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Editorial on the Research Topic

Pore-Scale Microstructure, Mechanisms, and Models for Subsurface Flow and Transport

The microscopic structure of soil, rock and other geological material strongly influences the
behavior of groundwater systems, geologic carbon sequestration, and other applications in
subsurface flow and transport. Experimental and computational advancements now support
a wide range of studies that explicitly link the microscopic structure of materials with both
physical mechanisms and larger scale flow and transport behaviors. Predictive pore-scale studies
to understand and model displacement and transport rely on geometric information obtained
from experimental imaging. As new capabilities are developed, quantitative measurements can be
made to inform understanding in a variety of ways. Pore-scale studies can provide insight into
the operative mechanisms for particular processes, as well as serving as a tool to directly upscale
results from the smaller scale to a larger one. Direct exploration of pore-scale processes have lead
to significant contributions toward our understanding of the fundamental physics of flow and
transport through porous media. This collection highlights key active research areas and identifies
new opportunities to advance the state-of-the art, with representative spectrum of theoretical,
experimental and computational contributions.

At the most basic level, high-quality experimental image data is indispensable for pore-scale
studies.In recent years, artificial intelligence and machine learning techniques have grown as
new tools to improve image data quality. Tawfik et al. compare traditional de-noising technique
with a variety of artificial neural networks in the context of application to digital rock physics.
This touchstone work assesses the performance for several machine learning approaches and
identifies promising avenues for future exploration. Efforts to enhance the fidelity of experimental
observations underpin theoretical and computational studies that expand our understanding
in many different ways. Soulaine et al. review the state-of-the-art computational microfluidics
for geosciences, a emerging modeling approach leveraging microfluidic experiments and high-
resolution imaging. After introducing the governing equations and numerical methods used
in computational microfluidics, the paper highlights recent success and unsolved challenges in
modeling multiphase flow and reactive transport at the pore-scale.

Microscopic imaging techniques provide important opportunities to better understand the
energy dynamics of immiscible displacement. Li et al. use microscopic particle image velocimetry
(µPIV) to experimentally resolve the dynamics of pore-scale events. This approach provides
important information that can help to characterize the bursty dynamics that are typical of
two-fluid flow through porous media. Their analysis suggests that as much as 90% of the
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energy of a pore-scale event is reversibly transferred to surface
energy, and finding that has important consequences for larger-
scale model development. At the macroscopic level, Darcy-scale
descriptions of two-fluid through porous media have typically
ignored the fluctuations caused by pore-scale events. Rücker
et al. consider pressure fluctuations that arise during two-fluid
fractional flow experiments. The characteristic energy and time
scales are determined and shown to be associated with capillary
events that occur within the microstructure. Deeper mechanistic
understanding of these phenomena are linked to many possible
avenues for research, including as a way to infer wetting
phenomena and to formulate a more complete understanding of
multiphase flow instabilities and their consequences.

When two-phase flow is capillary or viscous dominated, the
relation between total flow rate and pressure drop is linear,
similar to the single phase description of Darcy. There is an
ongoing effort to classify and describe the transition between
these two regimes, a third regime where both capillary and
viscous forces are of importance. In Roy et al. the authors
use network models to simulate multiphase flow at different
flow rates, pore size distributions and fluid saturation fractions.
In accordance with earlier research, they observe a power law
between flow rate and pressure drop in the transition regime.
The authors show how this power law exponent is dependent on
pore size distribution and saturation, and obtain a wide range of
exponents for different network and saturation settings.

Microscopic insight into CO2 sequestration is an important
application area for microscale studies. Kohanpur et al. present
an approach to integrate direct numerical simulation results of
pore-scale events into larger domain pore-network models. The
modified pore-network model provides better agreement with
experimental results of residual trapping of CO2. Trapping is
a key mechanism to reduce the mobility of sequestered CO2

over short timescales, providing an opportunity for longer-
term mechanisms to act. Since the dominant mechanisms for
trapping are due to capillary forces subject to the influence of
confinement based on the solid microstructure, first-principles
studies can provide very important insight into the behavior of
real systems.

At even smaller length scales, boundary slip can play a
significant role in transport behavior. In the theoretical work
of Valdés-Parada and Lasseux, volume averaging techniques
are used to derive a generalized model that accounts for the
consequences of both Knudsen and diffusive slip contributions
in the context of macroscopic dispersion. There are many
situations where the length scale for solid microstructure is
small enough to constitute an essential contribution to the
system behavior. This work is also relevant to cases where

solid heterogeneity leads to mass fluxes between sub-micron
structures and larger scale structures such as fractions and larger
pores. Gouze et al. investigates dispersion processes in porous
media. The authors create two sets of porous media samples,
both following the same porosity-permeability trends, but with
different pore structure evolution and thus dispersion evolution.
These two sets allows the authors to investigate how dispersion
is affected by micro-structure relative to changes in porosity
and permeability. Mass transfer processes also play an important
role in surface reactions that can alter the pore structure
and cause corresponding changes to macroscropic transport
coefficients. Starchenko constructs a first-principles model to
study the role played by nucleation in mineral precipitation and
growth. The constructed numerical model is used to demonstrate
how this mechanism influences the formation of heterogeneous
microstructures within a porous material.

The vibrant pore-scale research community fosters essential
connections between first-principles physics, high quality
experimental data and practical applications. Scientific
advancements have always relied on new data sources as a
way to substantiate theo retical models and inform engineering
applications that benefit society as a whole. As the volume
and quality of pore-scale experimental data continue to grow,
associated opportunities to learn from theory and computation
will grow as well. Insights that result from these developments
will be essential to formulate strategic responses to a wide range
of challenges that face global society, particularly those related to
climate change, water resources management and energy.
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Computational microfluidics for geosciences is the third leg of the scientific strategy

that includes microfluidic experiments and high-resolution imaging for deciphering

coupled processes in geological porous media. This modeling approach solves the

fundamental equations of continuum mechanics in the exact geometry of porous

materials. Computational microfluidics intends to complement and augment laboratory

experiments. Although the field is still in its infancy, the recent progress in modeling

multiphase flow and reactive transport at the pore-scale has shed new light on the

coupled mechanisms occurring in geological porous media already. In this paper,

we review the state-of-the-art computational microfluidics for geosciences, the open

challenges, and the future trends.

Keywords: pore-scale analysis, microfluidics, computational fluid dynamics, reactive transport modeling, depth-

averaged 2D model, porous media, multiphase flow

1. INTRODUCTION

Since their appearance in the early eighties, microfluidic experiments have revolutionized the
knowledge in porous media research. They brought new insights into the debates that drive the
community for decades including the controversial use of Darcy’s law for modelingmultiphase flow
and the understanding of the complex feedback between hydro-bio-chemical systems. The most
famous example is the work of Lenormand et al. (1988) who identified different flow instabilities in
unsaturated porous systems according to the fluid pair and the flow rates usingmicromodels. These
microfluidic devices enable direct visualization of the flow, transport, and chemical processes in
rock microstructure replica sandwiched between two parallel plates separated by a small distance
(Jahanbakhsh et al., 2020; Morais et al., 2020). Classically, a representation of the pore space is
etched on a substrate made of silicon, glass or polymeric materials and covered by a transparent
material. Recently, 3D printing has been used for fast and robust micromodel fabrication (Watson
et al., 2019), allowing to conduct many flow experiments at lower cost for 2D to complex 3D
geometry, although for now resolution is not as accurate as etched 2D micromodels. Coupled
with high-resolution imaging both in space and time, microfluidic experiments have shed new
light on the key mechanisms controlling subsurface flow. For example, particle image velocimetry
has highlighted internal fluid eddies within droplets trapped by capillary forces whose large scale
impact is not included in multiphase Darcy’s law (Kazemifar et al., 2016; Roman et al., 2016, 2020;
Zarikos et al., 2018). Microfluidics also led to substantial advancements in the understanding of
reactive systems as the most recent microchips involve reactive materials to investigate dissolution
and precipitation of solid minerals in fractured porous media (Zhang et al., 2013; Song et al., 2014;
Porter et al., 2015; Osselin et al., 2016; Soulaine et al., 2017, 2018; Yoon et al., 2019; Agrawal et al.,
2020; Poonoosamy et al., 2020; Yun et al., 2020). In just a few decades, microfluidics has become
an indispensable tool in geosciences to decipher the complex mechanisms that occur in porous
systems and the discipline keeps improving.

6
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Computational microfluidics is the digital counterpart of
microfluidic experiments. Like any modeling approach, it is
a natural companion of laboratory experiments as it can be
used to perform sensitivity analysis for identifying the key
parameters of the underlying processes or to explore ranges
of conditions including pressure and temperature that are
difficult to reach in the laboratory without dedicated equipment.
Moreover, computational microfluidics can also assist in the
design of micromodels. Unlike pore-network modeling—a
widely used approach for describing pore-scale physics (Fatt,
1956)—that relies on an approximation of the pore geometries
and on pore-averaged physical laws, computational microfluidics
solves the fundamental equations of continuum mechanics
in the exact microstructure geometry. Historically, this kind
of simulations was considered computationally expensive and
almost impossible to run on complex and large domains. The
enormous progress in high-resolution numerical simulation of
complex flow and high-performance computing techniques,
however, makes it possible to perform routinely computational
microfluidics for single-phase flows on domains that reach the
size of a Representative Elementary Volume (Roman et al., 2016).
Although it heavily relies on advanced and modern approaches
for simulating fluid dynamics, computational microfluidics for
geosciences has its own challenges related to the complexity
of natural systems including the heterogeneity of geological
porous media, the evolving porous microstructure along with
geochemical processes, and the complex description of interfacial
phenomena at the mineral surfaces (Meakin and Tartakovsky,
2009).

The recent improvements in computational microfluidics
for geosciences enable the modeling of multiphase flow and
reactive transport. Current capabilities capture many of the
mechanisms observed experimentally. For example, two-phase
flow simulations in micromodels describe the complex interplay
between viscous, capillary, and gravity forces leading to viscous
fingerings if a fluid drains another fluid (Ferrari and Lunati,
2013; Alpak et al., 2016; Chen et al., 2019; Zhao et al., 2019),
or to the trapping of carbon dioxide droplets in the pore
space (Chen et al., 2015; Hu et al., 2017). Computational
microfluidics allows the understanding of subsurface processes
by identifying key mechanisms. Hence, the integrated usage
of computational and experimental microfluidics led (Roman
et al., 2017) to highlight that snap-off events, i.e., the break-up
of the invading fluid at the entrance of a pore-throat, can be
followed by a reconnection to the flowing phase. They observed
and characterized cycles of snap-off and reconnection events
that contradict the criteria that are generally used to assess
the storage capacity by capillary trapping. Another example
is the study of Ferrari and Lunati (2014) which establishes
that inertial forces arise during pore invasion—a statement also
supported by glass bead experiments (Moebius and Or, 2012)
and interface tracking in micromodels (Roman et al., 2016)—
suggesting that creeping flow assumption for the derivation of
multiphase Darcy’s law is erroneous. Moreover, as computational
microfluidics provides a mapping of pressure, velocity, species
concentration, and mineral distribution, the characterization of
constitutive laws using volume averaging is straightforward. For

instance, Soulaine et al. (2017) used computational microfluidics
to compute the accessible reactive surface area of a rock sample.
A more comprehensive review of the state-of-the-art including
the authors’ contributions, as well as the remaining challenges
that need to be solved for being truly predictive, are presented
in section 3.

Our definition of computational microfluidics goes beyond
the modeling of flow and geochemical processes in micromodels
as it can also be applied to complex 3D structures. In this sense,
computational microfluidics for geosciences is intimately linked
to Digital Rock Physics, an emerging technology concerned
with the estimation of effective upscaled parameters (e.g.,
permeability, dispersion tensor) in three-dimensional images
of rock samples (Blunt et al., 2013). In Digital Rock Physics,
these properties can be calculated using different techniques,
such as pore network analysis (Andre et al., 2013a,b) or
closure problem approaches (Whitaker, 1999; Soulaine et al.,
2013). Alternatively, computational microfluidics can be used
to directly solve the flow and transport equations within
the pore-space and compute the desired upscaled properties.
Although it is often restricted to small micro-CT images (<3003

voxels) or to single-phase flow due to high computing cost,
computational microfluidics is also well-suited to investigate
pore-to-pore physics (Ferrari and Lunati, 2014; Pavuluri et al.,
2020) with the objective of improving upscaling techniques (e.g.,
pore entry pressure for pore network modeling). A major
asset of microfluidics is the ability to design well-controlled
experiments and obtain high-resolution measurements—both in
space and time—of the velocity fields (Roman et al., 2016), phase
distribution, film thickness (Roman et al., 2017), aqueous species
concentrations (Chang et al., 2017), and mapping in mineral
changes (Poonoosamy et al., 2020). Microfluidics is inestimable
to verify the numerical models using direct comparison with
microfluidic experiments (Willingham et al., 2008; Yoon et al.,
2012; Chapman et al., 2013; Oostrom et al., 2016; Roman
et al., 2017; Soulaine et al., 2018). Therefore, the combination
of computational and experimental microfluidics promotes the
development of robust and validated numerical models for pore-
scale modeling.

Exposing simulation results to experimental data, however,
is not always an easy task as it raises questions regarding the
measurement resolution and also questions on the modeling
spatial description. Micromodels are often referred to as “two-
dimensional” objects by opposition to real geological objects
or their reproduction using 3D printing. This qualification
is somewhat imprecise as the micromodels are made of the
assembly of two parallel plates and that important physical
phenomena occur in the confined space between the plates. This
confusion leads many scientists to use two-dimensional models
for representing their microfluidic experiments numerically. In
most cases, however, 2D simulations are not able to reproduce
the experiments. Even in cases for which the micromodel depth
is much larger than the smallest pore-throat diameter the two-
dimensional hypothesis breaks down because physical events are
not uniform in the thickness. For example, reactive particles can
nucleate in the mid-plane or at the solid walls (Beuvier et al.,
2015) and instabilities in the liquid films that wet the top and
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bottom plates can lead to the formation of bubbles in the bulk
(Hansen and Toong, 1971; Zhao et al., 2018). The systematic
usage of 3D models, however, is computationally intensive. To
reduce the computational efforts, 2D depth-integrated models
are an interesting alternative for solving flow in microfluidic
chips. These approaches, however, can have strong limitations. In
section 2, we present depth-integrated models for single-phase,
two-phase, and species transport, and we discuss their range
of validity.

This paper aims at reviewing the modeling approaches in
computational microfluidics for geosciences and their open
challenges, as well as the authors’ contributions to this emerging
scientific discipline. It is organized as follows. First, we introduce
the fundamental equations used in computational microfluidics
(section 2.1) and the common numerical approaches to solve
them (section 2.2). We also present models that solve directly
for the depth-averaged variables at a reduced simulation cost
(section 2.3). Then, we summarize the main advances in
modeling multiphase flow (section 3.1) and reactive transport
(section 3.2), and we discuss future lines of research.

2. MATHEMATICAL MODELS AND
NUMERICAL SOLUTIONS

In this section, we introduce the fundamental equations used
in computational microfluidics for solving flow and transport.
We also discuss the standard numerical approaches for solving
these equations.

2.1. Fundamental Governing Equations
Computational microfluidics relies on the fundamental
equations of continuum mechanics for fluid flow, namely the
Navier-Stokes equations, solved in the exact geometry of the
pore space. They are composed of a set of mass and momentum
balance equations combined with boundary conditions at the
solid surface.

2.1.1. Flow Equations
For single-phase flow, the conservation of mass reads,

∂ρ

∂t
+∇ . (ρv) = 0, (1)

where ρ and v are the fluid density and velocity, respectively. For
liquids, it is common to assume that the fluid is incompressible,
and the mass balance equation (Equation 1) reduces to the
divergence-free velocity,

∇ .v = 0. (2)

In an Eulerian frame, the momentum balance writes,

∂ρv

∂t
+∇ . (ρvv) = −∇p+ ρg +∇ .µ

(

∇v +∇
tv
)

, (3)

where p is the pressure field, g is the gravity, and µ is the fluid
viscosity. The left-hand side corresponds to the inertial effects.
As mass flow rates in the soils and the subsurface are usually

low, it is common to neglect this term and to use Stokes instead
of the Navier-Stokes momentum equation. On the right-hand
side, the first term is the pressure gradient, the second is the
gravity acceleration and the third term is the viscous dissipation.
The latter characterizes the internal friction of the fluid particles
with each other. The higher the viscosity, the larger the pressure
gradient has to be to initiate the fluid movement. At the pore-
scale, it is also common to neglect the gravity term.

For multiphase flow, the mass and momentum equations,
Equations (1)–(3) apply to each fluid phase. Alternative forms
of the Navier-Stokes equations including non-Newtonian and
compressible fluids as well as descriptions of the equations in a
Lagrangian frame are found in any fluidmechanics textbook (e.g.,
Landau and Lifshitz, 1987; Caltagirone, 2013).

2.1.2. Boundary Conditions at the Solid Walls
The flow equations are supplemented with boundary conditions
at the solid surface that arise from particle/solid molecular
interactions. Because the fluid molecules cannot penetrate into
the impermeable boundary, the mass flux at the solid surface
is null and the normal component of the velocity is zero, i.e.,
n.v = 0. For viscous flow, it is common to consider that the fluid
molecules adhere to the surface due to molecular interactions
including van der Waals or Coulombic forces. Because of this
adherence, the fluid particles at the solid wall cannot slide on
the surface and the tangential component of the velocity is null,
leading to the no-slip condition,

v = 0. (4)

The no-slip boundary condition is valid for most of the
Newtonian liquids flowing through porous media with pore-
throats larger than 100 nm. Although widely used in fluid
dynamics, the no-slip condition is not always valid in geological
systems. In particular, in complex fluids involving colloids or
polymers, the fluid elements adjacent to the surface can travel
along the surface by rolling or sliding. In such cases, the fluid
in contact with the solid surface slide over it with a finite value.
Moreover, the no-slip condition poses a problem in viscous flow
theory at the place where an interface between two fluids meets a
solid boundary. Instead, the so-called partial slip condition,

v = β (I − nn) .
(

n.
(

∇v +∇
tv
))

, (5)

proposed by Navier (1823) and later revisited by Maxwell (1879),
relates the tangential velocity to the strain rate. In this relation, n
is the normal vector at the solid surface and β is called the slip
length and is typically of the order of ten nanometers.

The description of boundary conditions at the solid walls for
multiphase flow is discussed in section 3.1.

2.1.3. Interfacial Conditions Between Two Fluids
The interface between two fluid phases (labeled fluid 1 and fluid
2, respectively) is a discontinuity on which boundary conditions
are applied. The interface deforms with the fluid motion and
moves at the interface velocity, w. The latter is obtained using the
conservation of mass at the vicinity of the interface,

n12.ρ1 (v1 − w) = n12.ρ2 (v2 − w) , (6)
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where n12 is the normal at the interface separating the two fluids,
and ρi and vi are the density and velocity of phase i, respectively.
If there is no phase change, the interface velocity and the fluid
velocity balance each other at the interface and n12.v1 = n12.v2.

The normal stress balance at the interface gives (Landau and
Lifshitz, 1987),

n12.
[

−p1I +
(

µ1∇v1 +∇
tv1
)]

= n12.
[

−p2I +
(

µ2∇v2 +∇
tv2
)]

+ σκ , (7)

where pi is the fluid pressure in fluid i, σ is the surface tension,
and κ is the interface curvature. At equilibrium, this condition
becomes Laplace law.

An overview of the simulation techniques used in
computational microfluidics to solve Navier-Stokes equations
along with the interfacial conditions is given in section 3.1.

2.1.4. Solute Transport
In its simplest form, the transport of a species i in a fluid phase is
modeled by an advection-diffusion equation:

∂Ci

∂t
+∇ . (vCi) = ∇ . (Di∇Ci) , (8)

where the first term is the accumulation term, the second term
is the advection term and the right-hand side corresponds to
diffusion effects where Di is the diffusion coefficient of species
i into the fluid phase. More complex forms of the solute
transport includes multi-component diffusion, thermal diffusion
and electrostatic gradients (Bird et al., 2002).

As for flow equations, the solute balance equation is
supplemented by boundary conditions at the solid walls. For a
passive tracer the no flux condition writes,

n.Di∇Ci = 0. (9)

If the species reacts with the solid surface the reactive flux
condition is,

n.Di∇Ci = rm (Ci) , (10)

where rm is a source or sink term that describes kinetic reactions
or adsorption phenomena (Molins et al., 2014).

It is also common to consider that the species satisfies
thermodynamics equilibrium condition with the solid wall using,

Ci = C
eq
i , (11)

where C
eq
i is a fixed value imposed by thermodynamics

equilibrium.

2.2. Numerical Engines for Solving
Navier-Stokes Equations
Solving Navier-Stokes equations in complex geometries is
not trivial, and except in very few situations, there are no
analytical solutions. Computational microfluidics uses numerical
approximations to solve the flow within the pore space.
Complexities include the pressure-velocity coupling and the non-
linearity due to the inertial term in the momentum equation.

FIGURE 1 | Example of finite-volume grid used in computational microfluidics.

In this section, we introduce some of the standard approaches
for solving Navier-Stokes equations. Specific techniques for
multiphase flow and reactive transport are introduced and
discussed in section 3.

2.2.1. Computational Fluid Dynamics
In Computational Fluid Dynamics (CFD), the Navier-Stokes
equations are solved by discretizing the spatial differential
operators on an Eulerian grid using techniques such as the finite
difference method (FDM), the finite volume method (FVM), or
the finite element method (FEM) (Ferziger and Peric, 2002).
In principle, the three families of techniques yield the same
solution if the computational grid is fine enough. For fluid flow,
however, FVM is usually preferred as it is locally conservative
and deals with unstructured grids by construction. In FVM,
the domain is subdivided into a finite number of contiguous
control volumes whereby the integral form of the conservation
laws is applied. Modern gridders generate meshes that follow
the complex boundaries of the microstructure (see Figure 1).
Nowadays, all the commercial or open-source CFD simulators
embed very efficient Navier-Stokes solvers that can deal with very
large grids and complex geometries usingmultigrid strategies and
High-Performance Computing. Solution algorithms usually rely
on predictor-corrector methods to solve for the pressure-velocity
coupling. The Pressure-Implicit with Splitting of Operators
(PISO) algorithm is one of the most popular for solving transient
flow (Issa, 1985). Algorithms such as Semi-Implicit Method for
Pressure Linked Equations (SIMPLE) solve directly for steady-
state flow (Patankar, 1980).

2.2.2. Lattice Boltzmann Method
The lattice Boltzmann method (LBM) is an alternative CFD
technique to solve fluid flow at the pore-scale. The popularity
of LBM comes from the ease to program massively parallel
codes. Unlike traditional CFD approaches that solve for Navier-
Stokes equations, LBM is based on the Boltzmann equation that
describes the probability of finding a given particle at a given
position with a given velocity. This is a statistical approach and
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the averaged behavior approximates the continuum mechanics
described by the Navier-Stokes equations. In LBM, a discrete
Boltzmann equation is solved on a lattice where the particles
can only move along a finite number of directions. The degree
of freedom is determined by the nature of the lattice classified
with the nomenclature DnQm where n corresponds to the
dimension of the lattice (n = 2 for two-dimensional simulations,
n = 3 for three-dimensional simulations) and m stands for
the number of directions. The Boltzmann equation involves a
collision operator that describes the change in the probability
distribution function induced by the collisions between particles.
In the Lattice Boltzmann method, the boundary conditions
are described in terms of probability distribution functions.
The description of the wall conditions corresponds actually to
the physical model of boundary events proposed by Maxwell
(1879). For a no-slip, the bounce-back condition is used where
the particles are reflected at the wall. Hence, the net average
flow rate at the solid surface is zero. Slip conditions can be
obtained using specular reflections (Succi, 2002). Partial slip is
modeled with a mix of bounceback and specular reflections. The
implementation of boundary conditions in LBM can become
very complex when the solid surface is not aligned with
the lattice.

2.2.3. Smoothed-Particle Hydrodynamics
Smoothed-Particle Hydrodynamics (SPH) is a mesh-free
modeling technique that describes fluids as a set of discrete
moving particles in a Lagrangian framework. The method
was initially developed to model the interaction of stars in
astrophysics (Gingold and Monaghan, 1977; Lucy, 1977) and is
now being used increasingly in real-time animation and video
games. The particles have a spatial distance over which their
properties are smoothed by a kernel function centered on the
particles. This distance defines the sphere of influence for each
particle and is used to reconstruct continuous variables such as
fluid density. The SPH particles are then used as interpolation
points to discretize and solve the governing equations. SPH
has several benefits over traditional grid-based methods. First,
it is meshless and there is no need to go through complex
gridding processes. Second, it explicitly conserves mass and
momentum. Because the method is Lagrangian, there is no
non-linear term in the momentum equation and that allows an
accurate description of the advection terms when dealing with
high flow rates. Third, the SPH Lagrangian framework allows
for the modeling of moving and deformable boundaries without
using complex tracking algorithms. SPH has also important
drawbacks. Although the SPH algorithms due to their simplicity
and structure are easy to program, the implementation of
boundary conditions can be tricky. Moreover, for the same
accuracy, SPH is more computationally intensive than FVM or
FEM because it requires much more neighboring particles than
the tensile of grid-based methods. Nevertheless, because SPH
can be easily paralleled, the rise of parallel computing including
Graphical Processing Units makes SPH a promising technique
(Vacondio et al., 2020).

2.3. Depth-Averaged Models: 2D vs. 3D
Most of the time, measurements in microfluidic experiments
relate to depth-averaged values. For example, even thoughmicro-
Particle Image Velocimetry that uses confocal microscopy or
laser pretends to measure the velocity profiles in a cross-section,
these techniques do measure values averaged in a thickness of the
order of few micrometers that corresponds to the laser thickness
or the close surrounding of the focal plan (Roman et al., 2016).
Likewise, microfluidic experiments using optical luminescence
for measuring a concentration profile (Watson et al., 2019) or
mapping the water distribution (Zhao et al., 2016; Roman et al.,
2017) provides values that are averaged along the micromodel
depth, h, without information of the depth profile of the species
concentration or water saturation. The depth-averaged variables
are defined as the vertical integration of the 3D fields,

v2D =
1

h

∫ h

0
v
(

x, y, z
)

dz. (12)

In this section, we present depth-averaged models that directly
provide the solution for the depth-averaged velocity, v2D,

pressure, p2D, and concentration, Ci
2D
, fields without solving

3D problems. These models result from the integration of the
fundamental equations described in section 2.1 along the depth
axis and can significantly reduce the simulation costs. They have,
however, ranges of validity that are discussed below.

2.3.1. Single-Phase Flow
The integration of Navier-Stokes momentum equation over the
micromodel depth along with the assumption that a parabolic
profile approximates the flow in the thickness gives,

∂ρv2D

∂t
+ ∇ .

(

ρv2Dv2D
)

= −∇p2D +∇ .µ
(

∇v2D +∇
tv2D

)

− µ
12

h2
v2D, (13)

where the last term of the right-hand side, µ 12
h2
v2D, is the Hele-

Shaw correction (Lamb, 1906), i.e., a drag force related to the
friction of the fluid along the micromodel top and bottom plates.
Numerical implementation of Equation (13) has been reported
using CFD (Roman et al., 2016) and LBM (Venturoli and Boek,
2006; Laleian et al., 2015). The Hele-Shaw correction is similar to

a Darcy law for which the permeability is k = h2

12 and the porosity
is φ = 1. This simple depth-integration was historically the first
step toward the derivation of Darcy’s law from Stokes equation
(Vasil’ev, 2009). Actually, for micromodels with a low aspect ratio
between the cell thickness and the pore-throat size, h/d≪ 1, the
drag force is the dominant force and Equation 13 can be replaced
by Darcy’s law for Hele-Shaw cells,

v2D = −
h2

12µ
∇p2D. (14)

Theoretically, the hypothesis that flow sandwiched in between
two parallel plates obey a parabolic profile is only valid for
infinite plates—their dimensions are much larger than the space
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FIGURE 2 | Single-phase flow simulations using 3D, 2D, and 2D-depth-averaged models for different aspect ratio between the micromodel thickness, h and the

smallest pore-throat, d. The computational domain is gridded with 1.4× 105 cells for the 2D cases and 11.4× 105 × 10 for the 3D cases. The typical pore-throat size

is dtyp = 4× 10−3 m, the largest is dlarge = 12× 10−3 m and the smallest is d = 0.5× 10−3 m. We used two different depth thickness, namely h = 10−2 m and

h = 10−4 m. Simulations are performed with OpenFOAM. For each simulation, the velocity profile is normalized by the maximum value, and we indicate the maximum

value normalized by the inlet velocity. If h
d

> 1, 2D Navier-Stokes simulations tend toward the mid-plane 3D Navier-Stokes solution and 2D Darcy is far from the

reference solution. If h
d

< 1, 2D Darcy captures the 3D reference solution whereas 2D Navier-Stokes breaks down. The 2D depth-integrated Navier-Stokes model

captures the 3D flow behavior regardless the micromodel thickness.

between them. Micromodels mimicking rock porous structures,
however, contain pillars that violate this assumption with three-
dimensional flowlines at the vicinity of the corner formed by
the pillars and the top and bottom plates. Nonetheless, in
practice, Equation (13) is a very good approximation of the
flow behavior in Hele-Shaw cells. In Roman et al. (2016), the
very good agreement in the comparison of the velocity profiles
obtained experimentally withmicro-PIV and numerically solving
Equation (13) illustrates that the depth-averaged flow model is
relevant for micromodels. This statement is verified numerically
in the simulation results presented in Figure 2 for which the
velocity profile in a micromodel was computed based on 2D,
2D depth-integrated, or 3D simulations for different micromodel
thickness. For 3D simulations, the 2/3 factor in the velocity
magnitude of the 3D depth-integrated profile with respect to
the mid-plane value is representative of a parabolic profile in
the third dimension. The 2D Navier-Stokes model only tends
to the 3D solution if h/d > 1 and corresponds to the 3D
mid-plane profile. In this case, the scales separation hypothesis
leading to Darcy’s law is not satisfied and the 2D Darcy solution
cannot describe the flow through the micromodel. If h/d < 1,
the friction of the fluid along the top and bottom plates are
the dominant resistance to the flow. In such a case, the 3D
flow tends to the 2D Darcy solution whereas the 2D Navier-
Stokes solution—that corresponds to an infinite thickness—
is completely off the reference data. The 2D depth-averaged

simulations remain consistent with the 3D solution regardless of
the aspect ratio.

2.3.2. Single-Phase Scalar Transport
The integration of an advection-diffusion equation for the
transport of a scalar—e.g., species concentration or temperature–
across the micromodel thickness gives,

∂C
2D

∂t
+∇ .

(

v2DC
2D
)

= ∇ .
(

D(t).∇C
2D
)

, (15)

where v2D is obtained using Equation (13), and D(t) is a
time-dependent dispersion tensor. Because of the parabolic
velocity profile in themicromodel depth, there are hydrodynamic
dispersion effects that must be considered even if the aspect ratio
between the pore-throat size and micromodel thickness is lower
than one, h/d > 1. For transport in between two parallel plates,
the dispersion tensor exactly writes (Dentz and Carrera, 2007),

D(t) = DiI +
h2

4Di
v2Dv2D

(

2

105
−

∞
∑

n=1

18

(nπ)6
exp

(

−4
(nπ

h

)2
Dit

)

)

,

(16)

where the first term is the molecular diffusion and the second
term corresponds to Taylor-Aris dispersion in the direction of the
flow (Taylor, 1953; Aris, 1956)—notes that v2Dv2D is a tensor. The
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FIGURE 3 | Transport of a scalar in a micromodel with aspect ratio h/d > 1. We use 3D, 2D, and 2D-depth-averaged models for different Péclet number by varying

the diffusion. The results correspond to isocontour of the concentration for C = 0.2 (blue), C = 0.5 (green), C = 0.8 (orange) at t = 42 s. 2D models without dispersion

break down for Peh > 10.

time-dependent infinite series accounts for the pre-asymptotic
regime at early time and tends toward zero at long time. In
practice, only the two first terms of the series are necessary.

Hydrodynamic dispersion effects are characterized by the

Peclet number, Peh =
hU
D , that compares the transport by

advection and the transport by diffusion. They are illustrated in
the simulation results of Figure 3 that solve the transport of a
scalar using 3D, 2D, and 2D depth-averaged models for Peclet
numbers ranging from 0.1 to 104. The deviations between mid-
plane and depth-averaged values of the 3D simulations illustrate
the hydrodynamic dispersion when advection is the dominant
transport mechanism. Experimentally, the measurement of
species concentration using optical index corresponds to depth-
averaged values (Watson et al., 2019). Confusion regarding the
nature of measured value may lead to misinterpretations of

the comparison between experiments and 3D simulations. For

transport dominated by diffusion, Peh < 1, the concentration

profile is flat over the micromodel depth. Therefore, there are

no dispersion effects and the 2D models are in good agreement

with 3D simulations. If the advection takes over, Peh > 1,

hydrodynamic dispersion becomes important and 2D model

breaks down. The two-dimensional depth-averaged simulations

using the time-dependant dispersion tensor approximate well

the depth-integrated solution of the 3D simulations, regardless
the Peclet number. Figure 4 highlights the importance of

considering the pre-asymptotic regime. Neglecting the dispersion
(i.e., D(t) = DiI) or considering only the asymptotic Taylor-Aris

dispersion (i.e., D(t) = DiI + h2v2Dv2D

210Di
) tends to overdisperse the

solute. Likewise, it is crucial to consider the product v2Dv2D as a
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FIGURE 4 | Comparison of the transport of a scalar at Pe = 103 in a micromodel with aspect ratio h/d > 1 using 2D depth-averaged models including

time-dependent dispersion tensor, the asymptotic dispersion tensor, isotropic dispersion, and no dispersion. The results correspond to isocontour of the

concentration for C = 0.2 (blue), C = 0.5 (green), C = 0.8 (orange) at t = 42 s. Neglecting the dispersion [i.e., D(t) = Di I] or considering only the asymptotic Taylor-Aris

dispersion [i.e., D(t) = Di I+
h2v2Dv2D

210Di
] tends to overdisperse the solute. Isotropic dispersion cannot capture the transport of scalars in micromodels.

tensor and not as a scalar
∣

∣v2D
∣

∣

2
because Taylor-Aris dispersion

inmicrofluidic devices is not isotropic and occurs in the direction
of the flow.

2.3.3. Two-Phase Flow
Simulation of two-phase flow processes in microfluidic cells
using 2D depth-averaged models is challenging as the fluid-
fluid interface has two curvature radii: one in the micromodel
plane, another in the micromodel thickness. Horgue et al. (2013)
proposes 2D depth-averaged equations in which they integrated
the interface curvature along the micromodel thickness in
addition to the Hele-Shaw correction. Their model, however, is
limited to cases for which no liquid films are flowing on the top
and bottom plates, and cannot capture phenomena such as snap-
off. Alternatively, Cueto-Felgueroso and Juanes (2014) proposes
a Darcy-like model to simulate two-phase flow in Hele-Shaw cells
that accounts for water films flowing on the top and bottom plates
using relative permeabilities. The applicability of their model,
however, is restricted to aspect ratios between the micromodel
thickness and the pore-throat size smaller than one, h/d ≪ 1.
In absence of reliable 2D depth-integrated models for two-phase
flow, it is recommended to use 3D rather than 2D simulations
since the former can capture the impact of wetting films along the
top and bottom plates as well as corner flows (Zhao et al., 2019).
Moreover, phenomena such as snap-off can only be captured if
the two curvature radii are considered (Roman et al., 2017).

2.4. Multi-Scale Approach
Multi-modal pore-size distributions are quite common in
geological porous media. This special feature appears, for
example, in porous fractured media for which the width of a
fracture is orders of magnitude larger than the typical pore
throat diameter in the porous matrix. In such a case, a full
Navier-Stokes modeling approach requires to resolve all the
porosity explicitly and leads to tremendous computational grid
size. Alternative approaches including micro-continuum models
propose to model only the flow in the fracture using Navier-
Stokes while the flow in the matrix is described by Darcy’s law
(Soulaine and Tchelepi, 2016). Micro-continuum approach relies

on a hybrid-scale flow model based on the Darcy-Brinkman-
Stokes equation (Brinkman, 1947; Neale and Nader, 1974)
discretized with the Finite-Volume Method. All the geometric
structures below a threshold that corresponds to the spatial
resolution of the simulation is filtered and modeled as a porous
medium. The momentum equation reads

1

φ

(

∂ρv

∂t
+∇ .

(

ρ

φ
vv

))

= −∇p+∇ .
µ

φ

(

∇v +∇
tv
)

− µk−1v,

(17)
where the overline notation denotes filtered variables, φ

is porosity field, and k is the local permeability of the
porous regions. Recent studies show that the micro-continuum
framework is well-suited to solve problems involving two
characteristic length-scales (e.g., fractured media, micro-porous
rocks) (Arns et al., 2005; Scheibe et al., 2015; Soulaine
et al., 2016, 2021; Carrillo et al., 2020; Menke et al., 2020;
Poonoosamy et al., 2020) and also to describe the movement
of fluid/solid interfaces caused by dissolution/erosion and
precipitation/deposition (Soulaine and Tchelepi, 2016; Soulaine
et al., 2017; Molins et al., 2020) or by solid deformation due
to swelling or fracturing (Carrillo and Bourg, 2019). Micro-
continuum models are also able to simulate two-phase flow
processes (Soulaine et al., 2018, 2019; Carrillo et al., 2020).

3. APPLICATION TO GEOSCIENCES AND
OPEN CHALLENGES

In this section, we review the main advances in computational
microfluidics involving multiphase flow and reactive transport
including the authors’ own contributions. We also discuss the
open-challenges and the current and future lines of research in
this area.

3.1. Modeling of Immiscible Two-Phase
Flow
Modeling immiscible multi-phase flow is one the biggest
challenge in the porous media community. Despite a very
large usage in subsurface engineering, many studies have
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emphasized the limits of Darcy’s law for two or more fluids
(Danis and Quintard, 1984; Rose, 2000; Cinar et al., 2009).
An accurate description of the flow mechanisms in porous
media is challenged by the complex interplay between capillary,
viscous, and gravitational forces that may lead to highly unstable
flow and trapping mechanisms. The heterogeneous nature of
geological formations further complicates the development of
predictive models.

Computational microfluidics for multiphase flow offers an
appealing framework to probe the underlying mechanisms in
unsaturated porous media. Despite enormous improvements,
however, the numerical modeling of multi-phase flow remains
challenging. The difficulties are twofold: on the one hand,
numeric must be improved (for calculating the interface
curvature dynamically, for tracking the composition of the
fluids, for speeding-up the simulation times); on the other
hand, the physical description of interfacial properties is still
not well-established (e.g., wettability conditions, thin films).
Current research intends to address these open-challenges by
developing reliable and efficient multi-phase flow simulators at
the pore-scale.

3.1.1. Efficient Numerical Solvers for

Capillary-Dominated Flow
The standard approaches for tracking the interface movement
of two immiscible fluids rely on solving single-field equations
for the single-field variables, i.e., variables that includes the
contribution of each phase. Whether the modeling is grid-
based or particle-based, a phase indicator function maps the
distribution of the fluids within the pore-space and evolves as
the fluid-fluid interface propagates along with hydrodynamic
forces. This function denotes either the fluid volume fraction
in every grid cells for the Volume-of-Fluid (VOF, Hirt and
Nichols, 1981) and phase-field (PF, Jacqmin, 1999) approaches,
a distance to the fluid interface for Level-Set (LS, Sussman
et al., 1994) approaches, or a color function for Smooth Particles
Hydrodynamics (SPH, Tartakovsky and Meakin, 2005) and
Lattice Boltzmann Methods (LBM, Gunstensen et al., 1991).
The literature also reports on modeling based on the Density
Functional Theory for hydrodynamics (Demianov et al., 2014).
A review of approaches is found in Wörner (2012). The phase
indicator function is used to define single-field variables by
weighting the fluid properties (e.g., viscosity, density) according
to the distribution of fluid phases. Its gradient is also used to
calculate the interface curvature. Today, none of the existing
approaches can solve two-phase flow problems accurately and
efficiently for a wide range of flow regimes (Abadie et al., 2015).
One of the bottlenecks is the existence of spurious velocities near
the interface attributed to inaccuracies in the calculation of the
interface curvature, regardless of the computational approach.
This problem acknowledged for more than 30 years (Brackbill
et al., 1992), is particularly limiting for capillary-dominated flow
(Scardovelli and Zaleski, 1999) that are the dominant regimes in
many subsurface systems (Cinar and Riaz, 2014). An important
part of the current research in computational microfluidics
for two-phase flow consists in developing robust solvers that
minimize these numerical issues (Pavuluri et al., 2018).

FIGURE 5 | The contact angle, θ , is the angle formed by the tangent to the

solid surface and the tangent to the fluid-fluid interface. For values smaller than

90◦, a droplet lying on a solid substrate tends to spread over the surface. The

fluid within the droplet is the wetting fluid with respect to the other fluid and the

solid surface. For values larger than 90◦, the droplet is the non-wetting phase

and tends to minimize its surface area in contact with the solid substrate.

One of the popular approach in computational microfluidics
is the algebraic VOF approach. This is the technique used in
the simulations that illustrate the application section. In this
technique, the phase indicator functions, αl and αg , described
the volume fraction of each fluid within each cell of the
computational domain and the governing equations are obtained
by volume averaging the Navier-Stokes equations over a control
volume (Maes and Soulaine, 2020). For incompressible fluids, the
continuity equation writes,

∇ .v = 0, (18)

the mass balance equation for the liquid phase is

∂αl

∂t
+∇ . (αlv) +∇ .

(

αlαgvr
)

= 0, (19)

and the momentum equation writes

∂ρv

∂t
+∇ . (ρvv) = −∇p+ ρg +∇ .

(

µ

(

∇v +∇
tv
))

+ Fc, (20)

where vr and Fc are sub-grid models that describe the fluid-fluid
interactions in cells that contain the interface. They represent
the relative velocity and the surface tension force due to the
curvature of the interface, respectively. Although other methods
such as CFD with level-set (Sussman et al., 1994; Abu AlSaud
et al., 2017, 2018) or combinations of LBM and level-set (McClure
et al., 2016) can provide a more accurate description of the sharp
interface, the VOF method is attractive due to its flexibility,
robustness in terms of mass conservation, and adaptability to
more complex physic (e.g., multi-component mass transfer).
Because the derivation of the governing equations relies on
volume averaging principles, algebraic VOF methods are the
cornerstone of multi-scale solvers for two-phase flow using
micro-continuum (Soulaine et al., 2018, 2019; Carrillo et al.,
2020).

3.1.2. Modeling of Wettability and Interfacial

Properties
Wettability plays a key role in multiphase flow in porous media
(De Gennes, 1985; Singh et al., 2018). Accurate prediction
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of multiphase flow in the soils and the subsurface for geo-
environmental issues including Carbon Capture and geological
Storage, water resources remediation, or Enhanced Oil Recovery
requires an in-depth understanding at the pore-scale of the
key mechanisms that influence the fluid displacements and
dynamics including viscous and capillary forces but also the solid
surface wettability. Recent studies have shown that the spatial
distribution of wettability play a crucial role (AlRatrout et al.,
2018; Yesufu-Rufai et al., 2020). The rock wettability and the
resulting multiphase flow can be modified by a change in pore
water composition (pH, salinity) and interfacial physicochemical
properties. For example, an oil droplet trapped within a pore
may be more easily remobilized using low salinity water (Jackson
et al., 2016). Accurate modeling of wettability conditions at
the mineral surface is therefore crucial to develop efficient and
reliable computational microfluidics for two-phase flow.

Traditionally, wettability is described considering that the
fluid-fluid interface and the solid surface form a contact angle
(see Figure 5). The value of the contact angle is provided from
static measurements that described the contact angle at the
nanoscale. In computational microfluidics, the cell size near
the solid surface is usually orders of magnitude larger than
nanometers. Therefore, upscaled laws including the Cox-Voinov
model estimates an apparent dynamic contact angle that depends
on the interface velocity near the solid surface and accounts for
viscous bending (Voinov, 1976; Cox, 1986). The alteration of
interfacial and solid surface properties due to a change of pH and
salinity requires constitutive laws for modifying the contact angle
accordingly (Maes and Geiger, 2018). Moreover, flow models
based on contact angles break down in the presence of thin water
films on the mineral surface (Starov et al., 2007).

Alternative flow models including lubrication theory offer
an appealing framework to account for physicochemical
mechanisms controlling the wettability of rocks according
to pore water chemistry and surface roughness for instance
(Abu AlSaud et al., 2017, 2020). Instead of using a contact
angle, lubrication theory provides a partial differential equation
governing the evolution of the film thickness, δ, on the solid
surface including molecular forces (Pahlavan et al., 2018).
It reads,

∂δ

∂t
+

1

µw
∇ .

[(

δ
3

3
∇ (σκ − 5 (δ))

)

+
δ
2
τ

2

]

= 0, (21)

where µw is the water viscosity, σ is the surface tension, κ is the
interface curvature, 5 (δ) is the disjoining pressure term, and τ

is the shear-stress exerted on the film surface. The disjoining –
or Derjaguin– pressure includes attractive (e.g., van der Waals)
and repulsive (e.g., electrostatic) forces that change with the ionic
strength, i.e., pH and salinity. The film equation is solved on the
solid surface and is coupled with the two-phase Navier-Stokes
solver in the volume of the pore. By getting rid of the concept
of contact angle, it is believed that simulators using lubrication
models are more realistic and mechanistic for the description
of multiphase systems in geological formations for energy and
environmental issues. Applications include the modeling of
wettability alteration measured in supercritical CO2 stored in

FIGURE 6 | Illustration of multicomponent mass transfer in two-phase flow at

the pore-scale. Thermodynamic equilibrium at the fluid/fluid interface obeys a

partitioning relationship such as Henry’s law.

deep saline aquifers (Wan et al., 2014) and the detachment of
crude oil frommineral surface observed when changing the brine
from high to low salinity (Berg et al., 2010). The state-of-the-art
computational microfluidics using lubrication theory, however,
is limited to flat solid boundaries (Abu AlSaud et al., 2017, 2020).
Recent work considers curvilinear surfaces on cylindrical solids
(Qin et al., 2020). However, pore-scale multiphase flow solvers
with lubrication models on generic solid geometries are still
under development.

3.1.3. Modeling of Species Transfer Across

Fluid-Fluid Interfaces
In many subsurface processes including the injection and
sequestration of supercritical carbon dioxide (sCO2) into deep
geological formations, there is a transfer of species across
the fluid-fluid interface. Moreover, the ability to track the
composition of fluids in two-phase flow is crucial for modeling
efficiently the change of wettability conditions with pH evolution
(Maes andGeiger, 2018). The Continuous Species Transfer (CST)
approach allows tracking multicomponent multiphase flow at
the pore-scale (Haroun et al., 2010; Marschall et al., 2012). In
this approach, the thermodynamic equilibrium at the interface
is described by a partitioning relationship such as Henry’s law
(Henry, 1803) and the continuity of mass fluxes is guaranteed
while the interface evolves in the pore-space due to fluid
displacements including drainage and imbibition (see Figure 6).

CST is a single-field approach along the same lines as the
Volume-Of-Fluid technique used for simulating immiscible two-
phase flow, i.e., a unique partial differential equation solves for
a single-field concentration regardless of the content of a grid
block. It reads,

∂CA

∂t
+∇ . (vCA) = ∇ .

(

D∗
A (∇CA + 8A)

)

, (22)

where D∗
A is the weighted-average of the diffusion coefficients in

both fluids and 8A is the CST flux enforcing the concentration
discontinuity due to Henry’s law. Graveleau et al. (2017) derived
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FIGURE 7 | Simulation results of drainage of oil (wetting phase) by water with multi-component mass transfer at the pore-scale. The white pillars correspond to the

solid grains. Top: distribution of the fluid phases during the drainage at different timestep. Bottom: concentration profile in the system (adapted from Maes and

Soulaine, 2018b).

a boundary condition on a wetted wall for the CST and used
the modeling approach to upscale the rate of mass transfer
in unsaturated porous media as a function of the flow rates.
Yang et al. (2017), however, pointed out that when convection
dominates diffusion locally near the interface, the CST method
generates large numerical errors. They show that in order
to capture the species concentration discontinuity accurately,
the mesh should be extremely refined at the vicinity of the
interface. This workaround, however, increases dramatically the
computational cost, especially for advection-dominated systems.

The CST derivation was carefully revisited using the method of
volume averaging (Maes and Soulaine, 2018b) leading to a new
approach without limitation on the transport regimes or the grid
refinement level—referred to as Compressive-CST or simply C-
CST—that is fully consistent with the phase advection scheme
unlike the standard CST scheme that was causing unbalanced
mass transfer. C-CST can simulate the mass transfer of a passive
scalar in a dynamic system (see Figure 7), and therefore, enable
the assessment of the mean rate of mass transfer in unsaturated
porous media in terms of saturation, flow rates and interfacial
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area. C-CST can be used to evaluate the role played on the mass
transfer by the internal re-circulation within the trapped droplets
that was observed experimentally using microfludics (Roman
et al., 2016, 2020; Zarikos et al., 2018).

In more recent work, the C-CST has been extended for
modeling cases for which the species transfer across the fluid-
fluid interface is no longer passive but leads to local volume
changes (Maes and Soulaine, 2020). Such situations happen,
for example, when a soda can is opened, the pressure in the
headspace falls abruptly and Henry’s law is no longer satisfied.
To re-establish equilibrium, the carbon dioxide concentration
in water decreases by forming gas bubbles. During their travel
toward the surface, gas bubbles grow because of the diffusive flux
from the carbon dioxide dissolved in the liquid (Power et al.,
2009). The other way around occurs in carbon sequestration
processes when sCO2 is stored in deep saline aquifers by capillary
effects and trapped sCO2 droplets dissolve into the surrounding
brine (Kim et al., 2012). As a consequence, the volume of
droplets decreases, and the equilibrium of hydrodynamic forces
that was maintaining the sCO2 trapped in the pore-space is
displaced, eventually leading to a mobilization of the droplets.
Computational microfluidics using C-CST for phase change can
estimate the volume of CO2 trapped in the porous structure and
assess the timescale of potential remobilization.

3.1.4. Multi-Scale Two-Phase Flow
The micro-continuum approach for two-phase flow enables the
simultaneous modeling of multiphase flow at two different length

scales: (i) a Darcy-scale where sub-voxel fluid-fluid and fluid-
solid interactions within a porous medium are modeled through
relative permeability and capillary constitutive models, (ii) a
pore-scale (or Navier-Stokes scale) where the solid material is
non-porous and fluid-fluid interactions are described through a
continuum representation of the Young-Laplace equation. The
model combines the Volume-of-Fluid approach for tracking
the fluid-fluid interface in regions free of solid and the Darcy-
Brinkman-Stokes equation for modeling flow in porous regions
(Soulaine et al., 2019). It includes classic concepts such as
saturation, relative permeability, and capillary pressure curves
in the porous matrix (Carrillo et al., 2020). This multiscale
approach offers new possibilities in computational microfluidics
to investigate multiphase flow in fractured porous media
including the fracture-matrix interactions and to study the
role played by microporosity in processes such as imbibition
and drainage.

For example, the two-phase micro-continuum model was
used to simulate the expulsion of methane stored in microporous
matrix into a soaked fracture (see Figure 8). The results highlight
two completely different expulsion flow regimes whether the
fracture boundaries are hydrophobic or hydrophilic. On the one
hand, there is a continuous gas production, and on the other
hand a bubbly regime because the surface tension effects at the
wet fracture boundary generate an energetic barrier that tends
to form gas bubbles as far as the pressure in the microporous
regions is sufficient to inflate them. This kind of simulations
enables the assessment of the rate of hydrocarbon recovery in
shale gas according to the spatial distribution of the kerogen

FIGURE 8 | Multi-scale simulations of the expulsion of methane stored in a microporous matrix into a soaked fracture. We investigated two scenarios: the

fracture/matrix interface is non-wetting and the methane production is continuous, and the fracture/matrix interface is wetting and the gas is produced in a bubbly

flow regime. The simulation setup is fully described in Soulaine et al. (2019).
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(hydrophobic) and clay (hydrophilic) in the vicinity of the micro-
cracks (Soulaine et al., 2019).

3.1.5. Three-Phase Flow
Computational microfluidics for three-phase flow (e.g., gas-
water-oil) are still scarce in the literature because the community
focuses mostly on two-phase flow simulators for which the
open challenges discussed in previous sections are still limiting
the predictive capabilities. Such a tool is crucial to understand
fully the underlying mechanisms of non-aqueous phase
liquid (e.g., hydrocarbon, chlorinated solvents) trapped in the
unsaturated zone by capillary effects and to propose innovative
remediation strategies. In the literature, Bayestehparvin et al.
(2015) use a Volume-of-Fluid approach, Helland et al. (2017)
and Mohammadmoradi and Kantzas (2017) use quasi-static
displacement using a Level-Set method, Tartakovsky and
Panchenko (2016) use Smooth Particle Hydrodynamics,

Dinariev and Evseev (2016) use a phase-field method and van
Kats and Egberts (1999) and Jiang and Tsuji (2017) use a lattice-

Boltzmann method to investigate three-phase Navier-Stokes
flow at pore scale. The development of efficient three-phase

flow simulators at the pore-scale is still under development and

microfluidic experiments will help to assess the robustness of the
computational models.

3.2. Reactive Transport Modeling at the
Pore-Scale
Most of computational microfluidics developments so far have
been devoted to solve the Navier-Stokes equations under single
(Spanne et al., 1994; Bijeljic et al., 2013; Guibert et al., 2015;
Soulaine et al., 2016) and two-phase flow conditions (Horgue
et al., 2013; Raeini et al., 2014; Graveleau et al., 2017; Maes
and Soulaine, 2018a; Pavuluri et al., 2020). Flow in geological
porous media, however, has the distinctive feature to interact
chemically with the solid walls. The consideration of surface
reactions in computational microfluidics requires inclusion of
comprehensive reaction networks along with flow and transport,
an approach known as Reactive Transport Modeling (Steefel
et al., 2005). Despite the growing investment in the development
of RTM at the pore-scale—pioneer simulators date back to
the late 90s (Békri et al., 1995, 1997)—the field is still in its

FIGURE 9 | Experimental (top) and computational (bottom) microfluidics

images of calcite dissolution process at different time steps during the injection

of 0.05% HCl at a mean velocity of 1.16× 10−3 m/s flow rate from the left to

the right (Reprinted with permission from Soulaine et al., 2017, Copyright

Cambridge University Press 2017).

infancy. The main challenge consists in moving the fluid/solid
boundary with respect to chemical reactions at the mineral
surfaces. A large variety of methodologies has been proposed
by the community to solve this problem and a comprehensive
review can be found in Molins et al. (2020). They include
Level-Set (Molins et al., 2014, 2017), or phase-field (Xu and
Meakin, 2008, 2011) techniques in a Eulerian grid, LBM
(Kang et al., 2003; Szymczak and Ladd, 2009; Prasianakis
et al., 2013; Chen et al., 2014b; Yoon et al., 2015), SPH
(Tartakovsky et al., 2007), and Arbitrary Lagrangian-Eulerian
(Oltéan et al., 2013; Starchenko et al., 2016) frameworks. Another
family of methods for displacing the mineral interface uses
the micro-continuum approach (Soulaine and Tchelepi, 2016;
Soulaine et al., 2017).

3.2.1. Modeling of Dissolution Processes
The modeling of pore-scale dissolution is the most advanced
of the reactive transport processes using computational
microfluidics. In this case, the solid mineral dissolves into the
fluid phase according to thermodynamics and chemical reactions
at the solid surface. High-resolution data of well-controlled
microfluidic experiments have highlighted that the shape of
a cylindrical crystal evolves into an elongated profile due to

FIGURE 10 | Prediction of the evolution of the pore space of a micromodel for

different values of the constant of reaction and of the diffusion coefficient. Five

different dissolution regimes are identified (A) namely compact dissolution (B),

conical dissolution (C), one dominant wormhole (D), ramified wormholes (E),

and uniform dissolution (F) (Reprinted with permission from Soulaine et al.,

2017, Copyright Cambridge University Press 2017).
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non-uniform distribution of the solute along the solid surface
leading to faster dissolution rates upstream than downstream
(Soulaine et al., 2017; Dutka et al., 2020) as illustrated in Figure 9.
The elongated profile of the crystal as it dissolved in the acid
flowing solution illustrates well the complex coupling between
streamlines, solute transport, and surface reaction. The state-
of-the-art of computational microfluidics for reactive transport
using different techniques including micro-continuum, Level-
Set, LBM, moving grids with conformal mapping, and Vortex
methods can reproduce the shape evolution of the dissolving
crystal with great fidelity (Molins et al., 2020). This success
leads to the strong conclusion that pore-scale technologies
for moving fluid-solid boundaries along with geochemical
reactions are now mature enough to be used as predictive
tools. Current development uses computational microfluidics
along with geochemical packages to model comprehensive
reaction networks.

Computational microfluidics was used to investigate the
dissolution of micro-model pore networks (Szymczak and Ladd,
2009; Kang et al., 2014; Molins et al., 2017; Soulaine et al., 2017).
Five different dissolution regimes are observed according to the
constant of reaction at the mineral surface and the injection
mass flow rate as illustrated in Figure 10. For a given fluid, these
two effects are characterized by the Damkohler number DaI
(i.e., ratio of the characteristic timescale of transport and surface
reaction) and the Peclet number Pe (i.e., ratio of advection and
diffusion), respectively. These regimes are: compact dissolution
(Pe < 10−2 and DaI > 1), conical dissolution (1 > Pe >

10−2 and DaI > 1), dominant wormhole (10 > Pe > 1 and
DaI > 1), ramified wormholes (Pe > 10 and DaI > 1) and
uniform dissolution (DaI < 1 and regardless the Peclet number).
Because computational microfluidics provides a full mapping of
the species and mineral evolution in the system, macroscopic
properties can be obtained directly by averaging the simulation
results, something that is barely achievable experimentally. For
example, knowing the exact distribution of solute concentration
including the local mass flux at the mineral surface (Soulaine
et al., 2017) volume-averaged the pore-scale results and proposed
a new law for quantifying the accessible reactive surface area, A,
based on the transport and reactivity conditions. It reads

A

A0
= 1− exp

(

−Pe−nDa−m
I

)

, (23)

where A0 is the geometric surface area of the porous sample and
n and m are model parameters. Similar relations that reduce the
accessible surface area based on hydrodynamics conditions were
used to reconcile experimental or numerical data at the larger
scales (Wen and Li, 2017; Deng et al., 2018).

3.2.2. Modeling of Precipitation Processes
Although computational microfluidics for simulating
precipitation processes are reported in the literature (Tartakovsky
et al., 2007; Li et al., 2008; Yoon et al., 2012; Huber et al., 2014;
Chen et al., 2015; Prasianakis et al., 2017; Ray et al., 2019), the
field is still scarce and more development and verification are
required to reach predictive capabilities. Pore-scale precipitation
cannot be treated simply as the reverse problem of dissolution.

Indeed, the creation of the solid phase during the precipitation of
minerals needs to consider the nucleation of mineral at the solid
surface. Moreover, the development of depth-averaged model for
precipitation is challenging because in microfluidic experiments
it is possible that precipitate preferentially form either on the top
and bottom plates or in the bulk (Beuvier et al., 2015; Yoon et al.,
2019). Model verification will use the ability of microfluidics to
design well-controlled experiments along with high-resolution
imaging and chemical characterization (Poonoosamy et al.,
2020).

3.2.3. Multi-Scale Reactive Transport Models
Hybrid-scale models have been proposed to describe reactive
systems that include multiple characteristic length-scales for
which some regions are described using pore-scale modeling
while others are modeled with continuum approaches (Liu and
Ortoleva, 1996; Liu et al., 1997). Two kinds of approaches
solve hybrid-scale problems. On the one hand, the domain

FIGURE 11 | Numerical simulation of tertiary low-salinity flooding in a

micromodel. The colormap corresponds to the ionic strength (mol/l) in the

domain. The non-aqueous phase appears in green (I = 0), the high salinity

water appears in dark blue (I = 3.6) and the low-salinity water appears in light

blue (I = 0.9). The simulation parameters are fully described in Maes and

Geiger (2018).
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decomposition technique solves different physics on separate
domains—one for Darcy flow, another for Stokes flow—linked
together through appropriate boundary conditions (Tartakovsky
et al., 2008; Molins et al., 2019). On the other hand, micro-
continuummodels use a single set of partial differential equations
throughout the computational domain regardless of the content
of a grid block (Steefel et al., 2015; Soulaine and Tchelepi,
2016). The latter approach is particularly well-suited to capture
the dynamic displacement of the interface between the porous
and solid-free regions without involving complex re-meshing
strategies. For example, micro-continuum models have been
used successfully to simulate the formation and growth of
wormholes in acidic environments (Ormond and Ortoleva, 2000;
Golfier et al., 2002; Soulaine and Tchelepi, 2016; Faris et al.,
2020).

3.2.4. Two-Phase Flow in Reactive Environments
The dynamics modeling of multiphase flow phenomena in
reactive environments is quite complex because it involves
tracking multiple interfaces that evolve as a function of the
details of the reactive transport: on the one hand, the fluid/fluid
interface is subject to surface tension forces, on the other hand,
the fluid/solid interface moves with chemical reactions at the
surface of the solid minerals. The modeling is complicated by the

dynamics of the contact line or thin films along the solid walls,
and by the transfer of mass across interfaces. Few research works
have been devoted to the modeling of multiphase flow with solid
boundaries that evolve with chemical reactions. Parmigiani et al.
(2011) have proposed an LBM approach to study the evolution
of capillary fingers in a porous medium that dynamically evolves
with the melting of the solid phase. Later, LBM has been extended
to multicomponent multiphase fluid flow and applied to reactive
transport with dissolution and precipitation (Chen et al., 2013,
2015). LBM-based approaches, however, are unstable for high-
density ratios between the liquid and the gas (Chen et al.,
2014a), which, therefore, limits the predictive aspects of such
modeling frameworks.

Alternatively, multicomponent multiphase reactive transport

can be modeled using the Volume Of Fluid method to track

the fluid/fluid interface and the C-CST approach to model the
transport of reactive species in the system, including the effect of

speciation and surface reactions (Maes and Menke, 2020). Maes
and Geiger (2018) used this model to track pH, solid surface
potential and contact angle alteration during injection of low-
salinity water in micromodels and were able to observe and
characterize for the first time the effect of secondary and tertiary
low-salinity flooding at the pore-scale (Figure 11). Moreover,
Soulaine et al. (2018) proposes new computational microfluidics

FIGURE 12 | Comparison between experimental and computational microfluidics. A calcite crystal is dissolved in a flow of hydrochloric acid at atmospheric

conditions. Carbon dioxide gas bubbles nucleate at the mineral surface, grow, coalesce, and eventually detach. The micro-continuum model for two-phase flow in

reactive environments can reproduce accurately the microfluidic experiments. The microfluidic experiment and simulation are fully described in Soulaine et al. (2018).
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FIGURE 13 | Evolution of a porous medium during the injection of acid. The

color map corresponds to the concentration of acid in the domain. Solid grains

are depicted in brown. (Left) Under single-phase flow conditions, the acid

penetrates the domain and dissolves the solid grains producing wormholes.

(Right) The mineral dissolution generates CO2 gas that occupies the pore

space, limits the dissolution process and prevents the development of

wormholes (Reprinted with permission from Soulaine et al., 2018, Copyright

Cambridge University Press 2018).

to simulate mineral dissolution in unsaturated porous media.
The model combines the reactive micro-continuum approach
developed in Soulaine et al. (2017) with the VOF and C-CST
methods. Chemical reactions and wettability conditions at the
mineral surface are described as immersed boundaries that evolve
with the dissolution of the solid phase. Microfluidic experiments
that consist of a calcite crystal dissolving in a microchannel after
the injection of an aqueous solution containing up to 1% of
hydrochloric acid were used to verify the predictive aspect of the
model (see Figure 12).

The model has been used to investigate the effect of carbon
dioxide production during the acidizing of carbonate formations.
Results show that under single-phase flow conditions, i.e.,
when the dissolution time of CO2 into the aqueous phase is
instantaneous, the solid structure dissolves forming wormholes.
However, if the characteristic time scale of CO2 dissolving in
brine is much longer compared to the rate of gas production,
then CO2 bubbles grow, coalesce and form flow barriers that

limit the transport of the acid in the domain (see Figure 13).
These flow barriers prevent the emergence of wormholes and
limit significantly the overall dissolution rate. This finding
is of great interest in acid stimulation processes for which
a gas phase can be produced (Prutton and Savage, 1945;
Thompson and Gdanski, 1993). Hence, the presence of a
second fluid phase under the same flow conditions may
lead to very different dissolution regimes, and the common
behavior diagrams that characterize the dissolution pattern
based on the Peclet and Damkohler numbers (Golfier et al.,
2002) have to be complemented, at a minimum, by a third
dimension that quantifies the solubility of the CO2 in the
aqueous phase.

