true;” otherwise, they would be labeled as “false.” Second, we calculated the correlation of the feature with samples labeled “true” for each cancer type and then sorted in decreasing order according to their correlation. Third, we took the most important signature, which appeared in the first N genes of the list for each cancer type, where N was an integer. Fourth, we combined the first N genes in lists of 21 cancer genes and removed the redundant genes. Using a series of integers, we generated a corresponding number of gene sets for further classification.



Gene Expression Profile Outperforms Other Biomarkers and Combinations in Inferring Tumor TOO

To evaluate the performance of the biomarker genes of gene expression profiling, somatic mutation, DNA methylation, and different combinations of them, a 10-fold cross-validation method was used to train XGBoost classification model. Especially to avoid overfitting of XGBoost algorithm, we achieved relatively stable and reliable results through 10 times 10-fold cross-validation, and minimized the percentage of false positives and false negatives as much as possible. The accuracies are shown in Figure 2. Different gene sets were used for cross-validation, and seven different polylines representing the accuracy of each 10 times 10-fold cross-validation were plotted. Clearly, using too few genes did not achieve the desired classification effect, until a list was used that combined the list of the 14 top-ranked genes for each cancer type and removed redundant genes. Although a gene set with more genes can achieve better accuracy, the growth was slow. The best classification performance was given by using data of gene expression (the mean accuracy was 94.63%), while the worst classification effect was obtained by using somatic mutation data (the mean accuracy was 43.33%), and other biomarker combinations were in the middle level.
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FIGURE 2. The classification accuracy of using gene expression, somatic mutation, DNA methylation, and combination of the three biomarkers, respectively, on each gene set.


We compared the classification performance of various combinations of biomarkers to get through the evaluation index of recall rate, precision, and f1 score. We plotted the heat map of mean value of recall, precision, and f1 score on the 14 top-ranked genes for each cancer type. In Figure 3, the rows represented the cancers and columns denoted the seven combinations of biomarkers. The gene expression classification performance was the best and the somatic mutation was the worst, which were consistent with the previous results in Figure 2. Figure 3 shows that the combination of multiple biomarkers did not necessarily achieve higher classification accuracy.


[image: image]

FIGURE 3. The classification precisions, recall rates, and f1 scores for each biomarker combination on the 14 top-ranked genes for each cancer type. exp represents gene expression profiling, meth represents DNA methylation, and snp represents somatic mutation.


We then looked at the performance of XGBoost algorithm using only gene expression values as the train features and fitting the cancer type as labels. We used 10 times of the 10-fold cross-validation method to evaluate the classification performance of each cancer on the 14 top-ranked genes. In two cancer types (PRAD and THCA), the precision was 100%. However, the precision obtained by READ and COAD was lower, at 79.20 and 59.15%, respectively. The precisions corresponding to each cancer were plotted as Figure 4. Gene ontology (GO) enrichment analysis was performed to study the selected signature genes in cellular component, biological process, and molecular function. Figure 5A shows that the most biological significance related to the 14 top-ranked genes of each cancer type in gene expression data by GO analysis was biological processes and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was also used to understand the target genes from gene expression. Figure 5B shows the most enriched KEGG pathways. For the visualization of samples from 21 tumor types, we performed cluster analysis as represented by t-distributed stochastic neighbor embedding (t-SNE) plots in Figure 5C. Samples from the 21 cancer types could be roughly distinguished.
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FIGURE 4. The precisions of XGBoost classifier using gene expression data on the 14 top-ranked genes for each cancer type. Precisions from 10 times of cross-validations were averaged.
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FIGURE 5. GO and KEGG analysis. (A) Significantly enriched GO cellular component, biological process, and molecular function of selected 14 top-ranked genes of each cancer type in gene expression data. (B) Significantly enriched KEGG pathways of the selected 14 top-ranked genes of each cancer type in gene expression data. The dot plot shows the number of signature genes identified by enrichment analysis for each cell component, biological process, molecular function, and KEGG pathway. The dot size represents the number of genes enriched in specific pathways and the dot color represents adjusted enrichment p-value. (C) The tSNE visualization of all samples for the 21 tumor types. The x- and y-axis represent the first and second dimension of tSNE, respectively.




DISCUSSION

Data of gene expression profiling, somatic mutation, and DNA methylation can be used to identify the primary site of tumors. However, for the first time, the three biomarkers and their combinations have been used to identify the origin of tumor tissues, and their ability to trace the origin of primary tumors has been compared and analyzed. We carried out a large number of experiments by using a shared sample of 7,224 and combined data from 21 cancer types. By comparing their performance, we found that the gene expression profile data obtained the highest accuracy, while the combined data could not obtain better classification performance. The comparison results are shown in Figure 2. While it was difficult to know exactly what led to some misclassification in combined datasets, the batch effects of RNA-seq and methylation data may have had a negative effect to our results.

XGBoost has been proven to have better performance than other more traditional models in many machine learning tasks, so we used the XGBoost algorithm to construct the classification model and tested it on seven different biomarker combinations. The results showed that the XGBoost algorithms can predict the cancer type of unknown primary tissue with an efficient accuracy. We chose the 14 top-ranked genes from each cancer and put them together for classification. Our results indicated that the gene expression data obtained an accuracy of 94.63%, which is the highest prediction accuracy. However, the prediction accuracy of the combination with gene expression data with other data was slightly lower than that of using gene expression. The same thing happened with DNA methylation data, which alone had a slightly higher prediction accuracy of 87.59% than both data of DNA methylation and somatic mutation on prediction of cancer tissue origin. Somatic mutation had the worst classification of cancers with a terrible prediction accuracy of 43.33%.

Due to the optimal classification performance of gene expression profile, we further functionally annotate the union of 14 top-ranked genes of each cancer type in the gene expression data. The enrichment results are shown in Figure 5. GO analysis showed that the selected genes mainly participated in embryonic organ development/morphogenesis, pattern specification process/regionalization, gland development, reproductive system/structure development, DNA-binding transcription activator/repressor activity, RNA polymerase II-specific, serine-type endopeptidase/peptidase activity, and endopeptidase/peptidase inhibitor activity. In the KEGG pathway analysis, the top two significantly enriched pathways were “Pancreatic secretion” and “Transcriptional misregulation in cancer.” Other significant pathways included “Protein digestion and absorption,” “Fat digestion and absorption,” and “Maturity onset diabetes of the young.” Our signature genes were involved in these pathways, which might be useful in inferring cancer TOO. For example, ABCC1 is highly expressed in lung cancer tissues. ALX1 plays a key role in tumor progression and metastasis, and it has been shown to regulate the expression of genes that induce epithelial to mesenchymal transition in primary mesenchymal cells (Wu et al., 2008; Yuan et al., 2013; Yang et al., 2015; Yao et al., 2015). Remarkably, we found that KLK4 is ectopically expressed in human colon cancer and ovarian cancer cells, which is one of the members of the cancer-related KLK family (Walker et al., 2014; Loessner et al., 2018). GATA3 is an important transcription factor to regulate cell differentiation. GATA3 is up-regulated in ulcerative colitis (Christophi et al., 2012; Alhassan Mohammed et al., 2018), which is associated with increased risk of colorectal cancer (Gupta et al., 2007). Genes involved in these biological processes and KEGG pathways play a role in distinguishing between different types of cancer.

In our study, all data came from the TCGA dataset, and the batch effects of RNA-seq and methylation data may have had a negative effect to our results. However, it is unclear whether the batch correction methods will bring some additional bias and which batch correction method is correct. In TCGA, each sample was divided normalized such that the total number of transcripts is 1,000,000, which actually performs a very rough batch correction. Finally, we added Figure 5C, which suggests that the samples from different tumors could be roughly separated. This indicates that the batch effects might not dominate the results.

There are some limitations to our study. First, we constructed and assessed the models based on TCGA primary tumor data rather than metastatic tumor data, because it is extremely difficult to collect metastatic samples with a known primary tumor site. In the future, we will try to collect metastatic cancer samples to construct CUP prediction models or test known models. Second, we did not supply an independent dataset for validation since we could not find a database other than TCGA, which has data on gene expression, DNA methylation, and somatic mutation simultaneously. Finally, we only simply concatenated the features of different biomarkers. It might be better to test the effects of interaction terms since the biomarkers are not independent biologically.

In summary, this is the first study to compare the power of different biomarkers in inferring cancer TOO under the same condition, including the same dataset, the same preprocessing scheme, and the same classification algorithm. In the future, we will try to include metastasis tumor samples into our study, incorporate independent testing samples, and add interaction terms and novel classification models for improving prediction accuracy.



CONCLUSION

The identification of the origin of tumor tissue was a challenging task. With a large number of molecular profiling, we can use them alone or combine some of them to improve the identification of primary tumor sites. Although we used primary tumor data, the primary information they provided were the most important to pinpoint the exact TOO for CUP. Machine learning algorithms were also effective tools to help classify cancers. The number of features used can greatly affect predictive performance. In this study, we used gene expression profiles, somatic mutation, and DNA methylation data to generate the feature matrix. Then, the optimal number of genes was obtained according to Pearson correlation algorithm, and the classification model was established using XGBoost algorithm. The same approach was used to compare the performance among a combination of some of the aforementioned biomarkers. The experimental results showed that the highest accuracy can be achieved by using gene expression profiling, but combining multiple biomarkers could not achieve better prediction performance.
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Congenital heart defect (CHD) is a rare and complicated disease with a high mortality rate. Its etiology remains unclear and includes many aspects. DNA methylation has been indicated to be involved in heart development in the early stage of life, and aberrant methylation level was related to CHDs. This study provides the first evidence of the cross talk of SNP variants and DNA methylation in clarifying CHD underlying genomic cause. We gathered whole exome sequencing (WES) data for Group 1 consisting of patients with PA (n = 78), TOF (n = 20), TAPVC (n = 78), and PDA (n = 40), and 100 healthy children as control group. Rare non-synonymous mutations and novel genes were found and highlighted. Meanwhile, we carried out the second analysis of DNA methylation data from patients with PA (n = 3), TAPVC (n = 3), TOF (n = 3), and PDA (n = 2), and five healthy controls using 850 K array in Group 2. DNA methylation was linked to WES data, and we explored an obvious overlap of hyper/hypomethylated genes. Next, we identified some candidate genes by Fisher’s exact test and Burden analysis; then, those methylated genes were figured out by the criteria of the mutation located in the CpG islands of the genome, differential methylation sites (DMS), and DNA methylation quantitative trait loci (meQTLs) in the database, respectively. Also, the interaction of differentially methylated candidate genes with known CHD pathogenetic genes was depicted in a molecular network. Taken together, our findings show that nine novel genes (ANGPTL4, VEGFA, PAX3, MUC4, HLA-DRB1, TJP2, BCR, PKD1, and HK2) in methylation level are critical to CHD and reveal a new insight into the molecular pathogenesis of CHD.
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INTRODUCTION

Congenital heart defect (CHD) is the most common human birth defect, accounting for 0.8% of live infants (Bouma and Mulder, 2017; Tennant et al., 2010). It contains various types of heart diseases, such as patent ductus arteriosus (PDA), tetralogy of Fallot (TOF), total anomalous pulmonary venous connection (TAPVC), and pulmonary atresia (PA), which encompass great vascular abnormality in heart structure. PDA is a congenital shunt vessel, connecting the proximal descending aorta to the roof of the pulmonary artery. The incidence of PDA accounts for 0.03–0.08% of live births among term infants (Kumar et al., 2019). TOF is the most common form of cyanotic CHD with an incidence of approximately four in 10,000 live births, and the anatomical characteristics include ventricular septal defect (VSD), pulmonary stenosis (PS), right ventricular hypertrophy, and an overriding aorta (Morgenthau and Frishman, 2018). TAPVC is a rare congenital cardiac anomaly characteristic of pulmonary veins directly connecting to the right atrium or systemic venous system (Acevedo et al., 2017).

The etiology of cardiac defects includes complex aspects, environmental factors, gene variations, and epigenetic changes, in which DNA methylation is best explored. The progress of DNA sequencing technology reveals that genetic variation plays an increasingly critical role in the causes of CHD (Dorn et al., 2014; Page et al., 2019). Despite the diversity of the CHD category, whole exome sequencing (WES) can identify a series of potentially causal genes and elucidate shared pathways critical to cardiac development. In addition to the important effects of the variants, DNA methylation is suggested to be involved in the heart development of mammalian animals (Serra-Juhé et al., 2015). DNA methylation is the most widely explored epigenetic modification, which occurs in the context of CpG dinucleotides (Jones et al., 2015). Methylation is involved in the occurrence of various diseases, and researchers have proved that aberrant DNA methylation was associated with the incidence of CHD. For TOF, researchers have proved that a large number of promoters carry DNA hyper- or hypomethylation genes related to cell proliferation, embryonic development included (Gong et al., 2019). NOTCH1 was identified as the major cardiac damaging gene, and there were methylation changes in the NOTCH pathway, such as IDB4 (Greenway et al., 2009). Additionally, some studies revealed that both gene mutations and methylation modifications account for the development of CHD, such as CITED2 mutations along with promoter region methylation (Xu et al., 2014; Sheng et al., 2016).

Interestingly, the dysregulation of DNA methylation during stages of embryonic development may lead to inappropriate silencing of gene expression, thereby increasing the risk of cardiac malformation (Grunert et al., 2016). In another study, hypermethylation was observed in the key cardiac signaling pathway factors Nkx2.5 and Hand1, in patients diagnosed as TOF and VSD. Expectedly, the expression of the two factors was proved to be downregulated (Sheng et al., 2013).

Considering the complexity of cardiogenesis, focusing on single gene or gene mutations is not beneficial to understand its etiology. The methylation study in CHD is still novel and could prompt the advancement of cardiac defect study. Importantly, the interaction of SNP variants and DNA methylation, accompanying the changes of gene expression in CHD occurrence, remains largely unknown. Therefore, we carried out a comprehensive analysis of whole genome DNA methylation study on blood samples of TOF, PA, TAPVC, PDA, and normal samples, and combined the summary of WES data. Our research evaluated the overlapping roles of DNA methylation and gene mutations in CHD and discussed their potential relationship.



MATERIALS AND METHODS


Study Population

Group 1 included 216 unrelated patients for WES analysis, which consisted of 78 TAPVC, 78 PA/VSD patients, 40 PDA patients, and 20 TOF patients. Data of WES analysis were derived from our previous studies (Chen et al., 2020; Shi et al., 2020; Shi et al., 2018). Group 2 contained 16 cases (three TAPVC, two PDA, three TOF, three PA, and five healthy children); blood samples were collected, checked, standardized, and analyzed for DNA methylation. All subjects in Group 2 were recruited via the Department of Pediatrics, Yangpu District Shidong Hospital. The study was carried out according to the Declaration of Helsinki, and the method applied to collect human samples of blood was approved by the Ethics Committee of the Department of Pediatrics, Yangpu District Shidong Hospital. All participants or their guardians have signed the written informed consent before the study. Clinical information is shown in Supplementary Table 1.



WES Assay

Whole exome sequencing was applied for sequencing in the first group. WES was carried out using the Agilent Sure Select Target Enrichment kit (V6 58 Mb; Agilent Technologies) for sequence capture and the Illumina HiSeq2500 for sequencing (Illumina) to a target depth of 100 (Chen et al., 2020; Shi et al., 2020; Shi et al., 2018).



DNA Preparation for Methylation Detection

Genomic DNA was extracted from human blood employing the QIAampTM DNA and Blood Mini kit (Qiagen) referring to the manufacturer’s protocol. DNA concentration and integrity were assessed by a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, United States) and agarose gel electrophoresis, respectively. DNA was bisulfite treated using the Zymo Research EZ DNA methylation Gold Kits (Zymo Research, Irvine, CA, United States).



Genome-Wide DNA Methylation Data Analysis

Bisulfite-converted DNA was analyzed on an Illumina Infinium Methylation EPIC 850 K Bead Chip (Illumina) (Kommoss et al., 2020). We extracted microarray data and figured out DNA methylation level through GenomeStudio Methylation Module v1.8 software (Version 2011.1) with default parameters. We used the normalized data to compute the DNA methylation levels, displaying β values ranging from 0 to 1, corresponding to unmethylated and methylated sites, separately. We performed cluster analysis of differentially methylated sites and analyzed biological function.



Differential Methylation Sites Screening

The correlation of gene methylation levels between samples is an indicator for testing the reliability of experiments and the rationality of sample selection. The correlation calculation data come from the standardized Beta value using Pearson.

Differential methylation sites (DMS) were analyzed and screening criteria of DMS were as follows:


1.The absolute value of “deltaBeta” is greater than 0.1;

2.“P value” < 0.01 (for biological duplication),



where P value is the calculation result of the limma package, and deltaBeta is an index that measures the degree of methylation difference between the case group and the healthy group. The calculation formula is as follows:

deltaBeta = Beta case − Beta control



Methylated Genes Selection

Three ways were mainly considered between the mutation and methylation:

Firstly, the mutations in WES data of 216 patients screened by Fisher’s exact test and Burden analysis have differential DNA methylation.

Secondly, the sites of mutation-related genes filtered by Fisher’s exact test and Burden analysis were located in the CpG island of the genome.

Thirdly, according to the data of DNA methylation quantitative trait loci (meQTLs1) in the tumor (the relationship between the mutation site and DNA methylation; it has been analyzed that there is a regulatory relationship in the tumor), the mutation site/gene and differential methylation were established. This result contains two parts of cis and trans regulation (close regulation of methylation and long-range regulation of methylation) (Gamazon et al., 2013; Li et al., 2013).



Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes Description

Gene ontology (GO2) and the Kyoto Encyclopedia of Genes and Genomes (KEGG3) pathway enrichment analyses were carried out using the scripts in Python to demonstrate the functional and biological pathways of DMS or candidate methylated genes figured out according to the above three ways. GO terms and KEGG with P < 0.05 were considered obviously enriched by differential methylation locus−related genes.



Protein–Protein Interaction Analysis

The Search Tool for the Retrieval of Interacting Genes database was applied for the PPI analysis4, which could assess and integrate direct (physical) and indirect (functional) associations. The gene set consisted of either CHD-causing genes or the statistically significant CHD-related methylated genes and were positioned to the PPI network altogether. The gene set was provided in Supplementary Material 1.



Gene Expression Analysis of the Microarray Datasets

Previously, we obtained the expression data in homo early embryonic heart at different stages (Carnegie stages 10–16) after medical termination of pregnancy measured with the Affymetrix HTA 2.0 microarray platform (Chen et al., 2020; Shi et al., 2020; Shi et al., 2018). The expression levels of our methylated candidate genes in human embryonic heart were shown using the median value.



Statistical Analysis

Statistical differences between the CHD and the control group were compared by the Fisher’s exact test mode. The obvious difference of methylation loci set standards at a threshold of | Delta_ Beta value| > 0.1 and P value < 0.01 (The Delta_Beta value is calculated by the difference of Avg_Beta between the control and the CHD group, which means the difference of methylation at each site).



RESULTS


CHD-Associated Differential SNPs Captured by Fisher’s Exact Test and Burden Analysis

Firstly, we put forward an analytical flow chart to present our study clearly (Figure 1). Then, to tested the pathogenic SNP candidates, we identified WES data by statistical comparisons from 216 cases and 100 controls in Group 1. We found 54,613 function variants with SIFT damaging by Fisher’s exact test (MAF < 0.05). The non-synonymous SNV occupied the most variant types in both case and control groups (Figure 2A). T > G change also accounted for most of the base mutations than any other sorts in these two groups. Moreover, 340 genes through Fisher’s exact test (P < 0.05) and 404 genes with Burden analysis were found based on the 54,613 rare damaging variants consistently. We observed nine genes with the top potential pathogenicity with thresholds of 0.01 for P value, and the incidence frequency of these genes in the case group was higher than that in the control group (Figure 2B). Therefore, HLA-DRB1, PRIM2, SLC9B1, MUC4, NPIPB5, KRTAP5-7, GXYLT1, HNRNPC, and SKA3 were considered as the ones with higher frequency. In particular, variants fell from the genes of MUC4 and HLA-DRB1, which showed a predominant significance (P value < 2e4) and suggested that the two genes played important roles in the CHD pathogenesis.
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FIGURE 1. The analytical strategy workflow for candidate gene filtration. A schematic overview of the different steps taken during DNA methylation sequencing and next-generation sequencing analysis in CHD patients. Through Fisher’s exact test and Burden analysis, candidate genes were identified and then figured out by the criteria of mutation located in the CpG islands of the genome, differential methylation sites, and DNA methylation quantitative trait loci (meQTLs) in the database. SNP, single-nucleotide polymorphism; WES, whole-exome sequencing; MAF, minor allele frequency; DMS, differential methylation sites.
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FIGURE 2. The comparison of the rare damaging variants between the case and control groups. (A) The number of variants in each variant classification and variant type was presented. (B) The Manhattan plot of CHD-associated variants filtrated by Fisher’s exact test. Each node represented a variant, and the y-axis represented the statistical significance level. The top nine genes with higher mutation frequency were displayed in the picture (P < 0.01).




CHD-Associated DMS

To verify the relationship between SNP and methylation, the case (three TAPVC, three PA, three TOF, and two PDA patients) and control groups (five healthy people) were enrolled for DNA methylation assay using Methylation EPIC (850 K) Bead Chip. The heatmap, presented in Supplementary Figure 1A, displays the differential methylation levels in CHD cases compared with those in the control group. The decrease or increase of methylation levels was also shown in the volcano map (Supplementary Figure 1B), and we found that 50.3% DMS are in hypermethylation and others are in hypomethylation (49.7%) (Supplementary Figure 1C). The map of DMS genomic distribution was also presented in Figure 3A and Supplementary Figure 2. Analysis of the location of CpG sites that were differentially methylated showed that DMS within islands of CHD were extremely likely to be more hypermethylated compared with those in the control group. Further analysis of these DMS within CpG islands showed that this hypermethylation was particularly concentrated around the promoter compared with other locations (Figure 3B).
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FIGURE 3. CHD-associated differential methylation sites. (A) Differential methylation sites on the genome (UCSC hg19) were depicted, in which the outer circle indicated that the deltaBeta value was above zero and the inner one was less than zero. Gray indicated non-differential methylation sites, red represented hypermethylation sites, while blue denoted hypomethylation sites. (B) Violin plot of differentially methylated positions in patients compared with those in the control group. Methylation differences between CHD and the control group were concentrated at CpG islands, particularly at promoters. The CHD group showed a large number of hypermethylation within CpG islands in contrast to those in the control group (P < 0.05).


We divided DMS into several parts, IGR, TSS1500, TSS200, 5′UTR, 1stExon, Body, ExonBnd, and 3′UTR, and analyzed each kind of genes with GO enrichment and KEGG pathway (Supplementary Figure 3A). In this analysis, Fisher’s exact test was used to calculate the significance of enrichment of each term in biological process (BP), cellular component (CC), and molecular function (MF) (Supplementary Figure 3B). For detailed information, we screened all DMS and found a total of 288 terms with P value ≤ 0.05 and FDR < 0.05. Also, the top three terms with the lowest P value are “homophilic cell adhesion via plasma membrane adhesion molecules (TermID:GO:0007156, P value: 1e-14), nervous system development (TermID:GO:0007399, P value: 3.2e-14), and cell adhesion (TermID:GO:0007155, P value: 2.5e-13).”



Identification of Pathogenic Genes on the Basis of WES Data Analysis and DNA Methylation

Three ways were used to figure out the potential CHD-related genes with differential methylation level to define their potential functional impact. (1) A total of 34 genes were found to show differential methylation changes filtered by Fisher’s exact test and Burden analysis in WES data, of which 22 were hypermethylated and 12 were hypomethylated in SNPs (Supplementary Table 2). (2) Screening WES differential data, we discovered that 180 genes of SNPs were located in the cpG island. (3) According to methylation sequencing and WES differential data, 155 genes with DMS were found to be involved in the mutation-methylation regulations in meQTL database, which mostly play an indispensable role in the pathogenicity of CHD.

Targeting those above genes, the cloud map was provided for revealing the potential genes with methylation alteration (Figure 4A). GO enrichment analysis of those genes was shown, in which the top three pathways in the BP were “cell adhesion,” “cell projection organization,” and “cilium assembly” (P < 0.01, Figure 4B), closely related to cardiac development (Koefoed et al., 2014). Additionally, KEGG enrichment for diseases was related to cancer and infectious and cardiovascular diseases (Figure 4C and Supplementary Figure 4). By assessing gene mutation distribution in different patients, we found 45 damage-associated genes that are much more frequent in patients than in healthy children, figured out from the above genes (Figure 5). The detailed sample distribution and the methylation information were also shown, which revealed more methylation level change in the CHD group.
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FIGURE 4. The CHD-associated methylated genes were firstly identified by gene-based burden analysis and Fisher’s exact test and then figured out by three criteria of SNP sites in the cpG island, differential methylation sites, and mutation-methylation regulations in meQTL database, respectively. (A) The word cloud of the CHD-associated differential methylated genes derived from above three criteria (P < 0.05). (B) The top 30 gene terms were identified significantly by SNP sites in the cpG island, differential methylation sites, and mutation-methylation regulations in meQTL database (P < 0.05). (C) Pathways for the Kyoto Encyclopedia of Genes and Genomes (KEGG) classification.
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FIGURE 5. There were 45 methylated genes with higher incidence frequency in patients compared with healthy people through three methods of selection, and the heatmap showed these genes’ distribution in patients. The bars on the right of the panel represented the genes and mutant ratio in the sample, respectively. The color of every box represented the mutation type. Methylation alteration of each gene was also shown. Samples were divided into CHD containing four subtypes (PA, PDA, TAPVC, and TOF) and the control group.




Regulatory Network of the CHD Methylated Candidate Genes

We also collected some known CHD genes that were higher or lower methylation the methylation level in CHD from a large number of reports in Supplementary Material 2. Venn map showed the overlap between genes selected from the three ways and from CHD-related genes, which may contain hyper- or hypomethylated DMS (Figure 6A). Surprisingly, CHD-related genes overlapped with methylated genes selected from any of the above methods, indicating that methylation is very critical for CHD occurrence. Next, we constructed a network composed of known disease-related genes, SNPs that were located in the cpG island, differentially expressed genes with DMSs, and those involved in methylation regulation in database. The shortest links were plotted among the different gene sets with Cytoscape. Finally, nine candidate genes related to methylation were obtained, BASP1, VEGFA, MUC4, HLA-DRB1, TJP2, BCR, ANGPTL4, PKD1, and HK2, which may be involved in the pathogenesis of CHD (Figure 6B) and these genes information was provided in Supplementary Table 3. The mutation sites of BASP1, PKD1, ANGPTL4, MUC4, TJP2, and HK2 were located in CpG islands; MUC4 also was found to regulate the methylation in meQTL data; TJP2, HK2, and HLA-DRB1 were sorted out in WES sequencing with DMS, and the previous two were also involved in SNP-methylation regulation in meQTL data. Moreover, variants of VEGFA and BCR as known CHD genes were also found in the CpG island in our study. The genes’ work indicated that these candidate genes interacted with CHD-related genes and known pathogenic ones. The number of variants of those genes in the case group was higher than those in the control group.


[image: image]

FIGURE 6. Venn map and regulatory network of the CHD methylated candidate genes. (A) Venn map showed the overlap of those genes selected from three criteria. (B) The protein–protein interaction (PPI) network of known (gray nodes) and novel CHD-associated methylated genes (The different color represents the candidate genes derived from different screening criteria).




Mutational Spectrum of Methylated Candidate Genes in the CHD Population

When analyzing these genes’ mutational spectrum, we noticed that the non-synonymous variants were mostly located within the functional domains of the coding protein (Figure 7). In particular, all the missense variants of BASP1 and HK2 were located in the BASP1 and HK2 domains separately, which suggested that the two domains were important functional domains and may be closely associated with CHD. Moreover, we also observed variants of HLA-DRB1, PKD1, and BCR, most of which lay in functional domains. Additionally, part of the mutants of ANGPTL4, MUC4, TJP2, and VEGFA were also located in functional domains.


[image: image]

FIGURE 7. Mutational spectrum of nine methylated candidate CHD genes. The distribution of the candidate genes BASP1, VEGFA, MUC4, HLA-DRB1, TJP2, BCR, ANGPTL4, PKD1, and HK2 in genomics was shown, which displayed the specific amino acid sites of variants of BASP1, BCR, HK2, HLA-DRB1, and PKD1 in the functional protein domains. The mutation sites of ANGPTL4, MUC4, TJP2, and VEGFA were also shown.




DMS Level Detection and the Expression Profile in Embryonic Hearts of Nine Candidate Genes

To investigate the methylation levels of the nine candidate genes, DNA methylation in the methylation chip was observed. Methylation levels of these candidate genes were compared between the CHD and the control group (Figure 8A). HLA-DRB1, TJP2, and HK2 were found, which show DMS directly in our data. MUC4 was screened through meQTL, and the methylated site affected by MUC4 was depicted. ANGPTL4, PKD1, BCR, VEGFA, and BASP1 were selected with the largest absolute value of deltaBeta. The figure depicted that HLA-DRB1, TJP2, ANGPTL4, BCR, and BASP1 showed a lower methylation level in the case group than in the control group with statistical significance, while HK2, MUC4, VEGFA, and PKD1 showed hypermethylation in the case group compared with the control group (P < 0.05).
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FIGURE 8. The methylated difference of nine methylated candidate genes in patients and their DNA expression pattern in human embryonic heart. (A) The methylated level of nine candidate methylated genes in the case and control groups. The DNA methylation values of sets are depicted with BetaValue (P < 0.05). The gray squares mean outliers beyond theoretical expectations statistically. (B) The expression patterns of the candidate methylated genes in different development stages of human embryonic heart were provided using an Affymetrix HTA 2.0 microarray.


Finally, we then revealed the expression profile of the candidate genes during different stages of embryonic heart development with an Affymetrix HTA 2.0 microarray (Figure 8B). As shown in the figure, the expression levels of HK2, VEGFA, and BASP1 among the pathogenic genes were higher compared with other pathogenic genes in embryonic hearts. In conclusion, we considered ANGPTL4, PKD1, BCR, VEGFA, HLA-DRB1, TJP2, HK2, BCR, and BASP1 as our candidate methylated genes related to CHD.



DISCUSSION

With the ever-developing technique of WES, many CHD studies based on WES have been published. A large-scale population study could help researchers understand the complex genetics of CHD and identify potential disease-related mutations. Through WES, many de novo mutations were predicted to be harmful, causing frameshifts and splicing abnormalities (Zaidi et al., 2013; Gupta, 2013). Gene methylation, as an important epigenetic regulation mechanism, has been widely studied. DNA methylation is the most widely explored epigenetic modification in mammals, which occurs in the context of CpG dinucleotides. In DNA, the cytosine of the CG nucleotides of DNA is selectively added with methyl groups to form 5-methylcytosine, which is commonly found in the 5′-CG-3′ sequence of genes, called CpG dinucleotides (Casati et al., 2015). CpG dinucleotides would be expected to make up ∼4% of a random genome. Studies have found that the methylation of the human genome is a covalent bond modification and occurs at the CpG site (Hartl et al., 2019; Zhi et al., 2013). Genome-wide association studies have revealed genetic loci linked to site-specific of CpGs, named DNA meQTL (Huan et al., 2019; Yao et al., 2018). MeQTL, combined with SNP, was explored for SNP-methylation regulation relationship and applied to a variety of diseases, including cancers. There were studies revealing that cis and trans CpG-transcript pairs causally were related to cardiovascular diseases. Researchers have identified that linking meQTL variants with disease-associated genetic variants would reveal molecular mechanisms of human diseases in altered epigenetic regulation. However, the interaction of SNP variants and DNA methylation, accompanying the changes of gene expression in CHD occurrence, remains largely unknown.

We documented the methylation regulation and SNP in the DNA of blood. In Group 2, DMS were analyzed and hyper- or hypo-methylation was associated with the expression of the affected genes by cis- and trans-acting regulation. In this study, we adopted WES and DNA methylation sequencing to identify rare variants and therefore regulated methylation levels of pathogenic genes. Further systematic analysis revealed ANGPTL4, VEGFA, PAX3, MUC4, HLA-DRB1, TJP2, BCR, PKD1, and HK2 as the wholly novel methylated genes related to CHD pathogenesis.

BCR is often found in patients with chronic myelogenous leukemia with a reciprocal translocation between chromosomes 22 and 9. A previous finding reported that BCR-ABL inhibitors have a teratogenic effect on embryo and developmental defects including CHD, hypospadias, and pyloric stenosis (Wang et al., 2017). Furthermore, genetic workup revealed that left ventricular non-compaction (LVNC) in a patient with 22q11.2 distal deletion encompassing the BCR gene (Madan et al., 2010). In our study, BCR was detected in nearly 20% (43/216) of the CHD patients with four different rare harmful variants, and they were all located in the cpG island. We also found that methylation level of BCR was downregulated in patients, which indicated that variants may influence the methylation in heart defects. VEGFA belongs to a member of the PDGF/VEGF growth factor family. This growth factor was explored comprehensively, inducing proliferation and migration of vascular endothelial cells, and disrupting the embryonic blood vessel formation. There were findings suggesting that dysregulated VEGF signaling as a pathogenic mechanism contributing to TOF (Reuter et al., 2019). Luckily, the variants of VEGFA in Group 1 (in patients with PA, TAPVC, and PDA) were also found and were located in the cpG island, which largely proved that VEGFA plays an important role in the formation of CHD and have dysregulation of DNA methylation.

Variants of ANGPTL4, PKD1, and BSP1 were all located in the site of the cpG island, which would explain methylation alteration. ANGPTL4 encodes a secreted glycosylated protein, which contains a C-terminal fibrinogen domain (Oteng et al., 2019). Five rare variants were found amid nine PA patients, nine TAPVC patients, and three PDA patients with a percentage of 10% in our study population. Also, the variations are located in the cpG island, and as noted earlier, the appearance of CpG is positively correlated with DNA methylation levels, which indicated that the variations regulated methylation level. Furthermore, ANGPTL4 was directly observed to link with the subnetwork of the known CHD genes. The encoded protein of ANGPTL4 can function as an apoptosis survival factor for vascular endothelial cells and can inhibit metastasis by preventing vascular growth and invasion. Researchers have found that ANGPTL4 regulated circulating lipids, modulated angiogenesis, and associated diseases, and knockdown of ANGPTL4 reduces atherosclerosis in mice (Aryal et al., 2019; Stitziel et al., 2016). The CHD we explored all contained vascular abnormality in structure; therefore, we speculated that ANGPTL4 may serve as a potential novel candidate gene of CHD with altered methylation. PKD1 encodes a member of the polycystin protein family. It is also involved in cell–cell/matrix interactions, is required for the structural integrity of blood vessels, and regulates G-protein-coupled signal-transduction pathways. It was reported that PKD1-deficient mice displayed abnormal myocardial deformation as well as systolic and diastolic dysfunction (Balbo et al., 2016). Seventeen percent (37/216) of patients were found to carry non-synonymous mutations and the methylation chip revealed PKD1 hypermethylated in patients. BASP1 encodes a membrane binding protein with several transient phosphorylation sites and PEST motifs. We found approximately 11% (11/216) of patients with two SNPs (C > T, p.A76V; C > A, p.P181T). Studies have shown that dysregulated expression and methylation level of BASP1 are directly related to the occurrence and prognosis of cancers, such as hepatocellular carcinoma. Besides, BASP1 plays a tumor suppressive role in vitro and was targeted as a treatment in acute myeloid leukemia by promoter methylation (Zhou et al., 2018). Interestingly, the three genes are all linked to CHD-related genes directly, which indicates that they may play a critical role in heart defects by dysregulation of DNA methylation.

MUC4 encodes an integral membrane glycoprotein found on the cell surface. Eight variants were found in 40% (86/216) of patients and the top 1 frequency of variant (rs150551454) was located in chromosome 3. It is reported that MUC4 induced angiogenesis through nuclear translocation of β-catenin in pancreatic cancer (Zhi et al., 2014). We found that MUC4 variation not only existed in cpG island but also had regulation relationship in meQTL. The methylation chip proved that MUC4 was hypermethylated.

HLA-DRB1 presents peptides deriving from extracellular proteins and is related to the immune system. Three variants were caught in 13% (28/216) of patients by Fisher’s exact test and Burden analysis. The variants of HLA-DRB1 were sorted out in WES sequencing with DMS. It participated in the pathogenesis of scleroderma from the view of genomics and epigenomics. HLA-DRB1 was hypomethylated in CHD compared to that in healthy people.

The most important CHD candidate methylated genes, TJP2 and HK2, were identified satisfying all three criteria (cpG island, meQTL, and DMS). TJP2, also named ZO2, acts as a composition of the tight junction barrier in epithelial and endothelial cells and is necessary for correct assembly of tight junctions. The five variants of TJP2 were also located in the cpG island. Additionally, TJP2 was found to regulate DNA methylation in the cis-meQTL database. Mutations in TJP2 cause the formation of hepatocellular carcinoma in childhood (Zhou et al., 2015). ZO−2 is down−regulated in a cyanotic patient’s myocardium (Jenkins et al., 2016). HK2 has been invested for angiogenesis in a melanoma in vitro assay. Three rare damaging variants of HK2 were discovered in patients, and they were located in the cpG island. Additionally, HK2 regulated methylation level in the trans-meQTL database. According to previous studies, HK2 is related to the pathogenesis of cancer and alterations in CpG methylation regulate HK2 expression level (Lu et al., 2019). Microarray data demonstrated that the expression level of HK2 was high in embryonic hearts of different development stages. We speculated that HK2 may be involved in cardiac development. Moreover, the methylation chip proved that TJP2 was hypomethylated and HK2 was hypermethylated. Therefore, these two genes are novel and potential CHD methylated pathogenetic candidates.

Although we clarified nine novel methylated genes through the axis of variation, methylation, and expression involved in CHD etiology, some limitations should be mentioned in this study. First, we need a larger population to validate testing. Second, further studies in animal models and the cellular level are warranted to confirm our findings and reveal how SNPs and methylation contribute to cardiac development. Collectively, our findings highlight that DNA methylation changes may affect gene expression in cardiac development, and we detected nine novel methylation-related genes in CHD patients and showed that variations of those genes may regulate methylation in cardiac development. Our study opens new insights into investigations of CHD pathology in SNP variants and DNA methylation levels.
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Background: Esophageal cancer (EC) is one of the deadliest cancers in the world. However, the mechanism that drives the evolution of EC is still unclear. On this basis, we identified the key genes and molecular pathways that may be related to the progression of esophageal adenocarcinoma and squamous cell carcinoma to find potential markers or therapeutic targets.

Methods: GSE26886 were obtained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) among normal samples, EA, and squamous cell carcinoma were determined using R software. Then, potential functions of DEGs were determined using the Database for Annotation, Visualization and Integrated Discovery (DAVID). The STRING software was used to identify the most important modules in the protein–protein interaction (PPI) network. The expression levels of hub genes were confirmed using UALCAN database. Kaplan–Meier plotters were used to confirm the correlation between hub genes and outcomes in EC.

Results: In this study, we identified 1,098 genes induced in esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC), and 669 genes were reduced in EA and ESCC, suggesting that these genes may play an important role in the occurrence and development of EC tumors. Bioinformatics analysis showed that these genes were involved in cell cycle regulation and p53 and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. In addition, we identified 147 induced genes and 130 reduced genes differentially expressed in EA and ESCC. The expression of ESCC in the EA group was different from that in the control group. By PPI network analysis, we identified 10 hub genes, including GNAQ, RGS5, MAPK1, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, SCP2, and NLN. TCGA validation showed that these genes were present in the dysfunctional samples between EC and normal samples and between EA and ESCC. Kaplan–Meier analysis showed that MAPK1, ACOX1, SCP2, and NLN were associated with overall survival in patients with ESCC and EA.

Conclusions: In this study, we identified a series of DEGs between EC and normal samples and between EA and ESCC samples. We also identified 10 key genes involved in the EC process. We believe that this study may provide a new biomarker for the prognosis of EA and ESCC.

Keywords: esophageal adenocarcinoma, esophageal squamous cell carcinoma, hub genes, prognosis, biomarkers


INTRODUCTION

According to the cancer statistics in 2018, the mortality rate of esophageal cancer ranks sixth among all tumors all over the world (Bray et al., 2018; Gu et al., 2020b). Esophageal carcinoma (EC) is divided into esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC) (Then et al., 2020). ESCC mostly occurs in the upper and middle portions of the esophagus and related to alcohol and nicotine abuse (Then et al., 2020). ESCC is particularly prominent in China, accounting for about 88% of EC (Wang et al., 2014). Esophageal adenocarcinoma is a highly invasive histological subtype, which is dominant in western countries (Abbas and Krasna, 2017). EA occurs in the lower portion of the esophagus and arises as a consequence of persistent gastroesophageal reflux from areas with specialized intestinal metaplasia in Barrett’s esophagus (Gindea et al., 2014), The 5-year survival rate is as low as 20% (Abbas and Krasna, 2017). At present, the treatment methods of the two EC are similar, including chemotherapy, radiotherapy, and surgery, in which surgery is the most common treatment (Kelsen et al., 1998). Identifying biomarkers for EC development, progression, and prognosis is essential for understanding EC and improving clinical decision-making.

In the past few decades, a large number of studies have revealed the potential mechanism of regulating EC progression. For example, N-myc-downregulated gene 4 (NDRG4) plays a role in cancer suppression of EA (Cao et al., 2020). Inhibition of DCLK1 can reduce the incidence of EC and improve its chemosensitivity by inhibiting β-catenin/c-myc signal (Whorton et al., 2015; Zhang et al., 2020). Notch signal pathway mediates Barrett’s esophageal differentiation and promotes its development to adenocarcinoma (Kunze et al., 2020). Abnormal WNT5A/ROR2 signaling pathway is a characteristic of Barrett-related EA (Lyros et al., 2016). At the same time, multiple bioinformatics analysis of EC was carried out based on RNA sequences and microarray datasets (Zhang H. et al., 2019). For example, a total of 345 DEGs were identified by Zhang H. et al. (2019) in normal esophageal and ESCC samples, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of endocytosis, pancreatic secretion, and fatty acids. However, the regulatory mechanism in EC is still not clear.

In this study, we downloaded GSE26886 (Wang et al., 2013) from the Gene Expression Omnibus (GEO) database. DEGs among esophageal squamous epithelium, Barrett’s esophagus, EA, and ESCC were analyzed. Then, the KEGG pathway and protein–protein interaction (PPI) network of DEG are analyzed. Finally, the survival rate of the identified core gene was verified and analyzed. The core gene may be a novel biomarker and therapeutic target for esophageal cancer.



MATERIALS AND METHODS


GEO Gene Expression Data

In this study, we aimed to identify differently expressed specific biomarkers to distinguished EA from ESCC. By screening GEO datasets, only GSE26886 include four types of EC-related samples, including healthy controls, Barrett’s esophagus, EA, and ESCC, thus selected for further analysis. GSE26886 (Wang et al., 2013) were obtained from the GEO database. A total of 69 frozen specimens were collected, including 19 healthy controls, 20 Barrett’s esophagus, 21 EA, and 9 ESCC.



Data Processing and DEGs Filtering

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 (Huang da et al., 2009) was used to analyze the GO function of integrating DEG and KEGG paths (Shi et al., 2018b; Gu et al., 2020d, 2021). GO term and KEGG pathways with P < 0.05 were selected as enrichment functions (Gu et al., 2020c).



PPI Network Analysis

Protein–protein interaction network is an online tool for building data from STRINGS1. The platform reveals protein interaction and functional analysis (Shi et al., 2018a; Shi X. et al., 2020). The most important modules in the PPI network were identified by insertion molecular complex detection (MCODE) with criteria (Shannon et al., 2003): degree value = 2, node score value = 0.2, and K score = 2. Then, the GO function and KEGG pathway of genes in these modules were using DAVID, with statistical significance (P < 0.05).



Validation of Hub Genes in EC

UALCAN2 data were analyzed to compare the expression of hub gene in esophageal squamous epithelium, Barrett’s esophagus, EA, and ESCC (Chandrashekar et al., 2017). Gene expression profile interaction analysis (GEPIA) (Tang et al., 2017; Gu et al., 2020a) was used to analyze the overall survival curve of each key gene, where P < 0.05 was considered to be statistically significant.




RESULTS


Identification of DEGs

GSE26886 datasets were used to compare the gene expression among different types of EC. First, 2,667 genes were identified to be induced, and 2,106 genes were identified to be reduced in ESCC compared to esophageal squamous epithelium samples (Figures 1A,C). Meanwhile, 2,532 genes were identified to be induced, and 1,468 genes were identified to be reduced in EA compared to Barrett’s esophagus samples (Figures 1B,D). Finally, we revealed 1,098 common induced genes in both EA and ESCC (Figure 1E) and 669 common reduced genes in both EA and ESCC compared to normal samples (Figure 1F), suggesting that these genes may have a crucial role in the tumorigenesis and progression of both EA and ESCC. Of note, we also found that 1,669 ESCC-specific upregulated, 1,434 EA-specific upregulated, 1,437 ESCC-specific downregulated, and 799 EA-specific downregulated genes, further confirming that that there are significant differences in the pathogenesis between EA and ESCC (Figures 1E,F).
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FIGURE 1. Identification of differentially expressed genes (DEGs) in esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC). (A) The differently expressed genes between EA and Barrett’s esophagus samples were shown using Heatmap. (B) The differently expressed genes between ESCC and esophageal squamous epithelium samples were shown using Heatmap. (C) The differently expressed genes between EA and Barrett’s esophagus samples were shown using Volcano Plot. (D) The differently expressed genes between ESCC and esophageal squamous epithelium samples were shown using Volcano Plot. (E) The common upregulated genes in both EA and ESCC were determined using Venn diagram. (F) The common downregulated genes in both EA and ESCC were determined using Venn diagram.




Bioinformatics Analyses of Common DEGs in EA and ESCC

Database for Annotation, Visualization and Integrated Discovery was used for bioinformatics analysis. GO functions analysis results showed that the common induced gene was related to mitotic chromosome condensation, spindle organization, chromosome segregation, negative regulation of cell migration, RNA processing, sister chromatid cohesion, protein SUMOylation, transcription, DNA replication, extracellular matrix organization, cellular response to DNA damage stimulus, and cell division (Figure 2A). The common reduced gene was related to flavone metabolic process, flavonoid biosynthetic process, negative regulation of cellular glucuronidation and fatty acid metabolic process, flavonoid glucuronidation, serine/threonine kinase activity, substantia nigra development, protein stabilization, vesicle-mediated transport, and cell–cell adhesion (Figure 2C).
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FIGURE 2. Bioinformatics analyses of common differentially expressed genes (DEGs) in esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC). (A,B) Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the common upregulated genes in esophageal cancer (EC). (C,D) GO functions and KEGG analysis of the common downregulated genes in esophageal cancer (EC).


Kyoto Encyclopedia of Genes and Genomes pathway showed that induced genes were involved in regulating Fanconi anemia pathway, p53 signaling pathway, cell cycle, spliceosome, ribosome biogenesis in eukaryotes, ECM-receptor interaction, amebiasis, RNA transport, focal adhesion, and phosphoinositide 3-kinase (PI3K)–Akt signaling pathway (Figure 2B). Reduced genes were involved in regulating porphyrin and chlorophyll metabolism, Vibrio cholerae infection, steroid hormone biosynthesis, adherens junction, Fc gamma R-mediated phagocytosis, metabolic pathways, drug metabolism–cytochrome P450, chemical carcinogenesis, AMP-activated protein kinase (AMPK) signaling pathway, sphingolipid signaling pathway, retinol metabolism, and phagosome (Figure 2D).



