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Editorial on the Research Topic

Loop Quantum Cosmology

Loop Quantum Cosmology is the application to cosmology of the nonperturbative canonical
quantization program of General Relativity provided by Loop Quantum Gravity. This has been an
active field of investigation for more than 20 years. Most of the work in this research direction
is currently devoted to understanding how quantum gravity phenomena affected the primordial
perturbations responsible for the anisotropies in the cosmic microwave background (CMB).
Loop Quantum Cosmology techniques have also proven themselves useful beyond cosmology, in
particular to explore effects of quantum geometry in black hole spacetimes. On the other hand, the
advances in the so-called covariant formulation of Loop Quantum Gravity, handling the dynamics
within a path integral formalism, have opened new ways to address questions in cosmology. This
Research Topic presents different branches that have developed from Loop Quantum Cosmology.
It gathers eleven publications that are an excellent sample of their progress, successes and
challenges.

Ashtekar et al. have contributed with an article that is addressed both to cosmologists and to
the loop quantum gravity community. They revisit the analysis of the CMB data by the Planck
collaboration using the standard ΛCDM model with six cosmological parameters. In spite of the
success of this model, there exist certain tensions pointing towards the statistical exceptionality of
our Universe. These tensions appear in the form of power suppression at large angular scales and
in an excessively high value of the lensing amplitude. A new analysis in the light of Loop Quantum
Cosmology alleviates these tensions thanks to the connection between the physics of the ultraviolet
and the infrared that occurs in the quantum gravitational Universe. This is what the authors call
cosmic tango. Moreover, new predictions arise from this revised perspective, opening the possibility
of a future confrontation of the proposed formalism with observations.

On related grounds, Agullo et al. have presented a study that shows how a modulation of the
primordial power spectrum due to non-Gaussianities in LoopQuantumCosmology can statistically
alleviate some anomalous features that have been observed in the CMB. For this purpose, they
provide an introduction to the statistical meaning of these anomalies in the CMB, and explain
in what sense they point to the exceptionality of our Universe if it is explained with the ΛCDM
model. Then, they describe how non-Gaussian correlations between perturbations with observable
and super-Hubble wavelengths can lead to modulations of the angular power spectrum of the
CMB. These correlations are studied within the dressed metric formalism of Loop Quantum
Cosmology, taking an initial adiabatic state for the perturbations. The resulting non-Gaussian
modulation is strongly scale-dependent for large wavelengths, and it is discussed that this property
leads to a situation in which the aforementioned features of the CMB, regarded as anomalous
within the ΛCDM model, are much more likely to appear in the Loop Quantum Cosmology
scenario.
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One of the aspects of Loop Quantum Cosmology that has
deserved an increasing amount of attention in recent years
is the discussion of possible quantization ambiguities in the
Hamiltonian constraint and how they affect the robustness of the
predictions for cosmological perturbations. This is the subject of
the review presented by Li et al. They consider two alternative
quantizations of the standard Hamiltonian of Loop Quantum
Cosmology, and compare the predictions for the CMB of these
three cases (including the standard quantization). Moreover,
two different approaches are analyzed for the description of
the quantum geometry effects on the perturbations, namely,
the dressed metric and the hybrid approaches. The review also
contains a detailed investigation of the viability of different
proposals for the choice of a vacuum state of the perturbations.
The scalar power spectrum of all the cases under study is
calculated selecting some adiabatic vacua. This spectrum shows
relevant differences in the infrared, while the ultraviolet sector
of the perturbations is rather insensitive to the contemplated
changes in the quantization.

Elizaga Navascués and Mena Marugán provide an extensive
review of the state of the so-called “hybrid quantization” scheme
in Loop Quantum Cosmology. It consists in splitting the
homogeneous degrees of freedom and the inhomogeneous ones,
that can be thought as additional fields over a background.
One can then quantize the former nonperturbatively with
the loop techniques, and the latter using the conventional
Fock quantization. In this way, this scheme combines tractable
constraints with a mathematically robust Fock quantization.
It is then possible to study the evolution of cosmological
perturbations during the preinflationary and inflationary epochs.
In addition, the hybrid quantization has also been applied
to Gowdy spacetimes that correspond to a toroidal geometry
with linearly polarized gravitational waves. Two aspects of
this scheme have particular interest with respect to possible
observational predictions: first, the mass of the fields that
describe the cosmological perturbations results to have a specific
time evolution, that distinguishes the predictions from this
framework from other approaches; second, the splitting between
homogeneous and inhomogeneous sectors provides a natural way
to define a preferred vacuum state.

Schander and Thiemann consider the issue of backreaction
in gravity, reviewing the problem of the backreaction between
matter and geometric inhomogeneities in cosmology. They first
provide a concise summary of concepts and procedures designed
to analyze this backreaction by classical means in the late
Universe. Then, they comment on semiclassical approaches to
cope with the quantum backreaction of the perturbations in
earlier epochs, including stochastic gravity in this discussion.
Finally, they focus on the more complicated problem of studying
backreaction in purely quantum formalisms, applicable to the
very early stages of the Universe. Special attention is devoted to
Born-Oppenheimer inspiredmethods inwhich the perturbations
are regarded as fast dynamical degrees of freedom compared
with a slowly evolving homogeneous cosmological spacetime. In
particular, they review in some detail a formalism introduced
by them, which is based on the application and extension to
quantum cosmology of space adiabatic perturbation theory.

The extraction of predictions from Loop Quantum
Cosmology about the early Universe crucially depends on
the choice of vacuum state for the primordial perturbations.
Martín-Benito et al. have studied this question when one focuses
the attention on the so-called States of Low Energy, which are
of Hadamard type and minimize suitably smeared versions of
the energy density. Explicitly, they have shown that the shape
of the primordial power spectrum resulting from such states
depends strongly on the support of the smearing function
in the kinetically dominated pre-inflationary regime of Loop
Quantum Cosmology. In particular, if this function is only
supported on the far future of the bounce, the power spectrum
resembles the non-oscillatory one that was previously proposed
byMartín deBlas andOlmedo. Furthermore, using the ultraviolet
properties of the States of LowEnergy, the authors provide a proof
that this non-oscillatory vacuum state is of Hadamard type as
well.

Gozzini and Vidotto explore the fundamental question of how
primordial fluctuations may arise from the spinfoam dynamics
of Loop Quantum Gravity. For this purpose, they consider
the spinfoam transition amplitude from an empty state to the
discretization of certain cosmological, closed, 3-geometries in
terms of tetrahedra. This transition amplitude determines a
cosmological state, given by a superposition of such closed
geometries, which is argued to be the analog to the Hartle-
Hawking no-boundary state in the spinfoam formalism. The
authors study several properties of this state and show that, even
though the average geometry of the state is that of a 3-sphere, it
has a large variance and the local correlations between different
regions are non-negligible even at large values of the scale factor.
Furthermore, the state is highly atypical, asmeasuredwith respect
to the entanglement entropy of its components. These properties
hint towards a quantum gravity mechanism that might solve the
horizon problem in cosmology, without the need of inflation.

Marchetti and Oriti similarly consider a quantum
cosmological model based on a covariant formulation of the
action, but solving its dynamics with the techniques of Group
FieldTheory.They address, in particular, the question of defining
in this context observables in a relational manner. It is interesting
then to quantify the quantum fluctuations of the resulting
geometrical observables. In order to introduce an observable
that plays the function of a physical clock, they include amassless
scalar field and study its expectation value. They find that at later
time the quantum fluctuations of all observables are suppressed,
in agreement with the classical limit, but the fluctuations are
important at earlier times, i.e., near the bounce. The appearance
of these fluctuations may lead to different interpretations with
respect to the validity of a hydrodynamical approximation for
the quantum gravitational dynamics; further clarity could be
shed on their nature by moving out from the approximation in
which Group Field Theory interactions are neglected.

Different ideas and techniques from Loop Quantum
Cosmology can be exported to study black hole physics. In this
context, García-Quismondo and Mena Marugán investigate the
Hamiltonian formulation of the loop quantum model for black
holes proposed by Ashtekar, Olmedo and Singh (AOS). The
dynamics of its classical version is quite special: it is generated
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by the sum of two commuting Hamiltonians, which are related
to the mass of the black hole when evaluated on-shell. Loop
quantum corrections are introduced in terms of regularization
parameters, which the AOS model treats as constant, with
values fixed by the black hole mass on each particular solution.
This procedure has raised concerns about the validity of the
Hamiltonian formulation of the model. García-Quismondo
and Mena Marugán explore instead the possibility that these
parameters may be functions of the two Hamiltonians, which
should be equal to the mass only on-shell. They then show
that each Hamiltonian generates dynamical equations that are
equivalent to those in the AOS model, but with respect to a time
that is different for each of the two Hamiltonians. In the on-
shell limit of large black hole masses, both times coincide up to
(known) subdominant corrections.

Gambini et al. use a similar regularization to that of the AOS
model to study how the central black hole singularity is removed
in spherically symmetric Loop Quantum Gravity. The resulting
extension of the spacetime through the quantum region that
replaces the singularity can be interpreted as a white hole. In
their article, the authors investigate whether one can introduce
an effective description of this quantum phenomenon by
defining semi-classical states: these correspond to an approximate
classical geometry with an effective anisotropic fluid coupled
to the gravitational field. The resulting framework has the
specific advantage of recovering diffeomorphism invariance
in the semiclassical limit. This result suggests to use the
requirement of small mass fluctuations in the classical limit to
select the kind of modifications that the scalar constraint and
the observables should inherit at the effective level from the
quantization. Interestingly, what is learnt here in the context of
black holes can find applications in cosmological models with a
local rotational symmetry, such as the toroidal Gowdy spacetime.

It is exciting to see how ideas developed for black holes can
be applied to cosmology. Another example of this is given in
the paper by Amadei et al. The authors start from an interesting
proposal addressing the fate of information in black hole
evaporation: information can degrade by being transferred to
Planckian degrees of freedom, unaccessible in the approximation
for which the gravitational field is described by a smooth
manifold. Analogously, cosmological states can be thought as
coarse-grained ones where Planckian degrees of freedom that are
not accessible to low-energy observers are suitably ignored. In
this scenario, the dynamics of a bouncing universe can have a
completely unitary description even if these observers experience

decoherence. Furthermore, energy conservation implies that the
Planckian degrees of freedom do not contribute to the energy
balance, even though they are responsible for such decoherence:
the energy balance allows for this to happen without the need of
a contingent dissipation.

The collection of these eleven papers composes a mosaic of
some active research directions in Loop Quantum Cosmology,
a part of the lines of research of this exciting field which
is still subject to open questions and debate. Cosmology and
black hole physics are the most promising windows to observe
signatures of (Loop) Quantum Gravity. Hopefully, the ideas in
these papers will contribute in sharpening our sight in their
search.
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We study the fluctuations and the correlations between spatial regions generated in the
primordial quantum gravitational era of the universe. We point out that these can be
computed using the Lorentzian dynamics defined by the Loop Quantum Gravity
amplitudes. We evaluate these amplitudes numerically in the deep quantum regime.
Surprisingly, we find large fluctuations and strong correlations, although not maximal. This
suggests the possibility that early quantum gravity effects might be sufficient to account for
structure formation and solve the cosmological horizon problem.

Keywords: quantum gravity, cosmology, structure formation, spinfoam, spinfoam cosmology, horizon problem, loop
quantum gravity

1 INTRODUCTION

Standard cosmology–with or without inflation–requires an initial state that exhibits fluctuations and
correlations between distinct regions of space. These play a key role, in particular as seeds for
structure formation. Here we investigate how these fluctuations and correlations can emerge from a
primordial quantum gravitational cosmological phase, using Loop Quantum Gravity (LQG) and a
simple model of the early universe.

We consider the quantum transition from an empty state to a 3-geometry. The amplitude of this
transition may be relevant in a Big Bang cosmology (Hartle and Hawking, 1983; Halliwell, 1987;
Halliwell et al., 2019), as well as in a bouncing cosmology, where it dominates the transition through
the bounce (Bianchi et al., 2010; Vidotto, 2011; Bahr et al., 2017). We treat the dynamics of gravity
non-perturbatively, using covariant LQG. This calculation does not require a Wick rotation and it is
well defined in the Lorentzian theory. The transition generates a quantum state that defines the
probability distribution over 3-geometries. This includes correlations between spatially separated
regions.

We truncate the degrees of freedom of the gravitational field to a small finite number in addition
to the scale factor [cfr (Rovelli and Vidotto, 2008; Borja et al., 2012; Vidotto, 2017)]. Using numerical
methods, we obtain four results: 1) The expectation value of the geometric variables at a given value
of the scale factor yields precisely (the truncation of) a metric 3-sphere. 2) Contrary to our initial
expectation, the variance of these variables is very large: the amplitude of the fluctuations is
significant. 3) Correlations between variables in distinct regions–and entanglement entropy between
regions–do not vanish with the increase of the scale factor. 4) Entanglement entropy appears to
converge to a stable value asymptotically.

All this indicates that the universe emerging from an early quantum era includes fluctuations,
homogeneity properties, and large scale correlations, due to the common quantum origin of spatially
separated regions. These can be studied theoretically and appear to be compatible with the observed
universe. In particular, inflation or a bounce might not be strictly necessary to circumvent the
horizon problem. If the initial quantum phase is taken into account, our result suggests that distant
regions may have not been causally disconnected in the past, as in classical cosmology.
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2 QUANTUM THEORY

We discretize a closed cosmological 3-geometry into five tetrahedra
glued to one another, giving an S3 topology. This is a regular
triangulation of a topological 3-sphere, and it corresponds to the
boundary of a 4-simplex. The geometry of a flat 4-simplex has twenty
degrees of freedom, which capture the gravitational field in this
truncation. The result of the transition from nothing to a 3-geometry
is described by its covariant LQG Lorentzian amplitude (Vidotto,
2011). The truncation we consider corresponds to the single vertex
amplitude, to the first order in the spinfoam expansion (Rovelli and
Smerlak, 2012). We take the areas of the faces of the tetrahedra to be
equal and use this common value as a proxy for the physical scale
factor. The remaining degrees of freedom characterize the shapes of
the five tetrahedra. We are interested in the fluctuations of these
variables and the correlations between variables in distinct tetrahedra,
at different values of the scale factor.

The LQG Hilbert space for this truncation is
H � L2[SU(2)10/SU(2)5]Γ5, where Γ5 is the complete graph with
five nodes. See (Rovelli and Vidotto, 2015) for the notation and an
introduction to the formalism. We label the (oriented) links as
l � 1, . . . , 10, or alternatively in terms of the two nodes they link:
l � nn′. The spin network basis in H is given by the states

∣∣∣∣jl, in〉
where the jl’s are spins (half-integer values labeling SU(2) irreps) and
the in’s are a basis in the corresponding intertwiner space
In � (⊗n′ ≠ n Vj

nn′
)/SU(2), where Vj is the spin-j representation

space of SU(2). We focus on the subspaces Hj of H defined by
jl � j. These have the tensorial structureHj � ⊗n In, where each In

is isomorphic to (Vj⊗Vj⊗Vj⊗Vj)/SU(2). The basis states are tensor
states, which we denote as

∣∣∣∣j, in〉 � ⊗n |in〉 (by this we mean∣∣∣∣j, i1, . . . , i5〉 � |i1〉⊗/⊗|i5〉). We choose a basis in In fixing a
pairing of the links at each node and the basis that diagonalizes the
modulus square of the sum of the SU(2) generators in the pair.

The transition amplitude from an empty state to a state
∣∣∣∣j, in〉

in Hj is given by the spinfoam amplitude of the boundary state∣∣∣∣j, in〉 alone. This is because this transition corresponds to the
amplitude of a boundary state that has only one connected
component, here interpreted as the future one. To first order
in the spinfoam expansion, the amplitude of a boundary state is
given by a single vertex. Hence the nothing-to-

∣∣∣∣j, in〉 amplitude is
the vertex amplitude for the boundary state

〈j, in
∣∣∣∣∅〉 � W(j, in) ≡ 〈j, in

∣∣∣∣ψo〉 (1)

whereW(j, in) is the Lorentzian EPRL vertex amplitude (Engle et al.,
2008). This implies that we can view the ket

∣∣∣∣ψo〉 with components
W(j, in), as the quantum state emerging from the Big Bang. This is
the analogue, in (Lorentzian) LQG, of the Hartle-Hawking “no-
boundary” initial state in (Euclidean) path-integral quantum gravity
(Hartle andHawking, 1983). This is the state we are interested in.We
study themean geometry it defines and the quantumfluctuations and
correlations it incorporates. Specifically, we study the expectation

value 〈A〉 � 〈ψo|A|ψo〉, the spread ΔA �
����������������
〈ψo|A2|ψo〉 − 〈A〉2

√
and the (normalized) correlations

C(A1,A2) � 〈ψo|A1A2|ψo〉 − 〈A1〉〈A2〉
(ΔA1) (ΔA2) (2)

of local geometry operators A,A1,A2, . . . defined on H. We
compute also the entanglement entropy S � −tr(ρn log ρn) of a
node with respect to the rest of the graph, where ρn is the reduced
density matrix of the state

∣∣∣∣ψo〉 at any node, all nodes being
equivalent by symmetry.

3 QUANTUM GEOMETRY

The spin-network basis states can be viewed as a collection of
quantum tetrahedra (Bianchi et al., 2011) glued together by
identifying faces. Shared faces have the same area but not
necessarily matching shapes, giving rise to a twisted geometry
(Freidel and Speziale, 2010). The areas of the faces are eigenvalues
of the area operator

Anl|in〉 �
��������
E
→

nl · E→nl

√
|in〉 � (8π c ZG) �������

jl(jl + 1)√
|in〉, (3)

written in terms of the flux operators

E
→

nl � (8π c ZG) J→l (4)

entering the node n on link l, where c is the Barbero-Immirzi
constant and J

→
l is the vector of SU(2) generators on link l.

The shape of the tetrahedron is measured by the angle
operator

Aab|in〉 � cos(θab)|in〉 (5)

that gives the cosine of the external dihedral angle between faces a
and b, where

2
∣∣∣∣∣∣ J
→

a
∣∣∣∣∣∣∣∣∣∣∣∣ J
→

b
∣∣∣∣∣∣Aab � 2 J

→
a · J→b � ( J

→
a + J

→
b)2

− J
→2

a − J
→2

b·

Say we use the recoupling basis that pairs links ja and jb at node
n, and let |kn〉 be the intertwiner state at node n. The operator
( J
→

a + J
→

b)2 is diagonal on |kn〉 with eigenvalue

( J
→

a + J
→

b)2

|kn〉 � kn(kn + 1)|kn〉 (6)

where kn is the intertwiner spin. Putting together Eqs 3, 5, and 6
we obtain

cos(θab) � kn(kn + 1) − ja(ja + 1) − jb(jb + 1)
2

���������������
ja(ja + 1)jb(jb + 1)√ (7)

for measuring the dihedral angle cos(θab) of |kn〉 in terms of
intertwiner spin kn.

4 NUMERICAL METHODS

The Lorentzian EPRL vertex amplitudeW(jl, in) can be written as
Speziale (2017)
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W(jl, in) � ∑
lf ,ke

⎛⎝∏
e

(2ke + 1)B(jl, lf ; in, ke)⎞⎠{15j}(lf , ke) (8)

where f and e label the faces and the half-edges touching the
vertex. The symbol {15j} is the invariant SU(2) symbol built from
contracting the five 4-valent intertwiners at the nodes, and can be
expressed as the contraction of five SU(2) 6j symbols as

{15j}(lf , ke) � ∑
x

(2x + 1) (−1)∑a
la+∑a

ka

×{ k1 l25 x
k5 l14 l15

}{ l14 k5 x
l35 k4 l45

}{ k4 l35 x
k3 l24 l34

}
×{ l24 k3 x

l13 k2 l23
}{ k2 l13 x

k1 l25 l12
}. (9)

The functions B(jl , lf ; in, ke) are defined as

B(jl, lf ; in, ke) � ∑
pi

( jl
pi
)(in)( lf

pi
)(ke)

(10)

×∫∞

0
dr

sinh2 r
4π

∏4
i�1

d(cji ,ji)ji lipi (r).

where the factors in front of the integral are SU(2) 4jm symbols
and the functions d(cji ,ji)ji lipi

(r) are boost matrix elements of the
Lorentz group. The product in Eq. 8 is over four of the five half-
edges because one redundant factor must be eliminated by gauge-
fixing. The sum is over a set of auxiliary spins lf and auxiliary
intertwiners ke. See Speziale (2017) for more details about this
formulation of the EPRL amplitude and the full definition and
analysis of all the quantities involved in the previous formulae.

Analytical results show that in the large spin limit this
amplitude is generally exponentially suppressed except in two
cases (Barrett et al., 2009; Donà et al., 2019). The first case is when
the boundary geometry is the geometry of the boundary of a
Lorentzian 4-simplex. This case can be naturally related to the
semiclassical limit, where spacetime is flat and Lorentzian at
scales smaller than the curvature radius. The second case is when
the boundary geometry is a vector geometry, which includes the
case when the boundary geometry is the geometry of the
boundary of a Euclidean 4-simplex. As we shall see below, the
mean geometry defined by

∣∣∣∣ψo〉 is that of a discretized metric 3-
sphere i.e., the boundary of a regular Euclidean 4-simplex.
Therefore this is a vector geometry. Vector geometries have
been considered as a puzzling feature of the theory (Donà
et al., 2018): here we can interpret them as a necessary
contribution to the primordial quantum cosmological state in
order to allow the tunneling from the empty state to the
semiclassical 3-sphere geometry.

The form of the amplitude Eq. 8 is suited for numerical evaluation.
The computational steps, in order of increasing complexity and cost,
are: 1) evaluation of the {15j} symbol; 2) evaluation of the B functions
and 3) contraction over all internal and boundary spin labels. We
limited our computation to spins (i.e., scale factor) j≤ 16 given the
time and memory constraints imposed by our computing facility. We
used a standard laptop computer for lower spins and a 32-cores server
with 196 GBs of RAM for higher spins.

The sum over spins lf in Eq. 8 is unconstrained, as lf ≥ jl , where
link l corresponds to face f. Hence it is necessary to introduce a cutoff
Δs so that lf � jl, jl + 1, . . . , jl + Δs and the exact value is in the limit
Δs→∞. The case with Δs � 0 has been called the simplified model
(Speziale, 2017). Since the computation time is proportional to
(Δs + 1)6, we are limited to very low values of the cutoff. It can
be shown that in the simplified model the Lorentzian part of the
amplitude is partially suppressed (Puchta, 2013; Speziale, 2017), and
the effect of increasing the cutoff Δs is to gradually enhance the
amplitude for Lorentzian configurations. It may seem necessary to
reach higher cutoffs in order to match the expected behavior in
semiclassical asymptotics of Lorentzian simplices (Donà et al., 2019).
However, we found that in our calculation, which spans the space of
vector geometries due to the chosen (Euclidean) boundary
conditions, the corrections due to higher cutoff values are minor
or even negligible, so that the simplified computations effectively
suffice to study the model numerically.

All the computations of the present work were carried out using
the sl2cfoam library (Donà and Sarno, 2018), which is a C library for
computing the spinfoam amplitude Eq. 8 using various optimization
strategies. For a complete treatize of all the technical and numerical
details that are relevant to this work we refer also to (Gozzetti, 20211),
which studies extensions of the model considered here using a
recently released version of the library (Gozzetti, 20212).

5 NUMERICAL RESULTS

The results below are given for increasing values of the scale
parameter j. In this section we fix the cutoff parameter to Δs � 0
and the Barbero-Immirzi constant to c � 1.2.

(1) The expectation value of the angle operator Aab|in〉 �
cos(θab)|in〉 that measures the external dihedral angles
between faces punctured by links a and b in any of the
boundary tetrahedra (by symmetry all of them are
equivalent) results to be

〈Aab〉 � −0.333 (11)

which is precisely the cosine of the external dihedral angle of an
equilateral tetrahedron, for any links a, b chosen. This shows that
the spatial metric of

∣∣∣∣ψo〉 averages to that of the 3-boundary of a
regular 4-simplex i.e., to that of a 3-sphere in our approximation.
The variation of the average with the scale parameter is minor and
due entirely to numerical fluctuations (Figure 1). The
independence of the result from the choice of the links was
tested by switching to a different recoupling basis, and also by
directly performing the change of basis.

(2) The spread ΔAab is large and increasing with the scale factor,
see Figure 2. This suggest that quantum fluctuations in the

1Gozzini (2021). High performance lorentzian spin foam numerics. In preparation.
2Gozzini (2021). Numerical simulation of the quantum cosmological vacuum with
many spin foam vertices. In preparation.
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metric are wide and are not suppressed in the large-scale
regime.

(3) The correlations between angle operators on different nodes
depend on the pairing. We write Ann′ ,nn″ for the angle
operator Aab at node n, where link a connects n with n′
and link b connects n with n″. The correlations are shown in
Figure 3. For each source node n there are two pairs of
correlated—anti-correlated nodes (for n � 4 these are (2, 3)
and (1, 5)). The correlations appear to reach an asymptotic
value, hence are not suppressed in the large-scale regime. The
3-metric that comes out from the quantum state

∣∣∣∣ψo〉 can
correlate different spatial patches of the primordial universe,
as required for solving the horizon problem of standard
cosmology. It would be interesting to verify that in finer

triangulations the correlations decay with the distance
between non-adjacent faces, as required by local effective
field theory.

(4) To quantify the degree of correlation between operators we
computed the entanglement entropy between different
tetrahedra, viewed as quantum subsystems. A result by Page
(Page, 1993) states that, given a splitting H � HR⊗HR of a
Hilbert space H into subspaces corresponding to a small
subsystem R and its complement R, the typical state in HR

is found to have an entanglement entropy equal to
SR ≈ log(dimHR) corresponding to a maximally-mixed state.
In other words, the vast majority of quantum states of a small

FIGURE 2 |Quantum spread of the cosine of the external dihedral angle
of boundary tetrahedra as function of the scale factor.

FIGURE 3 | Left: correlations of angle operator A42,43 with A23,24 (top,
positive) and A34,35 (bottom, negative). The same plot represents the
correlations of A41,45 with A14,15 (top, positive) and A54,53 (bottom, negative).

FIGURE 4 | The entanglement entropy of a boundary node with respect
to the rest of the graph. Gray continuous line shows the maximum entropy
attainable as function of the scale factor parameter. Gray diamonds show the
result of Bianchi et al. (2018). Black circles show our result for

∣∣∣∣ψo〉.

FIGURE 1 | The computed average external dihedral angle of boundary
tetrahedra as function of the scale factor. The gray line shows the dihedral
angle of a regular tetrahedron.
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subsystem are close to being, in a broad sense, thermal see
Popescu et al. (2006).

We studied the degree of non-typicality of the primordial state∣∣∣∣ψo〉 by looking at the entanglement entropy of any tetrahedron
as function of the scale factor. The result is shown in Figure 4. It
indicates that the entropy deviates significantly from the
maximally-mixed case, and it appears to get close to an
asymptotic value in the limit of large scale factor. We could
not push the computations to spins higher than j � 16, but the
qualitative behavior is clear. For comparison, we show also the
maximum entropy Smax(j) � log(2j + 1) and the result of
(Bianchi et al., 2018) on the so-called Bell-network states
(Baytaş et al., 2018), which are constructed in the same way as
our primordial state

∣∣∣∣ψo〉 but using the dynamics of the simpler
BF theory. See also (Bianchi et al., 2015; Bahr, 2020).

6 CONCLUSION

Summarizing, the quantum state for the primordial universe
predicted by the dynamics of Loop Quantum Gravity can be
computed in a kinematical truncation and at first order in the
vertex expansion. It describes the fluctuating metric of a
topologically closed universe in its early quantum regime. Its
degrees of freedom encode the shapes of neighboring spatial
regions. Their size (area), taken to be equal, is related to the
scale factor. We have found that the mean geometry of this
state is that of a (truncated) 3-sphere, as we expected by
symmetry, but the fluctuations are large. Neighboring regions
are correlated and correlations do not vanish as the scale factor
increases. This opens the possibility that an inflationary phase may
not be needed in order to circumvent the horizon problem, as the
primordial quantum phase may introduce stochastic correlations
in otherwise causally-independent spatial regions. We also
computed the entanglement entropy of a single region viewed
as a quantum subsystem of the whole universe. We found that the

cosmological state is highly non-typical, showing an entanglement
entropy that is apparently reaching an asymptotic value as the scale
factor increases. Our work is one of the first explorations of the
purely quantum regime of LQG—without resorting to the high-
spin semiclassical limit of the theory—and one of the first
applications to a concrete physical model of the numerical tools
that are recently being developed for covariant Loop Quantum
Gravity (Bianchi et al., 2018; Donà and Sarno, 2018; Donà et al.,
2019; Dona et al., 2020). Our results indicate that an early quantum
phase of the universe may provide an explanation for known
puzzling features of the standard cosmological model, such as the
horizon problem, possibly even without introducing additional
inflationary and/or bouncing phases.
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In approaches to quantum gravity, where smooth spacetime is an emergent

approximation of a discrete Planckian fundamental structure, any effective smooth

field theoretical description would miss part of the fundamental degrees of freedom

and thus break unitarity. This is applicable also to trivial gravitational field (low energy)

idealizations realized by the use of Minkowski background geometry which, as with

any other spacetime geometry, corresponds, in the fundamental description, to infinitely

many different and closely degenerate discrete microstates. The existence of such

microstates provides a large reservoir q-bit for information to be coded at the end of

black hole evaporation and thus opens the way to a natural resolution of the black

hole evaporation information puzzle. In this paper we show that these expectations

can be made precise in a simple quantum gravity model for cosmology motivated by

loop quantum gravity. Concretely, even when the model is fundamentally unitary, when

microscopic degrees of freedom irrelevant to low-energy cosmological observers are

suitably ignored, pure states in the effective description evolve into mixed states due to

decoherence with the Planckian microscopic structure. Moreover, in the relevant physical

regime these hidden degrees of freedom do not carry any “energy” and thus realize, in

a fully quantum gravitational context, the idea (emphasized before by Unruh and Wald)

that decoherence can take place without dissipation, now in a concrete gravitational

model strongly motivated by quantum gravity. All this strengthens the perspective of a

quite conservative and natural resolution of the black hole evaporation puzzle where

information is not destroyed but simply degraded (made unavailable to low-energy

observers) into correlations with the microscopic structure of the quantum geometry at

the Planck scale.
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1. INTRODUCTION

The mathematical models that so far define our successful physical theories are all reversible in
the sense that they can predict the future value of the variables they use from their initial values,
while conversely the past can be uniquely reconstructed from the values of these variables in the
future. The memory of the initial conditions is not lost in the dynamics and their information
content remains. This is true for classical mechanics and field theory and it is also true for
quantum mechanics and quantum field theory as long as we do not invoke the postulate of
the collapse of the wave function (i.e., as long as we do not intervene from the outside via a
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measurement1). In the quantum mechanical setting, this
property boils down to the fact that evolution to the future is
given by a unitary operator which can always be undone via its
adjoint transformation.

This property of our fundamental models has always troubled
naive intuition when faced with situations that appear to be
irreversible. For example, what would happen to these words
if the computer collapsed at this very moment? What if, after
being printed, this paper is burned? Common sense would
answer that the information in these pages (if of any relevance)
would be lost. However, the physicist, trained to firmly believe
in the statement of the previous paragraph, would say that the
information in these words is not lost but simply hidden (to the
point of becoming unrecoverable) in the humongous number
of microscopic variables that would describe the whole system.
In the case of burning the paper, these words remain “written”
(it would be claimed) in the multiple correlations between the
degrees of freedom of the molecules in the gas of the combustion
diffusing in the atmosphere while transferring the information
to even larger and yet pristine portions of the very large phase
space of an unbounded universe. In the case where the computer
collapses, a similar story can be told involving the dissipation
of the bits into the environment. Of course the physicist cannot
prove this; however, it is a consistent story in view of the strongly
cherished principle of unitarity.

Such effective irreversibility is clearly captured in the second
law of thermodynamics stating that (for suitable situations
involving a large number of degrees of freedom) entropy can
only increase. At the classical level this clashes at first sight
with Liouville’s theorem stating that the phase space volume
of the support of a probability distribution is preserved by
dynamical evolution. However, nothing restricts the shape of this
volume to evolve into highly intricate forms that a macroscopic
observer might be unable to resolve. More precisely, suitable
initial conditions that the observer agent regards as special (for
instance the macroscopic configurations of ink particles defining
words in this paper before the fire reached them) come with an
uncertainty in accordance to the observers limited measurement
capabilities. This is idealized by a distribution in phase space
occupying an initial phase space volume of a regular shape (this
ensemble of points represents the system in what follows). Now
as time goes by the apparent phase space volume (not the real
volumewhich remains constant) would seem to grow to the agent
just because of its intrinsic inability to separate the points in
phase space that the systems occupies from the close neighboring
ones where the system is not. The arrow of time (characterizing
large systems) is only emergentmacroscopically due to the special
initial conditions, and the intrinsic coarse graining introduced by
a macroscopic observer with its limitations. We will argue that
the general lines of this story remain the same when black hole
evaporation is considered.

1This is not the case in modifications of quantum mechanics where the collapse of

the wave function happens spontaneously. In such theories information is actually

destroyed (for a discussion of black hole evaporation in such contexts; see Modak

et al., 2015; Okon and Sudarsky, 2017, 2018).

General relativity combined with quantum field theory, in
a regime where both are expected to be good approximations,
imply that large isolated black holes behave like thermodynamical
systems in equilibrium. They are objects close to equilibrium
at the Hawking temperature that lose energy extremely slowly
via Hawking radiation. When perturbed they come back to
equilibrium to a new state and the process satisfies the first
law of thermodynamics with an entropy equal to 1/4 of the
area A of the black hole horizon in Planck units. Under such
perturbation (which in particular can also be associated with their
slow evaporation), the total entropy of the universe can only
increase namely

δS = δSmatter +
δA

4
≥ 0, (1)

where δSmatter represents the entropy of whatever is outside the
black hole (including, for instance, the emitted radiation).

This quasi equilibrium phase—which is extremely long lasting
for macroscopic black holes but, at the same time, is only an
intermediate situation before complete evaporation—is predicted
by general relativity as the result of gravitational collapse taking
place for suitable initial conditions. Indeed in order to make a
black hole (BH), the past must be special (low entropy) too. Thus,
the irreversibility captured by (1) can once more be associated
with the same ingredients present in our previous example: the
special nature of the initial conditions (low curvature and low
densities in the past), high curvature, and huge new phase space
regions available in the future; more precisely, in the Planckian
regime that the singularity theorems of general relativity predict
to develop inside the black hole horizon (thewould-be-singularity
from now on).

Such a perspective resonates with the one emphasized by
Penrose (see for instance Penrose, 2005), among others: in full
generality (now including gravity) the arrow of time comes from
the fact that the universe is special in the past with a spacetime
that was well-approximated by a homogeneous geometry and
matter distribution (gas and dust) with tiny perturbations that
would eventually grow and form galaxies and stars that one day
can collapse to form black holes2. Before the formation of a black
hole, the story of our system exploring larger and larger portions
of the available phase space is the usual standard involving
molecules, atoms, and fundamental particles. The perspective
we put forward here is that the story continues to be the same
when black holes form and a new huge portion of phase space is
opened by the physics of gravitational collapse. This new channel
for entropy growth is opened by the appearance of the internal
would-be-singularity of the classical description beyond the event
horizon. The gravitational collapse ignites interactions with the
Planckian regime inside the black hole horizon (see footnote
3), like the lighter setting the paper on fire and thus degrading
the ink in the words when burning the paper in our previous
discussion. The singularity predicted by general relativity brings
the system in contact with the quantum gravity scale, and (as in

2To these two specialty conditions one might also have to add one concerning the

state of the hypothetical microscopic constituents at the Planck scale if the view we

are advocating here and in Perez (2015, 2017) is correct.
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the burning paper) this provides the key for resolving the puzzle
of information in black hole evaporation.

This perspective, first advocated in Perez (2015, 2017), can be
described with the help of Figure 1 (which applies to the general
black hole formation and evaporation background scenario of
reference; Ashtekar and Bojowald, 2005). The first assumption
in the diagram is that there is evolution across the would-
be-singularity (predicted by the classical dynamics) inside the
black hole. This assumption is intrinsic in the representation in
the figure; however, the scenario still makes sense if instead a
baby universe is formed, i.e., if the would-be-singularity remains
causally disconnected from the outside after evaporation. In that
case, the correlations established with the baby universe remain
hidden forever to outside observers. The virtue of the present
scenario in such a case would be to give an identity to the degrees
of freedom involved. The idea that the spacetime representation
of the situation resembles the one in Figure 1 comes from the
various results in symmetry-reduced models for both cosmology
(Bojowald, 2001; Ashtekar et al., 2006) as well as for black holes
(Modesto, 2004, 2006; Bojowald, 2005; Bojowald et al., 2005;
Gambini and Pullin, 2013; Corichi and Singh, 2016; Ashtekar
et al., 2018), and was first pictured in Ashtekar and Bojowald
(2005). In such a context, a “scattering theory” representation
(where an in-state evolves into an out-state) is possible even
though the result (as we will argue) cannot be translated into the
language of effective quantum field theory.

But what do we mean by a black hole in this evaporating
context? In the asymptotically flat idealization, the black hole
region is defined in classical general relativity as the portion of the
spacetime M that is not part of the past of I

+. Such a definition
needs to be modified in quantum gravity. In order to do that, we
introduce the notion of the semiclassical past J−C (I

+) of I
+ as

the collection of events in the spacetime that can be connected
to I

+ by causal curves along which the Kretschmann scalar
K ≡ RabcdR

abcd ≤ Cℓ−4
p for some constant C of order unity.

The black hole region can then be defined as

B ≡ M − J−C (I
+). (2)

Its dependence on the constant C is not an important limitation
in the discussion about information. Different C would lead to
BH regions that coincide with Planckian corrections.

The most clear physical picture emerges from the analysis
of the Penrose diagram on the left panel of Figure 1, from the
point of view of observers at future null infinity I

+. These
observers are assumed to be at the center of the mass Bondi frame
of the BH formed via gravitational collapse. We also assume
that the Bondi mass of the BH is initially M ≫ mp at some
delayed time u on I

+ representing the time where the BH has
achieved its quasi-equilibrium state and starts evaporating slowly
via Hawking radiation, i.e., the BH is initiallymacroscopic. Under
such conditions the evaporation is very slow and we can trust the
semiclassical description that suggests that the Bondi massM(u)
will slowly decrease with u from this initial value M until time
u = u0 (see figure) withM(u0) ' mp in a time of the order ofM3

in Planck units. From this time on, the details depend on a full
quantum gravity calculation because the curvature around the

BH horizon has become Planckian. Nevertheless, independently
of such details we can safely say that the spacetime and the
matter degrees of freedom encoded on I

+ for u > u0 must be
in a superposition of states, all of which are very close to flat
spacetime, as far as their geometry is concerned, with matter
excitations very close to the vacuum because there is only at
best an energy of the order of Elate ≈ mp to substantiate both.
In addition these excitations must be correlated with the early
Hawking radiation with energy Eearly ≈ M − mp if unitarity is to
hold. The late degrees of freedom are often referred to as purifying
degrees of freedom.

One possibility is to assume that such purifying degrees of
freedom are particle excitations coming from what is left of the
BH (a remnant). Now, due to the fact that these particles must be
extremely low-energy particles as only a total energy of Elate ≈ mp

is available for purification, a simple estimate of the time (denoted
as τp) that the process would have to last if this is the main
channel for purification yields τp ≈ (M/mp)

4. This is the scenario
of an extremely long lasting point-particle-like remnant with a
huge internal degeneracy which is claimed to be problematic
from the point of view of effective quantum field theory (Banks
et al., 1993).

Instead we propose a different alternative: if smooth spacetime
and matter fields are emergent notions from underlying discrete
microscopic physics, then the coarse low-energy notion of
classical geometry with smooth fields living on it would
correspond in the fundamental Hilbert space to a very large set
with (possibly) an infinite number of microscopic states. For
instance the Minkowski vacuum unicity in standard quantum
field theory would fail in the sense that the requirement that states
look flat for (coarse-grained) low-energy observers—which are
those for which an effective quantum field theory description in
terms of smooth fields living on a smooth geometry is a suitable
approximation—would still admit a highly degenerate ensemble
of microscopic states (all states with total mass indistinguishable
from zero by these macroscopic observers). Now, such low-
energy modes cannot be identified with effective field theoretical
excitations as the infrared excitations of fields mentioned in the
previous paragraph (say low-energy photons). Like the molecular
structure that escapes the smooth characterization of the Navier-
Stokes effective theory of fluids, the degrees of freedom of
interest here correspond to defects in the Planckian fabric of
quantum gravity bound to be missed by coarse low-energy
agents and their effective field theory mathematical models based
on smoothness.

Why should information be hidden in the UV but not in
the IR modes as in the remnant scenario mentioned above? It
is often believed that because the volume inside the black hole
actually becomes very large (according to suitable definitions;
Christodoulou and De Lorenzo, 2016) then modes that are
correlated with the Hawking radiation are redshifted and become
highly IR inside. Although this is true for spherically symmetric
Hawking quanta in the spherically symmetric Schwarzshild
background—where such modes are indeed infinitely redshifted
as detected by regular observers when they approach the
singularity at r = 0—this conclusion fails when one considers
no-spherical modes no matter how small the deviation from
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spherical symmetry is3. Therefore, generically all modes become
UV close to the singularity [this is the central weakness of the
bag-of-gold scenarios and the perspective proposed in Ashtekar
(2020)].

We can draw a formal analogy with the Unruh effect as
follows. The Unruh effect arises from the structure of the
vacuum state |0〉 of a quantum field on the Minkowski spacetime
when written in terms of the modes corresponding to Rindler
accelerated observers with their intrinsic positive frequency
notion. The vacuum takes the form

|0〉 =
∏

k

(

∑

n

exp
(

−n
πωk

a

)

|n, k〉R ⊗ |n, k〉L

)

, (4)

where |n, k〉L and |n, k〉R define the particle modes—as viewed
by an accelerated observer with uniform acceleration a—on the
left and the right of the Rindler wedge (Wald, 1995). Here we
see from the form of the previous expansion that even when we
are dealing with a pure state (if we define the density matrix
|0〉 〈0|), the reduced density obtained by tracing over one of the
two wedges would produce a thermal state with T = a/(2π). The
statement in the perspective we propose on the purification of
information in BH evaporation can be schematically represented
(the following is certainly not a precise equation) by

U |flat, 0〉
︸ ︷︷ ︸

quantum geometry

⊗
matter fields
︷︸︸︷

|φ〉

=
∏

k

(

∑

n

exp

(

−β
2
nωk

)

|flat, n〉 ⊗ |n, k〉
)

, (5)

where an initial state of a flat quantum geometry |flat, 0〉 tensor
product with a state representing initially diluted matter fields
|φ〉 evolves unitarily via U into the formation of a BH and
the subsequent evaporation (Figure 1) which after complete
evaporation is written as a superposition of flat quantum
geometry states |flat, n〉—which are all indistinguishable from
|flat, 0〉 to low-energy agents and differ among them by quantum
numbers n corresponding to quantities that are only measurable
if one probes the state down to its Planckian structure—
tensor product with normal n-particle excitations of matter

3 In the Schwarzshild background, the frequency measured by a radially freely

falling observer normal to the r =constant hypersurfaces goes like

ω2(r) = ℓ2

r2
+ r

2M
E2 + O

(
r2

M2

)

, (3)

where E = −k · ξ and ℓ = k ·ψ are the conserved quantities associated with

the massless particle with wave vector ka, and ξa and ψa are the stationarity and

rotation killing fields of the background. The qualitative behavior approaching

r = 0 would be the same for any other observer measuring ω (the divergence

of ω is observer-independent). Only exactly spherically symmetric modes with

ℓ = 0 would become IR at the singularity. However, this conclusion is no longer

true if the BH rotates or if we consider that at the fundamental level, states with

exact spherical symmetry inside the BH are of measure zero. Notice that such

UV divergence in the non-spherically symmetric Hawking partners implies large

deviations from spherical symmetry near the singularity (if their back reaction

would be taken into account). This should be kept in mind when modeling the

situation with spherically symmetric mini superspace quantum gravity models.

fields representing Hawking radiation. As mentioned above, the
previous equation is only a schematic. Its main inappropriateness
is the fact that the reduced density matrix obtained by tracing
over the quantum geometry hidden degrees of freedom would
give a thermal state at a fixed temperature T. This is at odds
with the expectation that the Hawking radiation should contain
a superposition of the thermal radiation emitted at different
Hawking temperatures during the long history of the evaporation
of the BH. But the point that this equation and the discussion of
the previous paragraph should make clear is that the purification
mechanism proposed here has nothing to do with the point-
like remnant scenario with all its problems associated with a
long lasting particle-like remnant. In the present scenario, to
the future of the would-be-singularity in Figure 1, we simply
have a quantum superposition of different quantum geometry
states that all look flat to low-energy observers. There are no
localized remnants hiding in the huge internal degeneracy; there
is only a large superposition of states that are inequivalent in the
fundamental quantum gravity Hilbert space but seem identical
when tested with low-energy probes. Such degrees of freedom
cannot be captured by any effective description in terms of
smooth fields (EQFT) for the simple reason that they are discrete
in their fundamental nature.

Notice that the degrees of freedom, where information would
be coded after BH evaporation, do not satisfy the usual Einstein-
Planck relationship E = h̄ω or equivalently p = h/λ (for
some “wavelength” λ or “frequency” ω), and this might deceive
intuition4. These are Planckian defects yet they do not carry
Planckian energy. The point is that such a relationship only
applies under suitable conditions which happen to be met in
many cases but do not need to always be valid. One case is
the one of degrees of freedom that can be thought of as waves
moving on a preexistent spacetime. This is the case for particle
excitations in the Fock space of quantum field theory or effective
quantum field theories (both of which are defined in terms of a
preexistent spacetime geometry). There is no clear meaning to
the above intuitions in the full quantum gravity realm where the
present discussion is framed. Even when such relations (linked
to the usual uncertainty principle of quantummechanics) should
hold in a suitable sense—if the structure suggested by canonical
quantization survives in quantum gravity as it should to a certain
degree—they would apply to phase space variables encoding to

4A nice counter example of this intuition is given by the case of a non-relativistic

charged particle in a two-dimensional infinite perfect conductor in a uniform

magnetic field normal to the conducting plane. The energy eigenvalues are given by

the Landau levels En = h̄ωB(n+ 1/2) where ωB = qB/(mc) is the Bohr magneton

frequency, but they are infinitely degenerate. There are canonically conjugated

variables (P,Q) associated with the particle that are cyclic, i.e., do not appear in

the Hamiltonian. In this case, one can produce wave packets that are as “localized”

in the variable Q without changing the energy of the system. Interestingly, this is a

perfect example of a system where one could have an apparent loss of information

of the type we are proposing here (for a more realistic analog gravity model

discussing the information paradox along the lines of the present scenario; see

Liberati et al., 2019). If one scatters a second particle interacting softly with the

charged particle on the plate so that the interaction does not produce a jump

between different Landau levels, then correlations with the cyclic variables would

be established without changing the energy of the system. This is the perfect model

to illustrate the possibility of decoherence without dissipation.
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FIGURE 1 | (Left) Penrose diagram illustrating (effectively) the natural scenario, suggested by the fundamental features of LQG, for the resolution of the information

puzzle in black hole evaporation (Perez, 2015). The shaded region represents the would-be-singularity where high fluctuations in geometry and fields are present and

where the low-energy degrees of freedom of the Hawking pairs are forced to interact with the fundamental Planckian degrees of freedom. (Right) Same situation as a

scattering process from an initial to a final Cauchy hypersurface. This figure contains basically the same information as the Penrose diagram. Its additional merit, if any,

is the more intuitive representation of the shrinking black hole as well as the time scales involved (collapse time is very short with respect to the evaporation time). Both

these features are absent in the conformal representation on the left. There are limitations to this kind of spacetime representation of a process that is fundamentally

quantum and hence only understandable in terms of superpositions of different spacetime geometries.

FIGURE 2 | Diagram (effectively) illustrating the natural scenario, suggested by the fundamental features of LQG, for the resolution of the information puzzle in black

hole evaporation (Perez, 2015). As in Figure 1, one should keep in mind the limitations of this kind of spacetime representation of a process that is fundamentally

quantum and hence only understandable in terms of superpositions of different spacetime geometries.

the true degrees of freedom of gravity that we expect (from
general covariance) to be completely independent of a preexistent
background geometry. We will see that such degrees of freedom
with such a peculiar nature actually arise naturally in the toy
model of quantum gravity that we analyze in this article.

It is presently hard to prove that such a scenario is viable
in a quantum theory of gravity simply because there is no
such theoretical framework developed enough for tackling BH
formation and evaporation in detail. However, the application
of loop quantum gravity to quantum cosmology leads to a
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model with similar features, where evolution across the classical
singularity is well defined (Bojowald, 2001). The results have been
reported in Amadei and Perez (2019). In this article we present
the main features of this model in more detail and show that
the conclusions of Amadei and Perez (2019), some of which
are drawn from some simplified models of matter coupling, are
generic and remain true in more physically realistic models.

The results can be described briefly by making reference to
Figure 2 which should be compared with the right panel in
Figure 1. We will show that the evolution in loop quantum
cosmology from a universe in an initially contracting state in
the past of the would-be-singularity to an expanding universe
in its future is perfectly unitary in its fundamental description.
Nevertheless, states in the Hilbert space of loop quantum
cosmology contain quantum degrees of freedom which are
hidden to low-energy coarse-grained observers. If these degrees
of freedom are traced out in the initial density matrix then we
will see that pure states (in the sense of the reduced density
matrix) generically evolve into mixed states across the would-
be-singularity. Information is lost in correlations with degrees of
freedom that are Planckian and thus inaccessible to macroscopic
observers. These correlations are established in an inevitable
way during the strong curvature phase of evolution across
the big bang (just as expected in the BH scenario described
above). As energy is conserved (energy is a delicate notion in
cosmology but happens to be well-defined in our model as we
will see), the defects that purify the final state do not enter
into the energy balance which realizes another crucial necessary
ingredient of the general scenario (decoherence happens with
negligible dissipation; Unruh, 2012).

The paper is organized as follows. In the first part (section 2),
we show that the scenario we have described in general terms so
far is realized in unimodular quantum cosmology following the
standard quantization prescription of loop quantum cosmology.
Aside from a different choice of time variable, the model of
this section is exactly equivalent to other models studied in the
standard literature (Ashtekar and Singh, 2011). In the second
part of the paper, we observe that there is natural extension
of loop quantum cosmology based on the regularization
ambiguity associated with the quantization of the Hamiltonian.
This extension provides another interesting realization of our
mechanism. Although this second option is not necessary to
illustrate our point (already realized in the standard theory in
the first part), it gives a different identity to the defects which
could lead to independent and thus useful insights. We have
included a series of appendices where some calculations are
shown. Appendix D is especially important because some of
the over-simplified model (analytic) calculations in the body of
the paper are completed (numerically) using a more physically
realistic case of the coupling of gravity with a massless scalar field.

2. UNIMODULAR GRAVITY:
FOUR-VOLUME AS TIME

In this section we introduce the basic structure of quantum
unimodular gravity in the framework of quantum cosmology.

This theory will provide us with a toy model to study the
unitary evolution of the state of the universe across the big-bang
singularity. We will see that the Hilbert space of loop quantum
cosmology contains the type of microscopic degrees of freedom
evoked in the general discussion of the introduction. This is a
minimalistic model where our scenario can be explicitly realized.

Unimodular gravity as a concept is nearly as old as general
relativity itself, it was introduced by Einstein in 1919 (Einstein,
1919) as an attempt to describe nuclear structure geometrically.
In his work, Einstein also identified an appealing feature of the
theory, which is the fact that the cosmological constant arises as a
dynamical constant of motion that needs to be added to the initial
values of the theory. In unimodular gravity, the cosmological
constant is a constant of integration and not a universal or
fundamental constant of nature. Interest in the theory was
regained in the late 80’s with the observation of Weinberg (1989)
that, for the above reason, semiclassical unimodular gravity
provides a trivial resolution of the cosmological constant problem
as vacuum energy simply does not gravitate. Unimodular
gravity is the natural low-energy description that emerges from
the formal thermodynamical ideas of Jacobson (1995), and
represents the expected low energy regime of the causal set
approach (Bombelli et al., 1987).

Another property of unimodular gravity (specially important
for us here) is that it completely resolves the problem of
time (Unruh, 1989) in the cosmological FLRW context. More
precisely, the theory comes with a preferred time evolution and a
preferred Hamiltonian (the energy of the universe is well defined
and directly linked with the value of the cosmological constant).
The quantum theory is described by a Schrodinger-like equation
where states of the universe are evolved by a unitary evolution
operator. Therefore, unlike the general situation in quantum
gravity, the notion of unitarity is unambiguously defined in
unimodular quantum cosmology. This is the main reason why
unimodular gravity provides the perfect framework for the
discussion of the central point of this work.

Here we specialize in homogeneous and isotropic cosmologies
that are spatially flat (k = 0), i.e., the spatial manifold 6 is
topologicallyR3. What follows is the standard construction. For a
detailed account of the Hamiltonian analysis in the cosmological
framework (see Chiou and Geiller, 2010). The FLRWmetric is

ds2 = −N(t)2dt2 + a(t)2 (dx2 + dy2 + dz2)
︸ ︷︷ ︸

qab

, (6)

where qab denotes the fiducial spacial metric. Since 6 is
non-compact, some integrals are infrared divergent and are
regularized by restricting them to a fixed fiducial cell V of fiducial
volume V0 with respect to the fiducial spacial metric

qab = eiae
j

b
δij, (7)

where eia denotes a fiducial triad and the physical metric is given
by qab = a2(t)qab. The action of unimodular gravity in the FLRW
mini superspace setup is given by

S[a, ȧ, λ] = 3

8πG

∫

R

(
V0aȧ

2

N
+ λV0(Na

3 − 1)

)

dt, (8)
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where λ is a Lagrange multiplier imposing the unimodular
constraint N = a−3 (i.e.,

√

|g| = 1), and the first term is
the Einstein-Hilbert action restricted to the FLRW geometries5.
In order to use loop quantum cosmology techniques (for
a discussion of the quantization in the full loop quantum
gravity context; see Smolin, 2009, 2011), one introduces the
new canonical variables c and p via the basic Ashtekar-Barbero
connection variables Ai

a and Eai , namely

Eai = p
(

eai V
−2/3
0

)

, Ai
a = c

(

ωi
aV

−1/3
0

)

, (9)

where ωi
a is a fiducial reference connection. These variables are

related to those in (8) via the equations

|p| = V
2/3
0 a2, c = V

1/3
0

γ ȧ

N
. (10)

The action becomes

S[c, p, λ] = 3

8πG

∫

R

γ−1cṗ− Nγ−2
√

|p|c2 + λ(N|p| 32 − V0)dt,

(11)
and c and p are canonically conjugated in the sense that

{c, p} = 8πGγ

3
. (12)

The unimodular condition N = a−3 fixes the lapse to N =
V0/|p|3/2 and the unimodular Hamiltonian becomes

H = 3V0

8πG

c2

γ 2|p| . (13)

The proportionality of the Hamiltonian with V0, and the fact that
the four-volume bounded by V0 at two different times is given by
v(4) = V01t, implies that time evolution can be parameterized
in terms of the four-volume elapsed from some reference initial
slice. The associated Hamiltonian [conjugated to v(4)/(8πG)] is

3 = 3c2

γ 2|p| , (14)

and corresponds to the cosmological constant.

2.1. Quantization
The loop quantum cosmology quantization uses a non standard
representation of the canonical variables where the variable c
does not exist as a quantum operator, and the definition of the
Hamiltonian requires a special regularization procedure known
as the µ̄-scheme (Ashtekar and Singh, 2011). The quantization
prescription is greatly simplified by the introduction of new
canonically conjugated dynamical variables b and ν defined as
(Ashtekar et al., 2008)

b ≡ c

|p| 12
ν ≡ sign(p)

|p| 32
2γπℓ2p

, (15)

5There is an overall minus sign in the definition action with respect to standard

treatments. This is done so that the pure-geometry Hamiltonian is positive definite.

with Poisson brackets6

{b, ν} = 2h̄−1. (16)

The variable ν corresponds to the physical volume of the fiducial
cell divided by ℓ2p; it has units of distance. The variable b is
simply its conjugate momentum. In terms of these variables
the gravitational (unimodular) Hamiltonian (13) integrated in a
fiducial cell V becomes

H = 3V0

8πGγ 2
b2. (17)

Note the extreme simplicity of the previous expression: the
unimodular Hamiltonian is just the analog of that of a free
particle in one dimension with a mass parameter of m =
4πγ 2/(3V0) and momentum b. In the absence of matter,
the Hamiltonian can be quantized in the Wheeler-DeWitt
representation where the evolution in unimodular time is unitary
and there is no singularity (the classical solutions correspond
to De-Sitter geometries with arbitrary but positive cosmological
constants). The singularity in the classical theory becomes real
when matter is introduced.

In the loop quantum cosmology polymer representation, just
as for c, there is no operator corresponding to b but only the
operators corresponding to finite ν translations (Ashtekar et al.,
2006); from here on referred to as shift operators

exp(i2kb) ⊲9(ν) = 9(ν − 4k). (18)

For k = q
√
1ℓp and q ∈ N, states that diagonalize the previous

shift operators, denoted |b0;Ŵǫ1〉, are labeled by a real value b0
and by a graph Ŵǫ1. The graph is a 1D lattice of points in the real

line of the form ν = 4n
√
1ℓp + ǫ with ǫ ∈ [0, 4

√
1ℓp) and

n ∈ N. The corresponding wave function is given by 9b0 (ν) ≡
〈ν|b0;Ŵǫ1〉 = exp (−i b0ν2 )δŴǫ1 , where the symbol δŴǫ1 means that
the wavefunction vanishes when ν /∈ Ŵǫ1. It follows from (18) that

exp(i2kb) ⊲ |b0;Ŵǫ1〉 = exp (i2kb0) |b0;Ŵǫ1〉 . (19)

The states |b;Ŵǫ1〉 are eigenstates of the shift operators that
preserve the lattice Ŵǫ1. Notice that the eigenvalues are
independent of the parameter ǫ, i.e., they are infinitely degenerate
and span a non separable subspace of the quantum cosmology
Hilbert space Hlqc.

A scale µ̄ is needed in order to define a regularization of
(17) representing the Hamiltonian in Hlqc. The reason is that
there are no operators associated with b but only approximants
constructed via the shift operators (18). The so-called µ̄-scheme
(Ashtekar and Singh, 2011) introduces a dynamical length scale
µ̄ defined as

µ2 =
ℓ2p1

|p| , (20)

6The factor h̄−1 appears on the right hand side of the Poisson brackets due to the

introduction of h̄ (via ℓ2p) in the definition of the new variable ν. This is done to

match standard definitions (Ashtekar and Singh, 2011).
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where1 represents the so-called “area-gap” which plays the role
of a UV regulator. It is normally associated with the smallest
non-vanishing area quantum in the full theory of loop quantum
gravity. For the moment (as in the standard treatment), this is
just a fixed parameter7. When translated into the variables (15),
µ corresponds to considering approximants to b constructed out
of shift operators (18) with fixed k ≡

√
1ℓp. In terms of these,

one obtains the following regularization of the Hamiltonian (17)
which is a well-defined self-adjoint operator8 acting on Hlqc

H1 ≡ 3V0

8πGγ 2

1

1ℓ2p
sin2

(

1
1
2 ℓp b

)

, (21)

which coincides with (17) leading to (zero) order in ℓ2p. From
(14), we obtain an operator associated to the (here dynamical)
cosmological constant, namely

31 ≡ 3

γ 2

sin2
(

1
1
2 ℓp b

)

1ℓ2p
. (22)

In the pure gravity case, the cosmological constant is positive
definite and bounded from above by the maximum value
λmax = 1/(γ 2ℓ2p1). Negative cosmological constant solutions are
possible when matter is added (see Appendix B). The states (19)
with k = k1 ≡

√
1ℓp diagonalize the Hamiltonian, i.e.,

H1 ⊲ |b0;Ŵǫ1〉 = E1(b0) |b0;Ŵǫ1〉 , (23)

with energy eigenvalues

E1(b0) =
3V0

8πGγ 2

1

1ℓ2p
sin2

(

1
1
2 ℓp b0

)

. (24)

States |b0;Ŵǫ1〉 are also eigenstates of the cosmological constant
with eigenvalue λ1(b0) = (8πG)E1(b0)/V0. Notice that
the energy eigenvalues do not depend on ǫ ∈ [0, 4

√
1ℓp).

Thus, the energy levels are infinitely degenerate with energy
eigenspaces that are non-separable. This is not something
peculiar of our model but a general property of the non-standard
representation of the canonical commutation relations used in
loop quantum cosmology.

2.2. On the Interpretation of the ǫ Sectors
It is customary in the loop quantum cosmology literature to
restrict to a fixed value of ǫ in concrete cosmological models,

7In section 3, we will turn this quantity into a quantum operator acting on the

microscopic sector of the Hilbert space that will be introduced.
8The Hamiltonian Ĥ0 (21) is symmetric, that is 〈91, Ĥ092〉 = 〈Ĥ091,92〉, with
respect to the inner product 〈91,92〉 =

∑

ν 91(ν)92(ν). The action of the

Hamiltonian on9(ν) is given by:

Ĥ09(ν) = −3(2γ 21sℓ
2
p)

−1
(

9(ν + 2λ)− 29(ν)+9(ν − 2λ)
)

,

with λ = 2
√
1sℓp. The key property is

〈91(ν),92(ν + 2λ)〉 = 〈91(ν − 2λ),92(ν)〉 where ν is in the support of

both 91(ν) and 92(ν). This is the statement of the unitarity of the shift operators

〈e−i2λb91,92〉 = 〈91, e
i2λb92〉. The symmetric nature of the shift operators

appearing in H0 implies the result.

as the dynamical evolution does not mix different ǫ sectors.
The terminology “superselected sectors” is used in a loose way
in discussions. However, these sectors are not superselected in
the strict sense of the term because they are not preserved by
the action of all the possible observables in the model, i.e., there
are non trivial Dirac observables mapping states from one sector
to another. The explicit construction of such observables might
be very involved in general (as is the usual case with Dirac
observables); nevertheless, it is possible to exhibit them directly
at least in one simple situation: the pure gravity case. In that case,
the shift operator (18) with shift parameter δ commutes with
the pure gravity Hamiltonian (the Hamiltonian constraint if we
were using standard loop quantum cosmology) and maps the ǫ
sector to the ǫ − 4δ sector. The analogous Dirac observables in a
generic matter model can be formally described with techniques
of the type used for the definition of evolving constants of motion
(Rovelli, 1991). No matter how complicated this might be in
practice, the point is well-illustrated by our explicit example in
the matter free case9.

Thus, different ǫ sectors are not superselected and therefore
the infinite degeneracy of the energy eigenvalues of the
Hamiltonian (which again we exhibit explicitly in the previous
discussion only in the vacuum case) must be taken at face
value. How can we understand this large degeneracy from the
fact that there would be only a two-fold degeneracy (associated
with a contracting or expanding universe) if we had quantized
the model using the standard Schrodinger representation or,
in other words, the standard Wheeler-DeWitt quantization?
The answer is to be found, we claim, in the notion of coarse
graining: low-energy observers only distinguish a two-fold
degeneracy for energy (or cosmological constant) eigenvalues:
one the universe has a given cosmological constant, and
two it is expanding or contracting. These are the quantum
numbers in the Wheeler-DeWitt quantization which play a
role in our context of the low-energy effective quantum field
theory formulation. Such coarse observers are declared to
be insensitive to the huge additional degeneracy of energy
eigenstates encoded in the quantum number ǫ. All these
infinitely many states in the quantum cosmology representation
must be considered as equivalent to the two-fold degeneracy
mentioned above.

In what follows, and for concreteness, we will consider
combinations of states with two different values for ǫ only,
i.e., on two different lattices. The idea of the previous
paragraph will naturally produce a notion of coarse-
graining entropy associated with the intrinsic statistical
uncertainty due to the inability for a low-energy agent to
distinguish these microscopically orthogonal states. Arbitrary
superposition with N different ǫ sectors would lead to
similar results [the entropy capacity growing with the usual
log(N)]. The N = 2 case treated here renders some explicit
calculations straightforward.

9This point was independently communicated to us in the context of Dirac

observables for isotropic LQC with a free matter scalar field Madhavan.
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2.3. Matter Couplings and a Model
Capturing Its Essential Features
Here we discuss two simple matter models in order to isolate
the generic features of the influence of matter. At the end of
the section, we will define a simple and trivially solvable model
capturing these features.

Perhaps the simplest matter model that would serve our
purposes is minimal and isotropic coupling to a Dirac fermion
defined in de Berredo-Peixoto et al. (2012). After symmetry
reduction, the action for matter is

SF(η, η̄) = V0

∫

R

dτ
[ i

2
a(τ )3

(

η̄γ 0η̇ − ˙̄ηγ 0η
)

−mN(τ )a(τ )3η̄η
]

,

(25)
from which we read the fermionic contribution to the
Hamiltonian

HF = mN(τ )a3(τ )η̄η = −mN(τ )pηγ0η

= m

a3
pηγ0η, (26)

where (5,9) are the fermionic canonical variables 5 ≡
(V0a)

3/2ψ† and 9 ≡ (V0a)
3/2ψ (Thiemann, 2001), and in the

second line, we use the unimodular condition N = V−1
0 a−3. In

the quantum theory, the non trivial anti-commutator is {η, pη} =
1 with the rest equal to zero. This is achieved by writing η =
∑

s

(

asu
se−imt + b†

s v
seimt

)

with non trivial anti-commutation

relations for the creation and annihilation of operators {ar , a†
s } =

δrs = {br , b†
s }, with use−imt and vse

imt as a complete basis
of solutions of the Dirac equation for positive and negative
frequency, respectively (Peskin and Schroeder, 1995). In our
model, we can have either the vacuum state, or one or two
fermions which saturate the Pauli exclusion principle. If we
assume normal ordering, the contribution to the unimodular
energy is

HF = mn

a3
. (27)

where n = 0, 1, 2 is the occupation number for the fermion. If
instead of the conditionN = V−1

0 a−3, we had usedN = 1 (where
time is comoving time) then the energy contribution would have
been just m for which we have a clear physical intuition: a single
fermion homogeneously distributed in the universe contributes
to the Hamiltonian with its total mass. The factor 1/a3 in the
previous expression comes from the unimodular condition.

In the case of Wheeler-DeWitt quantization, the contribution
of the fermion becomes singular at the big bang a = 0. In loop
quantum cosmology, such a quantity remains bounded above due
to loop quantum gravity discreteness. Indeed, using the inverse
volume quantization given in reference (Ashtekar and Singh,
2011), one has

ĤF ⊲ |ψ〉 = −m
∑

ν

|ν〉 hF(ν;
√
1ℓp)9(ν, η), (28)

where

hF(ν; λ) ≡
1

4λ2

(

|ν + 2λ| 12 − |ν − 2λ| 12
)2
. (29)

We notice that hF(ν;
√
1ℓp) < 1 and decays like 1/ν for

ν → ∞10. One could, in principle, add this term to the
free Hamiltonian and solve the unimodular time-independent
Schrodinger equation

(Ĥ0 + ĤF) ⊲ |ψ〉 = E |ψ〉 . (30)

Solutions can be interpreted in the sense of scattering theory
starting with free wave packets for large ν picked around a value
of the cosmological constant (22) or energy (24).

The case of coupling with a scalar field is formally very similar,
especially in the simplified case where we assume it to bemassless.
Following Ashtekar and Singh (2011), and using the unimodular
condition N = a−3, we get

Hφ = −
p2φ

8π2γ 2ℓ4pν
2
. (31)

This leads to

Ĥφ ⊲ |ψ〉 = −m
∑

ν

|ν〉 hφ(ν;
√
1ℓp)9(ν,φ), (32)

where

hφ(ν; λ) ≡
p2φ

16λ4

(

|ν + 2λ| 12 − |ν − 2λ| 12
)4
. (33)

The momentum pφ commutes with the Hamiltonian and thus
it is a constant of motion. If we consider an eigenstate of pφ
then the problem reduces again to a scattering problem with
a potential decaying like 1/ν2 when we consider solving the
time-independent Schrodinger equation

(Ĥ0 + Ĥφ) ⊲ |ψ〉 = E |ψ〉 . (34)

Therefore, both the fermion as well as the scalar field models
(which are closer to a possibly realistic scenario) seem tractable
with a slight generalization of the standard scattering theory to
the discrete loop quantum cosmology setting. However, the main
objective in this section is to illustrate an idea in terms of a
concrete and simple toy model. With this idea in mind, we will
modify the structure suggested by the fermion coupling and the
scalar field coupling and simply add an interaction term where
the “long-distance interaction” term represented by the function
F(ν; λ) is replaced by a short-range analog F(ν; λ) ∝ δν,0. The
qualitative properties of the scattering will be the same and the
model becomes sufficiently trivial for straightforward analytic
computations. The results for the more realistic free scalar field
model have been dealt with numerically and are presented in
Appendix D.

For that we consider an interaction that begins at ν = 0:

Ĥ = Ĥ0 + µĤint, (35)

10There is a great degree of ambiguity in writing the inverse volume operators.

Perhaps the simplest is the one introduced in WilsonEwing (2012) that we will

actually use in the concrete computations of Appendix D. For more discussion on

this see Singh and Wilson-Ewing (2014) and references therein.
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FIGURE 3 | The function hφ (ν; λ) evaluated on an ǫ sector containing ν = 0, for pφ = 10 in natural units and λ = 1/2 is plotted using two different ranges. On the left,

we see that the function is finite near ν = 0. On the right, we can see that it behaves like −ν−2 for large values of ν. This function can be seen as the effective potential

where an asymptotically free state of the universe (pure gravity with cosmological constant state or asymptotically de Sitter state) scatters. If the cosmological

constant is negative there are bound states whose superposition can be used to define semiclassical universes oscillating in an endless series of big bangs and big

crunches (see section B).

whereµ is a dimensionless coupling, Ĥ0 is given in (58), and Ĥint

is

Ĥint ⊲ |ψ〉 ≡
∑

ν

(

ℓ−4
p

V0√
1

)

|ν〉 δν,0√
1
9(0). (36)

We have added by hand an interaction Hamiltonian that switches
on only when the universe evolves through the would-be-
singularity at the zero volume state. The key feature of the Ĥint

is that—as its more realistic relatives, matter Hamiltonians (28)
and (32)—it breaks translational invariance and thus, it leads to
different dynamical evolution for different ǫ sectors.

2.4. Solutions as a Scattering Problem
The scattering problem is very similar to the standard one in one-
dimensional quantum mechanics; however, one needs to take
into account the existence of the peculiar degeneracy of energy
eigenvalues contained in the ǫ sectors; see sections 2.1 and 2.2.
We will consider, for simplicity, the superposition of only two
states supported on two lattices respectively: the lattice Ŵǫ1 with

ǫ = 0 for the first one and the one with ǫ = 2
√
1ℓp for the

second one. The degenerate eigenstates of the shift operators (19)
with eigenvalues exp(i2kb) will be denoted as

|b, 1〉 ≡ |b;Ŵ0
1〉 , and |b, 2〉 ≡ |b;Ŵ2

√
1ℓp

1 〉 , (37)

respectively, while we will denoteŴ1 andŴ2 as the corresponding
underlying lattices. The immediate observation is that states
supported on Ŵ2 (superpositions of |b, 2〉) will propagate freely
because they are supported on a lattice that does not contain the
point ν = 0 where the interaction is non trivial. On the other
hand, states supported on Ŵ1 (superpositions of |b, 1〉) will be
affected by the interaction at the big bang. Before and after the big
bang, the universe’s evolution of the second type of states is well
described by the eigenstates of the Hamiltonian (58) described
in section 2.1. Such asymmetry of the interaction on different

ǫ sectors is not an artifact of the simplicity of the interaction
Hamiltonian. This is just a consequence of the necessary breaking
of the shift invariance for any realistic matter interaction as
we argued in the previous section and we show explicitly in
Appendix D (see Figure 3).

Therefore, the non trivial scattering problem concerns only
states on the latticeŴ1 = {ν = 4n

√
1ℓp | n ∈ Z} that is preserved

by the Hamiltonian and contains the point ν = 0. In order to
solve the scattering problem, we consider an in-state of the form

|ψk〉 = |ν〉
{

e−i k2 ν + A(k) ei
k
2 ν (ν ≥ 0)

B(k) e−i k2 ν (ν ≤ 0),
(38)

where ν ∈ Ŵ1, and A(k) and B(k) are coefficients depending on
k. For suitable coefficients, such states are eigenstates of the full
Hamiltonian (35). Arbitrary solutions (wave packets) can then
be constructed in terms of appropriate superpositions of these
“plane-wave” states.

We can compute the scattering coefficients A(k) and
B(k) from the discrete (finite difference) time-independent
Schrodinger equation

(

Ĥ0 + Ĥint

)

⊲ |ψ〉 = E |ψ〉 (39)

which amounts to the following finite difference equation in the
ν basis:

∑

ν

(

− 3V0

8πGγ 2

1

21ℓ2p

[

9(ν − 4
√
1ℓp)+9(ν + 4

√
1ℓp)

−29(ν)
]

+ V0µ

1ℓ4p
δν,09(0)− E(k)9(ν)

)

|ν〉 = 0.
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The matching conditions on ν = 0 are given by:

1+ A(k) = B(k)

− 3

16πGγ 21ℓ2p

[

9(−4
√
1ℓp)+9(4

√
1ℓp)− 29(0)

]

+ µ

1ℓ4p
9(0) = E(k)

V0
9(0),

where the first equation comes from continuity at ν = 0,
the second equation from the time-independent Schrodinger
equation. The solution of the previous equations is

A(k) = −i2(k)

1+ i2(k)

B(k) = 1

1+ i2(k)
(40)

where

2(k) ≡ 16πγ 2

3

µ

sin(2k
√
1ℓp)

. (41)

We consider an in-state of the form (valid for early times)

|ψin, t〉 =
π√
21ℓp

∫

db
(

ψ(b; b0, ν0) |b, 1〉 + ψ(b; b0, ν0) |b, 2〉
)

e−iE1(b)t ,

(42)
where ψ(b; b0, ν0) is a wave function picked at a b = b0 value
and ν = ν0. Notice that we are superimposing two wave packets
supported on lattices Ŵ1 and Ŵ2, respectively. We can now write
the pure in-density matrix

ρin(t) =
π2

21ℓ2p

∫

db db′ ei[E1(b)−E1(b
′)]t (43)

×
[

|b′, 1〉ψ(b′; b0, ν0)+ |b′, 2〉ψ(b′; b0, ν0)
]

[

〈b, 1|ψ(b; b0, ν0)+ 〈b, 2|ψ(b; b0, ν0)
]

(44)

which scatters into the out-density matrix

ρout(t) =
π2

1ℓ2p

∫

db db′ ei[E1(b)−E1(b
′)]t

[

〈b, 1|ψ(−b; b0, ν0)A(−b)+ 〈b, 1|ψ(b; b0, ν0)B(b)

+〈b, 2|ψ(b; b0, ν0)
]

[

|b′, 1〉ψ(−b′)e−ib′νA(−b′)+ |b′, 1〉ψ(b′)eib′νB(b′)

+ |b′, 2〉ψ(b′; b0, ν0)
]

.

Let us assume that ψ(b) is highly picked at a b0 so that
we can substitute the integration variables b and b′ by b0
and have a finite dimensional representation of the reduced
density matrix after the scattering (this step is rather formal,
it involves an approximation but it helps when visualizing

the result). In the relevant 4 × 4 sector (with basis elements
ordered as

{

|1, b0〉 , |1,−b0〉 , |2, b0〉 , |2,−b0〉
}

), we get the
matrix representation

ρin =







1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 0







→ ρout

= 1

2







|B(b0)|2 A(−b0)B(b0) B(b0) 0

A(−b0)B(b0) |A(−b0)|2 A(−b0) 0

B(b0) A(−b0) 1 0
0 0 0 0






. (45)

2.5. Matter Coupling Produces a
Coarse-Graining Entropy Jump at the Big
Bang
A reduced density matrix encoding the notion of coarse graining
associated with the low-energy equivalence of the ǫ sectors
is defined by tracing over the discrete degrees of freedom
labeling the component of the state in either the Ŵ1 or the Ŵ2
lattices. In other words, tracing over the two (macroscopically
indistinguishable) ǫ sectors, namely

〈b| ρR |b′〉 ≡
2
∑

i=1

〈b, i| ρ |b′, i〉 . (46)

In other words, the subspace of the Hilbert space we are working
with is the one supported on two different ǫ sectors H(Ŵ1) ⊕
H(Ŵ2) ⊂ Hlqc which, as the two terms are isomorphic H(Ŵ1) ≈
H(Ŵ2) ≈ H0, H(Ŵ1)⊕ H(Ŵ2) ⊂ Hlqc can be written as

H0 ⊗ C
2 ⊂ Hlqc. (47)

The coarse graining is defined by tracing over the C
2 factor.

This implies that from the previous 4 × 4 matrix, we obtain
2 × 2 reduced density matrices. The reduced density matrix ρ

R
in

remains pure, explicitly

ρ
R
in = 1

2

(

1 1
1 1

)

. (48)

Nevertheless, the reduced density matrix ρ
R
out is now mixed,

namely

ρ
R
out =

1

2

(

1+ |B(b0)|2 A(−b0)B(b0)

A(−b0)B(b0) |A(−b0)|2
)

. (49)

We can now compute the entanglement entropy. To first order
the cosmological constant, the result is

δS = log(2)−
313ℓp

2

128π2γ 2µ2
+ O(32ℓ4p) (50)

The behavior as a function of b is shown in Figure 4. In
Appendix C1, we discuss an alternative definition of coarse
graining with the same qualitative implications.
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FIGURE 4 | The curve represented by a thin line is the entropy jump δS as a

function of b in Planck units for γ = µ = 1 = 1. The small bℓp behavior in (93)

is apparent. The entropy is periodic for bℓp ∈ [0,π ] as expected from (86). The

dotted line represents the maximum possible entropy which is log[2] in our

model.

3. QUANTUM COSMOLOGY ON A
SUPERPOSITION OF BACKGROUNDS

In the first part of this paper, we have seen how the fact
that the Hilbert space of loop quantum cosmology is vastly
larger than the standard Schrodinger representation implies (via
coarse graining) that the coarse-graining entropy would rise
generically through the evolution across the big bang would-be-
singularity. In this section, we explore another closely related
feature that leads to an apparent non-unitary evolution when
dynamics are probed by a low-energy agent. The quantum
dynamics in loop quantum cosmology depend on a UV regulator
known as the area-gap 1 (section 2.1). We will see here that
the loop quantum cosmology model can be extended naturally
to admit superpositions of dynamics with different regulators.
Such an extension generally leads to the dynamical development
of correlations between the macroscopic and the microscopic
degrees of freedom. If the microscopic degrees of freedom
are assumed to remain hidden to low-energy observers, then
such correlations lead to an apparent violation of unitarity
in the low-energy description where pure states evolve into
mixed states. In other words, the UV data needed to define the
quantum dynamics open an independent microscopic channel
for information to be degraded.

3.1. The UV Input in Quantum Cosmology:
Revisiting the µ Scheme
The µ̄ scheme was designed to avoid an inconsistency in an
early model of loop quantum cosmology with the low-energy
limit (or large universe limit) of loop quantum cosmology
(Green and Unruh, 2004). The problem arises from the effective
compactification of the connection variable c due to the polymer
regularization of the Hamiltonian with a fixed fiducial scale µ
which implies that c and c + 4π/µ are dynamically identified.
This leads to anomalous deviations from classical behavior in
situations where the variable c is classically expected to be

unbounded for large universes. This can be seen clearly in the
present situation where the unimodular Hamiltonian (17) is
given, in (c, p) variables, by

H = 3V0

8πG

c2

γ 2|p| . (51)

For non-vanishing energies (or equivalently non-vanishing
cosmological constants), the conservation of the Hamiltonian
implies that c grows as |p| ∝ a2, i.e., c grows without limits as the
universe expands so that no matter how small µ is, anomalous
effects due to the compactification of the c become relevant at
macroscopic scales (Noui et al., 2005). As no quantum gravity
effects seem acceptable in the large universe regime for a model
with finitely many degrees of freedom, this anomaly is seen as an
inconsistency of the model.

The µ̄ scheme solves this inconsistency by “renormalizing”
the regulating scale µ as the universe grows (Equation 20). The
interesting thing is that such a renormalization is justified by
quantum geometry arguments that link the mini superspace
model of loop quantum cosmology to the geometry of a
microscopic background state in the full theory. The argument
explicitly uses the idea that the low-energy degrees of freedom
(dynamical variable of loop quantum cosmology) arise from the
coarse graining of the fundamental ones in loop quantum gravity.

Here we review the construction of the µ̄ scheme as described
in Ashtekar and Singh (2011). Consider a fundamental quantum
geometry state |s〉 in the Hilbert space of loop quantum
gravity, representing a microscopic state on top of which the
quantum cosmological coarse-grained dynamics will eventually
be defined. Such an underlying fundamental state will have to be
approximately homogeneous and isotropic up to a scale of L > ℓp
with respect to the preferred foliation defining the comoving
FLRW observers at low energies. If that is the case then such
space slices can be divided into (approximately) cubic 3-cells of
physical side length L which all have approximately equivalent
quantum geometries. The area of a face of such cubic cells in
Planck units will be denoted 1s so that L2 = ℓ2p1s. Note that
1s is a property of the underlying microstate: an area eigenstate
if the microstate is an eigenstate, or an area expectation value
if the state is sufficiently peaked on a quantum geometry and
has small fluctuations around it. A simple realization is the one
where 1s is an area eigenvalue, and the important assumption is
that 1s is the same for all cells (this encodes the homogeneity
of the microscopic state). Consider the area of a large two-
dimensional surface (the face of a fiducial cell V), whose area
is measured by the low-energy (coarse-grained) quantity p used
as the configuration variable in loop quantum cosmology. We
naturally would expect that |p| ≫ ℓ2p or alternatively that

Nℓ2p1s = |p|, (52)

where N denotes the number of microscopic cells contained in
the coarse-grained surface (a face of V), and N ≫ 1. The fiducial
cell has a fiducial coordinate volume V0 and hence fiducial side
coordinate length V

1/3
0 . Therefore, the fiducial coordinate length
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µ̄ of the microscopic homogeneity cells is given by the relation

N(µ̄V
1/3
0 )2 = V

2/3
0 . (53)

Combining the previous two equations, one recovers Equation
(20), namely

µ̄2
s ≡ µ̄2 =

ℓ2p1s

|p| , (54)

i.e., the fiducial scale µ̄ is dynamical: as the universe grows
(and |p| becomes larger), the underlying fiducial length scale
decreases. The fiducial regularization scale (53) depends on
the fundamental state |s〉 via the quantity 1s, hence we
denote it as µ̄s. When such a dynamical scale is used in
the regularization of the quantum cosmology Hamiltonian, the
effective compactification scale for c grows like |p| and the
inconsistency previously discussed is avoided. This is transparent
in terms of the new canonical pair (b, v). From Equation
(15), we can see that b = cµ̄s/(

√
1sℓp), in contrast with c

(see 17), remains constant (see 51) in the de Sitter universe.
The quantization of the Hamiltonian presented in section 2.1
introduces an effective compactification of the variable b whose
dynamical effect is now only relevant when the cosmological
constant approaches one in Planck units. This can be seen from
(21). The cosmological constant is bounded from above by its
natural value in Planck units due to the underlying quantum
geometry structure while the anomalous IR behavior is avoided
(the problems exhibited in the model studied in Green and
Unruh, 2004 are also resolved).

The above is the standard account of the motivation of the
µ̄ scheme of Ashtekar et al. (2006) with the little twist (which
is very important for us here) that 1s need not be the lowest
area eigenvalue of loop quantum gravity. In the usual argument,
the microscopic state is thought to be built from a special
homogeneous spin network (geometry eigenstate) with all spins
equal to the fundamental representation. This implies that, in the
above construction,1s = 11/2 ≡ 2πγ

√
3. The observation here

is that 1s can take different values according to the microscopic
properties of the underlying quantum geometry state. One could
take for instance all spins equal to the vector representation and
then have 1s = 11 ≡ 4πγ

√
2 instead, or take j as arbitrary and

use 1s = 1j. It is important to point out that such a possibility
can arise naturally in quantum cosmologymodels obtained in the
group field theory framework (Gielen et al., 2013; Oriti et al., 2016
, 2017).

As we have seen in section 3.1, the field strength
regularization, and hence the Hamiltonian, depend on the
value 1s of the background (approximately homogeneous) spin
network state |s〉 through the dynamical scale µ̄s. In this way,
the dynamics of loop quantum cosmology establish correlations
with a microscopic degree of freedom in the underlying loop
quantum gravity fundamental state. As such a degree of freedom
(the area eigenvalue 1s of the minimal homogeneity cells) is
quantum, it is natural to model the system by a tensor product
Hilbert space H ≡ Hm ⊗ Hlqc, where Hm is the Hilbert space
representing the microscopic degree of freedom encoded in

the minimal homogeneous cell operator (whose eigenvalues we
denote as 1s), and Hlqc the standard kinematical Hilbert space
of loop quantum cosmology.

General states in H can be expressed as linear combinations
of product states |s〉 ⊗ ψ in the respective factor Hilbert spaces.
The quantumHamiltonian has a natural definition on such states
and therefore on the whole of H, namely

Ĥ ⊲ (|s〉 ⊗ ψ) = |s〉 ⊗ Ĥ1s ⊲ ψ , (55)

where Ĥ1s is the usual loop quantum cosmology Hamiltonian in
the µ̄s scheme, which in our particular case is defined in Equation
(21) with regulator1 = 1s.

Notice that the previous extension of the standard loop
quantum cosmology framework to the larger Hilbert space
H is also natural from the perspective of the full theory.
Indeed, the generally accepted regularization procedure of the
Hamiltonian constraint in loop quantum gravity (first introduced
by Thiemann, 1998 and further developed in recent analysis—
see Ashtekar and Pullin, 2017 and references therein) is state
dependent in that the loops defining the regulated curvature of
the connection are added on specific nodes of the state where the
Hamiltonian is acting upon. This feature finds its analog in the
action (55) where the regulating scale 1s depends on the state
|s〉 ∈ Hm.

In order to simplify the following discussion we will restrict
states in Hm even further and consider a subspace h = C

2 ⊂
Hm, i.e., we will model the situation where the underlying
microscopic state is an arbitrary superposition of only two fixed
microscopic homogeneous spin-network states. For example
we take

h ≡ span
[

|+〉 , |−〉
]

, (56)

where |±〉 ∈ Hm are two suitable orthogonal background states
(these two states will be conveniently picked below). From the
infinitely dimensional Hilbert space Hm we are now selecting a
single q-bit subspace C2. The Hilbert space of our model is

H = h⊗ Hlqc. (57)

The factor h represents additional microscopic (hidden to low-
energy observers) UV degrees of freedom, whileHlqc encodes the
data that under suitable circumstances (e.g., when the universe is
large) represent the low-energy cosmological degrees of freedom.

In this way we see that in addition to the intrinsic degeneracy
of energy eigenvalues analyzed in the first part of this paper,
there is another candidate for the microscopic degree of freedom
associated with the regularization of the Hamiltonian action via
the µ̄-scheme. Both mechanisms are correct for the present loop
quantum cosmology toy model but reflect generic properties
of the full theory of loop quantum gravity. More generally, we
expect similar features to be present in any quantum gravity
approach where smooth geometry is only emergent from a
discrete fundamental theory.
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FIGURE 5 | Schematic representation of the state of interest. There are two

different UV structures with dynamical implications via the µ̄ scheme. The

state represented here has trivial correlations with the microscopic structure

and would lead to a zero initial entanglement entropy state as defined by the

reduced density matrix where the background state is traced out.

From now on we adopt the convenient notation |s〉with s = ±
for such preferred basis elements of h. With this notation, and
using (21), the Hamiltonian (55) becomes

Ĥ0 ⊲ (|s〉 ⊗ |ψ〉) = 3V0

8πGγ 2

1

1sℓ
2
p

(

sin(
√

1sℓp b)
)2

⊲ |s〉 ⊗ |ψ〉

= − 3V0

8πGγ 2

∑

ν

1

21sℓ
2
p

|s〉 ⊗ |ν〉
[

9(ν

− 4
√

1sℓp)+9(ν + 4
√

1sℓp)− 29(ν)
]

,

(58)

where9(ν) ≡ 〈ν|ψ〉.
Now, the only special feature of the basis |±〉 is that it

is preferred from the perspective of the regularization of the
effective (unimodular) loop quantum cosmology Hamiltonian.
Consequently, a natural question for the quantum theory is how
the dynamics would look if the initial state is arbitrary in factor
h? More precisely, what if we consider the linear combination
of two background spin networks 1√

2
(|+〉 + |−〉) ∈ h times a

loop quantum cosmology wave function as depicted in Figure 5?
To answer this question we consider a special initial state where
correlations between the low-energy and the UV degrees of
freedom are not present. This will lead to a reduced density
matrix—tracing out the microscopic space h in (57)—that is pure
initially, the form of such a state is illustrated in Figure 5. At the
same time we want to be able to diagonalize the Hamiltonian with
such uncorrelated initial states; more precisely this boils down to
diagonalizing both H1+ and H1− in Hlqc. This implies that the
factor ψ(ν) ∈ Hlqc, in Figure 5, must be supported on a lattice
Ŵǫ1 that is left invariant by the action of both H1+ and H1− (left
invariant in the sense that the shift operators in the definition of
the Hamiltonian only relate to points ofŴǫ1 and nevermap points
out). This can be achieved by assuming that

√
1+ = m

√
1− for

some natural number m. For simplicity we will take m = 2 from
now on11. The parameter ǫ will be taken so that the lattice Ŵǫ1
contains the point ν = 0. This is a standard choice. With all this,
the invariant lattice, denoted as Ŵ1− , is

11One might be worried that this is hard to achieve if one sticks to the form

of the area spectrum of loop quantum gravity. This is however simply a model

and the link with the full theory (remember) must be taken at the heuristic level.

Nevertheless, solutions do exist for instancem = 4 for j+ = 3 and j− = 1/2.

Ŵ1− ≡ Ŵǫ=0
k=2

√
1−ℓp

. (59)

Note that in the notation described below (37), we have that
Ŵ1− = Ŵ1 ∪ Ŵ2.

The choices made above are not mandatory. One could have
chosen a different initial state. The previous choice is particularly
interesting here because it would lead to a reduced initial
density matrix that is pure and hence initially had vanishing
entanglement entropy. Other states would involve correlations
and would therefore carry a non vanishing entropy load from the
beginning. For the discussion that interests us here and for the
analogy with black hole evaporation, it is more transparent to set
the entropy to zero initially.