4. CONCLUSION AND PERSPECTIVES

Computational microfluidics for geosciences offers an appealing
framework to investigate the coupled processes in geological
porous media. The integrated usage of experimental and
computational microfluidics is, therefore, a powerful approach
to decipher the complex mechanisms that occur in the soils
and the subsurface and to bring new insights into the
open challenges associated with the continuum-scale modeling
of flow and transport in geological systems. Microfluidic
experiments provide valuable benchmark data sets, leading to
more accurate and robust numerical solvers, while numerical
simulations augment microfluidic experiments by providing
high-resolution mapping of pressure and velocity profiles, solute
concentration, and mineral distribution that are not easily
measurable experimentally. Modern approaches can simulate
pore-scale events over a wide range of conditions including
multiphase flow and the microstructure evolution due to
precipitation and dissolution. Combining experimental and
computational microfluidics have led to new insights into
complex subsurface processes, such as CO2 geological storage,
low salinity flooding and acid stimulation. The paper presents
a snapshot of the current capabilities and discuss the validity of
depth-averaged models.

The future of this emerging scientific discipline is
guaranteed by the continuous improvements of numerical
algorithms, modeling, and high-performance computing.
The next generations of computational microfluidics will
be able to simulate the transport of particles including the
micro-dynamics of colloids, their aggregation and stability, the
attachment/detachment from the solid walls, and pore-clogging
mechanisms according to pH ad salinity conditions. This will
necessitate handling the strong coupling between hydro-electro-
chemical effects. Important efforts will be dedicated to the
consideration of biological processes including the growth
of biofilms.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

Frontiers in Water | www.frontiersin.org 16 March 2021 | Volume 3 | Article 64371421

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Soulaine et al. Computational Microfluidics for Geosciences

ACKNOWLEDGMENTS

We acknowledge the first reviewer for suggesting time-

dependent dispersion. The research leading to these results
has received support from the French Agency for Research
(Agence Nationale de la Recherche, ANR) through the Equipex

Planex ANR-11-EQPX-36, the Labex Voltaire ANR-10-LABX-

100-01, the grant CATCH ANR-18-CE05-0035, and through

the FraMatI project under contract ANR-19-CE05-0002. It has
also received financial support from the CNRS through the
MITI interdisciplinary programs, and from the UK EPSRC
funded project on Direct Numerical Simulation for Additive
Manufacturing in Porous Media (grant reference EP/P031307/1).
Finally, SR and JM would like to thank ALLIANCE (Partenariat
Hubert Curien) for the grant that enable the scholar exchange
of scientists.

REFERENCES

Abadie, T., Aubin, J., and Legendre, D. (2015). On the combined effects of surface

tension force calculation and interface advection on spurious currents within

volume of fluid and level set frameworks. J. Comput. Phys. 297, 611–636.

doi: 10.1016/j.jcp.2015.04.054

Abu AlSaud, M. O., Esmaeilzadeh, S., Riaz, A., and Tchelepi, H. A. (2020).

Pore-scale study of water salinity effect on thin-film stability for a moving

oil droplet. J. Colloid Interface Sci. 569, 366–377. doi: 10.1016/j.jcis.2020.

02.044

Abu AlSaud, M. O., Popinet, S., and Tchelepi, H. A. (2018). A conservative

and well-balanced17 surface tension model. J. Comput. Phys. 371, 896–913.

doi: 10.1016/j.jcp.2018.02.022

Abu AlSaud, M. O., Soulaine, C., Riaz, A., and Tchelepi, H. A. (2017). Level-

set method for accurate modeling of two-phase immiscible flow with moving

contact lines. arXiv[Preprint]. arXiv:1708.04771.

Agrawal, P., Raoof, A., Iliev, O., and Wolthers, M. (2020). Evolution of pore-shape

and its impact on pore conductivity during co2 injection in calcite: single pore

simulations and microfluidic experiments. Adv. Water Resour. 136:103480.

doi: 10.1016/j.advwatres.2019.103480

Alpak, F., Riviere, B., and Frank, F. (2016). A phase-field method for the

direct simulation of two-phase flows in pore-scale media using a non-

equilibrium wetting boundary condition. Comput. Geosci. 20, 881–908.

doi: 10.1007/s10596-015-9551-2

AlRatrout, A., Blunt, M. J., and Bijeljic, B. (2018). Spatial correlation of contact

angle and curvature in pore-space images. Water Resour. Res. 54, 6133–6152.

doi: 10.1029/2017WR022124

Andre, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., et al. (2013a).

Digital rock physics benchmarks Part I: imaging and segmentation. Comput.

Geosci. 50, 25–32. doi: 10.1016/j.cageo.2012.09.005

Andre, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., et al. (2013b).

Digital rock physics benchmarks Part II: computing effective properties.

Comput. Geosci. 50, 33–43. doi: 10.1016/j.cageo.2012.09.008

Aris, R. (1956). On the dispersion of a solute in a fluid flowing through a tube. Proc.

R. Soc. A. 235, 67–77. doi: 10.1098/rspa.1956.0065

Arns, C., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard,

A., et al. (2005). Pore-scale characterization of carbonates using x-ray

microtomography. SPE J. 10, 475–484. doi: 10.2118/90368-PA

Bayestehparvin, B., Abedi, J., and Ali, S. M. F. (2015). “Dissolution and

mobilization of bitumen at pore scale,” in SPE Canada Heavy Oil

Technical Conference (Calgary, AL: Society of Petroleum Engineers).

doi: 10.2118/174482-MS

Békri, S., Thovert, J., and Adler, P. (1995). Dissolution of porousmedia.Chem. Eng.

Sci. 50, 2765–2791. doi: 10.1016/0009-2509(95)00121-K

Békri, S., Thovert, J.-F., and Adler, P. (1997). Dissolution and deposition in

fractures. Eng. Geol. 48, 283–308. doi: 10.1016/S0013-7952(97)00044-6

Berg, S., Cense, A., Jansen, E., and Bakker, K. (2010). Direct experimental evidence

of wettability modification by low salinity. Petrophysics 51, 314–322.
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Core flooding experiments to determine multiphase flow in properties of rock such as

relative permeability can show significant fluctuations in terms of pressure, saturation, and

electrical conductivity. That is typically not considered in the Darcy scale interpretation

but treated as noise. However, in recent years, flow regimes that exhibit spatio-temporal

variations in pore scale occupancy related to fluid phase pressure changes have been

identified. They are associated with topological changes in the fluid configurations

caused by pore-scale instabilities such as snap-off. The common understanding of

Darcy-scale flow regimes is that pore-scale phenomena and their signature should have

averaged out at the scale of representative elementary volumes (REV) and above. In

this work, it is demonstrated that pressure fluctuations observed in centimeter-scale

experiments commonly considered Darcy-scale at fractional flow conditions, where

wetting and non-wetting phases are co-injected into porous rock at small (<10−6)

capillary numbers are ultimately caused by pore-scale processes, but there is also a

Darcy-scale fractional flow theory aspect. We compare fluctuations in fractional flow

experiments conducted on samples of few centimeters size with respective experiments

and in-situ micro-CT imaging at pore-scale resolution using synchrotron-based X-ray

computed micro-tomography. On that basis we can establish a systematic causality

from pore to Darcy scale. At the pore scale, dynamic imaging allows to directly observe

the associated breakup and coalescence processes of non-wetting phase clusters,

which follow “trajectories” in a “phase diagram” defined by fractional flow and capillary

number and can be used to categorize flow regimes. Connected pathway flow would

be represented by a fixed point, whereas processes such as ganglion dynamics follow

trajectories but are still overall capillary-dominated. That suggests that the origin of

the pressure fluctuations observed in centimeter-sized fractional flow experiments are

capillary effects. The energy scale of the pressure fluctuations corresponds to 105-106

times the thermal energy scale. This means the fluctuations are non-thermal. At the

centimeter scale, there are non-monotonic and even oscillatory solutions permissible

by the fractional flow theory, which allow the fluctuations to be visible and—depending
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on exact conditions—significant at centimeter scale, within the viscous limit of classical

(Darcy scale) fractional flow theory. That also means that the phenomenon involves both

capillary aspects from the pore or cluster scale and viscous aspects of fractional flow

and occurs right at the transition, where the physical description concept changes from

pore to Darcy scale.

Keywords: multiphase, pore scale, fractional flow analysis, fluctuations, displacement

INTRODUCTION

Multiphase flow in porous media is an integral part in many
aspects of every-day life and plays a critical role in some of
the most important processes and technologies from agriculture
to energy. Examples range from the hydrology in the Vadose
zone where the water table rises and falls and water and
air occupy the pore space in soil, contaminant hydrology,
hydrocarbon recovery, hydrogen storage, and carbon capture and
sequestration (CCS) (Bui et al., 2018). Multiphase transport is
also a rate-limiting step in gas diffusion layers in electrocatalytic
devices such as fuel cells (Simon et al., 2017), electrolysis, and
more novel concepts, where CO2 is converted into base chemicals
(Kondratenko et al., 2013).

In most applications, multiphase transport is described with
the 2-phase Darcy equations, which are a continuum mechanic
concept for relating transport, i.e., average phase fluxes to

average pressure gradients applicable at the “Darcy scale.” They
are phenomenological extensions of Darcy’s law from single

to multiphase flow. One of the consequences of operating
with a phenomenological transport equation is that it contains

parameters, such as relative permeability, which cannot be
predicted within the framework of the 2-phase Darcy equations.
Since relative permeability is specific to the porous medium
and its chemical interaction with the fluids present manifesting
in characteristic wetting behavior of the system (Abdallah
et al., 2007), they have to be determined for each situation
individually. Common methods to experimentally determine
relative permeability are core flooding experiments, which are
typically conducted on porous media samples of few centimeters
in size. For instance, in the petroleum industry, cylindrical
rock samples from drilled cores are used, which are limited
in size by the diameter of the core and are typically between
2.54 and 5.00 cm in length and diameter, which is commonly
assumed to represent Darcy scale. The steady-state method is
one of the most trusted methods as it provides a wide accessible
saturation range and in combination with numerical simulation
(Kokkedee et al., 1996; Masalmeh et al., 2014; Sorop et al.,
2015) allows the correct treatment of experimental artifacts,
such the capillary end-effect (Huang and Honarpour, 1998).
In steady-state experiments, the two immiscible fluids phases,
e.g., water or brine and oil or gas are co-injected at stepwise
varied fractions of wetting phase flux over total flux, termed
fractional flow fw. At each fractional flow step, fluids are
co-injected until a “steady-state” has been reached, which is
defined by saturation, pressure-drop, and electrical resistivity
becoming time-independent, i.e., dSw/dt = 0, where Sw is
the space and time-averaged saturation. Relative permeability

is then determined from the time-averaged pressure-drop and
time-averaged saturation.

However, many of these fractional flow experiments show
notable fluctuations (Datta et al., 2014a,b; Masalmeh et al., 2014;
Reynolds and Krevor, 2015; Rücker et al., 2015a; Sorop et al.,
2015; Gao et al., 2017, 2019, 2020; Lin Q. et al., 2018; Alcorn et al.,
2019; Clennell et al., 2019; Lin et al., 2019a; Spurin et al., 2019;
Wang and Masalmeh, 2019; Menke et al., 2021), for instance in
pressure drop but also saturation. In some cases, the magnitude
of these fluctuations is comparable or even larger than the
average values of the respective property, e.g., pressure drop,
between the previous or following fractional flow. Historically,
such fluctuation have been considered as indicative for failed
experiments and often led to dismissal of the experiment. That is
potentially the reason why despite extensive literature on steady-
state relative permeability in only relatively few cases the raw data
is shown. Even in the cases where pressure drop as a function of
time is shown, it is often not clear whether this data is filtered or
smoothed, operating under the assumption that the fluctuations
are caused by noise.

Also, pressure fluctuations are more prominent for water-wet
rock and much less visible for intermediate or mixed-wet cases
(Jung et al., 2016; Lin Q. et al., 2018; Lin et al., 2019a), where
the magnitude of capillary pressure is much less or even near
zero (Lin et al., 2019a). Experiments conducted on twin samples
of the same rock to exclude all other factors show noticeable
fluctuations in the water-wet case (Lin Q. et al., 2018) but much
less in the intermediate-wet case (Lin et al., 2019a), which has
been achieved by aging with crude oil. In the intermediate-wet
case, capillary pressure is near zero, because the mean curvature
is near zero, which has been established from imaging the liquid-
liquid interfaces by micro-CT. But that does not mean the
interfaces are flat, but rather form bi-continuous interfaces that
allow both aqueous and oil phases to be continuous at the same
time, i.e., fractional flow does not cause displacement events,
which is the primary reason why pressure fluctuations are less.
Wettability heterogeneity may also impact the magnitude of
fluctuations due to the associated energy dissipation (Murison
et al., 2014). Also, fluctuations are stronger for a gas-liquid system
and more often reported explicitly (Alkan and Müller, 2008;
Reynolds and Krevor, 2015; Xu et al., 2015; Spurin et al., 2020),
which suggests that viscosity ratio may be an important factor,
which has been also reported in (Spurin et al., 2019).

Pore scale experiments (DiCarlo et al., 2003; Moebius and
Or, 2012; Berg et al., 2013, 2014; Armstrong et al., 2014a;
Reynolds et al., 2017; Lin Q. et al., 2018; Lin et al., 2019a)
and numerical simulations (Lenormand et al., 1983; Raeini
et al., 2014; Armstrong et al., 2015; Guédon et al., 2017; Alpak
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et al., 2019; Berg C. F. et al., 2020; Winkler et al., 2020)
also exhibit fluctuations in pressure and saturation (Ramstad
and Hansen, 2006; Pak et al., 2015), which are caused by
pore scale displacement events, such as Haines jumps and
coalescence (Rücker et al., 2015b), where the non-wetting
phase replaces the wetting phase and snap-off and piston-
like displacement (Lenormand et al., 1983; Dixit et al., 1998),
where the wetting phase replaces the non-wetting phase. These
events lead to interruption and rearrangement of the connected
pathways the respective phases flow through (Tuller and Or,
2001) and are described by a rigorous theoretical framework
of pore-scale thermodynamics (Morrow, 1970). Depending on
flow rate and other conditions (Avraam and Payatakes, 1995a;
Lenormand and Touboul, 1998), there are different regimes
that can cause fluctuations in pressure and saturation that
have been systematically investigated in Avraam and Payatakes
(1995a), Tsakiroglou (2019). The main regimes identified were
connected pathway flow, ganglion dynamics and drop traffic.
While sequences of oil-filling and water filling events of different
nature cause ganglion dynamics (Rücker et al., 2015b) already at
capillary numbers below Ca < 10−6, effects such as ganglion
dynamics, where such events occur repeatedly at the same
location (Lenormand et al., 1983; Datta et al., 2014a,b; Gao
et al., 2017, 2019, 2020; Spurin et al., 2019), are often observed
close to the critical capillary number for capillary de-saturation
(Berg and Cense, 2009) and likely caused by viscous mobilization
and associated breakup, which can in the extreme case lead
to “drop traffic” (Avraam and Payatakes, 1995a,b). Note that
in the porous media literature, the term “intermittency” is
frequently used instead of ganglion dynamics. However, outside
the porous media community, this term is commonly associated
with turbulent flow, which could lead to misconceptions as in
porous media, and this behavior is often observed already in
the capillary dominated regime. Periodic pressure fluctuations
can also be caused by snap-off of non-wetting phase bubbles
at the outlet although this is a mechanism observed more in
spontaneous imbibition (Unsal et al., 2007a,b; Unsal et al., 2009;
Bartels et al., 2019). While the exact pore scale mechanism can
differ, the pressure signature is typically caused by capillary
effects in a capillary-dominated regime (Singh et al., 2019). A
recent pore scale simulation study that shows such fluctuations
caused by pore-scale displacement events introduced the term
“athermal” to characterize the energy scale of these fluctuations
(Winkler et al., 2020).

The referenced literature suggests that these non-thermal
fluctuations are a relatively universal phenomenon occurring in
a very wide range of rock types and are observable on different
scales. The key step that has been missing so far is a direct
link between pore-scale fluctuations and Darcy scale behavior,
which is the focus of this paper. This link between fluctuations
observed in core flooding experiments at a length scale of several
centimeters and their origin from pore scale displacement events
is important because from both a very fundamental perspective
and also for practical reasons. It is important to understand
whether fluctuations are caused by pore scale displacement
events, because such events are always to some extent irreversible
and associated with the dissipation of energy (Morrow, 1970;
Seth and Morrow, 2007; Berg et al., 2013). The big question is

whether this energy dissipation by pore scale events is correctly
captured when using time-averaged pressure and saturation data.
At this moment, we do not fully understand the consequence
of the averaging in case that fluctuations are not just noise
but indeed caused by pore scale displacement events. Also, for
the interpretation of such experiments by inverse modeling to
determine the relative permeability (Berg S. et al., 2020), for a
correct assessment of the associated uncertainty, it is important to
understand whether fluctuations are noise or have another cause,
e.g., a physical mechanism.

In this work we address this question of the link between
fluctuations and pore-scale displacement events by analyzing the
magnitude and statistics of Darcy scale “steady-state” fractional
flow experiments for different rocks and fluid/fluid/solid wetting
and comparison with pore-scale fractional flow experiments with
synchrotron beamline-based fast x-ray computed tomography.
We will discuss the reason why fluctuations involve hundreds or
more pores. From a pore scale perspective alone, this would not
be very obvious, because fluctuations are mainly associated with
individual pore scale displacement events and larger fluctuations
are interpreted from the pore scale perspective as ganglion
dynamics. The dominance of fluctuations involving hundreds
to thousands of individual pores becomes understandable as in
the transition to the Darcy scale fluctuations can only persist
if a permissible (Darcy-scale) fractional flow solution exists, for
which we will present supporting evidence. That emphasizes
the need to presenting both the pore scale and the Darcy scale
perspective on the same phenomenon. Each experiment has
significant complexity, which cannot be fully covered in this
work, which focuses very much on the link between pore and
Darcy scale. Therefore, we largely rely on thoroughly conducted
experiments on each scale using dedicated experimental setups
that are designed to rule out instrumental artifacts, i.e., avoid back
pressure controllers and other potential source of fluctuations
other than the ones caused by the multiphase flow in porous
media. We make use of the best experimental data that are
unfortunately not conducted on exactly the same sample.
We use Fontainebleau sandstone for Darcy scale experiments
and sintered glass of comparable pore size at the pore scale.
The phenomena found in the sandstone sample and the
sintered glass are comparable, which is also established through
consistency with other studies in the literature, which suggest
that phenomena are actually generic and observed in many
different rock types. The experiments we present here have the
highest level of confidence to rule out such artifacts, which is why
we gave priority over fully consistent samples. Ultimately, the
pressure signature but also associated fluctuations in connectivity
(McClure et al., 2016) (which in the Darcy scale experiments is
represented by electrical resistivity) (Liu Z. et al., 2018) provides

the connection between Darcy scale fluctuations and pore scale
displacement events.

METHODS AND MATERIALS

Two different set-ups were used in this study to relate pore-scale

mechanisms with Darcy-scale responses. The different set-ups,

sample preparation and analysis are described below.
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TABLE 1 | Fluid properties in pore-scale and Darcy-scale SCAL experiments.

Fluid Density (20◦C) Viscosity (20◦C)

Brine—pore scale 1,111 kgm−3 Similar to Darcy scale

Brine—Darcy scale 1,037 kgm−3 0.992 mPas

n-decane 731.9 kgm−3 0.933 mPas

Crude 1 934.7 kgm−3 88.43 mPas

Crude 2 833.9 kgm−3 4.87 mPas

Crude 3 859.2 kgm−3 9.47 mPas

Rocks and Fluids
For the Darcy scale experiments, a cylindrical Fontainebleau
sandstone sample with a diameter of d = 2.54 cm and a length of
L= 4.45 cm was used. Fontainebleau sandstone is a fine-grained,
well-sorted cretaceous sandstone outcropping in South France,
well-known for its regular grain framework, the almost mono-
mineral composition up to 99.5% quartz and for the absence of
clay in it (Jacquin, 1964; Al Saadi et al., 2017). The rock sample
had a porosity of φ = 0.13 and a permeability of Kabs = 5.32 ×

10−13 m2 (539 mD). This permeability is particularly well-suited
for special core analysis (SCAL) steady-state flow experiments,
because it falls in the middle of the operating envelope of the
setup, which has a maximum accessible permeability of about
2–3 Darcy. Before the experiment the rock sample was cleaned
in a chloroform-methanol azeotrope in a Soxhlett extractor to
complete water wetness. The sample was not aged with crude
oil and only inert fluids were used, which means that the rock
remained strongly water wet.

In a second series of Darcy scale experiments addressing the
effect of wettability through variation of fluids, 3 cylindrical rock
samples of Bentheimer sandstone rock (Lin et al., 2019a,b) with
5 cm length and 3.8 cm diameter were used. The porosity ranged
between 0.246 and 0.248 and the permeability between 2,577 and
2,642 mD. The samples were cleaned with by Soxhlett extraction
and then saturated with brine for permeability measurements.
The three rock samples were then de-saturated with 3 crude
oils (basic properties are listed in Table 1 and analysis results
of total acid number (TAN), total basic nitrogen (TBN) and
SARA are listed in Table 2) and subsequently aged (Lin et al.,
2019b) for 40 days. Based on an extensive analysis of the crude
oils, the potential for wettability alteration is highest for crude
3, somewhat less for crude 2 and least for crude 1, i.e., it is
expected that for crude 1 the Bentheimer rock remains more
water wet, whereas for crude 3, the rock is expected to become
more intermediate wet.

For the micro-CT (pore-scale) flow experiments, a sintered
glass model purchased from Robuglass (Berg et al., 2014) was
chosen because of its large pores that are particularly well-suited
for imaging pore scale fluid distributions, i.e., muchmore suitable
than the very narrow pores of Fontainebleau sandstone. The
sample had a diameter of Ø = 4mm and a length of L = 2 cm.
The porosity determined from a segmented micro-CT image was
φ= 0.36. The permeability of Kabs = 1.38× 10−11 m2 (14 D) was
obtained from numerical flow simulation with the Navier-Stokes

TABLE 2 | Analysis of the 3 crude oils in terms of total acid number (TAN), total

basic nitrogen (TBN), and the SARA analysis in terms of saturates (Sat), aromats

(Aro), and resins (Res).

TAN TBN Sat Aro Res

mg KOH/g mg/kg wt-% wt-% wt-%

Crude 1 1.37 320 37.27 48.45 14.21

Crude 2 0.07 83.9 58.45 36.92 4.39

Crude 3 0.09 270.6 44.00 44.00 9.69

solver from GeoDICT (Math2Market) (Berg and van Wunnik,
2017). This permeability is too high for the SCAL steady-state
experimental setup (the associated pressure drops are too small
for the range of the pressure transducers). The sample is naturally
(from the sintering process) clean and strongly water wet.

The fluids used in both experiments was n-decane and brine
doped for contrast with 14.3% CsCl in the pore-scale experiment
and 5% in the Darcy scale experiment. Density ρ and viscosity
µ of the fluids are listed in Table 1. The interfacial tension was
around 40 mN/m. Decane and brine don’t form any emulsions,
which might hypothetically also cause pressure fluctuations
(Cobos et al., 2009; Yu et al., 2019).

“Darcy Scale” Fractional Flow Experiments
The Darcy scale experiments were conducted in an experimental
setup, which is routinely used for measuring relative permeability
with the so-called “steady-state” method, where water and oil
phases are co-injected at fractional flow:

fw =
qw

qw + qo
=

λw

λw + λn
=

1

1+
kr,n/µn

kr,w/µw

(1)

where qα are the fluxes and λα = kr,α/µα the mobility of phase
α, with the relative permeability kr,α and viscosity µα (α =

w for wetting phase and α = n for the non-wetting phase).
The co-injection at fw is realized by two dual-piston Quizzix
pumps (Chandler, Metek) that operate with zero-dead volume
switching valves for smooth and pulse-free continuous flow
(Vindum Engineering). Fluids are re-circulated (after separation)
without any back-pressure controller that could cause artifacts
such as pressure oscillations. The core is enclosed in an X-ray
transparent Hassler-type core holder made from carbon fiber
epoxy composite that allows in-situ saturation monitoring by
a self-built X-ray transmission system that measures saturation
at 22 positions along the core (Cense et al., 2014). During the
experiment, the pressures drop dPw is monitored at a 1min time
interval and saturation Sw and resistivity at a time interval of
8min 30 s. The conceptual overview of the setup is displayed in
Figure 1A.

At the inlet, the oil and water supplied by 1/16 inch tubing
are first dispersed by a set of diffusor plates with two rings of
concentric circular grooves followed by a metal mesh (both at
same cross section as the core) before entering the core. A similar
end piece construction is used at the outlet.
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FIGURE 1 | Experimental setups for the Darcy-scale fractional flow “SCAL” experiments (A) and pore scale “beamline” experiments (B). In the Darcy-scale

experiments oil and brine are co-injected at varying flow rates and fractional flow fw with 2 dual-piston Quizzix pumps that operate with zero-dead volume switching

valves for smooth and pulse-free continuous flow. Fluids are re-circulated (after separation) without any back-pressure controller. Saturation is measured in-situ during

the experiment using a linear X-ray scanner. The micro-CT setup (B) uses a core holder with 2 integrated micro-pumps (Berg et al., 2013) for water and oil co-injection

at specified fractional flow fw. At the outlet side the fluids are collected at ambient pressure, i.e., no back-pressure control system is used. The porous sample is

wrapped with paper (for a hydrophilic boundary condition) and heat-shrunk into a poly-carbonate cylinder. The setup is self-contained as it is rotating during the

micro-CT scans, i.e., no external flow lines are used. Power is supplied via slip rings and the pressure sensor readings are transmitted with a wireless system.

Starting with primary drainage, the fractional flow fw was
systematically changed from 100% brine (fw = 1) to 100% oil (fw
= 0), followed by 1st imbibition cycle, where the fractional flow
fw was systematically changed from 100% oil (fw = 0) to 100%
brine (fw = 1) in 10 saturation steps each. The total injection
rate of qw + qo was thereby kept constantly at 3 ml/min. That
corresponds to a capillary number of Ca = 10−5, which is still
smaller than the onset of capillary de-saturation in imbibition
and 1–2 orders below the onset of capillary de-saturation in
drainage (Berg and Cense, 2009) but also high enough to suppress
any capillary end-effect (Huang and Honarpour, 1998).

At each saturation step fw, the saturation and phase pressures
were recorded when, based on a constant pressure with a
variation of the respective average being <1%, steady state was
reached. The pressure readings were obtained with differential
pressure transducers (Rosemount, type 3051 with an accuracy
of ±0.15%) (Kokkedee et al., 1996). In addition, conductivity
and saturation profiles at 30 positions along the rock sample
were measured. The saturation profiles were obtained by X-
ray transmission measurements calibrated to both 100% brine
and oil saturation. The X-ray transmission is measured using
a home-built linear X-ray scanner with a conventional X-ray
tube and semiconductor-based detector, which makes individual
point measurements (after an 8min 30 s average to achieve
sufficient signal-to-noise ratio). For details on the equipment,

sample preparation, measurement procedures and analysis were
published in previous studies (Kokkedee et al., 1996; Berg
et al., 2016; Berg S. et al., 2020). For the particular case of
the strongly water-wet Fontainebleau sandstone sample, the
saturation profiles along the sample Sw(x) (not shown) are flat
as expected for a homogeneous sample and there is no noticeable
capillary end-effect. The absence of saturation gradients allows
us to directly compute the relative permeability-saturation
relationships using the two-phase extension of Darcy’s law for the
phase fluxes

qw/o = −
kr,α

µα

K
1pw/o

L
(2)

where kr,α is the relative permeability of phase α,K is the absolute
permeability of the porous medium, µα is the viscosity and 1pα

the pressure of phase α over sample length L.
Resistivity is measured by a 4-point impedance measurement

technique using (blackened platinum) electrodes embedded into
the end pieces of the core holder.

Micro-CT Beamline Experiments (PS)
The experiments were performed in 2012 at the TOMCAT
beamline of the Swiss-Light Source Synchrotron at the Paul-
Scherrer Institute, Villigen, Switzerland. The flow cell was
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specially designed for fractional flow experiments with two
remotely controlled micro piston pumps (based on linear motors
from Physics Instruments with a modified gear box for low-rate
injection) enabling pulse-free continuous, low rate injection
while performing 3D imaging (Berg et al., 2013; Rücker et al.,
2015a). The pumps are built-into the core holder itself, which
rotates continuously during the fast tomography in order to avoid
any displacements caused by bending of flow lines. Flow lines
of 0.8mm diameter directly enter the bottom of the core, which
has—because of lack of space—no extra diffusor plate. Since we
only monitor the middle section of the core, the first section of
the core acts as diffusor. The pressure of water and oil phases
at injection side was monitored with 2 pressure sensors (Keller
2 MI), which transmitted the pressure data in real-time using a
wireless method enabling a constant data acquisition in the field
of view during the experiment. The conceptual overview of the
setup is displayed in Figure 1B.

One full 3D image with a voxel size of 2.2µm was recorded
in 1min. The reconstructed micro-CT images were further
processed and segmented with the software package Avizo
(ThermoFisher). Details on the flow cell, sample preparation,
the experimental settings and image processing were described
previously (Armstrong et al., 2014a; Rücker et al., 2015a). Further
analysis was conducted with MatLab (MathWorks).

Even though at a resolution of 2.2 µm process such as film
flow are not resolved anymore, such sub-resolution physics is
effectively captured through the effective displacement events
leading to filling of pores or changes in non-wetting phase
connectivity, which is captured at this resolution.

The flow sequence included 3 fractional flow steps fw (fw =

0.8, fw = 0.5 and fw = 0.2), where at each fw the total injection
rate qtot = qw + qo was increased step-wise from 3 µl/min to
30 µl/min and 300 µl/min. The associated capillary numbers,
which will be shown later in more detail in Figure 13, are in the
capillary-dominated regime below the critical onset for viscous
mobilization (Oughanem et al., 2015).

The permeability of the segmented pore space (in the
imaged field of view) Kabs was computed by using a Stokes
flow simulation conducted with GeoDICT (Math2Market).
In addition, for selected time sequences of 2-phase flow
experiments, the permeability of water Kw and oil phases Ko was
computed in a similar fashion. The respective connected pathway
relative permeability for water kr,w and oil kr,o was then obtained
by dividing by the absolute permeability, i.e., kr,w/o = Kw,o/Kabs.

RESULTS AND DISCUSSION

One of the main findings of the Darcy scale experiment is
that the raw data contains fluctuations which—while varying in
amplitude significantly from experiment to experiment—have
often a systematic trend with fractional flow showing often
maximum amplitudes at intermediate fractional flows.

In section Fluctuations in “Darcy scale” Fractional Flow
Experiments, a detailed analysis of the noise structure in Darcy-
scale steady-state core flooding experiments is presented. The
focus is less the resulting relative permeability, which is also

shown for completeness, but rather the raw data itself. We make
a clear distinction between instrumental noise with Gaussian
distribution (noise as a random process would result in a
Gaussian probability distribution, fully described by its mean and
standard deviation) and fluctuations with much larger amplitude
than the instrumental noise for which we can largely rule out any
instrumental artifacts. In section Dependency of the Fluctuations
on Wettability the effect of wettability on the observed pressure
fluctuation is discussed.

Finally, in section Energy Scale of Fluctuations, the energy
scale of the large fluctuations observed in the Darcy scale flow
experiments is analyzed and identified as a capillary energy
scale, which is orders of magnitude larger than the thermal
energies, i.e., fluctuations are non-thermal and of pore-scale
origin. In section Time Scale of Fluctuations the time scale of the
fluctuations is put into perspective with other characteristic times
scales encountered in multiphase flow.

In sections Pressure and Saturation Fluctuations in Micro-
CT fractional Flow Experiments, Pore Scale: Breakup and
Coalescence Processes–Ganglion Dynamics, Identification of
Pore Scale Flow Regimes by Collective Cluster Dynamics and
the Pressure/Saturation Signature of Ganglion Dynamics the
results from the synchrotron-beamline based micro-CT flow
experiments are presented. The pore scale events presented
in section Pressure and Saturation Fluctuations in Micro-CT
Fractional Flow Experiments have similar amplitude as the
significant fluctuations observed in the Darcy scale experiments
in section Fluctuations in “Darcy scale” Fractional Flow
Experiments. The pore-scale event observed under fractional
flow conditions show transitions between two discrete states,
which provides a further analogy to the oscillatory fluctuations
shown in section Fluctuations in “Darcy scale” Fractional
Flow Experiments. This is another piece of evidence that the
significant fluctuations observed in SCAL experiments are de-
facto caused by pore scale events. Using the insight of the in-
situ 3D imaging, in section Pore Scale: Breakup and Coalescence
Processes - Ganglion Dynamics the underlying fundamental
pore-scale mechanism of breakup and coalescence that constitute
ganglion dynamics and cause such events are discussed. In
section Identification of Pore Scale Flow Regimes by Collective
Cluster Dynamics and the Pressure/Saturation Signature of
Ganglion Dynamics the effective flow regimes are characterized
on the basis of saturation andmacroscopic capillary number. The
pore scale events discussed in section Pressure and Saturation
Fluctuations in Micro-CT Fractional Flow Experiments suggest
that ganglion dynamics events are initiated by an imbibition cycle
followed by a drainage cycle.

Fluctuations in “Darcy Scale” Fractional
Flow Experiments
Differentiation of Capillary Fluctuations From

Gaussian Noise
Fractional flow experiments, often also referred as the
steady-state method, are routinely used to determine relative
permeability from cylindrical rock samples. Two immiscible
fluids, such as oil and water are co-injected at fractional flow fw
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FIGURE 2 | Water pressure drop dPw, water saturation Sw and electrical conductivity during a SCAL fractional flow experiment to determine relative permeability on a

centimeter-sized Fontainebleau sandstone sample. Overview of the water pressure drop for all fractional flows fw (A) and fluctuations (with base line subtracted) for

(Continued)
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FIGURE 2 | selected fractional flow vs. time for pressure (blue) and saturation (red), fluctuation histogram and associated power law spectrum (B–E). While the

fractional flows fw ≥ 0.75, the fluctuation histogram follows a Gaussian shape (dotted light blue line in the middle in B–E) suggesting instrumental noise as cause. At

0.67 ≥ fw ≥ 0.02, the noise amplitude is significantly larger than instrumental noise and the histogram is clearly non-Gaussian and in most cases also non-symmetric

and even bi-modal (D,E) suggesting other causes than instrumental noise. For some fractional flows, e.g., fw = 0.1 the pressure fluctuations are almost perfectly

periodic (D) with an oscillation period of t ≈ 21 min, which is also reflected in a peak in the Fourier spectrum (marked with a blue arrow). Similarly, for Sw also perfectly

periodic behavior can be observed, although at different frequencies (marked with red arrow), which could be potentially caused by the different sampling rates of dP

(1min intervals) and Sw (8min 30 s intervals).

(Equation 1) following a sequence of fractional flow steps that
starts at fw = 1 (only brine) to fw = 0 (only oil) for a drainage
experiment and vice versa for imbibition. In Figure 2 the raw
data of the experiment, i.e., the pressure drop 1p, saturation Sw,
and electrical conductivity are plotted for a drainage experiment
in the Fontainebleau sandstone sample.

Figure 2A shows an overview of the whole experiment, where
fw, pressure drop dPw, saturation Sw, and resistivity are plotted
for a constant flow rate drainage experiment as a function of
injected pore volumes (bottom axis) and time (top axis). Pressure
drop dPw, saturation Sw, and resistivity show fluctuations that are
very small for high fractional flows but increase for intermediate
fractional flows significantly. For a more detailed view and
analysis for each fractional flow, the fluctuations were isolated by
subtracting the base line (using a moving average window). In
the left panel of Figures 2B–E for 4 selected fractional flows, the
isolated fluctuations for pressure drop dPw and saturation Sw are
displayed.

In the middle panel of Figures 2B–E, the fluctuation
histogram is shown. For fractional flows fw ≥ 0.75 (which is
not a hard cut-off but rather based on the observations in the
fractional flow sequence that has been established over several
years as standard protocol), the histogram is symmetric and in
good approximation of Gaussian shape, see also Figure 3, where
the respective histograms for pressure and saturation fluctuations
are fitted with a Gaussian. That indeed suggests instrumental
noise as cause for the fluctuations. However, for 0.67 ≥ fw ≥ 0.02
the fluctuation histogram is clearly non-Gaussian as the middle
panel of Figures 2C–E show (a Gaussian fit is added for visual
comparison as dotted line). The histogram is not symmetric and
for fw = 0.1 and fw = 0.02 has even a bimodal distribution
(middle panel of Figures 2D,E). Pressure fluctuations range up
to δdPw = ±0.15 bar and saturation fluctuations up to δSw =

±0.05, i.e.,±5 percent points.
For these cases, the fluctuations are highly periodic, which

is also reflected in the peak in the Fourier transform of the
fluctuation time signal in the right panel of Figure 2. The
fluctuation spectra for saturation (and electrical conductivity
data in Figure 2A) differ from the pressure fluctuations, which
could be a consequence of the different sampling rates. The
pressure is sampled at 1min time intervals, which means that
fluctuations at a 2min time interval are resolved. Saturation and
resistivity are only monitored at an 8min 30 s time interval.
Faster fluctuations are not explicitly resolved.

When performing time averages of the detected signal, a
smoothening operation commonly applied during the analysis of
multiphase flow experiments in porous media, the fluctuations,
which are initially clearly non-Gaussian and even bi-modal as in

Figure 2E, become increasingly symmetric as shown in Figure 4.
Here, a rolling average over a window of 2, 4 and 16 individual
data points was used. After sufficient averaging, the histogram
(Figure 4B) becomes perfectly Gaussian (which is a consequence
of the central limit theorem) and the information this signal may
have originally contained get lost, which has implications for the
interpretation of the energy dissipation (McClure et al., 2020a,b).

For fw < 0.67, the pressure fluctuations δ1p are much larger
than what would be expected from the behavior of the pure
noise from instrumentation, which has been established based on
amplitude and Gaussian shape of the histogram in Figure 3. The
pure instrumental noise can be established from fw = 1.0, which
corresponds to the injection of 100% brine into a fully brine-
saturated rock without any oil, representing single-phase flow
conditions. Nevertheless, the instrumental noise of the pressure
transducer is proportional to the magnitude of the pressure.With
δ1p ∝ 1p we can extrapolate a noise trend from the first 6 fw,
which is illustrated by the dotted line in Figure 5A. In Figure 5B

a similar approach was applied to saturation Sw (Cense et al.,
2014). This way the fluctuations can be separated from the noise.
Fluctuations falling into the noise regime (below the dotted lines
in Figures 5A,B) can be either instrument noise or pore-scale
events. But for the events with standard deviation significantly
above that line, instrumentation noise can be ruled out entirely.

Differentiation of Capillary Fluctuations From

Experimental Artifacts
As Figures 2–5 illustrate the strong pressure fluctuations do not
occur for all fractional flows but primarily for fractional flows
0.5 < fw ≤ 0.02 as shown in Figure 5C, where the presumably
both fluid phases are mobile and ganglion dynamics (Rücker
et al., 2015b) is possible.

In order to characterize the periodic aspect of the fluctuations,
the three largest peaks in the Fourier spectrum are displayed in
Figures 5C,D. Note that in order to separate dominant peaks
with significant amplitude from insignificant peaks the dot size
represents peak amplitude and color its prominence (ratio of
peak amplitude to that of the next peak). The same representation
is used in Figures 5C,D. Based on the magnitude of the periodic
fraction one can divide the fluctuations into a periodic and
non-periodic dominated regime as indicated in Figures 5C,D.
While Figure 5C suggests that fw is a control parameter for
the magnitude of fluctuations in general, i.e., including periodic
and non-periodic ones and also the magnitude of the periodic
oscillations (PSD) initially scales with fw, the frequency of the
dominant peaks do not scale with fw as shown in Figure 5D.

As already established in section Differentiation of Capillary
Fluctuations From Gaussian Noise, the significant fluctuations
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FIGURE 3 | Pressure drop dp and saturation Sw fluctuation (Sw fluctuations were magnified by factor 5 for better visibility) from Figure 2 for fractional flows

1.0 ≥ fw ≥ 0.75 showing an almost perfectly Gaussian behavior (dotted lines represent a Gaussian fit to the respective data). For dp the correlation coefficient R2 is

0.94–0.96. For Sw the correlation coefficient ranges between 0.41 and 0.69, which is likely because of the lower signal-to-noise of the Sw data.

FIGURE 4 | Pressure fluctuations for fw = 0.02 from Figure 2E, and rolling-averages over a window of 2, 4, and 16 data points (A). While the histogram for the

original data (blue) set is bi-modal and clearly distinct from a Gaussian (dotted line), the histograms of the averages become increasingly symmetric and can be fitted

very well with Gaussians (B). The Fourier spectrum (C) shows that smaller frequencies remain unaffected up to the frequency associated with the timer period of the

averaging window.

occurring at intermediate fractional flows are not caused by
instrumental noise. We can also largely rule out other artifacts
from the experimental setup. These would manifest in a scaling
of the periodicity with fo, which is not observed. Also, common
effects known from traditional experimental setups for fractional
flow, can be ruled out due to the design chosen in the
outlined work.

In traditional set-ups one likely cause of fluctuations is the
back-pressure control system. Membrane-based back-pressure
regulators may oscillate when two immiscible fluid phases pass
through simultaneously, or pumps with a servo control system
for back-pressure control could potentially cause oscillations as
well. However, in this particular setup the fluids were internally
circulated, and no back-pressure control system was used, see
Figure 1A. The two Quizzix feed pumps do use a servo control
system for maintaining a constant flow rate. But that servo
control system is only reacting on feedback of the pump piston
movement, which is independent of the flow dynamics within

the rock sample. Furthermore, if this set-up would induce
fluctuations, then these would be visible at all fractional flows
including fw = 1.0 and fw = 0.0. But, at these fractional flows
no oscillations were observed.

The frequency of the dominant Fourier peaks does not show
any obvious systematic, e.g., linear dependency on oil fractional
flow fo = 1 − fw. If—hypothetically speaking—the periodic
oscillations were an instrumental artifact one would expect a
dependency with the rate of oil injection, i.e., qo = fo · qtot
at constant qtot . Doubling fo would then double the oscillation
frequency. That was not observed. The dark-gray dotted line in
Figure 5D representing such scaling with fo = 1 − fw made to
pass (by choice of a suitable offset) the dominant peak in the
Fourier spectrum at fw = 0.1 (Figure 2D) does not pass the
dominant peaks at fw = 0.05 and fw = 0.02 (Figure 2E). A more
general linear model (light gray dotted line) does not describe the
data either. It may pass through some of the dominant peaks but
miss other dominant peaks of the Fourier spectrum. That clearly
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FIGURE 5 | Separating the non-thermal fluctuations from instrumental noise: Standard deviation of the noise for pressure drop (A) and saturation (B) for each fw
plateau (added as label for each point) in Figure 2A as a function of the respective mean values for each fw plateau. For the pressure drop 1p (A), for fw ≥ 0.67 an

approximately linear increase is observed meaning that the pressure fluctuations are proportional to the mean pressure (dotted red line). But at fw < 0.67 the

fluctuations are up to more than 3 times the value above the noise. The saturation (B) follows a somewhat similar behavior in the sense that the fluctuations can be

much larger than noise. But there is no direct proportionality between pressure and saturation fluctuations. The maximum in fluctuations is observed also for different

fw (C). The periodic fraction of the fluctuations characterized by the PSD of the FFT from Figures 2B–E (dot size represents peak amplitude and color its prominence)

shows a somewhat similar trend with fw.Based on the magnitude of the periodic fraction one can divide the fluctuations into a periodic and non-periodic dominated

regime. However, the frequency of the dominant peaks in the Fourier spectrum do not show any obvious systematic, e.g., linear dependency on fractional flow (D).

rules out any instrumental artifacts related to the regulation of oil
fractional flow, or also injection instabilities into the rock, as they
would all be expected to scale with oil injection rate, i.e., fo.

Analysis of Capillary Fluctuations at the Darcy-Scale
In order to gain deeper insight into the cause for the oscillations,
which have also been observed in several independent pore scale
experiments (Spurin et al., 2020; Menke et al., 2021), in Figure 6

we show the saturation profiles for fw = 0.1, which has the
longest oscillation period and the sampling rate of saturation
would be sufficient to resolve both pressure and saturation. A
closeup of the pressure data from Figure 2D for the same time

interval of saturation profiles is shown in Figure 6A. While the
pressure data goes through 5 oscillations, the saturation shows
only 2 full oscillations. The respective saturation profiles for
the same time interval are shown in Figure 6B. For clarity,
the saturation profiles have been vertically shifted. The wave
structure is better visible in the space-time contour plot shown
in Figure 6C.

The saturation profiles show a peak that travels from inlet to
outlet at constant velocity. The dashed black lines in Figure 6B

represent the wave, which is better visible in the space-time
plot in Figure 6C. Even though Figure 6C may appear at first
glance as a standing wave, a water saturation peak (red) moving
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FIGURE 6 | Pressure and saturation fluctuations for fw = 0.10 (limited range, 0–5700 s from Figure 2D) (A) and fw = 0.05 (D) showing pressure data in blue and

saturation data (sampled at much lower frequency) in red. Respective saturation profiles (B,E, which have been vertically shifted for clarity) exhibit a water saturation

peak, which moves from inlet to outlet at constant velocity, forming a traveling wave, which repeats one the peak reaches the outlet. The wave structure in (B,E) has

been emphasized by adding the dashed black lines. The wave structure is better visible in the space-time contour plots in (C,F). For fw = 0.10 the wave velocity is

vSw = 0.75 mm/min and for fw = 0.05 the wave velocity is between 1.7 and 2.1 mm/min.

horizontally from left to right at different times t (vertical
coordinate). The fact that in the space-time plot in Figure 6C

diagonal structures at constant angle and constant spacing are
found suggests that the water saturation peak moves at constant
velocity, which ultimately reveals a traveling wave structure,
which through its repetitive pattern is emphasized in the space-
time representation. A similar behavior is observed for fw = 0.05
shown in Figures 6D–F.

In the experiment the behavior was reproducible. In total,
3 drainage and 3 imbibition cycles were performed. The
experiment started with the 1st drainage cycle arriving at connate
water saturation of ∼4%. It was followed by the 1st imbibition
cycle arriving at a residual oil saturation of ∼48%, which
is typical for a strongly water-wet rock sample such as the
non-aged Fontainebleau sandstone. Then the rock was cleaned
in-situ by flushing with iso-propanol without removing the
sample. Then the 2nd drainage and 2nd imbibition cycle were
performed, followed by in-situ cleaning and finally conducting
the 3rd drainage and 3rd imbibition cycle. The respective relative
permeability computed from the raw data (such as the 1st
drainage cycle from Figure 2) are displayed in Figure 7. For
all 3 cycles the relative permeability data overlaps indicating
excellent repeatability of the experiment. We observe overall
larger noise amplitudes in the drainage cycles than for the
imbibition cycles (not shown), which suggests that hysteresis may
play a role.

By comparing the speed of the traveling wave from the
experiment with the prediction of fractional flow theory we
can test whether the wave propagation is a simple fractional
flow phenomenon. According to fractional flow theory, vD =

xD/tD = dfw/dSw, which is shown as an inset in Figure 8B.
xD = x/L is the dimension distance (L is the length of the
core) and tD = PVinjected/PV the dimensionless time (PV =pore
volume). For fw = 0.10 the wave velocity in the experiment is
v = 0.76mm/min, which corresponds to a dimensionless velocity
vD = 0.46. For fw = 0.05 the wave velocity v is between 1.7
and 2.1 mm/min, which corresponds to dimensionless velocity
vD = 2.1− 2.6.

In Figure 8B, we show the fractional flow curves for the
saturation range of interest, and in Figure 8C, the respective
vD = dfw/dSw. For fw = 0.05, the experimentally measured
vD is more compatible with the imbibition curve, whereas
for fw = 0.10 the wave velocity is more compatible with
the drainage curve. At first glance that appears somewhat
inconsistent. However, when taking a closer look at the fractional
flow construction involving two fractional flow curves, which is
analogous to a moving an oil bank known, e.g., from polymer
flooding (Lake, 1984), we notice a somewhat subtle detail, which
is an inflection point around f ∗w ≈ 0.12 above which the water
saturation of the bank (wave peak) increases compared with the
initial saturation Sw,i for the respective flow. An example is shown
in Figure 8A for fw = 0.15. If we consider the experimental
uncertainties in terms of saturation measurements and instead
of using dotted blue lines in Figures 8D,E as initial saturations
but the lowest saturation observed, it is very well possible that
in the experiment the inflection point is at 0.07 < f ∗w < 0.10.
That would imply that for fw = 0.10 we have indeed a water
bank pushed by oil (which is drainage) and for fw = 0.05 we
would have an oil peak pushed by water (imbibition). From
the experiment, it is difficult to distinguish between the two
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FIGURE 7 | Relative permeability for water (blue) and oil (red) for the SCAL experiment with the strongly water-wet Fontainebleau sandstone sample for the 1st, 2nd,

and 3rd cycles for drainage (A–C) and imbibition (D–F). Each cycle consisted of drainage, followed by imbibition, and sub-sequent in-situ cleaning of the sample with

iso-propanol inside the setup without unmounting/remounting the sample. There is excellent repeatability between individual experiments. The dotted lines show a

Corey fit of the data. The fractional flow functions fw (Sw ) for the first drainage and imbibition cycle are shown in (C,F), respectively.

situations based on saturation profiles because the phenomenon
is repetitive, and it is not fully clear, which phase is displacing and
which phase is displaced. Within the experimental uncertainties,
it is very well possible that the fw = 0.10 experiment is above
f ∗w , whereas the fw = 0.05 experiment is below the inflection
point f ∗w . That would explain why the experimentally observed
wave velocities follow the prediction from fractional flow theory

vD = dfw/dSw for drainage at fw = 0.10 and imbibition for the
fw = 0.05 shown in Figure 8C.

The correct modeling of the traveling water peak involves
hysteresis in the relative permeability-saturation functions.
For the situation encountered in the experiment, the relative
permeability would actually reflect a scanning curve, which needs
to be considered in respective analysis (Plohr et al., 2001).
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FIGURE 8 | Fractional flow fw (Sw ) (A,B) and the derivative vD = dfw/dSw (C) for fw = 0.15 (A) and fw = 0.10 (B) for the saturation interval corresponding to the top

and bottom of the peak of the saturation waves (D,E). Representative examples of the wave profile are shown for fw = 0.10 (D) and fw = 0.05 (E). The wave for each

fractional flow consists of a water peak moving from inlet to outlet, which has water displacing oil at the front and oil displacing water at the back. The respective

fractional flow constructions are shown in (B), where the flow line is constructed from the intersection of the drainage fractional flow curve at respective fw step. The

fractional flow solution is the intersection between the blue line with the imbibition fractional flow curve (Lake, 1984). Note that depending on the exact value of the

initial saturations (D,E) there is an inflection point 0.07 < f *w < 0.12 above which the water saturation from the fractional flow solution increases compared to the initial

saturation (A), while below f *w it decreases (B). That would imply a change from oil pushing a water bank (drainage) at fw > f *w to water pushing an oil bank (imbibition)

for fw < f *w. That could explain why the experimentally observed wave velocities follow the prediction from fractional flow theory vD = dfw/dSw for drainage at higher

fractional flows and the imbibition line for smaller fractional flows. That transition is within the experimental uncertainty between fw = 0.10 and fw = 0.05. A saturation

profile with moving banks has an overall higher total mobility than a flat saturation profile for the saturation range Sw,c < Sw ≤ 0.4− 0.5 (F). The two experiments at

fw = 0.10 and fw = 0.05 are added as points, where for the computation of mobility, respective bank saturations and lengths have been taken from (D) and (E),

respectively.
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Such traveling waves with non-monotonic saturation profiles
are known to form under specific conditions for instance for
infiltration of water into dry soil (Schneider et al., 2018; Kmec
et al., 2019; Mitra et al., 2020) and can be theoretically described
with a range of models ranging from generalized Darcy-scale
formalisms with dynamic capillary pressure (Schneider et al.,
2018) to hybrid models combining Darcy physics and pore
scale aspects (Kmec et al., 2019). Mitra et al. (2020) provides a
mathematical model, where for specific choices of parameters,
the solution forms spirals in the Sw − pc space. The hysteresis
model by Plohr et al. (2001) demonstrates that for specific choices
of parameter values “loop”, i.e., recurring solutions can be found,
which implies stable orbits in phase space (Strogatz, 1994). These
consist of a sequence of water and oil bank, where the respective
final saturation and fractional flow serves as an initial condition
for the next wave sequence. In that way, the sequence becomes
recurring. Although Corli and Fan (2018) raise questions around
non-uniqueness, the principle does provide a reasonable working
hypothesis about the origin of the periodic waves observed in
the experiments.

Whether periodic wave structures are observed depends on
the initial condition Sw,i for each fractional flow fw, the fractional
flow fw and the underlying relative permeability functions, and
potentially also the domain size L. It cannot be excluded that
the large but non-periodic oscillations in Figure 2C are in the
end related to the same fractional flow effect, but cannot form
a closed loop (Plohr et al., 2001). More generally, phenomena at
the Darcy scale are only visible if a permissible fractional flow
solution exists, otherwise they would be dampened and a periodic
trigger from e.g., initial or boundary conditions would decay.

Physical Interpretation of the Wave Characteristics of

the Observed Fluctuations
While mathematically the solutions are permissible by fractional
flow theory, the question is now why from a physical perspective
a bank solution would form. A solution with moving banks
would be plausible if, for the same total pressure drop, more total
flux was transported than for a flat saturation profile. Whether
that is the case can be assessed by computing total mobility
for a flat saturation profile and compare it with the respective
total mobility for the situation with moving banks. For the flat
saturation profile the total mobility of water and oil phases,
weighted with the respective fractional flow

λ
flat
tot = fw

kdrainr,w

µw
+

(

1− fw
) kdrainr,o

µo
(3)

using drainage relative permeability (because overall it is a
drainage experiment). Note that the definition in Equation (3)
is different from standard fractional flow theory and in that sense
represents a pseudo-mobility. The weighting with the respective
fractional flow is done in order to estimate the total flux based
on the contributions of drainage and imbibition waves from
segregated flow. For the situation with a moving bank, we assume
based on the experimental observation that the saturation profile
is composed of one water and one oil bank and compute the
total mobility each bank separately. In absence of a rigorous

fractional flow solution, which would first require a very detailed
treatment for hysteresis, we simply estimate the top and bottom
saturations by adding a typical saturation fluctuation amplitude
of δSw = ±0.1 or δSw = ±0.2. For the water bank we use
imbibition relative permeability and for the oil bank drainage
relative permeability. We then weight the contribution of water
and oil bank by their respective length in the saturation profile,
i.e., the water bank is about 10–20% in terms length of the total
saturation profile lw = 0.1− 0.2 (see Figures 6C,F), i.e., λbanks =
lwλ

water bank + (1 − lw)λ
oil bank. In order to assess whether the

bank solution has higher mobility we divide λ
banks

/λ
flat , which is

plotted in Figure 8F. We see that depending on the magnitude of
δSw the bank solution has a higher mobility for saturations below
Sw < 0.4− 0.5, corresponding to approximately fw < 0.4, which
is also the range in which the large fluctuations in pressure and
saturation are observed (see Figure 5C). Note that the fractional
flow picture does not capture the effects of capillarity, which can
improve the microscopic sweep (Khorshidian et al., 2021).

The remaining question is what actually triggers the
fluctuations in general and waves in particular. In the following
sections, we will establish from pore scale fractional flow
experiments conducted in a similar steady-state manner as the
core flooding experiments in Figures 2–5 that periodic variations
of pressure and saturation already occur on the oil-cluster scale
and ultimately caused by pore scale displacement events (Berg
et al., 2013, 2014; Spurin et al., 2020; Menke et al., 2021).
The pressure and connectivity signature and 3D imaging of
respective pore scale fluid distributions observed in the fractional
flow micro-CT experiment suggest that pore scale displacement
events are the underlying cause of fluctuations that are still visible
in experiments commonly assumed at Darcy scale. They also
likely provide the trigger for the waves from Figures 6C,F.

Dependency of the Fluctuations on
Wettability
In order to investigate the dependency on rock wettability,
a systematic study was conducted using twin samples of
Bentheimer outcrop rock taken from the same block and selected
for homogeneity and similar properties in terms of porosity and
permeability. The rock was then de-saturated and aged with
3 different crude oils (“crude 1,” “crude 2,” “crude 3”) with
properties listed in Tables 1, 2. In Figure 9 the raw data of
the respective steady-state imbibition experiments (analogous to
Figure 2A) are shown.

The pressure fluctuations are largest for the sample aged with
crude 1 and become much smaller for Bentheimer samples aged
with crude 2 and 3 (Figure 9A). Based on the trends of residual
oil saturation So,r and water endpoint relative permeability
kr,w(So,r) shown in Figure 9B the sample aged with crude 1 is the
most water-wet case, whereas crude 2 and 3 become increasingly
intermediate-wet. This confirms the experience in the SCAL
community that significant fluctuations are mainly observed for
water-wet cases.

When normalizing the standard deviations of the pressure
fluctuations by the mean pressure along the lines of the learnings
from Figure 5 we find that over-proportionally-large pressure
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FIGURE 9 | Dependency of the fluctuations on the wetting state of the rock. Pressure fluctuations are largest for the Bentheimer rock sample aged with crude 1 and

become much smaller for Bentheimer samples aged with crude 2 and 3 (A). The trends for residual oil saturation So,r and water endpoint relative permeability kr,w (So,r )

suggest that the wettability for the sample aged with crude 1 is more water-wet, whereas samples aged with crude 2 and crude 3 become increasingly

intermediate-wet (B). The standard deviation of the pressure fluctuations normalized by the mean pressure for each fractional flow fw is largest for crude 1 (which is

the most water-wet case) and becomes significantly less for crude 2 and 3 (C).

fluctuations are only observed for the crude 1 case, i.e., the most
water-wet sample. However, the trend toward crude 2 and 3 cases
and respective wetting states seems highly non-linear and also
not entirely consistent. For instance, in the crude 3 case we do
observe fluctuations in electrical conductivity, which suggests
that in intermediate cases fluctuations at the pore scale could still
be present but due to the much smaller capillary pressure (Lin
et al., 2019a) show a much smaller signature in the pressure but
still are subject to ganglion dynamics. This is in line with pore-
scale studies, in which fluid redistributions were still happening
in mixed-wet scenarios, though much slower pace compared
to water-wet situations (Rücker et al., 2019). At intermediate
wetting states, the connectivity of the brine phase, which controls
the electrical conductivity (Liu Z. et al., 2018), is perhaps also
more sensitive to ganglion dynamics, because water-films may be
overall less connected.

Energy Scale of Fluctuations
Figures 2–5 suggest that the pressure fluctuations not related to
instrumental noise have amplitudes between 40 and 150 mbar
and a standard deviation up to 55 mbar. Based on that magnitude
we can identify the energy scale of the fluctuations.

We begin with a number of model calculations for typical
pore body and throat sizes in sandstone rock of d = 25 µm

diameter for pore throats and d = 60 µm for pore bodies
(Berg et al., 2013). Assuming furthermore an interfacial tension of
σ = 25mN/m for a typical crude oil-brine system (water-decane
with highest purity n-decane would be ≈ 50 mN/m but polar
components in crude oil can reduce interfacial tension below
1 mN/m, therefore 25 mN/m is a good average value) we can
estimate capillary pressure

pc =
2σ cos(θ)

r
(4)

(with contact angle θ ≈ 0◦ for a water-wet system and radius
r = d/2) for a water-wet system as pc = 0.017 bar for pore bodies
and pc = 0.04 bar for pore throats, which are also typical values
for the pressure fluctuations in the steady-state experiment in
Figures 2–5 (themaximumfluctuations can be a factor 3–4 larger
but for most fw the range is very similar) (Berg C. F. et al., 2020).
This suggests that the pressure fluctuations are likely caused by
events on the capillary energy scale, which are typically pore
scale events. Therefore, pore scale displacement events related to
capillary instabilities (Singh et al., 2017, 2019; Primkulov et al.,
2019) are the most likely cause for the significant fluctuations.
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The associated pressure-volume work of displacing the
wetting-phase by non-wetting phase fluid (Morrow, 1970).

1Wpressure−volume = p
c
1V (5)

In a pore body (1V ≈ 1.1 · 10−13m3 for a spherical pore) is
4.5 · 10−10 J and for a pore throat (1V ≈ 1.2 · 10−14m3) 4.9 ·

10−11 J. This can be expressed in terms of thermal energy units
kBT, where kB = 1.38 · 10−23J/K is the Boltzmann constant and
T = 300K (≈ 26.7◦C) the temperature arriving at 1.1 · 1011kBT
and 1.2 ·1010kBT for pore bodies and throats, respectively, which
is also summarized in Table 3. Since the associated energy of the
pressure fluctuations is many orders of magnitude larger than
kBT these fluctuations can be classified as non-thermal (Winkler
et al., 2020).

To put this into perspective, we can also estimate the kinetic
energy that is associated with laminar single-phase flow at a
typical injection rate 1 foot/day , which is typical for a water flood
in oil reservoirs far away from the well bore, which translates for a
porosity φ = 0.25 into a linear flow velocity of v = 1.4·10−5 ms−1

(Berg and van Wunnik, 2017).
The kinetic energy

Ekinetic =
1

2
ρVv2 (6)

is for an aqueous phase fluid with density ρ = 1000 kg m−3

around 1.1 · 10−20 J ≈ 2.63 kBT, which is roughly on the thermal
energy scale.

The linear flow velocity during a Haines jump, which can be
computed numerically with a phase-field type of method and
validated with experimental data, is around v = 1.0 · 10−2 ms−1

(Armstrong et al., 2015). That translates into a kinetic energy of
5.7 · 10−15 J ≈ 1.4 · 106 kBT, which is again several orders of
magnitude larger than the thermal energy scale.

Note that for pressure-volume work and kinetic energy of
pore-scale displacement events there is always a range, which
depends on the non-local nature of the Haines jumps, pore size,
wetting conditions etc. The important point to make here is
that the kinetic energy is orders of magnitude larger than the
thermal energy scale, which is consistent with the classification
as non-thermal fluctuations. Since the energy scale of these
fluctuations is many orders of magnitude above the thermal
energy scale, increasing temperature cannot trigger pore scale
displacement events (unless phase changes or disintegration of
material occur).

We observe pressure fluctuation amplitudes in the range
of capillary pressure representative, typical pore throats of
sandstone rock and indicative of pore scale displacement
events as origin (Figures 2–5). However, the magnitude of the
saturation change in relation to the volume of an individual
pore suggests that many individual pores are involved in the
phenomenon. The pore volume of the Fontainebleau rock
sample is Vpore,tot = 2.85 cm3, whereas the pore volume
of a single pore of d = 60 µm diameter is Vpore,single =

1.1 · 10−7 cm3, which means that a saturation change of 5%
needs to involve thousands of individual pores. The associated

energy scale can be estimated as pc · Vpore,tot · δdSw with pc ≈

δdPw = 0.15 bar resulting in 0.043 J or 1019kBT, which
is significantly larger than the energy scale of displacements
involving individual pores.

That means that multiple individual pores are involved
in these fluctuations. From a pore-scale perspective this is
not too surprising as experiments have already shown that
displacement events are not necessarily always isolated but can
be cooperative causing avalanche-like cascading sequences of
individual displacements adding up to an overall significant
event, that involves many pores and lasts over a time period of
between 0.5 and 2 s (Armstrong et al., 2014a). What is new is
that the fluctuations measured at the Darcy-scale are periodic,
which means that the respective pore-scale displacement events
would also need to be repetitive under fractional flow conditions.
In order to address that question, in the following sections time
sequences of 3D imaging are presented, which give further insight
into the pore-scale origin of the fluctuations.

Time Scale of Fluctuations
When comparing experiments of different scales, both, the
magnitude of time and length differences need to be considered.
The time series and frequency analysis of the pressure
fluctuations shown in Figures 2, 4C, 5D suggest a frequency
range of fluctuations between 10−3−10−2 Hz corresponding to a
time period of T = 1/f = 1− 20minutes, which also reflects the
dominant peaks in Figure 5D. The time scale of the saturation
fluctuations is between 5 and 60min, which is also about the time
scale of the traveling waves from Figure 6.

In Figure 10, we put the time scale of pressure and
saturation fluctuations and traveling waves into perspective
with characteristic time scales encountered in multiphase flow
in porous media. Displacement events in individual pores
such as Haines jumps and snap-off are on the time scale
around 1ms (Armstrong et al., 2015). Cascading displacement
events involving multiple pores show a relaxation time scale
around one second (Armstrong et al., 2014a). The time scale
of pressure fluctuations observed in this work, in particular
the periodic oscillations in Figures 2–4, are on the order of
1–20min, which is also the time scale of periodic pressure
fluctuations reported in recent studies (Spurin et al., 2020;
Menke et al., 2021) see also the supporting information
of (Spurin et al., 2020). The time scale of the saturation
fluctuations is 30–60min, which is similar as the characteristic
time of traveling waves from Figure 6, which is still faster
than the slow relaxation behavior observed in (Schlüter et al.,
2017).