Identification of DEGs Between EA and ESCC

In order to reveal the expression signature that was used to distinguish EA from ESCC, we analyzed the different expression of genes. Finally, we revealed 857 induced genes and 880 reduced genes in EA compared to ESCC samples (Figures 3A,B).
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FIGURE 3. Identification of differentially expressed genes (DEGs) between esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC). (A,B) The differently expressed genes between EA and ESCC were shown using (A) Heatmap and (B) Volcano Plot.




Bioinformatics Analyses of DEGs Between EA and ESCC Samples

GO functions analysis results showed that the induced genes in ESCC were related to telomere capping, nucleosome assembly, telomere organization, DNA-templated transcription, initiation, and chromatin silencing at ribosomal DNA (rDNA) (Figure 4A). KEGG pathway analysis showed induced genes in ESCC were related to the regulation of pluripotency of stem cells, FoxO signaling pathway, Rap1, Hippo, and PI3K–Akt signaling (Figure 4B).
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FIGURE 4. Bioinformatics analyses of differentially expressed genes (DEGs) between esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC) samples. (A,B) Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the upregulated genes in EA compared to ESCC. (C,D) GO functions and KEGG analysis of the common downregulated genes in EA compared to ESCC.


GO functions analysis results showed that the reduced genes in ESCC were related to fatty acid degradation, fatty acid metabolism, Mucin-type O-glycan biosynthesis, N-glycan biosynthesis, peroxisome, Fc gamma R-mediated phagocytosis, metabolic pathways, and endocytosis (Figure 4C). KEGG pathway analysis showed reduced genes in ESCC were related to carbohydrate transport, protein N-linked glycosylation, COPII vesicle coating, O-glycan processing, endoplasmic reticulum (ER) to Golgi vesicle-mediated transport, cytoskeleton organization, carbohydrate metabolic process, and cell–cell adhesion (Figure 4D).



Identification of Hub Tumor Progression Genes Between EA and ESCC

Finally, we identified 148 common induced genes that were also differently expressed between EA and ESCC (Figure 5A) and 131 common reduced genes that were also differently expressed between EA and ESCC (Figure 5B). In order to confirm the expression of these hub genes, we analyzed The Cancer Genome Atlas (TCGA) dataset. As expect, we found that 47 common reduced and 49 common induced genes were also differently expressed in EC samples compared to normal samples using TCGA database (Figures 5C,D).
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FIGURE 5. Identification of hub tumor progression genes between esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC). (A) One hundred forty-seven common induced genes that was also differently expressed between EA and ESCC were identified using Venn diagram. (B) One hundred thirty common reduced genes that was also differently expressed between EA and ESCC were identified using Venn diagram. (C) The differently expressed genes between esophageal cancer (EC) and normal samples were shown using heatmap. (D) Forty-seven common reduced and 49 common induced genes were also differently expressed in EC samples compared to normal samples using The Cancer Genome Atlas (TCGA) database.


The PPI network of DEGs was further built. Based on PPI network analysis, we identified 10 hub genes with connection > 2, including GNAQ, RGS5, MAPK1, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, SCP2, and NLN (Figure 6).
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FIGURE 6. The protein–protein interaction (PPI) network of differentially expressed genes (DEGs) was constructed.




Validation of Hub Genes and Survival Curve Analysis

Furthermore, we confirmed the expression levels of 10 hub genes using the TCGA dataset. The results showed that GNAQ, SCP2, RGS5, MAPK1, ATP1B1, SLC25A20, HADHA, HSDL2, ACOX1, reduced in EC samples, and NLN were significantly induced in EC samples compared to normal tissues (Figure 7A).
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FIGURE 7. The area under the curve (AUC) analysis of hub genes for distinguishing esophageal cancer (EC) samples from normal tissues. (A) The expression levels of hub genes in EC and normal samples were analyzed using The Cancer Genome Atlas (TCGA) database. (B–K) The area under the curve (AUC) analysis of GNAQ (B), RGS5 (C), MAPK1 (D), ATP1B1 (E), HADHA (F), HSDL2 (G), SLC25A20 (H), ACOX1 (I), SCP2 (J), and NLN (K) for distinguishing EC samples from normal tissues.


Furthermore, the area under the curve (AUC) of GNAQ for distinguishing EC samples from normal tissues was 0.8835 (Figure 7B). The AUC of RGS5 for distinguishing EC samples from normal tissues was 0.7951 (Figure 7C). The AUC of MAPK1 for distinguishing EC samples from normal tissues was 0.8432 (Figure 7D). The AUC of ATP1B1 for distinguishing EC samples from normal tissues was 0.6958 (Figure 7E). The AUC of HADHA for distinguishing EC samples from normal tissues was 0.8108 (Figure 7F). The AUC of HSDL2 for distinguishing EC samples from normal tissues was 0.8373 (Figure 7G). The AUC of SLC25A20 for distinguishing EC samples from normal tissues was 0.7872 (Figure 7H). The AUC of ACOX1 for distinguishing EC samples from normal tissues was 0.8457 (Figure 7I). The AUC of SCP2 for distinguishing EC samples from normal tissues was 0.7597 (Figure 7J). The AUC of NLN for distinguishing EC samples from normal tissues was 0.8477 (Figure 7K).

Next, the transcription expression data of hub genes in normal tissues, EA, and ESCC were obtained using UALCAN, which were differently expressed between EA and normal samples and between ESCC and normal samples (Figure 8A). As presented in Figure 8, we found that GNAQ (Figure 8B), SCP2 (Figure 8C), RGS5 (Figure 8D), ATP1B1 (Figure 8F), SLC25A20 (Figure 8G), HADHA (Figure 8H), HSDL2 (Figure 8I), and ACOX1 (Figure 8J) were suppressed in ESCC samples compared to EA samples; however, MAPK1 (Figure 8E) and NLN (Figure 8K) were suppressed in ESCC samples compared to EA samples.
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FIGURE 8. Validation of hub genes expression in esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC). (A) GNAQ, RGS5, MAPK1, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, and SCP2 were reduced in esophageal cancer (EC) samples, and NLN was significantly induced in EC samples compared to normal tissues by analyzing GSE26886. (B–K) GNAQ (B), SCP2 (C), RGS5 (D), MAPK1 (E), ATP1B1 (F), HADHA (G), HSDL2 (H), ACOX1 (I), SLC25A20 (J), and NLN (K) were differently expressed in EA and ESCC samples compared to normal tissues by analyzing UALCAN database.


We utilized the Kaplan–Meier Plotter online tool to analyze the correlation between OS time and hub genes expression in EA and ESCC. We found higher expression levels of MAPK1 were related to longer OS time in patients with ESCC, not EA (Figures 9A,B). Higher expression levels of ACOX1 were related to shorter OS time in patients with ESCC and longer OS time in patients with EA (Figures 9C,D). Higher expression levels of SCP2 were related to shorter OS time in patients with ESCC, but not EA (Figures 9E,F). Higher expression levels of NLN were related to shorter OS time in patients with EA, but not ESCC (Figures 9G,H). However, we did not observe a significant correlation between OS time and GNAQ, RGS5, ATP1B1, HADHA, HSDL2, and SLC25A20 (data not shown).
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FIGURE 9. The dysregulation of hub genes was correlated to the survival time in patients with esophageal adenocarcinoma (EA) and esophageal squamous cell carcinoma (ESCC). (A,B) Higher expression levels of MAPK1 were associated with longer overall survival (OS) time in patients with ESCC, not EA. (C,D) Higher expression levels of ACOX1 were associated with shorter OS time in patients with ESCC and longer OS time in patients with EA. (E,F) Higher expression levels of SCP2 were associated with shorter OS time in patients with ESCC, but not EA. (G,H) Higher expression levels of NLN were associated with shorter OS time in patients with EA, but not ESCC.





DISCUSSION

Although there are marked differences in the pathogenesis, the treatment for ESCC and EA are similar, including chemotherapy, radiotherapy, and surgery, in which surgery is the most common treatment (Campbell and Villaflor, 2010). Identifying biomarkers for EC development, progression, and prognosis is essential for understanding EC and improving clinical decision-making. The aim of this study was to identify the similarities and differences between ESCC and EA. In this study, we analyzed GSE26886 datasets and identified 1,098 common induced genes in both EA and ESCC and 669 common reduced genes in both EA and ESCC, indicating that these genes may have a crucial role in EC tumorigenesis and progression. We also revealed 857 induced genes and 880 reduced genes in EA compared to ESCC samples. Furthermore, we conducted bioinformatics analysis to reveal the potential roles of these genes. Finally, we utilized the public databases to verify the levels of hub genes in EC samples. We thought we could provide novel biomarkers for EA and ESCC prognosis.

Over the past decades, multiple efforts were paid to identify the mechanisms involved in regulating EA and squamous cell carcinoma. For example, targeting the thromboxane A2 pathway driven by cox1/2 can inhibit Barrett’s esophagus and EA (Zhang T. et al., 2019). TRIM27 promotes the occurrence and development of esophageal cancer by regulating the PTEN/Akt signaling pathway (Zhang T. et al., 2019). FOXD2-AS1 silencing inhibits the growth and metastasis of esophageal cells by regulating the mir-145-5p/Cdk6 axis (Shi W. et al., 2020). ATP6V0D2 is a subunit related to proton transport, which plays a carcinogenic effect in esophageal cancer and is related to epithelial–mesenchymal transition (Qi et al., 2020). However, there was still a lack of comprehensive analysis of hub signaling in esophagus tumors. In this study, we identified DEGs in esophagus cancer and revealed 1,098 common induced and 669 common reduced genes in both adenocarcinoma and squamous cell carcinoma, which may present the hub mechanisms in esophagus cancers. Bioinformatics analysis found that upregulated genes mainly participated in cell cycle regulation via modulating a series bps, including chromosome segregation, sister chromatid cohesion, and DNA replication. The reduced DEGS were involved in regulating metabolism, via modulating a series bps, including flavone metabolic process and cellular glucuronidation. Of note, we found several hub signaling, such as p53 and PI3K–Akt signaling pathway. As a multifunctional transcription factor, p53 regulates the expression of more than 2,500 target genes (Stegh, 2012). p53 affects numerous and highly diverse cellular processes, including maintaining genomic stability and fidelity, metabolism, and longevity (Stegh, 2012). It is one of the most important and widely studied tumor suppressors. p53 is activated by various stresses, the most important of which are genotoxic damage, hypoxia, and heat shock (Hsu et al., 1995; Hu et al., 2012). It can block cancer progression by triggering transient or permanent growth arrest, DNA repair, or promoting cell death. This effective and versatile anticancer activity spectrum, together with genomic and mutation analysis, shows that p53 is inactivated in more than 50% of human cancers (Nigro et al., 1989). PI3K signaling pathway is one of the most common signaling pathways in human tumors and plays a key role in the occurrence and development of tumors (Liu et al., 2009).

Esophageal carcinoma includes EA and ESCC. It is one of the most common gastrointestinal cancers, causing about 375,000 deaths worldwide each year. More and more literatures support different treatment strategies according to the histological characteristics of esophageal cancer (Domper Arnal et al., 2015). The different treatment strategies and outcomes of AC and SCC reflect the impact of histology on the natural history and treatment outcomes of some cancers. Therefore, it is an urgent need to identify DEGS between EA and SCC. In this study, we identified 598 induced and 924 reduced genes in squamous cell carcinoma compared to adenocarcinoma samples. Bioinformatics analysis showed that the induced genes in SCC was related to telomere capping, telomere organization, and DNA replication. Telomeres had crucial roles in tumorigenesis by modulating the proliferation and cell cycle of cancer cells (Cacchione et al., 2019). Downregulated genes in SCC was related to fatty acid metabolism and extracellular signal-regulated kinase 1 (ERK1) and ERK2 cascade. ERK signaling is activated in tumors, which was related to regulate multiple processes such as proliferation and survival (Kohno and Pouyssegur, 2006). Previous studies demonstrated that this signaling had a crucial role in both EA and ESCC. For example, Chen et al. (2019) reported that targeting ERK significantly inhibits growth and metastasis of esophageal squamous cell carcinoma cells. Miral R Sadaria et al. (2013) found that suppressing ERK 1/2 activation reduced cell viability and proliferation of human esophageal adenocarcinoma cells. Finally, we identified 147 common induced genes that were also differently expressed between EA and ESCC and 130 common reduced genes that were also differently expressed between EA and ESCC.

Based on PPI network analysis, we identified 10 hub genes with connection > 2, including GNAQ, RGS5, MAPK1, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, SCP2, and NLN. Very interestingly, the further confirmation showed that most of these hub genes, including GNAQ, RGS5, MAPK1, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, and SCP2, were reduced in EC samples, suggesting that they may play a tumor-suppressive role in EC. Only NLN was report to significantly be overexpressed in EC samples compared to normal tissues. Moreover, we found that GNAQ, RGS5, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, and SCP2 were reduced in ESCC samples compared to EA samples; however, MAPK1 and NLN were reduced in ESCC samples compared to EA samples. Among these genes, GNAQ was reported to be related to uveal melanoma progression. GNAQ mutations have led to the activation of several downstream pathways in uveal melanoma, including ERK, p38, c-JUN N-terminal kinase (JNK), and Yap signaling (Shoushtari and Carvajal, 2014). In this study, we found that the expression of GNAQ in esophageal carcinoma and EA was lower than normal. The expression of GNAQ in ESCC was also lower than that in EA. G protein signal transduction regulator 5 (RGS5) is a family of GTPase activators and signal transduction molecules that negatively regulate the function of G protein (Liang et al., 2005). More specifically, RGS5 stops the signal transduction in heterotrimer G protein and is located in plasma membrane and cytoplasm (1). Recently, RGS5 has been identified as a major gene induced in pericytes and is associated with some morphological changes in tumor vasculature. It was found that RGS5 level decreased with the increase in antivascular endothelial growth factor (anti-VEGF) antibody expression as a result of angiogenesis inhibition (Wang et al., 2019).

Of note, this study for the first time revealed that the dysregulation of MAPK1, ACOX1, SCP2, and NLN is significantly correlated to the survival time in EC patients, whose functional importance had been implied in multiple cancer types. MAPK1 belongs to the MAP kinase family (Guo et al., 2020). MAPK1 is a well-known oncogene, which is overexpressed in various types of human cancers, such as lung tumor, ovarian, cervical, and gastric cancer. ACOX1 is an enzyme that catalyzes the first and rate-limiting desaturation of long-chain acyl coenzyme A to 2-trans-enol coenzyme A and transfers electrons to the reaction to react with molecular oxygen to form hydrogen peroxide (Zhang et al., 2021). Recent studies have shown that ACOX1 may be involved in tumorigenesis. For example, ACOX1 knockout contributed to liver cancer progression (Chen et al., 2018). In addition, ACOX1 destabilizes p73, thereby inhibiting the intrinsic apoptotic pathway of lymphoma cells and regulating the sensitivity to doxorubicin. SCP2 has no enzyme activity but binds branched chain lipids such as phytic acid and cholesterol derived from phytol (Milligan et al., 2017). SCP2 enhances the uptake and metabolism of branched chain fatty acids (Milligan et al., 2017), which is a recognized intracellular cholesterol transporter, which can direct cholesterol to cholesterol-rich cell membrane microstructure. It has been reported that the expression of SCP2 is related to the progression of glioma, and the suppression of SCP2 protein expression can inhibit the proliferation of tumor cells by inducing autophagy. In addition, SCP2-mediated cholesterol membrane transport promotes pituitary adenoma growth by activating hedgehog signaling (Ding et al., 2019). This study is the first to reveal the important role of SCP2 in esophageal cancer. It may be a potential biomarker for the prognosis of esophageal cancer. NLN is a 78-kDa monomer protein with 704 amino acid residues and only hydrolyzes peptides with 5–17 amino acids (Cavalcanti et al., 2014). In vivo studies have shown that NLN is associated with multiple human diseases (Garrido et al., 1999; Massarelli et al., 1999; Rioli et al., 2003). This study is the first to show that NLN is induced in esophageal cancer and has the ability to distinguish between EA and ESCC.

In addition, we should point out several limitations of this study. First, the expression levels of hub genes, such as MAPK1, ACOX1, SCP2, and NLN, were not confirmed using clinical samples. Second, the molecular functions of these hub genes in EC remained largely unclear. Using loss of functions with specific small-interfering RNAs (siRNAs) targeting these hub genes will further strength the findings of this study.



CONCLUSION

In this study, we analyzed the GSE26886 dataset and identified 1,098 genes induced in EA and ESCC, and 669 genes were reduced in EC and ESCC, suggesting that these genes may play an important role in the occurrence and development of EC tumors. Bioinformatics analysis showed that these genes were involved in cell cycle regulation, p53 signaling pathway, and PI3K/Akt signaling pathway. In addition, we identified 147 induced genes and 130 reduced genes differentially expressed in EA and ESCC. The expression of ESCC in the EA group was different from that in the control group. By PPI network analysis, we identified 10 hub genes, including GNAQ, RGS5, MAPK1, ATP1B1, HADHA, HSDL2, SLC25A20, ACOX1, SCP2, and NLN. TCGA validation showed that these genes were present in the dysfunctional samples between EC and normal samples and between EA and ESCC. Kaplan–Meier analysis showed that MAPK1, ACOX1, SCP2, and NLN were associated with overall survival in patients with EC. We believe that this study may provide a new biomarker for the prognosis of EA and ESCC.
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Hepatocarcinogenesis is a highly complicated process that is promoted by a series of oncogenes. Our study aims to identify novel oncogenes promoting hepatocellular carcinoma (HCC) by bioinformatic analysis and experimental validation. Here, we reported that S100 calcium binding protein A10 (S100A10) was screened out as a potential novel oncogene in HCC by integrated analysis of OEP000321 dataset and the Cancer Genome Atlas (TCGA)-Liver-Cancer data. Furthermore, S100A10 was highly expressed in HCC samples and observably associated with patients’ overall survival (OS). Overexpression of S100A10 in Hep3B and Huh-7 increased the cell proliferation, whereas downregulation of S100A10 in SK-Hep-1 and HepG2 cells reduced the cell viability to almost stop growing. In vivo tumor growth assays showed that S100A10-overexpressing Hep3B cells had a larger tumor size than control. Moreover, S100A10 overexpression promoted Hep3B cells migration and invasion, and S100A10 knockdown inhibited SK-Hep-1 cells migration and invasion, in vitro. In conclusion, it is demonstrated that S100A10 is a novel oncogene in HCC, indicating a possible novel therapeutic strategy of HCC.

Keywords: S100A10, proliferation, invasion, migration, hepatocellular carcinoma, in vivo


INTRODUCTION

Hepatocellular carcinoma (HCC) is a malignancy with the highest mortality rate worldwide (Wu et al., 2017). Due to the particular difficulty to diagnose HCC at an early stage, less than 20% of HCC patients have an opportunity to receive curative therapy. Even so, some of these patients still die from tumor recurrence mainly caused by metastasis, resulting in a bad prognosis (Wang et al., 2012; Osaki and Nishikawa, 2015). Therefore, it is of urgency to illustrate the mechanisms of HCC progression and metastasis in order to discover new therapeutic targets.

S100 calcium binding protein A10 (S100A10) belongs to the S100 family of proteins (Tantyo et al., 2019). As an active modulator of various biological functions, it can participate in a variety of protein interactions, including Annexin A2, DLC1, and B-FABP (Hedhli et al., 2012). The abnormal expression of S100A10 affects cell proliferation, apoptosis, angiogenesis, inflammation, and invasion. Numerous studies have confirmed that S100A10 is an oncogene, such as intestinal cancer (Suzuki et al., 2011), basal-type breast cancer (McKiernan et al., 2011), lung cancer (Katono et al., 2016), ovarian cancer (Wang et al., 2019b), pancreatic ductal cancer (Bydoun et al., 2018), and gastric cancer (El-Rifai et al., 2002). S100A10 has also been noted in HCC (Kittaka et al., 2008; Shan et al., 2013; Zhang et al., 2016; Lou et al., 2019). Although, group of Zhou demonstrated that miR-590-5p inhibited S100A10 expression by directly binding to its mRNA 3'UTR, the biological function of S100A10 was not involved (Shan et al., 2013). Herein, the functional role of S100A10 in HCC is currently unclear.

Herein, we initially re-analyzed the data from Fan’s study (Gao et al., 2019) and the Cancer Genome Atlas (TCGA) database, and S100A10 was identified as a novel oncogene promoting hepatocarcinogenesis. Furthermore, a series of functional assays were performed. It was demonstrated that S100A10 promoted the proliferation, invasion, and migration of HCC, indicating a possible novel therapeutic target of HCC.



MATERIALS AND METHODS


Schematic Workflow for Mining of Novel Oncogene in HCC

The expression profile (OEP000321)1 was downloaded from Fan’s study (Gao et al., 2019) to screen out the differentially expressed genes (DEGs) and the differentially expressed proteins (DEPs). Combined with TCGA-Liver-Cancer survival data,2 the survival-associated DEGs were identified as potential oncogenes for further validation (Supplementary Figure 1).



Screening of DEGs and DEPs

The raw data from OEP000321 were normalized using the R package “limma” before data mining (Supplementary Figures 2A,B). Then, the normalized data were analyzed to screen the DEGs and DEPs using the limma software package. Value of p < 0.05 with | log2 (fold change) | > 1 was statistically significant.



Identification of Survival-Associated Oncogenes

To identify the potential survival-associated oncogenes, we set a strict screening criterion. Briefly, the overlapping genes of DEGs and DEPs were screened out, and the mRNA-protein correlation > 0.45 of overlapping genes was selected for further study. Combined with TCGA survival data, the selected genes were separated into two groups based on p-value. Only the survival-associated (value of p < 0.05) selected genes were identified as candidate oncogenes.



Cell Lines and Cell Culture

Hepatocellular carcinoma cell lines Hep3B (HB-8064), Huh-7 (PTA-4583), SK-Hep-1 (HTB-52), and HepG2 (HB-8065) were bought from the American Tissue Culture Collection (ATCC). DMEM (Thermo Fisher Scientific, MA, United States) with 10% FBS (Thermo Fisher Scientific, MA, United States) was used to culture all the cell lines in a humidified incubator containing 5% CO2 at 37°C.



Construction of Plasmids, Transfection and Establishment of Stable Cell Line

The full-length cDNA of S100A10 obtained from YFP-human S100A10 expression plasmid (Addgene, #107200) was inserted into pcDNA3.1 to generate pcDNA3.1-S100A10. The siRNA sequence targeting S100A10 was purchased from Merck (EHU046811, Darmstadt, Germany). Transfection assay utilized Lipofectamine 3000 (Invitrogen, United States). To establish a stable S100A10 overexpression cell line for in vivo tumor growth assay, Hep3B cells were transfected with pcDNA3.1-S100A10 or pcDNA3.1 vector, respectively. About 48 h later, the supernatant was substituted with the fresh medium containing G418. Around 2 weeks later, the survival single clone was digested and re-seeded in 35-mm dishes. The siRNA sequences were listed as follows: Si-S100A10, 5'-GUGGGCUUCCAGAGCUUCU-3'; Si-Control, 5'-GCAGAAGGGAAAGAAGUAG-3'.



Real-Time Quantitative PCR

Total RNA got extraction using TRIzol reagent (Invitrogen, United States). Real-time quantitative PCR (RT-qPCR) applied SYBR® Premix Ex Taq Kit (TAKARA). Next, the 2-ΔΔCt method was employed to access the relative mRNA expression. The primers were listed as follows: S100A10-F: 5'-CACACCTTGATGCGTCCTCT-3' and S100A10-R: 5'-GGCAACCGGATGCAAACAAT-3'; β-actin-F: 5'-CTCCATCCTGGCCTCGCTGT-3' and β-actin-R: 5'-GCTGTCACCTTCACCGTTCC-3'.



Western Blotting

Cell lysates were obtained using RIPA buffer (Beyotime, China) and supplemented with loading buffer. The secreted protein in the conditioned medium was collected by ethanol precipitation. In short, 95% ethanol was added to the conditioned media and kept at 20°C overnight. The precipitated protein was collected with SDS loading buffer, and a standard western blot was performed immediately. Western blotting was performed using SDS-PAGE gel for protein separation and nitrocellulose membrane (Millipore, United States) for western blotting. The membrane was blocked with 5% nonfat milk (BD Biosciences, United States) in Tris buffered saline (TBS), and incubated with primary antibodies diluted in TBS containing 1% bovine serum albumin at 4°C overnight. The Odyssey imaging system (LI-COR Biosciences, United States) was used to detect the bound antibody, and the secondary antibody was labeled with DyLight fluorescent dye. The primary antibodies were anti-S100A10 (1:2,500, GTX100697, GeneTex) and anti-β-actin (1:5,000, A5316, Sigma).



Cell Proliferation Assay

Cells were seeded into 96-well plates at a density of 1 × 103 cells per well in triplicate. Cell Counting kit 8 (CCK-8, Dojindo, Kumamoto, Japan) was used to estimate cell growth. The specific operation was as the manufacturer’s instructions. The absorbance was selected at 450 nm using a spectrophotometer (Bio-Rad, CA).



In vivo Tumor Growth Assays

NOD/SCID mice (6 weeks) got bought from the Animal Center of Shanghai (Shanghai SLAC Laboratory Animal, China). All experimental procedures were performed according to the Institutional Animal Ethical Committee of Longhua Hospital. Stable S100A10 overexpression and the negative control (pcDNA3.1) Hep3B cells (5 × 106 cells/animal) were injected subcutaneously into nude mice (four mice/group) to produce implanted tumors. Tumor volumes were calculated as follows: volume = (the larger diameter) × (the smaller diameter)2/2 (Qin et al., 2019). Mice were sacrificed by CO2 asphyxiation 54 days later. Tumor weight and volume were measured, respectively.



Cell Migration and Invasion Assays

For migration assays, HCC cells were plated on membranes with 8.0 μm pores. For invasion assays, HCC cells were planted in Matrigel-coated chambers (Corning Incorporated, Corning, NY). Adhered cells were fixed and stained with 0.1% crystal violet for 1 min.



Statistical Analysis

Statistical analyses were performed with Graphpad 8.2.1 (San Diego, United States). Data from three independent experiments were expressed as the mean ± SD. We used chi-square test or Fisher’s exact test to dissect categorical data. Student t-tests were used to evaluate comparisons between the two groups. Survival curves were made a comparison by a log-rank test. Value of p less than 0.05 was seen as statistically significant.




RESULTS


S100A10 Is Identified as a Potential Oncogene in HCC

To explore the novel oncogenes in HCC, we re-analyzed the gene expression profile and the protein expression profile (OEP000321) obtained from Fan’s study (Gao et al., 2019). A total of 430 DEGs and 1,271 DEPs were identified between HCC tumor samples and non-tumor samples (Figure 1A). Furthermore, the 376 overlapping genes with mRNA-protein correlation > 0.45 were selected as candidate genes (Figure 1B). Combined with TCGA survival data, 167 survival-associated genes (p < 0.05) were screened out, including 46 upregulated genes, which were regarded as potential oncogenes in HCC (Figure 1C). Among the 46 selected genes, many genes have been previously reported as oncogenes in HCC, such as AKR1B10 (Ye et al., 2019), ASNS (Zhang et al., 2013), BCAT1 (Ji et al., 2019), and so on. Moreover, we found a S100 protein family member, S100A10 was identified in our analysis. Currently, there are only four studies that noted S100A10 in HCC, none of which report the functional role of S100A10 in HCC.
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FIGURE 1. S100 calcium binding protein A10 (S100A10) is identified as a potential oncogene in hepatocellular carcinoma (HCC). (A) Volcano plot of the differentially expressed genes (DEGs). The red dots were increasing genes, and green dots were reducing genes in HCC tumor samples, respectively. (B) Identification of potential oncogene in HCC. Venn diagram of DEGs and differentially expressed proteins (DEPs) with miRNA-protein correlation > 0.45. Pie chart of 376 selected genes, including 167 (46 upregulated and 121 downregulated in HCC) survival-associated genes and 209 non-survival-associated genes. (C) Heat map of the 46 potential oncogenes.




S100A10 Is Overexpressed in HCC and Correlated With Poor Prognosis

Based on the analytic results, we analyzed S100A10 data in HCC using OEP000321. It was demonstrated that the expression of S100A10 was significantly higher in HCC samples, but was not significantly associated with overall survival (OS; Figures 2A,B). At the gene expression level, a similar result was obtained by analyzing HCC data from TCGA (Figure 2C). Unlike the OS results in OEP000321, high expressions of S100A10 were significantly associated with worse OS in TCGA (Figure 2D). These results above imply that S100A10 is an oncogene in HCC.
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FIGURE 2. S100 calcium binding protein A10 is upregulated in HCC and correlated with poor prognosis. (A) S100A10 expression in HCC tissues and adjacent normal tissues. (B) Correlations between S100A10 expression and the overall survival (OS) of HCC patients. (C) S100A10 expression based on the Cancer Genome Atlas (TCGA) cohort. (D) Correlations between S100A10 expression and the OS based on TCGA cohort. **p < 0.01.




S100A10 Advances HCC Growth in vitro and in vivo

To verify our findings above, we first detected the expression of S100A10 in SK-Hep-1, Hep3B, Huh-7, and HepG2 cell lines at mRNA and protein levels. We found that S100A10 expressed at a low level in Hep3B and Huh-7, while the expressions of S100A10 in SK-Hep-1 and HepG2 were higher (Figures 3A,B). Overexpression of S100A10 assays was performed in Hep3B and Huh-7. Meanwhile, knockdown of S100A10 assays was performed in SK-Hep-1 and HepG2 (Figure 3C). After overexpressing S100A10, Hep3B, and Huh-7 cell proliferation was increased (Figure 3D), whereas knockdown of S100A10 suppressed SK-Hep-1 and HepG2 cell proliferation (Figure 3E). Of note, we found that SK-Hep-1 and HepG2 almost stopped growing when S100A10 was knocked down (Figure 3E). In addition to in vitro experiments, we also examined the influence of S100A10 on tumorigenesis in vivo. Our preliminary experimental results showed that the S100A10-knockdown SK-Hep-1 and HepG2 cells failed in tumorigenesis, due to the extremely low growth rate. The stable S100A10-overexpressing Hep3B cells and vector control Hep3B cells got injected to form subcutaneous tumors in nude mice. The data proved S100A10 expression was positively related to subcutaneous tumor size (Figure 3F). Collectively, it is demonstrated that S100A10 promotes HCC growth in vitro and in vivo.
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FIGURE 3. S100 calcium binding protein A10 advances HCC growth in vitro and in vivo. (A) The mRNA level of S100A10 in HCC cell lines (Hep3B, Huh-7, SK-Hep-1, and HepG2). (B) The protein level of S100A10 in HCC cell lines. (C) The level of S100A10 in treated HCC cell lines were accessed by western blotting. (D) Cell Counting kit 8 (CCK-8) indicated overexpressing S100A10 enhanced the proliferation of Hep3B, Huh-7 cells. (E) Knocking down S100A10 blocked SK-Hep-1 and HepG2 cell growth. (F) Overexpressing S100A10 enhanced the subcutaneous growth of Huh-7 cells in nude mice. *p < 0.05; **p < 0.01.




S100A10 Promoted HCC Migration and Invasion

Due to the correlation between S100A10 expression and OS, we hypothesized that S100A10 played a critical role in HCC metastasis. Transwell assays showed that S100A10 overexpression could increase Hep3B cell migration and invasion (Figure 4A). On the contrary, when the expression of S100A10 was knocked down in SK-Hep-1 cells, the migration and invasion were reduced (Figure 4B). These results illustrate that S100A10 works as a pro-metastasis protein in HCC. Currently, the mechanism underlying the pro-metastatic ability of Sl00A10 is unknown. We tend toward the explanation that S100A10 HCC metastasis directly affecting MMP regulation to influence plasmin generation (Miller et al., 2017).
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FIGURE 4. S100 calcium binding protein A10 promoted cell migration and invasion. (A) Overexpressing S100A10 enhanced the migration and invasion of Hep3B cells. (B) Knocked S100A10 reduced the migration and invasion of SK-Hep-1 cells. *p < 0.05; **p < 0.01.





DISCUSSION

Hepatocellular carcinoma has been considered as the sixth commonest solid tumor and the third most lethal malignancy worldwide (Osaki and Nishikawa, 2015). Recently, with the improvement of early diagnosis, effective monitoring treatments, the OS of HCC patients has increased (Kudo, 2017). However, the long-term survival rate is still unsatisfactory because of the death caused by recurrence and metastasis (Zhu et al., 2011). So, it is imperative to uncover the novel pathogenic mechanism, particularly to identify novel oncogenes for a better understanding of this disease.

S100 protein is a Ca2+ binding regulatory protein that is involved in cell cycle progression, cell differentiation, and cytoskeleton membrane interactions (Bresnick, 2018). Previous studies have reported the aberrant expression of S100 proteins in cancer (Tong et al., 2014; Brenner and Bruserud, 2018) and immune-related disease (Manolakis et al., 2011; Yammani, 2012). As a S100 protein (Bydoun and Waisman, 2014; Holthenrich and Gerke, 2018), S100A10 has increased expressions in breast cancer (McKiernan et al., 2011), lung cancer (Katono et al., 2016), gastric cancer (El-Rifai et al., 2002), and pancreatic ductal cancer (Bydoun et al., 2018).

Nevertheless, the expression of S100A10 and its biological functions have not been elucidated in HCC. As the only research of S100A10 in HCC, Zhou reported that miR-590-5p could directly bind the 3'-UTR of S100A10 mRNA to reduce its expression, thereby inhibiting the growth of HepG2 cells (Shan et al., 2013). Unfortunately, this study just demonstrated the targeting of S100A10 by miR-590-5p, without the biological function of S100A10. To make up the functional blank, we performed a series of analysis and validation experiments and reported a comprehensive study on S100A10 in HCC for the first time. Herein, we found that the levels of S100A10 were substantially higher in HCC samples than that in normal samples. Additionally, we also found that the expression of S100A10 was negatively associated with the OS in TCGA survival data. Strangely, this result is not consistent with the result obtained from Fan’s data (Figures 2A,B). This might be due to the incomplete follow-up data. Furthermore, we explored the role of S100A10 in HCC cell growth.

Previous studies reported that S100A10 accumulation was involved in gastric cancer cell invasion and migration through the succinyltransferase CPT1A and SIRT5-mediated desuccinylation (Wang et al., 2019a). Additionally, S100A10 also regulated the metastasis of lung cancer cells by the interaction with DLC1 (Yang et al., 2011). Recently, Cui’s group reported that S100A10 was an oncogene in ovarian cancer by promoting tumor metastasis, and reduced sensitivity to carboplatin (Wang et al., 2019b). In our study, we found that S100A10 promoted the migration and invasion of Hep3B cells. When S100A10 got knocked down in SK-Hep-1 cells, the migrating and invading were reduced.

This study has some limitations. First, we should detect the expression level of S100A10 in normal liver cell lines, and further evaluate the expression level of S100A10 in HCC. Second, we need to collect clinical samples to explore the correlation between S100A10 expression and clinical parameters (including clinical stage, age, and survival time). Finally, the mechanisms in the cancer-promoting activity of S100A10 are still unknown. Therefore, further studies are required for this novel oncogene in HCC.

To sum up, to our knowledge, we reported for the first time the functional role of S100A10 in HCC. This research indicates the relevance between S100A10 and HCC patient’s OS. A series of functional analyses showed that S100A10 promoted the proliferation, invasion, and migration of HCC, indicating that it may be a new therapeutic target for HCC. This research emphasizes the oncogene role of S100A10, deepening our understanding of S100A10 in hepatocarcinogenesis.
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The emergence of high-throughput RNA-seq data has offered unprecedented opportunities for cancer diagnosis. However, capturing biological data with highly nonlinear and complex associations by most existing approaches for cancer diagnosis has been challenging. In this study, we propose a novel hierarchical feature selection and second learning probability error ensemble model (named HFS-SLPEE) for precision cancer diagnosis. Specifically, we first integrated protein-coding gene expression profiles, non-coding RNA expression profiles, and DNA methylation data to provide rich information; afterward, we designed a novel hierarchical feature selection method, which takes the CpG-gene biological associations into account and can select a compact set of superior features; next, we used four individual classifiers with significant differences and apparent complementary to build the heterogeneous classifiers; lastly, we developed a second learning probability error ensemble model called SLPEE to thoroughly learn the new data consisting of classifiers-predicted class probability values and the actual label, further realizing the self-correction of the diagnosis errors. Benchmarking comparisons on TCGA showed that HFS-SLPEE performs better than the state-of-the-art approaches. Moreover, we analyzed in-depth 10 groups of selected features and found several novel HFS-SLPEE-predicted epigenomics and epigenetics biomarkers for breast invasive carcinoma (BRCA) (e.g., TSLP and ADAMTS9-AS2), lung adenocarcinoma (LUAD) (e.g., HBA1 and CTB-43E15.1), and kidney renal clear cell carcinoma (KIRC) (e.g., IRX2 and BMPR1B-AS1).

Keywords: precision cancer diagnosis, hierarchical feature selection, ensemble model, transcriptome profiling, DNA methylation, biomarker


INTRODUCTION

Cancer has the characteristics of concealed onset, low cure rate, and high mortality. Traditional surgery, radiotherapy, and chemotherapy have limited effects on patients with advanced cancer. The cancer diagnosis is currently a hot research topic. With the acquisition of numerous gene expression profiles in various tissue samples, it is possible to perform cancer diagnosis at the molecular level. Early biology supposed that cancer is closely related to the mutations of protein-coding genes (Stratton et al., 2009). Thus, mass studies confirmed the feasibility of cancer diagnosis based on messenger RNA (mRNA) expression profiles, achieving some good results (Ben-Dor et al., 2000; Furey et al., 2000; Li et al., 2001). Recently, biological studies have found that without changing the sequence of the protein-coding genome, there are a lot of epigenetic variations involving multiaspects such as non-coding RNA (ncRNA) and DNA methylation in cancer (Baylin and Ohm, 2006; Luo et al., 2016; Xiao et al., 2018a). Numerous studies utilized epigenetic data such as microRNA (miRNA) (Saha et al., 2015), long non-coding RNA (lncRNA) expression profiles (Zhang et al., 2018), and DNA methylation (Al-Juniad et al., 2018) for cancer diagnosis and subtype classification, obtaining some achievements (Raweh et al., 2018; Tang et al., 2018). However, the latest biological research indicates that multibiomarkers can improve the accuracy and robustness of cancer diagnosis (Modelska et al., 2015). Zhao et al. (2018) integrated protein-coding gene, miRNA, and lncRNA expression profiles for lung adenocarcinoma (LUAD) diagnosis. Alghunaim and Al-Baity (2019) fused protein-coding gene expression profiles and DNA methylation for breast invasive carcinoma (BRCA) diagnosis. Classical genetics and epigenetics are two separate mechanisms participating in carcinogenesis (Network, 2012). Additionally, epigenetics data such as ncRNA and DNA methylation are not independent of each other, and they often have synergistic effects (Xu et al., 2018). Therefore, only using protein-coding gene expression profiles and/or ncRNA expression profiles or DNA methylation data leads to the lack of information and prevents the high-performance and robustness of cancer diagnosis from being significantly improved.

The emergence of large-scale RNA-seq data and DNA methylation data has offered unprecedented opportunities for developing cancer diagnosis approaches. However, integrating transcriptome profiling (i.e., protein-coding gene and ncRNA expression profiles) and DNA methylation data for cancer diagnosis faces challenges. Model et al. (2001); Ang et al. (2015), Gao et al. (2017); Lu et al. (2017), and Sun et al. (2019) pointed out that transcriptome profiling and DNA methylation data are featured with high dimensionality, high redundancy, and complex interaction associations. To solve the problem of high dimensionality, feature scoring functions such as differences and distances between normal and tumor samples, correlation coefficients, and information metrics between features and categories are commonly applied for filtering feature (Lazar et al., 2012). For example, Yoon and Lim (2013) used t-test and Euclidean distance, and Cao et al. (2015) adopted the fold-change (FC) and false discovery rate (FDR) for filtering feature. These filter methods efficiently remove irrelevant features to reduce dimensions, which has the characteristics of strong universality and low complexity and are suitable for processing high-dimension data. However, these filter methods are from the perspective of a single feature, without considering the high redundancy between features. Subsequently, Peng et al. (2005) proposed the minimal redundancy and maximal relevance criterion, named mRMR, which based on the maximum correlation between features and categories and the minimum redundancy between features in feature subsets. Lyu et al. (2017) designed LLRFCscore+ algorithm, which first sorts features in descending order via LLRFC criteria and then use the dynamic correlation analysis strategy to eliminate redundant features further. Raweh et al. (2018) developed a hybrid feature selection algorithm with a filtering method and a new feature extraction algorithm. Based on informatics theory, these methods can effectively remove redundancy for single-type data. However, these methods calculated the many-to-many modification associations between DNA methylation CpG sites and genes as redundant correlations. Thus, feature selection methods for transcriptome profiling and DNA methylation data are necessary to study further.

The diagnosis models are also essential for cancer diagnosis. Due to the diversity of classifiers, ensemble models tended to have better performance than single models (Dietterich, 2000a; Yang et al., 2010; Zhou and Jin, 2017). Generally speaking, there are three common types of ensemble strategies in the cancer diagnosis field, namely, the voting method, average method, and learning method. For example, Huang et al. (2017) proposed an support vector machine (SVM) ensemble model, which constructed SVM base classifiers with different kernel functions based on bagging and boosting sampling and used majority voting and weighted average ensemble strategies. The SVM ensemble model solves the problems of easy fitting and limited generalization of a single model, but it is limited to the same type classifiers and cannot fully guarantee the difference between classifiers. Cho and Won (2003) trained four different types of individual classifiers and obtained the final ensemble model by majority voting method. This method takes advantage of the complementarity among the different individual classifiers and breaks through the limitation of the application scope of single classifiers. Although it is relatively simple to integrate homogeneous and heterogeneous classifiers by the voting and average methods, it cannot ensemble the nonlinear relationship between classifiers. To further ameliorate the voting and average methods, Xiao et al. (2018b) utilized the stacking learning ensemble strategy, which based on cross-validation to train five different classifiers and put the training results of the classifiers as the input of a deep learning algorithm. The learning ensemble strategy effectively integrate the nonlinear relationships between the heterogeneous classifiers. However, the deep learning algorithm highly depends on the size of samples, whose performance needs to be enhanced by a large increase in the samples of data. Therefore, these ensemble methods show a limited performance for precise cancer diagnosis.

To address the above limitations, we proposed a novel hierarchical feature selection and second learning probability error ensemble model, called HFS-SLPEE, for precision cancer diagnosis. At the dataset level, we integrated protein-coding genes expression profiles, ncRNAs expression profiles, and DNA methylation data to construct a triple dataset that provides a multiview perspective and diverse information. At the feature selection level, due to the significant differences in dimensions, abundance, and association relationships of the triple dataset, we designed a novel hierarchical feature selection algorithm. In stage 1, we developed a CpG sites aggregation feature selection algorithm, termed CSAFS, to non-destructively store the biological associations between ultra-high dimensions DNA methylation CpG sites and genes and rapidly reduce the nearly 500,000 dimensions DNA methylation data to nearly 30,000 dimensions methylated gene data. In stage 2 feature selection, we used different thresholds to further select significantly differentially features via FC and FDR. In stage 3 feature selection, we adopted the mRMR algorithm to select a compact set of superior features. At the model diagnosis level, we developed a second learning probability error ensemble model, named SLPEE. Specifically, we selected four individual classifiers with significant differences and apparent complementary effects to build heterogeneous classifiers and then obtain the classifiers-predicted class probability predictions. To thoroughly learn the nonlinear data, SLPEE integrated the classifiers-predicted class probability predictions and the actual class label in the validating set to construct a new training set, which implicitly included the probability error of each classifier. Furthermore, we utilized eXtreme Gradient Boosting (Xgboost) as ensemble learner to secondly learn the new training set. Via training on three cancers in The Cancer Genome Atlas (TCGA) based on 10-fold cross-validation, HFS-SLPEE achieved 100% multi-indicators of LUAD and kidney renal clear cell carcinoma (KIRC), and obtained 99.65% accuracy, 99.61% sensitivity, 100% specificity, and 99.81% F1-score of BRCA, outperforming previously published approaches. The results indicate that HFS-SLPEE is an accurate and robust approach for cancer diagnosis.

Theoretically, the three contributions of this work are as follows: (i) we integrate protein-coding gene expression profiles, ncRNA expression profiles, and DNA methylation data to solve the problem of lacking information on cancer diagnosis; (ii) we take the biological complex associations into account and develop a novel hierarchical feature selection approach, which integrates the proposed CSAFS, FC&FDR, mRMR, to efficiently select a group of superior and compact features; and (iii) we design an SLPEE model, which makes predictions by secondly learning the error rules between the predicted class probability values of the heterogeneous classifiers and the real values to realize the self-correction of the diagnosis errors via the nonlinear ensemble of heterogeneous classifiers.



MATERIALS AND METHODS

As shown in Figure 1, HFS-SLPEE consists of four parts: (i) the construction of a triple dataset, (ii) the novel hierarchical feature selection method, (iii) heterogeneous classifiers, and (iv) SLPEE. First, we integrated three biological data including protein-coding gene expression profiles, ncRNA expression profiles, and DNA methylation data to construct a triple dataset, which contains the rich information. Afterward, we hierarchically selected features for the triple dataset. In the first-stage feature selection, we designed the CSAFS algorithm, which could quickly reduce nearly 500,000 dimensions of DNA methylation data to tens of thousands of dimensions and non-destructively preserved the biological complex modification associations between DNA methylation CpG sites and genes. In the second-stage feature selection, we adopted the FC and FDR to select the features with the highest relevance to the target class. In the third-stage feature selection, we applied the mRMR algorithm to select a compact set of superior features with minimal redundancy and maximal relevance. Next, we trained four heterogeneous classifiers in the training set with the features selected via (ii) and optimize the parameters of heterogeneous classifiers via the grid search algorithm in the validating set. Finally, we developed the SLPEE model to ensemble the class probability predictions of the heterogeneous classifiers under the optimal parameters. SLPEE was utilized to predict the testing set in each fold and obtained the novel informative biomarkers.
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FIGURE 1. A flowchart of HFS-SLPEE. We first integrate the protein-coding gene expression profiles, non-coding RNA expression profiles, and DNA methylation data to get rich information. Afterward, considering the CpG-gene biological associations, we design a novel hierarchical feature selection method to get a compact group of superior features. Next, we train four heterogeneous classifiers in the training set with the selected features and optimize the parameters of heterogeneous classifiers via the grid search algorithm in the validating set. Finally, we develop a second learning probability error ensemble model (named SLPEE) to ensemble the class probability predictions of the heterogeneous classifiers under the optimal parameters. SLPEE is utilized to predict the testing set in each fold. HFS-SLPEE is a precision cancer diagnosis framework, which is powerful tool for precision cancer diagnosis.