An arbitrary (unimodular) loop quantum cosmology state
associated with such a choice of background state can be
expressed as:

9in(ν, t) = 〈ν| 1√
2

∑

s

|s〉 ⊗ |9in(t)〉

= 1√
2

∑

s

|s〉 ⊗
[

δŴ1− (ν) (60)

π√
1−ℓp∫

0

dk ψ(k; b0, ν0) exp(−iEs(k)t)
]

where ψ(k; b0, ν0) is a properly normalized function peaked at
k = b0 and ν = ν0. The initial state in the momentum
representation is given by:

9in(b, t) =
∑

ν∈Ŵ0
1−

〈b, 1 ∪ 2|ν〉 〈ν|9in(t)〉 (61)

= π√
1−ℓp

∑

s

|s〉 ⊗ ψ(b; b0, ν0)e−iEs(b)t

Where, in the first line, we used the natural extension of the
notation introduced in (37) where |b, 1 ∪ 2〉 means an eigenstate
of the corresponding shift operators (19) supported on the lattice
Ŵ1− = Ŵ1 ∪ Ŵ2. Notice that we can also write

|b, 1 ∪ 2〉 = |b, 1〉 + |b, 2〉 , (62)

keeping in mind that terms on the r.h.s. are individually
eigenstates of the shift operators with twice the lattice spacing of
Ŵ1− . We also used

∑

ν∈Ŵ0
1−

exp

(

i
b− k

2
ν

)

= π√
1−ℓp

δ(b− k). (63)

We can then write

9in(t) =
∑

s

∫

Db |s〉 ⊗ |b, 1 ∪ 2〉ψ(b; b0, ν0)e−iEs(b)t , (64)

where

Db ≡ π√
21−ℓp

db, (65)
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is the Haar measure on the circle of circumference π/
√
21−ℓp.

We notice from (64) that even when our initial state contains
no correlations between the low energy degrees of freedom
represented by b and the microscopic degrees of freedom
encoded in |s〉 at t = 0, quantum correlations between the two
will develop with time due to the non trivial dependence of the
energy spectrum with s. Even when this is quite clear from (64),
one can state this fact in an equivalent way by analysing the (pure)
density matrix ρin(t) ≡ |9in(t)〉 〈9in(t)|, whose matrix elements
in the b basis are:

ρin(t) ≡
∑

s,s′

∫

Db Db′
(

ψ(b; b0, ν0)ψ(b′; b0, ν0) ei[Es(b)−Es′ (b
′)]t
)

× |b′, 1 ∪ 2〉 |s′〉 〈b, 1 ∪ 2| 〈s| . (66)

As coarse-grained observers are assumed to be insensitive to
the microscopic structure encoded here in the “spin” quantum
number s, low-energy physical information is encoded in the
reduced density matrix

ρinR(t) ≡
∑

s

∫

Db Db′
(

ψ(b; b0, ν0)ψ(b′; b0, ν0) (67)

ei[Es(b)−Es(b
′)]t
)

× |b′, 1 ∪ 2〉 |s′〉 〈b, 1 ∪ 2| 〈s| , (68)

which can be simply be written as

ρinR(t) =
1

2

∑

s

|9s(t)〉 〈9s(t)| (69)

where

|9s(t)〉 ≡
∫

Db ψ(b; b0, ν0) e−iEs(b)t |b, 1 ∪ 2〉 . (70)

Notice that (69) is only pure at t = 0 and becomes mixed due to
the correlations evoked above as time passes. One can compute
the entanglement entropy S(t) ≡ −Tr

[

ρinR(t) log(ρinR(t))
]

which turns out to be given by the simple analytic expression (see
Appendix A)

S(t) = − log

(

1− δ

2

)

− δ

2
log

(

δ

1− δ
2

)

, (71)

where

δ(t) ≡ 1−
∣
∣
∣
∣

∫

Dbψ(b; b0, ν0)ψ(b; b0, ν0)ei[E+(b)−E−(b)]t
∣
∣
∣
∣
. (72)

For generic wave packets ψs(b), the entanglement entropy is a
monotonic growing function of time which grows asymptotically
to the maximally mixed situation Smax = log(2) (see an example
in Figure 6).

FIGURE 6 | Here we plot S(t) as a function of time for a Gaussian wave packet

centered at b = 2.5 10−2, b = 5 10−2, b = 7 10−2, and b = 10−1 with width

σ = b, respectively. Numerical integration plus the approximation (73) was

used with the assumption that 2(1+ −1−)/γ 2 = 1, all in Planck units. As b

grows the scalar curvature (the cosmological constant) grows and the rate at

which entropy increases grows as well. For b≪ 1, an effective unitary

evolution is recovered.

A more intuitive picture can be obtained from a suitable
expansion of the energy eigenvalues (24) in powers of the label
bℓp

Es(b) =
3V0

8πGγ 2

1

1sℓ
2
p

(

sin(
√

1sℓpb)
)2

= 3V0

8πGγ 2
b2 − V0

8πGγ 2
1sℓ

2
pb

4 + b2O(ℓ4pb
4). (73)

Such an expansion makes sense in that it allows for the
identification of the low energy effective Hamiltonian (the one
that one would define in a purely Wheeler-DeWitt quantization)
plus corrections that involve interactions with the underlying
discrete structure of LQG here represented by the spin s degree
of freedom. Namely, we can read from the previous expansion
that

Heff ≡ H0
eff(b)+1H(b, s), (74)

where Ĥ0
eff
(b̂) ≡ 6

γ 2
b̂2 is the Wheeler-DeWitt Hamiltonian

and the additional term is an interaction with the environment
represented by the underlying discrete structure represented
by the dependence on s (a hidden degree of freedom from
the low-energy continuum perspective). Of course, the hats
in the previous equation denote operators in a different
representation (the continuum Schrodinger representation) that
is not unitarily equivalent to the “fundamental” polymer
representation introduced in section 2.1 and used in the LQC

setup (recall for instance that the operator b̂ does not even exist
in the polymer representation).

The lack of purity for t > 0 of the reduced density matrix
(69) is due to correlations that develop between the low-energy
degree of freedom b and the hidden microscopic degree of
freedom s via this non trivial interaction Hamiltonian. This
means that generically [i.e., for arbitrary initial states ψs(b)], the
fundamental evolution would seem to violate unitarity, from the
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perspective of low-energy observers, due to the decoherence with
the microscopic quantum geometric structure. Notice however
that for statesψs(b) picked at sufficiently small k̄, i.e., k̄

√
1sℓp≪1,

we have from (22) that

3(b) ≈ 3γ−2b2 (75)

and the density matrix (69) is pure at all times.
More precisely, we can translate the criterion for the

absence of decoherence with the underlying microscopic discrete
structure in terms of the value of the cosmological constant of
the given state. For an eigenstate of the Hamiltonian the relation
is given by 3 ≡ Es(b). Therefore the criterion for the absence of
decoherence in terms of the cosmological constant is

1sℓ
2
pγ

23 ≈ ℓ2p3≪ 1 (76)

Interestingly, for states with low values of the cosmological
constant in natural units—equivalent semi-classically to
the scalar curvature R in our matter-free model—define a
decoherence free subspace. When the cosmological constant
does not satisfy condition (76), decoherence with themicroscopic
structure is turned on and maximized for 3 of order one in
Planck units: notice incidentally that due to the polymer
quantization the cosmological constant is bounded by

3max =
3

γ 21 1
2
ℓ2p

. (77)

For low values of 3, unitarity is recovered in the effective
description that ignores the microscopic structure.

Decoherence takes place here due to an interaction between
the low-energy coarse degrees of freedom and the microscopic
discreteness in the underlying quantum geometry background,
but in a way (in our simple model) that the energy and hence
the cosmological constant is conserved. However, the presence
of decoherence suggests the possibility for a natural deviation
of this idealized absence of dissipation: generally decoherence
and dissipation often come together. Therefore, a surprising
and unexpected consequence of our analysis is the suggestion
of a natural channel for the relaxation of a large cosmological
constant due to the possibility of dissipative effects associated
with the decoherence pointed out here.

Incidentally, all this shows that only in the limit of low
values of E (small cosmological constant), the coarse graining
that leads from the full theory of loop quantum gravity to
the mini superspace description of loop quantum cosmology
is well-defined. This is not surprising and only confirms the
usual intuition that drives the construction of models of loop
quantum cosmology. However, it opens the door for a qualitative
understanding of the necessity of decoherence effects in more
general situations. For instance, the standard µ̄s construction
suggests that coarse graining is weaker at the big bang where
the Hamiltonian evolution (58) takes the universe through the
ν = 0 states. During this high (spacial) curvature phase it is
natural to expect that the higher corrections in (73) (describing
the interaction with the microscopic Planckian structure) can no
longer be neglected.

Interestingly, there is another way to make decoherence
disappear. This is due to the asymptotic behavior of the
separation of area eigenvalues in loop quantum gravity which
imply that for large 1s there are states such that 1s − 1s′ ≈
1s exp(−π

√
21s/3) (Fernando Barbero et al., 2018). Therefore,

in the continuum limit1s−1s′ ≪1 the dynamical entanglement
growth of our model can be made as small as wanted.

3.2. Matter Coupling Produces an
Entanglement Entropy Jump at the Big
Bang
In the pure gravity case, we can make decoherence as small as
needed by choosing states with a cosmological constant that is
sufficiently small. Here we show that this is no longer possible
once matter is added and that there is a generic development
of correlations with the UV degrees of freedom in the evolution
across the would-be-singularity: an initially pure state (reduced
low-energy density matrix) evolves generically into a mixed state
(reduced low-energy density matrix) after the big bang.

In order to see this in more detail, we just need to write out the
matter Hamiltonians acting in the Hilbert space (57). One needs
the natural generalization of the expressions written in section
2.3 for the present context. For instance, for scalar field coupling,
Equation (32) becomes

Ĥφ ⊲(|s〉 ⊗ |ψ〉) = −m
∑

ν∈Ŵ
|s〉⊗|ν〉 hφ(ν;

√

1sℓp)9(ν,φ), (78)

where

hφ(ν; λ) ≡
p2φ

16λ4

(

|ν + 2λ| 12 − |ν − 2λ| 12
)4
. (79)

The momentum pφ commutes with the Hamiltonian and thus is
a constant of motion. As before, if we consider an eigenstate of
pφ then the problem reduces again to a scattering problem with a
potential decaying like 1/ν2 when solving the time-independent
Schrodinger equation

Ĥ0 + Ĥφ ⊲ (|s〉 ⊗ |ψ〉) = E (|s〉 ⊗ |ψ〉) . (80)

From the discussion in section 2.3, we can capture the basic
qualitative effect of matter interaction by considering a simple
solvable model where the matter contribution is concentrated at
a single event at the big bang. None of the qualitative conclusions
that follow depend on this simplification, and amore realistic free
scalar field model can be dealt with (some results are shown in
Appendix D). With some extra effort one could actually analyze
a more realistic model [say the one defined by (78)] but the
conclusion will remain the same. Therefore, we consider

Ĥ = Ĥ0 + µĤint, (81)

whereµ is a dimensionless coupling, Ĥ0 is given in (58), and Ĥint

is the generalization of (36)

Ĥint ⊲ (|s〉 ⊗ |ψ〉) ≡
∑

ν

Ô |s〉 ⊗ |ν〉 δν,0√
1s
9(0) (82)
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where Ô is a self adjoint operator in h = C
2. A natural and simple

model for this operator is to choose

Ô ≡ ℓ−4
p

V0√
1s

. (83)

This choice is formulated in the notation introduced below (58)
and inspired by the analogy with a spin system. We have added
by hand an interaction Hamiltonian that switches on only when
the universe evolves through the would-be-singularity at the zero
volume state. This encodes the idea of the intrinsic uncertainty
of the peculiar construction of the mini superspace model of loop
quantum cosmology that we discussed in section 3.1. The discrete
local degrees of freedom must be important close to the big bang
and symmetry reduction must fail in some way that can only be
correctly described if a full quantum gravity theory is available.
Here we model such unknown dynamics in the simplest fashion
available to us here, which consists of including the possibility
for the background state |s〉 (representing in spirit the underlying
quantum geometry) to be modified by the dynamics via Ĥint.

Here we proceed as in section 2.4 while keeping in mind that,
in the present case, there are two distinct cases at hand given by
the two possible values1±. Let us consider an in-state of the form

|k, s〉 = |s〉 ⊗ |ν〉
{

e−i k2 ν + As(k) e
i k2 ν (ν ≥ 0)

Bs(k) e
−i k2 ν (ν ≤ 0),

(84)

where As(k) and Bs(k) are coefficients depending on k and (in
contrast with the case in section 2.4) now also on s = ±1
(with |±〉 the eigenstates of Ŝz). For suitable coefficients, such
states are eigenstates of the Hamiltonian H0 as well as the full
Hamiltonian (35). Arbitrary solutions (wave packets) can then
be constructed in terms of appropriate superpositions of these
“plane-wave” states.

As(k) = −i2s(k)

1+ i2s(k)

Bs(k) = 1

1+ i2s(k)
(85)

where

2s(k) ≡
16πγ 2

3

µ

sin(2k
√
1sℓp)

. (86)

One can superimpose the previous eigenstates to produce wave
packets (semiclassical states) for the wave function of the universe
that are picked at value ν0 of the rescaled volume (see footnote 6).
Wave packets will evolve in time according to the Schrodinger
equation which in our case is just a discrete analog of the one
corresponding to a free particle in quantum mechanics with an
interaction term at the “origin” ν = 0. If we start with a state that
is sufficiently picked around ν0 for ν≫ ℓp initially, then the state
can be described in terms of the superposition (64) where the

explicit values of the coefficients As(b) and Bs(b) do not appear.
Equation (42) is generalized to

9in(t ≪ 0) =
∫

Db
(

|b, 1〉ψ(b; b0, ν0)

+ |b, 2〉ψ(b; b0, ν0)
)

e−iE−(b)t (87)

+
∫

Db
(

|b, 1〉ψ(b; b0, ν0)+ |b, 2〉ψ(b; b0, ν0)
)

e−iE+(b)t .

The coefficients (85) enter the expression of the scattered wave
packet at a later time which becomes

9out(t ≫ 0) =
∫

Db |−〉 ⊗ |b, 1 ∪ 2〉
[

ψ(−b; b0, ν0)A−(−b)

+ψ(b; b0, ν0)B−(b)
]

e−iE−(b)t + (88)
∫

Db |+〉 ⊗
[

|b, 1〉
(

ψ(−b; b0, ν0)A+(−b)

+ψ(b; b0, ν0)B+(b)
)

+ |b, 2〉ψ(b; b0, ν0)
]

e−iE+(b)t .

Note that the solution of the scattering problem for the E+(b)
eigenvalues is asymmetric with respect to the components of
the in-state supported on Ŵ1 and Ŵ2. Indeed the states |b, 2〉
are eigenstates of the Hamiltonian directly because they are
not supported on ν = 0 and hence they do not “see” the
interaction: this is captured by trivial scattering coefficients for
this component.

3.3. Entropy Associated With the
Entanglement With the UV Degrees of
Freedom
From the previous initial state we can calculate [by tracing over
the factor h, see (57)] the initial reduced density matrix

ρRin(t) =
∫

Db Db′ ei[E+(b)−E+(b′)]t

×
[

|b′, 1〉ψ(b′; b0, ν0)+ |b′, 2〉ψ(b′; b0, ν0)
]

[

〈b, 1|ψ(b; b0, ν0)+ 〈b, 2|ψ(b; b0, ν0)
]

+
∫

Db Db′ ei[E−(b)−E−(b′)]t

×
[

|b′, 1〉ψ(b′; b0, ν0)+ |b′, 2〉ψ(b′; b0, ν0)
]

[

〈b, 1|ψ(b; b0, ν0)+ 〈b, 2|ψ(b; b0, ν0)
]

. (89)

The reduced density matrix after the big bang is
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ρRout(t) =
∫

Db Db′ ei[E+(b)−E+(b′)]t

[

〈b, 1|
(

ψ(−b; b0, ν0)A+(−b)+ ψ(b; b0, ν0)B+(b)
)

+〈b, 2|ψ(b; b0, ν0)
]

[

|b, 1〉
(

ψ(−b′; b0, ν0)A+(−b′)+ ψ(b′; b0, ν0)B+(b′)
)

+ |b, 2〉ψ(b′; b0, ν0)
]

+

ei[E−(b)−E−(b′)]t
[

|b′, 1 ∪ 2〉ψ(−b′; b0, ν0)A−(−b′)

+ |b′, 1 ∪ 2〉ψ(b′; b0, ν0)B−(b′)
]

(90)

×
[

〈b, 1 ∪ 2|ψ(−b; b0, ν0)A−(−b)

+〈b, 1 ∪ 2|ψ(b; b0, ν0)B−(b)
]

,

where α+ = 1/4 and α− = 1 and δs+ is unity when s = +
and vanishes when s = −. Then the non vanishing entries of the
reduced density matrix are

ρR 11
out (b0, b0) =

1

4

(

|B+(b0)|2 + |B−(b0)|2
)

ρ22out(b0, b0) =
1

4

(

1+ |B−(b0)|2
)

ρR 12
out (b0, b0) =

1

4

(

B+(b0)+ |B−(b0)|2
)

= ρR 21
out (b0, b0)

ρR 11
out (−b0,−b0) =

1

4

(

|A+(−b0)|2 + |A−(−b0)|2
)

ρR 22
out (−b0,−b0) =

1

4

(

|A−(−b0)|2
)

ρR 12
out (−b0,−b0) =

1

4

(

|A−(−b0)|2
)

= ρR 21
out (−b0,−b0)

ρR 11
out (b0,−b0) =

1

4

(

A+(−b0)B+(b0)+ A−(−b0)B−(b0)
)

= ρR 11
out (−b0, b0)

ρR 22
out (b0,−b0) =

1

4

(

A−(−b0)B−(b0)
)

= ρR 22
out (−b0, b0)

ρR 21
out (b0,−b0) =

1

4

(

A+(−b0)+ A−(−b0)B−(b0)
)

= ρR 12
out (−b0, b0)

ρR 12
out (b0,−b0) =

1

4

(

A−(−b0)B−(b0)
)

= ρR 21
out (−b0, b0).(91)

The matrix ρRout is positive definite, Tr[ρ
R
out] = 1 and ρRout = ρ

R†
out .

In the case b0ℓp ≪ 1 we have

2s(b0) ≈
8πγ 2µ

3

1

b0
√
1sℓp

. (92)

We can now compute the entanglement entropy jump δS to the
first leading order in b0ℓp/µ. The result [expressed in terms of
the cosmological constant in this regime, namely (75)] is

δS = δ0S−
31−ℓ2p log(3)

128π2γ 2µ2
3+ O(32ℓ4p), (93)

FIGURE 7 | The entropy jump δS as a function of b in Planck units for

γ = µ = 1− = 1. The small bℓp behavior in (93) is apparent. The entropy is

periodic for bℓp ∈ [0,π ] as expected from (86).

where δ0S = 2 log(2) − 3
4 log(3). The previous equation shows

that the entropy jump is non trivial at crossing the big bang
would-be-singularity, even in the low cosmological (low-energy)
limit where (according to the analysis of the previous section)
decoherence with the microscopic Planckian structure can be
neglected during the time the universe is large. Information is
unavoidably degraded (it seems lost for low-energy observers)
during the singularity crossing.

The general entropy jump for arbitrary (not necessarily small)
3 can be computed explicitly. Its value is bounded by log(2)
in our model. Finally, the energy is conserved through the big
bang and during all the dynamical evolutions for the arbitrary
values of b0. The decoherence and entanglement which can
be interpreted as an information loss happens without energy
spending as required by the scheme put forward in Perez (2015).

4. DISCUSSION

We have seen that one can precisely realize the scenario
put forward in Perez (2015) for the resolution of Hawking’s
information loss paradox in quantum gravity in the context of
loop quantum cosmology. The key feature making this possible
is the existence of additional degrees of freedom with no
macroscopic interpretation which unavoidably entangle with the
macroscopic degrees of freedom during the dynamical evolution
and lead to a reduced density matrix whose entropy grows. The
fundamental description is unitary but the effective description—
that does not take the microscopic degrees of freedom into
account and hence is analogous to the QFT description of
BH evaporation—evolves pure states into mixed states. The
microscopic degrees of freedom in the toy model are not
introduced by hand, their existence is intimately related to the
peculiar choice of representation of the fundamental phase space
variables that leads to singularity resolution (Bojowald, 2001).
Moreover, such a representation mimics the one used in the full
theory of loop quantum gravity (Lewandowski et al., 2006) where
also one expects such extra residual and microscopic degrees of
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freedom to exist and remain hidden to low-energy coarse-grained
observers describing physics in terms of an effective QFT.

From a more general perspective, we expect this scenario
to transcend the framework of loop quantum gravity: in any
approach to quantum gravity, where spacetime geometry is
emergent12 from more fundamental discrete degrees of freedom,
the effect (precisely illustrated here by our toy model) would
generically occur.

These results extrapolated to the context of black hole
formation and evaporation suggest a simple resolution of the
information paradox that avoids the pathological features of
other proposals. For instance, the possible development of
firewalls (Almheiri et al., 2013; Braunstein et al., 2013) or the risks
of information cloning that the holographic type of scenarios
must deal with (Marolf, 2017) are completely absent here. As
decoherence in our model takes place without diffusion Unruh
(2012), the usual difficulties (Banks et al., 1984) with energy
conservation in the purification process are avoided along the
lines of Unruh and Wald (1995), Unruh (2012) in a concrete
quantum gravity framework (hence without the problems faced
by the QFT approach Hotta et al., 2015; Wald, 2019).

We notice that the possibility of decoherence illustrated in
the present model also suggests the possibility of diffusion into
the underlying Planckian structure, such diffusion might have,
in suitable situations, important consequences at large scales
as argued in a series of recent papers (Josset et al., 2017;
Perez et al., 2018; Perez and Sudarsky, 2019). The present
model is very simplistic and realizes an example where such
diffusion is not possible due to (unimodular) energy conservation
and the fact that the microscopic degrees of freedom do not
contribute independently to the Hamiltonian. Nevertheless, one
could generalize these models easily in order to include diffusion.

12For instance in the causal sets approach (Bombelli et al., 1987), or in the context

of Jacobson’s ideas about emergence (Jacobson, 1995) (where, incidentally, in both

cases unimodular gravity is the natural emergent structure), in causal dynamical

triangulations (Ambjorn et al., 2004), and group field theory (Oriti, 2011), etc.

This possibility is under current investigation and we plan to
report the results elsewhere.
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Hybrid Loop Quantum Cosmology: An
Overview
Beatriz Elizaga Navascués1* and Guillermo A. Mena Marugán2*

1Institute for QuantumGravity, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany, 2Instituto de Estructura de
la Materia, IEM-CSIC, Madrid, Spain

Loop Quantum Gravity is a nonperturbative and background independent program for the
quantization of General Relativity. Its underlying formalism has been applied successfully to
the study of cosmological spacetimes, both to test the principles and techniques of the
theory and to discuss its physical consequences. These applications have opened a new
area of research known as Loop Quantum Cosmology. The hybrid approach addresses
the quantization of cosmological systems that include fields. This proposal combines the
description of a finite number of degrees of freedom using Loop Quantum Cosmology,
typically corresponding to a homogeneous background, and a Fock quantization of the
field content of the model. In this review we first present a summary of the foundations of
homogeneous Loop Quantum Cosmology and we then revisit the hybrid quantization
approach, applying it to the study of Gowdy spacetimes with linearly polarized gravitational
waves on toroidal spatial sections, and to the analysis of cosmological perturbations in
preinflationary and inflationary stages of the Universe. The main challenge is to extract
predictions about quantum geometry effects that eventually might be confronted with
cosmological observations. This is the first extensive review of the hybrid approach in the
literature on Loop Quantum Cosmology.

Keywords: loop quantum cosmology, loop quantum gravity, quantum field theory on curved backgrounds, quantum
effects in cosmology, primordial perturbations

1 INTRODUCTION

Modern Physics has two basic pillars in Quantum Mechanics and Einstein’s theory of General
Relativity (GR). However, the latter is a geometric description of the gravitational field that does not
incorporate the principles of QuantumMechanics. Numerous attempts have been made to construct
a quantum theory of the spacetime geometry but, at present, there is still no proposal that the
scientific community accepts unanimously as fully satisfactory. One of the proposals for the quantum
description of gravity that has reachedmore impact with a robust mathematical development is Loop
Quantum Gravity (LQG) (Ashtekar, 1986; Ashtekar and Lewandowski, 2004; Thiemann, 2007). It is
a quantization formalism for globally hyperbolic spacetimes, based on a canonical and non-
perturbative formulation of the geometric degrees of freedom. The fundamental novelty with
respect to other pre-existing canonical proposals [such as theWheeler-DeWitt (WdW) quantization,
also called quantum geometrodynamics (DeWitt, 1967; Halliwell, 1991)] lies in the use of techniques
imported from Yang-Mills gauge theories (Yang and Mills, 1954), known by their success in
explaining non-perturbative regimes of the strong and electroweak interactions. In addition, the
formulation of LQG is independent of any spacetime background structure and is aimed to respect
the general covariance of Einstein’s theory (in its canonical formulation). To achieve this goal, LQG
adopts the quantization scheme proposed by Dirac for systems with constraints (Dirac, 1964). In
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particular, in GR the Hamiltonian is a linear combination of
constraints which, via Poisson brackets, generate diffeomorphism
transformations, that are the fundamental symmetries of the
theory. Dirac’s proposal consists in requiring that those
constraints are satisfied at the quantum level on the physical
states of the system. In more detail, the geometric degrees of
freedom in vacuo are described in LQG by pairs of canonical
variables that consist of the components of a densitized triad and
a gauge connection (Ashtekar and Lewandowski, 2004;
Thiemann, 2007). Their respective fluxes through surfaces and
holonomies form an algebra under Poisson brackets, which is the
algebra that one wants to represent quantum mechanically over a
Hilbert space, where the constraints of the theory should finally
be imposed.

A major obstacle that the different candidates for a theory of
quantum gravity have to face, regardless of their nature, is the
extreme difficulty that is found to confront them with
experimental data. Most of the possible effects of a quantum
spacetime are expected to occur in regimes of very high
curvatures or energies. In this sense, the Universe that we
observe appears to be very classical, and GR explains it almost
perfectly. However, there are observational windows to regimes of
the Universe in which traces of a phenomenology that exceeded
Einstein’s theory might be found. A relevant example is the so-
called Cosmic Microwave Background (CMB). This
approximately black-body radiation reaches us from regions so
far away that provides information about how the Universe was
like at the early times when it became transparent. Under certain
circumstances, this information might as well contain some
details about very previous stages of the Universe when the
spacetime geometry could have experienced quantum effects
(Di Tucci et al., 2019), especially if the observable Universe
had in those epoques a size of the order of the Planck scale. A
second obstacle for most of the quantum gravity proposals is the
complication to extract concrete predictions about those regimes
where quantum effects may have been important. Therefore,
from a physical point of view, it is greatly convenient to
consider the specialization of those formalisms to more
restricted scenarios that, even without contemplating all the
phenomena that may be accounted for in the full quantum
theory, are able to describe regions of the Universe of
particular interest. With this motivation, approximately at the
beginning of this century, it was suggested to apply LQGmethods
to cosmological systems that possess a finite number of degrees of
freedom, owing to the presence of certain symmetries. This effort
crystallized in the appearance of Loop Quantum Cosmology
(LQC) (Ashtekar et al., 2003; Bojowald, 2008; Ashtekar and
Singh, 2011), a branch of LQG aimed to deal with the
quantum analysis of cosmological systems.

The first cosmologies that were studied in LQC were
homogeneous and isotropic universes of the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) type, that classically
provide a good approximation to the behavior of the observed
Universe in large scales. The quantization of this type of
cosmological systems was consistently completed, providing
satisfactory results both from a formal and from a physical
point of view. Probably the most remarkable of these results is

the resolution of the Big Bang cosmological singularity, that is
replaced in this formalism with a quantum bounce, usually called
the Big Bounce. In addition to these investigations on
homogeneous and isotropic spacetimes, other homogeneous
cosmologies with a lower degree of symmetry have also been
considered in LQC to discuss the role of anisotropies. In
particular, a special attention has been devoted to the
quantization of Bianchi I models (Chiou, 2007a; Chiou, 2007b;
Martín-Benito et al., 2008; Ashtekar and Wilson-Ewing, 2009;
Martín-Benito et al., 2009b).

Although homogeneity and isotropy are very successful
hypotheses to describe our universe at large scales, it is
necessary to give an explanation to the existence and
evolution of the observed inhomogeneities. In fact, the
temperature of the CMB itself presents anisotropies that
contain information about the small inhomogeneities in the
geometry and matter content of the primeval Universe. Such
inhomogeneities should be ultimately responsible of having
given rise to the structures that we observe today (Liddle and
Lyth, 2000). As we have pointed out, it has been recently
proposed that the power spectrum of the CMB anisotropies
might even encode information about quantum effects that were
relevant in the very early stages of the Universe, if the scale of the
region that we observe nowadays was of the Planck order at that
time (Agullo and Morris, 2015; Di Tucci et al., 2019). Other
information about those epochs of the Universe with extremely
high curvature might be present in non-gaussianities of the
CMB, or in the spectrum of tensor cosmological perturbations.
Even if the information that we could extract from just one of
this kind of observations might be insufficient to falsify the
predictions of a candidate theory of quantum cosmology, such
as LQC, the combined set of a number of different types of
observations might increase the statistical significance of a
possible agreement with the predictions (Ashtekar et al.,
2020). With this motivation in mind to investigate quantum
effects of gravity in realistic cosmological spacetimes, a hybrid
strategy was proposed a decade ago in LQC for the quantum
description of scenarios that contemplate the presence of
inhomogeneities, both geometric and in the matter content.
On the one hand, this canonical strategy employs methods
inspired by LQC for the representation of the homogeneous
sector of the geometry. On the other, it uses Fock
representations, typical of Quantum Field Theory (QFT), to
describe the rest of degrees of freedom of the system. The
combination of both techniques must result in a consistent
quantization of the complete system. This formalism for the
quantization of inhomogeneous spacetimes implicitly assumes
that there is a regime in which the most important quantum
gravitational effects are felt by the homogeneous sector of the
system, an assumption that seems plausible in the early stages of
our universe. In the light of this hybrid approach, the advantages
of reaching an evolution of the inhomogeneities that is unitary
in the regime of QFT in a curved spacetime, applicable when the
behavior of the homogeneous sector can be considered
approximately classical, exceed the purely theoretical aspects
and appear essential to allow robust physical results, that are not
affected by the severe ambiguity that would imply the
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consideration of Fock representations that are not even unitarily
equivalent among them.

The hybrid quantization approach, using an LQC
representation for the homogeneous geometry, was first
implemented in one of the Gowdy cosmological models
(Martín-Benito et al., 2008; Mena Marugán and Martín-
Benito, 2009; Garay et al., 2010; Martín-Benito et al., 2010b).
These models describe spacetimes that, even if subject to certain
symmetry conditions (the presence of two spatial Killing vectors),
still include gravitational inhomogeneities (Gowdy, 1971; Gowdy,
1974). The hybrid quantization was completed for the model with
three-torus spatial topology and linearly polarized gravitational
waves (Martín-Benito et al., 2008; Martín-Benito et al., 2010a).
Although the physical Hilbert space was formally characterized, it
is perhaps impossible to find analytically any of these states.
Therefore, approximation techniques began to be developed for
the operators that appear in the resulting constraints, valid for
certain quantum states (Martín-Benito et al., 2014). On these
states, the Hamiltonian constraint operator adopted a particularly
simple approximate expression, formally corresponding to a
homogenous and isotropic cosmology with different types of
effective matter content, and possibly with higher-order
curvature corrections, once the average volume of the Gowdy
universe was identified with the isotropic volume (Elizaga
Navascués et al., 2015; Elizaga Navascués et al., 2015).

More interesting from a physical point of view is the
application of the hybrid quantization approach to
perturbed FLRW spacetimes coupled to a scalar field
(Fernández-Méndez et al., 2012; Fernández-Méndez et al.,
2013; Fernández-Méndez et al., 2014; Castelló Gomar et al.,
2014; Castelló Gomar et al., 2015; Benítez Martínez and
Olmedo, 2016; Castelló Gomar et al., 2016; Castelló Gomar
et al., 2017). Within the framework of GR, a model of this kind
can be employed to describe quite successfully the primordial
Universe, including small inhomogeneities that, after
undergoing an inflationary stage, are capable of explaining
the experimental observations about the anisotropies of the
CMB (Mukhanov, 2005). This application of hybrid LQC starts
with a classical formulation in which the physical degrees of
freedom of the cosmological perturbations are gauge
invariants, i.e. quantities that do not vary under a
perturbative diffeomorphism (Bardeen, 1980; Sasaki, 1983;
Kodama and Sasaki, 1984; Mukhanov, 1988; Castelló Gomar
et al., 2015). In fact, one can construct a canonical description
of the perturbations that includes such gauge invariants as a
subset of the canonical variables (Langlois, 1994; Pinho and
Pinto-Neto, 2007; Falciano and Pinto-Neto, 2009; Castelló
Gomar et al., 2015). However, the passage to a quantum
treatment of the whole cosmological system requires that
the homogeneous degrees of freedom, rather than being
considered as a fixed background, are also included in this
canonical description [see Refs. (Halliwell and Hawking, 1985;
Shirai and Wada, 1988) for considerations in WdW]. This is
actually possible at least at the lowest non-trivial order of
perturbative truncation of the action (Castelló Gomar et al.,
2015). In this way, the system is well prepared for its canonical
quantization following the hybrid quantization approach.

Despite the attention paid recently to cosmological
perturbations in LQC with scalar fields, it is also convenient to
introduce other types of matter content that are known to exist in
the Universe. This is the case of fermionic fields. The interest of
contemplating the presence of these fields in early cosmological
epochs goes beyond a formal analysis, because it is necessary to
confirm that their inclusion does not affect significantly the
quantum evolution of the cosmological scalar and tensor
perturbations (which are bosonic in nature).

In summary, the purpose of this work is to review the
foundations of hybrid LQC and its application to
inhomogeneous cosmological systems, with an emphasis put
on the analysis of the possible quantum geometry effects on
primordial perturbations. The final goal of the approach would be
to extract predictions about modifications with respect to
Einstein’s theory with the hope that, in this era of precision
cosmology, those modifications might be confronted with
observations in order to falsify the formalism. We would like
to remark that the focus of this review will be exclusively put on
the hybrid approach. The literature already contains detailed
reviews of homogenous LQC and of several other approaches
dealing with inhomogeneities in LQC (Bojowald, 2008; Ashtekar
and Singh, 2011; Banerjee et al., 2012; Ashtekar and Barrau, 2015;
Rovelli and Vidotto, 2015; Alesci and Cianfrani, 2016; Gielen and
Sindoni, 2016; Grain, 2016; Agullo and Singh, 2017; Wilson-
Ewing, 2017; Bojowald, 2020). This is the first extensive review
specifically devoted to hybrid LQC. We will concentrate our
discussion on the results achieved in the hybrid quantization, and
we will mention only marginally other approaches in the
conclusions, to comment on some distinctive properties of the
hybrid proposal. For other strategies to cope with infinite
dimensional systems in LQC, the existing reviews provide a
fairly complete amount of information that the reader can
directly consult.

The paper is organized as follows. We first review the
foundations of LQC in Section 2. In the first subsection we
explain the choice of Ashtekar-Barbero variables and some
questions about the construction of the theory of LQG with
them. In the remaining subsections of Section 2 we apply those
variables to the study of homogeneous and isotropic universes,
discussing their quantization and commenting in special detail
the quantum Hamiltonian that one obtains for those models. We
then pass to discuss the hybrid approach in LQC, studying in
Section 3 the cosmological system that was first analyzed in this
quantization scheme. In the rest of sections, we focus our
attention on the more interesting case (from a physical point
of view) of a perturbed homogeneous and isotropic spacetime, in
order to explore how quantum gravity effects may have affected
the cosmological perturbations in the primeval universe. With
this aim, we first review in Section 4 the procedure to construct a
canonical formulation for this cosmological system in terms of
gauge invariants and gauge constraints for the perturbations,
together with their momenta, and of suitable zero modes for the
background. In Section 5 we consider the possible introduction
of a Dirac field in the formalism.We then explain in Section 6 the
implementation of the hybrid LQC approach in this canonical
system. Next, in Section 7we discuss how we can derive modified
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propagation equations for the perturbations starting with the
quantum Hamiltonian constraint and introducing a convenient
ansatz for the quantum states, as well as some plausible
approximations. These modified equations for the gauge
invariants can be studied to deduce predictions that ultimately
might be confronted with observations. In doing this, a key piece
of information are the initial conditions that one must choose,
both for the background cosmology and for the perturbations, in
order to fix their vacuum state. These issues are discussed in
Section 8. Finally, in Section 9 we explore the possible
determination, or at least restriction, of the viable choices of a
vacuum for the gauge invariant perturbations that result from
demanding a good behavior in the quantum Hamiltonian
operators and the evolution of those perturbations, putting an
emphasis on a procedure of asymptotic diagonalization of their
Hamiltonians. Section 10 contains the conclusions. In the rest of
this work, we adopt units such that c � �h � 1, where c is the speed
of light in vacuo and �h is Planck reduced constant. Nonetheless,
we maintain Newton constant explicitly in all our formulas.
Owing to these conventions and to some convenient
redefinitions of quantities with respect to the notation
employed in previous works, special care must be taken when
comparing numerical factors in our equations with those
appearing in the published literature.

2 LOOP QUANTUM COSMOLOGY

Let us first introduce the formalism of LQC, applied in this work
to spacetime systems that in Einstein’s theory correspond to
homogeneous cosmologies. We will focus our attention on a flat
FLRW model, minimally coupled to a homogeneous scalar field.
In this section, we will review in detail the case of a massless field,
because then the quantum constraints can be solved exactly. Later
in our discussion, when we consider inflationary cosmologies, we
will introduce a potential in the action of the scalar field, that can
be viewed as the inflaton field of the system. An FLRW spacetime
is the model typically used to describe the evolution of an
expanding homogeneous and isotropic universe in GR. Here,
we will study only the case of flat spatial curvature. In the
following section we will also generalize our analysis to
globally hyperbolic spacetimes (that admit a foliation on
compact Cauchy hypersurfaces) of Bianchi I type.

LQC starts from a Hamiltonian formulation of the system
under consideration, selecting as canonical variables for the
geometry those used in LQG. In the Arnowitt-Deser-Misner
(ADM) formulation of GR, given an arbitrary Cauchy
hypersurface ∑, the dynamical degrees of freedom of the
spacetime metric can be captured by the spatial metric
induced on ∑, hab (we use lower case letters from the
beginning of the alphabet to denote spatial indices), and its
variation along the normal surface vector. This variation is
called the extrinsic curvature and is given by the tensor
Kab � Lnhab/2, where Ln is the Lie derivative along the
normal vector n. Taking the spatial metric hab as the
configuration variable, a linear function of the extrinsic
curvature determines its canonically conjugate momentum.

Starting from this canonical pair for the geometry and
canonical pairs corresponding to the matter content, if a
Legendre transformation is carried out in the Hilbert-Einstein
Lagrangian (with suitable boundary terms), one obtains a
Hamiltonian that is a linear combination of first-class
constraints. Their coefficients are non-dynamical Lagrange
multipliers, provided by the lapse function N and the three
components of the shift vector Na. Each of these constraints
vanishes on the solutions of GR. They are the generators of the
fundamental symmetries of GR: the spacetime difeomorphisms.
More specifically, the constraint that is multiplied by the lapse
function is called Hamiltonian or scalar constraint, and generates
time reparametrizations, modulo a spatial difeomorphism. The
three constraints that come multiplied by the components of the
shift vector are called momentum constraints, and generate
spatial difeomorphisms.

2.1 Ashtekar-Barbero Variables:
Holonomies and Fluxes
The Hamiltonian description of GR can be reformulated in terms
of geometric canonical variables that, involving a gauge
connection, simplify the functional form of the constraints
(Ashtekar, 1986). Under the quantization scheme proposed by
Dirac, these variables may seem more convenient for developing
the quantum theory. In addition, the introduction of a gauge
connection allows the controlled use of structures that are well
known in group theory, and that can facilitate the construction of
a well-defined Hilbert space. These variables can be introduced as
follows.

First, in the spatial sections we can make use of triads, which
are defined as a local basis of vectors eai of the considered Cauchy
hypersurface, and in terms of which the spatial metric can be
expressed locally as

hab � eiae
j
bδij (1)

where the co-triads eia are the inverse of e
a
i . Since the Kronecker

delta is the Euclidean metric in three dimensions, the relationship
(Eq. 1) is invariant under the transformation of the triadic basis
under three-dimensional rotations, at each point of the Cauchy
sections. Therefore, the use of co-triads for the description of the
spatial metric automatically introduces additional local symmetry
into the theory, provided by the group SO(3). Any Cauchy
hypersurface is thus supplied with a principal fiber structure
of three-dimensional reference systems, with SO(3) as the gauge
group (Isham, 1999). We employ lower case Latin letters from the
middle of the alphabet for indices corresponding to components
in a local triadic basis of orthonormal frames, or equivalently in a
basis of the three-dimensional Lie algebra so(3). A section of the
bundle is a locally smooth assignment of an element of the group
to each point of the manifold. Different choices of triads, related
to each other point to point by gauge transformations, can then be
understood as different sections of the bundle.

In order to define a notion of horizontality between the
different fibers, as well as the associated parallel transport, one
introduces a gauge connection, characterized by a one-form on
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the spatial hypersurfaces with components that take values in the
three-dimensional Lie algebra so(3). We will call this connection
Γia. Of all the possible connections, there is one that is uniquely
determined by the densitized triad through the metricity
condition

(3)∇b E
a
i + ϵkj Γ

j
b E

a
k � 0, (2)

where ϵijk is the totally antisymmetric Levi-Cività symbol (its
indices are raised and lowered using the Kronecker delta), (3)∇b

denotes the covariant derivative associated with the Levi-Cività
connection compatible with hab, and Ea

i �
��
h

√
eai is the densitized

triad, with h equal to the determinant of the spatial metric.
In adddition, taking into account that the extrinsic curvature

in triadic form

Ki
a � Kabe

b
j δ

ij (3)

can be understood as a vector of so(3) with respect to the gauge
transformations, as well as a one-form in spacetime, it is possible
to consider, instead of Γia, the so-called Ashtekar-Barbero
connection (Barbero, 1995):

Ai
a � Γia + cKi

a. (4)

In this definition, γ is a real non-vanishing number, of arbitrary
value in principle, which is known as the Immirzi parameter
(Immirzi, 1997).

The pair formed by this connection and the densitized triad,
the so-called Ashtekar-Barbero variables, turns out to be
canonical for GR:

{Ai
a( �x), Eb

j ( �y)} � 8πGcδbaδ
i
jδ

3( �x − �y), (5)

where δ3( �x − �y) is the three-dimensional Dirac delta. LQG starts
with these variables in the attempt to construct a quantum theory
of gravity.

Actually, in order to allow the coupling to the gravitational
field of matter with a half-integer spin, Ai

a is considered as a
connection that takes values in the three-dimensional Lie algebra
su(2). That is, in practice the gauge group SO(3) of the principal
bundle is replaced by its double cover, SU(2).

In terms of the Ashtekar-Barbero variables, the Hamiltonian
constraintH and themomentum constraintsHa of GR (in vacuo)
take the form (Thiemann, 2007):

H � 1

16πG
��
h

√ [ϵijkFk
ab − (1 + c2)(Ki

aK
j
b − Ki

bK
j
a)]Ea

i E
b
j , (6)

Ha � 1
8πGc

Fi
abE

b
i , (7)

where Fi
ab is the curvature of the Ashtekar-Barbero connection:

Fi
ab � zaA

i
b − zbA

i
a + ϵi jkAj

aA
K
B . (8)

Finally, the introduction of an additional gauge symmetry in
the theory translates into the appearance of three new constraints,
that generate spin rotations in SU(2) (once this is considered as
the cover of the group of three-dimensional rotations):

Gi � 1
8πGc

[zaEa
i + ϵkijAj

aE
a
k]. (9)

Owing to their form as a divergence, given by the covariant
derivative of the triadic field with respect to the connection Ai

a
(Isham, 1999) and contracted in spacetime indices, these three
constraints resemble the Gauss law of electromagnetism, and,
accordingly, they are usually called the Gauss constraints. For the
type of spacetimes with homogeneous spatial surfaces that we
want to consider, and with a suitable choice of reference system,
the Gauss and the momentum constraints are automatically
satisfied, therefore involving no restriction on the system.

From a systematic point of view, the first step in the
construction of a quantum theory of gravity, based on the
introduced Hamiltonian formalism with a gauge connection,
would be to find a representation, as operators on a Hilbert
space, of an algebra that captures all the relevant information
about the canonical pair (Eq. 5). Now, the formulation of the
quantum theory must reasonably be such that physical results
turn out to be described by quantities that do not depend on the
choice of SU(2) gauge. With this purpose, it is convenient that
the elements of the algebra of classical variables to be quantized
do not vary, or vary as little as possible, under the SU(2)
transformations that change the sections of the bundle. A
well-known construction in Yang-Mills theories that
captures the gauge invariant information about the
connection is the holonomy. Given a curve ~c on a spatial
hypersurface ∑, the holonomy along it of the connection Ai

a
is defined as follows:

h~c � P exp∫
~c
Ai

aτidx
a, (10)

where P denotes path ordering and τi provides a basis of the Lie
algebra su(2). Holonomies determine the parallel transport
defined by the Ashtekar-Barbero connection between the
SU(2) fibers that are assigned to each point of the manifold.
Given any section of the principal bundle and the curve ~c, the
holonomy dictates how this curve should be lifted to the fiber so
that its tangent vector is parallelly transported (Isham, 1999).
Under a change of section, the holonomy is only affected by the
gauge transformation evaluated at the end points of the curve.
On the other hand, it is clear that its construction does not
depend at all on any fixed spacetime structure, nor on the choice
of coordinate system. All these properties of the holonomies
make them good candidates to be the variables represented
quantum mechanically in order to capture the relevant
information about the configuration space of Ashtekar-
Barbero connections. In LQG, one considers holonomies
along edges e, typically piecewise analytic, defined as an
embedding of the interval (0,1) in our Cauchy hypersurface
(Ashtekar and Lewandowski, 2004). The variables that represent
the rest of the phase space must contain the densitized triad Ea

i .
Since this triad is a vector density in ∑, its Hodge dual can be
directly integrated over two-dimensional surfaces S. The result
is a flux through them, which again does not depend on any
additional spacetime structure nor on the choice of coordinates,
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E(S, f ) � ∫
S
f iEa

i ϵabcdxbdxc, (11)

where f i is a function that takes values on the algebra su(2) and
can be treated as a vector with respect to gauge transformations.
The space of holonomies he and fluxes E(S, f) forms an algebra
under Poisson brackets that no longer possesses the distributional
divergences of the canonical relations (Eq. 5). This is the algebra
chosen in LQG to represent quantum mechanically the canonical
commutation relations of GR.

2.2 Homogeneous Cosmologies: Polymer
Quantization
We will now summarize the methodology used in LQC for the
quantization of flat FLRW cosmologies, following a strategy
inspired by LQG. First, let us recall that the momentum and
Gauss constraints are trivial in this homogeneous system, setting
at convenience the reference system for the description of the
spatial metric hab, as well as the internal gauge of the triads that
determine it (Eq. 1). For simplicity, we will choose spatial
coordinates adapted to the homogeneity of the spatial sections
and homogeneous diagonal triads, proportional to the Kronecker
delta δai . For these triads, the connection Γia vanishes. We will also
assume that the spatial hypersurfaces of the chosen foliation are
compact, with a three-torus topology (T3). This compactness
ensures that spatial integrations do not give rise to infrared
divergences [in non-compact cases, this problem can be
handled by introducing fiducial structures (Ashtekar et al.,
2003; Ashtekar and Wilson-Ewing, 2009)]. In addition,
restricting the study to compact hypersurfaces is very
convenient if these cosmologies provide the homogeneous
sector of other more general scenarios, because the application
of the hybrid strategy for their quantization would use QFT
techniques that are known to be well-posed and robust in the case
of compact Cauchy sections.

Taking all these considerations into account, and choosing the
compactification period in T3 of each of the orthogonal directions
adapted to homogeneity equal to 2π, the geometric sector of flat
FLRW cosmologies can be described using Ashtekar-Barbero
variables that adopt for them the specific form

Ai
a �

c
2π

δia, Ea
i �

p
4π2

δai , {c, p} � 8πGc
3

. (12)

For any global function of time t, the canonical variables p(t) and
c(t) can be classically related with the scale factor a(t), typically
used in cosmology, and with its temporal derivative a(t) by the
equations

∣∣∣∣c∣∣∣∣ � 2πc
∣∣∣∣ _a
N

∣∣∣∣, ∣∣∣∣p∣∣∣∣ � 4π2a2. (13)

Note that the geometric sector of the phase space has a finite
dimension (equal to two), a fact that will greatly facilitate its
quantum description. Inspired by the methodology of LQG, we
construct holonomies that describe the degree of freedom c
characterizing the connection. Thanks to the symmetries of
the spatial sections, it is sufficient to consider straight edges ea

of length 2πμ, with μ ∈ R, in the three orthogonal directions
adapted to the spatial homogeneity (Ashtekar et al., 2006). The
holonomies of the connection Ai

a along these edges have the
simple expression

hea(μ) � cos(cμ
2
)I + 2sin(cμ

2
)δiaτi, (14)

where I is the identity in SU(2). Similarly, spatial symmetries
allow us to restrict all our considerations just to fluxes of the
densitized triad through squares, formed by edges along two of
the reference orthogonal directions adapted to homogeneity.
These fluxes are then completely determined by the variable p,
that hence describes the geometric sector of the momentum
space. Holonomies, or equivalently their matrix elements,
describe the rest of the geometric sector of the phase space.
More specifically, the geometric configuration space consists of
the algebra formed by functions that depend on the connection
through finite linear combinations of the complex exponentials
N μ(c) � exp(iμc/2), with μ ∈ R. On the other hand, we recall
that the mater content of our FLRW cosmology is given by a
homogeneous (massless) scalar field ϕ. This scalar field is
minimally coupled to the geometry. We will call πϕ its
canonically conjugate momentum. The canonical algebra that
we want to represent has then the following non-trivial Poisson
brackets:

{N μ(c), p} � i
4πGc
3

μN μ(c), {ϕ, πϕ} � 1. (15)

In LQC, the quantum representation of this algebra parallels the
strategy adopted in LQG. In that theory, the geometric
configuration space is described by means of the so-called
cylindrical functions. These are functions that depend on the
Ashtekar-Barbero connection through holonomies along graphs
that are formed by a finite number of edges. The algebra of
cylindrical functions is completed with respect to the supreme
norm, obtaining a commutative C*-algebra with identity element.
Gel’fand’s theory guarantees that this algebra is isomorphic to an
algebra of continuous functions over a certain compact space,
called the Gel’fand spectrum, that contains the smooth
connections as a dense subspace. The Hilbert space for the
representation of the algebra of holonomies and fluxes in LQG
is then that of square integrable functions on the Gel’fand
spectrum, with respect to a certain measure (Ashtekar and
Lewandowski, 2004; Velhinho, 2007).

In the homogeneous and isotropic scenarios that we are
considering, on the other hand, the geometric sector of the
configuration space, when completed with respect to the
supreme norm, is the C*-algebra of quasi-periodic functions
over R. The complex exponentials that describe the
holonomies, N μ : R→ S1, where S1 is the circumference of
unit radius, form a basis in it (Velhinho, 2007). Its Gel’fand
spectrum is the Bohr compactification of the real line, RB, that
contains R as a dense subspace (Rudin, 1962). The space RB can
be characterized as the set of all homomorphisms between the
additive group of real numbers and the multiplicative group of
complex unit module numbers. That is, every x ∈ RB is a map
x : R→ S1 such that
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x(0) � 1, x(μ + μ′) � x(μ) x (μ′), ∀μ, μ′ ∈ R. (16)

This space RB admits a compact topological group structure
(Velhinho, 2007). All functions Fμ : RB → S1 such that
Fμ(x) � x(μ), for any μ ∈ R, are continuous with respect to
that topology. In addition, since it is a compact group, it
admits a unique Haar measure MH , which is invariant under
the group action. The Hilbert space for the representation of the
algebra of holonomies and fluxes in homogeneous and isotropic
LQC is then L2(RB,MH). It follows that the set of functions
{Fμ, μ ∈ R} are an orthonormal basis of this Hilbert space
(Velhinho, 2007), that is therefore not separable. Using Dirac’s
notation, we will denote this basis as {∣∣∣∣μ〉, μ ∈ R}, where 〈μ∣∣∣∣μ’〉 �
δμμ’ is the inner product on L2(RB,MH). The quantum
representation of the algebra (Eq. 15) that describes the
gravitational sector of the phase space is (Ashtekar et al., 2003;
Velhinho, 2007)

N̂ μ′

∣∣∣∣μ〉 � ∣∣∣∣μ + μ′〉, p̂
∣∣∣∣μ〉 � 4πGc

3
μ
∣∣∣∣μ〉. (17)

This representation is often called polymer representation, and its
Hilbert space is isomorphic to that of functions over R that are
square summable with respect to the discrete measure. Making
use of this isomorphism, it is clear that the states of the polymer
Hilbert space must have support only on a countable number of
points, and, when this number is finite, they are the direct
analogue of the cylindrical functions of LQG. Besides, note
that the representation of the basic operators that describe the
holonomies is not continuous. As a consequence, the operator
that would represent the Ashtekar-Barbero connection is not well
defined, a fact that also occurs in LQG.

At this point of our discussion, it may be worth noticing that
the construction of L2(RB,MH) as the Hilbert space of the
representation strongly depends on the choice of the Haar
measure. In fact, it is possible to find another measure in RB

that results in a standard Schrödinger representation for the
connections and triads (Velhinho, 2007). This alternate
representation, unlike the polymer one, is continuous and is
employed in the more familiar WdW quantization of this
cosmological system (DeWitt, 1967). However, owing to the
discrete character of MH , the two measures, and hence their
corresponding quantum theories, are not equivalent. It is
therefore not surprising that LQC can provide different
predictions than traditional geometrodynamics about the
quantum regimes of this cosmological model.

Finally, a standard continuous Schrödinger representation is
chosen for the matter sector of the phase space, that can be
described by the scalar field and its conjugate momentum. The
corresponding Hilbert space is L2(R, dϕ), where the scalar field
acts by multiplication and its momentum as the derivative π̂ϕ �
−izϕ.

2.3 LQC: Hamiltonian Constraint
The Hilbert space obtained by the tensor product of the polymer
space and L2(R, dϕ) does not necessarily contain the physical
states of the quantum theory. They should still satisfy the
Hamiltonian constraint, that is the only non-trivial constraint

that exists on the system, and which should be imposed à la Dirac
quantum mechanically (Dirac, 1964). For this reason, the
elements of the considered Hilbert space are often called
kinematic states. The next step in our quantization is then the
representation of the Hamiltonian constraint as an operator on
the kinematic Hilbert space. The gravitational part of this
constraint is given by

− π2

2Gc2
��
h

√ Ea
i E

b
j ϵijkFk

ab. (18)

Taking into account that the lapse function is homogeneous, we
have already considered the integrated version of the constraint
over the three spatial directions. In terms of the Ashtekar-Barbero
variables introduced before for the geometric sector, the
constraint HS that we obtain for homogeneous and isotropic
cosmologies, including the contribution of the homogeneous
massless matter field ϕ, has the following form:

HS �
∣∣∣∣p∣∣∣∣−3/2 (π2

ϕ

2
− 3
8πGc2

c2p2). (19)

The first evident obstruction for a polymer quantization of this
constraint is the absence of an operator to represent the
connection. However, this difficulty can be surpassed if the
following classical identity is taken into account:

Fi
ab � −2 lim

A□ → 0
tr(h□ab

A□
τi), a≠ b, (20)

where the symbol tr(·) stands for the trace and h□ab is the
holonomy along a certain circuit that encloses a coordinate
area A□. For spacetimes such as flat FLRW and Bianchi I
cosmologies, one can consider a rectangular circuit in the
plane formed by the directions a and b. Thus, in our specific
flat FLRW case, this holonomy can be written as

h□ab � hea(μ)heb(μ)h−1ea (μ)h−1eb (μ) (21)

and the enclosed coordinate area is AFLRW
□ � 4π2μ2.

If these holonomies are represented polymerically, the limit
contained in expression (Eq. 20) is not well defined, because
neither is the connection operator. Therefore, in LQC, the
enclosed coordinate area is not made to tend to zero, but
instead one appeals to the existence of a minimum value,
characterized by the minimum coordinate length 2πμ of the
edges that enclose it: AFLRW

□min
� 4π2μ2. It seems clear then that

this prescription for the quantum representation of the curvature
introduces a new scale. The arbitrariness in its choice can be fixed
by recurring to full LQG, where the geometric area operator has a
minimum non-zero eigenvalue Δ. Drawing inspiration from this
fact, in LQC one postulates that this value coincides with the
geometric physical area corresponding to AFLRW

□min
.

Recalling the (second) classical relation in (Eq. 13), one
concludes then that the minimum coordinate length should
satisfy (Ashtekar et al., 2006)

μ �
��
Δ∣∣∣∣p∣∣∣∣

√
. (22)
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Once we have determined the scale μ (now turned into a
dynamical variable) that sets the minimum coordinate area in
the FLRW cosmological model, we have to represent the classical
expression (Eq. 20) on the polymer Hilbert space, taking in it the
limit AFLRW

□ →AFLRW
□min

. In practice, this prescription amounts to
the replacement of c with the function sin(μc)/μ in the classical
expression of the Hamiltonian constraintHS before one proceeds
to its quantum representation. The dependence of the constraint
on the connection is thus captured by the complex exponentials
N ± 2μ(c), that in particular depend on p through μ. We must
then specify their representation on the polymer Hilbert space,
since the classical dependence ofN ± 2μ(c) on c and pmakes their
construction ambiguous in terms of the operators that we have
taken so far as basic for the FLRW geometry, namely N̂ μ and p̂.
With this aim, it is useful to introduce first the following operator,
constructed by means of the spectral theorem (Reed and Simon,
1980):

v̂ �
̂sign(p)∣̂∣∣∣p|3/2
2πGc

��
Δ

√ , v̂
∣∣∣∣μ〉 � sign[p(μ)]∣∣∣∣p(μ)|3/2

2πGc
��
Δ

√ ∣∣∣∣μ〉, (23)

where p(μ) is the eigenvalue of p̂ corresponding to the eigenstate∣∣∣∣μ〉, given in (Eq. 17). The direct classical counterpart of this
operator is proportional to the physical volume of the FLRW flat
and compact Universe. In addition, it has a Poisson bracket with
b � μc equal to minus two. If we relabel the orthonormal basis
{∣∣∣∣μ〉, μ ∈ R} using the eigenvalues v of v̂, the operators N̂ ± μ are
then defined so that their action is simply a constant translation,
namely they simply shift the new label by a constant (Ashtekar
et al., 2006):

N̂ ± μ

∣∣∣∣ v〉 � ∣∣∣∣v ± 1〉. (24)

The square of these operators defines N̂ ± 2μ.
The prescription that we have explained in order to represent

the elements of holonomies that appear in the Hamiltonian of
LQC is commonly called the improved dynamics scheme1.
However, this scheme alone is not enough to complete the
representation of the constraint HS. The presence of the zero
eigenvalue in the spectrum of the operator p̂ creates problems
added to those already mentioned. Indeed, the Hamiltonian
constraint depends on the inverse of the geometric variable p
via ratios that involve the determinant of the spatial metric. The
quantum representation of this inverse cannot be defined in the
kinematic Hilbert space using the spectral theorem, because zero
is part of the discrete spectrum of p̂. This difficulty can be
circumvented again by appealing to the following classical
identity, employed as well in LQG adapted to a more general
context (Thiemann, 1996):

sign(p)∣∣∣∣p∣∣∣∣1/2 �
∣∣∣∣p|1/2

2πGc
��
Δ

√ tr⎛⎝τi∑
a

δiahea(μ){h−1ea (μ), ∣∣∣∣∣p∣∣∣∣1/2}⎞⎠. (25)

The quantum operators that correspond to inverse powers of the
triadic variable p are then defined by representing, on the
improved dynamics scheme, the variables appearing on the
right-hand side of this equality. In particular, Poisson brackets
are represented by −i times the commutator of the corresponding
operators. If one follows this quantization procedure, the
operator representing the homogeneous Hamiltonian
constraint HS in LQC is (Martín-Benito et al., 2009a)

ĤS �
̂[ 1��∣∣∣∣p∣∣∣∣√ ]3/2

ĤS

̂[ 1��∣∣∣∣p∣∣∣∣√ ]3/2

, (26)

where we have defined the densitized operator

ĤS �
π̂2
ϕ

2
− Ω̂2

0

2
. (27)

Here

Ω̂0 � 3πG
2

��|v̂√ |[ ̂sign(v)ŝin(b) + ŝin(b) ̂sign(v)] ��|v̂√ |, (28)

ŝin(b) � 1
2i
(N̂ 2μ − N̂ −2μ). (29)

In these definitions, we have used a prescription for the factor
ordering of the involved operators proposed by Martín-Benito,
Mena Marugán, and Olmedo (Martín-Benito et al., 2009a),
known with the initials of these authors as the MMO
prescription. Its most characteristic feature is the
symmetrization of the sign of the orientation of the triad with
the holonomy elements in (Eq. 28). The operator ĤS defined in
this way presents certain interesting properties thanks to its
symmetric factor ordering, compared with the quantum
constraint obtained with another, frequently adopted
prescription, proposed by Ashtekar, Pawlowski, and Singh
(APS) (Ashtekar et al., 2006; Ashtekar et al., 2006; Ashtekar
et al., 2006). In particular, its action decouples the state of the
polymer basis with v � 0 from its orthogonal complement. This
allows for a neat densitization of the Hamiltonian constraint
(Martín-Benito et al., 2009a). Besides, the action of the operator
does not mix states with positive and with negative values of v
(Martín-Benito et al., 2009a) (namely, it does not change the
orientation of the triad). We can then restrict the quantum
analysis of the FLRW cosmologies to the linear subspace
generated by states |v〉 with v ∈ R+, for example. Actually, the
action of the constraint leaves invariant smaller and separable
subspaces that are called superselection sectors, and that are
simpler with the MMO prescription than in the APS case
owing to the separation between sectors of different triad
orientation. In more detail, the action of ĤS (or, equivalently,
of ĤS) turns out to preserve every one of the linear subspaces
generated by states |v〉 with v belonging to the semilattice
L+
ε � {ε + 4k, k ∈ N}, entirely characterized by its smallest point

ε ∈ (0, 4]. Notice that the value of ε is always strictly positive, and
therefore the same is automatically true for the variable v in each
of the considered superselection sectors. Finally, a comment is
due about the imposition of the (densitized) Hamiltonian
constraint ĤS. Although the kernel of this operator is not a
proper subspace of the kinematic Hilbert space, the quantum

1An alternate way to define the Hamiltonian constraint operator using a
regularized expression for the extrinsic curvature has been explored recently
(Yang et al., 2009; Dapor and Liegener, 2018; Assanioussi et al., 2019; García-
Quismondo and Mena Marugán, 2019).
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constraint can be rigorously imposed in our representation by its
adjoint action, allowing in this way generalized solutions that
should provide the physical Hilbert space once they are supplied
with a suitable inner product, different from the kinematic one.

In fact, it has been possible to characterize the resulting
physical Hilbert space, together with complete sets of Dirac
observables. The resolution of the constraint is straightforward
once one completes the spectral analysis of the operator Ω̂2

0. It has
been proven that this operator has a non-degenerate absolutely
continuous spectrum equal to the positive real line (Martín-
Benito et al., 2008; Martín-Benito et al., 2009a). The
eigenvalue equation of the operator Ω̂2

0 can be regarded as a
second-order difference equation. With the MMO prescription
adopted in its definition, the generalized eigenfunctions turn out
to be entirely determined by their value at ε, point from which
they can be constructed by solving the eigenvalue equation.
Besides, up to a global phase, these eigenfunctions eεδ(v) are
real, because the second-order difference equation associated
with the action of the operator is a real equation. With the
eigenfunctions at hand, one easily obtains the solutions to the
Hamiltonian constraint, which take the form

ξ(v, ϕ) � ∫∞

0
dδ eεδ(v)[ξ+(δ)ei �δ√

ϕ + ξ−(δ)e− i
�
δ

√
ϕ]. (30)

Therefore, physical states can be identified, for instance, with the
positive frequency solutions ξ+(δ)exp(i

�
δ

√
ϕ) that are square

integrable over the spectral parameter δ ∈ R+ (Martín-Benito
et al., 2009a) (negative frequency solutions provide essentially the
same Hilbert space). A complete set of Dirac observables is given
by π̂ϕ and

∣∣∣∣∣v̂|ϕ0, where this latter operator is defined as the action
of the operator v̂ when the scalar field equals ϕ0. On the Hilbert
space of physical states specified above, these observables are self-
adjoint, property that in fact characterizes the inner product on
the space of solutions described by the functions ξ+(δ).

On the other hand, a numerical analysis of the dynamics, with
respect to the homogeneous scalar field, of certain families of
states with a semiclassical behavior at large volumes shows that
they remain sharply peaked during the quantum evolution
(Ashtekar et al., 2006). Actually, the trajectories of their peaks
coincide, in the regions of low matter density, with those dictated
by Einstein’s equations in the considered FLRW cosmology.
However, when the matter density reaches values that are
comparable to the Planck density ρPlanck, the trajectory of the
peak separates from the classical solution and turns to describe a
transition from a Universe in contraction to an expanding one (or
vice versa) (Ashtekar et al., 2006). In particular, thematter density
reaches a critical value when it is equal to 0.41 ρPlanck [for the value
of the Immirzi parameter that leads in LQG to the Bekenstein-
Hawking law for the entropy of black holes (Ashtekar et al., 2001;
Domagala and Lewandowski, 2004; Meissner, 2004)]. As we
explained in the Introduction, this phenomenon of quantum
nature that eludes the cosmological singularity of the Big Bang is
known by the name of Big Bounce. There is also evidence that it
occurs in LQC beyond the context of homogeneous and isotropic
cosmologies, with indications that it is present as well in
anisotropic cosmologies such as Bianchi I models (Gupt and
Singh, 2012), or in inhomogeneous cosmologies such as the

linearly polarized Gowdy model with toroidal spatial sections
(Tarrío et al., 2013).

3 HYBRID LQC: THE GOWDY MODEL

Historically, hybrid LQC was first developed for the Gowdy
linearly polarized cosmological model, with spatial sections
with the topology of a three-torus, T3, and after carrying out a
partial gauge fixing that removes all constraints on the system
except for the zero mode of the Hamiltonian constraint and of
one of the momentum constraints (these zero modes are the
average of those constraints on the spatial sections, modulo a
constant numerical factor). Gowdy models are inhomogeneous
cosmological spacetimes with compact spatial sections and two
axial Killing vector fields (Gowdy, 1971; Gowdy, 1974). The case
with three-torus spatial topology is the simplest one. The linear
polarization restriction on the gravitational wave content of the
model amounts to require that the two Killing vectors are
hypersurface orthogonal. The Killing symmetries then imply
that the physical degree of freedom still present in those
gravitational waves can be thought of as varying in only one
spatial direction. After the mentioned partial gauge fixing, the
phase space of this Gowdy model can be identified with that of a
Bianchi I spacetime containing a linearly polarized wave.
Furthermore, given the spatial behavior of this wave, we can
describe it as a scalar field χ defined on the circle, S1, that
corresponds to the cyclic spatial direction in which the wave
propagates. In addition, we couple a massless scalar field Φ with
the same symmetries as those of the geometry (Martín-Benito
et al., 2010a). The hybrid quantization of this model will therefore
be based on the quantization of Bianchi I cosmologies according
to the LQC formalism [and the MMO prescription, see Refs.
(Martín-Benito et al., 2008; Mena Marugán and Martín-Benito,
2009; Garay et al., 2010; Martín-Benito et al., 2010b)], as well as
on a suitable Fock representation of the matter field Φ and of the
scalar field χ assigned to the linearly polarized gravitational wave.
For convenience, we extract the zero mode ϕ of the matter field,
that behaves as a homogeneous scalar field giving a non-trivial
matter content to the Bianchi I cosmology, and assume that χ has
vanishing zero mode (this assumption is only meant to simplify
the discussion and involves no relevant conceptual
consequences). The two sectors of the model, namely the
homogeneous Bianchi I sector and the inhomogeneous scalar
field sector, get mixed in a non-trivial way by the zero mode of the
Hamiltonian constraint, that must be imposed on the considered
system.

Let us describe the model in more detail. It is most convenient
to choose coordinates {t, θ, σ, δ} adapted to the Killing
symmetries, such that zσ and zσ are the Killing vectors. Then,
the degrees of freedom of the model only depend on the time t
and on the cyclic spatial coordinate θ ∈ S1. Starting with the
canonical formulation of GR, we can then peform a symmetry
reduction to take into account the Killing symmetries, as well as a
partial gauge fixing that removes the momentum and
Hamiltonian constraints except for the zero modes of the
latter and of the momentum constraint in the θ-direction
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(Mena Marugán and Martín-Benito, 2009). In this way, we get a
reduced phase space that is formed by four canonical pairs of
degrees of freedom (corresponding to the zero modes of the
model), a gravitational field (that describes the linearly polarized
gravitational wave of the model, and that we consider devoid of
zero mode), and the inhomogeneous part of the massless scalar
field. The homogeneous sector, composed of the four pairs of zero
modes, coincides with the phase space of a Bianchi I cosmology
coupled to a homogeneous massless scalar field ϕ. Besides, using a
Fourier transform, we decompose the gravitational and matter
scalar fields of themodel, χ andΦ respectively, passing to describe
them in terms of their Fourier (non-zero) modes. These modes
and the corresponding modes of the canonical momenta of the
two fields form the inhomogeneous sector of the system. The
obtained reduced phase space is subject to two constraints, that
were not eliminated in the process of partial gauge fixing. One of
them is the zero mode of the momentum constraint in the
θ-direction, Hθ . This constraint generates rigid rotations in the
circle coordinatized by θ, and imposes a restriction that affects
exclusively the inhomogeneous sector. The other constraint that
must be imposed is the zero mode HS of the Hamiltonian
constraint of the system. This constraint HS is the sum of a
homogeneous term Hhom, that is the Hamiltonian constraint of
the Bianchi I model, and an additional termHinh, that couples the
homogeneous and inhomogeneous sectors and vanishes when the
inhomogeneous sector is not present.

The next step in our analysis consists in describing the Bianchi
I cosmologies with three-torus spatial topology in terms of
Ashtekar-Barbero variables, in order to quantize them by
using LQC techniques. We can adopt a suitable internal gauge
and adopt a diagonal form for the triads and connections. In this
way, each of the Ashtekar-Barbero variables can be totally
characterized by three homogeneous functions, that determine
the diagonal components. We will call these functions pa and ca,
corresponding to the densitized triad and su(2)-connection,
respectively, and with a � θ, σ, δ. The only non-trivial Poisson
brackets for them are {ca, pb} � 8πcGδab, so they form canonical
pairs. We callHBI

kin⊗L
2(R, dϕ) the kinematic Hilbert space for the

Bianchi I model in LQC, where HBI
kin denotes the polymer

representation space of the Bianchi I geometries in LQC and
L2(R, dϕ) is the space of square integrable functions for the
homogeneous scalar field, defined on the real line (Ashtekar and
Wilson-Ewing, 2009) With this choice of Hilbert space, we adopt
again a standard Schrödinger representation for the zero mode of
the matter field, ϕ, so that its canonical conjugate momentum acts
as a derivative, π̂ϕ � −izϕ. The construction of HBI

kin, on the other
hand, is similar to that explained for the FLRW geometry in LQC,
except for the fact that we now have three pairs of canonically
conjugated Ashtekar-Barbero degrees of freedom instead of only
one. The inner product on this Hilbert space is discrete, so that
the triad operators p̂a have a point spectrum equal to the real line.
Defining the tensor product ⊗a

∣∣∣∣pa〉 (with a � θ, σ, δ) of the
eigenvectors of each of the triad operators we obtain
eigenstates

∣∣∣∣pθ, pσ , pδ〉 that form an orthonormal basis of the
Hilbert space HBI

kin.
On the other hand, we can extend the improved dynamics

proposal from the FLRW geometries to the Bianchi I model as

proposed in Ref. (Ashtekar and Wilson-Ewing, 2009),
introducing in this way minimum coordinate length scales μa
for each of the spatial directions. Explicitly, these length scales are

μa �
�����
Δ |pa

∣∣∣∣∣∣∣∣pb pc∣∣∣∣
√

, (31)

with a≠ b≠ c and a, b, c ∈ {θ, σ, δ}. We then introduce the
operators N̂ ± μa to represent the holonomy elements N ± μa �
exp(± iμaca/2) along an edge in the a-direction of coordinate
length 2πμa. These operators appear in the regularization of the
curvature operator in the Hamiltonian constraint and are defined
in a similar way as we did for the isotropic case in FLRW.

The action of these holonomy operators on the states∣∣∣∣pθ, pσ , pδ〉 is rather complicated, since each of the length
scales μa depends not only on pa, but also on the triad
variables in the other directions. To simplify the expressions,
it is convenient to relabel these states in the form |v, λσ , λδ〉, where

λa � sign(pa)
���∣∣∣∣pa∣∣∣∣√

(4πGc ��
Δ

√ )1/3, (32)

v � 2λθλσλδ . (33)

Apart from an orientation sign, v is equal to 1/(2πGc ��
Δ

√ )
multiplied by the physical volume of the Bianchi I Universe,
volume that we will often call also the homogeneous volume. The
action of the holonomy operators N̂ ± μθ just scale λθ in such a
way that the label v is shifted by the unit (Ashtekar and Wilson-
Ewing, 2009). In full detail, we have

N̂ ± μθ

∣∣∣∣v, λσ , λδ〉 � ∣∣∣∣v ± sign(λσλδ), λσ , λδ〉. (34)

On the other hand, the holonomy operators N̂ ± μσ and N̂ ± μδ
additionally produce state-dependent scalings of λσ and λδ ,
respectively. For example, we have

N̂ ± μσ

∣∣∣∣v, λσ , λδ〉 � ∣∣∣∣v ± sign(λσv), v−1[v ± sign(λσv)]λσ , λδ〉.
(35)

To complete the ingredients that are needed for the hybrid
quantization of the Gowdy model, we have to select a Fock
quantization of the inhomogeneous sector. Actually, it has been
proven that it is possible to single out a unique Fock quantization
(given by a Fock representation and a Heisenberg dynamics for the
background independent part of the fields), up to unitary
equivalence, by imposing certain natural conditions, that require
that the symmetry generated by Hθ and the quantum evolution of
the creation and annihilation operators be unitarily implementable
(Corichi et al., 2006; Cortez et al., 2007). In particular, this result
removes the freedom of choice among the infinite number of
inequivalent Fock representations, that may lead to different
physics. Besides, the unitarity of the Heisenberg dynamics also
imposes a concrete parametrization for the non-zero modes of
both the gravitational field χ and the matter field Φ in terms of the
background variables (namely the zero modes). Following these
criteria, we represent the inhomogeneous sector of our hybrid
model in Fock spaces F α (with α � χ,Φ) chosen in Refs. (Corichi
et al., 2006; Cortez et al., 2007). An orthonormal basis of each of
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these Fock spaces is provided by the n–particle states∣∣∣∣nα〉 � ∣∣∣∣/, nα−2, nα−1, nα1 , nα2 ,/〉, where nαl denotes the
occupation number of the field α in the mode l ∈ Z − {0}.
Let â(α)l and â(α)†l denote the annihilation and creation
operators of that mode, respectively. We can then reach a
kinematic Hilbert space for the hybrid quantization of the
Gowdy model by taking the tensor product
Hkin � HBI

kin⊗ L
2(R, dϕ)⊗F χ ⊗FΦ. Excluding the zero mode

of the matter field temporally from our considerations, an
orthonormal basis for the Hilbert space of the rest of the
system is formed by the states

∣∣∣∣v, λσ , λδ , nχ , nΦ〉 for all real
values of the three first labels and all sets nχ and nΦ of integers
with a finite number of non-vanishing elements.

Finally, we are in an adequate position to represent the
constraints of the system as densely defined operators on this
Hilbert space. Choosing normal ordering, the generator of the
translations in the circle reads (Martín-Benito et al., 2010a)

Ĥθ � ∑∞
l�1

∑
α�χ,Φ

l(â(α)†l â(α)l − â(α)†−l â(α)−l ). (36)

This constraint leads to the condition

∑∞
l�1

∑
α�χ,Φ

l(nα
l − nα−l) � 0 (37)

on n–particle states of the inhomogeneities. Those states that
satisfy the condition span a proper Fock subspace F p of
F χ ⊗FΦ. Let us now consider the quantum Hamiltonian
constraint. We choose again normal ordering for the creation
and annihilation operators of the inhomogeneous sector, while
for the part of the constraint that acts on the homogeneous
sector we choose a convenient symmetrization inspired by the
MMO prescription (Garay et al., 2010). Rational powers of the
norm of the triad variables are represented adopting an
algebraic symmetrization, which decouples the states of zero
homogeneous volume v from their orthogonal complement.
Like in the FLRW cosmology, this fact allows us to remove the
states with vanishing homogeneous volume from our kinematic
space, therefore eliminating the quantum kinematic analogues
of the classical singularities with v � 0. Moreover, again like in
the FLRW model, one finds that the action of the Hamiltonian
constraint does not mix states with different orientations of any
of the components of the triad or, equivalently, with different
signs of the variables v, λσ , and λδ . Hence, as far as the
constraints of the system are concerned, one can restrict all
considerations, e.g., to the sector of strictly positive labels for the
homogeneous geometry. Taking this into account, we redefine
Λa � ln(λa) for a � σ, δ so that the anisotropy labels continue to
take values over the real line.

The Hamiltonian constraint ĤS � Ĥhom + Ĥinh that one
obtains with this hybrid quantization, after performing a
densitization similar to that in the FLRW case, has the
following form (Garay et al., 2010; Martín-Benito et al., 2010b):

Ĥhom � π̂2
ϕ

2
− πG
16

∑
a≠ b

∑
b

Θ̂aΘ̂b, (38)

Ĥinh � 2π(4πGc ��
Δ

√ )2/3 ê2Λθ ĤF + πG4/3

16(4πc ��
Δ

√ )2/3 ê− 2Λθ D̂ (Θ̂δ

+ Θ̂σ)2D̂ĤI .

(39)

Here a, b ∈ {θ, σ, δ}. As we have already commented, Ĥhom is the
constraint operator for the Bianchi I model with a homogeneous
massless scalar field in LQC, according to the MMO prescription
(Martín-Benito et al., 2008). On the other hand, the operator
πGcΘ̂a is the representation of capa, which is a constant of motion
in the classical theory. We have defined

Θ̂a � 1
2i

�̂�|v|√ [(N̂ 2μa − N̂ −2μa) ̂sign(pa) + ̂sign(pa)
(N̂ 2μa − N̂ −2μa)] �̂�|v|√

, (40)

similar to the operator Ω̂0 introduced in the isotropic case (Eq.
28). In addition, the operator D̂ represents the product of the
volume by its inverse [which is regularized in the standard way
within LQC; (Eq. 25)]. Its action on the basis of volume
eigenstates is

D̂
∣∣∣∣∣v〉 � v( �����|v + 1|√ − �����|v − 1|√ )2∣∣∣∣∣ v〉. (41)

The contribution of the inhomogeneities is captured by ĤF and
ĤI . The operator ĤF can be understood as a free-field
Hamiltonian, that leaves invariant the n–particle states. It is
given by

ĤF � ∑∞
l�1

∑
α�χ,Φ

l(â(α)†l â(α)l + â(α)†−l â(α)−l ). (42)

The operator ĤI may be interpreted as an interaction
Hamiltonian that creates and annihilates an infinite collection
of pairs of particles, while preserving the momentum constraint
Ĥθ . Explicitly,

ĤI � ∑∞
l�1

∑
α�χ,Φ

1
l
(â(α)†l â(α)l + â(α)†−l â(α)−l + â(α)†l â(α)†−l + â(α)l â(α)−l ). (43)

It is worth remarking that the inhomogeneities of both fields
contribute to the constraints in exactly the same way.

The action of the Hamiltonian constraint operator ĤS does
not relate all of the states with different values of v ∈ R+ and
Λa ∈ R, with a � σ, δ. There are invariant subspaces in the Hilbert
space spanned by those states. Each of these subspaces provides a
superselection sector for the quantum theory. The superselection
sectors in the homogeneous volume v are semilattices of step four,
L+
ε � {ε + 4n, n ∈ N}, determined by the initial point ε ∈ (0, 4],

exactly as in the FLRWmodel. Note that, again, the homogeneous
volume is bounded from below by a strictly positive quantity in
each of these sectors. The superselection sectors in Λa are more
complicated. If we fix some initial data Λ*

a and ε, the values of Λa

in the corresponding sector (constructed by the repeated action of
the Hamiltonian constraint) take the form Λa � Λ*

a + Λε, where
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Λε is any of the elements of a certain setWε that is countable and
dense in the real line (Garay et al., 2010):

Wε �
⎧⎨⎩zln(ε − 2

ε
) + ∑

n,m ∈ N

knmln( ε + 2n
ε + 2m

)⎫⎬⎭. (44)

Here, knm ∈ N and z ∈ Z if ε> 2, while z � 0 when ε≤ 2.
Given that the action of Θ̂a is considerably complicated, it has

not been possible to elucidate yet whether this operator is self-
adjoint. In spite of this, it is common to assume that Ĥhom is
essentially self-adjoint (Ashtekar and Wilson-Ewing, 2009) and
that the same applies to ĤS (Garay et al., 2010; Martín-Benito
et al., 2010b). Regardless of this, one can try to formally solve the
constraints of the Gowdy model. The solutions turn out to be
completely determined by the data on the section of the v-space
defined by v � ε. Thanks to this fact, one can characterize the
physical Hilbert space as the Hilbert space of such initial data,
with an inner product that can be determined by imposing reality
conditions on a complete set of observables (Rendall, 1993;
Rendall, 1994). In this way, one arrives to the space
Hphys � HBI

phys ⊗ L
2(R, dϕ)⊗F p, where HBI

phys is the physical
Hilbert space for Bianchi I cosmologies derived in Ref.
(Martín-Benito et al., 2010b).

4 HYBRID LQC: COSMOLOGICAL
PERTURBATIONS

After testing the viability of the hybrid quantization strategy in
the Gowdy model, the approach was also applied to the
discussion of a much more relevant scenario in cosmology,
namely the study of primordial cosmological perturbations in
the very early stages of the Universe. Using that the
inflationary Universe is usually described as an FLRW
cosmology that plays the role of a background where the
perturbations develop and propagate, the idea was to
quantize this background in the framework of LQC and
treat the perturbations with the techniques of QFT in a
curved spacetime. The hybrid approach then transforms the
curved, FLRW classical background into a quantum spacetime
with which the quantum field excitations corresponding to the
perturbations coexist and interact by means of the
gravitational constraints. For simplicity and for a better
control of the mathematical techniques of QFT, we will
again assume that the spatial sections are compact, with a
three-torus topology. On the other hand, in order to isolate the
perturbative degrees of freedom that do not depend on a
possible perturbative diffeomorphism of the FLRW
spacetime, that would result in a new identification of the
background geometry, we will adopt a description in terms of
perturbative gauge invariants. For cosmological scalar
perturbations, one can employ the invariants introduced by
Mukhanov and Sasaki (MS) (Sasaki, 1983; Kodama and Sasaki,
1984; Mukhanov, 1988) (considered as a pair of canonical
fields). Gauge invariants are also the tensor perturbations, as
well as the degrees of freedom of a Dirac field if it is present
(Elizaga Navascués et al., 2017) (treating this field entirely as a

perturbation). The description of the phase space of the
perturbations can be completed with suitable redefinitions
of the generators of the perturbative diffeomorphisms and
canonical momenta of them. For the hybrid quantization, a
piece of information that is most relevant as far as the
inhomogeneities are concerned is the choice of a Fock
representation for the gauge invariant fields. To restrict this
choice and adopt a representation with especially appealing
physical properties, we will still adhere to the criterion that the
Fock quantization must allow a unitary implementation of the
spatial symmetries of the model and of the Heisenberg
dynamics associated with the creation and annihilation
operators. With these ingredients, we will proceed to
construct a hybrid quantum theory for the perturbed
system. On this system, we will see that the only non-trivial
constraint turns out to be the zero mode of the Hamiltonian
constraint. We will then discuss its quantum imposition.
Moreover, we will show how to extract from it (with a
convenient ansatz and plausible approximations)
Schrödinger equations for the perturbations, as well as
effective equations to describe the propagation of the
perturbations on the FLRW geometry subject to quantum
effects. These equations can be used to study modifications
to the power spectra of the cosmological perturbations,
originated from quantum gravitational effects. The program
that we have outlined will be implemented in this and the
following five sections.

We start by constructing a convenient canonical description of
the system formed by the FLRW cosmology and its perturbations
that contains a complete set of gauge invariants. As in the case
studied in our introduction to LQC, the FLRW spacetimes that
we will consider possess compact sections with the topology of a
three-torus. Their geometry can be described by a scale factor a
and its canonical momentum πa (or equivalently by the pair of
variables c and p that determine the Ashtekar-Barbero variables
in LQC). With the same choice of reference system for this
cosmological background that we employed in the previous
expositions about LQC, the coordinate volume of the spatial
sections equals 8π3. As before, these spacetimes will contain a
homogeneous scalar field, ϕ, responsible of the expansion and
that consequently will play the role of an inflaton. This inflaton
can be interpreted as the zeromode of a generally inhomogeneous
scalar field Φ, interpretation that will be especially useful at the
moment of introducing perturbations in the system. On the other
hand, the main difference with respect to our previous studies is
that we will now allow the possible existence of a potential V(ϕ)
for this inflaton.

The FLRW system is subject only to a non-trivial
homogeneous Hamiltonian constraint, as we have discussed
above. It can be written as H0 � 0 where2

H0 � 1
16π3a3

(π2
ϕ −

4πG
3

a2π2
a + 128π6a6V(ϕ)). (45)

2We reserve the notation HS for the constraint of the whole perturbed model.
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Let us next introduce perturbations in this system, both for the
geometry and for the matter scalar field. It is also possible to
introduce a Dirac field to describe fermions, regarded as
perturbations of the FLRW cosmology (Elizaga Navascués
et al., 2017). We postpone the consideration of these fermions
to the next section. We can separate the metric and inflaton
perturbations into scalar, vector, and tensor, depending on their
behavior under the symmetries of the spatial sections (notice that
these symmetries provide the Euclidean group in the limit in
which the sections become non-compact). In addition, using that
the spatial Laplacian (and the Dirac operator) corresponding to
the auxiliary Euclidean metric 0hab (with unit determinant)
defined on our toroidal sections respect these symmetries, we
can expand the different perturbations in eigenmodes of this
differential operator. Moreover, since the spatial sections are
compact, these modes are discrete. In this way, we can deal
with the spatial dependence of the perturbations by considering
infinite sequences of modes. For instance, choosing again
(orthogonal) spatial coordinates of period equal to 2π, we
expand the scalar perturbations of the metric and the matter
field in a Fourier basis of sines and cosines,

Q
�k,+ ( �θ) � �

2
√

cos( �k · �θ), Q
�k,− ( �θ) � �

2
√

sin( �k · �θ). (46)

Here, the vector notation �θ stands for the spatial coordinates
(θ, σ, δ), and the Euclidean scalar product has been denoted with
a dot symbol. Each mode is characterized by a wavevector
�k ∈ Z3 − {0}, with strictly positive first non-vanishing
component. Note that, in this way, we are not including the
zero mode, that is part of the degrees of freedom considered in the
FLRW background. The eigenvalue of the spatial Laplacian
corresponding to �k is −ω2

k � − �k · �k. Scalar perturbations are
described then by the corresponding Fourier coefficients of
the scalar field Φ (without the zero mode, namely the
inflaton), the trace and traceless scalar parts of the spatial
metric hab (without the FLRW contribution), the lapse N
(without its homogeneous part), and the scalar part of the
shift Na.

Similarly, tensor perturbations are described by the Fourier-
like coefficients of the tensor part of the spatial metric, with two
possible polarizations. These coefficients arise from the expansion
in terms of the real tensor harmonics G

�k,ε, ±
ab , eigentensors of the

spatial Laplacian (Fernández-Méndez, 2014). As above, the tuple
�k can take here any value in Z3 − {0}, with positive first non-
vanishing component, while ε is the dichotomic label that
specifies the polarization, and the superscripts ± indicate
whether the harmonic is even or odd under a periodic
translation of �θ, as in the scalar case. Vector perturbations, on
the other hand, are described by the remaining parts of the shift
and the spatial metric, that can be expanded in Fourier-like

coefficients in terms of eigenvectors S
�k
a of the Laplace operator

and of tensors obtained from those by spatial covariant
derivatives (Halliwell and Hawking, 1985). Here, �k is again
any non-vanishing tuple of integers. It is convenient to
parametrize all of these mode coefficients as follows:

hab(t, �θ) � a2(t) 0hab( �θ)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1 + 2∑
�k, ±

a �k, ± (t)Q �k, ± ( �θ)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 6a2(t)∑

�k, ±

b �k, ± (t)[ 1
ω2
k

Q
�k, ±
|ab ( �θ) + 1

3
0hab( �θ)Q �k, ± ( �θ)]

(47)

+ a2(t)∑
�k

c �k(t)S �k
(a|b)( �θ) + 2

�
6

√
a2(t) ∑

�k,ε, ±

d �k,ε, ± (t)G �k,ε, ±
ab ( �θ), (48)

N(t, �θ) � N0(t) + 6π2

G
a3(t)∑

�k, ±

g �k, ± (t)Q �k, ± ( �θ), (49)

Na(t, �θ) � a2(t)∑
�k, ±

1
ω2
k

l �k, ± (t)Q �k, ±
|a ( �θ) + a(t)∑

�k

v �k(t)S �k
a( �θ),

(50)

Φ(t, �θ) � ϕ(t) +
����
3

4πG

√ ∑
�k, ±

f �k, ± (t)Q �k, ± ( �θ). (51)

A vertical bar stands for the spatial covariant derivative with
respect to the Euclidean metric 0hab, and a parenthesis enclosing
two spatial indices indicates symmetrization. Thus, the scalar
perturbations are determined by a �k, ± , b �k, ± , g �k, ± , l �k, ± , and f �k, ± ,
whereas the tensor perturbations are described by the coefficients
d �k,ε, ± , and the vector perturbations by c �k and v �k. We have
normalized some of these coefficients in a convenient way to
absorb several factors in the formulas that we will use in our
discussion.

Inserting these expressions in the Hilbert-Einstein action
minimally coupled to the scalar field Φ (with suitable
boundary terms) and truncating the result at quadratic order
in the coefficents of the perturbations, it is possible to reach a
Hamiltonian formulation for our system (Halliwell and Hawking,
1985; Fernández-Méndez, 2014). In this formulation, the above
coefficients for the perturbations either play the role of Lagrange
multipliers of some of the constraints, or form a canonical set
together with the FLRW scale factor, the inflaton, and suitable
momenta for all of them. In other words, at the order of our
truncation in the action, the system formed by the FLRW
cosmology and its perturbations is a totally constrained system
that admits a canonical symplectic structure (Castelló Gomar
et al., 2015). It is worth emphasizing that, at the considered
truncation order, we are treating exactly the zero modes that
determine the FLRW background, so that the perturbations that
we have expressed explicitly do not contain zero modes. On the
other hand, with the kind of matter content considered in our
discussion, it is possible to show that the vector perturbations do
not include any physical degree of freedom, but are pure gauge.
To simplify our exposition, we will therefore eliminate them from
our analysis in the following.