Figure 10 suggests that in terms of time scale the pressure and
saturation fluctuations observed in the SCAL experiments are a
phenomenon ranging right between pore scale and Darcy scale
flow physics (Khorshidian et al., 2021). Imaging at the Darcy
length scale may not give further insights into the underlying
mechanisms and pore scale imaging is required. Based on
Figure 10, we can expect a time scale of the order of minutes,
which means that imaging at the time scale of few seconds will be
sufficient to resolve the phenomenon.
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TABLE 3 | Pressure-volume work (pc1V ) for model scenarios of immiscible displacement and kinetic energy for 1 ft/day flow in units of Joule (J) and thermal energy (kBT ).

Diameter (µm) Volume (m3) Pressure volume work (J) Kinetic E (J) Energy (kBT)

pc1V pore throat 25 1.2 · 10−14m3 4.9 · 10−11 1.2 · 1010

pc1V pore body 60 1.1 · 10−13m3 4.5 · 10−10 1.1 · 1011

Kinetic energy laminar flow 60 1.1 · 10−13m3 1.1 · 10−20 2.63

Kinetic energy Haines jump 60 1.1 · 10−13m3 5.7 · 10−15 1.4 · 106

FIGURE 10 | Time scale of the fluctuations observed in this work (red) put into perspective with other characteristic times scales encountered in porous media.

Displacement events in individual pores such as Haines jumps and snap-off are on the time scale around 1ms (Armstrong et al., 2015). Cascading displacement

events involving multiple pores show a relaxation time scale around one second (Armstrong et al., 2014a). The time scale of pressure fluctuations observed in this

work and related studies (Spurin et al., 2020; Menke et al., 2021) are on the order of 1–20min and the saturation fluctuations and traveling saturation waves from

Figure 6 are on the order of 30–60min. That is still faster than the slow relaxation behavior observed in Schlüter et al. (2017). Darcy flow, e.g., at typical field rates of 1

ft/day over a characteristic length scale such as a capillary dispersion zone of 3–5 centimeters length occurs at 7–10 h.

Pressure and Saturation Fluctuations in
Micro-CT Fractional Flow Experiments
In the steady-state micro-CT flow experiment conducted at
a much smaller sample (4mm diameter, 2 cm length) also
fluctuations in pressure and saturation are observed as shown
in the example in Figure 11. These events are re-occurring
between periods of meta-stable and predominantly connected
pathway flow (Rücker et al., 2015b). Associated changes in
pressure in Figure 11A and saturation in Figure 11B have similar
magnitude as the fluctuation amplitudes in the SCAL steady-
state experiment conducted at a much larger sample shown
in Figures 2–5. The pressure fluctuation event in Figure 11 of
10–20 mbar amplitude is similar to the fluctuation amplitude
in Figure 2C. The monitored fluctuations at the pore-scale are
significantly larger than instrumental noise and are not caused
by instrumental artifacts, which is evident from the larger scale
analysis, the chosen experimental set-up as well as the additional
information revealed by the imaging of the interior of the rock
during flow (Figure 11).

Note that—as discussed in section Energy Scale of
Fluctuations—pressure fluctuations are mainly caused by
capillary effects. Therefore, even though the micro-CT sample
has a significantly larger permeability, but pore throat size
distribution is actually similar to that of sandstone rock
of comparable porosity and permeability as in the SCAL
experiments (see Figure 1 in Berg et al., 2014), the magnitude of
pressure fluctuations is similar.

These observed fluctuations and associated pore-scale events
are related to change in fluid connectivity as the Euler
characteristic (Herring et al., 2013), a mathematical measure
for connectivity displayed in Figure 11G, and the connected

pathway relative permeability computed from the fluid phases
imaged by micro-CT displayed in Figure 11D shows. Even
though the sample is significantly smaller than in the SCAL
experiment, the associated saturation change is much bigger

than the volume of individual pores, which implies that these

events involve multiple individual pores. The event statistics,

which was obtained by comparing 3D images of water and
oil phases of subsequent time steps (Rücker et al., 2015b)
displayed in Figure 11C show that the events observed in

pressure and saturation consist of hundreds of individual pore
level displacements.

That is consistent with cooperative displacements of

advancing fluids fronts (Jung et al., 2016; Singh et al., 2017;
Primkulov et al., 2019) and the observation in Armstrong et al.
(2014a) with avalanche-like cascades of individual pore filling
events operating overall at the cluster scale. The repetitive
sequence of oil and water filling events are indicative of waves
passing through the field of view, although the domain size
in micro-CT experiments does not permit to resolve the
spatial extent of the wave but rather see repetitive behavior
in the average Sw. The event statistics in Figure 11C shows
that the macroscopically-visible events start with sequences
of water filling events, which are then followed by sequences
of capillary-driven oil filling events, which may provide the
trigger for the Darcy scale observations, where traveling waves
of water saturation peaks were observed (Figure 6B) and
permissible by fractional flow solutions (Figure 8), which
operate in the viscous limit. This draws a direct connection
between Darcy-scale observable flow regimes (which have
to be permissible by fractional flow solution, otherwise they
would be damped and decay) and cooperative pore-scale
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FIGURE 11 | Pressure drop (A), water saturation (B), event statistics (C) connected pathway relative permeability kr of connected water and oil phases (D), capillary

pressure pc obtained from the mean curvature (E), interfacial area, (F) and the Euler characteristic for the oil phase (G) for the experiment at fw = 0.5 and

v = 4 · 10−4 m/s. The fluctuation events with a clear pressure and saturation signature are caused by a sequence of water and oil filling events. They are causing

changes in the connectivity of water and oil phases as visible in the connected pathway relative permeability, which was computed by Stokes flow simulations of the

imaged water and oil phases in relation to the (analogous computed) permeability of the respective pore space. The capillary pressure largely follows the saturation

and connectivity behavior, which all typically lag behind water or oil filing events, respectively. Note that capillary pressure shows a clear signature also for the 2nd filling

event, which is much less visible in saturation, interfacial area (Joekar-Niasar and Hassanizadeh, 2011) and Euler characteristic (Herring et al., 2013).

displacement behavior. It furthermore suggests that analogous
to ganglion dynamics (Rücker et al., 2015b) the dynamics is
initiated by snap-off which is a capillary instability, where
capillary energy is converted into kinetic energy, which can
then drive event cascades. The pore-scale fluid configuration
eventually reverts back to the original situation in terms of
saturation, pressure drop and connectivity of each phase as
suggested by Figures 11A,B,D. There is a range of possible
reasons from the bubble instability (Unsal et al., 2007a,b;
Unsal et al., 2009), which can in principle also occur in large
pores inside of rock, relaxation time scales (Armstrong et al.,
2014a) being longer than the re-supply of injected liquid at
fractional flow fw, questions about the energy efficiency of
connected pathways (Spurin et al., 2021) and inertial effects
during displacement events causing ganglion dynamics (Rücker
et al., 2015b), which can all explain why established flow
paths can become unstable and disconnection processes are
followed by re-connection processes. The capillary pressure

determined from the liquid-liquid curvature (see, e.g., Lin et al.,
2019b) shown in Figure 11D largely follows the saturation
and connectivity behavior, which typically lag behind water or
oil filing events, respectively. The magnitude of the capillary
pressure changes is about 10 mbar, which is significant and
suggests that capillarity is involved in the process. The system
can reduce its capillary energy by water filling events, but because
of the flux and fractional flow boundary conditions, oil-filling
events temporarily increase the capillary energy again. This
suggests that the condition is not only viscous-unstable as the
fractional flow assessment suggests, but also capillary unstable,
based on the competition between minimizing potential energy
(where capillary energy is a significant fraction) and fractional
flow boundary conditions. Note that pore filling events in
Figure 11C are computed from difference images, which is the
reason why they may appear somewhat earlier than the capillary
pressure response in Figure 11E, which are computed from only
one image.
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FIGURE 12 | Breakup of oil clusters (A) and coalescence (B) processes at the pore scale. Breakup occurs often by simultaneous snap-off processes in a cluster

thereby preserving topological loop structures (see insets in A). Clusters can also grow by coalescence, which is overall more a frontal propagation, whereby

connectivity is maintained, and formation of loops is largely avoided. Both breakup and coalescence events impact cluster volume, i.e., saturation and cluster length,

i.e., the macroscopic capillary number, which is proportional to the viscous pressure drop over the cluster length.

The question is now how we can use 3D pore scale imaging to
understand more about the origin of these repeating events with
cascading pore-level event structure.

Pore Scale: Breakup and Coalescence
Processes—Ganglion Dynamics
In order to characterize the processes at the pore scale, we
first establish a general insight into the evolution of oil clusters
under fractional flow conditions, which is more complex than
the ganglion dynamics during imbibition alone (Rücker et al.,
2015b), because both wetting and non-wetting phases are

permanently co-injected. One of the questions is how that co-
injection at fractional flow fw is translating into the flow at pore
scale, i.e., what the associated flow regimes are.

At the pore scale the fractional flow can be divided into
time periods of connected pathway flow and time intervals
with topological changes in the fluid configuration. These can
be decomposed into a more imbibition-dominated regime with
breakup of oil clusters by sequences of snap-off and piston-like
displacement processes as shown in Figure 12A, and a more
drainage-dominated regime with oil cluster growth by Haines-
jumps and coalescence as shown in Figure 12B. Note that as
clusters breakup /shrink or grow, also their length changes, which
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FIGURE 13 | Fractional flows fw (0.8, 0.5, and 0.2) and cluster-based capillary number Cacluster from Equation (7) for the micro-CT flow experiments conducted at flow

rates of 3, 30, and 300 µl/min (A). For all flow rates and fractional flows Cacluster ≪ 1, which means that the flow regime is capillary dominated. The bounding line for

Camacro = 1, which is the transition to the viscous-dominated regime is plotted as red line in (B) in the flow velocity (left axis) and injection rate (right axis) vs. cluster

length (C) space. Also, the largest cluster falls below this line even at the highest flow rate, which means that the flow regime is capillary dominated.

FIGURE 14 | Pressure drop and saturation from Figure 11 show long time periods without any change but also time periods with discrete events. Based on the

associated dynamics at the pore scale, respective pore scale flow regimes can be categorized into predominantly connected pathway (A) and ganglion dynamics (B).

A “phase diagram” can be developed in analogy to Figure 12 but now for the whole field of view instead of individual clusters only, where connected pathway flow is

characterized by a fixed point (C) and ganglion dynamics as trajectories (D) in the saturation-macroscopic capillary number space.

impacts the cluster-based capillary number (Hilfer and Oren,
1996; Armstrong et al., 2014b).

Camacro =
1pvisc

1pcap
≈

Lclusterµwvw

K · pc
≈

Lcluster

rpore

µwvw

σow cos(θ)
(7)

where Lcluster is the length of the respective oil cluster, µw

the wetting phase viscosity, vw the wetting phase Darcy
velocity, σow the wetting/non-wetting phase interfacial tension
and θ the contact angle, and pc the capillary pressure
at breakthrough.
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In that way, for each oil cluster an individual capillary number
can be assigned, which is proportional to the cluster length Lcluster
and increases or decrease according to how the cluster grows by
coalescence or shrinks by breakup.

Figure 12 is based on actual data from the micro-CT flow
experiment conduced in the sintered glass sample. Conceptually
similar behavior is expected also in other porous media but may
change in terms of quantity, because of e.g., different scaling of
permeability over capillary pressure.

Note that these examples characterize local flow regimes.
These local regimes can also dominate the macroscopic flow
regime in a macroscopic drainage or imbibition experiment, but
they can also co-exist, or alternate in time, in fractional flow.

Identification of Pore Scale Flow Regimes
by Collective Cluster Dynamics and the
Pressure/Saturation Signature of Ganglion
Dynamics
The micro-CT flow experiments involved three different
fractional flows fw = 0.8, 0.5, 0.2 and three different injection
rates of qtot = 3, 30, 300 µl/min. Using the largest from the
imaged cluster size distribution from Rücker et al. (2015a) these
flow rates are then translated into the maximum cluster-based
capillary number (Equation 7). The overview of all experiments is
shown in Figure 13A in the fractional flow-macroscopic capillary
number space.

All measurements obtained fall significantly below the
Camacro = 1 bounding line, which is the transition to the viscous-
dominated regime as shown in Figure 13B. This means that in
every respect the flow regime is capillary dominated below the
onset for viscous mobilization (Oughanem et al., 2015).

Nevertheless, at specific saturations and higher flow rates we
observe ganglion dynamic behavior as shown in Figure 11. In
Figure 14 we show the respective pore scale fluid distributions.
In Figure 14A shows an example for a connected pathway flow
period without any significant fluctuations. In Figure 14B shows
the pore scale fluid distributions for the fluctuating event from
Figure 11.

Figures 14C,D are an extension of the concepts from
Figure 12 but now for the whole oil saturation in the imaged
field of view and not only individual clusters, the capillary
number is calculated using the a volume weighted average cluster
length. The connected pathway flow regime is characterized by
a single point in Figure 14C, whereas the fluctuating regime
is characterized by a trajectory in Figure 14D. Based on
that observation, the saturation-macroscopic capillary number
space displayed in Figures 14C,D can be understood as “phase
diagram”, where connected pathway flow is characterized by a
fixed point and ganglion dynamics as trajectories.

The ganglion dynamic events from Figure 11 are
characterized by a diagonal movement between two discrete
states in the saturation-capillary number space as shown in
Figure 14C. This repeated switch between two states is very
similar as the pressure and saturation fluctuations between an
maximum and a minimum saturation level, and a maximum
and minimum pressure drop, observed in Darcy-scale SCAL

experiments in Figures 2–5. From the change in saturation
but also the associated 3D visualization of the respective pore
scale fluid distribution shown in Figure 14B it is clear that such
ganglion dynamics events involve cooperative displacement in a
large number of individual pores.

SUMMARY AND CONCLUSION

In this work we establish that significant fluctuations in pressure
and saturation well visible in multiphase flow experiments
on centimeter-sized samples are not instrumental noise (or
artifacts) but caused by cooperative pore scale displacement
events. There is consistent evidence ranging from special core
analysis (SCAL) core floods on samples few centimeter length
and diameter and micro-CT flow experiments on few mm
sized samples. Fluctuations are observed in several independent
SCAL studies, show non-Gaussian statistics. Displacement events
imaged by beamline based micro-CT flow experiments have
similar characteristics in terms of amplitude and saturation
change as the SCAL experiments.

Until now, the common view has been that porous media, e.g.,
rock samples of few centimeter in size are above the REV scale
and therefore, pore-scale events should have averaged out. It is,
however, not too surprising that pore-scale events do not average
out at sample sizes of few centimeters since non-wetting phase
cluster sizes can reach into the several mm to few centimeter
range (Georgiadis et al., 2013; Armstrong et al., 2014b) and that
the pressure signature of respective ganglion dynamics (Rücker
et al., 2015b) remains visible. In order to average out, if at all,
sample sizes that could enclose several free non-wetting phase
clusters would be required.

By focusing on the specific case of steady-state experiments
where wetting and non-wetting phases are co-injected at varying
fractional flow, we can exclude transient effects. Even though in
many cases of such fractional flow experiments, after injection
of hundreds of pore volumes, pressure and saturation eventually
stabilize, there are many other reported cases, where significant
fluctuations in pressure and saturation persist in a wide range
of different rock types, experimental conditions and scales
investigated, which suggests that the phenomenon is somewhat
universal and applicable to a wide range of rock types (Datta
et al., 2014a,b; Masalmeh et al., 2014; Reynolds and Krevor,
2015; Sorop et al., 2015; Gao et al., 2017, 2019, 2020; Lin Q.
et al., 2018; Alcorn et al., 2019; Clennell et al., 2019; Lin et al.,
2019a; Spurin et al., 2019; Wang and Masalmeh, 2019). Based on
capillary number and pore-scale mechanisms involved the cause
of the fluctuations is of capillary nature. The magnitude of the
fluctuations depends strongly on the wetting state and may be
noticed only in more water-wet cases, which does not necessarily
mean that ganglion dynamics is absent in mixed-wet cases
(Rücker et al., 2019). It is still uncertain whether bi-continuous
oil-water configurations and associated connected pathway flow
regimes can be established for specific pore space morphologies
and the spatial wettability distributions (Lin et al., 2019a).

In the analyzed experiments, the amplitude of the pressure

fluctuations is at a capillary energy scale, which suggests that
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pore-scale events are themost likely cause. The volume associated

with the saturation fluctuations are many orders of magnitude
larger than individual pores suggesting that the pore-scale
displacement events are cooperative and involve many pores,
which is also reflected in the hundreds of individual pore scale
displacements observed in the changes of the pore scale fluid
distributions imaged in the micro-CT flow experiments.

The root cause for fluctuations are discontinuities associated
with pore scale displacement events. However, the involvement
of hundreds to thousands of individual pores stretches the
limits of what is explainable at pore scale just by cooperative
displacements of advancing fluids fronts (Jung et al., 2016;
Singh et al., 2017; Primkulov et al., 2019) and avalanche-like
cascades of individual pore filling events (Armstrong et al.,
2014a). Cooperative displacements with locally either more
imbibition and drainage dominated behavior with associated
breakup and coalescence processes is ultimately reminiscent
of what we would describe as ganglion dynamics (Rücker
et al., 2015b) although the necessity for ganglion dynamics
has not been fully comprehended. Associated flow regimes
can be identified in the capillary number—saturation space
where during breakup and coalescence, oil clusters follow
specific trajectories. In the transition to the Darcy scale,
e.g., when averaged over all oil clusters to characterize
the average macroscopic behavior, connected pathway flow
without significant saturation changes is a fixed point and
ganglion dynamics form trajectories. The observation of
fluctuating flow where saturation, pressure drop, and fluid
connectivity change repetitively between two different states is
somewhat reminiscent of ganglion dynamics, which operates
on a capillary energy scale many orders of magnitude
above thermal fluctuations suggesting that these fluctuations
are non-thermal.

Ganglion dynamics events can indeed involve many
individual pores. However, a more statistical distribution would
be expected, where filling events with hundreds to thousands of
individual pores would be relatively rare, because the event size
distribution follows a power law (Berg et al., 2014). Therefore,
from the pore scale perspective alone it is not clear why these
large events would become the dominant feature, in a sometimes
perfectly repetitive oscillatory manner.

The Darcy scale experiments provide the missing piece of the
puzzle. At the centimeter scale oscillatory regimes with traveling
waves are observed. The characteristic feature is a saturation
peak traveling at constant velocity from inlet to outlet. Once
the outlet is reached, a saturation peak emerges at the inlet
repeating the cycle. Such waves are compatible with fractional
flow principles (based on Darcy scale physics) and can be
explained by a “loop” fractional flow solution (Plohr et al., 2001).
Darcy scale phenomena are only observable over larger length
and time scales due to permissibility by fractional flow solutions
(otherwise they would be damped and decay exponentially),
meaning that they enter a viscous-dominated flow regime.
The trigger mechanism for such waves, however, are provided
by capillary-driven ganglion dynamics events observed on the
cluster scale. In a respective micro-CT flow experiments imaged
by fast X-ray computedmicro-tomography such recurring events

were observed, which are initiated by an increase in water-
filling events. That is reminiscent to the ganglion dynamics
observed in imbibition at low capillary numbers (Rücker et al.,
2015b), where ganglion movement is only initiated after a
sequence of snap-offs disconnecting an oil cluster, which then
becomes mobile through a sequence of disconnection and
coalescence processes, at a capillary energy scale, which upon
snap-off is converted into kinetic energy. This may provide
the trigger for Darcy-scale “loop” solutions, which consist of
a moving water bank followed by an oil bank in a periodic
“loop” between bounding drainage and imbibition fractional
flow curves, potentially forming closed orbits in the phase space
(Strogatz, 1994).

A possible physical explanation for the occurrence of
fluctuations are indeed the underlying traveling waves which can
transport more flux than a homogeneous saturation profile. In
other words, the Darcy scale solution becomes unstable against
fluctuations, because in this way, at the same pressure drop, more
flux is transported, i.e., energy dissipation is minimized.

The phenomenon of the clearly visible fluctuations in core
flooding experiments at the centimeter length scale involve both
capillary driven dynamics at the cluster scale with pore scale
origin, and aspects of fractional flow solutions in the viscous
limit. In other words, these phenomena are bridging between
pore and Darcy scale physics, and the complexity arises from
the fact that between the two scales the physical description
concept changes.

There are now several potential implications, ranging from
the question on the rate of energy dissipation associated with
the fluctuations (McClure et al., 2020a,b) to non-uniqueness of
the “loop” fractional flow solutions of the periodic oscillations
(Plohr et al., 2001; Corli and Fan, 2018) and implications for
the relative permeability-saturation functions obtained from
such experiments. Ultimately, we have to also ask ourselves
from a practical application perspective how we can use the
details of fluctuations and traveling waves revealed in this much
more dedicated analysis to enrich the interpretation of the
experiment, acknowledging that by averaging the information
would be largely lost. For instance, fluctuations could be used as
a wettability indicator. These questions are good starting points
for future work on the subject.
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In this work, a macroscopic model for incompressible and Newtonian gas flow coupled

to Fickian and advective transport of a passive solute in rigid and homogeneous porous

media is derived. At the pore-scale, both momentum andmass transport phenomena are

coupled, not only by the convective mechanism in the mass transport equation, but also

in the solid-fluid interfacial boundary condition. This boundary condition is a generalization

of the Kramers-Kistemaker slip condition that includes the Knudsen effects. The resulting

upscaled model, applicable in the bulk of the porous medium, corresponds to: 1) A

Darcy-type model that involves an apparent permeability tensor, complemented by a

dispersive term and 2) A macroscopic convection-dispersion equation for the solute, in

which both the macroscopic velocity and the total dispersion tensor are influenced by

the slip effects taking place at the pore-scale. The use of the model is restricted by the

starting assumptions imposed in the governing equations at the pore scale and by the

(spatial and temporal) constraints involved in the upscaling process. The different regimes

of application of the model, in terms of the Péclet number values, are discussed as well

as its extents and limitations. This new model generalizes previous attempts that only

include either Knudsen or diffusive slip effects in porous media.

Keywords: dispersion in porous media, Knudsen slip, diffusive slip, volume averaging, Darcy’s law

1. INTRODUCTION

Gas flow in porous media is a relevant topic that has attracted intense research over, at least, the past
50 years (see, for instance, Jackson, 1977; Ho andWebb, 2006). The flow process may be coupled to
heat and also to speciesmass transport, whichmakes it ofmajor interest in a wide variety of practical
situations including: crystal growth from vapor, chemical processes in porous catalysts, material
processing using chemical vapor infiltration or deposition, exploitation of natural gas and oil, CO2

sequestration, micro electro-mechanical systems, shale gas flow in nanoporous media, long-term
nuclear waste disposal, contaminant transport in underground formations, gas separation with
permeable media, among many others (Rutherford and Do, 1999; Cai et al., 2007; Li et al., 2019;
Tian et al., 2019; Barton, 2020; Wang et al., 2020).

Under single-phase and isothermal flow conditions, gas slip may result from either Knudsen
effects (also referred to as viscous slip) (Navier, 1823; Einzel et al., 1990) or diffusive slip (Kramers
and Kistemaker, 1943; Jackson, 1977; Noever, 1990; Young and Todd, 2005). The first type
of slip leads to the Klinkenberg (1941) modification to Darcy’s law in porous media (Skjetne
and Auriault, 1999; Lasseux et al., 2014, 2016; Woignier et al., 2018) as well as in fractures
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(Zaouter et al., 2018) and it is only coupled to mass transport
by means of convection (Valdés-Parada et al., 2019). A
comprehensive review about modeling gas flow in porous media
considering Knudsen slip is available from Lasseux and Valdés-
Parada (2017). The second type of slip boundary condition leads
to a modification to Darcy’s law that involves the macroscopic
mass flux, whereas the macroscopic mass equation is more
complicated than the classical convection-dispersion model as
shown by Altevogt et al. (2003a) for dilute solutions and more
recently by Moyne et al. (2020) for multispecies concentrated
solutions. Despite these considerable advances, it is possible to
encounter in practice situations in which both types of slip effects
are present. For example, one may envisage species transport in a
porous medium where diffusive slip is relevant and for which the
Knudsen number value is not extremely small compared to 1 (i.e.,
on the order of 0.1) so that viscous slip must also be considered.
To the best of our knowledge, modeling of this problem at the
different scales of interest has not been addressed so far and the
upscaled model corresponding to this situation has not yet been
reported in the literature. When both slip effects are considered,
the pore-scale model is nonlinear due to the coupling with mass
transport at the solid-fluid interface. Hence, the question remains
whether the resulting upscaled model is a superposition of the
existing ones considering the two slip effects separately.

The rationality of the present work is hence to derive an
upscaled model for momentum and total and species mass
transport involving both Knudsen and diffusive slip effects at
the solid-fluid interface and analyze its correspondence with
previous models derived under particular conditions. To this
end, the volume averaging method (Whitaker, 1999), enriched
with elements from the adjoint homogenization approach to
treat the momentum balance equation is employed. It not only
provides the means for the derivation of the model, but also
allows predicting the effective-medium coefficients involved in
the resulting model by means of a closure scheme. To meet
this objective, the work is organized as follows. In section 2,
the governing equations for mass and momentum transport
at the pore-scale are reported together with the corresponding
interfacial boundary conditions. The essential elements of the
volume averaging method are then briefly provided in section 3.
With these elements available, the upscaling process is applied
first to the mass conservation equation of the chemical species
and second to the total mass conservation equation as detailed in
section 4. In order to close the average model for chemical species
mass transport, the corresponding boundary-value problem
for the concentration deviations is derived, simplified and
formally solved in section 5. This step involves the coupling
with momentum transport in a periodic unit cell. Hence, the
formal solutions are provided not only for the concentration
deviations but also for the pressure deviations and pore-scale
velocity. Averaging the latter provides the resulting effective-
medium equation for momentum transport. For species mass
transport, the formal solution of the concentration deviations
is substituted into the corresponding filters of information in
the macroscale model as reported in section 6. In this way, the
corresponding effective-medium coefficients are defined in terms
of the ancillary closure variables. The final general macroscopic

FIGURE 1 | Schematic representation of a porous medium system including

the characteristic lengths at the microscale (ℓβ in the β-phase and ℓσ in the

σ -phase), and at the macroscale (L) as well as the averaging domain of size r0.

model is examined in three particular cases depending on the
type of interfacial slip under consideration corresponding to
different ranges of the Péclet number. As shown in section 7, the
model coincides with those previously reported in which either
Knudsen slip or diffusive slip is taken into account. Finally, the
corresponding conclusions are presented in section 8.

2. MICROSCALE MODEL

Consider single-phase flow of a Newtonian gas (the β-phase)
through a rigid and homogeneous porous medium such as the
one sketched in Figure 1. A passive solute (species A) forms a
dilute solution within the β-phase that is assumed to flow in
an incompressible and isothermal regime. The incompressibility
assumption indicates that the analysis is restricted to gas flows
for which the Mach number is much smaller than unity, so
that density variations are completely negligible. For the sake
of simplicity, the solid phase (i.e., the σ -phase) is assumed
impermeable to mass transport, although interfacial phenomena
of adsorption or heterogeneous reaction may certainly be
considered (Altevogt et al., 2003a; Valdés-Parada et al., 2019).
The only mechanisms considered for mass transport of species
A are diffusion and convection. On a molar basis, the governing
equation for transport of species A at the pore-scale is

∂c

∂t
+∇ · (cv) = ∇ · (D∇c) , in the β-phase. (1a)

Here, D is the molecular diffusivity of species A in the β-phase,
c is the pore-scale molar concentration of species A, and v is
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the fluid velocity, which satisfies the total mass conservation and
Stokes equations

∇ · v = 0, in the β-phase, (1b)

0 = −∇p+ µ∇ ·

(

∇v+ (∇v)T
)

, in the β-phase. (1c)

In the above equation, p is the pore-scale fluid pressure, µ is the
dynamic fluid viscosity, assumed constant, and the body forces
due to gravity may be included in the pressure gradient term.
Moreover, the term∇·(∇v)T = ∇(∇·v) was kept for convenience
of the developments that follow, although it does not bring any
contribution in the pore-scale momentum balance due to the
assumption of incompressible flow. Since the solid surface has
been assumed to be impermeable to mass transfer, it is reasonable
to impose the following interfacial boundary condition

− n · D∇c = 0, at Aβσ . (1d)

Here, n = nβσ is the unit normal vector directed from the fluid to
the solid phase as shown in Figure 1. The tangential component
of the fluid velocity vector at the interface can be expressed as
the superposition of a first order viscous slip boundary condition
(Einzel et al., 1990; Lauga et al., 2007) and a diffusive slip
condition (Kramers and Kistemaker, 1943; Altevogt et al., 2003a;
Moyne et al., 2020), assuming isothermal conditions for the
binary mixture in which species A is sufficiently diluted in order
for Fick’s law to be applicable. In addition, the gas molecules are
conceived as spheres experiencing both specular and diffuse wall
collisions. The resulting expression for the boundary condition
can be written as follows

v = −ξλn ·
(

∇v+∇vT
)

· (I− nn)+
D∇c

c+ α
· (I− nn) , at Aβσ .

(1e)
In this expression, I is the identity tensor, ξ = (2 −

σv)/σv (σv being the tangential momentum accommodation
coefficient representing the fraction of particles experiencing
diffuse reflection at Aβσ ), λ is the mean free path and α is a
coefficient given by

α =
ρ

√
MAMB −MA

. (1f)

In this relationship, ρ is the fluid density, which is assumed
constant, while MA and MB are, respectively, the molar mass
of species A and of the solvent B. The first term on the
right hand side of Equation (1e) accounts for Knudsen effects
whereas the second term is due to ordinary diffusion and results
from the existence of a concentration gradient in the tangential
direction at the solid-fluid interface. It should be noted that the
importance of the diffusive slip effect is subject to the value of
α. In particular, it is expected to become more significant as
the molar mass difference between the solvent and the solute is
more pronounced.

The microscale model is completed by the initial condition
for c and the boundary conditions at the entrances and exits of

the macroscopic domain for the concentration and the pressure
or the velocity. However, this information is not required for
the derivation of the upscaled model that follows and it is not
reported here for the sake of brevity in presentation.

In classical passive dispersion problems, for which there is
no impact of the species transport on momentum transport,
upscaling of the governing equations for the two processes can
be carried out independently from each other (see, for example
Chapters 3 and 4 in Whitaker, 1999). In such circumstances,
the macroscopic model for momentum transport is usually
considered as part of the background knowledge for the
development of the macroscopic species transport model (see
for instance Valdés-Parada et al., 2019). Here, however, both
processes are intimately coupled since the concentration field
retroactively impacts the velocity field as can be inferred from
the slip boundary condition expressed in Equation (1e). As a
result, the derivation of the macroscopic model proposed below
requires that the upscaling procedure includes the complete
set of equations reported above. In this work, the volume
averagingmethod (Whitaker, 1999) is used to derive the upscaled
total and species mass transport equations and, with this in
mind, the basic elements of this method are summarized in the
next paragraphs. However, for momentum transport a modified
version of this method is used, which is consistent with the
adjoint homogenization technique proposed by Bottaro (2019).

3. ESSENTIALS OF THE VOLUME
AVERAGING METHOD

In order to carry out the upscaling process, it is necessary to
define an averaging domain V , of norm V , that contains both
solid and fluid phases such as the one sketched in Figure 1.
In order for this averaging domain to be representative, its
characteristic size r0 must be much larger than the largest pore-
scale characteristic size [say ℓp = max(ℓβ , ℓσ )] and, at the same
time, it must be much smaller than the smallest characteristic size
associated to the macroscale, L. This is

ℓp ≪ r0 ≪ L. (2)

On this averaging domain, the superficial and intrinsic averaging
operators are respectively defined as (Whitaker, 1999)

〈ψ〉 =
1

V

∫

Vβ

ψ dV , (3a)

〈ψ〉
β
=

1

Vβ

∫

Vβ

ψ dV , (3b)

with ψ being a piece-wise smooth function defined in the β-
phase. These two averaging operators are related by

〈ψ〉 = ε〈ψ〉
β , (3c)

where ε ≡ Vβ/V is the volume fraction of the fluid
phase contained in the averaging domain and, in this case, it
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corresponds to the porosity. The derivations that follow are
constrained to the homogeneous regions of the system, i.e., to the
portions of the porous medium located sufficiently far from the
macroscopic boundaries where average properties (such as ε) can
be treated as constants.

Furthermore, in order to interchange spatial differentiation
and integration, the spatial averaging theorem, given by (see, for
example, Howes and Whitaker, 1985)

〈∇ψ〉 = ∇〈ψ〉 +
1

V

∫

Aβσ

nψ dA, (4a)

is employed. The use of this theorem requires average quantities
to be continuously differentiable, as explained in this reference.
Using the relationship given in Equation (3c) and taking into
account the assumption that ε can be treated as a constant, the
following alternative form, referred to as the modified averaging
theorem in the rest of the developments, may also be used

〈∇ψ〉
β
= ∇〈ψ〉

β
+

1

Vβ

∫

Aβσ

nψ dA. (4b)

In most applications of the volume averaging method, it
is necessary to express pore-scale quantities in terms of their
intrinsic averages and spatial deviations, ψ̃ , as proposed by Gray
(1975),

ψ = 〈ψ〉
β
+ ψ̃ , (5)

and such a decomposition will be employed in the following.
It should be noted that, on the basis of the constraint given in
(2), averaged properties can be regarded as constants within the
integration domain. A direct corollary of this is the following
average constraint for the deviations fields

〈ψ̃〉
β
= 0. (6)

With these elements at hand, the derivation of the macroscopic
equations can be carried out and this is presented in the section
that follows.

4. UPSCALING

4.1. Mass Conservation Equation of
Species A
Application of the intrinsic averaging operator to Equation (1a)
leads to

∂〈c〉β

∂t
+∇ · 〈cv〉β = ∇ ·

(

D〈∇c〉β
)

. (7)

To obtain the above result, the modified spatial averaging
theorem was employed and the interfacial boundary conditions
were taken into account together with the assumption that the
porousmedium structure is rigid and homogeneous. On the basis
of the latter assumption, and because the averaging domain is

time independent, it follows that
〈

∂c
∂t

〉β

=
∂〈c〉β

∂t . In addition, it

was also assumed that D can be treated as a constant within the
averaging domain.

To further develop the convective term, the spatial
decomposition given in Equation (5) (for ψ = c) can be
substituted, and this yields

∇ · 〈cv〉β = ∇ ·
(

〈c〉β〈v〉β
)

+∇ · 〈c̃v〉β . (8)

In addition, a second application of the modified averaging
theorem, together with the concentration decomposition, allow
expressing the diffusive term as follows

∇ ·
(

D〈∇c〉β
)

= ∇ ·






D






∇〈c〉β +

1

Vβ

∫

Aβσ

nc̃ dA












. (9)

Here, 〈c〉β was regarded as constant within the integration
domain. This is supported by the combination of Equations (5)
and (6), together with the separation of length scales given in (2).
In addition, the assumption of spatial homogeneity was used, i.e.,
∇ε = −

1
V

∫

Aβσ
n dA = 0. Substitution of Equations (8) and (9)

into Equation (7) leads to

∂〈c〉β

∂t
+ ∇ ·

(

〈c〉β〈v〉β
)

+∇ · 〈c̃v〉β

= ∇ ·






D






∇〈c〉β +

1

Vβ

∫

Aβσ

nc̃ dA












. (10)

The above expression is the unclosed average equation for species
A mass transport. The reason for this terminology is due to the
fact that it contains integral terms (i.e., filters of information from
the pore-scale) involving spatial deviations variables. In order to
make further progress, it is necessary to have information about
how the concentration deviations, c̃, are related to average fields
and this step will be addressed later. At this point, it is pertinent
to perform the averaging of the total mass equation.

4.2. Total Mass Conservation Equation
Applying the superficial averaging operator to Equation (1b) and
using the averaging theorem in its divergence form, together with
the fact that the velocity is tangential at the solid-fluid interface,
leads to

∇ · 〈v〉 = 0. (11a)

Using the relationship given in Equation (3c), the above equation
can be written in terms of the intrinsic average of the fluid velocity

∇ · 〈v〉β = 0. (11b)

Here, again, the assumption of spatial homogeneity, i.e.,
a constant porosity, was considered. Both versions of the
macroscopic total mass conservation equation listed above are
closed and do not require further derivations. As a final remark,
it is worth noting that Equation (11b) is recovered by making
the sum of Equation (10) for all the chemical species involved
in the mixture.
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5. CLOSURE

As already mentioned, expressions of the deviations in terms
of average quantities, a process usually referred to as closure,
is necessary in order to complete the upscaled model. This is
carried out by considering the following steps: (1) Derivation
of the governing equations for the deviations as well as the
corresponding boundary conditions; (2) Imposition of some
reasonable simplifications in order to reduce the complexity of
the resulting problem and (3) Formal solution of the problem
in order to find the relationships between deviations and
average quantities. Usually a set of length-scale constraints and
assumptions, which can be regarded as scaling postulates, as
suggested by Wood and Valdés-Parada (2013), are involved
in step 2.

5.1. Conservation Equation for Species A
In order to derive the governing equation for c̃, Equation
(5) suggests subtracting Equation (10) from the mass balance
equation for species A at the pore scale, i.e., Equation (1a). The
result is

∂ c̃

∂t
+∇ · (〈c〉β ṽ)+∇ · (c̃v)−∇ · 〈c̃v〉β

= ∇ · (D∇ c̃)−∇ ·







D

Vβ

∫

Aβσ

nc̃ dA






, in the β-phase. (12)

With the intention of simplifying this equation, it may be noticed,
on the one hand, that the order of magnitude estimates for the
non-local diffusion and convection terms can be expressed as

∇ ·







D

Vβ

∫

Aβσ

nc̃ dA






=O

(

D c̃

L

Aβσ

Vβ

)

, (13a)

∇ · 〈c̃v〉β =O

(

c̃v

L

)

. (13b)

Here, Aβσ and v represent the order of magnitude estimates of
the measure of Aβσ and v, respectively. On the other hand, the
estimates for the local diffusive and convective terms are given by

∇ · (D∇ c̃) = O

(

D c̃

ℓ
2
β

)

, (14a)

∇ · (c̃v) = O

(

c̃v

ℓβ

)

. (14b)

Therefore, on the basis of the constraints ℓβ≪L and
Aβσ ℓ

2
β

VβL
≪1,

it is reasonable to assume that

∇ ·







D

Vβ

∫

Aβσ

nc̃ dA






≪∇ · (D∇ c̃) , (15a)

∇ · 〈c̃v〉β ≪∇ · (c̃v). (15b)

Hence, Equation (12) may be simplified to

∂ c̃

∂t
+ ṽ · ∇〈c〉β +∇ · (c̃v) = ∇ · (D∇ c̃) , in the β-phase.

(16)

It should be noted that, in order to arrive at this last
expression, the total mass conservation Equations (1b) and (11b)
were employed.

At this point, it is pertinent to estimate the order of magnitude
of the accumulation term as follows

∂ c̃

∂t
= O

(

c̃

t∗

)

, (17)

where t∗ represents the time scale at which c̃ experiences
significant variations. Moreover, from Equations (14), the
combined order of magnitude estimates of the local diffusive and

convective terms can be shown to be O
(

c̃D(1+ Pe)/ℓ2
β

)

where

the Péclet number, Pe, is defined as

Pe =
vℓβ

D
. (18)

Therefore, it is deduced that, when the following time-scale
constraint is met

ℓ
2
β

D(1+ Pe)
≪ t∗, (19)

Equation (16) may be considered to be quasi-steady, i.e.,

ṽ · ∇〈c〉β + v · ∇ c̃ = ∇ · (D∇ c̃) , in the β-phase. (20)

This temporal constraint is retained in the remainder of
the analysis.

5.2. Momentum Transport Equation
The equation for total mass conservation at the pore-scale given
in Equation (1b) is still useful for the closure problem solution
in its current form. Nevertheless, it is convenient to spatially
decompose the pressure, using Equation (5) with ψ = p, in the
Stokes equation to obtain

0 = −∇p̃+µ∇·

(

∇v+ (∇v)T
)

−∇〈p〉β , in the β-phase. (21)

For the derivations that follow it is not necessary to apply the
spatial decomposition for the velocity and therefore no further
developments are required in the above equation.

5.3. Interfacial Boundary Conditions
Substituting the spatial decomposition for the species
concentration into Equation (1d), leads to

− n · ∇ c̃ = n · ∇〈c〉β , at Aβσ . (22)

Before proceeding with the slip condition for the velocity, an
order of magnitude analysis can now be performed on this result
in order to obtain the following estimate for c̃

c̃ = O

(

ℓβ

L
〈c〉β

)

. (23)
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According to the length-scale constraint expressed as ℓβ≪L, this
leads to the following assumption

c̃≪ 〈c〉β . (24)

Directing now the attention to the velocity slip boundary
condition, let the pore-scale concentration be decomposed into
its average and deviations in Equation (1e) in order to obtain

v = −ξλn ·

(

∇v+∇vT
)

· (I− nn)+
D∇ c̃

〈c〉β + α
· (I− nn)

+
D∇〈c〉β

〈c〉β + α
· (I− nn) , at Aβσ .

(25)

Note that the assumption given in (24) was used in the terms
at the denominator of this last expression. The purpose of
such an approximation is to maintain a linear problem for the
concentration deviations as it is commonly done in applications
of the volume averaging method (see, for example Wood and
Whitaker, 1998; Valdés-Parada et al., 2009).

5.4. Local Closure Problem
Since the determination of the deviations fields in the entire
macroscopic domain would be, at least, as complicated as solving
the original pore-scale equations everywhere, the interest is not
to carry out a solution of the closure problem over the entire
macroscopic system. Instead, it is more convenient to solve the
closure problem within a representative solution domain such as
the one sketched in Figure 2, which corresponds to a unit cell of
the porous medium assimilated to a periodic structure. In this
domain, Taylor series expansions for all the average quantities
involved in the closure problems can be performed about the
centroid of the unit cell located by the position vector denoted
by x. On the basis of the separation of length scales, r0 ≪ L, these
series can be truncated at the zeroth order as explained in Chapter
1 of Whitaker (1999). Under these conditions, the local closure
problem takes the following form
Total mass transport

∇ · v = 0, in the β-phase. (26a)

Total momentum transport

0 = −
1

µ
∇p̃+∇ ·

(

∇v+ (∇v)T
)

−
1

µ
∇〈p〉β

∣

∣

x

︸ ︷︷ ︸

source

, in the β-phase.

(26b)
Species A mass transport

ṽ · f|x
︸︷︷︸

source

+v · ∇χ̃ = ∇ · (D∇χ̃) , in the β-phase. (26c)

Interfacial boundary conditions

− n · ∇χ̃ = n · f|x
︸︷︷︸

source

, at Aβσ . (26d)

FIGURE 2 | Sketch of a two-dimensional periodic unit cell, of side length ℓc,

for solving the closure problem.

v = −ξλn ·

(

∇v+∇vT
)

· (I− nn)+ D∇χ̃ · (I− nn)

+D f|x
︸︷︷︸

source

· (I− nn) , at Aβσ . (26e)

Periodicity

v(r+li) = v(r); p̃(r+li) = p̃(r); χ̃(r+li) = χ̃(r), i = 1, 2, 3.
(26f)

Average constraints

〈p̃〉β = 0; 〈χ̃〉
β
= 0. (26g)

For the sake of brevity in writing, the following definitions were
used in Equations (26c)–(26g)

χ̃ =
c̃

〈c〉β
∣

∣

x
+ α

; f|x =
∇〈c〉β

∣

∣

x

〈c〉β
∣

∣

x
+ α

. (27)

In addition, the fact that 〈c〉β
∣

∣

x
can be treated as a constant within

the unit cell was employed. With the consideration of locality for
the closure problem, it becomes clear that the velocity is a variable
that does not need to be decomposed according to Equation
(5) since v can be considered as a periodic field at the level of
the unit cell.

Note that, due to the convective term in Equation (26c),
the problem is non-linear and hence a formal solution is not
achievable, in general. To overcome this issue, the velocity in this
term might be regarded as a known field, an assumption that is
consistent with previous studies of upscaling in porous media
involving nonlinear mechanisms (see, for instance, Bottaro,
2019; Lasseux et al., 2019). This allows linearizing the closure
problem and integral equations formulations based on Green’s
functions may then be used, as suggested by Wood and Valdés-
Parada (2013) or Bottaro (2019) while employing the adjoint
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homogenization method, to obtain the following formal solution
for v, p̃ and χ̃ as linear functions of the sources identified
in Equation (26)

v = −
A

µ
· ∇〈p〉β + C · f, (28a)

p̃ = −a · ∇〈p〉β + µc · f, (28b)

χ̃ = −
d

µ
· ∇〈p〉β + e · f. (28c)

In these expressions, the closure variables A, C, a, c, d and e are
integrals of the corresponding Green’s functions. In this way, the
closure variables may be interpreted as mapping functions of the
sources onto v, p̃ and χ̃ , respectively.

Substitution of Equation (28) into Equation (26) and splitting
them according to the source gives rise to the following
boundary-value problems in terms of the closure variables
Problem-I (source− 1

µ
∇〈p〉β )

∇ · A = 0, in the β-phase, (29a)

0 = −∇a+∇ ·

(

∇A+ (∇A)T1
)

+ I, in the β-phase, (29b)

v · ∇d = ∇ · (D∇d) , in the β-phase, (29c)

− n · ∇d = 0, at Aβσ , (29d)

A = −ξλn·
(

∇A+ (∇A)T1
)

·(I− nn)+D∇d·(I− nn) , at Aβσ ,

(29e)

ψ(r+ li) = ψ(r), i = 1, 2, 3;ψ = A, a, d, (29f)

〈a〉β = 0; 〈d〉β = 0. (29g)

Problem-II (source f)

∇ ·C = 0, in the β-phase, (30a)

0 = −∇c+∇ ·

(

∇C+ (∇C)T1
)

, in the β-phase, (30b)

ṽ+ v · ∇e = ∇ · (D∇e) , in the β-phase, (30c)

− n · ∇e = n, at Aβσ , (30d)

C = −ξλn ·

(

∇C+ (∇C)T1
)

· (I− nn)+ D∇e · (I− nn)

+D (I− nn) , at Aβσ , (30e)

ψ(r+ li) = ψ(r), i = 1, 2, 3;ψ = c,C, e, (30f)

〈c〉β = 0; 〈e〉β = 0. (30g)

In the above equations, the superscript T1 was used to denote
the transpose, which, for a third order tensor, κ , permutes the
first and second indices, i.e., κT1

ijk
= κ jik.

The two closure problems I and II are coupled both between
themselves and also with the macroscale model solution due to
the convective terms in Equations (29c) and (30c). This becomes
clear when, in these two last equations, the representation given
in Equation (28a) is used to express ṽ and v in terms of ∇〈p〉β

and f. This issue is often encountered while upscaling non-linear
processes (see, for instance, Valdés-Parada et al., 2009; Airiau
and Bottaro, 2020) and it will be addressed later in section 6.3.
At this point, it is pertinent to derive the closed form of the
upscaled model.

6. CLOSED MODEL

Now that expressions relating v, p̃ and χ̃ to average quantities are
available, it is of interest to return to the average equations and
express them in a closed manner. For total mass transport, the
closed equation is given by either one of Equation (11).

6.1. Closed Macroscopic Momentum
Equation
For momentum transport, the corresponding equation results
from applying the superficial averaging operator to Equation
(28a). This leads to

〈v〉 = −
Ks

µ
· ∇〈p〉β + Dc ·

∇〈c〉β

〈c〉β + α
, (31)

where the following nomenclature was used

Ks = 〈A〉; Dc = 〈C〉. (32)

Here, Ks is an apparent permeability tensor that differs from the
intrinsic one as it is affected by both the diffusive and viscous
slip effects. This tensor reduces to the intrinsic permeability
tensor under no-slip conditions. In addition, Dc is a dispersion
tensor, which, for conditions such that Knudsen effects can
be disregarded, reduces to the macroscopic slip conductivity
introduced by Altevogt et al. (2003a). It should be emphasized
that the two effective medium coefficients appearing in Equation
(31) depend on the Péclet number defined in Equation (18) and
the Knudsen number, Kn, given by

Kn = λ/ℓβ . (33)

The specific nature of this dependency should be extensively
studied but the details of this dependency are, however, beyond
the scope of this work. Nevertheless, an analysis is presented
in section 7 in terms of the Péclet number, allowing to retrieve
some transport regimes reported in the literature. The physical
meaning of the two terms appearing on the right-hand side of
Equation (31) can be understood as follows. The first term is
related to momentum transport due to the macroscopic pressure
gradient. The second term can be regarded as a correction to
momentum transport induced by both slip effects.
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6.2. Closed Macroscopic Species
Transport Equation
The remaining equation to be closed is the one governing
transport of species A. To progress toward this macroscopic
equation, the definitions given in Equation (27) can be
introduced back into Equation (28c) in order to express the
latter as

c̃ = −(〈c〉β + α)
d

µ
· ∇〈p〉β + e · ∇〈c〉β . (34)

Substituting this result into Equation (10) yields

∂〈c〉β

∂t
︸ ︷︷ ︸

mass accumulation

+ ∇ ·
(

〈c〉β〈v〉β
)

︸ ︷︷ ︸

convective transport

+ ∇ ·

[

(〈c〉β + α)
R

µ
· ∇〈p〉β

]

︸ ︷︷ ︸

slip correction to convective transport

= ∇ ·
[

Ds · ∇〈c〉β
]

︸ ︷︷ ︸

mass dispersion including
slip effects

, (35)

where the physical meaning of each term was identified and the
following effective-medium coefficients were introduced

R = − 〈ṽd〉β +
D

Vβ

∫

Aβσ

nd dA, (36a)

Ds = D






I+

1

Vβ

∫

Aβσ

ne dA− D
−1

〈ṽe〉β






. (36b)

Equation (35) differs from the typical convection-dispersion
equation as it contains a slip correction to convective transport
and it requires the computation of two effective-medium
coefficients. The second order tensor, R, has the units of
permeability and the product R

µ
· ∇〈p〉β may be interpreted as

a velocity vector that corrects 〈v〉β in order to account for slip
effects. In addition, the dispersion tensor, Ds, given in Equation
(36b), is defined in a similar manner as the total dispersion
tensor encountered in passive dispersion in porous media (see
Chapter 3 in Whitaker, 1999). The main difference with this
case lies in the fact that the closure variable, e, depends on both
Knudsen and diffusive slip effects as it is evidenced in Problem-II
(see Equations 30).

6.3. Summary of the Closed Average Model
The closed average model consists of the effective-medium
equations given in Equations (11a) or (11b) (total mass
conservation), Equation (31) (momentum transport) and
Equation (35) (species A mass transport). These three balance
equations may be combined to provide an equivalent alternative
form of the average model made of two equations on ∇〈p〉β

and 〈c〉β , respectively. Introducing the expression of the average
velocity given in the macroscopic momentum Equation (31) into
the averaged total mass conservation Equation (11a) yields

∇ ·

(

Ks

µ
· ∇〈p〉β −

Dc

〈c〉β + α
· ∇〈c〉β

)

= 0. (37)

Similarly, replacing the average velocity in the macroscopic
equation for species A mass transport by the modified Darcy
Equation (31), and rearranging, leads to

ε
∂〈c〉β

∂t
+

1

µ
∇ ·

[(

ε(〈c〉β + α)R− 〈c〉βKs

)

· ∇〈p〉β
]

= ∇ ·

[(

εDs −
〈c〉βDc

〈c〉β + α

)

· ∇〈c〉β
]

. (38)

These two equations clearly show the non-linear coupling
between the macroscopic pressure gradient and macroscopic
concentration. Once the solutions on ∇〈p〉β and 〈c〉β are
achieved, subject tomacroscopic boundary and initial conditions,
they can be further employed to reconstruct the local velocity
field using Equation (28a) over the unit cell. This is necessary to
solve the two closure problems I and II yielding the four effective
coefficients. The successive resolution of the macroscopic model
and closure problems should be iteratively repeated until
convergence is reached. Ultimately, the converged fields of∇〈p〉β

and 〈c〉β can be substituted in Equation (31) to predict the
macroscale velocity.

In the following paragraphs, particular forms of the upscaled
model are investigated. This analysis is of interest since it shows
that the upscaled model derived here is general enough as it
allows retrieving the resultingmodels reported for particular flow
and transport conditions. These submodels have been thoroughly
analyzed and validated and they hence serve as an indirect
validation of the upscaled model derived here.

7. PARTICULAR CASES OF THE
UPSCALED MODEL

The upscaled model derived in the previous paragraphs is
general in the sense that it is not constrained to a particular
range of Péclet or Knudsen numbers values, the latter being
non-zero and, at most, ∼ 0.1 to be compliant with the slip
convective regime. However, it is instructive to analyze how
the structure of the model is modified for specific flow and
transport conditions (more specifically regarding themomentum
transport and species A mass transport equations, the total
mass conservation equation remaining unaltered). In essence,
the regimes are related to the relative importance of diffusive
and convective effects. In the absence of diffusive slip effects,
the crossover between the convective and diffusive regimes is
characterized by Pe = 1 as can be easily inferred from the
transport equation for c̃ (see Equation 20). However, a close
attention to the right-hand side of the slip boundary condition
given in Equation (25), once multiplied by ℓβ/D , indicates that
the term related to Knudsen slip is O (PeξKn) whereas the
diffusive slip term is O(ℓβ/L). As a consequence, on the basis
of this interfacial boundary condition, the three regimes to be
considered here are: (1) the diffusive slip regime for which Pe≪
ℓβ/(LξKn); (2) the slip regime containing both slip effects where
Pe = O(ℓβ/(LξKn)) and finally, (3) the Knudsen slip regime,
for which Pe ≫ ℓβ/(LξKn). In the following paragraphs, some
comments about each regime are provided.
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7.1. Diffusive Slip Regime
(

Pe≪

ℓβ

LξKn

)

In this case, the physical pore-scale model for mass and
momentum transport corresponds to the one studied by Altevogt
et al. (2003a) under non-adsorption conditions and to the one
recently reported by Moyne et al. (2020) under incompressible
flow condition and transport of a single chemical species.
Furthermore, the interfacial boundary conditions in closure
problems I and II given in Equations (29e) and (30e) reduce to

A = D∇d · (I− nn) , at Aβσ , (39)

C = D∇e · (I− nn)+ D (I− nn) , at Aβσ . (40)

The remaining parts of the closure problems are kept unaltered,
in general. Consequently, no further simplification to the
upscaled model for mass and momentum transport derived
here is possible. It is worth pointing out that the mathematical
structure of the closure problems in this case is simpler than the
one proposed by Altevogt et al. (2003a), since they are not written
in an integro-differential form. Nevertheless, the formulations
are equivalent.

7.2. Knudsen and Diffusive Slip Regime
(

Pe = O
(

ℓβ

LξKn

))

This regime corresponds to the general situation addressed in the
previous section of the work and, to the best of our knowledge it
has not been studied in the literature. Consequently, the closure
problems and the upscaled model need to be solved in a coupled
and iterative manner as explained above, a task that is beyond the
scope of this work.

7.3. Knudsen Slip Regime
(

Pe≫

ℓβ

LξKn

)

In this situation, Problem-I can be decoupled into the following
two boundary-value problems
Problem-Ia

∇ · A = 0, in the β-phase, (41a)

0 = −∇a+∇ ·

(

∇A+ (∇A)T1
)

+ I, in the β-phase, (41b)

A = −ξλn ·

(

∇A+ (∇A)T1
)

· (I− nn) , at Aβσ , (41c)

ψ(r+ li) = ψ(r), i = 1, 2, 3;ψ = A, a, (41d)

〈a〉β = 0. (41e)

Problem-Ib

v · ∇d = ∇ · (D∇d) , in the β-phase, (42)

− n · ∇d = 0, at Aβσ , (43)

d(r+ li) = d(r), i = 1, 2, 3, (44)

〈d〉β = 0. (45)

In addition, a similar decoupling applies for Problem-II that gives
rise to the following two closure problems
Problem-IIa

∇ ·C = 0, in the β-phase, (46a)

0 = −∇c+∇ ·

(

∇C+ (∇C)T1
)

, in the β-phase, (46b)

C = −ξλn ·

(

∇C+ (∇C)T1
)

· (I− nn) , at Aβσ , (46c)

ψ(r+ li) = ψ(r), i = 1, 2, 3;ψ = c,C, (46d)

〈c〉β = 0. (46e)

Problem-IIb

ṽ+ v · ∇e = ∇ · (D∇e) , in the β-phase, (46f)

− n · ∇e = n, at Aβσ , (46g)

e(r+ li) = e(r), i = 1, 2, 3, (46h)

〈e〉β = 0. (46i)

Note that the solution of Problem-Ib is simply d = 0 and,
according to Equation (36a), this leads toR = 0. In a similar way,
the solution of Problem-IIa is C = 0, thus making Dc = 0 (see
the second of Equation 32). In this way, the only remaining non-
zero effective-medium coefficients are the apparent permeability
tensor Ks and the dispersion tensor Ds. A detailed analysis of the
functionality of Ks with the geometry and the Knudsen number
is available from the works by Lasseux et al. (2014) and Lasseux
et al. (2016). Moreover, the disperson coefficient Ds is still given
by Equation (36b) and is influenced by the Knudsen slip effects.
The macroscopic mass transport equation for species A in the
present situation coincides to that explored in detail in the work
by Valdés-Parada et al. (2019) when the problem reported in this
last reference is conceived without any heterogeneous reaction.
This model is the convection-dispersion equation ant it can be
written as follows

∂〈c〉β

∂t
+ 〈v〉β · ∇〈c〉β = ∇ ·

(

Ds · ∇〈c〉β
)

. (47)

In any of the above three regimes, it is possible to encounter
situations for which Pe ≪ 1. Under this constraint, a reasonable
approximation for Equation (29c) is

∇ · (D∇d) ≃ 0, in the β-phase. (48)

Since d must satisfy the boundary conditions given in Equations
(29d) and (29f), together with the average constraint in the
second of Equation (29g), it is deduced that d ≃ 0 in this regime.
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The consequence of this is that, as indicated by Equation (36a),
R ≃ 0. In addition, from Problem-II, under the constraint Pe≪1,
taking into account the estimate e = O(ℓβ ), Equation (30c) can
be reasonably reduced to

∇ · (D∇e) ≃ 0, in the β-phase. (49)

This equation is subject to the boundary conditions given in
Equations (30d) and (30f), which, together with the average
constraint given in the second of Equation (30g), forms a problem
that is decoupled from that on C and c and coincides with the
closure problem for mass diffusion given in Equations (1.4–58)
in Whitaker (1999). Consistently, the dispersion tensor given
in Equation (36b) reduces to an effective diffusion tensor, Deff

defined as

Deff = D






I+

1

Vβ

∫

Aβσ

ne dA






. (50)

Under these circumstances, the upscaledmass transport equation
for species A given in Equation (35) reduces to

∂〈c〉β

∂t
= ∇ ·

(

Deff · ∇〈c〉β
)

, (51)

showing, as expected, that the macroscopic species mass
transport is purely diffusive when Pe ≪ 1, whatever the
nature of the slip velocity boundary condition. In addition,
the upscaled equation for momentum transport given in
Equation (31) remains unaltered. However, when the Péclet
number value is such that the interfacial and bulk transports are
both purely diffusive, i.e., when Pe ≪ min

(

ℓβ/ (LξKn) , 1
)

,
the permeability tensor Ks reduces to the intrinsic
permeability tensor.

8. CONCLUSION

In this work, the problem of gas mixture transport in a
homogeneous porous medium was addressed with the purpose
of deriving an upscaled model. With this aim in mind, the pore-
scale problem was formulated in the case of a binary mixture
involving a passive solute diluted in a solvent that is transported
by advection and diffusion. Slip flow, due to Knudsen effects,
as well as diffusive slip are taken into account at the solid-fluid
interface following a first-order Navier condition for momentum
and a Kramers-Kistemaker condition for species transport. In
addition, this interface is considered impervious to mass transfer.
Assuming incompressible and isothermal flow, the total and
solute species mass conservation equations, together with the
momentum balance equation for the fluid mixture associated
to the slip boundary condition were upscaled by means of the
volume averaging method, complemented with an approach

similar to that used in the adjoint homogenization method.
The result is a macroscopic model including the corresponding
macroscopic balance equations. The macroscopic total mass
conservation equation is the classical divergence-free average
velocity. The macroscopic momentum balance equation involves
a Darcy term but with an apparent permeability tensor that
is the intrinsic permeability corrected by both slip effects. An
additional term, accounting for momentum induced by the
interfacial diffusive slip, is also present that involves a dispersion-
like tensor. The macroscale species mass transport is governed
by a non-typical convection-dispersion equation, which includes
the classical convective transport term corrected by an interfacial
diffusive slip-induced convective term involving a tensorial
effective coefficient. In addition, the dispersion term involves
a tensor that results from the sum of effective diffusion and
hydrodynamic dispersion. The four effective tensorial coefficients
can be computed from the solution of two coupled closure
problems. However, due to the nonlinear nature of the diffusive-
slip and to the convective transport term in the species mass
conservation equation, the closure problems solution requires an
iterative procedure that implies knowledge of the macroscopic
pressure gradient as well as of the macroscopic concentration.
The model developed in this work is general in the sense that
it combines, for the first time, Knudsen and diffusive slip effects
and sheds new light on the structure of the upscaled model
and the means to predict the involved effective coefficients.
Indeed, the use of the macroscale model derived here is restricted
by the starting assumptions adopted in the microscale model
formulation and also by the spatio-temporal constraints and
assumptions involved in the upscaling process. This model
was shown to conveniently coincide with those reported in
the literature in particular situations corresponding to either
diffusive or Knudsen slip conditions only. In these reported
studies, predictions of the corresponding effective-medium
coefficients were illustrated and, in some cases, validations with
experiments (see for instance Altevogt et al., 2003b) and pore-
scale simulations were also investigated. This can be considered
as a first element of validation of themodel reported here. Further
investigations in terms of comparisons with experimental data
and the consideration of additional mechanisms like heat
transfer are certainly part of the perspectives open by the
current analysis.
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Immiscible two-phase flow of Newtonian fluids in porous media exhibits a power law

relationship between flow rate and pressure drop when the pressure drop is such that

the viscous forces compete with the capillary forces. When the pressure drop is large

enough for the viscous forces to dominate, there is a crossover to a linear relation

between flow rate and pressure drop. Different values for the exponent relating the flow

rate and pressure drop in the regime where the two forces compete have been reported

in different experimental and numerical studies. We investigate the power law and its

exponent in immiscible steady-state two-phase flow for different pore size distributions.

We measure the values of the exponent and the crossover pressure drop for different

fluid saturations while changing the shape and the span of the distribution. We consider

two approaches, analytical calculations using a capillary bundle model and numerical

simulations using dynamic pore-network modeling. In case of the capillary bundle when

the pores do not interact to each other, we find that the exponent is always equal to 3/2

irrespective of the distribution type. For the dynamical pore network model on the other

hand, the exponent varies continuously within a range when changing the shape of the

distribution whereas the width of the distribution controls the crossover point.

Keywords: non-linear fluid flow, two-phase flow, porous media, pore-size distribution, effective rheology

1. INTRODUCTION

Multiphase flow is relevant for a wide variety of different applications which deal with the flow
of multiple immiscible fluids in single capillaries to more complex porous media (Bear, 1988;
Dullien, 1992). The rheology of such flow is guided by a series of parameters: capillary forces at
the interfaces, viscosity contrast between the fluids, wettability, and geometry of the system, which
collectively make the flow properties different compared to single phase flow. The study of two-
phase flow is generally divided in two regimes: (i) the transient regime and (ii) the steady-state
flow. In the transient regime, one can obtain different types of flow patterns, namely capillary
fingering (Lenormand and Zarcone, 1985), viscous fingering (Chen and Wilkinson, 1985; Måløy
et al., 1985), and stable displacement (Lenormand et al., 1988), andmodels such as diffusion limited
aggregation (DLA) (Witten and Sander, 1981) and invasion percolation (Wilkinson andWillemsen,
1983) are used to describe the patterns. When the steady state sets in after the initial instabilities,
the flow properties are determined by the global parameters such as global pressure drops, flow
rates, saturation, and fractional flow (Valavanides, 2018).
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In recent years, many studies on the steady-state two phase
flow on Newtonian fluids have revealed a non-trivial rheology,
that is, in the regime where capillary forces are comparable to
viscous forces, the relation between the total flow rate Q in a
sample and the global pressure drop 1P across it differs from
a linear Darcy law (Darcy, 1856; Whitaker, 1986). Instead, Q
increases much faster with 1P, obeying a power law where
the power-law exponent β is larger than 1 (Tallakstad et al.,
2009a,b; Rassi et al., 2011; Sinha et al., 2017). Furthermore,
studies have also shown that it undergoes crossovers to linear
regimes at both sides of the non-linear regime, that is, at flow
rates below a threshold and at flow rates higher than another
larger threshold. Experiments by Tallakstad et al. (2009a,b) for
a two-dimensional (2D) Hele-Shaw cell filled with glass beads
measured this exponent β as 1.85 (≈ 1/0.54)1. For a three-
dimensional (3D) porous media, this exponent was observed
to vary between 2.2 (≈ 1/0.45) and 3.3 (≈ 1/0.3) (Rassi
et al., 2011) depending on the saturation. It was later found to
converge to a certain value≈ 2.17 when a global yield pressure is
considered in the system, below which there is no flow (Sinha
et al., 2017). By using pore-network modeling with 2D and
3D pore networks, Sinha et al. found the exponent to be close
to 2 in the non-linear regime (Sinha and Hansen, 2012; Sinha
et al., 2017). They also have reported a crossover to linear Darcy
type regime at high capillary number when capillary forces are
insignificant. Yiotis et al. (2013) performed Lattice-Boltzmann
simulations with stochastically reconstructed porous system and
studied the dynamics of fluid blobs in the presence of gravity. In
the steady state, they found a non-linear regime with quadratic
dependence with an exponent 2, which is bounded by two linear
regimes at both the high and low capillary numbers. The blobs
were then studied experimentally and the non-linear exponent
was found as 1.54 (≈ 1/0.65) (Chevalier et al., 2015). Very
recently, Gao et al. (2020) performed experiments of two-phase
flow in sandstone samples. They used x-ray micro-tomography
measurements and for a fractional flow of 0.5 they found the
exponent in the non-linear regime to be equal to 1.67 (≈ 1/0.6).
They also reported a regime with linear Darcy type behavior at
lower capillary numbers where the conductance does not change
significantly. Further experiments by Zhang et al. (2021) explore
the dependence of the exponent on fractional flow and reported
values in the range of 1.35 (≈ 1/0.74) to 2.27 (≈ 1/0.44). They
presented a theory that can predict the boundary between the
linear regime and the non-linear intermittent flow regime.