Construction of the Triple Dataset

The central dogma of classical genetics indicated that genetic information was stored in protein-coding genes (Crick et al., 1961). It had been thought that the formation of tumors is due to the mutations of protein-coding genes. In recent years, plenty of evidence showed that epigenetics also played an essential role in tumor progression (Xu et al., 2019, 2020; Meng et al., 2020). Epigenetics did not involve the DNA sequence changes but changed the structure of chromosomes via different mechanisms that affected the activity of surrounding genes to induce cancer. These known mechanisms commonly included the regulation of ncRNA, DNA methylation, and histone modification, but there are many mechanisms that are unknown so far. Herein, we integrated protein-coding gene expression profiles, ncRNA expression profiles, and DNA methylation data to construct a triple dataset, which contained rich information and provided a multiview perspective for precision cancer diagnosis.



The Novel Hierarchical Feature Selection

The triple dataset exhibits complex characteristics: (i) There were many-to-many complex modification associations between methylation CpG sites and genes; (ii) DNA methylation data were nearly 500,000 dimensions, while the transcriptome profiling were nearly 60,000 dimensions; (iii) there were many noise and redundancy features, and only a small part of the features was positively related to the two phenotypes as tumor and normal tissues; and (iv) the expression abundance of the transcriptome profiling was significantly different from the DNA methylation data. We proposed a novel hierarchical feature selection algorithm against the complex characteristics of the triple dataset.


Stage 1: CpG Sites Aggregation Feature Selection

In this study, we used Illumina Human Methylation 450 array methylation chip data, which measures the level of methylation at known CpG sites as follows:
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where M denotes the methylated array intensity, M+U denotes the unmethylated array intensity, and β represents the ratio between the methylated array intensity and the total array intensity, ranging from 0 to 1. A CpG site could modify multigenes, while a gene might be related to multi CpG sites. To rapidly reduce the dimensions of the ultra-high dimensionality DNA methylation data and preserve the many-to-many complex biological associations between CpG sites and genes in advance, we proposed a novel CpG sites aggregation feature selection method, called CSAFS, as the stage 1 feature selection algorithm to obtain methylated genes. Specifically, we defined the methylated genes as MGgj, which represents the arithmetic mean value of the methylation level of all CpG sites related to the gene gj. The MGgj is calculated as follows:

[image: image]

where P denotes the dimensions of the DNA methylation data, P = 485,577, CpGi(i = 1, 2…,P) represents the level of methylation at the known ith CpG site, and [image: image] denotes the aggregate value of all relevant CpG sites of the gene gj.



Stage 2: FC and FDR

The dimensions of methylated genes data and protein-coding gene and ncRNA expression profiles belonged to tens of thousands of dimensions after the stage 1 feature selection. However, the dimensions were still relatively high. Therefore, we utilized FC and FDR statistical methods to further perform overall rapid dimension reduction.


Fold Change

FC is a well-known method to screen the differentially expressed genes of microarray data (DeRisi et al., 1996; Schena et al., 1996), which measures the difference through calculating the ratio of the mean value of two groups data (DeRisi et al., 1997). The FC value of the gth gene is calculated as follows:
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where T is the size of tumor samples, N is the size of normal samples, [image: image] is the gth gene expression value of the tth tumor sample, [image: image] is the gth gene expression value of the nth normal sample. Similarly, the FC values of methylated genes are obtained by calculating the ratio of the mean methylation level of methylated genes in normal and tumor samples. In this study, the thresholds for screening significantly differentially methylated genes and expressed genes are, respectively, (|log2FC| > 0.5) and (FDR <  0.05) and (|log2FC| > 3) and (FDR <  0.05). Although the differential features selected by FC method have strong repeatability, the false-positive results rate is relatively high in the absence of false-positive control (McCarthy and Smyth, 2009).



False Discovery Rate

Without any control, the probability of making the type I error will increase rapidly with the number of hypothesis tests. The FDR could test as many features as possible and effectively control the overall false-positive rate within an acceptable range (Norris and Kahn, 2006). In this study, we applied the Benjamini–Hochberg method to perform multihypothesis test FDR correction on the significant p-value. We adopted FDR < 0.05 as the threshold of screening the significant difference feature.

In the stage 3 feature selection, we used FC and FDR as the stage 2 feature selection algorithm to balance the repeatability and false positive rate of the differential features. To test whether methylated genes and transcriptome profiling are significantly different between normal and tumor samples, we performed heatmap analysis on the differentially methylated genes of BRCA with 892 samples after the stage 2 feature selection (Figure 2A). We found that the level of the methylated gene in each normal or tumor samples was similar, and differentially methylated genes after stage 2 feature selection showed significant differences in normal and tumor tissues. Similarly, we implemented the volcano plot analysis on the transcriptome profiling of BRCA with 1,211 samples after the stage 2 feature selection (Figure 2B). Figure 2B indicates that the joint screening of |log2FC| and FDR not only ensured the difference of features but also effectively controlled the overall false-positive rate.


[image: image]

FIGURE 2. Heatmap analysis of differentially methylated genes and volcano plot analysis of differentially expression genes for the BRCA dataset. In panel (A), the row represents the methylation level of the genes, and the column represents the normal and tumor samples. Dark red shades indicate the higher level of methylation, and dark blue shades indicate the lower level of methylation. Color keys indicate the intensity associated with normalized beta values. In panel (B), the x-axis represents the log2FC, and the y-axis represents −log10(FDR), and each dot represents a gene. The significantly upregulated genes are highlighted in red, and the significantly downregulated genes in blue.




Stage 3: mRMR

We adopted the mRMR algorithm (Peng et al., 2005) as the stage 3 feature selection, which could remove redundant features on the premise of preserving the regulation, modification, and collaborative associations in the triple dataset to the utmost extent. The mRMR algorithm maximizes the relevance between features xi and categorical target variables t while minimizing the redundancy between features by solving the equation as follows:
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where I(;;) is the mutual information of the two random variables, S is a feature subset, and |S| is the number of features in S. I(;) is defined in terms of the probabilistic density functions p(x),p(y), and p(x,y):
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The input data of the mRMR algorithm needed to be discrete. We defined the discrete function as follows:

[image: image]

where δj represents the standard deviation of the jth feature, [image: image] is the average value of the jth feature, and k is the threshold parameter. In this study, we set k = 0.5, and the dataset has been discretized into three states{−2,0,2}.



Heterogeneous Classifiers

After the hierarchical feature selection, we used four different models, i.e., SVM, decision tree (DT), random forest (RF), and AdaBoost, to capture the inherent information of the data with the characteristics of low dimension, nonlinear, imbalance class, and singular values. The large differences and obvious complementarity of the four models are as follows. First, SVM mapped data to higher dimensional space by kernel function and found the best separation hyperplane to maximize the margin between two types of training samples (Noble, 2006). SVM is good at solving the problems of low-dimension and nonlinear inseparable data. However, SVM is sensitive to the singular value, and its performance mainly depends on the selection of kernel function and related parameters. Second, DT was a tree structure, starting from the root node and recursively constructing from top to bottom. Non-leaf nodes were attribute features, with each branch representing the output of the judgment result, and leaf nodes were categories (Quinlan, 1986; Safavian and Landgrebe, 1991). DT was suitable for dealing with all kinds of discrete data. It has the characteristics of simple structure, strong interpretability, and few parameters. However, DT was biased toward the class with a large number of samples, was susceptible to singular values, and ignored the correlation between features (Breiman, 1996; Bauer and Kohavi, 1999; Dietterich, 2000b). Third, RF and AdaBoost were ensemble classifiers that used decision trees as individual classifiers. RF considered the correlation between features and had a high tolerance for singular values. However, if the training set of each tree was unbalanced in the process of random sampling, the performance would be very low on the small sample dataset (Breiman, 2001). Fourth, AdaBoost has certain adaptability for the unbalanced dataset, but it is sensitive to the abnormal samples.



Second Learning Probability Error Ensemble Model

Existing ensemble strategies could not fully integrate the nonlinear relationships between different classifiers and unbiasedly estimate the nonlinear change rules of the triple dataset. Thus, we proposed the SLPEE. First, we combined the class probability prediction values of the first-learning heterogeneous classifiers and the actual class labels of the validating set to form a new dataset, so the diagnosis errors of individual classifiers were implicit in the new dataset. Then, we conducted a second-learning on the new data set via Xgboost, which used the residual between the real value and the predicted value as the next iteration of the learning goal. Xgboost could effectively learn errors and had a strong ability of nonlinear fitting, self-learning, and self-correction (Chen and Guestrin, 2016). Algorithm 1 described the SLPEE in detail. D was the data matrix, y was the label set that has two labels {−1,1}, corresponding to the normal and tumor samples, h was the heterogeneous classifier, and E represented the SLPEE model. Lf was the learning set in the fth fold, Testf was the testing set in the fth fold, and Tfk represented the k-fold training set in the f-fold learning set.


Algorithm 1: The SLPEE based on F-fold CV.
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Datasets and Preprocessing

We downloaded the protein-coding gene expression profiles, non-coding RNA expression profiles, and DNA methylation data of BRCA, LUAD, and KIRC from the TCGA official website1. For the transcriptome profiling, the amount of gene expression is HTSeq-Counts, and the total dimension of protein-coding gene and ncRNA expression profiles is 60,244. For the DNA methylation data, we used Illumina Human Methylation 450 array methylation chip data. The chip has 485,577 probes, which can detect nearly 450,000 methylation CpG sites in the entire human genome, covering 96% of CpG islands. Based on the same sample ID, we integrated the protein-coding gene expression profiles, non-coding RNA expression profiles, and DNA methylation data to construct a triple dataset. The sample numbers of the original datasets for the three cancers are shown in Table 1.


TABLE 1. Summary of the original different datasets for three cancers.

[image: Table 1]We preprocessed the samples and data successively. First, due to the limitations of experiments conditions and manual operation, some metastatic samples are wrongly classified as primary tumor samples, resulting in one patient who may correspond to multiple tumor samples. For example, in the DNA methylation dataset of BRCA, patient TCGA-BH-A1ES corresponds to two tumor samples, of which TCGA-BH-A1ES-06A-12D-A244-05 is a metastatic sample. In this work, we kept the primary tumor sample and the solid tissue normal sample related to the study and excluded outliers. Second, we preprocessed the data, including removing duplicate features, removing features with severe missing values, and correcting the normalized data. For example, when the missing value of a feature accounts for 100% of the total sample size, we think that the missing feature is too serious and should be deleted. We used the normalizeBetweenArrays function of the limma package in R to correct the normalized data. The datasets after preprocessing of the three cancers are shown in Table 2.


TABLE 2. Summary of preprocessed datasets for three cancers.
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Parameter Settings

In order to reproduce all experimental results in our paper, we set the specific random seeds for BRCA, KIRC, and LUAD as 14, 14, 20, and the other parameters setting of three cancers were same. In the stage 3 feature selection, we assumed that the size of the optimal feature subset is n, which increased from 5 to 30 with a step of one. Our proposed model optimizes the parameters of individual classifiers via grid-search over a parameter grid. For DT, we used the default parameters. For SVM, we set the kernel function as RBF, C = {0.001, 0.01, 0.1}, and gamma = {1.0, 10.0, 100.0}. For RF, we set n_estimators = {50, 100}. For Xgboost and AdaBoost, we, respectively, set n_estimators = {100, 200, 300} and n_estimators = 50.



Performance Evaluation of HFS-SLPEE


Prediction of Cancer Diagnosis

In this work, we implemented 10-fold cross-validation (CV) on three cancers in TCGA to evaluate the prediction performance of HFS-SLPEE. In the 10-fold CV experiment, the triple dataset was randomly divided into 10-folds with equal size, 9 of which were taken as the learning set, and the remaining 1-fold was the testing set. The process is repeated 10 times until all samples are predicted once. In each learning set, we divided the learning set into K disjoint subsets by performing K-fold CV again, of which K−1 subsets were the training set and the remaining one subset was the validating set.



Evaluation Metrics

We considered that the primary tumor was a positive class, and the solid normal tissue was the negative class. There were four results of cancer diagnosis in the testing set: true positive (TP), true negative (TN), false negative (FN), and false positive (FP). Among the results, TP represented the number of correctly classified tumor tissue samples, TN denoted the number of correctly classified normal tissue samples, FN indicated the number of samples predicted to be normal tissue but actually tumor tissue, and FP stood for the number of samples predicted to be tumor tissue but actually normal tissue. Therefore, accuracy, sensitivity/recall, specificity, and F1-score were defined as follows:
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RESULTS


Performance of HFS-SLPEE Based on the Cross-Validation

To verify whether HFS-SLPEE can generalize the diagnosis of different cancers, we researched on three high-incidence cancers BRCA, LUAD, and KIRC. We recorded the accuracy corresponding to the feature variable n (see Figure 3). It indicates that as n continues to increase, the accuracy increases; when n = 21, n = 12, n = 16, the accuracy reached the peak value and then show a downward trend, which means that the added features contain more noise than information. In this study, we take the features subset when the highest point is reached at first as the optimal. That is, n = 21, n = 12, n = 16, respectively, as the number of features finally selected for the BRCA, LUAD, and KIRC.


[image: image]

FIGURE 3. The relationship curves of the features and the accuracy of three cancers.


The predicted results of HFS-SLPEE for three cancers in TCGA are shown in Table 3. We used 21 key features to make BRCA achieve 99.65% accuracy, 99.61% sensitivity, 100% specificity, and 99.81% F1-score, and only three samples were misdiagnosed. For LUAD and KIRC, we selected 12 and 16 key features to achieve four-indicator 100% precision diagnosis. The results show that HFS-SLPEE achieves an excellent performance and has the generalization ability for three high-incidence cancers diagnosis.


TABLE 3. The diagnosis results of three cancer by HFS-SLPEE (%).
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Performance of HFS-SLPEE by Ablation Analysis

Our proposed approach mainly consists of three parts, namely, the triple dataset (TDS), the novel hierarchical feature selection algorithm, and SLPEE model. To examine the contribution of each component, we compared the proposed approach with several combinations.

First, we compared the triple dataset with the other seven datasets, including mRNA, miRNA, lncRNA, ncRNA, DNA methylation, transcriptomic, and mRNA and DNA methylation, to inspect the contribution of the triple dataset. We found that the triple dataset achieved the best performance compared with the other seven datasets (see Figures 4A,B). Specifically, miRNA, mRNA, ncRNA, and DNA methylation are all single-type datasets with no absolute dominance, and their contribution rates in different cancers and diagnostic performances are different. The duplex-type datasets (transcriptomic, mRNA, and DNA methylation) have improved performance in many cases compared with the contained single-type dataset. The results indicated that the triple dataset contained more comprehensive and useful information and provided a robust data support.


[image: image]

FIGURE 4. The comparison results of different datasets. (A) The histogram of comparison results. (B) The annotated heatmap of comparison results. As is shown, compared with the other seven datasets, the integrated data of the protein-coding gene expression profiles, non-coding RNA expression profiles, and DNA methylation can improve the performance of the model.


Next, to examine the contribution of CSAFS, which saves the information of all methylation CpG sites related to genes in an aggregated form, we compared the hierarchical feature selection algorithm without and with CSAFS. Owing to the BRCA with the largest number of samples among three cancers, we take BRCA as an example, when the feature variable n is 21, to compare the performance of diagnosis and the time of the feature selection process. On the one hand, the experimental results showed that the hierarchical feature selection with CSAFS achieved better performance, and the accuracy, sensitivity, specificity, and F1-score of BRCA are improved by 0.23, 0.12, 1.2, and 0.13%, respectively. In the final feature subset selected by the hierarchical feature selection with CSAFS, we screened out 11 methylated genes such as WT1-AS and AL513523.2, accounting for about 30% of the final feature subset. On the other hand, the time consumed by the hierarchical feature selection without and with CSAFS is 2.6 and 0.15 h, respectively. It indicated that CSAFS, as the stage 1 feature selection approach, is capable of non-destructively preserving the complex and essential many-to-many modification associations between methylation CpG sites and genes and improving the efficiency of cancer diagnosis.

Finally, to verify the contribution of SLPEE further, we compared the accuracy of SLPEE with DT, RF, SVM, and Adaboost by using the triple dataset and the proposed hierarchical feature selection algorithm that traversed each feature in the range of 5–30. The results showed that the four models have different accuracies for different cancers with different feature numbers and have significant differences and complementary effects (see Figure 5). We found that the SLPEE accounts for 61.5, 88.5, and 92.3% with higher accuracy than the other four models for BRCA, KIRC, and LUAD datasets, respectively. That is, the accuracies of SLPEE model for three cancers are generally better than the other four models, which fully reveals that SLPEE absorbs the advantages of four models and overcomes their respective shortcomings. SLPEE breaks through the limitation of the single model with a limited scope of application and enhances the generalization of different features and different types of cancer diagnoses.
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FIGURE 5. The comparison results of SLPEE and the other four models.




Comparison With the Published State-of-the-Art Research

We compared the performance of HFS-SLPEE with state-of-the-art research (Raweh et al., 2018; Xiao et al., 2018b; Alghunaim and Al-Baity, 2019; see Table 4). Table 4 shows that most of the latest studies generally gave a single performance indicator and at most three performance indicators. In this study, we presented four performance indicators to comprehensively measure the performance of HFS. Alghunaim and Al-Baity (2019) used protein-coding gene expression profiles, DNA methylation, and their integrated data in TCGA and treated all data as features with SVM, DT, and RF three models for BRCA diagnosis. Comparing with Alghunaim and Al-Baity (2019), Table 4 shows that the accuracy and sensitivity of the HFS-SLPEE based on the protein-coding gene expression profiles and DNA methylation data are improved by 1.97 and 2.54%, respectively. The triple dataset was an effective solution to the shortcomings of the duplex dataset, which not only achieved the same 100% specificity but also improved the accuracy and sensitivity by 2.32 and 2.79%, respectively. Raweh et al. (2018) proposed a hybrid feature selection algorithm based on the DNA methylation data and applied naive base, RF, and SVM for BRCA, LUAD, and KIRC diagnosis. Comparing with Raweh et al. (2018), we found that HFS-SLPEE steadily improved the accuracy and F1-score by 0.03–0.35% and 0.29–4.21% for the three cancers, respectively. Xiao et al. (2018b) utilized the DESeq feature selection method to screen for the differentially expressed genes and adopted a deep neural network to learn the predictions of KNN, SVM, DT, RF, and GBDT. It was indicated that HFS-SLPEE improved the accuracy by 0.76%, comparing with the results of Xiao et al. (2018b). In summary, the proposed approach is a powerful framework for precision cancer diagnosis, which refers to the three aspects of the dataset, feature selection, and diagnosis model, outperforming the previously published state-of-the-art methodologies.


TABLE 4. Comparison results with the state-of-the-art approaches (%).
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HFS-SLPEE Uncovers New Potential Biomarkers for Three Cancers

According to the optimal feature variable, we obtained 10 group features corresponding to the BRCA, LUAD, and KIRC with a total of 210, 120, and 160 features. After removing the overlapping features, the optimal features subsets were, respectively, reduced to 37, 35, and 40 features for the three cancers. The average repetition rate of the 10 group features for three cancers is 70.83–82.38%. On the one hand, the features selected in each fold is different, verifying that cancer does not generate along a fixed trajectory, but there are many different signal pathways. On the other hand, although the features subset selected in each fold changes dynamically, some feature genes recurring, and part of them will appear steadily in every fold.

We organized the features into three categories: protein-coding genes, ncRNAs, and methylated genes (see Table 5). We have two findings. First, the proportion of epigenetic factors containing DNA methylation and non-coding genes in carcinogenesis is not less than 1/3. Specifically, the proportion of epigenetic factors (including methylated genes and non-coding genes) in features subset are 40.54, 34.29, and 37.5% for BRCA, LUAD, and KIRC, respectively. Second, a limited number of specific protein-coding genes and lncRNAs (antisense and or lincRNA) appear steadily in each cross-validation experiment, which can be regarded as potential biomarkers for these three cancers.


TABLE 5. The summary of selected features for the three cancers.
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DISCUSSION

In this work, we developed a novel hierarchical feature selection and second learning probability error ensemble model, called HFS-SLPEE, for cancer diagnosis. HFS-SLPEE is a precision cancer diagnosis framework, constituted by the integrated data of protein-coding gene expression profiles, non-coding RNA expression profiles, and DNA methylation data, the novel HFS algorithm, and the SLPEE model. We experimentally studied three high-incidence cancer as BRCA, LUAD, and KIRC in the TCGA database. The results have demonstrated that HFS-SLPEE achieves higher performance in comparison to several state-of-the-art methodologies. Therefore, HFS-SLPEE could be a powerful tool for cancer diagnosis. Moreover, HFS-SLPEE is universal, not limited to the field of cancer diagnosis. It is also suitable for cancer subtype classification, tumor origin detection, etc.

Herein, we acknowledge some limitations of our proposed method. Since a recent related study (Liang et al., 2020) has demonstrated that sufficient samples may enhance performance of models. Despite the enormous availability of cancer datasets in TCGA, the number of samples is still not enough. As a machine-learning-based model, HFS-SLPEE needed much time to train because of the high number of combinations of trainable hyperparameters. The number of normal samples is much less than that of tumor samples in practice, which has been a big challenge when building a gold-standard dataset for cancer diagnosis. A study by Liang et al. (2017) showed that somatically acquired structural variation (SV) may induce tumor formation; we will explore some other data, such as copy number alteration (CNA) and SV, for better performances of HFS-SLPEE in future work.
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Background: Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus-associated epithelial malignancy, which is rare in America but endemic in China. The current clinical gold TNM-based standard for prognosis may not be enough. Although some studies have reported that some miRNAs have a prognostic power in NPC, there is a scarcity of independent validation for these miRNAs.

Methods: In this work, we firstly conducted a literature review of all miRNA profiling datasets with survival information, then integrated miRNA expression data across different profiling platforms and built prognostic models using machine learning methods. The Kaplan–Meier method and log-rank tests were applied to estimate correlations of the miRNA signature with survival, and the area under the time-dependent ROC curve (AUC) and concordance index (C-index) were used to assess the predictive power of prognostic models. We also investigated the biological roles of the prognostic miRNAs through identifying their regulated genes and association with immune infiltration.

Results: We constructed a prognostic model based on 6-miRNA signature (ebv-miR-BART12, ebv-miR-BART15, miR-29c-3p, miR-30e-5p, hsa-miR-375-3p, has-miR-93-5p) using the elastic net penalized Cox regression model. The AUCs of our model predicting 1-, 3-, and 5-year overall survival rates were 0.90, 0.73, and 0.70 for the external validation dataset and showed better prognostic power than models using previously reported miRNA signatures. The 6-miRNA risk score was an independent prognostic predictor for overall survival (OS), disease-free survival (DFS), and metastasis-free survival (MFS). It could stratify patients into low-risk and high-risk groups; patients in the low-risk group treated with concurrent chemotherapy had a better survival. On the basis that the 6-miRNA risk score improved the current clinical gold standard for prognosis, we built a nomogram integrating both clinical characterizations and the risk score to predict 3-, 5-, and 10-year overall survival. Functional analysis suggested that the six miRNAs mainly play roles in virus infection pathways and oncogenic signaling pathways and associated with B-cell expression.

Conclusion: We identified a 6-miRNA prognostic signature in nasopharyngeal carcinoma across miRNA profiling platforms and patient geographical difference, which showed good prediction capability in terms of OS, DFS, and MFS. The 6-miRNA risk score might be helpful for clinicians to make treatment strategies and predict patient outcomes.
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) occurs in the nasopharynx, which is hard to examine and detect early. NPC is rare in Western countries (1–2 cases per 100,000) but has a high incidence rate (10–30 cases per 100,000) in Southeast Asia (Mahdavifar et al., 2016). NPC pathogenesis has been reported to be strongly associated with genetics, EBV infection, and environmental effects (Hildesheim and Wang, 2012). The main treatment for NPC is radiation therapy, and chemotherapy is often combined for patients in the late stage (Chan et al., 2010).

MicroRNAs (miRNAs) are short non-coding RNAs which can regulate gene expression post-transcriptionally and have been implicated as key players in a number of disease processes, including cancer occurrence and progression (Lee and Dutta, 2009; Peng and Croce, 2016). MiRNAs also play roles in the drug resistance of tumor cells by targeting genes related to cell proliferation, cell cycle, and apoptosis (Si et al., 2019). More and more studies proved miRNAs as potential biomarkers for the diagnosis, prognosis, and therapy of human cancers including NPC. Several studies have reported the clinical significance of both human- and EBV-encoded miRNAs in NPC. miR203 and miR-23a proved to be associated with NPC radioresistance (Petersson, 2015; Qu et al., 2015). The expression of miR-9 was reported negatively associated with NPC progression (Lu et al., 2014). Four viral miRNAs (BART5-5p, BART7-3p, BART9-3p, and BART14-3p) could work cooperatively to negatively regulate the expression of the ATM gene in response to DNA damage, which promote the maintenance of viral latency and tumorigenesis of NPC (Lung et al., 2018). Additionally, high-throughput miRNA expression profiles were performed to find miRNA signature related to the prognosis of NPC. Bruce et al. identified a 4-miRNA signature (miR-154, miR-449b, miR-140, and miR-34c) associated with risk of distant metastasis (Bruce et al., 2015). Liu et al. reported a 5-miRNA signature (miR-93, miR-26a, miR-142, miR-29c, and miR-30e) that could predict overall survival and disease/metastasis-free survival, which was independent to TNM stage (Liu et al., 2012). Although those miRNAs have a prognostic power in NPC, there is a scarcity of independent validation for these miRNAs.

In this work, we integrated miRNA expression data from different profiling platforms, identified a robust 6-miRNA prognostic signature through machine learning method, and evaluated it using an independent dataset. The 6-miRNA signature showed better prognostic power than previous miRNA signatures and improved the current clinical gold standard for prognosis. Further analysis showed that the 6-miRNA risk score could help guide precision treatment for NPC patients with concurrent chemotherapy or not. We also explored the biological function roles of the six miRNAs and their potential association with immune infiltration.



MATERIALS AND METHODS


miRNA Expression Profiles and Clinical Data of NPC

We used the keywords “nasopharynx cancer” and “miRNA” to search in EBI ArrayExpress and Gene Expression Omnibus (GEO), then manually reviewed and selected cohorts with both miRNA expression and clinical survival information. Finally, three datasets with at least 50 NPC patients were kept for analysis, which included GSE32960 (Liu et al., 2012), GSE70970 (Bruce et al., 2015), and GSE36682. The three datasets contained 612 patients in total and used three different platforms to measure miRNA expression (Table 1). The miRNA profiling platforms for GSE32960, GSE70970, and GSE36682 were GPL14722 (with 917 miRNA probes), GPL20699 (with 734 miRNA probes), and GPL15311 (with 1,004 miRNA probes), respectively.


TABLE 1. Demographics of the three NPC cohorts.

[image: Table 1]The two big miRNA expression datasets (GSE32960 and GSE70970) were used to build the prognostic model. GSE32960 included 312 NPC patients and 18 normal controls from Sun Yat-sen University Cancer Center, China; GSE70970 included 246 NPC patients and 17 normal controls from Princess Margaret Cancer Centre, Canada. GSE36682, which contained 62 NPC patients from Sun-Yat sen University, China, was used as an independent validation dataset to evaluate model performance (see Figure 1). R 4.0.2 was used for statistical analysis.
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FIGURE 1. Flowchart of data collection and analysis.




Identification of Differentially Expressed miRNAs

The expression values of many miRNAs were 0 in GSE70970, which indicated severe degradation. Therefore, we only kept miRNAs that were expressed in at least 10% of the samples, and then 337 out of 734 miRNA probes from GSE70970 were left. We merged GSE32960 and GSE70970 through unique miRNA ID and removed batch effects using the “ComBat” method (Leek et al., 2012). Finally, 309 common miRNAs were kept for further differential expression analysis and survival analysis. miRbase (Kozomara et al., 2019) was used to normalize miRNA names from each platform. We used the R package “limma” (Ritchie et al., 2015) to identify differentially expressed (DE) miRNAs with the following criteria: (1) adjusted p < 0.05 and (2) absolute fold change > 1.5 between cancer and normal tissues.



miRNA Feature Identification and Prognostic Model Building

The prognostic power of the expression level of each DE miRNA was evaluated using the univariate Cox regression model and log-rank test. To remove random effects, we repeated the Cox test 1,000 times using bootstrap samples. DE miRNAs, which were statistically significantly associated with overall survival at least 500 times with p-value < 0.05, were selected as features for machine learning to build the prognostic model.

We tried three penalized Cox proportional hazard (PH) regression models (ridge regression, elastic net, and lasso) to predict the overall survival rate. 10-fold cross-validation was used to determine the best penalty parameters, and a penalized Cox model was fitted using these optimal parameter values. All the machine learning models were fitted using the R package “glmnet” (Friedman et al., 2010). Time-dependent receiver operating characteristic (ROC) curves (Kamarudin et al., 2017), the area under the ROC curve (AUC), and the concordance index (C-index) were applied to assess the predictive power of prognostic models, which can be estimated using the R packages “timeROC” (Kamarudin et al., 2017) and “pec” (Mogensen et al., 2012).



miRNA-Targeted Gene Prediction

The putative targets of human miRNAs were obtained from miRTarBase (Chou et al., 2018), in which the miRNA-target interactions (MTIs) are validated experimentally by reporter assay, Western blot, microarray, and next-generation sequencing experiments. The putative targets of EBV miRNAs were predicted using the ‘‘MirTarget’’ prediction algorithm in miRDB1 (Wang, 2016).

To narrow down the list of putative target genes of miRNAs, expression correlation analysis between miRNA and the targeted mRNA was applied to select more reliable MTIs using the dataset GSE118721 (Lin et al., 2018), which provided both miRNA and mRNA expression profiles for seven NPC biopsy specimens and four normal nasopharyngeal mucosal specimens. If the target gene of a miRNA was differentially expressed with opposite direction of change and the negative correlation was significant (p < 0.05 and r < −0.5), the MTI would be regarded as reliable and the target genes would be used for further function analysis.



Gene Function Enrichment Analysis

We used the R package “clusterProfiler” (Yu et al., 2012) to perform gene ontology and pathway enrichment analysis. Adjusted p-values less than 0.01 obtained by the BH method were regarded as statistically significant.




RESULTS


Clinical Characterizations of NPC Patients

The three miRNA expression datasets involving 620 NPC patients were from three platforms and two populations (Table 1). For patients from GSE32960 and GSE70970, the clinical characterizations were similar: the average age was about 50 and the predominant (>70%) patients were male, all patients received radiotherapy and nearly half had been treated with concurrent chemotherapy, about 69% were already late stage (TNM stage III or IV), and the 5-year overall survival rate was ∼78%. We integrated these two expression datasets into one as training dataset for model building and another dataset GSE36682 was used as an independent validation dataset for model evaluation. There were 62 patients in the dataset GSE36682, with little clinical information other than overall survival. The 5-year overall survival rate of those 62 patients was 59.4% (CI: 58.8–81.8%).



6-miRNA Signature Identification and Prognostic Model Building

After removing degraded miRNAs and batch effects, we merged the two datasets (GSE32960 and GSE70970) into one dataset, which contained the expression profile of 309 miRNAs from 558 NPC patients and 35 normal controls; 112 DE miRNAs were identified. Twelve survival-related DE miRNAs were then selected using the univariate Cox analysis with 1,000 bootstrap samples (see section “Materials and Methods”).

Among the 12 miRNAs, 3 miRNAs (ebv-miR-BART12, ebv-miR-BART15, and hsa-miR-93-5p) were overexpressed, while the other 9 miRNAs were downregulated (Figure 2A). There were strong correlations between seven miRNAs, namely, hsa-miR-29c-3p, hsa-let-7g, hsa-miR-29a-3p, hsa-miR-26a-5p, hsa-miR-29b-3p, hsa-miR-142-3p, and hsa-miR-150-5p (Figure 2B). To reduce multicollinearity and use fewer features for model building, we only kept hsa-miR-29c-3p as representative since it showed the highest average expression similarity among the seven correlated miRNAs. Finally, six miRNAs, namely, two EBV miRNAs (ebv-miR-BART12 and ebv-miR-BART15) and four human miRNAs (miR-29c-3p, miR-30e-5p, hsa-miR-375-3p, and has-miR-93-5p), were selected for further model building.
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FIGURE 2. Heatmap and correlation matrix of 12 OS-related DE miRNAs. (A) Heatmap of 12 overall survival and differentially expressed miRNAs. (B) Correlation matrix of 12 OS-related DE miRNAs.


To predict overall survival (OS) using the combination of six miRNAs, we assessed three penalized Cox regression models, namely, ridge regression (Hoerl and Kennard, 1970), elastic net (Zou and Hastie, 2005), and lasso (Tibshirani, 1996). Among them, elastic net regression was consistently the best performer, with minimal mean cross-validated error (data not shown). Using the elastic net penalized Cox PH model to miRNA expression data from the training cohort, we obtained an optimal risk assessment model (1) utilizing the regression coefficients of six miRNAs:
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The risk score (RS) was calculated for each patient in the training (GSE32960 and GSE70970) and independent test cohorts (GSE36682). The overall prognostic accuracy of the RS, assessed as a continuous variable, was investigated using time-dependent ROC analysis at three time points (1, 3, and 5 years). The AUCs of the predicted 1-, 3-, and 5-year overall survival rates were 0.83, 0.73, and 0.70 (training cohort) and 0.90, 0.73, and 0.70 (test cohort), respectively. Then we compared our 6-miRNA signature with the previously reported 5-miRNA signature (miR-93, miR-26a, miR-142, miR-29c, and miR-30e) of Liu et al. (2012) and the 4-miRNA signature (miR-154, miR-449b, miR-140, and miR-34c) of Bruce et al. (2015). Our 6-miRNA signature showed better permanence than previous signatures in both training and test cohorts (Figures 3A,B). The 6-miRNA signature also exhibited better prognostic power than TNM stage and age (Figure 3A).
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FIGURE 3. Good OS prediction capability of our 6-miRNA signature model. (A) The AUCs of models built by our 6-miRNA signature, the 5-miRNA signature of Liu, the 4-miRNA signature of Bruce, and clinical variables (TNM stage and age) using the training dataset (558 patients). (B) The AUCs of models built by our 6-miRNA signature, the 5-miRNA signature of Liu, and the 4-miRNA signature of Bruce using the external validation dataset GSE36682 (62 patients). OS, overall survival.


We then evaluated the prognostic power of 6-miRNA risk scores to predict disease-free survival (DFS) and metastasis-free survival (MFS). NPC patients were divided into high-risk and low-risk groups based on the median value of risk scores (0.44). The low-risk group had significantly better OS, DFS, and MFS, indicating the 6-miRNA signature could be used as a good prognostic biomarker (Figure 4A). Moreover, compared with the signatures of Liu and Bruce, the AUCs of prognostic models using our 6-miRNA signature were also higher in terms of MFS and DFS (Figure 4B).
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FIGURE 4. Our 6-miRNA signature could predict OS, DFS, and MFS. (A) Kaplan–Meier graphs depicting overall survival (OS), disease-free survival (DFS), and metastasis-free survival (MFS) using the training dataset stratified by the 6-miRNA risk score, and p-values were based on log-rank test. (B) Comparison of the AUCs using our signature and the signatures of Liu and Bruce to predict OS, DFS, and MFS. The dashed lines represent the corresponding 95% confidence intervals of AUC by each model.


Radiotherapy alone is not sufficiently effective for patients with advanced NPC, and more and more studies suggest that the addition of concurrent chemotherapy to radiotherapy significantly improves survival in those NPC patients (Blanchard et al., 2015). In our study, patients in the low-risk group treated with concurrent chemotherapy showed significantly better overall survival than those without concurrent chemotherapy (p = 0.038), while for the high-risk group, there are no significant differences in the survival between patients with and without chemotherapy (p = 0.62) (Figure 5A). Low-risk patients also benefited from concurrent chemotherapy in terms of DFS and MFS (data no shown), which suggested that 6-miRNA risk score could be helpful for precision treatment. Considering that age was an important risk factor for NPC, we did an exploratory subset analysis by age. It was noticed that the 6-miRNA prognostic model exhibited higher AUCs in the younger group than in the older group (see Supplementary Figure 1).
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FIGURE 5. The 6-miRNA risk score could be used to guide chemotherapy and a nomogram for OS prediction based on clinical characterization and 6-miRNA risk score. (A) Survival plots of patient stratified by 6-miRNA risk scores and chemotherapy treatment. Patients in the low-risk group treated with chemotherapy had better overall survival. (B) Construction of a nomogram based on clinical characterization and 6-miRNA risk score to predict the 3-, 5-, and 10-year overall survival of NPC patients.




Construction of a Nomogram Based on the 6-miRNA Risk Score and Clinical Variables

To evaluate whether the 6-miRNA risk score could be an independent prognostic predictor, multivariate Cox regression analyses were conducted. After adjusted by clinical characteristics including age, gender, concurrent chemotherapy, and TNM stage, the risk score of 6-miRNA was still significantly associated with OS, DFS, and MFS (see Supplementary Figure 2). Moreover, the 6-miRNA signature significantly improved the prediction accuracy of the multivariate Cox models for OS, DFS, and MFS when combined with clinical variables (Table 2).


TABLE 2. Comparison of the survival models without and with 6-miRNA risk score using 558 patients.

[image: Table 2]Based on multivariate Cox analysis, a nomogram which integrated the 6-miRNA risk score and other clinical variables was generated to predict the probability of 3-, 5-, and 10-year overall survival for NPC patients using 558 patients (Figure 5B). The nomogram showed adequate discrimination ability in internal validation with a C-index of 0.76 (95% CI: 0.71–0.78).



Functional Roles of Six miRNAs

Using miRNA-target interactions from miRTarBase, we obtained 3,073 MTIs for miR-93-5p, miR-30e-5p, miR-29c-3p, and miR-375-3p. By using the “MirTarget prediction” algorithm in miRDB, we predicted 603 EBV miRNA-targeted host gene pairs. To further confirm the list of putative target genes of the six DE miRNAs in NPC, we checked whether a negative correlation existed between the miRNA and its targeted mRNA using the dataset GSE118721 (see section “Materials and Methods”). Through co-expression analysis, we finally got 152 likely MTIs (Supplementary Table 1), in which the miRNA negatively regulated its corresponding genes. Six overexpressed oncogenes including BCL2, NOTCH1, SOX4, and CTNNB1 and 10 downregulated tumor suppressor genes including PRKCB, IRF1, CYLD, and TGFB1 were identified as the targets of the DE miRNAs (Table 3), which may promote cancer development. Functional analysis of the predicted six miRNA-targeted genes showed enrichment in virus infection-related pathways like human papillomavirus infection and cancer-related pathways like PI3K–Akt signaling pathway, focal adhesion, and MAPK signaling pathway (Figure 6).


TABLE 3. miRNA-targeted tumor suppressor genes and oncogenes.
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FIGURE 6. The predicted 6-miRNA target genes were mainly enriched in virus infection pathways and cancer-related pathways.


Solid tumors are commonly infiltrated by immune cells. The tumor-infiltrating immune cells play important roles in maintaining chronic inflammation and promote tumor growth (Pages et al., 2010). In our work, the association of six miRNAs with the immune infiltration was also explored. We performed cell-type enrichment analysis from gene expression dataset GSE118721 using xCell (Aran et al., 2017) to estimate the presence of different immune cells in tumor and calculate an immune score, then did correlation analysis to investigate the relationships between the six miRNAs and immune cells. It was found that miR-29c-3p, miR-30e-5p, and miR-93-5p were significantly associated with immune score (Pearson correlation coefficients: 0.87, 0.69, and 0.71, respectively; p < 0.05). Further cell-type analysis showed that tumor suppressors miR-29c-3p and miR-30e-5p were positively correlated with B-cell score, while oncogenic miR-93-5p was negatively associated with B-cell score. It was suggested that the three miRNAs may play roles in regulating the immune microenvironment.




DISCUSSION

To construct a robust prognostic model regardless of miRNA platforms and the clinical and geographical differences of patients, we integrated the two biggest datasets (GSE32960 and GSE70970) from different population cohorts to identify robust prognostic miRNAs. Through the elastic net penalized Cox regression, we constructed a prognostic model based on six miRNAs to predict OS, which showed good predictive capability in both training and external test datasets and better prognostic power than the previous 5-miRNA signature of Liu and 4-miRNA signature of Bruce (Figure 3). Multivariate Cox analysis showed that 6-miRNA risk score was an independent predictor for OS, DFS, and MFS. Prognostic models combining clinical variables with 6-miRNA risk score exhibited better prediction accuracy than those models without 6-miRNA risk score (Table 2). It was noticed that our 6-miRNA model performed worse using older NPC patients than younger patients, which may be associated with increasing transcriptional noise of old samples (Enge et al., 2017). Furthermore, NPC patients could be stratified into low-risk and high-risk groups based on 6-miRNA risk score, and only patients in the low-risk group could benefit from concurrent chemotherapy (Figure 5A), which could guide the precise treatment of NPC.

As we know, both EBV and human miRNAs play important roles in NPC carcinogenesis and could be drug targets or prognostic biomarkers. The literature review showed that all six miRNAs have been reported to be associated with carcinogenesis in NPC or other cancers (Choi et al., 2013; Liu et al., 2013; Li et al., 2015; Choi and Lee, 2017; Ma et al., 2018; Wu et al., 2020; Jia-Yuan et al., 2020). EBV-encoded miRNA BART12 could promote cell migration and invasion of EBV-associated NPC and gastric cancer by inhibiting TPPP1 mRNA and activating the cellular EMT process (Wu et al., 2020), and miR-BART15-5p could target BRUCE mRNA and TAX1BP1 gene in cancer cells and increase apoptosis and chemosensitivity to 5-FU (Choi et al., 2013; Choi and Lee, 2017). Overexpression of miR-93-5p was associated with tumor progression, metastasis, and poor prognosis in head and neck squamous cell carcinoma (HNSCC) (Li et al., 2015). miR-30e-5p inhibits the proliferation and metastasis of nasopharyngeal carcinoma cells by targeting USP22 (Ma et al., 2018). Downregulation of miR-29c-3p promoted NPC cell migration and invasion by targeting TIAM1 (Liu et al., 2013); miR-375-3p plays roles as a tumor suppressor by targeting oncogene PDK1, which promotes the proliferation, migration, and invasion of NPC cells (Jia-Yuan et al., 2020).

Previous signatures only contained human miRNAs, but our 6-miRNA signature included two EBV miRNAs and four human miRNAs. Three miRNAs (ebv-miR-BART12, ebv-miR-BART15, and hsa-miR-375-3p) were not included in previously reported prognostic miRNA signatures, but provided additional information to predict NPC prognosis. MiR-BART15-3p, miR-30e-5p, and miR-29c-3p have been reported to be associated with chemotherapy sensitivity in other cancers (Choi et al., 2013; Choi and Lee, 2017; Liu et al., 2017; Huang et al., 2018), which may explain the association between the 6-miRNA risk score and the response to chemotherapy. Functional analysis of the 6-miRNA target genes showed that they mainly play roles in virus infection pathways and oncogenic signaling pathways (Figure 6), and many target genes were transcriptional factors associated with carcinogenesis, which may magnify the regulation effect of the six miRNAs (Table 3). It was also found that miR-29c-3p and miR-30e-5p were positively associated with B-cell expression, while miR-93-5p was negatively correlated, indicating they may be involved in regulating B-cell-related pathways.

The high expression of oncogene/tumor suppressor is generally thought to be associated with higher/lower death risk in tumors. However, some oncogenes have a paradoxical function in cancer: though they have strong transforming and tumor-promoting properties, they are prognostic markers for favorable survival. This kind of oncogenes is defined as “good oncogenes” (Lee, 2011). In our risk model, it was also found that ebv-miR-BART12 and ebv-miR-BART15 and oncogenes miR-29c-3p and miR-30e-5p were negatively correlated with risk score, seeming to be good oncogenes. The four miRNAs may promote primary tumor development and inhibit mortality through activating the immune system.

Compared with previous miRNA signatures, our work had several advantages: (1) a larger sample size for the training model, covering different populations and platforms: 558 samples for our 6-miRNA signature vs. 156 for the miRNA signature of Liu and 125 for the miRNA signature of Bruce; (2) using an independent external dataset to evaluate the model while the work of the other two signatures did not perform an independent validation using an external dataset; and (3) considering both human miRNAs and EBV miRNAs as prognostic biomarkers. However, there were also some limitations in our study: (1) the independent validation dataset GSE36682 (n = 62) was small and did not have complete clinical and survival information, which means that a larger cohort is needed to examine the robustness of the developed signature and nomogram; and (2) despite function analysis indicating that the miRNAs were associated with some critical signaling pathways and immune microenvironment regulation, further experiments are needed to confirm the results of function analysis.

In conclusion, our work constructed a robust prognostic model across miRNA profiling platforms and patient populations and then built a nomogram integrating both 6-miRNA risk score and clinical features, which can be used to predict the OS of NPC patients. Our work would help clinicians develop individualized therapy based on 6-miRNA risk score.
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Supplementary Figure 1 | The performance of our 6-miRNA prognostic model to predict OS in different age group. (A) The AUCs of our 6-miRNA prognostic model to predict OS in age ≤54 and age >54. (B) Compare the AUCs of our 6-miRNA prognostic model to predict OS in different age group. The dash lines represent pointwise confidence intervals.

Supplementary Figure 2 | The 6-miRNA risk score was an independent predictor for OS, DFS, and MFS. Multivariate Cox analysis evaluating independently predictive ability of 6-miRNA risk score and other clinical risk factors for OS, DFS, and MFS using 558 NPC patients. The square data markers indicate estimated hazard ratios. The error bars represent 95% CIs. OS: overall survival; DFS: disease-free survival; MFS: metastasis-free survival.

Supplementary Table 1 | Target genes of the prognostic miRNAs.
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Genetic Polymorphisms of Long Non-coding RNA Linc00312 Are Associated With Susceptibility and Predict Poor Survival of Nasopharyngeal Carcinoma

Zhen Guo1,2, Mei-Hua Bao1,2, Yun-Xia Fan1,2, Yan Zhang1,2, Hai-Yan Liu1,2, Xiao-Long Zhou1,2, Ben Wu1,2, Qing-Qing Lu3, Bin-Sheng He1,2, Xu-Ying Nan1,4* and Jiao-Yang Lu1,2*

1Academician Workstation, Changsha Medical University, Changsha, China

2Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China

3Geneis Beijing Co., Ltd., Beijing, China

4School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China

Edited by:
Tao Huang, Shanghai Institute of Nutrition and Health (CAS), China

Reviewed by:
Guohua Huang, Shaoyang University, China
Bing Wang, Anhui University of Technology, China

*Correspondence: Jiao-Yang Lu, lulujiaoyang@163.com; Xu-Ying Nan, nanxuying@163.com

Specialty section: This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology

Received: 21 April 2021
Accepted: 07 June 2021
Published: 16 July 2021

Citation: Guo Z, Bao M-H, Fan Y-X, Zhang Y, Liu H-Y, Zhou X-L, Wu B, Lu Q-Q, He B-S, Nan X-Y and Lu J-Y (2021) Genetic Polymorphisms of Long Non-coding RNA Linc00312 Are Associated With Susceptibility and Predict Poor Survival of Nasopharyngeal Carcinoma. Front. Cell Dev. Biol. 9:698558. doi: 10.3389/fcell.2021.698558

Background: Linc00312 is dysregulated in nasopharyngeal carcinoma (NPC) and participates in the initiation and progression of NPC. Our previous studies suggested that linc00312 was able to enhance the sensitivity of NPC cells to irradiation and NPC patients with higher expression of linc00312 was associated with better short-term curative effect and overall survival. The single nucleotide polymorphisms (SNPs) of lncRNAs may influence the disease course and outcome by affecting the expression, secondary structure or function of lncRNAs. However, the role of SNPs in linc00312 on the occurrence and survival of NPC remains unknown.