The perturbed system that we have constructed is subject to
two types of constraints. On the one hand, the perturbations of
the momentum and Hamiltonian constraints lead to a collection
of constraints that are linear in the perturbations, and that appear
accompanied by Lagrange multipliers that are also linear
perturbative factors. Explicitly, the mode H

�k, ±
↑1 of the linear

perturbative momentum constraint has Lagrange multiplier
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given by the coefficient l �k, ± of the perturbations of the shift

vector, while the mode H
�k, ±
1 of the linear perturbative scalar

constraint adopts as Lagrange multiplier the coefficient g �k, ± of
the perturbation of the lapse. These constraints depend
exclusively on the scalar perturbations of the metric, once the
vector perturbations have been gauged away. A different type
of constraint is the zero mode of the Hamiltonian constraint,
which can be considered a global restriction on the system
formed by the FLRW cosmology and the perturbations.
This constraint has a Lagrange multiplier given by the
homogeneous lapse function N0, and is the sum of two
contributions: a term that reproduces what would have been
the constraint H0 of the FLRW cosmology in the absence of
perturbations, and an additional term H2 that contains the
perturbative contribution and that is quadratic in the
perturbations. This latter term is composed in turn of two
parts, (s)H2 and (T)H2, respectively formed by the contributions
of the scalar and the tensor perturbations. In this way, the total
Hamiltonian takes the expression

H � N0[H0 + (s)H2 + (T)H2] +∑ g �k, ± H
�k, ±
1 +∑ l �k, ± H

�k, ±
↑1 . (52)

Moreover, the quadratic perturbative contributions to the zero
mode of the Hamiltonian constraint can be decomposed as the
sum of the contributions of each of the modes of the
perturbations as follows:

(s)H2 � ∑
�k, ±

(s)H
�k, ±
2 , (T)H2 � ∑

�k,ε, ±

(T)H
�k,ε, ±
2 . (53)

The variables that we have chosen to describe the perturbative
degrees of freedom have the drawback that they do not
commute with the linear perturbative constraints, even
when the FLRW cosmology is taken as a fixed entity with
vanishing Poissson brackets. As a consequence, those variables
would change if one performs a perturbative diffeomorphism,
that would alter the form of the FLRW background
without affecting the physics. To avoid this problem with
the physical identification of the background, it is most
convenient to use a set of variables that indeed commutes
with the linear perturbative constraints when the zero modes
are frozen in the computation of Poisson brackets. This leads
us to consider gauge invariants for the perturbations. In the
case of flat spatial sections, the gauge invariant degrees of
freedom of the scalar perturbations are usually described in
cosmology employing MS invariants, because they are
straightforwardly related to the co-moving curvature
perturbations. The variables that we have introduced for the
tensor perturbations, on the other hand, are directly gauge
invariant, and we will only redefine them linearly to re-express
their dynamical contribution to the Hamiltonian in a
convenient way.

With this motivation, we are going to introduce a change of
variables for the perturbations, from the canonical set that we
have been using to a new set formed by the following variables
(Langlois, 1994; Castelló Gomar et al., 2015):

• The mode coefficients of the MS gauge invariant field, ] �k, ± .
Explicitly, they are given by the formula (Fernández-
Méndez et al., 2013; Castelló Gomar et al., 2014)

] �k, ± �
���
6π2

G

√
a[f �k, ± +

����
3

4πG

√
πϕ

aπa
(a �k, ± + b �k, ± )]. (54)

We notice that these coefficients mix the scalar perturbations
of the metric and the perturbations of the matter scalar field.
• The mode coefficients of the tensor perturbations
conveniently rescaled (Benítez Martínez and Olmedo,
2016):

~d �k,ε, ± �
���
6π2

G

√
a d �k,ε, ± . (55)

This rescaling simplifies the dependence of the Hamiltonian
on the tensor perturbations.

• The mode coefficients π] �k, ±
and π~d

±
�k,ε
of the canonical

momenta of the above fields, defined also as gauge
invariants. There exists a certain ambiguity in the
specification of these momenta, since once can
always add a contribution that is linear in the
configuration fields, multiplied by any function of
the FLRW background. A convenient criterion to fix
this contribution is to require that the time derivative of
each of these momenta, as dictated by Hamilton’s
equations, is proportional to the corresponding
configuration variable. This condition amounts to
demand that the Hamiltonian that generates the
dynamics of the scalar and tensor perturbations
should not contain cross terms between the
configuration fields and their momenta, and turns
out to determine the latter of these variables
completely.

• An Abelianization of the linear perturbative constraints.
Actually, at the order of our perturbative truncation in
the action, it is possible to modify these constraints on
the scalar perturbations with terms that are linear in
those perturbations and such that the new constraints
that one obtains commute under Poisson brackets
among them, as well as with the MS field and its
momentum, after freezing the zero modes. To achieve
this Abelianization, it suffices to introduce the
replacement

H
�k, ±
1 → �H

�k, ±
1 � H

�k, ±
1 − 18π2

G
a3H0a �k, ± . (56)

This new linear perturbative scalar constraint is used together
with H

�k, ±
↑1 as additional variables in our canonical set.

• Suitable momenta of the Abelianized linear perturbative
constraints. As far as those constraints generate gauge
transformations consisting of perturbative diffeomorphisms,
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their momenta can be interpreted as variables that
parametrize possible gauge fixations for the perturbations.
A especially simple choice is

π
�H

�k, ±
1

� 1
aπa

(a �k, ± + b �k, ± ), π
H

�k, ±
↑1

� −3b �k, ± . (57)

Remarkably, the introduced change of variables for the scalar
and tensor perturbations can be completed into a canonical
transformation for the entire system (that is, without freezing
the background), at the considered truncation order, by
modifying the zero modes with terms that are quadratic in
the perturbations (Pinho and Pinto-Neto, 2007; Falciano and
Pinto-Neto, 2009; Castelló Gomar et al., 2015). For this, we
can proceed as follows. We substitute the old perturbative
variables in the Legendre term of the action (or, equivalently,
in the symplectic potential) as functions of the new ones and,
after several integrations by parts and convenient
identifications of factors, we find new zero modes that keep
the canonical form of the Legendre term up to perturbative
contributions that are negligible in our truncation scheme.
The new configuration variables obtained in this way adopt
the generic expression

~wι
q � wι

q +
1
2
∑

m, �k, ±

⎡⎢⎢⎢⎢⎢⎢⎢⎣X �k, ±
qm

zX �k, ±
pm

zwι
p

− zX �k, ±
qm

zwι
p

X
�k, ±
pm

⎤⎥⎥⎥⎥⎥⎥⎥⎦, (58)

where we have called {wι
q} � {a, ϕ} the configuration variables of

the zero mode sector, {wp
ι } are their momenta (ι � 1, 2), and

{X �k, ±
qm ,X

�k, ±
pm } are the old variables for the scalar and tensor

perturbations, each of which is given by a different value of
the label m. A tilde on top of any of these canonical quantities
indicates its new counterpart, defined according to the above
procedure.

In the case of the momentum variables for the zero modes, the
change is given by a formula of the same kind, but with a flip of
sign in the term that provides the corrections quadratic in the
perturbations,

~wι
p � wι

p −
1
2
∑

m, �k, ±

⎡⎢⎢⎢⎢⎢⎢⎢⎣X �k, ±
qm

zX �k, ±
pm

zwι
q

− zX �k, ±
qm

zwι
q

X
�k, ±
pm

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (59)

The availability of a canonical set for the entire perturbed system,
formed by the FLRW cosmology and the perturbations, is of the
greatest importance. In particular, it makes possible an easy
implementation of the hybrid strategy following canonical
quantization rules. But, in order to proceed to this
quantization, we still have to determine the form of the zero
mode of the Hamiltonian constraint (the only non-linear
perturbative constraint of the system) in terms of the new
canonical set, keeping the quadratic truncation order. In order
to do this, we notice that, since the change of zero modes is
quadratic in the perturbations, an expansion of the FLRW
contribution H0 around the new zero modes leads
immediately to the desired constraint if we only include the

first derivative contribution. Let us introduce the compact
notation

{wι} � {wι
q,w

p
ι }, {~wι} � {~wι

q, ~w
p
ι }, (60)

{~X �k, ±
m } � {~X �k, ±

qm
, ~X

�k, ±
pm }. (61)

Then, according to our comments, the expression of the new
global scalar constraint at our truncation order is (Castelló
Gomar et al., 2015; Benítez Martínez and Olmedo, 2016)

H0 +∑
ι

(wι − ~wι) zH0

zwι
+ ∑

�k, ±

s( )H �k, ±
2 + ∑

�k,ε, ±

T( )H �k,ε, ±
2 , (62)

with the phase space dependence of H0, its derivatives, s( )H �k, ±
2 ,

and T( )H �k,ε, ±
2 evaluated directly at (~wι, ~X

�k, ±
m ). Namely, in

(Eq. 62), the evaluation of the Hamiltonian functions must be
made as if one identified the old and the new set of variables. As a
consequence, the contribution of each of the modes of the
perturbations to the new global scalar constraint is

s( )H
�

2
�k, ± ∼ (s)H2

�k, ± +∑
ι

(s)Δ~wι
�k, ±

zH0

zwι
, (63)

T( )H
� �k,ε, ±
2 ∼ T( )H �k,ε, ±

2 +∑
ι

T( )Δ~wι
�k,ε, ±

zH0

zwι
, (64)

where the symbol ∼ indicates equality modulo the Abelianized
linear constraints and up to the relevant perturbative order in our
truncation. Besides, we have called

wι − ~wι � ∑
�k, ±

(s)Δ~wι
�k, ± + ∑

�k,ε, ±

T( )Δ~wι
�k,ε, ± , (65)

where the superscripts (s) and (T) stand for the quadratic
contributions of scalar and tensor nature, respectively. It is
possible to prove that the sum of contributions in the left-
hand side of (Eq. 63) gives precisely the MS Hamiltonian
(Castelló Gomar et al., 2015), i.e., the Hamiltonian that
generates the dynamical evolution (in proper time) of the MS

field on the FLRWbackground. Likewise, the sum T( )H
� �k,ε, ±
2 of the

tensor contributions to the constraint provides a dynamical
Hamiltonian of harmonic oscillator type for the tensor
perturbations on the FLRW cosmological background.

It is worth pointing out that, in the definition of these
perturbative Hamiltonians, we can replace the squared
momentum of the inflaton with π2ϕ − 16π3a3H0. This is so
because all the new terms proportional to H0 that are
produced in this way are quadratic in the perturbations and
can thus be absorbed in a redefinition of the zero mode of the
lapse function up to a modification of the total scalar constraint
that is at least quartic in those perturbations. Hence, such a
modification is negligible at our truncation order. The freedom
available in using this replacement can be fixed by requiring that
the perturbative contribution to the Hamiltonian constraint be at
most linear in the inflaton momentum, because one can always
use the commented replacement to decrease the polynomial order
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in πϕ by two units until one reaches either a linear contribution of
the inflaton momentum or a term that is independent of it. The
total Hamiltonian of the system then becomes (Castelló Gomar
et al., 2015)

H � N0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣H0 + ∑
�k, ±

s( )H
� �k, ±
2 +∑

�kε

T( )H
� �k,ε, ±
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ∑
�k, ±

g
�

�k, ± H
� �k, ±

1

+ ∑
�k, ±

l
�

�k, ± H
�k, ±
↑1 , (66)

where N0 is the suitably redefined homogeneous lapse function
that differs from the original one, N0, in perturbative terms that
are quadratic. Similarly, g

�
�k, ± and l

�

�k, ± are Lagrange multipliers
that differ from the original ones, g �k, ± and l �k, ± respectively, by

linear perturbative contributions. Their explicit expressions can
be found in Ref. (Castelló Gomar et al., 2015), but they are not
especially relevant for the rest of our discussion.

Notice that this total Hamiltonian, imposed as a collection of
constraints on the system, would include backreaction at the
considered perturbative order. As we have commented, the
contribution of the scalar perturbations to the global
Hamiltonian constraint is nothing but the MS Hamiltonian,
which is a sum of terms that are quadratic in the MS
configuration variables and of quadratic terms in their
momenta, but without terms that mix these two types of
variables. This is a consequence of our choice of MS
momentum field, as we explained when we introduced the
new perturbative variables. A similar behavior is found in the
contribution of the tensor perturbations to the Hamiltonian
constraint. In more detail,

s( )H
� �k, ±
2 � 1

2~a
[(ω2

k + s(s) + r(s)π~ϕ)]2�k, ± + π2
] �k, ±

], (67)

T( )H
� �k,ε, ±
2 � 1

2~a
[(ω2

k + s(T))~d2�k,ε, ± + π2
~d �k,ε, ±

]. (68)

Here, s(s) + r(s)π~ϕ and s
(T) play the role of effective background

dependentmasses for the scalar and the tensor perturbativemodes,
respectively. The expressions of these background functions are

s(s) � H2
0

32π6~a4
(38πG

3
− 9

H2
0

~a2π2
~a

) + ~a2(V″(~ϕ) − 16πG
3

V(~ϕ)),
(69)

s(T) � G
48π5

H(2)
0

~a4
− 16πG

3
~a2V(~ϕ), (70)

r(s) � −12 ~a
π~a

V ′(~ϕ). (71)

The prime symbol denotes de derivative of the potential V with
respect to the inflaton ~ϕ, and

H(2)
0 � 4πG

3
~a2π2

~a
− 128π6~a6V(~ϕ). (72)

We notice that

s(s) � s(T) + 9H(2)
0

32π6~a4
(4πG

3
− H(2)

0

~a2π2
~a

) + ~a2V″(~ϕ). (73)

In particular, substituting (Eq. 72), we see that s(s) � s(T) when
the inflaton potential ν vanishes.

In total, after a convenient change of densitization similar to
that explained in homogeneous and isotropic LQC (via
multiplication by the homogeneous physical volume
V � 8π3~a3), we obtain a Hamiltonian constraint that can be
written in the form

HS � 1
2
[π2

~ϕ
− H(2)

0 − Θe − Θoπ~ϕ], (74)

where we have introduced the notation

Θe � ∑
�k, ±

s( )Θ �k, ±
e + ∑

�k,ε, ±

(T)Θ
�k,ε, ±
e , (75)

Θo � ∑
�k, ±

s( )Θ �k, ±
o , (76)

s( )Θ �k, ±
e � −[(ϑeω2

k + (s)ϑqe)]2�k, ± + ϑeπ
2
] �k, ±

], (77)

(T)Θ
�k,ε, ±
e � −[(ϑeω2

k + (T)ϑ
q

e)~d2
�k,ε, ± + ϑeπ

2
~d �k,ε, ±

], (78)

s( )Θ �k, ±
o � −(s)ϑo]2�k, ± , (79)

that explicitly separates the linear term in the inflaton
momentum. Clearly, we have the identities

(s)ϑ
q

e � ϑes(s),
(T)ϑ

q

e � ϑes(T),
(s)ϑo � ϑer(s), (80)

with ϑe � 8π3~a2.
We note that there is no tensor contribution to Θo. It is also

worth remarking that all the ϑ-functions are independent of the
particular mode that one considers. Besides, the part of the
Hamiltonian constraint that contains the perturbative
contribution is the same for the scalar and for the tensor
perturbations except for the difference in their background
dependent mass. This shows up in the appearance of the
terms s( )Θ �k, ±

o and in the difference between (s)ϑ
q

e and (T)ϑ
q

e .

5 HYBRID LQC: INCLUSION OF FERMIONS

In the matter content of our cosmological system, we can also
include fermionic fields, e.g. a Dirac field. Their pressence does
not modify much our treatment if we consider them as
perturbations, including the possible fermionic zero modes, so
that they do not alter the dynamics of the homogeneous
background cosmology in the linearized theory. Since the
Dirac action is quadratic in the fermionic field, as a
perturbation it couples directly only to the background FLRW
geometry, but not to the perturbations of the metric, nor to the
matter scalar field (Elizaga Navascués et al., 2017). Moreover, for
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the same reason, the fermionic field does not contribute to the
linearized perturbative constraints, that arise from the
perturbation of the Hamiltonian and momentum constraints.
As a consequence, the fermionic field can be treated as a gauge
invariant perturbation at the considered order of truncation. This
simplifies the formulation considerably.

If we adopt a Weyl representation (D’Eath and Halliwell,
1987), the Dirac field can be described by a pair of two-
component spinors of definite chirality. We will call φA and
χ*A’ the respective left-handed and right-handed spinors
associated with the field. Capital Latin letters from the
beginning of the alphabet, both primed and unprimed, take
values equal to 1 or 2, corresponding to the two components
of the chiral spinors. These indices will be raised and lowered
using the antisymmetric symbols ϵAB and ϵAB (with e.g., ϵ12 � 1) ,
as well as their counterparts for right-handed chirality. It is most
convenient to adopt an internal gauge such that the spatial part of
the tetrad has vanishing temporal Lorentz components, namely
ea0 � 0. As a consequence of this gauge fixation on the spin
structure in four dimensions, the two-component spinors of
the Dirac field can be viewed as families of cross-sections of a
spinor bundle defined on the compact spatial sections. On the
other hand, the Hamiltonian formalism of the Dirac field is
initially complicated by the existence of second-class
constraints that relate the field with its momentum.
Nevertheless, one can eliminate these constraints and capture
the canonical anticommutation relations of the Dirac field in
anticommutators of its two-component spinors. To take into full
account this anticommuting character, we will treat these
components as Grassmann variables (Berezin, 1966).

In a similar way as we did with the metric and the scalar field
perturbations, we can decompose the spinors of the Dirac field in
modes. Since the spatial differential operator that appears
naturally in the dynamical equation of our fermionic field is
the Dirac operator constructed with the auxiliary Euclidean triad
0eai on the toroidal spatial sections of our model (with 0eia

0ejb δij �
0hab being the Euclidean metric introduced above), it is logical to
treat the spatial dependence of the field by an expansion in
eigenmodes of this Dirac operator. The spectrum of this
operator is discrete, owing to the compactness of the sections.

The eigenvalues are ± ωk, where ω2
k � �k · �k and �k ∈ Z3 is any

tuple of integers. We are assuming a trivial spin structure on the
spatial sections. Otherwise, the definition of ωk would include a
constant displacement of �k characteristic of the specific spin
structure chosen for the fermions (Friedrich, 1984). Using
these modes, we can express the two-component spinors of
the Dirac field in the form

φA(x) �
1

(2π)3/2~a3/2 ∑
�k,( ± )

[m �kw
�k,(+)
A + r*�kw

�k,(−)
A ], (81)

χ*A′(x) �
1

(2π)3/2~a3/2 ∑
�k,( ± )

⎡⎢⎣s*�k(w �k,(+))*

A′
+ t �k(w �k,(−))*

A′
⎤⎥⎦. (82)

Here w
�k,( ± )
A are the left-handed Dirac eigenspinors with

respective eigenvalue equal to ± ωk. With our choice of the

auxiliary Euclidean triad, and recalling that we have assumed a
trivial spin structure, these eigenspinors take the expression

w
�k,( ± )
A � u

�k,( ± )
A ei

�k· �θ, (83)

where the spinors u
�k,( ± )
A are constant and normalized (including

a choice of phase) so that

(u �k,( ± ))p

1′
u

�k,( ± )
1 + (u �k,( ± ))p

2′
u

�k,( ± )
2 � 1, (84)

∫ d3θw
�k′,(+)
A ϵABw �k,(−)

B � 0, (85)

∫ d3θw
�k′,( ± )
A ϵABw �k,( ± )

B � 8π3δ �k′,− �k ,
 (86)

with d3θ denoting the volume element dθdσdδ. The two last
equations are not valid for zero modes. In that case, one can

directly define u
�0,( ± )
A as the spinors with

u �0,(+)
1 � 1, u �0,(−)

1 � 0, (87)

u �0,(+)
2 � 0, u �0,(−)

2 � 1. (88)

On the other hand, the complex conjugate of (Eq. 83) provides
a basis of right-handed modes, with the chirality of χ*A’.

Each of the coefficients m �k, s �k, t �k, and r �k forms a Grassmann
canonical pair with its respective complex conjugate (D’Eath and
Halliwell, 1987). Furthermore, in this sense they provide a
canonical set together with the variables introduced in the
previous section for the metric and scalar field perturbations
and for the FLRW cosmology, once we have adopted a
description of the cosmological perturbations in terms of gauge
invariants (Elizaga Navascués et al., 2017). For convenience, in the
following we will employ the notation (x �k, y �k) to refer to any of the
ordered pairs of coefficients (m �k, s �k) or (t �k, r �k).

As we have already commented, there is no fermionic term in
the linear perturbative constraints of our system, so that the only
contribution of the Dirac field to the total Hamiltonian is
included in the zero mode of the Hamiltonian constraint. This
contribution is given by the Dirac Hamiltonian, evaluated at the
variables for the cosmological zero modes defined in the previous
section and at the fermionic perturbations determined by the
variables (x �k, y �k), as far as the respective dependence on the
FLRW cosmology and the Dirac field is concerned. Motivated by
previous works on this subject (D’Eath and Halliwell, 1987), the
first approach to the treatment of fermions in hybrid LQC was to
carry out a change of fermionic variables that produces a
diagonalization of the Dirac Hamiltonian. To reach this
diagonalization, the change of variables must depend on the
FLRW geometry, a situation that is similar to that studied when
we introduced gauge invariants to describe the relevant degrees of
freedom of the scalar perturbations. This has two consequences,
as we know. First, the zero modes have to be corrected to
maintain the canonical structure in the set of variables that
describe the whole of the cosmological system. Second, the
fermionic contribution to the Hamiltonian constraint gets an
additional term, up to quadratic order in the perturbations, owing
to the background dependence of the change of variables. Even if
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this change was designed to diagonalize the Dirac Hamiltonian, it
will generally not diagonalize the new fermionic contribution,
and therefore the resulting fermionic Hamiltonian will still
contain interacting terms. Actually, the new fermionic
variables have Poisson brackets of the creation-annihilation
type, so that we can view these fermionic interactions as the
creation or annihilation of pairs of particles. Finally, we will treat
the fermionic zero modes on their own, keeping their description
in terms of the original variables (x �0, y �0) to avoid problems with
the particularization of our formulas to a vanishing Dirac
eigenvalue (i.e., for ωk � 0).

Explicitly, and leaving aside those zero modes, the new
variables are given by

a(x,y)�k
�

������
ξk − ωk

2ξk

√
x �k +

������
ξk + ωk

2ξk

√
y*− �k

,

(b(x,y)�k
)*

�
������
ξk + ωk

2ξk

√
x �k −

������
ξk − ωk

2ξk

√
y*− �k

, (89)

where

ξk �
���������
ω2
k +M2~a2

√
, (90)

withM denoting the mass of the Dirac field. Notice that the sum
of the square modulus of the coefficients in each of the above
linear combinations of the variables (x �k, y �k) equals the unit. This
ensures that the transformation is canonical in the fermionic
phase space (Elizaga Navascués et al., 2017). In a Fock
representation with a standard interpretation, the operators
representing a(x,y)�k

and b(x,y)�k
would annihilate particles and

antiparticles, respectively, while their adjoints (representing the
complex conjugate variables) would create them.

The fact that our change of fermionic variables depends only
on the scale factor implies that we only need to modify the
momentum of that background variable in order to recover a
canonical set for the entire cosmological system. The
modification of the momentum π~a consists in adding to it the
following terms that are quadratic in the fermionic perturbations,
obtained in a similar way as it was explained in the previous
section for the scalar and tensor perturbations (Elizaga Navascués
et al., 2017):

− iM
2

∑
�k≠ �0,(x,y)

ωk

ξ2k
[a(x,y)�k

b(x,y)�k
+ (a(x,y)�k

)*(b(x,y)�k
)*]. (91)

For simplicity in our notation, we will denote the newmomentum
of the scale factor with the same symbol as before. From the
context, it must be clear in our discussion whether we are
referring to the original momentum or to the momentum that
has been changed with the addition of fermionic contributions.
On the other hand, we also notice that the variables for the scalar
and tensor perturbations need not be altered at this stage, because
our change of fermionic variables is independent of them.

In terms of this new canonical set, the total Hamiltonian has
the same expression (Eq. 66) as before except for two things. First,
its dependence on π~a must be evaluated at the new momentum
of the FLRW scale factor, which includes the fermionic

modification. And second, the zero mode of the Hamiltonian
constraint includes one additional contribution (F)H2 which is
due to fermions,

H0 + (S)H2 + (T)H2 + (F)H2 � 0. (92)

In consonance with our comments above, this fermionic
contribution is given by the sum of the Dirac Hamiltonian
(F)HD, once it is expressed in terms of the new fermionic
variables, and an interaction term (F)HI , arising from the
correction to H0 caused by the change of momentum for the
scale factor [like in (Eq. 62)]. In detail, their expressions are

(F)H2 � (F)HD + (F)HI , (93)

(F)HD � (F)H �0 + 1
2~a

∑
�k≠ 0,(x,y)

ξk[(a(x,y)�k
)*

a(x,y)�k
− a(x,y)�k

(a(x,y)�k
)*]
(94)

+ 1
2~a

∑
�k≠ 0,(x,y)

ξk[(b(x,y)�k
)*

b(x,y)�k
− b(x,y)�k

(b(x,y)�k
)*],

(F)H �0 � M[s �0r*�0 + r �0s
*
�0 +m �0t

*
�0 + t �0m

*
�0], (95)

(F)HI � −iπ~aGM
12π2~a

∑
�k≠ 0,(x,y)

ωk

ξ2k
[a(x,y)�k

b(x,y)�k
+ (a(x,y)�k

)*(b(x,y)�k
)*].
(96)

6 HYBRID QUANTIZATION OF
COSMOLOGICAL PERTURBATIONS:
IMPLEMENTATION
Once we have at our disposal a canonical set of variables for the
description of our perturbed cosmological model in which the
variables that describe the perturbations are either gauge
invariants, perturbative gauge generators, or associated gauge
degrees of freedom, we are in an appropriate situation to face the
quantization of the system. We will carry out this quantization
adopting the hybrid approach within the framework of LQC. As
we have already commented, this hybrid strategy is based on the
hypothesis that the most relevant effects of quantum geometry for
cosmology are those that affect the FLRW substrate, namely the
behavior of the scale factor, while the purely quantum geometric
effects on the perturbations can be approximately ignored, and
handle the quantum description of those anisotropies and
inhomogeneities using techniques directly related with the
formalism of QFT in a curved spacetime, generalized to the
case in which such a spacetime is quantum mechanical as
well. In practice, we quantize the FLRW cosmology using the
methods of LQC and the perturbations (essentially) with Fock
quantization methods, then combine both types of quantum
descriptions by adopting a tensor product representation space
for the system, and finally impose on it the diffeomorphism
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constraints that are present in the system.We will see that, among
them, the only intrincate constraint is the zero mode of the
Hamiltonian constraint, that relates in a complicated way the
FLRW cosmology with the scalar and tensor gauge invariant
perturbations (as well as with the fermionic ones if we also
consider a Dirac field). Thus, the hybrid quantization is non-
trivial precisely because of the imposition of this constraint.

The linear perturbative constraints obtained from the
Abelianization of the perturbations of the diffeomorphism
constraints can be imposed straightforwardly by representing
them as derivative operators with respect to their canonically
conjugate degrees of freedom (or, if one considers an integrated
version of these constraints, as operators that displace the values
of such canonically conjugate degrees of freedom, resulting in
transformations that should be symmetries). With this
representation, the states that satisfy such constraints à la
Dirac are simply those that are independent of the gauge
degrees of freedom π

�H
�k, ±
1

and π
H

�k, ±
↑1

(Eq. 57). In other words,
physical states depend only on (a complete set of compatible) zero
modes and gauge invariants. Note that this result is obtained
without the need to introduce any perturbative gauge fixing.
Physical states must still satisfy one constraint, that is the only one
remaining at this stage, namely the zero mode of the Hamiltonian
constraint, as we anticipated.

The desired quantum formulation is then reached by choosing
the representation space of the improved dynamics scheme of
homogeneous and isotropic LQC, Hgrav

LQC , for the perturbatively
corrected volume and its momentum (namely, the zero modes of
the FLRW geometry once they have been suitably modified with
terms that are quadratic in the perturbations in order to maintain
the canonical symplectic structure of the entire cosmological
system). For the perturbatively corrected inflaton and its
momentum, we use a standard Schrödinger representation
L2(R, d~ϕ). On the other hand, for the MS and tensor gauge
invariants, we adopt Fock representations F s and FT , chosen
within a unique privileged family of unitarily equivalent
representations that are characterized by (Castelló Gomar
et al., 2012; Cortez et al., 2012):

• The invariance of the vacuum under the symmetries of the
spatial hypersurfaces.

• A unitarily implementable Heisenberg evolution of the
creation and annihilation operators, in the context of QFT
in a curved background. This Heisenberg evolution is
determined by the dynamics of the gauge invariant modes
that we have picked out for the description of the perturbations.

In addition, if the system contains a Dirac field, viewed as a
fermionic perturbation, we employ for it a Fock representation
FD in the equivalence class of the one that is naturally associated
with the previously introduced choice of creation and
annihilationlike variables proposed by D’Eath and Halliwell
(D’Eath and Halliwell, 1987). This again belongs to a uniquely
distinguished class of unitarily equivalent representations
characterized by the same two conditions that we have listed
above, together with the requirement of recovering a standard
notion of particles and antiparticles. It is worth emphasizing that

the choice of Fock representation (or of a family of unitarily
equivalent representations) does not determine a concrete choice
of vacuum state. Any Fock state in our representation is valid for
this purpose. Therefore, in order to fix a unique vacuum state,
more restrictions are needed, either in the form of additional
requirements about the physical properties of the subsequent
quantum theory or in the form of conditions on a particular
spatial section able to specify the state there.

Let us continue with our hybrid approach, thus
adopting as representation space the tensor product
Hgrav

LQC ⊗ L2(R, d~ϕ)⊗F s ⊗FT ⊗FD. We construct our quantum
representation so that the zero modes commute with the
perturbations, as it happens under Poisson brackets in the
classical theory, and so that all functions of the inflaton ~ϕ act
by multiplication. As we have commented, the zero mode of the
Hamiltonian constraint results in a non-trivial coupling between
the various factors of our tensor product. The quantization
proposed for this constraint is based on the representation
adopted in homogeneous LQC3. For the FLRW contribution
H0 we adopt the same prescription as in LQC. In particular,
we adhere to the improved dynamics proposal, so that quantities
that depend on the momentum of the scale factor are represented
in terms of holonomies defined employing squares with a fiducial
length that guarantees that the physical area enclosed by them
coincides with the area gap Δ, determined by the area spectrum of
LQG. Using the resulting basic operators of homogeneous LQC,
as well as the homogeneous physical volume operator V̂ �
2πGc

��
Δ

√ ∣∣∣∣v̂∣∣∣∣ and the regularized inverse volume operator
obtained from them, we get

Ĥ
(2)
0 � Ω̂2

0 − 2V̂
2V (~ϕ). (97)

We recall that V(~ϕ) is the inflaton potential, and that Ω̂0 was
defined in (Eq. 28).

As for the functions of zero modes of the FLRW cosmology
that appear in the perturbative part of the constraint, we adopt a
symmetric factor ordering that tries and respects, as far as
possible, the assignation of representation from homogeneous
and isotropic LQC. In more detail, we adopt the following rules
for their quantum representation:

• We symmetrize à la Weyl the representation of the product
Θoπϕ, to deal with the presence of functions of ϕ in Θo that
do not commute with the inflaton momentum.

• We adopt an algebraic symmetrization for factors of the
form Vrg(b), that are promoted to the operators
V̂

r/2
ĝLQCV̂

r/2
, where r is any real number and g(b) a

function of the variable b, with ĝLQC its operator
counterpart in the improved dynamics scheme of LQC.
This algebraic symmetric factor ordering is adopted as well
for powers of the inverse volume.

3The quantum constraint that corresponds to the alternate regularization proposed
for homogeneous LQC in Ref. (Dapor and Liegener, 2018) and its associated
dynamics have been studied in Refs. (Castelló Gomar et al., 2020; García-
Quismondo et al., 2020).
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• Even powers of −~aπ~a
������
4πG/3

√
are promoted to even powers

of the operator Ω̂0, which represents this quantity in LQC,
whereas odd powers, let’s say, of order 2z + 1, with z any
integer, are represented as

∣∣∣∣Ω̂0|zΛ̂0

∣∣∣∣Ω̂0|z . Here
∣∣∣∣Ω̂0

∣∣∣∣ is the
square root of the positive operator Ω̂2

0, and Λ̂0 is defined
exactly as Ω̂0, but with holonomies of double length. The
result can be obtained by dividing the right-hand side of
expression (Eq. 28) by 2, and replacing b in that expression
with 2b. The operator Λ̂0 defined in this way only shifts v in
multiples of four units, and hence preserves the
superselection sectors of the homogeneous and isotropic
geometry.

With these prescriptions, we arrive at the following operator
representation of the functions (Eq. 80) that appear in the
densitized Hamiltonian constraint:

ϑ̂e � 2πV̂
2/3
, (98)

(s)
ϑ̂
q

e �
2G
3
[̂1
V
]1/3Ĥ(2)

0 (19 − 18Ω̂−2
0 Ĥ

(2)
0 )[̂1

V
]1/3 + V̂

4/3

2π
(V ′(~ϕ)

− 16πG
3

V(~ϕ)),
(99)

(T)
ϑ̂
q

e �
2G
3
[̂1
V
]1/3H(2)

0 [̂1
V
]1/3 − 8G

3
V̂

4/3V(~ϕ), (100)

(s)
ϑ̂o � 12

���
G
3π

√
V ′(~ϕ)V̂2/3 ∣∣∣∣Ω̂0

∣∣∣∣−1 Λ̂0

∣∣∣∣Ω̂0

∣∣∣∣−1 V̂2/3
. (101)

According to these formulas, the counterpart of relation (Eq. 73)
between the scalar and tensor background dependent masses is

(s)
ϑ̂
q

e �
(T)

ϑ̂
q

e + 12G[̂1
V
]1/3Ĥ(2)

0 (1 − Ω̂−2
0 Ĥ

(2)
0 )[̂1

V
]1/3 + V̂

4/3

2π
V″(~ϕ).
(102)

It is worth remarking that
(s)
ϑ̂o is proportional to the

derivative of the inflaton potential, so that one expects its
contribution to be negligible when the dependence of the
potential on the inflaton is not important. The operators
representing the phase space functions (Eq. 75) can be
constructed with the above operators and the Fock
representation adopted for the modes of the MS and the
tensor gauge invariants. In a completely similar manner, one
can construct an operator representation for the fermionic
contribution HF to the densitized zero mode of the
Hamiltonian constraint (obtained from the original one by
multiplication with the homogeneous volume), that depends
only on the FLRW geometry and the Dirac field, but not on
the inflaton nor on its momentum. For more details about this
fermionic contribution, we refer the reader to Refs. (Castelló
Gomar et al., 2015; Elizaga Navascués et al., 2017). In this way, we
finally get

ĤS � 1
2
[π̂2

~ϕ
− Ĥ

(2)
0 − Θ̂e − 1

2
(Θ̂oπ̂~ϕ + π̂~ϕΘ̂o) + ĤF]. (103)

7HYBRID LQC:MODIFIEDPERTURBATION
EQUATIONS

Although we have been able to handle all the constraints of our
perturbed model except the zero mode of the Hamiltonian
constraint, this constraint is still so intrincate that, in the
presented form, it does not seem possible to obtain its general
solution analytically. In order to investigate the properties of the
physical states, we will now introduce an ansatz that contemplates
a situation of special interest. We will consider states in which the
dependence on the FLRW geometry and on each of the gauge
invariant fields can be separated. In this separation, all parts are
allowed to depend on the inflaton. In more detail, from now on
we analyze states of the form

ξ(v, ~ϕ)ψs(Ns, ~ϕ)ψT(NT , ~ϕ)ψF(NF , ~ϕ), (104)

where we have adopted the abstract notation Ns, NT , and NF to
denote the dependence on the degrees of freedom of the
corresponding Fock space, via a set of occupation numbers in
the respective basis of n-particle states. In addition, ξ(v, ~ϕ)
designates a state in the kinematic Hilbert space of
homogeneous and isotropic LQC, such that it is normalized
and evolves unitarily with respect to ~ϕ as

ξ(v, ~ϕ) � Û(v, ~ϕ) χ(v), (105)

where Û is an evolution operator with generator ~̂H0 that is close
to the unperturbed one, determined by Ĥ

(2)
0 . This last condition

can be understood as the requirement that the action of Ĥ
(2)
0 −

( ~̂H0)2 − [π̂~ϕ, ~̂H0] on ξ(v, ~ϕ) be at most of the order of the
perturbative contributions when imposing the Hamiltonian
constraint. Moreover, in the following, for simplicity, we will
assume that this term is actually negligible in the action of the
Hamiltonian constraint on the considered state, assumption
that can always be checked for consistency once ξ(v, ~ϕ) is
specified.

On this family of states, we still must impose à la Dirac the
Hamiltonian constraint operator ĤS, that couples the FLRW
background cosmology with the gauge invariant perturbations.
To get solutions in physically relevant regimes, we can employ
certain approximations that facilitate the resolution of the
constraint. First, we consider regimes in which the transitions
in the FLRW geometry mediated by the Hamiltonian
constraint can be ignored as negligible on ξ(v, ~ϕ). In this
situation, the relevant part of the Hamiltonian constraint is
provided by its expectation value on ξ(v, ~ϕ) over the FLRW
geometry (with the integration measure of the inner product of
LQC). This expectation value provides a constraint equation
on the gauge invariant perturbations of the form

π̂2
~ϕ
ψ + (2〈 ~̂H0〉ξ −〈Θ̂o〉ξ)π̂~ϕψ � [〈Θ̂e + 1

2
(Θ̂o

~̂H0 + ~̂H0Θ̂o)
− ĤF〉

ξ
+1
2
〈[π̂~ϕ − ~̂H0, Θ̂o]〉ξ]ψ,

(106)
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where we have called ψ � ψs(Ns, ~ϕ)ψT(NT , ~ϕ)ψF(NF , ~ϕ). In what
follows, we will neglect the perturbative operator 〈Θ̂o〉ξ when
compared to 〈 ~̂H0〉ξ on the left-hand side of this equation,
according to our perturbative scheme.

Suppose for the moment that in (Eq. 106) we can also
neglect the first term, equal to the second derivative of the
wave function of the perturbations with respect to the inflaton.
This can be regarded as a kind of Born-Oppenheimer
approximation, in the sense that one neglects the variation
of certain degrees of freedom of the considered quantum state
in comparison with the variation of others. Explicitly, we ignore
the variation of the perturbations with respect to the inflaton in
favor of the variation of the FLRW state, that is given in average
by the expectation value 〈 ~̂H0〉ξ. Additionally, it is worth
noticing that the last term in the constraint (Eq. 106) affects
only the scalar perturbations, because Θ̂o depends only on
them. Let us assume that this term for the scalar
perturbations is negligibly small. Taking into account that,
in our representation, π̂~ϕ acts as the derivative with respect
to the explicit dependence on the inflaton ~ϕ (multiplied by −i),
and that ~̂H0 has been chosen to be close to the generator of the
homogeneous and isotropic quantum dynamics with respect to
the inflaton, the term under consideration can be understood as
the total derivative of the operator Θ̂o with respect to the
inflaton, both in its explicit and in its implicit dependence.
Thus, we expect that the analyzed contribution to the scalar
perturbations can be ignored when the variation with respect to
the inflaton is not significantly relevant. With these two
approximations, the studied constraint amounts to the sum
of a set of Schrödinger equations, one for each of the considered
perturbations (scalar, tensor, and fermionic). Specifically, we
get the following equations for the gauge invariant
perturbations:

π̂~ϕψs �
〈2(s)Θ̂e + (Θ̂o

~̂H0 + ~̂H0Θ̂o)〉ξ
4〈 ~̂H0〉ξ

ψs, (107)

π̂~ϕψT � 〈(T)Θ̂e〉ξ
2〈 ~̂H0〉ξ

ψT , (108)

π̂~ϕψF � − 〈ĤF〉ξ
2〈 ~̂H0〉ξ

ψF . (109)

Note that the separation of variables can actually be made
mode by mode in each of the gauge invariant perturbations,
since these modes are not coupled by the Hamiltonian
constraint.

Had we not neglected the contribution of
Ĥ

(2)
0 − ( ~̂H0)2 − [π̂~ϕ, ~̂H0], but considered instead that its action

on the wave function of the FLRW geometry is of the same order
as that of the perturbative contributions, we would have obtained
an equation similar to the constraint (Eq. 106) although with an
additional term, given by the expectation value on ξ(v, ~ϕ) of the
discussed difference of operators. Then, we should have added to
the right-hand side of each Schrödinger equation a backreaction
term, which could only depend on the inflaton. The balance
between these backreaction terms C(ξ)(~ϕ) would require that

〈( ~̂H0)2 − Ĥ
(2)
0

+ [π̂~ϕ, ~̂H0]〉ξ

2〈 ~̂H0〉ξ
� C(ξ)

s (~ϕ) + C(ξ)
T (~ϕ) + C(ξ)

F (~ϕ),
(110)

where the subscript on the backreaction tells us whether the term
corresponds to the scalar (s), tensor (T), or fermionic (F) contribution.
From this balance, we see that the sum of all the backreaction terms
gives us information, in mean value and within our approximations,
about howmuch the state ξ(v, ~ϕ) departs froman exact solution of the
unperturbed homogeneous and isotropic cosmology in LQC.

Moreover, let us return to (Eq. 106) and let us assume now only
that the gauge invariant perturbations admit a direct (effective)
counterpart of the Heisenberg dynamics that results for their
operator analogs from this Hamiltonian constraint equation,
something that seems reasonable because the considered
Hamiltonian is quadratic in the perturbative variables. Then, it is
immediate to realize that we get a set of modified propagation
equations for the MS modes, the tensor perturbations, and the
fermionic perturbations. For instance, the modified MS equations are

d2
ηξ
] �k, ± � −] �k, ±

⎡⎢⎢⎢⎢⎣ω2
k + 〈2(s)ϑ̂q

e
+ (s)

ϑ̂o((s)ϑ̂o ~̂H0 + ~̂H0
(s)
ϑ̂o) + [π̂~ϕ − ~̂H0,

(s)
ϑ̂o]〉ξ

2〈ϑ̂e〉ξ
⎤⎥⎥⎥⎥⎦,

(111)

where the conformal time ηξ is defined by the equation

〈 ~̂H0〉ξdηξ � 〈ϑ̂e〉ξd~ϕ. (112)

Therefore, this time depends on the state ξ(v, ~ϕ) of the FLRW
geometry. Similarly, for the modes of the tensor perturbations we
obtain

d2ηξ
~d �k,ε, ± � −~d �k,ε, ±

⎡⎢⎣ω2
k +

〈(T)ϑ̂qe〉ξ
〈ϑ̂e〉ξ

⎤⎥⎦. (113)

The conformal time is the same as for the scalar perturbations,
thanks to the fact that the operator ϑ̂e that multiplies the squared
momenta in the Hamiltonian constraint (and that represents the
squared scale factor, up to a constant) coincides both for tensor
and scalar gauge invariants and, furthermore, for all the modes of
these perturbations. In a similar way, an equation with quantum
geometry corrections and in the same conformal time can be
obtained as well for the femionic perturbations [see Ref. (Elizaga
Navascués et al., 2017)].

In the above propagation equations, the ratio of expectation values
on the right-hand side gives the quantum corrected mass for the
specific gauge invariant perturbation under consideration. We notice
that this corrected mass is actually mode independent, because this is
the case for the corresponding operators. Also, note that the equations
contain no dissipative term. Much more important, the deduced
effective equations are hyperbolic in the ultraviolet regime,
regardless of the concrete behavior of the quantum state for the
FLRW geometry, provided that our approximations are valid.

In order to extract predictions from the above equations
about quantum geometry effects on the primordial
perturbations, one needs to compute the expectation values
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that give the corrected masses for the MS and tensor
perturbations. There are several possible strategies to reach
this goal. Let us list three of these strategies, in decreasing order
of accuracy but increasingly easier to implement. First, one
could compute the quantum expectation values numerically.
For this, one may try and ignore the backreaction (checking the
validity of this approximation afterwards) and integrate
numerically the quantum evolution of the FLRW state with
respect to the inflaton. With the FLRW state obtained in this
way, one can calculate with numerical methods the desired
expectation values at each given value of ~ϕ. The more difficult
part of this program is the integration of the FLRW dynamics in
the presence of non-trivial inflaton potentials. Second, taking
into account the commented complication that the potential
introduces, one can compute the evolution of the FLRW state
not numerically, but in an interaction picture in which the
potential (or part of it) is regarded as an interaction added to
the homogeneous and isotropic Hamiltonian of LQC (Castelló
Gomar et al., 2016), and treated as a perturbation of that
Hamiltonian using a Dyson series expansion (Galindo and
Pascual, 1990). And third, for suitable FLRW states, one can
directly adhere to the effective dynamics description of LQC,
integrating numerically only the trajectory of the peak of the
state, rather that the quantum dynamics strictly speaking.
Furthermore, this integration can be simplified by
identifying regimes with universal behavior in the evolution
from the bounce for the background solutions of interest in
LQC (Agullo and Morris, 2015; Zhu et al., 2017; Zhu et al.,
2017; Elizaga Navascués et al., 2018). For instance, the most
interesting situations to get quantum geometry corrections on
the primordial spectra that can be observed nowadays are
found for background solutions that are kinetically
dominated around the bounce, so that the potential there
has little influence. This allows us to introduce further
simplifications in the integration of the FLRW trajectories
that, at the end of the day, facilitate the calculation of the
quantites that determine the studied masses of the
perturbations.

Most of the work in the literature has indeed been done
assuming an effective dynamics for the description of the
FLRW cosmology in LQC. Even if, with this approximation,
the problem of computing the evolution of the primordial
perturbations is handleable, the results (and hence the
predictions obtained from them) depend critically on the
initial conditions that one chooses for the FLRW background
in this effective dynamics, as well as on the initial conditions that
determine the state of the perturbations subject to the
propagation equations that we have derived. We will discuss
these issues in the next section.

Let us point out that, adopting this effective dynamics for the
description of the FLRW states, it has been proven (Elizaga
Navascués et al., 2018) that the corrected mass that appears in
the modified propagation equations for the scalar and tensor
perturbations is positive around the Big Bounce, at least for the
most interesting ranges of energy density contribution of the
inflaton potential. Since the Big Bounce is precisely the region
where the quantum effects on the geometry are more significant,

one would expect that the largest departures from the classical
situation described by GR cosmology happen there. This
positivity of the quantum corrected mass is important to be
able to define adiabatic vacua as initial states around the bounce
for all the perturbative modes (Martín de Blas and Olmedo, 2016;
Elizaga Navascués et al., 2018; Elizaga Navascués et al., 2018). A
negative mass involves a breakdown of the adiabatic
approximation around the bounce at least for values of ωk

that are not sufficiently large, invalidating the construction of
adiabatic states as natural candidates for a vacuum at frequencies
that can be of physical interest, for instance because they cover
part of the observed spectrum in the CMB. Moreover, the
positivity of the mass at the bounce is not shared by other
proposals for the quantization of cosmological perturbations
within the framework of LQC, like the so-called dressed
metric approach that has been put forward by Agullo,
Ashtekar, and Nelson (Agullo et al., 2012; Agullo et al., 2013;
Agullo et al., 2013).

Finally, in our discussion above, and owing to the
compactness of the spatial sections, the modes that we have
considered possessed a discrete spectrum of Laplace
eigenvalues, ωk, that play the role of frequencies in the
modified propagation equations for the perturbations even
after the introduction of quantum geometry corrections.
Nonetheless, it is possible to reach the continuum limit for
this set of frequencies in the following form. One first extracts a
length scale of reference from the scale factor. All observable
quantities are defined with respect to this reference scale, that
becomes physically irrelevant. One may choose as such scale the
value of the scale factor today, or at the moment of the bounce,
for instance. Then, the desired continuum limit is reached as the
limit in which we make the reference scale tend to infinity. We
refer the reader to Ref. (Elizaga Navascués and Mena Marugán,
2018) for more details.

8 INITIAL CONDITIONS

As we have commented, even if we have succeeded in deriving
propagation equations for the primordial perturbations that
contain modifications caused by quantum geometry effects
and even if we assume FLRW states that can be described
within the effective dynamics approach to LQC, in order to
extract predictions about the primordial cosmological
perturbations we need to specify the particular FLRW effective
solution that plays the role of a background and, in addition, the
vacuum state that determines the conditions on the
perturbations. Both pieces of information can be supplied by
giving convenient initial data on a certain spatial section. An
appealing possibility is to choose this section precisely at the Big
Bounce. We will concentrate our discussion on this case. Other
possibilities are equally valid, for instance a section in the
asymptotic past, if the effective dynamical evolution previous
to the bounce connects with amanageable asymptotic region (Wu
et al., 2018).

Let us consider first the initial conditions for the FLRW
background, solution to the effective dynamics of LQC. The
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FLRW cosmology is described by two pairs of canonical zero
modes, namely four variables. But we have chosen to impose
initial conditions at the bounce, where the time derivative of the
scale factor vanishes, reducing the liberty in one degree of
freedom4. In addition, the Hamiltonian constraint associated
with the effective dynamics reduces the degrees of freedom in
one more variable. Moreover, we have also commented that we
can employ the value of the scale factor at the bounce as a
reference scale, depriving it of physical relevance. In practice, this
allows us to set that value equal to the unit, for instance. In total,
we see that only one variable must be fixed at the bounce by the
initial conditions there. We choose the value of the inflaton as this
piece of initial data. On the other hand, we can consider also as
free data the parameters that determine the inflaton potential.
Focusing our attention on the most studied case of a quadratic
potential, we find only one parameter, given by the inflaton mass.
From this perspective, the FLRW effective background turns out
to be completely fixed if we provide the value of the inflaton at the
bounce and the value of the inflaton mass.

Actually, we are only interested in effective solutions that lead
to power spectra for the perturbations that are compatible with
the observations, but that still retain some quantum geometry
corrections. One expects that, if these corrections have survived,
they should be present in the region of large angular scales or its
nearby region, because it is only in this region that the agreement
between GR and observations may not be completely solid
(Planck Collaboration, 2016a; Planck Collaboration, 2016b).
This requirement determines a relatively narrow interval of
values for the initial condition on the inflaton ϕB and the
inflaton mass m, around ϕB � 0.97 and m � 1.2 × 10− 6 (in
Planck units). For this latter choice of specific values, we show
in Figure 1 the evolution of the Hubble parameter H multiplied
by the scale factor. This rescaled Hubble parameter aH vanishes
at the bounce and then increases in a very short superinflationary
epoch in which H grows to a value of the Planck order. This
happens so fast that the scale factor remains almost constant in
the process. Since we have taken the scale factor at the bounce
equal to one, then aH at its maximum should be of the order of
one as well in Planck units (like H). This maximum sets a scale,
that we denote KLQC in terms of wavenumbers, and that should be
of Planck order according to our previous arguments. From that
moment on, the rescaled Hubble parameter starts to decrease
until it reaches a minimum. Besides, the quantum corrections in
the effective dynamical equations of the background become
negligibly small, and the effective trajectory gets totally
adapted to a GR cosmological solution.

For solutions that allow for quantum geometry corrections in
the spectra of the perturbations at large scales, the inflaton
dynamics around the bounce is dominated by its kinetic
energy density, which is of Planck order, with an ignorable
contribution of the potential. Since the potential is almost
negligible, the effective solution behaves as if the scalar field

were massless, situation in which the inflaton momentum is a
constant of motion and the kinetic energy density decreases
rapidly, as a−6. The kinetic energy density continues to
diminish until it becomes of the order of the potential. Given
that _a increases when the potential drives the evolution of the
scale factor (both in GR and in the effective dynamics of LQC),
the coincidence between the kinetic energy density and the
potential of the inflaton occurs approximately when aH
reaches its minimum. On the other hand, during the evolution
from the bounce to this minimum of aH, the inflaton typically
increases only by a few orders of magnitude. As a result, the
potential, quadratic in the inflaton, varies as well only in a few
orders. Taking this into account, and since the potential at the
bounce ism2ϕ2B/2, with values around 10

−12 in Planck units, when
the kinetic and potential energies coincide we expect a density in
the range (10−12, 10−9). This energy density determines yet
another scale in the system, that we call KK−P expressed as a
wavenumber.

In total, the influence of the effective background solution on
the perturbations is characterized by two (wavenumber) scales,
that we have already mentioned, KLQC and KK−P. In a first
approximation to the problem, these scales determine the
regions where the quantum geometry effects may cause
departures from the standard model of inflation in GR. As we
have argued, KLQC is of the order of the unit, because it is related
to quantum gravity phenomena. To estimate KK−P in our
solutions, note that during the epoch of kinetic dominance,
the energy density decreases as a−6 from a value of the Planck
order to values in the interval (10−12, 10−9) as we have pointed
out. Recalling the Hamiltonian constraint of effective LQC (or of
FLRW cosmology in GR, once one is away from the immediate
vecinity of the bounce), one concludes that H2 must be
proportional to the discussed energy density in the considered
region, and thus decrease during kinetic dominance also as a−6.
Consequently, aH must evolve as a−2, decreasing from the Planck
order as the cubic root of the energy density, and hence reaching
values in the range [10− 4, 10− 3]. In Figure 1 we see that
wavenumbers larger than KLQC only intersect aH once in the
evolution. Note that this intersection is the moment when the
associated physical length a/k coincides with the Hubble scale
1/H, and therefore can be taken as the moment of horizon
crossing. For modes between KLQC and KK−P , there exist three
intersections. Essentially, the modes exit the horizon immediately
after the bounce, reenter in the phase of kinetic dominance, and
exit again during the inflationary expansion. We expect these
modes to be severely affected by the quantum geometry effects
around the bounce, and that their evolution differs considerably
from that experienced in GR for a background solution with the
same behavior in the classical region. Finally, modes with
wavenumbers below KK−P do not exit the horizon during
inflation but much before, a fact from which one may expect
important departures from the predictions of standard inflation.

After the potential equals the kinetic energy density, the latter
rapidly decreases while the potential becomes essentially constant
and generates inflation. We are interested in effective background
solutions such that the modes that experience quantum geometry
effects (roughly, those with wavenumbers between KLQC and

4This is only a reflection of the fact that, as it happens in classical FLRW cosmology
with homogeneous matter content, one of Hamilton’s equations of motion
contains redundant information in effective LQC.
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KK−P) are entering the horizon today. If they had entered much
long ago, they would correspond to scales of the power spectra
where there is no discrepancy with GR, raising the problem of
explaining the absence of departures from the Einsteinian
predictions or implying that quantum gravity effects are too
tiny to be observable in those circumstances. On the other
hand, if they had not entered the horizon again (nor were
about to do it), they could not be observed in the power
spectra. The interesting situation is when the modes are
entering the horizon at present, as we have said. But the
effective FLRW backgrounds for which this happens turn out
to experience a short-lived inflation. As a consequence, during the
first moments of the inflationary expansion, there is still some
influence of the kinetic energy density, producing departures
from a genuine slow-roll behavior. This will affect the power
spectra if the modes that were exiting the horizon at those
moments are observed today [see e.g., the discussion of Ref.
(Contaldi et al., 2003) in the framework of GR]. Therefore, the
slow-roll approximation will not be good, at least, for modes that
exited the horizon during those first stages of inflation (Contaldi
et al., 2003). Such modes are precisely those close to the scale
KK−P. Hence, those modes will experience two types of
corrections from a standard inflationary scenario with slow-
roll in GR: quantum geometry effects, accumulated around the
bounce, and short-lived inflation effects. One of the most
important challenges for LQC nowadays is to be able to
separate these two kinds of effects and prove that it is possible
to identify and falsify the quantum modifications in cosmological
observations.

In summary, the LQCmodifications in the FLRW background
with respect to the standard inflationary solutions of GR may
have a relevant influence on modes between the typical scale of
the quantum geometry effects and the scale KK−P, close to the
onset of inflation. If these include the modes that are now re-
entering the horizon, so that the scale of the Universe that we
observe today was at the very early stages in the range affected by
the quantum effects, some traces of those quantum modifications
may have survived in the CMB in spite of the later inflationary
expansion, and they might be observable. The fact that the
background which those modes feel effectively differs

substantially from a de Sitter expanding phase should imply
that the natural vacuum for them ought to differ from the
standard Bunch-Davies vacuum (Bunch and Davies, 1978). As
a result, the power spectra of the perturbations at those scales
changes from the conventional predictions based on the choice of
a Bunch-Davies state. Suppose that the new vacuum state is
related to the standard one by a Bogoliubov transformation that
does not mix modes with different values of ωk, something that is
ensured if the invariance under the symmetries of the spatial
sections is respected. Let us call αk and βk the coefficients of this
Bogoliubov transformation, with

∣∣∣∣αk|2 − ∣∣∣∣βk|2 � 1. Recall that the
beta-coefficient determines the antilinear part of the Bogoliubov
transformation, i.e., the part that mixes creation and annihilation
operators. These coefficients can be determined, e.g., at the initial
time chosen in our analysis, if we know there the initial data that
specify the two bases of solutions of the gauge invariant field
equations, {~μk} and {μk}, that characterize respectively the new
and the old vacua. Then, if the primordial power spectrum of the
standard vacuum is PR(k), the power spectrum of the new
vacuum state does not need to be calculated from scratch: it is
given by the formula

~PR(k) � [∣∣∣∣∣αk
2 +

∣∣∣∣∣βk 2 + 2
∣∣∣∣∣αk∣∣∣∣∣∣∣∣∣∣βk∣∣∣∣∣cos (ϕα

k − ϕβ
k + 2ϕμ

k)]PR(k).
∣∣∣∣∣∣∣∣∣∣

(114)

Here, ϕαk and ϕβk are the phases of the respective Bogoliubov
coefficients, treated as complex numbers, and ϕμk is the phase of
the solution μk evaluated at the time of computation of the power
spectrum (typically by the end of inflation).

The second problem related with the choice of initial data is,
therefore, the selection of conditions that determine the vacuum
state of the perturbations. Clearly, from the above formula, a
change of vacuum state may result in a radical variation of the
power spectrum. The predictive power of the formalism is lost
unless we have a way to select a vacuum as the preferred state for
the gauge invariant perturbations. While, in situations like de
Sitter inflation, the high degree of symmetry of the background
can help us in picking out a unique state, invariant under the
symmetries and with a local Minkowskian behavior, this does not
seem possible in more general situations, like those experienced

FIGURE 1 | Solution of the rescaled Hubble parameter aH in the effective dynamics of LQC for a matter content given by an inflaton with mass equal to 1.2 × 10−6

and a value at the bounce equal to 0.97 (both quantities in Planck units). The plot shows several wavenumbers to illustrate the different numbers of intersections that are
possible.
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by the modes affected by quantum geometry effects in the kind of
effective backgrounds that appear in LQC. In these
circumstances, several proposals have been suggested in order
to single out a unique Fock state that could then be viewed as
privileged in the system.

Among these proposals, the attempt to use adiabatic states
(Parker, 1969; Lüders and Roberts, 1990) has received a
considerable attention (Agullo et al., 2013; Agullo et al., 2013;
Agullo and Morris, 2015; Martín de Blas and Olmedo, 2016).
Nonetheless, their construction may find some obstructions,
especially if the effective mass in the propagation equations of
the perturbations becomes negative. We have seen that this does
not occur in the hybrid approach in the region of important
quantum geometry effects, at least for (effective) solutions with
kinetic dominance in the energy balance of the inflaton (Elizaga
Navascués et al., 2018). Nonetheless, this is not the case for other
approaches like the dressed metric quantization if one considers
scales that are not sufficiently small (Elizaga Navascués et al.,
2018). Besides, the power spectra of adiabatic states, computed
numerically, often present large oscillations, and even if these
oscillations are averaged, they typically result in an increase of
power that does not seem to fit properly with observations if the
scales affected by the quantum geometry effects are inside the
Hubble horizon today (Agullo and Morris, 2015).

Ashtekar and Gupt have put forward a different proposal for
the vacuum state (Ashtekar and Gupt, 2017; Ashtekar and Gupt,
2017). In the region with relevant LQC effects, they have required
that the quantum Weyl curvature satisfy a bound which is the
lowest value compatible with the uncertainty principle and stable
under evolution. This condition selects a ball of states. Among
them, the vacuum of the perturbations is chosen by imposing
another condition at the end of inflation, ensuring that the
dispersion in the field operators be minimized (Ashtekar and
Gupt, 2017). In the dressed metric approach, this proposal has
been shown to lead to primordial power spectra that, though still
highly oscillatory, seem in very good agreement with observations
after being averaged (Ashtekar and Gupt, 2017; Ashtekar et al.,
2020). Nonetheless, the direct relation of this vacuum with
adiabatic states is not known.

Another interesting proposal for a vacuum state is the so-
called non-oscillating vacuum, suggested by Martín-de Blas and
Olmedo (Martín de Blas and Olmedo, 2016). The proposal is to
select the state that minimizes the integral

∫ηf

η0

dη

∣∣∣∣∣∣∣∣d(
∣∣∣∣μk∣∣∣∣2)
dη

∣∣∣∣∣∣∣∣ (115)

in a certain interval of conformal time, usually the interval from
the time of the initial spatial section to a time well inside the
inflationary regime. For instance, in our typical class of effective
backgrounds, this can be a time when the kinetic energy density of
the inflaton becomes so negligible that the inflationary expansion
is completely driven by the potential. Since the primordial power
spectrum for each mode is proportional to the square norm of the
associated mode solution μk, the proposal picks out a state that
minimizes the power oscillations in a definite sense. In general,
the determination of this vacuum state needs numerical methods,

since the criterion of choice is posed as a variational problem that
involves the calculation of an integral. For simple cases, the
proposal can be handled analitycally and has been proven to
provide a conventional choice of vacuum state. Thus, it selects the
Poincaré vacuum for flat spacetime in the presence of a scalar
field, either massless or with a quadratic potential. In addition, for
de Sitter spacetime, the proposal selects the Bunch-Davies
vacuum (Martín de Blas and Olmedo, 2016). The primordial
and angular power spectra for this vacuum state have been
calculated numerically, both for scalar and tensor
perturbations (Benítez Martínez and Olmedo, 2016; Castelló
Gomar et al., 2017). The results are compatible with
observations, and they even open the possibility of explaining
some of the features of the spectra that perhaps may be in tension
with GR (Castelló Gomar et al., 2017; Elizaga Navascués et al.,
2018), at large angular scales or for multipoles around l � 20 (Ade
and et al., 2016; Ade and et al., 2016).

9 CHOICE OF VACUUM STATE FOR THE
PERTURBATIONS: SPLITTING OF PHASE
SPACE VARIABLES
The problem of selecting a vacuum for the perturbations appears
in our formalism because the requirements that we have imposed
to determine the Fock representation of the gauge invariant
perturbations in the hybrid approach at most select a family
of representations that are unitarily equivalent, but not a
privileged state. Any of those representations, or equivalently
any Fock state in the considered family, can be chosen as the
vacuum. This leaves a large freedom in the selection of a vacuum
for the perturbations, and so in the initial conditions that
characterize it. The proposals that we have commented at the
end of the previous section are some of the attempts to fix this
freedom, but there is yet no general consensus about how to settle
the question. Besides, although some of those proposals lead to
power spectra that are compatible with observations, they happen
to rely on numerical and/or minimization techniques.

In fact, we can consider families of representations related
among them by unitary transformations which depend on the
background. The Heisenberg dynamics of the creation and
annihilation operators associated with each of these
representations, even if unitarily implementable as provided by
a composition of unitary transformations, would differ between
them, given that part of the evolution is removed by assigning it to
the background sector of phase space. What is more, by means of
this type of unitary transformations with dependence on the
background, we can change the splitting of the phase space
degrees of freedom between the zero modes that describe the
background and the modes of the gauge invariant perturbations.
Actually, there exist many ways of separating the phase space into
a homogeneous sector and an inhomogeneous one using
canonical transformations that mix them. The specific splitting
that one adopts determines the properties of the resulting
quantization. In particular, the representation of the
Hamiltonian constraint and its ultraviolet features strongly
depend on this choice.
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This fact can be employed to improve the behavior of the field
operators that represent the perturbative terms, ameliorating the
need for the introduction of regularization procedures typical of
QFT. Indeed, as they stand, the actions of the MS, tensor, and
fermionic Hamiltonians that appear in the constraint (Eq. 103)
are ill defined with a standard choice of Fock representation for
the corresponding perturbations. Moreover, the backreaction is
in general divergent. For instance, by constructing the unitary
operator that implements the Heisenberg dynamics of the
fermionic variables (in the context of QFT in a quantum
mechanically corrected background), one can compute the
backreaction of the fermions, C(ξ)

F (~ϕ), and show that it is not
absolutely convergent (Elizaga Navascués et al., 2017).

These problems can be solved, or at least alleviated, by
introducing new gauge invariants prior to quantization,
defined by using canonical transformations that depend on the
zero modes. Considering the system as a whole, we have
freedom in:

• Changing the dynamical separation between the FLRW
geometry and the gauge invariant perturbations via
canonical transformations.

• Chosing the Fock vacuum for the perturbations, within the
hybrid scheme, regarding this vacuum as the state from
which one defines the Fock representation as a cyclic one.

All this ambiguity can be encoded in choices of the form

a �k, ± � f �k, ± (~a, π~a, ~ϕ, π~ϕ)] �k, ± + g �k, ± (~a, π~a, ~ϕ, π~ϕ)π] �k, ±
(116)

for the MS annihilationlike variables. Here,

f �k, ± g
*
�k, ± − g �k, ± f

*
�k, ± � −i, (117)

so that the introduced variables satisfy, when one freezes the
background, canonical commutation relations with the
corresponding MS creationlike variables, defined by the
complex conjugate of relation (Eq. 116). For the tensor
variables, on the other hand, one is led to consider analogous
families of creation and annihilationlike variables, characterized
by two functions f �k,ε, ± and g �k,ε, ± that satisfy a condition similar
to (Eq. 117). Generally, one is interested exclusively in canonical
transformations of the gauge invariant variables that depend
(apart that on the cosmological zero modes) only on the
frequency ωk of the mode, but not on other details about the
wavevector �k, nor on the sine or cosine character of the Fourier
mode or the polarization of the tensor mode. For those cases, we
would adopt the simpler notation fk and gk for the functions that
define the creation and annihilationlike variables.

In the case of fermions, the ambiguity is captured in the
freedom to define annihilationlike variables for particles and
creationlike variables for antiparticles as follows:

a(x,y)�k
� f

�k
1 (~a, π~a, ~ϕ, π~ϕ) x �k + f

�k
2 (~a, π~a, ~ϕ, π~ϕ) y*− �k

, (118)

(b(x,y)�k
)*

� g
�k
1(~a, π~a, ~ϕ, π~ϕ) x �k + g

�k
2(~a, π~a, ~ϕ, π~ϕ) y*− �k

, (119)

with

f
�k
2 � eiF

�k
2

�������
1 −

∣∣∣∣∣∣∣ f �k
1 |2

√
, g

�k
1 � eiJ �k(f �k

2 )*

, g
�k
2 � − eiJ �k(f �k

1 )*

. (120)

In the same spirit that we have commented above, one is usually
interested only in cases in which the functions f

�k
1 , g

�k
1 , g

�k
1 , and g

�k
2

depend on �k only via ωk. Notice that the creation and
annihilationlike variables (Eq. 89) that we used for the
fermions in Sec. 5 were of this kind. We will restrict to this
type of cases in the following.

As we already know, a change from the gauge invariant
variables that we have adopted for our system to any of the
above sets of creation and annihilationlike variables for the
perturbations can be completed into a canonical set for the
full cosmological model. It suffices to correct again the zero
modes with contributions that are quadratic in perturbations
in the way that we discussed in Sec. 4. In addition, in terms of the
new canonical set, the resulting MS, tensor, and fermionic
Hamiltonians are the old ones plus some known corrections.
These new contributions contain, in general, both diagonal
products of annihilation and creationlike variables, and terms
that are responsible for the creation and destruction of pairs. The
asymptotic behavior of these latter interaction terms when
ωk →∞ is what tells us if the quantization of the
Hamiltonians is well defined on the vacuum, assuming normal
ordering. In all cases fk, gk, f k1 , f

k
2 , g

k
1 , and g

k
2 can be chosen so that

the dominant powers of ωk in the interaction terms that prevent a
nice behavior of the Hamiltonian operators on Fock space are
eliminated.

Moreover, it is possible to remove, order by order in inverse
powers of ωk, all the asymptotic contribution to the interaction
terms in the Hamiltonians. For example, let us consider the scalar
perturbations. The MS Hamiltonian gets asymptotically
diagonalized with (Elizaga Navascués et al., 2019)

ωkgk � ifk⎡⎣1 − 1
2ω2

k

∑∞
n�0

( −i
2ωk

)n

cn⎤⎦. (121)

The functions cn are determined by the recursion relation

cn+1 � ~a {H0, cn} + 4s(s)⎡⎣cn−1 +∑n−3
l�0

clcn−(l+3)⎤⎦ −∑n−1
l�0

clcn−(l+1),

∀n≥ 0,
(122)

where c0 � s(s) + r(s)π~ϕ is just the background dependent mass
for the MS field. Creation and annihilationlike variables are then
asymptotically fixed, up to a phase, since from the canonical
commutation relations it generally follows that

2
∣∣∣∣ fk∣∣∣∣2 � −

∣∣∣∣hk|2
Im(hk), where hk � fk

gk
. (123)

Similar asymptotic characterizations to diagonalize the field
Hamiltonians can be obtained for the tensor perturbations and
for the Dirac field (Elizaga Navascués et al., 2019). Actually, in all
of these cases, the first few terms in the asymptotic expansion are
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enough to construct variables with well-defined Hamiltonians
(and finite backreaction contributions to the quantum
constraint).

On the other hand, the phases that still remain free in the
creation and annihilationlike variables can be determined
univocally by means of further physical considerations.
Specifically, it seems natural to demand that the
background dependence extracted from the dynamics of the
original perturbations by our choice of those phases is the
minimum allowed, and that the resulting asymptotically
diagonal Hamiltonians are positive, as functions of the
background.

Given that our analysis has been carried out asymptotically for
modes with large wavenumbers, the question arises of what
happens for other kinds of modes and, in particular, if the
asymptotic expansions provided by the Hamiltonian
diagonalization for large ωk can uniquely specify a choice of
creation and annihilationlike variables for all the modes. Let us
consider, e.g., the scalar perturbations. In fact, the interaction
terms in the Hamiltonian for each possible value of ωk are
completely eliminated if and only if

ω2
k + s(s) + r(s)π~ϕ + h2k − ~a{hk,H0} � 0. (124)

This is a semilinear partial differential equation for which the
complex solutions satisfy

Im(hk)2 � ω2
k + s(s) − Im(hk)″

2Im(hk) +
3
4
⎡⎢⎢⎢⎢⎢⎢⎣Im(hk)′
Im(hk)

⎤⎥⎥⎥⎥⎥⎥⎦
2

, (125)

where the prime stands for the operation of taking the Poisson
bracket ~a{,H0}. It is worth commenting that, in the linearized
context of QFT in curved spacetimes, our asymptotic
characterization above can be shown to lead in a unique way
to the Minkowski vacuum in the case of constant mass, and to the
Bunch-Davies vacuum when the homogeneous background is
taken as the de Sitter solution (Elizaga Navascués et al., 2019).
Thus, in these linearized contexts, the procedure of asymptotic
diagonalization is able to uniquely fix a solution to (Eq. 124) for
all wavenumbers, and this solution reproduces the natural choice
of vacuum state in the considered scenarios. Furthermore, the
corresponding asymptotic expansions for the fermionic creation
and annihilationlike variables that diagonalize the Hamiltonian
have been proven to determine as well a unique choice for all
scales in the linearized de Sitter context, even if it is known that
those expansions have zero radius of convergence in this case
(Elizaga Navascués et al., 2020).

In summary, the asymptotic diagonalization of the
Hamiltonian of the perturbations may provide a procedure to
determine a vacuum state, and therefore to fix initial conditions
for the primordial perturbations in such a way that they are
optimally adapted to the dynamics dictated by the Hamiltonian
constraint of the total system. Moreover, recent investigations
(Elizaga Navascués et al., 2020) support a close analytical relation
between the vacuum state that would be selected in this manner
and the NO vauum proposed by Martín-de Blas and Olmedo
(Martín de Blas and Olmedo, 2016), at least in the context of
hybrid LQC.

10 CONCLUSION

In this work, we have reviewed the hybrid approach to LQC. This
approach to the quantum description of gravitational systems
with local degrees of freedom within the framework of the loop
quantization program tries to provide, in a controlled way, a
formalism for the study of inhomogeneous cosmological
scenarios that, yet, display some symmetries that simplify the
physics, or in which the inhomogeneities can be described in a
perturbative way over a highly symmetric background. In this
way we have been able to analyze linearly polarized gravitational
waves in Gowdy cosmologies with toroidal compact sections, and
scalar, tensor, and fermionic perturbations at quadratic order in
the action around an FLRW spacetime in the presence of an
inflaton. In particular, for these cosmological perturbations and at
the considered truncation order, we have found a canonical set
for the full system composed of gauge invariant perturbations
(including the MS field), linear perturbative constraints and
gauge variables conjugate to them, and zero modes that
contain the relevant information about the background FLRW
cosmology. In a hybrid quantization of this canonical system,
physical states depend only on the quantum FLRW background
and on gauge invariant perturbations. Starting from the zero
mode of the Hamiltonian constraint, that couples these
perturbations with the FLRW background, and adopting a
suitable ansatz for the quantum states of interest, we have
been able to derive propagation equations for the
perturbations in the primeval stages of the Universe. These
equations differ slightly from those of GR by the inclusion of
quantum corrections, corrections that we have succeeded to
explicitly derive with our hybrid strategy taking fully into
account the quantum behavior of the FLRW substrate, and
therefore beyond the level of an effective description of this
background within homogeneous and isotropic LQC.

In order to quantize differently the system within the
framework of LQC, but still adhering to the idea of developing
a QFT for the perturbations on a quantum spacetime, one can
follow the so-called dressed metric approach, put forward in Refs.
(Ashtekar et al., 2009; Agullo et al., 2013; Agullo et al., 2013),
instead of the hybrid approach. Indeed, as in the hybrid proposal,
the dressed metric approach adopts also the philosophy of
combining a loop representation for the homogeneous sector
of the (truncated) phase space and a Fock representation for the
tensor and MS perturbations (and possible fermionic
perturbations, if they are present). Again, in the dressed
metric approach one also introduces an ansatz for the
quantum states of cosmological interest in which the
dependence on the homogeneous geometry and on the
perturbations factorizes. In this ansatz, all partial
wavefunctions are allowed to depend on the inflaton field ϕ.
However, in the dressed metric case there is no Hamiltonian
constraint that affects the perturbations, since the whole of the
truncated cosmology is not treated as a constrained symplectic
system. Instead, one has the Hamiltonian constraint of the
homogeneous FLRW model, and the Hamiltonian functions
(Eq. 67) and (Eq. 68) that, classically, generate the dynamics
of the perturbations. Consequently, the approach requires that
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the homogeneous part of the states be an exact solution of the
FLRW model in LQC, and then uses this solution to define the
quantum dynamics on the phase space of the gauge invariant
perturbations (Agullo et al., 2013; Agullo et al., 2013). In this way,
the perturbations behave as test fields that see a dressed metric
determined by certain expectation values of operators of the
homogeneous geometry, which incorporate the most relevant
quantum effects.

In spite of the similarities between the hybrid and the dressed
metric approaches, the effective equations that they provide for
the propagation of the gauge invariant perturbations are
somewhat different even if backreaction is neglected. The
discrepancy appears only in the term of the time dependent
mass in the propagation equations (Elizaga Navascués et al.,
2018). At the end of the day, this can be traced back to the
differences in the treatment of the phase space of the perturbed
FLRW cosmologies in the hybrid and the dressed metric
proposals. As we have emphasized, in the hybrid case the
whole phase space is treated as a symplectic manifold, and
accordingly it is described in terms of canonical variables. This
applies, in particular, to the expression deduced for the time
dependent mass. On the contrary, in the dressed metric
formalism, one evaluates the time dependent mass directly on
the FLRW metric dressed with quantum corrections. For states
such that this metric satisfies the effective dynamics of LQC, the
time derivatives involved in the corresponding expression of the
time dependent mass are then computed along an effective
trajectory of homogeneous and isotropic LQC. The difference
then arises because of the departure of the standard classical
relation between the time derivatives of the scale factor and its
canonical momentum (inherent to the hybrid approach) with
respect to the alternative effective relation in LQC (employed in
the dressed metric case) (Elizaga Navascués et al., 2018).
Remarkably, this difference is specially important around the
bounce, precisely the region where the quantum corrections on
the propagation of the perturbations are expected to be relevant.

Several other approaches have also been suggested for the
investigation of cosmological perturbations within LQC. For a
comprehensive summary of such approaches, we refer the reader
to the reviews listed in Refs. (Banerjee et al., 2012; Ashtekar and
Barrau, 2015; Rovelli and Vidotto, 2015; Alesci and Cianfrani,
2016; Gielen and Sindoni, 2016; Grain, 2016; Agullo and Singh,
2017; Wilson-Ewing, 2017). They include the deformed
constraint algebra approach (Bojowald et al., 2008; Bojowald
et al., 2011; Cailleteau et al., 2014; Barrau et al., 2015), the
group field theory models (Gerhardt et al., 2018; Gielen and
Oriti, 2018; Gielen, 2019), and the quantum reduced loop gravity
scheme (Alesci et al., 2018; Olmedo and Alesci, 2019).
Additionally, different ways of addressing backreaction effects
of the perturbations on the background within canonical
quantum cosmology have been recently explored using
techniques from space adiabatic perturbation theory (Schander
and Thiemann, 2020). Our attention here has been exclusively
put on the hybrid approach in order to fill a gap in the literature,
as this is the first extensive review of this proposal that includes
a detailed description of the application to primordial
perturbations.

A remarkable fact of the hybrid quantization is that, while
inhomogeneities and background degrees of freedom are treated
as parts of a single constrained system, the imposition of the quantum
constraints is consistent and does not give rise to anomalies. This
statement holds both in the Gowdy model and for cosmological
perturbations. The precise relation of these constraints with the full
set of four-dimensional spacetime diffeomorphisms is a different
issue that calls for more detailed investigations. As presented in Sec.
III, the Gowdy model is not only a symmetry reduction of Einstein
gravity, but it is also a partially gauge-fixed system in which only two
global constraints remain, namely the zero mode of the Hamiltonian
constraint and the zero mode of the momentum constraint in the
angular direction on which the metric fields depend5. It is worth
emphasizing that these are only two constraints, and not two
constraints per point (neither of the spatial section nor in the
considered angular direction). The aforementioned momentum
constraint generates rigid translations in the corresponding angle,
while theHamiltonian one generates global time reparameterizations.
These two constraints of themodel actually display vanishing Poisson
brackets between them and, with the adopted quantization, their
corresponding operators commute. For cosmological perturbations,
the constraint algebra has to be consistent just up to the order of the
perturbative truncation used in our treatment. We have shown that
the linear perturbative diffeomorphisms andHamiltonian constraints
admit an Abelianization at this truncation order, and we have
represented them directly as part as our canonical elementary
variables. The only remaining constraint in the system is a global
one, given by the zero mode of the Hamiltonian constraint, that
includes contributions from the background and from the
perturbations. Notably, its only dependence on the perturbations
is via gauge invariants, and therefore commutes with the linear
perturbative constraints both classically and in the quantum
theory. Indeed, we recall that in the hybrid quantization the
Mukhanov-Sasaki and tensor perturbations are represented as
operators that commute with the linear perturbative constraints.
In other words, at the level of our perturbative truncation and with
our hybrid strategy, the algebra of the quantum constraints of our
perturbed system does not present anomalies.

The physical relation of these constraints with the four-
dimensional diffeomorphisms algebra and the extent to which
recent claims about problems with general covariance in LQC
(Bojowald, 2020; Bojowald, 2020; Bojowald, 2020) affect the
system at the considered perturbative order deserve further
study. These claims have been inspired in part by the
deformed constraint algebra approach, which in particular
predicts processes of effective signature change in high
curvature regimes (Bojowald and Mielczarek, 2015; Barrau and
Grain, 2016; Schander et al., 2016). In this respect, let us point out,
for instance, that some of the perturbative canonical variables
used in the hybrid approach are defined with fields that are non-
local functions of the spatial metric, inasmuch as they can only be
obtained by taking inverse derivatives. This is a common situation

5For other alternative quantizations of the Gowdy model developed recently within
the framework of LQC, see e.g., Refs. (Bojowald and Brahma, 2015; Martín de Blas
et al., 2017).
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even in standard cosmological perturbation theory (Bardeen, 1980;
Sasaki, 1983; Kodama and Sasaki, 1984; Mukhanov, 1988; Langlois,
1994; Mukhanov, 2005). Moreover, in terms of the background
variables employed in our formulation, the metric functions
include corrections that are quadratic in the perturbations
already at the studied truncation order. A representation of
these metric components as quantum operators has yet to be
constructed, but it is clear that now issues such as the non-
degenerate Lorentzian character of the metric become intrincate
questions from a quantum perspective. Even the square scale
factor, that in absence of pertubations is strictly positive in each
superselection sector of homogeneous LQC with the quantization
prescription adopted here6, might in principle turn negative by the
effect of the perturbations. Nonetheless, none of these unexplored
questions on the quantum geometric structure changes the
hyperbolic ultraviolet behavior that we have found for the
propagation equations of the perturbative modes.

Even if we have succeeded in deriving such mode equations,
that rule the evolution of the primordial perturbations in the
hybrid approach, we have seen that this is not yet enough to
extract predictions that can be confronted with observations. For
this purpose, we also need two types of initial data, namely initial
values to fix the FLRW background and conditions to choose a
unique vacuum state for the perturbations. With respect to the
FLRW cosmology, we have seen that it suffices to provide, e.g., the
value of the inflaton at the bounce, apart from the parameters that
determine the inflaton potential. In the case of a quadratic
potential, we have found values for the inflaton on the bounce
section and for the inflaton mass such that the modes affected by
quantum geometry effects are those that are re-entering the
Hubble horizon nowadays, situation that is the most
interesting possibility in terms of observational plausibility in
the CMB. Concerning the vacuum state of the perturbations, we
have commented on various proposals to select it that lead to
power spectra that seem compatible with the observational data.

To go beyond those proposals and find a criterion to select the
vacuum that is rooted on the hybrid strategy, that combines loop
and Fock representations, we have put an additional emphasis on
the choice of splitting between the homogeneous and isotropic
sector of phase space and the gauge invariant perturbations. This

freedom can be employed to reach a Hamiltonian constraint with
nice properties, at least as far as its action on the perturbations is
concerned. Requiring such good physical and mathematical
properties turns out to restrict the possible quantum dynamics
of the perturbative gauge invariants, as well as the Fock
representation chosen for them. In turn, this can be regarded
as a limitation in the admissible choices of vacuum state. In
particular, we have shown that a criterion such as the
diagonalization of the Hamiltonian of the gauge invariant
perturbations, based on its asymptotic structure, might be able
to provide a unique vacuum state, to which one may partcularize
in the future the discussion of the effects of quantum geometry in
cosmology to extract concrete and distinctive predictions.
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Cosmic TangoBetween the Very Small
and the Very Large: Addressing CMB
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Cosmology
Abhay Ashtekar1*, Brajesh Gupt1,2 and V. Sreenath3

1Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park,
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While the standard, six-parameter, spatially flat ΛCDM model has been highly successful,
certain anomalies in the cosmic microwave background bring out a tension between this
model and observations. The statistical significance of any one anomaly is small. However,
taken together, the presence of two or more of them imply that according to standard
inflationary theories we live in quite an exceptional Universe. We revisit the analysis of the
PLANCK collaboration using loop quantum cosmology, where an unforeseen interplay
between the ultraviolet and the infrared makes the primordial power spectrum scale
dependent at very small k. Consequently, we are led to a somewhat different ΛCDM
Universe in which anomalies associated with large scale power suppression and the
lensing amplitude are both alleviated. The analysis also leads to new predictions for future
observations. This article is addressed both to cosmology and loop quantum gravity
communities, and we have attempted to make it self-contained.

Keywords: CMB, anomalies, loop quantum cosmology (LQC), big bounce, UV-IR interplay

1 INTRODUCTION

The quantum geometry effects underlying loop quantum gravity (LQG) lead to a natural resolution
of the big bang singularity [see, e.g. Ashtekar and Singh (2004), Agullo and Singh (2017), for reviews].
Therefore, one can hope to meaningfully extend the standard inflationary paradigm to the Planck
regime. Over the past decade, several closely related approaches have been used to carry out this task,
leading to a striking interplay between theory and observations [see, in particular Agullo et al. (2012),
Agullo et al. (2013a), Agullo et al. (2013b), Fernandez-Mendez et al. (2012), Barrau et al. (2014),
Linsefors et al. (2013), Ashtekar and Barrau (2015), Agullo and Morris (2015), Agullo (2015),
Ashtekar and Gupt (2017a), Ashtekar and Gupt (2017b), Gomar et al. (2017), Agullo et al. (2018),
Barrau et al. (2018), Agullo et al. (2020a), Agullo et al. (2020b), Sreenath et al. (2019), Agullo et al.
(2021a), Agullo et al. (2021b)]. In this article we will focus on the recent results that shed new light on
the anomalous features seen in the cosmic microwave background (CMB). Specifically, we will show
that in our approach two of the anomalies seen in the CMB can be accounted for using the pre-
inflationary dynamics of loop quantum cosmology (LQC). This phase of dynamics alters the
quantum state of cosmological perturbations at the onset of the (relevant part of the) slow roll,
leading to revised values of the six parameters that characterize the ΛCDM Universe. The revision
alleviates the tension due to two anomalies that have received considerable attention, while leaving
the successes of standard inflation intact. Main results were reported in Ashtekar et al. (2020). The

Edited by:
Guillermo A. Mena Marugán,

Instituto de Estructura de la Materia
(IEM), Spain

Reviewed by:
Jorge Pullin,

Louisiana State University,
United States

Mercedes Martin-Benito,
Complutense University of Madrid,

Spain
Jerónimo Cortez,

Universidad Nacional Autónoma de
México, Mexico

*Correspondence:
Abhay Ashtekar

ashtekar.gravity@gmail.com

Specialty section:
This article was submitted

to Cosmology,
a section of the journal

Frontiers in Astronomy and Space
Sciences

Received: 24 March 2021
Accepted: 28 April 2021
Published: 04 June 2021

Citation:
Ashtekar A, Gupt B and Sreenath V
(2021) Cosmic Tango Between the

Very Small and the Very Large:
Addressing CMB Anomalies Through

Loop Quantum Cosmology.
Front. Astron. Space Sci. 8:685288.

doi: 10.3389/fspas.2021.685288

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 6852881

ORIGINAL RESEARCH
published: 04 June 2021

doi: 10.3389/fspas.2021.685288

65

http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2021.685288&domain=pdf&date_stamp=2021-06-04
https://www.frontiersin.org/articles/10.3389/fspas.2021.685288/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.685288/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.685288/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.685288/full
http://creativecommons.org/licenses/by/4.0/
mailto:ashtekar.gravity@gmail.com
https://doi.org/10.3389/fspas.2021.685288
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2021.685288


purpose of this paper is to provide details and also present some
supplementary material to put the results in a broader context.
These results illustrate that LQC has matured sufficiently to lead
to testable predictions.

The paper is addressed both to the LQG community and
cosmologists. For the benefit of the LQG community, that
primarily focuses on mathematical physics, we have included a
discussion of the interplay between theory and observations that
leads to the six parameter ΛCDM cosmological model. We will
summarize the underlying procedure and point out certain
subtleties in data analysis. For cosmologists, we will
summarize the key features of LQC that lead to new
observable predictions. Specifically we will explain how the
quantum geometry effects in the ultraviolet, that lead to the
singularity resolution, have unforeseen and interesting
consequences on the dynamics of cosmological perturbations
in the infrared. It is this ‘cosmic tango’ between the very small and
the very large that alleviates anomalies. Overall, in terms of
conceptual flow, we have attempted to make this paper self-
contained. In particular, within the page limits of this special
issue, we clarify apparently conflicting statements in the LQC
literature. In order to make the material accessible to both
communities, we will have to briefly review ideas and results
that are likely to be well-known in one community but not
the other.

The two anomalies we focus on arise as follows. Motivated
in large part by inflationary scenarios, the CMB analysis
generally begins by assuming that the primordial scalar
power spectrum has a nearly scale invariant form,
characterized by just two parameters, the scalar
perturbation amplitude As and the scalar spectral index ns.
We will refer to this form as the standard ansatz (SA). As, ns
and 4 other parameters (discussed in Section 2.1) characterize
a specific ΛCDMUniverse. Given these six parameters one can
evolve the primordial perturbations using known astrophysics
and predict the observable power spectra. By varying the values
of the 6 parameters, and confronting the theoretical prediction
with observations, one finds the posterior probability
distributions of the six cosmological parameters. By and
large the CMB observations can be well explained using the
ΛCDM Universe determined by the marginalized mean values
of these parameters. However, one also finds some anomalous
features. The first is power suppression at large angular scales:
the observed power in the temperature-temperature (TT)
spectrum is suppressed for ℓ(30 in the spherical harmonic
decomposition, relative to what the theory predicts. The
second anomaly we focus on is associated with the so-called
lensing amplitude, AL, associated with gravitational lensing
that the CMB photons experience as they propagate from the
surface of last scattering to us. The ΛCDM cosmology based on
the SA assumes AL � 1 while, when it is allowed to vary, AL

prefers a value larger than unity. This tension hints at an
internal inconsistency. To alleviate it, one can introduce a
positive spatial curvature (Handley, 2019) but then there are
inconsistencies with the low z measurements, prompting a
recent suggestion (Di Valentino et al., 2019) that this anomaly
gives rise to a “possible crisis in cosmology.”

As we will see, both the anomalies are simultaneously
alleviated in our approach. The key new element is the
following: Pre-inflationary dynamics of LQC leads to a
primordial power spectrum that differs from the SA, but only
at large angular scales. While it continues to be nearly scale
invariant–and essentially indistinguishable from the one given by
the SA–for ℓa30, there is a specific power suppression for ℓ(30.
As a result, the best-fit values of the six cosmological parameters
change. Interestingly, the change in 5 of the 6 parameters is
extremely small, (0.4%. But the value of the 6th parameter–the
optical depth τ–is increased by ∼ 9.8%! We will see that this
change then leads to the alleviation of the tension between
observations and theoretical predictions based on the SA. Note
that in spite of this significant change in the value of τ, LQC leaves
the highly successful predictions of standard inflation at small
angular scales unaffected. In particular, all the finer features of
various power spectra predicted by standard inflation for
ℓ > 30—where the observational error bars are small–are
present also in the LQC prediction. Thus the LQC analysis
provides an explicit example supporting a conclusion of
Chowdhury et al. (2019) that trans-Planckian effects are not a
“threat to inflation”.