A simple explanation for the observed power law relation
between flow rate and pressure drop may be found by following
the arguments of Roux and Herrmann (1987), concerning the
conductivity of a disordered network of resistors, where each
resistor has a threshold voltage to start conducting current.
If we compare the voltage across a resistor in this system to
the pressure drop over a link in a network of pores, and the
threshold voltage to the pressure drop necessary to overcome

1The values in the brackets are the exponents reported in the literature, the

reciprocals of them should be compared here, as we express our results as Q as

a power law in 1P, whereas the cited articles expressed 1P as a power law in Q, or

rather the corresponding capillary number Ca.

capillary forces due to the presence of fluid interfaces (Sinha et al.,
2013), we may translate the Roux and Herrmann arguments into
a language appropriate for porous media. When the pressure
drop 1P across a network of pores containing fluid interfaces
is increased by an amount d1P, an additional number of pores
(dN) will start contributing to the flow. This leads to an increase
in the effective conductivity K of the network as more links are
participating to the flow. If correlations between the opened links
are ignored, the increase in conductivity dK will be proportional
to the increase in the number of opened links, dK ∝ dN. We
integrate to find

K(1P′) ∝

∫

1P′

Pc

d1P′′ = 1P′ − Pc, (1)

where the lower integration limit Pc is the threshold pressure
necessary to induce a flow across the network and can be
determined from the effective threshold pressure of the first flow
path. If the pressure drop 1P is less than Pc, there will be no flow
across the porous media. The flow rate is then given by

Q =

∫

1P

Pc

K(1P′)d1P′ ∝ (1P − Pc)
2. (2)

Tallakstad et al. (2009a,b) provided another explanation by
considering the scaling of clusters that are trapped by capillary
forces. They assumed that the flow occurs in channels in between
trapped clusters. In a two-dimensional system of length L under
a pressure drop 1P, a cluster will be trapped if the capillary force
pc > λ‖|1P|/L, where the λ‖ is the length of such a cluster. The
maximum length of a such a trapped cluster is therefore given
by λ

m
‖

= Lpc/|1P|. By assuming the distance between the flow
channels equal to the typical cluster length, the total number of
flow channels will be nc = L/λm

‖
. The total flow through all the

channels is therefore the number of channels multiplied by the
flow rate in each channel, which leads to Q ∝ nc|1P| ∝ |1P|2.
However, if this formalism is extended to three dimensions, it
leads to a cubic relationship, Q ∝ |1P|3, which is in contrary
to what is observed in experiments and simulations.

Sinha and Hansen (2012) developed a mean-field theory for
a disordered network. By analytically calculating the average
rheological behavior for such a pore (Sinha et al., 2013) and
using Kirkpatrick’s self-consistent expression for the equivalent
conductivity for a homogeneous network (Kirkpatrick, 1973),
they derived the relationship,

Q ∝ (1P − Pc)
2. (3)

Note that the above theoretical approaches find the exponent
in the non-linear regime β to be equal to 2, thus hinting
at universality.

Recently, Roy et al. (2019) have studied the effect of the
threshold distribution on the effective rheology of twoNewtonian
fluids in a capillary bundle model. The model consists of
a bundle of parallel capillary tubes with variable diameters
along their lengths which introduce thresholds for each tube
(Scheidegger, 1953, 1974). For power-law type distributions of
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the thresholds they find analytically and numerically that the
non-linear exponent β can be related to α, the exponent for
the power-law distribution, by the relationships β = α + 1 or
β = α + 1/2 depending on whether the distribution starts from
zero or has lower cut off, respectively. This means, for α = 1,
the uniform threshold distribution, β will be equal to 2 and 3/2,
respectively for the two cases. This study clearly hints that the
non-linear exponent depends on the distributions related to the
system properties. We note that the capillary fiber bundle model
in the form studied by Roy et al. only considered variations in
the flow thresholds and not directly on the variations in the pore
sizes, nor fluctuations in the saturation.

In this article, we present a detailed study on how the
distribution of pore sizes controls the effective rheology of the
two-phase flow in the steady state. We will first study analytically
the capillary bundle model, as it is an analytically tractable model
for two-phase flow and provides deeper understanding of the
underlying physical mechanism. There we will show that as
the applied pressure is increased there exists a transition point
below which the relation between flow rate and pressure drop
is non-linear. We will investigate how the degree of such non-
linearity depends on the shape and width of the distribution
of the pore sizes. Above the transition point, we observe that
the flow rate increases in a Darcy-like linear manner with the
increase in pressure drop and the linearity do not depend on
the distribution. We will then move to numerical simulation
with dynamic pore-network modeling, where a similar transition
is observed. There the variation in exponent in the non-linear
regime and the transition point is studied by varying three
parameters: the saturation of the wetting fluid, and the span and
shape related to the pore-size distribution. Finally, with a two-
dimensional plane of the non-linear exponent vs. the transition
point, we show how the above three parameters control the
effective rheology of two-phase flow.

2. CAPILLARY FIBER BUNDLE MODEL

In this section, we will study the analytically solvable capillary
fiber bundle model (CFBM) (Scheidegger, 1953, 1974), which
can be considered as a prototype for a one-dimensional porous
medium. The model was recently studied by the present authors
to explore the non-linearity in the effective rheology in two-phase
flow in a bundle of capillary tubes (Roy et al., 2019). Here we
will analytically derive the relation between average flow rate and
pressure drop for this model for different distributions of pore-
radii. CFBM is a hydrodynamic analog of the fiber bundle model
(Hansen et al., 2015), which is a disordered system driven by
threshold activated dynamics and often used as a model system
to study mechanical failure under stress.

The model consists of a bundle of N independent parallel
tubes each of length L, carrying train of bubbles with different
distributions of wetting and non-wetting fluids. A global pressure
drop 1P is applied across the bundle, creating a global flow rate
Q. In the steady state, Q is the sum of all the time averaged flow
rates 〈q〉 in each individual tube. The diameter of each tube varies
along the length of the tubes which makes the interfacial forces

vary as the bubble train moves along the tubes. We assume no
film flow so the fluids do not pass each other. The total length
of the sections along the tube containing the more wetting fluid
(called the wetting fluid) is Lw and the total length of the sections
containing the less wetting fluid (called the non-wetting fluid) is
Ln. The corresponding volumes are therefore given by πr2Lw and
πr2Ln, where r is the average radius of the capillary tube. The
saturations in each tube are then Sw = Lw/L and Sn = Ln/L.
Each tube making up the bundle contains the same amount of
each fluid but with its own division of the fluids into bubbles.

The total volumetric flow rate q in a capillary tube at any
instant of time is given by,

q = −
πr4

8µavL
2(|1P| − pc)(|1P| − pc), (4)

where |1P| is the pressure drop across the capillary tube, pc is
the instantaneous capillary pressure given by the sum of all the
capillary forces along the capillary tube due to the interfaces and
µav is the effective viscosity given by µav = Swµw + Snµn. Here
µw and µn are the visocities of the wetting and the non-wetting
fluids. Here 2(|1P| − pc) is the Heaviside function which is
0 for negative arguments and 1 for positive arguments. When
the pressure difference across the tube is kept fixed, the average
volumetric flow rate 〈q〉 in the steady state can be obtained by
averaging Equation (4) over a time interval,

〈q〉 = −
πr4

8µavL
sgn(1P)2(|1P| − γ )

√

|1P|2 − γ 2, (5)

where sgn(1P) is the sign of the argument. Here the parameter γ

is the effective threshold pressure for the single tube below which
there is no flow, and a function of the average pore radii, surface
tension, contact angle, and bubble sizes. If the tube is assumed to
have a sinusoidal variation in radius with amplitude a about an
average radius r and a period of length l, then the exact form of γ
is given by,

γ =

√

Ŵ2
s + Ŵ2

c , (6)

where

Ŵs =

+K
∑

j=−K

4σa

r
sin

(

π1xj

l

)

sin

(

2π(xj − x0)

l

)

, (7)

and

Ŵc =

+K
∑

j=−K

4σa

r
sin

(

π1xj

l

)

cos

(

2π(xj − x0)

l

)

. (8)

Here xj is the position of center of the jth bubble if the tube is
filled with 2K + 1 bubbles. Its width is 1xj. The surface tension
times the cosine of the average contact angle is σ .

We are interested in the effect due to the variation in the pore
radii assuming that the average contribution due to the bubble
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sizes are the same for all tubes. In such a scenario, γ can be
expressed in terms of the link radius r as,

γ =
k

r
, (9)

where k is a proportionality constant. Equation (9) implies that
the larger the radius of a tube, the lower the threshold pressure
will be and the fluids will start flowing at a relatively lower value
for |1P|.

We now consider a bundle ofN tubes with average radii drawn
from a distribution ρ(r). We assume there is a smallest radius
rmin and a largest radius rmax, so that ρ(r) = 0 for r < rmin

and for r > rmax. This means that there is a smallest threshold
Pm = k/rmax and a largest threshold PM = k/rmin among the N
tubes as N → ∞.

Let us define a radius

rc(|1P|) = max

(

k

|1P|
, rmin

)

. (10)

The total flow rate is then given by

Q

N
=

{

0 if |1P| < Pm,
∫ rmax

rc(|1P|) q ρ(r)dr if |1P| ≥ Pm,
(11)

which combined with Equations (9), (5), and (11) give.

8µavLQ

Nπ
=







0 if |1P| < Pm,

−
∫ rmax

rc(|1P|) r
4

√

|1P|2 −
(

k
r

)2
ρ(r)dr if |1P| ≥ Pm.

(12)

2.1. Uniform Distribution
We use a uniform distribution of r between rmin > 0 and rmax >

rmin as a first illustration. We have that

ρ(r) =







0 if r ≤ rmin,
1/(rmax − rmin) if rmin < r ≤ rmax,
0 if r > rmax.

(13)

Equation (12) then gives for |1P| > k/rmax

Q = −
k5Nπ

120µav[rmax − rc(|1P|)]L

1

|1P|4

[

(u2 − 1)3/2(2+ 3u2)
]rmax|1P|/k

rc(|1P|)|1P|/k
. (14)

We now have two possibilities, either |1P| > k/rmin, making
rc(|1P|)|1P|/k = rmin|1P|/k. The other possibility is that
|1P| < k/rmin making rc(|1P|)|1P|/k = 1.

We consider the |1P| > k/rmin case first. This is when there
is flow in all the fibers. We get

Q = −
k5Nπ

120µav[rmax − rmin]L

1

|1P|4

[

(u2 − 1)3/2(2+ 3u2)
]rmax|1P|/k

rmin|1P|/k
. (15)

For large pressure drops |1P|≫k/rmin, this expression reduces to

Q = −
Nπ[r5max − r5min]

40µav[rmax − rmin]L
|1P|. (16)

We now consider the opposite case, i.e., when |1P| < k/rmin. In
this case, rc(|1P|)|1P|/k = rmin|1P|/k. The flow rate is then

Q = −

k5Nπ

[

(

rmax|1P|
k

)2
− 1

]3/2 [

2+ 3
(

rmax|1P|
k

)2
]

120µav[rmax − k/|1P|]L|1P|4
. (17)

If we now assume that |1P| − k/rmax = |1P| − Pm ≪ Pm, we
may expand this expression in terms of |1P| − Pm, finding to
lowest order.

Q = −

√
2 r

11/2
max Nπ

12µav(rmax − rmin)k1/2L
(|1P| − Pm)

3/2. (18)

2.2. Power Law Distribution
We now consider a power law distribution where link radii are
chosen with different probabilities depending on the slope of the
distribution. The expression for ρ(r) we assume to be

ρ(r) =











0 if r ≤ rmin,
1−α

r1−α
max−r1−α

min

r−α if rmin < r ≤ rmax,

0 if r > rmax.

(19)

The uniform distribution (Equation 13) illustrated in the
previous section is a special case of this distribution with α = 0.
The global flow rate obtained from Equation (13) is

Q = −
k(1− α)Nπ

8µav[r
1−α
max − r1−α

min ]L

∫ rmax

rc(|1P|)
r4−α

√

(

|1P|

k

)2

−

(

1

r

)2

dr.

(20)
As for the uniform distribution, we have two cases to consider:
|1P| > k/rmin for which rc(|1P|) = rmin and |1P| < k/rmin for
which rc(|1P|) = k/|1P|.

We consider the case |1P| > k/rmin first. Then, there is flow
in all the fibers and we have

Q = −
k5−α(1− α)Nπ

8µav[r
1−α
max − r1−α

min ]L|1P|4−α

∫ rmax|1P|/k

rmin|1P|/k
u3−α

√

u2 − 1du.

(21)
When the pressure drop |1P| becomes very large, i.e., |1P| ≫
k/rmin, the integral in Equation (21) simplifies by having√
u2 − 1 → u in the integrand, and we find

Q = −
(1− α)[r5−α

max − r5−α

min ]Nπ

8(5− α)µav[r
1−α
max − r1−α

min ]L
|1P|. (22)

The other case, |1P| < k/rmin leads to rc(|1P|) = k/|1P| and
Equation (20) becomes

Q = −
k5−α(1− α)Nπ

8µav[r
1−α
max − r1−α

min ]L|1P|4−α

∫ rmax|1P|/k

1
u3−α

√

u2 − 1du.

(23)
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We now assume that |1P| − Pm ≪ Pm. We expand the integral
in Equation (23) to find

∫ 1+1

1
u3−α

√

u2 − 1du =

∫

1

0
(1+ w)3−α

√
2+ w

√
wdw

=
2
√
2

3
1

3/2, (24)

to lowest order in 1. Hence, the total flow rate is to lowest order
in |1P| − Pm

Q = −

√
2(1− α)Nπr

11/2−α

max

12
√
kµav[r

1−α
max − r1−α

min ]L
(|1P| − Pm)

3/2. (25)

We see that the exponent α does not affect the exponent β for
|1P| larger than but close to Pm. Furthermore, for α = 0 we
retrieve Equation (18).

Here Pm = k/rmax plays the role of a threshold pressure
Pc below which there is no flow, whereas PM = k/rmin is the
crossover pressure drop at which there is flow in all fibers. This
pressure (PM) signals the transition to the Darcy-type flow where
Q is proportional to |1P|.

In gist, the analytical calculations with the capillary bundle
model show that as soon as the pressure drop over the fiber
bundle is large enough for flow to start, it enters a non-linear
regime where the total flow rate Q is proportional to (|1P| −
Pm)

3/2 irrespective of the exponent α, defined in Equation (19).
When the threshold pressure PM is crossed, the non-linear
behavior subsides and we find Darcy-type flow. Mobility is
sensitive to the details of the radius distribution for low flow
rates and insensitive at higher flow rates. We like to point out
here that, unlike the radii distribution, when a distribution of
pore thresholds is considered, a quadratic regime with β =

2 can also obtained for CFBM when the distribution has no
lower cutoff (Roy et al., 2019). With any non-zero lower cut-
off in the thresholds, β is also 3/2 there. In the present study
we considered the distribution of pore radii rather than the
thresholds, and for any finite pore radii, there is always a lower
cutoff in the thresholds.

3. DYNAMIC PORE NETWORK MODEL
(DPNM)

Pore-network modeling is a computational technique to simulate
two-phase flow in porous media where the porous matrix is
represented by a network of pores with simplified geometries
(Joekar-Niasar and Hassanizadeh, 2012). In comparison to other
computational methods for simulating two-phase flow in porous
media, such as the lattice Boltzmann method (Gunstensen et al.,
1991) which solves Boltzmann transport equations at discretized
pore space, the pore-network model is a more computationally
efficient method when doing simulation with large number of
pores. Themodel is therefore useful to study up-scaled properties
of two-phase flow in porousmedia in the steady state (Sinha et al.,
2017) or drainage displacements (Zhao et al., 2019). Here we will
use this model to simulate the two-phase flow in the networks

with different pore size distributions and will measure total flow
rate as a function of the global pressure drop in the steady-state.
In this model, one pore is the smallest computational unit and the
fluid displacements inside the pores are governed by equations
for fully developed flow. We use a dynamic pore-network model
where the menisci positions between the fluids track the flow
(Aker et al., 1998; Sinha et al., 2021). The network in this model
is defined in such a way that total pore space related to both the
pore-throat and pore-bodies are represented by composite links of
varying radii. The nodes of the network therefore only represent
the positions of the link intersections and do not contain any
volume. We considered a tilted square lattice in two dimensions
as a network with coordination number 4. The flow rate in a link
in the network is given by (Washburn, 1921),

qj = −
gj

ljµj

[

1pj −
∑

pc(x)
]

, (26)

where1pj is the local pressure drop across the jth link. The terms
lj, gj, andµj, respectively define the length, mobility, and effective
fluid viscosity related to that link. If µw and µn are the wetting
and non-wetting viscosities, respectively, then µj = sn,jµn +

sw,jµw, where sn,j and sw,j are wetting and non-wetting saturations
inside that link. In this study, we consider links with circular
cross sections with radii rj, for which gj = ajr

2
j /8 where aj =

πr2j , the cross-sectional area (Langglois, 1964). The interfacial

pressure due to surface tension between the fluids is indicated
by pc which is summed over all the interfaces inside the link j,
taking into account the direction of the capillary forces. The links
here represent the total pore space that consists of a pore throat
in between pore bodies and the variation in the link radii along
its length is therefore modeled by a sinusoidal periodic shape.
The interfacial pressure at a meniscus inside such a pore can be
expressed by a modified Young-Laplace equation (Sinha et al.,
2013),

|pc(xk)| =
2σ

rj

[

1− cos

(

2πxk

lj

)]

, (27)

where x ∈ [0, lj], the position of a meniscus inside the jth link.
Here σ is the surface tension times the cosine of the contact angle
for the set of fluids and pores which are kept constant throughout
the simulations. We considered σ = 0.03N/m here. We study
in-compressible fluids and therefore at every time step 1t we
have for each node i from Kirchhoff law,

∑

qi = 0, where the
sum is over all the links connected to ith link. This, together with
Equations (26) and (27), constructs a set of linear equations. We
solve these equations by conjugate gradient method (Batrouni
and Hansen, 1988) and determine the flow rates qj in every link.
All the menisci in each link are then advanced by an amount
1xj = qj1t. Further technical details related to the menisci
displacements can be found in Sinha et al. (2021). We consider
periodic boundary conditions that lead the system to evolve to a
steady state.

The network we consider in this study consists of 64 × 64
links in two dimensions (2D) which form a diamond lattice. All
the links are therefore at an angle 45◦ with respect to the overall
flow direction. The links have equal lengths, lj = 1mm, and the
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FIGURE 1 | Distributions of link radii rj for different values of the power α and

width δ. For α = 0 all the radii within the interval have equal probability

whereas for positive and negative values of α there is higher probability to have

narrow and wide links, respectively.

disorder appears in their radii rj. We choose the values of rj from
a distribution ρ(rj) with a power α and in the range rmin to rmax

given by the same type of distribution as in Equation (19),

ρ(rj) =











0 if r ≤ rmin,
1−α

r1−α
max−r1−α

min

r−α

j if rmin < r ≤ rmax,

0 if r > rmax.

(28)

We denote the width of the distribution by δ = rmax − rmin.
The power α generates different distribution types, α = 0
corresponds to a uniform distribution whereas positive and
negative values of α imply higher probability to find narrower
and wider links, respectively. Figure 1 shows ρ(rj) for α = 0.0,
1.7, and −1.7. For α = 0, we show the distributions for δ = 0.1,
0.3, and 0.7.

4. NUMERICAL RESULTS FROM DPNM

We perform simulations with constant global pressure drop 1P
and evolve the systems to steady state, where the macroscopic
quantities fluctuate around a steady average. In the steady state,
we measure the total flow rate Q. Results are averaged over 20
different realizations of the pore network. By fitting the numerical
data with Equation (3) for the low capillary number regime,
we calculate the exponent β and the threshold pressure Pc. As
there are two parameters to determine from each data set, we
considered a method of minimizing the error related to the least
square fit (Sinha and Hansen, 2012). We illustrate this procedure
briefly here. First we choose a trial value of β and perform least
square fitting with the data points. This will provide a value of
Pc and an error associated with it. We perform this for a set of
β values and find the corresponding error values. We then plot
the errors as a function of β . This is shown in Figure 2 for five
different saturations where we see non-monotonic behavior of
the errors with a minimum. We then consider the value of β that
corresponds to the minimum error and use the corresponding
value of Pc. When plotting log(1P − Pc) with logQ, we find
the crossover point between a non-linear and a linear regime

FIGURE 2 | The error associated with least-square fitting of the numerical

results to Equation (3) as a function of the trial values of β. Results are shown

for five different saturations Sw. The minima of these plots decide the final

values of β and Pc.

from eye approximation. From this crossover, we then identify
the crossover pressure drop Pt .

In the following we present the results showing how the
steady-state rheology depends on the three parameters, (A) the
wetting saturation Sw, (B) the power α, and (C) the width δ

related to the pore-size distribution. Sw is varied between 0 and
1. We keep rmin = 0.1 and vary rmax from 0.2 to 0.8. In case
of real a porous media, the pore sizes generally vary over a few
orders of magnitude. In the pore-network simulations however,
making the pores very small will lead the simulations to reach
the steady state in a slower rate and will make the simulations
computationally very expensive. Furthermore, as we will see in
the following, δ do not affect the value of the exponent β and
only controls the crossover point. We therefore considered δ to
vary from 0.1 to 0.7 in the present study. The exponent α is
varied in the range −2.0 ≤ α ≤ 2.0. We will focus on the non-
linear exponent β and the pressure Pt related to the cross-over
from non-linear to linear regime. Then in a Pt vs. β plane we will
highlight how the two quantities vary when we change the values
of Sw, α and δ.

4.1. Effect of Sw
The variation of the flow rate Q with the pressure drop 1P
is shown in Figure 3 for three different wetting saturations
(Figure 3A) 0.1, (Figure 3B) 0.5, and (Figure 3C) 0.9 where we
plotted log(Q) as a function of log(1P − Pc). The value of α

and δ are kept constant here at 0.0 and 0.3, respectively. The
respective threshold pressures (Pc), measured by the minimum
error method, are indicated in the plots. All the plots show a non-
linear regime at lower pressure drops and then a crossover to
a linear regime. However, the slope in the non-linear regime is
much higher for Sw = 0.5 than 0.1 or 0.9. Similarly, the threshold
pressure Pc is also higher for Sw = 0.5. This indicates the fact
that as Sw → 0 or Sw → 1, the two-phase flow essentially
approach to the single phase flow and it should eventually follow
the linear Darcy law without any threshold pressure. In order to
see the nature of this variation toward the linear regime, we plot
in Figures 3D–F, the values of β and Pt and Pc as a function of
Sw, where Sw is varied from 0.1 to 0.9 with an interval of 0.1. All
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FIGURE 3 | Plot of 1P− Pc (Pa) vs. Q (m3
/s) for a network of 64× 64 links in 2D for three different wetting saturations Sw = 0.1, 0.5, and 0.9 are shown in (A–C),

respectively. The plots show a non-linear regime at low pressure drop and a liner regime at high pressure drop. The variations of the slopes β in the non-linear regime,

the crossover pressure drop Pt (KPa) and the threshold pressure Pc (KPa) as a function of Sw are shown in (D–F), respectively. All the β, Pt, and Pc have a maximum

around Sw = 0.5 and decreases on either side.

three plots show a peak around Sw = 0.5 with β = 1.97 and then
continuously decrease in both sides. The decrease in both β and
Pt suggests that not only the non-linearity gradually disappears
as Sw deviates from 0.5, but also the linear Darcy regime can be
obtained at a relatively lower pressure drop. At the same time,
the overall threshold pressure Pc also decreases as the saturation
approaches to 0 or 1.

If we consider that the flow occurs in channels with capillary
barriers (Roux and Herrmann, 1987), that is, the increase in Q
with 1P is contributed from two factors, the increase in the
number of conducting flow paths and the increase in the flow
in each path, then that explains the reduction in both β and Pt as
Sw → 0 or 1. As the saturation of a certain fluid decreases, either
it reduces the number of fluid-fluid interfaces or produces smaller
bubbles of one fluid. In both the cases the effective capillary
barriers corresponding to any flow path decreases. This results
in more flow paths with one fluid or with negligible capillary
barriers which will start flowing as soon as any pressure drop
is applied, making the β to move toward 1. At the same time,
the maximum capillary barrier that the model needs to overcome
to make all possible paths flowing also decreases, which moves
the non-linear to linear transition point to a lower value of 1P.
Experimental observation of the variation of β with saturation
was first reported in Rassi et al. (2011). No threshold pressure
was considered in that study while analyzing the results. A recent
experimental study (Zhang et al., 2021) explores the variation
of β and the crossover point as a function of fractional flow,

Fw = Qw/Q. By balancing the surface energy to create fluid
meniscus to the injection energy, they developed a theory that can
predict the crossover point between the two regimes they have
studied. However, they have studied the crossover from the linear
regime at very low pressure drop to the non-linear regime at the
intermediate pressure drop, whereas our present study addresses
the crossover from the non-linear regime at the intermediate
pressure drop to the linear regime at high pressure drop.

4.2. Effect of α
The power α related to the pore-size distribution function
defined in Equation (28) determines the shape of the distribution
and tells us how the probability of having the wider pores are
compared to the narrower ones. All the pore radii within the
range δ are equally probable for α = 0 whereas positive and
negative values of α indicate lower or higher probability of having
wider pores, respectively (Figure 1). As the interfacial pressures
are inversely proportional to ri (Equation 27), the local capillary
barriers are larger for α > 0 compared to α < 0. In Figure 4,
we plot log(1P − Pc) with log(Q) for three different values of
α (Figure 4A) 0, (Figure 4B) 0.5, and (Figure 4C) −0.5. The
wetting saturation and the distribution width are kept constant
here at Sw = 0.5 and δ = 0.3, respectively. A few things are
to be noticed. The non-linear regime here is highly influenced
by the value of α whereas the slope in linear regime remains
at ≈ 1 independent of α. The exponent β is maximum for
α = 0, and then falls to 1.46 and 1.58 at α = 0.5 and −0.5,
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FIGURE 4 | Variation of Q (m3
/s) as a function of 1P− Pc (Pa) for a network of 64× 64 links and for α = 0, +0.5, and −0.5 are shown in (A–C), respectively. The

wetting saturation Sw = 0.5 and the distribution width δ = 0.3 here. The variations of the slopes β in the non-linear regime, the crossover pressure drop Pt (KPa) and

the threshold pressure Pc (KPa) as a function of Sw are shown in (D–F), respectively where β has a maximum at α = 0 whereas Pt does not show any specific

dependence on α. Pc has a maximum around α = 0 and decreases on either side.

respectively. Moreover, the threshold pressure Pc also decreases
with the increase of |α|. The decrease in Pc for α < 0 is intuitive,
since the wider pores are in larger quantity compared to smaller
pores, which will cause a less capillary barrier to start the flow.
The decrease in Pc for α > 0 is rather counter intuitive and may
be related to the decrease in slope in the non-linear regime.

In Figure 4D, we plot β as a function of α which shows
the decreasing trends of β on both sides of α = 0 and then
becomes constant after it reaches to ≈ 1.5 around |α| = 1.
This indicates that any change in the fluctuations among the
link radii than the uniform distribution causes slower increase
in the conductive paths when increasing the 1P. The crossover
pressure drop Pt is plotted in Figure 4E which shows that Pt
remains constant independent of the value or sign of α. Figure 4F
shows that Pc shows a maximum at Sw = 0.5 and decreases on
either side. The decrease of Pc for negative α is understandable as
there will more links with larger radius in this case. For positive
α we have less links with large radius. Pc is still observed to
decrease, most probably because of the nature of the fitting since
β decreases here.

Notice that, such a variation in the non-linear exponent β

while varying α was not observed in case of CFBM where β has
a value of 3/2 irrespective of the radii distribution (Equation 25).
This indicates that the mixing of the fluids at the nodes in a
pore network has more complex effect than the flow in individual
channels in CFBM. The crossover point Pt here is analogous

to the maximum threshold PM in CFBM which do not depend
on α in both the models as it only depends on the span of the
distribution and not on the shape. Therefore, as we will see in
the next section, Pt has a strong dependence on δ, the span of
the distribution.

4.3. Effect of δ
We now perform simulations by varying the width of the radii
distribution give by, δ = rmax − rmin = 0.1, 0.2, 0.3, 0.5, and
0.7, where rmin was kept constant at 0.1. The wetting saturation
and the distribution power are kept constant here at Sw = 0.5
and α = 0, respectively. The results are illustrated in Figure 5.
Interestingly, unlike the variation of β with the distribution
power α as seen before, here the slopes in the non-linear regime
are almost independent of the distribution width δ and remains
constant around 2.0 (Figure 5A). The crossover pressure drop Pt ,
on the other hand, decreases with increase in δ, which was almost
constant when we varied the distribution power α. We also found
that the global threshold pressure Pc gradually decreases with
increasing δ, from Pc ≈ 2.5KPa at δ = 0.1 to ≈ 1.5KPa at
δ = 0.7. This is because as we increase δ, rmax also increases
and the system contains more pores with larger pore radii. This
decreases the capillary barriers and hence reduces the global
threshold pressure Pc.
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FIGURE 5 | (A) Plot of Q (m3
/s) vs. 1P− Pc (Pa) when varying the distribution width δ where the slopes in the non-linear, as well as in the linear regimes do not show

any variation with δ. In (B–D), respectively, we show the variation of β, Pt (KPa) and Pc (KPa) with δ.

FIGURE 6 | The Pt − β plane, which shows the effect of varying Sw, α, and δ

on the rheological behavior. As Sw deviates from 0.5 (triangles), both β and Pt

decreases. On the other hand, with increasing α (squares) and δ (circles),

respectively, either β or Pt decreases keeping the other one constant.

4.4. The Pt vs. β Plane
To illustrate the all variations in the rheological behavior as a
function of different parameters, we constructed a Pt − β plane.
This is shown in Figure 6. We indicate all the data points there
corresponding to the three sets. The variation in the β and Pt as
we increase Sw, α, and δ are indicated by arrows in the plot. They
can be summarized as:

Varying α: When α is increased, β decreases keeping Pt
constant, and the points moves to left along a horizontal line
(green squares).

Varying δ: When δ is increased, Pt decreases keeping β

constant, and the points move down along a vertical line
(red circles).

Varying Sw: When Sw deviates from 0.5, both β and Pt
decreases and the points move to lower values along a diagonal
line (purple triangles).

5. DISCUSSION

In this article we explored how the rheological properties
two-phase flow in porous media in steady state is affected
by the underlying system disorder. We performed analytical
calculations with a capillary bundle model and numerical

simulations with dynamic pore-network model. We varied the
shape and width of the distribution of the pore-radii with two
distribution parameters α and δ, respectively, and studied the
transition from a non-linear flow regime to a linear Darcy
flow. We found that the exponent β related to the non-
linearity is equal to 3/2 for the capillary bundle model and
do not depend on α. For the pore-network model on the
other hand, β ≈ 2 for uniform distribution (α = 0) and
approaches toward 1.5 as |α| is increased. The width δ of the
distribution affects the crossover point Pt in both the models.
When δ is increased, the linear regime becomes achievable
at a relatively lower pressure drop. Both β and Pt depends
on the saturation Sw. As Sw deviates from 0.5, the two-phase
flow moves closer to single phase flow and both β and Pt
decreases simultaneously making the linear region more and
more prominent. These numerical results can be explained
qualitatively with the hypothesis that the total flow rate is
contributed from the number of conducting paths and the flow
in those paths (Roux and Herrmann, 1987), which makes it to
increase faster than a linear behavior.

It is worth mentioning here that the single phase flow of
Bingham fluid in porous media also shows similar non-linearity
with a global yield threshold and a crossover to a linear regime
(Roux and Herrmann, 1987; Talon and Bauer, 2013; Chevalier
and Talon, 2015). Nash and Rees (2017) has studied Bingham
fluid flow in one dimension and obtained different relations
between applied pressure drop and Darcy velocity depending
on the distribution of channel widths. Talon et al. (2014) have
analytically explored the flow of Bingham fluid in 1d channels
with aperture variation and observed different scaling between
pressure drop and flow rate depending on such variation in
apertures. Above studies support the fact that, when up-scaled to
a certain pore-network, both Bingham flow and two-phase flow
is affected by the pore-size distribution and hence the topology of
the network.

The dependency of the effective rheological properties on
the pore-size distribution indicates a possibility to predict the
transport properties directly from the geometrical properties of
the porous media. Puyguiraud et al. (2021) in a recent letter
developed a model for single phase flow for the prediction of
transport from knowledge of the characteristic pore length and
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of the Eulerian velocity distribution. Another approach is based
on the Hadwiger theorem stating that any extensive function
(such as the free energy) describing the flow may be expressed
in terms of the Minkowski functionals describing the geometry
of the porous medium. The transport properties may then be
found from the free energy (see Khanamiri et al., 2018). Roy et al.
(2020) proposed a framework that connects the average seepage
velocities to the distribution of local fluid velocities. This means,
obtaining the velocity or flow distribution from the distribution
of pores is the missing link that would allow the prediction
of hydrodynamic transport from geometrical information only.
For random bead packs, Coppersmith et al. (1996) showed that
the variations of contact angles allow for the relation between
distribution of throat radii and the distribution of the flow
fractions that depart a pore body. With that, Alim et al. (2017)
proposed an approach for single phase flow to predict the flow
distribution from the geometrical properties of porousmedia that
is based on Kirchhoff’s law for fluid mass conservation coupled
with assumptions on the distribution of coordination numbers
of pore bodies. There are more studies on the local velocity
distribution for single phase flow (Siena et al., 2014; Wu et al.,
2016; De Anna et al., 2017; Aramideh et al., 2018; An et al.,
2020; Souzy et al., 2020), but detailed study for two-phase flow
are lacking. Furthermore, Alim et al. (2017) also emphasized
that, in addition to the distribution of pore sizes, the local
correlations between adjacent pores are necessary to predict the
flow distribution. The observation in our present study, that the
non-linear exponent β does not depend on the radii distribution
in case of the capillary bundle with disconnected links, whereas it

varies continuously with the distribution for the pore-network,
also indicates the same, that the network connectivity plays a
key role in the transport properties in addition to the pore-
size distribution. In our present study we considered a fixed
coordination number, and therefore further study is necessary to
explore the role of network connectivity on the effective rheology.
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Resolving pore-scale transient flow dynamics is crucial to understanding the physics

underlying multiphase flow in porous media and informing large-scale predictive models.

Surface properties of the porous matrix play an important role in controlling such physics,

yet interfacial mechanisms remain poorly understood, in part due to a lack of direct

observations. This study reports on an experimental investigation of the pore-scale flow

dynamics of liquid CO2 and water in two-dimensional (2D) circular porous micromodels

with different surface characteristics employing high-speed microscopic particle image

velocimetry (µPIV). The design of the micromodel minimized side boundary effects due

to the limited size of the domain. The high-speed µPIV technique resolved the spatial

and temporal dynamics of multiphase flow of CO2 and water under reservoir-relevant

conditions, for both drainage and imbibition scenarios. When CO2 displaced water in a

hydrophilic micromodel (i.e., drainage), unstable capillary fingering occurred and the pore

flow was dominated by successive pore-scale burst events (i.e., Haines jumps). When

the same experiment was repeated in a nearly neutral wetting micromodel (i.e., weak

imbibition), flow instability and fluctuations were virtually eliminated, leading to a more

compact displacement pattern. Energy balance analysis indicates that the conversion

efficiency between surface energy and external work is less than 30%, and that kinetic

energy is a disproportionately smaller contributor to the energy budget. This is true

even during a Haines jump event, which induces velocities typically two orders of

magnitude higher than the bulk velocity. These novel measurements further enabled

direct observations of the meniscus displacement, revealing a significant alteration of

the pore filling mechanisms during drainage and imbibition. While the former typically

featured burst events, which often occur only at one of the several throats connecting

a pore, the latter is typically dominated by a cooperative filling mechanism involving

74

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2021.710370
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2021.710370&domain=pdf&date_stamp=2021-08-16
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yaofa.li@montana.edu
https://doi.org/10.3389/frwa.2021.710370
https://www.frontiersin.org/articles/10.3389/frwa.2021.710370/full


Li et al. Pore-Scale Dynamics of CO2-Water

simultaneous invasion of a pore from multiple throats. This cooperative filling mechanism

leads to merging of two interfaces and releases surface energy, causing instantaneous

high-speed events that are similar, yet fundamentally different from, burst events. Finally,

pore-scale velocity fields were statistically analyzed to provide a quantitative measure of

the role of capillary effects in these pore flows.

Keywords: porous media, pore scale, micromodel, multiphase flow, particle image velocimetry, drainage,

imbibition, wettability

1. INTRODUCTION

Multiphase flow in porous media is ubiquitous in natural systems
as well as engineering applications, such as enhanced oil recovery
(EOR) (Simjoo et al., 2013), ground water remediation (Dawson
and Roberts, 1997), water management in fuel cells (Bazylak,
2009) and carbon capture and storage (CCS) (Huppert and
Neufeld, 2014). Notably, the sequestration of carbon dioxide
(CO2) in deep saline aquifers is considered to be a viable
technology to reduce carbon emissions into the atmosphere as a
means of mitigating green house effect (Koide et al., 1992; Gunter
et al., 1997; Bachu, 2000; Pacala and Socolow, 2004; Huppert
and Neufeld, 2014). Under typical reservoir conditions (i.e., 2–
28 MPa and 20 ◦C to 100 ◦C Xu et al., 2015), the injection of
CO2 into saline aquifers often leads to complex and unstable
displacement patterns both during and after injection due to the
large density and viscosity contrasts between CO2 and resident
brine (Kazemifar and Kyritsis, 2014). These complex processes
are crucial to CO2 injection efficiency as well as storage safety
and security, which are key aspects of carbon sequestration
planning and operation. It is therefore critical to understand
the fundamental mechanisms of immiscible multiphase flow
interactions of CO2 and water in porousmedia, specifically under
reservoir-relevant conditions.

In practical applications, it is desirable to model and predict
multiphase flow and transport at the macro/continuum scale
(e.g., field) in order to improve system-level performance.
However, macroscopic phenomena are governed collectively by
various processes at the pore scale, where fundamental flow
and transport take place (Sheng and Thompson, 2013; Moebius
and Or, 2014; Mehmani and Balhoff, 2015). For instance, a
recent study by Ferrari and Lunati (2014) suggested that local
instability-induced oscillations of the menisci between the CO2

and water phases can modify the constitutive relationships
adopted in macroscale models, and that pore-scale phenomena
should be incorporated in upscaling applications. Therefore,
an accurate continuum description of these processes always
requires a rigorous understanding of the underlying pore-scale
physics (Sheng and Thompson, 2013; Moebius and Or, 2014;
Mehmani and Balhoff, 2015).

Over the last few decades, the study of multiphase flow in
porous media, specifically at the pore-scale, has received growing
attention across the experimental, numerical, and theoretical
paradigms. Traditional experimental techniques include the
use of x-ray micro-computed tomography (micro-CT) and
magnetic resonance imaging (MRI) for visualization of flow

patterns in complex 3D geometries (Perrin and Benson, 2010;
Song et al., 2013). Direct flow visualization and quantification
in specially-designed microfluidic channels incorporating 2D
porous structures, hereafter micromodels, have also been
accomplished using fluorescent microscopy and microscopic
particle-image velocimetry (µPIV) (Lenormand et al., 1988;
Zhang et al., 2011a,b; Armstrong and Berg, 2013; Karadimitriou
et al., 2014; Blois et al., 2015; Kazemifar et al., 2015, 2016;
Roman et al., 2016; Li et al., 2017, 2019). The optical
access afforded by micromodels has enabled the application of
scientific cameras which overcome the low spatial and temporal
resolution limitations typically suffered by the aforementioned
3D approaches. The experimental data generated via micromodel
measurements not only allow direct observation of the complex
flow dynamics at the pore scale, but also provide a basis to
validate numerical and theoretical models with high spatial and
temporal resolution. Although extreme care must be taken when
extrapolating 2D micromodel results to realistic 3D systems,
micromodel experiments have played an important role in
visualizing and quantifying pore-scale processes as a means to
clarify the underlying flow physics of pore-scale flows in porous
media.

Our current understanding of the pore-scale mechanisms of
multiphase flow in porous media is based on the notion of
two dimensionless numbers: the capillary number, Ca, and the
viscosity ratio,M defined as follows Lenormand et al. (1988):

Ca = µ2Ubulk/γ (1)

M = µ2/µ1 (2)

Here, µ is the dynamic viscosity, γ is the interfacial tension
between the two fluids, and Ubulk is the bulk velocity, Ubulk =

Q/(Aϕ), where Q is the volumetric flow rate, A is the cross-
sectional area of the porous media, and ϕ is the porosity
of the porous media. Indices 1 and 2 refer to the resident
and invading phases, respectively (Kazemifar et al., 2016). The
capillary number defines the ratio between viscous and capillary
forces whereas the viscosity ratio defines the ratio between
the dynamic viscosity of the invading fluid and that of the
resident fluid. Depending on the balance of viscous and capillary
forces, three distinct flow regimes exist: (i) stable displacement;
(ii) viscous fingering; and (iii) capillary fingering. These
regimes are associated with complex displacement patterns that
depend on pore-scale dynamics. For example, during fingering
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dominated by capillary forces, the menisci are susceptible to
strong instabilities. This behavior can lead to pore-scale burst
events, so-called Haines jumps (Haines, 1930), which occur at
the time scale of milliseconds and can appreciably affect regions
of flow in the domain of up to 30 pore diameters (Armstrong
and Berg, 2013; Li et al., 2017). Recent studies have highlighted
that these events can greatly accelerate the flow near the fluid–
fluid interfaces and render inertial effects as or more important
than viscous and capillary ones (Li et al., 2017, 2019). This
behavior is quantified by the Reynolds number, Re = ρUD/µ,
which represents the ratio of inertial forces to viscous forces
(Here, U is a characteristic velocity and D is a characteristic
length scale). Dynamic Haines-jump events yield increases in
Re by orders of magnitude to O(100), indicating that inertial
effects may be significant to CO2 mobility. The intensity and
spatiotemporal range of influence of these events illustrate the
importance of appropriately defining the elemental volume over
which the effects of non-linear (i.e., inertial) mechanisms should
be incorporated in subgrid models (Ferrari and Lunati, 2014;
Kazemifar et al., 2016).

Despite the progress made by recent work to elucidate the
interface dynamics of these flow systems, many fundamental
questions remain unanswered. One relevant question concerns
the nature of high-speed burst events (hereinafter used
interchangeably with the term Haines jumps). The temporal
and spatial characteristics of these events have not been
experimentally investigated in detail in a quantitative fashion,
in part due to their extremely fast dynamics (i.e., a few
milliseconds), and in part due to the technical challenges
associated with faithfully capturing such events with sufficient
temporal and spatial resolution. Armstrong et al. (2014)
performed real-time 3D imaging of Haines jumps in a porous
medium using a high-speed, synchrotron-based micro-CT with a
temporal resolution of 40ms, which was believed to be sufficient
to temporally resolve the burst events. However, this time
was much longer than the sub-10ms time scale suggested by
acoustic measurements and optical visualization using a high-
speed camera (DiCarlo et al., 2003; Armstrong and Berg, 2013).
Moreover, burst events, traditionally referred to as single-pore
events (i.e., tens of micrometers in scale), have been recently
shown to directly influence much larger regions of the porous
media up to a few millimeters (Armstrong and Berg, 2013; Li
et al., 2017). These more recent observations highlight the need
to revisit the assumptions traditionally made when modeling
these highly dynamic systems. Our previous efforts using high-
resolution µPIV allowed random capturing of burst events in
rectangular micromodels at a single evolutionary stage (Li et al.,
2017). However, due to the relatively low imaging rate of the
cameras utilized in this past study, it was not possible to record
the evolution of these burst events over time which limited our
ability to fully elucidate their dynamics.

Another critical parameter in immiscible multiphase flows
concerns the surface property of the porous matrix, often defined
in terms of wettability. This parameter is extremely difficult
to control experimentally and model numerically and poses
a further layer of complexity in the study of these dynamic
systems (Zhao et al., 2016; Hu et al., 2017). The wettability

refers to the “affinity” of a solid surface for one fluid in the
presence of one or more other immiscible fluids, and it is often
characterized by the contact angle, θ . Fluid–fluid displacement in
porous media is classified into drainage and imbibition. Drainage
refers to the scenario where the invading fluid is less wetting
to the solid surface than the resident fluid (i.e., a non-wetting
phase displacing a wetting phase), whereas imbibition refers to
the opposite scenario. In practical applications where CO2 is
injected into geological reservoirs (e.g., CCS and EOR), a wide
range of wettability conditions can be encountered (Chang et al.,
2020). For instance, while deep saline aquifers are typically water-
wet to CO2 injections, depleted hydrocarbon reservoirs can be
intermediate-wet ormixed-wet (Salathiel, 1973; Anderson, 1987).
Moreover, these conditions may even change over time due to
rock reactions modifying surface properties of the porous matrix
(Broseta et al., 2012; Seyyedi et al., 2015; Wang and Tokunaga,
2015). Wettability is important as it is well known to dramatically
impact the efficiency of the displacement process (Morrow, 1990;
Iglauer et al., 2012) and therefore affect the efficiency of oil
recovery in EOR and the CO2 storage capacity in CCS.

From a pore scale perspective, wettability governs the capillary
force and directly impacts the interface stability and displacement
efficiency (Holtzman and Segre, 2015). A majority of previous
studies considering wettability effects on flow behavior in porous
media reported that increasing contact angle of the resident
wetting phase stabilizes the displacement interface under various
flow conditions, leading to more compact displacement patterns
and thus increasing the displacement efficiency (Cottin et al.,
2011; Holtzman and Segre, 2015; Trojer et al., 2015). Holtzman
and Segre (2015) employed a pore-scale model to capture
wettability and dynamic effects and showed that increasing the
wettability of the invading fluid promotes cooperative pore
filling that stabilizes the invasion. Hu et al. (2017) used a high-
pressure micromodel-microscopy system to study supercritical
CO2 (scCO2) invasion into brine-saturated water-wet and
intermediate-wet micromodels, and observed a smaller number
of fingers with larger finger width under intermediate-wet
conditions. Zhao et al. (2016) performed a more comprehensive
investigation of wettability effects by systematically varying the
wettability of the porous flow cell over a wide range of contact
angles. They found that increasing the solid matrix affinity to
the invading fluid results in more efficient displacement of the
resident fluid up to a critical wetting transition, beyond which the
trend is reversed. This behavior was attributed to two pore-scale
mechanisms: cooperative pore filling (increasing displacement
efficiency) and corner flow (decreasing displacement efficiency).
These studies have greatly advanced our understanding of pore
scale mechanisms controlled by wettability. However, to the best
of our knowledge, most, if not all, of the experimental work
has been restricted to qualitative visualizations of the interface
movement, with little to no quantification of the flow distribution
and quantitative reconstruction of the interface dynamics. This
missing information limits one’s ability to further characterize
certain important aspects of pore flow and wettability effects.
For instance, without detailed fluid velocity information, it is not
possible to perform accurate energy balance analysis (i.e., kinetic
energy), or to assess the relative importance of various forces
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in the flow (i.e., viscous vs. capillary vs. inertial forces). In that
regard, precise wettability control of the solid matrix provides a
great opportunity to control the capillary force. For example, by
fine-tuning the solid matrix to be neutrally wetting (i.e., θ ∼ 90 ◦)
to both fluids, it is possible to eliminate the capillary force, whose
effect can then be quantitatively evaluated by performing a simple
comparison between a neutrally wetting case and a non-neutrally
wetting case under otherwise identical conditions.

Additionally, it has been shown that energy balance analyses
are particularly insightful in understanding the parameters
affecting flow regimes, capillary filling rules and hysteresis (Liu
et al., 2011; Berg et al., 2013; Zacharoudiou et al., 2017; Hu
et al., 2018). Energy balance analysis is generally performed
by breaking down the different energy contributions at each
stage of an evolving phenomenon together with computing
the total energy. This allows one to track energy fluxes from
one component to the other as well as energy dissipation. In
addition, the approach may allow one to identify whether a
specific component may be disproportionately contributing to
dissipation. An important conclusion made by previous studies
is that surface energy and external work can only be partially
converted to each other or to kinetic energy, with a majority
of the energy being dissipated due to the irreversible and non-
equilibrium redistribution of the fluids (Morrow, 1970; Ferrari
and Lunati, 2014; Zacharoudiou et al., 2017). For example, Berg
et al. (2013) performed an energy analysis based on their 3D
micro-CT data, and discovered that Haines jumps, typically
cascading through 10–20 geometrically defined pores per event,
account for 64% of the energy dissipation. Hu et al. (2018)
analyzed various energy contributions and conversions in a
multiphase flowwithin a rough fracture and found a fundamental
link between regime transition and energy conversion. In the
capillary regime, surface energy is partially transformed into
external work and about 51–58% is dissipated via local rapid,
irreversible events, whereas in the capillary-viscous regime,
surface energy and external work are partially transformed into
kinetic energy and partially dissipated. Unfortunately, despite
the importance of energy analysis, little has been done to
experimentally quantify the contributions of various forms of
energy, especially kinetic energy. For instance, in the energy
analysis by Hu et al. (2018), an assumption had to be made to
neglect kinetic energy changes during a Haines jump for this
analysis, whereas in the work by Berg et al. (2013), it is not
clear how kinetic energy or energy dissipation was evaluated.
While it is possible to estimate surface energy and external work
based on flow visualizations and bulk pressure measurements,
it is particularly challenging to quantify the kinetic energy
contribution, which requires a comprehensive knowledge of the
instantaneous fluid velocity fields.

To this end, the dynamic interactions of water and CO2

at the pore scale were captured and quantified using high-
speed µPIV in 2D circular micromodels meant to mitigate side-
wall effects. Particular effort was placed on mimicking realistic
conditions. The high-speed µPIV measurements were achieved
with the aid of an epi-fluorescence microscope, a high-speed
laser and a high-speed camera, allowing for the acquisition of
temporally- and spatially-resolved data, which is indispensable

to advance our understanding of the flow dynamics at the pore-
scale characterized by highly intermittent behaviors as well as to
gain further insight into the effects of wettability. The overarching
goals of the study include: investigating the transient behavior of
Haines jumps to understand how they control the surrounding
flow under strong drainage conditions, and evaluating the effect
of wettability and capillarity on the pore-scale flow by comparing
the former case with a case featuring nearly neutral wettability.

2. MATERIALS AND METHODS

This section provides a brief overview of the experimental
methodology, schematically illustrated in Figure 1, including the
design and fabrication of the micromodels, a description of
the high-pressure flow apparatus and an overview of the flow
imaging setup and image processing procedures.

2.1. Micromodels
Circular micromodels (see Figure 1C) were used in this study
as they significantly mitigate side boundary effects which are
inevitably present in rectangular micromodels (Fakhari et al.,
2018). Each micromodel consisted of a heterogeneous porous
region, an inlet, and an outlet, as shown in Figures 1B,C.
The micromodels were fabricated from silicon and glass using
microfabrication techniques (Chomsurin and Werth, 2003;
Kazemifar et al., 2015; Ilin et al., 2020), with the porous matrix
formed with irregularly patterned 2D poly-disperse cylinders
mimicking a natural porous medium, inspired by a previous
study (Zhao et al., 2016). The porous pattern was based on an
irregular mesh created using the pdemesh tool in MATLAB. The
entire porous section had dimensions of (D, h) = (10, 0.030)mm
and a porosity of ϕ = 0.44. The average equivalent pore diameter
was 102µm and the minimum throat size was 10µm, yielding
an absolute permeability of 624md based on single-phase flow
measurement and Darcy’s law for radial flow. A fabrication
protocol involving, in sequence, standard photolithography,
inductively coupled plasma-deep reactive ion etching (ICP-
DRIE) and Piranah cleaning was used to create the heterogeneous
structures in the siliconwafer with a nominal depth of 30µm. It is
worth noting that, unlike glass, silicon is naturally hydrophobic,
making the Piranah cleaning a critical step in order to render
the silicon surface as hydrophilic as the glass wafer, to which the
silicon wafer was bonded to form a closed micromodel. Finally,
two nanoports (IDEX Health & Science) were attached to the
micromodel for fluid delivery (Kazemifar et al., 2015).

The fabrication protocol described above yielded baseline
hydrophilic micromodels for drainage experiments. For these
micromodels, the static contact angle of water on both surfaces
was measured to be ∼ 9 ± 1 ◦ using CO2 as the non-
wetting phase under actual experimental conditions. Starting
from the baseline hydrophilic micromodels, the wettability was
modified by the method of silanization (Trojer et al., 2015;
Hu et al., 2017). To this end, both silicon and glass wafers
were immersed in a saline solution (2% Dichlorodimethylsilane
in hexane) for 20min and baked at 110 ◦C for 10min prior
to adhesive bonding. The static contact angle of water on
the modified surfaces was measured to be ∼ 120 ◦. It is
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FIGURE 1 | Schematic diagrams depicting (A) the experimental apparatus; (B) the micromodel in side view showing the flow configuration; and (C) the micromodel in

top view showing the 2D porous matrix and the imaging field of view (FOV), noted in green; (D) an SEM image of part of the porous section within the micromodel.

worth noting that during dynamic flow processes, what is
most relevant is the dynamic contact angle (Sedev et al., 1993;
Jafari and Jung, 2017). Figure 2 presents in-situ measurements
of the contact angles under dynamic flow conditions in a
baseline hydrophilic micromodel (Figure 2A), and a modified
hydrophobic micromodel (Figure 2B), confirming that the
receding contact angles are ∼ 9 ◦ and ∼ 98 ◦ for the former and
latter cases, respectively. As mentioned before, the second case
was deliberately designed to have a contact angle that is as close
as possible to ∼ 90 ◦ (i.e., neutral wetting), in order to minimize
capillary forces in the multiphase flow within such a micromodel.

2.2. Flow Apparatus and Experimental
Procedure
The working fluids used in this study were distilled water and
liquid CO2, which was achieved by maintaining flow conditions
at 8 MPa, 21 ◦C. The physical properties of the working fluids

FIGURE 2 | Measurements of receding contact angles of water within a new

hydrophilic micromodel (A), and a newly modified micromodel for wettability

alteration (B) under dynamic flow conditions at 8 MPa, 21 ◦C. The green and

blue lines delineate the fluid–fluid interfaces and the tangent lines of the solid

grain, respectively.
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are reported in Table 1. Note that, while the experimental
pressure was above the critical pressure of CO2, the experimental
temperature was below its critical temperature. As such, the
CO2 phase herein was therefore in a compressed liquid state
(Kazemifar and Kyritsis, 2014). To facilitate µPIV measurement
in the water phase, the distilled water was seeded with fluorescent
polystyrene particles of 1µm in diameter (Invitrogen F8819), at
a nominal volume fraction of 3 × 10−4. The volume fraction of
the solid particles is low so as to not appreciably change the water
properties and their density matched that of water so as to behave
in a neutrally buoyant manner. It is also worth noting that tracer
particles were only seeded in the water phase. Seeding the CO2

phase under these operating conditions is extremely challenging
owing to its compressibility which makes it impossible to find
tracer particles that would consistently behave in a neutrally
buoyant manner throughout an experiment. As such, only the
water-phase velocity fields were captured by µPIV.

Due to the relatively high operating pressures, themicromodel
was encapsulated within an overburden pressure cell designed
to protect the micromodel from over-pressurization while still
providing optical access (Kazemifar et al., 2015, 2016). The layout
of the high-pressure flow apparatus is shown in Figure 1A. A
brief description of this system, which is slightly modified from
our previous work (Kazemifar et al., 2015, 2016; Li et al., 2017,
2019, 2021; Chen et al., 2018; Fakhari et al., 2018), is provided
here. For additional technical details on each of the components
illustrated in Figure 1A the reader is kindly referred to our
previous studies (Kazemifar et al., 2015, 2016; Li et al., 2017,
2019, 2021; Chen et al., 2018; Fakhari et al., 2018). As shown
schematically in Figure 1A, the coupled flow of water and CO2

through the micromodel was controlled by two high-pressure
syringe pumps (Teledyne Isco 100 DM). Pump 1 was used to
push the CO2 into the micromodel through the inlet, while pump
2 was used to withdraw the resident water from the outlet as
well as to maintain the back pressure. Prior to each experiment,
the CO2 in Pump 1 was pressurized to 8 MPa and allowed to
equilibrate at room temperature for over 2 h. Meanwhile, the
micromodel was mounted in the overburden pressure cell with
the micromodel center port connected to the pressure cell center
port. The pressure cell was then filled with distilled water under
ambient conditions. As the outer edge of the micromodel is
open, it was partially pre-saturated with distilled water during
the pressure cell filling operation. Additionally, ∼ 1 mL distilled
water seeded with fluorescent tracer particles was injected into
the center port of the pressure cell and temporally stored therein.
The center and the side ports of the pressure cell were then

TABLE 1 | Physical properties of CO2 and water at reservoir-relevant conditions (8

MPa and 21◦C) (Linstrom and Mallard, 2001).

CO2 Water CO2 Water Interfacial

density density viscosity viscosity tension

ρ2 ρ1 µ2 µ1 γ

[kg/m3] [kg/m3] [kg/m.s] [kg/m.s] [kg/s2]

818.55 1001.6 7.40× 10−5 9.75× 10−4 0.0294

connected to Pump 1 and Pump 2, respectively, and pressurized
to 8 MPa while valve V1 was kept closed. At this high pressure,
all air bubbles that may have been trapped in the porous section
initially under ambient pressure quickly shrunk and dissolved
into the water phase, leading to an initial condition of liquid water
only in the micromodel. After the pressures on the water side and
CO2 side both reached equilibrium, valve V1 was opened and the
CO2 and water pumps were simultaneously initiated to run at
the desired volumetric flow rates, each with an accuracy of 0.3%
of the setpoint.

2.3. Image Acquisition and Processing
A high-speed, dual-head, frequency-doubled Nd:YLF laser
(Litron LPY300) with a wavelength of 527 nm was used to excite
the fluorescent particles in the water phase. The fluorescence
emitted from the tracer particles was passed through a λ =

575 ± 13 nm bandpass filter (Semrock BrightLine FF02-575/25-
25) and focused by an Olympus IX-73 microscope equipped
with an objective lens with 4x magnification and 0.1 numerical
aperture (NA), onto the detector of a high-speed scientific CMOS
camera (Phantom v641). With this imaging setup, the resultant
field of view (FOV) after cropping out the relatively low quality
marginal regions was approximately 3.75 × 3.75mm, located
at the center of the porous section, as indicated by the green
region in Figure 1B. As the water phase was the only one seeded
with tracer particles, this was the only phase in which velocity
measurements were conducted.

In order to accurately resolve the instantaneous water velocity
fields during a burst, a “frame straddling” scheme was used (Li
et al., 2014; Li and Yoda, 2016). In this scheme, the camera
recorded pairs of sequential images, frame A and frame B, in
each image pair. It is important to note that the images were
only exposed during the duration of the laser pulse, which was
∼10 ns in these experiments. Such a short exposure provides a
snapshot of the distributed tracer particles “frozen” at that time
instant of each pulse. The caveat is that the two laser pulses can
be conveniently timed to illuminate the particles once in frame A
and once in frame B. The time interval between the laser pulses
within one frame pair, 1t, can be adjusted for each experiment
based on the average particle velocity expected and with the goal
to optimize the particle displacement within a 1–15 pixel range.
In the experiments reported herein, the 1t was set to be 500 µs
for the drainage case and 2ms for the imbibition case. In addition
to the ability of performing frame-straddle imaging, the camera
allowed time-resolved acquisitions by acquiring frame pairs at
500Hz. This frame rate provided sufficient temporal resolution
to capture the evolution of dynamic pore-scale phenomena.

The multi-phase nature of the flow requires the identification
of the fluid–fluid interfaces in the resulting PIV images and the
masking out of unseeded regions prior to image interrogation
for quantification of the water velocity distribution. In previous
studies (Li and Yoda, 2014; Li et al., 2017), this masking
was obtained manually since the datasets were limited to a
few images. However, the high-speed imaging used herein
yielded 3800 PIV image pairs per experimental run for which
the interface must be tracked accurately over its evolution,
making manual masking impractical. As such, a novel image
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segmentation and interface detection method was developed and
tested on samples of particle images experimentally acquired for
the present study (Li et al., 2021). As described in Li et al. (2021),
the accuracy of this methodology enabled automatic interface
detection and tracking in all of the PIV images acquired herein.
In particular, this method provided, for each image pair, a digital
mask that excluded the CO2 phase from image interrogation to
determine the water velocity field. In this study, for each image
pair, a mask based on the segmentation of the first frame was
utilized for masking.

For details regarding the image segmentation and image mask
creation, the reader is referred to Li et al. (2021). Briefly, for
a given image, all tracer particle images seeded in the water
phase were detected using a particle tracking algorithm with
their coordinates accurately determined, based upon which a
triangulation mesh was constructed to link each particle to
its nearest neighbors. The regions covered by the mesh were
labeled as the water phase, whereas the edges of the mesh
were demarcated as interfaces, which were then individually
fit to arcs to help clarify interface shapes and locations. This
image segmentation process was performed by implementing
automatic procedures using an in-house MATLAB code, and
the root-mean-square-error (RMSE) of interface detection in
experimental images under the current condition was estimated
to be∼ 1.5 pixels.

To calculate the water velocity field, both frames in an
acquired frame pair were first masked using the mask created in
the previous steps and then interrogated in the LaVision DaVis
software using a multi-pass, two-frame cross-correlation method
(Kazemifar et al., 2015). Unless otherwise stated, the sizes of the
initial and final interrogation windows were 1282 and 162 pixels,
respectively, both with 50% overlap, which yielded a velocity
vector spacing of 20µm and a spatial resolution of 40µm. It is
worth noting that due to the dynamic nature of these multiphase
flows, the fluid–fluid interfaces were continuously deforming
and moving throughout an experiment. For instance, during
the occurrence of a Haines jump, the meniscus can significantly
change in shape and location from the first frame to the second
frame of a frame pair. When the tracer particles in the two frame
are cross-correlated to compute the velocity vectors, there will
be an unavoidable lack of tracer particles in the second frame
in the displaced region between the initial and final interfaces,
which potentially leads to a loss of velocity vectors in the specific
region of the image. And even worse, these lost velocity vectors
represent ones of the highest velocities one would expect in the
flow. As such, µPIV is likely to underestimate the maximum
velocities that exist in the flow, which tend to occur near the
displacing menisci. To overcome this challenge and complement
our µPIV measurement, we also computed the near meniscus
velocities by directly tracking the interface movements during
Haines jumps. This approach filled the data gap and produced
a more comprehensive set of statistics. This issue will be revisited
in § 4.2 in the discussion of flow statistics.

3. RESULTS

The results presented herein consist of sequences of water
velocity fields, illustrating some of the dynamic phenomena

associated with CO2 infiltration into a water-saturated
micromodel under two different wetting conditions. More
specifically, we focus on the migration of the CO2 front, the
evolution of individual menisci, and the growth of dendritic
structures (i.e., the fingers) (Lenormand et al., 1988; Kazemifar
et al., 2016; Li et al., 2017, 2019). Two wettability cases were
considered herein: a hydrophilic case (strong drainage) and a
hydrophobic case (weak imbibition), for which the receding
contact angles of the micromodel surface with water were
∼ 9 ◦ and ∼ 98 ◦, respectively. The bulk flow rate for both
cases was the same: 5µl/min. Based on Equation (1) and the
bulk velocity corresponding to the midpoint in the radial
direction, the prescribed flow rate corresponds to a capillary
number of logCa = −5.7. Note that the contact angle θ is
not included in the definition of Ca (Equation 1) and the
calculation of this capillary number in order to provide a
meaningful (Ca > 0) measure for both drainage (hydrophilic)
and imbibition (hydrophobic) cases (Trojer et al., 2015; Hu et al.,
2017).