Methods: We recruited 684 NPC patients and 823 healthy controls to evaluate the association between linc00312 SNPs and NPC susceptibility by using multivariate logistic regression analysis. Kaplan-Meier analysis and Cox proportional hazards regression were applied to assess the effect of linc00312 SNPs on the survival of NPC patients. The relative expression of linc00312 in NPC tissues was determined by real-time PCR. The interaction between linc00312 and mir-411-3p was explored by luciferase reporter assay. In silico prediction of the changes on linc00312 folding structure was conducted by RNAfold WebServer.

Result: We demonstrated that rs12497104 (G > A) GA genotype carriers had a higher risk than others for suffering from NPC (GA vs GG, OR = 1.437, P = 0.003). Besides, patients with rs12497104 AA genotype showed a poorer overall survival in contrast to GG genotype (AA vs GG, HR = 2.117, P = 0.011). In addition, the heterozygous carriers of rs15734 (G > A) and rs164966 (A > G) were correlated with decreased risk of NPC (GA vs GG, OR = 0.778, P = 0.031; GA vs AA, OR = 0.781, P = 0.033, respectively). We found that the three SNPs might influence the expression of linc00312 in a genotype specific feature. The local centroid secondary structure as well as the minimum free energy of linc00312 were changed following the candidate SNPs alterations. Besides, we revealed that the G to A alteration at rs12497104 disrupted the binding between mir-411-3p and linc00312.

Conclusion: Our results indicated genetic polymorphisms of linc00312 might serve as potential biomarkers for NPC carcinogenesis and prognosis.
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INTRODUCTION

Nasopharyngeal carcinoma has a remarkable geographic distribution and is relatively predominant in Southern China. According to the statistics report of nasopharyngeal carcinoma (NPC) in 2018, more than 70% of new cases are in east and southeast Asia, with an age-standardized rate (world) of 3.0/100,000 in China to 0.4/100,000 in white populations (Bray et al., 2018). The etiology of NPC is multifactorial and is widely suspected to be complex interactions of genetic predisposition, Epstein–Barr virus infection, and environmental factors (Paul et al., 2018).

Distinguished from other types of head and neck cancer, NPC is more aggressive due to extensive local infiltration, early lymphatic spread, and high tendency of hematogenous dissemination. More than 70% of patients are classified as locoregionally advanced stages at the time of diagnosis (Zhang et al., 2019b). Currently, radiotherapy and platinum-based chemotherapy are the mainstay treatment modality for NPC (Chen et al., 2019). The 3-years failure-free survival is around 80% for NPC patients receiving induction chemotherapy plus concurrent chemoradiotherapy (Sun et al., 2016; Zhang et al., 2019a).

It is now well recognized that genetic aberrations play a vital role in the pathogenesis, progression and prognosis of NPC (Lin et al., 2014; Tang et al., 2018). Previous studies have reported several susceptibility and recurrent associated loci of NPC, for example, CYLD, TRAF3, MST1R, TNFRSF19, MECOM, and CDKN2A–CDKN2B (Bei et al., 2010; Dai et al., 2016; Li et al., 2017). As we can see, most of the identified loci are located within coding regions. Noteworthy, results from GWAS showed only 7% of diseases associated loci was located in protein-coding regions, indicating genetic variations in non-coding regions are likely to exert important functions in disease (Freedman et al., 2011).

Long non-coding RNAs (lncRNAs) lack the capability of protein-coding and are once considered to be simply transcriptional “noise”. Recently, emerging evidence have shown that lncRNAs participates in the regulation of many cellular biological processes (Lin and Yang, 2018). Deregulation of lncRNAs are closely related to tumorigenesis and prognosis of cancers (Wu and Hann, 2018). Single-nucleotide polymorphism (SNP) is one of the most commonly occurred type of genetic variants within lncRNA genes. The SNPs may exert its effect by affecting the expression, secondary structure or function of lncRNAs, thus influencing the disease course and outcome (Minotti et al., 2018).

In the present study, we focus on linc00312, which is dysregulated in NPC. The expression of linc00312 in NPC tissues is negatively correlated with tumor size (Zhang et al., 2013). Linc00312 exerts dual role on NPC cells as it inhibits cells proliferation, but increases cell adhesion and invasion (Huang et al., 2009). Our previous study revealed that overexpression of linc00312 enhanced the sensitivity of NPC cells to irradiation through regulating DNA damage response. NPC patients with higher expression of linc00312 were associated with longer overall survival (Guo et al., 2021). All of these indicates linc00312 might serve as a potential biomarker for NPC.

To date, the functional significance of SNPs in linc00312 locus is still unclear. Given the fact mentioned above, we speculate that the functional genetic variations in linc00312 may affect its expression and/or function, which finally influence the carcinogenesis and prognosis of NPC. In order to verify the conjecture, we selected three SNPs with potential regulatory feature of linc00312 and performed a case-control study to explore the role of linc00312 variations on NPC risk and survival.



MATERIALS AND METHODS


Study Population

684 histopathology-confirmed NPC patients were enrolled at Hunan Provincial Cancer Hospital between 2014 and 2015. Meanwhile, 823 cancer-free volunteers taking physical examination at Xiangya Hospital were enrolled as controls. Moreover, we collected 82 NPC tissue biopsies from patients taking nasopharyngoscopy inspection. The patients who did not receive IMRT radiation technique or abandoned treatment or were out of contact were excluded in the survival analysis. All of the patients underwent platinum-based chemoradiotherapy. A total of 68–74 Gy irradiation was administered to the primary tumor for 7 weeks. The chemotherapy regimens in the present study including: platinum + paclitaxel (TP); platinum + 5-fluorouracil (FP); platinum + docetaxel (DP); platinum + gemcitabine (GP); cisplatin alone (DDP); nedaplatin alone (NDP). This study was approved by the Independent Ethical Committee of Institute of Clinical Pharmacology, Central South University (CTXY-140007-2) and all the participants signed the informed consent at the time of enrollment.



Candidate SNPs Selection

Three online bioinformatic databases, including ENCODE, ENSEMBL and lncRNASNP were applied to select potentially functional SNPs that located in miRNA binding site/3′-untranslated region (3′-UTR)/enhancer region/5′-untranslated region (5′-UTR)/alternative splice region/open chromatin region. Finally, we selected three SNPs of linc00312 [rs12497104 (G > A), rs15734 (G > A), rs164966 (A > G)] that have never been reported for further study.



Genotyping

Genomic DNA was isolated from peripheral blood lymphocytes and NPC tissues using the QIAamp DNA Mini and Blood Mini Kit (Qiagen Inc., Valencia, CA, United States). The concentrations and purity of DNA were measured using NanoDropTM 1000 spectrophotometer. Genotypes of the candidate SNPs were determined by using Sequenom MassARRAY iPLEX (Sequenom, Inc., San Diego, CA, United States). The call rate threshold was at least 95%.



Real-Time PCR

Total RNA was extracted from NPC tissues and reverse-transcribed to cDNA by using a PrimeScriptTM RT kit (Takara, Japan). LightCycler 480 system was utilized for amplification of cDNA using a SYBR Premix Ex TaqTM kit (Takara, Japan). The relative expression of linc00312 was calculated by 2–ΔΔCt method. The primers are as the following: GAPDH forward: 5′-ACAACTTTGGTATCGTGGAAGG-3′ and reverse: 5′-GCCATC ACGCCACAGTTTC-3′; linc00312 forward: 5′-GATCTATG GCCCATCATTCTTT-3′ and reverse: 5′-GTCCATCATGTAGC AAGCAGT-3′.



Dual Luciferase Reporter Assay

The human NPC cell lines HONE1 and HNE1 were cultured in RPMI 1640 medium (Invitrogen, Carlsbad, CA, United States) containing 10% FBS (Invitrogen, Carlsbad, CA, United States) and 1% penicillin-streptomycin (100 units/mL) at 37°C in a 5% CO2 incubator. The 3′-UTR of linc00312 covering wild-type of rs12497104 was directly synthesized by Genechem (Genechem, Shanghai, China) and cloned into XbaI site of pGL3 promoter vector to get the wild-type vector (WT). Site-directed mutagenesis at rs12497104 was utilized to get the mutant-type vector (MUT). DNA sequencing was performed in order to make sure of the sequence of these vectors. HONE1 and HNE1 cells were co-transfected with Renilla vector, WT\MUT reporter vector, mir-411-3p mimics\mimics control or mir-411-3p inhibitor\inhibitor control using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, United States). Cells were harvested 48 h post transfection and assayed for luciferase activities using the Dual Luciferase Reporter Assay Kit (Promega, Madison, WI, United States).



Statistical Analysis

Chi-square test and Student’s t-test were used to compare the distributions of categorical variables and continuous variables between patients and controls. The odd ratios (ORs) and 95% confidence intervals (95% CI) for each genotype were calculated by multivariate logistic regression to determine the association between the selected SNPs and NPC susceptibility. Kaplan-Meier analysis and Cox proportional hazards regression were applied to evaluate the overall survival of NPC patients. The SPSS 19.0 was used for statistical analyses (Chicago, IL, United States) and P < 0.05 was set as the threshold of statistically significant.



RESULTS


Population Characteristics

The detailed information of the NPC cases and controls were summarized in Supplementary Table 1, as we have previously reported (Guo et al., 2019). There is no distribution difference in the cases and controls for age and BMI (P > 0.05). However, the male-to-female ratio was higher in the cases than controls, which was in line with NPC epidemiology. The cases were more likely to have ever smoked (P < 0.05) and drunk patients (P < 0.05). To eliminate the influence of these factors, the covariant were further adjusted in multivariate logistics regression analysis.



Linc00312 SNPs Were Associated With NPC Susceptibility

The genotyping call rate of the selected SNPs were greater than 95%, and the genotype frequency of the candidate SNPs were in accordance with Hardy-Weinberg equilibrium, as shown in Table 1. We used multivariate logistic regression analysis to estimate the association between selected SNPs and NPC susceptibility. We found that individuals with rs12497104 GA genotype were associated with significantly increased risk of NPC (GA vs GG, OR = 1.437, P = 0.003) (Table 1). Individuals with rs15734 GA genotype showed a 22.2% lower risk of NPC than those with rs15734 GG genotype (GA vs GG, OR = 0.778, P = 0.031). As for rs164966, a 21.9% decreased risk was observed in rs164966 GA genotype carriers in comparison with rs164966 AA genotype carriers (GA vs AA, OR = 0.781, P = 0.033). Since gender might be a risk factor for NPC, we conducted the stratified analysis to eliminate the influence of gender. As shown in Supplementary Table 2, the ORs of each SNP were even more remarkable in the stratified group than in the whole cohort.


TABLE 1. Association between the candidate single nucleotide polymorphisms (SNPs) of linc00312 and nasopharyngeal carcinoma (NPC) susceptibility was analyzed by multivariate logistic regression.
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Linc00312 rs12497104 AA Genotype Was Correlated With Poorer Overall Survival of NPC

We included 650 NPC patients in the survival analysis and the detailed therapeutic information was listed in Table 2. The median follow-up duration was 49.27 months (range, 3.5–60 months). The 3-years OS rate of patients with rs12497104 GG genotype were 85.6% and patients with AA genotype were 74.6%. The univariate analysis indicated that the covariates correlated with OS were rs12497104, age, gender, clinical stage, irradiation dose and chemotherapeutic regimen (P < 0.05). Multivariate analysis adjusting for these covariates by Cox proportional hazards regression model was used to assess the role of rs12497104. As shown in Figure 1, rs12497104 AA genotype carriers showed a poorer overall survival than GG genotype carriers (AA vs GG, HR = 2.117, P = 0.011). The mean survival time was 53.56 months for rs12497104 GG genotype carriers and 48.71 months for AA genotype patients. No significant difference in survival was noted in rs15734 and rs164966.


TABLE 2. The clinical and treatment information of NPC patients.
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FIGURE 1. Linc00312 single nucleotide polymorphisms (SNPs) are associated with OS of nasopharyngeal carcinoma (NPC) patients. The survival curve of NPC patients with different genotypes of rs12497104 (A), rs13734 (B), and rs164966 (C).




Genotype-Specific Expression Effect of the Candidate SNPs

The three candidate SNPs are located in the regulatory region of linc00312 that could cause miRNA–lncRNA binding site gain or loss based on the bioinformatic prediction (Table 3). We speculated the SNPs might regulate the expression of linc00312 by affecting the interaction with miRNAs and we detected the expression level of linc00312 in NPC tissues with different genotypes. The result demonstrated that rs12497104 AA genotype was associated with a significantly lower expression of linc00312 in comparison with rs12497104 GG genotype (P < 0.05) (Figure 2A). The expression of linc00312 in rs15734 GA genotype carriers were higher than rs15734 GG genotype carriers (P < 0.05) (Figure 2B). Moreover, patients with rs164966 GA and GG genotypes all displayed a higher expression of linc00312 compared with rs164966 AA genotype carriers (P < 0.05) (Figure 2C).


TABLE 3. Prediction of candidate SNPs causing miRNA-lncRNA gain or loss by TargetScan and miRanda.
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FIGURE 2. Genotype-specific expression effect of the candidate SNPs. (A) The relative expression of linc00312 in different rs12497104 genotype carriers. (B) The relative expression of linc00312 in different rs15734 genotype carriers. (C) The relative expression of linc00312 in different rs164966 genotype carriers. *P < 0.05; **P < 0.01.


Actually, we verified that rs12497104 could destroy the interaction between linc00312 and mir-411-3p by luciferase reporter assay. The relative luciferase activity was significantly decreased when mir-411-3p mimics was co-transfected with the wild-type linc00312 (WT) reporter (P < 0.01). On the contrary, the luciferase activity was almost unchanged when mir-411-3p mimics was co-transfected with the rs12497104 mutant linc00312 (MUT) reporter (P > 0.05) (Figures 3A,B). What’s more, cotransfection of mir-411-3p inhibitor caused a notable gain on the luciferase activity of the WT reporter (P < 0.05) while the luciferase activity of MUT reporter displayed no visible change (P > 0.05) (Figures 3C,D).
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FIGURE 3. rs12497104 destroys the binding between mir-411-3p and linc00312. (A) Relative luciferase activity of the wild type linc00312 (WT) and rs12497104 mutant type linc00312 (MUT) reporter vector that co-transfected with mir-411-3p mimics or mir-411-3p control in HONE1 cells. (B) Relative luciferase activity of the WT and MUT reporter vector that co-transfected with mir-411-3p mimics or mir-411-3p control in HNE1 cells. (C) Relative luciferase activity of the WT and MUT reporter vector that co-transfected with mir-411-3p inhibitor or mir-411-3p inhibitor control in HONE1 cells. (D) Relative luciferase activity of the WT and MUT reporter vector that co-transfected with mir-411-3p inhibitor or mir-411-3p inhibitor control in HNE1 cells. *P < 0.05; **P < 0.01.




In silico Prediction of the Candidate SNPs on Linc00312 Folding Structure

By in silico analysis, we predicted weather the candidate SNPs could possibly affecting the folding structure of linc00312. As shown in Figure 4, the local centroid secondary structure and minimum free energy of linc00312 were changed following the candidate SNPs alterations. The minimum free energy of the local centroid secondary structure of linc00312 changed from −121.60 to −98.42, −127.20, and −113.50 kcal/mol for rs12497104, rs15734, and rs164966 variations, respectively.
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FIGURE 4. In silico prediction of the candidate SNPs on linc00312 folding structure. (A) The local centroid secondary structure of the wild type linc00312. (B) The local centroid secondary structure of rs12497104 mutant linc00312. (C) The local centroid secondary structure of rs15734 mutant linc00312. (D) The local centroid secondary structure of rs164966 mutant linc00312. The color of each base represents base-pair probabilities. (E) The mountain plot of the wild type linc00312. (F) The mountain plot of rs12497104 mutant linc00312. (G) The mountain plot of rs15734 mutant linc00312. (H) The mountain plot of rs164966 mutant linc00312. The mountain plot presents the MFE structure, the thermodynamic ensemble of RNA structures, the centroid structure and the positional entropy for each position. All of the results were computed by RNAfold WebServer.




DISCUSSION

Considering the critical role of linc00312 in NPC, we wondered if the SNPs in linc00312 might serve as potential biomarkers for NPC. In the present study, we identified three SNPs of linc00312 (rs12497104, rs15734, and rs164966) were associated with susceptibility of NPC. In the following survival analysis, we revealed rs12497104 was an independent risk factor for the prognosis of NPC.

Not only for NPC, linc00312 also displayed a vital role in other types of cancers via regulating diverse cellular processes. As for non-small cell lung cancer (NSCLC), patients with lower expression of linc00312 were correlated with larger tumor size, advanced clinical stages as well as shorter overall survival. Overexpression of linc00312 was able to repress cell growth and induce apoptosis of NSCLC cells (Zhu et al., 2017). The other study demonstrated that linc00312 could promote metastasis and angiogenesis in lung cancer via interacting with the transcription factor YBX1 (Peng et al., 2018). Linc00312 also regulated oral fibrogenesis by binding to YBX1 in oral cavity (Yu et al., 2020). Evidence have shown that linc00312 inhibited cell growth and migration of thyroid cancer cells through suppressing the PI3K/Akt and MMP-9 (Min et al., 2018). By targeting miR-197-3p and miR-21, linc00312 functioned as a competing endogenous RNA (ceRNA) and repressed cell migration and invasion of bladder cancer, thyroid cancer and colorectal cancer (Wang et al., 2016; Liu et al., 2017; Li et al., 2018). Linc00312 could induce cell cycle arrest of hepatocellular carcinoma cell and leading to the suppression of proliferation (Wu et al., 2018). In addition, linc00312 participated in drug resistance as it sensitized ovarian cancer cells to cisplatin by activating the Bcl-2/Caspase-3 pathway (Zhang et al., 2018).

A great number of studies have indicated SNPs of lncRNA have great potential as predictive markers for carcinogenesis, prognosis, and drug resistance (Gao and Wei, 2017; Minotti et al., 2018). Our previous findings have suggested NPC patients with lncRNA GAS5 rs2067079 CT genotypes were linked with an obviously increased risk of severe myelosuppression during concurrent radiochemotherapy period compared with CC genotype carriers (Guo et al., 2017). In addition, NPC patients with lncRNA MEG3 rs10132552 CC genotype were vulnerable to suffering chemoradiotherapy induced anemia (Wang et al., 2017). Nevertheless, nothing has been known about linc00312 SNPs and NPC so far.

Unveiling the molecular mechanism of lncRNAs SNPs that contributing to disease risk is quite important for better understanding the pathogenesis of disease. The SNPs may regulate the function of lncRNA through interfering the interaction between lncRNAs and transcription factors, miRNAs or other binding protein partners. Evidence have proven that linc00673 rs11655237 G > A alteration created a binding site for miR-1231, which diminished the function of linc00673 and lead to increased risk of pancreatic cancer (Zheng et al., 2016). The risk variant of rs11672691 in lncRNA PCAT19 suppresses binding of transcription factor NKX3.1 to the promoter of PCAT19-short, resulting in PCAT19-long activation and prostate cancer growth and metastasis (Hua et al., 2018). Another prostate cancer-associated variant at lncRNA PCAT1 rs7463708 increases binding of transcription factor ONECUT2 to the PCAT1 promoter, resulting in upregulation of PCAT1 and prostate transformation (Guo et al., 2016). In colon cancer, by interacting with the CFIm complex with allele specific affinities, lncRNA CCAT2 rs6983267 regulates the alternative splicing of glutaminase, resulting in reprogramming of cancer metabolism (Redis et al., 2016). To data, literature that clearly clarify the molecular mechanism of cancer related SNPs in lncRNA is very scarce.

Bioinformatics approaches have usually been applied to predict the potential role of SNPs in lncRNAs. In the present study, we applied LncRNASNP, ENSEMBL, and RNAfold for SNP selection and function prediction (Gruber et al., 2008; Miao et al., 2018). Actually, bioinformatics approach is a cost-effective way to screening causal SNPs. The prediction result indicated all of the three SNPs of linc00312 (rs12497104, rs15734, and rs164966) had an eQTL trait and were likely to create or destroy the binding sites of miRNAs with linc00312. In light of this, we wondered if the SNPs could affect the function/expression of linc00312. It has been reported that 75% of the lncRNA SNPs affected the expression level of lncRNA (Kumar et al., 2013). So, we examined the expression of linc00312 with different genotypes and found the genotype specific expression feature. The rs12497104 AA genotype carriers had a lower expression of linc00312 and were subjected to enhanced risk of NPC and poorer survival. Likewise, the patients with GA genotype of rs15734 and rs164966 showed a lower expression of linc00312 and were correlated with decreased risk of NPC. In addition, the local secondary structure and minimum free energy of linc00312 was affected by the SNPs.

Increasing evidences have indicated that lncRNA could function as ceRNA to regulate mRNA by sponging miRNA. For the first time, we proved that rs12497104 could interfere the binding between linc00312 and mir-411-3p. This finding provided one probable mechanism by which rs12497104 affected the function of linc00312. As far as we know, there was only two miRNAs (mir-197-3p, mir-21) have been identified to interact with linc00312 (Wang et al., 2016; Liu et al., 2017; Li et al., 2018). To date, the biological function of mir-411-3p is still largely unknown. A recent study reported mir-411-3p interacted with lncRNA ANRIL and inhibited the malignant proliferation and tumor stem cell like property of multiple myeloma (Wang et al., 2020). Another study demonstrated lncRNA TTN-AS1 could function as the mir-411-3p sponge in oral squamous cell carcinoma (OSCC) and mir-411-3p exerted the inhibitory functions on OSCC growth (Fu et al., 2020). In addition, lncRNA CDKN2B-AS1 could interact with mir-411-3p and contribute to carcinogenesis in ovarian cancer (Wang et al., 2019). The role of mir-411-3p in NPC still needs further investigation.

In conclusion, we demonstrated the SNPs of linc00312 were associated with NPC susceptibility and survival possibly by influencing the expression of linc00312. Our findings may shed some light on the biomarkers for predicting NPC risk and prognosis.
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Purpose: This study was to investigate the effects of lncRNA TPA overexpression and knockdown in stable transfected cell lines on the EMT, migration and invasion capabilities of breast cancer cells.

Methods: WB and qRT-PCR were used to detect the expression of E-cadherin, Vimentin, fibronectin and N-cadherin, the key molecules of EMT, to determine whether lncRNA regulates EMT; scratch, migration and invasion assay were used to detected the effect of lncRNA TPA on the migration and invasion of breast cancer cells. The effect of lncRNA TPA on breast cancer metastasis was observed in nude mice model. Pierce Magnetic RNA-Protein Pull-Down Kit was used to bind the 3′-terminal desulfurized biotin-labeled lncRNA TPA with Magnetic beads, and then incubated with the proteins extracted from cell line C and D, respectively. After elution of the binding proteins, the interacting proteins were further identified by mass spectrometry to screen out the interacting proteins. The candidate proteins were expressed and purified in vitro, and the interaction between lncRNA-candidate proteins were verified by RNA-EMSA.

Results: Overexpression of lncRNA TPA decreased the expression of E-cadherin, and significantly increased the expression of Vimentin, fibronectin and TGF-β1 (p < 0.01), and increased the migration rate, migration ability and invasion ability of cell group (P < 0.01). Multiple lung metastases were observed in the lung tissue of nude mice with overexpression of lncRNA TPA.

Conclusion: LncRNA TPA affects the occurrence of breast cancer EMT through TGF-β signaling pathway, and then promotes the invasion and metastasis of breast cancer. LncRNA TPA may affect the corresponding signaling pathways through one or more interacting proteins, and ultimately promote the invasion and metastasis of breast cancer.

Keywords: prognostic significance, lncRNA TPA, TGF-β, metastasis, breast cancer


INTRODUCTION

According to the latest data of American Cancer Society and China National Cancer Center, breast Cancer patients in the United States and China account for 26.8–29% of all female tumors, and the incidence of breast Cancer is on the rise (Chen et al., 2016; Siegel et al., 2016). With the progress of early prevention, early diagnosis and comprehensive treatment of breast cancer, although the mortality rate of breast cancer has not increased significantly, the distant metastasis of tumor is still the most important factor affecting the prognosis of breast cancer, and about 90% of the deaths of cancer patients are caused by tumor metastasis. How to prevent the spread and metastasis of breast cancer is a great difficulty in the treatment of breast cancer, and has always been a hot issues in breast cancer research. The key to solve this challenge is to deeply understand the specific mechanism of breast cancer metastasis and carry out precise treatment and prevention accordingly.

Tumor metastasis is a multi-step process caused by specific gene changes under internal and external environment. It is regulated by multiple factors and involves multiple genes, and needs to go through a series of continuous and selectable cascading events. Studies have shown that (Thiery and Lim, 2013; Bill and Christofori, 2015) epithelial-mesenchymal transition (EMT) plays a crucial role in the metastasis of breast cancer, which is the key initial step of tumor metastasis. EMT is mainly characterized by the transformation of polar epithelial cells into transitional mesenchymal cells. After epithelial cells are transformed into mesenchymal cells, their adhesion ability is reduced, and their migration, invasion ability and anti-apoptosis ability are significantly enhanced (Sarri et al., 2008; Thiery et al., 2009; Araki et al., 2011; Beach et al., 2011). The occurrence of EMT is the result of the coordination and co-action of many factors, usually accompanied by changes in the expression of epithelial cell-specific genes such as E-cadherin (CDH1) and interstitial cell-specific genes such as Snail and Zeb2 (Sekiya and Suzuki, 2011; Shah and Kakar, 2011; Wang D. et al., 2011; Chaw et al., 2012). E-cadherin is the most typical marker of EMT, and its down-regulation can promote the occurrence of EMT in breast cancer cells, and then promote the metastasis of breast cancer cells (Jin et al., 2014). The down-regulation factors of E-cadherin included the increased expression of Vimentin and the up-regulation of transforming growth factor-β (TGF-β). Snail is negatively correlated with the expression of E-cadherin, and its high expression in epithelial tumors can promote the migration and invasion of tumor cells, thereby causing EMT. The mechanism may be that it affects the signaling pathways of TGF-β/Smad/Zeb, NF-κB/Twist, and 3-phosphate Inositol (PI3K/Akt). Recent studies have shown that non-coding RNA also plays a pivotal role in this process. For example, several members of the miRNA-200 family (miR-200a, 200b, 200c, miR141 and miR-429, etc.) can regulate EMT by directly affecting the expression of E-cadherin and vimentin (Gregory et al., 2008; Wang Y. et al., 2011). In addition, tumor microenvironment also plays an important role in EMT, especially the cytokines of TGF-β family of transforming growth factors (Medici et al., 2011). However, so far, most studies on the regulatory mechanism of EMT are limited to genes and miRNAs, while few studies have been conducted on long non-coding RNAs (lncRNAs), especially lncRNAs related to TGF-β induction.



MATERIALS AND METHODS


Material


Cell and Animal

MCF-7 were provided by Jiangsu Kaiji biological technology Co., Ltd. The complete culture medium of cell lines was 90%DMEM+10%FBS, which was cultured in the culture medium of 37°C and 5%CO2 saturated humidity. BALB/c nude mice (Changzhou Vince Biotechnology Development Co., ltd. Certificate. Animal production license: SCXK (Su 2011-0003), Experimental animal license: SYXK (Su) 2011-0036. The ethics institutional review board of Zhejiang Cancer Hospital approved the protocols for data collection and analyses. All the methods described here were performed in accordance with the relevant guidelines and regulations.



Medicines and Reagents

β-Actin were purchased from SIGMA Co., Ltd., MI, United States. E-cadherin and Vimentin were obtained from CST Co., Ltd., fibronectin and TGF-β1 were obtained from Abcam Co., Ltd., United States. The fluorescent quantitative PCR reagent: primers were obtained from Shanghai SANGON Biological Technology Service Co., Ltd., Shanghai, China. RNA extraction reagent TriZol was purchased from Bio RT reagent Kit Co., Ltd., Canada. PrimeScriptTM (Perfect Real Time) was supplied by Bao Biotechnology Co., Ltd., Dalian, China.



Methods


Cell culture

MCF-7 cells were cultured in RPMI-1640 medium containing 10% fetal bovine serum and placed at 37°C in a 5% CO2 incubator. The cells grew in monolayers, and the culture medium was discarded when the cells covered over 80% of the culture flask bottom. Trypsin (0.25%) was added to digest the cells for 1–2 min. When the cells became round, equal volume of serum-containing culture medium was added to terminate digestion. Cells were suspended by blowing with a pipette and transferred to a 15 ml centrifuge tube for centrifugation at 1,000 r/min for 5 min. With supernatant discarded, 1–2 ml of culture medium was added. The cells were resuspended and transferred to a new culture flask. The cells were cryopreserved by adding 1 ml of cryopreservation solution for every 5 × 106 cells. Before use the cells were resuscitated and dethawed rapidly at 37°C. Cryopreservation solution was removed by centrifugation and culture medium was added. The cells adhered to the wall the next day and proliferated actively 2–3 days after inoculation. Cells reaching the log phase were harvested.

The following groups were set up: A: Normal breast cancer cells; B: lncRNA TPA overexpression cells; C: lncRNA TPA knockdown cells.



Establishment of Animal Model

BALB/C female nude mice, 4 weeks old, provided by Shanghai slick company, animal production license No. scxk (Shanghai) 2012-0021. Eighteen nude mice were taken. The logarithmic growth phase breast cancer cells were collected, and the cell concentration was adjusted to 1 × 107 cells/ml. The nude mice were subcutaneously inoculated with 0.2 ml on the right side of the neck, and then kept in SPF environment for 2–3 weeks. The animals were randomly divided into three groups when the tumor proliferated to palpable time. The growth of tumor was observed and measured every 3 days. After 4 weeks, the mice were killed to measure the size and weight of tumor.



Immunofluorescence Detection of the Effect of lncRNA TPA Overexpression and Knockdown on the Expression of E-Cadherin, Fibronectin, TGF-β1 and Vimentin Antibodies in MCF-7 Cells

Immunohistochemical methods were used to detect the expression of E-cadherin, Vimentin, fibronectin and N-cadherin in normal breast cancer cells, lncRNA TPA overexpressing stable transfected breast cancer cell lines, and knockdown stable transfected breast cancer cell lines.


1) Put a sterile high-cleanliness cover glass (intercellular cabinet, small glass slide) into the six-well plate, and then plant the six-well plate at a cell density of 60–70%, and the cells will adhere to the wall overnight;

2) Add 1–2 ml of pre-cooled 4% paraformaldehyde (PFA), after fixation for 10 min, rinse with PBS three times, 5 min each time;

3) Add 1–2 ml 0.2% Triton X-100 to each well, treat for about 2 min, rinse with PBS three times, 5 min each time;

4) Add 80 μl of the four primary antibodies (diluted with 5% goat serum according to the instructions) on each cover glass (diluted with 5% goat serum according to the instructions), and incubate at 4°C overnight;

5) Aspirate PBS, add 80 μl secondary antibody to each cover glass (diluted with 5% goat serum according to the instructions, usually 1:500), incubate at room temperature for 0.5 h, and aspirate the secondary antibody;

6) Add 2 ml PBS to each well to rinse;

7) Aspirate PBS and add nuclear stain reagent DAPI to each well for staining for 2 min.

8) Aspirate the nucleus staining reagent, rinse with PBS three times, then add 1 ml PBS to keep it moist;

9) First add an appropriate amount of anti-fluorescence quenching mounting media to the slide glass, use a fine needle to lift the cover glass, press the cell side down onto the slide glass, from one side of the cover glass to the other Press it over and suck up the excess mounting media with absorbent paper.

10) Observe and take pictures under a fluorescence microscope. Image J software calculates the fluorescence intensity.





The Effect of lncRNA TPA Overexpression and Knockdown on Cell Migration

Take normal breast cancer cells (MCF-7) in logarithmic growth phase, overexpress lncRNA TPA and knock down stable transfected breast cancer cells, count, adjust the concentration, and use cell scratches to detect cell migration ability.



The Effect of lncRNA TPA Overexpression and Knockdown on Cell Invasion

Dilute Matrigel with serum-free RPMI 1640 culture medium at a ratio of 3:1, take 30 μl of Matrigel dilution, evenly coat the Transwell chamber, and incubate overnight at 4°C; put the Transwell chamber into a 24-well culture plate, and add 200 μl (5 × 104 cells) of the above three cell suspensions, add 500 μl of RPMI1640 culture medium containing 10% fetal bovine serum to the lower chamber. According to the above group, place it in a 37°C, 5% CO2 incubator for 24 h, wipe off the matrigel and the bottom cells of the upper chamber with a cotton swab, fix with 4% paraformaldehyde for 10 min, wash three times with PBS, and stain with 0.1% crystal violet staining solution for 30 min. Then take pictures and count the number of cells invaded into the lower chamber; the experiment was repeated three times. Transwell was used to detect the invasion ability of lncRNA TPA overexpression and knockdown stable cell lines.



RNA-Pull Down and Mass Spectrometry Identification


In vitro Transcription


Reaction System Ratio (20 μl)


1) Seal, mix, and incubate at 37°C for 40 min

2) Remove DNA template and free nucleotides

3) Add 28 μl denuclease water to make the volume to 50 μl

4) Add 5 μl 5 M ammonium acetate, vortex to mix

5) Add 60 μl absolute ethanol

6) Centrifuge at high speed for 10 min, discard the supernatant, rinse once with 70% ethanol, add an appropriate amount (15–20 μl) of nucleic acid-free water to dissolve, and divide into 5 μl/tube for use





RNA Pull-Down Experiment

Use the RNA pull-down kit to do RNA pull-down experiments to adsorb proteins that interact with RNA. The method is as follows.


1) Probe labeling of target RNA



[image: image]


2) The labeled target RNA is bound to streptavidin magnetic beads




1) Add 30 μl of streptavidin magnetic beads to a 1.5 ml centrifuge tube.

2) Place the above 1.5 ml centrifuge tube on the magnetic stand, collect the magnetic beads, and discard the liquid.

3) Add an equal volume of 1X RNA Capture Buffer. Resuspend the magnetic beads and gently blow.

4) Add 50 mol biotin-labeled RNA and mix well.

5) Incubate at room temperature for 15–30 min.




3) Protein binds to labeled RNA




1) Place the above 1.5 ml centrifuge tube on the magnetic stand, collect the magnetic beads, and discard the liquid.

2) Dilute 10X Protein-RNA Binding Buffer to 1X (that is, add 10 μl Protein-RNA Binding Buffer to 90 μl ultrapure water).

3) Add 100 μl 1X Protein-RNA Binding Buffer and mix well.

4) The main components of the protein binding reaction of the prepared RNA (Table 1).

5) Place the above 1.5 ml centrifuge tube on the magnetic stand, collect the magnetic beads, and discard the liquid.

6) Combine 100 μl of the mixed RNA protein binding reaction solution with the magnetic beads. Resuspend the magnetic beads and gently blow.




4) Elution of RNA-binding protein complexes




1) Put the above 1.5 ml centrifuge tube on the magnetic stand, collect the magnetic beads, take out the supernatant, and save it for analysis.

2) Add 50 μl Elution Buffer and vortex with magnetic beads to mix. Incubate at room temperature for 15 min.

3) Collect the eluate and save at −80.




TABLE 1. The main components of the protein binding reaction of the prepared RNA.
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Protein Profile Identification


1) Protein reductive alkylation and enzymatic hydrolysis

The reductive alkylation of the protein is as follows: add the final concentration of 10 mM dithiothreitol (DTT) to reduce the protein, then add the final concentration of 55 mM iodoacetamide (IAM), and finally add 1 μg Trypsin enzyme, overnight enzymatic hydrolysis for 8–16 h.

2) Treatment after enzymolysis

The peptides produced by enzymatic hydrolysis are desalted on a C18 column. After the desalted peptides are drained, the peptides are dissolved in 15 μl Loading Buffer (0.1% formic acid, 3% acetonitrile).

3) LC-MS/MS Identification of Protein Enzymatically Hydrolyzed Peptides



The peptides were analyzed by LC-MS/MS (ekspert nanoLC; AB Sciex TripleTOF 5600-plus) instrument, and then the results were evaluated.


qPCR Detection

The primer sequence information used in qRT-PCR is shown in Table 2.


TABLE 2. Primer sequence.
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RNA Extraction

Sample processing: Add 1,000 μl of Trizol to the homogenization tube for every 200 mg of tissue, and place the lysed sample at room temperature for 5–10 min to completely separate the nucleoprotein and nucleic acid. Place in an ultra-clean table, incubate at room temperature for 5 min, and centrifuge at 12,000 rpm for 10 min. Aspirate the supernatant into a new 1.5 mL centrifuge tube, add 200 μl of chloroform, shake well, let stand at room temperature for 2 min, 4°C, 12,000 rpm, and centrifuge for 10 min. Aspirate the supernatant to a new 1.5 mL centrifuge tube, add 600 μl of isopropanol, mix well, let stand at room temperature for 15 min, 4°C, 12,000 rpm, centrifuge for 15 min, discard the supernatant. Add 1 ml of 75% absolute ethanol (750 μl of absolute ethanol and 250 μl of DEPC water) to rinse the pellet, centrifuge at 12,000 rpm at 4°C for 5 min, and discard the supernatant. Add 1 mL of absolute ethanol, rinse the pellet, centrifuge at 12,000 rpm at 4°C for 5 min, discard the supernatant, and dry at room temperature for 10 min. Add 40 μl of DEPC water to dissolve RNA and store in a refrigerator at −80°C for later use.



Reverse Transcription Reaction

Prepare the following reaction system for reverse transcription reaction. Reaction conditions: 42°C, 15 min; 85°C, 5 min.
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1) Prepare the following reaction system for real-time fluorescent quantitative PCR reaction. Mix the solution in the tube thoroughly with a vortex shaker, and centrifuge briefly at low speed.
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2) Spotting: Add the mixed liquid in step (1) to the well plate, and ensure three replicate wells for each gene in each sample.

3) PCR reaction: The PCR program is optimized, and the 8-tube plate that has been sampled in step (2) is placed on the Realtime PCR machine for PCR reaction.

4) Reaction conditions: 95°C, 10 min denaturation; 95°C, 15 s; 60°C, 60 s; 40 cycles.




Statistical Analysis

Results were reported as mean ± SD, and analyzed statistically using SPSS 19.0 software. Intergroup comparisons were carried out by One-way ANOVA, and P < 0.05 was considered significant.



RESULTS


The Effect of lncRNA TPA Overexpression and Knockdown on the Protein Expression of E-Cadherin, Vimentin, Fibronectin, and TGF-β1

It can be seen from Figures 1, 2 that compared with the normal breast cancer cells, the expression of E-cadherin protein in the lncRNA TPA overexpression cells was significantly reduced (p < 0.01), and the protein expression of Vimentin, fibronectin and TGF-β1 were significantly increased (p < 0.01). Compared with the normal breast cancer cells, the expression of E-cadherin protein in the lncRNA TPA knockdown cells was significantly increased (p < 0.01), and the protein expression of Vimentin, fibronectin and TGF-β1 was significantly reduced (p < 0.01).
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FIGURE 1. The protein expression levels of E-cadherin, Vimentin, fibronectin, and TGF-β1 in stably transfected breast cancer cell lines with lncRNA TPA overexpression and knockdown ([image: image] ± s, n = 3).
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FIGURE 2. Statistics of protein expression levels of E-cadherin, Vimentin, fibronectin and TGF-β1 in lncRNA TPA overexpression and knockdown stably transfected breast cancer cell lines (x ± s, n = 3). ▲▲Indicating p < 0.01 compared with the control group, ▲Indicating p < 0.05 compared with the control group.




Immunofluorescence Detection of the Effect of lncRNA TPA Overexpression and Knockdown on Antibody Expression

The results showed that compared with the normal breast cancer cells, the expression of E-cadherin in the lncRNA TPA overexpression cells was reduced, and the expression of Fibronectin, TGF-β1 and Vimentin were significantly increased. The E-cadherin expression in the lncRNA TPA knockdown cells was significantly increased. The cadherin increased, the expression of Fibronectin, TGF-β1 and Vimentin were all significantly decreased, and the differences was statistically significant (P < 0.05, P < 0.01). Among them, the four proteins of E-cadherin, Fibronectin, TGF-β1 and Vimentin are mainly expressed in the cytoplasm and cell membrane. The results are shown in Figures 3–6 and Table 3.
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FIGURE 3. The effect of lncRNA TPA overexpression and knockdown on the expression of MCF-7 E-cadherin antibody [200×, (A) Normal breast cancer cells, (B) lncRNA TPA overexpression cells, (C) lncRNA TPA knockdown cells].
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FIGURE 4. The effect of lncRNA TPA overexpression and knockdown on the expression of MCF-7 Fibronectin antibody [200×, (A) Normal breast cancer cells, (B) lncRNA TPA overexpression cells, (C) lncRNA TPA knockdown cells].
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FIGURE 5. The effect of lncRNA TPA overexpression and knockdown on the expression of MCF-7 TGF-β antibody [200×, (A) Normal breast cancer cells, (B) lncRNA TPA overexpression cells, (C) lncRNA TPA knockdown cells].
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FIGURE 6. The effect of lncRNA TPA overexpression and knockdown on MCF-7 Vimentin protein expression [200×, (A) Normal breast cancer cells, (B) lncRNA TPA overexpression cells, (C) lncRNA TPA knockdown cells].



TABLE 3. The effect of lncRNA TPA overexpression and knockdown on the expression of MCF-7 Vimentin antibody ([image: image] ± S, n = 3).
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The Effect of lncRNA TPA Overexpression and Knockdown on the Migration Ability of MCF-7 Cells

Compared with the normal breast cancer cell group, the migration rate of the lncRNA TPA overexpression cells was significantly increased, and the migration rate of the lncRNA TPA knockdown cells was significantly reduced after the scratches were performed for 24 and 48 h, respectively (p < 0.01, p < 0.01); The results are shown in Figure 7 and Table 4. Compared with the normal group, the lncRNA TPA overexpression group has the strongest migration ability, and the lncRNA TPA knockdown group has the weakest migration ability.
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FIGURE 7. The effect of lncRNA TPA overexpression and knockdown on the migration rate of MCF-7 cells [40×, (A) Normal breast cancer cells, (B) lncRNA TPA overexpression cells, (C) lncRNA TPA knockdown cells].



TABLE 4. The effect of lncRNA TPA overexpression and knockdown on cell migration ([image: image] ± S, n = 3).
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The Effect of lncRNA TPA Overexpression and Knockdown on the Invasion Ability of MCF-7 Cells

Compared with the normal breast cancer cell group, the cell invasion ability of the lncRNA TPA overexpression group was significantly increased, while the cell invasion ability of the knockdown group was significantly reduced, and the difference was statistically significant (P < 0.01). The results are shown in Figure 8 and Table 5.


[image: image]

FIGURE 8. The effect of lncRNA TPA overexpression and knockdown on cell invasion [200×, (A) Normal breast cancer cells, (B) lncRNA TPA overexpression cells, (C) lncRNA TPA knockdown cells].



TABLE 5. The effect of lncRNA TPA overexpression and knockdown on cell invasion (upchi ± S, n = 3).
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HE Staining to Observe the Pathological Changes of Lung Tissue in Nude Mice With Breast Cancer

Figure 9 is a lung tissue section of nude mice with breast cancer. In group B overexpression cells, multiple lung metastases can be observed on the lung tissue of nude mice. The sample site is lung metastasis. It can be seen that the morphology and structure of lung metastases are similar to tumor tissues. Can be judged as breast cancer metastasis. As low-metastasis group cells, no metastases were found in lung tissues in groups A and C. The sample site was lung tissue. It can be seen that there is a large amount of inflammatory cell infiltration in the lung tissue of tumor nude mice, and some alveoli have alveolar wall thickening or incomplete alveolar structure, etc., variety.
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FIGURE 9. HE staining to observe the pathological changes of lung and lung metastases in nude mice with breast cancer (HE staining, 200X). (A) Normal breast cancer cells, (B) InCRINA TPA overexpression cells, (C) IncRNA TPA knockdown cells.




RNA-Pull Down and Mass Spectrometry Results


In vitro Transcription of RNA


PCR product amplification to obtain DNA template

Design PCR primers for sense chain and antisense chain. The primer sequence is shown in the following Table:
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Marker strip size from top to bottom is: 5 k 3 k 2 k 1.5 k 1 k 750 bp 500 bp 250 bp 100 bp.
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Marker strip size from top to bottom is: 5 k 3 k 2 k 1.5 k 1 k 750 bp 500 bp 250 bp 100 bp.

Result analysis:

Judging from the electrophoresis detection diagram of the in vitro transcription pre-experiment, the main band size is about 1.6 k, and the full-length sequence of AK043578 cannot be transcribed. Therefore, the pull-down experiment cannot be performed normally, so the transcribed sequence is directly used for interaction protein screening.
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The size of the Marker strip from top to bottom is: 116KD 66.2KD 45KD 35KD 25KD 18.8KD 14.5KD.

Result analysis:

The result of pull-down enriched protein detection with a segment of RNA that has been transcribed is as shown in the silver staining diagram above. From the silver staining diagram, it can be seen that there are more binding proteins, but the difference bands visible to the naked eye are not very obvious. It may be that the amount of differential protein enrichment is small, and mass spectrometry is needed to further confirm the specific differential protein.



Protein Profile Identification


Proteinpilot Search

After the LC-MS/MS is off the machine, the original off-machine data is directly submitted to the Proteinpilot software connected to the AB SCIEX Triple TOFTM 5600 plus mass spectrometer for database search, please refer to Table 6.


TABLE 6. Proteinpilot search parameters.
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Appraisal Result Statistics

In this experiment, when the confidence level of conf ≥ 95% and Unique peptides ≥ 1 is set, the number of secondary spectra generated by the sample′s mass spectrum are 15,523 and 16,229, and the number of analyzed secondary spectra are 1,037 and 959, respectively. Filter out common contaminated proteins and peptides that can be matched with them. For the total number of peptides and proteins identified in each sample, please refer to Table 7.


TABLE 7. Protein identification by LC-MS/MS.
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Comparison Between Protein Samples

There are two samples in this experiment. The proteins identified in each sample are not only different in quantity, but also different proteins may exist in different samples or the same protein may exist in different samples at the same time.

The figure below shows the Venn diagram of the differential protein collection between the experimental sample AK04_sense-AK04_antisense. It can be seen from the figure that a total of 115 proteins were identified, of which 66 proteins were simultaneously identified in two samples, and the unique proteins identified by AK04_sense and AK04_antisense, respectively. The numbers are 35 and 14, please refer to Venn_Result for related result information.



Protein Related Information

Simply analyze the information related to the mass spectrometry results of the identified proteins. When the confidence level is conf ≥ 95% and Unique peptides ≥ 1, after filtering out common contaminating proteins, the total number of proteins identified in the AK04_antisense and AK04_sense protein samples are 80 and 101, respectively. Some of the protein-related information with the top scores are shown in Table 8. Among them, for the coverage of the target protein sequence information, in the sequence coverage pane of the Proteinpilot software, the sequence is displayed in green and its credibility is above 95%, and the credibility of the yellow is 50∼95% (can be Reference), the credibility of red is 0–50% (uncredible), and the ones shown in gray can be considered completely unreliable and completely ignored. But if the sequence is at the -COOH end, even if it is gray, it is not necessarily wrong, because -COOH is easily filtered out by LC-MS/MS. For information about all other proteins and Subsets proteins, see Table ProteinSummary.xlsx.