The paper is organized as follows. Section 2 summarizes the
procedure used in observational cosmology to arrive at the 6
parameter ΛCDM model and explains the two anomalies and
their significance in greater detail. Section 3 summarizes the basic
results from LQC that are used in the subsequent analysis. In
particular, we explain the origin of the surprising interplay
between the ultraviolet and the infrared that is a rather robust
feature of the LQC approaches. The main results are presented in
Section 4. They include a discussion of: 1) the LQC corrected
primordial power spectrum for scalar perturbations; 2) the TT,
temperature-electric polarization (TE), the electric polarization
(EE), and the lensing potential (ϕϕ) power spectra we predict, and
comparisons with those obtained using the SA as well as with the
observed power spectra reported by the PLANCK team in their
final analysis (Aghanim et al., 2020b). As usual these power
spectra are presented in terms of the spherical harmonic
components Cℓ of the respective correlation functions; 3) the
TT correlation function C(θ) predicted by LQC and its
comparison with the prediction of the SA as well as PLANCK
observations; 4) the AL vs. τ plots that show that the observed
values fall in the 1σ contour in LQC, but not if one uses the SA;
and, 5) the power spectrum for BB polarization predicted by LQC
and its comparison with that predicted by the SA. The detailed
calculations underlying these plots were performed using the
Starobinsky and quadratic potentials. The first is preferred
phenomenologically while the second has been used often
because of its simplicity. Close agreement between the two sets
of results is an indication of robustness of the LQC results. In
Section 5 we summarize the main results and put them in a
broader context.

So far the discrepancy between the results of the SHOES team
(Riess et al., 2019) and CMB measurements (Adam et al., 2020)
associated with the value of the Hubble parameter has not been
systematically addressed in LQC. This is in large part because it is
not yet clear whether there is a definitive tension, or if the

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 6852882

Ashtekar et al. LQC Alleviates CMB Anomalies

66

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


discrepancy is primarily due to systematic calibration offsets
(Efstathiou, 2020). Observations may decide on this issue in
the near future.

2 THEORETICAL PREDICTIONS AND
PLANCK OBSERVATIONS

This section is addressed primarily to the LQG community. In
Section 2.1 we summarize the procedure used by the PLANCK
team to arrive at the six parameter ΛCDM model and in Section
2.2 we explain the power suppression and the lensing amplitude
anomalies in a bit more detail.

2.1 The 6 Parameter ΛCDM Model
The six parameters that characterize the ΛCDM Universe can be
neatly divided in three groups. The first two parameters–the
amplitudeAs and the spectral index ns for scalar modes–feature in
the SA for the primordial power spectrum:

PR(k) � As ( k
k+

)ns− 1

(2.1)

Here k is the wave number in the Fourier decomposition and
k+ is a pivot scale (set to k+ � 0.002Mpc− 1 in the WMAP
analysis and k+ � 0.05 Mpc− 1 in the PLANCK analysis). If we
had ns � 1, the primordial spectrum would be scale invariant,
i.e., it would be independent of the wave number k of the
cosmological perturbation. If ns is less than 1 (as observations
imply) then there is more power at small k, i.e., the power
spectrum has a red tilt (One can also consider the possibility
of a running ns, where it has a k dependence but we will not need
this generality.) The second set of parameters, the baryonic and
cold matter densities Ωbh2 and Ωch2, are important for the
propagation of cosmological perturbations starting from the
end of inflation. The last group of parameters are 100θMC , that
characterizes the angular scale of acoustic oscillations, and the
optical depth τ that characterizes the reionization epoch. These
two parameters govern the propagation of perturbations from the
last scattering surface to now. Thus, given these six parameters
one can use the known astrophysics to propagate the
cosmological perturbations starting from the end of inflation,
providing us with the theoretical predictions for power spectra we
should observe now.

More precisely, for each choice of the six parameters, one can
calculate 4 correlation functions CTT

ℓ
, CTE

ℓ
, CEE

ℓ
, Cϕϕ

ℓ
that are the

spherical harmonic decompositions of the corresponding
correlation function CXY(θ) (where θ characterizes the angular
separation of two points in the sky). These correlation functions
can be measured and compared with the theoretical predictions,
expressed as functions of the six parameters. The statistical
analysis, usually done by employing Markov-Chain Monte
Carlo method, then leads to the posterior probability
distribution for the six parameters. In particular, the
maximum likelihood value of the marginalized probability
distributions yield the values of six parameters that determine
a ΛCDM Universe. Observations of the PLANCK collaboration

provide these values (together with the corresponding 1-sigma
spreads); this is the “Universe according to PLANCK” (within the
68% confidence level, characterized by the 1σ contours).

Once these parameters are determined, one can calculate
additional observable quantities assuming that model and, by
carrying out measurements, one can subject the model to
consistency tests. For example, the lensing amplitude AL is set
to unity in this construction. One can let this parameter vary and
test if this value is consistent with observations. Another type of
test is provided by the (odd parity) B-modes. In any one model,
one can calculate the correlation function CBB

ℓ
. As we discuss in

Section 5, several observational missions will soon measure this
correlation function with accuracy that may be sufficient to
distinguish one model from another (Matsumura et al., 2014;
Delabrouille et al., 2018; Hanany et al., 2019). Similarly, the
reionization depth τ will be measured by missions that are
unrelated to the CMB (Fialkov and Loeb, 2016). They will
constrain τ, providing us with independent checks on the
current ΛCDM model.

2.2 Anomalies
As Figure 1 shows, the TT power spectrum is in excellent
agreement with the theoretical predictions using the SA at
small angular scales (ℓ > 50). This is especially noteworthy
because the instrumental errors are truly minuscule in this range.

However, for ℓ(30 the observed power is lower than the
theoretical prediction. This power suppression was evident
already in the WMAP data, and is reenforced by the PLANCK
findings. Over the years it has been argued (Spergel et al., 2003;
Sarkar et al., 2011; Akrami et al., 2019; Schwarz et al., 2016) that
this anomaly is brought to forefront if one carries out the
comparison using the quantity S1/2 :� ∫1/2

−1 [C(θ)]2d(cosθ) that
features the physical space TT correlation function C(θ) in place
of the spherical harmonic coefficients Cℓ . Qualitatively, large
angular scales correspond to small ℓ in the spherical harmonic
decomposition. However, for any given θo the value C(θo)

FIGURE 1 | The TT-power spectrum. The (red) continuous curve is the
theoretical prediction from standard ansatz while the (black) dots with error
bars represent the measurements of the PLANCK team reported in 2018.
There is excellent agreement between theory and observations for ℓ >50
but the observed power is suppressed relative to the theoretical prediction for
ℓ(30. As usual, the horizontal axis uses a logarithmic scale for ℓ(50 but a
linear scale for ℓa50.
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receives contributions from all ℓ. Therefore S1/2 is a more direct
measure of the cumulative power for θ ≥ 60° than the Cℓ ’s for low
ℓs. Indeed, as the left panel in Figure 2 vividly shows, the
observed C(θ) (the black, dotted curve) is very close to zero
for θ > 60°, in contrast to the theoretical (solid, red) curve. The
observed value of S1/2 is ∼ 1209, while the theoretical prediction
from the SA is 42, 496.5, some 35 times larger. Since the extent of
this discrepancy is not immediate from Figure 1, one may
wonder why the power spectrum is not reported using CTT(θ)
in place of CTT

ℓ
. The reason is that the CTT

ℓ
for distinct ℓs are

(almost) uncorrelated and can therefore be treated as
independent observables, while CTT(θ) for distinct θ have
massive cross-covariance, whence the statistical significance of
power suppression is only 2 − 3σ in spite of the large deviation
seen in the left panel of Figure 2. Also, because of these
correlations, to obtain the 1 and 2σ contours in this plot one
has to take into account a large covariance matrix which in turn
requires a detailed understanding of the instruments and the
masking procedure near θ � 180° used in the data analysis to
remove the contamination coming from the galactic plane.

The second anomaly is associated with the lensing amplitude AL

depicted in the right panel of Figure 2. As it propagates from the last
scattering surface at z ≈ 1100 to us, the CMB is lensed due to
inhomogeneities. The lensing potential is nearly Gaussian because
there are many lenses along the line of sight. As explained in Section
2.1, the six parameterΛCDMUniverse is determined using best fits to
all four power spectra. Once this is done, one can compare each
observed power spectrum, one by one, with the theoretically predicted
power spectrum for that specific ΛCDM Universe. Just as this
comparison revealed an anomalous suppression of power in CTT

ℓ

for ℓ < 30, one finds an anomaly also in the lensing potential power
spectrumCϕϕ

ℓ
: Relative to the prediction of the best-fitΛCDMmodel,

there is power enhancement in the range 8≤ ℓ ≤ 400 used by the
PLANCK collaboration to report the baseline cosmological results
(Adam et al., 2020) (In this range, the reconstruction procedure is
robust and the impact of systematics is reduced). As a consistency
check on the 6-parameter ΛCDM model, one introduces a 7th

phenomenological parameter AL—the lensing amplitude,
normalized so that AL � 1 in the 6 parameter ΛCDM model–and
allows it to vary. Varying AL can be considered as a conservative way
ofmarginalizing over the systematics of the PLANCKdata. Departure
of AL from unity signals a tension with predictions based on the
standard 6-parameter ΛCDM. One finds that AL is higher than 1 at
∼ 1.9σ level (Adam et al., 2020). This is the lensing amplitude
anomaly and its occurrence has been interpreted as a hint of new
physics (Di Valentino and Bridle, 2018). The right panel of Figure 2
illustrates this tension. Here AL is plotted against the optical depth τ
because this plot will be useful when we compare the results from
LQCwith those from the SA in Section 4: Of the six parameters, only
τ receives significant corrections from LQC. τ is singled out even
within the SA by the fact that the relative error (as measured by the
ratio of the standard deviation to themean value) in τ is ∼ 13% while
that in the other fiveΛCDM parameters are less than 1%. In the plot,
the tension is manifested in the fact that the line AL � 1 lies outside
the 1σ contour. Attempts to alleviate this tension within the standard
paradigm based on general relativity (GR)—e.g. changing the
background geometry by introducing spatial curvature–are not
supported by lensing reconstruction or Baryonic oscillations
(BAO) data (since the joint constraint with BAO is consistent with
flat Universe, with ΩK � 0.001 ± 0.002).

As noted in the introduction, while the statistical significance
of either of these anomalies is low, together the two imply that the
observed Universe will emerge only once in ∼ 106 realizations of
the posterior probability distributions. Therefore, as the
PLANCK collaboration suggested both in its 2015 and 2018
data releases, alleviation of this tension is of considerable
interest especially if the mechanism is rooted in physics
beyond GR (Ade et al., 2016; Aghanim et al., 2020a).

3 LOOP QUANTUM COSMOLOGY

This section is addressed primarily to the cosmology community.
In Section 3.1 we briefly recall how quantum geometry effects

FIGURE 2 | Left Panel: Large scale power anomaly as measured by C(θ). The (red) continuous curve is the theoretical prediction from the SA with 68 and 95%
confidence level contours arising from cosmic variance, while the (black) dots represent the 2018 PLANCK teammeasurements. The SA prediction for S1/2 is more than
35 times the observed value. Right Panel: Lensing amplitude AL vs. optical depth τ AL � 1 lies outside the 1 σ contour, signaling the tension between theory and
observations.
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underlying LQG lead to a resolution of the big bang singularity,
replacing it with a big bounce. Since physical quantities do not
diverge anywhere, one can extend the standard inflationary
scenario all the way to the bounce. In Section 3.2, we discuss
the pre-inflationary dynamics of cosmological perturbations,
specifically the propagation of quantum fields representing
these perturbations on the quantum background geometry
provided by LQC. In Section 3.3, we explain why, contrary to
one’s initial expectations, this pre-inflationary dynamics can leave
observable signatures at large scales in the CMB. We will use this
framework in Section 4 to extract the LQC corrections to the
primordial power spectrum. As mentioned in Section 1, together
with observations, these corrections imply that we live in a
somewhat different ΛCDM Universe in which the two
anomalies are naturally alleviated.

3.1 The Big Bounce of LQC
Investigations of the early Universe are often carried out
assuming that spacetime is well approximated by a spatially
flat FLRW background metric of GR, together with first order
cosmological perturbations that are described by quantum fields.
Consider the inflationary paradigm and, for brevity, let us refer to
the time when the pivot mode k � k+ exits the Hubble horizon
simply as ‘the onset of inflation’. At this onset, while spacetime
curvature is huge by astrophysical standards–some 1065 times
that at the horizon of a solar mass black hole–it is only ∼ 10− 12
times the Planck scale. Therefore, at the level of accuracy of
current interest, it is safe to ignore the quantum gravity effects
even at the onset of inflation. Since spacetime geometry is well
approximated by a (perturbed) de Sitter metric at this time, one
assumes that the quantum fields representing cosmological
perturbations are in the Bunch–Davies (BD) vacuum that is
selected by the isometries of the de Sitter metric and evolves
the perturbations to the future (as curvature decreases further).

However, conceptually it is rather ad-hoc to begin, so to say,
‘in the middle’ of evolution. If we go further back in the past,
curvature attains the Planck scale, and then diverges at the big
bang. During this pre-inflationary epoch, spacetime geometry is
not at all well-approximated by the de Sitter geometry. Why,
then, can we assume the state to be the BD at the onset of
inflation? Should we not start in the deep Planck regime and
check whether the state is in fact in the BD vacuum at this onset?
This would require quantum cosmology, where the Friedmann,
Lemâıtre, Robertson, Walker (FLRW) solution of Einstein’s
equations, characterized by the scale factor a(t) and a matter
field ϕ(t), is replaced by a quantum state Ψ(a, ϕ) subject to an
appropriate quantum version of Einstein-matter field equations.
Note that reference to the proper time t has
disappeared–quantum dynamics is relational, à la Leibnitz: for
example, one can use the matter field ϕ as an internal clock, and
describe how the scale factor evolves with respect to it. Quantum
fields representing cosmological perturbations are now to
propagate on a quantum FLRW geometry Ψ(a, ϕ) which
assigns probability amplitudes to various metrics, rather than
on a single FLRW spacetime.

While this general viewpoint is common to all quantum
cosmologies, LQC has two key features that distinguish it

from the older Wheeler–DeWitt (WDW) theory, often called
quantum geometrodynamics. First, as explained below, the
mathematical framework of LQC descends from the well-
developed kinematics of LQG, using a symmetry reduction
tailored to homogeneity and isotropy. In the WDW theory
one is yet to develop rigorous kinematics for full quantum
geometrodynamics; because issues related to the presence of
an infinite number of degrees of freedom are generally
ignored, the underlying mathematical framework has remained
formal. In quantum cosmology, then, one introduces structures
like the WDW equation without guidance from a more complete
framework. This leads to the second key difference. The LQC
quantum Einstein’s equation is qualitatively different from the
WDW equation, in that it mirrors features of the quantum
Riemannian geometry of full LQG. As a direct result, strong
cosmological singularities–and in particular the big bang–are
naturally resolved in LQG (Singh, 2009; Ashtekar and Singh,
2011; Agullo and Singh, 2017).

We will now explain these differences in some detail. As is
common in quantum field theories, in full LQG one begins with
the Heisenberg algebra A of basic (‘canonically conjugate’)
observables, called the holonomy-flux algebra (Ashtekar and
Isham, 1992; Ashtekar and Lewandowski, 2004; Giesel, 2017).
We then have a highly non-trivial result that ensures that A
admits a unique representation by operators of a Hilbert spaceH
that respects the ‘background independence’ or ‘diffeomorphism
covariance’ of the theory (Lewandowski et al., 2006; Fleishchack,
2009). This representation underlies the rigorous kinematical
framework of LQG. In particular, one finds that geometrical
observables are well-defined self-adjoint operators with discrete
eigenvalues. Of particular interest is the area gap–the first non-
zero eigenvalue Δ of the area operator. It is a fundamental
microscopic parameter of the theory that then governs
important macroscopic phenomena in LQC that lead, e.g., to
finite upper bounds for curvature.1 In LQC, one first reduces the
holonomy-flux algebraA used in full LQG to a smaller symmetry
reduced algebra Ared. Again there is a uniqueness theorem that
guarantees that Ared admits a unique representation on a Hilbert
space HLQC that respects the action of the (residual)
diffeomorphism group on Ared (Ashtekar and Campiglia,
2012; Engle et al., 2017). This representation is qualitatively
different (i.e. unitarily inequivalent) from the Schrödinger
representation used in the WDW theory. In particular, the
differential operator representing the gravitational part in the
WDW equation is not even defined on HLQC; it is naturally
replaced by a certain difference operator that explicitly involves
the area gap Δ (Ashtekar et al., 2006a; Ashtekar et al., 2006b;
Ashtekar and Singh, 2011). One can now start with a quantum
state Ψ(a, ϕ) that is peaked on the classical dynamical trajectory
at a suitably late time when curvature is low, and evolve it back in
time toward the big bang using either the WDW equation or the
LQC evolution equation. Interestingly the wave function

1This is because the curvature operator is defined by considering ‘Aharanov-Bohm
fluxes’ across small surfaces S and then shrinking the surface till it has the
minimum area Δ.
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continues to remain sharply peaked in both cases. In the WDW
theory it follows the classical trajectory all the way into the
singularity, while in LQC it ceases to follow the classical
trajectory once the curvature is about ∼ 10− 4 times the Planck
curvature. Then the quantum geometry corrections dominate
and the wave function Ψ(ϕ, a) bounces when the curvature and
matter density attain their upper bounds. In this backward
evolution, curvature starts decreasing after the bounce and the
Universe expands. Once the curvature falls below ∼ 10− 4 times
the Planck curvature, the wave function again follows a classical
trajectory which is now expanding in the past direction [For
details, see Ashtekar et al. (2006b), Ashtekar et al. (2008),
Ashtekar and Singh (2011), Agullo and Singh (2017)].

Thus, key differences between LQC and the WDW theory
arise from the fact that the WDW theory has no knowledge of the
quantum nature of Riemannian geometry that LQC inherits from
LQG. Indeed, there is a precise sense in which the LQC evolution
equation reduces to theWDWdifferential equation in the limit in
which the area gap goes to zero (Ashtekar et al., 2008). The upper
bound of curvature in LQC is given by
curvmax � [3(24π2)/(2Δ3)] ℓ4Pl x62ℓ−2Pl , where, in the last step,
we have used the numerical value ~Δx5.17ℓ2Pl of the area gap. In
any LQC solution Ψlqc(a, ϕ), the curvature attains its maximum
value at the bounce and this value is extremely well approximated
by curvmax if the state is sharply peaked. Note that the upper
bound diverges as Δ→ 0, in line with the finding that curvature
grows unboundedly as one evolves the WDW state Ψwdw(a, ϕ) to
the past. By contrast, in LQC, while the quantum geometry effects
are negligible away from the Planck regime, they become
dominant in the Planck regime, creating an effective repulsive
force of quantum origin that causes the Universe to bounce.

It is interesting that this force rises and falls extremely rapidly,
making the agreement with GR excellent outside the Planck
regime. However, it has a very non-trivial global effect, in that
physics does not stop at the big bang as in GR. Rather, there is an
expanding FLRW Universe to the future of the bounce and a
contracting FLRW Universe to the past, joined by a ‘quantum
bridge’. These qualitatively new features arise without having to
introduce matter that violates any of the standard energy
conditions, and without having to introduce new boundary
conditions, such as the Hartle-Hawking ‘no-boundary
proposal’; they are consequences just of the quantum corrected
Einstein’s equations. Thus, the existence of the bounce and the
upper bound on curvature and matter density can be directly
traced back to quintessential features of quantum geometry.
These considerations have been extended beyond the spatially
flat FLRW models to include spatial curvature, non-zero
cosmological constant, anisotropies [see, e.g. Ashtekar and
Singh (2011), Agullo and Singh (2017), and references therein]
as well as the simplest inhomogeneities captured by the Gowdy
models in GR, and also to the Brans-Dicke theory [see, e.g. Zhang
et al. (2013), Elizaga Navascués et al. (2015)]. Taken together,
these results bring out the robustness of the LQC bounce.

Since the area gap plays an important role in the LQC
dynamics, before concluding this subsection, we will make a
small detour to explain how its numerical value ~Δx5.17ℓ2Pl is
arrived at. Recall, first, that in QCD there is a quantization

ambiguity–parametrized by an angle θ–because of the freedom
in adding a topological term to the action. One encounters a
similar quantization ambiguity in LQG (again associated with the
freedom to add a term to the action that does not affect equations
of motion), encoded in the so-called Barbero–Immirzi parameter,
c> 0, which trickles down to the expressions of observables onH,
such as the area operator ÂS. The eigenvalues of ÂS are discrete in
all γ-sectors. But their numerical values are proportional to γ and
vary from one γ sector to another. Observables also have a θ
dependence in QCD and the value of θ that Nature has selected is
determined experimentally. In LQG, a direct measurement of
eigenvalues of geometric operators would determine γ. But of
course such a measurement is far beyond the current
technological limits. However one can use thought
experiments. Specifically, in LQG the number of microstates of
a black hole horizon grows exponentially with the area, whence
one knows that the entropy is proportional to the horizon area
(Ashtekar et al., 1998; Ashtekar et al., 2000). But the
proportionality factor depends on the value of γ. Therefore if
one requires that the leading term in the statistical mechanical
entropy of a spherical black hole should be given by the
Bekenstein–Hawking formula S � A/4ℓ2Pl, one determines γ
and thus the LQG sector Nature prefers. In this sector the
explicit value of the area gap yields �Δx5.17ℓ2Pl (Domagala and
Lewandowski, 2004; Meissner, 2004; Barbero and Perez, 2017;
Perez, 2017) (and the leading term in the entropy of more general
black holes–not necessarily spherical–agrees with the
Bekenstein–Hawking formula). This is the value used in LQC
calculations.2

This concludes our broad-brush overview of how quantum
geometry considerations lead to a natural resolution of the big
bang singularity in LQC. The resolution has been analyzed in
detail in a large number of LQC papers, using Hamiltonian,
cosmological-spinfoam and ‘consistent histories’ frameworks
[see, e.g. Ashtekar et al. (2006b), Ashtekar et al. (2009a),
Ashtekar et al. (2010), Ashtekar and Singh (2011), Craig and
Singh (2013), Agullo and Singh (2017)].

Remark: Recently some concerns have been expressed about
the simplicity of the LQC description of the early Universe, and
on whether “general physics principles of effective field theory
and covariance” have been appropriately incorporated (Bojowald,
2020). Many of the specific technical points were already
addressed, e.g., in Ashtekar and Singh (2011), Corichi and
Singh (2008), Kaminski and Pawlowski (2010) and in the
Appendix of Ashtekar (2009). In addition, we would like to
clarify possible confusion on the following points. First,
although ‘effective equations’ are often used in LQC,
conceptually they are on a very different footing from those
used in effective field theories: One does not integrate out the UV

2There are two closely related but technically different ways of characterizing the
quantum states of an isolated horizon representing a black hole in equilibrium
(Barbero and Perez, 2017). They lead to slightly different values of the
Barbero–Immirzi parameter (0.237 and 0.274) and hence of the area gap
(5.17ℓ2Pl and 5.98ℓ2Pl). Because the values are very close, our results are not
sensitive to these differences. See Section 4.3.
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modes of cosmological perturbations. The term ‘effective’ is used
in a different sense in LQC: these equations carry some of the
leading-order information contained in sharply peaked quantum
FLRW geometries Ψ(a, ϕ). As we will see in Section 3.2,
equations satisfied by the cosmological perturbations are
indeed covariant. On the issue of simplicity of the LQC
description, we note that in the 1980s it was often assumed
that the early Universe is irregular at all scales and therefore quite
far from being as simple as is currently assumed at the onset of
inflation. Yet now observations support the premise that the early
Universe is exceedingly simple in that it is well modeled by a
FLRW spacetime with first order cosmological perturbations
(Chowdhury et al., 2019). Therefore, although a priori one can
envisage very complicated quantum geometries, it is far from
being clear that they are in fact realized in the Planck regime.
Nonetheless, one should keep in mind that, as in other
approaches to quantum cosmology, in LQC the starting point
is the symmetry reduced, cosmological sector of GR. Difference
from the Wheeler-DeWitt theory is that one follows the same
systematic procedure in this sector as one does in full LQG. But
the much more difficult and fundamental issue of systematically
deriving LQC from full LQG is still open mainly because
dynamics of full LQG itself is still a subject of active
investigation. See, e.g., Assanioussi et al. (2018), Olmedo and
Alesci (2019) as illustrations of the current status.

3.2 Cosmological Perturbations in the
Pre-inflationary Era of LQC
In inflationary paradigms the Mukhanov–Sasaki scalar modes3 of
cosmological perturbations are represented by quantum fields Q̂
that propagate on a background FLRW metric gab. The use of a
classical background geometry is justified since, as explained
above, spacetime curvature is twelve orders of magnitude
below the Planck scale even at the onset of inflation. However,
to extend the paradigm all the way to the LQC bounce, one has to
replace the metric gab of GR with an LQC wave function Ψ(a, ϕ)
because assumptions underlying quantum field theory (QFT) on
curved spacetimes fail in the Planck regime. At first the task seems
daunting: How do you evolve quantum fields when you have only
a probability distribution Ψ(a, ϕ) for various spacetime
geometries rather than a single metric gab? Fortunately, there
is an unexpected simplification (Ashtekar et al., 2009b; Agullo
et al., 2012; Agullo et al., 2013b): So long as Ψ(a, ϕ) is sharply
peaked, and the back reaction of the perturbations Q̂ on the
background quantum geometry Ψ remains negligible, dynamics
of quantum fields Q̂ onΨ is extremely well-approximated by that
of quantum fields Q̂ propagating on a smooth, quantum
corrected FLRW metric ~gab which is constructed in a precise
manner from Ψ. As one would expect, coefficients of ~gab depend
on Z. In the literature, ~gab is often called the dressed metric. It is

‘dressed’ by certain quantum fluctuations in Ψ(a, ϕ) specified
below; it carries the information in the quantum geometry
Ψ(a, ϕ) that the propagation of cosmological perturbations is
sensitive to.

The construction of the dressed metric ~gab can be summarized
as follows. Recall first that in the standard inflationary scenario,
the Mukhanov-Sasaki quantum field Q̂ satisfies a wave equation
(□ + U/a2)Q̂ � 0 where □ is the d’Alembertian w.r.t. to the
background FLRW metric gab (satisfying the unperturbed,
zeroth order Einstein’s equations) and U is constructed from
the inflationary potential and the background FLRW solution
[see, e.g. Agullo et al. (2013b)]. At the classical level, this evolution
equation can be derived starting with the full Hamiltonian
constraint of GR coupled with the scalar field, and then
appropriately truncating it to second order in perturbations
(Agullo et al., 2013a). In LQC, the background quantum
geometry Ψ(a, ϕ) satisfies the zeroth-order LQC Hamiltonian
constraint. The scalar mode Q̂ propagates on this Ψ(a, ϕ) and its
dynamics is governed by the appropriate second order truncation
of the full Hamiltonian constraint. If the state Ψ(a, ϕ) is sharply
peaked and the back reaction of the perturbation Q̂ is negligible,
then one has the following result (Ashtekar et al., 2009b):
Propagation of Q̂ on the quantum geometry Ψ(a, ϕ) is very
well approximated by that of a quantum field Q̂ satisfying
(~□ + ~U/~a2) Q̂ � 0. Here ~□ is the d’Alembertian with respect to
the dressed metric

~gabdx
adxb ≡ d~s2 � ~a2( − d~η2 + d x→2) (3.1)

with

~a4 � 〈Ĥ− 1
2 â4(ϕ) Ĥ− 1

2〉
〈Ĥ−1〉 and d~η � 〈Ĥ−1/2〉 (〈Ĥ− 1/2

â4(ϕ) Ĥ− 1/2〉)1/2 dϕ (3.2)

and ~U(ϕ) is the dressed effective potential

~U(ϕ) � 〈Ĥ− 1
2 â2(ϕ) Û(ϕ)â2(ϕ) Ĥ− 1

2〉
〈Ĥ−12 â4(ϕ) Ĥ−12〉 .

(3.3)

All operators and their expectation values refer to the Hilbert
space of the background FLRW quantum geometry: the
expectation values are taken in the state Ψ, Ĥ is the ‘free’
Hamiltonian in absence of the inflaton potential, and â(ϕ) is
the (Heisenberg) scale factor operator (Ashtekar et al., 2009b;
Agullo et al., 2013b).

At first, the result seems surprising. But physically it can be
understood using a simple analogy with propagation of light in a
medium such as water. In the full quantum description,
individual photons interact with the molecules of the material.
However, the key features of propagation can be extracted simply
by computing a few macroscopic parameters such as the
refractive index and birefringence that can be extracted from
the microstructure of the material. Other details of the quantum
state of the medium are not important to study propagation. In
this analogy, the cosmological perturbation plays the role of light
and quantum geometry, the role of the medium. To determine the
propagation of Q̂, one needs to extract only ~a, ~η and ~U from the

3In the pre-inflationary epoch, the curvature perturbation R̂ for scalar modes
become ill-defined at the turn-around point where _ϕ � 0. Therefore, in the LQC
literature, one uses the Mukhanov-Sasaki gauge invariant scalar perturbation Q̂ in
the pre-inflationary dynamics and converts the result to R̂ at the end of inflation.
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quantum state Ψ(a, ϕ). The rest of the very rich information of
quantum geometry it contains is not directly relevant
(Incidentally, the tensor modes satisfy the wave equation for
the same dressed metric ~gab; as in standard inflation, there is no
dependence on the potential.)

It is clear from the form of Eqs 3.2, 3.3 that the expressions of
the dressed metric and the dressed potential could not have been
guessed a priori. They resulted from explicit, detailed calculations
(Ashtekar et al., 2009b; Agullo et al., 2013b). The observable
predictions reported in Section 4 are obtained by first calculating
the dressed metric and the dressed potential starting from the
given quantum geometry Ψ(a, ϕ) and then evolving the scalar
mode using (~□ + ~U/~a2) Q̂ � 0.

Remarks
1. For clarity, let us spell out the conceptual elements of the

procedure used to extract dynamics of cosmological
perturbations since there is occasional confusion on this point.
The starting point in LQC is the Hamiltonian formulation of GR
coupled to the inflaton (albeit in the connection variables used in
LQG). One then extracts the sector of full GR that corresponds to
the homogeneous isotropic fields (which serve as the
background) together with first order perturbations. It is this
classical theory that is then quantized using LQG techniques
(Agullo et al., 2013a). Dynamics of quantum perturbations are
governed by the Hamiltonian constraint operator of the truncated
sector, where both the background geometry and perturbations
are treated quantum mechanically. One does not simply assume
that perturbations satisfy linearized equations of GR on a
bouncing classical metric. That the dynamics of perturbations
is well approximated by quantum field satisfying an evolution
equation involving ~gab and ~U is a result that holds under
conditions spelled out above. Note also that the equation is
covariant w.r.t. ~gab and ~gab rapidly tends to the classical
FLRW metric of GR outside the Planck regime.

2. Initially, analysis of Ashtekar et al. (2009b) suggested
that the propagation of Q̂ on the quantum geometry Ψ(a, ϕ)
would be exactly the same as that on the corresponding
dressed metric 3.1 and potential (3.3) for any Ψ(a, ϕ).
However, Kaminski later found (Kamiński, 2012) that
there is a subtle infrared problem (that can be missed in
numerical simulations since they have to use an infrared
cutoff). Kamiński et al. (2020) then showed that, as a result,
the implications of Ashtekar et al. (2009b) are not as general;
the result would not hold without restrictions on the
background quantum geometry Ψ(a, ϕ). This situation is
qualitatively similar to that, e.g., in quantum
electrodynamics which also faces infrared issues in
rigorous treatments. However, in QED the ensuing
difficulties can be avoided by focusing just on those
quantities that are ‘infrared safe’. One can adopt a similar
strategy in LQC by introducing suitable infrared safe
observables through regularization. Furthermore, for states
Ψ(a, ϕ) that are sufficiently sharply peaked, the regularization
ambiguity is completely negligible. Previous calculations of
power spectra in LQC [e.g. Agullo et al. (2012), Agullo et al.
(2013b), Agullo and Morris (2015), Agullo (2015), Sreenath
et al. (2019), Agullo et al. (2021b)], as well as the current

investigation, use states that are sufficiently sharply peaked in
this sense, whence the use of dressed metric is justified in spite
of the infrared difficulties.

3.3 Primordial Spectrum: Why
Pre-inflationary Dynamics Matters
A natural question now is whether the pre-inflationary phase of
LQC dynamics described in the last two subsections has any
observable consequences. Let us therefore focus on the observable
modes Q̂k. These have co-moving wavenumbers k in the range
∼ (0.1k+, 300k+), where k+ � 0.002Mpc− 1 is the WMAP pivot
scale. The evolution equation for these modes implies that, they
‘experience’ curvature in the background metric ~gab only if their
physical wavelength λ(t) � a(t)/k is comparable or larger than
the radius of curvature rcurv(t) � (6/R)12 of ~gab corresponding to
the scalar curvature R at that time. Let us denote by t � t+ the
time at which the relevant slow roll phase starts; this is our onset
of inflation. Therefore, a few e-folds before and after t+, the
observable modes propagate as though they are in flat spacetime
and therefore do not get excited by the background geometry.
What happens in the distant past? The left panel of Figure 3
shows the evolution of rcurv (blue solid curve) and of λ of
observable modes (the gray shaded band), both in GR. Note
that in the pre-inflationary epoch rcurv is far from being constant
whence the spacetime metric is very different from the de Sitter
metric. Since the scalar curvature R diverges at the big bang, rcurv
goes to zero. Because the scale factor a of the classical FLRW
metric goes to zero, physical wavelengths λ also goes to zero at the
big bang. However, they do not go to zero as fast as rcurv.
Therefore, as one approaches the big bang in the past
evolution, all observable modes exit the curvature radius,
‘experience’ curvature at sufficiently early times and get
excited. These excitations have to be delicately fine-tuned for
the state to be in the BD vacuum later on, at t � t+ i.e. at the onset
of inflation. Put differently, the Heisenberg state representing the
BD vacuum at the onset of inflation is an unnatural choice from
the perspective of the Planck regime because it carries certain
delicately choreographed excitations there. Of course, one can
argue that the quantum field theory in curved spacetime cannot
be extrapolated to the Planck regime. But by itself this argument
does not provide a justification for using the BD state at t � t+
either.

In LQC, the situation is quite different. Because the scalar
curvature ~R of the dressed metric ~g has a finite upper bound
~Rmaxx62ℓ−2Pl , reached at the bounce, rcurv reaches its minimum
value rmin

curvx0.31ℓPl, whence it is only those modes which satisfy
λarmin

curv at the bounce that experience curvature in their evolution
from the bounce to the onset of inflation. In our approach (as
discussed below) the background quantum geometry Ψ(a, ϕ) is
such that only the longest wavelength observable modes satisfy
this inequality. This feature is shown in the right panel of
Figure 3. Therefore, all but the longest wavelength observable
modes propagate from the bounce-time to the onset of inflation
as though they are in flat spacetime and hence it is natural that
they be in the BD vacuum at t � t+. It is only the longest
wavelength modes that will be excited and hence not in the
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BD vacuum. But won’t these excitations get just washed away
during inflation? The answer is in the negative: because of
spontaneous emission, the number density of these excitations
remains constant (Agullo and Parker, 2011a; Agullo and Parker,
2011b; Ganc and Komatsu, 2012). As a result, as we will see in
Section 4, the primordial spectrum does differ from that based on
the SA, but only at largest angular scales.

Note that there is a deep interplay between the UV and IR in
LQC. As we saw in Section 2.1, in LQC it is the UVmodifications
of GR in the Planck regime that tame the big bang singularity and
make all physical quantities finite. As a result we have a finite ~Rmax

and a non-zero ~rmin
curv. It is then natural for all but the longest

wavelength observable modes to be in the BD vacuum at the onset
of inflation. While the LQC corrections to the background
geometry are significant in the UV, their effect on
cosmological perturbations is non-negligible only in the IR.
This is the point that was highlighted in the abstract and
Section 1.

Finally, to obtain specific predictions, one needs a quantum
state of geometry Ψ(a, ϕ) and a quantum state ψ(Q, ϕ) of scalar
modes. At this point, different approaches within LQC make
different choices [see, e.g. Agullo et al. (2013b), Fernandez-
Mendez et al. (2012), Barrau et al. (2014), Ashtekar and
Barrau (2015), Agullo and Morris (2015), Agullo (2015),
Gomar et al. (2017), Agullo et al. (2018), Barrau et al. (2018),
Agullo et al. (2020a), Agullo et al. (2020b), Sreenath et al. (2019),
Agullo et al. (2021a), Agullo et al. (2021b)]. In this paper, we use
the procedure introduced in Ashtekar and Gupt (2017a),
Ashtekar and Gupt (2017b). Strategy is to select these states
by introducing some trial principles that relate properties of
quantum geometry in the Planck regime with the late time
geometry (which can be taken to be that given by general
relativity to an excellent degree of approximation). One can
then work out the observable consequences. If any prediction

is ruled out by observations, one would return to the drawing
board and seek alternate principles that would lead to viable
states. If predictions are confirmed by observations, one would
build confidence in the general direction and attempt to put the
principles on a firmer and more satisfactory footing. The
currently used principles are somewhat analogous to the Bohr
model of the hydrogen atom in the early days of quantum
mechanics. While in retrospect it is naive in some
fundamental respects, nonetheless the Bohr model was useful
because it captured some essential features of the final, correct
description of the hydrogen model.

The first principle constrainsΨ(a, ϕ), determining the number of
e-folds between the LQC bounce and the CMB surface (i.e., the
surface of last scattering) (Ashtekar and Gupt, 2017b). One begins
with the observation that the presence of a positive cosmological
constant implies that there are cosmological horizons. As a result,
given an instant of time there is a maximum value for the radius of a
ball that any one observer can see, no matter how long she waits. In
the standard ΛCDM model, this radius is ∼ 17.29 Mpc at the
surface of last scattering. Thus, specification of initial data in this ball
determines the entire future of the Universe that is accessible to an
‘eternal’ observer. As we go to the past, this ball shrinks and,
interestingly, at the onset of inflation its physical radius is only
∼ 2.64 × 107ℓPl for both, the Starobinsky and quadratic potentials.
This value is already smaller than the radius of a proton! At the
bounce surface of LQC, its radius would be still smaller. From the
LQG perspective, it is natural to require that the physical radius of
the ball be 6Δ, theminimumvalue allowed in the spatially flat FLRW
quantum geometry. This requirement constrains Ψ(a, ϕ) such that
the number NB−CMB of e-folds from the bounce to the surface of last
scattering to bex134, or the number of e-folds from the bounce to
today to be x141.

Finally, the principle that determines the quantum state
ψ(Q, ϕ) of scalar modes (Ashtekar and Gupt, 2017b) involves

FIGURE 3 | Time dependence of the physicalwavelengths λ � a/k of modes and radius of curvature rcurv in the pre-inflationary era, using Starobinsky potential. The
left vertical axis shows cosmic time t (in Planck seconds) and right vertical axis shows the energy density (also in Planck units). The shaded bands represent the
wavelengths of observable modes and the dashed line denotes the WMAP pivot mode with λ+ � a(t)/k+. The solid (blue) lines represent the evolution of rcurv. Left
panel: General Relativity. In the Planck regime near singularity (t � 0), all observable modes exit the curvature radius and are thus excited. Right panel: LQC.Only
the longest wavelength modes in the observable band get excited and fail to be in the BD vacuum at t � t+. The inset shows dynamics near the bounce. Plots of the
quadratic potential are very similar.
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a quantum generalization of Penrose’s Weyl curvature hypothesis
(Penrose, 2004) in the Planck regime near the bounce, which
physically corresponds to requiring that the state should be ‘as
isotropic and homogeneous in the Planck regime, as the
Heisenberg uncertainty principle allows’.4 While the first
principle sets the scale at which the LQC primordial spectrum
ceases to be nearly scale invariant, and thus differs from that given
by the SA, the second led to the conclusion that there is power
suppression with respect to the SA rather than power
enhancement. Detailed calculations are needed to obtain the
precise degree of suppression.

4 RESULTS

In this section we present the main results of this paper, obtained
using the LQC summarized in Section 3. In terms of more
commonly used wavenumbers, the new length scale
rmin
cuv ∼ 0.31ℓPl introduced by LQC provides a new physical
scale kLQCx3.21ℓ−1Pl , and the primordial spectrum differs from
the SA for kphy(kLQC at the bounce. In Section 4.1 we first
discuss these LQC corrections and then their effect on the
observed CXY

ℓ
correlations (where XY refers to TT, TE, EE

and ϕϕ). We also present predictions for the value of the
optical depth τ and for the BB power spectrum that could
potentially be tested using future observations. In Section 4.2,
we show that the LQC predictions for theCXY

ℓ
’s lead to resolution

of power suppression and lensing amplitude anomalies. In
Section 4.3, we will show that the interplay between LQC and
observations is a 2-way bridge, in that the CMB observations can
also be used to constrain the value of the area gap Δ, the most
important of fundamental microscopic parameters of LQG.

4.1 Power Spectra
As we saw at the end of Section 3, the physical principle used to
select the background quantum geometry implies that the
corresponding ΛCDM Universe has undergone approximately
141 e-folds of expansion since the quantum bounce until today
(Ashtekar and Gupt, 2017b). Therefore, the characteristic
physical scale kLQC at the LQC bounce translates to the co-
moving wavenumber kox3.6 × 10− 4 Mpc− 1 which sets the
scale below which LQC corrections to the primordial scalar
power spectrum become important. In particular, the
calculations show that for scales k(10ko the power is
suppressed whereas for scales k≫ ko the power spectrum is
essentially scale invariant as in the SA.5 This behavior is
captured in following modification to the SA for the
primordial power spectrum:

PLQC
R (k) � f (k)As ( k

k+
)ns− 1

� f (k)PSA
R (k) , (4.1)

where f (k) is the correction factor (which is equivalent to the
ratio of the power spectra in LQC to that in the SA).

The left panel of Figure 4 shows the correction factor f (k)
plotted with respect to the co-moving wavenumber. It is evident
from the plot that for both the Starobinsky and quadratic
potentials, relative to the prediction of the SA, there is power
suppression for long wavelength modes corresponding to
k(10ko. The origin of this difference lies in the fact that,
during the pre-inflationary era, the physical wavelength of
these modes is sufficiently large to ‘experience’ the background
curvature in the Planck regime near the bounce, leading to
excitations over the standard Bunch–Davies (BD) state at the
onset of inflation. On the other hand, the physical wavelengths of
modes with k≫ ko are much smaller than the curvature radius
throughout the pre-inflationary phase, including the deep Planck
regime near the bounce. Therefore their state is practically the
same as the standard BD state at the onset of inflation. Note that
even for modes with k(10ko, LQC corrections are significant
only near the bounce. During this epoch the energy density of the
scalar field is dominated by the kinetic term. Therefore one would
expect the inflationary potentials to have negligible effect on the
evolution of the background geometry and perturbations in the
deep Planck regime, which is when the LQC corrections are
imprinted on the modes of scalar perturbations. This expectation
is explicitly borne out in the left panel in Figure 4: the primordial
spectra for Starobinsky and quadratic potentials are essentially
identical. Analytical considerations of (Bhardwaj et al., 2019)
suggest that this feature will persist for a large class of inflationary
potentials. Finally, note that the LQC primordial spectrum has a
turnaround at very large wavelengths whose origin is related to
the sudden spike in rcurv near the bounce. Although these modes
are not in the observable range for CMB, it is of interest to better
understand the origin of this growth in power for very small k
because, together with large and strongly scale dependent non-
Gaussianity (which is expected from the LQC bounce (Agullo
et al., 2018; Sreenath et al., 2019) it could lead to a coupling
between the long wavelength modes and the modes observable in
CMB, resulting in a modulation of the primordial power
spectrum of the observable modes. Such a non-Gaussian
modulation could explain the dipolar modulation of CMB and
preference for odd parity that has been observed in the CMB
(Agullo et al., 2021a; Agullo et al., 2021b).

Let us now turn to the LQC predictions for observable power
spectra. For definiteness, in these plots we work with the
Starobinsky potential for the SA and LQC theoretical
predictions. On the observational side, ‘PLANCK 2018’ refers
to the TT + TE + EE + lowE + lensing 2018 data released by the
PLANCK collaboration. In order to obtain constraints on the
parameters in LQC and SA models, we used the publicly available
software package COSMOMC (Lewis and Bridle, 2002) which
supports the likelihood code used in the original 2018 PLANCK
analyses. COSMOMC is based on the Markov-Chain-Monte-
Carlo (MCMC) procedure for estimation of parameters based on
maximum likelihood analysis. For a given theoretical model with

4This condition provides a small ball in the space of all quasi-free states and the
desired state ψ(Q, ϕ) is the one in this ball that is ‘maximally classical’ at the end of
inflation in a specific, well-defined sense (Ashtekar and Gupt, 2017).
5The value of ko is linear in kLQC and 10kox3.6 × 10− 3Mpc− 1 corresponds to
ℓx30. Hence if one were to increase (or decrease) kLQC by hand, the LQC effects
wouldmanifest themselves in observations at larger (respectively, smaller) values of
ℓ.
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a number of parameters (here the ΛCDM model with 6
parameters), one builds a Markov chain from randomly
sampled parameter values from a space predefined by priors.
Each Markov chain begins with a random sample from the prior-
constrained parameter space. Subsequent steps in the chain are
then selected via Metropolis-Hasting algorithm: a Monte Carlo
sample from the parameter space is proposed and then accepted
or rejected based on the likelihood function which quantifies the
degree of agreement between the theoretical prediction and the
experimental data [in this paper we work with the same likelihood
function as used in PLANCK 2018 papers (Aghanim et al.,
2020b)]. This procedure is repeated until a convergence
criteria is satisfied. The chain of accepted values are further
trimmed and thinned in order to remove dependence on the
initial data point and correlation between subsequent steps. The
converged Markov chain thus obtained approximates the
posterior distribution of the parameters to be estimated. In
order to obtain one-dimensional constraints on (or two-
dimensional correlation between) the individual parameters,

marginalization procedure is used. For details of the MCMC
techniques adapted to cosmological settings see (Lewis and
Bridle, 2002).

The right panel of Figure 4 shows the theoretical predictions
as well as the observed power spectrum, with its error bars. The

FIGURE 4 | Left Panel: The primordial power spectrum of LQC: The LQC suppression factor f(k) is less than 1 for k(10k+x3.6 × 10−3 Mpc− 1 for both the
Starobinsky and quadratic potentials. At short wavelengths (large k), or small angular scales, the LQC power spectrum is indistinguishable from the SA i.e. f(k) � 1 for
k≫ ko. Right Panel: TT power spectra. The 2018 PLANCK spectrum (black dots with error bars), the LQC (dashed (blue) line) and the standard ansatz (SA) predictions
(solid (red) line). As is usual, on the x-axis we have used a logarithmic scale for ℓ ≤50 and linear scale for ℓ >50.

FIGURE 5 | TE and EE power spectra. The 2018 PLANCK spectrum (black dots with error bars), the LQC (dashed (blue) line) and the standard ansatz (SA)
predictions (solid (red) line). Values of the 6 ΛCDM parameters are fixed to their best fit values shown in Table 1.

TABLE 1 | Comparison between the Standard Ansatz (SA) and LQC. The mean
values of marginalized probability distributions for the six cosmological
parameters, and values of S1/2 calculated using CTT

ℓ
.

Parameter SA LQC

Ωbh2 0.02238±0.00014 0.02239±0.00015
Ωch2 0.1200±0.0012 0.1200±0.0012
100θMC 1.04091±0.00031 1.04093±0.00031
τ 0.0542±0.0074 0.0595±0.0079
ln(1010As) 3.044±0.014 3.054±0.015
ns 0.9651±0.0041 0.9643±0.0042
S1/2 42,496.5 14,308.05
AL 1.072±0.041 1.049±0.040
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plots clearly show that the primordial power suppression of LQC
for small k leads to power suppression in the TT spectrum for
multipoles ℓ < 30, relative to the predictions from the SA. The
same primordial power spectrum can also be used to compute the
predicted TE and EE correlation spectra. Figure 5 shows the TE
(left panel) and EE (right panel) spectra as observed by Planck
2018, along with those obtained using the best fit ΛCDMmodels
with LQC and the SA. Note that in the right panel of Figure 4 and
in Figure 5 the LQC and the SA plots are shown for their
corresponding marginalized mean values of the 6 parameters
shown in Table 1. By contrast, in (Ashtekar and Gupt, 2017b)
both the LQC and the SA curves were plotted for the same values
of 6 parameters of the ΛCDM model, coming from the SA. As
Table 1 shows, themean value of optical depth τ is > 9% higher in
LQC than with the SA and electric polarization is quite sensitive
to τ. Interestingly, this change in the best fit ΛCDM Universe has
the effect of slightly reducing suppression in the passage from the
primordial power spectrum to the observed one. As a result, the
LQC power suppression in the TT, TE and EE spectra we now
find is somewhat less pronounced than it was in Ashtekar and
Gupt (2017b).

Finally, the left panel of Figure 6 shows the lensing
correlation spectrum Cϕϕ

ℓ
reported by the PLANCK

collaboration with their 2018 data, along with the LQC and
the SA predictions. For this figure we have again used the mean
marginalized values of the 6 parameters shown in Table 1, and
the lensing amplitude is fixed to AL � 1, in accordance with the
base ΛCDM model. As with the TT, TE and EE spectra, the
lensing spectrum also shows suppression at large angular scales
corresponding to ℓ < 30. However, observations are quite sparse
for low ℓ. Interestingly, for 30< ℓ < 100, the LQC prediction for
Cϕϕ
ℓ

is slightly larger than that for SA (This is in fact inevitable;
see Section 5). This behavior leads the LQC spectrum to fit
slightly better with the observed data in the range 30< ℓ < 100
and hints toward resolving the lensing amplitude anomaly in
LQC without having to introduce additional modifications to
the standard ΛCDM model. In the next subsection we will see
that this possibility is in fact realized.

We will conclude this discussion of observable implications of
LQC with predictions for future missions. First, as we noted in
Section 2.2, currently the optical depth τ is the least accurately
measured of the 6 ΛCDM parameters, with a relative error of
∼ 13%. The LQC value is some 9.8% higher than that in ‘the
Universe according to PLANCK’. This prediction will be tested by
the future observation of global 21 cm evolution at high redshifts
that is estimated to reach a percent level accuracy in the
measurement of τ (Fialkov and Loeb, 2016). As for the
observable power spectra, to date the PLANCK satellite has
provided the best full sky measurement of the CMB
anisotropies. However, there is still scope for improvement in
the measurement of electric polarization, and the odd-parity
magnetic polarization is yet to be detected. Therefore, several
space-based mission have been planned to further improve the
polarization measurements. In addition to the predictions for the
TE and EE power spectra discussed above, our LQC model also
makes predictions for the BB power spectrum. The right panel of
Figure 6 provides the prediction for the unlensed BB power
spectrum both from the SA and in LQC. Recall that the tensor-to-
scalar ratio r depends on the potential of the inflationary model.
But, being a ratio, it is the same in LQC as from SA (Agullo et al.,
2013b). We have set r � 0.0041, its value for the Starobinsky
potential. As in the case of other four spectra, we observe a
relative suppression of power at low multipoles. However, this is
also where the reionization bump occurs. Since LQC predicts a
larger value of optical depth, the B-B power suppression is lower
than what one might have expected from the primordial power
suppression (and using the same value of τ for both SA and LQC).
Nonetheless, it may be possible to test this prediction against the
data from the future B-mode missions such as LiteBIRD
(Matsumura and et al., 2014), Cosmic Origins Explorer
(Delabrouille and et al., 2018), ECHO6 or Probe Inflation and
Cosmic Origins (PICO) (Hanany et al., 2019) (which should
observe the BB spectrum if ra0.001).

FIGURE 6 | LQC prediction (dashed (blue) line) and the standard ansatz (SA) prediction (solid (red) line). Left Panel: Lensing power spectra. The 2018 PLANCK
spectrum (where the black crosses show binning and error bars).Right Panel: The theoretical predictions for the BB power spectra. There is power suppression in LQC
for very low ℓ. The shaded region shows the 68% confidence level region.

6http://cmb-bharat.in/
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4.2 Anomalies Alleviated
As discussed in Section 2.2, in our approach the pre-inflationary
phase of LQC dynamics enables one to address two CMB
anomalies. The first, shown in the left panel of Figure 2, is
that the observed angular correlation function CTT(θ) remains
close to zero for angles θ > 60° in contrast to the predictions of the
standard ΛCDMmodel based on the SA. Let us now examine the
prediction of CTT(θ) from LQC. This prediction is plotted as the
dashed (blue) curve in Figure 7, along with the prediction from
the SA shown as the (red) dashed curve and the CTT(θ) observed
by the 2018 PLANCKmission shown by (black) dots. One sees by
inspection that the LQC predictions are closer to the observed
values than the SA predictions. This behavior can be further
quantified by comparing the value of S1/2 :� ∫1/2

−1 [C(θ)]2d(cos θ)
which, as we saw in Section 2.2, represents a cumulative total
power at large angular scales (θ > 60°):

SPlanck1/2 � 1209.18; SSA1/2 � 42496.5; SLQC1/2 � 14308.05. (4.2)

The tension between observations and the theoretical
prediction from the SA is encapsulated by the fact that SSA1/2 is
almost 35 times larger than SPlanck1/2 . This is the power suppression
anomaly. This discrepancy is appreciably reduced in LQC since
SLQC1/2 is ∼ 1/3 of SSA1/2. As indicted in Section 2.2, because C(θ) for
different values of θ are correlated, and because one has to use a
masking procedure in the data analysis near θ � 180°, the task
of providing the 1σ and 2σ contours around the LQC plots is
challenging, requiring manipulations of a large covariance
matrix in the data analysis, as well as a detailed
understanding of aspects of the instrument. It would be of
considerable interest if the CMB experts could provide these
plots starting with the LQC TT-power spectrum. Note also that
because power is suppressed for ℓ(30, if LQC results were
used in the PLANCK analysis, error bars for low ℓ would also

be reduced and we would have a sharp measure of the LQC
alleviation of this anomaly.

The second anomaly, shown in the right panel of Figure 2,
is the lensing amplitude anomaly. This anomaly is not
directly observed in the CXX

ℓ
plots or in C(θ) plots, but

arises when one performs a consistency check of the
ΛCDMmodel. Instead of fixing the lensing amplitude to AL �
1 (as is assumed in standard ΛCDM model) one allows it to
vary along with the standard 6 parameters, i.e., one now
analyzes a 7 parameter model. The anomaly lies in the finding
that AL � 1 is beyond 1σ error bar as shown in the right panel
of Figure 2. This led the authors of Di Valentino et al. (2019)
to conclude that there is a possible “crisis in cosmology”
because, to alleviate this problem, one would need to
introduce spatial curvature which creates significant
departures from the observed power spectra as small
angular scales. As shown in Figure 8, however, repeating
the analysis with the LQC power spectrum restores AL � 1
within 1σ contour thereby resolving the lensing amplitude
anomaly and avoiding the hint of a potential “crisis”.

To summarize, the observed CMB power spectrum has many
non-trivial and interesting features at small angular scales and
observational error bars are small in this regime. It is remarkable
that these features are correctly predicted by the ΛCDM model
based on the SA. The LQC corrections could well have led to
discrepancies with these successful predictions of the SA. That
does not happen. Rather, there are departures only at large
angular scales leading to a suppression of the primordial
power for small k. This difference from the nearly scale
invariant standard ansatz (2.1) leads to the alleviation of two
anomalies in the CMB.

FIGURE 7 | The temperature-temperature angular power spectrum
C(θ). The 2018 PLANCK spectrum (thick black dots), the LQC [dashed (blue)
line], and the standard ansatz [solid (red) line] predictions. The LQC
predictions are closer to the observed Planck 2018 data points. FIGURE 8 | 1σ and 2σ probability distributions in the AL − τ plane.

Predictions of the SA (in red) and LQC (in blue). Vertical lines denote the mean
values of τ for the SA and LQC. It is evident that AL � 1 is outside the 1σ
contour for the SA while is restored within 1σ for the LQC model.
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4.3 From Observations to Fundamental
Theory
As we saw in Section 3, the area gap Δ is the key microscopic
parameter that determines values of important new, macroscopic
observables such as the matter density and the curvature at the
bounce. Its specific value, ~Δ � 5.17 ℓ2Pl, is determined by the
statistical mechanical calculation of the black hole entropy in
loop quantum gravity [see, e.g. Ashtekar et al. (1998), Ashtekar
et al. (2000), Barbero and Perez (2017), Perez (2017)]. Results
reported in the last two subsections are based on this value.
However, with the CMB observations at hand, we can now, so to
say, turn the tables and regard Δ as an additional parameter and
use the CMB observations to constrain its value.

Thus, let us consider Δ to be a free parameter and obtain a
posterior probability distribution for its value by letting it vary along
with the 6 parameters of the ΛCDM model. Note that this procedure
is similar to the self-consistency check that is performed for the lensing
amplitude AL. The ΛCDM Universe determined by the SA does not
pass that test because, when it is allowed to vary, AL prefers a value
that is greater than 1 and the discrepancy is significant in that the value
1 lies outside the 1σ contour of the best fit value (Adam et al., 2020). Is
there perhaps a similar tension here? More precisely, does the value
~Δx5.17ℓ2Pl obtained from black hole entropy calculations lie within
the 68% confidence contour of the value preferred by the CMB
observations? If it does not, LQCwould fail the self-consistency test at
the 1σ level. If it does, there would be an unforeseen coherence
between detailed conclusions drawn from very different
considerations: the LQG analysis of black hole entropy and the
LQC investigation of the very early Universe!

Figure 9 shows the one-dimensional posterior distribution of
ΔB. The best-fit value–the peak in the distribution–is at Δ �
2.18 ℓ2Pl while the marginalized mean value is 3.86ℓ2Pl.with the
following constraint:

1.26ℓ2Pl <Δ< 6.47ℓ2Pl (at 68% confidence level) (4.3)

Clearly, the value ~Δx5.17ℓ2Pl chosen in Section 3.3 and used
in this paper, is within 68% (1σ) confidence level of the constraint

obtained from Planck 2018. This not only indicates a synergy
between the fundamental theoretical considerations and
observational data, but also provides internal consistency of
the LQC model.

5 DISCUSSION

To determine the six parameter ΛCDM Universe we live in, the
PLANCK team began with the standard ansatz (2.1) for the
primordial spectrum and used known astrophysics to determine
the observable power spectra for various values of the six
cosmological parameters, As, ns,Ωbh2,Ωch2, 100θMC . By
comparing these theoretical predictions with observations, they
determined the marginalized mean values of the six parameters
(together with the error bars corresponding to 68% confidence
level). This is the ΛCDM Universe according to PLANCK. This
procedure has had tremendous success, especially with the finer
features of the power spectra at small angular scales. However,
there are also some anomalies. Since they are only at ∼ 2 − 3σ
level, the statistical significance of any one anomaly is low.
However, taken together, two or more anomalies imply that
we live in an exceptional realization of the six posterior
distributions provided by this procedure.

One can view these anomalies as potential gates to new
physics. Indeed, the PLANCK collaboration has emphasized
this possibility in its 2015 (Ade et al., 2016) as well as 2018
data releases (Aghanim et al., 2020a). As the second of these
papers points out, “. . .if any anomalies have primordial origin,
then their large scale nature would suggest an explanation rooted
in fundamental physics. Thus it is worth exploring any models
that might explain an anomaly (even better, multiple anomalies)
naturally, or with very few parameters.” LQC researchers have
followed up on this suggestion. In this paper we presented a
concrete realization of this idea. Specifically, one begins with the
observation that, in the standard procedure summarized above,
the theoretical input, beyond known astrophysics, is the SA,
motivated by the inflationary scenario. It assumes that the
primordial spectrum is nearly scale invariant and can be
characterized just by two numbers As and ns across all
wavenumbers k. However, in LQC the resolution of the big
bang singularity introduces a new scale kLQC and quantum
gravity corrections in the pre-inflationary phase of dynamics
appear for k(kLQC. For these small wavenumbermodes, the LQC
primordial spectrum is no longer nearly scale invariant, whence
there is departure from the predictions drawn from the SA.

Several closely related approaches have been used in LQC to
probe the effects of this pre-inflationary dynamics [see, e.g.
Agullo et al. (2012), Agullo et al. (2013a), Agullo et al. (2013b),
Fernandez-Mendez et al. (2012), Barrau et al. (2014), Linsefors
et al. (2013), Ashtekar and Barrau (2015), Agullo and Morris
(2015), Agullo (2015), Ashtekar and Gupt (2017a), Ashtekar
and Gupt (2017b), Gomar et al. (2017), Agullo et al. (2018),
Barrau et al. (2018), Sreenath et al. (2019), Agullo et al.
(2021b)]. Our approach has two main ingredients: 1) the
use of sharply peaked quantum states Ψ(a, ϕ) for the
background quantum FLRW geometry, that then enable one

FIGURE 9 | Marginalized posterior probability distribution for Δ. The
value ~Δx5.17ℓ2Pl selected by the black hole entropy considerations is denoted
by the vertical line. It lies within 1σ of the marginalized mean value 3.86ℓ2Pl that
lies to the right of the peak. Thus, there is an unforeseen internal
consistency.
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to well-approximate the dynamics of cosmological
perturbations on the quantum geometry Ψ(a, ϕ) by that on
a quantum corrected ‘dressed metric’ ~gab (Ashtekar et al., 2000;
Agullo et al., 2013b); and, 2) the use of certain principles to
select Ψ(a, ϕ) and the quantum state ψ(Q, ϕ) of the scalar
mode of cosmological perturbations for any given inflationary
potential (Ashtekar and Gupt, 2017a; Ashtekar and Gupt,
2017b). For any given inflationary potential, the principle
used to select Ψ(a, ϕ) limits the number of e-folds during
pre-inflationary dynamics, thereby implying that the modes
that receive significant LQC corrections in the primordial
spectrum correspond to the large angular scales ℓ(30. The
principle used to select ψ(Q, ϕ) implies that in the primordial
spectrum there is power reduction (rather than enhancement)
in these modes. This then translates to a power suppression for
ℓ(30 in the observed power spectra. For modes with ℓ≫ 30,
the LQC power spectra are indistinguishable from those
obtained using the SA. Thus, LQC predictions leave the
highly successful predictions of standard inflation at small
angular scales unaffected, but modify the predictions at large
angular scales.

Details of the LQC pre-inflationary dynamics reveal some
interesting facts. First, the quantum geometry effects on the
background FLRW geometry are dominant only in a short
interval around the bounce. Second, it is the modes whose
physical wavelength λphy is longer than the curvature radius
rcurv during the pre-inflationary evolution that fail to be in the
BD vacuum at onset of inflation. In the observable band, only
the longest wavelength modes are thus affected and they
satisfy λphyarcurv only for 2–3 e-folds after the bounce.
Thus, the background quantum geometry as well as the
quantum perturbations Planck receive non-negligible LQC
corrections during a very short duration. Yet these
corrections lead to observable effects in that they alleviate
some anomalies. Third, while we did not discuss tensor
modes in this paper, their power spectra have the same
behavior as that of scalar modes and, given an inflationary
potential, the tensor to scalar ratio r does not receive LQC
corrections (within accuracies reported here). Finally, there is
an unforeseen interplay between the UV and the IR: While it
is the UV modifications of GR that lead to the singularity
resolution and create the new LQC scale kLQC, the structure of
the evolution equations satisfied by cosmological
perturbations is such that it is the IR modes with k(kLQC

that are affected during their pre-inflationary evolution. It is
this unforeseen cosmic tango between the very small and the
very large that is responsible for the alleviation of the two
anomalies discussed in this paper.

Given that LQC simultaneously alleviates the power
suppression and the lensing amplitude anomalies, it is worth
investigating a more general question: Are the two conceptually
related? As reported in Ashtekar et al. (2020), the answer is in the
affirmative. Since this relation seems not to have been noticed
before, we will make a small detour to explain it. Let us begin by
assuming that there is some mechanism–not necessarily
originating in LQC–that provides a primordial power
spectrum of the form

Pnew
R (k) � f (k) As ( k

k+
)ns− 1

(5.1)

with f (k)< 1 for k< k+ and f (k) � 1 for k> k+ for some k+, and
compare and contrast the new ΛCDM Universe obtained from
this modified ansatz with that given by the SA of Eq. 2.1. In the
first step, we can restrict our analysis only to smaller angular
scales (k≫ k+). Then, the primordial spectrum in both schemes
would be the same, whence we would obtain the same
marginalized mean values of the six cosmological parameters.
Denote by�As the marginalized mean value of the scalar amplitude
As thus obtained. In the second step, let us consider the full range
of observable modes, including k≤ k+. Now, given that the
observations show that the TT power is suppressed at large-
scales, i.e., for k(k+, if one uses the SA + ΛCDM model the
marginalized mean value ASA

s using the entire k range will be
lower than�As. By contrast if the primordial power spectrum is of
the form of Eq. 5.1, the initial power is already suppressed by
f (k). Therefore,�As will not have to be lowered as much to obtain
the marginalized mean value Anew

s . Thus, we have

�As > Anew
s > ASA

s (5.2)

The key point is the last inequality: Anew
s >ASA

s (We spelled out
the argument because at first it seems counter-intuitive that
power suppression leads to a larger Anew

s . But note that power
is suppressed only for low k.). Next, we know that for large k, the
product Ase−2τ is fixed by observations. Hence, it follows that the
best fit values of the optical depth in the two scheme must satisfy
τnew > τSA. Finally, from the very definition of lensing amplitude,
the value of AL is anti-correlated to the value of As. Therefore, it
follows that we have the inequalityAnew

L <ASA
L . Thus in any theory

that has primordial spectrum of the form (5.1), As, τ and AL will
have the same qualitative behavior as in LQC, and hence the
tension with observations would be reduced. What LQC provides
is a precise form of the suppression factor f (k) from ‘first
principles’, and hence specific quantitative predictions. Also,
recall from Section 4.1 that in our analysis the LQC f (k) also
came with a specific value kox3.6 × 10− 4 Mpc− 1 for k+. Other
mechanisms could well lead to a very different value. If so, in the
observed power spectra suppression would arise at a very
different value of ℓ. Finally, the specific f (k) computed from
LQC also leads to other predictions–e.g., for the BB power
spectrum discussed in Section 4.1—that need not be shared
by other mechanisms.

In this respect, it would be of interest to compare the LQC
predictions with those that result from effective field theories à la
Ginsburg and Landau, where slow roll inflation is generically
preceded by a fast roll phase that leads to a suppression of CMB
quadrupole (Boyanovsky et al., 2009). This will require a
calculation of angular power spectrum C(θ), and of the
measure S1/2 of power suppression, using the marginalized
posterior probabilities of the 6 cosmological parameters in this
effective field theory approach, and a reanalysis of the lensing
amplitude along the lines of Section 4.2. Yet other mechanisms
have been proposed to account for power suppression at large
angular scales in the context of GR [see, e.g. Kofman and
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Starobinsky (1985), Das and Souradeep (2014), Contaldi et al.
(2003), Cline et al. (2003), Jain et al. (2009), Pedro and Westphal
(2014), Lello et al. (2014), Cai et al. (2016)]. These are compared
and contrasted with LQC in Section 5 of Ashtekar and Gupt
(2017b). Finally power suppression at large angular scales has
been studied in the context of other bouncing models. In those
discussions the bounce is often just assumed [as in Cai et al.
(2009)], or obtained by adding a scalar field with a negative
kinetic term which violates standard energy conditions [as in Liu
et al. (2012)]. Our approach is different in that: 1) the bounce is a
prediction of LQC; 2) since the mechanism has its roots in
quantum geometry effects underlying LQG, additional scalar
fields or violations of energy conditions are not involved; 3)
the standard inflationary potentials are used without adjustments
to provide a fast roll phase; and, most importantly, 4) our goal is
to investigate whether the CMB observations can inform
quantum gravity and vice versa.

In our view, the big bounce and the pre-inflationary dynamics
of cosmological perturbations are on a robust footing although
the discussion would benefit from a further sharpening of the
detailed arguments that led us to the dressed metric ~gab. The part
of the analysis that is on a less solid footing concerns the specific
principles (Ashtekar and Gupt, 2017a; Ashtekar and Gupt,
2017b) that were used to select the wave function Ψo(a, ϕ) of
the background quantum geometry and the state ψ(a, ϕ) of
perturbations. Note that these choices are necessary to make
predictions in any approach that starts in the Planck regime.
Indeed, even in standard inflation one has to assume that the
perturbations are in the BD vacuum at the start of slow roll, and as
discussed in Section 3.3, it is difficult to justify this assumption
from first principles. The fact that the principles led us to
predictions that not only reproduce the successes of standard
inflation, but also alleviate the tension associated with two
anomalies, is an indication that they set us on the right track.
However, they should be regarded as tentative first steps, to be
improved upon and sharpened in future. In particular, the effect
of the duration of the reheating epoch is yet to be investigated in
detail. Another direction for future work is suggested by a second
approach that has been used to alleviate CMB anomalies using
pre-inflationary dynamics (Sreenath et al., 2019; Agullo et al.,
2021b). The point of departure is the same as in our approach: the
bounce sets a new scale and modes with the longer wavelength at
the bounce get excited during the pre-inflationary evolution and
are no longer in the BD vacuum at the onset of inflation.
However, the primordial spectrum does not exhibit power
suppression (4.1) as in our case. Instead, a key role is played
by the superhorizon modes and their non-Gaussian correlations
with the longest wavelength modes with those that are observable
in the CMB. These correlations enhance the probability of finding
certain features in the individual realizations of the primordial
probability distribution, thereby alleviating anomalies associated
with dipolar asymmetry and power suppression anomalies. It
would be of considerable interest to re-examine all CMB
anomalies from a perspective that combines strengths of the
two approaches. Finally, all approaches to finding observable

consequences of LQC in CMB, that we are aware of, assume an
inflationary potential. At a certain level of discussion this is
justified since a detailed analysis of the criticisms of the
inflationary paradigm has concluded that, although important
questions remain, the case for inflation has been “strengthened by
the PLANCK data” (Chowdhury et al., 2019). However, from a
fundamental perspective, introduction of an inflaton and a
specific potential is ad-hoc. Now, in full LQG, the Einstein-
Hilbert Lagrangian receives higher order (in particular R2)
corrections because the curvature operator is constructed from
Planck scale Wilson loops and hence non-local at the
fundamental microscopic scale. Therefore it is important to
analyze if these corrections would provide a natural basis for
inflation purely from gravitational considerations, as in
Starobinsky inflation.
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Loop Quantum Black Hole Extensions
Within the Improved Dynamics
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We continue our investigation of an improved quantization scheme for spherically
symmetric loop quantum gravity. We find that in the region where the black hole
singularity appears in the classical theory, the quantum theory contains semi-classical
states that approximate general relativity coupled to an effective anisotropic fluid. The
singularity is eliminated and the space-time can be continued into a white hole space-time.
This is similar to previously considered scenarios based on a loop quantum gravity
quantization.

Keywords: loop quantum gravity, black holes, quantum field theory, spin networks, general relativity

1 INTRODUCTION

In a previous paper (Gambini et al., 2020a) we studied an improved quantization for spherically
symmetric loop quantum gravity. Earlier work (Gambini and Pullin, 2013; Gambini et al., 2014;
Gambini et al., 2020b) had considered a constant polymerization parameter, similarly to the
“μ0” quantization scheme in loop quantum cosmology, whereas the improved quantization is
similar to the “μ” quantization scheme (Ashtekar and Singh, 2011). Other approaches involving
improved quantizations have also been explored in (Han and Liu, 2020). We observed that the
singularity was removed, but we did not analyze in detail what happened to the space-time
beyond the region where the singularity used to be. Here we complete that study. We find that in
that region there exist semi-classical quantum states for which the theory behaves like a
quantum version of general relativity coupled to an effective anisotropic fluid (Cho and Kim,
2019) that violates the dominant energy condition. In the highest curvature region there is a
space-like transition surface, something that was unnoticed in (Gambini et al., 2020a). The
space-time continues into a white hole geometry, like in Ref. (Ashtekar et al., 2018). However,
in this work we consider a different regularization for the parametrized observable associated to
the shift function. Its very definition requires the choice of a slicing and the new regularization
avoids an undesirable dependence on it in the semiclassical limit.

The organization of this paper is as follows. In section 2 we discuss the physical sector of the
quantum theory, focusing on semiclassical sectors. In section 3 we introduce a horizon penetrating
slicing based on Painlevé–Gullstrand coordinates and show how it can be used to connect to a white
hole space-time. We end with a discussion.

2 PHYSICAL SECTOR OF THE QUANTUM THEORY

The physical sector of the theory is obtained after combining Loop Quantum Gravity quantization
techniques and the Dirac quantization program for constrained theories. In summary, we start with a
kinematical Hilbert space in the loop representation adapted to spherically symmetric spacetimes for
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the geometrical sector [(Kφ, Eφ), (Kx, Ex)] together with a
standard representation for the spacetime mass and its
conjugate momentum (M, PM). A suitable basis of kinematical
states is the one provided by spherical symmetric spin networks
tensor product with the standard states for the matter sector in
the mass representation. Then, we represent the scalar constraint
as a well-defined operator in the kinemtical Hilbert space (for the
diffeomorphism constraint we rather work with the related finite
group of transformations mimicking the full theory).

Following the construction of Ref. (Gambini et al., 2020a),
the physical sector of the theory is encoded in physical states
(solutions to the scalar constraint) endowed with a suitable
inner product and a set of physical observables. This is
achieved, for instance, by applying group averaging
techniques for both the quantum scalar constraint and the
group of finite spatial diffeomorphisms (see also Refs
(Gambini and Pullin, 2013; de Blas et al., 2017)). We focus
our study to some of the simplest semi-classical states.
Quantum states consist of spatial spin networks labeled by
the ADM mass M (a Dirac observable) and integer numbers
that characterize the radii of spheres of symmetry associated
with each vertex of the network ki. The semi-classical states we
are going to consider here are given by superpositions in the
mass centered at M0 and of width δM0 and are therefore
associated with a fixed discrete structure in space (see
(Gambini et al., 2020a) for more details). They provide
excellent approximations to the classical geometry in
regions of small curvature compared to Planck scale.
Concretely, we consider the semi-classical states

|ψ〉 � 1
δM0

∫

dMeiMP0/Zcos[π(M −M0)
2δM0

]Θ(M −M0 + δM0)Θ(M0 + δM0 −M)

×|M, kS, . . . , k0, . . . , k−S〉
(2.1)

with k0 < kj for all j≠ 0, namely, j � −S,−S + 1, . . . , 1,−1, . . . , S,
where

k0 � Int⎡⎣(2GM0Δ
4πℓ3Pl

)2/3⎤⎦, (2.2)

times the Planck length squared determines the smallest area of
the 2-spheres in the theory. This corresponds to the improved
quantization, where Δ is the area gap. Besides, we choose
M0 ≫mPl and

δM0 ≤
3
2
(4πℓ3Pl
2GΔ)2/3

M1/3
0 . (2.3)

The states in Eq. 2.1 belong to a family of sharply peaked
semiclassical states in the mass and with support on a concrete
spin network (states with higher dispersion in the mass will
require superpositions of different spin networks). This choice
considerably simplifies the analysis of the effective geometries. As
we discussed in our previous papers, the quantum theory has
additional observables to the ones encountered in classical
treatments (Kastrup and Thiemann, 1994; Kuchar, 1994)
which are the ADM mass and the time at infinity. These

emerge from the discrete nature of the spin network treatment
and are associated with the ki’s, which in turn are associated with
the value of the areas of the spheres of symmetry connected with
each vertex of the spin network. One can also consider states that
are a superposition of M’s. The analysis will remain the same as
long as the states are peaked around a value of M.

In addition to physical states, the physical observables
representing space-time metric components will be defined
through suitable parametrized observables. They act as local
operators on each vertex of the spin network. Furthermore,
they involve point holonomies that are chosen to be
compatible with the superselection sectors of the physical
Hilbert space (see Ref (Gambini et al., 2020a). for more
details). Some of the basic parametrized observables are

Ê
x(xj)|M, k

→
〉 � Ô(z(xj))|M, k

→
〉 � ℓ

2
Plkj(xj)|M, k

→
〉, (2.4)

M̂|M, k
→
〉 � M|M, k

→
〉, (2.5)

where z(x) is a suitable gauge function that codifies the freedom
in the choice of radial reparametrizations.

For the components of the space-time metric on stationary
slicings we have, for instance, the lapse and shift,1

N̂
2(xj) :� 1

4

([Êx(xj)]′)2
(Êφ(xj))2 ,

[N̂x(xj)]2� Ê
x(xj)

(Êφ(xj))2
̂sin2(ρjKφ(xj))
ρ2j

,

(2.6)

where

(Êφ(xj))2� [(Êx(xj))′]2/4
1 + sin2(ρjKφ(xj))

ρ2j
− 2GM̂��

|̂Ex
√

(xj)|

, (2.7)

where we polymerized Kφ with ρ the polymerization parameter of
the improved quantization,

ρ � Δ
4πÊ

x. (2.8)

We choose the k’s in the one-dimensional spin network in our
physical state and the gauge function z(x) such that

Ê
x(xj) � ℓ

2
PlInt[x2j

ℓ
2
Pl

], (2.9)

1In Ref (Gambini et al., 2020a). for the shift we adopted the regularization
Kφ(xj)→ sin(2ρjKφ(xj))/2ρj , but it introduces an undesirable slicing
dependence that is avoided with the present regularization. Besides, the
representation that we adopt here for the square of the shift function as a
parametrized observable is compatible with the superselection rules of the
quantum numbers ]j of the kinematical spin networks as it was discussed in
Ref. (Gambini et al., 2020a).
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[Êx(xj)]′|M, k
→
〉 � ℓ

2
Pl

δx
Int⎡⎢⎢⎢⎣(xj + δx)2 − x2j

ℓ
2
Pl

⎤⎥⎥⎥⎦|M, k
→
〉, (2.10)

and with xj � δx
∣∣∣∣j∣∣∣∣ + x0 and with j ∈ Z, where

x0 �
���������������
Int[(2GMΔ

4π
)2/3]

√
. (2.11)

Besides, we will choose δx � ℓPl as in the first paper
(Gambini et al., 2020a), although we will discuss the
consequences of the limiting choices (for a uniform lattice)
δx � ℓ

2
Pl

2x0
and δx � x0. The different spacings δx just mentioned

here correspond to different choices of states in the physical
space, all of them lead to the same semiclassical behavior but
differ in the deep quantum regime close to the singularity, as
one would expect. The quantum regime is for the small values
of ki, where if one were to consider a superposition of states,
small changes in ki’s would lead to great fluctuations in the
properties of the states.

Then, the metric components take the following form in terms
of the previous operators

ĝ tt(xj) � −(N̂2 − ĝxx[N̂x]2), ĝ tx(xj) � ĝxx

�����[N̂x]2√
,

ĝxx(xj) � (Êφ)2
Ê
x , gθθ(xj) � Ê

x
, gϕϕ(xj) � Ê

x
sin2θ.

Let us restrict the study to the family of stationary slicings
determined by the condition

̂sin2(ρjKφ(xj)) � [F̂(xj)]2 (2.12)

where some specific choices of F(xj)will be studied below.However,
any viable choice must be such that F(x) is real and F(x) ∈ [−1, 1].
Now, one can easily construct the operators corresponding to the
components of the spacetime metric. They are given by

ĝtt (xj) � −(1 − r̂S��
Ê
x

√ ), ĝ tx(xj) � −
��
π

Δ

√ {[̂Ex]′} ��
F̂2

√
����
1− r̂S��̂

E
x

√
√

+ 4πÊ
x
F̂
2

Δ

,

ĝxx(xj) �
{[̂Ex]′}2

4Ê
x(1 − r̂S��

Ê
x

√ + 4πÊ
x
F̂
2

Δ )
, ĝθθ(xj) � Ê

x
, ĝϕϕ(xj) � Ê

x
sin2θ,

with r̂S � 2GM̂. The effective metric is defined as gμ] � 〈ĝμ]〉,
where the expectation value is computed on the extended physical
state

∣∣∣∣ψ〉 we presented above. We will focus on the leading order
corrections when the dispersion in the mass can be neglected. In
this case, we can just remove the hats in the previous expression
and denote this contribution by (0)guv(xj). In addition, we will
take a continuum limit that was discussed in our first paper.
Namely, xj � δx

∣∣∣∣j∣∣∣∣ + x0 is replaced by (|x| + x0), with x ∈ R and
the integer part function Int[·] will be dropped from all
expressions. This continuum limit means that the effective
geometries bounce when they reach x � 0.

3 PAINLEVÉ-GULLSTRAND
COORDINATES: BLACK HOLE TO WHITE
HOLE TRANSITION
We are interested in spatial slicings that are horizon penetrating
and asymptotically flat. For instance, ingoing Painlevé-Gullstrand
coordinates is one of the well-known choices that meet these
requirements. Besides, the time coordinate follows the proper
time of a free-falling observer. The slicing is defined by the
condition F̂(xj) � F̂1(xj) where

F̂1(xj) � ρ

����
r̂S��
Ê
x

√√
. (3.1)

This choice is equivalent to a lapse operator N̂(xj) � Î. Besides,
one can easily see that in the semiclassical limit xj → x + x0 we
have the function F1(x)< 1 for all x ≠ 0, while F1(x � 0) � 1. This
is important since this choice will allow us to completely probe
the high curvature region of the effective geometries.

FIGURE 1 | Penrose diagram of the effective geometry determined by
the slicing in Eq. 3.1. Black and green lines indicate low and high curvature
regions, respectively. Continuous lines represent smooth regions while dotted
lines are associated to a discrete geometry. Dashed lines indicate that
the spacetime diagram continues up and down.
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They can be obtained as in (Gambini et al., 2020a). One gets

(0)gtt(x) � −(1 − rS
|x| + x0

) ,

(0)gtx(x) � −sign(x)
������

rS
|x| + x0

√ (1 + δx
2(|x| + x0)) ,

(0)gxx(x) � (1 + δx
2(|x| + x0))

2

, (0)gθθ(x) � (|x| + x0)2,
(0)gϕϕ(x) � (|x| + x0)2sin2θ.

(3.2)

For this slicing, the low curvature regions occur when F(x)x0 or
equivalently at x→ ± ∞. Concretely, at x→ +∞ the effective
metric approaches sufficiently fast a classical black hole metric in
ingoing Painlevé-Gullstrand coordinates, while for x→ −∞ the
effective metric approaches sufficiently fast a classical white hole
metric in outgoing Painlevé-Gullstrand coordinates. On the other
hand, as we will see below, the curvature reaches its maximum when
F(x) � 1, namely, at x � 0.

In what follows, we refer to Figure 1 (see the similarities with the
Penrose diagram of Ref (Ashtekar et al., 2018)). One can see that the
condition (0)gtt(x) � 0 has two real solutions in x, corresponding to
two classical black or white hole horizons, at xBH > 0 and xWH < 0. In
the spacetime regions with x > xBH or x < xWH , the surfaces x � const
are time-like, and correspond to untrapped regions. In the region right
behind the black hole horizon, x < xBH , x � const hypersurfaces are
space-like. This region is a trapped black hole interior. As we move
toward the high curvature region, curvature ismaximumat x � 0. This
space-like hypersurface connects the trapped black hole region with an
anti-trapped white hole region. This is the so-called transition surface
(Ashtekar et al., 2018). The anti-trapped white hole region extends all
the way from x � 0 to the white hole horizon x � xWH . In all this

region, x � const hypersurfaces are still space-like. Once the white hole
horizon x � xWH is crossed to the outside region, spacetime is
untrapped again and x � const hypersurfaces are again time-like.

In order to illustrate all these properties, it is convenient to first
write the effective metric in its diagonal form (It should be noted
that although the theory does not recover the full diffeomorphism
invariance of the classical theory in the quantum regions, it is a
valid mathematical tool to diagonalize a metric nevertheless.) It
can be easily obtained by introducing the change of coordinates

dt→ dt +
(0)gtx(x)
(0)gtt(x)

dx (3.3)

This transformation amounts to the change

(0)gxx(x)→ (0)~gxx(x) �
(1 + δx

2(|x|+x0))2(1 − rS
|x|+x0) , (0)gtx(x)→ (0)~gtx(x) � 0,

(3.4)

while all other components remain as

(0)gtt(x)→ (0)~gtt(x) � −(1 − rS
|x| + x0

), (3.5)

(00)gθθ(x)→ (00)~gθθ(x) � (|x| + x0)2, (00)~gφφ(x)→ (00)~gφφ(x)
� (|x| + x0)2sinθ.

(3.6)

In Figure 2we show two components of the effectivemetric in its
diagonal form. There where they vanish, a horizon forms and the
coordinate system becomes singular. However, we should remember
that around xxx0 spacetime is discrete and the continuous line is
just an interpolation. Therefore, the metric will be well defined
provided the horizons are not located on a vertex of the lattice.

We have also studied the effective stress-energy tensor that encodes
the main deviations from the classical theory. It is defined as

Tμ] :� 1
8πG

Gμ], (3.7)

where Gμ] is the Einstein tensor. Tμ] is characterized by the
effective energy density ρ and radial and tangential pressures
densities, px and p||, respectively. They are defined by means of

ρext :� Tμ]
XμX]

XρXρ
, (3.8)

pextx :� Tμ]
rμr]

rρrρ
, (3.9)

and

pext|| :� Tμ]
θμθ]

θρθρ
, (3.10)

whereXμ is the Killing vector field that is time-like in the regions in
which x � const hypersurfaces are time-like. rμ and θμ are the
vector fields pointing in the radial and θ-angular directions,
respectively. When the Killing vector field Xμ is space-like,
namely, in the regions in which x � const hypersurfaces are
space-like, rμ becomes time-like. Therefore,

FIGURE 2 | The values of the tt component of the metric and the inverse
of xx for the metric in diagonal form. When the first vanishes, horizons arise.
Notice that in the region between the two horizons the discreteness is
significant as represented in the separation of the dots (although in the
plot we do not show all the points in the lattice but only one out of fifty).
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ρint :� Tμ]
rμr]

rρrρ
, (3.11)

pintx :� Tμ]
XμX]

XρXρ
, (3.12)

while pint|| � pext|| since θμ remains space-like. We will assume that
these effective space-times can be approximated by a smooth and
continuous geometry everywhere, even at the transition surface.
This assumption, as we mentioned, fails in the most quantum
region. However, we expect that T]

μ (a quantity only valid when
geometry is smooth) will still give us qualitative hints about
quantum geometry corrections there.

In Figure 3 we show the components of the stress-energy
tensor Tμ], or equivalently, the components of the Einstein tensor
(up to a factor (8πG)) for the choice δx � ℓPl. From them it is easy
to extract the energy densities and pressures in each region of
these effective space-times.

It is straightforward to compute the value of the energy density
and pressures of the stress-energy tensor at the transition surface
and in the limit of large mass rS ≫ ℓPl. Actually, their value
depend on the choice of spacing δx of the uniform lattice in
the radial direction. For instance, for δx � x0(ℓPlx0

)s with s � 0, 1, 2,
one can see that2

ρint(x � 0) � 2π
Δ ×O([ Δ

2πrS
]s/3+2/3),

pintx (x � 0) � −2πΔ ×O([ Δ
2πrS

]s/3),
pint|| (x � 0) � −2πΔ ×O([ Δ

2πrS
]s/3)

(3.13)

Let us note that in the most quantum region,

ωx(x � 0) � pintx (x � 0)
ρint(x � 0) � −O([2πrSΔ ]2/3),

ω||(x � 0) � pint|| (x � 0)
ρint(x � 0) � −O([2πrSΔ ]2/3). (3.14)

As we see, at the transition surface, the effective stress-energy
tensor does not violate the strong energy condition since
ρint(x � 0)≥ 0. However, it does actually violate the dominant
energy condition. Since the dominant energy condition implies
that |ωx|≤ 1 and

∣∣∣∣ω||
∣∣∣∣≤ 1, we conclude that this condition is

violated since both |ωx(x � 0)| and
∣∣∣∣ω||(x � 0)∣∣∣∣ at the

transition quantum spacetime blow up in the limit rS ≫ ℓPl.
One can construct the Penrose diagram of this geometry, together

with a possible extension to regions not covered by our slicing.

4 DISCUSSION

There are several comments about the scenario studied in this
manuscript. On the one hand, the effective geometries that one
can derive in this theory are uniquely determined by the

FIGURE 3 | The stress energy tensor of the effective metric (0)~g
μv(x). This plot corresponds to δx � ℓPl, namely, s � 1.

2The choices of δx shown here correspond to the maximum allowed uniform
discretization if s � 0, while s � 2 gives the finest uniform refinement. s � 1 is an
intermediate choice.
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semiclassical physical state and the (parameterized) observables
that represent the components of the metric. The quantum
corrections on these geometries likewise depend on the
minimal area gap Δ and the size of the discretization of the
physical states we are considering. Polymer corrections due to the
choice of foliation will also contribute if fluctuations of the mass
are considered. We are taking for simplicity an element (spin
network) of the basis in the physical space of states and ignoring
superpositions in different discretizations and masses. Quantum
corrections break the covariance, in particular because their
dependence on the discretization of the chosen quantum
states, but also due to foliation dependent terms. The latter
produce O(Δr2S /x2) quantum corrections in the (asymptotically
flat) external region of the black hole and therefore they are
completely unobservable for macroscopic black holes, allowing to
recover diffeomorphism invariance. Since different foliations are
identified with (observer’s) frames of reference, this is equivalent
to say that, for physically implementable frames of reference (i.e.
physically realizable observers) in the exterior region, quantum
corrections will be negligible. Nevertheless, these quantum
corrections increase when approaching the high curvature
region, reaching maximum values of order O(Δr2S /x20). For
instance, a free-falling observer (as it is the case under
consideration in this manuscript) and an accelerated observer
will observe there only slightly different corrections, even if its
foliation involves accelerations that are Planck order.