3.1. Prefront Single-Phase Flow
Each experiment involved an initial injection stage in which
the micromodel was saturated with water and the CO2 was
being pushed toward the model but had not yet reached the
micromodel entrance. This stage is refereed to as prefront
single-phase flow. This simple experiment allowed us to test
the system and assess potential sources of measurement error
that can be useful in interpreting the subsequent and more
complex multiphase flow. Before discussing these results, it
is useful to clarify aspects of the flow domain. First, the
circular micromodel employed has a constant depth. Unlike the
rectangular micromodels used in previous studies (Zhang et al.,
2011a,b; Blois et al., 2015; Kazemifar et al., 2016; Roman et al.,
2016; Li et al., 2017, 2019), the cross-sectional area was not
constant, but instead a function of radial position. As such, for the
flow rate to remain constant at each radial distance, the velocity
must vary inversely with increasing radius, i.e., higher where
cross sectional area is smaller (i.e., near the center). The variation
in cross sectional area therefore resulted in a strong radial velocity
gradient and the dynamic range of the measurements is expected
to reflect this gradient along the radius. Other conditions such
us fluctuations in the flow rate and transient phenomena further
broadened the dynamic range, so variations in accuracy away
from this region were expected. With this in mind, Figure 3a
presents the ensemble-averaged velocity field of the single-phase
flow of water obtained from 200 PIV realizations (i.e., 0.4 s), prior
to the CO2 phase entering the porous micromodel. This result
primarily quantifies the radial flow of water, which was injected
through the center port. As expected from mass conservation for
an incompressible flow, Figure 3a confirms faster flow near the
center and a progressive decrease of velocity as water migrates
toward the outer edge of the micromodel. The flow accelerates
through the pore throats where the grains are closer together and
decelerates within pore spaces, where grains are further apart, all
expected based on continuity. Interestingly, Figure 3a shows that
the water has formed preferential paths of high-momentum that
correlate well with the grain distribution.
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FIGURE 3 | Pre-drainage stage: (a) Ensemble-averaged water velocity field obtained from 200 PIV realizations depicting water flow prior to the entry of CO2; contours

reflect velocity magnitude and arrows indicate flow directions; gray regions represent solid grains; unless otherwise stated, only every other vector is shown in both the

horizontal and vertical directions for clarity. The black dashed lines define the inner and outer edges of the “annulus,” which is the region considered for bulk flow

analysis; The red dashed at r = 5/8R, indicates the location where Ubulk was calculated. (b) Integrated volumetric flow rate as a function of radial location; the green

shading demarcates the region where flow rate measurements accurately reflect conservation of mass. Experimental conditions: 0.005 mL/min, 8 MPa, and 21◦C.

The accuracy of these single-phase flow of water results
can be assessed as a function of radial position. Since water
is incompressible, the concept of continuity means that the
volumetric flow rate crossing any circle enclosing the center
injection port should be constant and equal to the actual
injection rate. This observation offers an opportunity to quantify
the fidelity of the measurements presented herein. Figure 3b

presents volumetric flow rate, obtained by integrating the velocity

vectors along a circle of given radius centered at the center of
the injection port, as a function of radial location. This result

shows that the volumetric flow rate, which is accurately measured

for r/R > 0.25 (i.e., 5µl/min), is largely underestimated near

the center of the micromodel, r/R < 0.25. A less severe
underestimation seems to persist also for r/R > 0.25, where the
measured flow rate oscillates around the value of approximately
4.8µl/min. This result highlights some of the challenges faced
when measuring a flow with a high dynamic range such as that
considered herein. The velocity is, in fact, extremely high near
the injection port, suggesting that the1t set for this experiment,
which was optimized for the velocities at the middle radius, may
have been too long to accurately capture the displacement of the
particles near the micromodel entrance. In the region 0.25 <

r/R < 1, the measured flow rate agrees with the prescribed value,
with a maximum deviation of ∼ 8% with the best agreement
in the 0.6 < r/R < 0.7 region, confirming the high fidelity
of our µPIV measurements in this range. The ∼ 8% deviation
elsewhere does not, however, suggest a low quality measurement.
In particular, these small differences could be associated with
the high compressibility of the CO2 that is pushing the water
phase through the micromodel. Though the CO2 has yet to
enter the micromodel, its properties are extremely sensitive to
small changes in temperature and pressure, particularly under the
current experimental conditions (Kazemifar and Kyritsis, 2014),
and it represents the driving force behind the water displacement.
Similar observations have been reported in previous studies

(Kazemifar et al., 2016; Li et al., 2017). As the near-entrance
µPIV measurements have relatively low fidelity, in the following
statistical and energy analyses, only data within the annulus
region of 0.25 < r/R < 1 are considered.

3.2. Water Velocity Field Evolution During
Drainage
In this section, measurements are presented illustrating CO2

infiltration into the water-saturated micromodel causing
dynamic drainage (see Supplementary Movie 1). Figure 4

shows representative snapshots depicting the very first stage of
the drainage process featuring resident water being displaced
by the arrival of CO2. Here, t = 0 signifies the instant when
the CO2 front crosses the line of r/R = 0.25. Results show
that at t = 0, the water velocities in the entire field are low,
even lower than that in the prefront stage, indicating low flow
rate in the water phase. This behavior reflects pinning of the
CO2 front at the narrow throats of the porous section where
high capillary pressure impedes the flow on both sides of the
interface. As the CO2 pump continuously pushes CO2 into
the micromodel, the pressure behind the interface (i.e., on the
CO2 side) gradually increases to contrast the capillary pressure.
Once the capillary pressure is finally exceeded, CO2 suddenly
breaks through into the pore space behind the throat in the
form of a burst event (Haines, 1930). The external work due
to high pressure is partially converted into kinetic energy and
causes high-momentum pathways that propagate at high speed
for several pores into the water phase. For instance, the burst
event occurring at t = 4ms extends as far as approximately
2 mm away from the pore where it originates, which is ∼ 20
times larger than the average pore diameter. Additionally, unlike
the single-phase flow whose direction is dictated by the bulk
pressure gradient, the local flow produced by a burst does not
necessarily follow the radial direction. Instead, it can proceed
in any direction, including against the bulk pressure gradient.
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FIGURE 4 | Instantaneous velocity fields depicting water flow owing to displacement by invading CO2 under drainage conditions. Gray and white regions represent

solid grains and CO2 phase, respectively; purple and cyan colors denote high and low velocities, respectively; arrows in the water phase denote flow direction.

Experimental conditions: logCa = −5.7, 8 MPa, 21◦C, and θr ∼ 9 ◦. (For interpretation of the references to contour in the text, the reader is referred to the web

version of this article).

This observation is in agreement with previous findings on
water drainage in a rectangular micromodel (Kazemifar et al.,
2016; Roman et al., 2016; Zhao et al., 2016; Li et al., 2017; Chen
et al., 2018), and highlights the critical role of the local pressure
gradient under the capillary flow regime considered herein. It is
also evident that the flow is highly intermittent, meaning that it
constantly goes through cycles of deceleration and acceleration
associated with compression and expansion of CO2, respectively.
As previously observed, these stages correspond to accumulation
followed by release of capillary pressure associated with the
occurrences of Haines jumps. When a burst event is occurring,
the flow is accelerated in the direction of the local pressure
gradient produced by the build up of capillary pressure at the
meniscus, and after the energy is released the flow is dramatically
decelerated. The typical lifetime of a burst is found to be a few
milliseconds in the current experiments. As evident at t = 8ms,
the flow quickly subsides following the preceding burst event at
t = 4ms. At t = 16ms, a new burst event occurs, bringing the
flow into a new cycle, similar to the one before.

The entire drainage process of water is essentially dominated
by a succession of local bursts events like the one just described.
Figure 5 presents the occurrences of additional selected burst
events later in the drainage process. These events occur at various
locations and along various directions, confirming that water can

displace along, normal to and even against the bulk pressure
gradient in the radial direction. It is worth noting that these burst
events do not necessarily occur one after another, but instead they
can occur in a cascading manner, meaning that multiple pores
can be invaded at once, and that multiple burst events can occur
simultaneously at different locations. This is particularly evident
from the velocity field at t = 956ms in Figure 5. In this particular
experiment, this repeated quiescence-burst process continues for
over ∼ 1 s and can be observed until the CO2 phase completely
breaks through the boundaries of the domain imaged. At ∼ 1.8 s
the bursting process completely subsides, leaving the remaining
water quiescent. From this instant, the CO2 continues to flow
through the region of displaced water, although its dynamics
cannot be directly observed due to lack of tracers in the CO2.
These results show that the growth pattern of the CO2 front
is quite irregular and asymmetric about the center, which is
indicative of capillary fingering, due to which a large portion of
water is left trapped in the porous section behind the CO2 front.

3.3. Water Velocity Field Evolution During
Imbibition
Figures 6, 7 show similar sequences of representative snapshots
illustrating the evolution of water flow responding to a condition
of imbibition, herein experimentally induced by modifying the
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FIGURE 5 | As in Figure 4, but showing burst events occurring at different times as CO2 continuously displaces water under drainage conditions. Experimental

conditions: logCa = −5.7, 8 MPa, 21◦C, and θr ∼ 9 ◦.

wettability of the micromodel (see Supplementary Movie 2)
where the receding contact angle of water, θr, was modified to
∼ 98 ◦. As expected, the behavior of the water displacement
process is fundamentally altered. First, the maximum water
flow speed in this imbibition case is much lower than in the
drainage case (note the different scale bars used in Figure 4

compared to Figure 6), indicating that the flow discharge is more
uniformly distributed across the micromodel, resulting in a more
axisymmetric distribution that is reminiscent of the prefront
single-phase behavior. While flow continues to be concentrated
in high-momentum paths, these paths appear more correlated
to the geometry of the porous matrix compared to the drainage
burst events whose displacement patterns were not restricted to
the radial direction. Under imbibition conditions, flow proceeds
more smoothly, which reflects a lack of burst events in this flow
scenario. As all other experimental conditions were held constant
in this imbibition case compared to the drainage case, these
drastically different flow dynamics are entirely due to changes
in the wettability of the porous matrix for which the capillary
forces in the system have been significantly reduced. Essentially,
unlike in the previous case, where the capillary pressure exerted
at the CO2 interface competed against the bulk driving pressure,
leading to flow instabilities, in this case the menisci curvatures
are inverted, which means that the capillary pressure works to
drive the flow forward, significantly mitigating flow instability

and burst events. The CO2 invasion is also much more compact,
with very little water phase left behind the radially migrating
CO2 front. These results confirm that modifying the wettability
of the porous matrix from a strongly hydrophilic state to one of
intermediate wetting dramatically mitigates flow instability and
enhances displacement efficiency as reported in with previous
studies (Cottin et al., 2011; Holtzman and Segre, 2015; Trojer
et al., 2015).

3.4. Pressure Drop and Saturation Curves
The temporal evolution of the bulk flow properties for both
drainage and imbibition cases were investigated by quantifying
CO2 saturation from the PIV images and measuring the bulk
pressure drop across the micromodel. The CO2 saturation,
defined as the ratio between the volume occupied by CO2

and the total pore volume within the measurement domain
(taken here as the annulus in the range 0.25 < r/R <

1), was obtained from the segmented particle images. The
bulk pressure across the micromodel was measured using a
differential pressure transducer (Validyne, P55E-1-N-2-42-S-5-
A, 0 − 140 kPa, 0.1% accuracy) between the inlet and outlet
(see Figure 1). To avoid potential cross interference between
tracer particles and the pressure measurement, all pressure
measurements were performed in separate experiments but
under identical conditions as that in the µPIV measurements,
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FIGURE 6 | As in Figure 4, but showing instantaneous velocity fields depicting water flow as CO2 continuously displaces water in 2D circular hydrophobic

micromodels under imbibition conditions. Experimental conditions: logCa = −5.7, 8 MPa, 21◦C, and θr ∼ 98 ◦.

using a clean micromodel. Likewise, in the actual µPIV
measurements the pressure transducer and the tees (i.e., T1
and T2) were not included. Although the pressure drop was
measured separately, based on the repeatability of flow patterns
and pressure drops, we believe the pressure drop history is a
good representation of the actual pressure evolution during a
given µPIV experiment. Measurements are presented herein by
plotting pressure drops and CO2 saturation against the number
of injected pore volumes, PV . Here, PV is defined as PV =

Q∗t/Vpore, whereQ is the volumetric flow rate, t is time andVpore

is the total volume of the pore space falling within the annulus
region (as indicated in Figure 3) and represents a normalized
total accumulated volume of CO2 that was injected into the
porous section at any moment. Additionally, simple algebraic
manipulation yields that PV = t/tc as a normalized time, with
tc = ϕ(r2 − r1)/Ubulk, where r1 and r2 are the radii of the inner
and outer edges of the annulus, respectively, and Ubulk is the
bulk velocity corresponding to the midpoint of the annulus in
the radial direction. As PV is effectively a normalized time, any
PV value corresponding to a moment prior to t = 0 (i.e., when
the CO2 front crosses the circle of r/R = 0.25) is negative in the
reference adopted herein.

Figure 8A presents the variations of the bulk pressure drop
as a function of PV for both drainage and imbibition conditions
and highlight the distinct behaviors of these two conditions. The

initial pressure drop, up to PV ∼ −1.5, is almost identical
between the two conditions and represents the baseline pressure
due to viscous forces and is the sum of the pressure required
to push water thorough the micromodel and CO2 through the
tubing on its path to the micromodel entrance. The time up to
PV ∼ −1.5 is the time window corresponding to the steady
state single-phase flow stage, which is the same for both cases,
indicating that the modification of the micromodel surface does
not impact its permeability to water. The pressure drops deviate
at PV ∼ −1.5, which corresponds to the moment the CO2 phase
enters the micromodel. At this moment, the wettability begins
to impact flow resistance as the onset of capillary forces modify
the force balance. In the drainage case, since the micromodel
surface is hydrophilic, the capillary pressure across the interface
causes pressure to build up in front of the CO2-water interface,
which adds onto the baseline pressure drop, leading to a steep
increase in the total pressure drop. As the CO2 front migrates
through the porous section, the pressure drop continues to
increase linearly, roughly until PV ∼ 0, which corresponds
to r/R = 0.25. After this point, the rate of increase reduces
and the pressure drop reaches a maximum at 1P = 3 kPa,
for PV ∼ 1. After this point, the pressure drop decreases with
further increase in PV . In contrast to the drainage case, the
pressure drop during the imbibition case remains constant up
to PV ∼ 0. After this point, the bulk pressure drop becomes
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FIGURE 7 | A continuation of Figure 6, showing instantaneous velocity fields depicting water flow as CO2 continuously displaces water in 2D circular hydrophobic

micromodels under imbibition conditions. Experimental conditions: logCa = −5.7, 8 MPa, 21◦C, and θr ∼ 98 ◦.

negative and remains nearly constant at 1P = −0.2 kPa. This
negative value of the pressure drop is expected since in this
case the micromodel is hydrophobic, causing an inversion of
the interfacial curvature, meaning that the capillary pressure
induces a higher pressure on the water side, which is high
enough to counterbalance the small viscous pressure drop,
leading to an overall negative pressure across the micromodel.
This behavior also suggests that the external work done by bulk
pressure is negative during imbibition, meaning that the system
is doing work to the surroundings (i.e., the pumps in the current
experimental arrangement) (Hu et al., 2018).

Figure 8B presents the variation of CO2 saturation within
the measurement domain, SCO2, as a function of PV for both
drainage and imbibition cases. Note that PV physically represents
the total accumulated volume of CO2 that has been injected into
the porous section at any moment, whereas SCO2 represents the
total volume of CO2 that is present in the porous section at that
moment. As shown in Figure 8B for the imbibition case, the
saturation curve begins with an approximately linear increase,
with PV growing at the same rate as saturation. This behavior
supports PV = SCO2 which is consistent with conservation
of mass for incompressible flow. However, when CO2 begins
to exit from the outer edge of the annulus region, the relation
deviates from a linear one, simply because mass storage (SCO2)

now is not equal to mass entering the control domain. This
simple yet rigorous mass conservation is not, however, satisfied
in the drainage case, even for the initial part of the curve (i.e.,
before CO2 exits from the outer edge). While the saturation
curve initially follows a linear trend, SCO2 (i.e., volume stored)
is always lower than PV (i.e., volume injected). This is in fact
consistent with the expected compression of CO2 caused by the
bulk pressure increase under these conditions. It is important
to recall that the CO2 phase under the experimental conditions
herein is in near-critical conditions and, as such, is highly
compressible (Kazemifar and Kyritsis, 2014). Given the large
volume (compared with the pore volume) contained in the
upstream plumbing lines, any small change in pressure could
potentially result in an appreciable change in the volume of
CO2 that is contained in the syringe pump and pluming lines.
According to Figure 8A, the pressure on the CO2 does increase
by ∼ 500 Pa during this process. Based on the compressibility of
CO2 (Law and Bachu, 1996) and the cumulative volume of the
pluming lines, we estimated that for a pressure change of 500 Pa,
a volume change of up to 0.05µl is possible, which is ∼30% of
the total pore volume. In this regard, conservation ofmass cannot
translate to conservation of volume within the system.

Figure 8C presents the variation of CO2 saturation with the
CO2 leading front position under both drainage and imbibition
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FIGURE 8 | (A) Instantaneous pressure drop across the micromodel measured during drainage and imbibition plotted against the injected pore volume, PV.

(B) Variation of CO2 saturation, SCO2, vs. injected pore volume, PV. Profiles are truncated at PV = 1.6 when both cases reach a quasi-steady state. PV = 0 signifies

when CO2 first enters the annulus of interest. (C) Variation of CO2 saturation, SCO2, vs. the CO2 leading front position, rLead. Here, the CO2 leading front position is

defined as the farthest position of the CO2 phase in the radial direction at any moment, as illustrated in the inset.

conditions. Here, the leading front position rLead is defined as
the farthest position of the CO2 phase in the radial direction
at any moment, as illustrated by the figure inset. This metric
has been used in previous studies to reveal key characteristics of
drainage for different flow regimes and the effects of wettability
on the displacement process (Tsuji et al., 2016; Hu et al., 2017). As
illustrated in Figure 8C, in the drainage case, the CO2 saturation
varies in a step-wise manner with the leading front position,
revealing that CO2 saturation continues to increase even when
the leading front is pinned at a fixed location. This behavior can
be understood by recognizing that capillary fingers can grow in
all directions, not just with the radial bulk pressure gradient.
Thus, increased CO2 saturation at constant leading front position
is possible due to finger growth in the azimuthal and/or

reverse radial directions. Furthermore, this trend implies that the
leading edge of the CO2 front advancing further downstream
is not necessarily associated with the same finger, but can
instead alternate between fingers at different spatial locations. In
contrast, this relationship is much smoother in the imbibition
case, with very little stepwise behavior. The relationship also
displays a parabolic trend, suggesting that the CO2 invasion
is marked by very compact and axisymmetric displacement,
reflecting the flow patterns shown in Figures 6, 7. These results
reveal distinct pore-scale invasion mechanisms for drainage and
imbibition that are in agreement with previous experimental
studies in rectangular micromodels (Li et al., 2019), rough
fractures (Chen et al., 2017; Hu et al., 2017) and simulations in
3-D porous rocks (Yamabe et al., 2014; Tsuji et al., 2016).
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4. DISCUSSION

The results presented herein are consistent with current
knowledge and existing studies, confirming again the validity of
these measurements. To gain further insight into the unrevealed
pore-scale dynamics and the effects of wettability on the
multiphase flow of CO2 and water in 2D micromodels, the
temporal resolution of these measurements is leveraged to
investigate unknown aspects of the underlying physics.

4.1. Drainage: Haines Jump
This section focuses on using this data to characterize aspects
of the drainage process and the dynamics and nature of Haines
jumps. In particular, how large is the region of influence of
an individual Haines jump and how long can the perturbation
induced by a burst last? As previously mentioned, conflicting
results have been reported regarding the temporal and spatial
scales of a Haines jump. While acoustic measurements and
optical visualizations suggest that Haines jumps occur on a time
scale as short as a few milliseconds, and even sub-millisecond
(DiCarlo et al., 2003; Armstrong and Berg, 2013), fast micro-
CT measurements suggest that the time scale is in the range of
40 − 200ms, and the relaxation following a Haines jump can
be as long as 2 s (Armstrong et al., 2014). Regarding the spatial
size of a Haines jump, at least two different metrics have been
proposed. Armstrong et al. (2014) defined the event size as the
volume of the wetting phase that is displaced by the non-wetting
phase during a certain period of time. They reported that the
average volume of the events is approximately two orders of
magnitude larger than the average volume of the pores. While
this metric properly measures the displacement of the meniscus
following a burst, it underestimates its region of influence, which
can extend far beyond the new position of the meniscus. On the
other hand, Armstrong and Berg (2013) reported that the zone of
influence extends at least four pores away from the locationwhere
the burst event occurs. Using a similar approach, Li et al. (2017)
reported that the zone of influence can extend as far as 30 pore
diameters. However, due to the temporally uncorrelated nature
of those measurements, it was not possible to determine the
temporal duration of these events. Moreover, those observations
did not provide conclusive evidence as to the spatial extent of the
influence of an individual burst since the possibility of multiple

successive jumps acting along the same direction could not be
ruled out. Herein, the temporally and spatially resolved water
velocity data is leveraged for direct observations of the dynamics
of each independent jump along their entire life cycle and to
revisit these important questions.

Figure 9 presents selected snapshots illustrating a typical burst
event throughout its entire lifetime under drainage conditions.
At t = 0 s, the CO2–water interface is pinned at a throat with
little flow in the water phase behind the interface. This instant
is defined as the temporal origin of the jump for which the
meniscus is relatively flat and the water ahead of the meniscus
is quiescent. At t = 2ms, the meniscus increases its curvature,
thus indicating a build up of capillary pressure. Simultaneously,
the interface advances slightly and manages to pass through
the narrowest point of the pore throat. This movement results
in a slight increase in water velocity, revealing the onset of
high-momentum displacement pathways whereby the meniscus
is ready to burst into the open pore space. At t = 4ms,
the jump of the interface begins, as witnessed by the dramatic
acceleration in the water phase, with velocities peaking at t =

6ms. Shortly thereafter, at t = 8ms, the water flow suddenly
decelerates returning to the pre-burst state of quiescent water. In
this case, two new interfaces form and pin at the new throats.
To the best of our knowledge, these results represent the first
complete experimental characterization of a pore-scale burst
event, reporting detailed velocity information of the surrounding
flow from inception to end. These results suggest that the
acceleration and deceleration stages have different duration. As
shown in Figure 9, the acceleration (from quiescence to peak
water velocity) of the burst event lasted for ∼6ms, whereas the
relaxation (from peak back to quiescence) period only lasted
for ∼2ms, due presumably to the combined effects of a high
viscous dissipation rate in the water phase and the capillary forces
induced by the next set of throats.

Figure 9 also reveals the transient behavior of the surrounding

water velocity field induced by a burst event with spikes of
high momentum flow, followed by quiescent flow, which is

consistent with the intermittent behavior noted in Figures 4,

5. This observation enables the identification of Haines jump

occurrences in the micromodel based on instantaneous flow rate.

Figure 10A presents the instantaneous volumetric flow rate by
integrating the flow at the outer edge of the annulus (r/R = 1)

FIGURE 9 | Velocity distribution near a Haines jump revealing the life of an individual burst event. Here, red lines demarcate the interfaces and the red arrows denote

the advancing directions of the interfaces.
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FIGURE 10 | (A) Instantaneous volumetric flow rate exiting the domain of interest. The green triangles denotes the peak locations, indicating the occurrences of

Haines jumps, whereas the green dashed line denotes the prescribed flow rate, 5µl/min. Blue error bars represent 6% of the peak flow rates obtained from the

validation experiment. (B) Histogram of burst event duration. (C) Histograms of burst size and pore size. The inset illustrates how the size of a burst event is calculated.

from t = 0 to t = 1.6 s. Spikes in flow rate are presumably
induced by the occurrences of Haines jumps, while the width of
these spikes represent burst durations. The highest instantaneous
flow rate noted is 14.7µL/min, which is three times higher than
the prescribed bulk flow rate. Guided by this instantaneous flow
rate metric, a total of 51 burst events were visually identified
based on the 800 (i.e., 2ms per field) instantaneous velocity fields
during this 1.6 s period. The spatial size and temporal duration
of these burst events and their statistical behavior are presented
below.

Figure 10B presents a histogram of the event duration,
defined as the entire period from quiescence immediately
preceding a burst event until a new quiescent state is achieved
immediately following the burst event. This metric highlights

that burst event duration ranges from 4ms to approximately
60ms, with 22 (out of 51) falling within the 0 − 12ms range
and five falling within the 42 − 60ms range. The shortest
duration (i.e., 4ms) most likely corresponds to the occurrences
of individual isolated events, whereas the longer duration events
correspond to burst events occurring in a cascading manner over
multiple pores and throats. Examination of instantaneous water
velocity fields indicate that it is possible for one event to cascade
through up to 16 throats. Furthermore, our measurement of
burst event duration is in good agreement with previous acoustic
measurements and optical visualizations (DiCarlo et al., 2003;
Armstrong and Berg, 2013), but is not consistent with the micro-
CT measurement in 3D porous media (Armstrong et al., 2014).
This discrepancy could be in part due to the distinct nature of
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2D and 3D flows, and in part due to the fact that micro-CT
cannot sufficiently resolve these highly intermittent events. It is
worth noting that the total time of all 51 burst events adds up
to 0.83 s (out of 1.6 s), corresponding to approximately half of
the total time. However, this half of total time is found to be
responsible for more than 75% of the total accumulated volume
exiting the outer boundary (i.e., water drainage), suggesting that
the drainage process is dominated by successive Haines jumps.

Another key property of the burst events is their spatial
footprint. While it was traditionally believed that burst events are
local, single-pore processes, more recent studies have called this
assumption into question. As mentioned previously, Armstrong
et al. (2014) reported a two orders of magnitude difference
between the average pore volume and the average burst volume,
defined as the volume of the fluid that is displaced during a period
of time, whereas Armstrong and Berg (2013) reported that the
zone of influence in a 2D porousmicromodel is at least four pores
from the location where the drainage event occurs. Note that,
however, the volume of displaced fluid is not a faithful measure of
burst event size, as it depends highly on the chosen time interval
and does not include the zone of influence. Li et al. (2017) found
that the zone of influence can extend as far as 30 pore diameters,
which brings the radius of influence close to the Darcy scale (i.e.,
a fewmillimeters). The significant data spread in the literature on
this topic shows that the distribution of burst event size remains
unclear.

Figure 10C shows a histogram of the burst event size
along with a histogram of the pore sizes obtained from our
measurements. The burst event size was calculated by comparing
the instantaneous water velocity field of the corresponding burst
event at its peak with the steady-state water velocity field (i.e.,
Figure 3A). For each instantaneous velocity field, any region that
displayed a higher velocity than the baseline was considered to
be influenced by an ongoing burst event. The total area, Aevent,
was computed through an integration process, as illustrated in
the inset of Figure 10C. The equivalent radius of the event was
then calculated as

revent =
√

Aevent/π (3)

Similarly, the equivalent pore radius was calculated based on the
pore areas, which was in turn determined using the watershed
segmentation algorithm (Rabbani et al., 2014). Figure 10C clearly
shows a large gap between the pore and burst event radii, with
the mean pore radius and mean event radius being 0.051 and
1.21mm, respectively, a difference of ∼ 24 fold. The ratio
between these radii would presumably translate into a volume
difference of 243 ∼ 14, 000 in a 3D flow (Armstrong et al.,
2014). This analysis agrees with the previous estimate based on
one single burst event by Li et al. (2017), confirming that burst
events are nonlocal and that their influence extends well beyond
what is typically considered as Darcy scale. Note that despite the
relatively large size of the burst events, they may still, to some
extent, be underestimated in this work, due to the finite size of the
imaging FOV which could cause an event to be partially cropped
at its boundaries (cf, inset of Figure 10C).

4.2. Effect of Wettability
The impact of wettability on the aforementioned physics and
dynamics is now considered by comparing results obtained
in the two micromodels with different surface characteristics.
Since the micromodel surfaces in the hydrophobic case were
modified to be nearly neutral wetting under a weak imbibition
condition, capillary forces in this scenario are expected to be
largely absent, as confirmed by the bulk pressure measurements
shown in Figure 8A. Therefore, given that the two cases operated
under otherwise identical conditions, any changes in the pore
processes and flow pattern can be largely attributed to the effect
of capillarity.

The characterization of the fluid–fluid interface is the first
focus of this analysis. In multi-phase flow in porous media, many
heat, momentum, and mass transfer processes, including shear-
induced flow, dissolution, exsolution, and subsequent chemical
reactions occur at the fluid–fluid interfaces (Zhang et al., 2011b;
Zuo et al., 2013; Liu et al., 2015; Kazemifar et al., 2016; Li et al.,
2017), which are strongly affected by wettability. Studying the
dynamics of fluid–fluid interfaces is critical for understanding
long-termCO2 solubility andmineral trapping as well as capillary
pressure hysteresis (Gray et al., 2019). It is now well accepted
that the total fluid–fluid interfaces are due to two distinct
contributions: the capillary-associated interfaces and the film-
associated interfaces (Porter et al., 2010; Liu et al., 2015; Li et al.,
2019), with the former consisting of all non-wetting interfaces in
contact with the bulk, mobile wetting phase and wetting phase
pendular rings in pore bodies and throats. The latter consist of
non-wetting interfaces in contact with the thin wetting films that
adhere to the solid grains of pores occupied by the nonwetting
phase. For a solid matrix that is highly hydrophilic (i.e., strong
drainage), both types of interfaces exist. However, for a neutrally
wetting solid matrix (i.e., weak imbibition), only the capillary-
associated interfaces are possible (Porter et al., 2010; Kazemifar
et al., 2016; Zhao et al., 2016; Li et al., 2017). Additionally, for flow
in the 2D micromodels used herein, interfaces are projected to
interfacial lines, and interfacial areas become interfacial lengths
(Zhang et al., 2011b; Liu et al., 2015).

Figure 11A presents the variations of capillary-associated
specific interfacial length, Anw, with CO2 saturation for both
drainage and imbibition. Note that the specific interfacial length,
Anw with a unit of mm−1, is simply the interfacial length, anw
with a unit of mm, normalized by the total pore area, in order
to account for the finite size of the measurement domain. For
the drainage case, the capillary-associated specific interfacial
length begins by increasing linearly with CO2 saturation, up until
approximately SCO2 = 0.25, corresponding to when the CO2

front arrives at the boundary of the measurement domain (i.e.,
rLead/R = 1). This linear behavior is consistent with previous
studies and can be understood by considering the following
observations. First, for the porous section under study (and this is
presumably true for most other porous patterns too), the number
of pores within a given sub-domain statistically scales linearly
with the number of throats that are associated with the pores in
the same sub-domain. Second, for pore invasion during strong
drainage, at any moment the majority of the capillary-associated
interfaces sits at the throats (as opposed to in the middle of
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FIGURE 11 | (A) Capillary-associated specific interfacial length functions of CO2 saturation; dashed lines denote a linear fit to the drainage data and power-law fit to

the imbibition data. (B) Probability density functions (PDFs) of the individual capillary-associated interfacial lengths under both drainage and imbibition; the symbols

represent the original data, whereas the lines are fitted curves using rational polynomial formulas to serve as a visual guide.

the pore spaces). Consequently, for each pore invaded, the
number of throats gained is statistically a constant, statistically
corresponding to a constant gain of the newly-created interfacial
length at those throats. This behavior is further reinforced by
capillary fingering during the drainage process, ensuring that
the newly created interfaces are separated and sustained by the
trapped water ganglia. In fact, as the drainage process continues,
the trapped water ganglia slowly drain through wetting films and
corner flows, causing the increase of Anw to slow down. This
behavior causes the interfacial length growth to depart from a
linear relationship, as evident in this result for SCO2 > 0.25.

This behavior is significantly altered in the weak imbibition
case, to yield a relationship Anw ∼ S0.54CO2, as indicated by the fitted
curve. Indeed this nearly 1/2 power law relation is a reflection
of the compact displacement pattern during imbibition. The
compact and yet relatively axisymmetric pattern caused the fluid–
fluid interfaces to form only at the outer rim of the displaced
region, with the interior of the region completely occupied by
CO2 (i.e., very few water ganglia). To illustrate this behavior,
consider an ideal stable displacement in a circular Hele-Shaw
cell, with an injection port in the center similar to our current
configuration. The interfacial length is simply the perimeter
of the displaced circle, which scales linearly with its radius,
whereas the saturation is essentially the area of the same circle,
which scales with the square of its radius, leading to a 1/2
power law between interfacial length and saturation. Again, the
distinct behaviors of the interfacial length are consistent with the
displacement patterns, as illustrated in Figures 4–7, and in the
imbibition case, is the result of the relative absence of capillarity.

Figure 11B presents the probability density functions (PDFs)
of the individual capillary-associated interfacial lengths under
both drainage and imbibition conditions. The PDF of the
imbibition case is clearly skewed toward larger values compared

with the drainage case, indicating that statistically longer
interfaces are generated in the former case. As discussed before,
fluid interfaces migrated through the porous section via high-
speed burst of individual menisci in the drainage case, with
a majority of the interfaces remaining static at the throats,
which are the narrowest points within the porous section. This
leads to a dominance of short interfaces. On the contrary, a
majority of interfaces migrated slowly through open pore spaces
in the imbibition case, producing long segments of interfaces.
Moreover, as shown in Figure 13, in the cooperative pore filling
process, interfaces merge into longer ones, contributing to the
shift of the PDF to larger values.

Besides interfacial length, the flow dynamics are also
significantly impacted by the alteration of wettability.
Figures 12A,B present PDFs of velocity magnitude and
direction for single-phase flow and multiphase flows under both
drainage and imbibition conditions. The single-phase flow data
corresponds to the steady-state water flow prior to the arrival
of CO2 in the porous section, as shown in Figure 3, and is
presented as a baseline for comparison. As the porous matrix is
fully saturated with just one fluid (i.e., no presence of fluid–fluid
interfaces) in the single-phase flow, it is unaffected by the wetting
conditions of the porous matrix. For multiphase flow, the PDF
of velocity magnitude in the drainage case displays a large tail of
high velocities, induced by pore-scale burst events, as expected.
The highest velocity captured by µPIV in this case is about
50mm/s, which is almost 50 times larger than Ubulk as defined in
Figure 3. Additionally, the Reynolds number calculated based on
this velocity and the average pore diameter is Rewater ∼ 5.2. On
the contrary, the PDF of velocity magnitude in the imbibition
case resembles the single-phase curve very well, suggesting
capillarity and burst events are significantly suppressed, and the
statistical behavior of the multiphase flow with little capillarity
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FIGURE 12 | PDFs of velocity (A) magnitude and (B) direction. The single-phase flow result is based on the data as shown in Figure 3, and is presented as a

baseline case for comparison purpose. Here, 2i is the difference between the polar angle of a velocity vector and the azimuth angle of its corresponding coordinate.

PDFs of interface jumps for their (C) magnitude and (D) direction. Again, 2i is the difference between the polar angle of a jump vector and the azimuth angle of its

corresponding coordinate.

is quite similar to that of a single-phase flow, as expected.
Figure 12B presents the PDFs of velocity vector directions for
the single-phase flow, drainage and imbibition cases. Here, 2i

is the difference between the polar angle of a velocity vector
and the azimuth angle of its corresponding coordinate. As such,
if the flow aligns perfectly with the radial direction, 2i = 0.
As shown in Figure 12B, 2i spans over a broad range even
for the single-phase flow due to the complex geometry of
the porous section where pores and throats are oriented in
various directions. Compared with the single-phase flow case,
the PDF of the imbibition case is slightly broader, due to the
cooperative pore-filling process as will be discussed in relation
to Figure 13. In cooperative filling, the merging of interfaces
induces instantaneous high-speed streams, causing disturbances
in the local water flow (note that this is fundamentally different
than a burst event during drainage). In fact, this is also the reason
why the velocity magnitude PDF of the imbibition case displays

a slightly longer tail than the single-phase flow in Figure 12A.
On the contrary, the PDF of 2i in the drainage case is much
flatter. This is because the burst events, which can occur in any
direction, induce strong disturbance to water flow, causing the
velocity vector to deviate even more from the radial direction,
and statistically leveling the number of velocity vectors in each
direction. These PDFs provide further insight into the drainage
processes that are not readily obvious by looking at individual
water velocity fields. Moreover, in numerical model validation, it
is often difficult to do a pore-by-pore comparison due to random
errors and perturbations. As such, statistical comparisons serve
as a better option for model validation.

As discussed in § 2.3, there is reason to believe that,
occasionally, flow velocities measured herein by µPIV may be
underestimated during Haines jumps. In PIV, velocity vectors are
determined by tracking the motion of groups of tracer particles
between two successive image frames contained in interrogation
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FIGURE 13 | Cooperative filling of a pore during imbibition, with red lines demarcating the interfaces and red arrows denoting the advancing directions of the

interfaces.

windows. This approach has limitations near boundaries,
particularly moving boundaries. As such, PIV typically fails
to correctly evaluate the velocity vectors in the vicinity of
morphological change (i.e., moving fluid–fluid interfaces). To
partially overcome this limitation and complement the µPIV
measurements presented herein, interface movements were
also evaluated by directly tracking the interface throughout
subsequent image frames (Li et al., 2019). Figures 12C,D present
PDFs of interface jumps based on their magnitude and jumping
direction. Again, 2i represents the difference between the polar
angle of a jump vector and the azimuth angle of its corresponding
coordinate. While the general behavior of these PDFs is very
similar to the previous velocity PDFs, a maximum jumping speed
of ∼ 80mm/s is observed based on this analysis approach (vs.
50mm/s based on the µPIV velocity measurements). This new
value enables amore accurate estimate of themaximumReynolds
number achieved in these experiments, which is on the CO2 side
of the interface and corresponds to ReCO2 ∼ 89, suggesting the
importance of inertial effects during Haines jumps.

As bulk properties and statistical behaviors are rooted in pore-
scale processes, the effects of wettability on the pore filling process
are assessed, which provides further explanation on why and
how bulk flow properties are altered. Figure 13 presents the
invasion of a fixed pore space during imbibition. Unlike what
is shown in Figure 9 under drainage conditions, where pore
invasion occurs through one throat at the time, pore invasion
under imbibition can simultaneously occur through multiple
throats, and is therefore referred to as cooperative filling. At
t = 0ms, the two menisci identified migrate from the two sides
of a grain and toward the same pore. At t = 2ms, the twomenisci
begin to touch each other and are ready to merge. At t = 4ms,
the two menisci merge into one and cause a release of surface

energy, which is partially converted into kinetic energy and

significantly accelerates the water behind the newly formed fluid–
fluid interface, leading to high-speed water displacement. Note

that unlike the drainage case, where the burst of the meniscus is

driven by high capillary pressure, here the formation of a new
meniscus directly energizes the flow. Once the surface energy
release is complete, the water flow quickly diminishes due to
high viscous dissipation rate, similar to that in Figure 9. This
new pore filling mechanism identified herein is caused by the
merging of two interfaces. The release of surface energy causes

instantaneous high-speed events, that are similar to, yet due to
fundamentally different mechanisms, than burst events under
drainage conditions. This simple but important mechanism can
now be used to explain the observations made in relation to
Figures 11, 12. In particular, the interface merging at t = 4ms,
is responsible for the PDF shift in Figure 11, and the water
flow acceleration due to surface energy release at t = 4ms is
responsible for the long tail in the PDF of the velocity magnitude
during imbibition, compared to the baseline single-phase case, as
shown in Figure 12A.

4.3. Energy Analysis
As mentioned previously, energy balance analysis can aid the
development of predictive models and is particularly insightful
for understanding the phenomena impacting capillary filling
rules and hysteresis in multiphase flow in porous media.
However, kinetic energy is a crucial component of energy
balance analysis but has heretofore not been properly evaluated
experimentally due to a lack of suitable measurements. Enabled
by the spatially and temporally resolved velocity measurements
presented herein, a breakdown of the energy budget is presented
in order to achieve a better understanding of the importance
of each energy contribution and the conversion between them
during Haines jumps under drainage conditions as well as
interface merging under imbibition conditions.

Following the derivations by Ferrari and Lunati (2014), energy
balance in a multiphase flow system in porous media can be
described as

dF

dt
+

dEk

dt
= P −8, (4)

where F =
∫

�
ψ d� is the surface free energy with ψ being the

free-energy density, Ek =
∫

�

1
2ρu

2 d� is the total kinetic energy,
P = 1pQ is the work per unit time (i.e., power) done by external
forces and 8 is the energy dissipation rate. Herein, Ek can be
evaluated based on the instantaneous water velocity field, and dF
can then be calculated according to

dF = γ (dAnw + cosθdAns), (5)

where Anw and Ans are the fluid–fluid interfacial area and
non-wetting-fluid-solid interfacial area, respectively. The power
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exerted by external forces can be estimated as

P = 1pQ = 1pVpore
dSCO2

dt
. (6)

As shown in Figure 8A, 1p is positive during drainage but
negative during imbibition, meaning that the external work is
positive and negative for drainage and imbibition, respectively.
According to Equation (5), in the case of drainage, external work
is partially converted to kinetic energy and surface energy, with
the remainder dissipated by viscosity. On the contrary, in the
imbibition case, energy is released from surface energy, which is
in turn partially converted to kinetic energy and external work,
with the rest dissipated away (Hu et al., 2018). It is worth noting
that due to the practical difficulty in measuring pressure in the
vicinity of the fluid–fluid interface, 1p here is approximated
by the pressure transducer measurements between the inlet and
outlet of the micromodel. Because of the small viscous pressure
drop in the plumbing lines at such a low flow rate, the pressure
transducer offers a good estimate of the actual pressure acting on
the interface.

The energy budget for 25 individual burst events was
calculated during drainage by excluding the cascaded and
overlapped ones from the list created in § 4.1. Figure 14A

presents surface energy and kinetic energy as a function of
external work for these 25 burst events. Both surface energy and
kinetic energy vary linearly with external work, with slopes of
0.90 and 0.48 × 10−3, respectively. These slopes suggest that
during burst events, about 90% of the external work is converted
to surface energy, and only 0.048% of the external work is
converted to kinetic energy. Therefore, although extremely high
velocities were observed during burst events, as show by the PDFs
in Figure 12, the associated kinetic energy is negligibly small.
Additionally, this energy balance suggests that about 10% of the
external work is dissipated through viscous effects, which is much

less than the 64% dissipation observed during drainage in 3D
sandstone by Berg et al. (2013). The difference is presumably due
to the fact that our 2D micromodel has higher porosity, which
reduces the viscous dissipation rate compared with 3D porous
media. Figure 14B presents a similar energy breakdown for 16
cooperative pore filling events that are similar to what is shown
in Figure 13 during imbibition. Although the different forms
of energy are less correlated for this case, presumably due to
the relatively high measurement uncertainty, nevertheless, based
on order of magnitude, ∼20% of the released surface energy is
converted into external work, with ∼80% of it being dissipated
through viscous effects. Again the conversion of kinetic energy
from released surface energy is <0.1%. This important finding
validates the assumption made by previous studies that the
change in kinetic energy of such flow systems is negligible even
during Haines jumps and cooperative pore filling events (Berg
et al., 2013; Hu et al., 2018).

5. CONCLUSION

In this study, a high-speed µPIV technique was employed
that captured spatially and temporally resolved dynamics of
multiphase flow of CO2 and water in 2D microfluidic porous
media under reservoir-relevant conditions for both strong
drainage and weak imbibition. When CO2 displaces water in
a hydrophilic micromodel (i.e., drainage), unstable capillary
fingering occurs along, normal to, and opposing the bulk flow
direction. Under these conditions, the pore flow is dominated by
successive pore-scale burst events (i.e., Haines jumps), leading to
a high degree of fluctuation in the instantaneous water velocity
fields. When the micromodel surface was altered to be nearly
neutral wetting, consistent with weak imbibition conditions, flow
instability and fluctuation were significantly suppressed, leading
to more compact and axisymmetric displacement patterns with

FIGURE 14 | (A) Surface energy and kinetic energy as a function of external work for the largest 25 burst events during the drainage process. (B) External energy and

kinetic energy as a function of reduced surface energy for 16 selected pore filling events during the imbibition process.
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narrower flow velocity distribution, consistent with existing
studies.

Leveraging the unique spatially and temporally resolved
datasets, detailed analyses were performed on the pore-scale flow
dynamics, flow statistics, the effects of capillarity, and flow energy
balance, which has revealed valuable insights, including:

1. The drainage process is dominated by a succession of Haines
jumps, which cause extremely high velocities, typically two
orders of magnitude higher than the bulk velocity, resulting
in ReCO2 ∼ O(100), confirming the importance of inertial
effects.

2. Haines jump duration ranges from 4ms to approximately
60ms in the current micromodels, with the shortest burst
events corresponding to individual isolated events and
the longer duration events corresponding to burst events
occurring in a cascading manner over multiple pores and
throats. The instantaneous water velocity fields indicate that
it is possible for one event to cascade over 16 throats.

3. The radius of influence of Haines jumps is estimated to be
as large as 1.21mm, a ∼ 24 fold increase over the mean
pore radius, 0.051mm, suggesting that burst events are highly
nonlocal and their influence extends up to and perhaps
beyond what is typically considered as Darcy scale in these
applications.

4. Modifying the wettability of the porous matrix, from being
strongly hydrophilic to intermediate wetting, fundamentally
and dramatically changes the behavior of the displacement
process. In particular, doing so mitigates the flow instability
and enhances displacement efficiency. Due to a reduction of
capillarity and thus instability, the maximum flow speed in the
imbibition case is much lower.

5. Direct observation of the pore filling behavior on an
individual pore basis reveals a significant alteration of the
pore filling mechanisms during drainage and imbibition.
While the former typically features a burst event, which
occurs only at one of the several throats connecting a pore,
the latter is typically dominated by a cooperative filling
mechanism, which involves simultaneous invasion of a pore
from multiple throats. This mechanism leads to merging
of two interfaces and a subsequent release of the surface
energy, inducing instantaneous high-momentum flow events
that appear similar, but are fundamentally different from, a
burst event.

6. Energy balance analyses indicate that the conversion efficiency
between surface energy and external work is as high as
90%, with the remaining energy dissipated instantaneously.
Moreover, kinetic energy is disproportionately smaller than
surface energy and external work (by more than three orders
of magnitude), despite the extremely high flow velocities
that occur during flow drainage. This finding validates the

assumptionmade in previous studies that the change in kinetic
energy is negligible during Haines jumps and cooperative pore
filling events.

To our knowledge, the observations reported herein and
afforded by the innovative experimental protocol used
represent the first of their kind. They have advanced our
fundamental understanding of these flow processes and will
hopefully contribute to the next generation of pore-scale model
development and validation.
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Hydrodynamic dispersion process in relation with the geometrical properties of the

porous media are studied in two sets of 6 porous media samples of porosity θ ranging

from 0.1 to 0.25. These two sets of samples display distinctly different evolutions of the

microstructures with porosity but share the same permeability trend with porosity. The

methodology combines three approaches. First, numerical experiments are performed to

measure pre-asymptotic to asymptotic dispersion from diffusion-controlled to advection-

controlled regime using Time-Domain Random Walk solute transport simulations.

Second, a porosity-equivalent network of bonds is extracted in order to measure

the geometrical properties of the samples. Third, the results of the direct numerical

simulations are interpreted as a Continuous Time Random Walk (CTRW) process

controlled by the flow speed distribution and correlation. These complementary modeling

approaches allow evaluating the relation between the parameters of the conceptual

transport process embedded in the CTRWmodel, the flow field properties and the pore-

scale geometrical properties. The results of the direct numerical simulations for all the

12 samples show the same scaling properties of the mean flow distribution, the first

passage time distribution and the asymptotic dispersion vs. the Péclet number than

those predicted by the CTRW model. It allows predicting the asymptotic dispersion

coefficient D∗ from Pe = 1 to the largest values of Pe expected for laminar flow in natural

environments (Pe ≈ 4,000). D∗ ∝ Pe2−α for Pe ≥ Pecrit, where α can be inferred from the

Eulerian flow distribution and Pecrit depends on porosity. The Eulerian flow distribution is

controlled by the distribution of fractions of fluid flowing at each of the pore network nodes

and thus is determined mainly by the distribution of the throat radius and the coordination

number. The later scales with the number of throats per unit volume independently on the

porosity. The asymptotic dispersion coefficient D∗ decreases when porosity increases for

all Péclet values larger than 1 due to the increase with porosity of both α and the flow

speed decorrelation length.

Keywords: dispersion, continuous time random walk, microstructure, velocity distribution, pore network
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1. INTRODUCTION

Modeling transport of solute in porous media is a prerequisite for
many environmental and engineering applications, ranging from
aquifers contaminant risk assessment to industrial reactors, filters
and batteries design. The solutes can be pollutants, reactants and
products involved in solute-solute or solute-mineral reactions,
but also (bio-)nanoparticles or nutriments involved in the
growth of bio-mass. The mechanism under consideration is
the spatial dispersion which leads to the spreading and the
mixing of dissolved chemicals, thus controlling the potential
reactions in the flowing fluid and between the fluid and the
porous media (Bear, 1972; Brenner and Edwards, 1993; Dentz
et al., 2011). The dispersion process has been, and still is, a
largely studied topic in the field of geosciences because rocks
at depth are, as a general rule, porous media saturated with
fluid(s) that move due to natural or artificial pressure gradients,
and display a large spectrum of heterogeneities. In all these
domains, reliable predictive models that can be parameterized
by direct measurements are necessary, for example, to monitor
and assess risks linked to the use of underground water
resources, or in the course of industrial operations, such as
hydrocarbon exploitation and CO2 or underground nuclear
waste storage.

Hydrodynamic dispersion is the macroscopic result of the
mass transfers by diffusion and advection that occurs at the
pore scale (Whitaker, 1967; Sahimi, 2011; De Anna et al., 2013).
Together, diffusion and advection of solute produce a large
spectrum of dispersion features because (natural) porous media
display complex structures inducing a large diversity of velocity
fields, and thus distinctly different speed distributions and spatial
correlations. Probably the most obvious behavior that illustrates
the complexity of dispersion mechanisms in porous media is
the variably-lasting pre-asymptotic dispersion regime that cannot
be modeled by a single Fickian dispersion coefficient. Pre-
asymptotic, or non-Fickian, dispersion is commonly observed
in laboratory experiments (Moroni and Cushman, 2001; Levy
and Berkowitz, 2003; Seymour et al., 2004; Morales et al., 2017;
Carrel et al., 2018; Souzy et al., 2020), and numerical simulations
(Bijeljic et al., 2011, 2013; De Anna et al., 2013; Icardi et al., 2014;
Kang et al., 2014; Li et al., 2018; Puyguiraud et al., 2019c). It is
characterized by heavy-tailed arrival time distributions ft(t) and
super-diffusive growth of the longitudinal displacement variance
σ
2(t). For a given porous medium, the duration of the non-

Fickian regime is controlled by solute particles that move the
slowest, which emphasizes the determinant role of both the
regions where the velocity is low and the tortuosity of the
flow paths. Asymptotically, dispersion converges toward Fickian
behavior, characterized by the constant longitudinal dispersion
coefficient D∗ (Bear, 1972; Brenner and Edwards, 1993).

Evaluating the longitudinal asymptotic dispersion
coefficient D∗ is a fundamental issue, because most
operational modeling tools have been constructed around
the Fickian advection-dispersion equation that reads for
transport in the direction of the mean flow, here the
z-direction (Bear, 1972):

∂θc(z, t)

∂t
−
∂

∂z

[

θD∗ ∂c(z, t)

∂z
+ uz(z)c(z, t)

]

= 0, (1)

where c is the solute concentration, θ is the connected porosity,
uz = θ〈vz〉 denotes Darcy’s velocity, with 〈vz〉 being the mean
pore velocity.

Many experimental studies and mathematical developments
on dispersion using mainly simple porous media have been
performed since the pioneering works of Danckwerts (1953).
The reader will find an exhaustive review of the different results
and models of both longitudinal and transverse dispersion in
Delgado (2006). A main well-observed feature of longitudinal
dispersion D∗ is its non-linear increase with the mean flow
velocity. It is recognized since the pioneering works of Saffman
(1959) and then Bear (1972). It is generally expressed in terms
of D∗

/dm vs. the Péclet number Pe = 〈ve〉ℓ/dm, where ℓ is
a characteristic length, dm is the molecular diffusion coefficient

and 〈ve〉 is the mean Eulerian flow speed (ve =

√

v2x + v2y + v2z ,

with vi denoting the flow velocity component i, see section 2.2).
Simulations in networks of constant velocity tubes (Sahimi
and Imdakm, 1988) of radius r following distributions such as

P(r) ∝ re−r2 (Chatzis and Dullien, 1985) indicated a relation of
the form

D∗
/dm ∝ Peβ , (2)

with β = 1.2 ∓ 0.1 (Sahimi, 2011), while for instance β = 2
in a single tube (Taylor, 1953). For infinite Pe, experimental
particle tracking results (e.g, Souzy et al., 2020) give the relation
D∗
/dm ≈ Pe, where the characteristic length ℓ is of the order of

the pore length. However, it is worth noticing that in Souzy et al.
(2020)’s experiments the lowest velocities cannot be measured
because they use finite-size particles that cannot access to the
vicinity of the solid. Interestingly, the behavior (Equation 2) with
β ≃ 1.2 was cited in numerous studies concerning bead-packs
and homogeneous sand-packs for intermediate Péclet numbers
(Pfannkuch, 1963; Han et al., 1985; Sahimi et al., 1986; Seymour
and Callaghan, 1997; Bijeljic et al., 2004). For instance, particle
tracking simulations in pore-networks reported in Bijeljic and
Blunt (2006) gave β = 1.2, for Pe < 400 and β = 1, for Pe >
400. Conversely, similar numerical simulations (using random
walk particle tracking) performed by Puyguiraud et al. (2021)
using digitized images of consolidated sandstone, gave a value of
β = 1.65 for 10 ≤ Pe ≤ 105. The few experimental data on
rocks (obviously more heterogeneous than bead-packs) displayed
a broader range of behaviors; for example Kinzel and Hill (1989)
reported 1.30 ≤ β ≤ 1.33. However, it is worth noticing that
evaluating dispersion in rocks, for a large range of Pe values,
either at laboratory or field scale from tracer tests is challenging.
For instance, controlling the boundary conditions and verifying
that the tracer is conservative are some of the known issues that
may introduce errors in the estimation. Yet, the main issue is
probably linked to the fact that, by definition, the experimental
results are interpreted using the Fickian model, whereas it is
difficult to prove that dispersion is asymptotic without being able
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to measure the tracer breakthrough curves over several orders of
magnitude in order to capture the low speed fraction of the solute
transport (Gouze et al., 2008). We will show in section 3.4 that
measuring asymptotic dispersion for large values of Pe in natural
porous media is in fact virtually impossible using cm- or even
meter-scale experiments.

While measuring dispersion experimentally is burdensome,
modeling approaches are now mature to perform numerical
experiments. Direct numerical simulations (DNS) are unique
tools for investigating both the pre-asymptotic and the
asymptotic behavior in a common frame. They can be used to
accurately measure D∗, but also to study the mechanisms that
produce dispersion in relation with the measurable (average)
properties of the material, and to test upscaling theories. Recent
works (Bijeljic and Blunt, 2006, 2007; De Anna et al., 2013;
Puyguiraud et al., 2020, 2021) showed that hydrodynamic
transport in porous media can be adequately conceptualized
and modeled by a continuous time random walk (CTRW) that
models streamwise transport through particle transitions over
fixed spatial distance with a transition time given by the local
flow speed and diffusion. The spatial distance at which particles
speed changes corresponds to the decorrelation distance ℓc of the
mean flow speed. The CTRW integrates in a statistical framework
parameters that are similar to the classical representation of
porous media as a network of throats and pores. As such one can
be tempted to investigate how ℓc, which is a major ingredient of
the CTRW model, is related to the topological and geometrical
properties of the real 3-dimensional pore network. Moreover, the
CTRWmodel predicts that asymptotic dispersion is controlled by
the dispersion evolution during the pre-asymptotic regime which
itself is controlled by the flow speed distribution. How the later is
related to the properties of the pore network is a further issue that
requires investigation.

The main objective of the present study, is to investigate
the relation between the longitudinal dispersion D∗ (and its
evolution with the mean flow rate) and the porous media
microstructural properties in the frame of the theory proposed
by Puyguiraud et al. (2021) which gives a generalized explanation
of longitudinal dispersion (from pre-asymptotic to asymptotic
regimes) and a formal relation between dispersion and the
properties of the flow field (velocity distribution, velocity spatial
decorrelation and flow path tortuosity).

The core of this study is a set of about 150 numerical
experiments designed to measure pre-asymptotic to asymptotic
dispersion from diffusion-controlled to advection-controlled
regime in 12 sandstone-like samples of porosity ranging from
10 to 25%. For that, one first computes the steady-state Stokes
flow field from which, the flow speed distribution and the
decorrelation distance as well as advective tortuosity are derived.
Then, the direct numerical simulation (DNS) of solute transport
at pore scale, involving diffusion and advection, are performed
using Time-Domain Random Walk (TDRW). The dispersion
mechanisms are characterized from the time-resolved particles
displacement variance and the first passage time distribution
(FPT) given as outputs of the TDRW simulations. In parallel,
the geometrical properties of the porous samples are evaluated
from the computation of the bonds network model (BNM)

for each of the samples, that is obtained from the medial axis
transform, or squeletonization, of the connected porosity. This
gives us the unique opportunity to characterize the topology of
the connected porosity including the number of throats (bonds)
and pores (network nodes) and the coordination (number of
throats per pore), as well as the throat radius and length. Then,
the results of the direct numerical simulations are analyzed
in the light of the CTRW theory proposed by Puyguiraud
et al. (2021) which provides quantitative links between the
tail behaviors of the FPT distribution ft(t), the distribution
of flow speeds ve, the particles displacement variance σ 2(t)
and the asymptotic dispersion coefficient D∗ scaling with
the Pe value.

The methodology, including the conceptual and numerical
tools used in this study are detailed in section 2. The geometrical
and topological characteristics of the samples and the flow field
properties are presented in section 3. The results of the direct
numerical simulation of solute transport and the calculation of
the dispersion coefficient for a large range of values of Pe are
discussed in section 3.4. The conclusions of this study are exposed
in section 4.

2. METHODOLOGY

2.1. Porous Media Samples
The porous media are binary images made of 4803 regular
voxels (cubes) that are either void or solid. The first set of 6
samples, noted FSxx, were xx is replaced by the porosity value
expressed in percent (ex: FS13 for the sample with θ = 0.13) was
downloaded from the Digital Rocks Portal (Berg, 2016a). They
were generated with the commercial software e-Core following
a methodology described in Oren (2002), in order to mimic
Fontainebleau sandstone at different porosity (Berg, 2016b). The
op. cit. author indicated that they use identically parameterized
silica grain sedimentation and compaction processes typical for
Fontainebleau sandstones, the different porosity values (0.10,
0.13, 0.15, 0.21, and 0.25) being obtained by varying the amount
of silica cement. As such, this process mimics the progressive
diagenetic cementation by silica precipitation (from FS25 to
FS10) of an initially poorly cemented sandstone. Conversely, we
made the second set of samples by step-by-step homogeneous
erosion of the solid phase starting from FS10. By removing
1 to 6 layers of solid at the solid-void interface we obtain
6 samples, denoted FSDxx of porosity 0.12, 0.15, 0.17, 0.20,
0.23, and 0.25. This process mimics homogeneous dissolution
of the silica material. The top panel in Figure 1 displays
the three-dimensional structure of the lowest porosity sample
FS10, and the highest porosity samples FS25 and FSD25. It
can be qualitatively appraised that the cement precipitation
model used to construct FS25 increases the number of pores
compared FS10, while the pore size is kept roughly similar.
In contrast, the dissolution process producing FS25 from FS10
acts as increasing strongly the pore size, while the number
of pores remains roughly unchanged. This set of sample is
viewed as ideal for investigating dispersion of end-members of
natural sandstones.
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FIGURE 1 | Three-dimensional structure of FS10 (left), FS25 (middle),

FSD25 (right) samples. The top row displays the void space. The lines in the

bottom panel show particle paths, the color scheme indicating the particle

speed from white (u/〈u〉 ≤ 7× 10−4) to dark blue (u/〈u〉 = 10).

2.2. Flow
Flow simulations are performed on the three-dimensional binary
images. The mesh used for solving the flow is obtained by
dividing each of the image voxels by 2 in each of the directions so
that 1 voxel of the raw image is represented by 8 cubic cells of size
1x = 1y = 1z = 2.85× 10−6 m. This procedure is applied for
improving the resolution of the flow field in the smallest throats
(Gjetvaj et al., 2015). The resulting discretization for the regular
grid consists of 9603 cubic cells. We are considering steady-state
flow of an non-compressible Newtonian fluid at low Reynolds
number so that the pore-scale flow velocity v(x) is given by the
Stokes equation

µ∇
2v(x)−∇p(x) = 0, (3)

where p(x) is the fluid pressure. Stokes flow is solved using
the finite volume SIMPLE (SemiImplicit Method for Pressure
Linked Equations algorithm) scheme implemented in the
SIMPLEFOAM solver of the OpenFOAM platform (Weller et al.,
1998). Twenty layers are added at the inlet and outlet in order
to minimize boundary effects (Guibert et al., 2016). The main
flow direction is considered in the z-direction all over this
study. We prescribe (1) a macroscopic pressure gradient ∇∗p
between the inlet (z = 0) and the outlet (z = Lz) boundary
conditions such that the Reynolds number Re is smaller than
10−6, i.e., laminar flow and (2) no-slip conditions at the void-
solid interfaces and at the remaining boundaries of the sample.
After convergence, that is, once the normalized residual of the
pressure and velocity components is below 10−5 between two
consecutive steps, we extract the components of the velocity at
the voxel interfaces (vx, vy, vz). The results of the flow simulations
allow us to extract the three properties that control dispersion
according to Puyguiraud et al. (2019b): (1) the Eulerian speed
distribution pe(v) (2) the decorrelation distance ℓc and (3) the
advective tortuosity χa. These fundamental flow properties are
respectively displayed in Figures 5–7, and discussed in section 3.

2.3. Solute Transport
Pore-scale hydrodynamic transport is classically modeled by the
advection-diffusion equation

∂c(x, t)

∂t
−∇ ·

[

dm∇ + v(x)
]

c(x, t) = 0, (4)

where c(x, t) is the solute concentration at position x and time
t, dm is the molecular diffusion coefficient which is set equal to
dm = 10−9 m2/s, and v(x) is the flow velocity at position x which
is obtained by solving the Stokes problem (see section 2.2). Here
we use the time domain random walk (TDRW) method that is
based on a finite volume discretization of Equation (4) (Delay
et al., 2005). A detailed description of the TDRW method, its
derivation and implementation using voxelized binary images
can be found in Dentz (2012) and Russian et al. (2016); the
main features of the method are given below. A study of the
performance and accuracy of the TDRWmethod for a large range
of values of the Péclet number can be found inGouze et al. (2021).
The domain discretization used for transport is that used for
computing the flow, i.e., 9603 cubic voxels .

The TDRW method is a grid-based method that models the
displacement of particles in space and time according to the
master equation that results from a finite volume discretization
of the advection-diffusion equation. The ensemble average of
the particle displacement gives the solution of the transport
equation. A particle transition corresponds to a single transition
of a constant length ξ = 1x from the center of a voxel j to the
center of one of the 6 face-neighboring voxels i. The direction and
the transition duration are random variables ruled by the local
values of the fluid velocity at the voxel interface embedded into
the local coefficients bij (Russian et al., 2016).

bij =
dm

ξ 2
+

|vij|

2ξ

(

vij

|vij|
+ 1

)

, (5)

where vij is the velocity component of vj in the direction of voxel
i, vij = vj · ξ ij. Voxel i is downstream from voxel j if vij > 0,
as a convention. The velocity at the solid-void interface is zero
and dm = 0 if voxel i is a solid voxel. The recursive relations
that describe the random walk from position xj to position xi of a
given particle transition n are

xi(n+ 1) = xj(n)+ ξ , t(n+ 1) = t(n)+ τj. (6)

The probability pij for a transition of length ξ from voxel j to
voxel i is

pij =
bij

∑

[jk] bkj
, (7)

where
∑

[jk] denotes the summation over the nearest neighbors

of voxel j. The transition time τj is independent on the transition
direction and is exponentially distributed ψτj (t) = τ j exp(−t/τ j)
with τ j the mean transition time from voxel j;

τ j =
1

∑

[jk] bkj
. (8)
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The algorithm consists in computing once the probability pij
(Equation 7) and the mean transition time τ j (Equation 8) for
each of the voxels belonging to the pore space and then solving
the random walk (Equation 6) in which the direction for each
particle transition is drawn from the pij vector and the transition
time is drawn from the exponential distribution of mean τ j.