TABLE 8. Protein Related Information Sheet.
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qPCR Test Results

According to Table 9 and Figures 10, 11 compared with the tumor tissue group, the variety of the expression levels of ACTG and ENOA in the paracancerous group was not significant (P > 0.05), and the expression levels of BIP, ALDOA, TBB5 and lncRNA TPA were significantly reduced (P < 0.05 or P < 0.01).


TABLE 9. ACTG, ENOA, BIP, ALDOA, TBB5 and lncRNA TPA mRNA expression levels in breast cancer tissues (−[image: image] ± s, n = 3).
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FIGURE 10. AK04 sense-AK04 antisense Venn diagram between two samples.
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FIGURE 11. ACTG, ENOA, BIP, ALDOA, TBB5, and lncRNA TPA mRNA expression levels in breast cancer tissues (χ ± s, n = 3). Compared with the control group, ▲P < 0.05; ▲▲P < 0.01.




DISCUSSION

Long chain length of the non-coding RNA (lncRNA) is a kind of more than 200 nt, which does not have ability of functional RNA molecule coding protein, can be in epigenetic, transcription and the transcription level raised or lowered the expression of target genes, involved in chromatin remodeling and transcription interference, alternative splicing, and many other physiological and pathological process, exert the function of oncogenes or tumor suppressor genes, thus affecting the tumor invasion and metastasis (Lander et al., 2001; Alexander et al., 2010). The changes of lncRNA content and expression level in breast cancer tissues are often correlated with the occurrence of metastasis and the prognosis of patients. A study of more than 900 breast cancer samples showed that 215 lncRNAs were abnormally expressed in breast cancer tissue compared to normal breast tissue. Luminal A-specific lncRNAs are associated with PI3K (phosphatidylinositol 3-kinase), FGF (fibroblast growth factor), and activation of TGF-β pathways. Basal like specific lncRNAs are related to EGFR (epidermal growth factor receptor-dependent signaling pathway) and EMT (Van Grembergen et al., 2016). For example, H19 gene (Berteaux et al., 2005), LOC554202 (Aμgoff et al., 2012), as well as their host genes miR-31 and steroid receptor RNA activator (SRA) (Novikova et al., 2012; Beato and Vicent, 2013) can affect the occurrence, development and metastasis of breast cancer from different links. In addition, a limited number of studies have shown that lncRNA can affect the EMT process of breast cancer cells. For example, Hox antisense intergenic RNA (HOTAIR) (Rinn et al., 2007; Gupta et al., 2010; Zhang et al., 2014) of Hox gene is often significantly up-regulated in primary and metastatic breast cancer, which increases the ability of tumor cell invasion and metastasis and is closely related to prognosis. It can also regulate the EMT of breast cancer stem cells by indirectly inhibiting miR-7 and then affecting the STAT3 signaling pathway. Metastasis-associated transcriptome 1(MALAT-1) of lung adenocarcinoma (Gutschner et al., 2013; Xu et al., 2015), whose abnormal expression can not only affect the invasion and metastasis of breast cancer cells, but also affect the EMT of breast cancer cells by regulating PI3K-Akt signaling pathway. Downregulation of lncRNA CCAT2 can inhibit the proliferation and invasion of breast cancer cells by regulating the TGF-β pathway and promoting the apoptosis of breast cancer cells (Wu et al., 2017). It can be seen that abnormal expression of lncRNA is closely related to the activation, EMT and metastasis of TGF-β pathway in breast cancer (Wang et al., 2016). However, although our mechanism of breast cancer metastasis and lncRNA in which have a certain understanding of the role of, but ultimately solve the problem is still a long way to go, the identification of functional lncRNA is only the tip of the iceberg, is still an urgent need to explore new lncRNA in breast cancer metastasis, and clarify its regulatory mechanism, eventually service in clinical.

Therefore, we screened the candidate lncRNA AK043578 from TGF-β-induced mouse NMuMG cells by using lncRNA microarray technology, confirming that lncRNA AK043578 can regulate the EMT of NMuMG and promote cell invasion. The expression level of AK043578 in allogeneic mouse breast cancer cells with different metastatic potential is also different, suggesting that the candidate lncRNA AK043578 plays an important role in the EMT of tumor and the invasion and metastasis of breast cancer. Furthermore, we identified that the human homologous analog AK043578(h) (named lncRNA TPA), which is differentially expressed in different human breast cancer cell lines. Therefore, we assumed that lncRNA TPA was closely related to breast cancer EMT and metastasis. The mechanisms involved may include as follows: 1. LncRNA TPA affects the occurrence of breast cancer EMT through the TGF-β signaling pathway, thereby promoting the invasion and metastasis of breast cancer; 2. LncRNA TPA may affect the corresponding signaling pathways through one or more interacting proteins, and ultimately promote the invasion and metastasis of breast cancer. And these are exactly what this subject tries to verify and answer. Therefore, this project intends to analyze and verify the function and molecular mechanism of TGF-β-induced novel breast cancer metastasis-related lncRNA TPA through overexpression and RNA interference, Western blot, RNA pull down experiment, and mass spectrometry identification, aiming to clarify the role and specific mechanism of lncRNA TPA in breast cancer EMT, invasion and metastasis. Further study on its clinical application value will hopefully become a new molecular marker and drug therapeutic target for breast cancer metastasis, providing new opportunities and new opinion for accurate diagnosis, precise treatment and precise prevention of breast cancer metastasis.



CONCLUSION

LncRNA TPA affects the occurrence of breast cancer EMT through TGF-β signaling pathway, and then promotes the invasion and metastasis of breast cancer. LncRNA TPA may affect the corresponding signaling pathways through one or more interacting proteins, and ultimately promote the invasion and metastasis of breast cancer.
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CircITGA7 Suppresses Gastric Cancer Progression Through miR-1471/MTDH Axis
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In recent years, there have been reports about the involvement of circular RNAs (circRNAs) in the pathogenesis of gastric cancer (GC), but the molecular mechanism in cell proliferation, invasion, and migration is still unclear. Based on The Cancer Genome Atlas (TCGA) database, we analyzed differentially expressed circRNAs between GC and non-tumor tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to clarify the functional role in GC. Here, we showed that circITGA7 was lowly expressed in GC tissues based on the TCGA database. In vitro, silencing the expression of circITGA7 increased cell proliferation and metastasis, whereas overexpression did the opposite. Mechanistically, miR-1471 has circITGA7 as a sponge, and miR-1471 has metadherin (MTDH) as a target gene. Consequently, functional analysis showed that the tumor suppressor effect of circITGA7 was the result of regulating the miR-1471/MTDH axis. Overall, the circITGA7/miR-1471/MTDH signaling pathway may play a crucial role in GC, providing a new potential mechanism involved in GC progression.

Keywords: CircITGA7, gastric cancer, miR-1471, MTDH, The Cancer Genome Atlas


INTRODUCTION

Although both morbidity and mortality rates have declined significantly over the past few decades, gastric cancer (GC) remains to be a very common cancer and the primary inducer of death globally (Bertuccio et al., 2009). The results of the present study suggest that GC has a high mortality rate, especially after diagnosis (Gu et al., 2020b). The survival rate of GC patients is low, and the prognosis is also poor (Akoh and Macintyre, 1992; Allgayer et al., 1997). At present, surgery is the only radical treatment (Van Cutsem et al., 2016). With the advancement of surgical technology and the implementation of traditional radiotherapy, chemotherapy, and neoadjuvant therapy, the 5-year survival rate of early diagnosed GC has been enhanced more than 95% (Crew and Neugut, 2006). However, the low rate of early diagnosis means that most patients are so advanced by the time they are diagnosed that the best time for surgery is missed (Pasechnikov et al., 2014). Therefore, the most effective methods for the treatment of advanced GC are neoadjuvant chemoradiotherapy and molecular targeted therapy (Yang et al., 2014; Aoyama and Yoshikawa, 2017). Although researches have shown that in the timing and treatment of GC, a variety of methods are effective, but no one standard treatment is widely accepted, it also involves the best timing of chemotherapy, the benefits of radiotherapy, the efficacy of chemotherapy, lymph node dissection to minimize the scope of the best treatment, and so on (Alberts et al., 2003). In view of the poor prognosis of patients, it is essential to find early diagnosis and convenient and timely access to effective treatment.

Circular RNA (circRNA) is a long non-coding RNA molecule with a polar, covalently close continuous ring without a poly-A tail. Many circRNAs are highly conserved and have specific expression patterns, usually not related to host gene expression (Patop et al., 2019). CircRNA is a new type of non-coding tumor genome (Patop and Kadener, 2018). More and more evidences indicate the possible function of circRNAs in developing a number of diseases, including the risk of atherosclerotic vascular diseases and neurological diseases, viral diseases, osteoarthritis, and diabetes (Xu et al., 2018). However, the correlation of most functions has not yet been found. New evidence shows that there are thousands of circRNAs in mammalian cells that bind to microRNAs (miRNAs) or other molecules to mediate gene expression at the transcriptional or posttranscriptional level, thereby inhibiting its function (Rong et al., 2017). CircRNA-UBAP2 can be used as a ceRNA of spongy miR-382-5p in ovarian cancer, increasing the expression level of PRPF8, promoting the proliferation of ovarian cancer cells, and inhibiting cell apoptosis (Xu et al., 2020). GC has also been reported. Circ_0081143 altered migration, invasion, and epithelial/mesenchymal transformation of GC through the miR-497-5p/EGFR axis (Tang et al., 2020). Through modulating the miR-646/LRP6 axis, Circ_0000527 promotes proliferation and metastasis of retinoblastoma cells (Zhang et al., 2020b). CircRNA, being a diagnostic and prognostic biomarker, may be a therapeutic target for individualized medicine in the future (Meng et al., 2017).

Competitive endogenous RNA (ceRNA) is a transcript that can be mutually regulated at the posttranscriptional level by competing shared miRNAs (Gu et al., 2020d). The ceRNA network connects the function of protein-coding mRNA with the function of non-coding RNA (such as miRNA, long non-coding RNA, pseudogene RNA, and circRNA). circRNA has been shown to interact with miRNA as a ceRNA to regulate target gene expression and participate in tumorigenesis. The construction of circRNA-related ceRNA networks in breast cancer reveals that circRNA is related to the progression and prognosis of breast cancer. The identification of ceRNA network analysis in bladder cancer is used to predict the prognosis of bladder cancer as circRNA biomarkers.

In this study, we first evaluated how ITGA7 expressed in GC using TGGA database. Then reverse transcription–quantitative polymerase chain reaction (RT-qPCR) assay revealed that circITGA7 was downregulated in GC tissues and cells. Further functional researches proved that circITGA7 could suppress the development of GC. In addition, circITGA7 may participate in the occurrence and progression of GC through regulating miR-1471 and target gene metadherin (MTDH).



MATERIALS AND METHODS


Data Source

RNA sequencing data of GC, also known as stomach adenocarcinoma (STAD), including 211 normal samples and 408 tumor samples, were obtained from The Cancer Genome Atlas (TCGA,1) database (Gu et al., 2021a).



Differentially Expressed CircRNAs Analysis

The analysis of differentially expressed circRNAs in TCGA STAD tumor samples in comparison with normal samples was accomplished by using the limma package. Differentially expressed circRNAs’ P values were counted by t test during analysis. A cutoff criterion was set as | log2FC| ≥ 1 and P < 0.05 (Shi et al., 2018; Zhang et al., 2020a).



Gene Ontology and Pathway Enrichment Analyses

Gene Ontology (GO) is used for gene annotation, including three categories: cell component (CC), biological process (BP), and molecular function (MF) (Gu et al., 2020c). The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database for associating gene sets with related pathways (Gu et al., 2021b). DAVID (Database for Annotation, Visualization and Integrated Discovery) is an online device to operate GO annotation and KEGG pathway enrichment analyses.



Module Analysis

Package Molecular Complex Detection (MCODE) of Cytoscape software was employed to aid in the analysis of the most dominant clustering module. Then, DAVID was adopted to analyze the GO term that was enriched by DEGs in different modules.



Patient Tissue Samples and Cell Line

The samples of GC patients, as well as the corresponding normal tissues, were collected from our hospital. Each participant has provided the written informed consent, and our Hospital Ethics Committee has approved all the procedures. GES-1, BGC-823, NCI-N87, SGC7901, and AGS cells were used. In Dulbecco modified eagle medium (Gibco, NY, United States) supplemented with 10% fetal bovine serum (Gibco, United States) at 37°C in a 5% CO2 incubator, all cell types were cultured.



RT-qPCR

Trizol reagent (Invitrogen, United States) was employed to obtain total RNA of GC cell and tissues. Then, the cDNA was obtained from total RNA using the BestarTM qPCR RT kit. Based on the guidance of the manufacturer, RT-PCR reactions were applied using the ABI 7500 system with BestarTM qPCR MasterMix.



RNA Interference

The siRNA against circITGA7, miR-1417 mimics, anti-miR1417, and controls were produced by Genepharm. The sequence of circITGA7 was cloned into the pcDNA3.1 vector to obtain overexpressed circITGA7. In six-well plates, SGC7901 and AGS cells were cultured, and then they were transfected with siRNA using LipoFiter transfection reagent (Hanbio) following the guidance of the manufacturer.



Dual-Luciferase Activity Assay

The insertion of the circITGA7 and MTDH-3′ UTR fragment that contained the wild-type (WT) or mutant (MUT) miR-1471–binding site into the pGL3 vector (Promega, United States) was completed to construct the circITGA7 WT or MUT reporter vector.

For the dual-luciferase reporter assay, SGC7901 and AGS cells were seeded and then cotransfected with miRNAs and vector reporter plasmids with Lipofectamine 2000 (Invitrogen). Then, according to previous reports, dual-luciferase reporter assay was employed to evaluate luciferase activity. Renal luciferase activity was normalized to firefly luciferase activity.



Migration Assay

Cell migration assays were conducted with 8-μm pore size Transwell chamber (Corning). Cancer cells (2 × 104) in complete medium were added to the lower chamber, and those in 100 μL serum-free medium were added to the upper chamber. After being incubated for 24 h, the migrated cells were counted under a microscope according to a previous report.



Invasion Assay

A 24-well Transwell chamber was used to conduct the cell invasion assay. Transfected cells (5 × 104 cells/well) were suspended in serum-free medium and then added to superluminal or matrix gel-coated Transwell inserts. The medium, which contained 10% fetal bovine serum, was added to the lower chamber. After 48 h of incubation, the migrated cells were counted under a microscope according to a previous report.



CCK-8 Assay

At a density of 2 × 103 cells/well, GC cells were seeded. CCK-8 reagent (Dojindo Chemical Laboratory, Kumamoto, Japan) was added 3 h before the end of the experiment. The absorbance was measure with a microplate reader at 450 nm (Gu et al., 2020a).



Statistical Analysis

In this study, the data are presented as mean ± SEM (Pan et al., 2017). GraphPad Prism version 7.0 software was employed to operate two-way analysis of variance or Student t test (Chen et al., 2021). P value, which was less than 0.05, was taken as having statistical significance.




RESULTS


ITGA7 Was Lowly Expressed in GC Tissues

To investigate the specific role of ITGA7 in the development of GC, we first evaluated how ITGA7 expressed in GC using TGGA database, and it was revealed that ITGA7 was expressed lowly in STAD (Figure 1A). Besides, in many other tumors, such as rectum adenocarcinoma, colon adenocarcinoma, and breast invasive carcinoma (BRCA), ITGA7 was also lowly expressed (Figure 1B). However, ITGA7 was highly expressed in glioblastoma multiforme (GBM) tissues in comparison with adjacent normal tissues.
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FIGURE 1. The expression of ITGA7 in various cancer tissues using TCGA. (A) ITGA7 was lowly expressed in STAD *P < 0.05. (B) ITGA7 lowly expressed in many cancer tissues but highly expressed in GBM.




GO Enrichment and Pathway Analysis

In order to further understand the functional association of differentially expressed circRNAs in STAD, we used DAVID software to perform GO analysis and KEGG analysis. As Figure 2A shows, the results demonstrated that the significantly enriched GO terms in BP included muscle contraction, muscle system process, muscle cell differentiation, heart process, heart contraction, regulation of heart contraction, regulation of blood circulation, actin-mediated cell contraction, cell–substrate junction assembly, and cell–substrate junction organization. The significantly enriched GO terms in CC contained contractile fiber, focal adhesion, cell–substrate junction, myofibril, collagen-containing extracellular matrix, cell leading edge, sarcomere, I band, Z disk, and sarcolemma. The significantly enriched GO terms in MF comprised actin binding, tubulin binding, cation channel activity, extracellular matrix structural constituent, metal ion transmembrane transporter activity, calcium-channel activity, extracellular matrix structural constituent, calcium ion transmembrane transporter activity, and structural constituent of muscle. Furthermore, KEGG analysis demonstrated the association of these differentially expressed circRNAs with cGMP-PKG signaling pathway, the vascular smooth muscle contraction, axon guidance, aldosterone synthesis and secretion, oxytocin signaling pathway, adrenergic signaling in cardiomyocytes, focal adhesion, renin secretion, insulin secretion, calcium signaling pathway, dilated cardiomyopathy, cortisol synthesis and secretion, circadian entrainment, mitogen-activated protein kinase signaling pathway, pancreatic secretion, extracellular matrix–receptor interaction, hypertrophic cardiomyopathy, salivary secretion, purine metabolism (Figure 2B).


[image: image]

FIGURE 2. GO enrichment and pathway analysis. (A) Significantly enriched pathways of the DEGs in BP, MF, and CC were revealed by GO analysis. DEGs, differentially expressed genes; BP, biological process; MF, molecular function; CC, cellular component; GO, Gene Ontology. (B) The complex interaction network among the significantly enriched KEGG pathways.




Module Analysis

Being one of the features of the protein–protein interaction (PPI), the network module could also provide specific and significant biological information. As shown in Figure 3, there were in total nine modules detected and constructed by MCODE. Then, we further performed GO term enrichment analysis of some module. The results showed that module 1 was involved in divalent inorganic cation transport, divalent metal ion transport, and calcium ion transport; module 2 was involved in muscle system process and muscle contraction; module 3 was involved in muscle system process, striated muscle contraction, and muscle contraction; module 4 was involved in protein-containing complex disassembly, response to extracellular stimulus, and response to nutrient levels; module 5 was involved in anti-inflammatory response favoring Leishmania parasite infection, Leishmania parasite growth and survival, and ADORA2B-mediated anti-inflammatory cytokine production; module 6 was involved in class A/1 (rhodopsin-like receptors), G alpha (q) signaling events, and neuroactive ligand–receptor interaction; module 7 was involved in laminin interactions, NABA basement membranes, and PID integrin1 pathway.
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FIGURE 3. Module analysis. (A) Identify hub genes from the protein–protein interaction (PPI) network using MCODE algorithm. Each color denotes a cluster detected by MCODE. (B) GO enriched by DEGs in different modules.




The Expression of CircITGA7 Was Remarkably Decreased in GC

To explore the role of circRNAs in GC, we first compared the expressions of circITGA7 between normal tissues and GC tissues. The data showed that compared to normal tissues, circITGA7 expressed significantly lower in GC tissues (Figure 4A). Furthermore, we examined the expressions of circITGA7 in GC cell lines (BGC-823, AGS SGC7901, and NCI-N87), and one healthy gastric epithelial cell (GES-1) was set as negative control. qRT-PCR assays confirmed that in healthy gastric cells, the expression levels of circITGA7 were lower in GC cells lines, especially in SGC7901 and AGS cells (Figure 4B).
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FIGURE 4. The expression of circITGA7 was remarkably decreased in gastric cancer. (A) Compared to normal tissues, CircITGA7 expressed significantly lower in GC tissues *P < 0.05. (B) Expressions of circITGA7 in gastric tumor cell lines and gastric epithelial cell line *P < 0.05.




CircITGA7 Suppressed the Development of GC in vitro

We regulated high circITGA7’s expression in SGC7901 and AGS cells to explore its role in GC. In order to detect the circITGA7 expression, qRT-PCR was applied. The results showed that compared to control cells, the expressions of circITGA7 were remarkably downregulated in cells transfected with siRNA (Figure 5A) and upregulated in cells transfected with circITGA7 overexpression plasmid (Figure 5B). Then, it was shown that cell proliferation in circITGA7-overexpressed SGC7901 and AGS cells was significantly decreased (Figures 5C,D). Similarly, in circITGA7 lowly expressed cells, cell proliferation was significantly increased (Figures 5E,F). In Transwell assays, we added si-ITGA7 in SGC7901 and AGS cells to conduct invasion and migration assays, respectively. The results demonstrated that in circITGA7-downregulated cells, the abilities to invade and migrate were enhanced (Figures 5G,H).
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FIGURE 5. CircITGA7 suppressed the development of GC in vitro. (A) The expressions of circITGA7 were remarkably downregulated in SGC7901 and AGS cells transfected with siRNA *P < 0.05. (B) The expressions of circITGA7 were remarkably upregulated in SGC7901 and AGS cells transfected with circITGA7 ***P < 0.001. (C,D) The cell proliferation in circITGA7-overexpressed SGC7901 and AGS cells was notably decreased *P < 0.05. (E,F) The cell proliferation in circITGA7 lowly expressed SGC7901 and AGS cells was notably decreased *P < 0.05. (G) The invasion ability in circITGA7 lowly expressed SGC7901 cells was significantly decreased. (H) The migration ability in circITGA7 lowly expressed AGS cells was significantly decreased.




CircITGA7 Was a Sponge for miR-1471

To further explore the potential mechanism of circITGA7 in GC, we predicted the target miRNAs of circITGA7. We used miRBase2 and circInteractome3 to analyze the potential targets of circITGA7. The ceRNA network analysis showed circITGA7 interacted with four miRNAs (miR-1471, miR-370-3p, miR-3187-3p, and miR-198). Thus, we examined the expressions of these four miRNAs in AGS cells transfected with siRNA or circITGA7-overexpressed plasmid, and the results are shown in Figures 6A,B. MiR-1471 expressed differently than the other three miRNAs. Next, to explore the interaction between miR-1471 and circITGA7 in SGC7901 and AGS cells, dual-luciferase reporter assay was conducted. Results revealed that miR-1471 mimics significantly attenuated the luciferase activity driven by circITGA7 WT in both AGS and SGC7901 cells, whereas miR-1471 mimics did not attenuate those driven by circITGA7 Mut (Figures 6C,D). Then, we observed the expression of miR-1471 in SGC7901 and AGS cells transfected with sicircITGA7. The data showed miR-1471 had an increased expression (Figure 6E). We also observed the expression of circTIGA7 in miR-1471–overexpressed SGC7901 and AGS. The results showed a decreased circITGA7 expression (Figure 6F). Therefore, there existed a negative relation between miR-1471 and circITGA7.
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FIGURE 6. CircITGA7 was a sponge for miR-1471. Expressions level of four miRNAs in AGS cells transfected with (A) siRNA or (B) circITGA7 *P < 0.05, **P < 0.01. Overexpressed miR-1471 did not attenuate the luciferase activity driven by circITGA7 Mut, but significantly attenuated those driven by circITGA7 WT in (C) AGS and (D) SGC7901 cells *P < 0.05, **P < 0.01. (E) Increased miR-1471 expression in AGS and SGC7901 cells transfected with si-circITGA7 *P < 0.05, **P < 0.01. (F) Decreased circITGA7 expression in AGS and SGC7901 cells transfected with miR-1471 mimics *P < 0.05, **P < 0.01.




MTDH Targeted by miR-1471 Reversed the Effect of CircITGA7

According to the results of TargetScan 7.24, MTDH was identified as miR-1471’s target gene. We have established the plasmids of MTDH WT and MUT recombinant luciferase plasmid to verify the interaction between miR-1471 and MTDH. Using dual-luciferase reporter experiments, we revealed that miR-1471 mimics remarkably reduced the expression of MTDH 3′ UTR-WT–driven luciferase activity in AGS cells (Figure 7A), whereas anti–miR-1471 enhanced luciferase activity in SGC7901 cells (Figure 7B). Then, we detected the levels of MTDH in SGC7901 and AGS cells transfected with miR-1471 and anti–miR-1471, respectively. The assays indicated that there existed a negative relation between MTDH and miR-1471 in GC cells (Figures 7C,D). We explored the effects of MTDH on SGC7901 and AGS cells treated with circITGA7 siRNAs to better clarify the significant function of MTDH in GC cell lines. MTDH partially reversed the downregulation of circITGA7 in AGS cell (Figure 7E), as well as reversed upregulation of miR-1471 in SGC7901 cell (Figure 7F) induced by circITGA7 siRNAs. In functional assays, we found that circITGA7 overexpression’s inhibition of SGC7901 cell proliferation activity was reversed with MTDH (Figure 7G). Therefore, it could be verified that MTDH had a positive relation with circITGA7 in GC cells, and circITGA7 affected GC progression through miR-1471/MTDH axis.
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FIGURE 7. MTDH targeted by miR-1471 reversed the effect of circITGA7. (A) The luciferase activity driven by MTDH 3′ UTR-WT in AGS cells was remarkably reduced by overexpressed miR-1471 *P < 0.05. (B) The luciferase activity driven by MTDH 3′ UTR-WT in SGC7901 cells was remarkably enhanced by lowly expressed miR-1471 *P < 0.05. (C) Decreased MTDH expression in AGS cells transfected with miR-1471. *P < 0.05. (D) Increased MTDH expression in SGC7901 cells transfected with anti– miR-1471. *P < 0.05. (E) MTDH partially reversed the downregulation of circITGA7 in AGS cell transfected with si-circITGA7 *P < 0.05. (F) MTDH partially reversed the upregulation of miR-1417 in SGC7901 cell transfected with si-circITGA7 *P < 0.05. (G) MTDH partially reverse the decreased cell proliferation activity by circITGA7 overexpression *P < 0.05.





DISCUSSION

As we all know, GC is a very common tumor in the digestive system, which may be related to dietary habits, geographical environment, genes, and so on (Kim et al., 2014). At present, with the progress of pathological and biochemical diagnosis technology and surgical resection technology, the success rate of cancer treatment and the survival rate of patients after surgery have been significantly improved (Crew and Neugut, 2006; Yuan et al., 2017; Gu et al., 2018; Gu and Chen, 2020; Bao et al., 2021). Nevertheless, the number of GC deaths is increasing year by year worldwide, especially in East Asia (Rahman et al., 2014). Therefore, to explore the treatment of GC is imminent. Previously, Li et al. reported that Has_CIRC_0000096 influenced GC cells’ growth and migration by regulating CDK6, cyclin D1, MMP-9, and MMP-2. The results showed that circARKT3 derived from exons 8, 9, 10, and 11 of AKT3 gene could promote GC cell DNA damage repair and inhibit cell apoptosis (Li et al., 2017). In addition, Zhang et al. (2019) proved that circNRIP1 affected the expression level of AKT1 through miR-149-5p and finally acted as a tumor promoter in GC. Based on ITGA7 microarray studies, we found that ITGA7 was significantly low-regulated in many cancers including GC. At the same time, the enrichment analysis showed the close association between differentially expressed circRNAs’ biological functions and muscle process, which is in line with previous study. Being a complex syndrome, sarcopenia is defined as progressive and systemic loss of skeletal muscle mass and strength. Although aging is seen as the main factor of sarcopenia, cancer can also be a generator of it. As a poor prognostic factor of cancer, sarcopenia is currently attracting people’s attention. Patients’ GC is usually related to eating disorders, leading to weight and muscle loss; thus, the particular importance of sarcopenia for GC is obvious.

CircRNA plays an important role in tumorigenesis and metastasis, so it can be used as a therapeutic target for cancer. CircITGA7 has an inhibitory effect in colorectal cancer and is a potential target treatment for CRC. The upregulation of circITGA7 in patients with thyroid cancer plays a regulatory role in thyroid cancer and is a potential marker for the diagnosis or progression of thyroid cancer. However, there is no report about the mechanism of circITGA7 in GC. qRT-PCR assay showed that the expression level of circITGA7 was obviously lower in GC tissues and cells than that of the normal ones. Functional studies showed that overexpression of circITGA7 significantly inhibited the progression of AGS and 7,910 cell lines, whereas knockdown of circITGA7 obviously promoted GC cells’ proliferation, invasion, and migration. In summary, circITGA7 showed a strong tumor suppressor activity in GC cells.

Increasing reports show circRNAs can modulate the expression of target mRNA by binding to miRNAs and participate in a variety of life activities (Rong et al., 2017). On the basis of bioinformatics analysis, we screened the miRNA library of circITGA7 and found miR-1471 was directly modulated by circITGA7, whereas the expression level of circITGA7 was suppressed by endogenous miR-1471 level. MiR-1471 is reported to modulate cell proliferation and motility. MiR-1471 overexpression has been implicated in many human cancers (Meng et al., 2018). Bioinformatics analysis and luciferase reporter analysis confirmed miR-1471 was the target of circITGA7. In addition, miR-1471 expression was increased in GC cells after circITGA7 knockdown, confirming our hypothesis. However, the role of miR-1471 in GC has been rarely researched. Our results revealed the importance of the interaction between circITGA7 and miR-1471 in the genesis and development of GC.

In addition, miRNAs play a key role in biological and pathological processes by mediating targets (Tomankova et al., 2012; Zhao et al., 2012). Bioinformatics analysis and luciferase reporter analysis showed miR-1471 was targeted to GC cells by MTDH. MTDH is an oncogene that is overexpressed in many types of malignant tumors. Studies in breast cancer have found that MTDH promotes breast cancer cell proliferation and tumorigenesis by activating multiple signaling pathways. MTDH acts as an oncogene in prostate cancer and is related to the poor prognosis of patients. The expression of MTDH and that of VEGF are related to tumor angiogenesis and progression and are valuable prognostic factors for patients with triple-negative breast cancer. The combination of MTDH inhibition and chemotherapy has proven to have significant efficacy in eliminating human hepatocellular carcinoma xenografts in nude mice, indicating that the development of effective MTDH inhibition strategies will enable objective responses and survival benefits in patients with advanced hepatocellular carcinoma. We hypothesized circITGA7 could suppress GC cells’ proliferation and metastasis by regulating MTDH’s mRNA level through competitive sponge miR-1471. Our result proved overexpression of circITGA7 in tumors could absorb more miR-1471, leading to a reduction of miR-1471 and miRNA-mediated attenuation of MTDH mRNA, thus suppressing invasive tumor growth.

In summary, by using the TCGA data set and comprehensive bioinformatics analysis (GO, KEGG, and PPI network), we identified the key genes related to GC. Our findings suggest circITGA7 is a tumor suppressor regulator. It induces competitive binding to miR-1471, leading to upregulation of MTDH. Our study confirms for the first time that circITGA7 inhibited the occurrence and development of GC by regulating the miR-1471/MTDH axis. Downregulation of circITGA7 is involved in gastric carcinogenesis by regulating miR-1471 axis-mediated MTDH. This study provides a significant basis for further elucidation of the biological characteristics of GC. To verify the role of circITGA7/miR-1471/MTDH axis in the GC, in future studies, we will collect more clinical samples to explore circITGA7/miR-1471/MTDH expression and clinical parameters (including clinical stage, age, and survival time).
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Purpose: Bladder cancer (BLCA) is one of the most common cancers worldwide. In a large proportion of BLCA patients, disease recurs and/or progress after resection, which remains a major clinical issue in BLCA management. Therefore, it is vital to identify prognostic biomarkers for treatment stratification. We investigated the efficiency of CpG methylation for the potential to be a prognostic biomarker for patients with BLCA.

Patients and Methods: Overall, 357 BLCA patients from The Cancer Genome Atlas (TCGA) were randomly separated into the training and internal validation cohorts. Least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) were used to select candidate CpGs and build the methylation risk score model, which was validated for its prognostic value in the validation cohort by Kaplan–Meier analysis. Hazard curves were generated to reveal the risk nodes throughout the follow-up. Gene Set Enrichment Analysis (GSEA) was used to reveal the potential biological pathways associated with the methylation model. Quantitative real-time polymerase chain reaction (PCR) and western blotting were performed to verify the expression level of the methylated genes.

Results: After incorporating the CpGs obtained by the two algorithms, CpG methylation of eight genes corresponding to TNFAIP8L3, KRTDAP, APC, ZC3H3, COL9A2, SLCO4A1, POU3F3, and ADARB2 were prominent candidate predictors in establishing a methylation risk score for BLCA (MRSB), which was used to divide the patients into high- and low-risk progression groups (p < 0.001). The effectiveness of the MRSB was validated in the internal cohort (p < 0.001). In the MRSB high-risk group, the hazard curve exhibited an initial wide, high peak within 10 months after treatment, whereas some gentle peaks around 2 years were noted. Furthermore, a nomogram comprising MRSB, age, sex, and tumor clinical stage was developed to predict the individual progression risk, and it performed well. Survival analysis implicated the effectiveness of MRSB, which remains significant in all the subgroup analysis based on the clinical features. A functional analysis of MRSB and the corresponding genes revealed potential pathways affecting tumor progression. Validation of quantitative real-time PCR and western blotting revealed that TNFAIP8L3 was upregulated in the BLCA tissues.

Conclusion: We developed the MRSB, an eight-gene-based methylation signature, which has great potential to be used to predict the post-surgery progression risk of BLCA.

Keywords: DNA methylation, prognosis, LASSO, SVM-RFE, bladder cancer, machine learning


INTRODUCTION

Bladder cancer (BLCA) is one of the most common cancers. Seventy percent of cases present as non-muscle invasive lesions (NMIBCs), and approximately 25–75% of high-risk NMIBC patients progress to muscle invasive cancer (MIBC) and then to metastatic cancer (Siegel et al., 2020). Patients with MIBC have a poorer prognosis due to tumor recurrence and progression, and their 5-year survival rate is 25–60%. Biomarkers that can credibly evaluate the disease prognosis and patient survival would have tremendous benefits in guiding the individualized management of patients. Epigenetic modifications of DNA methylation can be identified by high-throughput analysis, and they regulate gene expression, which can contribute to the diagnosis, prevention, and treatment of diseases. Abnormal methylation generally occurs in early cancer and influences cancer progression (Ibrahim et al., 2011).

Because alterations in aberrant methylation are relatively stable and may be reversible therapeutically, considerable attention has been focused on them recently (Garcia-Manero et al., 2013). Tumor initiation and progression in BLCA patients is thought to be associated with abnormal DNA methylation (Kim and Kim, 2009; Besaratinia et al., 2013; Kandimalla et al., 2013). A previous study showed that NMIBC patients without prostate cancer susceptibility candidate (PRAC) methylation have a higher risk of recurrence or progression than those with methylation (Kim et al., 2015), and RUNX family transcription factor 3 (RUNX3) methylation was identified as a potential biomarker associated with overall survival (OS) by Jeong et al. (2011). However, there are still few methylation markers widely accepted for BLCA. The identification of reliable markers has become a feasible method with the emergence of high-throughput technology. CpG methylation as a biomarker predicting OS has been demonstrated by several previous genome-wide studies, but it does not predict progression-free survival (PFS) (Kawamoto et al., 2006; Luo et al., 2014; Shivakumar et al., 2017). Because the OS of NMIBC patients whose tumors are limited to the urothelial layer is favorable after treatment by transurethral resection, especially patients in G1/G2 stage, PFS more accurately reflects the biological behavior of BLCA (Beukers et al., 2015). Consequently, identifying the potential prognostic biomarker in predicting the risk of BLCA recurrence and/or after initial surgical treatment will be critical to maximally control cancer progression while avoiding overtreatment.

In this study, we successfully identified and validated progression-related CpGs in BLCA. Here, we analyzed DNA methylation data from 450K chips from The Cancer Genome Atlas (TCGA)-BLCA database by utilizing machine learning and built a predictive model from the methylation risk score for BLCA (MRSB) with eight specific CpGs for predicting the PFS of BLCA patients. We revealed the time node of adverse events after resection, thus allowing for more efficient treatment of patients to prevent a poor outcome of high-risk patients. We further demonstrated that the mRNA and protein levels of the MRSB component-related gene TNFAIP8L3 were prominently upregulated in BLCA tissues compared to adjacent tissues. In short, our study identified a prognostic panel, which provides novel insight into cancer progression and the opportunity of stratified therapeutic strategy for patients with BLCA.



MATERIALS AND METHODS


Patients and Tumor Samples

Paired cancer and adjacent tissue samples from 18 patients were collected between July 2017 and June 2019 at the First Clinical Hospital of Zhengzhou University (ZZU cohort). None of the patients had previously received any special treatments. The project was approved by the Ethics Committee of Zhengzhou University, and all patients signed informed consent forms. Patient tissues were stored in liquid nitrogen until they were used for the detection of mRNA and protein expression levels.



Public Data Collection and Grouping of Patients

The research protocol is illustrated in Figure 1. BLCA patients’ raw DNA methylation data based on the Illumina Human Methylation 450 (450K) Bead Chip were obtained from TCGA.1 Among a total of 485,578 CpG sites with annotation, only 395,985 CpG sites corresponded to known genes. Thus, all 395,985 CpG sites were finally selected for our analysis. Based on the BLCA patients with complete clinical information, we designed the inclusion criteria for groups of patients. Patients who died of non-cancer-related events were excluded. Finally, 357 BLCA patients were included in our study. According to the methods used in previous research (Simon et al., 2003), the 357 BLCA patients from the TCGA were divided randomly into training and internal validation groups by a professional programmer utilizing a random allocation sequence to implement computerized random allocation.
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FIGURE 1. Data generation and analysis process of this study. The differentially presented CpGs between cancer and normal tissues in the TCGA bladder cancer cohort were firstly identified. After excluding competitive event patients, SVM-RFE and LASSO algorithms were used to identify candidate methylation sites and to incorporate the results. Multivariate Cox analysis was performed to establish the prognostic model: the MRSB was validated in the internal validation cohort. Finally, nomograms were established with MRSB and clinical covariates. TCGA, The Cancer Genome Atlas; SVM-RFE, support vector machine-recursive feature elimination; LASSO, least absolute shrinkage and selector operation; BLCA, bladder cancer; MRSB, methylation risk score for bladder cancer.




Screening of Methylated CpG Sites

The differentially expressed CpG sites between BLCA patients and adjacent normal tissue were selected using the “limma” package (Ritchie et al., 2015; Li et al., 2019) with significant cutoff values of the adjusted p < 0.01 and | log2-fold change (FC)| > 0.2 in R software (version 3.6.4), which is a more stringent standard than that used in previous studies, to determine the differential CpG sites (Ma et al., 2019). Through Cox regression screening, differentially expressed CpG sites were found to be related to prognosis (log-rank tests p < 0.05) (George et al., 2014) using the “survival” R package (Williams et al., 2017). CpG sites that conformed to the criteria described above were selected to train the model.



Machine Learning for the Candidate CpGs

CpG sites conforming to the criteria described above were used to participate in machine learning. “Glmnet” R packages were utilized to implement the least absolute shrinkage and selector operation (LASSO) algorithm (Tibshirani, 2011), and “e1071” R packages were executed to support vector machine-recursive feature elimination (SVM-RFE) (Guo et al., 2014; Huang et al., 2014). The final candidate CpGs were obtained by the intersection of the results from the two algorithms (Figures 2A–C).
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FIGURE 2. Two algorithms were used for selecting the candidate CpGs. (A) The number of features with the optimal accuracy and the lowest error rate under fivefold cross validation in SVM-RFE. (B) LASSO algorithms in the discovery cohort. (C) Incorporation of CpGs methylation that were selected from the LASSO and SVM-RFE algorithms in the discovery cohort. SVM-RFE, support vector machine-recursive feature elimination; LASSO, least absolute shrinkage and selector operation.




Construction of the Methylation Risk Score

All possible stepwise increases in the amounts of candidate CpGs were tested from one to eight signatures to obtain the best classification accuracy of patients in the high- and low-risk groups (Figures 3A,B). Next, Cox proportional hazards modeling was conducted to construct a CpG predictive signature on candidate CpGs obtained from the previous test with the optimal number of signatures. Receiver operating characteristic analysis and multivariate Cox regression were performed with the “survivalROC” R package (Heagerty et al., 2000). The “Muhaz” package was used to calculate the kernel-smoothing hazard rate function for the risk component in PFS and OS (Müller and Wang, 1994; Li et al., 2020).
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FIGURE 3. Building the methylation risk score for bladder cancer (MRSB) in the training cohort. (A) Clinical characteristics of the training and validation cohorts. (B) Clinical characteristics of the high- and low-risk groups identified by MRSB. (C) Eight CpG predictive features had the highest discriminative power for high-risk and low-risk patients. (D) Area under the curve of the receiver operating characteristic curve for MRSB to distinguish between high- and low-risk groups. (E) Progression-free survival was significantly different between the high- and low-risk groups. (F) The prognostic value of MRSB in patient subgroups with different patient and clinical features.




Building a Predictive Nomogram

Decision curve analysis was executed to select the optimal clinical variables to incorporate for constructing a nomogram (Vickers and Elkin, 2006). The concordance index was used to validate the efficiency of the nomogram, and calibration plots were graphically explored. The “survival” and “rms” R packages were used.



Real-Time Quantitative Polymerase Chain Reaction

TRIzol reagent (Invitrogen, United States) was utilized to extract total RNA from the tissues, and it was reverse transcribed following the manufacturer’s protocol (Takara Bio, Japan). Real-time quantitative polymerase chain reaction (RT-qPCR) assays were performed using the PowerUp SYBR-Green master mix kit (Thermo Fisher Scientific, United States) and the QuantStudio 6 System (Thermo Fisher Scientific, United States). The following primers were used: TNFAIP8L3 forward primer: ATTGATGACACCAGCAGCGA; reverse primer: GAGGAACTCCACATCGGCAA. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) forward primer: GACCTGACCTGCCGCCTA; reverse primer: AGGAGTGG GTGTCGCTGT. mRNA expression was normalized to GAPDH, and the data were analyzed using the comparative Ct method (2−ΔΔCt).



Western Blotting

Total protein was extracted utilizing radioimmunoprecipitation assay (RIPA) buffer from the tissues of the ZZU BLCA patients. Following the extraction, bicinchoninic acid (BCA) assays (Beyotime, China) were performed to quantify all proteins. Equal amounts of protein samples were separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, United States). The membranes were blocked with 5% non-fat milk/TBST for 2 h. Then, the membranes were incubated with primary antibodies at 4°C overnight with the following antibodies: anti-TNFAIP8L3 (1:1,000; Invitrogen, United States) and anti-GAPDH (1:10,000; Proteintech, United States). After washing the membranes with Tris-buffered saline Tween-20 (TBST) three times, the membranes were further incubated with secondary antibodies [alkaline phosphatase-conjugated AffiniPure goat anti-rabbit IgG (H+L) (1:10,000; Proteintech, United States) or alkaline phosphatase-conjugated AffiniPure goat anti-mouse IgG (H+L) (1:10,000; Proteintech, United States)] for 2 h at 37°C. The immunoreactive bands were visualized using an enhanced chemiluminiscence (ECL) system (FluorChem E; ProteinSimple, United States).



Pathway Enrichment Analysis for the MRSB Associated Genes

Gene Set Enrichment Analysis (GSEA) was executed to identify potential biological pathways/processes affected by the MRSB DNA methylation model and corresponding genes (Mootha et al., 2003; Subramanian et al., 2005). Ranking the samples by the expression of the methylated genes, samples with expression of the genes greater than 75% of all samples were defined as the high expression group, and those with expression <25% of all samples were defined as the low expression group. The gene sets of ‘‘kegg pathway’’ and ‘‘hallmarks of cancer’’ were acquired from ‘‘GSEA Molecular Signatures Database.’’2 Enrichment analysis was performed by “fgsea” and “clusterProfiler” R package (Yu et al., 2012).



Statistical Analysis

All statistical analyses were executed in R software (Version 3.6.4). The “survival” R package was executed to perform the Kaplan–Meier survival analysis and log-rank test. PFS was measured as the time when patients lived with the disease during which it did not worsen until the last follow-up after treatment. OS was defined as the date of diagnosis or the start of treatment to death or the last follow-up. Recurrence-free survival (RFS) was defined as the time from treatment until disease recurrence, metastasis, or last follow-up. Statistical significance was defined as p < 0.05 unless specified otherwise.



RESULTS


Patient Characteristics and Grouping

Following the protocol illustrated in Figure 1, samples containing competing events were removed, which ended up with 357 BLCA patients with median follow-up time of 18.2 months (range 0.43–168.3). At the final point of follow-up, 49.58% of the patients with BLCA (177 of 357) experienced disease progression, and 35.29% of the patients (126 of 357) died. For the overall cohort, the 1- and 5-year PFS rates were 74.32 and 53.70%, and the 1- and 5-year OS rates were 57.89 and 38.78%, respectively. Patients whose disease progressed within 1 year were defined as the high-risk group (n = 110), and those who had five or more years of follow-up and had no disease progression events were defined as the low-risk group (n = 30).



Selection of Candidate CpGs

Both SVM-RFE and iterative LASSO were used to identify the most significant CpGs for classifying patients into high- and low-risk progression in the training group. A total of 130 CpGs (Supplementary Table 1) were identified by the SVM-RFE algorithm (Figure 2A). Using the iterative LASSO algorithm, 15 CpGs (Supplementary Table 2) that appeared more than 500 times in the 1,000 iterations (Figure 2B) were considered consensus CpGs that distinguished high- from low-risk groups. After incorporating the CpGs obtained by the two algorithms, eight CpGs corresponding to TNFAIP8L3, KRTDAP, APC, ZC3H3, COL9A2, SLCO4A1, POU3F3, and ADARB2 identified by both algorithms were selected as the final risk signatures (Figure 2C).



Building the Methylation Risk Score

The TCGA were divided randomly into training (250 patients, 70%) and internal validation (107 patients, 30%) groups using a random allocation sequence, and there were no significant differences in progression risk status, age, sex, cancer stage, and grade between the training and validation cohorts (Figure 3A). To better evaluate the efficiency of candidate CpGs in predicting progression, we applied a multivariate Cox model to obtain the coefficients weighted for building a MRSB in the training sample cohort. The following formula was used to calculate the MRSB: risk score = (−0.919 × methylation level of TNFAIP8L3) + (−1.383 × methylation level of KRTDAP) + (−1.071 × methylation level of APC) + (−3.213 × methylation level of ZC3H3) + (3.348 × methylation level of COL9A2) + (−2.626 × methylation level of SLCO4A1) + (1.522 × methylation level of POU3F3) + (0.803 × methylation level of ADARB2). Using the median MRSB cutoff point of 1.038, 123 patients were assigned to the high-risk (>1.038) group, and 127 patients were assigned to the low-risk (>1.038) group (Figure 3B). With this cutoff threshold, the area under the receiver operating characteristic curve (AUC) to predict high progression risk patients from the training cohort was 0.864 (Figures 3C,D), and PFS was significantly different between the high- and low-risk patients (p < 0.001, Figure 3E). We further assessed the prognostic value of MRSB in patient subgroups with different patient and clinical features and found that a high MRSB significantly increased patient BLCA progression risk in all subgroups (Figure 3F).