Regarding the original choice of shift as parametrized observable
adopted in Ref. (Gambini et al., 2020a), we noticed that, as
mentioned in (Kelly et al., 2020), the most quantum region
showed an inner Cauchy horizon connecting the trapped black
hole region with a Planckian size transition space-time where x �
const hypersurfaces are time-like. However, strictly speaking, due to
this Cauchy horizon, the extension beyond this region is not unique.
After the bounce a Cauchy Horizon is traversed and therefore the
initial conditions at I− that end up producing a black hole are not
enough for the determination of the possible extensions beyond the
Cauchy horizon. Notice that the Cauchy horizon occurs in a deep
quantum region that is in the past of the extension; further non-
uniqueness would occur when quantum superpositions are
considered. Besides, different foliations capture different
extensions. We saw that a choice of foliation (corresponding to
an accelerated observer with a Planck order acceleration) leads to an
anti de Sitter universe beyond the Cauchy horizon. Similar
ambiguities have been noted in classical general relativity
(Dafermos and Luk, 2017). One must keep in mind that these
ambiguities can be alleviated by considering parametrized
observables that correspond to physically implementable frames
of reference (i.e. physically realizable observers). We are considering
here extrinsic framings corresponding to a choice of polimerization
for the functional parameter Kφ(xj). Even though the theory is
covariant in the sense that the classical observables become quantum
observables in the quantization process, each polimerization
corresponds to a different choice of framing. In reference
(Gambini and Pullin, 2009) we proved that diffeomorphism
invariance of the parametrized observables corresponding to the
metric is only preserved for diffeomorphism that do not amplify
Planck scale separation to macroscopic scale. The introduction of

more realistic intrinsic framings resulting from the inclusion of
matter would provide a natural choice of slicing allowing to solve this
limitation. For instance, the case of Painlevé-Gullstrand coordinates,
that amount to a unit parametrized observable related to the lapse
function. The kind of midisuperspace model here considered allows
to analyze this issues while most of the minisuperspace scenarios
proposed in the literature (see (Bodendorfer et al., 1912; Sartini and
Geiller, 2021; Boehmer and Vandersloot, 2007; Campiglia et al.,
2008; Ashtekar and Singh, 2011; Cortez et al., 2017; Olmedo et al.,
2017; Alesci et al., 2018; Alesci et al., 2019; Assanioussi et al., 2020)
for references on hypersurface orthogonal slicings) adopted a
particular family of space-time foliations where this issue of
slicing dependence did not arise. Other authors have taken the
issue of non-covariance to imply that modifications of the constraint
algebra are in order, leading to the deformed hypersurface
deformation algebra approach (Tibrewala, 2012; Bojowald et al.,
2015; Ben Achour et al., 2018).

Summarizing, we have applied an improved quantization scheme
for loop quantum gravity in spherical symmetry. The singularity that
appears in classical general relativity is eliminated and space-time is
continued to a white hole space-time geometry through a transition
surface where curvature reaches its maximum value. This is
qualitatively similar to scenarios that have been recently proposed
(Ashtekar et al., 2018). Our proposal yields effective geometries that
are free of undesirable slicing dependencies in the semiclassical limit.
Actually, the slicing independence in a precise semiclassical limit of
small mass fluctuations can be invoked to restrict polymer
modifications of the scalar constraint and the parametrized
observables describing the quantum geometry. Finally, it is
interesting to note that most of the ideas presented here and in
Ref (Gambini et al., 2020a). can be very useful in other situations, like
in the vacuum polarized T3 Gowdy cosmologies with local rotational
symmetry (de Blas et al., 2017).
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Phenomenological Implications of
Modified Loop Cosmologies: An
Overview
Bao-Fei Li 1,2†, Parampreet Singh1† and Anzhong Wang3*†

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States, 2Institute for Theoretical
Physics & Cosmology, Zhejiang University of Technology, Hangzhou, China, 3GCAP-CASPER, Department of Physics, Baylor
University, Waco, TX, United States

In this paper, we first provide a brief review of the effective dynamics of two recently well-
studied models of modified loop quantum cosmologies (mLQCs), which arise from
different regularizations of the Hamiltonian constraint and show the robustness of a
generic resolution of the big bang singularity, replaced by a quantum bounce due to
non-perturbative Planck scale effects. As in loop quantum cosmology (LQC), in these
modified models the slow-roll inflation happens generically. We consider the cosmological
perturbations following the dressed and hybrid approaches and clarify some subtle issues
regarding the ambiguity of the extension of the effective potential of the scalar
perturbations across the quantum bounce, and the choice of initial conditions. Both of
the modified regularizations yield primordial power spectra that are consistent with current
observations for the Starobinsky potential within the framework of either the dressed or the
hybrid approach. But differences in primordial power spectra are identified among the
mLQCs and LQC. In addition, for mLQC-I, striking differences arise between the dressed
and hybrid approaches in the infrared and oscillatory regimes. While the differences
between the two modified models can be attributed to differences in the Planck scale
physics, the permissible choices of the initial conditions and the differences between the
two perturbation approaches have been reported for the first time. All these differences,
due to either the different regularizations or the different perturbation approaches in
principle can be observed in terms of non-Gaussianities.

Keywords: modified loop quantum cosmology, initial conditions, cosmic microwave background, power spectrum,
big bang singularity resolution

1 INTRODUCTION

Despite offering a solution to several fundamental and conceptual problems of the standard big bang
cosmology, including the flatness, horizon, and exotic-relic problems, the cosmic inflation in the
early Universe also provides a mechanism to produce density perturbations and primordial
gravitational waves (PGWs) (Starobinsky, 1980; Guth, 1981; Sato, 1981; Kodama and Sasaki,
1984; Mukhanov et al., 1992; Malik, 2001; Dodelson, 2003; Mukhanov, 2005; Weinberg, 2008;
Malik and Wands, 2009; Senatore, 2017). The latter arise from quantum fluctuations of spacetimes
and produce not only a temperature anisotropy, but also polarizations in the cosmic microwave
background (CMB), a smoking gun of PGWs. However, the inflationary paradigm is incomplete
without the knowledge of key elements from quantum gravity. First, it is well-known that the cosmic
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inflation is sensitive to the ultraviolet (UV) physics, and its
successes are tightly contingent on the understanding of this
UV physics (Brandenberger, 1999; Martin and Brandenberger,
2001; Niemeyer and Parentani, 2001; Bergstorm and Danielsson,
2002; Niemeyer and Parentani, 2002; Niemeyer and Parentani,
2003; Easther et al., 2005; McAllister and Silverstein, 2007; Joras
and Marozzi, 2009; Ashoorioon et al., 2011; Jackson and Schalm,
2012; Kiefer and Krämer, 2012; Brandenberger and Martin, 2013;
Burgess et al., 2013; Chernoff and Tye, 2014; Krauss andWilczek,
2014; Woodard, 2014; Baumann and McAllister, 2015; Cicoli,
2016; Silverstein, 2016). In particular, if the inflationary phase
lasts somewhat longer than the minimal period required to solve
the above mentioned problems, the length scales we observe
today will originate from modes that are smaller than the Planck
length during inflation (Brandenberger, 1999; Martin and
Brandenberger, 2001; Niemeyer and Parentani, 2001;
Bergstorm and Danielsson, 2002; Niemeyer and Parentani,
2002; Niemeyer and Parentani, 2003; Easther et al., 2005; Joras
and Marozzi, 2009; Ashoorioon et al., 2011; Jackson and Schalm,
2012; Brandenberger and Martin, 2013). Then, the treatment of
the underlying quantum field theory on a classical spacetime
becomes questionable, as now the quantum geometric effects are
expected to be large, and the space and time cannot be treated
classically any more. This is often referred to as the trans-
Planckian problem of cosmological fluctuations1.

The second problem of the inflationary paradigm is more
severe. It is well known that inflationary spacetimes are past-
incomplete because of the big bang singularity (Borde and
Vilenkin, 1994; Borde et al., 2003), with which it is not clear
how to impose the initial conditions. This problem gets
aggravated for low energy inflation in spatially-closed models
which are slightly favored by current observations where the
Universe encounters a big crunch singularity and lasts only for a
few Planck seconds (Linde, 2014; Linde, 2018).

Another problematic feature of inflation is that one often
ignores the pre-inflationary dynamics and sets the Bunch-Davies
(BD) vacuum in a very early time. But, it is not clear how such a
vacuum state can be realized dynamically in the framework of
quantum cosmology (McAllister and Silverstein, 2007; Burgess
et al., 2013; Chernoff and Tye, 2014; Baumann and McAllister,
2015; Cicoli, 2016; Silverstein, 2016), considering the fact that a
pre-inflationary phase always exists between the Plank and
inflation scales, which are about 103 ∼ 1012 orders of
magnitude difference (Dodelson, 2003; Mukhanov, 2005;
McAllister and Silverstein, 2007; Weinberg, 2008; Burgess
et al., 2013; Chernoff and Tye, 2014; Baumann and McAllister,
2015; Cicoli, 2016; Silverstein, 2016). While these problems of
inflationary paradigm demand a completion from quantum
theory of spacetimes, they also open an avenue to overcome
one of the main obstacles in the development of quantum gravity,
which concerns with the lack of experimental evidences. Thus,

understanding inflation in the framework of quantum gravity
could offer valuable guidances to the construction of the
underlying theory (Weinberg, 1980; Carlip, 2003; Kiefer, 2007;
Green et al., 1999; Polchinski, 2001; Johson, 2003; Becker et al.,
2007; Ashtekar and Lewandowski, 2004; Thiemann, 2007; Rovelli,
2008; Bojowald, 2011; Gambini and Pullin, 2011; Ashtekar and
Pullin, 2017).

In particular, when applying the techniques of loop quantum
gravity (LQG) to homogeneous and isotropic Universe, namely
loop quantum cosmology (LQC) (Ashtekar and Singh, 2011;
Ashtekar and Barrau, 2015; Bojowald, 2015; Agullo and Singh,
2017), it was shown that, purely due to quantum geometric
effects, the big bang singularity is generically resolved and
replaced by a quantum bounce at which the spacetime
curvature becomes Planckian (Ashtekar et al., 2006; Ashtekar
et al., 2006; Ashtekar et al., 2010). The robustness of the
singularity resolution has been shown for a variety of isotropic
and anisotropic spacetimes (Giesel et al., 2020). Interestingly,
there exists a reliable effective spacetime description, which has
been used to confirm a generic resolution of all strong curvature
singularities (Singh, 2009; Singh, 2014). Various
phenomenological implications have been studied using this
effective spacetime description, whose validity has been
verified for isotropic and anisotropic spacetimes (Diener et al.,
2014; Diener et al., 2014; Agullo et al., 2017; Diener et al., 2017;
Singh, 2018). For low energy inflation models with a positive
spatial curvature, the singularity resolution and a successful onset
of inflation for classically inadmissible initial conditions have
been demonstrated (Dupuy and Singh, 2020; Gordon et al., 2021;
Motaharfar and Singh, 2021).

In the last couple of years, several approaches have been
proposed, in order to address the impacts of the quantum
geometry on the primordial power spectra. These include the
approaches of the deformed algebra (Bojowald et al., 2008;
Cailleteau et al., 2012; Cailleteau et al., 2012), dressed metric
(Agullo et al., 2012; Agullo et al., 2013; Agullo et al., 2013), and
hybrid (Fernández-Méndez et al., 2012; Fernández-Méndez
et al., 2013; Castelló Gomar et al., 2014; Gomar et al., 2015;
Martínez and Olmedo, 2016) [For a recent discussion about
similar ideas in anisotropic Bianchi I LQC spacetimes see Refs.
(Gupt and Singh, 2012; Gupt and Singh, 2013; Agullo et al.,
2020; Agullo et al., 2020) and references therein.]. In
particular, the last two approaches have been widely studied
and found that they are all consistent with current
cosmological observations (Agullo and Morris, 2015; Bonga
and Gupt, 2016; Bonga and Gupt, 2016; de Blas and Olmedo,
2016; Ashtekar and Gupt, 2017; Ashtekar and Gupt, 2017;
Castelló Gomar et al., 2017; Zhu et al., 2017; Zhu et al., 2017;
Agullo et al., 2018; Elizaga Navascués et al., 2018; Navascues
et al., 2018; Wu et al., 2018; Zhu et al., 2018). In addition,
within the framework of the dressed metric approach recently
it has been also shown that some anomalies from the CMB data
(Akrami and Planck collaboration, 2020; Akrami and Planck
collaboration, 2020; Schwarz et al., 2016) can be reconciled
purely due to the quantum geometric effects (Ashtekar et al.,
2020; Agullo et al., 2021; Agullo et al., 2021; Ashtekar et al.,
2021).

1It has been conjectured using models in string theory that the trans-Planckian
problem might never arise (Bedroya and Vafa, 2020), which results on severe
constraints on various cosmological models [See (Bedroya et al., 2020;
Brandenberger, 2021) for more details].
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In addition to the standard LQC, in which the Lorentzian term
of the classical Hamiltonian constraint is first expressed in terms
of the Euclidean term in the spatially flat Friedmann-Lemâıtre-
Robertson-Walker (FLRW) Universe, and then only the
quantization of the Euclidean term is considered, the
robustness of the singularity resolution with respect to
different quantizations of the classical Hamiltonian constraint
in the symmetry reduced spacetimes have been extensively
studied. Two notable examples are the so-called modified
LQC-I (mLQC-I) and modified LQC-II (mLQC-II) models,
which were first proposed by Yang, Ding and Ma more than a
decade ago (Yang et al., 2009). In a recent study, Dapor and
Liegener (DL) (Dapor and Liegener, 2018a; Dapor and Liegener,
2018b) obtained the expectation values of the Hamiltonian
operator in LQG using complexifier coherent states
(Thiemann, 2001a; Thiemann and Winkler, 2001b; Thiemann,
2006), adapted to the spatially flat FLRW Universe. Using the
non-graph changing regularization of the Hamiltonian advocated
by Thiemann (Thiemann, 1998a; Thiemann, 1998b; Giesel and
Thiemann, 2007), DL obtained an effective Hamiltonian
constraint, which, to the leading order, agrees with the
mLQC-I model first obtained in (Yang et al., 2009).
Sometimes, this model has also been referred to as the DL
model or Thiemann regularized LQC. Strictly speaking, when
constructing loops in (Dapor and Liegener, 2018a) DL treated the
edge length μ as a free parameter, but in (Yang et al., 2009) it was
considered as a specific triad dependent function, the so-called μ
scheme (Ashtekar et al., 2006), which is known to be the only
possible choice in LQC, and results in physics that is independent
from underlying fiducial structures used during quantization, and
meanwhile yields a consistent infrared behavior for all matter
obeying the weak energy condition (Corichi and Singh, 2008).
Lately, the studies of (Dapor and Liegener, 2018a) have been
extended to the μ scheme (Assanioussi et al., 2018; Assanioussi
et al., 2019a; Assanioussi et al., 2019b; Liegener and Singh, 2019).

In the two modified LQC models, mLQC-I and mLQC-II,
since different regularizations of the Lorentzian term were used,
the resulting equations become the fourth-order and non-
singular quantum difference equations, instead of the second-
order difference ones obtained in LQC. In these two models the
big bang singularity is also generically resolved and replaced by a
quantum bounce. In addition, the inflationary phase can
naturally take place with a very high probability (Li et al.,
2018a; Li et al., 2018b; Saini and Singh, 2019a; Saini and
Singh, 2019b; Li et al., 2019). In addition, the dynamics in
LQC and mLQC-II is qualitatively similar in the whole
evolution of the Universe, while the one in mLQC-I becomes
significantly different from LQC (as well as mLQC-II) in the
contracting phase, in which an emergent quasi de Sitter space is
present. This implies that the contracting phase in mLQC-I is
purely a quantum regime without any classical limit2.

An important question now is what are the effects of these
models and approaches on the CMB observations. The answer to

this question requires the knowledge of how the quantum
fluctuations propagate on a quantum spacetime in LQC and
modified loop cosmological models. In particular, in the
framework of the dressed metric approach the power spectra
of the cosmological perturbations for bothmLQC-I andmLQC-II
models were investigated (Li et al., 2020c). In the same framework
but restricted only to the mLQC-I model, the power spectra of the
cosmological perturbations were studied in (Agullo, 2018). More
recently, the hybrid approach was applied to mLQC-I (García-
Quismondo and Mena Marugán, 2019; Castelló Gomar et al.,
2020; García-Quismondo and Mena Marugán, 2020), for which
the time-dependent mass of the perturbations was studied in
detail (García-Quismondo et al., 2020). The primordial scalar
power spectra obtained in the three models, LQC, mLQC-I and
mLQC-II, were also investigated in the hybrid approach (Li et al.,
2020a), and found that the relative differences in the amplitudes
of the power spectra among the three models could be as large as
2% in the UV regime of the spectra, which is relevant to the
current observations. Interestingly, in the above work, differences
in primordial power spectra were found between the hybrid and
dressed metric approaches in the infra-red and oscillatory
regimes in mLQC-I.

In this brief review, we shall focus mainly on the states that are
sharply peaked along the classical trajectories, so that the
description of the “effective” dynamics of the Universe
becomes available (Ashtekar and Singh, 2011; Ashtekar and
Barrau, 2015; Bojowald, 2015; Agullo and Singh, 2017), and
the questions raised recently in (Kamiński et al., 2020) are
avoided. This includes the studies of the “effective” dynamics
of the homogeneous and isotropic mLQC-I and mLQC-II
models, and their cosmological perturbations in the framework
of the dressed metric and hybrid approaches. We shall first clarify
the issue regarding the ambiguities in the extension of the
effective potential for the scalar perturbations across the
quantum bounce, and then pay particular attention to the
differences among the three models, LQC, mLQC-I and
mLQC-II, and possible observational signals. It is important to
note that initial conditions are another subtle and important issue
not only in LQC but also in mLQCs. This includes two parts: 1)
when to impose the initial conditions, and 2) which kind of initial
conditions one can impose consistently. To clarify this issue, we
discuss it at length by showing the (generalized) comoving
Hubble radius in each model and in each of the dressed and
hybrid approaches. From this analysis, one can see clearly what
initial conditions can and cannot be imposed at a chosen
initial time.

The outline of this brief overview is as follows. In Sec. 2 we
consider the effective dynamics of mLQC-I and mLQC-II, and
discuss some universal features of their dynamics such as the
resolution of big bang singularity. In addition, in this section we
also show that for states such that the evolution of the
homogeneous Universe was dominated initially at the bounce
by the kinetic energy of the inflaton, that is, _ϕ

2
B ≫V(ϕB), the post-

bounce evolution between the bounce and the reheating can be
always divided universally into three different phases: the
bouncing, transition, and slow-roll inflation [cf. Figure 1].
During each of these phases the expansion factor a(t) and the

2A similar contracting branch is found in certain anisotropic models in the
standard regularization of LQC [see for e.g., (Dadhich et al., 2015)].
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scalar field ϕ(t) can be given analytically. In particular, they are
given by Eqs 2.54–2.55, 2.56–2.57 during the bouncing phase for
mLQC-I and mLQC-II, respectively. In this same section, the
probabilities of the slow-roll inflation is considered, and shown
that it occurs generically. This particular consideration is
restricted to the quadratic potential, but is expected to be also
true for other cases.

In Sec. 3, the cosmological perturbations of mLQC-I and
mLQC-II are studied. We discuss initial conditions and the subtle

issue of the ambiguity in the choice of the variables π−2a and π−1
a

(present in the effective potential), which correspond to the
quadratic and linear inverse of the momentum conjugate to
the scale factor. In addition, to understand the issue of initial
conditions properly, we first introduce the comoving Hubble
radius λ2H and then state clearly how this is resolved in GR [cf.
Figure 2], and which are the relevant questions in mLQC-I [cf.
Figure 5] and mLQC-II [cf. Figure 6]. From these figures it is
clear that the BD vacuum cannot be consistently imposed at the
bounce3, as now some modes are inside the (comoving) Hubble
radius while others not. However, the fourth-order adiabatic
vacuum may be imposed at this moment for both of these two
modified LQC models, as that adopted in LQC (Agullo et al.,
2013). In addition, in mLQC-I the de Sitter state given by Eq. 3.7 4

can be imposed in the contracting phase as long as t0 is
sufficiently early, so the Universe is well inside the de Sitter
phase. On the other hand, in mLQC-II and LQC, the BD vacuum
can be imposed in the contracting phase as long as t0 is
sufficiently early, so the Universe becomes so large that the
spacetime curvature is very small, and particle creation is
negligible. With these in mind, the power spectra obtained in
the three models, mLQC-I, mLQC-II and LQC, within the
framework of the dressed metric approach were calculated and
compared by imposing the initial conditions in the contracting
phase. In particular, the spectra can be universally divided into
three regimes, the infrared, intermediate and UV. In the infrared
and intermediate regimes, the relative differences in the
amplitudes of the spectra can be as large as 100% between

FIGURE 1 | The evolution of the scale factor a(t), the scalar field ϕ(t),
and the equationwϕ of state of the scalar field (A–C) in the post-bounce phase
are depicted and compared among the three modes, LQC (red solid curves),
mLQC-I (blue dotted curves) and mLQC-II (green dot-dashed curves),
with the Starobinsky potential. In the last panel, wϕ is defined via
wϕ ≡ P(ϕ)/ρ(ϕ) � [ _ϕ2 − 2V(ϕ)]/[ _ϕ2 + 2V(ϕ)]. The initial condition for the
simulation is chosen at the bounce with ϕB � −1.6mpl , _ϕB >0(Li et al., 2019).

FIGURE 2 | The evolution of the comoving Hubble radius ln(LH) vs. ln(a)
in GR, where ti denotes themoment of the onset of the slow-roll inflation, tp the
horizon crossing time of a mode with the wavenumber k, and tend the moment
that the slow-roll inflation ends.

3It should be noted that anisotropies rise during the contracting phase and
generically dominate the earliest stages of the post-bounce of the homogeneous
Universe (Gupt and Singh, 2012; Gupt and Singh, 2013; Agullo et al., 2020; Agullo
et al., 2020). So, cautions must be taken, when imposing initial conditions at the
bounce.
4To be distinguished from the BD vacuum described by Eq. 3.4 we refer to the state
described by Eq. 3.7 as the de Sitter state. The difference between them is due to the
term i/(kη), which is not negligible in the deep contracting phase of the de Sitter
background, as now

∣∣∣∣kη∣∣∣∣ could be very small. For more details, see the discussions
given in Sec. 3.A, especially the paragraph after Eq. 3.9.
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mLQC-I and mLQC-II (the same is also true between mLQC-I
and LQC), but in the UV regime such differences get dramatically
reduced, which is no larger than 0.1%. Since the modes in the UV
regime are the relevant ones to the current observations and also
their corresponding power spectra are scale-invariant, so these
three models are all consistent with observations.

In Sec. 4, the cosmological perturbations of mLQC-I and
mLQC-II are studied within the hybrid approach, and the
subtleties of the initial conditions are shown in Figures 8–10,
where Figures 8, 9 are respectively for the quadratic and
Starobinsky potentials in mLQC-I, while Figure 10 is for the
Starobinsky potential in mLQC-II. The case with the quadratic
potential in mLQC-II is similar to that of mLQC-I, given by
Figure 8. From these figures it is clear that imposing the initial
conditions now becomes a more delicate issue, and sensitively
depends on the potential V(ϕ) of the inflaton field. First, in the
cases described by Figures 8, 9, all the modes are oscillating
during the time tpi < t < ti, so one might intend to impose the BD
vacuum at the bounce. However, for t < tpi the quantity Ωtot

defined in Eq. 3.9 experiences a period during which it is very
large and negative. As a result, particle creation is expected not to
be negligible during this period. Then, imposing the BD vacuum
at the bounce will not account for these effects, and the resulting
power spectra shall be quite different from the case, in which in
the deep contracting phase (t≪ tB) the BD vacuum is imposed for
mLQC-II and LQC, and the de Sitter state for mLQC-I. On the
other hand, in the case described by Figure 10, even if the BD
vacuum is chosen at the bounce, it may not be quite different
from the one imposed in the deep contracting phase, as now in
the whole contracting phase all the modes are oscillating, and
particle creation is not expected to be important up to the bounce.
To compare the results from the three different models, in this
section the second-order adiabatic vacuum conditions are chosen
in the contracting phase, which is expected not to be much
different from the de Sitter state for mLQC-I and the BD vacuum
for mLQC-II and LQC, as long as t0 ≪ tB in all the cases described
by Figures 8–10. The ambiguities of the choice of π−2

a and π−1
a also

occur in this approach, but as far as the power spectra are
concerned, different choices lead to similar conclusions
(Castelló Gomar et al., 2020). So, in this section only the so-
called prescription A is considered. Then, similar conclusions are
obtained in this approach regarding the differences among the
amplitudes of the power spectra in the three different models. In
particular, the relative differences can be as large as 100% between
mLQC-I and mLQC-II/LQC, but in the UV regime such
differences are reduced to about 2%. A remarkable feature
between the two different approaches is also identified: in the
infrared and oscillatory regimes, the power spectrum in mLQC-I
is suppressed as compared with its counterpart in LQC in the hybrid
approach. On the other hand, in the dressed metric approach, the
power spectrum in mLQC-I is largely amplified in the infrared
regime where its magnitude is as large as of the Planck scale (Agullo,
2018; Li et al., 2020c). The main reason for such differences is that
the effective mass in the hybrid approach is strictly positive near the
bounce, while it is strictly negative in the dressedmetric approach for
states that are initially dominated by the kinetic energy of the
inflaton (Agullo, 2018; Castelló Gomar et al., 2020; Li et al., 2020c).

The review is concluded in Sec. 5, in which we summarize the
main conclusions and point out some open questions for future
studies.

2 EFFECTIVE QUANTUM DYNAMICS IN
MODIFIED LQCS

To facilitate our following discussions, let us first briefly review
the standard process of quantization carried out in LQC, from
which one can see clearly the similarities and differences among
the three models, LQC, mLQC-I and mLQC-II.

2.1 Quantum Dynamics of LQC
The key idea of LQC is to use the fundamental variables and
quantization techniques of LQG to cosmological spacetimes, by
taking advantage of the simplifications that arise from the
symmetries of these spacetimes. In the spatially-flat FLRW
spacetime,

ds2 � −N2(t)dt2 + qab(t)dxadxb
≡ −N2(t)dt2 + a2(t)δabdxadxb, (2.1)

there exists only one degree of freedom, the scale factor a(t),
where N(t) is the lapse function and can be freely chosen, given
the freedom in reparametrizing t, and qab(t) denotes the 3-
dimensional (3D) spatial metric of the hypersurface t �
Constant. In this paper, we shall use the indices a, b, c, . . . to
denote spatial coordinates and i, j, k, . . . to denote the internal su
(2) indices. Repeated indices will represent sum, unless otherwise
specified.

In full GR, the gravitational phase space consists of the
connection Ai

a and density weighted triad Ea
i . In the present

case, the 3D spatial spaceM has aR3 topology, fromwhich we can
introduce a fiducial cell F and restrict all integrations to this cell,
in order to avoid some artificial divergences and have a well-
defined symplectic structure. Within this cell, we introduce a
fiducial flat metric�qab via the relation qab(t) � a2(t)�qab, and then
an associated constant orthogonal triad�eai and a cotriad�ω

i
a. Then,

after symmetry reduction Ai
a and Ea

i are given by,

Ai
a � c v−1/3o �ωi

a, E
a
i �

∣∣∣∣p∣∣∣∣ v−2/3o

�
�q

√
�eai , (2.2)

where
∣∣∣∣p∣∣∣∣ � v2/3o a2, κ � 8πG/c4, vo denotes the volume of the

fiducial cell measured by �qab, �q is the determinant of �qab, and
γ is the Barbero-Immirzi parameter whose value can be set to
c ≈ 0.2375 using black hole thermodynamics in LQG (Meissner,
2004). For classical solutions, symmetry reduced connection c is
related to time derivative of scale factor as c � c _a, where an over
dot denotes a derivative with respect to t for the choice N � 1.

The physical triad and cotriad are given by eai �
(sgn p) ∣∣∣∣p∣∣∣∣−1/2v1/3o �eai and ωi

a � (sgn p) ∣∣∣∣p∣∣∣∣1/2v−1/3o �ωi
a, where (sgn

p) arises because in connection dynamics the phase space
contains triads with both orientations. In the following we
choose this orientation to be positive and volume of the
fiducial cell to be vo � 1. The variables c and p satisfy the
communication relation,
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{c, p} � κc

3
. (2.3)

Then, the gravitational part of the Hamiltonian is a sum of the
Euclidean and Lorentzian terms,

Hgrav � H(E)
grav − (1 + c2)H(L)

grav , (2.4)

where, with the choice N � 1, these two terms are given,
respectively, by

H(E)
grav �

1
2κ

∫ d3x ϵijkFi
ab

EajEbk�
q

√ , (2.5)

H(L)
grav �

1
κ
∫ d3x Kj

[aK
k
b]
EajEbk�

q
√ , (2.6)

where q � det(qab) � a6�q, Fk
ab is the field strength of the

connection Ai
a, and Ki

a is the extrinsic curvature, given,
respectively, by

Fk
ab ≡ 2z[aAk

b] + ϵ k
ij A

i
aA

j
b � c2ϵ k

ij �ω
i
a�ω

j
b,

Ki
a ≡ Kabe

b
i �

ebi
2N

( _qab − 2D(aNb)) � ± _a�ωi
a.

(2.7)

Upon quantization, ambiguities can arise due to different
treatments of the Euclidean and Lorentzian terms in the
Hamiltonian constraint. In particular, LQC takes the
advantage that in the spatially-flat FLRW Universe the
Lorentzian part is proportional to the Euclidean part,

H(L)
grav � c−2H(E)

grav , (2.8)

so that, when coupled to a massless scalar field, the classical
Hamiltonian can be rewritten as (Ashtekar et al., 2003; Ashtekar
et al., 2006)

H ≡ Hgrav +HM

� − 1
2κc2

∫ d3x ϵijkFi
ab

EajEbk�
q

√ +HM ,
(2.9)

whereHM � p2ϕ/(2 �
q

√ ), with pϕ being the momentum conjugate
of ϕ.

The elementary operators in the standard LQC are the triads5

p and elements of the holonomies given by êiμc/2 of c, where μ �������
Δl2pl/

∣∣∣∣∣p∣∣∣∣∣√
with Δ ≡ 4

�
3

√
πc, and Δl2pl being the minimum non-zero

eigenvalue of the area operator, and the Planck length lpl is
defined as lpl ≡

���
ZG

√
. However, it is found that, instead of

using the eigenket
∣∣∣∣p〉 of the area operator p as the basis, it is

more convenient to use the eigenket |v〉 of the volume operator
v̂(≡ sgn(p)|p|3/2), where

v̂|v〉 � (8πc
6

)3/2|v|
K
l3pl|v〉, êiμc/2|v〉 � |v + 1〉, (2.10)

with K ≡ 2
�
2

√ (3 ����
3

�
3

√√ )−1. Let Ψ(v, ϕ) denote the wavefunction
in the kinematical Hilbert space of the gravitational field coupled
with the scalar field ϕ, we have

ϕ̂Ψ(v, ϕ) � ϕΨ(v, ϕ),
p̂ϕΨ(v, ϕ) � −iZ z

zϕ
Ψ(v, ϕ),

̂∣∣∣∣p −3/2Ψ(v, ϕ) � B(v)Ψ(v, ϕ),∣∣∣∣
(2.11)

where

B(v) ≡ ⎛⎝ 6
8πcl2pl

⎞⎠3/2

B(v),

B(v) ≡ (3
2
)3

K|v| ∣∣∣∣|v + 1|1/3 − |v − 1|1/3∣∣∣∣3.
(2.12)

Then, the equation satisfied by selecting the physical states
ĤΨ(v, ϕ) � 0 can be cast in the form,

z2ϕΨ(v, ϕ) � 1
B(v)[C+(v)Ψ(v + 4, ϕ) − Co(v)Ψ(v, ϕ)

+ C−(v)Ψ(v − 4, ϕ)], (2.13)

where

C+(v) ≡ 3πKG
8

|v + 2| ||v + 1| − |v + 3||,
C−(v) ≡ C+(v − 4), Co(v) ≡ C+(v) + C−(v).

(2.14)

This is the main result of LQC (Ashtekar et al., 2006), which shows
that: 1) It is a second order quantum difference equation with uniform
discreteness in volume, rather than a simple differential equation, a
direct consequence of the discrete nature of loop quantumgeometry. 2)
It provides the evolution of the quantum cosmological wavefunction
Ψ(v, ϕ), in which the scalar field serves as a clock. Thus, once an initial
state Ψ(v, ϕ0) is given at the initial moment ϕ0, the study of the
quantum dynamics of LQC can be carried out. It is found that, instead
of a big bang singularity, a quantum bounce is generically produced, a
result confirmed through extensive numerical simulations (Diener
et al., 2014; Diener et al., 2014; Agullo et al., 2017; Diener et al., 2017;
Singh, 2018) and an exactly solvable model (Ashtekar et al., 2010).
Using this model, one can compute the probability for the quantum
bounce which turns out to be unity for an arbitrary superposition of
wavefunctions (Craig and Singh, 2013).

For the states sharply peaked around a classical solution, we
can obtain “effective” Friedmann and Raychaudhuri (FR)
equations, by using the geometric quantum mechanics in
terms of the expectation values of the operators (b̂, v̂, ϕ̂, p̂ϕ),

_b � {b,H}, _v � {v,H}, (2.15)

_ϕ � {ϕ,H}, _pϕ � {pϕ,H}, (2.16)

which take the same forms as their classical ones, but all the
quantities now represent their expectation values, AI ≡ 〈ÂI〉.
Then, it was found that the effective Hamiltonian is given by
(Ashtekar et al., 2006),

5For a modification of LQC based on using gauge-covariant fluxes, see (Liegener
and Singh, 2019; Liegener and Singh, 2020).
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Heff . � − 3
8πc2μ2G

|p|1/2sin2(μc) + 1
2
|p|3/2p2ϕ, (2.17)

which can also be expressed in terms of v and b via the relations
v � ∣∣∣∣p|3/2 and b � c/

��∣∣∣∣p∣∣∣∣√
. Then, from Eqs 2.15, 2.16 one can find

that the “effective” FR equations are given by,

H2 � 8πG
3

ρ(1 − ρ

ρc
), (2.18)

_H � −4πG(ρ + P)(1 − ρ

ρc
), (2.19)

where

H ≡
_v
3v

� _a
a
, ρc ≡

3
8πλa2c2G

,

ρ ≡
HM

v
, P ≡ − zHM

zv
,

(2.20)

and v � voa3. Since H2 cannot be negative, from Eq. 2.18 we can
see that we must have ρ≤ ρc, and at ρ � ρc we haveH

2 � 0, that is,
a quantum bounce occurs at this moment. When ρ≪ ρc, the
quantum gravity effects are negligible, whereby the classical
relativistic limit is obtained.

For a scalar field ϕ with its potential V(ϕ), we have

HM ≡ Hϕ � v[ p2ϕ
2v2

+ V(ϕ)]. (2.21)

Then, from Eq. 2.16 we find that

_ϕ � pϕ
v
, (2.22)

_pϕ � −vV,ϕ(ϕ). (2.23)

In the rest of this review, we shall consider only the states that
are sharply peaked around a classical solution, so the above
“effective” descriptions are valid, and the questions raised
recently in (Kamiński et al., 2020) are avoided.

2.2 Effective Dynamics of mLQC-I
As mentioned in the introduction, an important open issue in
LQC is its connection with LQG (Brunnemann and Fleischhack,
2007; Engle, 2007; Brunnemann and Koslowski, 2011). In
particular, in LQC the spacetime symmetry is first imposed (in
the classical level), before the quantization process is carried out.
However, it is well-known that this is different from the general
process of LQG (Ashtekar and Lewandowski, 2004; Thiemann,
2007; Rovelli, 2008; Bojowald, 2011; Gambini and Pullin, 2011;
Ashtekar and Pullin, 2017), and as a result, different Hamiltonian
constraints could be resulted, hence resulting in different Planck
scale physics. Though the question of ambiguities in obtaining the
Hamiltonian in LQG is still open, based on some rigorous
proposals by Thiemann (Thiemann, 1998a; Thiemann, 1998b;
Giesel and Thiemann, 2007), various attempts have been carried
out, in order to obtain deeper insights into the question.

One of the first attempts to understand this issue was made in
(Dapor and Liegener, 2018a), in which the Euclidean and
Lorentzian terms given by Eqs 2.5, 2.6 are treated differently,

by closely following the actual construction of LQG. To be more
specific, in the full theory (Ashtekar and Lewandowski, 2004;
Thiemann, 2007; Rovelli, 2008; Bojowald, 2011; Gambini and
Pullin, 2011; Ashtekar and Pullin, 2017), the extrinsic curvature
in the Lorentzian term (2.6) can be expressed in terms of the
connection and the volume as

Ki
a �

1
κc3

{Ai
a, {H(E)

grav,V}}, (2.24)

which once substituted back into Eq. 2.6 lead to an expression of
H(L)

grav different from that ofH(E)
grav in the standard LQC (see (Yang

et al., 2009) for more details). Correspondingly, one is able to
obtain the following “effective”Hamiltonian (Yang et al., 2009; Li
et al., 2018a),

HI
eff . �

3v

8πGλ2
{sin2(λb) − (c2 + 1)sin2(2λb)

4c2
}

+HM .

(2.25)

Hence, the Hamilton’s equations take the form,

_v � 3vsin(2λb)
2cλ

{(c2 + 1)cos(2λb) − c2}, (2.26)

_b � 3sin2(λb)
2cλ2

{c2sin2(λb) − cos2(λb)}
−4πGcP,

(2.27)

where P represents the pressure defined in Eq. 2.20. Once the
matter Hamiltonian HM is specified, together with the
Hamiltonian constraint,

H ≈ 0, (2.28)

Equations 2.26, 2.27 uniquely determine the evolution of the
Universe. Using the non-graph changing regularization of the
Hamiltonian (Thiemann, 1998a; Thiemann, 1998b; Giesel and
Thiemann, 2007), the expectation values of the Hamiltonian
operator yield the same “effective” Hamiltonian of Eq. 2.25 to
the leading order (Dapor and Liegener, 2018a).

It has been shown in detail that the big bang singularity is
generically replaced by a quantum bounce when the energy
reaches its maximum ρIc (Yang et al., 2009; Dapor and Liegener,
2018a; Li et al., 2018a; Li et al., 2018b; Li et al., 2019), where

ρIc ≡
ρc

4(1 + c2), (2.29)

and the Universe is asymmetric with respect to the bounce, in
contrast to LQC.

To write Eqs 2.26–2.28 in terms of H, ρ and P, it was found
that one must distinguish the pre- and post- bounce phases (Li
et al., 2018a). In particular, before the bounce, the modified FR
equations take the form (Li et al., 2018a),

H2 � 8πGαρΛ
3

(1 − ρ

ρIc
)⎡⎢⎢⎣1 +⎛⎝1 − 2c2 +

�������
1 − ρ/ρIc√

4c2(1 + �������
1 − ρ/ρIc√ )⎞⎠

ρ

ρIc
⎤⎥⎥⎦,
(2.30)
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€a
a
� −4παG

3
(ρ + 3P − 2ρΛ) + 4πGαP⎛⎝ 2 − 3c2 + 2

�������
1 − ρ/ρIc√

(1 − 5c2)(1 + �������
1 − ρ/ρIc√ )⎞⎠

ρ

ρIc

−4παGρ
3

⎡⎢⎢⎢⎢⎣2c2 + 5c2(1 + �������
1 − ρ/ρIc√ ) − 4(1 + �������

1 − ρ/ρIc√ )2
(1 − 5c2)(1 + �������

1 − ρ/ρIc√ )2 ⎤⎥⎥⎥⎥⎦ ρ

ρIc
,

(2.31)

where

α ≡
1 − 5c2

c2 + 1
, ρΛ ≡

c2ρc(1 + c2)(1 − 5c2). (2.32)

As ρ≪ ρIc, Eqs 2.30, 2.31 reduce, respectively, to

H2 ≈
8παG
3

(ρ + ρΛ), (2.33)

€a
a
≈ − 4παG

3
(ρ + 3P − 2ρΛ). (2.34)

These are exactly the FR equations in GR for an ordinary
matter field coupled with a positive cosmological constant ρΛ, and
a modified Newton’s constant, Gα ≡ αG. For c ≈ 0.2375, we have
ρΛ ≈ 0.03ρpl , which is of the same order as the one deduced
conventionally in quantum field theory for the vacuum energy in
our Universe. In addition, we also have∣∣∣∣∣∣∣Gα

G
− 1

∣∣∣∣∣∣∣
c≈0.2375

≃ 0.32> 1
8
. (2.35)

Finally, we want to emphasize that the minimal energy density
of this branch, for which the Hubble rate vanishes, turns out to be
negative which can be shown as ρmin � − 3

8πGλ2
≈ −0.023. As a

result, the necessary condition to generate a cyclic Universe in
mLQC-I is the violation of the weak energy condition which is in
contrast to the cyclic universes in LQCwhere the energy density is
always non-negative (Li and Singh).

In the post-bounce phase (t > tB), from Eqs 2.26–2.28 we find
that (Li et al., 2018a),

H2 � 8πGρ
3

(1 − ρ

ρIc
)⎡⎣1 + c2

c2 + 1
(

����
ρ/ρIc√

1 +
�������
1 − ρ/ρIc√ )

2

⎤⎦, (2.36)

€a
a
� −4πG

3
(ρ + 3P) + 4πGρ

3
⎡⎢⎢⎢⎢⎣(7c2 + 8) − 4ρ/ρIc + (5c214 + 8) �������

1 − ρ/ρIc√
(c2 + 1)(1 + �������

1 − ρ/ρIc√ )2 ⎤⎥⎥⎥⎥⎦ ρ

ρIc

+4πGP⎡⎢⎣ 3c2 + 2 + 2
�������
1 − ρ/ρIc√

(c2 + 1)(1 + �������
1 − ρ/ρIc√ )⎤⎥⎦

ρ

ρIc
,

(2.37)

from which we obtain

_H � 4Gπ(P + ρ)(1 + c2) ⎛⎝2c2 + 2
ρ

ρIc
− 3c2

�����
1 − ρ

ρIc

√
− 1⎞⎠. (2.38)

Therefore, regardless of the matter content, the super-inflation
(starting at the bounce) will always end at ρ � ρs, where

ρs �
ρIc
8
(4 − 8c2 − 9c4 + 3c2

������������
8 + 16c2 + 9c4

√ ), (2.39)

for which we have _H(ρs) � 0.
In the classical limit ρ/ρIc ≪ 1, Eqs 2.36, 2.37 reduce,

respectively, to

H2 ≈
8πG
3

ρ, (2.40)

€a
a
≈ − 4πG

3
(ρ + 3P), (2.41)

whereby the standard relativistic cosmology is recovered.
It is remarkable to note that in the pre-bounce phase the limit

ρ/ρIc ≪ 1 leads to Eqs 2.33, 2.34 with a modified Newtonian
constantGα, while in the post-bounce the same limits leads to Eqs
2.40, 2.41 but now with the precise Newtonian constant G.

2.3 Effective Dynamics of mLQC-II
In LQG, the fundamental variables for the gravitational sector are
the su (2) Ashtekar-Barbero connection Ai

a and the conjugate
triad Ea

i . When the Gauss and spatial diffeomorphism constraints
are fixed, in the homogeneous and isotropic Universe the only
relevant constraint is the Hamiltonian constraint, from which we
obtain the FR equations, as shown in the previous section. The
Hamiltonian in mLQC-II arises from the substitution

Ki
a �

Ai
a

c
, (2.42)

in the Lorentzian term (2.6). Then, the following effective
Hamiltonian is resulted (Yang et al., 2009),

HII
eff . � − 3v

2πGλ2c2
sin2(λb

2
){1 + c2sin2(λb

2
)}

+HM ,

(2.43)

from which we find that the corresponding Hamilton’s equations
are given by,

_v � 3v sin(λb)
cλ

{1 + c2 − c2cos(λb)}, (2.44)

_b � −
6 sin2(λb

2
)

cλ2
{1 + c2sin2(λb

2
)} − 4πGcP

� −4πGc(ρ + P).
(2.45)

It can be shown that the corresponding (modified) FR
equations now read (Li et al., 2018b),

H2 � 8πGρ
3

(1 + c2
ρ

ρc
)(1 − (c2 + 1)ρ

Δ2ρc
), (2.46)

€a
a
� −4πG

3
(ρ + 3P) − 4πGPρ

Δρc
[3(c2 + 1) − 2Δ]

−4πGρ
2

3Δ2ρc
[7c2 − 1 + (5c2 − 3)(Δ − 1) − 4c2ρ

ρc
],

(2.47)
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where Δ ≡ 1 + ���������
1 + c2ρ/ρc

√
. From these equations we can see that

now the quantum bounce occurs when ρ � ρIIc , at which we have
H � 0 and €a> 0, where

ρIIc � 4(c2 + 1)ρc, (2.48)

which is different from the critical density ρc in LQC as well
as the one ρIc in mLQC-I. Therefore, the big bang singularity
is also resolved in this model, and replaced by a quantum
bounce at ρ � ρIIc , similar to LQC and mLQC-I, despite the
fact that the bounce in each of these models occurs at a
different energy density. However, in contrast to mLQC-I,
the evolution of the Universe is symmetric with respect to
the bounce, which is quite similar to the standard
LQC model.

In addition, similar to the other two cases, now the bounce is
accompanied by a phase of super-inflation, i.e., _H > 0, which ends
at _H(ρs) � 0, but now ρs is given by,

ρs �
ρc
8c2

(3(c2 + 1) �����������
1 + 2c2 + 9c4

√
+ 9c4 + 10c2 − 3). (2.49)

For c � 0.2375, we find ρs � 0.5132ρIIc .
When ρ≪ ρIIc , the modified FR Eqs 2.46, 2.47 reduce to,

H2 ≈
8πG
3

ρ, (2.50)

€a
a
≈ − 4πG

3
(ρ + 3P), (2.51)

which are identical to those given in GR. Therefore, in this model,
the classical limit is obtained in both pre- and post-bounce when
the energy density ρ is much lower than the critical one ρIIc .

2.4 Universal Properties of mLQC-I/II
Models
To study further the evolution of the Universe, it is necessary to
specify the matter content HM . For a single scalar field with its
potential V(ϕ), the corresponding Hamiltonian takes the form
(2.21). As a result, the Hamilton’s equations of the matter sector
are given by Eqs 2.22, 2.23.

The effective quantum dynamics of LQC, mLQC-I, and
mLQC-II were studied in detail recently in (Li et al., 2018b) for
a single scalar field with various potentials, including the
chaotic inflation, Starobinsky inflation, fractional
monodromy inflation, non-minimal Higgs inflation, and
inflation with an exponential potential, by using dynamical
system analysis. It was found that, while several features of
LQC were shared by the mLQC-I and mLQC-II models, others
belong to particular models. In particular, in the pre-bounce
phase, the qualitative dynamics of LQC and mLQC-II are quite
similar, but are strikingly different from that of mLQC-I. In all
the three models, the non-perturbative quantum gravitational
effects always result in a non-singular post-bounce phase, in
which a short period of super-inflation always exists right after
the bounce, and is succeeded by the conventional inflation.
The latter is an attractor in the phase space for all the three
models.

Moreover, similar to LQC (Zhu et al., 2017; Zhu et al., 2017)6,
for the initially kinetic energy dominated conditions,

1
2
_ϕ
2

B ≫V(ϕB), (2.52)

it was found that the evolution of the Universe before the
reheating is universal. In particular, in the post-bounce phase
(between the quantum bounce and the reheating), the evolution
can be uniquely divided into three phases: bouncing, transition
and slow-roll inflation, as shown in Figure 1 for the Starobinsky
potential,

V(ϕ) � 3m2

32πG
(1 − e−

����
16πG/3

√
ϕ)2. (2.53)

For other potentials, similar results can be obtained, as long as
at the bounce the evolution of the Universe is dominated by the
kinetic energy of the inflaton w(ϕB) ≃ 1 (Li et al., 2019; Xiao,
2020).

In each of these three phases, the evolutions of a(t) and ϕ(t)
can be well approximated by analytical solutions. In particular,
during the bouncing phase, they are given by

a(t) � [1 + 24πGρIc(1 + Ac2

1 + Bt
)t2]1/6

,

ϕ(t) � ϕB ±
mpl arcsinh(

�����������������
24πGρIc(1 + Cc2

1 + Dt
)

√
t)����������������

12πG(1 + Cc2

1 + Dt
)

√ ,

(2.54)

for mLQC-I model, where the parameters A, B, C and D are fixed
through numerical simulations. It was found that the best fitting
is provided by (Li et al., 2019),

A � C � 1.2, B � 6, D � 2. (2.55)

For the mLQC-II model, during the bouncing phase a(t) and
ϕ(t) are given by

a(t) � [1 + 24πGρIIc (1 + Ac2

1 + Bt
)t2]1/6

,

ϕ(t) � ϕB ±
mpl arcsinh(

������������������
24πGρIIc (1 + Cc2

1 + Dt
)

√
t)����������������

12πG(1 + Cc2

1 + Dt
)

√ ,

(2.56)

but now with,

6In LQC, this universality was first found for the quadratic and Starobinsky
potentials (Zhu et al., 2017; Zhu et al., 2017) [see also (Bhardwaj et al., 2019)],
and later was shown that they are also true for other potentials, including the
power-law potentials (Shahalam et al., 2017; Shahalam, 2018), α-attractor
potentials (Shahalam et al., 2018; Shahalam et al., 2020), Monodromy
potentials (Sharma et al., 2018), warm inflation (Xiao and Wang, 2020),
Tachyonic inflation (Xiao, 2019) and even in Brans-Dicke LQC (Jin et al.,
2019; Sharma et al., 2019).
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A � 2.5, B � 7, C � D � 2. (2.57)

In the transition and slow-roll inflationary phases, the
functions a(t) and ϕ(t) were given explicitly in (Li et al., 2019).

For the initially potential energy dominated cases,

1
2
_ϕ
2

B ≪V(ϕB), (2.58)

it was found that such universalities are lost. In particular, for the
Starobinsky potential, the potential energy dominated bounce
cannot give rise to any period of inflation for both mLQC-I and
mLQC-II models, quite similar to what happens in LQC (Bonga
and Gupt, 2016; Bonga and Gupt, 2016).

2.5 Probabilities of the Slow-Roll Inflation in
mLQC-I/II Models
To consider the probability of the slow-roll inflation in the
modified LQC models, let us start with the phase space S of
the modified Friedmann and Klein-Gordon equations, which
now is four-dimensional (4D), and consists of the four
variables, (v, b) and (ϕ, pϕ), from the gravitational and matter
sectors, respectively. Using the canonical commutation relations,
the symplectic form on the 4D phase space is given by (Singh
et al., 2006; Zhang and Ling, 2007; Ashtekar and Sloan, 2011a;
Ashtekar and Sloan, 2011b; Corichi and Karami, 2011; Linsefors
and Barrau, 2013; Corichi and Sloan, 2014; Chen and Zhu, 2015;
Bedic and Vereshchagin, 2019),

Ω � dpϕ ∧ dϕ + dv ∧ db
4πGc

. (2.59)

However, after taking the effective Hamiltonian constraint
into account,

C � 16πG{Hgrav(v, b) +
p2ϕ
2v

+ vV(ϕ)} ≃ 0, (2.60)

where ‘‘ ≃ } means that the equality holds only on Γ, we can see
that the 4D phase space S reduces to a three-dimensional (3D)
hypersurface Γ.

On the other hand, the phase space S is isomorphic to a 2-
dimensional (2D) gauge-fixed surface Γ̂ of Γ, which is intersected
by each dynamical trajectory once and only once (Ashtekar and
Sloan, 2011a; Ashtekar and Sloan, 2011b). From the FR
equations, it can be shown that for both mLQC-I and mLQC-
II the variable b satisfies the equation (Li et al., 2018a; Li et al.,
2018b; Li et al., 2019),

_b � −4πGc(ρ + P). (2.61)

For any given matter field that satisfies the weak energy
condition (Hawking and Ellis, 1973), we have ρ + P > 0, so the
function b is monotonically decreasing. Then, a natural
parameterization of this 2D surface is b � constant, say, b0.
Hence, using the Hamiltonian constraint (2.60) we find

pAϕ � v{−2[ĤA

grav
+ V(ϕ)]}1/2

, (2.62)

where A � I, II, and

ĤA

grav ≡ v−1HA
grav(v, b0). (2.63)

On the other hand, from Eqs 2.25, 2.43 we find that ĤA
grav �

ĤA
grav(b0) � constant on Γ̂. Thus, we find

dpAϕ |̂Γ �
pAϕ
v
dv − v2V,ϕ

pϕ
dϕ. (2.64)

Inserting this expression into Eq. 2.59, we find that the pulled-
back symplectic structure Ω̂ reads

Ω̂A

Γ̂ � {−2[ĤA

grav
(b0) + V(ϕ)]}1/2

dϕ∧ dv,
∣∣∣∣∣∣∣∣ (2.65)

from which we find that the Liouville measure dμ̂L on Γ̂ is
given by

dμ̂AL � {−2[ĤA

grav
(b0) + V(ϕ)]}1/2

dϕdv. (2.66)

Note that dμ̂AL does not depend on v, so that the integral with
respect to dv is infinite. However, this divergency shall be
canceled when calculating the probability, as it will appear in
both denominator and numerator. Therefore, the measure for the
space of physically distinct solutions can be finally taken as

dωA � {−2[ĤA

grav
(b0) + V(ϕ)]}1/2

dϕ, (2.67)

so that the 2D phase space Γ̂ is further reduced to an interval
ϕ ∈ (ϕmin, ϕmax). It should be noted that such a defined measure
depends explicitly on b0, and its choice in principle is arbitrary.
However, in loop cosmology there exists a preferred choice,
which is its value at the quantum bounce b0 � b(tB) (Ashtekar
and Sloan, 2011a; Ashtekar and Sloan, 2011b). With such a
choice, the probability of the occurrence of an event E becomes

P(E) � 1
D ∫

I(E)
{−2[ĤA

grav
(bB) + V(ϕ)]}1/2

dϕ, (2.68)

where I(E) is the interval on the ϕB-axis, which corresponds to
the physically distinct initial conditions in which the event E
happens, and D is the total measure

D ≡ ∫ϕmax

ϕmin

{−2[ĤA

grav
(bB) + V(ϕ)]}1/2

dϕ. (2.69)

Once the probability is properly defined, we can calculate it in
different models of the modified LQCs. In LQC (Ashtekar and
Sloan, 2011a; Ashtekar and Sloan, 2011b), the calculations were
carried out for the quadratic potential. In order to compare the
results obtained in different models, let us consider the same
potential. Then, for the mLQC-I model it was found that (Li et al.,
2019)

sin (λbIB) �
������

1
2c2 + 2

√
, sin (2λbIB) �

������
2c2 + 1

√
c2 + 1

,
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pIϕ � v(2ρIc − 2V)12, dωI � (2ρIc − 2V)12dϕ, (2.70)

so that the probability for the desired slow-roll not to
happen is,

PI(not realized)≲ ∫0.917

−5.158 dω
I

∫ϕImax

−ϕImax
dωI 

≃ 1.12 × 10−5, (2.71)

where ϕImax � 3.49 × 105 mpl .
In mLQC-II, following a similar analysis, it can be shown that

the probability for the desired slow-roll not to happen is (Li et al.,
2019),

PII(not realized)≲ 2.62 × 10−6. (2.72)

Note that in LQC the probability for the desired slow roll
inflation not to occur is (Ashtekar and Sloan, 2011a; Ashtekar and
Sloan, 2011b),

PLQC(not realized)≲ 2.74 × 10−6, (2.73)

which is smaller than that for mLQC-I and slightly larger than the
one for mLQC-II. However, it is clear that the desired slow-roll
inflation is very likely to occur in all the models, including the two
modified LQC ones.

3 PRIMORDIAL POWER SPECTRA OF
MODIFIED LQCS IN DRESSED METRIC
APPROACH
As mentioned above, in the literature there exist several
approaches to investigate the inhomogeneities of the Universe.
Such approaches can be generalized to the modified LQCmodels,
including mLQC-I and mLQC-II. In this section we shall focus
ourselves on cosmological perturbations in the framework of
mLQCs following the dressed metric approach (Agullo et al.,
2012; Agullo et al., 2013; Agullo et al., 2013), while in the next
section we will be following the hybrid approach (Fernández-
Méndez et al., 2012; Fernández-Méndez et al., 2013; Castelló
Gomar et al., 2014; Gomar et al., 2015; Martínez and Olmedo,
2016). We shall restrict ourselves to the effective dynamics, as we
did with the homogeneous background in the last section. Such
investigations in general include two parts: 1) the initial
conditions; and 2) the dynamical evolutions of perturbations.
In the framework of effective dynamics, the latter is a second-
order ordinary differential equation in the momentum space, so
in principle once the initial conditions are given, it uniquely
determines the cosmological (scalar and tensor) perturbations.

However, the initial conditions are a subtle issue, which is true
not only in LQC but also in mLQCs. This is mainly because that
in general there does not exist a preferred initial time and state for
a quantum field in an arbitrarily curved space-time (Birrell and
Davies, 1982; Wald, 1994; Mukhanov and Winitzki, 2007; Parker
and Toms, 2009). If the Universe is sufficiently smooth and its
evolution is sufficiently slow, so that the characteristic scale of
perturbations is much larger than the wavelengths of all the

relevant modes, a well justified initial state can be defined: the BD
vacuum. This is precisely the initial state commonly adopted in
GR at the beginning of the slow-roll inflation, in which all the
relevant perturbation modes are well inside the comoving Hubble
radius (Baumann, 2009) [cf. Figure 2].

However, in LQC/mLQCs, especially near the bounce, the
evolution of the background is far from “slow,” and its geometry
is also far from the de Sitter. In particular, for the perturbations
during the bouncing phase, the wavelengths could be larger,
equal, or smaller than the corresponding characteristic scale,
as it can be seen, for example, from Figure 5. Thus, it is in
general impossible to assume that the Universe is in the BD
vacuum state at the bounce (Agullo et al., 2013; Ashtekar and
Gupt, 2017; Ashtekar and Gupt, 2017; Zhu et al., 2017; Zhu et al.,
2017). Therefore, in the following let us first elaborate in more
details about the subtle issues regarding the initial conditions.

3.1 Initial Conditions for Cosmological
Perturbations
The initial conditions for cosmological perturbations in fact
consists of two parts: when and which? However, both
questions are related to each other. In LQC literature, for
cosmological perturbations, two different moments have been
chosen so far in the dressed and hybrid approaches: 1) the remote
past in the contracting phase (Li et al., 2020c) and 2) the bounce
(Agullo et al., 2013; Ashtekar and Gupt, 2017; Ashtekar and Gupt,
2017). To see which conditions we need to impose at a given
moment, let us first recall how to impose the initial conditions in
GR, in which the scalar perturbations are governed by the
equation,

vk″ + (k2 − z″
z
)vk � 0, (3.1)

where k denotes the comoving wave number, and z ≡ a _δϕ/H,
with δϕ being the scalar field perturbations, ϕ � ϕ(t) + δϕ(t, x).
A prime denotes a derivative with respect to the conformal time η,
while an over dot denotes a derivative with respect to the cosmic
time t, where dη � dt/a(t). The standard choice of the initial sate
is the Minkowski vacuum of an incoming observer in the far past,
k≫ aH [cf. Figure 2]. In this limit, Eq. 3.1 becomes
vk″ + k2vk � 0, which has the solution,

vk ≃
αk��
2k

√ e−ikη + βk��
2k

√ eikη, (3.2)

where αk and βk are two integration constants, and must satisfy
the normalized condition,

v*kvk′ − v*k′vk � −i. (3.3)

If we further require the vacuum to be the minimum energy
state, a unique solution exists, which is given by αk � 1, βk � 0,
that is,

lim
k≫ aH

vk ≃
1��
2k

√ e−ikη, (3.4)
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which is often referred to as the BD vacuum (Baumann, 2009).
Consider the de Sitter space as the background, we have

a(η) � 1/(−ηH), and z″/z � a″/a � 2/L2H , where LH ≡ 1/(aH) �
−η is the corresponding comoving Hubble radius. Then, Eq. 3.1
reads,

vk″ + ( 1

λ2
− 2
L2
H

)vk � 0, (3.5)

where λ (≡ 1/k) denotes the comoving wavelength. The above
equation has the following exact solutions,

vk � αk��
2k

√ e−ikη(1 − i
kη

) + βk��
2k

√ eikη(1 + i
kη

). (3.6)

It is clear that on scales much smaller than the comoving
Hubble radius (λ≪ LH), vk is oscillating with frequency k and
constant amplitude, given by Eq. 3.2. Then, setting (αk, βk) �
(1, 0) we find that Eq. 3.6 reduces to

vk � 1��
2k

√ e−ikη(1 − i
kη

). (3.7)

Note that if the initial time ti is chosen sufficiently small,
i.e., ti ≪ tend or

∣∣∣∣kη∣∣∣∣≫ 1, all the modes are inside the comoving
Hubble radius LH [cf. Figure 2], and the BD vacuum (3.4)
becomes a natural choice.

However, on the scales much larger than the comoving Hubble
radius (λ≫ LH), the k2 term is negligible compared to the
squeezing term, z″/z, and as a result, the fluctuations will stop
oscillating and the amplitude of vk starts to increase, yielding

vk ≃ z(η). (3.8)

As shown in Figure 2, if the initial time ti is chosen to be
sufficiently early, all the currently observedmodes kph ∈ (0.1, 1000) ×
k*0 will be well inside the comoving Hubble radius at t � ti, so the
mode function vk can be well approximately given byEq. 3.4, which is
the well-known zeroth order adiabatic state, where kp0 � 0.002 Mpc−1

and kph(t) ≡ k/a(t) (Bennett et al., 1996; Banday et al., 1996;
Komatsu et al., 2011; Larson et al., 2011; Ade and PLANCK
Collaboration, 2016; Aghanim and PLANCK Collaboration, 2020).

In modified LQC models, the mode function vk satisfies the
following modified equation,

vk″ +Ω2
tot(η, k)vk � 0, (3.9)

where Ω2
tot(η, k) depends on the homogeneous background and

the inflation potential V(ϕ), so it is model-dependent. Therefore,
the choice of the initial conditions will depend on not only the
modified LQC models to be considered but also the moment at
which the initial conditions are imposed.

One of the main reasons to choose the remote past in the
contracting phase as the initial time for perturbations is that at such
time either the background is well described by the de Sitter space
(mLQC-I) or the expansion factor a(t) becomes so large that the
curvature of the background is negligible (mLQC-II and LQC), so
imposing the BD vacuum for mLQC-II and LQC and the de Sitter
state given byEq. 3.7 for mLQC-I at thismoment is well justified. It
should be noted that the reason to refer to the state described by

Eq. 3.7 as the de Sitter state is the following: In the slow-roll
inflation, the homogeneous and isotropic Universe is almost de
Sitter, as the Hubble parameterH ≡ _a/a is almost a constant, so we
have a(η) ≃ 1/(−Hη). For ti ≪ tend we have a(η)≪ 1, and∣∣∣∣ηk∣∣∣∣ ≃ ∣∣∣∣Hη

∣∣∣∣≫ 1, so the choice (αk βk) � (1, 0) will lead Eq. 3.7
directly to Eq. 3.4 at the onset of the slow-roll inflation [cf.
Figure 2]. However, in the deep contracting phase of the same
de Sitter space, now the Universe is very large, that is, a(η)≫ 1, so
we must have

∣∣∣∣Hη
∣∣∣∣≪ 1 and

∣∣∣∣ηk∣∣∣∣ ≃ ∣∣∣∣k/HΛ
∣∣∣∣a−1(η), which can be

very small in sufficiently early times of the contracting phase, so the
terms i/(kη) in Eq. 3.6 now cannot be neglected. To distinguish
this case from the one described by Eq.3.4, In this review we refer
the state described by Eq. 3.7 with the term i/(kη) not being
negligible as the de Sitter state, while the state described by Eq. 3.4
is still called the BD vacuum state, or simply the BD vacuum.

On the other hand, if the initial time is chosen to be at the
bounce, cautions must be taken on what initial conditions can be
imposed consistently. In particular, if at this moment some modes
are inside the comoving Hubble radius and others are not, it is
clear that in this case imposing the BD vacuum at the bounce will
lead to inconsistencies. In addition, there also exist the cases in
which particle creation in the contracting phase is not negligible,
then it is unclear how a BD vacuum can be imposed at the bounce,
after the Universe is contracting for such a long time before the
bounce. Thus, in these cases other initial conditions need to be
considered, such as the fourth-order adiabatic vacuum (Agullo
et al., 2013; Ashtekar and Gupt, 2017; Ashtekar and Gupt, 2017;
Zhu et al., 2017; Zhu et al., 2017).

With the above in mind, in the following we turn to consider
power spectra of the cosmological perturbations.

3.2 Power Spectra of Cosmological
Perturbations
Since the evolutions of the effective dynamics of the homogeneous
backgrounds for mLQC-I and mLQC-II are different, in this
subsection let us first consider the case of mLQC-I and then
mLQC-II. To compare the results with those obtained in LQC,
at the end of this subsection, we also discuss the LQC case.

3.2.1 mLQC-I
For mLQC-I, the power spectrum of the cosmological scalar
perturbations was first studied in (Agullo, 2018) for the quadratic
ϕ2 potential, and re-examined in (Li et al., 2020c). In the
terminology used in (Agullo, 2018), it was found that the
corresponding mode function vk( ≡ qk/a) satisfies Eq. 3.9 with

Ω2
tot � k2 − a″

a
+A−, r ≡

24πG _ϕ
2

ρ
,

A− ≡ a2[V(ϕ)r − 2V,ϕ(ϕ) �
r

√ + V,ϕϕ(ϕ)],
(3.10)

where r � 24πG _ϕ
2
/ρ and V(ϕ) denotes the scalar field potential.

It should be noted that, when generalizing the classical
expression of the function A− defined in Eq. 3.10 to its
corresponding quantum mechanics operator, there exists
ambiguities. In fact, classically A− only coincides with Ω2

Q in
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the expanding phase. The latter is a function of the phase space
variables which is explicitly given by (Agullo et al., 2013; Agullo,
2018; Agullo et al., 2018; Li et al., 2020c),

Ω2
Q � 3κ

p2ϕ
a4

− 18
p4ϕ
a6π2

a

− 12a
pϕ
πa
V,ϕ + a2V,ϕϕ, (3.11)

where πa is the moment conjugate to a, and given by one of
Hamilton’s dynamical equations,

πa � − 3a2

4πG
H, (3.12)

with the choice of the lapse function N � 1. Therefore,
πa < 0 (πa > 0) corresponds to H > 0 (H < 0). At the quantum
bounce we have H(tB) � 0, so that πa(tB) � 0. Then, Ω2

Q defined
by Eq. 3.11 diverges at the bounce. Hence, from the Friedmann
equation, H2 � (8πG/3)ρ, we find that

1
π2
a

� 2πG
3a4ρ

,
1
πa

� ±
����
2πG
3a4ρ

√
, (3.13)

where “-” corresponds to H > 0, and “+” to H < 0. Then, a direct
generalization leads to (Li et al., 2020c),

Ω2
Q � {A−, H ≥ 0,

A+, H ≤ 0, (3.14)

where

A ± ≡ a2[V(ϕ)r ± 2V,ϕ(ϕ) �
r

√ + V,ϕϕ(ϕ)]. (3.15)

It should be noted that in (Agullo, 2018) only the function A−
was chosen over the whole process of the evolution of the
Universe. The same choice was also adopted in (Agullo et al.,
2018; Agullo et al., 2021; Agullo et al., 2021).

In addition,A defined by Eq. 3.13 is not continuous across the
bounce, as the coefficient 2V,ϕ(ϕ) �

r
√

in general does not vanish at
the bounce. In (Zhu et al., 2017; Zhu et al., 2017; Navascues et al.,
2018) A− appearing in Eq. 3.10 was replaced by U(ϕ)(≡ Ω2

+)
over the whole process of the evolution of the homogeneous
Universe, where

Ω2
± ≡ a2[F2V(ϕ) ± 2FV,ϕ(ϕ) + V,ϕϕ(ϕ)], (3.16)

and F ≡ (24πG/ρ)1/2 _ϕ.
Another choice was introduced in (Li et al., 2020c), which was

motivated from the following considerations. The functions Ω2
±

defined above are not continuous across the bounce, quite similar
to A± . However, if we introduce the quantity Ω2 as,

Ω2 � a2[F2V(ϕ) + 2Θ(b)FV,ϕ(ϕ) + V,ϕϕ(ϕ)], (3.17)

to replace A− in Eq. 3.10, it could be continuous across the
bounce by properly choosingΘ(b). In particular, the variable b(t)
satisfies Eq. 2.61 (Li et al., 2018a; Li et al., 2018b; Li et al., 2019)7,

from which we can see that b(t) is always a monotonically
decreasing function for any matter that satisfies the weak
energy condition (Hawking and Ellis, 1973). Moreover, one
can construct a step-like function of b with the bounce as its
symmetry axis (Li et al., 2018a; Li et al., 2018b; Li et al., 2019).
Therefore, if we define Θ(b) as

Θ(b) � 1 − 2(1 + c2)sin2(λb), (3.18)

it behaves precisely as a step function, so that Ω2 smoothly
connects Ω2

± across the bounce, as shown in Figure 3.
In addition to the above choices, motivated by the hybrid

approach (Fernández-Méndez et al., 2012; Fernández-Méndez
et al., 2013; Castelló Gomar et al., 2014; Gomar et al., 2015;
Martínez and Olmedo, 2016), the following replacements for π−2

a
and π−1

a in Eq. 3.11 were also introduced in (Li et al., 2020c),

1
π2
a

→ 64π2G2λ2c2

9a4D , (3.19)

1
πa

→ − 8πGλcΘ(b)
3a2D1/2 , (3.20)

where

D ≡ (1 + c2)sin2(2λb) − 4c2sin2(λb). (3.21)

Such obtained Ω2
Q was referred to as Ω2

eff in (Li et al., 2020c),
and in Figure 4, we show the differences among Ω2, Ω2

eff and the
quantity a″/a, from which one can see that the term a″/a
dominates the other two terms over the whole range
t/tpl ∈ (−8, 104).

To study the effects of the curvature term, let us first introduce
the quantity,

kIB � (a″
a
)1/2

t�tB ≈ 1.60,
∣∣∣∣ (3.22)

which is much larger than other two terms Ω2 and Ω2
eff , where

Ω2(tB) � 1.75 × 10−10 and Ω2
eff(tB) � 0.006. Therefore, the

differences between Ω2 and Ω2
eff near the bounce are highly

FIGURE 3 | The potential terms Ω2
+ and Ω2

− are compared with their
smooth extensionΩ2 across the bounce in mLQC-I for the quadratic potential
V(ϕ) � 1

2m
2ϕ2(Li et al., 2020c).

7It is interesting to note that Eq. 2.61 holds not only in mLQC-I, but also in LQC
and mLQC-II.
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diluted by the background. On the other hand, in the post-bounce
phase, Ω2 and Ω2

eff coincide after t/tpl ≃ 104, while near the onset
of the inflation their amplitudes first become almost equal to that
of the curvature term, and then quickly exceeds it during the
slow-roll inflation, as we can see from Figure 4.

From Figure 4 we can also see that the difference between Ω2

and Ω2
eff lies mainly in the region near the bounce. However, as

the curvature term a″/a overwhelmingly dominates in this region,
it is usually expected that the impact of the different choices of Ω2

on the power spectrummight not be very large (Agullo et al., 2013;
Agullo, 2018; Agullo et al., 2018). However, in (Li et al., 2020c), it
was found that the relative difference in the magnitude of the
power spectrum in the IR and oscillating regimes could be as large
as 10%, where the relative difference is defined as,

E ≡ 2
∣∣∣∣∣∣∣P1 − P2

P1 + P2

∣∣∣∣∣∣∣. (3.23)

However, the power spectra obtained from Ω2 and Ω2
± are

substantially different even in the UV regime due to the (tiny)
difference between Ω2

± at the bounce, see Fig. 14 given in (Li
et al., 202c). In fact, the difference is so large that the power
spectrum calculated from Ω2

± is essentially already ruled out by
current observations.

With the clarification of the ambiguities caused by the
quantum mechanical generalization of the function A− defined

in Eq. 3.10, now let us turn to the issue of the initial conditions,
for which we consider only two representative potentials, the
quadratic and Starobinsky, given explicitly by

V �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2
m2ϕ2, quadratic,

3m2

32πG
(1 − e−

����
16πG/3

√
ϕ)2, Starobinsky.

(3.24)

In mLQC-I, the evolution of the effective (quantum)
homogeneous Universe is asymmetric with respect to the
bounce (Dapor and Liegener, 2018a; Li et al., 2018a; Li et al.,
2018b; Li et al., 2019). In particular, before the bounce (t < tB), the
Universe is asymptotically de Sitter, and only very near the
bounce (about several Planck seconds), the Hubble parameter
H which is negative in the pre-bounce regime suddenly increases
to zero at the bounce. Then, the Universe enters a very short
super-acceleration phase _H > 0 (super-inflation) right after the
bounce, which lasts until ρ ≃ ρIc/2, where _H(t)ρ ≃ 1

2ρ
I
c
� 0.

Afterward, for a kinetic energy dominated bounce
_ϕ
2
B ≫V(ϕB), it takes about 104 ∼ 106 Planck seconds before

entering the slow-roll inflation (Li et al., 2018a; Li et al.,
2018b; Li et al., 2019). Introducing the quantity,

λ2H ≡
a

a″ − aA−
� − 1

meff
, (3.25)

where meff is the effective mass of the modes, from Eq. 3.10 we
find that

Ω2
tot �

1

λ2
− 1

λ2H
�
⎧⎪⎨⎪⎩

> 0, λ2H > λ2,
< 0, 0< λ2H < λ2,
> 0, λ2H < 0,

(3.26)

where λ (≡ k−1) denotes the comoving wavelength of the mode k,
as mentioned above. Note that such a defined quantity λ2H
becomes negative when the effective mass is positive. In
Figure 5, we plot λ2H schematically for the quadratic and the
Starobinsky potentials with the mass of the inflaton set to 1.21 ×
10−6 mpl and 2.44 × 10−6 mpl respectively. The initial conditions
for the background evolution are set as follows: for the quadratic
potential, the inflaton starts with a positive velocity on the right
wing of the potential and for the Starobinsky potential the
inflaton is released from the left wing of the potential with a
positive velocity. For both potentials, the initial conditions are set
at the bounce which is dominated by the kinetic energy of the
inflaton field. The same mass parameters and similar initial
conditions are also used in the following figures where the
comoving Hubble radius is plotted schematically. In Figure 5,
the moments tH and ti are defined, respectively, by
a″(tH) � a″(ti) � 0, so ti represents the beginning of the
inflationary phase, and during the slow-roll inflation (Region
III), we have λ2H ≈ L2H/2 ≃ 1/(2a2H2), which is exponentially
decreasing, and all the modes observed today were inside the
comoving Hubble radius at t � ti. Between the times tH and ti, λ

2
H

is negative, and Ω2
tot is strictly positive. Therefore, during this

period the mode functions are oscillating, while during the epoch
between tB and tH , some modes (k−2 > k−2B ) are inside the
comoving Hubble radius, and others (k−2 < k−2B ) are outside it

FIGURE 4 | The potential terms Ω2 and Ω2
eff are compared with the

curvature term a’’/a in mLQC-I near the bounce and the preinflationary regime
for the quadratic potential V(ϕ) � 1

2m
2ϕ2(Li et al., 2020c).
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right after the bounce, where kB ≡ λ−1B (tB). In the contracting
phase, when t≪ tB, the Universe is quasi-de Sitter and
λ2H ≃ 1/(2a2H2) increases exponentially toward the bounce
t→ tB, as now a(t) is decreasing exponentially. However,
several Planck seconds before the bounce, the Universe enters
a non-de Sitter state, during which λ2H starts to decrease until the
bounce, at which a characteristic Planck scale kB (≡ 1/λH) can be
well defined. Therefore, for t≪ tB, all the modes are outside the
comoving Hubble radius. Then, following our previous
arguments, if the initial moment is chosen at t0 ≪ tB, the de
Sitter state seems not to be viable. However, when t0 ≪ tB we have
a(η) ≃ 1/(−η∣∣∣∣HΛ

∣∣∣∣), where HΛ � −[λ(1 + c2)]−1 and

Ω2
tot ≃ k2 − 2

η2
, (3.27)

for which Eq. 3.9 has the exact solutions given by Eq. 3.6.
Therefore, at sufficient early times, choosing αk � 1, βk � 0
leads us to the de Sitter state (3.7). From the above analysis it
is clear that this is possible precisely because of the isometry of the
de Sitter space, which is sufficient to single out a preferred state,
the de Sitter state (Agullo, 2018).

With the exact solution (3.7) as the initial conditions imposed
at the moment t0 (≪ tB) in the contracting phase, it was found
that the power spectrum of the cosmological scalar perturbations
can be divided into three different regimes: 1) the ultraviolet (UV)
(k> kmLQC−I); 2) intermediate (ki < k< kmLQC−I); and 3) infrared
(k< ki), where kmLQC−I ≡ aB

����
RB/6

√
and ki � ai

����
Ri/6

√
, and RB and

Ri are the curvatures given at the bounce and the beginning of the

slow-roll inflation, respectively [cf. Figure 5]. During the infrared
regime, the power spectrum increases as k increases, while in the
intermediate regime it is oscillating very fast and the averaged
amplitude of the power spectrum is decreasing as k increases. In
the UV regime, the spectrum is almost scale-invariant, which is
consistent with the current observations. There exists a narrow
band, 0.1 × k*0 < k< kmLQC−I, in which the quantum gravitational
effects could be detectable by current or forthcoming
cosmological observations (Agullo, 2018). Within the dressed
metric approach, one of the most distinctive features of the power
spectrum in mLQC-I is that its magnitude in the IR regime is of
the Planck scale (Agullo, 2018; Li et al., 2020c). This is because
those infrared modes are originally outside the Hubble horizon in
the contracting phase and thus their magnitudes are frozen as
they propagate across the bounce and then into the inflationary
phase. Considering that the contracting phase is a quasi de Sitter
phase with a Plank-scale Hubble rate, the magnitude of the IR
modes is thus also Planckian (Li et al., 2020c).

It should be noted that if the initial conditions are imposed at
the bounce, from Figure 5we can see clearly that some modes are
inside the comoving Hubble radius, and some are not. In
addition, in the neighborhood of the bounce, the background
is far from de Sitter. So, it is impossible to impose either the BD
vacuum or the de Sitter state at the bounce. In this case, one of the
choices of the initial conditions is the fourth-order adiabatic
vacuum, similar to that in LQC (Agullo et al., 2013; Ashtekar and
Gupt, 2017; Ashtekar and Gupt, 2017; Zhu et al., 2017; Zhu et al.,
2017).

3.2.2 mLQC-II
InmLQC-II, the evolution of the effective homogeneous Universe
is different from that of mLQC-I. In particular, it is symmetric
with respect to the bounce and in the initially kinetic energy
dominated case at the bounce the solutions can be well
approximated by Eq. 2.56 in the bouncing phase (Li et al.,
2018b; Li et al., 2019), similar to that of LQC (Ashtekar and
Singh, 2011; Ashtekar and Barrau, 2015; Bojowald, 2015; Agullo
and Singh, 2017).

When considering the cosmological perturbations, similar
ambiguities in the choices of π−2a and π−1

a in Eq. 3.11 exist. In
particular, for the choice of Eq. 3.17 now the function Θ(b) is
replaced by

Θ(b) � cos(λb
2
), (3.28)

which behaves also like a step function across the bounce and
picks up the right sign in both contracting and expanding phases,
so it smoothly connects Ω± defined by Eq. 3.16.

On the other hand, Ω2
eff is obtained from Eq. 3.11 by the

replacements,

1
π2
a

→ 4π2c2λ2

9a4sin2(λb/2)D, (3.29)

1
πa

→ −2πcλcos(λb/2)
3a2sin(λb/2)D1/2, (3.30)

but now with

FIGURE 5 | Schematic plot of λ2H defined by Eq. 3.25 vs. t for mLQC-I in
the dressed metric approach for the quadratic and the Starobinsky potentials,
where a’’(tH) � 0 and a’’(ti) � 0 with ti being the starting time of the
inflationary phase. During the slow-roll inflation, we have λ2H ≈ L2H/2. In
the contracting phase t< tB, the universe is initially de Sitter and we still have
λ2H ≈ L2H/2, but now it increases exponentially toward bounce t→ tB, as the
universe in this phase is exponentially contracting. However, several Planck
seconds before the bounce, the universe enters a non-de Sitter state, during
which λ2H starts to decrease until the bounce. The qualitative behavior of the
comoving Hubble radius is the same for the quadratic and the Starobinsky
potentials. Different potentials will change the values of tH and ti
correspondingly.
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D ≡ 1 + c2sin2(λb
2
). (3.31)

Such obtainedΩ2,Ω2
± andΩ2

eff are quite similar to those given
by Figures 3, 4 in mLQC-I. In particular, at the bounce, we have

Ω2(tB) � 1.59 × 10−10, Ω2
eff(tB) � 0.265,

kIIB � (a″
a
)1/2

∣∣∣∣∣∣∣∣t�tB ≈ 6.84,
(3.32)

that is, the curvature term a″/a still dominates the evolution near
the bounce.

To see how to impose the initial conditions, let us introduce
the quantity λ2H defined by Eq. 3.25 but now A− will be replaced
either byΩ2 orΩ2

eff . The details here are not important, and λ2H is
schematically plotted in Figure 6, from which we can see that if
the initial conditions are chosen to be imposed at the bounce, the
BD vacuum (as well as the de Sitter state) is still not available, and
the fourth-order adiabatic vacuum is one of the possible choices,
similar to the LQC case. However, if the initial conditions are
imposed in the contracting phase at t0 ≪ tpi , the Universe becomes
very large a(t)≫ 1 and can be practically considered as flat, then
the BD vacuum can be chosen.

Certainly, one can choose different initial conditions. In
particular, the fourth-order adiabatic vacuum was chosen even
in the contracting phase in (Li et al., 2020c). With such a choice,
the power spectra from Ω2 and Ω2

eff in the region k ∈ (5 ×
10−6, 50) were studied and found that the relative difference in

the magnitude of the power spectra is around 30% in the IR
regime and less than 10% in the intermediate regime. In the UV
regime, the relative difference can be as small as 0.1% or even less.

3.2.3 LQC
To consider the effects of the ambiguities in the choice of π−2

a and
π−1
a in Eq. 3.11 8, power spectra of the cosmological perturbations

were also studied in the framework of LQC in (Li et al., 2020c). In
this case, Ω2 is obtained from Eq. 3.17 with

Θ(b) � cos(λb), (3.33)

while Ω2
eff is obtained from Eq. 3.11 by the replacements,

1
π2
a

→ 16π2G2c2λ2

9a4sin2(λb), (3.34)

1
πa

→ −4πcλcos(λb)
3a2sin(λb) . (3.35)

As shown explicitly, the term Ω2
+ is always negligible

comparing with the curvature term a″/a in the expression of
Ω2

tot defined in Eq(B.1) by replacing A− with Ω2
+. So, from Eq.

3.25 we find that

λ2H � 1
a″/a − Ω2

+
≃

a
a″, (3.36)

during the bouncing phase t ∈ (tB, ti), and λ2H ≃ a/a″ was shown
schematically by Fig. 18 in (Zhu et al., 2017), which is quite
similar to Figure 6 given above for mLQC-II.

As a result, the initial states of the linear perturbations can be
either imposed in the contracting phase at a moment t0 ≪ tpi as
the BD vacuum, or at the bounce as the fourth-order adiabatic
vacuum (Agullo et al., 2013). However, it was shown analytically
that such two conditions lead to the same results (Zhu et al.,
2017).

To compare the results obtained from the three different
models, in (Li et al., 2020c) the fourth-order adiabatic vacuum
was chosen even in the contracting phase for LQC. Here, we cite
some of the results in Figure 7. In particular, it was found that the
relative difference in the amplitudes of the power spectra of the
scalar perturbations due to the choice of Ω2 or Ω2

eff is about 10%
in the infrared regime, about 100% in the intermediate regime,
and about 0.1% in the UV regime. Since only modes in the UV
regime can be observed currently, clearly this difference is out of
the sensitivities of the current and forhcoming observations
(Abazajian, 2015; Abazajian, 2019).

However, comparing the power spectra obtained from the
three different models, even with the same choice of π−2

a and π−1
a ,

it was found that the relative difference among LQC,mLQC-I and
mQLC-II are significant only in the IR and oscillating regimes,
while in the UV regime, all three models give quite similar results.

FIGURE 6 | Schematic plot of λ2H defined by Eq. 3.25 vs. t for mLQC-II in
the dressed metric approach for the quadratic and the Starobinsky potentials,
where a’’(tpH) � a’’(tH) � 0 and a’’(tpi ) � a’’(ti) � 0, and t � ti denotes the
starting time of the inflationary phase, while t � tpi is the end time of the
deflationary phase in the contracting branch. During the slow-roll inflation, we
have λ2H ≈ L2H/2. In particular, λ2H is decreasing (increasing) exponentially in
Region III (Region III′). The corresponding effective mass near the bounce is
always negative. Similar behavior also happens in LQC in the dressed metric
approach (Zhu et al., 2017). The bounce is dominated by the kinetic energy of
the scalar field, which leads to tpH ≈ − tH. However, in general we find that
tpi ≠ − ti due to the effects of the potential energy of the scalar field far from the
bouncing point. The comoving Hubble radius has the same qualitative
behavior for the quadratic and the Starobinsky potentials, while the values of ti
(tPi ) and tH (tpH ) depend on the type of the potentials and the initial conditions.

8In the framework of LQC, such effects were also studied in (Agullo et al., 2013; Zhu
et al., 2017; Zhu et al., 2017; Navascues et al., 2018; Li et al., 2020). In particular, in
(Agullo et al., 2018; Li et al., 2020; Agullo et al., 2021; Agullo et al., 2021) the
functionA− defined in Eq. 3.15was chosen over the whole process of the evolution
of the Universe.
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In particular, with the same regularization of πa the difference can
be as large as 100% throughout the IR and oscillating regimes,
while in the UV regime it is about 0.1%.

For the tensor perturbations, the potential term ΩQ vanishes
identically, so no ambiguities related to the choice of πa exist. But,
due to different models, the differences of the power spectra of the
tensor perturbations can be still very large in the IR and
oscillating regimes among the three models, although they are
very small in the UV regime, see, for example, Fig. 12 given in (Li
et al., 2020c).

4 PRIMORDIAL POWER SPECTRA OF
MODIFIED LQCS IN HYBRID APPROACH

As in the previous section, in this section we also consider the
three different models, LQC, mLQC-I, and mLQC-II, but now in
the hybrid approach, and pay particular attention to the
differences of the power spectra among these models. Since
the scalar perturbations are the most relevant ones in the
current CMB observations, in the following we shall mainly

focus on them, and such studies can be easily extended to the
tensor perturbations.

4.1 mLQC-I
Power spectra of the cosmological scalar and tensor perturbations
for the effective Hamilton in mLQC-I were recently studied in the
hybrid approach (Fernández-Méndez et al., 2013; Castelló Gomar
et al., 2014; Gomar et al., 2015). In particular, the mode function
vk of the scalar perturbations satisfies the differential equation (Li
et al., 2020b),

vk″ + (k2 + s)vk � 0, (4.1)

where

s � 4πGp2ϕ
3v4/3

(19 − 24πGc2
p2ϕ
π2
a

)
+v2/3(V,ϕϕ + 16πGcpϕ

πa
V,ϕ − 16πG

3
V)

� −4πG
3

a2(ρ − 3P) + U , (4.2)

which is the effective mass of the scalar mode, with

U ≡ a2[V,ϕϕ − 12
V,ϕ

πa

+64a
6V(ϕ)
πG

(ρ − 3V(ϕ)
4πG

) 1
π2
a

]. (4.3)

Note that in (Li et al. 2020a), instead of πa, the symbol Ω was
used. In addition, the cosmological tensor perturbations are also
given by Eqs 4.1, 4.2 but with the vanishing potential U � 0.
Then, we immediately realize that in the hybrid approach
quantum mechanically there are also ambiguities in the
replacements π−2

a and π−1
a , as mentioned in the last section. So

far, two possibilities were considered (Castelló Gomar et al., 2020;
García-Quismondo et al., 2020). One is given by the
replacements,

1
π2
a

→ 1
Ω2

I

,
1
πa

→ ΛI

Ω2
I

, (4.4)

in Eq. 4.2, where

Ω2
I ≡ − v2c2

λ2
{sin2(λb) − c2 + 1

4c2
sin2(2λb)},

ΛI ≡ v
sin(2λb)

2λ
.

(4.5)

This is the case referred to as prescription A in (García-
Quismondo et al., 2020).

The other possibility is obtained by the replacement of Eqs
3.34, 3.35, which was referred to as Prescription B (García-
Quismondo et al., 2020), and showed that the two
prescriptions lead to almost the same results. So, in the rest of
this section we restrict ourselves only to prescription A.

Then, for the case in which the evolution of the homogeneous
Universe was dominated by kinetic energy at the bounce,

FIGURE 7 | The figure shows the results of the scalar power spectra
from three models presented in (Li et al., 2020c) when the potential term is
given by Ω2

eff . The inflationary potential is chosen to be the quadratic potential
and the e-foldings of the inflationary phases in all three models are
chosen to be 72.8. The first panel shows the scalar power spectrum inmLQC-
I which is characterized by its unique infrared regime. In the second panel, we
compare the scalar power spectra from LQC and mLQC-II.
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_ϕ
2

B ≫ 2V(ϕB), (4.6)

it was shown that the effective mass is always positive at the
bounce (García-Quismondo et al., 2020). In fact, near the bounce
we have (Wu et al., 2018),

s � −4πG
3

a2(ρ − 3P) + U(η)
≃
8πG
3

a2ρ> 0.
(4.7)

Note that in writing the above expression, we have used the
fact that during the bouncing phase we have wϕ ≡ P/ρ ≃ 1, and∣∣∣∣U(η)∣∣∣∣≪ 1. On the other hand, in the pre-bounce phase, when
t≪ tB the background is a contracting de Sitter spacetime, so we
have (García-Quismondo et al., 2020),

s � −4πG
3

a2(ρ − 3P) + U(η) ≃ U(η) ≃ 5a2V,ϕϕ,

a ≃ aBe
HΛ(t−tB),

(4.8)

where HΛ ≡ − ���������
8παGρΛ/3

√
. Thus, the effective mass remains

positive in the pre-bounce phase, as long as V,ϕϕ(t≪ tB)> 0.
This is the case for both quadratic and Starobinsky potentials. In
fact, from (3.24), we find that

V,ϕϕ � {m2, quadratic,
m2(2 − e4

���
πG/3

√
ϕ)e−8 ���

πG/3
√

ϕ, Starobinsky. (4.9)

For the case that satisfies the condition (4.6) initially at the
bounce, we find that ϕ(t) becomes very negative at t≪ tB for the

Starobinsky potential, so V,ϕϕ(t≪ tB) is positive even in this case.
Then, the quantity defined by

λ2H ≡ − 1
s
, (4.10)

has similar behavior in the post-bounce phases for the case in
which the evolution of the homogeneous Universe was
dominated by kinetic energy at the bounce, but has different
behaviors in the pre-bounce phases, depending specifically on the
potentials considered.