2.3.1. Simulation Setup
For each sample, we performed simulations for different values
of the Péclet number. The Péclet number is defined as Pe =

〈ve〉λ/dm where λ is the mean throat length that is displayed for
the 12 samples in Figure 2 and ranges from 6.5× 10−5m to 8.8×
10−5m. The different flow fields used for the TDRW simulations
at different Péclet numbers are obtained by multiplying the raw
flow field resulting from the Stokes simulation by a constant.

A pulse of constant concentration at the sample inlet (z = 0)
is applied at t = 0 by locating particles in a flux weighted
injection mode. Note that the pulse is formally an exponential
distribution function of characteristic time τj|z=0 whose mean
value is negligible compared to the mean time required for the
particles to move through the sample (Russian et al., 2016).
Flux weighted injection means that the number of particles
injected at a location is proportional to the local velocity. This
corresponds to a constant concentration Dirichlet boundary
condition. Particles that reach the sample outlet with a speed vout
are reinjected randomly at the inlet plane at a position x satisfying
the condition |vx − vout| ≪ 〈v〉.

The distribution (PDF) of first passage times at a given
distance Z from the injection location, that denotes the solute
breakthrough curve (BTC) usually measured in laboratory
or field tracer tests, is noted ft(t) (Figure 8). The apparent
longitudinal dispersion coefficient D(t) is evaluated from the
displacement variance σ 2

z (t) of the particles (Fischer, 1966):

D(t) =
1

2

dσ 2
z (t)

dt
, (9)

with σ 2
z (t) = 〈(z(t) − 〈z〉)2〉 − 〈z(t) − 〈z〉〉2. The asymptotic

longitudinal dispersion coefficient D∗ = σ
2
z (t)/2t is obtained for

t > t∗, where t∗ is the time required for all the particles to sample
the entire heterogeneity, i.e., when σ 2

z (t) ∼ t (see for example
Figure 10).

2.4. The Equivalent Bond Network Model
We compute the bond network model (BNM) for each of
the FS and FSD samples in order to extract the geometrical
and topological characteristics of the connected porosity. The
methodology to obtain the network representation of the
connected porosity of the sample includes two main steps. The
first one is the extraction of the void space skeleton which is
the one-dimensional continuous object centrally located (and
spatially referenced) inside the pore space. The skeleton can be
computed using different approaches; here we used a thinning
algorithm inspirited from the works of Lee et al. (1994) that
provides the local medial-axis. The coordinate of the skeleton
is known with a spatial resolution equivalent to that of the
original 3D-image and associated with the local hydraulic radius

rl normal to the local medial axis that is evaluated using a
pondered 45 degree multi-ray method. Thus, the skeleton keeps
the relevant geometrical and topological features of the pore
space (Siddiqi and Pizer, 2008). The second step consists in
transforming the skeleton into a network of bonds and nodes
that connect three or more bonds. This yields an irregular lattice.
The length λ of a given bond is the sum of the length of the
skeleton components used to built this bond, so that the local
tortuosity of the skeleton is embedded into λ. For each bond, the
radius rh is obtained from the harmonic means (noted 〈〉H) of the
local conductance, so that rh = (〈rl〉H)

1/4. The algorithm is non-
parametric; there is no assumption on any of the characteristics
of the obtained lattice.

2.5. Upscaled CTRW Model
Puyguiraud et al. (2021) proposed a continuous time random
walk (CTRW) model that describes transport through particle
transitions over the length ℓc with a transition time that is given
by the local flow speed and diffusion. The central assumption
of this model is that transition times at subsequent CTRW
steps are independent identically distributed random variables.
Furthermore, it is assumed that particles move at the mean pore
velocity, that is, it is assumed that during a transition particles are
able to diffusively sample the velocities across pore conducts. The
scale ℓc is set equal to the decorrelation distance of particle speeds
so that subsequent particle speeds can be considered statistically
independent. The distribution of the Eulerian mean flow speeds
pm(v) is obtained from the Eulerian speed PDF as

pm(v) = −2v
dpe(2v)

dv
. (10)

As particles move at equidistant spatial steps, they sample
flow speeds in a flux-weighted manner. This is due to
the fact that particles are distributed at pore intersections
according to the relative downstream fluxes. Thus, the
distribution pv(v) of subsequent particle speeds are related
to the distribution of Eulerian mean flow speeds through
flux-weighting as (Puyguiraud et al., 2021).

pv(v) =
vpm(v)

〈vm〉
. (11)

At each turning point of the CTRW, particles are assigned
a random speed from pv(v). The particle transition time
distribution ψ(t) reflects both advection and diffusion. It is cut-
off at times larger than τD = ℓ

2
c/dm, the diffusion time over the

decorrelation distance. For times small compared to the cut-off
time, ψ(t) can be approximated by

ψ(t) =
ℓ
2
c

t3〈vm〉
pm(ℓc/t). (12)

At times larger than τD it is cut-off exponentially fast.
The flow speed distribution is at the center of the transport

process. In porous media, such as rocks, the mean flow speed
can often be approximated by a Gamma-type distribution (Dentz
et al., 2018; Puyguiraud et al., 2019b; Souzy et al., 2020) and
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FIGURE 2 | From left to right: number of pores; number of throats; mean throat length λ; mean throat radius rh vs. porosity θ for the FS and FSD samples.

displays a power-law scaling pe(v) ∼ vα−1 for v < 〈vm〉. For
sphere packs and simple structures such as sand-pack the linear
flow profile close to the grains (due to the no-slip boundary
condition) implies that pe(v) is flat at low velocities, so that
α ≃ 1 (Dentz et al., 2018). In more heterogeneous porous
media, other values of α are expected. For example, Puyguiraud
et al. (2021) found α ≈ 0.35 for a Berea sandstone sample.
For such Gamma-type distributions, pe(v) ∼ vα−1 at small
flow speeds, ψ(t) behaves for high Péclet numbers as ψ(t) ∼

t−2−α before the exponential cut-off at times larger than τD.
The tortuosity of particle trajectories in this framework is given
by the ratio of the mean asymptotic particle speed ℓc/〈τ 〉 ≡

〈ve〉 (where 〈τ 〉 denotes the particle mean travel time) and the
mean streamwise flow velocity 〈vz〉. Furthermore, for this type
of flow speed distributions, the CTRW approach predicts some
further interesting scaling laws that can be verified from direct
numerical simulations. The behavior of particle breakthrough
curves f (t,Z) at a control plane located at the streamwise location
Z is analogous to the behavior of ψ(t). They show a power-
law dependence as f (t,Z) ∼ t−2−α if Z/vz ≪ τD (i.e., the peak
time is much smaller than the cut-off time), and exponential
decay for times larger than the cut-off time τD. The predicted
dependence of the asymptotic longitudinal dispersion coefficients
on the Péclet number is for Pe≫ 1

D∗

dm
∼ Pe2−α (13)

for 0 < α < 1 and

D∗

dm
∼ Pe lnPe (14)

for α = 1, see also Saffman (1959) and Koch and Brady (1985).
To sum-up, this upscaled model, constructed on the

representation of the hydrodynamic transport as a CTRW
process in a 1-dimensional network of bonds, is fully constrained,
for any values of Pe > 1 by the knowledge of the distribution of
Eulerian flow speeds pe(v) and the decorrelation distance ℓc of
particle speeds.

From here one can recognize on one hand the
complementarity of the BNM and the DNS to explore
the relation between the dispersion and the pore network
characteristics, and on the other hand the conceptual framework
that links the CTRW model and the BNM representation of
the porous medium. This emphasizes the possibility of (1)
relating the distribution of the Eulerian flow speed to the large
scale transport behavior and (2) characterizing dispersion for
different porous media based on the knowledge of the flow speed
distribution. Indeed, the BNM gives us the information on the
real topology of the pore network as well as the distribution
and the average of bond properties (radius and length), while
the DNS provides the information on the flow field (speed
distribution and decorrelation distance as well as the advective
tortuosity).

3. PORE NETWORK PROPERTIES, FLOW
FIELDS, AND DISPERSION

The top row in Figure 1 illustrates the 3-dimensional structure
of sample FS10 (θ = 0.1) and of both FS25 and FSD25 sharing
the same porosity θ = 0.25. The bottom row in Figure 1

displays flow lines (and the local velocity) within the connected
porosity for these three samples and gives a qualitative appraisal

Frontiers in Water | www.frontiersin.org 6 November 2021 | Volume 3 | Article 766338102

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Gouze et al. Dispersion in Porous Media

FIGURE 3 | Left: Ratio (in %) of the number of dead-ends to the number of

throats. Right: Mean number of throats per pore κ vs. porosity θ for the FS

and FSD samples.

of the dissimilarities between the lowest porosity and the highest
porosity samples on one hand, and on the other hand those
occurring between the highest porosity sample of each of the
two sets in relation with the pore network structures. In the
following wewill quantify these differences and their implications
on dispersion.

3.1. Connected Porosity Geometrical
Properties Retrieved From the BNM
As explained in section 2.1, we computed the Bond Network
Model (BNM) for each of the 12 samples, in order to evaluated
the topology and the geometry of the connected porosity and
specifically how these characteristics change with the sample
porosity for the FS and the FSD sets of samples. The main
properties vs. porosity are summarized in Figures 2, 3. The
topology of the connected porosity is characterized by the
number of throats (network bonds) and pores (network nodes)
per volume of rock (here the reference is the sample volume) as
well as the coordination number κ that denotes themean number
of throats connected to a given pore. The bonds are characterized
by the mean of the radius rh and length λ and by the radius rh
distribution displayed in Figure 4.

For the FS set, decreasing porosity from the highest to
the lowest porosity values is obtained by allocating increasing
amounts of cement into localized clusters that acts as increasingly
closing connections and thus decreasing the number of pores
and throats and the coordination number. The fixed distribution
of the cement clusters determines the length of the bonds

FIGURE 4 | Normalized distribution of rh for the FS and FSD samples.

FIGURE 5 | Permeability (left) and advective tortuosity χa (right) vs. porosity

θ for the FS and FSD samples.

independently of the porosity (λ ≈ 65µm), but volume
conservation imposes that the hydraulic radius rh increases with
porosity. The distribution of rh/〈rh〉 is wide, decreases almost
monotonically from small to high rh and does not depends
on porosity.

For the FSD set, increasing porosity from the lowest to the
highest is obtained by homogeneous erosion of the solid phase,
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FIGURE 6 | Distribution of the Eulerian mean speeds pm(v) normalized to its mean, for the FS (left) and the FSD (right) samples.

i.e., both the grains and the cement. The number of pores and
throats as well as κ first decreases for θ ≤ 0.15 caused by
merging of adjacent throats following a process which is roughly
the opposite of that described for the FS set of samples. Then, the
number of pores and throats stays almost constant for θ > 0.15.
As a result, the increase of porosity is mainly due to the increase
of the throat length λ and radius rh. The distribution of rh/〈rh〉
is almost Gaussian around the mean value, and independent
of the porosity for θ > 0.15. The transition from the original
sample FS10 to the FSD12 and then FSD15 is well visible the
rh distribution. Note that, as soon as the throats are widely
distributed like for the FS set of samples, κ is an indicator of the
potential local flow rate disorder at the network nodes because
the probability of having upstream and downstream bonds of
distinctly different flow rates is high.

Altogether, these results show that the two sets of samples are
very different in terms of (1) the topology of the network; for the
FSD set, the topology is almost similar for all the porosity range,
while it is increasingly complex (with increasing tortuosity, see
discussion below) as porosity decreases for the FS set of samples,
and (2) the characteristic size of the throats which is almost
independent of the porosity for the FD set whereas it increases
with porosity for the FSD set.

3.2. Permeability and Flow Field Properties
Permeability values k for the 12 samples computed using Darcy’s
law (k = vzµ/∇

∗p) are plotted in the left panel of Figure 5.
Permeability increases from 1.4×10−13m2 for sample SF10 to
6.04×10−12m2 (6.08×10−12m2) for sample SF25 (SFD25) and
are all aligned with the relation k ∼ θ

4 independently on
geometrical characteristics of the pore space. The permeability

computed on the BNM (solving a Kirchhoff problem) is also
reported Figure 5 in order to evaluate the accuracy of the BNM.

The right panel of Figure 5 displays the advective tortuosity
χa, i.e., the mean tortuosity of the flow lines. The advective
tortuosity is obtained from the ratio of the mean Eulerian speed
ve to the mean velocity in the direction of the flow vz (Koponen
et al., 1996; Ghanbarian et al., 2014; Puyguiraud et al., 2019c):
χa = 〈ve〉/〈vz〉. For both the sets of samples, χa decreases
when porosity increases, but it is more pronounced for the FS
set of samples. These trends seem to be mainly controlled by
the increase of the throat radius as porosity increases, while the
topological characteristic of the network plays a minor role which
is probably resulting from a complex coupling of the geometrical
and topologically parameters discussed above. This makes the
advective tortuosity, which is one of the three parameters of the
CTRW model proposed by Puyguiraud et al. (2021), an intrinsic
characteristic of the hydrodynamic system that is essentially
porosity-dependant.

The distributions of the Eulerian mean speed for the 12
samples are plotted in Figure 6. The dissimilarity of the pm(v)
curves between the FS and the FSD sets is clearly visible. The FSD
samples are displaying almost the same mean speed distributions
with power-law trend pm(v) ∼ vα−1 for v < 〈vm〉 with α =

0.245± 0.05. For the FS set, the evolution of pm(v) with porosity
includes two features. First, pm(v) gradually diverges from a
Gamma distribution as porosity increases, with the occurrence
of increasingly marked transition between the values of speed
larger than the mean (v > 〈vm〉) and the power-law slope
for the slower speed values. Second, the power-law slope for
v ≪ 〈vm〉 increases when porosity decreases, ranging from β =

α − 1 = 1.63 for θ = 0.25 to β = 1.75 for θ = 0.10.
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FIGURE 7 | Flux weighted Langrangian speed auto-correlation function ϒvv (l) for the FS (left) and the FSD (middle-left) samples. The middle-right panel displays

the decorrelation length ℓc and the right panel displays the ratio η = ℓc/λ vs. porosity.

FIGURE 8 | First passage time PDF ft at Z = 5.47×10−2m from the inlet. Left: results for infinite Pe vs. dimensionless time Z/v. Right: results for Pe = 100 vs. time.

These values are in agreement with the value of 1.65 found
by Puyguiraud et al. (2021) for the Beara sandstone. As far as
we know, they have been very few studies of the correlation
between the flow speed distribution and the properties of the
pore space microstructures (Siena et al., 2014; Matyka et al., 2016;
Alim et al., 2017). For instance, Alim et al. (2017) investigated

this issue using numerical simulations in 2-dimensional simple
artificial porous media made of circular or elliptical discs placed
on a square or triangular lattices with increasing disorder. By
extracting and analyzing the corresponding network of tubes,
following a procedure quite similar to that implemented for
extracting the BNM (section 2.4), they concluded that the flow
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FIGURE 9 | Comparison of the value of α for the FS samples evaluated from

(1) the slope of the first passage time plotted in the left panel, (2) the slope of

the mean speed PDF plotted in Figure 6 and (3) the slope of the D∗
/dm vs. Pe

plotted in Figure 11.

FIGURE 10 | Normalized z-direction displacement variance vs. time for

Pe = 100.

distribution is mainly determined by the distribution of fractions
of fluid flowing at each of the network node and not by the overall
tube size distribution. Our results lead us to a similar conclusion
for the complex 3-dimensional porous media studied here. The
evolution of the mean flow speed with porosity for the FS set in

comparison with the weak evolution of the mean flow speed with
porosity for the FSD set appears to be correlated to the noticeable
increase with porosity of the number of throats as well as the
mean number of throats per pore κ (Figure 3) measured for the
FS set, whereas both the number of throats and κ are almost
constant for the FSD set of samples.

3.3. Speed Decorrelation Distance Length
The decorrelation distance ℓc is evaluated from the Lagrangian
flux weighted speed autocorrelation function ϒvv(l) = 〈(vv(s) −
〈vv〉)(vv(s + l) − 〈vv〉)〉/σ

2
vv
, where l denotes the lag. The

decorrelation distance ℓc is given by the value of the lag
corresponding to ϒvv(l) = 1/e. The two panels at left of Figure 7
display the Lagrangian flux weighted speed autocorrelation
function ϒvv(l) for the two set of samples. The corresponding
values of the decorrelation distance ℓc vs. porosity are given in the
third panel of Figure 7, and the ratio of the decorrelation distance
to the mean throat length η = ℓc/λ vs. porosity is given in the
right panel.

For both the sample sets, the decorrelation distance ℓc

increases with porosity from about 150 µm at θ = 0.1 to about
240 µm for FS and 290 µm for FSD. The slight increase of ℓc for
the FSD set for θ > 0.15 compared to the FS set is caused by
the increase of the throat radius and the decrease of tortuosity
with porosity that are more important for FSD than for FS. The
ratio η also displays an increase with porosity following a similar
trend for both the FS and the FSD set of samples, the values for
FSD being smaller of ∼ 0.5 unit than for FS. Thus, in average,
the number of bond lengths traveled before losing the memory
of the initial speed ranges from about 2 to 4. These values are
in good agreement with the value of 4 obtained by Puyguiraud
et al. (2021) by fitting DNS and CTRW for Berea sandstone of
porosity 0.18.

3.4. Dispersion
In this section, we are presenting the results of the transport DNS,
discussing them in the frame of the scaling properties derived
from the CTRWmodel proposed by Puyguiraud et al. (2021) and
of the properties retrieved from the BNM (section 3.1).

The first passage time distributions ft(t) (or breakthrough
curves) at a distance of 20 times the sample size are given in
Figure 8 for Pe = 100 and also for purely advective transport
(dm = 0; Pe = ∞). For the latter, all the curves display the
power-law tailing that characterize pre-asymptotic (non-Fickian)
regime over 3 to 4 orders of magnitude. The scaling ft(t) ∼

t−2−α predicted by Puyguiraud et al. (2021) with the values of α
corresponding to those measured on the mean speed distribution
is confirmed for all the samples. The comparison of the value
of α (0.24 ≤ α ≤ 0.37) for the FS set of samples is given
in Figure 9. For Pe = 100, even if it can be considered a quite
large value for natural porous media, diffusion acts as increasing
the rate at which ft(t) decreases with time and the α-dependent
power-law trend is not present. Note that the beginning of the
exponential decrease is visible for FSD25 at t ≈ 5τD, where
τD = ℓ

2
c/dm ≈ 80s.

We now focus on determining the asymptotic dispersion
coefficient D∗ from the asymptotic regime of the displacement
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FIGURE 11 | Asymptotic dispersion coefficient vs. Pe for the FS and FSD samples.

variance. Figure 10 displays, as an example, the displacement
variance normalized to the throat length (σ 2

/λ
2) for the 12

samples in the case Pe = 100, but the following comments
apply for all values of Pe larger than 1. All curves converge to
the asymptotic regime (σ 2

/λ
2 ∼ t) for time t ≥ ta, where

ta is independent of the value of Pe but depends on porosity;
ta ≈ 103s for θ = 0.1 and ta ≈ 104s for θ = 0.25, i.e., about 40
and 120 times τD, respectively. This point is important regarding
the possibilities of measuring the asymptotic dispersion from
laboratory experiments, deriving D∗ from the breakthrough
curves, for instance. For Pe = 100, that corresponds to a mean
flow speed of 1.5 × 10−3 m/s for FS10, a sample of about 1.5
m long displaying the same properties of the mm-scale sample
would be necessary to measure D∗; a distance of 60 m would
be necessary for Pe = 4,000. This indicates that experimental
measurement of D∗ can be performed only for low values of Pe,
typically of the order Pe ≤ 10. However, for such low values of
Pe it is not possible to measure α and thus determine the trend
D∗(Pe).

Conversely, the DNS allows us to perform numerical
experiments over large range of Pe values; Figure 11 displays the
value of D∗ vs. Pe for the 12 samples from diffusion-dominant
regime (Pe = 10−3) to advection-dominant (Pe = 2 × 104).
These curves can be commented in terms of their slope and of
their scaling with porosity, for Pe ≫ 1. Note that for Pe → 0
the ratio D∗

/dm is equal to the inverse of the diffusive tortuosity
(D∗

/dm = χ
−1
d

). For both the FS and FSD sets of samples, the

relation D∗
/dm ∝ Pe2−α predicted by the CTRW model for

Pe≫ 1 is observed. The values of α compared to those measured
using the speed distribution and the tailing of ft(t) are given in
Figure 9. The minimum value Pec at which D∗

/dm ∝ Pe2−α

is effectively observed, is correlated with the shape of the mean

speed distribution (Figure 6). For FS10, the trend pm(v) ∼ vα−1

with α = 0.24 extends up to 5 × 10−3v/〈vm〉, while for FS25
the trend α = 0.37 extends up to 3 × 10−4v/〈vm〉 only. This
gives values of Pec ranging from 1,000 for FS10 to 50 for FS25.
The same trend is observed for the FSD set of samples. These
results demonstrate the clear control of the particle mean speed
distribution on the evolution of D∗ with the Péclet number.
However, both the two sets of samples display a scaling ofD∗ with
porosity, independently of the slope determined for Pe ≥ Pec.
The expected decrease of D∗ for all values of Pe > 1 when
porosity increases, corresponding to a decrease of the slope of
pm(v) for v ≪ 〈vm〉 is clearly visible for the FS set of samples.
But, the results for the FSD set, that share the same mean
speed distribution (Figure 6), show also a clear decrease of D∗

as porosity increases, which indicates that the dispersion scaling
with porosity is not solely controlled by pm(v) for v ≪ 〈vm〉.
Indeed, the increase of D∗ with porosity is also related to the
increase of the speed decorrelation distance ℓc with porosity. In
the frame of the CTRW model lc denotes the length at which a
new velocity is drawn from the mean speed distribution, and as
such ℓc determines the rate at which the speed changes.

Furthermore, we observe in Figure 11 thatD∗ shows different
power-law behaviors for Pe < Pec that can be related to the
scaling behavior of the distribution of mean flow speeds and
the transition time distribution. In the limit of infinite Pe, the
transition time distribution is given by (Equation 12). For finite
Pe, it is cut-off at the diffusion time τD. The log-slope of ψ(t)
at the cut-off time depends on the average flow speed 〈vm〉. This
is shown in Figure 12, which displays the distribution of purely
advective transition times rescaled by τv = ℓc/〈vm〉 for FS10 and
FS25. The behavior ofD∗ for Pe < Pec corresponds to the power-
law scaling of ψ(t) at dimensionless times equal to Pe. The slope
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FIGURE 12 | Distribution of advective transition times rescaled by τv for FS10

and FS25. The dimensionless cut-off time is Pe = τD/τv. The vertical lines

denote Pe = 10 (dashed lines), Pe = Pec (solid lines) and Pe = 4,000 (dot

line). The sloped lines denote the power-law behaviors t−2−α′ for Pe < Pec

with α′ = 0.38 and 0.79 for FS10 and FS25, respectively, and t−2−α for

Pe ≥ Pec with α = 0.23 and 0.37 for FS10 and FS25, respectively.

of the ψ(t) curves display the power-law behaviors t−2−α′ for
Pe < Pec with α

′ = 0.38 and 0.79 for FS10 and FS25, respectively.
For Pe ≥ Pec the values of α are similar to those reported in
Figure 9 for ft(t), pm(v) and D∗(Pe), i.e., α = 0.23 and 0.37 for
FS10 and FS25, respectively.

4. SUMMARY AND CONCLUSIONS

We performed numerical experiments of passive solute transport
for two sets of porous media mimicking a large range of
porosity and microstructures expected in sandstones. The aim
was to test the validity of the CTRW model, to explore how
the flow field characteristics are linked to the porous media
geometrical properties and to determine the scaling of asymptotic
dispersion coefficient D∗ with the Péclet number. The two
sets of six samples share similar porosity, ranging from 0.1
to 0.25, and the same permeability-porosity trend k(θ) but
displays distinctly different microstructures and thus dispersion
evolution.

The conceptual CTRW model of solute transport in porous
media, as the one proposed by Puyguiraud et al. (2021), infers
that solute spreading along particle paths is controlled by the
transition time of the solute particles which is determined by the
distribution of solute particle mean speeds pm(v), the velocity
decorrelation distance ℓc and diffusion. The effective tortuosity
factor that depends on Pe and on the advective tortuosity χa
(that can be also easily evaluated form the flow field) allows
mapping dispersion in the streamwise direction which is aligned

with themean pressure gradient.With decreasing Pe, the effective
tortuosity of the solute particles increases and the control of
pm(v) on dispersion decreases but remains important up to
high values of Pe because of the wide distribution of the
particles speeds toward low speed values. This means that for
heterogeneous media, such as sandstones, the pre-asymptotic
(non-Fickian) dispersion regime is likely to persist over long time
scales.

We found that the scaling properties, measured by the
coefficient α, predicted by Puyguiraud et al. (2021)’s model
are effectively measurable for all the 12 studied samples.
For instance, results shows that at high Pe, the tail of the
breakthrough curves, that is controlled by the low flow speeds,
scales as ft(t) ∼ t−2−α where α is given by the slope
of the mean speed distribution pm(v) ∼ vα−1, for v <

〈vm〉. As Pe decreases, diffusion eventually dominates over
low flow speeds, thus cuts off the power-law tail of the
breakthrough curves and leads to Fickian behavior from which
the asymptotic dispersion coefficient D∗ can be theoretically
evaluated (Van Genuchten and Wierenga, 1986). However, the
analysis of the displacement variance σ 2(t) indicates that D∗

cannot be measured experimentally at laboratory scale, for high
values of Pe, because the distance required for reaching the
asymptotic regime is orders of magnitude larger than what is
workable at laboratory scale. Thus, measuring experimentally
the value of α, for determining how D∗ scales with Pe seems
difficult.

The asymptotic dispersion coefficient D∗ was computed up
to the largest values of Pe expected for laminar flow in natural
environments. Results show that D∗

/dm ∝ Pe2−α from Pec up
to the highest value of Pe (Pe = 4,000). Note that for the values
of α expected for such heterogeneous rock samples, neither the
trend D∗ ∼ Pe ln(Pe) (Saffman, 1959; Koch and Brady, 1985)
assuming that the distribution of flow speeds is flat (α = 1),
nor the trend D∗ ∼ Pe expected for α > 1 at high Pe

are expected. For 1 < Pe < Pec, D
∗
/dm ∝ Pe2−α

′

where
α
′
> α depends on the mean speed distribution and the speed

decorrelation distance ℓc that are the parameters that determine
the advective particle transition distribution and subsequently
the value of Pec. The mean particle speed remains correlated
for longer distances in porous media with straighter and larger
bonds (throats). As such ℓc is a good indicator of the complexity
of flow field, because it encompasses the effect of tortuosity
that ubiquitously decreases with increasing porosity and the
effect of the mean throat radius that ubiquitously increases with
porosity, while the other structural parameters are distinctly
different for the two sets of samples. Yet, when reported in term
of number of bonds length traveled before speed decorrelates,
it is observed that FS and FSD sets behave quite similarly; the
equivalent number of pores (intersection nodes) crossed before
losing the memory of the initial speed equals η − 1 and ranges
from about 1 for θ = 0.1 to about 3 for θ = 0.25. We
conjecture that the increase of the number nodes crossed before
speed decorrelates is linked to the speed changes caused by the
splitting of the flow at the network node and thus to both the
mean radius of the bonds and the coordination number κ . Similar
conjecture can be done for the distribution of the solute mean
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speed pm(v) which should be controlled by the speed changes
caused by splitting of the flow where throats are connected, as
it was anticipated by Alim et al. (2017) in numerical simulations
in 2-dimensional simple artificial networks. The structural and
hydrodynamic mechanisms that determine the flow distribution
in 3-dimensional porous media, focusing on the impact pore
size distribution, coordination number and local correlations
on the speed distributions will be discussed in a forthcoming
paper. Yet, from the results presented in this paper, one can
conclude that the flow distribution, and thus the mean speed,
are controlled by the distribution of fractions of fluid flowing
at each of the network nodes which in turn is determined by
the distribution of the throat radius (and not the mean) and
the coordination number. At given porosity and mean bond
radius the latter is controlled by the number of throats per unit
volume that increases with porosity for the FS set and decrease
with porosity for the FSD set of samples. We believe that these
results give a first insight into both the mechanisms and the
microstructural parameters that control dispersion in porous
media.
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Direct numerical simulation and pore-network modeling are common approaches to

study the physics of two-phase flow through natural rocks. For assessment of the

long-term performance of geological sequestration of CO2, it is important to model

the full drainage-imbibition cycle to provide an accurate estimate of the trapped CO2.

While direct numerical simulation using pore geometry from micro-CT rock images

accurately models two-phase flow physics, it is computationally prohibitive for large

rock volumes. On the other hand, pore-network modeling on networks extracted from

micro-CT rock images is computationally efficient but utilizes simplified physics in

idealized geometric pore elements. This study uses the lattice-Boltzmann method for

direct numerical simulation of CO2-brine flow in idealized pore elements to develop a new

set of pore-level flowmodels for the pore-body filling and snap-off events in pore-network

modeling of imbibition. Lattice-Boltzmann simulations are conducted on typical idealized

pore-network configurations, and the interface evolution and local capillary pressure

are evaluated to develop modified equations of local threshold capillary pressure of

pore elements as a function of shape factor and other geometrical parameters. The

modified equations are then incorporated into a quasi-static pore-network flow solver.

The modified model is applied on extracted pore-network of sandstone samples, and

saturation of residual trapped CO2 is computed for a drainage-imbibition cycle. The

modified model yields different statistics of pore-level events compared with the original

model; in particular, the occurrence of snap-off in pore-throats is reduced resulting in a

more frontal displacement pattern along the main injection direction. Compared to the

original model, the modified model is in closer agreement with the residual trapped CO2

obtained from core flow experiments and direct numerical simulation.

Keywords: pore-network (PN) modeling, lattice-boltzmann, residual trapping, CO2 storage and sequestration,

pore-scale modeling

1. INTRODUCTION

Physics of two-phase flows in natural rocks plays an important role in addressing many current
issues in subsurface water and energy resource assessment. In particular, capture and geological
storage of carbon dioxide (CO2) in deep saline reservoirs is being studied as a potential technology
to reduce emission of greenhouse gases from industrial sources including conventional power
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plants. Pore-scale modeling is necessary to understand
fundamental behavior of CO2-brine flow and obtainmacroscopic
flow properties needed for field-scale studies using reservoir
simulation. Direct numerical simulation (DNS) methods and
pore-network (PN) modeling are common approaches to
study such flow systems in natural rocks because experimental
methodologies are difficult to implement, time-consuming, and
expensive. On one hand, DNS solves directly the Navier-Stokes
equations from detailed 3D images of rock. Recent advances in
X-ray computed tomography (CT) scanning has provided high
resolution images needed to reconstruct the 3D pore structure
of rock. This non-destructive technology is now able to produce
images of pore space and fluids in real rocks at micron resolution
for larger rock samples compared to its early days (Andrä et al.,
2013; Blunt et al., 2013; Wildenschild and Sheppard, 2013;
Schlüter et al., 2014; Bultreys et al., 2016; Balcewicz et al., 2021).
On the other hand, PN modeling extracts a simplified network of
pore elements from the real geometry of pore spaces and solves
the Navier-Stokes equations in the simplified geometry.

Although PN modeling is more computationally efficient
compared with DNS due to simplifications of the pore structure
and governing flow equations, conventional PN models have
some challenges in simulation of imbibition and residual
trapping of CO2 where pore filling processes are important
(Blunt, 2017). Estimation of residual trapped CO2 is important
for assessing the long-term storage capacity and safety of
geological sequestration since it impacts the predicted fate and
distribution of the CO2 plume in the reservoir. Theoretical and
numerical studies in addition to experimental observations have
shown that capillary trapping plays a key role in CO2 plume
migration (Juanes et al., 2010; MacMinn et al., 2010; Pentland
et al., 2011; Krevor et al., 2015; Rasmusson et al., 2018).

CO2-brine flow is usually considered to be capillary-
dominated in real-world applications. Therefore, capillary
forces determine the interface movement, flow, and trapping
throughout the pore space, and hence so-called quasi-static PN
models that neglect viscous forces are suitable. In general, if the
viscous forces are comparable with the capillary forces, then a
dynamic PN model is needed that includes more physics with
the added expense of model complexity and computational costs
(Joekar-Niasar and Hassanizadeh, 2012). However, quasi-static
PN is more computationally efficient and describes pore-level
events through the local threshold capillary pressure of pore
elements. The competition among these events in CO2-brine
flow determines the invasion pattern and saturation of phases.
Thus, the accuracy of calculated residual trapping is dependent
on the accuracy of the defined pore-level flow models and pre-
solved equations of local threshold capillary pressure of events in
pore elements.

There are several PN modeling studies on real rock samples
that focus on the physics of CO2 and brine flow and residual
trapping of CO2. Mahabadi et al. (2020) studied immiscible
displacement patterns during drainage with a dynamic PNmodel
by varying capillary number (Ca) and viscosity ratio (M). They
also examined the effect of pore-throat size distribution and PN
connectivity on a sandy sediment for different sets of Ca and M.
Matching their findings with properties of a typical CO2-brine

flow system (Ca ≃ 10−5 and M ≃ 10 − 15), the dominant
displacement pattern is capillary fingering and CO2 saturation
at the end of drainage is roughly 0.50 − 0.60, an important
quantity since it is the starting point for simulation of imbibition.
Rasmusson et al. (2018) used a quasi-static PN model of CO2-
brine flow on Heletz sandstone to investigate the sensitivity of
residual trapping of CO2 to several parameters such as advancing
contact angle and average connection number (number of pore-
throats connected to a pore-body). They found that PNs with
higher average connection number, higher advancing contact
angle, and lower aspect ratio have smaller amount of trapped
CO2. They also obtained the initial-residual saturation curves
of CO2 for different drainage-imbibition scenarios. In addition,
Hefny et al. (2020) applied quasi-static PN modeling on a
highly permeable sandstone from a depleted oil field to study
residual trapping of CO2 and obtain characteristic curves during
drainage-imbibition cycle. They investigated the effect of initial
brine saturation at the reversal point from drainage to imbibition
on residual trapping and relative permeabilities. They also found
that smaller contact angle values (more brine-wet rock) lead to
higher trapped amount of CO2 at the end of imbibition process.
These PN modeling studies have mainly used existing pore-
level models in conventional PN flow solvers to study residual
trapping of CO2. An in-depth investigation of pore-level events
in PN modeling of CO2-brine flow can shed light on the physics
and prediction of residual trapping of CO2.

Ever since the early generation of two-phase flow PN
models, there have been attempts to improve pore-level flow
models during drainage and imbibition processes for better
understanding of pore-scale displacement and prediction of
core-scale properties of interest. Lenormand et al. (1983) first
described pore-scale displacement mechanisms during drainage
and imbibition from a 2D micromodel experiment. These
mechanisms, namely, piston-type, snap-off, and pore-body
filling, are widely used in PN flow solvers. For example, Raeini
et al. (2018) developed a capillary-dominated PN flow solver
that includes the concept of half-throats, several corners in
pore elements, and new formulations of pore-level events. The
solver was verified experimentally by Bultreys et al. (2020) using
measured contact angle and based on the evolution of fluid
distributions and flow paths during imbibition.

There are several studies that focus on pore-level events
of PN modeling and using DNS for improvement, such as
proposing new cross sections of pore elements, flow properties
in pore-throats, local capillary pressure relations, corner flow
behavior, and so on. Xie et al. (2017) used the lattice-Boltzmann
(LB) method, a well-known and widely applied DNS approach,
to simulate individual pores with triangular cross section to
develop empirical terms to describe viscous coupling in oil-
water flow. They incorporated these terms into a quasi-static
PN solver that provided a more accurate prediction of relative
permeability curves. In another study, Zhao et al. (2020) applied
LB for real pore-throat cross sections to modify conductance
and local threshold capillary pressure terms in a conventional
PN model. Then, they simulated drainage through sandstones
using quasi-static PN model to compute flow properties, namely,
macroscopic capillary pressure curve, absolute permeability, and
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relative permeability. Suh et al. (2017) used a morphological
analysis technique along with LB simulation on different
irregular pore-throat cross sections to establish a correlation
between effective shape factor and local capillary pressure. They
validated their method by comparing macroscopic capillary
pressure with experimental data for the water retention curve.
Ruspini et al. (2017) also investigated geometrical features of the
pore elements, and introduced a new model of pore-body filling
to investigate capillary trapping of non-wetting phase in water-
wet rocks. The model incorporated geometrical characteristics
of the pore-body, spatial location of connecting filled pore-
throats, and wetting properties. They studied residual trapping,
imbibition relative permeability, and capillary pressure curves
from PN modeling of different sandstone samples.

Other DNS approaches have also been applied on pore
elements to improve conventional PN models. Miao et al.
(2017) proposed a new description of pore elements to avoid
geometry simplifications of conventional PN models by using
circularity, convexity, and elongation of voxelized pores. They
carried out finite element simulations to obtain single-phase
flow conductance and approximate the relationship between pore
shape parameters and hydraulic conductance. Shams et al. (2018)
incorporated viscous coupling effects into flow conductance of
triangular tubes for different wettability conditions with the aid
of finite volume simulation. They investigated the flow in the
center and corners of a capillary tube and related pore geometry,
viscosity ratio, wetting phase saturation, and wettability to the
flow conductance term. Tang et al. (2018) carried out volume-
of-fluid two-phase flow simulations using the commercial Fluent
software on various tube cross sections to investigate the effect of
contact angle on meniscus behavior and local capillary pressure
in individual pores based on Young-Laplace equation. Thus,
DNS methods are capable of improving pore-level events of PN
modeling, and can be used in pore-scale modeling of residual
trapping of CO2.

In this work, we apply LB simulation as a DNS method
on various geometric PN configurations that encompass a
small collection of connected pore-bodies and pore-throats, in
order to evaluate local threshold capillary pressure during the
imbibition process. Then, we propose a modified model of
imbibition events. The modified model is then incorporated into
a quasi-static PN flow solver that can be applied on extracted
PNs from natural rocks (Dong and Blunt, 2009; Raeini et al.,
2018) or on larger PNs from upscaling approaches (Aghaei and
Piri, 2015; Kohanpur and Valocchi, 2020), thereby resulting in
more realistic macroscopic characteristic curves. We apply the
modified PN model for two sandstones to evaluate residual
trapping in a drainage-imbibition cycle of CO2-brine flow, and
compare the results with experimental and DNS data. The goal
is to take advantage of the relative strengths of both modeling
approaches and combine them into a new set of equations for
incorporation into conventional PN models that can provide
more physically-based estimates of residual trapping, as well as
other continuum properties.

The organization of the rest of this paper is as follows. Section
2 explains the physics of two-phase flow processes for pore-
level events in PN modeling. Section 3 discusses the defined PN

configurations and the LB and PN simulationmethods. In section
4, the main results from LB simulations of pore-body filling
and snap-off are discussed (section 4.1). Then, the modified
model is presented and incorporated into the quasi-static PN flow
model, and applied on real rock samples (section 4.2). Finally, the
conclusions are summarized in section 5.

2. PORE-NETWORK PROCESSES

2.1. Drainage and Imbibition
In geological storage of CO2, the pore space of a saline aquifer is
initially filled with brine as the wetting phase. Injection of CO2,
as the non-wetting phase into the pore space is a drainage process
where the macroscopic capillary pressure and overall saturation
of CO2 increases. As the macroscopic capillary pressure drops,
brine fills the pore space gradually during the imbibition process.
Due to wettability, the entire CO2 will not be displaced by the
brine and some gets trapped across the pore space at the end
of imbibition. This phenomenon is called residual trapping of
CO2, which is favorable for long-term CO2 sequestration. In a
field-scale CO2 injection operation, the flow rates will decrease
away from injection well, and therefore, one can assume capillary
forces dominate and drive the flow (Kopp et al., 2009).

In quasi-static PN modeling of drainage and imbibition
processes, the macroscopic capillary pressure is gradually
changed to control the direction of invasion. On one hand,
capillary pressure is increasing incrementally during drainage
process which allows non-wetting CO2 to displace the brine
in the center of pores through piston-type displacement while
brine resides in the corners and crevices. Based on Young-
Laplace equation, wider pore-throats are invaded first in drainage
followed by invasion of narrower pore-throats.

On the other hand, the imbibition process occurs after the
drainage process, which has left residual brine in the corners
of pore-bodies and throats due to wettability. Macroscopic
capillary pressure decreases incrementally by increasing brine
pressure which allows brine to displace CO2 through different
displacement events, namely, piston-type displacement, pore-
body filling, and snap-off (Lenormand et al., 1983). The
occurrence and frequency of these events generally depend on the
local capillary pressure in a pore element, the topology of brine
and CO2 (connection number and filling), wettability (contact
angle), pore irregularity (shape factor), and relative size of pore-
body with respect to neighboring pore-throats (aspect ratio).

In the low capillary number condition of CO2-brine flow,
the assumption of local capillary equilibrium is valid which
relates the curvature of interface in any pore at any time to the
local capillary pressure based on the Young-Laplace equation.
This assumption is the basis of quantifying the local threshold
capillary pressure of different displacement events through the
shape of interface in pore elements.

2.2. Pore-Level Events
Piston-type displacement is a common event in both drainage
and imbibition processes. In this event, the invading phase
displaces the defending phase from the center of pore element.
In drainage, if CO2 pressure is high enough (i.e., local capillary
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FIGURE 1 | Schematic representation of (A) piston-type displacement during

drainage process in a rectangular tube, (B) snap-off in pore-throat during

imbibition process, and (C) pore-body filling, I1 and I2 events, during imbibition

process. CO2 is shown in white and brine is shown in blue (Images from

Rasmusson et al., 2018).

pressure passes the threshold) in the pore element, it displaces
brine through its terminal meniscus from the center of pore
element. Figure 1A shows schematically how CO2 (in white) is
advancing through the center of a rectangular tube and pushing
brine (in blue). The threshold capillary pressure depends on the
wettability and geometry of the pore element through the Young-
Laplace equation, which for a circular tube pore element is:

Pc =
2σ cosθ

r
(1)

In Equation (1), Pc is the local threshold capillary pressure, σ is
interfacial tension, θ is contact angle between phases, and r is
the radius of the cross section of the tube. In imbibition, brine
displaces CO2 from the center of tube when capillary pressure
falls below the threshold. Related equations for rectangular and
triangular cross sections are more complex than Equation (1) and
can be found in Valvatne (2004).

Snap-off is an important pore-level event that usually causes
trapping of non-wetting phase. The injected CO2 occupies the
center of pore elements at the end of drainage process while brine
resides in the corners as connected layers throughout the PN.
As the brine pressure increases and the imbibition process starts,
these layers swell and increase the CO2 saturation gradually. If the
brine layer is not connected to any adjacent brine-filled elements
and swelling continues, at some point brine layers from corners
meet and create an unstable state. This leads to snap-off where
brine spontaneously fills the center of pore element. Snap-off in
a pore-throat that does not have adjacent brine-filled elements
disconnects CO2 in adjacent pore-bodies which translates into
either partial filling or trapping in the following states of the
PN, and impacts the distribution of CO2 throughout the PN.
Figure 1B shows schematically how the progress of brine layer
swelling in a pore-throat can lead to snap-off and cause trapping
in the pore-body on the right.

Pore-body filling is another type of imbibition event that
occurs in different orders based on connectivity of the non-
wetting phase. When the capillary pressure decreases during

imbibition, the invading brine starts with filling narrower pore-
throats and displacing CO2 to the available adjacent elements,
which are pore-bodies filled with CO2. Depending on the
connection number of the pore-body and number of CO2-filled
adjacent pore-throats, different scenarios of pore-body filling
can occur. Figure 1C shows a schematic representation of two
scenarios (I1 and I2 events) for a pore-body with connection
number of 4. In refers to a pore-body filling where there are n
connected pore-throats filled with CO2 that allows an escape path
during the invasion of brine into the pore-body. For a pore-body
with connection number of zcn, n can be between 0 and zcn − 1.

The important feature of In events is that their local
threshold capillary pressure can be different depending on the
filling scenario, since the interface curvature during invasion is
different. For example in Figure 1C, the I1 event has smaller
radius of curvature (i.e., higher capillary pressure) than I2 based
on the drawn dash lines referring to the next pore-level steps.

If only a single connected pore-throat is filled with CO2 (I1
event), the displacement process will be similar to piston-type
displacement. The complexity of modeling is for higher order
events (In, n from 2 to zcn − 1) where the exact location and
curvature of the interface in the pore-body is not clear. There
are several studies in the literature proposing different parametric
models by taking into account geometry-based and statistics-
based parameters in the model (Blunt, 1998; Hughes and Blunt,
2000). For example, Blunt (1998) proposed a model based on the
generic form of Pc in piston-type displacement and modified it
with a parametric term to describe Pc of higher order In events:

Pc =
2σ cosθ

rp
− σ

n
∑

i=1

Aixi (2)

In Equation (2), Ai is the model parameter chosen correlated
with the inverse of absolute permeability of the PN, and xi is a
random number between zero and one. More details on pore-
level events during drainage and imbibition processes can be
found in Valvatne and Blunt (2004), Blunt et al. (2013), and
Blunt (2017).

2.3. Competition of Events
The imbibition process in a PN flow model consists of a series of
pore-level events in pore elements based on their local threshold
capillary pressure that controls the timing and location of events.
These events compete with one another in determining the
invasion pattern and distribution of phases during imbibition.
Therefore, the prediction of CO2 distribution and trapping is
highly dependent on the specific occurrences of these events. A
change in the local threshold capillary pressure causes change
in the order of displacement events which leads to a different
pattern of phases, relative permeability, and residual trapping.

The topology of the brine phase also matters to determine the
type of event during imbibition. If the adjacent element has brine
at its center, the piston-type or pore-body filling would occur if
the local threshold capillary pressure is already reached. Snap-
off, however, does not require adjacent filled elements since it
starts with swelling of brine in corners which is assumed present
throughout the PN.
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Geometrical and topological parameters of a PN play an
important role in the equations of local threshold capillary
pressure, and hence, competition of pore-level events during
imbibition and residual trapping of CO2. Some of these key PN
parameters are as following:

• Shape factor: This summarizes the irregularities of the pores
into one parameter in pore elements. The half-angle values of
a triangular pore element can be obtained based on the shape
factor (Patzek and Silin, 2000). These half-angle values are
involved in the local threshold capillary pressure (Pc) relations
of different pore events. In this study, different defined shape
factors of the cross section are considered to evaluate the effect
of shape factor on imbibition pore-level events.

• Aspect ratio: The aspect ratio of a pore-body is the ratio of
its radius to the radius of its connected pore-throats (a =

rp/rt). This parameter can also be expressed using average
radius of multiple connected pore-throats to a pore-body. The
competition of threshold Pc of pore-body filling and snap-off
events is correlated with aspect ratio. This competition can
be quantified by the ratio of their threshold Pc (Blunt, 2017).
Generally, higher aspect ratio values results in more snap-off
events compared with pore-body filling events. In this study,
typical aspect ratio values from extracted PNs of natural rocks
are used to define PN configurations.

• Connection number: The number of connected pore-throats
to a pore-body is its connection number. It can be averaged
across all pore-bodies of the PN as the average connection
number of network that represents the connectivity of porous
medium. Although connection number is not explicitly used
in threshold Pc relations, it is also correlated with trapping
of CO2. Higher connectivity generally implies more potential
pore-throats for the CO2 to escape from the invaded pore-
bodies during imbibition process.

3. METHODOLOGY

3.1. Pore-Network Configurations
We aim to apply DNS of two-phase flow using the LB code
developed by Chen et al. (2018) on pore elements of PNs
extracted from natural rocks to assess the physical assumptions
used for pore-level events during imbibition. Therefore, the
geometry of simulations consists of typical pore-bodies and pore-
throats of extracted PNs with sufficient grid resolution to capture
the interface and corner flow. We define a PN configuration
as a small number of interconnected pore-throats and pore-
bodies that is designed for investigation of pore-level events
in the pore element of interest. We limit this study to two
common types of PN configurations due to computational costs
of LB simulations:

• PTP configuration: This refers to a pore-throat connecting
two adjacent pore-bodies. The pore-throat is the focus of
this configuration to investigate corner flow, piston-type
displacement, or snap-off. The pore-bodies can be connected
to inlet and outlet reservoirs of non-wetting and wetting fluids
or additional pore elements. We study the PTP configuration

to capture the interface in the cross section of the pore-throat
and find the threshold Pc right before snap-off occurs.

• TPT configuration: This refers to a pore-body defined
between two or more connecting pore-throats. The pore-
throats can be directly connected to the inlet and outlet
reservoirs or other pore-bodies. The pore-body is the focus
of this configuration to investigate the filling process via
different number of pore-throats and simulate pore-body
filling during imbibition.

Conventional quasi-static PN models can use pore elements with
different cross sections; triangle, square, circle are considered
here as they are commonly used. The shape factor (G) is a
dimensionless geometrical parameter that is used in assigning
familiar geometries to the cross section of a tube-shape pore
element (Patzek and Silin, 2000). It is defined as:

G =
VL

A2
(3)

In Equation (3),A is the cross-sectional area,V is the volume, and
L is the length of the tube-shape pore element with an arbitrary
cross section. Our experience from studying extracted PNs of
various sandstone cores shows that the triangular cross section
comprises the majority of pore elements of PNs. Shape factor
of triangular elements can vary in a range from 0 (slit-shape) to
0.0481 (equilateral).

In this study, we select three shape factor values equal to 0.020,
0.030, 0.040 for the designed PN configurations to represent
a reasonable range, while limiting the number of required LB
simulations. These three shape factor values represent three
different triangular cross sections which are characterized by
their corner half-angles (β1,β2,β3). We use an algorithm
introduced by Patzek and Silin (2000) to determine three corner
half-angles of each shape factor G to define triangular cross
sections of pore elements. The resulting β ’s (with the convention
of β1 < β2 < β3) for each shape factor are as following:

• G = 0.020: β1 = 6.20◦, β2 = 19.7◦, and β3 = 64.1◦.
• G = 0.030: β1 = 9.60◦, β2 = 35.6◦, and β3 = 44.8◦.
• G = 0.040: β1 = 18.0◦, β2 = 23.7◦, and β3 = 48.3◦.

As discussed in section 2.2, pore-body filling event can occur
in different scenarios depending on the number of adjacent
CO2-filled pore elements. These scenarios can be defined with
different TPT configurations based on the number of connecting
pore-throats to the pore-body of configuration, which will be
addressed in section 4.1.1.

3.2. Lattice-Boltzmann Method
The lattice-Boltzmann (LB) method is used for DNS for the
idealized pore element geometry noted above. Use of LB for
DNS on voxelized pore geometry is now well established, and
its popularity is due to its favorable computational features
(Ahrenholz et al., 2008; Chen et al., 2019). The LB is a so-called
mesoscopic method that can simulate fluid mass and momentum
balance. The fluid is represented by particles with probability
of moving in different directions along a predefined lattice. The
LB method is based on streaming and collision of a set of
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fluid particle distribution functions (PDF) on a lattice. The no-
slip boundary conditions on solid surfaces are implemented by
simply switching the directions of the particles on the surface
nodes, the so-called bounce-back scheme. Among several LB
schemes for simulating multiphase flows, the color-fluid model
(Gunstensen et al., 1991; Grunau et al., 1993) is capable of
producing a relatively sharp interface between immiscible phases
and capturing their interface evolution. The color-fluid model
is also able to incorporate high viscosity ratios due to its
independent control of the surface tension and viscosity which
makes it quite relevant to CO2-brine flow system where viscosity
ratio is about 10–15. On the other hand, it has limitations on
the density ratio and a large absolute value of color gradient may
produce numerical instabilities (Ramstad et al., 2019).

We use a variant of the multiple relaxation time (MRT) color-
fluid LB simulator (Tölke, 2002; Tölke et al., 2006; Chen et al.,
2018). In this model, each phase has its own set of PDFs and
the discrete Boltzmann equation is solved for each phase. We
consider two sets of the D3Q19 PDFs, i.e., a 3D model with 19
velocities, representing the two fluid phases, referred to as the
fluids r (CO2) and b (brine), which follow the collision-streaming
procedure for the PDF:

f si (x+ ei1t, t + 1t) = f si (x, t) + �
s(3)
i

{

�
s(1)
i + �

s(2)
i

}

, s = r, b

(4)

In Equation (4), �
s(1)
i is the standard LB collision operator, �

s(2)
i

is the perturbation step that generates the surface tension effect,

and �
s(3)
i is the recoloring step that separates the two fluids.

The collision operators �
s(1)
i and �

s(2)
i are constructed under

the MRT framework that increases stability and accuracy of the
model (d’Humieres, 2002; Tölke et al., 2006). The macroscopic
quantities of flow, such as fluid velocity and pressure, are
computed by calculating the moments of the PDFs. More details
of our in-house code are given by Chen et al. (2018).

In the present work, we carry out LB simulations of CO2-brine
flow system on idealized PN configurations. The fluid properties
and flow conditions are listed in Table 1, which are realistic
for CO2-brine flow and similar parameters used in Kohanpur
et al. (2020), except for the contact angle which comes from
an experimental study by Dalton et al. (2018). We simulate the
drainage process followed by the imbibition process with inlet
velocity and outlet pressure boundary conditions. More details
on implementation of boundary conditions can be found in
Chen et al. (2019).

Th capillary number is defined as the ratio of viscous forces
over capillary forces (Ca =

µnwV
σ

) whereµnw is dynamic viscosity
of CO2, V is the average inlet velocity, and σ is the interfacial
tension between CO2 and brine. For the LB simulations, capillary
number equal to 5 × 10−5 is used, which is relatively small
to guarantee a capillary-dominated flow consistent with field
injection conditions and the assumptions of the quasi-static
PN model. Unfortunately, even smaller values of capillary
number can be computationally expensive to reach steady-state
with potential numerical instabilities and spurious velocities in
LB simulation.

TABLE 1 | Properties of CO2-brine flow system.

Properties Value

Contact angle (◦) 56 (brine-wet)

Interfacial tension (mN/m) 30.0

Brine density (Kg/m3) 1,100

CO2 density (Kg/m3) 1,100

Brine kin. viscosity (m2
/s) 1× 10−6

CO2 kin. viscosity (m2
/s) 1× 10−7

Capillary number 5× 10−5

Viscosity ratio 10

3.3. Quasi-Static Pore-Network Model
The quasi-static PN flow simulation is an efficient tool to
characterize CO2-brine flow properties. As noted previously, for
field-scale carbon capture and storage (CCS), the velocity is low
(with the exception of a local region near the injection well)
and hence the capillary number is relatively small, justifying the
assumption of capillary-dominated flow and use of a quasi-static
PN model. In this work, we conduct drainage and imbibition
simulations using the publicly available PN flow codes of Valvatne
and Blunt (2004) and Raeini et al. (2018). We incorporate
modified equations for imbibition pore-level events (which are
presented in sections 4.1.1 and 4.1.2) into the PN flow solver of
Raeini et al. (2018), which is then applied to extracted PNs from
real rock images to obtain residual trapping of CO2 and other
quantities of interest during the drainage-imbibition process. The
detailed procedure of the PN flow solver is described in Valvatne
(2004) and Raeini (2013).

4. RESULTS

4.1. Lattice-Boltzmann Simulation
The PN configuration types listed in section 3.1 are used as the
geometry of LB simulations where each voxel of the image is
converted to a lattice unit. It is standard practice in LB simulation
to use dimensionless parameters normalized with lattice units
and then convert to physical units when needed. A lattice unit
can be either pore (0-value) or wall (1-value), and the set of PDFs
of each phase is computed. At each stage of the LB drainage
and imbibition simulations, the fluid-fluid interface location and
the local capillary pressure need to be computed. The interface
location can be distinguished with the order parameter (φ) in the
color-fluid LB model:

φ =
ρr − ρb

ρr + ρb
(5)

In Equation (5), ρr and ρb are fluid densities of red and blue fluids
in lattice unit, respectively. The density of each phase is computed
by the zeroth moment of the respective PDFs. Therefore, φ ≈ 1
refers to the presence of red fluid (CO2) while φ ≈ −1 represents
the presence of blue fluid (brine) (Chen et al., 2018). The location
of interface is where φ ≈ 0. in the color-fluid LB model the fluid
interface is diffuse and spread over several lattice units, but if fine
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grids are used then a relatively sharp interface results. In practice,
we use the cut-off of 5% for φ to specify the location of each fluid.

In order to evaluate local capillary pressure in pore elements,
one should compute average pressure of each phase in the pore
volume. In the color-fluid LB method, the ideal gas equation-of-
state is assumed which allows calculation of fluid pressure from
the density. The order parameter is used to detect the location of
phases and the interface. To compute the pressure of the pure red
and blue fluid phases, lattice points should be far enough away
from where the order parameter is close to zero. The pressure of
red and blue fluids can be averaged based on the total density of
the respective fluid of a calculation volume (e.g., pore-body).

P̄r =

∑

1/3ρri
nr

(6)

P̄b =

∑

1/3ρbi
nb

(7)

In Equations 6 and 7, the summation is over the lattice points of a
defined calculation volume with nr and nb lattice units of red and
blue fluids, respectively. Thus, the local capillary pressure (Pc) in
the calculation volume can be obtained using the difference in the
average pressure of fluids.

Pc = P̄r − P̄b (8)

In Equation (8), Pc is the calculated average local capillary
pressure within the calculation volume of interest.

This procedure to calculate the local capillary pressure is
validated on a simple piston-type displacement in a cylindrical
tube, as illustrated in Figure 2A, where boundary conditions of
velocity (inlet) and constant pressure (outlet) are implemented,
and CO2 (shown in red) moves upward and displaces brine
(transparent) in the tube. We use the resulting density of fluids
to obtain the pressure distribution in each fluid to calculate the
local capillary pressure during the filling process. The calculation
volume is marked with two green planes. Figure 2B shows a
cross-sectional view through the center of the tube. The radius
of interface (r′) can be captured and used in the Young-Laplace
equation to evaluate local capillary pressure, which is denoted the
cross-sectional approach. This approach can be utilized in simple
geometries and is preferred wherever the radius of interface
can be captured. However, this is not always the case for 3D
LB simulations on more complex PN configurations such as
for pore-body filling events in triangular elements where the
interface can have a 3D complex shape. In such cases, the LB
density-based approach can be used to evaluate Pc.

In Figure 2C, the resulting Pc from LB simulation of the
simple piston-type displacement in a cylindrical tube is calculated
and compared with the theoretical values based on Young-
Laplace equation for different radii (r = 5, r = 15, r = 20
in lattice units). The results show a good agreement (less than
10% error), thereby giving us confidence in the procedure for
calculation of Pc based on the order parameter and densities in
lattice unit is feasible in 3D LB simulations.

FIGURE 2 | A validation of LB simulation on a simple piston-type

displacement in a cylindrical tube for calculation of local capillary pressure:

(A) CO2 is in red, brine is transparent, and the green planes define the bounds

of calculation volume. (B) Cross-sectional view parallel to yz-plane through the

center of tube to capture the radius of interface. (C) Comparison of calculated

Pc from LB simulation and theoretical Pc from Young-Laplace equation on

different radii of a cylindrical tube.

In following sections 4.1.1 and 4.1.2, we present the LB
simulation results on PN configurations plus the modified
models of pore-body filling and snap-off events during
imbibition process that will be incorporated in quasi-static PN
flow solver.

4.1.1. Simulation of Pore-Body Filling
Three different TPT configurations with different shape factors
but equal radius of inscribed circle and connection number
of 4, shown in Figure 3, are studied to model the I1, I2, and
I3 pore-body filling events during imbibition. Based on our
experience, the average connection number of PNs from various
rock samples is usually within the range of 3–5. Therefore, the
choice of connection number of 4 is reasonable. In addition,
having 4 connecting pore-throats allows us to include pore-body
filling events up to order 3. As explained in section 2.2, lower
orders of pore-body filling have higher threshold Pc and are hence
more favorable than higher order pore-body filling (I4+) during
imbibition. The higher orders of pore-body filling usually have
a small number of occurrences and are hence less important
with respect to trapping of non-wetting phase. Thus, we focus
on lower orders of pore-body filling in the LB simulations and
investigate key factors in the filling process such as shape factor
and corner half-angles.
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FIGURE 3 | Pore-body filling configurations for the three studied shape factors

G = 0.020, G = 0.030, and G = 0.040 during I1, I2, and I3 events.

The cross section of the pore-body is defined as a triangle
with three different shape factors with their corresponding corner
half-angles. The cross section of pore-throats in all cases is
square to reduce the complexity and ensure a simultaneous
invasion from different connecting pore-throats across different
configurations. This is achieved by designing configurations
in a way that all pore-throats have the same cross section
and path length from the inlet or outlet reservoirs to the
pore-body, as depicted in Figure 3. An example of such a
configuration is illustrated from different views in Figure 4A,
which is designed for modeling I1 event with G = 0.040 for the
pore-body. The inscribed radii of all pore-throats are equal and
the geometric aspect ratio between pore-body and pore-throat is
5 in all configurations.

In LB flow simulation of these configurations, the inlet
reservoir is connected to bottom pore-throats and the outlet
reservoir is connected to top pore-throats, and the flow is
always in +z (upward) direction. Initially, drainage is simulated
which results in CO2 occupying the center of pore elements
until steady-state saturation. Then, brine is injected from the
same inlet reservoir to displace the CO2 from the pore-body.
The boundary conditions in both drainage and imbibition are
prescribed velocity at the inlet and fixed pressure for the outlet.
Figure 4B shows an example of LB simulation of pore-body
filling during drainage and imbibition processes on a triangular
TPT configuration, shown in Figure 4A, with the shape factor of
G = 0.040 during I1 event.

Since the pore-body filling event is a dynamic process, we can
track the saturation of CO2 in the pore-body in order to specify
the relevant time step for the evaluation of threshold Pc. We
choose the saturation of 0.50, when half of the CO2 is displaced,
as the time step to calculate the threshold Pc, using the procedure
described earlier. The procedure is applied on all configuration of
Figure 3 and the corresponding Pc is computed. The normalized
capillary pressure in a pore-body (P̂c) is defined as:

P̂c = Pc
rp

σ
(9)

In Equation (9), rp is the inscribed radius of pore-body and σ

is the surface tension. This definition makes the analysis more
straightforward since the conversion from lattice unit to physical
unit is not necessary.

Based upon the LB simulations, we propose modifying the
conventional models (e.g., Valvatne and Blunt, 2004) for the local
threshold capillary pressure of pore-body filling event with some
new parameters as:

P̂ci = 2cos(θ)−

(

rp

Gr̄t
× a′i × Cfi

)

(10)

In Equation (10), the subscript i refers to the order of pore-body
filling event. Cfi is defined as the filling factor that comes from
the analysis of LB simulations of PN configurations. a′i is defined
as effective aspect ratio of the pore-body which is similar to the
classic definition of geometric aspect ratio but it considers just the
invading pore-throats rather than all connecting ones. Therefore,
a′i can be a function of the filling event and it involves the radius
of invading pore-throat during the pore-body filling event. The
second term on the right hand side of Equation (10) is the
main difference between our proposed model and conventional
model. For example, Valvatne and Blunt (2004) chose a term
proportional to K−1/2 where K is the absolute permeability of
PN. We consider the effective aspect ratio and shape factor to
include the effect of the order of pore-body filling event and pore-
body shape factor on local threshold capillary pressure, which will
result in a different filling factor.

In order to use this modified model, one needs to know Cfi
for different orders of filling events for different pore-body shape
factors. We consider Cf1 = 0 the same as in conventional models.

In order to evaluateCf2 andCf3 , we define the ratio of P̂ci of events

with respect to P̂c1 as:

f21 =
P̂c2

P̂c1
(11)

f31 =
P̂c3

P̂c1
(12)

If we combine Equations (10–12), the filling factors can be
described as:

Cf2 =
2Gr̄tcos(θ)(1− f21)

rpa
′
2

(13)

Cf3 =
2Gr̄tcos(θ)(1− f31)

rpa
′
3

(14)

Therefore, by having P̂ci of different events from LB simulation,
one can compute the corresponding fi1 and use Equations (13)
and (14) to obtain the filling factors of the modified model.

Table 2 presents the resulting normalized local capillary
pressure of pore-body filling events (I1, I2, I3) for the studied
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FIGURE 4 | Pore-body filling configuration for the shape factor of G = 0.040 designed for modeling I1 event: (A) The equal length and cross section of pore-throats

provide the desired simultaneous invasion. (B) LB simulation of pore-body filling during drainage (left) and imbibition (right) processes. CO2 is shown in red and brine is

transparent.

TABLE 2 | The resulting normalized local capillary pressure (P̂ci ) and filling capillary

pressure ratios (fi1) defined in the modified pore-body filling model from LB

simulations on PN configurations.

G ˆPc1
ˆPc2

ˆPc3 f21 f31

0.020 2.020 1.514 0.984 0.750 0.487

0.030 1.884 1.362 0.859 0.723 0.456

0.040 1.433 0.994 0.614 0.694 0.428

Conventional 0.676 0.412

shape factors. The P̂ci is used to calculate the capillary pressure
ratio (fi1) and the filling factor (Cfi ), as listed in Table 2 as well.
The resulting fi1 from the modified model is slightly higher
than conventional model which translates into higher local
threshold capillary pressure that makes pore-body filling event
more favorable during imbibition process.