Validating the Methylation Risk Score

To validate the effectiveness of the MRSB, we performed validation analysis in the internal validation cohort (n = 107). MRSB classified the internal validation cohort into high-risk (n = 55, 51.4%) and low-risk (n = 52, 48.6%) groups with significant differences in PFS (log-rank p = 0.011, Figure 4D). Meanwhile, the same results were seen in all of the patients (high-risk n = 178, 49.1%, low-risk n = 179, 50.1%, log-rank p < 0.001, Figure 4A). Furthermore, we found that the predictive signature maintained its discriminative efficacy for OS and RFS of the patients in the training cohort (Figure 4B, OS: p < 0.001 and Figure 4C, RFS: p < 0.001) and the internal validation cohort (Figure 4E, OS: p = 0.002 and Figure 4F, RFS: p = 0.05).
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FIGURE 4. The performance of MRSB in predicting progression, survival and recurrence. (A) Progression-free survival in all patients. (B) Overall survival in the training cohort. (C) Recurrence-free survival in the training cohort. (D) Progression-free survival in the validation cohort. (E) Overall survival in the validation cohort. (F) Recurrence-free survival in the validation cohort. MRSB, methylation risk score for bladder cancer.




Kernel-Smoothing Hazard Rate Function

A kernel-smoothing hazard rate function was used to reveal the time to cancer progression. The risk increased steeply toward the first peak at approximately 9–10 months after treatment for the MRSB high-risk group, and the second peak occurred at approximately 30 months after resection; however, there was no noteworthy peak for the MRSB low-risk group during the follow-up period (Figure 5A). For the OS of the patients, a prominent peak approximately 20 months after resection was significant, which was slightly later than the peak for the time of cancer progression in the MRSB high-risk group (Figure 5B).
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FIGURE 5. Hazard curves revealing the time of cancer progression. Smoothed hazard estimates for the presence of a risk component in (A) PFS and (B) OS. The red line represents patients in the high-risk group, and the blue line represents patients in the low-risk group. The table below the curve gives the number of patients without observed endpoint event at different follow-up cut-of time. PFS, progression-free survival; OS, overall survival.




Building a Predictive Nomogram

To establish a clinical valuable prognostic biomarker based on our MRSB to predict the individual risk of disease progression, we developed a predictive model by combining MRSB and common clinical covariates using a nomogram. Based on the decision curve, we found that pathologic tumor stage was a better evaluation factor than histological grade (Supplementary Figure 1). We created a nomogram with predictors including MRSB, pathologic tumor stage, age, and sex of the patients to predict the 1- and 5-year PFS (Figure 6A). Using the same approach, nomograms were also generated to predict the 1- and 5-year OS and RFS, respectively (Supplementary Figures 2, 3). The calibration graphs of the 5-year PFS rate, 5-year OS rate, and 3-year RFS rate performed well (Figures 6B–D).
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FIGURE 6. The nomograms based on MRSB are reliable predictors for the prognosis of BLCA patients. (A) Nomogram to predict the 1- and 5-year PFS. (B) Calibration curve for the PFS nomogram model in the TCGA BLCA cohort. (C) Calibration curve for the OS nomogram. (D) Calibration curve for the RFS nomogram model. The gold line represents the ideal nomogram, and the blue line represents the observed nomogram (for the OS and RFS nomogram see the Supplementary Material). MRSB, methylation risk score for bladder cancer; BLCA, Bladder cancer; PFS, progression-free survival; TCGA, The Cancer Genome Atlas; OS, overall survival; RFS, recurrence-free survival.




Confirmation of the Gene Expression Changes of MRSB DNA Methylation Model

Methylation risk score for BLCA (MRSB) component-related genes were defined as the genes at which the probe closest to the transcription start site (TSS) was located based on the university of California Santa Cruz (UCSC) genome browser known-gene list. To evaluate the potential contribution of the MRSB component-related genes in BLCA progression, we analyzed the RNA-seq data of those genes in BLCA samples in correlation with patient PFS and OS in the TCGA cohort (Supplementary Figure 4). We found that high levels of TNFAIP8L3 were significantly correlated with poor PFS/OS (p < 0.001) rates (Figures 7A,B) and high levels of APC were associated with poor PFS (p = 0.042), although not with OS (p = 0.41) (Figures 7D,E) in BLCA patients. Meanwhile, both expression levels of TNFAIP8L3 and APC were significantly negatively correlated with their methylation status (Figures 7C,F). We further experimentally confirmed using our own sample cohort (ZZU cohort) that the mRNA and protein expression levels of TNFAIP8L3 were significantly upregulated in BLCA tissues (Figures 7G,H).
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FIGURE 7. Expression patterns of MRSB component-related genes. (A) Progression-free survival curves according to the presence of the MRSB component-related gene TNFAIP8L3. (B) Overall survival based on TNFAIP8L3 expression. (C) Negative correlation between TNFAIP8L3 expression and the methylation level. (D) Progression-free survival and (E) overall survival curves based on the expression of APC. (F) Negative correlation between APC expression and the methylation level in the ZZU cohort. (G) The mRNA expression levels of TNFAIP8L3 in the cancer and adjacent tissues (p < 0.001, ZZU cohort). (H) The protein expression levels of TNFAIP8L3, **p < 0.001. MRSB, methylation risk score for bladder cancer; ZZU, Zhengzhou University.




Biological Pathways/Processes Affected by the MRSB DNA Methylation Model

We used GSEA to explore the biological effects mediated by the methylation model and the corresponding genes. We found that several gene sets associated with tumor progression were enriched, and the associated genes were upregulated in the high-risk group (Figure 8A). Focal adhesion, extracellular matrix (ECM) receptor interaction, and epithelial mesenchymal transition which are all associated with cancer invasion and metastasis, are the top three cellular processes significantly affected by the MRSB DNA methylation model. The genes of MAPK signaling pathway and JAK-STAT signaling pathway were significantly enriched when TNFAIP8L3 expression was upregulated. When APC expression was upregulated, ERBB signaling pathway and WNT signaling pathway were enriched (Figure 8B). The enrichment analysis results of other MRSB corresponding genes were presented in the Supplementary Material.
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FIGURE 8. Cellular pathways/processes affected by MRSB methylation model. (A) Gene Set Enrichment Analysis showing the signature in the context of gene sets representative for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and cellular process from hallmarks of cancer. (B) MAPK signaling pathway and JAK-STAT signaling pathway were significantly enriched in TNFAIP8L3 overexpression cases. ERBB signaling pathway and WNT signaling pathway were enriched in APC overexpression cases. MRSB, methylation risk score for bladder cancer.




DISCUSSION

In this study, we identified genes with methylated CpGs which were associated with post-surgical treatment BLCA progression based on the analysis of BLCA TCGA DNA methylation data using two computational analysis algorithms, the SVM-RFE and iterative LASSO algorithms. Consequently, eight genes with specific CpG methylations were selected to build a MRSB in the training cohort, which was validated in the validation cohort. We demonstrated that MRSB was able to classify BLCA patients into high- or low-risk disease progression subgroups. Moreover, our data also showed that MRSB could predict the risks of disease recurrence and patient OS. Therefore, MRSB has great potential to be used to predict the post-surgery progression risk of BLCA, and it may provide novel insight into BLCA progression and the opportunity of stratified therapeutic strategy.

On the basis of MRSB, low-risk patients can avoid the toxic adverse effects of adjuvant treatment, while high-risk patients will be selected to receive active surveillance and intensified regimens to prevent tumor progression (Tsao et al., 2012). As shown in Figure 5A, the risk of disease progression in high-risk patients showed a bimodal distribution, and most disease progression was clustered within 9–10 months or 30 months after resection, which may reflect the true progression that had disseminated from the original cancer. There was a consistently low progression risk in low-risk patients, but at 20 months, it was relatively high compared to the other follow-up periods. Meanwhile, the death of patients from cancer was clustered within the 20th month during the follow-up, a potential consequence from the early disease progression from the high-risk disease progression group. Thus, MRSB may help to develop individualized disease progression monitoring and prevention strategies for BLCA patients. For patients with high risk of progression, they may be intensively monitored by screening of possible disease progression before 9–10 months and around 2.5 years after the treatment. The post-surgery disease monitoring follow-up may be safely reduced for patients with low progression risk, especially after the 20th month of resection, when their risk of disease progression and death will be significantly reduced.

Recently, three genome-wide studies have reported DNA methylation in BLCA. In the first study, four specific methylation regions were identified to predict the progression potential of NMIBC to MIBC by analyzing 192 patients with primary pTaG1/G2 BLCA. The area under the curve for GATA binding protein 2 (GATA2) was 0.803, for T-Box transcription factor 2 (TBX2) was 0.644, for T-Box transcription factor 3 (TBX3) was 0.785, and for Zic family member 4 (ZIC4) was 0.692, respectively (Beukers et al., 2015). This promising methylation biomarker developed from a limited number of samples yet was required to be validated in a much larger sample cohort. The second study developed an integrative framework between methylation and miRNAs associated with prognosis, but there was no appropriate validation cohort to verify the signature (Shivakumar et al., 2017). The last study, which showed that RSPH9 methylation was a potential prognostic predictor in NMIBC patients, used even less samples (NMIBC = 18, NC = 6) than the earlier studies and lacked validation analysis (Yoon et al., 2016).

Our study has the following advantages over the previous studies. We adopt a strategy to select reliable markers by combining the results of two different algorithms, which as much as possible minimized the loss or neglect of important markers compared with the method of using only a single strategy as in previous studies. The main statistical concern faced when methylation data are used to develop prognostic models is the processing of large quantities of markers yielded from ultrahigh-dimensional data. Overfitting of the overly vast and complex methylation signal model in the face of limited heterogeneity of the training cohort compromises the independent predictive efficacy of the model (Sveen et al., 2012). Parameters tuned during cross-validation in penalization of the methylation signal data can reduce this concern (van Houwelingen et al., 2006). LASSO can complete penalization and feature selection simultaneously (Tibshirani, 1996). The SVM-RFE algorithm may be more effective than linear discriminant analysis and mean squared error methods in identifying related features and in reducing redundant features (Xu et al., 2014). This combined analysis strategy not only reduces the number of potential false positive methylation features but also avoids redundancy in prognostic correlations between features.

More importantly, we established a nomogram with MRSB, age, sex, and tumor clinical stage to predict individual progression risk. The nomogram was reliable for predicting survival and recurrence risk. Therefore, our nomogram provides a potentially accurate prognostic indicator for patients with BLCA, which may be used to guide individualized post-surgery disease progression monitoring and prevention strategies.

Moreover, we found that high-level expression of the MRSB component-relevant genes TNFAIP8L3 and APC, which negatively correlated with their methylation status, was correlated with a poor prognosis. Generally, tumorigenesis is influenced by transcriptional activation of oncogenes via global DNA hypomethylation, while hypermethylation is commonly found at the promoters of tumor suppressors to silence their expression (Van Tongelen et al., 2017; Saghafinia et al., 2018). While TNFAIP8L3 has been reported with an oncogene role, APC is a well-established tumor suppressor gene. Therefore, the correlation of low methylation and high expression levels of both an oncogene (TNFAIP8L3) and a tumor suppressor gene (APC) with poor prognosis of BLCA is unexpected.

TNFAIP8L3 has been shown to promote the progression of gastric cancer, which can be suppressed by miR-9-5p (Fan et al., 2019). However, the role of TNFAIP8L3 and its methylation has not been reported in BLCA. According to our study, TNFAIP8L3 methylation level provides a negative contribution to MRSB model, which is consistent to the overexpression of TNFAIP8L3 at both the mRNA and protein levels in poor-prognosis BLCA cases. Therefore, overexpression of TNFAIP8L3, caused by hypomethylation, may contribute to BLCA progression or resistance to therapies. MAPK signaling and JAK-STAT signaling pathways have been shown to have vital roles in BLCA progression and might be connected with TNFAIP8L3 activation (Huang et al., 2020; Lei et al., 2020), but the mechanisms connecting TNFAIP8L3 and these two pathways remain unclear. Further studies are required.

In colorectal cancer, APC is a well-established tumor suppressor, and its inactivation is a common mechanism of colorectal tumorigenesis. APC mutation has been associated with the activation of Wnt/β-catenin signaling pathway (Qu et al., 2018). In breast cancer, APC mutation has been associated with overexpression and reactivation of the poor prognosis and tumor metastasis-associated ErbB receptor (Wang, 2017). However, in our study of BLCA, although we revealed that the methylation and expression change of APC influenced BLCA progression through Wnt/β-catenin signaling and ErbB receptor pathways, suppression of APC expression by DNA methylation was associated with good disease progression so that cases with poor prognosis had relatively high expression and low methylation level of APC. Our observation, which may conflict with the role of APC in colorectal and breast cancers, is supported by previous DNA methylation studies of BLCA for clinical prognosis. Reduced methylation of the APC promoter region has been previously reported as an independent poor prognostic biomarker of BLCA (Eissa et al., 2011), and in a recent study, reduced APC methylation was associated with the progression of BLCA, although not with OS (Bai et al., 2019). The potential explanation may be that the reduced function of APC by methylation may contribute to the tumorigenesis but not progression of BLCA, and BLCA cases that developed without inactivating the APC pathway may have accumulated other genetic changes associated with poor disease prognosis. This is an interesting observation in BLCA, and further mechanistic investigations are warranted.

Our study has the following limitations. First, our study collected patients with different disease stages. Whether MRSB is affected by heterogeneity among patients with early or advanced stage BLCA requires further investigation. Second, the biological mechanisms of the involvement of certain methylated genes, such as KRTDAP, ZC3H3, and PI3, are yet to be investigated. Third, because the TCGA patients were mainly from the United States and most of the samples were mainly from Caucasians, independent external validation on more diverse patient populations is necessary for the global application of MRSB developed in this study. Our results warrant further investigation in a larger independent cohort.

In conclusion, MRSB, an eight-genes-based DNA methylation signature, is an efficient prognostic biomarker to predict the progression risk of BLCA patients. The nomogram including MRSB may provide individualized BLCA patient monitoring and prevention strategies. Our study not only indicates the potential value of MRSB as a prognostic predictor in BLCA but also points to a novel direction for further mechanistic research of BLCA progression.
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Background: Histone acetylation modification has been found to be correlated the development of renal carcinoma; however, its role in clear cell renal carcinoma (ccRCC) remains to be investigated. Thus, this study aimed to identify the molecular subtypes and establish a relevant score based on histone acetylation modification in ccRCC.

Methods: Gene expression and mutation data were retrieved from The Cancer Genome Atlas database. Molecular subtypes were identified by unsupervised clustering based on histone acetylation regulators expression, and the molecular and clinical characteristics including survival, tumor microenvironment, gene set variation, immune cell infiltration, and immune checkpoints in each subtype were investigated. Next, we employed univariate Cox analysis to analyze these genes and established acetylation-related score by lasso regression analysis. Furthermore, we investigated the differences including survival, signaling pathways, mutational landscape, and tumor mutation burden (TMB) between high-risk and low-risk groups. The established score was validated by receiver operating curve and univariate and multivariate Cox regression analyses. We also established a nomogram including acetylation score, age, gender, grade, and stage and verified it by decision curve analysis and calibration plot. The E-MTAB-1980 cohort from the ArrayExpress database was employed as a reference to validate the established score.

Results: Thirty-three types of histone acetylation regulators were employed in this study, and two clusters were identified. The two clusters presented significant differences in survival, tumor microenvironment, immune cell infiltration, immune checkpoints, and signaling pathways. Furthermore, an acetylation-related score, composed of six genes (BRD9, HDAC10, KAT2A, KAT5, BRDT, SIRT1, KAT6A, HDAC5), was verified to be significantly associated with prognosis and TMB. Thus, the established scores were successfully verified by the validated cohort, and the nomogram was constructed and successfully validated.

Conclusion: The identification of the histone acetylation-related subtypes and score in our study may help reveal the potential relation between histone acetylation and immunity and provide novel insights for the development of individualized therapy for ccRCC.

Keywords: renal clear cell carcinoma, molecular subtype, score, immunotherapy, histone (de)acetylation


INTRODUCTION

As one of the most common malignant urological tumors, renal cell carcinoma (RCC) accounts for approximately 2–3% of adult tumors and 90% of kidney cancers (Moch et al., 2016). At least 350,000 new cases of RCC occur worldwide and more than 140,000 patients die of this disease each year (Siegel et al., 2020). According to the pathologic classification, RCC is generally divided into four pathological subtypes: clear cell renal carcinoma (ccRCC), granulosa cell renal carcinoma, mixed cell renal carcinoma, and undifferentiated cell renal carcinoma. ccRCC is the major subtype in RCC, which accounts for 70–80% (Moch et al., 2016). Notorious for the insidious onset (Jonasch et al., 2014) and insensitivity to traditional chemoradiotherapy, the incidence and metastatic rate of ccRCC are still high. Although the molecular targeted therapy presents the remarkable curative effectiveness in advanced ccRCC, the drug response rate and obvious side effect limits the clinical benefit (Siegel et al., 2020). Consequently, the investigation and development of prognostic biomarkers are urgently needed in ccRCC.

Epigenetic aberrations, comprising several different aberrations such as changes in histone modifications, DNA methylation, and microRNA levels, are commonly found in RCC, which indicates that epigenetic reprogramming plays a crucial role in RCC development (Joosten et al., 2018). In terms of histone modification, histone demethylases (KDMs) act as a central role in histone modification. The emerging evidences supported that KDMs such as KDM3A, KDM5C, KDM6A, and KDM6B play important roles in RCC, and KDMs could promote RCC development and progression via hypoxia-mediated angiogenesis pathways (Guo and Zhang, 2017). It has been reported that the epigenetic aberrations such as DNA methylation and histone modifications (acetylation and methylation) can significantly contribute to the transcriptomic upregulation of immune checkpoints and their ligands (Saleh et al., 2020). There were also many inhibitors such as the histone deacetylation inhibitor, histone methyltransferase inhibitor, and histone demethylase inhibitor developed in epigenetic therapy for RCC (Mehdi and Riazalhosseini, 2017). These findings have constructed a promising therapeutic modality using the combination of epigenetic and immunotherapeutic agents. Therefore, the potential mechanism among epigenetic modification and immunotherapy in ccRCC still remain to be explored.

In this research, we identified novel molecular subtypes based on the gene expression of histone acetylation regulators. The two clusters (acetylation or deacetylation cluster) present notable differences in clinical and immunologic features, including survival, gene mutation, signaling pathways, immune cell infiltration, and immune checkpoints expression. Interestingly, we observed that the deacetylation cluster exhibited worse prognosis and the lowered immune cell infiltration. Furthermore, we established the acetylation-related score and validated its prognostic value in clinic. We believe that the established subtypes not only help in elucidating the underlying association linking histone acetylation modification and immunotherapy in ccRCC but can also promote the development of individualized clinical treatments.



MATERIALS AND METHODS


Data Collection

Gene expression and mutation data, and clinicopathological messages were obtained from The Cancer Genome Atlas (TCGA) database1 and the ArrayExpress database.2 KIRC cohort from the TCGA database (training dataset) and E-MTAB-1980 cohort from the ArrayExpress database (validation dataset) were employed in our research. According to the previous study (Favazza et al., 2017), we selected the patients with VHL mutation, copy number loss for chromosome 3p, or both. Furthermore, we identified 57 histone modification-related genes, including 24 genes (KDM1A, KDM6B, KDM6A, KDM4A, KDM5B, KDM2A, KDM5A, KMT2D, KMT5A, KMT2A, SETD2, NSD1, SMYD3, NSD2, DOT1L, EZH2, SETD7, CARM1, SUV39H1, EHMT2, ATRX, EED, PC, RAG2) related to methylation and 33 genes (HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, SIRT6, SIRT1, SIRT3, SIRT7, SIRT2, SIRT5, SIRT4, KAT2A, KAT6A, KAT6B, CREBBP, KAT2B, KAT5, KAT7, EP300, KAT8, BRD2, BRD9, BRD4, BRDT, BRD7, BRD3) related to acetylation from the previous studies (Audia and Campbell, 2016; Gong et al., 2016; Hammond et al., 2017).



Landscape and Consensus Clustering for Histone Acetylation Regulators

Considering the functional difference between methylation and acetylation in histone modification, we performed the single sample gene set enrichment analysis (ssGSEA) and survival analysis to further selection. The ssGSEA is a special type of GSEA that can estimate a score for each case by the ‘‘GSVA’’ package. The cases in the KIRC cohort were divided into two groups (high-score or low-score group) based on the median of scores. We compared the survival difference between two groups using the ‘‘survival’’ package and found the significant correlation between acetylation score and survival, so we selected the acetylation-related genes for further investigation. The correlation among the gene expression of 33 acetylation-related genes was investigated by the ‘‘corrplot’’ package. The expression difference of included genes between tumor and normal groups was explored using the Wilcoxon rank sum test. In addition, the summary of somatic mutation and copy number variations from 33 acetylation-related genes was generated by the cBioPortal website.3 To further investigate the distinct histone acetylation modification pattern in renal carcinoma, we classified the patients based on the expression of included genes by the “ConsensusClusterPlus” package. The number of clusters and their stability was determined by a consensus clustering algorithm; 1,000 repetitions were performed to guarantee the stability of the subtypes. The “ConsensusClusterPlus” function with the parameter “pItem = 0.8, pFeature = 1, clusterAlg = km, distance = euclidean” was applied in our study.



Difference Features Between Acetylation-Related Subtypes

After confirming the clusters, a series of analyses was applied to validate the novel molecular subtypes. Considering the different functional genes (acetylation or deacetylation) in histone acetylation modification, we defined the cluster (acetylation or deacetylation) by heatmap and ssGSEA. Next, principal component analysis was performed to display the distribution of samples. Moreover, to explore the time-dependent prognostic value of the subtypes, survival analysis was executed by the “survival” package. Meanwhile, to investigate the different tumor microenvironment (TME) between subtypes, we estimated the stromal/immune score and tumor purity of each case using the “ESTIMATE” package. The “ESTIMATE” package was utilized to predict tumor purity, as it estimates the presence of infiltrating stromal/immune cells in TME (Yoshihara et al., 2013). The “estimate score” represents the total score of immune and stromal score, and it is in inverse proportion to tumor purity. The ESTIMATE algorithm is executed by ssGSEA and finally generates three scores: the stromal score (indicates the presence of stromal cells in tumor tissues), the immune score (represents the infiltration of immune cells in tumor tissues), and the tumor purity. Furthermore, to explore the different biological processes between established subtypes, gene set variation analysis (GSVA) was performed by the “GSVA” package. GSVA is usually executed to compare the difference in the pathway and biological process activity in samples from an expression dataset (Hänzelmann et al., 2013). The gene sets of ‘‘h.all.v7.1.symbols’’ were downloaded from the MSigDB database4 for GSVA analysis. Results with a p-value of less than 0.05 were considered to be statistically significant.



Immune Cell Infiltration and Immune Checkpoint Expression Between Two Subtypes

We investigated the immune cell infiltration between established subtypes based on the ‘‘TIMER’’ and ‘‘MCP-counter’’ methods. TIMER5 is a comprehensive resource for the immune cell infiltration, which estimated six types of immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells). MCP-counter estimates the abundance of 10 cell populations, including T cells, CD8+ T cells, cytotoxicity score, NK cells, B cells, monocytes, macrophages, dendritic cells, and neutrophils. Furthermore, immune checkpoint genes (20, encoding both ligands and receptors) were retrieved from a previous study (Burugu et al., 2018).



Establishment of Acetylation-Related Score

To identify the prognostic genes of histone acetylation in KIRC, we performed univariate Cox regression analysis. The genes with a p-value <0.01 in univariate analysis were eligible for further analyses. The lasso regression analysis was applied to establish the acetylation-related score by “glmnet” and “survival” package. In this analysis, a lasso penalty was used to account for shrinkage and variable selection. The optimal value of the lambda penalty parameter was defined by performing 10 cross-validations. The lambda was calculated using the “glmnet” function with the parameter “family = cox, maxit = 1000.” The calculation formula for acetylation-related score was as follows:
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According to the median of the established score, cases were divided into two groups (high-risk or low-risk group). Survival analysis was performed based on this grouping strategy. To further verify the acetylation-related score, a receiver operating characteristic (ROC) curve was constructed to examine the prognostic accuracy. Besides, we performed GSEA to further explore the significantly enriched pathways between groups. GSEA is a computational method that identifies whether a previously defined set of genes shows statistically significant differences between two biological states (Subramanian et al., 2005). In the GSEA software, the number of permutations was set to 10,000 and the permutation type was phenotype. The max size of excluded larger sets was 500 and the min size was 15. The most relevant pathways were identified based on the normalized p-value and enrichment score. Finally, univariate and multivariate Cox regression analyses were performed to validate whether the acetylation-related score could be an independent prognostic marker in ccRCC.



Correlation Between Mutation and Acetylation-Related Score

To further compare the mutational features, we investigated the difference of TMB and mutational landscapes between two clusters. The tumor mutational burden (TMB) was defined as the total number of errors in somatic gene coding, base substitution, gene insertions, or deletions detected in every million bases. To calculate the TMB in each case, the total number of mutations counted was divided by the exome size (38 Mb was utilized as the exome size). TMB correlation analysis and survival analysis was performed to explore the associations between TMB and the subtypes. We also investigated the somatic gene mutations in the different subtypes by the “maftools” package.



Nomogram Construction and Validation

Considering the clinical application of acetylation-related score, the nomogram was constructed based on Cox regression model. The nomogram included age, gender, grade, stage, and acetylation-related score. Decision curve analysis was performed to compare the net benefits of different models (stage, grade, acetylation-related score, and nomogram). The concordance index, calibration plot, and ROC curve were used to verify the nomogram. Model performance was evaluated through calibration and discrimination (Alba et al., 2017). Bias-corrected calibration for 3 and 5 years of overall survival rate was performed by 1,000 bootstrap resamples to evaluate the consistency between the observed and estimated survival probability by the “rms” package. The calibration was calculated by the “calibrate” function with the parameter “cmethod = KM, method = boot, m = 80.” Discrimination was evaluated by Harrell’s concordance index (C-index) and ROC curve. A higher area under curve (AUC) value revealed superior model discriminative ability, and a higher C-index value demonstrated better model-fitting performance (Zhang et al., 2020). Decision curve analysis (DCA) was further performed to measure and compare the clinical utilities of the different prognostic models. DCA is a method for evaluating the benefit of a diagnosis test across a range of patient preferences for accepting risk of undertreatment and overtreatment to facilitate decisions about test selection and use (Fitzgerald et al., 2015).



Score Validation

Here, we employed the E-MTAB-1980 cohort from the ArrayExpress database for score validation. Survival analysis, ROC curve, and univariate and multivariate Cox regression analyses were also performed to estimate the clinical value of acetylation-related score.



RESULTS


Landscape of Genetic Variation and Expression of Histone Acetylation Regulators in KIRC

A summary of this research is shown in the form of a flowchart in Figure 1. The clinical details of the patients employed in our research are summarized in Table 1 and Supplementary Material. As illustrated in Figures 2A,B, the acetylation-related genes exhibited the much significant prognostic value than methylation. Therefore, we supposed that acetylation-related genes were more valuable in KIRC and employed them for further analyses. The correlations of 33 acetylation regulators are presented in Figure 2C. It was found that the histone acetylation regulators not only exhibited a remarkable interaction in the same functional category but also showed a significant correlation among different functional categories. The comparisons of gene expression between tumor and normal groups from Figure 2D demonstrate that significant expression difference was found in most of regulators (27/33). A summary of the incidence of somatic mutations and copy number variation of 33 acetylation regulators is presented in Figure 2E. The abovementioned results reveal that the imbalance and cross-talk among acetylation regulators may play a crucial role in KIRC.
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FIGURE 1. The flowchart of this study.



TABLE 1. Baseline patient characteristic in the two cohorts.

[image: Table 1]

[image: image]

FIGURE 2. The landscape of histone acetylation regulators in ccRCC and subtype identification (A) Survival analysis between high and low score of acetylation based on ssGSEA. (B) Survival analysis between high and low score of methylation based on ssGSEA. (C) Correlation among 33 histone acetylation regulators. (D) The results of differentially expressed analysis from histone acetylation regulators. *p < 0.05, **p < 0.01, ***p < 0.001. (E) Data on the somatic mutation and copy number variations of 33 histone acetylation regulators. Panels (F–H) show the most appropriate value for subtype identification.




Identification of Acetylation-Associated Molecular Subtypes

The results from Figure 2F indicate that a remarkable difference is observed between the two clusters while k value is equal to 2. Figures 2G,H shows that the relative change is remarkable between 2 and 3. Consequently, the cases were divided into two clusters, including 189 cases in cluster 1 and the remainder in cluster 2. As shown in the heatmap (Figure 3A), no specific functional feature is found in cluster 1 or cluster 2, so we further employed the ssGSEA to define the clusters. The results from Figure 3B demonstrate that cluster 1 presents the significantly obvious feature of acetylation while cluster 2, deacetylation. Consequently, cluster 1 is defined as the acetylation cluster and cluster 2 is the deacetylation cluster. The results of PCA, shown in Figure 3C, indicate that the cases from each cluster could be distinguished visually. Survival analysis for the two clusters demonstrates that the deacetylation cluster exhibits a survival disadvantage in overall survival (Figure 3D).
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FIGURE 3. Heatmap and verification of histone acetylation-related molecular subtypes. (A) The heatmap including clusters, clinical parameters, and acetylation-related genes. (B) The definition for cluster based on ssGSEA. (C) Results of PCA. (D) Survival analysis. (E–G) Comparisons of estimate score, stromal score, and immune score between two subtypes, respectively. ***p < 0.001.




Different Immunologic Features in Subtypes

According to the results in Figures 3E–G, the deacetylation cluster presented the lower stromal score and higher immune score than the acetylation cluster, which indicates that two clusters present the different TME. Meanwhile, the different biological processes are also found between two clusters (Figure 4A). Subsequently, we compared the immune cell infiltration between two clusters and found that the deacetylation cluster presents the significantly lower immune cell infiltration in monocytes, macrophages, dendritic cells, and neutrophils (Figures 4B,C). We also observed that some immune checkpoints (PDCD1, CTLA4, IDO2, LGALS9, ICOS, TNFRSF18, and KLRC1) present significantly higher expression in the deacetylation cluster while others (PDL1 and TNFSF18), in the acetylation cluster (Figure 4D).
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FIGURE 4. Relevant signaling pathways, immune cell infiltration, and immune checkpoints in subtypes. (A) The results of gene set variation analysis. (B,C) Comparisons of immune cell infiltration between two subtypes. (D) Comparison of immune checkpoints expression between two subtypes. In panels (B–D), *p < 0.05, **p < 0.01, ***p < 0.001.




Construction of Acetylation-Related Score

To further investigate the prognostic value of histone acetylation regulators in KIRC, we employed the univariate Cox analysis to select the genes. The results of univariate Cox analysis (Figure 5A) demonstrate that 16 genes (BRDT, SIRT1, KAT6B, KAT5, EP300, SIRT7, KAT2A, CREBBP, KAT2B, KAT6A, HDAC5, BRD9, KAT7, BRD3, HDAC10, SIRT6) are eligible for lasso regression analysis (p < 0.01), and the results of lasso regression analysis from Figures 5B,C confirmed the score composed of eight genes, namely, BRD9, HDAC10, KAT2A, KAT5, BRDT, SIRT1, KAT6A, and HDAC5. The higher score exhibits the worse prognosis in survival analysis (Figure 5D). Furthermore, the acetylation-related score presents the highest AUC value in 5 years (Figure 5E), which shows its potential predictive performance in clinic. Besides, the deacetylation cluster also showed the higher acetylation-related score in Figure 5F. Moreover, the results of univariate and multivariate Cox regression analysis (Figures 5G,H) indicated that the acetylation-related score may serve as an independent prognostic marker in KIRC.
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FIGURE 5. Histone acetylation-related score construction and validation. (A) Results of univariate Cox regression analysis. (B,C) Results of lasso regression analysis. (D) Survival analysis between high-risk and low-risk groups. (E) ROC analysis including established score and other clinical parameters from 1 to 5 years. (F) Correlation between established subtypes and acetylation-related score. (G,H) The results of univariate and multivariate Cox regression analysis. ***p < 0.001.




Different Mutation Features Between High-Risk and Low-Risk Groups

To further understand the prognostic difference between high-risk and low-risk groups, we investigated tumor mutation burden and somatic mutational landscape between two groups. The Sankey plot from Figure 6A shows the interaction among molecular subtypes, acetylation-related score, and TMB, and the significant correlation is found between acetylation-related score and TMB (Figure 6B). At the same time, higher acetylation-related score exhibits the higher TMB in Figure 6C. Interestingly, we combined the TMB and acetylation-related score and found that the patients with higher TMB and higher acetylation-related score presented the worst prognosis (Figure 6D). In terms of somatic mutation, the high-risk group presents the higher mutational rate than the low-risk group (Figures 6E,F), and the high-risk group significantly enriched in the pathways of MYC targets, E2F targets, G2M checkpoint, IL6 JAK STAT3 signaling, and spermatogenesis, while in the low-risk group, protein secretion, androgen response, adipogenesis, TGF beta signaling, and UV response (Figure 6G).
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FIGURE 6. TMB correlation, mutation landscape, and GSEA. (A) Sankey plot including subtypes, acetylation-related score, and TMB. (B) Correlation analysis between TMB and acetylation-related score. (C) Comparison of TMB between high and low acetylation-related score groups. (D) Survival analysis for the combination of TMB and acetylation-related score. (E,F) The waterfall plots of somatic mutation for high-risk and low-risk groups respectively. (G) The results of GSEA.




Nomogram Construction and Validation

As demonstrated in Figure 7A, a nomogram including age, gender, grade, stage, and acetylation-related score is constructed. Decision curve analysis (Figure 7B) demonstrated that the nomogram model exhibited a higher net benefit than the other models. The concordance index of the nomogram was 0.83, and the calibration plot for the probability of survival at 5 years (Figures 7C,D) showed no obvious inconsistency between the nomogram predictions and real observations. ROC analysis (Figure 7E) indicated that the nomogram exhibited moderate predictive value in ccRCC.
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FIGURE 7. The construction and validation of nomogram and the validation of acetylation-related score. (A) The nomogram including age, gender, grade, stage, and acetylation-related score. (B) The results of decision curve analysis. (C,D) Calibration plot for 3 and 5 years. (E) ROC analysis for 3 and 5 years. (F) Survival analysis of acetylation-related score from validation dataset. (G) ROC analysis from validation dataset. (H,I) The results of univariate and multivariate Cox regression analysis from validation dataset. ***p < 0.001.




Verification From the ArrayExpress Cohort

To validate the established score, we employed the independent cohort (E-MTAB-1980) to perform the survival analysis. The results of survival analysis from Figure 7 showed that significant differences were found between the high-risk and low-risk group (Figure 7F), and the acetylation score also presents the third higher predictive performance in the validation cohort (Figure 7G). Finally, the results of univariate and multivariate Cox regression analysis (Figures 7H,I) also indicated that the acetylation-related score may serve as an independent prognostic marker in the validation cohort.



DISCUSSION

Despite the great development in tumor diagnosis and treatment, the prognosis of ccRCC patients is still unsatisfactory. The 5-year survival rate of ccRCC is above 90% at early stage but 15% in advance stage (Hsieh et al., 2017). Since the high-throughput sequencing has been developed, more and more novel predictive models have been established to improve the dilemma of poor prognosis of advanced ccRCC. For example, a prognostic signature based on RNA binding protein-related genes in ccRCC has been developed (Chen et al., 2021). Another study (Gui et al., 2021) also established an autophagy-related long non-coding lncRNA signature in ccRCC. However, these signatures are far from able to meet clinical demands and more molecular subtypes need to be identified. Emerging evidences supported that epigenetic modification especially histone modification may contribute to the upregulation of immune checkpoints and promote the treatment of ccRCC (Saleh et al., 2020). In this study, we first identified novel molecular subtypes based on histone acetylation regulators. Epigenetic regulation of gene expression occurs in the protein level (post-translational histone modifications), DNA level (DNA methylation), and RNA level (non-coding RNAs). Post-translational modification of specific amino acids of histone tails plays an important role in regulating the chromatin structure and dominating gene expression (Tessarz and Kouzarides, 2014). Post-translational modification of histone includes various types, such as acetylation, methylation, phosphorylation, ubiquitylation, and sumoylation (Kouzarides, 2007), of which lysine acetylation and methylation are the best understood. In our research, we confirmed 24 methylation-related genes and 33 acetylation-related genes and found that acetylation-related genes significantly correlated with the prognosis of ccRCC patients by ssGSEA. The imbalance and cross-talk among 33 acetylation-related genes are observed in our results, which verifies that histone acetylation modification plays a crucial role in ccRCC. Therefore, we considered that histone acetylation modification is more valuable in ccRCC and employed the related genes for further analyses.

After identifying the subtypes based on acetylation regulators by consensus cluster algorithm, we observed that two clusters (acetylation and deacetylation cluster) exhibit the different clinical and biological characteristics. The deacetylation cluster presents the worse prognosis and is highly activated in the tumor proliferation pathway, which draws our attention. Simultaneously, the deacetylation cluster exhibits the higher tumor purity than the acetylation cluster, which is consistent with poor prognosis. As the difference of TME was found between two clusters, we further investigated the immunologic features of two clusters. It is worth noting that the deacetylation cluster generally presents the lower immune cell infiltration than the acetylation cluster, which indicated that the deacetylation cluster presented the immunosuppressive TME. In terms of immune checkpoints, different clusters show various expression levels of immune checkpoints, but we found that no pair of receptor and ligand was significantly expressed in the same cluster, so the correlation between histone acetylation modification and immunotherapy in ccRCC needs further validation.

Considering the individual heterogeneity of histone acetylation modification, it was necessary to quantify the histone acetylation modification in ccRCC. Consequently, we established an acetylation-related score to evaluate histone acetylation modification in patients with ccRCC. The deacetylation cluster presents a high acetylation-related score. Although the genes involved in the established score remain to be investigated by experiments, our research provides the bioinformatic evidences of these genes for further validation.

Higher acetylation score results in the activation of tumor progression signaling pathways, and worse prognosis is consistent with the molecular characteristics of the deacetylation cluster. The acetylation-related score is validated in another independent cohort, suggesting that histone acetylation modification is a reliable tool for a comprehensive assessment of ccRCC. Considering the potential association between histone acetylation modification and immune regulatory, we further explored the correlation between acetylation-related score and TMB. It has been reported that TMB could be employed to predict the efficacy of immune checkpoint inhibitors and become a useful biomarker in identifying patients who will benefit from immunotherapy (Chan et al., 2019). Our results reveal that acetylation-related score significantly correlated with TMB, and the patients with high TMB and acetylation-related score presents the worse prognosis, which reveals the underlying and indirect association between acetylation modification and immunotherapy in ccRCC.

To the best of our knowledge, this is the first study to identify histone acetylation-related subtypes in ccRCC. We found that the patients with histone deacetylation modification present the worse prognosis and immunosuppressive TME and proposed the underlying association between histone deacetylation and immunity, which may contribute to the further functional experiments. Furthermore, a greater number of histone acetylation regulators included and the comprehensive methodology employed in our research enabled the identification of a robust score, and the score exhibits the better performance in predicting the prognosis of ccRCC. However, some limitations in our study have to be pointed out. First, no pair of receptor and ligand of immune checkpoints was highly expressed in clusters, which may be attributed to the small sample size. Further investigations may help in validating the association between histone acetylation modification and immune checkpoint inhibitors. Second, no immunotherapeutic cohort of ccRCC was performed, so the correlation between histone acetylation modification and real immunotherapeutic response remains to be explored. Finally, our results were preliminary due to the use of a bioinformatic approach. More experiments and clinical trials should be performed to validate the current evidences.

In conclusion, our research indicated the crucial role of histone acetylation modification in ccRCC. The defined subtypes and established score may contribute to validate the association linking histone acetylation modification and immunity.



DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can be found here: TCGA (KIRC cohort) database (https://portal.gdc.cancer.gov/) and ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/).



AUTHOR CONTRIBUTIONS

SW and LH designed the manuscript. SW and TX wrote and completed the manuscript. LY, JW, and FL completed the data download. TX, DY, and WW completed the data analysis. All the authors approved the final manuscript, contributed to the article, and approved the submitted version.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.668810/full#supplementary-material


FOOTNOTES

1
https://portal.gdc.cancer.gov/

2
https://www.ebi.ac.uk/arrayexpress/

3
https://www.cbioportal.org/

4
https://www.gsea-msigdb.org/gsea/index.jsp

5
http://timer.comp-genomics.org


REFERENCES

Alba, A. C., Agoritsas, T., Walsh, M., Hanna, S., Iorio, A., Devereaux, P. J., et al. (2017). Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA 318, 1377–1384. doi: 10.1001/jama.2017.12126

Audia, J. E., and Campbell, R. M. (2016). Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8:a019521. doi: 10.1101/cshperspect.a019521

Burugu, S., Dancsok, A. R., and Nielsen, T. O. (2018). Emerging targets in cancer immunotherapy. Semin. Cancer Biol. 52, 39–52. doi: 10.1016/j.semcancer.2017.10.001

Chan, T. A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S. A., Stenzinger, A., et al. (2019). Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56. doi: 10.1093/annonc/mdy495

Chen, Q., Li, Z. L., Fu, S. Q., Wang, S. Y., Liu, Y. T., Ma, M., et al. (2021). Development of prognostic signature based on RNA binding proteins related genes analysis in clear cell renal cell carcinoma. Aging (Albany N. Y.) 13, 3926–3944. doi: 10.18632/aging.202360

Favazza, L., Chitale, D., Barod, R., Rogers, C. G., Kalyana-Sundaram, S., Palanisamy, N., et al. (2017). Renal cell tumors with clear cell histology and intact VHL and chromosome 3p: a histological review of tumors from the Cancer Genome Atlas database. Mod. Pathol. 30, 1603–1612. doi: 10.1038/modpathol.2017.72

Fitzgerald, M., Saville, B. R., and Lewis, R. J. (2015). Decision curve analysis. JAMA 313, 409–410. doi: 10.1001/jama.2015.37

Gong, F., Chiu, L. Y., and Miller, K. M. (2016). Acetylation reader proteins: linking acetylation signaling to genome maintenance and cancer. PLoS Genet. 12:e1006272. doi: 10.1371/journal.pgen.1006272

Gui, C.-P., Cao, J.-Z., Tan, L., Huang, Y., Tang, Y.-M., Li, P.-J., et al. (2021). A panel of eight autophagy-related long non-coding RNAs is a good predictive parameter for clear cell renal cell carcinoma. Genomics 113, 740–754. doi: 10.1016/j.ygeno.2021.01.016

Guo, X., and Zhang, Q. (2017). The emerging role of histone demethylases in renal cell carcinoma. J. Kidney Cancer VHL 4, 1–5. doi: 10.15586/jkcvhl.2017.56

Hammond, C. M., Strømme, C. B., Huang, H., Patel, D. J., and Groth, A. (2017). Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 18, 141–158. doi: 10.1038/nrm.2016.159

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. doi: 10.1186/1471-2105-14-7

Hsieh, J. J., Purdue, M. P., Signoretti, S., Swanton, C., Albiges, L., Schmidinger, M., et al. (2017). Renal cell carcinoma. Nat. Rev. Dis. Primers 3:17009. doi: 10.1038/nrdp.2017.9

Jonasch, E., Gao, J., and Rathmell, W. K. (2014). Renal cell carcinoma. BMJ 349:g4797. doi: 10.1136/bmj.g4797

Joosten, S. C., Smits, K. M., Aarts, M. J., Melotte, V., Koch, A., Tjan-Heijnen, V. C., et al. (2018). Epigenetics in renal cell cancer: mechanisms and clinical applications. Nat. Rev. Urol. 15, 430–451. doi: 10.1038/s41585-018-0023-z

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705. doi: 10.1016/j.cell.2007.02.005

Mehdi, A., and Riazalhosseini, Y. (2017). Epigenome aberrations: emerging driving factors of the clear cell renal cell carcinoma. Int. J. Mol. Sci. 18:1774. doi: 10.3390/ijms18081774

Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E., and Ulbright, T. M. (2016). The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105. doi: 10.1016/j.eururo.2016.02.029

Saleh, R., Toor, S. M., Sasidharan Nair, V., and Elkord, E. (2020). Role of epigenetic modifications in inhibitory immune checkpoints in cancer development and progression. Front. Immunol. 11:1469. doi: 10.3389/fimmu.2020.01469

Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30. doi: 10.3322/caac.21590

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550. doi: 10.1073/pnas.0506580102

Tessarz, P., and Kouzarides, T. (2014). Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708. doi: 10.1038/nrm3890

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4:2612. doi: 10.1038/ncomms3612

Zhang, N., Ning, F., Guo, R., Pei, J., Qiao, Y., Fan, J., et al. (2020). Prognostic values of preoperative inflammatory and nutritional markers for colorectal cancer. Front. Oncol. 10:585083. doi: 10.3389/fonc.2020.585083


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Wang, Xiang, Yu, Wen, Liu, Yang, Wu and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 04 October 2021
doi: 10.3389/fcell.2021.722671





[image: image]

Identification of Hub mRNAs and lncRNAs in Atrial Fibrillation Using Weighted Co-expression Network Analysis With RNA-Seq Data

Pan Yang1,2,3, Yujing Cao2, Huagang Jian1 and Hao Chen2*

1Emergency Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China

2Department of Cardiovascular Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China

3Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China

Edited by:
Tao Huang, Shanghai Institute of Nutrition and Health, China

Reviewed by:
Yuan-Lin Zheng, Jiangsu Normal University, China
Kun Sun, Shanghai Jiao Tong University, China

*Correspondence: Hao Chen, Chenhao9364@163.com

Specialty section: This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology

Received: 09 June 2021
Accepted: 09 July 2021
Published: 04 October 2021

Citation: Yang P, Cao Y, Jian H and Chen H (2021) Identification of Hub mRNAs and lncRNAs in Atrial Fibrillation Using Weighted Co-expression Network Analysis With RNA-Seq Data. Front. Cell Dev. Biol. 9:722671. doi: 10.3389/fcell.2021.722671

Atrial fibrillation (AF)/paroxysmal AF (PAF) is the main cause of cardiogenic embolism. In recent years, the progression from paroxysmal AF to persistent AF has attracted more and more attention. However, the molecular mechanism of the progression of AF is unclear. In this study, we performed RNA sequencing for normal samples, paroxysmal AF and persistent AF samples to identify differentially expressed gene (DEG) and explore the roles of these DEGs in AF. Totally, 272 differently expressed mRNAs (DEmRNAs) and 286 differentially expressed lncRNAs (DElncRNAs) were identified in paroxysmal AF compared to normal samples; 324 DEmRNAs and 258 DElncRNAs were found in persistent atrial fibrillation compared with normal samples; and 520 DEmRNAs and 414 DElncRNAs were identified in persistent AF compared to paroxysmal AF samples. Interestingly, among the DEGs, approximately 50% were coding genes and around 50% were non-coding RNAs, suggesting that lncRNAs may also have a crucial role in the progression of AF. Bioinformatics analysis demonstrated that these DEGs were significantly related to regulating multiple AF associated pathways, such as the regulation of vascular endothelial growth factor production and binding to the CXCR chemokine receptor. Furthermore, weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and hub RNAs and lncRNAs to determine their potential associations with AF. Five hub modules were identified in the progression of AF, including blue, brown, gray, turquoise and yellow modules. Interestingly, blue module and turquoise module were significantly negatively and positively correlated to the progression of AF respectively, indicating that they may have a more important role in the AF. Moreover, the hub protein-protein interaction (PPI) networks and lncRNA–mRNA regulatory network were constructed. Bioinformatics analysis on the hub PPI network in turquoise was involved in regulating immune response related signaling, such as leukocyte chemotaxis, macrophage activation, and positive regulation of α-β T cell activation. Our findings could clarify the underlying molecular changes associated fibrillation, and provide a useful resource for identifying AF marker.