In Figures 8, 9 we show the comoving Hubble radius for the
quadratic and Starobinsky potentials, respectively. From these
figures it is clear that for tpi < t < ti, λ

2
H is strictly negative, which

implies the effective mass s is positive in this regime. Hence, all
the modes assume the oscillatory behavior as the modes inside the
Hubble horizon, and we may impose the BD vacuum at the
bounce. In addition, when t≪ tpi , the background is well
described by the de Sitter space, so the de Sitter state can be
imposed in the deep contracting phase. However, imposing the
BD vacuum at the bounce will clearly lead to different power
spectra at the end of the slow-roll inflation from that obtained by
imposing the de Sitter state in the deep contracting phase. This is
because, when the background is contracting to about the
moments t ≃ tp−i , the effective mass becomes so large and
negative that the mode function vk will be modified
significantly, in comparison with that given at t0 (≪ tpi ), or in
other words, particle creation now becomes not negligible during

FIGURE 8 | Schematic plot of λ2H defined by Eq. 4.10 in mLQC-I for the
quadratic potential in the hybrid approach, where s(ti) � s(tpi ) � 0, and t � ti is
the starting time of the inflationary phase. During the slow-roll inflation, we
have λ2H ≈ L2H/2 (Region III). In the contracting phase, the background is
asymptotically de Sitter. The evolution of the universe is asymmetric with
respect to the bounce. In particular, λ2H is strictly negative for tpi < t< ti , while for
t ≃ tp−i the “generalized” comoving Hubble radius λ2H becomes positive and
large. However, as t decreases, λ2H becomes negative again. Although the
values of ti and tH depend on the initial conditions for the background
evolution, for example, when ϕB � 1.27mpl at the bounce, ti ≈ 7.55 × 104 tpl
and tH ≈ − 21.85 tpl, the qualitative behavior of the comoving Hubble radius is
robust with respect to the choice of the initial conditions as long as the bounce
is dominated by the kinetic energy of the scalar field.

FIGURE 9 | Schematic plot of λ2H defined by Eq. 4.10 for the Starobinsky
potential and mLQC-I in the hybrid approach, where s(ti) � s(tpi ) � s(tpH) � 0,
and t � ti is the starting time of the inflationary phase. During the slow-roll
inflation, we have λ2H ≈ L2H/2 (Region III). In the contracting phase, the
background is asymptotically de Sitter. The evolution of the universe is
asymmetric with respect to the bounce. In particular, λ2H is strictly negative for
tpi < t< ti , while for t ≃ tp−i it becomes positive and large. However, as t
decreases, λ2H becomes negative again. The qualitative behavior of λ2H does
not changewith the choice of the initial conditions as long as the inflaton initially
starts from the left wing of the potential at the kinetic-energy-dominated
bounce. However, the exact values of ti and tH depend on the initial
conditions. For example, when ϕB � −1.32mpl, t

p
H � −7.88 tpl, tpi � −4.11 tpl

and ti � 4.90 × 105 tpl.
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the contracting phase. Then, other initial conditions at the
bounce may need to be considered.

4.2 mLQC-II
Similar to LQC, the homogeneous Universe of mLQC-II is
symmetric with respect to the bounce, and is well described by
the analytical solutions given by Eqs 2.56, 2.57 for the states that
are dominated by kinetic energy at the bounce.

In this model, the cosmological perturbations are also given by
Eqs 4.1–4.3 but now with the replacement (Li et al., 2020a),

1
π2
a

→ 1
Ω2

II

,
1
πa

→ ΛII

Ω2
II

, (4.11)

where

Ω2
II ≡

4v2

λ2
sin2(λb

2
){1 + c2sin2(λb

2
)},

ΛII ≡ v
sin(λb)

λ
.

(4.12)

In this case, it can be shown that the effective mass defined by
Eq. 4.2 is always positive in the neighborhood of the bounce, but
far from the bounce, the properties of λ2H depend on the potential
in the pre-bounce phase, similar to mLQC-I.

In Figure 10, we plot λ2H for the Starobinsky potential, while
for the quadratic one, it is quite similar to the corresponding one
in mLQC-I, given by Figure 8. From Figure 10we can see that λ2H
now is negative not only near the bounce but also in the whole
contracting phase, so that all the modes are oscillating for t < ti.
Then, one can choose the BD vacuum at the bounce. It is
remarkable that for the quadratic potential, this is impossible
[cf. Figure 8].

Moreover, as t→ −∞, the expansion factor becomes very
large, and the corresponding curvature is quite low, so to a good
approximation, the BD vacuum can also be chosen in the distant
past, not only for the Starobinsky potential but also for other
potentials. Due to the oscillating behavior of the mode function
over the whole contracting phase, imposing the BD vacuum at the
bounce is expected not to lead to significant difference in the
power spectra from that in which the same condition is imposed
in the deep contracting phase.

4.3 LQC
The evolution of the homogeneous Universe of standard LQC
model is also symmetric with respect to the bounce, and is well
described by the analytical solutions given in (Zhu et al., 2017;
Zhu et al., 2017) for the states that are dominated by kinetic
energy at the bounce.

In this model, the cosmological perturbations are also given by
Eqs 4.1.3.–.Eqs 4.4.3 but now with the replacement (Li et al.,
2020a),

1
π2
a

→ 1
Ω2

LQC

,
1
πa

→ ΛLQC

Ω2
LQC

, (4.13)

where

ΩLQC ≡
v sin(λb)

λ
, ΛLQC ≡

v sin(2λb)
2λ

. (4.14)

In this case, it can be shown that the effective mass defined by
Eq. 4.2 is always positive for the states that are dominated by
kinetic energy at the bounce (Navascues et al., 2018; Wu et al.,
2018), and the quantity λ2H defined by Eq. 4.10 is negative near
the bounce. Again, similar to the mLQC-II case, the modes are
oscillating near the bounce. However, in the contracting phase
the behavior of λ2H sensitively depends on the inflation
potentials. For the Starobinsky one, λ2H behaves similar to
that described by Figure 10, so the BD vacuum can be
imposed either in the deep contracting phase or at the
bounce, and such resulted power spectra are expected not to
be significantly different from one another. But for the quadratic
potential the situation is quite different, and a preferred choice is
to impose the BD vacuum in the deep contracting
phase (t0 ≪ tB).

4.4 Primordial Power Spectra
As it can be seen that one of the preferred moments to impose the
initial conditions for the cosmological perturbations in all these
three models is a moment in the contracting phase t0 < tB. In this
phase, we can impose the BD vacuum state as long as the moment
is sufficiently earlier, t0 ≪ tB. Certainly, other initial conditions
can also be chosen. In particular, in (Li et al., 2020a) the second-
order adiabatic vacuum conditions were selected, but it was found
that the same results can also be obtained even when the BD
vacuum state or the fourth-order adiabatic vacuum is imposed
initially.

The nth-order adiabatic vacuum conditions can be obtained as
follows: Let us first consider the solution,

FIGURE 10 | Schematic plot of λ2H defined by Eq. 4.10 for the
Starobinsky potential and mLQC-II in the hybrid approach, where s(ti) � 0,
and t � ti is the starting time of the inflationary phase. During the slow-roll
inflation, we have λ2H ≈ L2H/2 (Region III) since the contribution from the
potential is in general less than a’’/a. Again the qualitative behavior of λ2H
remains the same as long as the inflaton starts from the left wing of the
potential with a positive velocity and the bounce is initially dominated by the
kinetic energy of the inflaton field.
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]k � 1����
2Wk

√ e
−i∫η Wk(η)dη. (4.15)

Then, inserting it into (4.1), one can find an iterative equation
for Wk. In particular, it can be shown that the zeroth-order
solution is given by W(0)

k � k, while the second and fourth order
adiabatic solutions are given by,

W(2)
k � �����

k2 + s
√

, W(4)
k �

�����
f (s, k)√

4|k2 + s|. (4.16)

Here f (s, k) � 5s′2 + 16k4(k2 + 3s) + 16s2(3k2 + s) − 4s″(s + k2).
It should be noted that, in order to compare directly with
observations, it is found convenient to calculate the power
spectrum of the comoving curvature perturbation Rk, which is
related to the Mukhanov-Sasaki variable via the relation
Rk � ]k/z, with z � a _ϕ/H. Then, its power spectrum reads

PRk
� P]k

z2
� k3

2π2

|]k|2
z2

. (4.17)

In addition, the power spectrum is normally evaluated at the
end of inflation, at which all the relevant modes are well outside
the Hubble horizon [cf. Figure 2].

It should be also noted that the above formula is only
applicable to the case where W(2)

k and/or W(4)
k remains real at

the initial time. This is equivalent to require k2 + s≥ 0 for W(2)
k

and f (s, k)≥ 0 for W(4)
k . Since the effective mass s in general

depends on t, it is clear that the validity of (4.16) depends not only
on the initial states but also on the initial times.

In addition, in the following only the Starobinsky potential
given in Eq. 3.24 will be considered, as it represents one of the
most favorable models by current observations (Bennett et al.,
1996; Banday et al., 1996; Komatsu et al., 2011; Larson et al., 2011;
Ade and PLANCK Collaboration, 2016; Aghanim and PLANCK
Collaboration, 2020). Let us turn to consider the power spectrum
of the scalar perturbations in each of the three models. Similar
results can be also obtained for the tensor perturbations. In
particular, it was found that the scalar power spectra in these
three models can be still divided into three distinctive regimes: the
infrared, oscillatory and UV, as shown in Figure 11.

In the infrared and oscillatory regimes, the relative difference
between LQC and mLQC-I can be as large as 100%, while this
difference reduces to less than 1% in the UV regime. This is
mainly because LQC and mLQC-I have the same classical limit in
the post-bounce phase, and as shown in Figures 5, 8, the effective
masses in both approaches tend to be the same during the
inflationary phase.

However, it is interesting to note that in the infrared and
oscillatory regimes, the power spectrum in mLQC-I is suppressed
in comparison with that of LQC, which has been found only in
the hybrid approach. As a matter of fact, in the dressed metric
approach, the power spectrum in mLQC-I is largely amplified in
the infrared regime, and its magnitude is of the Planck scale as
depicted in Figure 7 (Agullo, 2018; Li et al., 2020c). The main
reason might root in the distinctive behavior of the effective
masses in the two approaches, as shown explicitly in Figures 5, 8.

On the other hand, the difference of the power spectra between
LQC andmLQC-II is smaller than that between LQC andmLQC-
I. In particular, in the infrared regime, it is about 50%. The large
relative difference (more than 100%) of the power spectra
between mLQC-I and mLQC-II also happens in the infrared
and oscillatory regimes, while in the UV regime it reduces to
about 2%.

To summarize, in the hybrid approach the maximum relative
differences of the power spectra among these three different
models always happen in the infrared and oscillatory regimes,
while in the UV regime, the differences reduce to no larger than
2%, and all the three models predict a scale-invariant power
spectrum, and is consistent with the current CMB observations.
However, in the hybrid approach, the power spectrum in mLQC-
I is suppressed in the infrared and oscillatory regimes. The latter
is in a striking contrast to the results obtained from the dressed
metric approach, which might be closely related to the fact that
the effective masses in these two approaches are significantly
different, especially near the bounce and in the prebounce stage.

5 CONCLUSION AND OUTLOOK

In the past 2 decades, LQC has been studied extensively, and
several remarkable features have been found (Ashtekar and
Singh, 2011; Ashtekar and Barrau, 2015; Bojowald, 2015;
Agullo and Singh, 2017), including the generic resolution of
the big bang singularity (replaced by a quantum bounce) in
the Planckian scale, the slow-roll inflation as an attractor in
the post-bounce evolution of the Universe, and the scale-
invariant power spectra of the cosmological perturbations,
which are consistent with the current CMB observations. Even
more interestingly, it was shown recently that some anomalies
from the CMB data (Akrami and Planck collaboration, 2020;
Akrami and Planck collaboration, 2020; Schwarz et al., 2016) can

FIGURE 11 | The primordial power spectra of the cosmological scalar
perturbations in the hybrid approach with the Starobinsky potential,
respectively, for LQC, mLQC-I, and mLQC-II. The mass of the inflaton field is
set to 2.44 × 10−6mpl. The background evolution is chosen so that the
pivot mode is k* � 5.15 in all three models. The initial states are the second-
order adiabatic states imposed in the contracting phase at the moment t0 with
t0 ≪ tB(Li et al., 2020a).
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be reconciled purely due to the quantum geometric effects in the
framework of LQC (Ashtekar et al., 2020; Agullo et al., 2021;
Agullo et al., 2021; Ashtekar et al., 2021).

Despite of all these achievements, LQC is still plagued with
some ambiguities in the quantization procedure. In particular, its
connection with LQG is still not established (Brunnemann and
Fleischhack, 2007; Engle, 2007; Brunnemann and Koslowski,
2011), and the quantization procedure used in LQC owing to
symmetry reduction before quantization can result in different
Hamiltonian constraints than the one of LQG.

Motivated by the above considerations, recently various
modified LQC models have been proposed, see, for example
(Alesci and Cianfrani, 2013; Alesci and Cianfrani, 2015; Alesci
et al., 2017; Oriti, 2017; Oriti et al., 2017; Wilson-Ewing, 2017;
Engle and Vilensky, 2018; Gerhardt et al., 2018; Wilson-Ewing,
2018; Baytas et al., 2019; Engle and Vilensky, 2019; Neuser et al.,
2019; Olmedo and Alesci, 2019; Schander and Thiemann, 2019;
Schander and Thiemann, 2019; Han and Liu, 2020a; Han and Liu,
2020b; Giesel et al., 2020; Giesel et al., 2020; Han et al., 2020; Li
et al., 2020b), and references therein. In this brief review, we have
restricted ourselves only to mLQC-I and mLQC-II (Yang et al.,
2009; Dapor and Liegener, 2018a; Dapor and Liegener, 2018b), as
they are the ones that have been extensively studied in the
literature not only the dynamics of the homogeneous Universe
(Li et al., 2018a; Li et al., 2018b; Saini and Singh, 2019a; Saini and
Singh, 2019b; García-Quismondo and Mena Marugán, 2019; Li
et al., 2019; García-Quismondo and Mena Marugán, 2020), but
also the cosmological perturbations (Agullo, 2018; Castelló
Gomar et al., 2020; García-Quismondo et al., 2020; Li et al.,
2020a; Li et al., 2020b).

In these two modified LQC models, it was found that the
resolution of the big bang singularity is also generic (Li et al.,
2018a; Li et al., 2018b; Saini and Singh, 2019a; Saini and Singh,
2019b; Li et al., 2019). This is closely related to the fact that the
area operator in LQG has a minimal but nonzero eigenvalue
(Ashtekar and Lewandowski, 2004; Thiemann, 2007; Rovelli,
2008; Ashtekar and Singh, 2011; Bojowald, 2011; Gambini and
Pullin, 2011; Ashtekar and Barrau, 2015; Bojowald, 2015; Agullo
and Singh, 2017; Ashtekar and Pullin, 2017), quite similar to the
eigenvalue of the ground state of the energy operator of a simple
harmonic oscillator in quantummechanics. This deep connection
also shows that the resolution of the big bang singularity is purely
due to the quantum geometric effects. In addition, similar to
LQC, the slow-roll inflation also occurs generically in both
mLQC-I and mLQC-II (Li et al., 2019). In particular, when
the inflaton has a quadratic potential, V(ϕ) � m2ϕ2/2, the
probabilities for the desired slow-roll inflation not to occur are
≲ 1.12 × 10−5, ≲ 2.62 × 10−6, and ≲ 2.74 × 10−6 for mLQC-I,
mLQC-II and LQC, respectively.

When dealing with perturbations, another ambiguity rises in
the replacement of the momentum conjugate πa of the expansion
factor a in the effective potential of the scalar perturbations. This
ambiguity occurs not only in the dressed metric approach [cf. Eq.
3.11] but also in the hybrid approach [cf. Eq. 4.2], as it is closely
related to the quantization strategy used in LQG/LQC, because
now only the holonomies (complex exponentials) of πa are
defined as operators. Several choices have been proposed in

the literature (Mena Marugán et al., 2011; Agullo et al., 2013;
Agullo, 2018; Agullo et al., 2018; Castelló Gomar et al., 2020;
García-Quismondo et al., 2020; Li et al., 2020a; Li et al., 2020b). In
Secs. 3, 4, we have shown that for some choices the effects on the
power spectra are non-trivial, while for others the effects are
negligible. However, even with the same choice, the relative
differences in the amplitudes of the power spectra among the
three different models can be as large as 100% in the infrared and
intermediate regimes of the spectra, while in the UV regime the
relative differences are no larger than 2%, and the corresponding
power spectra are scale-invariant. Since only the modes in the UV
regime are relevant to the current observations, the power spectra
obtained in all the three models are consistent with current
observations (Bennett et al., 1996; Banday et al., 1996;
Komatsu et al., 2011; Larson et al., 2011; Ade and PLANCK
Collaboration, 2016; Aghanim and PLANCK Collaboration,
2020).

However, the interactions between the infrared and UVmodes
appearing in non-Gaussianities might provide an excellent
window to observe such effects. This was initially done in
LQC (Agullo et al., 2018; Wu et al., 2018; Zhu et al., 2018),
and lately generalized to bouncing cosmologies (Agullo et al.,
2021; Agullo et al., 2021). It should be noted that in (Agullo et al.,
2021; Agullo et al., 2021), the expansion factor a(t) near the
bounce was assumed to take the form,

a(t) � aB(1 + bt2)n,
where b and n are two free parameters. For example, for LQC we
have n � 1/6 and b � RB/2, where RB is the Ricci scalar at the
bounce (Zhu et al., 2017; Zhu et al., 2017). But, it is clear that near
the bounce a(t) takes forms different from the above expression
for mLQC-I/II, as one can see from Eqs 2.54–2.57. Thus, it would
be very interesting to study such effects in mLQC-I/II, and look
for some observational signals.

Moreover, initial conditions are another subtle and
important issue not only in LQC but also in mLQCs. As a
matter of fact, the initial conditions consist of two parts: the
initial time, and the initial conditions. Different choices of the
initial times lead to different choices of the initial conditions, or
vice versa. To clarify these issues, in Sections 3, 4 we have
discussed it at length by showing the (generalized) comoving
Hubble radius in each model as well as in each of the two
approaches, dressed metric and hybrid. From these analyses, we
have shown clearly which initial conditions can and cannot be
imposed at a given initial time.

In addition, when the Universe changes from contraction to
expansion at the bounce, particle and entropy creations are
expected to be very large, and it is crucial to keep such
creations under control, so that the basic assumptions of the
models are valid, including the one that the cosmological
perturbations are small and can be treated as test fields
propagating on the quantum homogeneous background, as
assumed in both the dressed metric and hybrid approaches.

Yet, different initial conditions also affect the amplitudes and
shapes of the primordial power spectra, and it would be very
interesting to investigate the consistency of such obtained spectra
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with current observations, in particular the possible explanations
to the anomalies found in the CMB data (Akrami and Planck
collaboration, 2020; Akrami and Planck collaboration, 2020;
Schwarz et al., 2016), and the naturalness of such initial
conditions.

On the other hand, bouncing cosmologies, as an alternative
to the cosmic inflation paradigm, have been extensively studied
in the literature, see, for example (Wand, 1999; Brandenberger
and Peter, 2017), and references therein. However, in such
classical bounces, exotic matter fields are required in order to
keep the bounce open. This in turn raises the question of
instabilities of the models. On the other hand, quantum
bounces found in LQC/mLQCs are purely due to the
quantum geometric effects, and the instability problem is
automatically out of the question. So, it would be very
interesting to study bouncing cosmologies in the framework
of LQC/mLQCs. The first step in this direction has already been
taken (Li et al., 2020b), and more detailed and extensive analyses
are still needed.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

BL and PS are supported by NSF grant PHY-1454832. BL is also
partially supported by the National Natural Science Foundation
of China (NNSFC) with the Grants No. 12005186.

ACKNOWLEDGMENTS

We are grateful to Robert Brandenberger and David Wands for
valuable comments on the manuscript and helpful discussions.
We thank Javier Olmedo and Tao Zhu for various discussions
related to works presented in this manuscript.

REFERENCES

Abazajian, K. (2019). CMB-S4 Decadal Survey APCWhite Paper. arXiv:1908.01062.
Abazajian, K. N. (2015). Inflation Physics from the CosmicMicrowave Background

and Large Scale Structure. Astropart. Phys. 63, 55.
Ade, P.PLANCK Collaboration (2016). Planck 2015 Results. XX. Constraints on

Inflation. A&A 594, A20.
Aghanim, N.PLANCK Collaboration (2020). Planck 2018 Results. X. Constraints

on Inflation. A&A 641, A10.
Agullo, I., Ashtekar, A., and Gupt, B. (2017). Phenomenology with Fluctuating

Quantum Geometries in Loop Quantum Cosmology. Class. Quan. Grav. 34,
074003. doi:10.1088/1361-6382/aa60ec

Agullo, I., Ashtekar, A., and Nelson, W. (2013). Extension of the Quantum Theory
of Cosmological Perturbations to the Planck Era. Phys. Rev. D87, 043507.

Agullo, I., Ashtekar, A., and Nelson, W. (2012). Quantum Gravity Extension of the
Inflationary Scenario. Phys. Rev. Lett. 109, 251301. doi:10.1103/
physrevlett.109.251301

Agullo, I., Ashtekar, A., and Nelson, W. (2013). The Pre-inflationary Dynamics
of Loop Quantum Cosmology: Confronting Quantum Gravity with
Observations. Class. Quan. Grav. 30, 085014. doi:10.1088/0264-9381/30/8/
085014

Agullo, I., Bolliet, B., and Sreenath, V. (2018). Non-Gaussianity in Loop Quantum
Cosmology. Phys. Rev. D97, 066021.

Agullo, I., Kranas, D., and Sreenath, V. (2021). Anomalies in the CMB from a
Cosmic Bounce. Gen. Relativ Gravit. 53, 17. doi:10.1007/s10714-020-02778-9

Agullo, I., Kranas, D., and Sreenath, V. (2021). Large Scale Anomalies in the CMB
and Non-gaussianity in Bouncing Cosmologies. Class. Quan. Grav. 38, 065010.
doi:10.1088/1361-6382/abc521

Agullo, I., and Morris, N. A. (2015). Detailed Analysis of the Predictions of Loop
Quantum Cosmology for the Primordial Power Spectra. Phys. Rev. D 92,
124040. doi:10.1103/physrevd.92.124040

Agullo, I., Olmedo, J., and Sreenath, V. (2020). Observational Consequences of
Bianchi I Spacetimes in Loop Quantum Cosmology. Phys. Rev. D102, 043523.

Agullo, I., Olmedo, J., and Sreenath, V. (2020). Predictions for the Cosmic
Microwave Background from an Anisotropic Quantum Bounce. Phys. Rev.
Lett. 124, 251301. doi:10.1103/physrevlett.124.251301

Agullo, I. (2018). Primordial Power Spectrum from the Dapor-Liegener Model of
Loop Quantum Cosmology. Gen. Relativ Gravit. 50, 91. doi:10.1007/s10714-
018-2413-1

Agullo, I., and Singh, P. (2017). “Loop Quantum Cosmology,” in Loop Quantum
Gravity: The First 30 Years. Editors A. Ashtekar and J. Pullin (Singapore: Wald
Scientific).

Akrami, Y.Planck collaboration (2020). Planck 2018 Results. I. Overview and the
Cosmological Legacy of Planck. A&A 641, A1.

Akrami, Y.Planck collaboration (2020). Planck 2018 Results. VII. Isotropy and
Statistics of the CMB. A&A 641, A7.

Alesci, E., Botta, G., Cianfrani, F., and Liberati, S. (2017). Cosmological Singularity
Resolution from Quantum Gravity: the Emergent-Bouncing Universe. Phys.
Rev. D96, 046008.

Alesci, E., and Cianfrani, F. (2015). Quantum Reduced Loop Gravity: a Realistic
Universe. Phys. Rev. D92, 084065.

Alesci, E., and Cianfrani, F. (2013). Quantum-Reduced Loop Gravity: Cosmology.
Phys. Rev. D87, 083521.

Ashoorioon, A., Chialva, D., and Danielsson, U. (2011). Effects of Nonlinear
Dispersion Relations on Non-gaussianities. J. Cosmol. Astropart. Phys. 2011,
034. doi:10.1088/1475-7516/2011/06/034

Ashtekar, A., Gupt, B., Jeong, D., and Sreenath, V. (2020). Alleviating the Tension
in the Cosmic Microwave Background Using Planck-Scale Physics. Phys. Rev.
Lett. 125, 051302. doi:10.1103/PhysRevLett.125.051302

Ashtekar, A., Pawlowski, T., and Singh, P. (2006). Quantum Nature of the Big
Bang. Phys. Rev. Lett. 96, 141301. doi:10.1103/PhysRevLett.96.141301

Ashtekar, A., and Barrau, A. (2015). Loop Quantum Cosmology: From Pre-
inflationary Dynamics to Observations. Class. Quan. Grav. 32, 234001.
doi:10.1088/0264-9381/32/23/234001

Ashtekar, A., Bojowald, M., and Lewandowski, J. (2003). Mathematical Structure of
Loop Quantum Cosmology. Adv. Theor. Math. Phys. 7, 233–268. doi:10.4310/
atmp.2003.v7.n2.a2

Ashtekar, A., Corichi, A., and Singh, P. (2010). Robustness of Key Features of Loop
Quantum Cosmology. Phys. Rev. D77, 024046.

Ashtekar, A., and Gupt, B. (2017). Initial Conditions for Cosmological
Perturbations. Class. Quan. Grav. 34, 035004. doi:10.1088/1361-6382/aa52d4

Ashtekar, A., Gupt, B., Jeong, D., and Sreenath, V. (2021). Cosmic Tango between
the Very Small and the Very Large: Addressing CMB Anomalies through Loop
Quantum Cosmology. arXiv:2103.14568.

Ashtekar, A., and Gupt, B. (2017). Quantum Gravity in the Sky: Interplay between
Fundamental Theory and Observations. Class. Quan. Grav. 34, 014002.
doi:10.1088/1361-6382/34/1/014002

Ashtekar, A., and Lewandowski, J. (2004). Background Independent Quantum
Gravity: A Status Report. Class. Quan. Grav. 21, R53–R152. doi:10.1088/0264-
9381/21/15/r01

Ashtekar, A., Pawlowski, T., and Singh, P. (2006). Quantum Nature of the Big
Bang: An Analytical and Numerical Investigation. Phys. Rev. D 73, 124038.
doi:10.1103/physrevd.73.124038

Ashtekar, A., and Pullin, J. (2017). Loop Quantum Gravity - the First 30 Years.
Singapore: World Scientific.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 70141722

Li et al. Phenomenological Implications of mLQCs

111

https://doi.org/10.1088/1361-6382/aa60ec
https://doi.org/10.1103/physrevlett.109.251301
https://doi.org/10.1103/physrevlett.109.251301
https://doi.org/10.1088/0264-9381/30/8/085014
https://doi.org/10.1088/0264-9381/30/8/085014
https://doi.org/10.1007/s10714-020-02778-9
https://doi.org/10.1088/1361-6382/abc521
https://doi.org/10.1103/physrevd.92.124040
https://doi.org/10.1103/physrevlett.124.251301
https://doi.org/10.1007/s10714-018-2413-1
https://doi.org/10.1007/s10714-018-2413-1
https://doi.org/10.1088/1475-7516/2011/06/034
https://doi.org/10.1103/PhysRevLett.125.051302
https://doi.org/10.1103/PhysRevLett.96.141301
https://doi.org/10.1088/0264-9381/32/23/234001
https://doi.org/10.4310/atmp.2003.v7.n2.a2
https://doi.org/10.4310/atmp.2003.v7.n2.a2
https://doi.org/10.1088/1361-6382/aa52d4
https://doi.org/10.1088/1361-6382/34/1/014002
https://doi.org/10.1088/0264-9381/21/15/r01
https://doi.org/10.1088/0264-9381/21/15/r01
https://doi.org/10.1103/physrevd.73.124038
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Ashtekar, A., and Singh, P. (2011). Loop Quantum Cosmology: a Status Report.
Class. Quan. Grav. 28, 213001. doi:10.1088/0264-9381/28/21/213001

Ashtekar, A., and Sloan, D. (2011a). Probability of Inflation in Loop Quantum
Cosmology. Gen. Relativ. Gravit. 43, 3619–3655. doi:10.1007/s10714-011-
1246-y

Ashtekar, A., and Sloan, D. (2011b). Loop Quantum Cosmology and Slow Roll
Inflation. Phys. Lett. B 694, 108.

Assanioussi, M., Dapor, A., Liegener, K., and Pawłowski, T. (2018). Emergent de
Sitter epoch of the quantum Cosmos from Loop Quantum Cosmology. Phys.
Rev. Lett. 121, 081303. doi:10.1103/PhysRevLett.121.081303

Assanioussi, M., Dapor, A., Liegener, K., and Pawlowski, T. (2019b). Challenges in
Recovering a Consistent Cosmology from the Effective Dynamics of Loop
Quantum Gravity. Phys. Rev. D100, 106016.

Assanioussi, M., Dapor, A., Liegener, K., and Pawlowski, T. (2019a). Emergent de
Sitter epoch of the loop quantum cosmos: A detailed analysis. Phys. Rev. D100,
084003.

Banday, K. M. A. J., Bennett, C. L., Hinshaw, G., Kogut, A., Smoot, G. F., and
Wright, E. L. (1996). Power Spectrum of Primordial Inhomogeneity
Determined from the FOUR-Year [ITAL]COBE[/ITAL] DMR Sky Maps.
ibid 464, L11–L15. doi:10.1086/310077

Baumann, D., and McAllister, L. (2015). Inflation and String Theory. Cambridge:
Cambridge Monographs on Mathematical Physics, Cambridge University
Press.

Baumann, D. (2009). TASI Lectures on Inflation. arXiv:0907.5424.
Baytas, B., Bojowald, M., and Crowe, S. (2019). Equivalence of Models in Loop

Quantum Cosmology and Group Field Theory. Universe 5, 41.
Becker, K., Becker, M., and Schwarz, J. H. (2007). String Theory and M-Theory.

Cambridge: Cambridge University Press.
Bedic, S., and Vereshchagin, G. (2019). Probability of Inflation in Loop Quantum

Cosmology. Phys. Rev. D99 (4), 043512.
Bedroya, A., Brandenberger, R., Loverde, M., and Vafa, C. (2020). Trans-Planckian

Censorship and Inflationary Cosmology. Phys. Rev. D 101, 103502. doi:10.1103/
physrevd.101.103502

Bedroya, A., and Vafa, C. (2020). Trans-Planckian Censorship and the Swampland.
J. High Energ. Phys. 2020, 123. doi:10.1007/jhep09(2020)123

Bennett, C. L., Banday, A. J., Górski, K. M., Hinshaw, G., Jackson, P., Keegstra, P.,
et al. (1996). Four-Year [ITAL]COBE[/ITAL] DMR Cosmic Microwave
Background Observations: Maps and Basic Results. Astrophys. J. 464, L1–L4.
doi:10.1086/310075

Bergstorm, L., and Danielsson, U. H. (2002). Can MAP and Planck Map Planck
Physics? J. High Energ. Phys. 12, 038.

Bhardwaj, A., Copeland, E. J., and Louko, J. (2019). Inflation in Loop Quantum
Cosmology. Phys. Rev. D99, 063520.

Birrell, N. D., and Davies, P. C. W. (1982). Quantum fields in Curved Space.
Cambridge: Cambridge University Press.

Bojowald, M. (2011). Canonical Gravity and Applications: Cosmology, Black Holes,
and Quantum Gravity. Cambridge: Cambridge University Press.

Bojowald, M., Hossain, G. M., Kagan, M., and Shankaranarayanan, S. (2008).
Anomaly freedom in Perturbative Loop Quantum Gravity. Phys. Rev. D78,
063547.

Bojowald, M. (2015). Quantum Cosmology: a Review. Rep. Prog. Phys. 78, 023901.
doi:10.1088/0034-4885/78/2/023901

Bonga, B., and Gupt, B. (2016). Inflation with the Starobinsky Potential in Loop
Quantum Cosmology. Gen. Relativ. Grav. 48, 1. doi:10.1007/s10714-016-
2071-0

Bonga, B., and Gupt, B. (2016). Phenomenological Investigation of a Quantum
Gravity Extension of Inflation with the Starobinsky Potential. Phys. Rev. D93,
063513.

Borde, A., Guth, A. H., and Vilenkin, A. (2003). Inflationary Spacetimes Are
Incomplete in Past Directions. Phys. Rev. Lett. 90, 151301. doi:10.1103/
physrevlett.90.151301

Borde, A., and Vilenkin, A. (1994). Eternal Inflation and the Initial Singularity.
Phys. Rev. Lett. 72, 3305–3308. doi:10.1103/physrevlett.72.3305

Brandenberger, R. H. (1999). Inflationary Cosmology: Progress and Problems.
arXiv:hep-th/9910410.

Brandenberger, R. H., and Martin, J. (2013). Trans-Planckian Issues for
Inflationary Cosmology. Class. Quan. Grav. 30, 113001. doi:10.1088/0264-
9381/30/11/113001

Brandenberger, R., and Peter, P. (2017). Bouncing Cosmologies: Progress and
Problems. Found. Phys. 47, 797–850. doi:10.1007/s10701-016-0057-0

Brandenberger, R. (2021). Trans-Planckian Censorship Conjecture and Early
Universe Cosmology. arXiv:2102.09641.

Brunnemann, J., and Fleischhack, C. (2007). On the Configuration Spaces of
Homogeneous Loop Quantum Cosmology and Loop Quantum Gravity. arXiv:
0709.1621.

Brunnemann, J., and Koslowski, T. A. (2011). Symmetry Reduction of Loop
Quantum Gravity. Class. Quan. Grav. 28, 245014. doi:10.1088/0264-9381/
28/24/245014

Burgess, C. P., Cicoli, M., and Quevedo, F. (2013). String Inflation after Planck 2013.
J. Cosmol. Astropart. Phys. 2013, 003. doi:10.1088/1475-7516/2013/11/003

Cailleteau, T., Barrau, A., Grain, J., and Vidotto, F. (2012). Consistency of
Holonomy-Corrected Scalar, Vector and Tensor Perturbations in Loop
Quantum Cosmology. Phys. Rev. D86, 087301.

Cailleteau, T., Mielczarek, J., Barrau, A., and Grain, J. (2012). Anomaly-free Scalar
Perturbations with Holonomy Corrections in Loop Quantum Cosmology.
Class. Quan. Grav. 29, 095010. doi:10.1088/0264-9381/29/9/095010

Carlip, S. (2003). Quantum Gravity in 2+1 Dimensions. Cambridge: Cambridge
Monographs on Mathematical Physics, Cambridge University Press.

Castelló Gomar, L., Fernández-Méndez, M., Mena Marugan, G. A., and Olmedo, J.
(2014). Cosmological Perturbations in Hybrid Loop Quantum Cosmology:
Mukhanov-Sasaki Variables. Phys. Rev. D90, 064015.

Castelló Gomar, L., García-Quismondo, A., and Mena Marugán, G. A. (2020).
Primordial Perturbations in the Dapor-Liegener Model of Hybrid Loop
Quantum Cosmology. Phys. Rev. D102, 083524.

Castelló Gomar, L., Mena Marugán, G. A., Martín de Blas, D., and Olmedo, J.
(2017). Hybrid Loop Quantum Cosmology and Predictions for the Cosmic
Microwave Background. Phys. Rev. D 96, 103528. doi:10.1103/
physrevd.96.103528

Chen, L., and Zhu, J.-Y. (2015). Loop Quantum Cosmology: The Horizon Problem
and the Probability of Inflation. Phys. Rev. D92, 084063.

Chernoff, D. F., and Tye, S.-H. H. (2014). Inflation, String Theory and Cosmology.
arXiv:1412.0579.

Cicoli, M. (2016). Recent Developments in String Model-Building and Cosmology.
arXiv:1604.00904.

Corichi, A., and Karami, A. (2011). Measure Problem in Slow Roll Inflation and
Loop Quantum Cosmology. Phys. Rev. D 83, 104006. doi:10.1103/
physrevd.83.104006

Corichi, A., and Singh, P. (2008). Is Loop Quantization in Cosmology Unique?
Phys. Rev. D78, 024034.

Corichi, A., and Sloan, D. (2014). Inflationary Attractors and Their Measures.
Class. Quan. Grav. 31, 062001. doi:10.1088/0264-9381/31/6/062001

Craig, D. A., and Singh, P. (2013). Consistent Probabilities in Loop Quantum
Cosmology. Class. Quan. Grav. 30, 205008. doi:10.1088/0264-9381/30/20/
205008

Dadhich, N., Joe, A., and Singh, P. (2015). Emergence of the Product of Constant
Curvature Spaces in Loop Quantum Cosmology. Class. Quan. Grav. 32, 185006.
doi:10.1088/0264-9381/32/18/185006

Dapor, A., and Liegener, K. (2018b). Cosmological Coherent State Expectation
Values in Loop Quantum Gravity I. Isotropic Kinematics. Class. Quan. Grav.
35, 135011. doi:10.1088/1361-6382/aac4ba

Dapor, A., and Liegener, K. (2018a). Cosmological Effective Hamiltonian from Full
Loop Quantum Gravity Dynamics. Phys. Lett. B 785, 506–510. doi:10.1016/
j.physletb.2018.09.005

de Blas, D. M., and Olmedo, J. (2016). Primordial Power Spectra for Scalar
Perturbations in Loop Quantum Cosmology. J. Cosmol. Astropart. Phys.
2016, 029. doi:10.1088/1475-7516/2016/06/029

Diener, P., Gupt, B., Megevand, M., and Singh, P. (2014). Numerical Evolution of
Squeezed and Non-gaussian States in Loop Quantum Cosmology. Class. Quan.
Grav. 31, 165006. doi:10.1088/0264-9381/31/16/165006

Diener, P., Gupt, B., and Singh, P. (2014). Numerical Simulations of a Loop
Quantum cosmos: Robustness of the Quantum Bounce and the Validity of
Effective Dynamics. Class. Quan. Grav. 31, 105015. doi:10.1088/0264-9381/31/
10/105015

Diener, P., Joe, A., Megevand, M., and Singh, P. (2017). Numerical Simulations of
Loop Quantum Bianchi-I Spacetimes. Class. Quan. Grav. 34, 094004.
doi:10.1088/1361-6382/aa68b5

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 70141723

Li et al. Phenomenological Implications of mLQCs

112

https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1007/s10714-011-1246-y
https://doi.org/10.1007/s10714-011-1246-y
https://doi.org/10.1103/PhysRevLett.121.081303
https://doi.org/10.1086/310077
https://doi.org/10.1103/physrevd.101.103502
https://doi.org/10.1103/physrevd.101.103502
https://doi.org/10.1007/jhep09(2020)123
https://doi.org/10.1086/310075
https://doi.org/10.1088/0034-4885/78/2/023901
https://doi.org/10.1007/s10714-016-2071-0
https://doi.org/10.1007/s10714-016-2071-0
https://doi.org/10.1103/physrevlett.90.151301
https://doi.org/10.1103/physrevlett.90.151301
https://doi.org/10.1103/physrevlett.72.3305
https://doi.org/10.1088/0264-9381/30/11/113001
https://doi.org/10.1088/0264-9381/30/11/113001
https://doi.org/10.1007/s10701-016-0057-0
https://doi.org/10.1088/0264-9381/28/24/245014
https://doi.org/10.1088/0264-9381/28/24/245014
https://doi.org/10.1088/1475-7516/2013/11/003
https://doi.org/10.1088/0264-9381/29/9/095010
https://doi.org/10.1103/physrevd.96.103528
https://doi.org/10.1103/physrevd.96.103528
https://doi.org/10.1103/physrevd.83.104006
https://doi.org/10.1103/physrevd.83.104006
https://doi.org/10.1088/0264-9381/31/6/062001
https://doi.org/10.1088/0264-9381/30/20/205008
https://doi.org/10.1088/0264-9381/30/20/205008
https://doi.org/10.1088/0264-9381/32/18/185006
https://doi.org/10.1088/1361-6382/aac4ba
https://doi.org/10.1016/j.physletb.2018.09.005
https://doi.org/10.1016/j.physletb.2018.09.005
https://doi.org/10.1088/1475-7516/2016/06/029
https://doi.org/10.1088/0264-9381/31/16/165006
https://doi.org/10.1088/0264-9381/31/10/105015
https://doi.org/10.1088/0264-9381/31/10/105015
https://doi.org/10.1088/1361-6382/aa68b5
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Dodelson, S. (2003). Modern Cosmology. New York: Academic Press.
Dupuy, J. L., and Singh, P. (2020). Hysteresis and Beats in Loop Quantum

Cosmology. Phys. Rev. D101, 086016.
Easther, R., Kinney, W. H., and Peiris, H. (2005). Observing Trans-planckian

Signatures in the Cosmic Microwave Background. J. Cosmol. Astropart. Phys.
2005, 009. doi:10.1088/1475-7516/2005/05/009

Elizaga Navascués, B., Martín de Blas, D., and Mena Marugán, G. (2018). The
Vacuum State of Primordial Fluctuations in Hybrid Loop Quantum
Cosmology. Universe 4, 98. doi:10.3390/universe4100098

Engle, J. (2007). Relating Loop Quantum Cosmology to Loop Quantum Gravity:
Symmetric Sectors and Embeddings. Class. Quan. Grav. 24, 5777–5802.
doi:10.1088/0264-9381/24/23/004

Engle, J., and Vilensky, I. (2018). Deriving Loop Quantum Cosmology Dynamics
from Diffeomorphism Invariance. Phys. Rev. D98, 023505.

Engle, J., and Vilensky, I. (2019). Uniqueness of Minimal Loop Quantum
Cosmology Dynamics. Phys. Rev. D 100, 121901. doi:10.1103/
physrevd.100.121901

Fernández-Méndez, M., Mena Marugán, G. A., and Olmedo, J. (2013). Hybrid
Quantization of an Inflationary Model: The Flat Case. Phys. Rev. D88, 044013.

Fernández-Méndez, M., Mena Marugán, G. A., and Olmedo, J. (2012). Hybrid
Quantization of an Inflationary Universe. Phys. Rev. D86, 024003.

Gambini, R., and Pullin, J. (2011). A First Course in Loop Quantum Gravity.
Oxford: Oxford University Press.

García-Quismondo, A., and Mena Marugán, G. A. (2020). Dapor-Liegener
Formalism of Loop Quantum Cosmology for Bianchi I Spacetimes. Phys.
Rev. D101, 023520.

García-Quismondo, A., and Mena Marugán, G. A. (2019). Martin-Benito-Mena
Marugan-Olmedo Prescription for the Dapor-Liegener Model of Loop
Quantum Cosmology. Phys. Rev. D99, 083505.

García-Quismondo, A., Mena Marugán, G. A., and Pérez, G. S. (2020). The Time-
dependent Mass of Cosmological Perturbations in Loop Quantum Cosmology:
Dapor-Liegener Regularization. Class. Quan. Grav. 37, 195003. doi:10.1088/
1361-6382/abac6d

Gerhardt, F., Oriti, D., andWilson-Ewing, E. (2018). The Separate Universe Framework
in Group Field Theory Condensate Cosmology. Phys. Rev. D98, 066011.

Giesel, K., Li, B.-F., and Singh, P. (2020). Revisiting the Bardeen and Mukhanov-
Sasaki Equations in the Brown-Kuchar and Gaussian Dust Models. arXiv:
2012.14443.

Giesel, K., Li, B.-F., and Singh, P. (2020). Towards a Reduced Phase Space
Quantization in Loop Quantum Cosmology with an Inflationary Potential.
Phys. Rev. D 102, 126024. doi:10.1103/physrevd.102.126024

Giesel, K., and Thiemann, T. (2007). Algebraic Quantum Gravity (AQG): I.
Conceptual Setup. Class. Quan. Grav. 24, 2465–2497. doi:10.1088/0264-
9381/24/10/003

Gomar, L. C., Martín-Benito, M., and Marugán, G. A. M. (2015). Gauge-invariant
Perturbations in Hybrid Quantum Cosmology. J. Cosmol. Astropart. Phys. 2015,
045. doi:10.1088/1475-7516/2015/06/045

Gordon, L., Li, B.-F., and Singh, P. (2021). Quantum Gravitational Onset of
Starobinsky Inflation in a Closed Universe. Phys. Rev. D103, 046016.

Green, M. B., Schwarz, J. H., and Witten, E. (1999). Superstring Theory: Vol.1 & 2.
Cambridge: Cambridge Monographs on Mathematical Physics, Cambridge
University Press.

Gupt, B., and Singh, P. (2013). A Quantum Gravitational Inflationary Scenario in
Bianchi-I Spacetime. Class. Quan. Grav. 30, 145013. doi:10.1088/0264-9381/30/
14/145013

Gupt, B., and Singh, P. (2012). Quantum Gravitational Kasner Transitions in
Bianchi-I Spacetime. Phys. Rev. D86, 024034.

Guth, A. H. (1981). Inflationary Universe: A Possible Solution to the Horizon and
Flatness Problems. Phys. Rev. D 23, 347–356. doi:10.1103/physrevd.23.347

Han, M., Li, H., and Liu, H. (2020). Manifestly Gauge-Invariant Cosmological
Perturbation Theory from Full Loop Quantum Gravity. arXiv:2005.00883.

Han, M., and Liu, H. (2020a). Effective Dynamics from Coherent State Path
Integral of Full Loop Quantum Gravity. Phys. Rev. D101, 046003.

Han, M., and Liu, H. (2020b). Semiclassical Limit of New Path Integral
Formulation from Reduced Phase Space Loop Quantum Gravity. Phys. Rev.
D102, 024083.

Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Spacetime.
Cambridge: Cambridge University Press.

Jackson, M. G., and Schalm, K. (2012). Model Independent Signatures of New
Physics in the Inflationary Power Spectrum. Phys. Rev. Lett. 108, 111301.
doi:10.1103/physrevlett.108.111301

Jin, W.-J., Ma, Y.-G., and Zhu, T. (2019). Pre-inflationary Dynamics of Starobinsky
Inflation and its Generalization in Loop Quantum Brans-Dicke Cosmology.
JCAP 02, 010.

Johson, C. V. (2003). D-Branes, Cambridge Monographs on Mathematical Physics.
Cambridge: Cambridge University Press.

Joras, A. E., and Marozzi, G. (2009). Trans-Planckian Physics from a Nonlinear
Dispersion Relation. Phys. Rev. D79, 023514.
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Exploring Alternatives to the
Hamiltonian Calculation of the
Ashtekar-Olmedo-Singh Black Hole
Solution
Alejandro García-Quismondo* and Guillermo A. Mena Marugán

Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain

In this article, we reexamine the derivation of the dynamical equations of the
Ashtekar-Olmedo-Singh black hole model in order to determine whether it is
possible to construct a Hamiltonian formalism where the parameters that
regulate the introduction of quantum geometry effects are treated as true
constants of motion. After arguing that these parameters should capture
contributions from two distinct sectors of the phase space that had been
considered independent in previous analyses in the literature, we proceed to
obtain the corresponding equations of motion and analyze the consequences
of this more general choice. We restrict our discussion exclusively to these
dynamical issues. We also investigate whether the proposed procedure can be
reconciled with the results of Ashtekar, Olmedo, and Singh, at least in some
appropriate limit.

Keywords: loop quantum cosmology, loop quantum gravity, black holes, polymer quantization, quantum
geometry

1 INTRODUCTION

Over two years ago, a new model to describe black hole spacetimes in effective loop quantum
cosmology was put forward in (Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020) by Ashtekar, Olmedo, and Singh (AOS). The work of these authors is set apart
from previous related investigations in the literature [see (Ashtekar and Bojowald, 2005a;
Ashtekar and Bojowald, 2005b; Cartin and Khanna, 2006; Modesto, 2006; Bojowald et al.,
2007; Boehmer and Vandersloot, 2007; Campiglia et al., 2008; Sabharwal and Khanna, 2008;
Chiou, 2008a; Chiou, 2008b; Brannlund et al., 2009; Gambini et al., 2014; Gambini and Pullin,
2014; Dadhich et al., 2015; Haggard and Rovelli, 2015; Joe and Singh, 2015; Corichi and Singh,
2016; Campiglia et al., 2016; Saini and Singh, 2016; Cortez et al., 2017; Olmedo et al., 2017;
Yonika et al., 2018; Bianchi et al., 2018; Bodendorfer et al., 2019a; Alesci et al., 2019;
Bouhmadi-López et al., 2020a; Bojowald, 2020a; Ben Achour et al., 2020; Gambini et al.,
2020; Kelly et al., 2020; Gan et al., 2020; Kelly et al., 2021; Bodendorfer et al., 2021a;
Bodendorfer et al., 2021b; Daghigh et al., 2021; Münch, 2021), among others] owing to a
combination of features. On the one hand, the main focus is placed on black hole related
aspects rather than issues central to anisotropic cosmologies. On the other hand, the resulting
model is claimed to display neither a dependence on fiducial structures nor large quantum
effects on low curvature regions. By virtue of the introduction of quantum geometry (QG)
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effects, which is implemented by means of two
polymerization parameters1, the classical singularity at the
center of the black hole is replaced with a transition surface
that joins a trapped region to its past and an anti-trapped one
to its future, extending the Schwarzschild interior to
encompass what is interpreted as a white hole horizon.
The resulting metric, that we will call effective in the sense
that it can be treated classically but incorporates QG
modifications, is smooth and its curvature invariants admit
upper bounds that do not depend on the mass of the black
hole (Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar
and Olmedo, 2020). The model is completed with a
description of the exterior region that can be joined
smoothly to the interior region, both to its past and its
future, resulting in an extension of the whole Kruskal
spacetime.

The authors of (Ashtekar et al., 2018a; Ashtekar et al., 2018b;
Ashtekar and Olmedo, 2020) emphasize that they adopt a mixed
prescription for the implementation of the improved dynamics.
Indeed, instead of choosing the relevant polymerization
parameters as constants or as arbitrary phase space functions,
they claim to fix them to be Dirac observables. However, they do
not treat them as such in their Hamiltonian calculation: in
practice, the polymerization parameters are regarded as
constants in that calculation and, once the dynamical
equations have been derived and solved, the parameters are set
equal to the value of certain functions of the ADM mass of the
black hole, which is a Dirac observable itself. This fact was already
noted by Bodendorfer, Mele, and Münch in (Bodendorfer et al.,
2019b), where they showed that a genuine treatment of the
polymerization parameters as constants of motion, which are
constant only along dynamical trajectories (i.e., on shell) but not
on the whole phase space, would produce an extra phase-space
dependent factor in the Hamiltonian equations. The analysis
carried out in (Bodendorfer et al., 2019b) exploits the structure of
the Hamiltonian constraint of the system, which is composed by
the difference of two Dirac observables (the on-shell value of each
of which turns out to be the black hole mass), to divide the phase
space into two independent subsectors, associated with the
degrees of freedom along the radial and angular spatial
directions. In each subsector, the dynamics is generated by
one of these constants of motion, which can then be regarded
as partial Hamiltonians. Additionally, in (Bodendorfer et al.,
2019b), these Dirac observables play the role of polymerization
parameters, in the sense that each of the parameters is taken to be
a function only of its associated partial Hamiltonian. On shell,
this is equivalent to deal with parameters that are functions of the
black hole mass, and at least in this sense one would recover the

original proposal of (Ashtekar et al., 2018a; Ashtekar et al., 2018b;
Ashtekar and Olmedo, 2020).

Nonetheless, since the two partial Hamiltonians become equal
by virtue of the vanishing of the constraint, there is no telling
apart which of the two contributes to the on-shell expression of
each of the polymerization parameters. Therefore, one may argue
that each parameter should be taken as a function of both partial
Hamiltonians, something that breaks the decoupling of
subsectors at the Hamiltonian and dynamical levels. In the
following, we focus our discussion exclusively on examining
whether there exists an alternative procedure to carry out the
Hamiltonian calculation starting from this observation, leaving
apart other issues related with the asymptotic behavior of the
metric, its physical interpretation, or quantum covariance, that
are beyond the scope of this work (for recent criticisms on the
AOS viewpoint on these issues, see (Bojowald, 2019; Arruga et al.,
2020; Bojowald, 2020b; Bouhmadi-López et al., 2020b). The main
purpose of our investigation is to explore the possibility that one
can develop an alternative dynamical analysis based on the cross-
dependence of the polymerization parameters on the two partial
Hamiltonians of the system, and study whether this possibility
can reconcile in some sense the derivation of the solution
presented in (Ashtekar et al., 2018a; Ashtekar et al., 2018b;
Ashtekar and Olmedo, 2020) with a genuine consideration of
the parameters as constants of motion.

The rest of this paper is structured as follows. In Section 2 we
explore the consequences of polymerization parameters that are
functions of both partial Hamiltonians as regards the derivation
of the equations of motion associated with the Hamiltonian
constraint of (Ashtekar et al., 2018a; Ashtekar et al., 2018b;
Ashtekar and Olmedo, 2020). In Section 3 we define two time
variables that allow us to simplify the form of the dynamical
equations and examine whether they can be made equal to each
other in general. In Section 4 we analyze the consistency of
imposing this equality on the newly defined time variables at least
in the asymptotic limit of large black hole masses, and study their
relation for finite values of the mass. Finally, we conclude in
Section 5with a discussion of our results. Throughout this article,
we set the speed of light and the reduced Planck constant equal
to one.

2 DYNAMICAL EQUATIONS

In this section, we investigate an alternative avenue in the
computation of the equations that govern the modified
dynamics of the interior region of a black hole, based on a
more general choice of polymerization parameters off shell.
With a suitable choice of lapse function of the form (Ashtekar
et al., 2018a; Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020)

N �
cδb

���∣∣∣∣pc∣∣∣∣√
sinδbb

, (1)

where c is the Immirzi parameter. The so-called effective
Hamiltonian of the system can be written as (Ashtekar et al.,
2018a; Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020)

1The term polymerization refers to the name “polymer quantization”, which is
often employed for the quantization of symmetry reduced models with loop
techniques. The motivation for this terminology comes from the 1-dimensional
nature of the basic excitations of the gravitational field in the loop quantization,
excitations that are localized on the edges of 1-dimensional graphs on which the
holonomies are not trivial in the (so-called cylindrical) quantum states, leading to
this polymer-like picture of spacetime geometry.
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NHeff � Lo

G
(Ob − Oc), (2)

Ob � − 1
2c
(sinδbb

δb
+ c2δb
sinδbb

) pb
Lo
, (3)

Oc � 1
c

sinδcc
δc

pc
Lo
, (4)

where Lo is the length of the edge parallel to the x-direction of the
fiducial cell and G is the Newtonian gravitational constant. The
canonical variables b, c, pb, and pc have the following
nonvanishing Poisson brackets:

{b, pb} � Gc, {c, pc} � 2Gc. (5)

Furthermore, δb and δc are the parameters that capture and
introduce the QG effects in the system. The classical Hamiltonian
of the model within General Relativity is recovered in the limit
δb, δc → 0. It is interesting to note that, should δb and δc be
regarded as constants, NHeff is given by the difference of two
objects that generate the dynamics in two distinct subsectors of
the phase space that are dynamically decoupled. For this reason,
we often refer to Ob and Oc as the partial Hamiltonians2 of the b
and c subsectors, respectively. BothOb andOc turn out to be Dirac
observables, i.e., constant along each dynamical trajectory. The
vanishing of the Hamiltonian constraint implies that, on shell,
they are equal to the same constant of motion,m, which happens
to be proportional to the ADM mass of the black hole.

In the AOS black hole model (Ashtekar et al., 2018a; Ashtekar
et al., 2018b; Ashtekar and Olmedo, 2020), the parameters δb and
δc are treated as constants on the whole phase space and then
fixed to have the same value as certain functions of the Dirac
observablem. The authors of (Bodendorfer et al., 2019b) propose
an alternative way to treat these parameters as constants of
motion from the very beginning: they take δb and δc as
functions of their respective partial Hamiltonian, δb � δb(Ob)
and δc � δc(Oc), so that the parameters remain functions ofm on
shell. Nonetheless, since both Ob and Oc have the same on-shell
value, it can be argued that each of the considered parameters
should be assumed to be a function of both partial Hamiltonians:
on shell, the contribution of one cannot be told apart from that of
the other. In this work, we will follow this line of reasoning and
investigate its consequences within the ensuing Hamiltonian
calculation.

Thus, let δb and δc be functions of both partial Hamiltonians

δi � fi(Ob,Oc), (6)

with i � b, c. This cross-dependence introduces a coupling
between the b and c subsectors that was absent in previous
works and that will obviously influence the form of the
dynamical equations. Let us begin by computing the equations
of motion associated with the connection variables b and c, that

we will collectively denote with the symbol i (no confusion with
the imaginary number will arise in our calculations). We have

zt i � si
Lo

G
({i,Oi} − {i,Oj}), (7)

where t is the time variable associated with the choice of lapse N,
i, j � b, c, j≠ i, and si is a sign defined by

sb � +1, sc � −1. (8)

The Poisson bracket of iwith its respective partial HamiltonianOi

is given by

{i,Oi} � {i, pi} zOi

zpi
+ zOi

zδi
( zfi
zOi

{i,Oi} + zfi
zOj
{i,Oj}). (9)

Similarly,

{i,Oj} � zOj

zδj
( zfj
zOi

{i,Oi} + zfj
zOj
{i,Oj}). (10)

The Poisson brackets of the connection variables with each partial
Hamiltonian can be solved for in the system of linear equations
formed by Eqs. 9, 10. When rewritten appropriately, this system
can be recast in matrix form:

( 1 − Δii −Δij

−Δji 1 − Δjj
)( {i,Oi}{i,Oj} ) � ⎛⎜⎜⎜⎜⎜⎜⎝{i, pi} zOi

zpi

0

⎞⎟⎟⎟⎟⎟⎟⎠, (11)

where we have defined

Δij � zOi

zδi

zfi
zOj

. (12)

The system Eq. 11 can be solved if and only if

(1 − Δii)(1 − Δjj) − ΔijΔji ≠ 0. (13)

Assuming that this invertibility condition holds,

( {i,Oi}{i,Oj} ) � {i, pi} zOi
zpi

(1 − Δii)(1 − Δjj) − ΔijΔji

( 1 − Δjj

Δji
). (14)

Therefore, by virtue of Eq. 7,

zt i � 1 − Δjj − Δji

(1 − Δii)(1 − Δjj) − ΔijΔji

[siLo

G
{i, pi} zOi

zpi
], (15)

with i, j � b, c and j≠ i. Following the same reasoning, the
equations of motion associated with the triad variables pb and
pc turn out to be

ztpi � 1 − Δjj − Δji

(1 − Δii)(1 − Δjj) − ΔijΔji

[ − si
Lo

G
{i, pi} zOi

zi
], (16)

with i, j � b, c and j≠ i.
It is worth noting that the objects in square brackets in Eqs. 15,

16 are the dynamical equations that result when δb and δc are
treated as constants on the whole phase space, i.e., those used in
(Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020). Therefore, if we allow the quantum parameters to

2Strictly speaking, the objects that generate the dynamics in each subsector are
LoOb/G and LoOc/G. However, in practice, we will ignore the constant factor Lo/G
(which could be reabsorbed through an appropriate redefinition of the lapse
function), focus on the more interesting phase space dependent parts, Ob and Oc,
and use this terminology to refer to them succinctly.
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be functions of both partial Hamiltonians, the equations of
motion are modified via a multiplicative phase space
dependent factor,

Cij � 1 − Δjj − Δji

(1 − Δii)(1 − Δjj) − ΔijΔji
. (17)

As expected, this factor reduces to the one found in (Bodendorfer
et al., 2019b) when the b and c subsectors are decoupled. Indeed,
in that case Δij � 0 if i≠ j, and Cij reduces to

Cij →Ci � 1
1 − Δii

, (18)

which is identical to what the authors of that reference called
F−1
i .

3 TIME REDEFINITIONS

Let v→H0 be the Hamiltonian vector field associated with the
Hamiltonian H0 that is identical to NHeff except for the fact that
δb and δc are constant on the whole phase space,

v→H0 � (zH0

zpb
,− zH0

zb
,
zH0

zpc
,− zH0

zc
) � ( v→H0,b

, v→H0,c). (19)

According to the results of the previous section, when the
parameters of the model are instead given by functions of
both Ob and Oc, the Hamiltonian vector field is given by

v→Heff
� (Cbc v

→
H0,b

,Ccb v
→

H0,c). (20)

This local rescaling of the Hamiltonian vector field implies that it
is possible to introduce a suitable redefinition of the time variable
in each subsector such that one can recover the simpler dynamics
generated by H0. However, the fact that Cij is, in general,
nonsymmetric means that this change of time is different in
the b and c subsectors of the phase space. Indeed, it is immediate
to see that, with the appropriate time redefinitions, the dynamical
equations become

z~tii � si
Lo

G
{i, pi} zOi

zpi
, z~tipi � −si Lo

G
{i, pi} zOi

zi
, (21)

where the sector-dependent time variable ~ti is defined in the
following manner:

d~ti � Cijdt, (22)

with i, j � b, c and j≠ i. Hence, we see that the dynamics that we
obtain in the b and c subsectors coincides with that of the AOS
model (Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar
and Olmedo, 2020) when the corresponding equations of motion
Eqs. 15, 16 are rewritten in terms of two time variables, ~tb and ~tc,
which are in general different in each subsector. This observation
provides a strategy to solve the dynamical equations obtained in
Section 2: perform the time redefinitions t→~ti, solve the
resulting simpler equations of motion and rewrite the
solutions in terms of the original time variable through the
integration of Eq. 22.

An appealing possibility that we are going to study is
whether these time variables can be set to be equal by
making use of the freedom that exists off shell. Let us
assume that, on shell, ~tb � α~tc, where α is a real constant.
This directly implies that

Cbc on � αCcb on01 − Δcc on − Δcb on � α(1 − Δbb on − Δbc on),||||||
(23)

where the symbol |on denotes on-shell evaluation, i.e. evaluation
on the phase space region where Heff � 0. This requirement
constitutes a restriction in the form of the first derivatives of
the polymerization parameters with respect to the partial
Hamiltonians. In the case α � 1 (of direct application to the
AOS model), this condition reduces to

Δ bb on + Δ bc on � Δ cc on + Δ cb on.|||| (24)

We will however consider an arbitrary value of α. Rewriting
Eq. 23 by using the definition of Δij (see Eq. 12), we obtain that
the following condition must be satisfied:

1−zOc

zδc on
( zfc
zOc on

+ zfc
zOb on

)� α[1−zOb

zδb on
( zfb
zOb on

+ zfb
zOc on

)].∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

(25)

Since the two parameters are functions only of the partial
Hamiltonians, their evaluation on shell is equivalent to setting
Ob � Oc � m in fi. However, it will prove more useful to rewrite δi
as functions of the linear combinations

μ1 �
Ob + Oc

2
, μ2 �

Ob − Oc

2
, (26)

the on-shell values of which are given by μ1|on � m and μ2|on � 0.
Then, Eq. 25 can be rewritten as

1 − zOc

zδc on

zfc
zμ1 on

� α(1 − zOb

zδb on

zfb
zμ1 on

).∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (27)

Assuming that the functions fi are C1, we can evaluate them on
shell first and then compute the derivatives. Thus, for ~tb and ~tc to
be proportional, it must be satisfied on shell that

1 − zOc

zδc on

zfc(m, 0)
zm

� α(1 − zOb

zδb on

zfb(m, 0)
zm

).∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (28)

In the rest of our discussion, we will omit the on-shell evaluations
in formulas of this kind to simplify our notation. The on-shell
restriction will be clear from the context.

The derivatives of the partial Hamiltonians with respect to δb
and δc are

zOb

zδb
� − 1

2c
(1 − c2δ2b

sin2δbb
) δbbcosδbb − sinδbb

δ2b

pb
Lo
, (29)

zOc

zδc
� 1
c

δcccosδcc − sinδcc

δ2c

pc
Lo
, (30)

as can be immediately derived from Eqs. 3, 4. The fact that
these derivatives depend on the canonical variables seems in
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tension with the requirement that Eq. 28 must be satisfied on
the whole phase space. Since the derivatives zmfi(m, 0) only
depend on m (and, therefore, remain constant along each
dynamical trajectory), the functions fi need to be selected so
that any phase space dependent contribution is canceled
identically.

In order to evaluate these derivatives on shell, it is necessary to
identify the independent functional dependences. It is immediate
to see that the dependence on the connection variables b and c can
be removed in terms of their momenta and the black hole mass.
Indeed, the functions of each connection variable can be rewritten
in terms of its corresponding partial Hamiltonian and triad
variable. Using Eqs. 3, 4, and requiring an acceptable limit for
large masses, we obtain

sinδbb
δb

� − cLoOb

pb
⎛⎝1 +

�������
1 − p2b

L2
oO

2
b

√ ⎞⎠, (31)

sinδcc
δc

� cLoOc

pc
. (32)

Hence, the only independent functional dependences that
remain on shell are those associated with the triad variables.
By means of the above relations, we can recast every function of
b and c that appears in Eqs. 29, 30 as a function of pb, pc, and the
partial Hamiltonians, which reduce to m after the on-shell
evaluation. After a straightforward computation, we obtain
on shell that

zOc

zδc
�

± arcsin[cLomfc(m,0)
pc

] ��������������
p2c
L2o
− c2m2f 2c (m, 0)

√
− cmfc(m, 0)

cf 2c (m, 0) ,

(33)

where the sign ± corresponds with the sign of cosδcc.
A similar, although more complicated expression can be
found for the on-shell value of zOb/zδb. To shorten this
expression, we use (exclusively here) the compact
notation ~pb � pb/(Lom):
zOb

zδb
� m
2cf 2b (m,0)[1−~p2b(1+

�����
1−~p2b
√ )−2]

×
⎧⎪⎨⎪⎩−cfb(m,0)(1+ �����

1−~p2b
√ )± arcsin[cfb(m,0)

~pb
(1+ �����

1−~p2b
√ )]

×
�����������������������
~p2b−c2f 2b (m,0)(1+ �����

1−~p2b
√ )2

√ ⎫⎪⎬⎪⎭. (34)

On the light of these relations, we realize that the condition Eq. 28
has the following structure:

1 − Fc(pc) zfc(m, 0)
zm

� α[1 − Fb(pb) zfb(m, 0)
zm

], (35)

where the functional forms of Fb and Fc are irrelevant for the
present argument, except that they are not constant
functions. For this condition to hold on the whole phase
space, the derivatives of the polymerization parameters must
vanish

zfi(m, 0)
zm

� 0, (36)

and α must be equal to one. As a result, we conclude that, if we
demand that ~tb and t̃c be proportional for all values of the mass,
the only possibility is that they are equal and the polymerization
parameters are constants. In other words, we cannot reconcile the
choice of these parameters as Dirac observables and the dynamics
being governed by Eq. 21 in a single time variable, at least for all
values of the mass. The lesson to be drawn from this result is that
the appearance of two distinct time variables that simplify the
dynamics in the radial and angular subsectors of phase space is a
defining feature of the model if we treat the parameters δi as proper
Dirac observables. The difference between these two times, as well
as between them and the coordinate time t, can have consequences
on the spacetime geometry, as we will very briefly comment on
Section 5. In the next section, we will examine whether condition
Eq. 28 can be imposed consistently for black hole masses much
larger than the Planck mass.

4 CONSISTENCY IN THE LIMIT OF LARGE
BLACK HOLE MASSES

In this section, we investigate whether the dynamics of the AOS
model, that results from considering the parameters δi as constant
numbers in the Hamiltonian calculations, can be recovered at least
in the limit of large black hole masses when these parameters are
taken instead as constants of motion and one introduces a
convenient time redefinition. Let us begin by assuming that it is
possible. Then, in the considered limit, the dynamical equations
adopt the same form as in (Ashtekar et al., 2018a; Ashtekar et al.,
2018b; Ashtekar andOlmedo, 2020), up to subdominant terms that
reflect the fact that ~tb and ~tc cannot be made equal for all values of
the mass. Furthermore, according to the argument presented in
(Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020), the parameters δi are found to be given by

δb � (
��
Δ

√���
2π

√
c2m

)1/3

+ o(m−1/3),
δc � 1

2Lo
( cΔ2

4π2m
)1/3

+ o(m−1/3),
(37)

where the symbol o(·) collectively denotes all the terms that are
subdominant with respect to the function inside the parentheses.
In these expressions, Δ is the area gap in loop quantum gravity.
Therefore, asymptotically,

zfi
zm

� − 1
3
δi
m

+ o(δi
m
), (38)

with i � b, c. Then, the condition Eq. 28 can be imposed
consistently as long as3

3Should any of the exponents ni be equal to 4/3, it is straightforward to realize that a
further condition on the coefficients of the dominant terms must be met for Eq. 28
to hold asymptotically.
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lim
m→∞

zOi

zδi
∼ mni , ni ≤

4
3
, (39)

with i � b, c.
Given the fact that we are working under the assumption

that ~tb � t̃c � ~t when m→∞, we obtain from the solutions of
(Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020) that, in this limit and up to subdominant
corrections,

cosδbb(~t) � botanh[12(bo~t + 2tanh−1
1
bo
)], (40)

tan
δcc(~t)
2

� cLoδc
8m

e−2~t , (41)

pb(~t) � −2 sinδcc(~t)
δc

sinδbb(~t)
δb

pc(~t)
c2 + sin2δbb(~t)

δ2b

, (42)

pc(~t) � 4m2(e2~t + c2L2oδ
2
c

64m2
e−2~t), (43)

where bo �
�������
1 + c2δ2b

√
. Let us now proceed to the computation of

the dominant terms of zOi/zδi.
From Eq. 43, it follows immediately that

pc � 4e2~tm2 + o(m2). (44)

The case of the connection variable c and its trigonometric
functions is less immediate. Since the solution written above
involves the tangent of δcc/2, it is useful to employ the
identity

cosδcc � 1 − tan2(δcc/2)
1 + tan2(δcc/2). (45)

Then, by virtue of Eq. 41,

cosδcc � 1 − c2L2
o

32e4~t
δ2c
m2

+ o( δ2c
m2
). (46)

Given that the sum of the squares of the sine and cosine functions
is equal to one, we can obtain sinδcc and δcc from the expression
above. In order to do this, it suffices to bear in mind that,
according to the conventions of (Ashtekar et al., 2018a;
Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020), b> 0,
c> 0, pb ≤ 0, and pc ≥ 0. This, together with the fact that
limm→∞δi � 0, implies that every relevant trigonometric
function is nonnegative.

After a straightforward calculation, we conclude that

zOc

zδc
� − c2L2

o

48e4~t
δc
m
+ o(δc

m
). (47)

The dominant term goes with m−4/3 (see Eq. 37), which implies
that the left hand side of Eq. 28 tends to one in the limit of large
black hole masses. Let us now perform the analogous analysis on
the right hand side of Eq. 28.

On the light of the form of the solution Eq. 40 for
the connection variable b, it proves useful to employ the
identity

tanh(a + b) � tanh a + tanh b
1 + tanh a tanh b

, (48)

such that, up to subdominant corrections to the leading time-
dependent contribution,

cosδbb � 1 + bo tanh(boT)
1 + b−1o tanh(boT), (49)

where we have defined T � ~t/2. Rewriting the previous expression
as a power series, we get

cosδbb � 1 + C1δ
2
b + o(δ2b), (50)

with a constant C1 given by

C1 � c2
tanhT

1 + tanhT
. (51)

Recasting every function of b that appears in Eq. 29 as a power
series, we find that

(1 − c2δ2b
sin2δbb

) δbbcosδbb − sinδbb

δ2b
� − 2

3
(2C1 + c2) C1�����−2C1

√ δb + o(δb).
(52)

Lastly, the asymptotic value of pb can be obtained from Eq. 42 by
introducing the appropriate expansions:

− 1
2

pb
cLo

�
�����−2C1

√
c2 − 2C1

m + o(m). (53)

In conclusion, the partial derivative of Ob with respect to δb
displays the asymptotic behavior

zOb

zδb
� − 2

3
C1
c2 + 2C1

c2 − 2C1
δbm + o(δbm). (54)

This, in conjunction with Eq. 38, leads to the asymptotic
vanishing of Δbb + Δbc. Therefore, the condition Eq. 28
reduces to α � 1 in the asymptotic limit m→∞. For this
value of α, the times ~tb and ~tc indeed coincide for black holes
of asymptotically large masses.

From this result, we conclude that, among all possible choices
of~tb and~tc such that they are proportional to each other, only the
choice where the proportionality constant is equal to one is
admissible in the limit of large black hole masses. Therefore,
the AOS solutions can at least be reconciled with the present
calculation in this limit. It is important to remark that, although
the equations of motion do coincide with those derived in
(Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar and
Olmedo, 2020) in the limit of large black hole masses, they are
written in a different time variable ~t. Thus, the spacetime
geometry is modified with respect to the one studied in those
works. This opens a door to a different asymptotic behavior of the
spacetime metric of the exterior region, which in particular may
have a different asymptotic (flat) behavior (Bouhmadi-López
et al., 2020b). Additionally, the lapse function associated with
~t will present a different phase space dependence, that may call for
a different re-densitization of the Hamiltonian constraint NHeff

with respect to the difference Ob − Oc of what we have called the
partial Hamiltonians of the model. We leave these issues for
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future studies and, as we declared in the Introduction, restrict our
discussion here to the viability of a Hamiltonian derivation of the
AOS solution (possibly in an asymptotic sense) treating the
polymerization parameters as true constants of motion.

Let us close this section by studying the relation between the
time variables ~tb and ~tc for finite values of the mass. In view of
their definitions (see Eq. 22) and the fact that the denominator of
Cij is symmetric, we obtain that the ratio of the two differential
times is

d~tb
d~tc

� 1 − Δcc − Δcb

1 − Δbb − Δbc
. (55)

On shell, this is equivalent to

d~tb
d~tc

� 1 − zOc
zδc

zfc
zm

1 − zOb
zδb

zfb
zm

. (56)

Notice that the numerator (denominator) of the right hand side is
a function of ~tc (~tb). Therefore, by integrating, we obtain an
equality between a function of ~tb and a function of ~tc, which
provides an implicit relation between the two time variables,

∫0

~tb

d~tb′(1 − zOb

zδb

zfb
zm
) � ∫0

~tc

d~tc′(1 − zOc

zδc

zfc
zm
), (57)

where the choice of integration limits reflects the fact that,
according to the conventions of (Ashtekar et al., 2018a;
Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020), the time
variables are negative in the interior region of the black hole, and
their origins coincide. We have already determined that, in the
asymptotic limit of large masses, this relation reduces to the
identity. However, for finite values of the black hole mass, the
difference between both time variables is given by

~tb −~tc � zfb
zm
∫  ~tb

0

zOb

zδb
d~tb′ − zfc

zm
∫ ~tc

0

zOc

zδc
d~tc′ . (58)

Inserting the results obtained in this section,

~tb −~tc � zfb
zm
∫~tb

0
d~tb′
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ − 2

3
C1(~tb′) c2 + 2C1(~tb′)

c2 − 2C1(~tb′)δbm + o(δbm)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− zfc
zm
∫~tc

0
d~tc′[ − c2L2o

48e4~tc′
δc
m

+ o(δc
m
)].

(59)

Here, we have used that, at the order of approximation needed in
the integrals of our expression in the asymptotic limit of large
masses, we can identify ~tb � ~tc � ~t. Since the dominant term of
the second integral, which goes as δc/m, is already subdominant
with respect to that of the first integral, only the b sector
contributes to the studied difference at the lowest nontrivial
order. We have

~tb −~tc � − 4
3
c2
zfb
zm
[∫ ~tb/2

0

tanhTb(1 + 3tanhTb)
1 − tanh2 Tb

dTb]δbm + o(δ2b),
(60)

so that

~tc � ~tb − 1
9
c2( − 3~tb + 3sinh~tb + cosh~tb − 1)δ2b + o(δ2b). (61)

This equation provides the first-order corrected relation
between both time variables, their difference vanishing
when m→∞, as expected. Additionally, this relation reveals
another property that was already pointed out in (Bodendorfer
et al., 2019b): the difference ~tc −~tb also vanishes in the region
where quantum effects are negligible, i.e., close to the event
horizon. When solving the equations of motion associated
with the b sector, the constants of integration were fixed in
such a way that the horizon (defined by b � 0 and pb � 0) lies at
~tb � 0 (Ashtekar et al., 2018a; Ashtekar et al., 2018b; Ashtekar
and Olmedo, 2020). It is immediate to verify that both time
variables are indeed close to each other when ~tb approaches
zero, since the dominant term of their difference vanishes at
least as ~t2b in this limit, when asymptotically large masses are
considered.

The dominant-order correction to the difference of times in
Eq. 61 also makes it apparent that the relation between ~tb and
~tc may become nonmonotonic in general, which allows us to
draw yet another parallel with (Bodendorfer et al., 2019b).
Indeed,

d~tc
d~tb

� 1 − 1
9
c2(sinh~tb + 3cosh~tb − 3)δ2b + o(δ2b) (62)

is positive in the limit ~tb → 0 but may reach a value of ~tb where
it vanishes and, eventually, changes sign. For the standard
value of the Immirzi parameter c � 0.2375, Δ � 4

�
3

√
πGc, and

m � 10000mPl (wheremPl denotes the Planck mass), we obtain
that this derivative vanishes at ~tb ≈ − 9.36tPl (where tPl is the
Planck time). Therefore, while~tc decreases as~tb decreases near
the horizon, this trend is found to be reversed beyond a critical
value of ~tb at the considered truncation order in the
asymptotic expansion. This indicates that there would exist
a point along the evolution where the ratio Cbc/Ccb would
cease to be finite. Nonetheless, note that this does not
necessarily imply that the invertibility condition in Eq. 13
would be violated at that point, not even at our truncation
order. Actually, the symmetry properties of Cij ensure that
only the numerators of Cbc and Ccb contribute to their ratio. As
a result, the nonfiniteness of this ratio at a certain point along
the evolution should not be attributed in principle to an ill
behavior of the denominator of Cij and, consequently, to a
violation of condition Eq. 13.

5 CONCLUSION

In this paper, we have examined whether it is possible to
construct a Hamiltonian formalism where the polymerization
parameters that encode the quantum corrections in black hole
spacetimes can be treated as constants of motion. The final
identification of these parameters with dynamical constants is
one of the ideas of the AOS model, proposed in (Ashtekar et al.,
2018a; Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020).
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However, instead of incorporating this identification into the
Hamiltonian calculation from the beginning, the analysis in
those references is carried out ignoring the Poisson brackets
of the parameters, treating them as constants on the whole
phase space. It is only later on that their value is set equal to
certain functions of the black hole mass, which is a Dirac
observable of the system under consideration. The authors of
(Bodendorfer et al., 2019b) pointed out that the computation
of the Hamiltonian equations would change if one takes into
consideration those Poisson brackets, regarding the
parameters as true constants of motion. To show this, it
was noticed in (Bodendorfer et al., 2019b) that, given the
form of the Hamiltonian, there are two dynamically
decoupled subsectors in phase space, provided that the
polymerization parameters do not introduce any cross-
dependence. With this caveat, each subsector can be
studied separately and its dynamics is generated by one of
the two terms that appear in the Hamiltonian constraint
(with a suitable choice of lapse). We have referred to these
two terms as partial Hamiltonians, which turn out to be Dirac
observables that reduce to the black hole mass on shell.
Imposing that the polymerization parameter associated
with each subsector is a function of its corresponding
partial Hamiltonian, the equations of motion that one
obtains differ from those of the AOS model by a phase
space dependent factor that complicates the solutions.
However, this factor can be reabsorbed by appropriate
time redefinitions, leading to simpler dynamical equations
written in two separate time variables, one in each subsector.
In (Bodendorfer et al., 2019b), both variables were found to
be approximately equal from the event horizon up to a
neighborhood of the transition surface where QG effects
become important, concluding that the results of the AOS
model were approximately valid when restricted to this
region of the interior of the black hole.

In the present work, we have extended the aforementioned
analysis to take into account the possibility that the
polymerization parameters, regarded as constants of
motion, depend not only on their corresponding partial
Hamiltonian, but on both of them. This possibility breaks
the decoupling of subsectors that plays a central role in
(Bodendorfer et al., 2019b). Indeed, since both partial
Hamiltonians coincide with the value of the black hole mass
on shell by virtue of the vanishing of the Hamiltonian
constraint, one should in principle not be able to tell their
contributions apart. A dependence on both of these Dirac
observables brings new freedom to the treatment of the
polymerization parameters. We have investigated whether
this new off-shell freedom can help to derive the AOS
model exclusively from a standard Hamiltonian calculation,
viewing the parameters as functions of both Dirac observables
from the beginning. We have derived in Section 2 the
corresponding equations of motion that govern the
dynamics in the interior region. These equations turn out to
be corrected by a phase space dependent factor as well,
although its functional form is complicated by the fact that
the two subsectors no longer decouple dynamically. We have

observed that this factor does reduce to the one found in
(Bodendorfer et al., 2019b). in the limit where the decoupling
is recovered. In Section 3, we have written down the time
redefinitions that allow us to simplify the dynamics, leading to
equations of motion that are identical to those that result from
considering constant parameters, although now written in two
different time variables. We have then discussed whether these
newly defined time variables can be required to be equal to
each other. Remarkably, the answer turns out to be in the
negative in spite of the commented off-shell freedom, since
this condition would imply that the polymerization
parameters are necessarily constants on the whole phase
space. In Section 4, we have verified whether this equality
of time variables can be imposed at least in the limit of
infinitely large black hole masses, as one would expect to be
the case in order to recover the standard results of General
Relativity in this asymptotic limit. Indeed, we have proven that
one can require this coincidence of times consistently. We have
also studied the first-order correction to the relation between
both time variables, which has allowed us to draw parallels with
previous results obtained in (Bodendorfer et al., 2019b). First,
the two time variables are still approximately similar to each
other near the event horizon, where the QG effects are not
relevant. Second, for finite rather than asymptotically large
black hole masses, the dynamical solutions are such that a
point in the evolution may generically be reached where the
time flow would be reversed, in the sense that the relation
between the two time variables would not be monotonic
around it.

Our conclusions imply that the results of (Ashtekar et al.,
2018a; Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020),
which are based on Hamiltonian calculations where the
polymerization parameters are treated as constant
numbers, can be partially reconciled with a treatment
where these parameters are regarded as proper constants
of motion, at least for black holes with large masses, which
on the other hand are the focus of the analysis of those
references. The wording “partially” is key here. In particular,
one should not forget that the spacetime geometry is modified
with respect to that of the AOS model by means of time
redefinitions. Even if this apparently slight modification does
not alter some of the conclusions of (Ashtekar et al., 2018a;
Ashtekar et al., 2018b; Ashtekar and Olmedo, 2020), it may
affect, e.g., the rate at which the metric decays at spatial
infinity.4 This matter will constitute the subject of
future work.
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Backreaction in Cosmology
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In this review, we investigate the question of backreaction in different approaches to
cosmological perturbation theory, and with a special focus on quantum theoretical
aspects. By backreaction we refer here to the effects of matter field or cosmological
inhomogeneities on the homogeneous dynamical background degrees of freedom of
cosmology. We begin with an overview of classical cosmological backreaction which is
ideally suited for physical situations in the late time Universe. We then proceed backwards
in time, considering semiclassical approaches such as semiclassical or stochastic
(semiclassical) gravity which take quantum effects of the perturbations into account.
Finally, we review approaches to backreaction in quantum cosmology that should apply to
the very early Universe where classical and semiclassical approximations break down. The
main focus is on a recently proposed implementation of backreaction in quantum
cosmology using a Born–Oppenheimer inspired method.

Keywords: quantum gravity, cosmology, space adiabatic perturbation theory, quantum fields in curved spacetimes,
backreaction

1 INTRODUCTION

The Λ cold dark matter (ΛCDM) concordance model (Cervantes-Cota and Smoot, 2011; Deruelle
and Uzan, 2018; Dodelson and Schmidt, 2021), based on the pillars of the Standard Model of
particle physics and general relativity, has shaped our current view of the Universe, and has been
the driving force behind many of the breakthroughs of modern cosmology, for example the
prediction and the discovery of the cosmic microwave background radiation (Aghanim et al., 2019,
2020; Alpher and Herman, 1948a,b; Gamov 1948a,b; Penzias and Wilson 1965). Modeled by only
six parameters (Spergel 2015; Aghanim et al., 2020), it features an impressive simplicity while
correctly predicting and fitting most of the cosmological data (Aghanim et al., 2019, 2020). One of
the most important assumptions within the ΛCDM paradigm is that the Universe is
almost spatially homogeneous and isotropic, especially during its earliest phases, but even
today when considered on its largest scales. The resulting simplification of Einstein’s equations is
remarkable as it reduces the ten coupled non-linear partial differential equations in four
variables to two ordinary equations in one variable, with solutions known as the
Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) solutions (Friedman 1922, 1924; Lemaı̂tre
1931; Robertson 1933; Walker 1937).

Obviously, a look at the night sky reveals that the Universe is not homogeneous and isotropic, but
is characterized by clusters of galaxies and stars, and large voids inbetween (Blumenthal et al., 1984;
Cole et al., 2005; Colless et al., 2001; Ross et al., 2020; Zel’dovich et al., 1982). For explanation, the
concordance model assumes that smallest quantum fluctuations of the primordial matter and
geometry have been stretched to the present time, thereby generating the observable large scale
structure. Importantly, these inhomogeneities on any scale smaller than the observable Universe are
presumed to evolve following the underlying FLRW background structure, but conversely their
evolution does not affect the global FLRW evolution. More precisely, it is assumed that effects from
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the small scale inhomogeneities onto the largest scales can be
neglegted, i.e., there is no substantial backreaction.

Doubts regarding the simplistic nature and the question of
backreaction have gained momentum in recent years. In fact, the
ΛCDMmodel, as appealing it may be, leads to the conclusion that
approximately 69% of the energy budget of our Universe consists
of a yet unknown fluid, dubbed “dark energy,” (Aghanim et al.,
2020), and which drives the very recent accelerated expansion of
the Universe (Riess et al., 1998; Perlmutter et al., 1999; Peebles
and Ratra 2003). Most of the remaining 31% of the energy budget
is credited to another yet unknown form of cold “dark” matter
(Peebles 1982; Blumenthal et al., 1984; Aghanim et al., 2020),
which provides an explanation for the characteristic rotation and
motion of the remaining 6% of ordinary matter in the Universe.
In summary, we are faced with the problem that we are literally in
the dark about 94% of the energy and matter content of the
observable Universe.

In recent years, these conceptual problems have been
accompanied by important tensions in the estimates of
certain cosmological parameters as made by different
collaborations (Di Valentino et al., 2020a,b; Pesce et al.,
2020). The evaluation of the Hubble constant H0 as
performed by the Planck collaboration (explicitely assuming
a ΛCDM model) gives a value of H0 �
(67.27 ± 0.60)km/(s ·Mpc) (Aghanim et al., 2020), while the
SH0ES collaboration finds H0 � (74.03 ± 1.42)km/(s ·Mpc)
(Riess et al., 2019), which in turn is based on the
measurements of the Hubble Space Telescope. This leads to a
tension at the 4.4σ level (Di Valentino et al., 2020a).
Furthermore, we point to the (albeit weaker) tensions
regarding the measurement of the parameter S8, a measure
for the matter energy density Ωm and the amplitude of structure
growth σ8 (Aghanim et al., 2020; Di Valentino et al., 2020b).

On the other hand, the theoretical modeling of the early and
very early Universe turns out to be a difficult undertaking, in
particular the faithful consideration of all interactions within
coupled quantum cosmological–matter systems. Since classical
cosmological perturbation theory and its various applications to
the physics of our Universe (Durrer, 2004; Mukhanov, 2005),
represents a successful formalism to model (most of) the
cosmological data today, one of the most promising
approaches to make progress in the field is to consider an
inhomogeneous, but perturbative, quantum cosmology, i.e., to
establish a quantization of the well-known (possibly) gauge-
invariant cosmological perturbation theories (Brandenberger
et al., 1993; Brandenberger, 2004; Elizaga Navascués et al.,
2016). In fact, there has been tremendous progress in
developing such quantum cosmological perturbation theories,
for example, in quantum geometrodynamics (Kiefer, 2007;
Brizuela and Krämer, 2018), in string cosmology (Erdmenger,
2009), as well as in loop quantum cosmology (LQC) and
spinfoam cosmology (Bianchi et al., 2010; Vidotto 2011;
Cailleteau et al., 2012; Agullo et al., 2013; Elizaga Navascués
et al., 2016), to mention but a few. Unfortunately, the majority of
these approaches neglect backreaction effects from the
inhomogeneous quantum fields on the homogeneous,
dynamical degrees of freedom, or incorporate a series of

assumptions which are hard to control, similar to the situation
in classical cosmological perturbation theory.

It seems hence very timely to scrutinize and question the
various assumptions of the concordance model of cosmology, and
to develop suitable formalisms which are able to take interactions
in coupled (quantum) cosmological models more realistically and
unambigiously into account. In this review, we start by assessing
the question of backreaction, i.e., whether cosmological
inhomogeneities have an effect on the large scale evolution of
the Universe, especially in view of the occurent inconsistencies
within the standard model. We consider different aspects of
backreaction, in particular we discuss backreaction in classical,
semiclassical and quantummechanical models. Our main focus is
on the purely quantum mechanical backreaction and we discuss
one recent approach to including backreaction in quantum
cosmology in more detail (Schander and Thiemann, 2019a).
The structure of the paper is then as follows.

In Section 2, we provide an overview of the results in the field
of classical backreaction, which is particularly relevant for late
time cosmological models. In Section 3, we consider semiclassical
backreaction which occurs when considering quantum fields on
classical curved space times. Section 4 gives an overview of
quantum backreaction, i.e., backreaction that occurs in purely
quantum theoretical models. In Section 5, we focus on one
particular approach to quantum backreaction which uses
mathematical tools inspired by the Born–Oppenheimer
approximation. Section 6 provides a final discussion and an
outlook.

2 CLASSICAL BACKREACTION

Standard perturbative approaches to cosmological perturbation
theory implicitely conjecture that backreaction, i.e., the effects of
cosmological inhomogeneities on the global or macroscopic
evolution of the Universe can be ignored. For purely classical
models of the Universe that are particularly relevant for its late
time evolution, this conjecture has generated an intense debate
over the last decades. And still, there is no consensus on the
question of backreaction in the classical regime , see for example
the reviews by Clarkson et al. (2011), Ellis (2011), and Bolejko and
Korzynski (2017).

The question of backreaction is closely related to the fitting
problem, (Ellis and Stoeger, 1987), and the problem of averaging,
(Clarkson et al., 2011). In fact, an intuitive way to access the
effects of small inhomogeneities on the macroscopic scales is to
construe an averaging procedure that defines new homogeneous
variables by integrating the inhomogeneous fields over a certain
space time domain, and to compare their properties and
dynamics to the assumed FLRW Universe, (Ellis, 2011).
However, it is inadmissible to conclude from the validity of
Einstein’s equations for the inhomogeneous fields on the
smallest scales (where they have been excellently checked),
that the averaged fields satisfy the Einstein equations
(Paranjape, 2012). This is because evaluating the Einstein
tensor and taking a space (time) average does not commute in
general. Hence, the averaging procedure can lead to additional
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contributions to Einstein’s equations that might be considered as
effective source terms for the geometry, see for example (Buchert,
2000, 2001).

As it turns out, the results regarding the form and strength of
backreaction depend heavily on the averaging procedure and the
matter model being chosen, as well as on the choice of space time
volumes to be integrated over. In the non-perturbative regime,
the two most discussed averaging procedures are the scalar
averaging scheme by Buchert (2008) and the Macroscopic
Gravity approach by Zalaletdinov (1997, 2008). Buchert’s
scheme focuses on building spatial averages of scalar fields and
derives effective (scalar) equations of motion for the averaged
quantities, for example an improved Raychaudhuri equation for
the averaged scale factor that includes a kinematical backreaction
term. While being technically easy to implement, the Buchert
scheme relies on a system of scalar equations that is not closed
(Clarkson et al., 2011), and consequently requires additional
information to fix the solution. Besides, the averaging
demands to fix suitable spatial domains and hence, a
hypersurface slicing. In contrast, the Macroscopic Gravity
approach is manifestly covariant but requires to define an
auxiliary so–called bi–local transport operator, (Ellis, 2011).
Physical applications of these schemes yield a range of
different results, ranging from explaining the recent
accelerated expansion of the Universe or the H0-tension
(Buchert and Räsänen, 2012; Heinesen and Buchert, 2020), to
negligible backreaction effects (Paranjape and Singh, 2007, 2008).