The results in Table 2 are used to describe the filling factor as
a function of shape factor and incorporate it into a quasi-static
PN flow solver where pore-body filling events of I2 and I3 are
modified with Equation (10), accordingly.

4.1.2. Simulation of Snap-Off
Three different shape factors, G = 0.020, G = 0.030, G = 0.040,
with triangular cross sections in a PTP configuration, as shown

in Figure 5A, are studied to investigate the threshold Pc during
snap-off events. In each configuration, ratios involvolving the
diameter and length of pore-body and pore-throat are defined
as lt/2rt = 10 and rp/rt = 5. The focus is the cross
section of the center of the pore-throat. We first perform a
drainage simulation with receding contact angle (10◦) followed
by imbibition with advancing contact angle (60◦). These values
are based on Morrow’s contact angle hysteresis model (Morrow,
1975) for intrinsic contact angle of 56◦ that comes from an
experimental CO2-brine flow study by Dalton et al. (2018)
on a Berea sandstone sample. The model relates the intrinsic
contact angle to receding and advancing ones. The boundaries
are connected to bounding pore-bodies and a pressure-driven
flow is implemented in the LB simulation.

We use the local threshold capillary pressure of a snap-off
event in a similar format to conventional snap-off models, but
with a new correction factor:

P̂c = cos(θ)− Cisin(θ) (15)

In Equation (15), Ci is defined as the snap-off factor and P̂c
is defined similar to Equation (9) (rp replaced with rt). In
conventional models (Valvatne and Blunt, 2004), Ci can be
described in terms corner half-angles:

Ci =
2

cot(β1)+ cot(β2)
(16)
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FIGURE 5 | (A) PTP configuration with G = 0.040 defined for assessing the snap-off event in pore-throat. Evolution of cross section of a pore-throat with G = 0.040

from LB simulation during snap-off event: (B) beginning of imbibition, (C) moving the interface toward the center, (D) before snap-off, (E) and after snap-off. (F) Higher

resolution of pore-throat cross section before snap-off. (G) Cross-sectional approach in evaluation of capillary pressure based on the radius of curvature of

three corners.

In Equation (16), β1 and β2 are defined as the two smaller corner
half-angles of a triangular cross section (Patzek and Silin, 2000).

However, we carry out LB simulation for different shape
factors to find Ci as a function of G. The drainage invasion of
CO2 into the PTP configurations is implemented first. Then, the
gradual imbibition of brine is implemented via an incremental
increase of brine pressure. This allows the brine in corners to
expand gradually prior to snap-off in the pore-throat, as shown
in the pore-throat cross section in Figures 5B–E.

A cross-sectional analysis is applied on the results from LB
simulation to obtain the radius of curvature in each corner,
as illustrated in Figures 5F,G, during the snap-off event. The
minimum radius among the three is substituted into the Young-
Laplace equation (Pc = 2σ cos(θ)/r′) to evaluate the local
threshold capillary pressure of the pore-throat:

r′ = min
{

r′1, r
′
2, r

′
3

}

(17)

In Equation (17), r′i refers to the calculated radius of curvature
in each corner of the pore-throat, as shown in Figure 5G. On the
other hand, by defining the local capillary pressure of snap-off in
the form of Equation (15), one can relate the correction factor of
Ci to the radius of curvature r

′ from LB simulation results:

Ci =
1− 2rt/r

′

tan(θ)
(18)

In Equation (18), rt refers to the inscribed radius of the pore-
throat (a purely geometrical parameter) while r′ refers to the
minimum radius of curvature of the interface right before

TABLE 3 | The resulting snap-off factor (Ci ) as a function of shape factor from LB

simulations on PTP configurations compared with the conventional model.

G Conventional model Modified model

0.020 Ci = 0.167 Ci = 0.163

0.030 Ci = 0.274 Ci = 0.213

0.040 Ci = 0.373 Ci = 0.337

the snap-off event in the pore-throat (determined from LB
simulation results).

Table 3 presents the resulting snap-off factors from LB
simulation on PTP configurations for the three studied shape
factors. The snap-off factors from modified model are slightly
smaller than factors from conventional model for all studied
shape factors. This results in higher local threshold capillary
pressure for snap-off events in the modified model as well.
Although only three shape factors are considered, covering a
range from 0.020 to 0.040 with linear interpolation used to fill
in, based on our experience with different types of rock samples,
this range of shape factor is sufficient to include the majority
of both pore-bodies and pore-throats across various PNs of
different samples.

4.2. Modified Pore-Network Modeling
Results
4.2.1. Rock Sample and Extracted Pore-Network
In this section, two natural rock samples of Berea sandstone
and Mt. Simon sandstone are selected to investigate residual
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TABLE 4 | Selected samples for pore-network modeling of CO2-brine flow after a drainage-imbibition cycle.

Sample Porosity Res. (µm) Size (mm3) Study

Berea sandstone 0.202 2.36 1.89× 1.89× 1.42 Dalton et al., 2018

Mt. Simon sandstone 0.263 2.80 1.40× 1.40× 1.40 Kohanpur et al., 2020

trapping of CO2 after a drainage-imbibition cycle. The former
sample was the focus of an experimental study of measurement of
contact angle between CO2 and brine by Dalton et al. (2018). The
latter sample was the focus of a rock characterization study and
CO2-brine flow simulation with different modeling approaches
by Kohanpur et al. (2020). The core plugs of both samples
were scanned at the micro-CT imaging facility at the National
Energy Technology Laboratory (NETL) which produced a series
of grayscale scans. These scans are processed through several
steps of image processing in Fiji (Schindelin et al., 2012) to
filter and smooth images in order to distinguish existing image
phases (solid, pores, CO2, brine) from each other via thresholding
algorithms. Table 4 presents relevant information for the studied
sandstone samples. We report flow simulation results from the
Berea sandstone sample, shown in Figure 6A, in detail here. For
brevity, the results from the Mt. Simon sandstone sample are
presented in the Supplementary Material.

Dalton et al. (2018) used a fractional flow experimental
apparatus to perform a drainage-imbibition cycle of CO2-
brine flow on the Berea sandstone sample. They scanned post-
imbibitionmicro-CT images to measure residual CO2. Figure 6B
shows an example of post-imbibition grayscale image and its
corresponding segmented image which consists of three phases:
solid in white, CO2 in black, brine in gray. This is obtained by
a ternary segmentation implemented in Fiji, which entails two
sequential binary segmentation on dry scans and post-imbibition
scans, respectively, in order to obtain their differences and extract
the distribution of CO2.

Figure 6C shows the 3D representation of the pore structure,
and Figure 6D shows the residual trapped CO2 after imbibition
in the Berea sandstone sample. Saturation of residual of trapped
CO2 is equal to the ratio of the number of CO2 voxels in
Figure 6D to the number of pore voxels in Figure 6C. The
resulting experimental residual CO2 saturation after imbibition
is 0.331 for the Berea sandstone sample based on this processing
of the micro-CT images.

Dalton et al. (2018) also provided the distribution of contact
angle by using measurements on the captured interface from
2D micro-CT images. The contact angle average (55.9◦) and
standard deviation (15.5◦) come from measurement on 40
different 2D micro-CT images located in different parts of the
core. More details can be found in Dalton et al. (2018). The
average value of 55.9◦ is used as the contact angle in our LB and
PN simulations.

We use the PN extraction code based on Maximal Ball
(MB) algorithm from Dong and Blunt (2009) and Raeini et al.
(2017) to obtain corresponding PNs of the rock images. The
algorithm was originally introduced by Silin and Patzek (2006)
where the entire 3D voxelized pore space is searched to find

FIGURE 6 | (A) 3D representation of the Berea sandstone sample. (B) A slice

of micro-CT images: left image is the raw grayscale slice and right image is the

ternary segmented slice where solid part is in white, CO2 is in black, and brine

is in gray. (C) 3D representation of the pore structure. (D) 3D representation of

residual trapped CO2 after imbibition process. (E) Extracted pore-network of

the Berea sandstone sample from maximal-ball algorithm.

the largest possible voxelized spheres, known as MBs. This PN
extraction tool can provide the inherent randomness of pore
structure in real rocks with a wide range of connection numbers
for pore-bodies. More details of this PN extraction tool can
be found in Dong and Blunt (2009). The output of this code
is geometrical and topological information of pore-bodies and
pore-throats including the location, radius, volume, length, total
length, and shape factor. Figure 6E shows extracted PN of the
Berea sandstone sample. This PN has 6207 pore-bodies and
10160 pore-throats with the average connection number of 3.18.
The computed absolute permeability of the PN is 455 mD using
the Valvatne and Blunt (2004) PN flow solver.

As mentioned earlier, the shape factor (Equation 3) in PN
models is a metric of irregularities of the pore space of pore
elements. Figure 7 shows the shape factor distribution of pore-
bodies (left plot) and pore-throats (right plot) in the extracted
PN of the Berea sandstone sample. The distribution in both
follows approximately a normal distribution with the average of
0.0298 and 0.0312 and standard deviation of 0.0078 and 0.0064
for pore-bodies and pore-throats, respectively. Therefore, these
distributions justify the selected values of shape factors in PN
configurations studied in section 3.1.

Next, we present detailed results from the CO2-brine flow
simulation with properties listed in Table 1. We use a modified
PN flow solver that is based on Raeini et al. (2018) but with its
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FIGURE 7 | Shape factor distribution of pore elements in the extracted pore-network of Berea sandstone sample: (left) pore-body shape factor distribution, (right)

pore-throat shape factor distribution.

imbibition threshold Pc equations of pore-body filling and snap-
off events replaced with the new pore-level models described in
sections 4.1.1 and 4.1.2. Then, the outputs from the modified PN
flow solver are compared with those from the original PN flow
solver that uses conventional models, and the predicted residual
trapped CO2 are compared with the experimental value from
Dalton et al. (2018). Results for residual trapping of CO2 after a
drainage-imbibition cycle are discussed in section 4.2.2, and the
statistics of pore-level events during imbibition are investigated
in section 4.2.3.

4.2.2. Residual Trapping
In quasi-static PN flow simulation, the saturation at the end
point of the drainage process is needed as the start point of
the imbibition process. The resulting saturation of trapped non-
wetting phase at the end of imbibition follows a hysteretic
behavior that depends on the initial saturation in the imbibition
process. Therefore, the PN flow solver can be used to compute
a so-called trapping curve that gives residual trapped CO2

as a function of the initial CO2 saturation at the start of
imbibition; this is similar to Land’s initial-residual trapping
model (Land, 1968).

In Figure 8, the residual trapping curve of CO2-brine flow for
the Berea sandstone sample is compared between the original and
modified PN models. When the initial CO2 saturation is higher,
the resulting residual saturation of CO2 is about 0.48 for the
original PNmodel and 0.44 for themodified PNmodel. However,
this difference is negligible when the initial CO2 saturation is
smaller. In both models, a full drainage process leaves a relatively
small saturation of brine (i.e., more CO2) in the PN, mainly
in corners and small or isolated pore elements. Figure 8 shows
that a full drainage process is followed by an imbibition process
with more trapped CO2. On the other hand, for smaller values
of initial CO2 saturation, the resulting residual saturation of
CO2 decreases i.e., less trapping of CO2 which is consistent with
experimental observations (Niu et al., 2015).

Unfortunately the experimental study of Dalton et al. (2018)
did not report the saturation at the drainage end point. Therefore,

FIGURE 8 | Residual trapping curve from pore-network modeling of

CO2-brine flow on the Berea sandstone sample.

in order to choose a proper drainage end point for the Berea
sandstone sample, we perform LB simulation of drainage on
the full rock image. In addition, imbibition is also simulated
to obtain a DNS prediction of residual trapped CO2 for
comparison with the experimental value and prediction from PN
flow simulation.

The LB simulations of drainage and imbibition on the 3D rock
images were conducted with contact angle of 55.9◦ and capillary
number of 5×10−6 to obtain the saturation at the end of drainage
and residual trapped CO2 at the end of imbibition. Figure 9
shows the resulting distribution of CO2 at the end of drainage
and imbibition processes. The corresponding CO2 saturation at
the end of these processes are Sdrain.nw = 0.434 and Simbib.

nw = 0.289,
respectively. We therefore use Sdrain.nw = 0.434 as the end point of
drainage in the PN flow solver. Then, we simulate imbibition to
estimate residual CO2 saturation from PN and compare the result
with the LB result: Simbib.

nw = 0.289.
The resulting residual trapping of CO2 after imbibition

is presented in Table 5 where the modified PN model is
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FIGURE 9 | LB simulations of drainage and imbibition processes on the Berea sandstone sample to obtain end point saturations. (A) pore space of the sample (B)

end of drainage process (C) end of imbibition process. CO2 is shown in red. Brine is not rendered.

TABLE 5 | Comparison of the original and modified pore-network flow models on

the Berea sandstone sample based on predicted saturation of residual trapping of

CO2 after a drainage-imbibition cycle.

Method Saturation of residual trapped CO2

Original PN model 0.422

Modified PN model 0.328

LB simulation 0.289

Experimental 0.331

compared with the original PN model. The residual saturation
of CO2 is also compared with an experimental value based
on analysis of volume ratio of CO2 in micro-CT images
rendered in Figure 6D. The modified model predicts residual
saturation of trapped CO2 in excellent agreement with the
experimental value while the error from the original model is
about 27%.

4.2.3. Statistics of Pore-Level Events
In each step of imbibition process, piston-type displacement,
pore-body filling, and snap-off occur in pore elements of the
PN. These pore-level events determine the invasion pattern and
residual trapping during imbibition. The saturation of residual
trapped CO2 is the summation of trapped CO2 saturation in
all pore elements of PN. One approach to study the effect of
changes in the model is to track the frequency and statistics
of pore-level events on the same PN. The cumulative statistics
of these events for the original and modified PN model during
imbibition steps on the Berea sandstone sample are presented
in Figure 10. As seen from the results, the modified model
predicts higher number of pore-body filling events (14.8% more)
and piston-type displacement in pore-throats (17.2% more).
On the hand, it predicts a smaller number of snap-off events
compare to the original model (9.6% less). Snap-off event is
the mechanism that contributes the most to trapping since it
disconnects CO2 in adjacent pore-bodies and leads to isolated
trapped CO2 bubbles in the PN. Thus, the decrease in number of
snap-off events in the modified model for this sample is expected

to result in less trapping of CO2 and smaller saturation of residual
trapped CO2.

In terms of invasion pattern, this can translate into a more
frontal pattern due to more piston-type displacements in the
modified model, which implies less chance of trapping CO2.
This is also in agreement with reported residual saturation in
Table 5. Thus, the modified model outperforms the original
model and predicts residual trapping in better agreement with
the experimental and LB simulation predictions.

In the Mt. Simon sandstone sample (see
Supplementary Material), the modified model also predicts
that the residual trapped CO2 is closer to the reference value,
which is from LB simulation, than the original model. However,
the discrepancy between PN modeling and LB predictions are
about 20%. This can be due to higher heterogeneity of pore
structure in the Mt. Simon sandstone sample compare to the
Berea sandstone sample.

It is worth mentioning that different statistics of pore-level
events results in a different invasion pattern that corresponds to
different average flow rates across the PN. This means that the
modified PN solver gives different relative permeability values
at each saturation point. The relative permeability curves of
CO2-brine flow on the studied Berea sandstone sample are
reported in details in Kohanpur (2020). Therefore, use of the
modified PN method would yield different relative permeability
curves for CO2 and brine in a field-scale simulator which would
lead to different long-term movement and storage of CO2 in
a reservoir.

5. SUMMARY AND CONCLUSIONS

The pore-scale physics of CO2-brine flow plays a key role
for predicting the amount and fate of residual trapped CO2

in geological storage of CO2 in deep saline reservoirs. The
description of this flow system in the form of pore-level flow
models through pore-bodies and pore-throats of an extracted
PN from micro-CT images of real rock is a practical approach
to obtain important pore-scale properties during a drainage-
imbibition cycle. However, this description can be improved by
more specific and accurate relations for CO2-brine flow that can

Frontiers in Water | www.frontiersin.org 13 January 2022 | Volume 3 | Article 710160123

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Kohanpur et al. CO2 Residual Trapping at Pore-Scale

FIGURE 10 | Statistics of number of pore-level events during imbibition process in pore-bodies (left) pore-throats (right) of the Berea sandstone sample.

be derived from DNS methods. This study presented a new set
of pore-level flow models during pore-body filling and snap-
off events of the imbibition process in PN modeling of CO2-
brine flow. LB simulations were carried out on several typical
idealized PN configurations and the local capillary pressure was
evaluated to develop modified equations for local threshold
capillary pressure of pore elements as a function of shape factor.
We also defined effective aspect ratio of pore-body filling as a
new parameter in the modified model, which was not proposed
in other models in the literature.

The modified equations of local threshold capillary pressure
were incorporated into a widely available quasi-static PN flow
solver. This modified model resulted a new pattern of invasion
during imbibition due to a different order of competing pore-
level events compare to the original model. We applied the
modified model on extracted PNs of Berea and Mt. Simon
sandstone samples to obtain saturation of residual trapped CO2

after a drainage-imbibition cycle. The statistics of pore-level
imbibition events changed by replacing the original model with
the modified model. The occurrence of snap-off in pore-throats
was reduced which means a more frontal displacement pattern
across the sample. As a result, our modified model was in closer
agreement than the original model based on the comparison of
the residual trapped CO2 with reference data from experimental
and LB simulation approaches.

Additional future work could include comparing predicted
residual trapping of CO2 with other experimental data or high
resolution DNS methods. Also, the effect of lattice resolution
and capillary number in LB simulations of PN configurations
requires further study. This may lead to some changes in the
proposed modified model such as new values for factors reported
in Tables 2, 3. A preliminary study is discussed in Kohanpur
(2020) on one shape factor and can be extended to more shape
factors and other PN configurations.

Finally, we note that the core idea of this study was to
combine DNS with PN to improve the physical representation
of key pore-level events, while preserving the computational

efficient of quasi-static PN. In this work, we focused on pore-
body filling and snap-off events which have an important impact
on residual trapping of CO2. This framework can be applied to
improve estimation of other quantities of interest such as relative
permeability and effective diffusion.
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A fundamental understanding of mineral precipitation kinetics relies largely on

microscopic observations of the dynamics of mineral surfaces exposed to

supersaturated solutions. Deconvolution of tightly bound transport, surface reaction, and

crystal nucleation phenomena still remains one of the main challenges. Particularly, the

influence of these processes on texture and morphology of mineral precipitate remains

unclear. This study presents a coupling of pore-scale reactive transport modeling

with the Arbitrary Lagrangian-Eulerian approach for tracking evolution of explicit solid

interface during mineral precipitation. It incorporates a heterogeneous nucleation

mechanism according to Classical Nucleation Theory which can be turned “on” or “off.”

This approach allows us to demonstrate the role of nucleation on precipitate texture

with a focus at micrometer scale. In this work precipitate formation is modeled on a 10

micrometer radius particle in reactive flow. The evolution of explicit interface accounts for

the surface curvature which is crucial at this scale in the regime of emerging instabilities.

The results illustrate how the surface reaction and reactive fluid flow affect the shape

of precipitate on a solid particle. It is shown that nucleation promotes the formation of

irregularly shaped precipitate and diminishes the effect of the flow on the asymmetry

of precipitation around the particle. The observed differences in precipitate structure

are expected to be an important benchmark for reaction-driven precipitation in natural

environments.

Keywords: mineral precipitation, pore-scale modeling, crystal nucleation, interface motion, reactive transport

modeling, Mullins–Sekerka instability, Pèclet–Damköhler diagram

1. INTRODUCTION

Recent advances in studies of natural minerals and chemical processes occurring in the subsurface
have significantly improved understanding of reaction kinetics at mineral-water interfaces
(Brantley et al., 2008; Putnis and Ruiz-Agudo, 2013; Beckingham et al., 2016; Yuan et al., 2019;
Noiriel et al., 2020). However, there is still a gap in understanding how to derive the kinetic
coefficients or order of reactive rate from the fundamental physical or chemical parameters of
the system. Some studies approach this problem from the atomic scale using advanced molecular
dynamics techniques to calculate transition-state theory rate constant (Raiteri et al., 2010; Stack
et al., 2012). Furthermore, different upscaling techniques connect local molecular scale processes
obtained from Atomic Force Microscopy data to overall reactivity (Teng et al., 2000; Yoreo et al.,
2009; Bracco et al., 2013). In these studies the rate of crystal growth is linked to the surface
features and their dynamics such as velocity of step propagation (Bosbach et al., 1996), kink cite
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density (Higgins et al., 2000), presence of impurity ions (Weber
et al., 2018), and two dimensional nucleation (Pina et al., 1998).

At the same time, modern computational techniques and
synchrothron-based sources allowed us to investigate mineral
reactivity at meso- and pore-scale using reactive transport
modeling and X-ray tomography (Godinho et al., 2016; Noiriel
et al., 2019). These methods provide an opportunity to
incorporate flow in porousmedia (Molins et al., 2014) and resolve
the interface between solid and fluid (Dutka et al., 2020).

The most used reaction rates for minerals are empirically
derived from batch-type reaction experiments, in which the ideal
mixing condition is expected, mineral particles are assumed
to be impermeable, and the reactive surface of particles is
determined by the methods such as BET (Plummer and
Busenberg, 1982; Zhen-Wu et al., 2016). Such methods give a
good estimate rate law that allow calculating reaction kinetics for
a particular mineral. Moreover, the general expressions have been
developed to describe difference between nucleation-dominated
and growth-dominated regimes. For instance, the precipitation
mechanism of barite mineral is described as a spiral hillock
growth at low degrees of supersaturation and two-dimensional
nucleation-dominated growth at high degrees of supersaturation
(Bosbach, 2002). The transition from one to another is estimated
to be at about � = 50 which corresponds to the saturation index
SI ≈ 1.699. The growth rate follows the second order

R = k(� − 1)n (1)

where k is the reaction rate constant, � is the saturation state in
the solution, and n is the reaction order.

However, there is still a lack of theoretical tools which can
be used to derive the transition between different precipitation
regimes or predict the structure and texture of precipitate under
conditions at which the transport phenomena has a major impact
(Molins et al., 2017). Moreover, vast majority of the modeling
tools neglect the nucleation process during mineral precipitation.
It is particularly important in case the nucleation defines the
reactive surface area and local distribution of the sites at which
growth reaction can occur.

Although incorporation of nucleation process into the pore-
scale reactive modeling has been done in several previous works,
it still remains a challenging problem which require novel
approaches to be developed. The reason for that is mostly
related to approximations which are needed for connecting
the scales between several nanometers (approximate size of
a nucleus) and several micrometers (typical size of a pore
in pore-scale reactive modeling). Additionally, the lack of
information regarding surface properties of a particular material,
such as heterogeneity in the interfacial energy between solid
substrate and reactive liquid, and general debates regarding
nucleation mechanisms (Gebauer et al., 2008; De Yoreo et al.,
2015; Weber et al., 2021) make determination or estimation
of nucleation rates particularly challenging. The importance
of incorporating nucleation process into the reactive transport
modeling emerged when only growth processes failed to
match experimental results. For instance, simulation of CO2

deteriorated cement could not reproduce experimental results

using only growth kinetics (Li et al., 2017). After implementing
nucleation mechanism based on Classical Nucleation Theory
(CNT) into 1D reactive transport model the authors successfully
matched the experiments. Prasianakis et al. introduced cross
scale modeling concept into 2D Lattice Boltzmann approach for
reactive transport which was applied to realistic 2D geometry
of porous media (Prasianakis et al., 2017). In their approach
authors linked CNT and growth of nuclei at atomic level
represented as a parameter in particular cell of the simulation
lattice. The nucleation rate was calculated based on local
concentration in the cell and the surface area and growth
rate of spherical nuclei was traced through the simulation.
This approach provides a powerful tool to compare effect
of homogeneous and heterogeneous nucleation, however the
necessity to link the nucleation to a volume of Lattice-Boltzmann
grid may introduce artifacts in case of high concentration
gradients near interfaces. Another way to model nucleation
process is calculation of the induction time or the time of the first
stable crystals appearance. To implement randomness of spatial
distribution of nuclei, Fazeli et al. (2020) introduced a normal
distribution for probabilistic induction times. The authors
coupled the probabilistic induction times to the 2D Lattice
Boltzmann approach for reactive transport, which allowed them
to connect the local induction time to the local concentration
and vary reactive fluid saturation, mineral growth rate, and
flow rates.

The novelty of the method developed in the current study
consists in: (a) the implementation of nucleation on an explicit
surface mesh (body fitted grids) which locally takes into account
area of each face of the mesh, (b) ability to calculate normal
and surface curvature using points which belong to the surface
mesh (inset in the Figure 1C) (c) continuous motion of surface
mesh points along the normal vector proportionally to the
local reaction rate, (d) utilization of unstructured and non-
uniform grids for volume mesh (Figures 1B–D), and (f) use of
heterogeneous nucleation rate (expressed in number of nuclei
per area per time) directly for calculating the probability of
nucleation at each time step proportional to the local face area
of the surface mesh.

Precise control of interface dynamics has substantial
implications in geological and environmental systems as it
is described in recent comprehensive review by Noiriel and
Soulaine (2021). The review is focused on recent advances in
X-ray computed tomography (Noiriel and Daval, 2017; Yuan
et al., 2021) and development of pore-scale reactive transport
models (Molins et al., 2012; Prasianakis et al., 2020; Soulaine
et al., 2021; Yang et al., 2021). In both, experimental and
numerical studies it is emphasized that the accurate capture of
the fluid-solid interface is extremely important (Hunter et al.,
2020; Khatoonabadi et al., 2021; Noiriel et al., 2021; Qin and
Beckingham, 2021).

The two specific knowledge gaps this study is focused on
are (a) the dynamics of fluid-solid interface and instability
phenomena in wide range of reaction and flow rates
including high concentration gradients near the surface
(Supplementary Figure 2), and (b) interconnection between
heterogeneous reaction, nucleation, and transport phenomena
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FIGURE 1 | The geometry and initial concentration distribution in the flow

around a particle in two dimensional simulation domain. (A) Concentration

distribution in a whole 2D simulation domain of 1 × 1 mm with a particle of

radius 10 µm at the center of the domain. (B) Mesh at the boundary between

the meshed fluid domain and solid. (C) Meshed domain around the particle

before precipitation (initial geometry). (D) Meshed domain around the particle

after precipitation.

(both convective and diffusive) and their influence on evolution
of the precipitate texture.

This manuscript is organized as follows. First, the governing
equations for the model are introduced in the section 2. Also, in
this section the implementation of nucleation procedure on the
liquid-solid interface is described using the Classical Nucleation
Theory. The results of precipitate growth simulations are
presented in section 3 in which the importance of nucleation and
its effect on precipitate texture is discussed. In the section 4, the
dynamics of surface roughness and surface velocity propagation
are analyzed. The results summary and direction of the future
studies are discussed in the section 5.

2. MODEL

Here, the pore-scale modeling approach is used in which the
interface between solid and fluid is explicitly introduced via
fitting boundary of the simulation domain to the shape of a solid
(body fitted grid). As it is typical for geochemical systems, fluid
is considered to be incompressible. The heterogeneous reaction
is modeled at the boundary and results in precipitation of a
solid phase. The displacement of the surface mesh is modeled
using Arbitrary Eulerian-Lagrangian (ALE) approach (Hirt et al.,
1997).

2.1. Governing Equations
The fluid motion is described by incompressible Navier-Stokes
equations

∇ · uuu = 0,

∂uuu

∂t
+∇ · (uuuuuu)+∇p = ν∇

2uuu, (2)

where uuu is the fluid velocity, p is the pressure normalized by
the fluid density, ν is the kinematic viscosity. The transport of
reactant is described by a convection-diffusion equation

∂c

∂t
+∇ · (uuuc) = ∇ · (D∇c) (3)

where c is the reactant concentration,D is themolecular diffusion
coefficient.

The heterogeneous precipitation reaction is implemented as
a boundary condition applied to the reactive surface. In this
simplified model for mineral precipitation a binary reaction is
considered, in which the concentrations of anions, A, and cations,
B, in the solution define the saturation state of the solution in
respect to a mineral AB. Schematically it can be represented as

A−
+ B+ −→ AB ↓ (4)

It is assumed that the species A and B have equal concentrations
and are well mixed at the inlet. Also, it is assumed that the
diffusion of ions is similar, and the activity coefficient for both
type of ions is equal to 1. The Onsager correction to the diffusive
transport, which has been shown having significant impact in
case of mineral dissolution (Dutka et al., 2020) in comparison
to lesser effect during precipitation (Yang et al., 2021), is not
considered in this work. Thus, the Equation (3) can be solved
for only one type of species and the saturation state, �, can be
expressed as

� =
c2

c2eq
, (5)

where ceq is the equilibrium ion concentrations for a
specific mineral.

Therefore, the surface reaction rate and Equation (1) can be
rewritten in terms of local concentration

R = k

(

c2

c2eq
− 1

)

(6)

Tomodel the surfacemotion it is imposed that the flux of mineral
ions to the surface during precipitation must match the reaction
rate R(c) (Szymczak and Ladd, 2012).

Dnnn · ∇c = R(c), (7)

where nnn is the normal to the surface (inset in the Figure 1C).
During precipitation process a solid-fluid interface, Ŵ, is
propagated. The interface is modeled by a boundary mesh that
confines the simulation domain and represents the reactive
surface. The points of the surface mesh are propagating with
velocity uuuŴ

ν
−1
m uuuŴ = R(c)nnn, (8)

where νm is the molar volume of the mineral.

Frontiers in Water | www.frontiersin.org 3 January 2022 | Volume 3 | Article 800944129

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Starchenko Pore-Scale Modeling of Mineral Growth

2.2. Dimensionless Equations
For the convenience, the governing equations can be scaled using
the unit of time, td, and the unit of length, h0,

t̂ =
t

td
; r̂rr =

rrr

h0
; ∇̂∇∇ = h0∇∇∇ , (9)

where hat above a symbol indicates that the quantity is
dimensionless. In this study the equations are scaled using td =

0.01 s and h0 = 10µm (see Table 2).
Correspondingly, pressure, viscosity, and molecular diffusion

coefficient are scaled as

p̂ =
t2
d

h20
p; ν̂ =

td

h20
ν; D̂ =

td

h20
D. (10)

In order to make transport equation dimensionless the
concentration of reactant is scaled by the concentration at the
inlet ĉ = c/cin. Then, the dimensionless governing Equations (2)
and (3) can be rewritten as

∂ûuu

∂ t̂
+ ∇̂ · (ûuuûuu)+ ∇̂p̂ = ν̂∇̂

2ûuu (11)

∂ ĉ

∂ t̂
+ ∇̂ · (ûuuĉ) = ∇̂ · (D̂∇̂ ĉ) (12)

By scaling reaction rate as R̂ = R/k the Equation (7) can be
rewritten as

R̂ = lRnnn · ∇̂ ĉ, (13)

where lR =
Dcin
kh0

.

Typically, to analyze dynamic processes that are governed
by flow conditions and reaction rates a set of dimensionless
numbers is defined (Soulaine et al., 2017; Starchenko and Ladd,
2018; Xu et al., 2020). This study is relevant to the case in
which the flow rates are relatively low and the work is focused
on competition between reaction and transport. Thus, the most
interesting dimensionless numbers are the Pèclet number (Pe)
and the second Damköhler number (DaII), which represent ratio
of flow rate to diffusive rate and reaction rate to diffusive rate

Pe =
uinh0

D
; DaII =

h0νmR(cin)

D
, (14)

where uin is the flow velocity at the inlet, and R(cin) is the reaction
rate which corresponds to the inlet concentration. Following the
dimensional scaling, the Equation (8) for the interface motion
can be written as

ν
−1
m

h0

td
ûuuŴ = kR̂nnn (15)

Replacing R̂ using the Equation (13) the interface motion velocity
can be expressed as

ûuuŴ = γŴ(nnn · ∇̂ ĉ)nnn, (16)

where γŴ = D̂νmcin.
By scaling the reactant concentration with cin and defining

θ = cin/ceq the reaction rate Equation (6) can be rewritten as,

R̂ =
(

θ
2ĉ2 − 1

)

(17)

2.3. Surface Energy
Analysis of Mullins–Sekerka instability (Mullins and Sekerka,
2004) shows that fast growing interfaces generate perturbations
with wavelength which is not bound by lower limit. To stabilize
the growth, the Gibbs-Thomson relation (Landau and Lifshitz,
1980) was included into the model. It implies that interfaces
with higher curvature will require more energy to form.
Therefore, the effective equilibrium concentration, c̃eq, becomes
higher and suppresses the short-wavelength perturbations. The
stabilizing mechanism corresponds to the additional term for
the equilibrium concentration at the solid-fluid interface where
the curvature is large. Therefore, the concentration gradient gets
smaller and regulates the growth of the interface by removing
indefinitely small wavelength of the perturbations. In general, the
expression for curvature-dependent equilibrium concentration
according to Gibbs-Thomson relation can be described (Rigos
and Deutch, 1986) as follows

c̃eq(rrr) = ceq exp

[

γ νmκ(rrr)

RT

]

(18)

where γ is the interfacial free energy of material, κ(rrr) is the
curvature of the surface at a particular location, R is the gas
constant, and T is temperature. The expression can be simplified
using simple expansion

c̃eq(rrr) = ceq

(

1+
d0

h0
κ̂(rrr)

)

, (19)

where d0 = (γ νm)/(RT) is the capillary constant, and κ̂ = h0κ is
the dimensionless curvature.

2.4. Nucleation Model
Nucleation during mineral precipitation can follow either
classical or non-classical pathways. The non-classical pathway
includes such processes as pre-nucleation cluster formation,
particle aggregation, transition betweenmineral polymorphs, etc.
(De Yoreo et al., 2015), which is not considered in this work. The
Classical Nucleation Theory states that to form a stable nucleus
the particle has to exceed a certain size to overcome an energy
barrier which arises from the balance between penalty on the
formation of new surface and the total crystal lattice volume
energy of a particle. This work is focused on heterogeneous
nucleation which means the mineral precipitates on the surface
and not in the solution. Based on CNT, nucleation rate defines
number of particles which can nucleate on a particular surface
area at a certain period. The heterogeneous nucleation rate, Js, is
a function of the free energy change, 1G, during the nucleation
of a new phase (Fernandez-Martinez et al., 2013; Li et al., 2014)
on the fluid-solid interface

Js = A exp

[

−
1G

kBT

]

(20)
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where A is a prefactor. The 1G is a function of interfacial free
energy, γ , and the supersaturation, ln�:

1G =
β(νm/NA)

2
γ
3

(kBT ln�)2
, (21)

where β = 16π/3 is the geometric factor, NA is the
Avogadro number.

To introduce nucleation in the model it is assumed that a
single nucleus can not be resolved. Therefore, each face of the
volumemesh, which defines the interface between fluid and solid,
is marked as non-reactive until a nucleation event occurs. The
probability of a stochastic event (which obeys a rate law J) in
time t can be expressed as an exponential probability distribution
function: J exp (−Jt). The cumulative distribution function over
period of time, 1t, is an integral of probability distribution

P = 1− exp (−J1t). (22)

The Equation (22) defines the nucleation probability on a
particular face of the area Af , where J = Af Js. Once the condition
for nucleation is reached, the face is marked as a reactive one and
the boundary condition (13) is applied. The current model does
not resolve a single nucleus growth. Since a single nucleus does
not cover the face completely, the surface coverage parameter,
χ , is introduced, which indicates a ratio between the covered
area and total area of each cell. It is assumed that a single
nucleation event generates a hemisphere that covers an area of
5 nm2. Assuming that the nucleation adds much less precipitate
than mineral growth, the increment for the surface coverage
parameter was derived from the growth of a hemisphere with
a growth rate corresponding to Equation (17). Therefore, the
change in surface coverage in a particular cell each time step can
be defined as

1χ = π(1r̂)2 +

√

π Âsχ1r̂, (23)

where 1r̂ is a dimensionless increment of the hemisphere radius
at a particular growth rate R̂(c)

1r̂ =
νmktd

h0
R̂1t̂. (24)

This model is a rough estimation of real processes and does
not capture multiple nucleation events, crystal surface energy
anisotropy which defines shape of crystalline particles, nuclei
impingement, etc. However, it allows smoothing out transition
from non-reactive surface to a reactive one when the resolution of
a single nucleus is not possible. Surface coverage for a particular
face is changing within the range 0 ≤ χ ≤ 1. The reaction
rate on the partially covered face is scaled proportionally to the
surface coverage R̂part = χ R̂. This results in an inert surface at
χ = 0 and fully reactive surface at χ = 1. The detailed future
studies are needed to make current nucleation model applicable
to specific materials or minerals. The nucleation rate is controlled
by changing the prefactor A in Equation (20).

2.5. Implementation
Fluid flow and transport equations were solved using an open-
source Computational Fluid Dynamics package OpenFOAM R©.
OpenFOAM R© is based on the finite volume discretization.
The details of numerical implementation of the OpenFOAM R©

software can be found elsewhere (Jasak, 1996; Weller et al.,
1998). The PISO algorithm used for solving the equations is
described in detail in a recent book (Moukalled et al., 2016). The
interface motion was implemented using earlier development
of the simplified Arbitrary-Lagrangian-Eulerian (ALE) method
in dissolFoam solver (Starchenko et al., 2016) which is also
described in a recent review paper (Molins et al., 2021).

Briefly, the method implemented in this work combines
the pisoFoam solver from OpenFOAM for transient
incompressible flow (based on the PISO algorithm), the
transient convection-diffusion equation, dynamic volume
meshes (implemented in OpenFOAM) and boundary mesh
motion/relaxation implemented in dissolFoam solver.

Since the shape of the growing features in some cases
is highly irregular, the topological changes to an initial
mesh are necessary. In current implementation, remeshing
procedure using OpenFOAM meshing tool snappyHexMesh
was performed with different intervals through the simulation
depending on how unstable the growth is and how rough
the surface becomes. The higher the curvature of the growing
dendrites the faster the mesh will become significantly distorted.
In average for all simulations the criterion for remeshing was
set to 1000 time steps. The time integration scheme used in the
simulations is Euler implicit scheme which is first order accurate.
The spatial discretization is a second-order accurate (Jasak,
1996; Tuković and Jasak, 2012). To perform the simulations,
the CADES high performance computing cluster at Oak Ridge
National Laboratory was used.

2.6. Geometry, Initial, and Boundary
Conditions
The geometry used in this study represents a spherical particle
in a flow (Figure 1A). To simplify the visualization, accelerate
calculations, and capture the interface growth, 2D simulations
are performed in this study. It is important to note that current
implementation is capable to model 3D geometry with no
additional changes, however, at higher computational cost. A
particle at the center of the domain is a cylinder which is
confined between two parallel planes with empty boundary
conditions. The boundaries in the direction perpendicular to
the flow (top and bottom of the Figure 1A) are implemented
as the symmetry boundary condition. The flow was defined
by the constant flow rate condition. Fluid velocity was set
to uin value at the inlet (left side of the Figure 1A) and
pressureInletVelocity boundary condition at the outlet.
At the solid surface of a particle a no-slip boundary condition
was applied.

For the concentration field and transport Equation (3) a
custom boundary condition was implemented at the reactive
surface. It follows the balance equation (13), reaction rate
equation (17), and implements a curvature correction to the
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FIGURE 2 | Surface roughness generation. Red line is an initial surface of the

particle. Blue line is a surface of a particle with generated roughness.

equilibrium concentration according to the Equation (19).
Additionally, in case of enabled nucleation, the rate is scaled
proportionally to the parameter χ . The concentration field is
scaled by the reactant concentration at the inlet, cin, (see section
2.2), therefore a Dirichlet boundary condition for ĉ is applied at
the inlet and always ĉ = 1. The details of implementation of
custom Robin boundary condition for concentration at reactive
surface can be found in Starchenko et al. (2016). Also, the
details were added to Supplementary Material for convenience.
At the outlet a zeroGradient Newman boundary condition
is applied.

A starting point for all simulations (time 0) is a steady
state solution for the flow and reactant concentration. During
simulation the transient Equations (2) and (3) are solved
and combined with dynamic mesh motion until the mesh
becomes highly distorted and required remeshing (described in
section 2.5). After remeshing, the volume fields are mapped
from the old to the new mesh using OpenFOAM’s field
mapping tool mapFieldsPar with the mapping method
option correctedCellVolumeWeight. It implements the
cell-volume-weighted mesh-to-mesh based interpolation. After
the volume fields are mapped to the new mesh, the simulation
(transient equations with dynamic mesh) is restarted.

Radius of a particle in the flow is 10 µm and the total
dimensions of a domain is 1 × 1 mm. To accelerate calculations,
the non-uniform meshes were used in this study. Figure 1C
shows the magnified area near the particle to demonstrate the
refinement of the mesh near the surface. Figure 1D shows the
same area after surface was moved as a result of the precipitation.
It demonstrates the need of refinement near the interface in
order to resolve features that occur due to the instability
growth. Figure 1B shows magnified area around one of the
surface features that demonstrates the finest cells. All meshes
were generated using snappyHexMesh tool. Briefly, the 2D
simulation domain was divided into 320 × 320 cells followed by
6× refinement around the particle surface. Total number of cells

is not fixed in the simulation due to the nature of the method and
meshing procedures. Average number of cells at the beginning
of the simulation did not exceed one million cells. Due to the
growth of rough surfaces during precipitation (Figure 1D), the
number of cells was continuously increasing during simulation
after each remeshing procedure. To maintain the stability of the
fluid flow solver the timestep, δt, was chosen to satisfy condition
Co = δt|ûuui|/δxi < 1, where Co is a Courant number, |ûuui| is the
magnitude of the velocity in the cell i, and δxi is the size of the cell
i in the direction of the velocity.

In order to overcome the effect of initial instability generation,
which is usually related either to mesh symmetry or floating
point numerical error, roughness was introduced on the surface
of the initial particle (Figure 2). The algorithm is similar
to the generation of roughness on surface of the fracture
described in Starchenko et al. (2016). Briefly, the displacements
were generated on the surface of a spherical particle using
Fourier synthesis (Peitgen, 1988). The standard deviation in the
displacement was set to 0.003h0. In case of fracture dissolution,
it has been shown that the evolving dissolution patterns in
fractures is insensitive to the amplitude and correlation length
which characterizes the roughness of the initial fracture surface
(Upadhyay et al., 2015). Nevertheless, it is still debated how
much surface roughness affects mineral precipitation, which
is a topic of the future studies. In case of nucleation, the
simulation starts from the smooth surface, since the randomness
of the initial growing points is guaranteed by the implemented
nucleation algorithm.

To calculate mean local curvature scalar of the surface mesh,
the functionality of finiteArea method implemented in
OpenFOAM R© is used. The implementation details can be found
in work of Tuković and Jasak (Tuković and Jasak, 2012).

3. RESULTS

Calcite mineral (CaCO3) has been chosen as a reference material
for the precipitation. Calcite precipitation is a complex process
that depends on many parameters such as CO2 pressure, pH
of the solution, etc. Moreover, CaCO3 precipitation can result
in a variety of polymorphs (including amorphous calcium
carbonate). To focus on the implementation of the pore-
scale reactive transport model coupled with heterogeneous
reactions and dynamic interface, the simplest surface reaction
model has been chosen. The concentrations of counterions

TABLE 1 | Parameters for the calcite mineral precipitation.

Parameter Symbol Value

Diffusion coefficient D 1.4 · 10−5 cm2/s

Molar mass M 100.09 g/mol

Molar volume νm 37 cm3/mol

Equilibrium concentration cs 0.58 · 10−4 mol/L

Interfacial free energy γca 35 mJ/m2

Capillarity d0 5 · 10−6 cm
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FIGURE 3 | Second Damköhler number, DaII, vs. Péclet number, Pe, phase diagram of precipitation patterns on a particle in reactive flow. The initial particle is shown

in gray, precipitate is shown in white, and blue-to-red color scheme shows distribution of reactive species in solution around the particle and solid precipitate.

Ca2+ and CO2−
3 are defined by the equation (3) and the

precipitation rate equation (6). Table 1 contains parameters
for calcite precipitation. Equilibrium concentration for calcite
was estimated as the square root of the equilibrium constant
published by Plummer and Busenberg (Plummer and Busenberg,
1982). Additionally, the capillary length in the Equation (19) is
assumed to be d0 = 5 · 10−6 cm. It is clear that the mentioned
above assumptions and simplifications, such as Equation (6),
result in a system which do not reflect fully the actual conditions
for calcite mineral precipitation. The parameters used in this
work needed to be reasonable and close enough to a realistic
system. However, to model precipitation of a specific mineral,
parameters such as reaction rate constants need to be carefully
reviewed and, perhaps, corrections such as ion activities need to
be used instead of concentrations to calculate species diffusivity
and local saturation states.

3.1. Precipitate Growth
In the parametric study, a Pèclet–Damköhler diagram
demonstrates that both reaction and flow rate define regime
of mineral precipitation (Figure 3). Namely, the rates control
the instability emergence during the evolution of the reactive

TABLE 2 | Constant parameters used in simulations.

Parameter Symbol Value

Unit time td 0.01 s

Unit length h0 0.001 cm

Kinematic viscosity ν 0.008926 cm2/s

Temperature T 298.15 K

Solvent density ρ 0.997 g/cm3

surface. To effectively change DaII and Pe numbers, the reaction
rate constant k and flow velocity at the inlet uin are varied. In
most of the simulations the inlet concentration is assumed to
be cin = 6.6 · 10−3 mol/L. Although the reaction rate constant
for calcite precipitation is kcalcite = 3.81 · 10−11 mol/cm2/s
(Nilsson and Sternbeck, 1999), for the parametric study k
was varied in the range between 10−4 and 10−10 mol/cm2/s;
and uin was varied in the range between 0.01 and 10 cm/s.
All other parameters used in simulations are summarized in
Table 2.
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The diagram in Figure 3 shows the result of precipitation at
different flow rate and reaction rate conditions. The simulation
images in the diagram were taken at different simulation times
and scaled to the same size for comparison. The particle in the
center of each snapshot in Figure 3 is shown to demonstrate
the scale. At very high Pe numbers the criteria dictated by Co
number makes the timestep very small. For instance, at Pe =

7.14 · 102, which is the last row in Figure 3, the corresponding
δt = 10−4td. This requires significantly longer simulation times,
however, the snapshots included into the diagram demonstrate
the general tendency. Although a generation of the short wave
instabilities is limited by the Gibbs-Thomson effect, the diagram
shows that the number of growing features increases and the size
of the instability decreases with increasing DaII and Pe numbers.
This remains consistent with early works on Mullins–Sekerka
instability (Langer, 1980) reflecting that the faster the surface
growth the more unstable it becomes. The diagram demonstrates
that this effect can be achieved by either enhancing the reaction
itself by increasing the rate constant or by increasing transport of
reactant to the solid surface (in this case, increasing flow velocity).
Moreover, the higher the reaction rate—the higher the curvature
of the growing features which start to grow as very thin dendrites
with many branches.

In general, by moving from low to high Pe numbers the
diffusive layer around the reactive particle becomes smaller.
This results in enhanced transport of reactant to the particle
interface and, therefore, smaller wavelength of the instability
that corresponds to higher reaction rate. Additionally, for all Da
numbers the increase in fluid flow velocity introduces anisotropy
into the amount of precipitate. The precipitate growth faster on
the front side of the particle exposed to the flow. The amount of
reactant that reaches the back side of the particle is smaller since
it is consumed during the precipitation. Therefore, the overall
reaction rate is reduced.

It can be seen in the diagram in Figure 3 that a primary
dense precipitate layer growth around the initial particle which
then branches into the dendrites. However, the thickness of
the primary layer depends on the reaction and flow rates. The
primary layer thickens at low DaII and Pe. In real systems it
can probably be controlled by the surface roughness or surface
defects as well. The growth of the primary layer slows down as
dendrites start to grow and at a particular time it is terminated
completely. Eventually, the porous secondary precipitate layer is
formed out of the growing dendrites which screen the primary
layer by consuming all the reactant from the solution.

3.2. Nucleation
To test the coupling of surface growth with nucleation a
comparison between the evolution of precipitate on the surface
of a particle in flow with nucleation “on” and “off” (Figure 4)
was done at different reaction rates. The nucleation switch set to
“on” in the solvermodifies the boundary condition on the particle
in the flow so that initially the surface is inert (i.e., reaction
rate is set to zero) and after nucleation it is proportional to the
surface coverage (Equation 23) as it is described in the section 2.4.
Figures 4A,C correspond to the nucleation switch set to “on.”
Figures 4B,D correspond to the case in which nucleation is “off”

and the rest of the parameters are the same. The concentration
at the inlet was set to cin = 2.1 · 10−2 mol/L, the equilibrium
concentration was set to ceq = 1.84·10−4 mol/L, and the flow rate
was such that Pe = 0.71. Figures 4A,B correspond to the reaction
rate constant k = 10−8 mol/cm2/s and Figures 4C,D correspond
to k = 10−6 mol/cm2/s. It is important to note that the parameter
lR from the Equation (13) depends on cin. Therefore, the effect
of diffusional hindrance on the reaction rate is different from
Figure 3 and the resulting growth of precipitate will be different
as well. In simple geometries such as channel flow it is possible
to estimate an effective reaction rate which includes diffusional
hindrance (Szymczak and Ladd, 2012). However, in case of more
complex geometries like mineral grain in flow (Dutka et al., 2020)
the correction is only an approximation. Although such detailed
analysis of diffusional hindrance in the interfacial layer is not
included in current manuscript, it is an interesting topic for
future studies, especially in case of charged surfaces.

Since in case of nucleation “on” initial surface is inert, the
concentration around the particle in the beginning becomes
equal to the concentration at the inlet. After nucleation event
occurs the faces of the surface mesh become reactive and the
nucleation sites consume reactant locally as it can be seen at
time 300td (Figure 4). At both low and high reaction rates
nucleation affects distribution of the precipitate and eventually
accelerates instabilities in surface growth. The effect is more
significant in case of higher reaction rate case (Figure 4C). It is
interesting to note that although nucleation accelerates growth
of particular sites resulting in irregular shape of the precipitate,
the growth without nucleation (Figure 4D, time 5600td) creates
porous precipitate with smaller dendrite features. This indicates
that nucleation promotes formation of less porous however non-
uniformly distributed precipitate.

As it was shown above in Figure 3, the higher flow rate
effectively increases the reaction rate at the surface and reduces
the width of the dendrites. Figure 5 demonstrates the influence
of nucleation rate on precipitate shape at different flow rates.
The snapshots were taken at different simulation times chosen
so that the total amount of precipitate in all 6 cases was the same.
Comparison between low flow rate at Pe = 0.714 (Figure 5A)
and high flow rate at Pe = 71.4 (Figure 5B) demonstrates that
at all modeled nucleation rate values the width of the growing
features slightly decreases for smaller flow rates as expected.
It is interesting to note that decreasing nucleation rate results
in reduced asymmetry of the precipitate caused by the flow
direction. In fact, in Figure 5 at ln (A) = 15 demonstrates that
the flow direction almost does not affect whether there is more
precipitate on the front or back side of the particle, whereas this
effect can be seen at lower nucleation rate [ln (A) = 20] or in case
without nucleation.

4. DISCUSSION

Since precipitate shape is anisotropic due to the flow direction
(in case nucleation is “off”), a plausible way to present the data
is in form of angular distribution. Figure 6 shows dependence
of surface velocity magnitude, |ûuuŴ|, and surface curvature, κ̂ ,
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FIGURE 4 | Precipitation on a particle in flow, Pe = 0.71. Time when the snapshots were taken is shown in time units, td . (A) DaII = 0.34 and nucleation is “on,” initial

surface is inert. (B) DaII = 0.34 and nucleation is “off,” initial surface is reactive. (C) DaII = 34.42 and nucleation is “on.” (D) DaII = 34.42 and nucleation is “off.”

FIGURE 5 | Effect of nucleation rate on the precipitation on a particle in

reactive flow at DaII = 0.34. (A) Pe = 0.714, (B) Pe = 71.4. The snapshots in

the left column correspond to nucleation rate prefactor ln (A) = 15, in the

middle column ln (A) = 20, and in the right column the nucleation is “off” (all

surface is reactive from the beginning).

as function of angular coordinate ϕ. The angular coordinate is
defined to be ϕ = 0 = 2π in the back side of the particle
and ϕ = π in the front side of the particle which faces the
flow (Figure 6A). Both max and min functions of |ûuuŴ| and κ̂

were applied to the groups of points on the interface which
were gathered within ranges 4◦(i − 1) < ϕ ≤ 4◦i, where
i = 0, 1, 2, .., 90. In other words, the full range of angular
coordinate [0, 2π) is divided into 90 bins and then the max and
min functions were applied to the points that correspond to
each bin.

Figures 6B,C show the change in surface velocity of growing
precipitate. Initially, the profiles of max |ûuuŴ| and min |ûuuŴ| are
similar with total maximum located at the front side of the
particle at ϕ = π and total minimum located at the back
side of the particle. At later stages, the min |ûuuŴ| drops to zero

in range 0.5π < ϕ ≤ 1.5π at time 5000td and almost all
around the particle at time 11500td. This behavior corresponds
to the formation of the primary dense layer around the particle
and complete termination of its growth at later stages due to
the screening from reactant by growing dendrites. Figure 6C
indicates that the growth termination occurs earlier at the
front side.

To investigate the evolution of surface the curvature at
high (DaII = 3, 442) and low (DaII = 0.34) reaction
rates at different stages of precipitation is compared. Negative
curvature corresponds to the concave area of the precipitate
surface in respect to the solution. Figures 6E,H demonstrate
similar structure of precipitate at early stages. Naturally, at later
stages of precipitation, growth of dendrites generates highly
curved surfaces. Both, concave and convex areas become more
curved. As it was discussed above, higher reaction rate promotes
shorter wavelength instabilities. Accordingly, the curvature of
growing features is smaller at lower reaction rates (orange curves
in Figures 6F,G,I,J). However, the curvature of concave areas
remains in the same range for both high and low reaction rates
(blue curves in Figures 6F,G,I,J). It can be interpreted that the
average distance between dendrites is much less affected by the
reaction rate than the width of the growing dendrites.

Figure 7 shows the flow velocity maps which correspond
to the data presented in Figure 6. The color map is scaled to
|ûuu|max = 0.001 in order to focus on the area of growing
dendrites. The value of absolute maximum velocity in whole
domain was registered between 1.2 and 1.25 depending on
the case and simulation time. Figure 7A corresponds to the
Figures 6B–G and Figure 7B corresponds to the Figures 6H–J.
At early simulation stages both velocity maps develop similarly
mostly defined by the shape of the initial particle. At later
stages, lower reaction rate results in wider dendrites as it
can be seen in Figure 7A at time 11500td in comparison
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FIGURE 6 | Maximum and minimum of surface velocity magnitude, |ûuuŴ |, and surface curvature, κ̂, distribution along angular coordinate ϕ at flow rate Pe = 7.14. (A)

Schematics of angular coordinate ϕ definition. (B–D) max (|ûuuŴ |) and min (|ûuuŴ |) at different simulation times (DaII = 0.34). (E–G) max (κ̂ ) and min (κ̂ ) at different

simulation times (DaII = 0.34). (H–J) max (κ̂ ) and min (κ̂ ) at different simulation times (DaII = 3442). Little snapshots on the right demonstrate the shape of precipitate

at corresponding DaII at the later simulation times.

FIGURE 7 | Flow velocity map and precipitate shape which correspond to the

data in Figure 6. (A) DaII = 0.34. (B) DaII = 0.34. The color map is scaled to

|ûuu|max = 0.001. The snapshots were taken at the simulation times which

correspond to the data in Figure 6.

to Figure 7B at time 5900td. However, in both cases fluid
velocity drops almost to zero between the dendrites, which

means that convective transport of reactive ions in channels
between dendrites is absent. Therefore, one can hypothesize
that the diffusive nature of reactive species in channels between
dendrite branches controls the channel width. To test this
hypothesis in future studies one should carefully consider both
diffusive transport of reactive species into the channel and
reactive flux balance at the fluid-solid interface controlled by the
Equation 7.

In this study only a 2D geometry is considered. Therefore,

the amount of precipitated material proportional to the mass

of the mineral can be estimated as the area of precipitate

(Figure 8). First two figures (Figures 8A,B) show the amount

of precipitate in time at different values of DaII and Pe without
nucleation. Figure 8A demonstrates that only at lowest DaII =

3.41 · 10−3 the curve differs from the rest of the cases. This

means that mostly the simulations are performed in transport

limited regime. It is also confirmed by the Figure 8B, which
demonstrates a significant influence of flow rate (or Pe) on the
accumulation of precipitate.

Interestingly, comparison of the amount of precipitate in
case of nucleation “on” and “off” shows that at high nucleation
rates (lnA = 20) the curves almost overlap (blue and orange
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FIGURE 8 | Amount of precipitate vs. simulation time. (A) At different DaII numbers; (B) At different Pe numbers; (C) in case of nucleation is “off” (blue) and “on” at

lnA = 20 (orange) and 15 (green) the dependencies are presented at Pe = 0.714 and Pe = 71.4, which corresponds to the data presented in Figure 8.

curves in Figure 8C). Only at lower nucleation rates (green
curve) the growth of precipitate is delayed at earlier times.
However, nucleation does not affect the slope of the curve at later
times. Similar behavior is observed at low and high flow rates
(Pe = 0.714 and Pe = 7.14). This might indicate that although
nucleation affects the shape of precipitate as it was demonstrated
in Figure 8, it does not change the overall kinetics in case of
limited available reactive surfaces, such as a surface of a particle
in flow in this study.

5. CONCLUSIONS

In this paper a model that couples pore-scale reactive transport
with the Arbitrary Lagrangian-Eulerian approach to simulate
interface motion during mineral precipitation has been
described. Additionally, the heterogeneous nucleation based
on CNT was integrated into the model. The ALE approach
allows us to stabilize the short wavelength instabilities
by including surface curvature dependent equilibrium
concentration. To demonstrate the interplay between reactive
transport, chemical reaction, and nucleation phenomena the
precipitate formation on a single particle in reactive flow has
been modeled.

In the first part of the study (nucleation is turned
“off”), Pèclet–Damköhler diagram demonstrates the influence
of reaction and flow rate on the shape of the precipitate.
The emergence of Mullins–Sekerka instability on growing
surfaces becomes more pronounced at higher DaII and Pe
numbers. All simulation cases show an appearance of a
primary dense precipitate layer around the particle and a
secondary porous precipitate layer formed by the instabilities.
It is shown that the growth of the dense layer is completely
terminated at later times due to the inability of reactant to
penetrate into pores. Although the absolute thickness of the
primary layer most likely depends on the condition of initial
surface in real systems (such as defects, roughness, chemical
heterogeneity), the presented model shows that at equal initial
conditions the thickness decreases at higher reaction and higher
flow rates.

In the second part of the study (nucleation is turned “on”), it is
demonstrated that nucleation promotes formation of irregularly
shaped precipitate by enhancing instabilities in surface growth.
Additionally, it is shown that low nucleation rate reduces the
impact of flow direction on the asymmetry of formed precipitate
around the particle. Although the shape of precipitate is irregular
[Figure 5 at ln (A) = 15], there is no distinct asymmetry (front
vs. back of the particle) which is present at larger nucleation
rates and when all surface is reactive from the beginning of
the simulation. Nevertheless, it is expected that the limit exists
at which nucleation is also affected by the flow direction. This
requires rigorous studies which perhaps can capture nucleation
at mesoscale when single nucleation events can be distinguished.

The presented model provides the capability to simulate
complex fluid-solid interfaces and their dynamics. It captures
highly irregular surfaces with great precision, utilizes non-
uniform meshes for efficient computation and resolution of
high concentration gradients, and allows us to introduce
required surface properties (e.g., surface coverage). Although
this study presents results of two dimensional simulations,
the implementation is not limited to 2D. It does not require
additional changes to the solver (except of generating different
simulation domain). The full 3D simulations are necessary
to model a realistic system, since surface instabilities might
be suppressed by 2D. Also, it is necessary to simulate a
3D flow in porous systems with significantly more complex

pore geometries, since the flow patterns even in 2D can
have significantly different properties depending on solid
fraction, pore distribution and pore texture (Ramanuj et al.,
2020). Naturally, the presented work does not cover all

aspects of mineral precipitation process. The number of
assumptions and approximations which were discussed in the

paper require a careful revision. Directions for the future
development should take into account phenomena that become
important at the mesoscale, for instance: crystal surface energy
anisotropy that defines mineral crystal facets, transport in
confinement or near charged interfaces at scales just slightly
larger than Debye length, collective growth of individually
resolved nuclei.
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Digital rock physics has seen significant advances owing to improvements in

micro-computed tomography (MCT) imaging techniques and computing power. These

advances allow for the visualization and accurate characterization of multiphase transport

in porous media. Despite such advancements, image processing and particularly the

task of denoising MCT images remains less explored. As such, selection of proper

denoising method is a challenging optimization exercise of balancing the tradeoffs

between minimizing noise and preserving original features. Despite its importance, there

are no comparative studies in the geoscience domain that assess the performance of

different denoising approaches, and their effect on image-based rock and fluid property

estimates. Further, the application of machine learning and deep learning-based (DL)

denoising models remains under-explored. In this research, we evaluate the performance

of six commonly used denoising filters and compare them to five DL-based denoising

protocols, namely, noise-to-clean (N2C), residual dense network (RDN), and cycle

consistent generative adversarial network (CCGAN)—which require a clean reference

(ground truth), as well as noise-to-noise (N2N) and noise-to-void (N2V)—which do not

require a clean reference. We also propose hybrid or semi-supervised DL denoising

models which only require a fraction of clean reference images. Using these models,

we investigate the optimal number of high-exposure reference images that balances

data acquisition cost and accurate petrophysical characterization. The performance of

each denoising approach is evaluated using two sets of metrics: (1) standard denoising

evaluation metrics, including peak signal-to-noise ratio (PSNR) and contrast-to-noise

ratio (CNR), and (2) the resulting image-based petrophysical properties such as

porosity, saturation, pore size distribution, phase connectivity, and specific surface area

(SSA). Petrophysical estimates show that most traditional filters perform well when

estimating bulk properties but show large errors for pore-scale properties like phase

connectivity. Meanwhile, DL-based models give mixed outcomes, where supervised
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methods like N2C show the best performance, and an unsupervised model like N2V

shows the worst performance. N2N75, which is a newly proposed semi-supervised

variation of the N2N model, where 75% of the clean reference data is used for training,

shows very promising outcomes for both traditional denoising performance metrics and

petrophysical properties including both bulk and pore-scale measures. Lastly, N2C is

found to be the most computationally efficient, while CCGAN is found to be the least,

among the DL-based models considered in this study. Overall, this investigation shows

that application of sophisticated supervised and semi-supervised DL-based denoising

models can significantly reduce petrophysical characterization errors introduced during

the denoising step. Furthermore, with the advancement of semi-supervised DL-based

models, requirement of clean reference or ground truth images for training can be

reduced and deployment of fast X-ray scanning can be made possible.

Keywords: image processing,micro-computed tomography, deep learning, denoising, image enhancement, digital

rock physics, carbon capture utilization and storage (CCUS), enhanced oil recovery

BACKGROUND AND INTRODUCTION

Micro-computed tomography (MCT) is a non-destructive
technique used to visualize the internal structure of objects
in a variety of disciplines including medicine, dentistry, tissue
engineering, aerospace engineering, geology, and material and
civil engineering (Orhan, 2020). The physical principle behind
this technique is that X-rays attenuate differently as they
penetrate through different materials depending on their density
and atomic mass (Knoll, 2000; Attix, 2004; Ritman, 2004;
Hsieh, 2015). This makes MCT an ideal tool for characterizing
multiphase materials such as rocks with fluid phases of
different densities.

The use of MCT imaging is becoming increasingly
indispensable in several disciplines, including geotechnical and
petrophysical characterization and understanding multiphase
flow in porous media. Wang et al. (1984) first adopted medical
CT imaging to monitor the injectant front to understand
the effect of pore structure heterogeneity on oil recovery and
interactions between oil and injected fluid in a Berea sandstone.
However, medical CT imaging soon proved inadequate in
describing the underlying pore-scale phenomena responsible
for multiphase flow behavior in porous media (Cromwell et al.,
1984). Therefore, high-resolution MCT imaging was used to
obtain quantitative pore-scale information about structure–
function relationships (Jasti et al., 1993). They characterized
the 3D pore structure in a glass bead pack and three Berea
sandstone samples to determine whether topological properties
such as pore connectivity and phase features of individual fluid
phases such as saturation can be resolved. Micro-computed
tomography has since been successfully used for quantifying a
wide range of petrophysical properties such as volume fraction
for porosity and saturation quantification, specific surface area
(SSA), pore- and blob-size distributions, in-situ contact angles,
interface curvatures for local capillary pressures, grain sphericity,
angularity, roughness as well as phase connectivity (Sharma and
Yortsos, 1987; Prodanović and Bryant, 2006; Karpyn et al., 2010;
Herring et al., 2013; Landry et al., 2014; Larpudomlert et al.,

2014; Berg et al., 2016; Klise et al., 2016; Scanziani et al., 2017;
Chen et al., 2018; Tawfik et al., 2019; McClure et al., 2020). The
accuracy with which we can estimate these pore-scale properties
affect our ability to explain and predict multiphase fluid flow in
porous media. For example, pore-network modeling, which is
used in a variety of digital rock studies to explain and predict
macroscopic transport properties such as absolute permeability,
relative permeability, and capillary pressure, uses simplified pore
structures composed of a network of pores and throats, which
can be directly extracted from the MCT images (Valvatne and
Blunt, 2004; Jia et al., 2007; Dong et al., 2009; Mostaghimi et al.,
2013; Berg et al., 2016; Zahaf et al., 2017; Raeini et al., 2019).
Similarly, Lattice Boltzmann simulation of multiphase flow is
used to estimate the same transport properties but on real pore
structures by directly using the binarized MCT images as input
(Grader et al., 2010; Andrä et al., 2013; Landry et al., 2014; Liu
et al., 2014; Armstrong et al., 2016; Kakouei et al., 2017; Li et al.,
2018). The accuracy of the model predictions thus depends on
the accuracy of processing the images that feed into these models.