Keywords: atrial fibrillation, WGCNA, bioinformatics analysis, PPI network, RNA sequencing


INTRODUCTION

Atrial fibrillation (AF) is a common tachyarrhythmia, which had been the main cause of cardiogenic embolic infarction (Abdul-Rahim et al., 2015; Kelley, 2015). AF develop from paroxysmal AF to persistent AF (Shukla and Curtis, 2014). Paroxysmal AF occurs in about 50% of all AF cases (Skaarup et al., 2016). Persistent AF occurs in about 20% of chronic heart failure and is related to a poor prognosis (Cornelis et al., 2018). In the past 10 years, AF ablation has been a common treatment of AF (Pelargonio et al., 2021). Previous studies have shown that AF is a complex disease caused by genetic and environmental factors (Lubitz et al., 2010). In the past few decades, some regulators related to AF have been discovered, such as NLRP3 (Yao et al., 2018), JPH2 (Beavers et al., 2013) and microRNA-26 (miR-26) (Luo et al., 2013). Knockout of NLRP3 inhibits the development of AF (Yao et al., 2018). MicroRNA-26 regulates AF and promotes changes in the inward rectifier potassium current of AF (Luo et al., 2013). However, the underlying mechanism of the progression of AF remains unclear. Understanding the molecular mechanism of AF will help to identify biomarkers for the early diagnosis and treatment for AF.

LncRNA is a set of non-coding transcripts longer than 200 nucleotides (Shi et al., 2020a; Statello et al., 2021). In recent years, lncRNA has been confirmed to have a crucial role in a variety of cell functions, including epigenetic regulation, transcription regulation, etc., and has been potential biomarkers for disease diagnosis and treatment (Cao, 2014; Gu and Chen, 2020). In human cells, it has been identified more than 100,000 lncRNAs (Statello et al., 2021), which play an important role in the cardiovascular system. However, only a small number of lncRNA functions have been studied in AF. For example, in AF, the lncRNA LICPAR modulates atrial fibrosis through Smad signaling (Wang et al., 2020). LncRNA NEAT1 regulates atrial fibrosis during AF through the miR-320/Npas2 axis (Dai et al., 2021). LncRNA-MIAT regulates AF-induced myocardial fibrosis through miR-133a-3p (Yao et al., 2020). LncRNA-PVT1 modulates atrial fibrosis during AF through miR-128 (Cao et al., 2019). To understand the expression patterns and possible functions of lncRNAs in AF could provide helpful information for the treatment of AF.

Weighted gene co-expression network analysis (WGCNA) is used to cluster highly related genes to further understand the hub modules and disease types/clinical phenotypes (Langfelder and Horvath, 2008). In recent years, WGCNA has been used to identify key regulators in disease progression. For example, Ren et al. (2021) performed WGCNA analysis to identify diagnostic genes and important microRNAs associated with rheumatoid arthritis. Here, we performed RNA sequencing to identify differently expressed mRNAs (DEmRNAs) and lncRNAs in normal samples, paroxysmal AF, and persistent AF. In addition, we use bioinformatics methods, such as WGCNA, and PPI network analysis, to identify the hub lncRNAs and mRNAs in AF. Our findings aim to clarify the underlying molecular changes associated fibrillation, and provide a useful resource for identifying AF marker.



MATERIALS AND METHODS


RNA-Seq Analysis

In this study, 10 control samples, 10 paroxysmal AF, and 10 persistent AF samples were prepared for RNA sequencing. RNA was extracted from Approximately 500 mg AF and normal samples using the RNeasy mini kit (QIAGEN).

We next applied Corall Total RNA Seq library preparation kit (Lexogen, Vienna, Austria) for RNA Seq library using 150 ng of total RNA. The RiboCop rRNA Depletion Kit (Lexogen, Vienna, Austria) was used to remove rRNA. The quality of the sequencing library was evaluated by D1000 screen tape analysis using the 4200 TapeStation system (Agilent, United States) and quantified using QubitTM dsDNA HS analysis kit (Invitrogen, United States). RNA processing was used by Illumina NextSeq 500 sequencing. The R software package Deseq2 was used for mRNA differential expression analysis (Zhang et al., 2020). The genes with |log2 fold change | ≥ 1 and FDR ≤ 0.1 were considered to be differentially expressed (Gu et al., 2021a,b).



Weighted Gene Co-expression Network Construction

A scale-free co-expression network was constructed by using WGCNA package in R (Langfelder and Horvath, 2008). The appropriate soft threshold power (β) is determined based on a scale-free topology criterion. The result was clustered by topological overlap matrix analysis. In addition, the correlations between module eigengenes (MEs) were calculated via Pearson’s correlation analysis.



Functional Annotations

In order to explore the functional annotation of DEGs, we performed gene ontology (GO) (Gu et al., 2020a), kyoto encyclopedia of genes and genomes (KEGG) (Gu et al., 2020b; Liang et al., 2020) and UniProt analysis to predict gene functions using DAVID system (Jiao et al., 2012; Shi et al., 2020b).



PPI Network Construction

We used the STRING to construct a PPI network (Shi et al., 2018). The PPI network was visualized through Cytoscape, and further filtered through plug-in molecular complex detection (MCODE) to determine the candidate hub differentially expressed module (DEM) (Feng et al., 2019). The biological significance of gene modules was visualized with MCODE in Cytoscape to identify the most significant module (Gu et al., 2020c).



The Co-expression Network Analysis of Hub lncRNAs

Cytoscape displays the co-expression network of hub lncRNAs through the topological analysis of lncRNAs, the central nodes of these networks were explored. The significantly co-expression network of hub lncRNA-mRNAs with an absolute Pearson correlation coefficient >0.99 was chosen as the targets to build the network.

The WGCNA package in R was used to generate a co-expression network of DEGs (Langfelder and Horvath, 2008). Pearson’s correlation analysis was conducted as a similarity measure. The soft threshold power (β) of the correlation matrix was used to emphasize strong correlations between genes and penalize weak correlations. Next, the adjacency was used to calculate the topological overlap matrix (TOM).



RESULTS


Identification of DEGs Among Normal, Paroxysmal AF, and Persistent AF Samples

In this study, 10 control samples, 10 paroxysmal AF, and 10 persistent AF samples were sequenced among their RNA. Then, we identified DEGs in the progression of AF with the R package Limma. 558 genes were identified to be differently expressed in paroxysmal AF compared to control samples (Figures 1A,B); 582 genes were identified to be differently expressed in persistent AF compared to control samples (Figures 1C,D); and 934 genes were identified to be differently expressed in persistent AF compared to paroxysmal AF tissues (Figures 1E,F). The heat map and volcano map of the DEG are shown in Figure 1.
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FIGURE 1. Identification of DEGs among normal, paroxysmal AF and persistent AF samples. (A,B) The scatter plot and volcano plot show the DEGs in paroxysmal AF compared to normal samples. (C,D) The scatter plot and volcano plot show the DEGs in persistent AF compared to normal samples. (E,F) The scatter plot and volcano plot show the DEGs in persistent AF compared to paroxysmal AF samples.


Interestingly, we found that the expression of various lncRNAs in the progression of atrial fibrillation was differently changed. Among the DEGs, about 50% were coding genes and around 50% were non-coding RNAs (Figure 2). Compared with normal samples, 272 DEGs were found in patients with paroxysmal atrial fibrillation, including 100 upregulated and 172 downregulated mRNAs (Figure 2A). Overall, 324 DEmRNAs were found in persistent atrial fibrillation compared with normal samples, including 219 upregulated and 105 downregulated mRNAs (Figure 2B). In addition, compared with paroxysmal atrial fibrillation samples, 520 genes were identified in persistent atrial fibrillation samples, including 281 upregulated genes and 239 downregulated genes (Figure 2C).
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FIGURE 2. Identification of DEmRNAs and lncRNAs among normal, paroxysmal AF and persistent AF samples. (A–C) The heat map shows the DEmRNAs in paroxysmal AF compared to normal samples (A), persistent AF compared to normal samples (B), and persistent AF compared to paroxysmal AF samples (C). (D–F) The heat map shows the differently expressed lncRNAs in paroxysmal AF compared to normal samples (A), persistent AF compared to normal samples (B), and persistent AF compared to paroxysmal AF samples (C).


Therefore, we also focused on the expression changes and potential functions in AF. As shown in Figure 1, compared with normal samples, a total of 286 DElncRNAs were identified in paroxysmal atrial fibrillation, and 116 lncRNAs were upregulated and 170 lncRNAs were downregulated (Figure 2D). Overall, compared with normal samples, 124 upregulated and 134 downregulated lncRNAs were identified in persistent atrial fibrillation (Figure 2E). In addition, compared with paroxysmal atrial fibrillation samples, 414 DElncRNAs were identified in persistent atrial fibrillation samples, including 153 upregulated lncRNAs and 261 downregulated lncRNAs (Figure 2F). Of note, several lncRNAs were observed to be differently expressed in multiple stages of AF, such as MTND1P23, RP11-1081M5.2, and XIST.



GO Analysis of DEmRNAs Highlights Specific Processes-Involvement

Then, we conducted an in silico analysis of the DEGs in the progression of AF. Interestingly, we found that the differentially expressed genes in patients with paroxysmal AF compared with control samples are mainly related to the positive regulation of VEGF production, CXCR chemokine receptor binding, VEGF production, and the formation of renal tubules (Figure 3A).
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FIGURE 3. Bioinformatics analysis of DEGs among normal, paroxysmal AF and persistent AF samples. (A,B) GO and KEGG pathway analysis of DEmRNAs in paroxysmal AF compared to normal samples. (C,D) GO and KEGG pathway analysis of DEmRNAs in persistent AF compared to normal samples. (E,F) GO and KEGG pathway analysis of DEmRNAs in persistent AF compared to paroxysmal AF samples.


In addition, we also found that the genes differentially expressed between persistent AF and normal samples were mainly involved in the regulation of myosin filaments, myofilament sliding, actin-myosin filament sliding, scavenger receptor activity, sodium ion homeostasis, negatively regulating blood coagulation, muscle tissue morphogenesis, negatively regulating coagulation, myocardial tissue morphogenesis (Figure 3C).

Finally, we found that the differentially expressed genes between persistent AF and paroxysmal AF were mainly related to the production of interleukin-18 (IL-18), IgG binding, clustering of skeletal muscle acetylcholine-gated channels, positive regulation of renal sodium excretion, fever production, positive regulation of fever production, positive regulation of VEGFR signaling pathway, cell response to leptin stimulation, response to leptin, the regulation of fever, and the positive regulation of the chemotaxis of granulocytes (Figure 3E).



Pathway Analysis of DEmRNAs Highlights Specific Processes-Involvement

Use the KEGG database to analyze the pathway of DEmRNAs. We found that the genes differentially expressed in paroxysmal AF and normal samples mainly involve phagosomes, whooping cough, pathogenic Escherichia coli infection, complement and coagulation cascade, osteoclast differentiation, tryptophan metabolism, taurine and subcutaneous Taurine metabolism, fatty acid biosynthesis, leishmaniasis, ovarian steroid production and cytokine-cytokine receptor interaction (Figure 3B).

The differentially expressed genes in persistent atrial fibrillation compared with normal atrial fibrillation mainly involved neuroactive ligand-receptor interactions, tight junctions, complement and coagulation cascades, mucin-type O-glycan biosynthesis, calcium signaling pathways, endocrine, and other factors regulating calcium reabsorption, glycosaminoglycan biosynthesis-heparan/heparin sulfate, amyotrophic lateral sclerosis (ALS), cGMP-PKG signaling pathway, and retinol metabolism (Figure 3D).

Compared with paroxysmal AF, the differentially expressed genes in persistent AF mainly involved phagosomes, complement and coagulation cascade, osteoclast differentiation, leishmaniasis, malaria, African trypanosomiasis, neuroactive ligand-receptor interaction, PPAR signaling pathway, whooping cough, and ovarian steroid hormone production (Figure 3F).



Weighted Gene Co-expression Network Construction

Next, we used the WGCNA package in the R software to perform a co-expression network analysis of the gene expression in the progress of AF. In order to identify all co-expressed genes, we chose β = 8 (fit value R2 = 0.85) as the cutoff to build a network (Figures 4A,B).
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FIGURE 4. Weighted gene co-expression network analysis of differently expressed genes. (A) The scale-free fit index (left). (B) Mean connectivity (right) for various soft-thresholding powers. (C) Dendrogram of the DEGs clustered based on a dissimilarity measure (1-TOM). (D) Cluster analysis and heatmap of the genes in different modules. (E) Heatmap showing the relationship between module eigengenes.


Based on these analyses, we initially obtained five gene modules and then used the dynamic tree cutting algorithm in the WGCNA software package to process the hierarchical clustering tree. In the progress of AF, a total of four gene modules were obtained, including blue, brown, turquoise and yellow modules (Figure 4C). In addition, the gray module includes all genes that cannot be put into any other modules. The clustering tree diagram of the module is shown in the Figure 4D, while the intrinsic clustering of the modules is provided in Figure 4E.

We performed the first principal component analysis (PCA) on five gene modules. The PCA results reflected the main trend of gene expression in each module. Our results indicated that blue module was negatively correlated to the AF progression and downregulated in paroxysmal and persistent AF compared to control samples, and downregulated in persistent AF samples compared to paroxysmal AF samples (Figure 5A). The brown module was downregulated in persistent AF samples compared to control and paroxysmal AF samples, and not differently expressed in paroxysmal AF compared to control samples (Figure 5B). The gray module was upregulated in paroxysmal AF compared to control samples, but downregulated in persistent AF samples compared to paroxysmal AF samples (Figure 5C). Of note, our results indicated that turquoise module was significantly positively correlated to the progression of AF, upregulated in paroxysmal and persistent AF compared to control samples, and upregulated in persistent AF samples compared to paroxysmal AF samples (Figure 5D). Finally, our results showed that yellow module was upregulated in persistent AF and paroxysmal AF samples compared to control samples, and not differently expressed in persistent AF compared to paroxysmal AF samples (Figure 5E). These results suggest that blue module and turquoise module may have a crucial role in the occurrence and progression of AF, that the brown module may have a more important role in the progression of AF, and that the yellow module may have a more important role in the occurrence of AF.
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FIGURE 5. The analysis of the correlation between AF progression and module expression. (A–E) The analysis of the correlation between AF progression and the average expression of genes in blue module (A), brown module (B), grey module (C), turquoise module (D), and yellow module (E).




Identification of Hub Genes

In order to determine the hub-mRNAs associated with AF, we built a PPI network and used the MCODE scoring system. A total of 4 hub networks were identified in the AF related modules. As presented in Figure 6, a hub network including 19 nodes and 57 edges were identified in gray module (Figure 6A); a hub network including 6 nodes and 15 edges were identified in blue module (Figure 6B); a hub network including 38 nodes and 464 edges were identified in turquoise module (Figure 6C); a hub network including eight nodes and 13 edges were identified in grown module (Figure 6D).
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FIGURE 6. Construction of hub PPI networks in the hub modules. (A–D) The hub PPI network was constructed in gray module (A), blue module (B), turquoise module (C), and brown module (D).




The Construction of lncRNA–mRNA Regulatory Network

Through the correlation analysis of the DEG and differentially expressed lncRNA (DEL) of the turquoise module, the brown module and all the green and yellow modules, we constructed the DEG-DEL co-expression network. As shown in Figure 7, the blue module includes 35 lncRNAs and 51 mRNAs; the brown module includes five lncRNAs and 19 mRNAs; the turquoise module includes six lncRNAs and 34 mRNAs; and the yellow module includes two lncRNAs and 21 mRNAs.
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FIGURE 7. Construction of lncRNA-mRNA interaction network in the hub modules. (A–D) The lncRNA-mRNA interaction network was built in blue module (A), brown module (B), turquoise module (C), and yellow module (D).


Therefore, we found that some DEGs and DElncRNAs act as hub regulators (connection degree ≥ 5) in the lncRNA-mRNA regulatory network. For example, HSPB6 in the blue module interacts with 11 LncRNAs while CTC-251I16.1 in the blue module connects more than 10 mRNAs and 20 lncRNAs; in the brown module PPP1R1a connects 17 mRNAs and 5 lncRNAs; EDN1, CALCR, COL13A1, and ETV5 in the turquoise module act as the hub genes and connect with more than 30 mRNAs and five lncRNAs; C3 in the yellow module is connected to 20 mRNAs and 2 lncRNAs.



The Function Prediction of Hub Genes and IncRNAs of Turquoise Module

In order to understand the biological effects of hub genes and hub lncRNAs, we performed function prediction via the plug-in CLUEGO in Cytoscape. Our results showed that hub genes in turquoise module was significantly related to cell extravasation, leukocyte chemotaxis, macrophage activation, response to bacteria-derived molecules and positive regulation of α-β T cell activation (Figure 8A). Next, we predicted the potential function of hub lncRNA to in the turquoise module using its co-expressing mRNA. The hub lncRNA in the turquoise module was significantly related to the mineralocorticoid response (Figure 8B).
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FIGURE 8. The function prediction of hub gene and lncRNA of turquoise module. (A,B) The function prediction of Hub mRNAs (A) and lncRNAs (B) of turquoise module.




DISCUSSION

Atrial fibrillation/paroxysmal AF (PAF) is the main cause of cardiogenic embolism. In recent years, the progression from paroxysmal AF to persistent AF has attracted more and more attention (Proietti et al., 2015). Emerging data indicated a significant association between the morbidity and the transition. However, the molecular mechanism of the progression of AF is unclear. Therefore, we performed RNA sequencing for normal samples, paroxysmal AF and persistent AF samples to identify DEG and explore the roles of these DEGs in AF. In our current research, it is very interesting that we found that the expression of various lncRNAs in the progression of atrial fibrillation was differently changed. Totally, 272 DEmRNAs and 286 DElncRNAs were identified in paroxysmal atrial fibrillation compared to normal samples; 324 DEmRNAs and 258 DElncRNAs found in persistent atrial fibrillation compared with normal samples; and 520 DEmRNAs and 414 DElncRNAs were identified to be differently expressed in persistent AF compared to paroxysmal AF samples (Figures 1E,F). Among the DEGs, about 50% were coding genes and around 50% were non-coding RNAs, suggesting that lncRNAs may also have a crucial role in the progression of AF.

Considering that potential functions of these DEmRNAs in AF remained to be unclear, we performed the enrichment analysis of DEGS. we found that DEGs were involved in the regulation of multiple biological processes and pathways in the progression of AF. It is worth noting that the DEGs between normal and paroxysmal atrial fibrillation was most related to the regulation of VEGF production and the binding to the CXCR chemokine receptor. The VEGF-VEGFR system is essential in angiogenesis and lymphangiogenesis (Shibuya, 2015). Studies have shown that VEGFs play a crucial role in the occurrence, and development of AF (Chung et al., 2002). Multiple studies in patients with early atrial fibrillation reported elevated levels of VEGFA. Vascular endothelial growth factor promotes atrial arrhythmia by inducing acute intercalary disk remodeling (Mezache et al., 2020). It is very interesting that our research is consistent with previous reports that intracardiac VEGF levels increased in patients with paroxysmal, but not persistent AF (Scridon et al., 2012). CXCR family members also play an important role in AF. For example, the chemokine receptor CXCR-2 is a key regulator of monocyte mobilization in hypertension and heart remodeling; and blocking the activation of CXCR-2 can be used as a new treatment strategy for AF (Zhang et al., 2020). We also revealed that DEG between normal and sustained AF was most significantly correlated with mucin-type O-glycan biosynthesis. So far, our research reveals the relationship between this pathway and AF for the first time. Finally, we found that DEG between paroxysmal and persistent atrial fibrillation was most significantly associated with the interleukin-18, coagulation, and complement cascade. Interleukin-18 plays a central role in the regulation of both innate and adaptive immunity (Dinarello, 2018). A previous study showed that AF patients have higher levels of IL-18. IL-18 is positively related to the inner diameter of the left atrium (Luan et al., 2010). A recent genetic study showed that genetic variation of interleukin-18 is related to a lower risk of atrial fibrillation among people in the Northeast China (Wang et al., 2017). In addition, Kornej et al. (2018) reported that complement and coagulation cascades were also related to AF. These reports, together with our findings, further prove the key role of these signals in AF.

Weighted gene co-expression network analysis has been applied to identify the core genes in AF. For example, Zou et al. (2018) reported that LEP, FOS, EDN1, NMU, CALB2, TAC1 may be related to the occurrence and maintenance of AF using WGCNA method and public dataset GSE41177. Li et al. (2020) used GSE79768 to perform a WGCNA analysis to determine the key modules related to atrial fibrillation. However, these reports were based on online public databases and the clinical information of the samples used in these reports remained unclear. In this study, we collected 10 control samples, 10 paroxysmal AF and 10 persistent AF to perform RNA-sequencing analysis. Moreover, we performed PPI network and WGCNA analysis to reveal the biological mechanisms related to the progression of atrial fibrillation. Five modules were identified in the progress of AF, including blue, brown, gray, turquoise, and yellow modules. By analyzing the correlation between these modules and the progression of atrial fibrillation, we found that the turquoise module was significantly positively correlated with the progression of atrial fibrillation while the blue module was significantly negatively correlated with the progression of AF. Moreover, a PPI network was used to identify functional gene connections through MCODE based on a scoring system. Several hub genes were also found in different modules, such as KIAA0101, UHRF1, CDCA2, HJURP, NCAPG, SGOL1, and CENPA in grey module, GPR37L1 in blue module, CD163, CD28 and CX3CR1 in turquoise module, and KNG1 and GRM1 in brown module. It is worth noting that several of these hub genes are reported to be significantly associated with AF. For example, interleukin 10 treatment improves inflammatory atrial remodeling and fibrillation induced by a high-fat diet (Kondo et al., 2018). The plasma concentration of IL-10 in the acute phase is associated with high risk sources of cardiogenic stroke. The serum soluble CD163 level in AF was significantly higher than that in patients with sinus rhythm (Zhong et al., 2016).

Recently, accumulating evidence indicates a link between immune response and AF (Liu et al., 2018). Previous studies demonstrated that marcrophages lead to both structure and electric atrial remodeling in AF (Liu et al., 2018). In addition, a large number of studies have shown that T cells are closely related to cardiovascular diseases, including AF (Liu et al., 2018). For instance, a significant high CD4 + CD28null T cells was found in patient with AF (Sulzgruber et al., 2017). However, the precise mechanism remains unclear. In this study, we conducted a bioinformatics analysis on the turquoise module and reported that the Hub PPI network in the turquoise module significantly participates in regulating leukocyte chemotaxis and macrophage activity and positively regulates α-β T cell activation, indicating that immune pathways have a key role in AF.

LncRNA plays an important role in the regulation of cardiovascular diseases. LncRNA HOTAIR, as a ceRNA, regulates the remodeling of connexin 43 during AF by sponging microRNA-613 (Dai et al., 2020). LncRNA TCONS-00106987 stimulates miR-26 to regulate KCNJ2 to promote atrial electrical remodeling during AF (Du et al., 2020). LncRNA-LINC00472 reduces the expression of JP2 and RyR2 through miR-24, thereby participating in the pathogenesis of AF (Wang et al., 2019). In this study, we identified 286 DElncRNAs in paroxysmal AF and 258 DElncRNAs in persistent AF. Also 414 DElncRNA were identified between persistent and paroxysmal AF samples. Of note, several lncRNAs were observed to differently express in multiple stages of AF, such as MTND1P23, RP11-1081M5.2, XIST and BANCR. Interestingly, several of them had been reported to have key roles in human disease, such as XIST and BANCR. For example, BANCR was previously identified as a cancer-promoting lncRNA and was also significantly related to the pathogenesis of multiple cardiovascular diseases (Li et al., 2017; Wilson et al., 2020). For example, Wilson et al. (2020) found that BANCR promotes cardiomyocyte migration in humans. BANCR promotes vascular smooth muscle cell proliferation via JNK pathway (Li et al., 2017). XIST has a regulatory role in cardiomyocyte function, modulates cardiomyocyte apoptosis via miR-873 (Cai et al., 2020), promotes cardiac fibroblasts proliferation by sponging miR-155-5p (Zhang et al., 2021), and protects the hypoxia-induced cardiomyocyte injury via HK2 (Fan et al., 2020), indicating that XIST’s key roles in heart development. Also, in this study we identified several central lncRNA-mRNA co-expression networks during AF, such as CTC-251I16.1 in the blue module, which connects to more than 10 mRNAs and more than 20 lncRNAs. Bioinformatics analysis showed that the central lncRNA in the turquoise module is significantly related to the mineralocorticoid response.

Our research has several limitations. First, the size of clinical samples used in this study was limited. In the future study, we plan to collect more AF samples and comprehensive clinical information to confirm the correlation between hub genes and AF progression. Secondly, we did not perform gain/loss of function analysis to explore the potential role of hub gene and lncRNA in AF.

In this study, the WGCNA algorithm was for the first time to systematically explore the roles of DEGs in AF. Bioinformatics analysis demonstrated that these DEGs were significantly related to regulate multiple AF related pathways, such as the regulation of VEGF production and binding to the CXCR chemokine receptor. Furthermore, five hub modules were identified in the progression of AF, including blue, brown, gray, turquoise and yellow modules. These results provide new information for further understanding of the pathogenesis and differential diagnosis of AF.
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Background: Myocardial infarction (MI) is one of the leading threats to human health. N6-methyladenosine (m6A) modification, as a pivotal regulator of messenger RNA stability, protein expression, and cellular processes, exhibits important roles in the development of cardiac remodeling and cardiomyocyte contractile function.

Methods: The expression levels of m6A regulators were analyzed using the GSE5406 database. We analyzed genome-wide association study data and single-cell sequencing data to confirm the functional importance of m6A regulators in MI. Three molecular subtypes with different clinical characteristics were established to tailor treatment strategies for patients with MI. We applied pathway analysis and differentially expressed gene (DEG) analysis to study the changes in gene expression and identified four common DEGs. Furthermore, we constructed the protein–protein interaction network and confirmed several hub genes in three clusters of MI. To lucubrate the potential functions, we performed a ClueGO analysis of these hub networks.

Results: In this study, we identified that the levels of FTO, YTHDF3, ZC3H13, and WTAP were dramatically differently expressed in MI tissues compared with controls. Bioinformatics analysis showed that DEGs in MI were significantly related to modulating calcium signaling and chemokine signaling, and m6A regulators were related to regulating glucose measurement and elevated blood glucose levels. Furthermore, genome-wide association study data analysis showed that WTAP single-nucleotide polymorphism was significantly related to the progression of MI. In addition, single-cell sequencing found that WTAP is widely expressed in the heart tissues. Moreover, we conducted consensus clustering for MI in view of the dysregulated m6A regulators’ expression in MI. According to the expression levels, we found MI patients could be clustered into three subtypes. Pathway analysis showed the DEGs among different clusters in MI were assigned to HIF-1, IL-17, MAPK, PI3K-Akt signaling pathways, etc. The module analysis detected several genes, including BAG2, BAG3, MMP2, etc. We also found that MI-related network was significantly related to positive and negative regulation of angiogenesis and response to heat. The hub networks in MI clusters were significantly related to antigen processing and ubiquitin-mediated proteolysis, RNA splicing, and stability, indicating that these processes may contribute to the development of MI.

Conclusion: Collectively, our study could provide more information for understanding the roles of m6A in MI, which may provide a novel insight into identifying biomarkers for MI treatment and diagnosis.

Keywords: myocardial infarction, RNA methylation, m6A RNA modification, PPI network, DEG analysis


INTRODUCTION

Myocardial infarction (MI) is referred to as a heart attack event term in which myocardial cells die because of imbalances between oxygen supply and demand. The general definition of MI consists of five subtypes, among which type 1 and type 2 MI are the widely occurred sorts and also exhibit a tight relationship to clinicians (Gao et al., 2016). Type 1 MI is induced by acute atherosclerotic thrombosis, whereas type 2 MI results from the imbalanced supply and demand of myocardial oxygen without acute atherosclerotic thrombosis (Lu et al., 2015; Sandoval and Jaffe, 2019). The most common cause of MI is blood flow to a part of the heart is reduced or paused, leading to myocardial necrosis. Also, the result of a blood coagulum in the coronary artery is responsible for supplying the heart muscle area. The risk of MI usually increases with age, particularly at the age of more than 65 years (Lu et al., 2015).

Previous research has shown that epigenetic regulation plays importantly in the regulation of cardiovascular repair functions. Typically, as the ubiquitous and abundant transcription modification of messenger RNA (mRNA) and long non-coding RNA in the genome of eukaryotes, N6-methyladenosine (m6A) primarily occurs in the 3′-untranslated regions and nearby the stop codons of mRNAs (Meyer et al., 2012; Wang et al., 2014; Li et al., 2017; Liu et al., 2017; Zhang et al., 2017). Acting as a reversible modification, m6A is methylated by m6A methyltransferases (writers), demethylated by m6A demethylases (erasers), and recognized by m6A binding proteins (readers), which participates in various biological processes. Dysregulated m6A is gradually thought to be the etiopathogenesis of certain diseases, such as carcinomas and cardiovascular disease (CVD). Growing evidence indicated that the continuous dynamic modulation of m6A exerts an impact on specific genes’ expression and some diseases’ physiological and pathological processes, including MI, ischemic heart failure (HF), myocardial hypertrophy, and cardiomyogenesis (Mathiyalagan et al., 2019). For instance, WTAP promotes MI via modulating m6A modification of ATF4 mRNA (Wang et al., 2021). Dorn et al. (2019) showed that N6 adenosine methylation regulated by METTL3 is crucial for hypertrophy’s pathological process in vivo and in vitro. Loss of METTL3 enhanced heart regeneration and repair after myocardial injury (Gong et al., 2021). Nonetheless, the roles of m6A regulators in MI remained largely unclear.

So far, the function of m6A in physiological and biological processes has been largely studied. Nevertheless, the research toward m6A is limited under pathological conditions in MI. Here, we systematically investigated the role of m6A epigenetic regulation in MI. Furthermore, we applied unsupervised consensus clustering on gene expression in MI based on m6A expression. In addition, we identified the potential roles of differentially expressed genes (DEGs) in different clusters based on m6A expression by performing Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein–protein interaction (PPI) network analysis. As far as we know, our literature, for the first time, comprehensively analyzed m6A’s roles in MI, which may provide novel clues to identify biomarkers for MI treatment and diagnosis.



MATERIALS AND METHODS


Data Collection

GSE5406 (Hannenhalli et al., 2006) included gene expression profile of human left ventricle tissue from 16 non-failing myocardium samples, 108 ischemic myocardium samples, and 86 idiopathic myocardium samples. Genome-wide association study (GWAS) data were downloaded from the GeneAtlas database.1 The single-cell data were from The Single Cell Type Atlas.



Enrichment Analysis

We carried out functional enrichment analysis, including Gene Ontology (GO) and KEGG, using the DAVID system.2 P-value < 0.05 meant significant difference.



Construction of Protein–Protein Interaction Network

The STRING database was utilized to construct the PPI network. The PPI network was displayed by Gephi software. We chose the hub genes based on the extent of genes’ connectivity.



Unsupervised Consensus Clustering Analysis

We carried out unsupervised consensus analysis utilizing the ConsensusClusterPlus (Wilkerson and Hayes, 2010) R package. Taken briefly, the consistent matrix plots were shown in the light of the k-value. Also, empirical cumulative distribution function plots exhibited the uniform distributions for each k. What is more, the item tracking plot demonstrated the consistent clustering of items (columns) at each k (rows) to determine the clustering stability. The cluster-consensus plot illustrated the cluster-consensus value at different k-values. High cluster-consensus value meant clustering with low stability. Item-consensus plot is the mean consensus value deriving from an item and a consensus cluster’s members. An item indicated several item-consensus values with different ks.



Differentially Expressed Gene Analysis

The DEGs were determined by the Limma R package between different clusters in AMI, observing the cutoff value of | log2 (fold change) | ≥ 1 and P-value < 0.05. Ggplot R package was applied to draw the volcano plot, and pheatmap R package was used to plot the heatmap of DEGs.



Potential Hub Gene Identification

Each protein node’s degree was evaluated by the CytoHubba plugin in Cytoscape software3 (Chin et al., 2014; Ma et al., 2021). Nodes with a higher degree of connectivity are normally more important for keeping the entire network’s stability. The 10 proteins with closet connection nodes here were the potential hub genes.




RESULTS


N6-Methyladenosine Regulators Expression Was Dysregulated in Myocardial Infarction

For assessing m6A regulators’ biological function in MI’s occurrence and development, we explored 15 m6A regulators’ expression profiles systematically between MI and non-failing controls using GSE5406. Figure 1A illustrates m6A modulators’ expression levels in MI and non-failing controls separately. Among them, we observed that FTO, YTHDF3, and ZC3H13 expression levels were largely lower in MI tissues than in non-failing controls (p < 0.01); however, WTAP expression levels were markedly higher in MI tissues relative to non-failing controls (p < 0.05). In addition, there was no obvious difference between the non-failing controls and MI tissues with regard to RBM15, YTHDC1, HHRNPA2B1, IGF2BP2, METTL3, RBMX, YTHDF1, YTHDF2, HNRNPC, IGF2BP3, RBM15B, and YTHDC2 expression levels. To evaluate whether m6A modulators functioned crucially in the development of MI, we analyzed the correlation among them in non-failing controls and MI samples separately. The results demonstrated that the correlation among m6A regulators has a significant change between control and MI groups, implying that m6A modulators functioned crucially in the development of MI (Figure 1B). The dysregulation of FTO, YTHDF3, ZC3H13, and WTAP in MI is presented in Figure 1C.
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FIGURE 1. m6A regulators expression was dysregulated in MI. (A) m6A modulators were differently expressed in MI. (B) Correlation among m6A regulators’ expression in MI samples and non-failing samples. (C) Dysregulation of FTO, YTHDF3, ZC3H13, and WTAP in MI was presented. *P < 0.05; ***P < 0.001; ****P < 0.0001.




Functional Annotation of N6-Methyladenosine Regulators in Myocardial Infarction

To evaluate the potential functions of m6A regulators in MI, we performed bioinformatics analysis. As present in Figure 2A, the mountain map shows that the DEGs in MI were significantly enriched in regulation of locomotion, cation transport, response to organonitrogen compound, signaling receptor activity, cellular amide metabolic process, enzyme regulator activity, transporter activity, chemical homeostasis, oxoacid metabolic process, cytokine–cytokine receptor interaction, chemokine signaling, calcium signaling, phospholipase D signaling, thermogenesis, cAMP signaling, oxytocin signaling, lysosome, cGMP-PKG signaling, and adrenergic signaling in cardiomyocytes. Of note, Gene Set Enrichment Analysis further demonstrated that DEGs in MI were related to transport activity and calcium signaling (Figure 2B). Moreover, by analyzing the relationship among the top 5 enriched signalings, we observed these pathways have strong crosstalk (Figure 2C). Calcium signaling and chemokine signaling play a key role in MI (Figure 2D).
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FIGURE 2. Functional annotation of m6A regulators in MI. (A) Mountain map presented functional annotation of DEGs in MI. (B) Gene Set Enrichment Analysis demonstrated that DEGs in MI were related to transport activity and calcium signaling. (C) Top 5 enriched signaling have strong crosstalk. (D) Calcium signaling and chemokine signaling play a key role in MI. (E) Functional annotation of m6A regulators in MI.


We also predicted that the potential signaling related to m6A regulators and observed FTO and IGFBP2 are mainly related to glucose measurement, elevated blood glucose level, and chronic schizophrenia. HNRNPA2B1 and HNRNPC are mainly related to Astler–Coller B1 rectal carcinoma. IGF2BP3 was related to soft tissue neoplasms and peritoneal neoplasms (Figure 2E).



Confirmation of the Functional Importance of N6-Methyladenosine Regulators in Myocardial Infarction

Next, we analyzed the GWAS data and single-cell sequencing data to confirm the functional importance of m6A regulators in MI. As present in Figure 3A, the Q-Q plot shows that the GWAS data can identify significantly related single-nucleotide polymorphism (SNP) sites. Through precise positioning of the GWAS data, causal SNPs are mainly distributed in the enriched area (Figure 3B). The SNP annotation of the locus found that the m6A regulatory gene WTAP was located in the causal region on chromosome 6, suggesting it may be an important pathogenic gene of MI (Figure 3C). Furthermore, we analyzed the single-cell sequencing of the heart tissues and found that WTAP is widely expressed in the heart tissues, whose expression in endothelial cells is the highest (Figure 3D). By combining the analysis mentioned earlier that WTAP was significantly lower in the MI group, this suggests that maintaining the normal expression of WTAP may be a prevention or improvement means for the treatment of MI.
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FIGURE 3. Confirmation of functional importance of m6A regulators in MI. (A) Q-Q plot shows that significantly related SNP sites could be identified in GWAS data. (B) Manhattan plot representing meta-GWAS results. (C) SNP annotation of locus found that m6A regulatory gene WTAP was located in causal region on chromosome 6. (D) Single-cell sequencing of heart tissue showed that WTAP is widely expressed in heart tissues.




Consensus Clustering Analysis for Myocardial Infarction Based on the Expression of N6-Methyladenosine Regulators

m6A RNA methylation exerted an important effect on modulating the mRNA stability (Wang et al., 2014), alternative splicing, and RNA structure (Liu et al., 2017), thus affecting the RNA expression of the human genome. Thus, we performed consensus clustering for MI in view of the dysregulated m6A modulators in MI.

We conducted the consensus clustering utilizing the Consensus Cluster Plus R package. The cumulative distribution function presented the lowest range ability at consensus index 0.2–0.6 with k = 3 (Figure 4A). The delta area scores of 2.5 were the highest at k = 3 (Figure 4B). Totally, 499 MI patients were clustered into three subtypes, including cluster1 (n = 125), cluster2 (n = 53), and cluster 3 (n = 16) on the basis of m6A regulators expression levels (Figure 4C).
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FIGURE 4. Consensus clustering analysis of MI samples based on mRNA levels of m6A regulators. (A) Cumulative distribution function of clustering (k, 2–6). (B) Delta area score displayed relative growth in cluster stability. (C) Consistency matrix of sample with k = 3. (D) Heatmap of expression of m6A regulators in three types of samples.


Our data showed that the clustering subtypes defined by m6A regulator expression exhibited a close relation to MI patients’ heterogeneity. To uncover the interplay between m6A regulators, we explored the correlation among 15 m6A RNA methylation regulators. FTO, YTHDF1, IGF2BP3, RBM15B, YTHDF3, IGF2BP2, and RBM15 were mostly upregulated in cluster 3 (Figure 4D). WTAP, HNRNPC, YTHDF2, YTHDC2, HNRNPA2B1, METTL3, ZC3H13, and YTHDC1 were most greatly upregulated in cluster 1 (Figure 4D). Of note, we observed that WTAP and HNRNPC were greatly downregulated in cluster 3 (Figure 4D).



Identifying the Differentially Expressed Genes Between Different Clusters in Myocardial Infarction

The DEGs among cluster 1, cluster 2, and cluster 3 MI samples were identified based on m6A regulators expression in depth. Four hundred thirty-seven DEGs were identified in total, including 237 DEGs with upregulation and 200 DEGs with downregulation between MI and non-failing controls (Figures 5A,B). The top 10 overexpressed and suppressed genes between MI and non-failing controls are listed in Table 1. Totally, 456 DEGs, comprising 420 DEGs with upregulation and 36 DEGs with downregulation, were screened after comparing cluster 1 with cluster 2 samples (Figures 5C,D). The top 10 overexpressed and suppressed between cluster 1 and cluster 2 are listed in Table 2. One thousand three hundred ninety-five DEGs in total, consisting of 884 DEGs with upregulation and 511 DEGs with downregulation, were obtained after comparing cluster 1 with cluster 3 samples (Figures 5E,F). The top 10 overexpressed and suppressed genes between cluster 1 and cluster 3 are listed in Table 3. One thousand six hundred seventy-eight DEGs were acquired, including 886 DEGs with upregulation and 792 DEGs with downregulation after comparing cluster 2 with cluster 3 samples (Figures 5G,H). The top 10 overexpressed and suppressed genes between cluster 2 and cluster 3 are listed in Table 4.
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FIGURE 5. Identification of DEGs between different clusters in MI. (A,B) Volcano plot and heatmap showed DEGs in MI compared with non-failing controls. (C,D) Volcano plot and heatmap showed DEGs in cluster 1 MI compared with cluster 2 MI samples. (E,F) Volcano plot and heatmap showed DEGs in cluster 1 MI compared with cluster 3 MI samples. (G,H) Volcano plot and heatmap showed DEGs in cluster 2 MI compared with cluster 3 MI samples.



TABLE 1. Top 10 upregulated and downregulated genes between MI and non-failing controls are listed.

[image: Table 1]

TABLE 2. Top 10 upregulated and downregulated genes between cluster 1 and cluster 2 are listed.
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TABLE 3. Top 10 upregulated and downregulated genes between cluster 1 and cluster 3 are listed.
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TABLE 4. Top 10 upregulated and downregulated genes between cluster 2 and cluster 3 are listed.
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Bioinformatics Analysis of the Differentially Expressed Genes Between Different Clusters in Myocardial Infarction

We further performed KEGG analysis of DEGs between different clusters to evaluate their potential functions in MI. As present in Figure 4, the overexpressed genes in cluster 1 compared with cluster 2 were significantly related to fatty acid biosynthesis, RNA transport, ubiquitin-mediated proteolysis, protein processing (Figure 6A). After comparison with cluster 2, the downregulated genes in cluster 1 were significantly related to toxoplasmosis, cell adhesion molecules, antigen processing and presentation, and alcoholism (Figure 6B). In comparison with cluster 3, the overexpressed genes in cluster 1 were significantly related to antigen processing and presentation, autophagy, and signaling pathways, including AGE-RAGE, AMPK, PI3K-Akt, TGF-beta, and cGMP-PKG signaling (Figure 6C). After comparison with cluster 3, the overexpressed genes in cluster 2 were significantly related to antigen processing and presentation and signaling pathways, including AGE-RAGE, AMPK, FoxO, HIF-1, PI3K-Akt, and TGF-beta signaling (Figure 6E). The downregulated genes in cluster 1 compared with cluster 3 and cluster 2 compared with cluster 3 exhibited a significant relation to oxidative phosphorylation, spliceosome, and multiple neurodegenerative diseases, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease (Figures 6D–F).
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FIGURE 6. Bioinformatics analysis of DEGs between different clusters in MI. (A–F) KEGG analysis revealed potential signaling regulated by upregulated DEGs and downregulated genes in cluster 1 MI compared with cluster 2 MI samples (A,B), in cluster 1 MI compared with cluster 3 MI samples (C,D), and in cluster 2 MI compared with cluster 3 MI samples (E,F).




Screening of Key Genes in Different Clusters of Myocardial Infarction

We also investigated changes in gene expression among different clusters in MI based on the expression change of the GSE5406 dataset. As present in Figure 6, we observed that approximately 45.7% of DEGs were differently expressed in more than two different clusters (Figure 7A). Venn diagram showed that there were four common DEGs among all clusters in MI, including BAG2, CD74, GOLGA8N, and PDK4 (Figure 7B).
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FIGURE 7. Screening of key genes in different clusters of MI. (A) Venn diagram showed four common DEGs among all clusters in MI, including BAG2, CD74, GOLGA8N, and PDK4. (B) Heatmap showed BAG2, CD74, GOLGA8N, and PDK4 expression among all clusters in MI. (C–F) BAG2 (C), CD74 (D), GOLGA8N (E), and PDK4 (F) were differently expressed among all clusters in MI.


The results showed that BAG2 and PDK4 have a similar expression pattern in MI, which were suppressed in all clusters of MI compared with non-failing controls, suppressed in cluster 2 in comparison with cluster 1 samples, and suppressed in cluster 3 after comparison with cluster 2 and cluster 1 samples (Figures 7C,F). Meanwhile, we found that CD74 was enhanced in clusters 1 and 2 after comparison with non-failing controls, enhanced in cluster 2 in comparison with cluster 1 samples, but suppressed in cluster 3 relative to cluster 1 and 2 samples (Figure 7D). Finally, the results showed that GOLGA8N was enhanced in clusters 1 and 3 in comparison with non-failing controls but suppressed in cluster 2 in comparison with cluster 1 samples and enhanced in cluster 3 in comparison with cluster 1 and 2 samples (Figure 7E).



Screening of Hub Networks Between Different Clusters of Myocardial Infarction

STRING tools were utilized to predict the PPI of the DEGs. Then, we used Cytoscape MCODE to further screen the core PPI network, and the results revealed four hub networks related to different clusters of MI. In total, 37 nodes and 259 edges were included in the PPI network consisting of DEGs in MI compared with normal samples (Figure 8A), 16 nodes and 120 edges were included in the PPI network consisting with DEGs in cluster 1 MI compared with cluster 2 MI samples (Figure 8B), 55 nodes and 739 edges were included in the PPI network consisting with DEGs in cluster 1 MI compared with cluster 3 MI samples (Figure 8C), and 63 nodes and 982 edges were included in the PPI network consisting with DEGs in cluster 2 MI compared with cluster 3 MI samples (Figure 8D). The module analysis filtered out several genes, including BAG2, BAG3, MMP2, FGF1, HSPB1, CXL12, PJA2, UBE2M, RNF14, RNF16, KLHL2, LTN1, RBM17, LSM2, TRIM37, and UBA3.


[image: image]

FIGURE 8. Identification of hub networks in different clusters in MI. (A–D) We constructed hub networks based on DEGs in MI compared with non-failing controls (A), in cluster 1 MI compared with cluster 2 MI samples (B), in cluster 1 MI compared with cluster 3 MI samples (C), and in cluster 2 MI compared with cluster 3 MI samples (D).




Functional Annotation of Hub Networks Between Different Clusters of Myocardial Infarction

To understand the potential functions involved in the hub networks and the connection between hub genes and biological functions, we performed a ClueGO analysis of these hub networks in MI. As present in Figure 8, the hub PPI network consisting of DEGs in MI compared with normal samples was significantly related to positive and negative modulation of angiogenesis and positive modulation of ATPase activity, response to heat, and extracellular matrix organization (Figure 9A). Of note, we observed multiple HSP family genes, such as HSPH1, HSPA2, HSPA6, HSP90AA1, and HSPD1, were related to MI progression by modulating response to heat. The hub PPI network consisting of DEGs in cluster 1 MI compared with cluster 2 MI samples was significantly related to antigen processing and ubiquitin-mediated proteolysis (Figure 9B). Also, the hub network consisting of DEGs in cluster 1 MI compared with cluster 3 MI samples was involved in regulating multiple biological processes related to protein ubiquitination and RNA splicing (Figure 9C). Finally, the hub network consisting of DEGs in cluster 2 MI compared with cluster 3 MI samples was involved in regulating antigen processing and RNA splicing and stabilization (Figure 9D). Interestingly, we found that C3 genes were significantly related to RNA splicing and stability, consistent with the crucial roles of m6A in RNA splicing and stability. These results indicated that the abnormal regulation of RNAs splicing and stability might contribute to the development of MI.
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FIGURE 9. Functional annotation of hub networks in different clusters in MI. (A–D) We predicted potential functions of hub networks based on DEGs in MI compared with non-failing controls (A), in cluster 1 MI compared with cluster 2 MI samples (B), in cluster 1 MI compared with cluster 3 MI samples (C), and in cluster 2 MI compared with cluster 3 MI samples (D).