Many of the afore-mentioned approaches (among many
others) assume the matter content to be modeled by a fluid,
which is likely to be a poor approximation to the true lumpy late
time Universe. Models with more realistic matter distributions
are for example the Timescape Cosmology by Wiltshire (2009),
who separates the Universe into underdense expanding regions
bounded by overdense virialized structures, the Swiss Cheese
Model (Kantowski, 1969; Tomita, 2000; Biswas andNotari, 2008),
or modifications of FLRW Universes that cut spherically
symmetric Lemaı̂tre–Tolman–Bondi or Szekeres dust space
time regions (Marra et al., 2008; Bolejko and Celerier, 2010),
to mention but a few. By construction, many of these models
follow the evolution of an appropriately fitted FLRWmodel since
they assume a background structure from the beginning.
Consequently, they do not attack the backreaction problem
outlined before. In contrast, the model by Lindquist and
Wheeler (1957) assembles static Schwarzschild regions without
relying on any background, and which has been further
investigated by Clifton (2011) and Clifton and Ferreira (2009).
In both cases, the models provide insights into backreaction
effects on light propagation (Krasinski and Bolejko, 2011;
Sussman, 2011), which points to another important topic.

In fact, cosmological observations such as the
distance–redshift relation or the angular diameter distance rely
on measurements of light, traveling along our past lightcone in a
very inhomogeneous Universe. The seminal work by Kristian and
Sachs (1966) laid out the basis for analyzing backreaction on light
propagation. Flanagan (2005), for example, used these ideas to
compute the deceleration parameter as measured by comoving
observers. Gasperini et al. (2011) define a covariant light–cone

average for the backreaction problem, see also (Fanizza et al., 2020)
for a more recent generalized proposal. Räsänen (2009) and
Räsänen (2010) derives a relationship of the redshift and the
angular diameter distance to the average expansion rate for
statistically homogeneous and isotropic universes, based on
Buchert’s approach, and Barausse et al. (2005) and Bonvin et al.
(2006) evaluate the distance–redshift relation and the luminosity
distance in a perturbative framework. Most recently, Heinesen
(2021a), Heinesen (2021b) and Koksbang (2019), Koksbang
(2020), Koksbang (2021) investigated the effects of
inhomogeneities and averaging on a possible redshift drift.

Many approaches that attempt to make direct contact with
cosmological observations restrict their analysis to cosmological
perturbation theory in an FLRW Universe, as opposed to the
above–mentioned non-perturbative approaches. Most of them
consider flat ΛCDM models with Gaussian scalar perturbations
as initital conditions. To evaluate backreaction, they compute
the deviations to the Hubble expansion rate or similar variables
that are caused by backreaction (Brandenberger et al., 2018;
Clarkson et al., 2009; Kolb et al., 2010; Kolb et al., 2005; Li and
Schwarz, 2008), or give effective Friedmann equations with
additional contributions (Paranjape and Singh, 2007; Behrend
et al., 2008; Brown et al., 2009; Peebles, 2010; Baumann et al.,
2012). The idea is to perform appropriate spatial averages of the
perturbed quantities and to use the given statistical information
of the perturbation fields in guise of their power spectra. It turns
out that due to the smallness of the gravitational potential and
the power suppression of modes on large scales, backreaction
for the expansion rate is always small. However, the
backreaction to the deceleration parameter q and the
variance of the Hubble rate depend on an auxiliary
UV–cutoff that might lead to large backreaction even if it is
set by scales larger than the non-linearity scale (Clarkson et al.,
2011). Other approaches to backreaction in the linear regime are
(Baumann et al., 2012) who propose a reformulation of
perturbation theory that leads to small backreaction on the
largest scales but affects the baryon accoustic oscillations, and
(Green and Wald, 2011, 2012, 2013, 2014) who claim, using a
point limit process, that backreaction can never mimic dark
energy and put strong constraints on its strength.

We also point to the quite recent advent of numerical tools
that allow to simulate increasingly realistic models of the
Universe, including relativistic effects (Löffler et al., 2012;
Mertens et al., 2016) and N-body simulations (Adamek et al.,
2016; Barrera-Hinojosa and Li, 2020). Using the N-body
relativistic code “gevolution,” Adamek et al. (2019) find that
backreaction on the expansion rate in a ΛCDM and an
Einstein–de Sitter Universe remains small if one chooses
averaging volumes related to the Poisson gauge, while when
choosing comoving gauge backreaction is of the order of 15%.
Other works in this respect were done by Macpherson et al.
(2019), who also claim that backreaction effects are small,
however based on a fluid approximation which breaks down
as soon as it comes to shell crossing.

Finally, let us also point to the consideration of backreaction
from long wavelengthmodes of the early Universe. In this respect,
early contributions were notably made by Tsamis and Woodard
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(1993, 1996), as well as by Abramo et al. (1997) and Mukhanov
et al. (1997). The latter works pursue a gauge—invariant
formulation of the backreaction problem associated with an
effective long wavelength energy momentum tensor, and
within a slow–roll inflationary scenario. Unruh (1998)
subsequently examined the question of whether this effect is
indeed locally measurable, and it was found that such
backreaction effects (in single field inflationary theories) can
be absorbed by a gauge transformation, (Abramo and
Woodard, 2002; Geshnizjani and Brandenberger, 2002).
However, backreaction of such fluctuations becomes locally
measurable after introducing an additional (subdominant)
clock feld, (Geshnizjani and Brandenberger, 2005). This
approach was extended by Marozzi et al. (2013) based on the
gauge—invariant formalism by Finelli et al. (2011), and secondly
by Brandenberger et al. (2018) beyond perturbation theory.
Further contributions were made by Losic and Unruh (2005),
Losic and Unruh (2008) who support the idea that backreaction
represents a real and measurable effect.

3 SEMICLASSICAL BACKREACTION

For considerations of backreaction in models of the very early
Universe, the standard model of cosmology suggests that (at least)
the matter fields should be studied in a quantum mechanical
framework. The implementation of such ideas can be realized via
different paths, and we consider here the approaches of
semiclassical gravity (Ford 2005; Wald 1977, 1978) and
stochastic (semiclassical) gravity (Calzetta and Hu 1987; Hu
and Verdaguer 2008; Jordan 1986, 1987). Both approaches rely
on the framework of quantum field theory on curved space times
(QFT on CST) (Birrell and Davies, 1984; Fulling 1989), which
itself takes the effects of the classical curved space times on the
quantum matter fields into account but in general not the
backreaction effects of those quantum fields on the classical
background.

The backreaction problem in semiclassical gravity was first
brought in byWald (1977) who considered the backreaction from
particle creaction on a gravitational field. The idea of the
semiclassical program is to consistently define an improved set
of Einstein field equations in which the expectation value of the
quantum stress–energy tensor Tμ] of the matter fields with
respect to an appropriate quantum state of the matter fields ω
appears as a source term,

Rμ] + 1
2
gμ]R � 8πGω(: Tμ] :), (1)

where the quantization with respect to the matter fields is
expressed using bold letters and the dots indicate the normal
ordering of the stress–energy tensor. The state ω should be
considered as a positive linear functional in the sense of the
algebraic approach to quantum field theory (QFT) (Haag 1992;
Araki 1999).

The first goal of semiclassical gravity is to define a procedure
that leads to a meaningful expression for the expectation value
of the stress–energy tensor. In fact, the latter depends on

products of operator-valued distributions, even for the simple
case of a real-valued Klein–Gordon field, and its expectation
value is in general a divergent expression. Wald (1977) gave a set
of axioms that are required to hold for a suitable
renormalization scheme. Possible proposals are the
Hadamard point-splitting method (Brunetti and
Fredenhagen, 2000; Hollands and Wald, 2001), and the
adiabatic regularization procedure (Fulling and Parker 1974;
Fulling et al., 1974; Parker and Fulling, 1974). In either scheme,
the result of the regularization procedure is a set of modified
“semiclassical” Einstein equations. These equations are
substantially harder to solve than the original Einstein
equations and many studies restrict to cases of conformally
coupled matter to avoid problems regarding the well-posedness
and the stability of the solutions (Ford, 2005). Caution is also
required regarding the question of self-consistency of the
backreaction effects, as has been discussed by Flanagan and
Wald (1996).

Many applications of the semiclassical gravity approach to
early Universe cosmology have been considered. For example,
Fischetti et al. (1979) analyzed the backreaction effects from a
conformally invariant matter field in an FLRW Universe with
classical radiation, and found that the trace anomaly can soften
the cosmological singularity, but not avoid it. Other works in this
direction were done by Anderson (1983, 1984, 1985), who also
considered the trace effects on the particle horizon. A well-known
example of trace anomaly effects from semiclassical gravity is the
Starobinsky (1987) cosmological model, which has however not
survived the observational scrutiny of the Planck data (Ade et al.,
2016).

Another application of semiclassical gravity is the study of
backreaction of particle creation on the dynamics of the early
Universe, as already conceived byWald (1977). Grishchuk (1977)
as well as Hu and Parker (1977) considered the effect of gravitons
around the Planck time in an FLRW Universe with a classical,
isotropic fluid. The model leads to a timely non-local
(i.e., history-dependent) backreaction effect, (Hu and
Verdaguer, 2020). Similar studies were performed for
anisotropic FLRW Universes and it was shown that particle
production due to the shear anisotropy isotropizes space time
(Hu and Parker, 1978; Zel’dovich and Starobinsky, 1972).
Regarding the effects of particle creation in a spatially
inhomogeneous but isotropic Universe, we refer to the work
by Campos and Verdaguer (1994).

We also point to the more recent works by Finelli et al. (2002),
Finelli et al. (2004) who specifically consider a slow—roll (almost
de Sitter) phase of the very early Universe and compute a(n
adiabatically) renormalized energy momentum tensor of
quantum inflaton, respectively cosmological scalar fluctuations.
In case of the cosmological scalar perturbations, they found that
the energy momentum tensor is characterized by a negative
energy density which grows during inflation, and also that
backreaction is not a mere gauge artifact.

Further contributions to the topic of semiclassical gravity for
cosmological situations were notably made by Dappiaggi et al.
(2008); Dappiaggi et al. (2010); Eltzner and Gottschalk (2011);
Gottschalk and Siemssen (2018); Hack (2013); Matsui and
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Watamura (2020); Parker and Raval (1999); Pinamonti (2011), to
mention but a few. Most recently, Meda et al. (2020) and
Pinamonti and Siemssen (2015) have made progress on the
definition of the semiclassical theory for general couplings by
proving existence and uniqueness of solutions in flat cosmological
space times with a massive quantum scalar field. The idea of
relating backreaction effects to the decay of a cosmological
constant has for example been promoted by Dymnikova and
Khlopov (2001). We also point to the work by Matsui and
Watamura (2020) (and references therein) who claim that the
approach of semiclassical gravity is not appropriate to describe
the early Universe.

The second approach to evaluating backreaction in
semiclassical cosmology that we present here, denoted
stochastic gravity (Hu and Verdaguer 2020), creates a link to
open system concepts and statistical features such as dissipation,
fluctuations, noise and decoherence. It employs a so-called closed
time path coarse grained effective action (CTP CGEA) (Calzetta
and Hu 1987; Jordan 1986, 1987), in order to derive a set of
modified semiclassical Einstein equations, denoted as
Einstein–Langevin equations. It includes the semiclassical
approach but extends it by a stochastic noise term (Hu and
Matacz, 1995).

Some of the first applications of the CTP CGEA formalism
to the backreaction problem in cosmology were made by
Calzetta and Hu (1987, 1989, 1994). Hu and Matacz (1995)
derived the Einstein–Langevin equations for the case of a
free massive scalar field in a flat FLRW background, as well
as for a Bianchi Type-I Universe. The case of a massless
conformally coupled field was discussed in (Campos and
Verdaguer, 1994). The scope of works includes topics such
as stochastic inflation, where quantum fluctuations present
in the noise term backreact on the inflaton field (Calzetta
and Hu, 1995; Lombardo and Mazzitelli, 1996), as well as
studies of the reheating phase in inflationary cosmology
(Boyanovsky et al., 1995; Ramsey and Hu, 1997). The
formalism was also used by Sinha and Hu (1991) to check
the validity of the minisuperspace approximation in quantum
cosmology. Further applications can be found in the paper and
textbook by Hu and Verdaguer (2008), Hu and Verdaguer
(2020).

We also point to one of the most prominent applications of
stochastic methods to early Universe cosmology by
Starobinsky (1982) and Starobinsky (1988). His stochastic
inflationary model evaluates backreaction of small scalar
field quantum perturbations on the corresponding long
wavelength modes (which are assumed to behave classically)
by additional stochastic terms in the long wavelength
equations of motion. A slow-roll behavior of the
background is assumed. Interestingly, it has been shown
that the stochastic and the quantum feld theoretic
approaches to perturbations in the early Universe yield the
same results, (Starobinsky and Yokoyama, 1994; Finelli et al.,
2009; Tsamis and Woodard, 2005). For recent considerations
of stochastic inflation beyond the (strict) slow-roll conditions,
we refer to the work by Pattison et al. (2019) and references
therein.

Both approaches, semiclassical as well as stochastic gravity
regard the gravitational field as a classical entity from the start
while the matter fields are considered to be of quantum nature.
While this represents a seminal progress to incorporating
quantum effects of the matter fields in the early Universe, it
can and should be questioned whether this somehow
incompatible approach (classical and quantum fields treated at
the same level) survives the test of future observations, and
whether it should be replaced by a more consistent approach -
quantum gravity - at least for the earliest moments of the cosmic
history.

4 APPROACHES TO QUANTUM
BACKREACTION

The question of backreaction in quantum gravity and quantum
cosmology encompasses a variety of different approaches and
definitions of backreaction. In quantum cosmology, backreaction
is usually identified as the effects from the inhomogeneous
quantum perturbation fields on the (quantum) homogeneous
and isotropic degrees of freedom, which is also the notion of
backreaction used in the next section (Schander and Thiemann,
2019c). This approach is tightly related to a perturbative
expansion with respect to the inverse Planck mass
m−1

Pl � (G/Z)1/2, where G is Netwon’s constant and we set
Z ≡ 1. More precisely, it employs a Born–Oppenheimer type
scheme (Born and Oppenheimer, 1927), with respect to m−1

Pl .
We will thus focus on implementations of the
Born–Oppenheimer method to quantum gravity and quantum
cosmology.

In fact, the idea that quantum gravity can be considered as a
perturbative theory with respect tomPl was already introduced by
Brout (1987). The first investigations of backreaction in quantum
gravity that rely on this expansion were performed in the
framework of quantum geometrodynamics (Wheeler, 1957;
Kiefer, 2007). The idea is to expand the Wheeler–DeWitt
equation in terms of the ratio of the Planck mass and the
matter field mass (Kiefer and Singh, 1991). A different idea,
conceptually similar to the schemes considered here, is to use a
Born–Oppenheimer type approach, relying on the same
perturbation parameter. Different considerations of the
problem (giving rise to similar results) can be found in the
works by Bertoni et al. (1996), Brout and Venturi (1989), and
Kiefer (1994) (for a summary, see Kiefer, 2007). A review of the
ideas of Born and Oppenheimer will be given in the next section,
but to understand its use in the given context we present the
key ideas.

For simplicity, let Q denote the gravitational and q the matter
degrees of freedom. The Born–Oppenheimer scheme employs an
ansatz solution for the quantum Hamiltonian and momentum
constraint of the form (Kiefer, 2007),

Ψ(q,Q) �∑
n

χn(Q)ψn(q,Q), (2)

where {ψn(q,Q)}n is supposed to be a known orthonormal
basis of the matter Hilbert space that solves the matter part of
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the constraint and Q is to be considered as an external
parameter for this eigenvalue problem. Then, one applies
the constraints to Ψ and applies some ψk(q,Q) from the
left (i.e., one considers the inner product of the matter
states). This gives rise to constraint equations for the
geometric factors χn(Q), which can be seen as an effective
quantum problem for the geometric part, including the
backreaction effects of the quantum matter system. In this
scenario, the Born–Oppenheimer approximation consists in
neglecting the contributions that enter with higher orders in
m−1

Pl .
In order to extract physical results from the formalism, one

can additionally employ a semiclassical approximation (which is
however independent of the Born–Oppenheimer approach). This
should yield the semiclassical limit of quantum gravity, i.e., a
matter QFT on CST. It is common to employ a WKB ansatz for
the geometrical states χn(Q) of the form,

χn(Q) � Cn(Q)eim2
PlS[Q], (3)

where S[Q] stands for the geometric action in the
geometrodynamical approach. The perturbative scheme in
m−1

Pl eventually yields the semiclassical Einstein equations.
In this sense, these approaches evaluate the backreaction of
the quantum matter fields on the quantum or classical
geometry.

One can apply the Born–Oppenheimer and WKB
approximations in a different manner. Instead of taking the
expectation value with respect to the quantum matter system,
one applies the Wheeler–DeWitt constraints on the total
Born–Oppenheimer ansatz function and uses the WKB
approximation for the geometrical part. Restricting again to
the lowest order with respect to the inverse Planck mass, this
yields a quantum constraint for the matter wave function which
depends on the classical action (through the WKB ansatz), and
derivatives with respect to the spatial metric thereof. The idea of
the above–cited works (and also of Briggs and Rost, 2000) is to
introduce an external time parameter that depends on this
derivative, hence giving rise to a Schrödinger equation for the
matter system that includes the backreaction of the geometry
through the geometry–dependent time derivative. In fact, this
gives rise to a notion of time in a formerly background
independent framework. Such ideas go back to DeWitt (1967)
and have been applied to a variety of cosmological situations (see
(Kiefer 2007) and references therein). It is however a different
notion of backreaction than the one considered in the next
section. Besides, the present approach uses a
Born–Oppenheimer approach plus a semiclassical WKB
approximation while the next section uses the purely quantum
mechanical space adiabatic perturbation extension of the
Born–Oppenheimer scheme. Applications of the former works
to the inflationary paradigm with perturbations and a discussion
of the question of unitary evolution of the perturbations can be
found in the work by Chataignier and Krämer (2021) and
references therein. They also consider cosmological
perturbations that include gravitational contributions (i.e., the
Mukhanov–Sasaki variables). Similar approaches that do not split
the system into geometric and matter parts but include

(perturbative) parts of the gravitational degrees of freedom in
the fast subsystem and (homogeneous) matter parts in the slow
sector were already presented by Halliwell and Hawking (1985)
and Vilenkin (1989). This choice is also used in Schander and
Thiemann (2019c).

The Born–Oppenheimer approximation was also considered
within approaches to quantum gravity with other variable
choices. Giesel et al. (2009) aimed at an application of the
Born–Oppenheimer methods to loop quantum gravity (LQG)
(Thiemann, 2008; Rovelli, 2010), using holonomy–flux variables
or connection–flux variables. As it turns out, this choice of
variables prevents the use of the Born–Oppenheimer methods
since the flux operators are mutually non-commuting (which is a
prerequisite for the Born–Oppenheimer scheme). Instead, they
use commuting co-triad variables for the gravity sector and a
scalar field for the matter sector to derive the semiclassical
Einstein equations that take the backreaction of the quantum
matter fields via an expectation value into account. Giesel et al.
(2009) consider their model on a discrete lattice (as it is common
practice for approaches to LQG), and thus formally obtain a
lattice QFT on a discrete curved space time. They also point to the
possibility of pursuing the formal Born–Oppenheimer scheme
and computing quantum solutions to the gravity sector with the
effective backreaction of the quantum matter fields. Besides, they
introduce a hybrid approach (similar to the models we consider
here) where the gravitational sector is restricted to FLRW
solutions and the fast part of the system is given by the
matter quantum fields. They also propose to introduce
coherent states for the gravitational subsystem in order to
make progress in finding solutions. Due to the complexity of
the gravity-matter systems, the focus of this work lies on spelling
out the conceptual ideas rather than technically carrying out the
program in detail.

More recently, Stottmeister and Thiemann (2016a,b,c)
considered similar questions in the context of LQG but employed
the more general scheme of space adiabatic perturbation theory
(SAPT) (Panati et al., 2003). Since in the latter approach, the
variables of the slow, gravitational sector are not required to
commute, it is in principle possible to apply the
Born–Oppenheimer ideas also to LQG and related theories. The
concrete implementation turns however out to be difficult due to the
particular structure of the LQG phase space (which relies on a
cotangent bundle of a compact Lie group rather than on a vector
space) and its quantum represention. Other open issues of their
attempts are related to the underlying graph structure of LQG
models and the projective limits of finite dimensional truncations
of the gravitational phase space that are needed in order to construct
a continuum theory (Stottmeister and Thiemann, 2016c). They also
point out that amajor obstruction to the derivation of aQFT onCST
from LQG lies in the inequivalent representations of quantum fields
for different gravitational configurations (Stottmeister and
Thiemann, 2016c). This problem is a generic feature of
background dependent quantum field theories. In this work, we
present a (perturbative) solution to this problem which makes the
application of space adiabatic methods to quantum cosmology
possible (Fernandez-Mendez et al., 2012; Castelló Gomar et al.,
2015; Castelló Gomar et al., 2016).
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For completeness, we also mention the application of
Born–Oppenheimer methods within the spinfoam approach to
LQC (Rovelli and Vidotto, 2008) (see Ashtekar et al., 2003;
Bojowald, 2008 for the LQC approach), and that Castelló
Gomar et al. (2016) consider a conceptually different kind of
Born–Oppenheimer approximation in the hybrid approach to
LQC. These seminal works make important progress by first
considering the problem of backreaction, but must either remain
on a rather formal level or include various assumptions which are
hard to control. We therefore advocate to employ the SAPT scheme
presented in the next sectionwhich serves as an unambigious, rigorous
and perturbative approach, in principle applicable to any quantum
cosmological framework and realizable up to any perturbative order,
to taking quantum cosmological backreactions thoroughly into
account. The approach applies to a much wider variety of
quantum systems in comparison to the Born–Oppenheimer
approach (in particular to quantum cosmological perturbation
theory), does not rely on the introduction of semiclassical ansatz
states and iteratively provides quantum constraints or equations of
motion whose solutions approximate the true solutions up to, in
principle, indefinitely small errors.

5 QUANTUM BACKREACTION WITH
SPACE ADIABATIC METHODS

Computing and including backreaction in (perturbative)
quantum cosmology requires an approximation scheme that
ideally takes the physical characteristics of the system into
account. SAPT as proposed by Panati et al. (2003) and
extensions thereof are ideally suited to achieve this goal and to
integrate backreaction effects into quantum cosmology (Schander
and Thiemann, 2019a; Schander and Thiemann 2019b; Schander
and Thiemann 2019c; Neuser et al., 2019).

SAPT is a generalization of the well-known Born–Oppenheimer
approximation for non-relativistic molecular systems. Both
approaches exploit the small ratio of two internal parameters
such as the mass ratio of electrons and nuclei in a molecule to
define a perturbation parameter,

ε2 :� me

mn
≈ 5.46 × 10−4 ≪ 1, (4)

with the electron mass me ≈ 9.11 × 10−31 kg and the nuclei mass
mn ≈ 1.67 × 10−27 kg. In the simplest atom with one nucleus and
one electron (although exact solutions are known for this case),
the Hamilton function has the form,

H(q, P; x, y) � ε2P2

2me
+ y2

2me
+ V(q; x), (5)

where (q, P) and (x, y) are the canonically conjugate pairs of the
nucleus and the electron respectively. V(q; x) is a smooth
potential, typically a Coulomb potential depending on the
distance between nucleus and electron. In this molecular set
up, the equipartition theorem states that the kinetic energies
of nuclei and electrons are of the same order, and hence, on
average, the nuclei move much slower than the electrons with
correspondent statistically–averaged velocities, 〈vn〉 ≈ ε〈ve〉.

Born and Oppenheimer used this fact to define suitable ansatz
solutions for the quantum mechanical problem: On the typical
electronic time scale, the nuclei are at rest and the non-trivial
electronic contributions of the Hamilton operator can be
considered at fixed nuclei positions q ∈ R,

He(q) :� y2

2me
+ V(q, x), (6)

where the bold letters y, x denote momentum and position
operators of the electron defined on their respectively dense
domains in L2(R, dx). Ideally, the operator function He(q)
admits a solvable q–dependent eigenvalue problem,

He(q) ξn(q) � En(q) ξn(q), (7)

with a discrete q–dependent eigenbasis {ξn(q)}n∈N in the fast
Hilbert space Hf :� L2(R, dx), for which the so–called
electronic energy bands En(q) are gapped functions,
i.e., En(q) − Em(q)≠ 0 pointwise for m≠ n. One can use this
eigenbasis as an ansatz solution for the full Hamilton
operator Ĥ (the Weyl quantization with respect to the
nuclei sector is labeled by hats), and ask whether it provides
an approximate solution to the entire problem. Equivalently,
we can define for every electronic eigensolution the direct
integral operator,

π̂n :� ∫⊕

R

dq ξn(q)〈ξn(q), ·〉e � ∫⊕

R

dqπn(q), (8)

on the total Hilbert spaceH � L2(R, dq)⊗Hf and ask whether it
commutes with Ĥ. Of course, the answer is in the negative, but it
turns out that the commutator scales like ε,

[Ĥ, π̂n] ∼ ε. (9)

This is because of the adiabatic relation between the electrons and
the nuclei. By construction, the Weyl quantization Ĥe(q̂) of the
electronic Hamiltonian and π̂n commute. However, the
remaining contribution to the Hamilton operator Ĥ, in
particular the kinetic energy of the nucleus, scales like ε2 and
leads hence to the estimate in Eq. 9. The Born–Oppenheimer
approximation builds on this result and proposes to use the
ansatz functions,

Ψ(q; x) �∑
n

ψn(q)ξn(q; x), (10)

to solve the full quantum problem. In its simplest version, the
scheme neglects any of the contributions that arise from applying
the kinetic energy operator of the nucleus to the electronic ansatz
functions (as they enter with small ε-factors), and thus results in
an effective eigenvalue problem for the nucleus only,

( P̂
2

2mn
+ En(q̂))ψn(q) ≡ Eψn(q). (11)

If this nucleonic eigenproblem can be solved, the scheme leads in
fact to viable results for the stationary energy spectra of
molecules, which are given by the energy solutions E, and
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which include the backreaction of the electrons via the potential
energy En(q̂).

Unfortunately, the Born–Oppenheimer approach comes
with some limitations which preclude its application to
more complicated systems. Firstly, the scheme explicitely
uses that the electronic eigenfunctions depend only on the
configuration variable of the nucleus. Was the coupling
between electrons and nuclei provided by non-commuting
slow operators, for example by q̂ and p̂, the scheme would
fail since the direct integral construction in Eq. 8 builds on the
commutativity (i.e., the existence of a common spectrum) of
the coupling operators. Also one could not define the ansatz
functions in Eq. 10. Secondly, the scheme does not provide a
simple extension to better error estimates. This becomes
problematic if one is interested in the dynamical evolution
of the system. The interesting dynamics of the nuclei happens
on time scales tn ∼ te/ε or larger, but considering the evolution
generated by Ĥ with respect to the above ansatz functions, the
scheme cannot lead to trustworthy results due to the
commutator relation Eq. 9.

It should be possible to do better. In fact, the adiabatic theorem
(Teufel, 2003) states that under certain conditions (to be
discussed in the sequel), there exists an orthogonal projection
operator Π̂ ∈ B(H) in the bounded operators on the total Hilbert
space H such that,

[Ĥ, Π̂] � O0(ε∞), (12)

where the right hand side means that for all m ∈ N, there exists a
constant Cm <∞ such that

[Ĥ, Π̂]B(H) ≤Cmεm, in the norm of
bounded operators on H. Most importantly, Π̂ can be
constructed by a “semiclassical symbol” function, i.e., an
operator-valued ansatz function like the almost–projector
function πn ∈ C∞(R,B(Hf )) from the simple example above.
This symbol function appears as an asymptotic series in the
perturbation parameter ε, and–to anticipate the result–the
equivalent of πn(q) will serve as the base clause to an iterative
ε-scheme to compute better and better approximations to Π̂. This
is the idea of SAPT (Panati et al., 2003).

SAPT uses an ε-scaled phase space (or deformation)
quantization scheme (Blaszak and Domanski, 2012) for the
slow subsector of the system, while retaining a standard
Hilbert space representation for the fast sector. Phase space
quantum mechanics is a formulation of quantum mechanics
that employs an algebra of phase space functionsAQ instead of
using the standard operator algebra in the Hilbert space
representation of quantum mechanics. Quantum mechanical
observables are thus represented by real-valued phase space
functions. The pullback of the operator product to the phase
space algebra gives rise to a non-commutative star product +.
Since the star product reduces to the commutative
multiplication of phase space functions in the limit Z→ 0,
this formulation of quantum mechanics is also known as
deformation quantization. The standard textbooks by
Dimassi and Sjöstrand (1999), Folland (1989), and
Hörmander (1985a,b) give thorough introductions to the
usual scalar–valued phase space quantization scheme and

pseudodifferential calculus, but the situation here is more
subtle. SAPT requires to consider operator–valued symbol
functions, in particular functions on the slow phase space
with values in the operators on the fast Hilbert space. We will
thus deal with symbol functions of the form
A(q, p) ∈ C∞(Γs,B(Hf )) where Γs denotes the slow phase
space (Teufel, 2003; Appendix A). It is straightforward to
map the symbol functions (operator–valued or not) to their
operator representatives in the standard Hilbert space
approach. The concrete prescription depends of course on
the operator ordering that one chooses. In case of the
symmetric Weyl quantization prescription, this relation is
provided by the Weyl correspondence (Dubin et al., 1980),
and a symbol function appears as the kernel of an integral
operator that acts on an element of the Hilbert space (Teufel,
2003).

Symbol functions which give rise to admissible operators in
the quantum theory can be classified by their asymptotic behavior
on the slow phase space. One important class of symbols relevant
for SAPT are the semiclassical symbols Smρ , with m ∈ R and
0≥ ρ≥ 1. An operator–valued function A ∈ C∞(R2,B(Hf )) is
in the symbol class Smρ (B(Hf )) if for every α, β ∈ N, there exists a
positive constant Cα,β such that,

sup
q∈R

(zαqzβpA)(q, p)B(Hf)≤Cα,β〈p〉m−ρ|β|, (13)

for every p ∈ R, and 〈p〉 � (1 + ∣∣∣∣p|2)1/2 (Teufel, 2003). For such
symbols theWeyl ordering prescription for quantum theory gives
rise to a specific star product, and we can finally make sense of the
space adiabatic perturbation idea. For two such operator–valued
symbols on the slow phase space A ∈ Sm1

ρ (B(Hf )),
B ∈ Sm2

ρ (B(Hf )), their star product is given by,

(A+B)(q, P) � exp(iZ
2
(zxzP − zqzD))A(x,D)B(q, P)∣∣∣∣∣∣∣x�q,D�P ∈ Sm1+m2

ρ (B(Hf)).
(14)

We note that the exponential has a series expansion which could
be considered as a series with respect to Z in the given context.
Alluding to the adiabaticity of the system, it is reasonable to
define a rescaled momentum operator p :� εP. Replacing P andD
by their ε-scaled versions in the star product formula, the new
expansion parameter is εZ. Any star product of symbol functions
can thus be written in a series expansion in ε. Comparing terms of
the same polynomial order in ε, this defines a perturbation theory
for quantummechanical equations which will iteratively solve the
eigenvalue problems of interest. The first two orders of the
rescaled star product are given by,

(A+B)(q, p) � (A0 · B0)(q, p) + iεZ
2
{A0(q, p),B0(q, p)}

+ ε(A0 · B1 + A1 · B0)(q, p) +O(ε2), (15)

where the symbol functions have been expanded with respect to ε
according to A � ∑kε

kAk and B � ∑kε
kBk. Note that the

ε-rescaling changes the whole symplectic structure (we now
have, {q, p}s � ε), as well as the canonical commutation
relations since we obtain,
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[q̂, p̂]s� iεZ 1̂s. (16)

From now on, we will set Z ≡ 1. Note that in the original
Born–Oppenheimer approximation, the perturbative parameter
occurs (after an appropriate rescaling) only in the Hamiltonian
and the perturbation theory consists in splitting the Hamiltonian
(and its spectrum) accordingly, while here the quantum algebra is
redefined, giving rise to a (n in principle infinite) perturbation
series in ε.

5.1 Space Adiabatic Perturbation Theory
SAPT as introduced by Panati et al. (2003) places a set
of conditions on the physical system under consideration.
These are, in some respects, quite restrictive. However, if
one accepts to abandon certain results, such as the
convergence of the perturbative series, it is possible to
milden the conditions. Here, we present the original
conditions introduced by Panati, Spohn and Teufel for a
system with d slow and k fast degrees of freedom, and
which can be split into four categories:

(C1) The state space of the system decomposes as,

H � L2(Rd)⊗Hf � L2(Rd ,Hf), (17)

where L2(Rd) is the state space of the systemwhose rate of change
is by a factor εl , l ∈ R+, smaller than the rate of change of the
(environmental) system Hf . The latter is assumed to be a
separable Hilbert space.

(C2) The quantum Hamiltonian Ĥ (may it be an operator or a
constraint) is given as the Weyl quantization of a
semiclassical symbol H ∈ Smρ (ε,B(Hf )), i.e., H
asymptotically approaches an ε-series,

H(ε, z)p∑∞
j�0

εjH j(z), (18)

where H j ∈ Sm−jρ
ρ (B(Hf )) for all j ∈ N and z :� (q, P) ∈ R2d . The

appropriate notion of convergence is provided by a Fréchet
semi–norm in Smρ (B(Hf )), see (Teufel, 2003) for further details.

(C3) For any fixed z ∈ R2d , the spectrum σ(z) of the principal
symbol H0(z) of H(ε, z) has isolated parts σn(z), n ∈ N.
Picking one such ] ∈ N and therefore suppressing any
n–dependence in the following, the minimal distance
between the elements of σ](z) and the remainder of the
spectrum σrem(z) :� σ(z)\σ](z) displays a non-vanishing
gap. According to its characteristics with varying z, the gap
can be classified by means of a parameter c.

Conditions(Gap)c: Let f ± ∈ C0(R2d ,R) be two continuous
functions with f− ≤ f+.

(G1) Enclosing interval. For every z ∈ R2d the isolated part of the
spectrum σn(z) is entirely contained in the interval I(z) :�
[f−(z), f+(z)].

(G2) Gap to the remainder. The distance between the remainder
of the spectrum, σrem(z) and the enclosing interval I(z) is
strictly bigger than zero and increasing for large
momenta, i.e.,

Dist[σrem(z), I(z)]≥Cg(1 + p2)c2. (19)

(G3) Boundedness of the interval. The width of the interval I(z)
is uniformly bounded, i.e.,

sup
z∈R2d

∣∣∣∣ f+(z) − f−(z)
∣∣∣∣≤Cd <∞. (20)

(C4) Convergence Condition. If the system satisfies the gap
condition (C3)c for some c ∈ R, the Hamilton symbol H
must be in Scρ . If ρ � 0, also cmust vanish. If ρ> 0, c can be
any real number but Ĥ must be essentially self–adjoint
on S(Rd ,Hf ).

Condition (C4) is not vital in order to perform the
formal computations in the following. It ensures however that
for considerations on the whole slow phase space Γs, the error
estimates of SAPT are bounded everywhere on Γs. In particular,
the adiabatic decoupling is said to be uniform. Note also that the
requirement that H has values in the bounded operators is
violated for many physical systems of interest. In such cases,
the space adiabatic scheme cannot be immediately applied
and the convergence of the perturbative expansion has to be
examined by independent methods (Panati et al., 2003).

Given the conditions (C1)–(C4), the space adiabatic
theorem introduces a perturbative construction scheme that
is based on iteratively computing three symbol functions: the
Moyal projector π ∈ S0ρ, the Moyal unitary u ∈ S0ρ and an
effective Hamiltonian Heff ∈ Smρ . The Moyal projector
serves to identify a subspace of the total Hilbert space
which is almost invariant under the dynamics of Ĥ and
which is associated with one particular quantum number
] ∈ N of the fast sector. The Moyal unitary u is an auxiliary
structure which gives rise to a unitary operator that maps
the relevant subspace to a much simpler reference subspace.
In fact, the original subspace is a technically complicated
object and cannot provide us with a simple procedure to
derive the (approximated) dynamics in the subspace. The
reference subspace is trivial with respect to the fast
subsystem and allows to compute the dynamics of the slow
sector including the backreaction of the fast degree(s) of
freedom. It is used to derive an effective Hamiltonian
symbol Heff whose solutions are approximate solutions to
the full Hamilton operator Ĥ. More precisely.

(S1) There exists a unique formal symbol, π � ∑i≥ 0ε
iπi, with

πi ∈ S−iρρ (B(Hf )), such that π0 is the spectral projection of
H(q, p) corresponding to σ](q, p) and with the properties,

(S1–1) : π+ε π � π (S1–2) : π* � π

(S1–3) : H+ε π − π+ε H � 0.
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It can be shown that the Weyl quantization of a resummation of
π, which we denote by πε is O0(ε∞)–close to an operator Π̂,
i.e., Π̂ � π̂ε +O0(ε∞) and that, [Ĥ, Π̂] � O0(ε∞).

(S2) Let πR be the projection on some reference subspaceKf4Hf .
We assume that there exists a symbol u0 ∈ S0ρ(B(Hf )), such
that, u0 · π0 · u*0 � πR. Then, there is a formal symbol u �∑i≥ 0ε

iui with ui ∈ S−iρρ (B(Hf )) such that,

(S2–1) : u* +ε u � 1 (S2–2) : u+ε u
* � 1

(S2–3) : u+ε π+ε u
* � πR.

The Weyl quantization of a resummation of u, which we denote
by uε gives rise to an operator, Û � ûε +O0(ε∞) for which it
holds true that, Û Π̂ Û � π̂R.

(S3) There exists a formal, effective Hamilton symbol heff �∑i≥ 0ε
iheff ,i defined as,

heff :� u+ε H+ε u
*.

For systems with an external time parameter t and the Weyl
quantizations û and ĥeff , we have,

e−i Ĥ s − û†e−i ĥeff s û � O0(ε∞|s|). (21)

In the next section, we will make these formal definitions and
results more explicit and apply the space adiabatic scheme to a
simple cosmological model up to second order in the
perturbations.

5.2 Backreaction in Quantum Cosmology
As an illustrative example for the space adiabatic scheme, let us
consider Einstein general relativity, reduced to spatial
homogeneity and isotropy, including a cosmological constant
Λ> 0, and coupled to a spatially homogeneous, isotropic and real
Klein–Gordon field ϕ0 with mass mKG > 0 and coupling constant
λ ∈ R. We assume a globally hyperbolic space time manifold and
a metric with Lorentzian signature (−,+,+,+). The only
dynamical degree of freedom of the metric is the scale factor
a≥ 0. The lapse function N is a Lagrange multiplier and will be
fixed N ≡ 1. We perform a (3 + 1)–split of the manifold into
space and time which admits spatial hypersurfaces σ which we fix
to be compact, flat three–tori T3 with side lengths l ≡ 1. The
cosmological action is,

S[a(t), ϕ0(t)] � ∫
R

dt(− 1
κ
(3 _a2a + Λa3) + 1

2λ
( _ϕ2

0 −m2
KGϕ

2
0)),
(22)

where κ � 8πG and λ are the gravitational and scalar field
coupling constants. If both, (a, ϕ0) are dimensionless, as we
assume, then both coupling constants have the same
dimension, and we define the dimensionless ratio,

ε2 :� κ

λ
. (23)

Considering typical values of the coupling parameters in the
Standard Model, it seems reasonable to assume that this ratio is

indeed extremely small. Hence, we identify gravity with the
slow sector while the matter field is considered to be the fast
subsystem.

The space adiabatic scheme requires a Hamiltonian
formulation of the problem. We define the conjugate
momenta of a and ϕ0 as, pa :� ε zLz _a and μ0 :� zL

z _ϕ0
, where L is

the Lagrange function associated with the action S. The Poisson
brackets of the canonical variables evaluate to {a, pa} � ε, and
{ϕ0, μ0} � 1. The Legendre transformation generates the
Hamilton constraint,

C(a, pa, ϕ0, π0) :� − 1
12

p2a
a
+ Λ
λ κ

a3 + μ20
2a3

+ 1

2λ2
m2

KGa
3ϕ2

0, (24)

where for notational reasons, we divided the whole constraint
by a constant factor λ. For simplifying the analysis by means of
SAPT in the following, we switch to triad–like canonical
variables,

b :� ±
��
a3

√
, ρ :� 2

3
pa�
a

√ , (25)

which is a double cover of the original phase space and we do not
restrict to any of the branches of b. In order to keep the notation
as simple as possible, we introduce the following parameters and
functions,

mG :� 8
3
, ω2

G :� 3Λ
4 λ κ

, ~mKG :� b2, ω2
KG :� m2

KG

λ2
.

(26)

These definitions and the new canonical variables give for the
Hamilton constraint,

C(b, ρ, ϕ0, μ0) � − ρ2

2mG
+ 1
2
mGω

2
Gb

2 + μ20
2~mKG(b)

+ 1
2
~mKG(b)ω2

KGϕ
2
0. (27)

We quantize the system and start by considering the scalar field
subsystem using bold operator symbols. The state space is
Hf :� L2(R, dϕ0), and the scalar field operator and its conjugate
momentum satisfy the canonical commutation relation,
[ϕ0, μ0]f � i 1f . Similarly, the state space of the geometrical
subsystem is Hs :� L2(R, db). The quantum operators wear hats
and the canonical commutation relation for the geometrical variable
and its conjugate momentum are, [b̂, ρ̂]s � i ε 1̂s. The quantum
theory of the coupled system has the tensor product Hilbert space,
H � Hs ⊗Hf . The constraint operator on H is given by,

Ĉ � (− ρ̂2

2mG
+ 1
2
mG ω

2
G b̂

2)⊗ 1f + 1

2 ~mKG(b̂)⊗ μ2
0

+ 1
2
~mKG(b̂)ω2

KG ⊗ϕ
2
0. (28)

We check the conditions (C1)–(C4) for SAPT. (C1) holds
without further ado since the cosmological Hilbert space
Hs ⊗Hf has the required tensor product structure, and Hs is
an L2–space and Hf is separable. We represent the quantum
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constraint as a symbol function C(ρ, b)with values in the linear
operators on the Klein–Gordon Hilbert space Hf by formally
quantizing the Klein–Gordon subsystem only,

C(b, ρ) � ( − ρ2

2mG
+ 1
2
mGω

2
Gb

2)1f + ϕ2
0

2 ~mKG(b)
+ 1
2
~mKG(b)ω2

KG μ
2
0. (29)

C(b, ρ) is an unbounded operator onHf for every (b, ρ) ∈ R2. In
particular, the operator corresponds to the Hamiltonian of a
quantum harmonic oscillator with constant frequency ωKG,
b–dependent mass ~mKG(b) and an off–set energy. As such, the
symbol has for fixed finite (b, ρ) an energy spectrum which is
bounded from below but not from above. Besides, C(b, ρ) is an
unbounded function with respect to both, b and ρ. According to
SAPT, the constraint symbol must however belong to one of the
symbol classes Smρ (B(Hf )) and should therefore have values in
the space of bounded operators on Hf , be a bounded function
with respect to b and grow maximally polynomially in ρ. By
means of the standard quantum oscillator eigensolutions ξn ∈ Hf ,
n ∈ N with a b–dependent mass, the correspondent eigenvalue
equation has the form,

C(b, ρ) ξn(b) � En(b, ρ) ξn(b),
En(b, ρ) � − ρ2

2mG
+ 1
2
mGω

2
Gb

2 + ωKG(n + 1
2
) (30)

We emphasize that the b-dependence of the states is purely
parametric which allows to define b-dependent projection
operators on Hf ,

πn(b) :� ξn(b) 〈ξn(b), · 〉Hf
, (31)

by means of which the Hamilton symbol constraint has the
spectral representation,

C(b, ρ) � ∑
n≥ 0

En(b, ρ)πn(b). (32)

In order to respect the conditions for the application of SAPT, it is
possible to define an auxiliary Hamilton symbol Caux(b, ρ) which
has values in the bounded operators, is locally a bounded function
with respect to b, and which preserves the local structure of the
symbol function C(b, ρ) (Panati et al., 2003; Stottmeister, 2015).
Since the perturbation scheme is applicable without referring to this
auxiliary symbol (if convergence and uniformity of the series
expansion do not play a role for the time being), we continue
working with the original symbol (32) to illustrate the scheme. Most
importantly, the gap condition (C3) is satisfied since the energy
functions En(b, ρ) are gapped functions on the gravitational phase
space. Finally, we formally choose one of the fast energy bands with
quantumnumber ] ∈ N to proceed with the space adiabatic scheme.

Application of Space Adiabatic Perturbation
Theory
We start with the perturbative construction of the Moyal projector
symbol π up to first order in ε. In fact, this will be sufficient to define

the effective Hamilton constraint up to second order. With the
ansatz, π(1) � π0 + επ1, and the natural choice for the base clause,

π0 :� ξ](b) 〈ξ](b), · 〉Hf
, (33)

we construct the symbol function π(1)(b, ρ) following the
construction steps (S1). The first condition (S1–1), π+ε π � π,
yields that the diagonal contribution to π1 vanishes because π0(b)
depends solely on b. Regarding the third condition (S1–3),
C0 +ε π − π+ε C0 � 0, it is straightforward to derive (Teufel,
2003; Neuser et al., 2019), that,

π1 � − i
2
π0 · {π0,C0 + E] 1f}s · (C⊥

0 − E] 1f)−1 · π⊥
0

− i
2
(C⊥

0 − E] 1f)−1 · π⊥
0 · {C0 + E] 1f ,π0}s · π0,

(34)

as a determining equation for π1, where we defined, C⊥
0 � C0 · π⊥

0 ,
and π⊥

0 :� 1f − π0. To evaluate the partial derivative zbπ0 in this
equation, we need to evaluate the derivative of the states ξn(b) ∈ Hf

as well as the derivatives of the canonically defined creation
and annihilation operators a*(b) ∈ L(Hf ) and a(b) ∈ L(Hf ).
Therefore, recall that the initial eigenvalue problem admits the
oscillator solutions ξn(b). Accordingly, the creation operator a*(b)
can be written in terms of the canonical pair (ϕ0, μ0) as,

a*(b) �
����������
~mKG(b)ωKG

2

√ (ϕ0 −
i

~mKG(b)ωKG
μ0), (35)

The derivatives of the vacuum state ξ0(b) and the creation
operator are given by,

zξ0
zb

:� �
2

√
f (b) ξ2(b), za*(b)

zb
� −2f (b) a(b), (36)

where f (b) :� −(zb ~mKG)/(4~mKG) � −1/(2b). We propose
the definition of a covariant derivative, or more precisely, a
gauge potential A, associated with the b–derivative of the
fast oscillator states. Note that this is simply Berry’s connection
(Berry, 1984). Using the natural basis choice from above, its
coefficients with respect to the b–direction on Γs are given by,

zξn(b)
zb

� A n−2
bn (b) ξn−2(b) +A n+2

bn (b) ξn+2(b), (37)

with, Ak
bn(b) � − �������

n(n − 1)√
f (b) δk+2n + ������������(n + 1)(n + 2)√

f (b)
δk−2n . All coefficients A m

ρn in the ρ–direction vanish because the
fast eigenstates do not depend on ρ. Only the coefficients that connect
states differing by two excitations in the b–direction are non-
vanishing. Since we have real–valued eigenstates, the connection
coefficients are real–valued, too, such that the orthonormality relation
between the fast states yields that,A m

bn � −A n
bm . The b–derivative

of the projector symbol π0 follows from using Riesz’ representation
theorem and one can simply write,

zπ0

zb
� A m

b] (ξ]〈ξm, · 〉f + ξm〈ξ], · 〉f), (38)

where ] is still a fixed quantum number while m runs over all
natural numbers. To evaluate π1, the partial derivative,
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zρ (C0 + E] · 1f ), is simply (−2ρ/mG) · 1f , because only the
spectral functions En(b, ρ) depend on ρ while the states do
not. The functional form of the energy functions also reduces
(C⊥

0 − E] · 1f ) to a factor ± (2ωKG)−1, and consequently,

π1 � − iρ
2mGωKG

(A ]−2
b] (ξ]〈ξ]−2, · 〉f − ξ]−2〈ξ], · 〉f)

+ A ]+2
b] (ξ]+2〈ξ], · 〉f − ξ]〈ξ]+2, · 〉f)). (39)

One can easily check that π(1) satisfies all three conditions
subsumed under (S1) up to first order in ε, i.e., that it is a
projector and commutes with the full Hamilton symbol up to
errors of order ε2. We see that the improved projection symbol
mixes adjacent eigenstates of the fast system, and going to higher
orders in the perturbative scheme more and more states will be
included.

The next step of SAPT consists in constructing the unitary
symbol u1 which maps the dynamical subspace related to π(1), to
a suitable reference subspace Kf ⊂ Hf . It is convenient to choose
one point (b0, ρ0) ∈ Γs and define the reference projection as,

πR :� ξ](b0)〈ξ](b0), · 〉f �: ζ]〈ζ], · 〉f , (40)

where ζ] ∈ Hf does not depend on the gravitational phase space
variables. In a similar fashion, one can define the complete basis
ζn :� ξn(b0), n ∈ N at the point b0. A natural choice for the
unitary operator in line with conditions (S2) at zeroth order is
simply,

u0(b) � ∑
n≥ 0

ζn〈ξn(b), · 〉f. (41)

In order to construct u1, the scheme splits the symbol into a hermitian
and an antihermitian part. The hermitian part is determined by Eqs.
S2-1 and S2-2, namely by requiring that u+u* � 1f holds up to first
order in ε. Since u0 only depends on the configuration variable b, the
hermitian part vanishes trivially. The antihermitian part is determined
by restricting equation (S2S–equation (S3), i.e., u+π+u* � πR, to
the first order. It yields for u1 (Neuser et al., 2019),

u1 � [πR, u0 · πOD
1 · u*

0]f · u0

� iρ
2mG ωKG

[A]−2
b] (ζ]〈ξ]−2, ·〉f + ζ]−2〈ξ], · 〉f)

− A]+2
b] (ζ]+2〈ξ], · 〉f + ζ]〈ξ]+2, · 〉f)]. (42)

Eventually, we are ready to compute the effective Hamiltonian
symbol up to second order in the perturbations, and which we
restrict to the selected reference space, i.e., we compute,
Ceff ,(2),R(b, ρ) :� πR · Ceff ,(2)(b, ρ) · πR. The zeroth order
contribution of this symbol is given according to condition (S3) by,

Ceff ,0,R(b, ρ) � ( − ρ2

2mG
+ 1
2
mGω

2
Gb

2 + ωKG(] + 1
2
))πR. (43)

Thus, the effective constraint symbol for the gravitational degrees
of freedom includes the bare gravitational constraint symbol plus
an off–set energy which stems from the energy band associated
with the quantum number ] of the Klein–Gordon system. This
result corresponds to the Born–Oppenheimer approximation.

The first order contribution of the effective constraint symbol,
Ceff ,1(b, ρ) contains only off-diagonal terms, such that
Ceff ,1,R(b, ρ) vanishes identically,

Ceff ,1,R(b, ρ) � i
2
{πR · u0,C0 + E] 1f}s · u*

0 · πR � 0. (44)

The same reasoning applies to the computation of the second
order contribution Ceff ,2,R(b, ρ) giving,
Ceff ,2,R � i

2
{πR · u1,C0 + E] 1f}s · u0 · πR

� [zEn

zρ
]2[ (A]−2

b] )2
E] − E]−2

+ (A]+2
b] )2

E] − E]+2
]πR + 1

2
z2En

zρ2
[(A]−2

b] )2 + (A]+2
b] )2]πR.

(45)

Finally, inserting the explicit results for the energy functions and
the connection coefficients yields,

Ceff ,2,R(b, ρ) � − 1
2mG

( ρ2

mGωKGb2
(] + 1

2
) + 1

2b2
(]2 + ] + 1))πR.

(46)

This proves our statement that besides the trivial
Born–Oppenheimer approximation, further backreaction
effects arise for the gravitational subsystem. It is now easy to
evaluate the action of this symbol on some generic tensor
product wave function in H � Hs ⊗Hf , since the
Klein–Gordon tensor factor does not depend on the
gravitational degrees of freedom anymore. The problem reduces
to a quantum constraint equation on Hs only, and can be studied
for each ] of interest. Nevertheless, we point out that finding states
that are annihilated by the constraint operator Ĉeff ,2,R is not a trivial
task as it depends non-polynomially on b. Further details can be
found in (Neuser et al., 2019). Finally, the question is how the
solutions of (46) relate to the solutions of the original problem
on H. In fact, one needs to rotate the solutions of Ĉeff ,2,R back
to the original Hilbert space using the quantization of the Moyal
unitary. It turns out that the resulting solutions are also
approximate (orthogonal) solutions to the full Hamilton
constraint at the respective perturbative order (Teufel, 2003;
Schander and Thiemann, 2019a).

5.3 Backreaction in Inhomogeneous
Quantum Cosmology
The purely homogeneous model in the previous section can serve
as a showcase for a more realistic inhomogeneous cosmological
model. Here, we consider standard cosmological perturbation
theory for a gravitational metric field g, a massive real scalar field
Φ as the matter content, and a cosmological constant,Λ> 0. After
the split of the relevant degrees of freedom into a homogeneous
and an inhomogeneous part, the aim will be to incorporate
backreactions from the perturbative degrees of freedom onto
the homogeneous and isotropic background degrees of freedom.

As before, the model rests on a four-dimensional globally
hyperbolic space time manifold M that admits the time space
split M � R × σ. The metric has Lorentzian signature
(−,+,+,+), and the spatial hypersurfaces σ are compact and
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flat three-tori σ � T3 with side lenghts l ≡ 1. The global time
parameter t ∈ R labels the spatial Cauchy surfaces Σt . nμ is the
unit normal vector field to these hypersurfaces, N and Nμ the
(standard) lapse and shift functions which parametrize the
normal and the tangential part of the foliation. The task of
specifying constraints or equations of motion for the metric
field g, translates into defining a Cauchy initial value problem
for the spatial metric hμ] � gμ] + nμn] induced by g. The
extrinsic curvature associated with the time derivative of h is
given by Kμ] � hρμhλ]∇ρnλ. ∇ is the unique, torsion–free covariant
derivative associated with the metric g. After pulling back the
tensor fields to R × T3 and denoting spatial indices on the
spatial hypersurfaces with lower case latin symbols,
a, b, c, . . . ∈ {1, 2, 3}, the Lagrange density is expressed by the
sum of the Einstein–Hilbert Lagrange density LEH and the
scalar field Lagrange density LΦ, with,

LEH � 1
2κ

���|h|√
N (R(3) + KabK

ab − (Ka
a )2 − 2Λ), (47)

LΦ � 1
2λ

���|h|√
N (− 1

N2
_Φ2 + 2

Na

N2
_ΦzaΦ + (hab − NaNb

N2
)zaΦzbΦ

+m2
ΦΦ2). (48)

where again, λ is the coupling constant of the scalar field, mΦ is
the mass parameter of the scalar field, and R(3) is the curvature
scalar associated with the three–metric h and its Levi–Civita
covariant derivative, D. The only degrees of freedom of the
spatially homogeneous and isotropic sector are the zeroth
order lapse function N0(t) and the scale factor a(t), associated
with the zeroth order spatial metric, 0h(t, x) :� a2(t)0~h(x) with
0~h(x) being the time-independent metric on the spatial
hypersurfaces. A Hamiltonian analysis shows that the lapse
function is a Lagrange multiplier with no dynamical features,
affirming the arbitrariness of the hypersurface foliation.

We introduce perturbations of the homogeneous degrees of
freedom using a decomposition into scalar, vector and tensor parts
(Halliwell and Hawking, 1985). Since we make use of their results in a
later stage, we will stick to the definition of perturbations used by
Castelló Gomar et al. (2015) and Martínez and Olmedo (2016),

N(t, x) �: N0(t) + a3(t) g(t, x) (49)

Na(t, x) �: a2(t)Da k(t, x) + a2(t) ϵ bca Db kc(t, x) (50)

hab(t, x) �: a2(t)[(1 + 2α(t, x))0~hab(x) + 6(DaDb − 1
3
0~hab(x)DcD

c)β(t, x)
+ 2

�
6

√
tab(t, x) + 4

�
3

√
D(avb)(t, x)⎤⎦,

(51)

Φ(t, x) �: ϕ(t) + φ(t, x). (52)

where we introduced the perturbative scalar fields (g, k, α, β,φ),
the vector fields va and ka, and the tensor field perturbations
tab. For notational reasons, we introduce the fields �k :� Δk and
�ka :� ϵ bca Dbkc as new degrees of freedom associated with the shift.

We perform a Legendre transformation to obtain
the Hamilton constraint. We insert the perturbed variables
from Eqs. 49–(52) into the Lagrange density (47), (48), and
expand the Lagrangian and the action functional S up to second
order in the perturbations. As the three-torus does not have a
boundary, total divergences vanish in the computations. The
resulting action does neither depend on the velocities of the lapse
variables N0 and g, nor on the velocities of the shift variables �k and
�ka. These Lagrange multipliers will hence be associated with
primary constraint equations in the Hamiltonian formalism. In
the lines of (Castelló Gomar et al., 2015), we define the conjugate
momenta (Pa, Pϕ) for the homogeneous and isotropic degrees of
freedom (a, ϕ) using the Lagrange function L � ∫ dxL,

Pa :� zL
z _a

� − 6
κN

a _a, Pϕ :� zL

z _ϕ
� a3

λN
_ϕ. (53)

We denote the corresponding phase space by Γhom � Γs. The
perturbation fields (α, β,φ, ϑa, tab) together with their conjugate
momenta (πα, πβ, πφ, πa

v , π
ab
t ) span the perturbative phase space

Γpert � Γf . The momenta are defined as,

πχ :� zL
z _χ

, (54)

for any field χ ∈ {α, β,φ, va, tab}. N0, g, �k and �ka induce the lapse
and shift primary constraints ΠN0

0 , Πg
1, Π�k

1 and Π�ka ,b
1 . The

Hamiltonian density is eventually given by,

H � N0[H0 +Hs
2 +Hv

2 +Ht
2] + g ·Hg

1 + �ka ·H�kd ,a
1 + �k ·H�k

1+
λN0 · ΠN0

0 + λg · Πg
1 + λ�k · Π�k

1 + λ�ka ,b · Π
�ka ,b
1 . (55)

H0 denotes the Hamiltonian contribution associated with the
completely homogeneous and isotropic model. Hs

2, Hv
2 and Ht

2
are of second order in the perturbations and contain only scalar,
vector and tensor variables respectively. Hg

1, H�kd ,a
1 and H�k

1
represent first order contributions which factorize with the
respective lapse and shift variables. The second line lists the
primary constraints associated with lapse and shift and their
Lagrange multipliers λN0, λg , λ�k and λ�ka ,b. The system is
completely constrained and we thus perform a Dirac analysis
to extract the relevant physics.

Therefore, we identify a suitable set of free variables–in fact,
the Dirac analysis will then become a trivial task. We start by
noting that the perturbation variables that we introduced are not
all gauge–invariant. In the scalar sector, let us employ the
gauge–invariant Mukhanov-Sasaki variable ϑ (Mukhanov,
1988, 2005),

ϑ :� aφ + 6λPϕ

κPa
(α − Δβ) (56)

Note that this transformation for the perturbative fields also
depends on the homogeneous degrees of freedom. While the
original perturbation variables had canonical momenta
properly defined by the Legendre transform, the new
perturbation variables will break the canonical structure as
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they non-trivially depend on the homogeneous degrees of
freedom. In order to preserve the canonical structure of the
system, it is mandatory to find a suitable transformation for the
homogeneous and isotropic variables, too. This appears to be a
cumbersome mission. Castelló Gomar et al. (2015) have
however shown that it is possible to find a transformation
for the homogeneous and isotropic degrees of freedom which
preserves the canonical structure of the system up to second
order in the cosmological scalar perturbations. The same has
been done by Martínez and Olmedo (2016) for the tensor
degrees of freedom.

These transformations and the resulting almost–canonical
variables in the homogeneous and the perturbative sector lead to
a redefinition of the Hamilton constraint. Fortunately, these
transformations make the Dirac constraint analysis almost trivial.
The secondary constraints that one obtains from requiring the
conservation of the primary constraints under the evolution of the
Hamiltonian, generate only one single, non-trivial constraint, namely,

C :� H0 + ~Hs

2 + �Ht

2 � 0, (57)

where H0 now depends on the transformed homogeneous
variables, and ~Hs

2 and �Ht
2 are second order constraints that

depend on the Mukhanov–Sasaki and the tensor perturbations
respectively, as well as on the transformed homogeneous variables.
Before we give the corresponding expressions, let us perform the
typical ε-rescalings of the momenta that will make the space
adiabatic scheme work at the technical level. We will simply
denote the transformed variables by the original ones, and write,

pa :� ε2 Pa, pϕ :� ε Pϕ. (58)

Besides, we perform a canonical rescaling of the inhomogeneous
Mukhanov–Sasaki and tensor perturbations, and multiply the
constraint by a global ε2–factor. Then, the total Hamilton
constraint, C � H0 + ~H

s
2 + �H

t
2 � 0, is given by (Schander and

Thiemann, 2019c),

H0 � − p2a
12a

+ p2ϕ
2a3

+ 1
2
ε2m2

Φa
3ϕ2 + Λa3, (59)

~H
s

2 �
1
2a
∫
T3

dx [ π2
ϑ��
0~h

√ + ϑ ε4[− ��
0~h
√

Δ +m2
MS]ϑ], (60)

Ĥ
t

2 �
1
2a
∫
T3

dx [πab
t πt,ab

6
��
0~h

√ + tabε4[ − 3
��
0~h

√
Δ + (εmT)2]tab], (61)

with the effective Mukhanov–Sasaki and tensor masses
depending on the homogeneous variables,

m2
MS � (− p2a

18a2
+ 7p2ϕ
2a4

− 12ε
��
0~h

√ 2

m2
Φ
aϕpϕ
pa

− 18
p4ϕ
a6p2a

+
��
0~h

√ 2

m2
Φa

2) 1��
0~h

√ ,

(62)

(εmT)2 � ( p2a
6a2

− 3ε2
��
0~h

√ 2

m2
Φa

2ϕ2 − 6
��
0~h

√ 2

Λa2) 1��
0~h

√ . (63)

Now, SAPT requires to quantize the cosmological perturbations.
The form of ~H

s
2 and �H

t
2 suggests to consider a standard Fock

quantization for the Mukhanov–Sasaki and the tensor fields. The
quantized fields should satisfy the commutation relations,

[g(ϑ),πϑ(f )]MS � i∫
T3

dx g(x)f (x) 1MS, [G(t),πt(F)]T

� i∫
T3

dx Gab(x)Fab(x) 1T,

for suitable test functions f, g, Gab and Fab on the three–torus,
where 1MS and 1T denote the unities of the quantum algebras. As
a basis for the one–particle Hilbert space L2(T3, dx) it is
convenient to choose the plane waves f

k
→( x→) � exp(i k→ x→),

with k
→

∈ 2πZ 0 being discrete. The total perturbative Hilbert
space is the tensor product of the correspondent Fock spaces,

Hf � F s,MS(L2(T3, dx)) ⊗
τ�{+,−}

F s,T,τ(L2(T3, dx)), (64)

where the index “s” refers to symmetric, and we introduced the
label τ which stands for the only two physical degrees of freedom
associated with the tensor perturbations (namely their
polarizations). The form of the second order contributions to
the Hamilton constraint suggest to define the one–particle
frequency operators for the Mukhanov–Sasaki and the tensor
systems,

ωMS :� ε2
��������
−Δ +m2

MS

√
, ωT :� ε2

��������������
−18Δ + 6 (εmT)2

√
. (65)

Note that both operators depend on the homogeneous degrees of
freedom as they contain the mass functions mMS(a, pa, ϕ, pϕ) and
mT(a, pa, ϕ). This implies that the annihilation and creation
operators a(f

k
→) �: a

k
→, a*(f

k
→) �: a*

k
→ of the Mukhanov–Sasaki

system and the annilation and creation operators of the tensor
perturbations b ± (f

k
→) � b

k
→

, ±
, b*± (f k

→) � b*
k
→

, ±
, defined in the

standard way, depend on the homogeneous degrees of freedom,
and so do the natural Fock basis states (Schander and Thiemann,
2019c). In contrast to the cosmological toy model, they depend on
the whole set of phase space variables, which represent non-
commuting operators in the quantum theory, and which makes
the application of SAPT mandatory. The Born–Oppenheimer
approach would fail in the given case.

It is most convenient to express the quantum constraint
symbol C(a, pa, ϕ, pϕ) in terms of normal–ordered annihilation
and creation operators,

C � ( − p2a
12a

+ p2ϕ
2a3

+ 1
2
ε2 m2

Φa
3 ϕ2 + Λ a3)1f

+ 1
a
∑
k
→

∈K

ω
MS, k

→ a*
k
→ a

k
→ + 1

6a
∑
K
→

∈K

ω
T, k
→ b*

K
→ b

K
→, (66)

where we identify the first contribution as the usual
FLRW Hamilton constraint, which we will denote by
Ehom(a, pa, ϕ, pϕ). The label K

→
:� ( k→, τ) ∈ K specifies the

mode and the polarization of the tensor perturbations. C
admits a discrete spectrum for any point (a, pa, ϕ, pϕ) ∈ Γs
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because the sums over the wave vectors in the Hamilton constraint
are discrete and so is the spectrum of the number operators a*

k
→ a

k
→

and b*
K
→ b

K
→. Any Fock state ξ(n) ∈ Hf with finite energy can be

identified with a finite set of non-vanishing quantum numbers
(n) :� { . . . , n

MS, k
→

1

, n
MS, k

→
2

, . . . , n
T,τ, k

→
1

, n
T,τ, k

→
2

, . . . }, where we

distinguished between the quantum numbers of the
Mukhanov–Sasaki and the tensor perturbations. We introduce
degeneracy labels which take the possibility of degenerate
eigenstates into account, and we denote them by b � 1, . . . , d for
the Mukhanov–Sasaki system and b′ � 1, . . . , d′ for the graviton
system. To shorten notation, we integrate the degeneracy labels in
β :� {b, b′} and the degeneracy numbers in δ :� {d, d′}. We write
for the set of homogeneous variables, (q, p) :� (a, pa, ϕ, pϕ). The
eigenvalue problem for any finite set of quantum numbers (n)β
then has the form,

C(q, p) ξ(n)β(q, p) � En(q, p) ξ(n)β(q, p), (67)

En(q, p) : � Ehom(a, pa, ϕ, pϕ) + 1
a
∑
k
→

∈K

n
MS, k

→
,b
ω
MS, k

→

+ 1
6a
∑
K
→

∈K

n
T, K
→

,b′
ω
T, K
→.

Due to the discreteness of the eigenbasis, it is possible to define
non–vanishing energy gaps between the eigenenergy bands of the
perturbations, at least for local regions in phase space. In the
following, we assume that the relevant energy bands admit such
local gaps in the region of interest.

To examine the derivatives of the eigenstates with respect to
the homogeneous variables, we need the derivative of the
vacuum state and the annihilation operators since any
excited state in the Hilbert space Hf can be constructed from
the vacuum state Ω(q, p) by applying the desired number
(n

MS, k
→, n

T, k
→

,+, nT, k→,−) of creation operators for every wave

number k
→
. We formally choose one such eigenstate with

quantum number(s) (])β given by,

ξ(])(q, p) � ∏
K
→

∈K

(a*
k
→)]MS, k

→
������
]
MS, k

→!
√ (b*

K
→)]T, K

→
�����
]
T, K
→!

√ Ω(q, p) (68)

It is useful to write the explicit representation of the
Mukhanov–Sasaki wave function and the tensor wave
functions as a product,

ξ(]) �: ξMS
(]MS) ·∏

τ

ξT,τ(]T). (69)

The derivatives of the annihilation operators with respect to
λ ∈ {q, p}, are proportional to the correspondent creation operators,

za
k
→(q, p)
zλ

:� fMS

λ, k
→(q, p) a*

k
→(q, p),

zb
K
→(q, p)
zλ

:� f T
λ,K
→(q, p) b*

K
→(q, p),

(70)

and the explicit expressions of the factors can be found in
(Schander and Thiemann, 2019c). The λ-derivative of the
vacuum state is then given by,

zΩ(q, p)
zλ

� ∑
k
→

∈K

fMS

λ, k
→(q, p)(a*

k
→ a*

k
→Ω)(q, p)

+ ∑
K
→

∈K

f T
λ, k
→(q, p)(b*

K
→ b*

K
→Ω)(q, p). (71)

The λ-derivative of any excited state ξ(n) is thus uniquely defined
by these results and can be expressed as an application of a
connectionAλ ∈ C∞(Γs,L(Hf )), on the global Hilbert bundleH,

zξ(n)(q, p)
zλ

�: Aλξ(n) �: A(m)
λ(n)ξ(m),

A(m)
λ(n)(q, p) ∈ C∞(Γs,R) ∀(n), (m),

(72)

where the summation over (m) includes essentially all possible
excitation numbers within the Fock space Hf . However, there is
only a countable number of(m)’s for whichA(m)

λ(n) is non-vanishing if(n) is a finite set of non-vanishing excitation numbers. For more
details and the explicit calculations, we refer to (Schander and
Thiemann, 2019c).

Application of a Space Adiabatic
Perturbation Scheme
The construction of the space adiabatic symbols is subject to two
different perturbative scalings: ε for the homogeneous scalar field,
and ε2 for the homogeneous gravitational degrees of freedom.
The Moyal product for two operator–valued functions
f (q, p) ∈ Sm1

ρ (Γs,B(Hf )), g(q, p) ∈ Sm2
ρ (Γs,B(Hf )) has the form,

( f +ε g)(q, p)p[f exp(iε2 ( z← ϕ z
→

pϕ − z
←

pϕ z
→

ϕ)
− iε2

2
( z← a z

→
pa − z

←
pa z
→

a))g](q, p) ∈ Sm1+m2
ρ (Γs,B(Hf))

(73)

As it turns out, the Moyal product with respect to the
gravitational degrees of freedom does not contribute to the
computations up to second order in the perturbation scheme.

As before, the discrete eigenstate ξ(])β(q, p) ∈ Hf with quantum
number (])β serves to define the zeroth orderMoyal projector symbol,

π0(q, p) :�∑
β

ξ(])β(q, p) 〈ξ(])β(q, p), · 〉f . (74)

The only relevant contribution to π1 comes from (S1–3). This
off–diagonal part πOD

1 mixes the adjacent inhomogeneous
eigenstates according to,

πOD
1 � i

2
∑
β�1

δ ∑
(n)≠ (])β

A(])β(n)
E(])β − E(n)

(ξ(])β 〈ξ(n), ·〉f − ξ(n) 〈ξ(])β, ·〉f),
(75)

with
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A(])β(n) � A (n)
ϕ(])β

z(E(n) + E(])β)
zpϕ

−A (n)
pϕ(])β

z(E(n) + E(])β)
zϕ

+ (E(n) − E(m))(A(m)
pϕ(])β A

(n)
ϕ(m) −A(m)

ϕ(])β A
(n)
pϕ(m)).

(76)

Constructing the unitary symbol π(1) requires to choose a
simple reference space Kf , and as before, Hf itself is a
convenient choice. Its basis is determined by fixing a set of
numbers (q0, p0) ∈ Γs giving {ζ(n) :� ξ(n)(q0, p0)}(n). The zeroth
order contribution to the Moyal unitary and the reference
projector can be chosen as,

u0(q, p) :�∑
(n)
ζ(n) 〈ξ(n)(q, p), · 〉f, πR :�∑δ

β�1
ζ(])β〈ζ(])β, · 〉f.

(77)

The hermitian part of u1(q, p) is determined by
evaluating (S2-1) and (S2-2) up to first order in the
perturbations,

uh
1(q, p) � ∑

(n),(m),(k)
(A(m)

ϕ(n)A(k)
pϕ(m)

−A (m)
pϕ(n) A (k)

ϕ(m) )ζ(n) 〈ζ(k), · 〉f. (78)

Since the sum runs over all possible combinations of
quantum numbers, it is clear that the two contributions
are equal and cancel each other. We thus have that uh1 � 0.
The antihermitian part of u1 results from employing the
result for πOD

1 in the well–known expression from the toy
model example,

uah
1 � [πR, u0 · πOD

1 · u0*]f · u0. (79)

We evaluate the effective Hamilton constraint symbol
according to, Ceff � u+ε C+ε u*, and restrict our interest
directly to the reference space, i.e., to Ceff ,R � πR · Ceff · πR.
At zeroth order, this yields,

Ceff ,0,R � ∑
b,b′�1

d,d′ ⎡⎢⎢⎢⎢⎢⎢⎢⎣Ehom(a, pa, ϕ, pϕ) + 1
a
∑
k
→

∈K

]
MS, k

→
,b
ω
MS, k

→

+ 1
6a
∑
K
→

∈K

]
T, K
→

,b′
ω
T, K
→⎤⎥⎥⎥⎥⎥⎥⎥⎦ · ζ(])β〈ζ(])β, ·〉f, (80)

which includes the standard zeroth order Hamilton constraint
for an FLRW Universe Ehom(a, pa, ϕ, pϕ), and the bare energy
contributions from the relevant energy band ξ(])a. These
additional terms are finite since the quantum numbers
{]

MS, k
→

,b
, ]

T, k
→

,b′
} are non-vanishing for only a finite number

of wave vectors k
→
. Te first order contribution to the

effective Hamiltonian vanishes identically within the subspace
of interest.

The second order effective Hamilton symbol includes
several contributions but only one of them is of second
order in the perturbative parameter, and hence relevant.

The occurence of terms that actually enter at higher
orders in ε stems from the fact that the perturbative
Mukhanov–Sasaki and graviton contributions to C are by
definition of second order in ε. It was necessary to include
them to make the space adiabatic scheme work at the
technical level. We refer again to (Schander and
Thiemann 2019c) for more details and only state the final
result,

Ceff ,2,R(a, pa, ϕ, pϕ) � −∑d
b�1

∑
k
→

∈K

1

( k→2 +m2
MS)5/2 (]MS, k

→
,b
+ 1
2
)

9
2

m4
Φp

4
ϕ

a3p2a
ζ(])b〈ζ(])b, ·〉f. (81)

This second order effective Hamiltonian symbol together with the
zeroth order contribution Eq. 80, provides after Weyl
quantization a constraint operator for the homogeneous sector
of quantum gravity which includes, most importantly, the
backreaction from the inhomogeneous modes. A similar result
was obtained for a quantum cosmological model with scalar field
perturbations and a deparametrizing dust particle (Schander and
Thiemann, 2019b). The next step of the scheme consequently
consists in Weyl quantizing the full effective constraint symbol
and in finding physical quantum states on the homogeneous
Hilbert space that are annihilated by it. A thorough discussion of
the above results will be given in the next and final section.

6 DISCUSSION AND OUTLOOK

This review provides an introduction to the backreaction problem
in classical, semiclassical and quantum cosmology, as well as a
detailed overview of the current state of research in the respective
fields. We have particularly focused on approaches to the
backreaction problem in (perturbative) quantum cosmology
that are inspired by Born–Oppenheimer methods. The main
part of this paper is dedicated to a program which uses SAPT
as due to Panati et al. (2003), and which extends the latter scheme
to quantum field theoretical models. Thereby, it is possible to
compute the backreaction effects from the quantum cosmological
perturbations on the homogeneous and isotropic quantum
background (Schander and Thiemann, 2019b; Schander and
Thiemann, 2019c). We have advocated this framework here as
it represents an unambigious and straighforward formalism in
order to incorporate the yet neglected backreaction effects in
quantum cosmology in a perturbative and rigorous way.

The extension of the SAPT methods actually requires some care.
The first issue is related to a violation of the Hilbert–Schmidt
condition in QFT on CST. In fact, it is well–known from
standard QFT that Klein–Gordon fields with different masses
give rise to unitarily inequivalent representations of the field
algebra (Haag, 1992). Since here, the effective masses of the
Klein–Gordon and tensor fields depend on the homogeneous
FLRW background, the theory prevents unitarily equivalent
quantum field theories for different background configurations.
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This would evidently impede the quantization of the homogeneous
sector. Schander and Thiemann (2019a,c) show that it is possible to
circumvent these problems by considering transformations of the
whole system that are canonical up to second order in the
cosmological perturbations (Castelló Gomar et al., 2015; Martínez
and Olmedo, 2016; Schander and Thiemann, 2019b).

Another point is that the mass squared functions of
the perturbative quantum fields m2

MS(a, pa, ϕ, pϕ) and
(εmT)2(a, pa, ϕ) in Eqs. 62 and 63 are indefinite, and which
leads to tachyonic instabilities. In (Schander and Thiemann,
2019a), several solutions are propsed, for example to revise
the almost–canonical transformations that have actually led
to these indefinite mass functions. A second proposal is to
restrict the homogeneous phase space of the theory to
regions in which the mass functions are positive. This can
be made manifest by performing coordinate transformations
in the slow sector. This is exemplified for the model with
gauge–invariant perturbations in (Radzikowski, 2008;
Schander and Thiemann, 2019a).

With the identification and solutions to these initial
problems, it was possible to successfully apply the methods
of SAPT to the backreaction problem in quantum cosmology.
We stated the results for a cosmological, homogeneous and
isotropic toy model, and for a fully-fledged perturbative
quantum cosmology with gauge-invariant perturbations
(Schander and Thiemann, 2019c; Neuser et al., 2019). In the
first case, this effective Hamilton constraint includes the
backreaction of the homogeneous scalar field; in the second
case, the backreactions of the perturbative degrees of freedom
on the homogeneous background are taken into account. Here,
results up to second order in the adiabatic ε-scheme are
presented. The effective Hamiltonian symbol eventually
needs to be quantized with respect to the slow sector and
the goal is to find admissible solutions. This has been done
for an oscillator toy model in (Neuser et al., 2019). One can
proceed here in the same way but analytic solutions are harder
to find due to the non-polynomial structure of the result, and
which requires an in depth analysis of their dense domain. For
simplicity, we chose a Weyl quantization scheme and a
Schrödinger representation following the original work by
Panati et al. (2003). Instead, one could consider the
representation underlying LQC which could be of advantage
regarding the domain issues (Bojowald, 2008). Due to the
peculiarities of that representation (especially the strong
discontinuity of the Weyl elements), and in agreement with
certain superselection structures of the dynamics, one would
need to discretize the labels of the Weyl elements in one of the
conjugate variables. This would effectively replace the
gravitational slow phase space T*R by T*(S1) for which the
Weyl quantization in application to LQC has been discussed in
(Stottmeister and Thiemann, 2016b).

Focusing on the second order contribution to the perturbative
model, Eq. 81, one might be worried about the infinite sums.

Note that the result splits into two parts, namely the one
including the finite number of non–vanishing relevant
quantum numbers ]

MS, k
→

,b
for different degeneracy labels b,

and the contributions which do not depend on these quantum
numbers and hence include any summand of the wave vector
sum. The first part has only a finite number of contributions
and is manageable, while the second includes in principle an
infinite sum. Fortunately, the wave vector square enters with an
exponent of −5/2 which makes the sum a priori a convergent
sum. But the effective Mukhanov–Sasaki mass squared
m2

MS(a, pa, ϕ, pϕ) in the denominator is an indefinite function
on the homogeneous phase space. This will be cured as soon as a
positive definite sector of the mass squared functions has
been found.

We emphasize again that the issue of convergence of the
perturbation series in the SAPT approach has not been
addressed here. We point to easily implementable strategies
(Panati et al., 2003; Stottmeister, 2015), that allow to define
auxiliary Hamiltonian symbols that capture the relevant
physics of the model under consideration and whose
perturbation series is safely convergent.

Finally, we stress that there is an obvious connection between
backreaction and decoherence (Schlosshauer, 2007). Indeed, in
decoherence, one aims at finding an effective description of
what we call the slow sector using the reduced density matrix
approach, tracing over the fast degrees of freedom (Kiefer, 1987;
Paz and Sinha, 1991, 1992) (and references therein), and
computing its effective dynamics, e.g., by solving associated
Lindblad equations (Manzano, 2020). Using the tensor product
structure of the full Hilbert space, the connection to our
approach would be to construct the reduced density matrix
from a density matrix on the full Hilbert space that can be
formed from the eigenstates of the Hamiltonian (constraint)
corresponding to a given energy band. Details will be given
elsewhere.
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Quantum Fluctuations in the Effective
Relational GFT Cosmology
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We analyze the size and evolution of quantum fluctuations of cosmologically relevant
geometric observables, in the context of the effective relational cosmological dynamics of
GFT models of quantum gravity. We consider the fluctuations of the matter clock
observables, to test the validity of the relational evolution picture itself. Next, we
compute quantum fluctuations of the universe volume and of other operators
characterizing its evolution (number operator for the fundamental GFT quanta, effective
Hamiltonian and scalar field momentum). In particular, we focus on the late (clock) time
regime, where the dynamics is compatible with a flat FRW universe, and on the very early
phase near the quantum bounce produced by the fundamental quantum gravity dynamics.

Keywords: quantum gravity, cosmology: theory, loop quantum cosmology, group field theory, emergent spacetime,
relational dynamics

1 INTRODUCTION

Three closely related challenges have to be overcome by fundamental quantum gravity approaches,
especially those based on discrete or otherwise non-geometric, non-spatiotemporal entities, in order
to make contact with General Relativity and observed gravitational physics, based on effective
(quantum) field theory. The first is the continuum limit/approximation leading from the fundanental
entities and their quantum dynamics to an effective continuum description of spacetime and
geometry, with matter fields living on it (Oriti et al., 2017). This requires a mixture of
renormalization analysis of the fundamental quantum dynamics and of coarse-graining of its
states and observables. The second is a classical limit/approximation of the sector of the theory
corresponding to (would-be) spacetime and geometry, to show that indeed an effective classical
dynamics compatible with General Relativity and observations emerges, once in the continuum
description (Oriti et al., 2017). The third is a definition of suitable observables that can, on the one
hand, give a physical meaning to both continuum and classical approximations in terms of spacetime
geometry and gravity, and, on the other hand, allow to make contact with phenomenology
(Marchetti and Oriti, 2021). In particular, suitable observables are needed to recast the dynamics
of the quantum gravity system, in the same continuum and classical approximations, at least, in more
customary local evolutionary terms, i.e. in the form of evolution of local quantities with respect to
some notion of time (Giddings et al., 2006; Tambornino, 2012). This, in fact, is the language of
effective field theory used in gravitational and high energy physics. The first two challenges are
standard in any quantum many-body system, but are made more difficult in the quantum gravity
context by the necessary background (and spacetime) independence of the fundamental theory,
which requires adapting non-trivially standard renormalization, coarse-graining and classical
approximation techniques. The same background independence, closely related at the formal
level to the diffeomorphism invariance of General Relativity (Giulini, 2007), makes the third
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challenge a peculiar difficulty in quantum gravity. Locality or
temporal evolution cannot be defined with respect to any
manifold point or direction and generic configurations
(classical and even less quantum) of the gravitational field (or
what replaces it at the fundamental level) do not single out any
such notions either. Beside special situations (e.g. in the presence
of asymptotic boundaries) local and temporal geometric
observables can be understood as relational quantities, i.e.
defined as a relation between geometry and other dynamical
matter degrees of freedom, that provide a notion of local regions
and temporal direction when used as physical reference frames.
In other words, and restricting to the issue of time (Isham, 1992;
Kuchař, 2011), the relational perspective holds that the absence of
preferred, external or background notions of time in generally
relativistic quantum theories does not mean that there is no
quantum evolution, but only that evolution should be defined
with respect to internal, physical degrees of freedom (Höhn et al.,
1912; Tambornino, 2012).

From the perspective of “Quantum General Relativity”
theories (Rovelli, 2004; Thiemann, 2007), in which the
fundamental entities remain (quantized) continuum fields, the
relational strategy to define evolution boils down to either the
selection of a relational clock at the classical level, in terms of
which the remaining subsystem is canonically quantized
(“tempus ante quantum” (Isham, 1992; Anderson, 2012)) or
the definition of an appropriate clock-neutral quantization
(e.g., Dirac quantization) and the representation of classical
complete (i.e., relational) observables (Rovelli, 2002; Dittrich,
2006; Dittrich, 2007; Tambornino, 2012) on the physical
Hilbert space resulting from such quantization (“tempus post
quantum” (Isham, 1992; Anderson, 2012)). Of course, while the
first approach (deparametrization) is technically easier, when
possible, the second one is in principle preferable because
manifestly “clock covariant,” since it treats all the quantum
degrees of freedom on the same footing, thus allowing in
principle to switch from one relational clock to another (see
(Bojowald et al., 2011a; Bojowald et al., 2011b; Hoehn et al., 2011;
Hoehn and Vanrietvelde, 2018) for more details).

In “emergent quantum gravity” theories, in which the
fundamental degrees of freedom are pre-geometric and non-
spatiotemporal, and not identified with (quantized) continuum
fields, the situation has an additional layer of complications
(Marchetti and Oriti, 2021). Any kind of continuum notion in
such theories is expected to emerge in a proto-geometric phase of
the theory from the collective behavior of the fundamental
entities, i.e. only at an effective and approximate level. Among
such continuum notions there is any notion of relational
dynamics, as we understand it from the generally relativistic
perspective.

In the tensorial group field theory formalism (TGFT) for
quantum gravity (see (Krajewski, 2011; Oriti, 2011; Carrozza,
2016; Gielen and Sindoni, 2016) for general introductions),
comprising random tensor models, tensorial field theories and
group field theories (closely related to canonical loop quantum
gravity, and providing a reformulation of lattice gravity path
integrals and spin foam models), we are in this last emergent
spacetime situation (Oriti, 1807).

The issue of the continuum limit is tackled adapting standard
renormalization group (Carrozza, 2016) and statistical methods
for quantum field theories, leading also to several results
concerning the critical behavior of a variety of models. In the
more quantum geometric group field theory (GFT) models
(Magnen et al., 2009; Baratin et al., 2014; Ben Geloun et al.,
2016; Carrozza et al., 2017; Carrozza and Lahoche, 2017; Geloun
et al., 2018) (see also (Finocchiaro and Oriti, 2004) and references
therein), one can take advantage of the group theoretic data and
of their discrete geometric interpretation to give tentative physical
meaning to suitable quantum states and to specific regimes of
approximation of their quantum dynamics (Oriti et al., 2015).
Specifically, the hydrodynamic regime of models of 4d quantum
geometry admits a cosmological interpretation and has been
analyzed in some detail for simple condensate states (Gielen
et al., 2014; Gielen and Sindoni, 2016; Oriti et al., 2016). The
corresponding effective dynamics has been recast in terms of
cosmological observables both via the relational strategy and by a
deparametrization with respect to the added matter degrees of
freedom (Gielen and Sindoni, 2016; Oriti et al., 2016; Oriti, 2017;
Pithis and Sakellariadou, 2019; Wilson-Ewing, 2019; Marchetti
and Oriti, 2021). Among many results (Gielen and Menéndez-
Pidal, 2005; Gielen, 2014; Pithis et al., 2016; Pithis and
Sakellariadou, 2017; Adjei et al., 2018; Gielen and Polaczek,
2020), the correct classical limit in terms of a flat FRW
universe has been obtained rather generically for large
expectation values of the volume operator at late relational
(clock) times (Oriti et al., 2016; Gielen and Polaczek, 2020;
Marchetti and Oriti, 2021), and the big bang singularity is
resolved, with a similar degree of generality (Oriti et al., 2016;
Gielen and Polaczek, 2020), and replaced with a quantum bounce.
In addition, the fundamental quantum gravity interactions seem
to be able produce (at least for some regime of parameters) an
accelerated cosmological expansion, possibly long-lasting,
without introducing additional matter (e.g. inflaton) fields (de
Cesare et al., 2016).

The above results have been obtained looking at the
expectation values of interesting cosmological observables in
(the simplest) GFT condensate states. A careful analysis of
quantum fluctuations of the same observables is then
important to test the validity of the hydrodynamic description
in terms of expectation values, in particular in the large volume
limit when one expects classical GR to be valid, but also close to
the big bounce regime where one expects them to be strong but
still controllable if the bouncing scenario is to be trustable at all.
Moreover, the relational evolution relies on the chosen physical
(matter) degrees of freedom to behave nicely enough to serve as a
good clock, and this would not be the case if subject to strong
quantum fluctuations. This analysis of quantum fluctuations is
what we perform in this paper.

The precise context in which we perform the analysis is that of
the effective relational dynamics framework developed in
(Marchetti and Oriti, 2021).

This construction is motivated by the argued usefulness and
conceptual importance of effective approaches to relational
dynamics (Bojowald et al., 2009; Bojowald and Tsobanjan,
2009; Bojowald et al., 2011a; Bojowald et al., 2011b; Bojowald,
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2012), and it was suggested a general framework in which the
latter is realized in a “tempus post quantum” approach, but only
at a proto-geometric level, i.e. after some suitable coarse graining,
the one provided by the GFT hydrodynamic approximation (or
its improvements).

Besides its conceptual motivations, this effective relational
framework improves on previous relational constructions in
GFT cosmology providing a mathematically more solid
definition of relational observables, allowing the explicit
computation of quantum fluctuations, which will be one the
main objectives of the present work.

This improved effective relational dynamics was obtained by the
use of “Coherent Peaked States” (CPSs), in which the fundamental
GFT quanta collectively (and only effectively) reproduce the classical
notion of a spacelike slice of a spacetime foliation labeled by amassless
scalar field clock. For this effective foliation to bemeaningful quantum
flctuations of the clock observables should be small enough (e.g. in the
sense of relative variances). When this is the case, the relevant physics
is captured by averaged relational dynamics equations for the other
observables of cosmological interest, like the universe volume or the
matter energy density or the effective Hamiltonian. The purpose of
this paper is to explore underwhich conditions this averaged relational
dynamics is meaningful and captures the relevant physics, checking
quantum fluctuation for both clock observables and cosmological,
geometric ones.

2 EFFECTIVE RELATIONAL FRAMEWORK
FOR GFT CONDENSATE COSMOLOGY

The GFT condensate cosmology framework is based on three
main ingredients (see e.g. (Gielen and Sindoni, 2016) for a
review):

1. The identification of appropriate states which admit an
interpretation in terms of (homogeneous and isotropic)
cosmological 3-geometries;

2. The construction of an appropriate relational framework
allowing to describe e.g. the (averaged) geometric quantities
(in the homogeneous and isotropic case, the volume operator)
as a function of a matter field (usually a minimally coupled
massless scalar field);

3. The extraction of a mean field dynamics from the quantum
equations of motion of the microscopic GFT theory, which in
turn determines the relational evolution of the aforementioned
(averaged) volume operator.