Despite the fast-paced advances in MCT imaging, there are
several factors that introduce noise to MCT images limiting
the image quality and feature detectability. Those limitations
can hinder our ability to accurately identify structure-function
relationships and predict fluid flow behavior, which is essential in
several applications including CO2 storage, aquifer remediation,
and hydrocarbon recovery. Some of the inherent limitations
of MCT imaging include photon statistics, balance between
representative elementary volume and resolution or feature
detection, and partial volume consideration (Van Stappen, 2018).
Apart from image resolution, there are numerous artifacts that
arise during image acquisition. The prominent ones include
photon starvation, detector saturation also known as ghosting,
central rotation artifact, cone-beam effect, metal artifact,
cupping artifact, streaks and dark bands, under-sampling, poor
contrast, beam hardening, scatter, and ring artifacts (Boas and
Fleischmann, 2012). These imaging artifacts result in different
forms of noise in a CT image. Though noise in MCT has not
been fully profiled, many studies including Diwakar and Kumar
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(2018) and Lee et al. (2018) have attempted to profile the noise
distributions through known statistical distributions. The most
prevalent noise forms follow Poisson and Gaussian distributions.
There are several other forms of noise including fractal noises
like Perlin noise, periodic noise from helical sampling and finally
random noise that may occur due to the change in X-ray quanta
for multiple subject densities. Gaussian and Poisson noise are
the most common types of noise observed in MCT images.
Gaussian noise is additive and signal independent. Poisson noise
is a consequence of low photon count, and results in random
thin bright and dark streaks that appear preferentially along the
direction of greatest attenuation (Boas and Fleischmann, 2012).
The low photon count coupled with the error in quantization of
the received photons leads to a mixture noise-model, which is a
combination of Poisson and Gaussian distributions. Perlin noise
is a pseudo-random texture gradient noise which is generated
using octaves of noise flow vectors along with frequency and
amplitude parameters to simulate spatially interpolated textures
(Perlin, 1985). The granularity and texture of the noise profile
in low quality (LQ) CT images can be captured by Perlin
noise. Bae et al. (2018) showed that using Perlin noise profile
to augment a lung CT dataset resulted in higher classification
accuracy indicating that the features extracted from Perlin noise
augmented images matched those of certain low-dose CT scans
with lung conditions.

Mathematically, denoising is an inverse ill-posed problem
where noisy data is a sparse representation of the real data and
a unique solution for its restoration does not necessarily exist
(Fan et al., 2019). For an exact solution to the problem, a priori
knowledge of the types of noise, variance of noise within an image
and along the image stack would be required. This information is
usually not readily available. The basic principle behind most of
the traditional spatial domain denoising filters is noise removal
based on spatial correlation between an input pixel gray value and
its neighboring pixels. Those filters can be classified into linear
and non-linear filters. Linear filters are spatially invariant filters
that output pixel values as a linear combination of the input pixel
value and its neighborhood. Examples of linear filters include
Gaussian and mean filters, which are optimal for Gaussian
noise. However, linear filters tend to blur edges and blur small
features. Conversely, non-linear filters can be spatially invariant
like the median filter, or spatially variant like the anisotropic
diffusion (AD) filter (Huang et al., 1979; Perona andMalik, 1990).
Another approach to denoise MCT images involves machine-
learning-based models. As such, the objective is to find the
parameters that act on the sparse noisy data to obtain the closest
representation of the clean signal. Several works in literature
have approached this parameter estimation through the use
of classic machine learning and modern neural network-based
models (Tian et al., 2020). Improvements in the DL denoising
field result from a clearer understanding of the specific noise
forms and improvements in the architecture of neural networks.
The literature points to three specific architectures, namely U-
Nets, Residual Networks, and Generative Adversarial Networks
(GANs), that have been established for addressing common noise
forms including Poisson, Gaussian, and their mixtures which are
predominant in CT images (Kulathilake et al., 2021).

Deep learning (DL) powered computer vision has seen
phenomenal improvement since the introduction of AlexNet in
2012 (Krizhevsky et al., 2017). However, adaptation of imaging
techniques for porous media is still work in progress. Kamrava
et al. (2019) trained a 20-layer feedforward neural network using
synthetic data generated by the stochastic cross-correlation-
based simulation (CCSIM) algorithm and found that neural
networks perform better compared to bi-cubic interpolation
for image super-resolution while the synthetic data further
improved the model’s generalizability. Sidorenko et al. (2021)
implemented an encoder-decoder network for denoising MCT
images obtained from tight sandstone samples. The authors
compared the effect of different loss functions and found that the
least absolute deviation (L1) loss gave a better result in terms of
peak signal to noise ratio (PSNR) and structural similarity index
measure (SSIM) when compared to the least square errors (L2)
loss, SSIM loss, and Visual Geometry Group (VGG) perceptual
loss. Recently, Alsamadony et al. (2021) acquired low-exposure
and high-exposure CT scans on the same carbonate sample
and compared denoising performance using a pre-trained very
deep super resolution (VDSR) network against a shallow U-
Net. They demonstrated that DL-based image processing can
improve image quality; and that pre-trained VDSR network with
fine-tuning tends to out-perform VDSR trained from scratch.
Wang et al. (2021) reviewed various DL applications in pore-
scale imaging and modeling, including image segmentation,
image super-resolution, petrophysical property prediction, flow
simulation, as well as common convolutional neural network
(CNN) architectures and various types of GANs for image
generation. However, the discussion on image denoising was
brief. A summary of findings from select literature on image
denoising with applications in digital rock physics is provided
in Table 1.

The literature survey reveals a need for a comprehensive
comparison of denoising approaches for petrophysical
applications. Existing studies mostly utilize non-learnable
filters and rely on visual inspection to evaluate the effect
of image denoising. The lack of quantitative metrics, both
standard and physics-based, cause errors during this critical
image processing step to remain largely unquantified. Finally,
none of the reported studies consider the impact of denoising
techniques on downstream tasks such as image segmentation and
petrophysical property estimation, which is often the ultimate
goal of quantitative imaging.

In this paper, we address these research gaps and compare
the performance of traditional (user-based) denoising methods
against more sophisticated DL-based denoising methods. Four
types of models are considered in this study: (a) commonly used
filters such as the Gaussian, non-local means (NLM),Median etc.,
(b) fully supervised models including the noise-to-clean (N2C),
residual dense network (RDN), and cycle consistent generative
adversarial network (CCGAN), (c) semi-supervised models that
use a portion of clean reference images for learning, and
(d) completely unsupervised techniques like the noise-to-noise
(N2N) and noise-to-void (N2V). We evaluate the performance
of the different denoising models using both qualitative and
quantitative analyses against an independent ground truth.
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TABLE 1 | A summary of selected publications that report on MCT imaging in the digital rock physics domain, highlighting the commonly used denoising methods.

References Porous medium Resolution,

microns

Denoising protocol(s) Denoising

evaluation

Image-based petrophysical

analyses

Culligan et al., 2004 Glass beadpack 18 Median – Saturation, interfacial area

Porter and Wildenschild,

2010

Beadpack 11.8, 5.9 Anisotropic diffusion,

Median

Qualitative Interfacial area

Landry et al., 2011 Acrylic Beadpack 25.9 Median – Surface and interfacial area

Iglauer et al., 2012 Clashach Sandstone 9 Anisotropic

regularization

– Porosity, residual oil saturation,

residual oil cluster distribution

Brown et al., 2014 SiO2 Beadpack 10.6, 5.3 Median, total variation,

majority

Qualitative Saturation, interfacial area, mean

interface curvature

Andrew et al., 2014 Bentheimer SS

Doddington SS

Ketton LS

Mount Gambier LS

Estaillades LS

6.16

5.39

4.60

4.44

3.93

Non-local means – Pore size distribution, trapped

residual scCO2 saturation,

trapped scCO2 ganglia size

distribution

Alyafei et al., 2015 Berea SS

Doddington SS

Ketton LS

Estaillades LS

2.7, 5.4, 10.8,

21.6

Wavelet-Fourier filter,

anisotropic

regularization

– Porosity, pore size distribution,

permeability

Freire-Gormaly et al.,

2015

Indiana Limestone

Pink Dolomite

7.5, 8.3,

11.07

Median – Porosity, pore size distribution,

pore and throat radius,

coordination number,

pore-to-pore distance, capillary

pressure

Menke et al., 2016 Estaillades LS

Portland Base bed LS

4.76 Non-local means – Porosity, permeability, specific

surface area

Al-Menhali et al., 2016 Estaillades LS 4.9 Non-local means – CO2 and N2 saturation, ganglia

morphology, and distribution,

in-situ contact angles

Berg et al., 2016 Gildehauser SS 2.2 Non-local means – Porosity, saturation, permeability,

relative permeability

AlRatrout et al., 2017 Ketton Limestone 3.28 Non-local means – In-situ contact angles

Verri et al., 2017 Tight rock 1

Tight rock 2

Sandstone 1

Sandstone 2

2.175

2.73

2.13

2.05

Bilateral, non-local

means

Qualitative Porosity, specific surface area,

equivalent pore diameter,

permeability, tortuosity

Singh et al., 2017 Ketton LS 3.28 Non-local means SNR Local capillary pressure, oil

saturation

Gao et al., 2017 Bentheimer SS 6 Non-local means – Saturation, relative permeability

Lin et al., 2018 Bentheimer SS 3.58 Non-local means SNR,

Average

phase

boundary

sharpness

Interfacial curvature, local

capillary pressure

Rücker et al., 2019 Ketton LS 3.28 Non-local means – In-situ contact angles, fluid

distribution as a function of pore

size

Tawfik, 2020 Indiana LS 2.6 Anisotropic diffusion Qualitative In-situ contact angles

Purswani et al., 2020 Sintered glass frit 6, 18 Non-local means – Porosity, saturation, interfacial

area, connectivity

Sidorenko et al., 2021 Tight SS 1.2 Residual

encoder-decoder

network (RedNet)

SSIM, L1,

L2, VGG-

perceptual

–

Niu, 2021 Sintered glass frit 15 Non-local means Qualitative Porosity, saturation, in-situ

contact angles

Alsamadony et al., 2021 Carbonate rock 14 Pre-trained very deep

SR (VDSR), U-Net

SSIM, L2 –

LS, limestone; SS, sandstone.
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TABLE 2 | Properties of the porous core sample (Niu, 2021).

Diameter, in 0.5

Length, in 2.0

Porosity, % ∼14.7

Absolute permeability, mD 630.4

Pore size distribution, µm 250–500

Inner surface (BET), m2/g ∼0.015

We also compare computational resource requirements and
ease of implementation of the different methods and provide
recommendations. From quantitative comparison, we show the
utility of physics-informed evaluation based on petrophysical
property estimation. From this exercise, we address the following
research questions: can sophisticated denoising protocols yield
a reasonable characterization of a saturated porous medium
using fast X-ray scanning with low-exposure time? Can we use
a reduced number of, or no clean reference images and still
yield accurate petrophysical characterization estimates using low-
exposure MCT images?

METHODOLOGY

Image Acquisition
In this section, we briefly describe the experiment conducted
by Niu (2021) to generate the datasets used in this study. The
MCT images used in this study are of a fritted Robu-type glass
(borosilicate) filter procured from Adam & Chittenden Scientific
Glass Cooperation. This porous medium was selected as a proxy
for real rocks to minimize changes that typically take place in real
rock samples when fluids are injected, such as dissolution, which
can alter the results of the study. The core sample properties are
given in Table 2.

The experimental procedure consisted of wrapping the
core sample in a heat shrink jacket and placing it in an X-ray
transparent Core Lab biaxial FCH series core holder (CoreLab,
2021; https://www.corelab.com/cli/core-holders/x-ray-core-
holder-fch-series). This core holder is made of an aluminum
body wrapped in carbon fiber composite, which reduces
the holder’s X-ray absorption capacity during scanning. The
porous medium is saturated with high salinity brine that has
a composition representative of a saline aquifer (Tawfik et al.,
2019). Brine was pre-equilibrated with CO2 at 1,500 psi and
45◦C before being used to saturate the core. The core sample
was then flooded with supercritical CO2 (scCO2) at a pore
pressure of 1,180 psi and temperature of 41.7 ± 0.2◦C (107.06
± 0.36◦F), as well as confining pressure of 1,430 ± 50 psi. The
confining pressure was applied by injecting deionized water into
the annular space of the core holder. The high pore pressure and
temperature enabled the maintenance of scCO2 conditions.

The MCT images were acquired using a GE v|tome|x L300
multi-scale nano/microCT system, using the 300 kV X-ray tube.
Two datasets were acquired at the same voxel resolution of 15
µm: a high-quality (HQ) scan, where more exposure time was
allowed to reduce noise. The second dataset was a low-quality

TABLE 3 | MCT scanning parameters.

HQ LQ

Resolution, µm 15

Voltage, kV 200

Current, µA 70

Magnification 13.5X

Scanning time, min 90 12

(LQ) scan which was under the same experimental conditions,
using the same scanning parameters except for exposure time,
where less scanning time (∼7.5 times less) was needed to produce
a noisier version of the HQ dataset. The HQ dataset is used in
this study as a ground truth to evaluate the different denoising
methods and compare the petrophysical properties computed
using the different denoised datasets. The HQ dataset is also
used as a clean reference dataset to train the model for some of
the DL denoising algorithms, which are discussed later in this
section. The scanning details for both datasets are presented in
Table 3. The sinograms generated during image acquisition were
reconstructed using GE’s proprietary GPU-based reconstruction
software datos|x 2 reconstruction.

Selection and Implementation of Denoising
Methods
The datasets obtained from the scans contain 2,024 32-bit images.
Pre-processing of the datasets involved extracting a cylindrical
sub-volume to eliminate the core holder and heat shrink jacket.
Additionally, the top 103 and bottom 490 slices were removed to
eliminate the cone-beam effect, which is typically observed at the
top and bottom of the scan volume.

Non-learnable, Traditional Denoising Filters
Numerous filtering algorithms have been developed for reducing
image noise to make the gray-scale CT images ready for the
image segmentation step, after which feature extraction and
quantitative analysis is carried out. In this study, we focus
on the errors incurred particularly during the denoising step.
Denoising may take place before image reconstruction by taking
advantage of existing statistical models of noise, derived from an
understanding of its physical origin. However, due to missing
visual perception, operations performed on a sinogram might
have unpredictable effects on real features post reconstruction
(Matrecano et al., 2010). On the other hand, post-reconstruction
filters are pixel-to-pixel transformations of an image. This
transformation is based on the gray-scale intensity of each pixel
and its neighboring pixels (Machado et al., 2013). They can be
classified as low-pass or high-pass filters; a low-pass filter is used
for image smoothing, whereas a high-pass filter is typically used
for image sharpening. Some of the most commonly used filters
include Gaussian filter, median filter, NLM, and AD filter.

The Gaussian filter is a low-pass filter that uses a Gaussian
function. Applying this filter involves convolving an image with
a Gaussian function, which may result in a blurrier image. A
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median filter is also a low-pass smoothening filter. It replaces
the gray-scale value of each pixel with the median of its
neighborhood. The neighborhood is pre-specified by the user as
6 faces, 18 edges, or 26 vertices. The process may be repeated
to further smooth the image. The median Filter usually works
well when images contain non-Gaussian noise and/or very small
artifacts. The NLM filter first proposed by Buades et al. (2005)
assumes the noise to be white noise. The value specified for the
target voxel is a weighted-average of neighboring voxels within
a user-specified search window. The weights are determined by
applying a Gaussian kernel based on the similarity between the
neighborhoods. The AD filter (Weickert, 1996) also known as the
Perona-Malik diffusion, aims to reduce image noise within each
phase while preserving edges and boundaries between phases.
Typically, a diffusion stop criterion that exceeds the variation
within a given phase is set to identify when diffusion should no
longer take place to terminate diffusion and preserve edges. If
this stop criterion is set to themaximum difference between voxel
intensity values, diffusion never stops and the AD filter converges
to a simple isotropic Gaussian filter. Some of the other used filters
applied include Bilateral, SNN, Total variance, Nagao, Kuwahara,
BM3D, Minimum, and Maximum filters.

The image processing software Avizo (v2020) was used to
implement the simple filters, including the Gaussian, median,
NLM, AD, bilateral, and SNN filters. For the Gaussian filter,
the standard deviation was set to two voxels, and the kernel
size was set to nine voxels in each direction. The median
filter neighborhood was set to 26 (vertex neighborhood), and
a total of three iterations are performed. The NLM filter
was implemented using the adaptive-manifolds-based approach
(Gastal and Oliveira, 2012). The search window was specified
to be 500 voxels, and the local neighborhood was set to four. A
large enough search window is selected to increase the chances
of finding similar structures and phases. The local neighborhood
value was determined such that it is similar in size to the fine
structures that can be found in the image. Spatial standard
deviation (which determines the relationship between how fast
the similarity value decreases as distance between the target
and neighboring voxel increases), was set to five. Similarly, the
intensity standard deviation (which determines the relationship
between how fast the similarity value decreases based on voxel
intensities) was set to 0.2. For the AD filter, a total of five
smoothing iterations per image is performed, with the diffusion
stop threshold set to 0.048. That is, if the difference between
the target voxel value and the value of its neighboring six voxels
exceeds this stop threshold value, diffusion will not occur, hence
preserving and enhancing phase interfaces. The bilateral filter
parameters were kernel size = 3 and similarity = 20. Finally,
for the SNN filter a kernel size of 3 was used. It is evident that
these simple filters rely heavily on the user and their experience
which lend themselves to likely bias. As such, there is a need for
non-user-based denoising protocols.

Deep Learning Denoising Methods
A few notable DL-based denoising algorithms have been selected
based on their architecture and input requirements. The most
common architectures for encoder-decoder based denoising are

U-Nets, GANs and RDNs. U-Nets are a sequence of contracting
and expanding convolution blocks (forming a “U” shape)
originally proposed by Ronneberger et al. (2015) for the purpose
of biomedical image segmentation. U-Nets have the ability to
accumulate hierarchical features at multiple resolutions and
maintain sharpness throughout the decoding process (Diwakar
and Kumar, 2018). Residual dense networks, on the other hand,
are inspired by the neural connections present in a human brain.
Here, output of a convolution block is combined with its input
to help train deeper neural networks and maintain a version
of the original input features. Residual dense networks have
lately shown that accumulating features through local and global
residual learning can significantly improve image restoration
(Zhang et al., 2021). Finally, GANs, are a recent addition to the
neural network family which are designed to generate data in
a semi-supervised setting. The primary reason for the success
of GANs, however, is its robust loss function which inherently
accommodates several noise removal objectives like L1 distance,
distribution matching etc. (Yang et al., 2018). This advantage
proves essential in denoising tasks where noisy inputs have to be
mapped to clean outputs.

In each of the above architectures, a state-of-the-art model has
been identified and used for comparison against the traditional
filter-based denoising techniques. Noise-to-clean is a U-Net
proposed by Lehtinen et al. (2018) which learns to minimize
a mean absolute error (MAE) distance between the denoised
image and its corresponding clean reference. Similarly, residual
dense network by Zhang et al. (2021) is a residual network
aimed at improving fine-grained features in the restoration of
noisy images. Cycle Consistent Generative Adversarial Denoising
Network (CCGAN) by Kang et al. (2019) is multi-stage GAN
network originally designed to denoise coronary CT images.
The three models mentioned above use a supervised approach
where they extract the 1:1 mapping between noisy and clean
pixel intensities. However, in practice, clean reference MCT
images are costly and hard to obtain, since this equates to
higher X-ray exposure, longer scan durations and other noise
prevention techniques which may not be cost- and/or time-
efficient. For this reason, an evaluation involving unsupervised
machine learning approaches is essential for practical purposes.
In this direction, noise-to-noise by Lehtinen et al. (2018) is a
reference-less approach based on a U-Net architecture and used
for removing common noise forms present in images. Similarly,
N2V is another unsupervised technique introduced by Krull et al.
(2019), which uses pixel manipulations to infer the presence
and removal of noise. Noise-to-noise ratio is a unique model
which tries to estimate the unvarying signal behind varying
noise realizations. This is intuitively similar to removing moving
tourists in an unchanging scenic photo. The training for N2N
requires the addition of a synthetic noise profile which matches
low dose signal. For our purpose, we use a mixture of Poisson-
Gaussian along with Perlin noise textures to simulate random
noise. For the Poisson-Gaussian mixture, we first simulate the
Poisson process using the pixel intensities as the mean (λ). We
then scale this value with a Gaussian factor using mean (µ) of
0 and standard deviation (σ) that is randomly picked between
0 and 0.005. For the Perlin noise, we use a simplex model with
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scale set to 5, octaves to 6, persistence to 0.5, and lacunarity to 2.0
which showed the best match for the texture. Such profiles have
been shown to emulate low-exposure noise in CT images (Lee
et al., 2018). The model then learns to estimate the mean of the
signal through several iterations. For test purposes, we do not add
any noise and since the model is already accustomed to removing
similar noise profiles, the denoising is successful.

Fully supervised and fully unsupervised DL models account
for the best and worst-case scenarios of data availability,
respectively. In this study, we propose new semi-supervised
denoising models, where we use limited number of HQ high-
exposure images to denoise a larger LQ low-exposure dataset.
This can be applicable in several scenarios, including: (1) when
the full length of a core sample needs to be scanned at a high
resolution, yet resources in terms of time, availability, andmoney,
are limited, and (2) when the processes or state of the core
sample we are interested in visualizing changes quickly, and a
fast, low exposure scan is deemed necessary (Gao et al., 2017),
and (3) to avoid or minimize drift errors resulting from increased
temperature of the experimental setup during longer scans,
which leads to deviation of a feature from its original location
due to mechanical and thermal stresses (Probst et al., 2016).
Therefore, we extend the use of the N2N model to accommodate
three HQ to LQ ratios where N2N25 is the scenario where 25% of
the LQ data has a corresponding HQ reference image while 75%
has no clean reference. Similarly, N2N50 and N2N75 indicate
scenarios with a higher percentage of clean reference images. In
the literature, fully supervised models use MAE between pixel
intensities (L1 loss) to learn the mapping, whereas models like
N2N and N2V, utilize a mean squared distance error (L2 loss).
We propose a combination of the losses to reflect our semi-
supervised task in training. For N2N25, we scale the L1 loss
with a 0.25 weight and the L2 loss with a 0.75 weight. Similarly,
for N2N50 and N2N75, we modify the weights to reflect the
percentage of clean references. Using either L1 or L2 only yielded
lower PSNR and SSIM values. Table 4 details the models and
their specifications.

For the DL models, we split the training and testing data
using a 80–20% non-overlapping split where 286 slices are
randomly sampled from each of the LQ and HQ datasets and
reserved for testing and validation, while the remaining 1,140
slices are used for training. The slices are reshaped to 512 ×

512-pixel resolution using bicubic interpolation (Keys, 1981)
in order to accommodate GPU memory limitations. After the
model has been trained and evaluated, the original 800 × 800
resolution is obtained through similar bicubic interpolation.
All the models are trained in accordance with their original
implementation. Some hyperparameters are optimized to obtain
the best possible performance from the model. Further details
about the architecture, input requirements and choice of hyper-
parameters like batch sizes, learning rate and number of epochs
are provided in Table 4. We perform training over 200 epochs
and use the ADAM optimization algorithm for all the models.
We pick the epoch with the lowest validation PSNR in order
to perform testing. Upon the completion of training, the
evaluation is performed on the held out 286 slices from the
test set. For all the models, ADAM optimization was used
(Kingma and Ba, 2015).

Standard Quantitative Denoising
Evaluation Metrics
Traditionally, image degradations that take place during
acquisition, reconstruction, processing, and storage have been
evaluated qualitatively by visual inspection and subjective
assessment based on the assumption that human visual
perception is highly adapted to extract structural information
(Wang et al., 2004). However, as more data is being generated
and more complex structures are being studied, it becomes
increasingly difficult to rely on just human inspection. Thus,
efforts to automate image quality assessment have been
undertaken since 1972, when Budrikis developed one of the
first quantitative measures to predict perceived image quality
(Budrikis, 1972). These metrics have since evolved to match
modern imaging and perceptual standards.

Peak Signal to Noise Ratio (PSNR)
Peak signal to noise ratio is a comparative metric widely used
to determine noise degradation in an image with respect to a
clean reference. Peak signal to noise ratio is an expression for the
ratio between the maximum possible value (power) of a signal
and the power of distorting noise that affects the quality of its
representation. It is measured in decibels (dB) and the higher
the PSNR, the better the image. Theoretically, PSNR for the HQ
image is not defined and so it is manually set to 100 dB. In our
setting, we calculate the PSNR on the test set which has not
been used for training the models. The PSNR value reported
for a model is averaged over the previously 286 held-out slices
from the test set. The PSNR of the LQ slices act as a baseline
for comparison.

Structural Similarity Index Measure (SSIM)
Unlike PSNR, SSIM is a perceptual metric which is not based
on pixel intensities but rather on structural similarity between
the denoised and the clean reference images (Wang et al.,
2004). This is especially important when trying to evaluate
fine-grained details and edges. It ranges from 0 to 1, where
higher SSIM indicates a cleaner image. Similar to PSNR each
of the SSIM values are calculated and averaged. The equation
for the SSIM calculation is detailed in the Appendix in
Supplementary Material.

Blurring Index
Many denoising algorithms focus on removing high-frequency
components which correspond to noise. However, this leads to
blurry images with fuzzy edges and high smoothness. Blurring
index penalizes such images with a lower blurring index score.
Occasionally, some DL models, smoothen regions based on
expected intensity values leading to the removal of sharp high
frequency noise elements. Though this is beneficial, the models
obtain lower blurring index (BI) scores. The implementation of
BI is detailed in the Appendix in Supplementary Material.

Contrast to Noise Ratio (CNR)
In grayscale images, a vital requirement of restoration models
is the ability to separate foreground region intensities from
the background noise. Contrast-to-noise ratio (CNR) is a
reference-less metric which yields a higher value for higher
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TABLE 4 | Parameters selected for the DL-based denoising algorithms used in this study.

Model Architecture Input Requirement Selected

Epoch*

Batch Size Initial Learning

Rate

Learning Rate

Algorithm

Loss Function

CCGAN GAN LQ, HQ 198 4 slices 0.001 Plateau LAdv + LCyc + LIden

RDN Dense residual

network

136 0.0001 Step L1 (MAE)

N2C U-Net 167 8 slices 0.001 Exponential

N2N-75% LQ, 75% HQ 177 (0.75*L1) + (0.25*L2)

N2N-50% LQ, 50% HQ 172 (0.50*L1) + (0.50*L2)

N2N-25% LQ, 25% HQ 138 (0.25*L1) + (0.75*L2)

N2N LQ 195 L2 (MSE)

N2V 171 32 (128 × 128)

patches

Linear

*Selected epoch is based on the lowest validation PSNR.

contrasts and lower values for indistinguishable foreground and
background regions. The higher the CNR, the cleaner the image,
which makes it easier to segment the different phases. Our
implementation follows Shahmoradi et al. (2016), where we
identify six key regions of interest (ROI) including a background
region from 10 random slices in the denoised test set. A detailed
explanation of the CNR formula is provided in the Appendix in
Supplementary Material.

Blind/Reference-Less Image Spatial Quality

Evaluator (BRISQUE)
Blind/reference-less image spatial quality evaluator (BRISQUE)
helps understand the presence of noise in an image without
the use of a reference (Mittal et al., 2011). It relies on spatial
statistics of the natural scene (NSS) model of locally normalized
luminance coefficients in the spatial domain, as well as the model
for pairwise products of these coefficients in order to extract
spatially dense variances which occur in noisy images. We use
the publicly available PyBRISQUE-1.0 software package (2020)
for the implementation of this metric (https://pypi.org/project/
pybrisque/).

Naturalness Image Quality Evaluator (NIQE)
Naturalness image quality evaluator (NIQE) unlike BRISQUE
computes distortion specific features such as ringing, blur, and
blocking to quantify possible losses of “naturalness” in the
image due to the presence of distortions, thereby leading to a
holistic measure of quality (Mittal et al., 2013). For this, we use
the skvideo.measure.niqe package from the Scikit-Video library
version 1.1.11 (Skvideo, 2013; http://www.scikit-video.org/
stable/modules/generated /skvideo.measure.niqe.html). Each of
the 286 slices are individually passed through the function and
the scores are averaged for each model.

Physics-Informed Quantitative Denoising
Evaluation Metrics: Petrophysical
Characterization
Physics-informed denoising evaluation is performed through the
estimation of petrophysical properties extracted from image data.
To estimate these petrophysical properties, the denoised images

TABLE 5 | Features selected for segmentation for the different datasets using

ilastik.

σ0 σ1 σ2 σ3 σ4

Feature 0.3 0.7 1 1.6 3.5

Color/Intensity

Gaussian smoothing ✓ ✓ ✓ ✓ ✓

Edge

Laplacian of Gaussian ✓ ✓ ✓ ✓ ✓

Gaussian gradient magnitude ✓ ✓ ✓ ✓ ✓

Difference of Gaussians ✓ ✓ ✓ ✓ ✓

Texture

Structure tensor eigenvalues ✓ ✓ ✓ ✓ ✓

Hessian of Gaussian eigenvalues ✓ ✓ ✓ ✓ ✓

need to be segmented to extract phase labels. In order to highlight
the effect of different denoising approaches, and their effect on
image-based rock and fluid property estimates, we used the same
segmentation method on all denoised data. The segmentation
method used was Ilastik1, a supervised machine-learning based
segmentation tool that is built using a fast random forest
algorithm (Sommer et al., 2011). The user manually provides a
limited number of voxel labels for training. We maintain the
same features among the different denoised datasets (Table 5).
An almost equal number of marker voxels were selected for each
of the three phases (solid/glass, brine, and scCO2). Also, the
number of markers was kept to a minimum (∼0.005% of sample
voxels) to avoid overfitting. The same number of marker voxels
per slice is maintained across all the datasets to minimize bias.

The use of quantitative denoising evaluation metrics is
a good practice over qualitative and subjective assessment
of image quality. However, a HQ image as determined by
standard denoising evaluation metrics may not necessarily
render the most accurate estimate of petrophysical properties,

1Ilastik (2021). Available online at: https://www.ilastik.org/ (accessed January 4,

2021).
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either due to insufficient noise removal, or excessive filtering
which results in information loss. Therefore, we evaluate
the implemented denoising algorithms based on how various
calculated petrophysical properties compare to those calculated
using the HQ benchmark dataset. To achieve this, a toolbox was
developed in Matlab R2019a to calculate different petrophysical
properties, including (1) porosity, (2) saturation, (3) phase
connectivity, which is represented by phase specific Euler number
(phase Euler number divided by the phase volume), (4) phase
SSA, which is calculated as the area of a given phase divided by
its volume, (5) fluid-fluid interfacial area, (6) mean pore size, and
(7) mean scCO2 blob volume. We also calculate phase fractions
per slice along the length of the core.

RESULTS AND DISCUSSION

In this section, we first describe the denoising results qualitatively
by visual comparison of denoised datasets to the HQ ground
truth images. Next, we present quantitative comparison results.
The first set of quantitative comparison include standard metrics.
Finally, we compare the quantitative petrophysical results of the
denoised images post segmentation against the ground truth HQ
segmented images.

Qualitative Evaluation of Denoising
Methods
Figure 1 shows top view cross-sections from the HQ and the
LQ data sets. The LQ image is evidently noisier than the HQ
image. We have also marked regions to highlight spatial feature
differences between the HQ and LQ images and associated
implications for petrophysical property estimation. The red
region shows that some small solid features can be inaccurately
characterized as fluid, resulting in porosity estimation errors,
while the green region demonstrates a blurry fluid-fluid interface
in the LQ image, which can lead to errors in estimating fluid
saturation and petrophysical properties pertaining to fluid–fluid
interfaces. Similarly, the blue region shows an example where
the solid phase can be falsely characterized as connected in
the LQ image, while the HQ image shows some disconnection
of the solid phase. This could result in errors in topological
characterization, such as Euler number calculations for the
solid phase.

A cross-sectional image for each of the HQ dataset, LQ dataset
and the denoised datasets are shown in Figure 2. Visually, the
NLM filter results in an overall smoother image with significantly
less variation within each phase (solid, brine, and scCO2), as
it replaces the value of each voxel with the mean of similar
voxels within the search window. The median and SNN filters
also visually exhibit smoother phases, compared to the AD
and bilateral filters. Conversely, the Gaussian filter expectedly
results in image blurring, which can highly affect the accuracy of
calculated interfacial petrophysical properties, such as interfacial
area and mean interface curvature. The reference-based DL
methods qualitatively show good performance compared to
traditional filters. Noise-to-clean and CCGAN show a superior
performance over RDN, with smoother phases and sharper

edges. However, comparing the two models (N2C and CCGAN)
with the HQ reference image, CCGAN resembles the reference
image more closely in some features (highlighted in the blue
circles), while N2C resembles the reference image more closely in
other features (highlighted in the green circles). This exemplifies
that qualitative or visual evaluation of denoising models is
not a sufficient means of evaluation when deciding on the
best denoising model to use. Reference-less DL methods (N2V
and N2N) show little improvement compared to the LQ
dataset. Finally, the semi-supervised DL methods show visually
promising results, where the N2N-75% and N2N-50% show
significant improvement compared to LQ.

The histogram representing the distribution of gray-scale
intensities within a dataset can be used to qualitatively assess
image quality. In our dataset, where we expect to see three
phases—solid glass, brine, and scCO2, an ideal histogram would
have three well-defined peaks with varying maximum voxel
count, depending on the abundance of the phase represented by
that peak in the imaged sample. The more distinguishable those
peaks are, the sharper the phase boundaries and interfaces, and
the easier the segmentation. Also, the smaller the spread of each
peak, the smoother the bulk phase is (i.e., the phase is represented
by less gray-scale values indicating a more homogeneous or
smooth bulk phase). In Figure 3, we show the histograms of
the HQ, LQ, and denoised datasets. The solid glass peak has
the highest voxel count in all datasets, as expected, being the
most abundant phase in our sample. We also observe a clear
difference between the HQ and LQ datasets, where we can see
three peaks in 3a, but only one visible peak in 3b, whichmakes the
differentiation between scCO2 and brine more difficult. From the
denoised dataset histograms, the supervised and semi-supervised
DL denoising models perform better than traditional and un-
supervised DL denoising methods. Also, we observe that the
issue of fluid-fluid differentiation (where we can’t see all three
peaks) persists when using the bilateral, N2V, N2N25, and N2N
denoising methods. We also observe that some denoising models
possibly outperformed the HQ dataset where the three peaks are
even more distinguishable, including N2C, RDN, CCGAN, and
N2N75. Additionally, upon comparing 3i and 3k with 3j, we can
see results consistent with our observations from Figure 2, where
N2C and CCGAN have more well-defined and narrower peaks
compared to RDN. Despite the additional insight obtained from
inspecting the gray-scale intensity histograms, histograms alone
cannot be used to infer image quality. The histogram indicates
the distribution of pixel intensities but not their location. This
calls for a more localized inspection of the images to assess how
voxel spatial distribution impacts the accuracy of petrophysical
property estimates.

Quantitative Evaluation of Denoising
Methods
Figure 4 demonstrates amore quantitativemethod for evaluating
the performance of the different denoising models using an
intensity profile along a line A–A′. Here, we use N2C as an
example. From this profile, we can obtain insights on the (1)
smoothing effect within each phase by comparing the plateau
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FIGURE 1 | (a) Sample cross-sectional slice from the HQ dataset, (b) Sample cross-sectional slice from the LQ dataset. Dashed boxes represent spatial features that

demonstrate differences between the two datasets. The red box represents an example region which can cause deviation in calculated porosity. The blue box

represents an example region which can cause deviation in calculated connectivity. The green box represents an example region which can cause deviation in

calculated saturation.

of the noisy LQ dataset to that of the HQ and denoised
dataset, and (2) contrast enhancement, which can be assessed
by comparing the difference in intensities between the different
phases. A larger difference implies an improvement in contrast,
and finally (3) we can also assess phase boundary sharpness by
calculating the steepness of the slope at each phase boundary.
A steeper slope indicates a sharper boundary, which makes
it more easily identifiable during image segmentation and
petrophysical characterization. In Figure 4, we observe that the
HQ profile exhibits oscillations within each phase, which shows
that noise still exists in the HQ data, but the amplitude of
those oscillations is smaller, which implies less noise and more
homogeneous phases. We also observe slightly higher average
intensity for the solid and brine phases in the HQ profile
compared to the LQ profile. Additionally, we observe that N2C
has improved the image quality on all three aspects: smoothing
bulk phases, improving contrast between phases, and improving
boundary sharpness. The scCO2-solid phase boundary has the
most improvement in boundary sharpness with ∼28% increase
in slope.

Example regions are highlighted in Figure 5a, following
the workflow proposed by Shahmoradi et al. (2016) to assess
local image quality using CNR. ROI-0 corresponds to the
background which is used to calculate the CNR of other regions.
ROI-1 corresponds to brine with no interfaces, while ROI-2

corresponds to the scCO2 phase, and ROI-3 corresponds to
the solid phase. In addition, two interface regions, ROI-4,
an interface between solid and brine and ROI-5, an interface
between solid and scCO2 are also considered. We pick a random
slice and indentify ROIs 1–5 in the next 22 consecutive slices.
Figures 5b,c show localized average CNR values within bulk
phases and at solid-fluid interfaces, respectively. We see that
all denoising models, except for N2V, result in an improved
CNR both in bulk phases and at interfaces. Supervised DL
denoising models result in the largest CNR improvement,
with N2C being a top performer. The N2N75 model also
yields similar results as fully supervised denoising models,
which is promising for cases where not all the HQ data is
available. We also observe that the N2N25 model results in
lower average CNR compared to N2N, which can be counter
intuitive. However, this could be due to the inherent training
objective of the model. The base N2N model estimates the
mean of the signal and uses multiple noisy versions of the
same signal to do so. However, when a small number of
clean samples are provided, the network’s estimate of the
mean diverges from the expected value, which negatively affects
learning. When provided with enough clean samples (50% or
greater), the model converges to the mean more accurately
compared to the base N2N or N2N25 versions. Comparing
the improvement within bulk phases and at phase boundaries,
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FIGURE 2 | Qualitative comparison of the performance of the different denoising methods through example cross-sectional slices. (A), HQ reference; (B), LQ;

(C),Gaussian; (D), Median; (E), Non-local means; (F), Anisotropic diffusion; (G), Bilateral; (H), Symmetric nearest neighbor; (I), Noise-to-clean; (J), Residual dense

network; (K), Cycle consistent generative adversarial network; (L), Noise-to-void; (M), Noise-to-noise (75%); (N), Noise-to-noise (50%); (O), Noise-to-noise (25%);

(P),Noise-to-noise.

we do not see a significant difference, indicating that all
denoisingmethods improve contrast homogeneously throughout
the image. Although quantitative, one limitation of the type

of analysis performed in Figures 4, 5 is that they evaluate the
performance of the denoising models locally, which requires
manual selection of specific sites. A comprehensive denoising
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FIGURE 3 | Qualitative comparison of the performance of the different denoising methods through gray-scale histograms.

FIGURE 4 | (Left) Example cross-sections through the high quality (HQ), low quality (LQ) and Noise-to-Clean (N2C) datasets. (Right) Normalized gray-scale values

along a line (A-A′) passing through the solid, brine, and scCO2 phases in the example cross sections. Slopes at the phase boundaries are indicative of phase

boundary sharpness for the HQ, LQ, and N2C profiles.
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FIGURE 5 | Comparison of contrast-to-noise (CNR) ratio for denoised datasets against noisy LQ dataset. (a) Example regions of interest (ROI 1–5) considered for

bulk and edge CNR calculations are shown in red boxes. ROI 0 represents the background ROI against which contrast is calculated. (b) Average CNR of bulk phases

(solid, brine, scCO2) in 22 slices, and (c) Average CNR of phase boundaries (solid-brine and solid-scCO2) in 22 slices.

TABLE 6 | Quantitative comparison of denoising algorithms using standard denoising evaluation metrics.

Models PSNR SSIM Blur index CNR BRISQUE NIQE

HQ Images (Reference) 100* 1* 0.724 19.233 118.183 26.645

LQ Images 18.224 0.507 0.634 21.472 106.619 25.517

Traditional filters















































Gaussian 23.378 0.769 0.783 34.584 116.833 26.875

Median 24.593 0.716 0.753 30.504 118.237 27.173

NLM 25.396 0.760 0.715 36.018 116.948 26.900

AD 25.019 0.700 0.735 29.326 118.336 27.287

Bilateral 24.271 0.652 0.706 26.384 117.239 27.164

SNN 22.354 0.677 0.789 30.139 118.065 26.713

Fully supervised DL models











N2C 24.702 0.798 0.752 46.517 116.387 26.874

RDN 25.397 0.785 0.730 40.313 116.443 26.902

CCGAN 24.716 0.795 0.728 39.702 116.536 26.875

Semi-supervised DL models















N2N-75% 25.332 0.800 0.726 40.413 116.774 26.884

N2N-50% 24.518 0.716 0.711 28.356 118.799 27.325

N2N-25% 23.084 0.636 0.687 24.019 117.427 26.860

Un-supervised DL models

{

N2N 23.339 0.650 0.718 25.099 117.707 26.981

N2V 20.607 0.546 0.662 21.569 112.048 26.356

Colors represent how well a model performs compared to the rest of the models for a given denoising evaluation metric.

*PSNR and SSIM are calculated with respect to HQ reference and thus are set to 100 and 1 for HQ inputs, respectively.

model performance evaluation is quantified using standard
evaluation metrics detailed in Table 6.

The CNR value reported here represents the average of
the five individual CNR regions detailed earlier (Figure 5).

Of the six metrics measured, the DL models performed the
best in five of them. With Blur Index however, the metric
measures the presence of sharpness which can be spiked by high
frequency noise. The traditional filters failing to remove such
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noise achieve a misleading high blur-index score. Though the
unsupervised models performed poorly, they were comparable to
the traditional filter-based methods. Noise-to-noise ratio had the
lowest values across all the metrics. It is also observed that PSNR
values are generally low across all denoising methods. However,
PSNR uses pixel distance and may incorrectly favor models that
have higher resemblance to the HQ images rather than actual
signal accuracy. The DL models tend to produce images that
appear cleaner than the HQ image but score lower PSNR due to
this reason. Residual dense network had the highest PSNR gain
with an average increase of 7.173 dB. Though it might be possible
for an image to obtain a high PSNR, SSIM penalizes structural
anamolies like blurring, noise contamination, wavelet ringing,
and blocking (caused by image compressions like JPEG) leading
to lower SSIM scores.

Each evaluation metric points to unique capabilities of the
models. For example, a high CNR obtained for N2C makes it
ideal for segmentation tasks while a high SSIM obtained through
N2N-75%modelmakes it favorable for CT image artifact removal
task. The differences observed, however, between supervised DL-
based models and N2N-75% in terms of SSIM are not statistically
significant, meaning that they all perform equally well for this
metric. N2N-50% produced the most natural looking images
(NIQE) and can be used to generate additional synthetic clean
samples when only 50% of clean data is available.

We also evaluated the denoising methods using physics-
based metrics, or more specifically—petrophysical properties. To
perform the petrophysical characterization, we first segmented
the datasets. Figure 6 shows example segmented cross sections
from the HQ and LQ datasets. It also shows a difference
image, where the segmented LQ image was subtracted from the
segmented HQ image. The percent mislabeling for each phase
pair: brine-solid, scCO2-brine, and scCO2-solid is 2.46, 0.37,
1.57%, respectively. Based on the percent mislabeling of the
denoised images, we seeminor improvement compared to the LQ
image. Similarly, image subtraction was performed between each
of the denoised images and the HQ image. Noise-to-clean and
N2N75 showed the most improvement especially in CO2-solid
and brine-solid phase mislabeling. The differences are presumed
to be mainly due to the difference in the amount of noise in
each image since the user interference was kept to a minimum
in the segmentation step. Further, the differences within this
single image might seem subtle, but it has a significant effect
on petrophysical characterization performed using the entire
image stack. The full petrophysical characterization and error
quantification against the ground truth is presented in Figure 7

and Table 7.
For petrophysical property estimations, we first consider bulk

measures of phase fractions and saturations along the length of
the core sample. Figure 7 shows the percent errors in porosity,
scCO2 saturation, and brine fraction (measured as brine volume
divided by the bulk volume for the sample space considered)
profiles along the length of the sample for the different denoising
methods post segmentation. The performance of denoising
methods, namely, traditional methods, supervised, unsupervised,
and semi-supervised DL-based methods are compared against

the HQ dataset. Generally, most of the traditional and semi-
supervised DL-based methods show closer results to the ground
truth (Figure 7A). Out of the traditional filters, the median
filter seems to have the closest porosity profile to the ground
truth HQ dataset, followed by the AD and bilateral filters.
Conversely, the Gaussian filter performed poorly, consistently
underestimating porosity. Similarly, NLM, which is one of the
most commonly used filters in the digital rock physics literature,
underestimates porosity throughout the length of the core and
has the second worst performance. Unlike their performance
in terms of standard evaluation metrics (Table 6), supervised
methods show poor performance, consistently underestimating
porosity along the entire length of the sample. Additionally,
the error is increasing toward the bottom of the sample in
most denoising methods, especially Gaussian, RDN, and N2V
methods. Upon inspecting the root cause of this, the original
LQ dataset was noisier toward the bottom of the sample as
evidenced by lower PSNR (Supplementary Figure 1A). This is
mainly due to the aluminum container, covering the bottom half
of the sample, used to fix the coreholder in place during the
scan and avoid wobbling which can result in image blurring
(Supplementary Figure 1B). The Gaussian filter, which is a
linear spatially invariant filter, cannot resolve the noise variation
along the sample. Residual dense network, a very deep network,
could be overfitting the data and therefore less able to adjust to
the varying noise along the sample, compared to other supervised
models (N2C and CCGAN).

When comparing the CO2 saturation error profiles
(Figure 7B), it is observed that traditional methods show
close results, while most of the DL-based methods show poor
performance when compared to the ground truth. Out of the
traditional filters, SNN followed by median filters showed the
most deviation from the ground truth. The Gaussian filter, on the
other hand, had the closest results out of all the denoisingmodels.
Residual dense network and N2N significantly overestimate CO2

saturation. The supervised DL-based methods, except for N2C,
show weak performance while the semi-supervised DL-based
methods show slightly better performance. Noise-to-noise
ratio, as an exception, shows the second-best performance of
all methods, while RDN significantly underestimates scCO2

saturation. Larger error is seen at the top of the sample for all
denoising methods except N2C and N2N75.

As the intermediate phase, brine fraction error profile is
presented as opposed to brine saturation to account for errors
that may result from misclassification of brine as solid or CO2

post-denoising (Figure 7C). Noise-to-clean, followed by NLM
show the least deviation compared to the ground truth, whereas
RDN, CCGAN, and N2N show a significant deviation. Noise-to-
noise ratio also shows a surprisingly close match to the ground
truth brine fraction profile. Overall, these results demonstrate
that even within bulk property estimates, since differences occur
at fluid-fluid and fluid-solid interfaces, consideration of both
porosity and saturation errors is critical. Again, here we see
that N2C and N2N75 are robust enough to maintain consistent
performance throughout the sample even though the dataset has
a spatially varying noise profile.
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FIGURE 6 | Example segmented HQ image using ilastik, and difference image |HQ–LQ| showing the mislabeling in LQ compared to the HQ image. Red, scCO2-solid

mislabeling; Blue, brine-solid mislabeling; yellow, scCO2-brine mislabeling.

Table 7 summarizes the % errors associated with the estimates
of bulk petrophysical properties, namely porosity and scCO2

saturation, as well as pore-scale properties including, specific
Euler number, SSAs, interfacial area, average pore size and
average scCO2 blob volume. These errors are quantified relative
to the ground truth HQ images. The actual property estimates
for the ground truth HQ images are presented in the first
row of Table 7. Traditional filters like the median, AD and
bilateral filters show an improved porosity estimate compared
to the original LQ images, but the Gaussian filter results in the
highest error for porosity (13.9%). This can be explained by
the blurring caused by the Gaussian filter at phase interfaces,
making it more difficult to locate boundaries, especially where
the gray-scale intensities are less distinguishable like at the solid-
brine interfaces. However, the Gaussian filter shows the best
performance in terms of scCO2 saturation, which may be due to
a larger surface area of the scCO2 phase being in contact with
the solid phase rather than the brine phase, hence, enabling us to
distinguish between the two phases more easily in terms of gray-
scale intensity and labeling. The median filter on the other hand
shows an opposite result where it exhibits better performance

when estimating porosity and poorer performance in estimating
scCO2 saturation. This can be explained by how a median filter
works, where it involves replacing the gray-scale values of voxels
within a user-specified window by their median value. This
means that the small scCO2 blobs observed in the dataset in
the bulk brine phase will be replaced with gray-scale values that
resemble brine, leading to a lower scCO2 saturation (compared
to HQ), but not affecting porosity as much. In general, most
traditional filters perform better for bulk estimates of porosity
and phase saturation, compared to DL-based methods.

For the pore-scale properties, we observe that supervised and
semi-supervised methods show a better performance overall,
except for scCO2 SSA and average pore size, where bilateral and
SNN filters, respectively, show better performance. This can be
attributed to the edge preserving nature of both the bilateral
and SNN filters. For the scCO2 SSA, this allows fine-scale details
like small scCO2 blobs observed in our dataset to be preserved,
leading to a more accurate representation of phase boundaries
and surfaces. Noise-to-clean and N2N75 perform well for most
of the properties with ∼10% error or less. Other methods like
RDN and N2N25 perform poorly with errors as large as 348.28%.
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FIGURE 7 | (A) Porosity, (B) scCO2 saturation, and (C) brine phase fraction percent error (relative to HQ) along the length of the core for the different denoising

methods.
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TABLE 7 | Physics-based comparison of denoising algorithms using bulk and pore-scale petrophysical properties.

Porosity,

%

scCO2

saturation,

%

SEN

(solid),

mm−3

SEN

(pore),

mm−3

SEN

(Brine),

mm−3

SEN

(scCO2),

mm−3

SSA

(Solid),

mm−1

SSA

(Brine),

mm−1

SSA

(scCO2),

mm−1

Interfacial

area,

mm−1

Avg. pore

size,

microns

Avg. scCO2

blob volume,

mm3

HQ 14.940 56.750 −8.709 −67.164 909.459 809.306 4.469 32.115 21.593 24.619 35.778 0.002

LQ 1.14% 7.75% 17.53% 169.22% 70.12% 71.34% 0.51% 12.81% 7.36% 11.63% 13.52% 118.32%

Traditional filters















































Gaussian 13.92% 0.44% 95.60% 180.03% 34.86% 90.46% 20.64% 2.45% 4.94% 1.89% 27.04% 438.94%

Median 0.07% 7.31% 56.79% 52.58% 22.59% 88.73% 3.17% 8.30% 1.55% 5.02% 6.73% 520.31%

NLM 5.42% 4.21% 48.45% 97.74% 11.18% 96.78% 9.85% 3.69% 3.31% 2.97% 21.17% 795.99%

AD 0.80% 6.63% 13.92% 143.82% 4.32% 86.44% 2.22% 10.31% 2.68% 8.10% 9.86% 314.17%

Bilateral 1.00% 5.92% 5.59% 118.58% 11.30% 81.05% 2.05% 8.97% 0.46% 6.24% 5.79% 297.10%

SNN 1.67% 10.20% 62.59% 123.40% 20.61% 105.95% 5.63% 1.09% 4.53% 0.77% 0.28% 1256.85%

Fully supervised 









N2C 5.89% 3.47% 6.39% 7.92% 11.93% 57.78% 7.39% 1.73% 2.77% 0.76% 24.55% 56.40%

DL models RDN 3.01% 20.28% 12.40% 194.80% 53.78% 54.32% 2.63% 0.87% 4.69% 1.73% 57.89% 163.94%

CCGAN 7.16% 12.25% 2.49% 41.32% 49.34% 64.49% 2.62% 11.35% 12.16% 12.50% 59.07% 55.36%

Semi-supervised 









N2N75 1.47% 9.96% 1.37% 65.06% 2.78% 47.54% 0.32% 4.25% 10.40% 1.76% 8.77% 7.15%

DL models N2N50 2.54% 10.96% 91.08% 108.44% 10.42% 90.26% 15.29% 8.10% 3.06% 8.01% 116.57% 569.64%

N2N25 5.29% 13.02% 108.40% 143.58% 86.10% 74.32% 15.87% 16.29% 7.60% 15.40% 68.18% 348.28%

Un-supervised






N2N 1.61% 15.75% 96.86% 128.31% 3.31% 93.10% 10.92% 14.85% 2.06% 11.58% 71.72% 549.56%

DL models N2V 3.61% 2.85% 93.15% 161.36% 117.84% 93.12% 16.64% 10.92% 2.87% 9.89% 35.40% 345.72%

Values represent the absolute % error in the estimate of each petrophysical property compared to the ground truth (HQ images), except for the first row, which represents the actual property values for the segmented HQ images. The

best denoising model for each property is highlighted with bold borders. SEN, specific Euler number; SSA, specific surface area.
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N2N75 also shows a more superior performance over N2C in
terms of pore-scale estimates, which might not be expected due
to the availability of more clean reference data to train the model
for N2C, and the better overall standard metrics performance
of N2C as shown in Table 6. However, it should be noted that
the higher performance of N2N75 observed in Table 7 can be
attributed to being a closer representation of the HQ data, which
in our study is used as a ground truth. The HQ data is not an
idealistic ground truth data, it has its own noise associated with
it. Therefore, the comparison between N2C and N2N75 is limited
by the amount of noise that is present in the HQ data which is the
reference of comparison. We also observe one exception where
RDN performs better than N2C and N2N75 in terms of brine
SSA. This can be attributed to the ability of the RDN model to
preserve high frequency details, which translates to a better ability
to preserve high contrast phase boundaries and surfaces where
SSA is calculated (Zhang et al., 2021).

Unsupervised DL-based methods (N2N and N2V) generally
exhibit poor performance for most properties compared to other
denoising methods including some of the traditional filters.
This is in line with previous observations made during the
analysis of the standard metrics in Table 6. Semi-supervised
models, as expected, are performing better than unsupervised
models. Counter-intuitively, adding additional information in
low quantities (e.g., N2N25) can sometimes affect the model’s
capability to converge, leading to larger errors, as seen when
we compare N2N and N2N25 errors for most properties. As
we continue to add further information, the model manages
to converge at the best possible parameters, which can also
be seen for most properties when we compare N2N25,
N2N50 and N2N75. We believe this is possible only after
an optimum threshold percentage of clean reference images
are provided.

To decide which denoising methods perform better in terms
of bulk properties (porosity and scCO2 saturation) and pore-
scale properties (SEN, SSA, interfacial area, average pore size
and average blob volume), we sum up the absolute errors
for each of the denoising methods for those two groups of
properties. We also sum up all errors in Table 7 to identify
the overall accuracy of each denoising method in terms
of combined petrophysical characterization. Additionally, an
aggregated standard evaluation metric is calculated by summing
up the values in Table 6 for each method. The four aggregate
metrics are presented in Supplementary Table 1. It is clear from
Supplementary Table 1 that the denoising method selection
should be highly dependent on the type of analysis of interest.
For example, a denoising method that can offer accurate bulk
properties might not be able to provide accurate pore-scale
properties and vice versa. Aggregating the error percentages
point out that N2N75 has the most consistent performance
with the lowest overall error across both bulk and pore-
scale properties while SNN has the highest error in estimating
pore-scale properties and combined petrophysical properties.
Noise-to-clean comes in a close second, however, it requires
the complete HQ reference dataset. Among the traditional
filters, the bilateral filter was the best performer across all
aggregated metrics.

Computational Requirements of DL-Based
Denoising Methods
Another important factor to consider when selecting a DL-based
denoising model is computational requirements. Figure 8 shows
the comparison of computational expenditure for the different
DL-based models. Specifically, we compare the time required to
process a single image slice of 800 × 800 pixels and the memory
requirement which is computed from the parameters required
for training. The system hardware available for implementing
all models was the same (two Nvidia Quadro RTX 6000
GPU systems). Here, the comparison is presented against the
traditional metric of PSNR to show how the models perform with
the use of the required computational resources. We find that the
supervised models, which show higher performance for PSNR,
have substantially different computational needs, where RDN
and CCGAN are approximately 5.6 and 8.6 times slower than
N2C. Similarly, CCGAN is also found to be the most memory
intensive primarily due to the training requirements of four
individual networks while all other models share similar memory
requirements (∼1/6th that of CCGAN). When comparing the
semi-supervised models, all three models (N2N25, N2N50, and
N2N75) require the exact same computational resources both in
terms of processing time and memory requirements. Finally, the
unsupervised models (N2V and N2N) require similar memory
requirements, but N2V is approximately four times slower
than N2N. This could be attributed to the original PIP2 based
implementation of the model. Overall, CCGAN is found to be the
least computationally efficient, whereas N2C, N2N%, and N2N
are the most efficient.

Denoising Method Recommendation
Denoising is a mainstay pre-processing step performed to
improve our ability to detect features and perform more accurate
quantitative analyses using CT images. Comparing denoising
methods through standard metrics and petrophysical property
estimates helps us understand the use-cases in which certain
models perform better. For example, despite performing well in
terms of standard evaluation metrics, supervised DL models like
N2C and RDN rely upon the availability of clean HQ data and
such models cannot be used when such reference data is scarce
or not available. Similarly, downstream tasks also determine the
choice of denoising model. N2N50 can be recommended for
generative tasks where additional synthetic data is required while
N2C can be used if image segmentation is the proceeding step.
Additionally, another important consideration is the availability
of computational resources. Deep learning-based models require
GPU-based systems to perform the training efficiently while
traditional filters only require basic computational resources.

Based on the results we find that there is no one denoising
method that ultimately performs better in all cases. Micro-
computed tomography users are encouraged to adopt a similar
evaluation workflow to derive an optimum denoising method
that works best for their dataset(s) and use case. However,
we present a high-level denoising model recommendation

2PIP (2021). Available online at: https://pip.pypa.io/en/stable/ (accessed January 4,

2021).
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FIGURE 8 | Comparison of computational requirement for the different DL-based denoising algorithms on 2 Nvidia Quadro RTX 6000 GPU systems, in terms of (A)

computation time per (800,800) image, and (B) memory requirements as represented by parameters required for training. Red, fully supervised DL denoising models;

yellow, semi-supervised DL denoising models; green, un-supervised DL denoising models.

in Supplementary Table 2, based upon the different factors
analyzed in this study. Though these factors influence the choice
of a model individually, we list combinations of those factors
to offer model recommendations for different scenarios. We
derive the recommendations from Supplementary Table 1 and
Figure 8 where we illustrate the superiority of some algorithms
over others.

CONCLUSIONS AND FUTURE WORK

Micro-computed tomography image artifacts and alterations
resulting from using a non-tailored denoising protocol can result
in inaccurate image-based characterization of porous media.
In this paper, we present a comprehensive comparison of the
performance of various image denoising methods which are
broadly categorized as traditional (user-based) non-learnable
denoising filters and DL-based methods. The DL-based methods
are further sub-categorized depending on their reliance on
reference data for the training process. Common architectures
are used for supervised and unsupervised methods. We also
proposed new semi-supervised denoising models (N2N75,
N2N50, and N2N25) to assess the value of information and
explore whether faster, lower exposure MCT images can partially
substitute high-exposure datasets, which can be costly and can
also hinder our ability to capture phenomena that occur at
smaller time scales. The datasets used are those of a porous
sintered glass core that has been saturated with brine and scCO2.
We use both qualitative and quantitative evaluations to compare
the performance of different denoising methods. For the latter,
we consider standard denoising evaluation metrics, as well as
physics-based petrophysical property estimates. The following
conclusions are derived based on the analysis of our results,

• Commonly used denoising filters in the digital rock
physics literature, namely NLM and AD, show reasonable

performance in terms of traditional denoising metrics like
PSNR and SSIM. These methods also show reasonable
estimates for the bulk petrophysical properties. However,
when estimating pore-scale properties like phase connectivity,
these methods could result in significant errors. NLM and
SNN filters were found to perform least favorably in terms of
pore-scale petrophysical estimates.

• Qualitative evaluation is usually used in the digital rock
physics literature. However, we show that visual image quality
is not sufficient to select an appropriate denoising algorithm.

• The selection of an optimum denoising model cannot solely
depend on the visual quality of the denoised image, or
even on the standard denoising evaluation metrics. Several
factors need to be considered, including the availability of
computational resources, and the post-processing analysis of
interest. Physics-based petrophysical evaluation metrics are
key in selecting a fit-for-purpose denoising method since a
superior performance based on standard evaluation metrics
may not necessarily indicate a superior performance in terms
of petrophysical characterization accuracy. Additionally,
there is no single best denoising algorithm across all
petrophysical properties.

• The performance of the newly proposed semi-supervised
methods, especially N2N75, is very promising considering
that less high-exposure data can be used to achieve accurate
petrophysical characterization, while significantly reducing
scanning time and cost. This can also be useful in cases where
the phenomenon being investigated has a short time-scale like
chemical processes and pore-scale flow events. It can also help
minimize rotational drift errors during scans.

• The unsupervised DL models, in general, showed the weakest
performance both on standard and petrophysical evaluation
metrics, with N2V giving the least favorable outcomes across
most properties of interest.

• N2C (fully supervised) and N2N75 (semi-supervised with
75% HQ data) overall showed the most favorable outcomes.
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However, other supervised models like RDN and CCGAN
and semi-supervised models like N2N50 and N2N25 showed
weaknesses either on traditional metrics, petrophysical
estimates, or computational requirements.

This study laid the groundwork for comparing and screening
denoising methods for different use-cases within the digital rock
physics domain. The following tasks are to be addressed in
future work.

• Compare the performance of the different denoising
methods using more complex petrophysical properties like
surface roughness, tortuosity, interfacial curvature, in-situ
contact angles, as well as fluid flow parameters such as
absolute permeability, relative permeability, and capillary
pressure. This comparison can enable optimum image
processing workflow selection for creating accurate digital
rocks that can be used for multiphase flow prediction
and explanation.

• Optimize different denoising methods to accommodate
different types of datasets. For that, we would need to first
investigate the effect of porous medium structure complexity
and image resolution on the performance of the different
denoising methods.

• Use idealized simulated or synthetic ground truth reference
images and test the effect of different types and levels of noise
on the performance of each of the denoising methods, as well
as combinations of the denoising methods.

• To identify the effect of noise in the HQ ground truth images
on the conclusions drawn in this study, the same study can be
conducted while using HQ datasets of varying exposure time.

• Optimize the newly proposed semi-supervised denoising
models to determine the optimum threshold percentage of HQ
high-exposure images that are needed while maintaining high
accuracy of petrophysical analysis.

• Test the hypothesis of whether the sequential use of N2N25
can improve image quality to a point where accurate results
are achievable.

• Explore the merits and drawbacks of sequential vs. co-learning
in DL-based image processing, including reconstruction,
denoising, and segmentation steps.

• Explore more novel unsupervised denoising methods to
remove dependency upon HQ, high-exposure images and
make use of less time and cost intensive scans for accurate
petrophysical characterization.

• Compare the performance of denoising methods pre-
reconstruction vs. post-reconstruction.
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AD Anisotropic diffusion

BET Brunauer, Emmett and Teller
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BRISQUE Blind/reference-less image spatial quality evaluator

CCGAN Cycle consistent generative adversarial network
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CCUS Carbon capture, utilization, and storage
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CNR Contrast-to-noise ratio

dB Decibels

DL Deep learning

GANs Generative adversarial networks

GPU Graphics processing unit

HQ High quality

L1 loss Least absolute deviations loss function

L2 loss Least square errors loss function

LQ low quality

LS Limestone

MAE Mean absolute error

MCT Micro-computed tomography

N2C Noise-to-clean

N2N Noise-to-noise with no reference ground truth images
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SEN Specific Euler number
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SS Sandstone

SSA Specific surface area

SSIM Structural similarity index

VDSR Very deep super resolution
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λ Poisson process mean

µ Gaussian distribution mean

σ Gaussian distribution standard deviation
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