DISCUSSION

MI is still the leading threat to human health. m6A is considered one of the most common and abundant RNA methylation modifications in eukaryotes (Wang et al., 2014; Mathiyalagan et al., 2019; Wen et al., 2019). m6A is regulated by m6A methyltransferases and demethylases and controls the fate of target mRNA by affecting splicing, translation, and decay. Recently, some researches suggested that m6A modification exhibits importantly in the development of cardiac remodeling and cardiomyocyte contractile function (Dorn et al., 2019; Huang et al., 2019; Han et al., 2021; Wang et al., 2021). For example, ablation of METTL3 weakened MI-caused myocardial fibrosis by impeding the activation of cardiac fibroblasts (Dorn et al., 2019). WTAP promotes MI via modulating ATF4 (Wang et al., 2021). ALKBH5 mediated the modulation of heart regeneration via demethylating YTHDF1 mRNA (Han et al., 2021). However, there was lacking the comprehensive analysis of the roles of m6A in MI. In this study, we observed that the levels of FTO, YTHDF3, ZC3H13, and WTAP were dramatically differently expressed in MI tissues compared with non-failing controls, further demonstrating the crucial roles of m6A regulators in MI, which were consistent with previous reports. For example, FTO gene polymorphisms were related to HDL cholesterol concentration and high risk of CVD (Franczak et al., 2018) and could predict the incidence of CVD (Aijala et al., 2015). We also predicted the potential signaling related to m6A regulators and observed that FTO and IGFBP2 are mainly related to glucose measurement, elevated blood glucose level, and chronic schizophrenia. Of note, multiple previous reports had indicated the regulation among FTO and glucose metabolism (Khan et al., 2018; Mizuno, 2018). For example, GWASs showed that FTO mutation is related to impaired fasting glucose (Khan et al., 2018). In the liver, FTO regulated glucose and lipid metabolism, which was modulated by metabolic signals (Mizuno, 2018). HNRNPA2B1 and HNRNPC are mainly related to Astler–Coller B1 rectal carcinoma. IGF2BP3 was related to soft tissue neoplasms and peritoneal neoplasms. Next, we analyzed GWAS data and single-cell sequencing data to confirm the functional importance of m6A regulators in MI. The SNP annotation of the locus found that the m6A regulatory gene WTAP was located in the causal region on chromosome 6, suggesting it may be an important pathogenic gene of MI. Furthermore, we analyzed the single-cell sequencing of the heart tissues and found that WTAP is widely expressed in the heart tissues, whose expression in endothelial cells is the highest. By combining the analysis mentioned earlier that WTAP was significantly lower in the MI group, this suggests that maintaining the normal expression of WTAP may be a prevention or improvement means for the treatment of MI. Very interestingly, our findings were consistent with a recent report. Wang et al. (2021) reported that WTAP promotes MI via modulating ATF4. This study, for the first time, reveals novel clues to understand the mechanism of MI based on m6A expression.

The general definition of MI usually consists of five subtypes. In this study, we conducted consensus clustering for MI in view of the dysregulated m6A RNA methylation regulators expression in MI. According to m6A regulators’ expression levels, we clustered 499 MI patients into three subtypes. Our findings demonstrated that FTO, YTHDF1, IGF2BP3, RBM15B, YTHDF3, IGF2BP2, and RBM15 were mostly upregulated in cluster 3. WTAP, HNRNPC, YTHDF2, YTHDC2, HNRNPA2B1, METTL3, ZC3H13, and YTHDC1 were most significantly upregulated in cluster 1. Also, WTAP and HNRNPC were significantly downregulated in cluster 3. Furthermore, our results showed that the DEGs in MI were significantly enriched in multiple signalings, such as the chemokine signaling pathway, calcium signaling pathway, and chemokine signaling. Interestingly, Gene Set Enrichment Analysis further demonstrated that DEGs in MI were related to transport activity and calcium signaling. Moreover, by analyzing the relationship among the top 5 enriched signaling, calcium signaling and chemokine signaling play a key role in MI. Calcium (Ca2+), as a second messenger, played a key role in regulating cell proliferation, apoptosis, and survival (Sukumaran et al., 2021). Previous studies had demonstrated that calcium signaling served as a key regulator of MI (Vassalle and Lin, 2004; Li et al., 2021). Under physiological conditions, calcium signaling can effectively modulate the activity of vasodilation/contraction in vascular smooth muscle cells (Li et al., 2021). However, under pathological conditions, Ca2 + overload induces apoptosis in cardiomyocytes, thus leading to MI (Vassalle and Lin, 2004; Jiao et al., 2019). Over the past decades, multiple chemokines and their receptors were found to regulate MI (Altara et al., 2016; Wang et al., 2019; Liang et al., 2021). For example, CXCR3 and its ligands were reported to be valid biomarkers for HF (Altara et al., 2016). CXCL16 was reported to modulate the inflammatory responses in MI (Liang et al., 2021). CXCR4 blockade was found to induce tissue repair after MI by modulating immune-regulatory function (Wang et al., 2019).

Also, bioinformatics analysis indicated that the DEGs between these clusters in MI were related to modulating multiple signalings, such as PI3K-Akt, MAPK, and cGMP-PKG signalings. It is well-known that the PI3K-Akt signaling pathway is a survival-associated signal transduction pathway, protecting the myocardium from ischemic damage (Okumura et al., 2004; Quan et al., 2014; Cheng et al., 2018). Additionally, previous researches have shown that this signaling pathway is motivated when the estrogen receptor β is chronically upregulated. ERK1/2, JNK, and p38 were three subfamilies of MAPK (Zhang and Liu, 2002). The MAPK signaling pathway was reported to promote NF-κB, triggering additional inflammatory cytokines and causing extra damage in myocardial tissue (Verma et al., 2019). The ERK signaling pathway is currently the widely studied one, and it exhibited an association with a variety of biological processes’ regulation, containing cell survival, growth and death, and inflammation-associated immune responses (Ren et al., 2019). cGMP-PKG signaling was considered to be a therapeutic target for myocardial ischemia–reperfusion injury (Ren et al., 2019). As previously described, some studies have shown that cGMP-PKG signaling exerted an effect on the function of the myocardial endoplasmic reticulum and decreased the level of endoplasmic reticulum stress under stress (Schlossmann and Desch, 2011). Moreover, the downregulated genes in cluster 1 compared with cluster 3 and cluster 2 compared with cluster 3 exhibited a significant relation to multiple neurodegenerative diseases. Of note, previous studies revealed abnormal regulation of m6A is related to neurodegenerative disease. For example, Han et al. (2020) reported that the m6A methylation enhanced the development of Alzheimer’s disease. In addition, Du et al. (2021) revealed that the expressions of m6A regulators correlate with neurodegenerative pathways. These reports, together with our findings, revealed the potential crucial roles of m6A in MI.

In our study, we also investigated changes in gene expression among different clusters in MI based on the expression change of the GSE5406 dataset. As present in Figure 7, we observed that approximately 45.7% of DEGs in MI compared with non-failing samples were differently expressed in more than two different clusters. Venn diagram showed four common DEGs among all clusters in MI, including BAG2, CD74, GOLGA8N, and PDK4. Also, those genes were probably regarded as potential indicators for the prediction and diagnosis of MI. For example, BAG3 belongs to the BAG protein family acting as a chaperone molecular via physical interaction with Hsp70, HSPBs. It was shown that mutated BAG3 caused DCM, leading to systolic dysfunction, HF, and myofibrillar myopathy (Sturner and Behl, 2017; Diofano et al., 2020). BAG2 was also a member of the human BAG protein family and is expressed in brown adipose, lung, heart, and other tissues. It is shown that BAG2 presented a highly similar sequence and domain to BAG3, indicating BAG2 could compensate for the loss function upon the absence of BAG3 (Sturner and Behl, 2017). PDH kinases, including PDK1–4 mediated the phosphorylation and inactivation of PDH (Vary and Randle, 1985). It proves that the selectively overexpressed PDK4 in the heart gave rise to an obvious alteration in energy metabolism, including the increase in the utilization of fatty acids and the decrease in carbohydrate consumption with the increased pyruvate concentration. These results suggested that overexpressed PDK4 is sufficient to dramatically bring about the change of substrate utilization in the heart (Zhao et al., 2008). CD74 was reported to mediate the effect of macrophage migration inhibitory factor on inflammation and cell proliferation. Migration inhibitory factor–CD74 agonism supplied a potential treatment for acute myocardial ischemia by enhancing AMPK activation (Miller et al., 2008). These results indicated that targeting these genes may provide novel therapy strategies for MI.

Utilizing the STRING database, we constructed the PPI network. The module analysis filtered out several genes, including BAG2, BAG3, MMP2, FGF1, HSPB1, CXL12, PJA2, UBE2M, RNF14, RNF16, KLHL2, LTN1, RBM17, LSM2, TRIM37, UBA3, etc. Some of these genes in acute MI (AMI) have been reported, indicating that our conclusions were consistent with previous integrated bioinformatics analysis data. For instance, Wei Gong et al. (2018) revealed that trimetazidine could prevent cardiac rupture in AMI mice by inhibiting matrix metalloproteinase-2 (Mmp2) and Mmp9 expression levels, indicating that the MMP family was probably related to cardiac remodeling after AMI. Fibroblast growth factor 1 (FGF1), also named acidic FGF, took part in several physiological processes, e.g., development, morphogenesis, and others (Engel et al., 2006; Beenken and Mohammadi, 2009). Overexpression of FGF1 or intramyocardial infusion of FGF1 mimic could exert cardioprotective effects on MI mice models (Htun et al., 1998). Heat-shock proteins (HSPs) are largely expressed in various cells of the cardiovascular system, including endothelial cells, cardiomyocytes, monocytes, and platelets. Kraemer et al. (2019) for the first time, showed the upregulation and phosphorylation of HSP27 (HSPB1) of human platelets during MI on a cellular level ex vivo, showing a typical intracellular translocation pattern. Therefore, HSP27 (HSPB1) phenotype in platelets was a measurable stress response indicator in MI and other acute ischemic events [38,39]. After MI, the increased expression of CXCL12 was observed in the infarct area and served as a homing signal for endothelial progenitor cells (Jiao et al., 2019). To understand the potential functions involved in the hub networks and the connection between hub genes and biological functions, we performed ClueGO analysis of these hub networks in MIs. We found that MI-related network was significantly related to positive and negative regulation of angiogenesis and response to heat. The hub networks in MI clusters were significantly related to antigen processing and ubiquitin-mediated proteolysis, RNA splicing, and stability. These results indicated that the abnormal regulation of RNAs splicing and stability might contribute to the development of MI.



CONCLUSION

In summary, we observed levels of FTO, YTHDF3, ZC3H13, and WTAP were dramatically differently expressed in MI tissues compared with non-failing controls, further demonstrating the crucial roles of m6A regulators in MI. Bioinformatics analysis showed that m6A regulators were related to regulating glucose measurement and elevated blood glucose levels. Furthermore, GWAS data analysis showed that WTAP SNP was significantly related to the progression of MI. In addition, the single-cell sequencing of the heart tissues found that WTAP is widely expressed in the heart tissues. By combining the analysis mentioned earlier that WTAP was significantly lower in the MI group, this suggests that maintaining the normal expression of WTAP may be a prevention or improvement means for the treatment of MI. Furthermore, three subtypes with different clinical characteristics were constructed based on m6A regulators’ expression profiles, indicating that they were potential therapeutic strategies for MI patients. This study could provide more information for us to understand the roles of m6A in MI, which may provide novel clues to identify biomarkers for clinical treatment and diagnosis.
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Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Currently, treatment methods generally cause poor prognosis. Therefore, in order to seek new treatment options, we explored the internal mechanism of NSCLC. Firstly, the SOX2-OT/miR-30d-5p/PDK1 axis regulated by lncRNA SOX2-OT was predicted by bioinformatics methods, and the expression of SOX2-OT, miR-30d-5p, and PDK1 mRNA in cells were detected by qRT-PCR while PDK1 protein expression was detected by western blot. The results expressed that in NSCLC, SOX2-OT, and PDK1 were notably overexpressed while miR-30d-5p was markedly under-expressed. The interaction between them was verified by dual-luciferase reporter and RNA binding protein immunoprecipitation assays. Subsequently, through CCK8, scratch healing, cell invasion and flow cytometry assays, we revealed that inhibiting the expression of SOX2-OT could inhibit the proliferation, migration and invasion of NSCLC cells and promote cell apoptosis; while simultaneous overexpression of PDK1 or inhibition of miR-30d-5p expression could reverse the inhibitory effect of SOX2-OT silence-mediated malignant progression of NSCLC cells. Then, the combined application of overexpressed PDK1 and rapamycin verified that PDK1 could regulate the expression of PD-L1 in NSCLC cells through the mTOR signaling pathway. Co-culture of CD8+ T cells verified that silencing SOX2-OT could inhibit the apoptosis of CD8+ T cells through miR-30d-5p/PDK1. Finally, tumor formation assay in animals confirmed that overexpression of SOX2-OT could promote the growth of NSCLC tumor in vivo. In this study, assays in vitro and in vivo were conducted to elucidate the mechanism by which SOX2-OT/miR-30d-5p/PDK1 drives PD-L1 through the mTOR signaling pathway to promote the malignant progression and immune escape of NSCLC.

Keywords: competing endogenous RNA, non-small cell lung cancer, SOX2-OT, mTOR, PD-L1


INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths globally, killing about 1,700,000 people each year. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 80–90% of all lung cancers (Planchard et al., 2018). For NSCLC patients, after initial diagnosis, corresponding treatment plan should be formulated according to the TNM stage. Surgical treatment is the main treatment for early or partial middle stage NSCLC patients, and chemotherapy alone or radiotherapy combined with chemotherapy is generally given to some middle and advanced NSCLC patients (Miller et al., 2016). Among them, surgical treatment is the best cure, but most of the patients are in the advanced stage of NSCLC at the time of diagnosis and cannot be treated by surgery. In addition, the prognosis of patients undergoing radiotherapy and chemotherapy is generally poor (Hung et al., 2014). Therefore, in recent years, more and more doctors and scholars focus on targeted therapy. In-depth exploration of the internal molecular mechanism of NSCLC can not only provide new therapeutic targets for targeted therapy of NSCLC, but also provide a theoretical basis for the study of prognostic biomarkers of NSCLC.

Among non-coding RNA, long non-coding RNA (lncRNA) is extensively studied as an important RNA that can regulate cancer progression, and can also act as a competing endogenous RNA (ceRNA) to regulate the function of miRNA by competitively binding miRNA response element (MREs) (Chen Z. P. et al., 2018). Abnormal expression of lncRNA may get the regulatory network out of control and eventually lead to the occurrence and progression of cancer (Chan and Tay, 2018). Previous studies showed that lncRNA H19 is highly expressed in NSCLC and regulates NF1 through competitively binding miR-107, thereby promoting the progression of NSCLC (Qian et al., 2018). Down-regulation of lncRNA MALAT1 can suppress the progression of NSCLC by increasing miR-124 and decreasing STAT3 expression (Li et al., 2018). CASC19 sponges miR-130b-3p to modulate ZBR2 as a ceRNA, thus NSCLC progression can be accelerated by regulating the proliferation, migration and invasion of tumor cells (Qu et al., 2019). It can be seen that dysregulation of ceRNA network regulated by lncRNA can have a profound impact on the occurrence and progression of NSCLC, while the regulation of lncRNA SOX2-OT-regulated ceRNA network on the progress of NSCLC has not been reported.

Signaling pathways regulated by lncRNA which functions as a ceRNA are also one of the research directions of the pathogenesis of cancer. Mammalian Target of Rapamycin (mTOR) pathway plays a key regulatory part in physiological processes, such as growth, metabolism, proliferation, metastasis and malignant transformation, of various human tumors (Gomez-Pinillos and Ferrari, 2012). Studies disclosed that when FOXK1 is silenced, the expression level of key proteins in PI3K/AKT/mTOR signaling pathway can be reduced, thus promoting the proliferation and reducing the apoptosis of breast cancer cells (Li Z. Q. et al., 2019). Targeting the activity of PI3K/AKT/mTOR pathway with specific inhibitors can restrain the growth of leukemia cells (Nepstad et al., 2020). Relevant studies on NSCLC found that upregulation of miR-206 can inhibit the activity of PI3K/AKT/mTOR pathway, thus constraining the invasion and migration of NSCLC cells. Therefore, it is extremely crucial to further explore the mTOR pathway when studying the pathogenesis of cancer.

Cancer immune escape is known to be a major obstacle to the design of effective anticancer treatment strategies, and the PD-1/PD-L1 pathway plays a leading role in the tumor immune escape response. Studies uncovered that the expression level of PD-L1 in human ovarian cancer tissue samples is higher than that in adjacent normal tissue. In addition, overexpression of PD-L1 can notably enhance the proliferative ability of ovarian cancer cells (Gao et al., 2019). In hepatocellular carcinoma, anti-PD-L1 therapy can reduce the immune escape of liver tumor cells (Li H. et al., 2019). Cuiling Zhou et al. collected 128 samples of primary NSCLC after surgical resection and tested the expression of PD-L1 by immunohistochemistry, revealing that the overall survival (OS) of the PD-L1 negative expression group was remarkably longer than that of the PD-L1 positive expression group (Zhou et al., 2019). Therefore, both in vitro experiments and studies of cancer patient samples showed that PD-L1 plays a vital role in cancer immune escape.

In this study, first of all, the regulatory effect of SOX2-OT as a ceRNA on the malignant progression of NSCLC through miR-30d-5p/PDK1 axis was investigated. Secondly, the driving effect of PDK1 on PD-L1 via the mTOR signaling pathway was explored. In addition, this study also elucidated the mechanism of SOX2-OT/miR-30d-5p/PDK1 axis-mediated immune escape of NSCLC. This paper aimed to explore the internal molecular mechanism of the occurrence and progression of NSCLC, provide a new target for targeted therapy of NSCLC, improve the prognosis of patients and alleviate the suffering of patients.



MATERIALS AND METHODS


Bioinformatics Analysis

Expression data of mature miRNA (Normal: 91, Tumor: 999), lncRNA (Normal: 108, Tumor: 1,037), and mRNA (Normal: 108, Tumor: 1,037) were downloaded from The Cancer Genome Atlas (TCGA) database on March 4th, 2020. Differential analysis was conducted using “edgeR” package on lncRNA, miRNA, and mRNA from normal and tumor group (|logFC| > 1.5, padj < 0.05), respectively, to obtain differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs). Then, the target lncRNA was identified through literature citation. The expression position of the target lncRNA was determined through lncATLAS (http://lncatlas.crg.eu/). Downstream miRNAs of the target lncRNA were predicted by lncBase (http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2/index-predicted), and the target miRNA was determined by Pearson correlation analysis and literature citation. Next, target mRNA of the target miRNA was predicted by starBase (http://starbase.sysu.edu.cn/index.php) and determined by Pearson correlation analysis and literature citation. Finally, the immune mechanism of the mRNA in NSCLC was determined by mining related literature.



Cell Culture

All cell lines were derived from BeNa Culture Collection (Beijing, China) and cultured in specific medium. The cell lines used in this study included human normal bronchial epithelial cell line BEAS-2B, human NSCLC cell lines NCI-H460, NCI-H1299, NCI-H292, and A549. The specific cell numbers and corresponding medium are shown in Table 1. All cells were cultured in an incubator at 37°C and containing 5% CO2.


Table 1. Cell lines used in the study.
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Cell Transfection

In cell transfection, miR-30d-5p mimic, miR-30d-5p inhibitor and negative control (NC) were purchased from Sangon Biotech (Shanghai, China). SOX2-OT level was inhibited with short hairpin RNA (shRNA) targeting SOX2-OT, and the control group (sh-NC) was set. The full-length of SOX2-OT and PDK1 were cloned into pcDNA3.1 vector to overexpress SOX2-OT and PDK1, and blank pcDNA3.1 vector was used as control. The vectors were coated with lentivirus and transfected into cells to construct stable cell lines. The synthesized sequences or vectors were transfected into cells with Lipofectamine 2000 (Invitrogen, USA) according to the instructions.



Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR)

According to the manufacturer's instructions, total RNA was extracted using Trizol Kit (Invitrogen, USA) and complementary DNA (cDNA) was synthesized using PrimeScript 1st Strand cDNA Synthesis Kit (Takara, Kusatsu, Japan). Then the SYBR Green Master Mix II (Takara, Kusatsu, Japan) was used for PCR reaction on ABI PRISM 7500 qRT-PCR Systems (Applied Biosystems, Rockford, IL, USA). GAPDH was the internal reference of lncRNA and mRNA, and U6 was the internal reference of miRNA. Data standardization was based on the 2−ΔΔCT method. Detailed primer sequences are shown in Table 2.


Table 2. Primer sequences used in qRT-PCR.

[image: Table 2]



Western Blot

Total proteins were extracted from cultured cells with radio immunoprecipitation assay (RIPA) lysis buffer (Beyotime, Beijing, China). BCA protein assay kit (Pierce, Rockford, IL, USA) was used to determine the protein concentration of cell extracts. Approximately 50 μg protein sample was isolated from each lane by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to polyvinylidene fluoride (PVDF) membrane (EMD Millipore, Billerica, MA, USA). The membrane was blocked with 5% skimmed milk powder in TBST buffer solution (20 mM Tris—HCl, pH 7.4, 150 mM NaCl, and 0.1% Tween 20) for 1 h. Then, the membrane was incubated with primary antibodies at 4°C overnight, followed by secondary antibody conjugated with horseradish peroxidase (HRP) at room temperature for 1 h. Protein blot was developed with enhanced electrochemiluminescence (ECL) (GE Healthcare, Piscataway, NJ, NJ). The primary antibodies included rabbit anti-PD-L1 (1:500, ab213524, abcam), rabbit anti-PDK1 (1:1000, ab202468, abcam), rabbit anti-p-mTOR (1:500, ab109268, abcam), rabbit anti-mTOR (1:5,000, ab134903, abcam) and rabbit anti-GAPDH (1:1,500, ab9485, abcam). The secondary antibody was goat anti-rabbit IgG (1:1,000, ab6721, abcam).



Inhibitor Treatment

After trypsin treatment, transfected NSCLC cells were seeded into 6-well plates. After incubation for 12 h, rapamycin (phosphorylated mTOR (p-mTOR) inhibitor, Selleck Chemicals, Houston, TX, USA;200 nmol/L) were added into 6-well plates and cultured for 24 h. Cells were then collected for qRT-PCR and western blot assays.



Subcellular Localization Assay

The RNA in the nucleus and cytoplasm of NSCLC cells were isolated using PARIS kit (Thermo Fisher Scientific, USA). qRT-PCR was carried out for quantitative detection of RNA, with U6 as nuclear control and GAPDH as cytoplasmic control.



RNA Binding Protein Immunoprecipitation (RIP) Assay

The Magna RIP kit (Millipore, Billerica, MA) was implemented for RIP detection. Firstly, NSCLC cells were lysed with RIP lysis buffer and then the lysate of cells was incubated with RIP buffer containing anti-Ago2 (1:15, ab186733, abcam) or IgG (ab172730, 1:100, abcam) antibody coupled magnetic beads. Then the products were digested by protease K buffer followed by RNA purification. Finally, the enrichment of SOX2-OT or miR-30d-5p was determined by qRT-PCR.



Dual-Luciferase Reporter Assay

The wild-type (WT) or mutated (MUT) 3′-untranslated region (UTR) sequences of SOX2-OT or PDK1 were cloned into the pmir-GLO-promoter vectors (Promega, Madison, USA) to obtain pmirGLO-SOX2-OT-WT (WT-SOX2-OT), pmirGLO-SOX2-OT-MUT (MUT-SOX2-OT), pmirGLO-PDK1-WT (PDK1-WT) and pmirGLO-PDK1- MUT (PDK1-MUT). A549 cells were inoculated into 24-well plates. Then, Lipofectamine 3000 (Invitrogen) kit was employed to transfect WT/MUT-SOX2-OT or PDK1-WT/MUT and miR-30d-5p mimic/mimic NC into A549 cells. The relative luciferase activity was quantified with a dual-luciferase assay kit (Promega) 48 h after transfection.



Cell Counting Kit-8 (CCK-8)

The cell survival rate was detected by the CCK-8 kit (Yeasen, Shanghai, China) according to the instructions. Transfected A549 cells and NCI-H460 were inoculated into 96-well plates (2,500 cells per well), and 10 μL CCK-8 reagent was added at 0, 24, 48, and 72 h, respectively. After incubation in the dark for 2 h, the optical density (OD) value at 450 nm was determined by a microplate spectrophotometer (ThermoFisher Scientific, USA). Each treatment was set with three repeated wells. The cell activity curve was plotted according to the OD value at 450 nm.



Scratch Healing Assay

The migration of NSCLC cells was tested by scratch healing assay. Transfected NSCLC cells were inoculated into 6-well plates and cultured for 48 h until the fusion rate reached 90%. An artificial wound was created on the surface of monolayer cells with a 200 μL pipette tip. After washed by PBS, the cells were cultured in serum-free medium. The wound closure was observed by an inverted optical microscope (Axioskop 40, Carl Zeiss AG, Dresden, Germany) at 0 and 24 h. Wound healing rate = (initial width of wound—width of wound 24 h after culture)/initial width of wound ×100%.



Cell Invasion Assay

The cell invasion assay was carried out on 24-well plates with polycarbonate filter membrane (8 μm pore size, Corning) without polyvinylpyridinoline. The filter membrane was coated with matrix gel (BD Biosciences). Six hundred μL Roswell Park Memorial Institute (RPMI-1640) medium containing 20% fetal bovine serum (FBS) was added to the lower chamber as attractant. NSCLC cell suspensions (5 × 104 cells) from different groups were inoculated into the upper chamber. After incubation at 37°C for 24 h, the uninvaded cells were swabbed gently with a cotton swab while the cells invading to the subface of the membrane were fixed with 4% paraformaldehyde for 30 min and stained with 0.2% gentian violet for 20 min. After washed with PBS 3 times and dried, the cells were observed under a microscope (Axioskop 40, Carl Zeiss AG, Dresden, Germany).



Flow Cytometry Experiment

The microporous 2-compartment co-culture system was applied for co-culture. Transfected NSCLC cells were inoculated in the upper chamber, while CD8+ T (PB009-3-C, ALLCELLS, Shanghai) cells were inoculated in the lower chamber, allowing direct contact between NSCLC cells and immune cells. CD8+ T cells were sorted using EasySep™ direct human CD8+ T cell isolation kit (STEMCELL, Vancouver, BC, Canada). Annexin V-FITC apoptosis kit (Becton Dickinson, Franklin Lakes, NJ, USA) was used for flow cytometry to determine the percentage of CD8+ T cells or apoptotic CD8+ T cells according to the manufacturer's instructions.



Animal Xenotransplantation Assay

The animal research program was approved by the Ethics Committee of animal Research of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University. All animal experiments were carried out strictly under the supervision and recommendation of the Committee. Six to eight weeks old nude mice were raised in the Animal Research Center of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University. Each nude mouse was subcutaneously injected with 1 × 106 transfected NSCLC cells. The mice were randomly divided into two groups with six nude mice in each group. Tumor size was recorded once a week for each nude mouse, and tumor volume was calculated as 0.5 × a (length) × b (width). At the end of the study, the nude mice were killed by humanely inhaling carbon dioxide, and the mice that died during the study or did not develop tumors due to other causes or operational problems were excluded. The tumor samples meeting the standard were collected, photographed, and weighed.



Immunohistochemical Detection

Paraffin-embedded tissue sections were dewaxed in xylene and dehydrated in a series of ethanol solutions. The antigens were extracted using citrate buffer solution (10 mmol/L, pH 6.0) in a microwave oven at 100°C for 15 min. The activity of endogenous peroxidase was blocked by 3% hydrogen peroxide in water for 30 min. The tissue sections were washed with 1 × PBS and pre-sealed with FBS for 30 min. Then, the samples were incubated at 4°C overnight with rabbit anti-PDK1 (1:50, ab227682), rabbit anti-Ki67 (2.5 μg/mL, ab15580) and rabbit anti-PD-L1 (1:150, ab213524), respectively. The sections were sequentially incubated with goat anti-rabbit IgG for 1 h (1:500, ab6721). After washed with 1 × PBS, the tissue sections were incubated with Vectastain ABC reagent (Santa Cruz Biotechnology, Inc., Dallas, TX, USA). DAB substrate solution (Santa Cruz Biotechnology, Inc.) was used for color rendering of immune complexes. Each section was examined under 200× magnification. Finally, the sections were scanned and analyzed using Aperio ImageScope software 12.3 (Leia Biosystems, Wetzlar).



Data Statistics

The data were obtained from three independent assays, and the experimental results were expressed as mean ± standard deviation. SPSS 19.0 (IBM Corp., Armonk, NY, USA) was used for data analysis. Student's t-test was used for comparison between groups while one-way analysis of variance was used to compare the differences between the groups. P < 0.05 was considered statistically significant.




RESULTS


SOX2-OT Is Highly Expressed in NSCLC Cells and Can Promote the Progression of NSCLC

A total of 2,695 DElncRNAs were obtained by “edgeR” differential analysis (Figure 1A), among which SOX2-OT was proven to be highly expressed in a variety of tumors and to participate in the regulation of ceRNA network (Wo et al., 2019). Therefore, SOX2-OT was selected as the target lncRNA for study. Analysis of SOX2-OT expression levels in different tissues revealed that SOX2-OT was notably highly expressed in NSCLC tumor tissue (Figure 1B). qRT-PCR detection expressed that SOX2-OT expression in NSCLC cell lines was remarkably higher than that of BEAS-2B cell line (Figure 1C), indicating that SOX2-OT had a potential cancer-promoting effect in NSCLC. In order to determine the role of SOX2-OT in the malignant progression of NSCLC, SOX2-OT was overexpressed in NCI-H460 cells which had relatively low expression of SOX2-OT, while SOX2-OT was silenced in A549 cells which had relatively high expression of SOX2-OT. The transfection efficiency was verified by qRT-PCR, showing that the expression level of SOX2-OT was increased markedly in the SOX2-OT overexpressed group, while decreased when silenced (Figure 1D). Cell function experiments results disclosed that in NCI-H460 cells, overexpression of SOX2-OT prominently promoted cell proliferation (Figure 1E), migration (Figure 1F) and invasion (Figure 1G), but inhibited cell apoptosis (Figure 1H). In contrast, SOX2-OT silence produced the opposite effect (Figures 1E–H). These data suggested that SOX2-OT could promote the malignant progression of NSCLC.
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FIGURE 1. SOX2-OT is highly expressed in NSCLC cells and can promote the progression of NSCLC. (A) Volcano map of DElncRNAs between the normal group and the tumor group in the NSCLC data set; (B) Expression of SOX2-OT (green box diagram represents normal samples while red box diagram represents tumor samples); (C) qRT-PCR detection of SOX2-OT expression in normal cell line BEAS-2B and NSCLC cell lines NCI-H460, NCI-H1299, NCI-H292, and A549; (D) Transfection efficiency detected by qRT-PCR; (E) Cell proliferation detected by CCK8; (F) Cell migration detected by scratch healing assay (40×); (G) Cell invasion detected by Transwell assay (100×); (H) Cell apoptosis detected by flow cytometry (*p < 0.05).




SOX2-OT Targets and Binds to miR-30d-5p in NSCLC Cells

LncATLAS website showed that SOX2-OT was expressed in the cytoplasm and nucleus of 15 cell lines (Figure 2A). We further proved that SOX2-OT was mainly present in the cytoplasm through subcellular localization experiments, indicating that SOX2-OT could participate in the regulation of ceRNA network (Figure 2B). LncBase database was used to predict the downstream target miRNAs of SOX2-OT, and it was found that miR-30d-5p was down-regulated in DEmiRNAs and negatively correlated with SOX2-OT (Figure 2C). According to data analysis based on TCGA, miR-30d-5p was notably lowly expressed in NSCLC tissue (Figure 2D). qRT-PCR results also revealed that miR-30d-5p expression was lower in NSCLC cells compared with that in human bronchial epithelial cells (Figure 2E). Subsequently, RIP assay verified that SOX2-OT and miR-30d-5p could bind in A549 cells (Figure 2F). The targeted binding sequence of SOX2-OT and miR-30d-5p was predicted by the bioinformatics database (Figure 2G). Luciferase reporter assay results showed that after the expression of miR-30d-5p was up-regulated, the luciferase activity was significantly decreased in the WT-SOX2-OT group, while with no obvious change in the MUT-SOX2-OT group (Figure 2H), indicating that SOX2-OT and miR-30d-5p could bind to each other in a targeted way. Finally, after SOX2-OT was inhibited, the expression of miR-30d-5p was found to be increased (Figure 2I). All the above results indicated that SOX2-OT could target and bind to miR-30d-5p in NSCLC cells, and the two were negatively regulated.


[image: Figure 2]
FIGURE 2. SOX2-OT targets and binds to miR-30d-5p in NSCLC cells. (A) LncATLAS website shows SOX2-OT expression in 15 cell lines based on the CN RCI value, with positive value indicating cytoplasm localization and negative value indicating intracellular localization; (B) The distribution of SOX2-OT in the cytoplasm and nucleus of NSCLC cells detected by subcellular localization assay; (C) Pearson correlation analysis of SOX2-OT and miR-30d-5p; (D) Expression of miR-30d-5p (green box plot represents normal samples and red box plot represents tumor samples); (E) The expression of miR-30d-5p in normal and NSCLC cells detected by qRT-PCR; (F) The interaction between SOX2-OT and miR-30d-5p confirmed by the RIP assay; (G) The targeted binding sites between SOX2-OT and miR-30d-5p; (H) The targeted binding relationship between SOX2-OT and miR-30d-5p confirmed by dual-luciferase reporter assay; (I) The corresponding changes of miR-30d-5p when SOX2-OT was inhibited detected by qRT-PCR (*p < 0.05).




PDK1 Is the Target of miR-30d-5p

Then, the downstream target of miR-30d-5p was further excavated. 2,950 DEmRNAs were obtained by “edgeR” differential analysis (Figure 3A), revealing that PDK1 was up-regulated in the DEmRNAs and negatively correlated with miR-30d-5p (Figure 3B), and positively correlated with SOX2-OT (Figure 3C). Analysis of the expression levels of PDK1 in different tissues showed that PDK1 was highly expressed in NSCLC cancer tissue (Figure 3D). The expression of PDK1 in human bronchial epithelial cell line BEAS-2B and NSCLC cell lines was detected by qRT-PCR, uncovering that PDK1 was notably highly expressed in NSCLC cells (Figure 3E), which was the opposite of the expression of miR-30d-5p in NSCLC. In addition, the starBase database was implemented to predict the target mRNA of miR-30d-5p, finding that miR-30d-5p and PDK1 had targeted binding sequences (Figure 3F). The dual-luciferase reporter assay also uncovered that with the up-regulated expression of miR-30d-5p, the luciferase activity was remarkably decreased in PDK1-WT group, while did not significantly change in PDK1-MUT group (Figure 3G). qRT-PCR and western blot results indicated that PDK1 expression was decreased when miR-30d-5p was overexpressed but increased when miR-30d-5p was silenced (Figures 3H,I). All the above results suggested that PDK1 was the downstream target of miR-30d-5p, and miR-30d-5p negatively regulated the expression of PDK1.
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FIGURE 3. PDK1 is the target of miR-30d-5p. (A) Volcano map of DEmRNAs in normal group and tumor group in the NSCLC data set; (B) Pearson correlation analysis of PDK1 and miR-30d-5p; (C) Pearson correlation analysis of PDK1 and SOX2-OT; (D) PDK1 expression in NSCLC tissue (green box diagram represents normal samples and red box diagram represents tumor samples); (E) The expression of PDK1 in normal cells and tumor cells detected by qRT-RCR; (F) The targeted binding sequence of miR-30d-5p and PDK1 predicted in the bioinformatics database; (G) The targeted binding of PDK1 and miR-30d-5p detected by dual-luciferase reporter assay; (H) The expression of miR-30d-5p and PDK1 mRNA when miR-30d-5p was abnormally expressed detected by qRT-RCR; (I) The protein expression of PDK1 when miR-30d-5p was abnormally expressed detected by western blot (*p < 0.05).




SOX2-OT Promotes the Progression of NSCLC by Regulating miR-30d-5p/PDK1 Axis

To further demonstrate the mechanism of SOX2-OT targeting miR-30d-5p/PDK1 axis and its effect on NSCLC, A549 cells in each group were treated and divided into control group, sh-SOX2-OT group, sh-SOX2-OT + miR-30d-5p inhibitor group and sh-SOX2-OT + oe-PDK1 group, respectively. The expression of SOX2-OT, miR-30d-5p and PDK1 mRNA in each group were detected by qRT-PCR. The results expressed that when SOX2-OT was silenced alone, the expression of miR-30d-5p was increased while the expression of PDK1 was decreased, which again confirmed the negative regulatory relationship between SOX2-OT and miR-30d-5p, and between miR-30d-5p and PDK1 (Figure 4A). Then, cell proliferative, migratory and invasive abilities were detected by CCK8 assay, scratch healing assay and cell invasion assay, respectively. It was found that overexpression of PDK1 or inhibition of miR-30d-5p expression could restore the inhibitory effect of SOX2-OT silence-mediated malignant progression of NSCLC cells (Figures 4B–D). Flow cytometry results indicated that, compared with silencing SOX2-OT alone, overexpressing PDK1 or inhibiting miR-30d-5p while silencing SOX2-OT could reduce the apoptotic rate of NSCLC cells (Figure 4E). The above results proved that SOX2-OT could promote the progression of NSCLC by regulating the miR-30d-5p/PDK1 axis.
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FIGURE 4. SOX2-OT promotes the progression of NSCLC by regulating miR-30d-5p/PDK1 axis. (A) The expression of SOX2-OT, miR-30d-5p and PDK1 mRNA in groups of control, sh-SOX2-OT, sh-SOX2-OT + miR-30d-5p inhibitor and sh-SOX2-OT + oe-PDK1 detected by qRT-RCR; (B) The proliferation of A549 cells in each group detected by CCK8; (C) The migration of A549 cells in each group detected by scratch healing assay (40×); (D) The invasion of A549 cells in each group detected by Transwell assay (100×); (E) The apoptosis of A549 cells in each group detected by flow cytometry (*p < 0.05).




PDK1 Can Regulate the Expression of PD-L1 in NSCLC Cells Through mTOR Signaling Pathway

The mechanism of SOX2-OT/miR-30d-5p/PDK1 axis on NSCLC cells was studied above, and it was confirmed that PDK1 acts on mTOR signaling pathway in NSCLC (Chen G. M. et al., 2018; Liu et al., 2019) and the activation of the pathway can drive PD-L1 in NSCLC (Lastwika et al., 2016). Therefore, in order to explore the regulation of PDK1 through mTOR signaling pathway on PD-L1 in NSCLC cells, we overexpressed PDK1 in NCI-H460 cell line, and the mTOR signaling pathway was inhibited by Rapamycin. Then the expression of PD-L1 was detected in the oe-NC group, oe-NC + Rapamycin (Rap) group, oe-PDK1 group and oe-PDK1 + Rap group. The results suggested that Rapamycin reduced the expression of phosphorylated mTOR (p-mTOR) and PD-L1 compared with the control group, and the overexpression of PDK1 promoted the expression of p-mTOR and PD-L1. Compared with the oe-PDK1 group, the combined use of Rapamycin reduced the previously up-regulated expression of p-mTOR and PD-L1 (Figures 5A,B). In conclusion, PDK1 could regulate the expression of PD-L1 in NSCLC cells through the mTOR signaling pathway.
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FIGURE 5. PDK1 can regulate the expression of PD-L1 in NSCLC cells through the mTOR signaling pathway. (A) The mRNA expression of PDK1 and PD-L1 detected by qRT-PCR; (B) The protein expression of p-mTOR, mTOR, and PD-L1 detected by western blot (*p < 0.05).




SOX2-OT Can Promote Apoptosis of CD8+ T Cells Through miR-30d-5p/PDK1

To clarify the mechanism of NSCLC immune escape, we simulated the tumor microenvironment and co-cultured transfected A549 cells with CD8+ T cells and analyzed the percentage of CD8+ T cells and the apoptotic rate of CD8+ T cells by flow cytometry. The results revealed that when SOX2-OT was silenced in A549 cells, the percentage of CD8+ T cells was increased and the percentage of CD8+T cell apoptosis was decreased. When SOX2-OT and miR-30d-5p were silenced simultaneously, or when SOX2-OT was silenced and PDK1 was overexpressed, the percentage of CD8+ T cells and the percentage of CD8+ T cell apoptosis were restored (Figures 6A,B). In addition, we also detected the expression of PD-L1 in each group of cancer cells by qRT-PCR and western blot. The results uncovered that the expression of PD-L1 was decreased when SOX2-OT was silenced alone compared with the control group. Compared with the sh-SOX2-OT group, when SOX2-OT and miR-30d-5p were silenced at the same time, or when SOX2-OT was silenced while PDK1 was overexpressed, the expression of PD-L1 was reversely increased (Figures 6C,D). Thus, SOX2-OT could promote the expression of PD-L1 through miR-30d-5p/PDK1 axis and thus cause the immune escape of NSCLC.


[image: Figure 6]
FIGURE 6. SOX2-OT can promote apoptosis of CD8+T cells through miR-30d-5p/PDK1. (A) The percentage of CD8+ T cells in each group detected by flow cytometry; (B) The percentage of apoptotic CD8+ T cells in each group detected by flow cytometry; (C) The expression of PD-L1 in each group detected by qRT-PCR; (D) The expression of PD-L1 in each group detected by western blot (*p < 0.05).




SOX2-OT Can Promote the Growth of NSCLC Tumor in vivo

Finally, the effect of SOX2-OT on tumorigenicity of NSCLC was tested in nude mice. It was observed that overexpression of SOX2-OT resulted in increased tumor volume and weight in mice (Figures 7A–C). qRT-PCR detected the expression of SOX2-OT, miR-30d-5p and PDK1 in tumor cells of each group, indicating that overexpression of SOX2-OT could down-regulate miR-30d-5p and up-regulate PDK1 expression (Figure 7D). Subsequently, tumor tissue sections were prepared in each group, and the protein expression of PDK1, Ki67 and PD-L1 were detected by immunohistochemistry. Results revealed that overexpression of SOX2-OT increased the expression of PDK1, Ki67 and PD-L1 compared with the control group (Figure 7E). Taken together, SOX2-OT could promote the tumor growth of NSCLC.


[image: Figure 7]
FIGURE 7. SOX2-OT can promote the growth of NSCLC tumor in vivo. (A) Representative tumor images; (B) Line diagram of tumor volume change; (C) Histogram of tumor weight; (D) The expression of SOX2-OT, miR-30d-5p, and PDK1 upon SOX2-OT overexpression detected by qRT-PCR; (E) The expression of PDK1, Ki67 and PD-L1 in each group detected by immunohistochemistry (*p < 0.05).





DISCUSSION

More and more studies show that lncRNA is involved in the regulation of the malignant process of cancer. For example, lncRNA PTCSC3 can negatively regulate the proliferation, invasion and migration of gastric cancer cells (Zhang et al., 2020). High expression of lncRNA SNHG11 promotes proliferation and metastasis of colorectal cancer cells by targeting the Hippo pathway (Xu et al., 2020). In this paper, we found that lncRNA SOX2-OT was markedly up-regulated in NSCLC through bioinformatics analysis and detection of corresponding expression at the cellular level, which meant that SOX2-OT was involved in the regulation of the malignant process of NSCLC. However, no relevant results of SOX2-OT in NSCLC were found in previous studies. This study was the first to report the expression of SOX2-OT and its specific regulatory mechanism in NSCLC, and it was found that overexpression of SOX2-OT would promote the proliferation, migration and invasion and reduce the apoptosis of NSCLC cells.

LncRNA is known to act as miRNA sponge. For example, SOX2-OT accelerates cell proliferation and migration in prostate cancer by targeting the miR-369-3p/CFL2 axis (Wo et al., 2019). SOX2-OT knockdown inhibits the growth of prostate cancer in vivo by regulating the miR-452-5p/HMGB3 axis (Song et al., 2020). In this study, the target downstream miRNA of SOX2-OT and that of the miRNA were predicted by bioinformatics methods, and a ceRNA network, SOX2-OT/miR-30d-5p/PDK1, regulated by SOX2-OT was obtained. A study showed that overexpression of miR-30d-5p inhibits the proliferation, migration and invasion of NSCLC cells (Gu et al., 2020). PDK1 expression was proven to be up-regulated in NSCLC tissue and cell lines and promoting the expression of miR-330-5p can down-regulate PDK1 and inhibit the growth, migration and invasion of NSCLC cells (Bai et al., 2020). In this study, it was confirmed that SOX2-OT and PDK1 were highly while miR-30d-5p was lowly expressed in NSCLC cells. Moreover, the targeted binding relationships between SOX2-OT and miR-30d-5p, and between miR-30d-5p and PDK1 were also proved by dual-luciferase reporter assay and other assays. In addition, we also conducted rescue experiments to clarify the promoted effect of SOX2-OT/miR-30d-5p/PDK1 axis on the malignant progression of NSCLC.

In addition, a study uncovered that the mTOR pathway, HIF pathway, glycolysis, PI3K/AKT/mTOR signaling pathway, etc. are prominently activated in the PDK1 high expression phenotype of muscular infiltrating bladder urothelial carcinoma (Zhu et al., 2020). The activation of the mTOR signaling pathway can promote the immune escape of cancer by promoting the expression of PD-L1 (Lastwika et al., 2016). Therefore, through the combined use of Rapamycin, we proved that PDK1 could regulate the expression of PD-L1 in NSCLC cells through the mTOR signaling pathway. In addition, it is established that tumor cells can change the activity of T cells to avoid the anti-tumor immune response, thus promoting the survival of tumor cells (Vinay et al., 2015; Lu et al., 2017). Tumor cells can also interact with CD8+ T cells and induce apoptosis, thus promoting tumor progression (He et al., 2017; Konen et al., 2019). Therefore, subsequently, we interpreted the immune escape of NSCLC cells mediated by PD-L1 and found that the expression of PD-L1 was decreased when SOX2-OT was silenced, and the co-culture results with CD8+ T cells revealed that silencing SOX2-OT would increase the percentage of CD8+ T cells and reduce the percentage of apoptotic cells. In other words, SOX2-OT could promote the immune escape of NSCLC by regulating the expression of PD-L1.

In this study, we demonstrated that SOX2-OT was notably highly expressed in NSCLC and could promote the malignant progression of NSCLC, and also clarified the targeted regulatory relationship between SOX2-OT, miR-30d-5p, and PDK1. In addition, this study also explained the mechanism of SOX2-OT-mediated immune escape in NSCLC and verified the driving effect of SOX2-OT/miR-30d-5p/PDK1 axis on PD-L1 through the mTOR signaling pathway. Finally, we verified that SOX2-OT could promote the growth of NSCLC in vivo through tumor formation assay in nude mice. These findings provide new insights into the underlying molecular mechanisms of the occurrence and progression of NSCLC and also prove that SOX2-OT is a new target for the treatment of NSCLC with broad application prospects. However, this study also has some limitations, such as the failure to verify the expression levels of SOX2-OT, miR-30d-5p, and PDK1 in the tissue of NSCLC patients at the clinical level. In the future, we will enrich its expression in clinical samples.
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