In this section, we will review the concrete realization of the
first two steps and of the first part of the third step (i.e. the
extraction of a mean field dynamics), in order to prepare the
ground for the calculation of expectation values, first, and the
quantum fluctuations of geometric observables of cosmological
interest. More precisely, the first step will be reviewed in Section
2.1, while the second and the first part of the third one will be
discussed in Sections 2.2, Sections 2.3, respectively. The second
part of the last step, which requires the detailed computations of

expectation values performed in Section 4.1, will be instead
discussed in Section 4.2.

2.1 The Kinematic Structure of GFT
Condensate Cosmology
In the Group Field Theory (GFT) formalism (Krajewski, 2011;
Oriti, 2011; Carrozza, 2016; Gielen and Sindoni, 2016), one aims
at a microscopic description of spacetime in terms of simplicial
building blocks (Reisenberger and Rovelli, 2001). The behavior of
the fundamental “atoms” that spacetime has dissolved into is
described by a (in general, complex) field φ : Gd →C defined on d
copies of a group manifold, φ(gI) ≡ φ(g1, . . . , gd). By appropriate
choices of the dimension d, of the group manifold G, of the
combinatorial pairing of field arguments in the action, and of
course its functional form, the perturbative expansion of the
theory produces amplitudes that can be seen as a simplicial
gravity path-integral (Baratin and Oriti, 2012), with the group-
theoretic data entering as holonomies of a discrete gravitational
connection. Concretely, most 4d gravity models use d � 4
(i.e., the spacetime dimension), and G � SL(2,C) (local gauge
group of gravity), its Euclidean version, Spin(4), or SU(2), once
an appropriate embedding into SL(2,C) or Spin(4) is specified.
This latter choice allows for an explicit connection of the GFT
quantum states with those in the kinematical Hilbert space of
LQG (Gielen and Sindoni, 2016; Oriti, 2016). From now on,
therefore, we will specialize to d � 4 and G � SU(2).

Indeed, in this case, the fundamental quanta of the field,
assuming it satisfies the “closure” condition φ(gI) � φ(gIh) for
each h ∈ G, can be interpreted as 3-simplices (tetrahedra)
whose faces are decorated with an equivalence class of
geometrical data [{gI}] � {{gIh}, h ∈ G} or, in the dual
picture, as open spin-networks, i.e., nodes from which four
links are emanating, each of which is associated to group-
theoretical data. From this dual perspective, the closure
condition becomes the imposition of invariance under local
gauge transformations which act on the spin-network vertex.

2.1.1 The GFT Fock Space
The Fock space of such “atoms of space” can be constructed in
terms of the field operators φ̂(gI) and φ̂†(gI) subject to the
following commutation relations:

[φ̂(gI), φ̂†(gI′)] � ‖G(gI , gI′) , (1a)

[φ̂(gI), φ̂(gI′)] � [φ̂†(gI), φ̂†(gI′)] � 0 , (1b)

together with a vacuum state |0〉 annihilated by φ̂, so that the
action of φ̂†(gI) on |0〉 creates a “quantum of space” with (an
equivalence class of) geometric data {gI}. The right-hand-side of
Eq. 1a represents the identity in the space of gauge-invariant
(i.e., right diagonal invariant) fields (Gielen et al., 2014).

GFT “ (m + n) -body operators” O
∧
n+m

O
∧
n+m ≡ ∫(dgI)m(dhI)nOm+n(g1I , . . . ,gmI ,h1I , . . . ,hnI )

×∏
i�1

m

φ̂†(giI)∏
j�1

n

φ
∧(hjI) , (2)
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are then constructed from thematrix elementsOm+n, whose form can
be determined from simplicial geometric or canonical approaches like
Loop Quantum Gravity (LQG) (Ashtekar and Lewandowski, 2004;
Rovelli, 2004; Thiemann, 2007). The same kind of construction can of
course be performed in any representation of the relevant Hilbert
space.Wewill work with explicit examples of such operators (number
operator, volume operator, massless scalar field operator, etc.) in the
cosmological context.

Coupling to a Massless Scalar Field
Following (Marchetti and Oriti, 2021; Oriti et al., 2016), a scalar
field is minimally coupled to the discrete quantum geometric data,
with the purpose of using it as a relational clock at the level of GFT
hydrodynamics. This is done by adding to the GFT field and action
the degree of freedom associated to a scalar field in such a way that
the GFT partition function, once expanded perturbatively around
the Fock vacuum, can be identified with the (discrete) path-integral
of a model of simplicial gravity minimally coupled with a free
massless scalar field (or, equivalently, with the corresponding spin-
foam model)1 (Oriti et al., 2016). Therefore, the field operator
changes as follows:

φ̂(gI) → φ̂(gI , χ) , (3)

meaning that the one-particle Hilbert space is now enlarged to
L2(SU(2)4/SU(2) × R). So, each GFT atom can carry (in the
appropriate basis) a value of the scalar field, which is “discretized”
on the simplicial structures associated toGFT states and (perturbative)
amplitudes (Li et al., 2017). This implies that the commutation
relations in (Eq. 1a) need to be modified consistently, obtaining

[φ̂(gI , χ), φ̂†(hI , χ′)] � IG(gI , hI)δ(χ − χ′) . (4)

and that operators (Eq. 2) in the second quantization picture now
involve integrals over the possible values of the massless scalar
field (Oriti et al., 2016; Marchetti and Oriti, 2021).

2.1.2 GFT Condensate Cosmology: Kinematics
The Fock space construction described above proves technically
very useful in order to address the problem of extraction of
continuum physics from GFTs. In particular, in previous works
(Gielen, 2014; Oriti et al., 2016), this was exploited to build
quantum states that, in appropriate limits, can be interpreted as
continuum and homogeneous 3-geometries, thus paving the way
to cosmological applications of GFTs. Such states are characterized
by a single collective wavefunction, defined over the space of
geometries associated to a single tetrahedron or, equivalently
(when some additional symmetry conditions are imposed on
the wavefunction) over the minisuperspace of homogeneous
geometries (Gielen, 2014). For such condensate states then,
classical homogeneity is lifted at the quantum level by imposing
‘wavefunction homogeneity’. Among the many possible
condensate states (characterized by different “gluing” of the

fundamental GFT quanta one to another) satisfying the above
wavefunction homogeneity, most of the attention was directed
toward the simplest GFT coherent states, i.e.,

|σ〉 � Nσ exp[∫ dχ ∫ dgIσ(gI , χ)ϕ∧†(gI , χ)]|0〉, (5)

where

Nσ ≡ e−‖σ‖
2/2, (6a)

||σ||2 � ∫ dgIdχ∣∣∣∣σ(gI , χ)∣∣∣∣2 (6b)

They satisfy the important property

φ̂(gI , χ)|σ〉 � σ(gI , χ)|σ〉 , (7)

i.e., they are eigenstates of the annihilation operator.
In order to make contact with cosmological geometries, one

typically also imposes isotropy on the wave function, requiring
the associated tetrahedra to be equilateral. This results in the
following condensate wavefunction (Oriti et al., 2016)

σ(gI , χ) �∑∞
j�0

σ
j, m→,ι+I

jjjj,ι+
n1n2n3n4

�����
d4(j)√ ∏4

i�1
Dj

mini
(gi),

where
σ{j, m→,ι+}(χ) � σ j(χ)I jjjj,ι+

m1m2m3m4
.

and where d(j) � 2j + 1, j are spin labels, D j
mn are Wigner

representation matrices, I are intertwiners, and I jjjj,ι+
m1m2m3m4

is
an eigenvector of the LQG volume operator with the largest
eigenvalue (Oriti et al., 2016). After imposition of isotropy, σ j
becomes the quantity effectively encoding the physical properties
of the state.

2.2 Effective Relational Dynamics
Framework and its Implementation in GFT
Condensate Cosmology
In (Marchetti and Oriti, 2021), a procedure for extracting an effective
relational dynamics framework was proposed for the cosmological
context, when one is interested in describing the evolution of some
geometric operators with respect of some scalar matter degree of
freedom. Since our analysis of quantum fluctuations will take place
within such effective relational framework, let us summarize how it is
obtained and under which conditions it is expected to be meaningful.
In the following, we will analyze also the limits of validity of such
conditions.

2.2.1 Effective Relational Evolution of Geometric
Observables with Respect to Scalar Matter Degrees of
Freedom
The fundamental observables one is interested in are: a “scalar
field operator” χ̂, a set of “geometric observables”2 {Ôa}a∈S and a

1This procedure can in fact be seen as a discrete version of what would be done in a
3rd quantized framework for quantum gravity; indeed, GFT models (like matrix
models for 2d gravity) are a discrete realization of the 3rd quantization idea (Gielen
and Oriti, 2011).

2For instance, in a cosmological context in which one is interested only to
homogeneous and isotropic geometries, the volume operator is expected to
capture all the geometric properties of the system. In this case, therefore, one
only includes this volume operator among the geometric observables of interest.
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“number operator” N̂ , counting the number of fundamental
“quanta of space.” Since one is assuming that the theory, at
this pre-geometric level, is entirely clock-neutral (and so are all
the operators above), the effective relational dynamics is realized
through an appropriate choice of a class of states |Ψ〉 having both
an intepretation in terms of continuum geometries3 (and thus
possibly characterizing a proto-geometric phase of the theory)
and also carrying a notion of relationality. More precisely, they
should allow for the existence of an Hamiltonian operator Ĥ such
that, for each geometric observable Ôa,

i
d

d〈χ̂〉Ψ
〈Ôa〉Ψ � 〈[Ĥ, Ôa]〉Ψ, (8a)

at least locally and far enough from singular turning points of the
scalar field clock4. In order to interpret this evolution as truly
relational with respect to the scalar field used as a clock, all the
moments of Ĥ and of the scalar field momentum Π̂ on |Ψ〉 should
be equal. In particular, this implies that the averages of these two
operators on |Ψ〉 should be equal,

〈Ĥ〉Ψ � 〈Π̂〉Ψ . (8b)

This equality was investigated in (Marchetti and Oriti, 2021) in
the context of GFT cosmology, and we will discuss it
further below.

A further condition that is necessary in order to interpret
Eq. 8a as a truly relational dynamics involves the smallness of the
quantum fluctuations on the matter clock. In (Marchetti and
Oriti, 2021), this was imposed by requiring the relative variance of
χ̂ on |Ψ〉 to be much smaller than one, and to have the
characteristic many-body 〈N̂〉−1 behavior, i.e.,

δ2χ ≪ 1, δ2χ ∼ 〈N̂〉−1, (9)

where the relative variance on |Ψ〉 is defined as

δ2O � 〈Ô2〉Ψ − 〈Ô〉
2

Ψ

〈Ô〉2Ψ
.

This is of course formally correct only when one is assuming that
the expectation value of χ̂ is non-zero, as we will discuss further
below. When this is not the case, one should define some
thresholds which the relative variances should be smaller than
(Marchetti and Oriti, 2021).

Let us also notice, that, strictly speaking, one would have to
require that all the moments of the scalar field operator higher than
the first one are much smaller than one in order to guarantee a
negligible impact of quantum fluctuations of the clock on the
relational framework. However, one also expects that, being the
system fundamentally a many-body system (for which the second

condition in (Eq. 9) is satisfied), moments higher than the second
one get also suppressed in the largeN limit which we will be mainly
interested in, forming a hierarchy of less and less important
quantum effects (typically, in many-body systems, relative
moments of order n are suppressed by 〈N〉−(n−1), with n> 1).
In the asymptoticN→∞ regime, therefore, one should be allowed
to characterize quantum fluctuations essentially by the behavior of
relative variances. This might not be the case, on the other hand, in
intermediate regimes of smaller N, where indeed there is no good
reason to believe such a hierarchy to be realized. In such cases the
impact of quantum fluctuations has to be studied more carefully.

2.2.2 Implementation in GFT Condensate
Cosmology: CPSs
The strategy to realize the above framework in the context of GFT
condensate cosmology in (Marchetti and Oriti, 2021) made use of
Coherent Peaked States (CPSs). These states are constructed so that
they can provide, under appropriate approximations, “bona fide”
leaves of a relational χ-foliation of spacetime. Given the proto-
geometric nature of the states (Eq. 5) the idea is to look for a subclass
of them characterized by a given value of the relational clock, say χ0,
so that the GFT quanta collectively conspire to the approximate
reconstruction of a relational leaf of spacetime labeled by χ0 itself.
Since, in the condensate states (Eq. 5) the information about the state
is fully encoded in the condensate wavefunction, in (Marchetti and
Oriti, 2021) relational proto-geometric states are chosen among
those where this wavefunction has a strong peaking behavior:

σϵ(gI , χ) ≡ ηϵ(gI ; χ − χ0, π0)~σ(gI , χ) , (10)

where ηϵ is the so-called peaking function around χ0 with a typical
width given by ϵ. For instance, one can choose a Gaussian form

ηϵ(χ − χ0, π0) ≡ N ϵ exp[− (χ − χ0)2
2ϵ ]exp[iπ0(χ − χ0)] , (11)

where N ϵ is a normalization constant and where it was assumed
that the peaking function does not depend on the group variables
gI (the dependence on quantum geometric data is therefore fully
encoded in the remaining contribution to the full wavefunction).
Further, the reduced wavefunction ~σ was assumed not to spoil the
peaking properties5 of ηϵ (Marchetti and Oriti, 2021). Since the
reduced wavefunction is determined dynamically (see Section 2.3
below), this constrains the space of admissible solutions to the
dynamical equations. However, in the cosmological case, this will
not result on discarding any solution, since the most general one
(see Eq. 19b) has the desired property.

In order for the average clock value to be really meaningful in
defining a relational evolution, it is necessary for the width ϵ of the
peaking function to be small, ϵ≪ 1. However, as remarked in
(Marchetti and Oriti, 2021) and as we will see explicitly below,
taking the limit ϵ→ 0, would of course make quantum

3In this sense, the operators χ̂ and {Ôa}a∈O are expected to have an interpretation in
terms of scalar field and geometric quantities respectively, only when averaged on
such states.
4The above equation is however expected to hold globally if the clock is a minimally
coupled massless scalar field, which is going to be the only case we will
consider here.

5For instance, a reduced wavefunction (whose modulus is) behaving as exp[χn]
with n≥ 2 would certainly destroy any localization property of the wavefunction σϵ .
On the other hand, any function (whose modulus is) characterized by polynomial
or exponential expχ behavior would be an admissible candidate for the reduced
condensate wavefunction.
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fluctuations on the momentum of the massless scalar field clock
to diverge, thus making the clock highly quantum even in regimes
in which we expect to reach some kind of semi-classicality.
Moreover, even by considering a small but finite ϵ, there is no
guarantee in principle for quantum fluctuations in the scalar field
momentum to become controllable in the same semi-classical
regime. This can be ensured, however, by imposing the
additional condition

ϵπ2
0 ≫ 1 . (12)

For more remarks and comments on this particular class of states
we refer to (Marchetti and Oriti, 2021).

2.3 Reduced Wavefunction Dynamics and
Solutions
Since the relational approach discussed in the previous section is
by its very nature effective and approximate, following (Marchetti
and Oriti, 2021) we will only extract an effective mean field
dynamics from the full quantum equations of motion. In other
words, we will only consider the imposition of the quantum
equations of motion averaged on the states that we consider to be
relevant for an effective relational description of the cosmological
system:

〈 δS[φ̂, φ̂†]
δφ̂†(gI , χ0)〉σϵ;χ0 ,π0

≡ 〈σϵ; χ0, π0

∣∣∣∣∣∣∣∣ δS[φ̂, φ̂
†]

δφ̂†(gI , χ0)
∣∣∣∣∣∣∣∣σϵ; χ0, π0〉 � 0 ,

(13)

where
∣∣∣∣σϵ; χ0, π0〉 is the isotropic CPS with wavefunction (10) and

with peaking function (Eq. 11). The quantity S is the GFT action.
As we have mentioned at the beginning of Section 2.1, its form is
chosen so that the GFT partition function expanded around the
Fock vacuum matches the spin-foam model one wants to
reproduce. Following (Oriti et al., 2016), this would be an EPRL
Lorentzian model with a minimally coupled massless scalar field,
described in terms of the SU(2) projection of the Lorentz
structures entering in the original definition of the model. The
action includes a quadratic kinetic term and a quintic (in powers of
the field operator) interaction term, S � K + U + U .

For cosmological applications, there are typically two
assumptions that are done on the GFT action. The first is that
the classical field symmetries of the action of a minimally coupled
massless scalar field (invariance under shift and reflection) are
respected by the GFT action as well. This greatly simplifies the
form of the interaction and kinetic terms, which read (Oriti et al.,
2016; Marchetti and Oriti, 2021)

K � ∫ dgIdhI ∫ dχdχ′φ(gI , χ)
×K(gI , hI ; (χ − χ′)2)φ(hI , χ′),

U � ∫ dχ ∫⎛⎝∏5
a−1

dgaI⎞⎠U(g1I , . . . , g5I )∏5
a−1

φ(gaI , χ)0
The details about the EPRL model are encoded in the specific
form of the kinetic and interaction kernels K and U above. In

particular, it is U that carries information about the specific
Lorentzian embedding of the theory.

The second assumption usuallymade in cosmological applications,
however, is that one is interested in a “mescocopic regime”where these
interactions are assumed to be negligible (though see (Pithis et al.,
2016; Pithis and Sakellariadou, 2017), for some phenomenological
studies including interactions). Under these two assumptions and
imposing isotropy on the condensatewavefunction (seeSection 2.1.2),
the above quantum equations of motion reduce to two equations for
the modulus ρj and the phase θj of the reduced wavefunction
~σ j ≡ ρjexp[iθj] of the CPS for each spin j (Marchetti and Oriti, 2021),

0 � ρj″(χ0) − Q2
j

ρ3j (χ0) − μ2j ρj(χ0) , (14a)

θj′(χ0) � ~π0 + Qj

ρ2j (χ0) , (14b)

where

μ2j �
π2
0

ϵπ2
0 − 1

( 2
ϵπ2

0

− 1
ϵπ2

0 − 1
) + Bj

Aj
, (15a)

~π0 � π0

ϵπ2
0 − 1

, (15b)

Qj are integration constants and (Oriti et al., 2016)

Aj � ∑
n→,ι

[K(2)]jjjj,ι
n1n2n3n4

I jjjjι+
n1n2n3n4

I jjjjι+
n1n2n3n4

αι
jα

ι
j,

Bj � −∑
n→,ι

[K(0)]jjjj,ι
n1n2n3n4

I jjjjι+
n1n2n3n4

I jjjjι+
n1n2n3n4

αι
jα

ι
j.

Here,K(2n) denotes the 2n -th derivative of the kineric kernel with
respect to its scalar field argument evaluated at 0, while αιj are
determined by

I jjjj,ι+
n1n2n3n4

�∑
ι

αιjI jjjj,ι
n1n2n3n4

.

Eq. 14a can be immediately integrated once to obtain

Ej � (ρj′)2 + Q2
j

ρ2j
− μ2j ρ

2
j , (16)

where the constants Ej are integration constants6. This equation
can be then combined with Eq. 14a in order to obtain a linear
equation in terms of ρ2j (χ0). In fact, since
(ρ2j )′′ � 2(ρj′)2 + 2ρjρj′′, combining Eq. 14a (multiplied by ρj)
and Eq. 16, we obtain

(ρ2j )′′ � 2(Ej + 2μ2j ρ
2
j ) . (17)

6It is interesting to notice that the above equation is equivalent to the equation of
motion of a conformal particle (de Alfaro et al., 1976) with a harmonic potential,
which is a system characterized by a conformal symmetry. Since there are some
interesting examples of systems whose dynamics can be can be mapped into a
Friedmann one exactly in virtue of their conformal symmetry, (see e.g. (Lidsey,
1802; Ben Achour and Livine, 2019)), the above equation alone would already
suggest a connection between the effective mean field dynamics discussed here and
a cosmological one.
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The most general solution can be written as

ρ2j � − Ej

2μ2j
+ Aje

2μjχ0 + Bje
−2μjχ0 . (18)

Of course we can find some relations between the constants Aj and Bj

and the constants of integration Qj and Ej, so that we can choose a
differentway toparametrize the solution. Indeed,wefirst notice that since
for χ0 → +∞ the term with Aj dominates, while for χ0 → −∞ the
termwithBj dominates, thismeans that bothAj andBj arenon-negative.
Then, by defining χ0,j as the point at which (ρ2j )′(χ0,j) � 0, we see that

����
AjBj

√
� ±

���������
E2
j + 4μ2j Q

2
j

√
4μ2j

,
�����
Aj/Bj

√
� e−2μjχ0,j .

Thus our solution becomes

ρ2j � − Ej

2μ2j
+
���������
E2
j + 4μ2j Q

2
j

√
2μ2j

cosh(2μj(χ0 − χ0,j)), (19a)

where we have chosen only the positive solution because ρ2j ≥ 0.
Equivalently, we can write

ρ2j � − αj

2
+
�������
α2
j + 4β2j

√
2

cosh(2μj(χ0 − χ0,j)), (19b)

where we have defined

αj ≡ E j/μ2j , β2j ≡ Q2
j /μ2j . (20a)

The solution is nowonly parametrized by μj,αj,βj, and χ0,j. This is our
fundamental equation, representing a general solution of (Eq. 14a).

For the following discussion, it will be useful to derive some
bounds on the modulus of the derivatives of ρ2j divided by ρ

2
j itself.

In order to study these bounds explicitly, it is helpful to define

xj ≡ 2μj(χ0 − χ0,j), rj ≡ β2j /α2
j . (20b)

Then, denoting [ρ2j ](n) the n-th derivative of ρ2j with respect to χ0,
we have ∣∣∣∣∣[ρ2j ](n)∣∣∣∣∣

ρ2j
� (2μj)n

������
1 + 4rj
√

−sgn(αj) + ������
1 + 4rj
√

cosh xj

× { sinh xj, n odd.

cosh xj, n even.

(21)

In the following sections we will discuss in more detail under
which conditions the above states indeed implement a notion of
relational dynamics, as defined in Section 2.2.1.

3 AVERAGES AND FLUCTUATIONS:
GENERALITIES

In this section we compute expectation values of relevant operators
in the effective relational GFT cosmology framework (i.e., the
number operator N̂ , the volume operator V̂ , the momentum
operator Π̂, the Hamiltonian operator Ĥ and the massless scalar
field operator X̂), and their relative variances on CPS states, in order

to characterize the behavior of the first moments of the relevant
operators and with the ultimate purpose of trying to deduce some
information about the impact of quantum fluctuations on the
effective relational framework discussed so far (Section 5).

We express these expectation values and relative variances in
terms of the modulus of the reduced wavefunction only, possibly
using Eq. 14b in order to trade any dependency on the phase of
the reduced wavefunction for its modulus. In Section 4, instead,
we use the explicit solution (Eq. 19a, Eq. 19b) to considerably
simplify the equations obtained in the following two
subsections.

3.1 Expectation Value of Relevant Operators
First, let us compute the expectation value of the relevant
operators, whose definitions are reviewed below.

Number and Volume Operators
The simple case of the number operator allows us to discuss the
prototypical computation that we are going to perform frequently in
the following. Its definition is (Oriti, 2017;Marchetti andOriti, 2021)

N
∧
≡ ∫ dχ ∫ dgIφ∧†(gI , χ)φ(gI , χ). (22)

Its expectation value on a isotropic CPS is therefore given by

N(χ0) ≡ 〈N
∧
〉σϵ ;χ0 ,π0 �∑

j

∫ dχρ2j (χ)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2
In order to evaluate this quantity, one can expand the function ρ2j
around χ � χ0, given the fact that the function ηϵ is strongly peaked
around that point. As a result, the relevant integral to be computed is

ρ2j (χ0) ∫ dχ∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2
× ⎡⎣1 +∑∞

n�1

(χ − χ0)n
n!

[ρ2j ](n)(χ0))
ρ2j (χ0) ⎤⎦

By normalizing ηϵ so that the integral of its modulus squared is
unitary, we see that

∫ dχ(χ − χ0)2m∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2 � ϵm(2m)!
4mm!

, (23)

giving zero, instead, for odd powers. In conclusion, one finds

N(χ0) �∑
j

ρ2j (χ0)⎡⎣1 +∑∞
n�1

[ρ2j ](2n)(χ0))
ρ2j (χ0)

ϵn
4nn!
⎤⎦ (24)

Similar computations hold for the volume operator, counting the
volume contributions of all tetrahedra in a given GFT state and
defined as (Oriti et al., 2016; Marchetti and Oriti, 2021)

V̂ � ∫dχ∫dgIdgI′φ∧ †(gI , χ)V(gI , gI ′)φ∧(gI ′, χ), (25)

in terms of matrix elements V(gI , gI′) of the first quantized
volume operator in the group representation. Indeed, one has
(Marchetti and Oriti, 2021)
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V(χ0) ≡ 〈V̂〉σϵ;χ0 ,π0 �∑
J

Vj ∫ dχρ2j (χ)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2,
where Vj represents the volume contribution of each equilateral
tetrahedron whose faces have area determined by the quantum
number j. The situation is the same as before, and one therefore
concludes that

V(χ0) �∑
j

Vjρ
2
j (χ0)⎡⎣1 +∑∞

n�1

[ρ2j ](2n)(χ0))
ρ2j (χ0)

ϵn
4nn!
⎤⎦ (26)

In particular, when higher order derivatives can be neglected, we
notice that we can write

N(χ0) ≃∑
J

ρ2j (χ0), V(χ0) ≃∑
J

Vjρ
2
j (χ0), (27)

for the expectation value of the number and of the
volume operator. We will see in Section 4.1 that this will
be indeed the case when these quantities are evaluated on
solutions of the dynamical equations and under some fairly
general conditions on the parameters characterizing the
dynamics.

Momentum and Hamiltonian Operator
Similar results hold for the scalar field momentum and the
hamiltonian operators. The effective7 Hamiltonian operator Ĥ
can be defined as a Hermitean operator whose action on a CPS is
given by (Marchetti and Oriti, 2021)

Ĥ

∣∣∣∣∣∣∣∣σϵ; χ0, π0〉 ≡ − i(N ′(χ0)
2

+ ∫ dgI ∫ dχφ∧ †(gI , χ)zχηϵ(χ − χ0, π0)
~σ(gI , χ))∣∣∣∣∣∣∣∣σϵ; χ0, π0〉. (28)

Such an operator generates by construction translations
with respect to χ0, and thus, in the regime in which the
relational picture is well-defined, it is the operator
generating relational evolution of expectation values of
geometric operators.

Defining Ĥ the operator whose action on the CPSs is given by
the second term in the round brackets in Eq. 28, we see that its
expectation value on an isotropic CPS is

〈Ĥ〉σϵ ;χ0 ,π0 � π0 ∫ dgI ∫ dχ∣∣∣∣ηϵ(χ − χ0, π0)∣∣∣∣2ρ2(gI , χ) + i
2
N ′(χ0)

By definition of N(χ0) we can write

〈Ĥ〉σϵ ;χ0 ,π0 � π0N(χ0) + i
2
N′(χ0) ,

so that, in conclusion we obtain, for Ĥ,

〈Ĥ〉σϵ ;χ0 ,π0 � 〈Ĥ〉σϵ;χ0 ,π0−i
N′(χ0)

2
� π0N(χ0) . (29)

The situation for the momentum operator is similar. By definition

Π̂ � 1
i
∫ dgI ∫ dχ[φ∧†(gI , χ)( z

zχ
φ
∧(gI , χ))] (30)

and one has

〈Π̂〉σ;χ0 ,π0 � 1
i
∫ dχ∑

J

σϵ,j(χ; χ0, π0)zχσϵ,j(χ; χ0, π0)
�∑

j

∫ dχρ2j (χ)(θ ′j(χ) + π0)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2
� π0[ 1

ϵπ2
0 − 1

+ 1]∑
j

∫ dχρ2j (χ)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2
+∑

j

Qj

� π0( 1
ϵπ2

0 − 1
+ 1)N(χ0) +∑

j

Qj. (31)

From this explicit form, we notice that the evaluation of both the
expectation value of Ĥ and Π̂ essentially reduces to an evaluation
of the averaged number operator.

Now, in the approximation ϵπ2
0 ≫ 1, the two expectation values

coincide, as required by the effective relational dynamics framework,
for any values of χ0, as long as ∑jQj � 0. It is however interesting to
notice that, as the number of GFT quanta increases, the impact of the
second termabove becomes decreasingly important. As a consequence,
in the asymptotic regimeN→∞, the equality between the expectation
values of the Hamiltonian and the momentum operator is satisfied to
any degree of accuracy required, regardless of the strict imposition of∑jQj � 0. So, if one was interested only to the implementation of an
effective relational framework in the thermodynamics regimeN→∞,
or at large condensate densities (which become large universe
volumes), one might be formally dispensed from imposing the
condition ∑jQj � 0. On the other hand, if one wants to describe
mesoscopic intermediate regimes through the same formalism, then
such a requirement needs to be imposed. In order to take into account
these different possibilities, from now on we retain any ∑jQj term,
setting it to zero only when necessary.

Massless Scalar Field Operator
The massless scalar field operator is defined as (Oriti et al., 2016;
Marchetti and Oriti, 2021)

X̂ ≡ ∫ dgI ∫ dχ χφ̂†(gI , χ)φ̂(gI , χ), (32)

so its expectation value on an isotropic CPS is given by

〈X̂〉σϵ ;χ0 ,π0 �∑
j

∫ dχ χρ2j (χ)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2. (33)

Notice, however, that this operator is extensive (with respect to
the GFT number of quanta, thus indirectly with respect to the
universe volume), so it can not be directly related (not even in
expectation value) to an intensive quantity such as the massless
scalar field. This identification, however, can be meaningful for
the rescaled operator χ̂ ≡ X̂/〈N̂〉σϵ;χ0 ,π0, at least when the average
on a CPS

∣∣∣∣σϵ; χ0, π0〉 is considered.

7We remark that this is an “effective” operator since its construction is always
subject to a prior choice of appropriate states; in this case, CPSs (see (Marchetti and
Oriti, 2021) for a more detailed discussion).
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The evaluation of 〈X̂〉σϵ;χ0 ,π0 follows the lines described above:
one has to first expand the integrand around χ0, and then
integrates the expansion. As before, only terms with even
number of derivatives survive the integration, so we can write
the above quantity as

〈X̂〉σϵ ;χ0 ,π0 � χ0∑
j

ρ2j (χ0)∫dχ∣∣∣∣ηϵ(χ−χ0;π0)∣∣∣∣2⎧⎨⎩1+∑
n�1

∞ ⎡⎣[ρ2j ](2n)(χ0)
ρ2j (χ0)

+2n[ρ2j ](2n−1)(χ0)
ρ2j (χ0)χ0 ⎤⎦ (χ−χ0)2n(2n)!

⎫⎬⎭
As a result of the integration one obtains

〈X̂〉σϵ;χ0 ,π0 � χ0∑
j

ρ2j (χ0) ×⎧⎨⎩1 +∑
n�1

∞ ⎡⎣[ρ2j ](2n)(χ0)
ρ2j (χ0)

+ 2n
[ρ2j ](2n−1)(χ0)
ρ2j (χ0)χ0 ⎤⎦ ϵn

4nn!

⎫⎬⎭. (34)

The first terms in squared brackets are the same that appear in the
expectation value of the number operator. The second terms in
square brackets are new. And these terms are in fact crucial: when
they are not negligible, the expectation value 〈X̂〉σϵ;χ0 ,π0 can not be
written anymore as χ0N(χ0), which means that the expectation
value of the intrinsic massles scalar field operator χ̂ is not χ0
anymore.

More precisely, in the most general case, by defining

ΔX(χ0) ≡∑
j

∑∞
n�1

2n
[ρ2j ](2n−1)(χ0)

χ0

ϵn
4nn!

, (35)

we see that this leads to an expectation value of the “intrinsic”
massless scalar field operator of the form

〈χ̂〉σϵ ;χ0 ,π0 ≡
〈X̂〉σϵ ;χ0 ,π0
N(χ0) � χ0(1 + ΔX(χ0)/N(χ0)), (36)

and when the second term satisfies
∣∣∣∣∣ΔX(χ0)∣∣∣∣∣/N(χ0)≳ 1, the CPS

parameter χ0 is not anymore the expectation value of the intrinsic
massless scalar field operator and thus the χ0 - evolution of
averaged geometric operators cannot be interpreted as a
relational dynamics. How larger is the second term with
respect to 1 depends clearly on two features of the state: i) the
impossibility of peaking precisely the clock value, i.e. sending
(ϵ→ 0), and ii) the possibility for N−1 to be large in the regime of
small number of particles.

Given that the reason why we can not take the limit ϵ→ 0 is
related to quantum fluctuations, and that, generally speaking,
these are expected to become important when N≪ 1, the term
ΔX/N encodes a first interplay between relationality and
quantum properties of the clock.

3.2 Relative Variances
According to the requirements specified in Section 2.2.1, it is
fundamental to check the behavior of clock quantum fluctuations
in order to understand whether the relational framework is truly
realized at an effective level.

Having done that, this analysis should be extended to all
the relevant geometric operators in terms of which we write
the emergent cosmological dynamics; this is true in
particular for the volume operator, whose averaged
dynamics was shown in (Marchetti and Oriti, 2021) to
reproduce, “at late times” and under some additional
assumptions, a Friedmann dynamics. In order for this
“late time regime” to be truly interpreted as a classical
one, quantum fluctuations of the volume operator (and
possibly also of the other physically interesting operators)
should be negligible.

We now proceed to study the behavior of these fluctuations,
limiting ourselves here only to relative variances. The explicit
computations of these quantum fluctuations can be found in
Supplementary Appendix A.

Number Operator
As before, we start from the number operator. Its relative variance
can be easily found to be

δ2N � N−1(χ0) , (37a)

thus decreasing as the number of atoms of space increases,
as expected. When the lowest order saddle point
approximation is justified, one can write the above
expression as

δ2N ≃ ⎡⎢⎢⎣∑
j

ρ2j (χ0)⎤⎥⎥⎦
−1
. (37b)

Volume Operator
For the volume operator the computations are similar. One finds

δ2V �
∑jV

2
j ρ

2
j [1 + ∑∞

n�1
[ρ2j ](2n)(χ0)

ρ2j (χ0)
ϵn

4n(n)!]
⎧⎨⎩∑jVjρ2j [1 + ∑∞

n�1
[ρ2j ](2n)(χ0)

ρ2j (χ0)
ϵn

4n(n)!]⎫⎬⎭
2. (38a)

If one can neglect higher order derivatives, then

δ2V ≃
∑jV

2
j ρ

2
j(∑jVjρ2j )2. (38b)

Hamiltonian Operator
The relative variance of the Hamiltonian operator, instead, is
given by

δ2H ≃ N−1(χ0)[1 + (2ϵπ2
0)−1] ≃ N−1(χ0) , (39)

which is under control in the regime ϵπ2
0 ≫ 1 with a large number

of GFT quanta and, in this limit, behaves as the relative variance
of the number operator.

Momentum Operator
Next, we discuss the variance of the momentum operator.
The computations are a little more involved, but under the
assumption that ϵπ2

0 ≫ 1 one finds
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δ2Π � 1

(π0N +∑jQj)2
⎧⎨⎩∑

j

(Qj + Ej)
+ ∑

j

[1ϵ + μ2j + π2
0]ρ2j (χ0)⎡⎣1 +∑

n�1

∞ [ρ2j ](2n)(χ0)
ρ2j (χ0)

ϵn
n!4n
⎤⎦

− ∑
j

ρ2j (χ0)
2ϵ

⎛⎝1 +∑
n�1

∞ [ρ2j ](2n)(χ0)
ρ2j (χ0)

ϵn
n!4n

(2n + 1)⎞⎠⎫⎬⎭.

From the explicit form of δ2Π above we deduce that:

• In the formal limit ϵ→ 0, δ2Π →∞, i.e. that the system is
subject to arbitrarily large quantum fluctuations. This is of
course a consequence of the Heisenberg uncertainty
principle when “clock time” localization of the
condensate wavefunction is enhanced;

• By taking the limit8 π0 → 0, the expectation value of Π̂ on a
CPS becomes ∑jQj, while one can see that δΠ2

σϵ;χ0,π0
has a

contribution growing essentially as N (see Supplementary
Appendix A). In this case, therefore, quantum fluctuations
become extremely large in the N→∞ regime, which is
certainly an undesired feature, since we expect that in this
limit some kind of semi-classical spacetime structure is
recovered. On the other hand, as we will see below, when
condition (Eq. 12) is assumed, in the limitN→∞ quantum
fluctuations are suppressed.

Massless Scalar Field Operator
Finally, we discuss the variance of the massless scalar field
operator. Its quantum fluctuations are given by

δX2
σϵ ;χ0 ,π0

� χ20∑
j

ρ2j (χ0)⎧⎨⎩1 +∑
n�1

∞ ⎡⎣[ρ2j ](2n)(χ0)
ρ2j (χ0)

+ 4n
[ρ2j ](2n−1)(χ0)
χ0ρ

2
j (χ0)

+ 2n(2n − 1) [ρ2j ](2n−2)(χ0)
χ20ρ

2
j (χ0) ⎤⎦ ϵn

4nn!

⎫⎬⎭.

(40)

which, once divided by (Eq. 34) squared, gives the relative
variance of χ̂. Notice, in the above equation, that even though
the coefficients in the square brackets grow as n for the second
term and as n2 for the third one, the behavior of the overall
coefficients of these terms (i.e., by taking into account also the
factor (4nn!)−1) is decreasing with n. As we will see in the next
section, this implies that in the evaluation of this variance on the
specific solutions (19b) it is enough to consider the lowest non-
trivial order. The only difference with respect to the expectation
value of the massless scalar field, is that in this case odd and even
derivatives of the ρ2j function are at the same perturbative order.

In particular, for n � 1 the last term becomes dominant when
ϵ/(2χ0)2 ≫ 1, i.e., when

∣∣∣∣χ0∣∣∣∣≪ ���
ϵ/2

√
. Now, suppose that∣∣∣∣π0|−1 ≪

∣∣∣∣χ0∣∣∣∣≪ ���
ϵ/2

√
(this region is allowed because ϵπ20 ≫ 1),

so that the computations carried out for the expectation value
are still valid, but this last term is indeed important in the
evaluation of the fluctuations. We see that this n � 1 term
gives a contribution to the relative variance of the form

ϵ
2χ20

∑jρ
2
j (χ0)[∑jρ

2
j (χ0)2]2 ≃

ϵ
2χ20

N−1(χ0).
The prefactor on the right-hand-side is by assumption large, but it
can be suppressed by the factor N−1(χ0), assuming it is large
enough.

So, already from this example we can deduce that, in the limit
of arbitrarily large N, the only point which has to formally be
excluded from the analysis because clock fluctuations become too
large is χ0 � 0. In this point the prefactor is formally divergent,
regardless of any large value of N we are considering. This is of
course a consequence of using relative variances: if we are
interested in the physics at χ0 � 0, as already argued, e.g., in
(Ashtekar et al., 2005), one should set a precise threshold on δX2,
rather than using relative variances.

4 AVERAGES AND FLUCTUATIONS:
EXPLICIT EVALUATION

Having obtained the expectation values and the relative variances
of relevant operators in the effective relation GFT cosmology
frameowork in terms of the modulus of the reduced wavefunction
(and possibily of its derivatives), we can now further simplify the
obtained expressions by means of Eq. 19b.

4.1 Expectation Values
The explicit evaluation of the expectation values of operators, as
shown above, involves an infinite number of derivatives of the
modulus of the reduced wavefunction. However, it is interesting
to notice that

1 + [ρ2j ]′′
ρ2j

ϵ
4
� −sgn(αj) + ������

1 + 4rj
√

coshxj(1 + ϵμ2j )
−sgn(αj) + ������

1 + 4rj
√

coshxj
≃ 1, (41)

since

μ2j ϵ �
ϵπ2

0

ϵπ2
0 − 1

( 2
ϵπ2

0

− 1
ϵπ2

0 − 1
) + ϵ Bj

Aj
≪ 1, (42)

under our working assumption ϵπ2
0 ≫ 1 and by further assuming9∣∣∣∣Bj/Aj

∣∣∣∣≪ ϵ−1. Moreover, since, in general, one has

[ρ2](n+2)[ρ2](n) � 4μ2j , n≥ 1, (43)

8As we have mentioned above, the result above was obtained using the condition
ϵπ20 ≫ 1 (see Eq. 60), which is certainly not justified in this case. However, one can
explicitly check, by using the full result in terms of π̃0 and π0, that the conclusions
below are still valid.

9Notice that under this assumption, which seems natural given the smallness of ϵ
required by the CPS construction, the details of the underlying GFT model become
effectively unimportant for the derivation of the results discussed below.
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we see that terms with n> 1 are negligible with respect to the
n � 1 term, thus implying that all even derivatives in the sums
(Eqs. 24, 26) can be neglected. As a result, we can write

N(χ0) ≃∑
j

ρ2j (χ0), V(χ0) ≃∑
j

Vjρ
2
j (χ0), (44)

the first equation above also determining the expectation values
of Π̂ and Ĥ, according to Eqs. 29, 31.

Similarly, the natural hierarchy of derivatives obtained from
Eqs. 43, 42 is present also in the sum over n in Eq. 35. For the
same reasons as above, therefore, we can write

ΔX(χ0) ≃∑
j

[ρ2j ]′(χ0)
χ0

ϵ
2
,

so that

|ΔX|
N

≃

∣∣∣∣∣∣∣∣∣∣∑j
[ρ2j ]′(χ0)

χ0

ϵ
2

∣∣∣∣∣∣∣∣∣∣⎡⎢⎢⎣∑j ρ2j (χ0)⎤⎥⎥⎦
−1
. (45)

However, determining whether these higher derivative terms become
important in the expectation values of operators like N̂ , V̂ , Π̂ and Ĥ is
quite different from determining whether ΔX/N is important in the
expectation value of χ̂, basically because, as we can clearly see from the
above expression, ΔX involves odd derivatives and it explicitly
depends on χ0.

As we have alreadymentioned, the smallness of the factorΔX/N is
crucial for a consistent interpretation of χ0 as the expectation value of
themassless scalar field χ̂, to be used in a relational picture. In general,
whenever |ΔX|/N≪ 1, such an interpretation is allowed.

Whether this condition is actually satisfied, though, drastically
depends on the properties of the solution ρ2j for each j and hence
on the precise set of free parameters {αj, βj, χ0,j}. It is obvious from
Eq. 34 together with the above expression, that as long as

1 + [ρ2j ]′
ρ2j χ0

ϵ
2
≃ 1, (46)

this interpretation is allowed. Following the same steps of
(Eq. 41), we see that the above condition is satisfied as long as

ϵμ2j
∣∣∣∣tanhxj∣∣∣∣∣∣∣∣∣xj + xoj

∣∣∣∣∣≪ 1, ∀j

where xoj ≡ 2μjχ0,j, and where we have neglected an unimportant
factor 2. This condition is certainly satisfied in two simple
(though interesting) cases:

1. First, since
∣∣∣∣tanhxj∣∣∣∣≤ 1, we see that when∣∣∣∣∣xj + xoj

∣∣∣∣∣ ≡ 2μj
∣∣∣∣∣χ0∣∣∣∣∣≫ (ϵμ2j )−1, i.e., again, neglecting

unimportant factors 2, when∣∣∣∣χ0∣∣∣∣≫ ϵμj ∼ π−1
0 , (47)

condition (Eq. 46) is actually satisfied. Notice also that since
π−1
0 ≪

�ϵ√
, by requiring

∣∣∣∣χ0∣∣∣∣≫ �ϵ√
the above condition is also

satisfied. It is interesting to notice that
�ϵ√
actually quantifies the

impossibility to perfectly localize the condensate wavefunction
around χ0. If χ0 is of order or smaller than this quantity, it is
clear that any desired localization property is lost in this irreducible
uncertainty.

2. Second, notice that if all the xoj ≥ 0 (resp. xoj ≤ 0) the above
condition is always satisfied for all χ0 ≥ 0 (resp. for all χ0 ≤ 0).
In the case only a single spin is considered, say jo, this means
that the evolution of the modulus of the condensate
wavefunction with respect to χ0 can be interpreted as an
evolution with respect to the expectation value of χ̂ from
the minimum of the former, at xojo ≥ 0 (resp. xojo ≤ 0) to
arbitrarily large positive (negative) values of χ0. We will
discuss this single spin case in more detail in Section 5.2.3.

More generally, instead, the value of hj(xj) ≡
∣∣∣∣∣tanhxj|/|xj + xoj

∣∣∣∣∣
is determined by two scales: xj + xoj ≡ κ(1)j ≡ 2μjχ0, and
xoj /κ

(1)
j ≡ κ(2)j . These two quantities acquire a clear physical

meaning in a single spin scenario with j � jo discussed in
Section 5.2.3. In that case, κ(1)jo basically measures the amount
of evolution experienced by ρ2jo from χ0 � 0, while κ(2)jo measures
how large is the amount of evolution elapsed since χ0 � 0 with
respect to the moment at which ρ2jo has reached its minimum.
Since only a single spin is excited, the expectation value of the
volume operator and ρ2jo are in a one-to-one correspondence (see
Eq. 44), which gives to the above statements about κ(1)k and κ(2)j a
straightforward physical meaning.

Of course, the desired condition (Eq. 46) is satisfied for∣∣∣∣∣κ(1)j

∣∣∣∣∣≳ 1 (late evolution for ρ2j ) or for
∣∣∣∣∣κ(1)j

∣∣∣∣∣≪ 1 and
∣∣∣∣∣κ(2)j

∣∣∣∣∣≲ 1
(early evolution for ρ2j , but still later than when the minimum of
ρ2j happened), as reviewed in Table 1. In the remaining cases,∣∣∣∣∣κ(1)j

∣∣∣∣∣≪ 1 and
∣∣∣∣∣κ(2)j

∣∣∣∣∣≫ 1 (very early evolution for ρ2j ), instead, we
have

hj(xi) ∼
⎧⎨⎩
∣∣∣∣∣κ(1)j

∣∣∣∣∣−1, ∣∣∣∣∣κ(1)j

∣∣∣∣∣∣∣∣∣∣κ(2)j

∣∣∣∣∣≳ 1∣∣∣∣∣κ(2)j

∣∣∣∣∣, ∣∣∣∣∣κ(1)j

∣∣∣∣∣∣∣∣∣∣κ(2)j

∣∣∣∣∣≪ 1
,

so, while in the first case the condition ϵμ2j hj ≪ 1 becomes the
condition already encountered in (Eq. 47),

∣∣∣∣χ0∣∣∣∣≫ ϵμj, in the
second case the situation is different. We see that when

ϵμ2j ×
⎧⎨⎩
∣∣∣∣∣κ(1)j

∣∣∣∣∣−1 ≪ 1,
∣∣∣∣∣κ(1)j

∣∣∣∣∣∣∣∣∣∣κ(2)j

∣∣∣∣∣≳ 1∣∣∣∣∣κ(2)j

∣∣∣∣∣≪ 1,
∣∣∣∣∣κ(1)j

∣∣∣∣∣∣∣∣∣∣κ(2)j

∣∣∣∣∣≪ 1
,

for all js, then we can write 〈X̂〉σϵ;χ0,π0 ≃ χ0∑
j
ρ2j (χ0) ≃ χ0N(χ0),

and conclude that χ0 is indeed the expectation value of the
intrinsic massless scalar field operator χ̂. See Tables 1, 2 for a
summary of the results.

4.2 Fluctuations
The arguments exposed above can be used straightforwardly to
compute relative variances of operators.

Number, Hamiltonian and Volume
For the relative variances of the number, Hamiltonian and
volume operators, we have
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δ2H ≃ δ2N � N−1 ≃ ⎡⎢⎢⎣∑
j

ρ2j
⎤⎥⎥⎦−1 (48a)

δ2V ≃∑
j

V2
j ρ

2
j/⎡⎢⎢⎣∑

j

Vjρ
2
j
⎤⎥⎥⎦2. (48b)

Momentum
For the momentum operator, given that we require ϵμ2j ≪ 1, we
can safely only retain the first terms of the expansions appearing
in (A). Moreover, since μ2j ∼ (ϵπ0)−2, μ2j π2

0 ∼ (ϵπ2
0)−2, and since

ϵπ20 ≫ 1, both the first two terms in squared brackets in the first
line of (A), as well as the whole first term in the second line of
equation (A) are negligible with respect to the term

π2
0∑

j

N 2
ϵ ∫ dχρ2j e−(χ−χ0)2ϵ � π2

0N(χ0).
As a result, we finally have

δΠ2
σϵ ;χ0 ,π0

≃ π2
0N(χ0) +∑

j

(Ej + Qj).
Now, we recall that in order to have an identification between the
first moments of the Hamiltonian and the momentum operator
one needs to have either ∑

j
Qj � 0 or to be in the asymptotic limit

in which ∑
j
Qj is negligible with respect to π0N . Since |π0|> 1 this

implies that when this identification is true, then we can also
neglect the∑

j
Qj term in the above equation. As a consequence, we

have a relative variance

δ2Π ≃ N−1(χ0) + N−2(χ0)∑jEj

π2
0

≃ N−1 + N−2∑
j

μ2j αj.

So, we see that the first term of the relative variance behaves as σ2N ,
while the second is new, and because of its behavior ∼ N−2 it
might become dominant in the regime in which N≪ 1.

Also, let us notice that δΠ2
σϵ;χ0 ,π0

is indeed always positive
under our assumptions. In fact, we see that we can write

δΠ2
σϵ;χ0 ,π0

� π2
0∑

j

ρ2j
⎡⎢⎣1 + ∑j∈Pαj(μ2j /π2

0)∑jρ
2
j

−∑j∈N

∣∣∣∣αj∣∣∣∣(μ2j /π2
0)∑jρ

2
j

⎤⎥⎦,
where P ≡ {j ∈ J

∣∣∣∣αj ≥ 0}, and N ≡ J − P, J being the total set of
spins over which the sum is performed10.

Let us estimate how large is the last term in square brackets.
Since μ2j /π

2
0 ∼ (ϵπ2

0)−2, we can bring it out of the sum and just study

∑j∈N

∣∣∣∣αj∣∣∣∣∑jρ
2
j

≤
∑j∈N

∣∣∣∣αj

∣∣∣∣∑j∈Nρ
2
j

≤ 1,

since, for each j ∈ N ,

ρ2j �
∣∣∣∣αj∣∣∣∣(1 + ������

1 + 4rj
√

coshxj)/2≥ ∣∣∣∣αj∣∣∣∣.
Thus, generally speaking, we have

δΠ2
σϵ;χ0 ,π0

≥ π2
0∑

j

ρ2j
⎡⎢⎣1 + ∑j∈Pαj(μ2j /π2

0)∑jρ
2
j

− 1(ϵπ2
0)2⎤⎥⎦,

and the right-hand-side is of course positive because (ϵπ20)≫ 1.
Moreover, since

δΠ2
σϵ;χ0 ,π0

≤ π2
0∑

j

ρ2j
⎡⎢⎣1 + ∑j∈Pαj(μ2j /π2

0)∑jρ
2
j

⎤⎥⎦,
we see that in this limit we can approximately write

δΠ2
σϵ ;χ0 ,π0

≃ π2
0N(χ0)⎡⎢⎢⎣1 + N−1(χ0)∑

j∈P
αj(μ2j /π2

0)⎤⎥⎥⎦,
so that the relative variance becomes

δ2Π ≃ N−1(χ0) + N−2(χ0)∑
j∈P
αj(μ2j /π2

0). (48d)

Massless Scalar Field
Instead, about the relative variance of the massless scalar field
operator, we have

δ2χ ≃
ϵ

2Nχ20

1

(1 + ΔX/N)2 +
N + 2ΔX
(N + ΔX)2

≲
1
N
(1 + ϵ

2χ20

1

(1 + ΔX/N)2)
(48e)

Let us make two remarks about this quantity:

1. First, in order for (Eq. 40) to be non-negative, we need to
impose that

ΔX/N ≥−1/2 − ϵ/(4χ20).
Contrarily to what happens for the momentum operator, this
is actually a feature that we must impose “by hand” on our
solutions. We will assume it to be true from now on.

2. Second, the divergence in the above variance at the point
ΔX/N � 1 is again due to our choice of using relative
variances, and, as already mentioned above, a more careful
choice would be to define an appropriate threshold on the
quantity δX2

σϵ;χ0 ,π0
(Ashtekar and Lewandowski, 2004;

Marchetti and Oriti, 2021). The precise identification of this
threshold is usually demanded to observational constraints,
which are not available in our case. As a consequence, we

TABLE 1 | Validity of the condition (Eq. 46) depending on the scales κ(1)j and κ(2)j .
The case

∣∣∣∣∣κ(1)j

∣∣∣∣∣≪ 1 and
∣∣∣∣∣κ(2)j

∣∣∣∣∣≫ 1 is studied in Table 2 below.

10We will formally assume that the set J is finite, either because there is an explicit
cut-off Λ on the allowed spins, or because, after a certain spin Λ on, all the ρjs
become dynamically subdominant.
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just consider relative variances, and avoid the point in which
they might diverge.

The scaling of all the relative variances (Eq. 48e, 48a, 48b, 48d)
is essentially determined by N ≃ ∑jρ

2
j , so it is interesting to study

separately situations in which N≫ 1 and N ≲ 1.

4.2.1 Large Number of GFT Quanta
We will first consider the case of large number of GFT quanta,
N≫ 1. Generally speaking, this situation might be realized in two
different ways:

1. There exists at least one of the ρ2j s which is much larger
than one.

2. All the ρ2j s are ≲ 1, but their sum is still much larger than 1.

While for the number and the Hamiltonian operators variances
are smaller than one by assumption, for the momentum, the
volume and the massless scalar field operator, the situation is
more complicated, so it is useful to discuss them by distinguishing
between the two cases above.

First Case
When at least one of the ρ2j s is much larger than one, it is useful to
distinguish between two sets, L ≡ {j ∈ J

∣∣∣∣∣ρ2j ≫ 1}, S ≡ J − L.

δ2Π: While the first term of the variance of the momentum operator
is certainly much smaller than one, in order to evaluate the
second term one should know exactly the values of all the αj s

for each j ∈ P. Nonetheless, since μ2j /π
2
0 ∼ (ϵπ2

0)−2, the second
term is actually neglgible as long as

∑
j∈P
αj ≪ [N(χ0)/(ϵπ2

0)]2,
which is certainly satisfied for a large class of initial conditions,
given the large value of the right-hand-side. For instance,
notice that for rj ≳ 1 for each j ∈ P, we have that

∑
j∈P
αj ≲∑

j∈P
ρ2j ≲N≪N2(χ0)/(ϵπ2

0)2.
Also, notice that when P � ∅, σ2Π ∼ N−1 ≪ 1 under our
assumptions.

δ2V : About the volume operator, we have the following set of
inequalities:

δ2V � ∑j∈LV
2
j ρ

2
j(∑jVjρ2j )2 +

∑j∈SV
2
j ρ

2
j(∑jVjρ2j )2

≪
∑j∈LV

2
j ρ

4
j(∑jVjρ2j )2 +

∑j∈SV
2
j ρ

2
j(∑jVjρ2j )2

≪ 1 + ∑j∈SV
2
j ρ

2
j(∑jVjρ2j )2 ≤ 1 +

∑j∈SV
2
j ρ

2
j(∑j ∈ LVjρ2j )2

≪ 1 + (V2)S/(V2)L,
where (V2)S,L � ∑

j∈(S,L)
V2
j . For (V2)S/(V2)L ∼ 1, the variance of

the volume operator is always much smaller than a quantity
of order 1 and thus it is negligible. In particular, when L � J ,
it follows that δ2V ≪ 1. Then the volume behaves classically,
since all the moments of the volume operator are negligible,
as one can easily see by following the same steps taken for the
variance.

δ2χ : As for the massless scalar field operator, we see that, when
|ΔX|/N≪ 1, the relative variance is negligible as long as
χ20 ≫ ϵ/N (neglecting unimportant factors 2). When, on the
other hand this quantity is of order 1, fluctuations on the
massless scalar field operator might become important. Again,
by definition, the point χ0 � 0 is a point where relative
quantum fluctuations become uncontrollable.
On the other hand, let us consider the situation in which
|ΔX|/N ≳ 1 (though not very close to ΔX/N � −1 leading to
the unphysical singularity on the relative variance discussed
above). In such a situation, we can consider the factor
1/|1 + ΔX/N| ≡ 1/λ≲ 1. The condition for having small
fluctuations in this case becomes∣∣∣∣χ0∣∣∣∣≫ �������

ϵ/(λN)
√

, (49)

again neglecting unimportant factors 2. It is interesting to
notice that, depending on how large the factor (ϵπ2

0)/λ2N2 is,
two different situations may be realized.

1. When (ϵπ20)/λ2N2 ≳ 1, we have that
������
ϵ/(λN)√

≳ π−10 , and so
the condition (49) in turns implies that

∣∣∣∣χ0∣∣∣∣≫ π−10 . This
condition, as shown in the above subsection, in turns
implies that χ0 can be interpreted as the expectation
value of the massless scalar field operator.

2. When instead (ϵπ2
0)/λ2N2 ≪ 1, it may be that�������
ϵ/(λN)
√

≪
∣∣∣∣χ0∣∣∣∣≪ π−1

0 ,

thus leading to a small relative variance of the massless
scalar field operator but to the impossibility of identifying
χ0 as a relational parameter after all.

Second Case
The arguments exposed in the first case about the variances of all
the operators besides the volume operator (which after all just

TABLE 2 | Validity of the condition (Eq. 46) depending on the scales κ(1)j and κ(2)j ,
assuming

∣∣∣∣∣κ(1)j

∣∣∣∣∣≪ 1 and
∣∣∣∣∣κ(2)j

∣∣∣∣∣≫ 1.
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made reference to N, which is still ≫ 1), are still valid. On the
other hand, the inequalities used for the volume operator become
inadequate in this case. Still, it is clear that we have

ρ2j,min fΛ ≤ σ
2
V ≤ ρ−4j,min fΛ ,

where ρ2j,min ≡ minj∈Jρ2j and

fΛ ≡
∑Λ

j�0V
2
j(∑Λ

j�0Vj)2 �
∑Λ

j�0j
3

(∑Λ
j�0j3/2)2 ≃ 3.56Λ−3.49,

where the last approximate equality has been obtained by an
explicit fit. Notice that, since N ≃ ∑jρ

2
j ≫ 1, we must have

Λρj,min ≤N ≤Λ ,

which are however not particularly helpful in extracting tighter
bounds. As a conclusion, by defining a � 3.56 and b � 3.49, we
see that, when

aρ2j,min/Λ≳ 1 ,

fluctuations on the volume operator are certainly large, while
when

aρ−4j,minΛ−b ≪ 1 ,

the relative volume variance is certainly negligible. This
is of course the case when all the ρ2j s are of order one, since Λ≫ 1.

4.2.2 Number of GFT quanta of order of or smaller
than one
When the number of GFT quanta is N ≲ 1, the situation is far
more complicated. In fact, not only all the relative variances
computed so far can be large, but in this case one does not expect
a hierarchy of moments of quantum operators, so that
considering only relative variances in order to asses the
possible quantum effects is no more enough. Furthermore, one
expects also that in this regime a hydrodynamic approxiamtion
cannot capture anymore the quantum dynamics of the
fundamental “atoms of spacetime”, which can only be
consistently determined by solving all the Schwinger-Dyson
equations of the theory and which is however pre-geometric
and not in principle relational (as we intend it from the classical
perspective).

In such a case, therefore, not only we expect the CPSs not to
define a notion of relational dynamics, but we expect averaged
results not to capture all the relevant physics of the system. Hence,
we will leave the study of this specific regime to some future work.

5 EFFECTIVE RELATIONAL DYNAMICS:
THE IMPACT OF QUANTUM EFFECTS

Let us now recapitulate our results and draw some conclusions
from them.

In order for the cosmological CPS construction to fit in an
effective relational framework, a certain number of conditions,
proposed in (Marchetti and Oriti, 2021) and reviewed in Section
2.2.1, should be satisfied. Here, we summarize in which regimes

they are satisfied, ensuring the reliability of the cosmological
evolution obtained in (Marchetti and Oriti, 2021), with its
classical Friedmann-like late times dynamics and singularity
resolution into a bounce.

As mentioned in Section 2.2.1, variances are not in general
enough to characterize the properties of operators in a fully
quantum regime (see also Section 4.2.2), except when there is
a clear hierarchy among operator moments, with the higher ones
being suppressed by higher powers of the number of quanta. If we
try to quantify quantum fluctuations in terms of relative
variances, as we will mostly do here, we must be careful not to
assume that certain features characterizing the behavior of
relative variances are true also for higher moments, since in
certain regimes, variances may be indeed small but higher
moments become relevant. Still, as we have mentioned, we do
expect that there exists a regime in which the aforementioned
hierarchy among moments is indeed present: it is the case in
which the number of GFT quanta is large.

While in mesoscopic regimes it is not possible to determine
under which conditions the hydrodynamic and the effective
relational approximations are satisfied only by studying
relative variances, large variances can however be taken as a
clear evidence that one, or possibly both the above
approximations are not adequate.

5.1 Quantum Effects in the Effective
Relational CPS Dynamics
First, therefore, let us discuss the form that the conditions in II B 1
take in the CPS cosmology framework, focusing on the volume
operator. Then Eq. 8a is satisfied by the CPS construction
(Marchetti and Oriti, 2021) provided that.

1. The Expectation Value of the (Intrinsic) Massless Scalar
Field Operator Is χ0

We have already mentioned that in general this is not exactly
the case, essentially because we can not take the limit ϵ→ 0 in
order to avoid divergences in quantum fluctuations of the
massless scalar field momentum. Hence, this issue is a
consequence of the quantum properties of the chosen
relational clock.

Also, in order to interpret the evolution generated by Ĥ as a
truly relational one, we want its moments to coincide with those
of Π̂. Imposing this condition as an exact relation for the first
moment and for any values of χ0 requires ∑jQj � 0, while this is
not formally required in a large N regime where the condition is
satisfied approximately.

A similar situation happens for the relative variance. Indeed,
again in the large N regime, δ2Π � δ2H � N−1 to any degree of
accuracy required11.

On the other hand, let us notice that imposing the equality
between (48a) and (48d) for smaller N, and so for mesoscopic

11While a formal proof would be needed that similar results extend to even higher
moments, it seems likely that this is the case.
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intermediate regimes, would impose another constraint on the
initial conditions, requiring that all the αjs with j ∈ P are zero.
In turns, this implies that at least one of the αjs with j ∈ J must
be negative, in order not to have only trivial solutions. This
means, from Eq. 44, that the expectation value of the volume
never vanishes, which might have important consequences for
the volume evolution.

Next, according to the general discussion in (Marchetti and
Oriti, 2021) and in Subsection II B 1, one has to be sure that the
clock variable is not “too quantum,” which, in our framework can
be phrased as the requirement that.

2. Relative Quantum Fluctuations of χ̂ Must Be Much Smaller
Than One

As usual, we can get some information about the behavior of
clock quantum fluctuations from the form of δ2χ obtained above.
From the explicit expression in Eq. 48e, we notice that besides the
general behavior ∼ N−1, there is an additional irreducible
contribution to quantum fluctuations parametrized by ϵ. From
the computations in the above subsection we conclude that in this
case the smallness of the relative variance is dictated by a non-
trivial interplay between ϵ, χ0 and N, contrarily to what happens
for the other observables. This might make it more difficult to try
to extrapolate general features of even higher moments in a
mesoscopic regime from those that we observe from the
relative variance.

Conditions 1 and 2 are the two necessary conditions that need
to be satisfied in order to qualify the framework constructed so far
as a truly relational one.

Further, the evolution of the expectation value of the volume
operator is a good enough characterization of the universe
evolution (in the homogeneous and isotropic context) if.

3. Quantum Fluctuations (Encoded in Moments Higher than
the First One) of the Volume Operator are Negligible

Also for this operator, as in the massless scalar field case, the
existence of a hierarchy of moments is in general far from being
trivial, since the relative variance is already strictly dependent on
the possible spin cut-off scale.

However, even when satisfying condition 3, the resulting
system might be highly non-classical, depending on the value
of quantum fluctuations for the remaining operators N̂ , Π̂ and Ĥ.
A necessary condition for a classicalization of the system to
happen is therefore that.

4. Quantum Fluctuations (Encoded in Moments Higher than the
First One) of all the Relevant Operators (N, χ, Π, H, V) are
Negligible.

Therefore, in order for a classical relational regime to be realized
at late enough times in the CPS framework, both conditions 5.1
(together with the identification of the moments of H and Π) and 4
should be satisfied. In particular, large variances of any of these
operators actually signal a breakdown of the hydrodynamic
approximation underlying Eq. 13.

5.2 Effective Relational Volume Dynamics
with CPSs
In light of the above conditions it is interesting to examine the
relational evolution of the average of the volume operator, since,
in GFT cosmology, it is at this level that the comparison with the
Friedmann dynamics is usually performed. We will review this
below, in Section 5.2.1, emphasizing two main regimes of its
evolution: a possible bounce and a Friedmann-like late evolution.
In Section 5.2.2, instead, we will draw some general conclusions
on the relationality and classicality of these two phases in light of
the results obtained in the previous sections.

5.2.1 General Properties of the Volume Evolution
Let us start from the general expression (Eq. 26)

V(χ0) �∑
j

Vjρ
2
j (χ0)⎡⎣1 +∑∞

n�1

[ρ2j ](2n)(χ0))
ρ2j (χ0)

ϵn
4nn!
⎤⎦.

We see that V(χ0) is always positive and never reaches zero, at
least as long as one of the βjs (equivalently, one of the Qj) is
different from zero. Also, from the above expression, we see that

V′ �∑
j

VjCjμjsinh(2μj(χ0 − χ0,j)), (50a)

V′′ � 2∑
j

VjCjμ
2
j cosh(2μj(χ0 − χ0,j)), (50b)

where

Cj �
∣∣∣∣αj

∣∣∣∣ �����1 + rj
√ ⎛⎝1 +∑∞

n�1

(ϵμ2j )n
n!
⎞⎠.

Since V′→ ± ∞ when χ0 → ± ∞, it has to cross zero12, and since
V′′> 0 always, we see that V′ is monotone, so it has only one zero.
This means that there is only one turning point. Were this evolution
truly relational, the scenario would be that of a bouncing universe,
increasing monotonically as the bounce happens, lately behaving as a
Friedmann universe, as already suggested in (Oriti et al., 2016). Let us
discuss this two features in more detail.

Bounce
The bounce happens at a relational time χ0 which is
minj∈Jχ0,j ≤ χ0 ≤maxj∈Jχ0,j. Indeed, V′(χ0)|maxj∈Jχ0,j

> 0, while
V′(χ0)|minj∈ Jχ0,j

< 0. By continuity and monotonicity, the value of
the bounce must be included among these two points. In addition, we
notice from Eqs. 44, 19b that when at least one of the rjs is different
from zero, or at least one of the αjs is strictly negative, the volume
never reaches zero. So, in these cases, the classical singularity is
resolved into a bounce with non-zero volume13.

12Here we are assuming μj > 0; if μj < 0 the limits are opposite, but the result is
the same.
13See (Oriti et al., 2016; Marchetti and Oriti, 2021) for a comparison with LQG
effective bouncing dynamics and (Battefeld and Peter, 2015) for a review of
bouncing models.
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Friedmann Regime
When 2

∣∣∣∣μj(χ0 − χ0,j)
∣∣∣∣≫ 1 (for each j), the hyperbolic functions

can be approximated as simple exponentials. In that case, then,
assuming μj is independent of j, (or that at least it is mildly
dependent on it) one obtains

(V′
3V
)2

� (2
3
μj)2 , V′′/V � 4μ2j , (51)

which are indeed the flat space (k � 0) Friedmann equations,
upon imposing that μ2j � μ2 � 3π~G (~G being the dimensionless
gravitational constant) (Marchetti and Oriti, 2021) (see
Supplementary Appendix B, Eq. 65). Notice that the same
equations can be obtained also when one of the js is
dominating the volume evolution, and its corresponding μj is
then taken to be proportional to the (effective) Newton constant
(Wilson-Ewing, 2019).

5.2.2 Effective Relational Volume Dynamics with CPS:
The Impact of Quantum Effects
Let us now characterize better these two phases of the evolution of
the average volume in terms of their relationality and
quantumness.

Friedmann Dynamics and Classical Regime
The Friedmann regime is selected by the condition

∣∣∣∣xj∣∣∣∣≫ 1 for
each j. Notice that this condition does not necessarily imply that
ρ2j ≫ 1, but it does imply that

∑
j∈P
αj ≪∑

j∈P
ρ2j ≲N .

As the parameter xj grows, eventually it will be far enough from
each single xoj to make the factor |ΔX|/N≪ 1, and, eventually also
making N arbitrarily large. From these conditions we see that all
the fluctuations on the relevant operators become negligible, and
the parameter χ0 becomes the expectation value of the massless
scalar field operator χ̂. Therefore, all the conditions from 1 to 4
(including the matching of all the moments of Ĥ and Π̂) are
satisfied. As a result.

Statement 1: For the chosen approximation of the underlying
GFT dynamics, a classical regime in which the volume evolution
with respect to χ0 can be interpreted as a relational flat space
Friedmann dynamics with respect to a massless scalar field clock is
always realized, independently of the initial conditions.

Let us remark that the approximations involving the
underlying GFT dynamics that we used to extract an
effective mean field dynamics (see Section 2.3) may be very
important for the validity of the above statement. For
instance, among those, a crucial one was the approximation
of negligible interactions14. These, however, are supposed
to become relevant as the average number of GFT quanta
become very large, which is the asymptotic regime in
which conditions 1 and 4 are expected to be satisfied.

When interactions become important it is certainly
possible that some of the above arguments do not hold
anymore, but it is also possible that non-zero interactions
do not modify substantially the conclusions above, but
they change the effective matter content of the Friedmann
system, possibly including now a dark sector (see e.g.
(Pithis et al., 2016; Pithis and Sakellariadou, 2017; Oriti and
Pang, 2105)).

Bounce
The situation concerning the bounce is much more
complicated, essentially because it is not an asymptotic
regime, and thus the value of initial conditions turns out to
be important. It is less obvious whether the bounce can be
interpreted as a relational dynamics result, or if the averaged
evolution is overwhelmed by quantum fluctuations, thus
making us question also the validity of the hydrodynamic
approximation in (Eq. 13).

In general, itmight happen that both the conditions 1 and 2 are not
satisfied. For instance, this is the case if the bounce happens at χ0 � 0
with initial conditions such that N(0)≲ 1. Similarly, it might happen
that only one of the two conditions above is satisfied. This is the case,
for instance, of having a bounce χ0 such that�������

ϵ/(λN)
√

≪
∣∣∣∣∣∣χ0∣∣∣∣∣∣≪ π−1

0 ,

with arbitrarily large values of N(χ0), so that essentially the bounce
happens already in a ‘large volume’ regime. In this case quantum
fluctuations of all the relevant operators are negligible but the
interpretation of χ0 as expectation value of the massles scalar field
operator is not allowed. Or, the other way around, it might be that
indeed χ0 ≫ π−1

0 , thus allowing to interpret χ0 as expectation value of χ̂
but N(χ0)≲ 1, making fluctuations possibly very large for all the
relevant operators.

On the other hand, there are regimes in which a bounce can
satisfy all the conditions from 5.1 to 5.1. For instance, let us consider
the case in which all the χ0,j ≡ χ0, which therefore marks the bounce.
Also, let us assume that ρ2j (χ0)≫ 1 for each j ∈ J , so thatN(χ0)≫ 1
too. Let us fix χ0 > 0, in particular with χ0 ≫

�������
ϵ/N(χ0)
√

. Lastly, let us

also assume that rj ≳ 1 for each j ∈ P. Then we know that ΔX/N is
negligible for each χ0 ≥ χ0, and that relative variances are negligibly
small. More precisely, relative variances of σ2N , σ

2
V and σ2H are small

because of ρ2j (χ0)≫ 1, σ2Π is small because of N(χ0)≫ 1 and
rj∈P ≳ 1, while σ2χ is small because of N(χ0)≫ 1 and
χ0 ≫

�������
ϵ/N(χ0)
√

. If we could rest assured that all moments
higher than the second one are negligible as well and that the
effective equality between Π̂ and Ĥ is guaranteed, then we could
conclude that the bouncing scenario would be not only reliable and
truly relational, but that it could also admit an effective classical
description (in terms of some modified gravity theory, with an
interesting possibility being mimetic gravity (de Cesare, 2019)).
Notice also, that under the above conditions, the dynamics is
indeed relational from the point χ0 on. In practice, therefore, when
these conditions are realized, one could follow the volume
evolution from the bouncing point to the Friedmann regime
and on toward infinite values of χ0.

14Let us also mention, however, that another important role is played by the
assumption

∣∣∣∣Bj/Aj

∣∣∣∣≪ ϵ−1, see footnote 42.
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The relevant quantities for a simplified two-spin scenario
like the one described above with j1 � 1/2, j2 � 1, μj1 � μj2 � μ,
ϵμ2 ≪ 1, rj1 � rj2 � 0, and αj < 0,

∣∣∣∣αj∣∣∣∣≫ 1 for j ∈ {j1, j2} are plotted
in Figures15 1, 2 and 3 as functions of x ≡ 2μχ0. The value of the
bounce χ0,j1 � χ0,j2 � χ0 is taken to be far enough from χ0 � 0, so
to avoid any unphysical singularity in the quantities
represented. In Figure 1, we vary the values of αj from
lower to higher values (darker to lighter colors in the plots).
In the left panel, we represent the dimensionless volume
operator ~V � V/L3Pl (Oriti et al., 2016) (i.e., such that
~Vj ∼ j3/2), while on the right panel, we represent the
variance of the number operator. As the values of αj are
increased, the minimum value of the averaged volume becomes
larger, while δ2N becomes less and less important at the bounce.
This behavior is shared also by δ2χ and δ

2
V , since δ

2
N sets the scaling

of the relative variances of all the operators. Indeed, as we can see
from Figure 2, they are of the same order of magnitude. Actually,
one notices that fluctuations in χ̂ and in N̂ (dashed dark line and
lighter solid line respectively) are very close to each other, with
differences only of order 10−5-10−6 in the range plotted. This is due
to the smallness of the quantity ΔX/N , which is plotted in Figure 3
for increasing values of χ0, as we see from Eq. 48e. From both
Figures 2, 3, we notice that all the variances andΔX/N go to zero at
large positive x (where the Friedmann regime is expected to kick
in). In any case, we should remark that, since we currently have
little control on moments higher than the second ones, one can
take the above example only as an indication of the existence of the
singularity resolution into a bounce.

In general, therefore, we can draw the following conclusion:
Statement 2: The bouncing scenario is not a universal feature

of the model, meaning that it is not realized under arbitrary choices
of the initial conditions. However, if i) there exists at least one
αj < 0 or at least one rj ≠ 0, ii) all the quantities in Eqs. 45, 48e, 48b
are much less than one when the averaged volume attains its (non-
zero) minimum, and iii) all the higher moments of the volume and

massless scalar field are negligible, the initial singularity is indeed
resolved into a bounce16.

We remark again that this lack of universality is due to the
possible role of quantum fluctuations, in particular higher
moments, which may make the relational evolution unreliable,
while the bouncing dynamics of the average universe volume is in
fact general (but not necessarily with a non-zero minimum
value). In other words, whether or not the dynamics of the

FIGURE 1 | Plots of the dimensionless volume operator ~V ≡ V/LPl and of the relative variance of the number operator δ2N as functions of x � 2μχ0 in a two-spin
scenario with j1 � 1/2 and j2 � 1. The plots are obtained with μj1 � μj2 � μ, rj1 � rj2 � 0, x0,j1 � x0,j2 � 2μχ0 � 10, and αj1 � −10c, αj2 � −15c, with c varying from 1 to 5 in
integer steps. Darker (lighter) lines correspond to smaller (higher) values of c.

FIGURE 2 | Plot of δ2V (dark solid line), δ2χ (dark dashed line) and δ2N (light
solid line) as functions of x ≡ 2μχ0 around the bounce x � 10 for μj1 � μj2 � μ,
rj1 � rj2 � 0, x0,j1 � x0,j2 � 2μχ0 � 10, and αj1 � −10, αj2 � −15. In the inset plot,
instead, is represented 106(δ2χ − δ2N) for the same choice of the relevant
parameters.

15Indeed, under these assumptions expectation values and variances of Π̂ and Ĥ are
determined by N.

16Notice that the requirements (ii) and (iii) correspond to conditions from 1 to 3
being satisfied. The first two of them qualify the framework as relational, while the
third one guarantees that the expectation value of the volume operator captures in a
satisfactory way the relational evolution of the homogeneous and isotropic
geometry.
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volume is relational and entirely captured by the lowest moment
strongly depends on the initial conditions.

5.2.3 An Example: Single Spin Condensate
As an explicit and fairly simple (though possibly very physically
relevant (Gielen, 2016)) example of the arguments exposed above,
let us consider the case in which only one spin among those in J is
excited, say jo, so that all the sums characterizing the collective
operators above are not present anymore. For instance, we now
have

N(χ0) ≃ ρ2jo(χ0) , V(χ0) ≃ Vjoρ
2
jo
(χ0) , (52)

where

ρ2jo(χ0) �
∣∣∣∣αjo

∣∣∣∣
2
(− sgn(αjo) + coshxjo) , (53)

where we have imposed the condition ∑
j
Qj � 0, i.e., Qjo � 0, or

βjo � 0, since we would like to have a relational framework even in
intermediate regimes.

Let us study in detail under which conditions a resolution of
the initial singularity into a bouncing universe, assuming that
indeed quantum effects are effectively encoded into relative
variances (so that we can neglect the impact on the system of
moments of relevant operators higher than the second one). From
Eqs. 52, 53, we deduce that a bounce with a non-zero value of the
(average) volume happens only when αjo < 0. We also recall that
in this case one has an equality between the second moments of
the Hamiltonian and the momentum operator. So, in the
following, we will specialize to this case. The situation in this
case simplifies considerably: for instance, we have

δ2N � δ2V � σ2
H � δ2Π � N−1 (54)

Before proceeding with further considerations, it is interesting
to remark that the single spin case mirrors the situation

appearing in Loop Quantum Cosmology (LQC) (Bojowald,
2008; Ashtekar and Singh, 2011), where one considers a LQG
fundamental state corresponding to a graph constructed out of a
large number of nodes and links with the latter being associated
all to the same spin. This similarity can be also observed in
fluctuations. Indeed, from the above equation we see that in this
case the quantity governing quantum fluctuations is exactly the
average number of particles, with variances suppressed as N−1
for large N. In LQC, the quantity setting the scale of quantum
fluctuations is V0 (Rovelli and Wilson-Ewing, 2014), the
coordinate volume of the fiducial homogenous patch under
consideration. In a graph interpretation of the LQC framework,
V0 � Nℓ0, with ℓ0 being a fundamental coordinate length,
adding another interesting “phenomenological” connection
besides those already presented in (Gielen and Oriti, 2014;
Oriti et al., 2016; Marchetti and Oriti, 2021) between these
two approaches.

Going back to Eq. 54, we see that, in order for the bounce to
have any hope of being classical, we also need to require

∣∣∣∣αjo∣∣∣∣≫ 1.
For the moment, therefore, the two conditions that we have
imposed on αjo are

αjo < 0 , |αjo

∣∣∣∣≫ 1 . (55)

What is left to check are the values of ΔX/N and σ2χ , which are
required to be small in order to have ameaningful relational dynamics.
ΔX/N : About ΔX/N , the computation is straightforward: we

have

|ΔX|
N

�

∣∣∣∣∣∣∣(ρ2jo)′(χ0)
∣∣∣∣∣∣∣∣∣∣∣χ0∣∣∣∣

1
ρ2jo(χ0)

ϵ
2

�
∣∣∣∣sinhxjo∣∣∣∣∣∣∣∣∣xjo + xojo

∣∣∣∣∣
1

1 + coshxjo
ϵμ2jo .

So, we conclude that for each xojo ≥ 0 (i.e., for each χ0,jo ≥ 0) the
above quantity is always ≪ 1 for each χ0 ≥ 0.

δ2χ : About the relative variance of the massless scalar field
operator, assuming χ0,jo ≥ 0, we have

σ2
χ � N−1 + ϵ

2Nχ20
.

Since the first term is always much smaller than 1 under
our assumptions, the relative variance of the massless scalar
field operator is negligible as long as ϵ/(2Nχ20) is negligible
as well. This is satisfied for each χ0 ≥ χ0,jo as long as
(χ0,jo)2 ≫ ϵ/(2∣∣∣∣αj∣∣∣∣).
Notice that the assumption of χ0,jo ≥ 0 (χ0,jo ≤ 0) is necessary if

one wants to have a relational picture extending from today to the
bounce among positive (negative) values of the massless scalar
field. Indeed, if the bounce had happened at, say χ0,jo < 0 (today
being at positive values of the massless scalar field), we should
have crossed the point χ0 � 0, which is however a point in which
relative quantum fluctuations formally diverge and the clock may
become not classical anymore. In conclusion, by further assuming
that

FIGURE 3 | Plot of ΔX/N as a function of x with μj1 � μj2 � μ, rj1 � rj2 � 0,
αj1 � −10, αj2 � −15 and ϵμ2 � 10−2, but with different values of the bounce,
given by xj1 � xj2 � (1 + 0.1c)10 for c going from 0 to 5 in integer steps. Darker
(lighter) lines correspond to smaller (higher) values of c.
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χ0,jo ≥ 0 , (χ0,jo)2 ≫ ϵ/(2∣∣∣∣αjo

∣∣∣∣) , (56)

the singularity is indeed replaced by a bounce (again assuming
χtoday0 > 0). Notice that the second inequality above does not
impose a very strict constraint on χ0,jo, since by construction
of the CPSs ϵ is assumed to be a very small quantity.

To sum up, a classical bounce that can be understood within
the effective relational framework discussed above and in
(Marchetti and Oriti, 2021), can be obtained in this single spin
case for instance by requiring that.

1. Qjo � 0, guaranteeing equality between the expectation value of
Π̂ and Ĥ;

2. Conditions (Eq. 55) are satisfied, the first of which guarantees
that the expectation value of the volume operator reaches a
non-zero minimum before bouncing, and the second of which
guarantees small relative variances of the operators N̂ , V̂ , Ĥ
and Π̂;

3. Assuming that χtoday0 > 0, conditions (Eq. 56) are satisfied17.
The first of them guarantees that χ0 can be interpreted as the
expectation value of the (intrinsic) scalar field operator, while
the second one guarantees that its relative quantum
fluctuations stay small during the whole Universe’s
evolution from the bounce until today.

Under these assumptions, the relational time elapsed from the
bounce would be

xtodayjo ≃ log[Vtoday

Vjo

2∣∣∣∣αjo

∣∣∣∣ − 1]
≃ log[Vtoday

Vjo

2∣∣∣∣αjo∣∣∣∣] � log
Vtoday

Vjo

− log

∣∣∣∣αjo∣∣∣∣
2

,

where we have assumed the term −1 to be negligible with respect
to the first contribution. If we further assume that the right-
hand-side of the last equality is dominated by the first term,
we get

xtodayjo ≃ log
Vtoday

Vjo

∼ 252 − 3
2
logjo , (57)

where the last line is just the result of a crude estimate obtained
from Vtoday ∼ H−3

0 ≃ (9.25h × 1025 m)3, with h ≃ 0.71 and

Vjo ≃ (LP)3j3/2o .

6 CONCLUSION

Wehave analyzed the size and evolution of quantum fluctuations of
cosmologically relevant geometric observables (in the
homogeneous and isotropic case), in the context of the effective
relational cosmological dynamics of quantum geometric GFT
models of quantum gravity. We considered first of all the
fluctuations of the matter clock observables, to test the validity

of the relational evolution picture itself. Next, we studied quantum
fluctuations of the universe volume and of other operators
characterizing its evolution, like the number operator for the
fundamental GFT quanta, the effective Hamiltonian and the
scalar field momentum (which is expected to contribute to the
matter density). In particular, we focused on the late (clock) time
regime (see Statement 1, Section 5.2.2), where the dynamics of
volume expectatation value is compatible with a flat FRW universe,
and on the very early phase near the quantum bounce. We found
that the relative quantum fluctuations of all observables are
generically suppressed at late times, thus confirming the good
classical relativistic limit of the effective QG dynamics. Near the
bounce, corresponding to a mesoscopic regime in which the
average number of fundamental GFT quanta can not be
arbitrarily large, the situation is much more delicate (see
Statement 2, Section 5.2.2). Depending on the specific choice of
parameters in the fundamental dynamics and in the quantum
condensate states, relational evolution as implemented by the CPSs
strategy may remain consistent or become unreliable, due to
fluctuations of the clock itself and to possible issues with
“synchronization” of the fundamental GFT quanta. Even when
the relational evolution picture remains valid, quantum
fluctuations of the geometric observables may become large,
depending again on the precise values of the various parameters.
When this happens, this could signal simply a highly quantum
regime, but one that is still describable within the hydrodynamic
approximation in which the effective cosmological dynamics has
been obtained; or it could be interpreted as a signal of a breakdown
of the same hydrodynamic approximation, calling for a more
refined approximation of the underlying quantum gravity
dynamics of the universe.

The analysis will have now to be extended to the case in which
GFT interactions are not negligible. We expect such interactions
to be most relevant at late clock times and largish universe volume
(i.e. largish GFT condensate densities) (Oriti et al., 2016;
Marchetti and Oriti, 2021), thus it is unclear whether they
should be expected to modify much the behavior of quantum
fluctuations, since the are suppressed in the same regime.
However, GFT interactions also modify the underlying
dynamics of the volume itself, possibly causing a recollapsing
phase (de Cesare et al., 2016), thus they may as well enhance
quantum fluctuations in such cases. Another important extension
would be of course the inclusion of anisotropies (de Cesare et al.,
2018), but this is something we need to control much better
already at the level of expectation values of geometric observables,
in order to be confident about the resulting physical picture.
Finally, quantum fluctuations should be considered in parallel
with thermal fluctuations, which we can now compute as well
using the recently developed thermofield double formalism for
GFTs (Assanioussi and Kotecha, 2003; Kotecha and Oriti, 2018;
Assanioussi and Kotecha, 2020).

Thus, much more work is called for. It is clear, however, that
we now have a solid context to tackle cosmological physics from
within full quantum gravity, also for what concerns quantum
fluctuations. While we move toward the analysis of cosmological
perturbations (Gielen and Oriti, 2018; Gielen, 2019) and the
associated quantum gravity phenomenology, these results will17If χtoday0 < 0 the first condition in (Eq. 56) would read χ0,jo ≤ 0.
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help to control better the viability of the picture of the evolution
universe we are going to obtain.
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Non-Oscillatory Power Spectrum
From States of Low Energy in
Kinetically Dominated Early Universes
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Recently, States of Low Energy (SLEs) have been proposed as viable vacuum states of
primordial perturbations within Loop Quantum Cosmology (LQC). In this work we
investigate the effect of the high curvature region of LQC on the definition of SLEs.
Shifting the support of the test function that defines them away from this regime results in
primordial power spectra of perturbations closer to those of the so-called Non-oscillatory
(NO) vacuum, which is another viable choice of initial conditions previously introduced in
the LQC context. Furthermore, through a comparison with the Hadamard-like SLEs, we
prove that the NO vacuum is of Hadamard type as well.

Keywords: loop quantum cosmology, inflation, primordial perturbations, power spectra, quantum field theory in
curved spacetimes, states of low energy, non-oscillatory vacuum state

1 INTRODUCTION

In a previous work (Martín-Benito et al., 2021), we have proposed the States of Low Energy (SLEs)
introduced in (Olbermann, 2007) as viable candidates for the vacuum state of cosmological
perturbations in Loop Quantum Cosmology (LQC). We were motivated by the fact that they
were proven to be Hadamard states that minimized the regularized energy density when smeared
along the time-like curve of an isotropic observer via a test function. Furthermore, they had been
shown to provide a qualitative behavior in the ultraviolet (UV) and infrared regimes of the
primordial power spectra of scalar and tensor perturbations that agrees with observations in
models where a period of kinetic dominance precedes inflation (Banerjee and Niedermaier,
2020), which is the case in LQC. However, in (Martín-Benito et al., 2021) we have only
considered test functions that could be seen as natural choices within LQC, namely, ones with
support on the high curvature regime. As long as this is the case, we have shown that the ambiguity in
the introduction of the test function is surpassed in this context, in the sense that the resulting SLE
and power spectra seem to be very insensitive to its shape and support, provided it is wide enough.

In this work, we investigate the effect of shifting the test function away from the high curvature
regime. Firstly, this provides a more complete analysis of the SLEs and the ambiguity of the test
function. Secondly, this allows us to distinguish in the primordial power spectra the consequences
coming directly from LQC corrections and those related to having a period of kinetic dominance
prior to inflation, which can also be obtained in a classical scenario. We will show that if the test
function ignores the Planckian region, the effect in the resulting SLE is appreciable. Furthermore, in
the power spectra the oscillations that were previously found for lower wave numbers are now
dampened.

This motivates us to compare our results with those found in the LQC literature that adopts as
initial conditions for the perturbations the so-called non-oscillatory (NO) vacuum state (de Blas and

Edited by:
Francesca Vidotto,

Western University, Canada

Reviewed by:
Jorge Pullin,

Louisiana State University,
United States

Sayantan Choudhury,
National Institute of Science Education

and Research (NISER), India

*Correspondence:
Mercedes Martín-Benito
m.martin.benito@ucm.es

Specialty section:
This article was submitted to

Cosmology,
a section of the journal

Frontiers in Astronomy and Space
Sciences

Received: 29 April 2021
Accepted: 28 July 2021

Published: 17 August 2021

Citation:
Martín-Benito M, Neves RB and
Olmedo J (2021) Non-Oscillatory

Power Spectrum From States of Low
Energy in Kinetically Dominated

Early Universes.
Front. Astron. Space Sci. 8:702543.

doi: 10.3389/fspas.2021.702543

Frontiers in Astronomy and Space Sciences | www.frontiersin.org August 2021 | Volume 8 | Article 7025431

ORIGINAL RESEARCH
published: 17 August 2021

doi: 10.3389/fspas.2021.702543

169

http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2021.702543&domain=pdf&date_stamp=2021-08-17
https://www.frontiersin.org/articles/10.3389/fspas.2021.702543/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.702543/full
https://www.frontiersin.org/articles/10.3389/fspas.2021.702543/full
http://creativecommons.org/licenses/by/4.0/
mailto:m.martin.benito@ucm.es
https://doi.org/10.3389/fspas.2021.702543
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2021.702543


Olmedo, 2016; Castelló Gomar et al., 2017). As the name suggests,
this state is precisely defined to minimize mode by mode the
amplitude of the oscillations of the primordial power spectra in a
given time interval. It turns out that this minimization in time is
reflected in a minimization of oscillations in the k domain of the
power spectra. This NO prescription has been motivated as well
as a good candidate for the vacuum of the perturbations (Elizaga
Navascués et al., 2020). One question that so far remained
unanswered is whether this NO vacuum is or not of
Hadamard type. In this work, by comparing with SLEs, we
show that indeed this is the case. To do so, we resort to their
UV expansions, obtained for SLEs in (Banerjee and Niedermaier,
2020) and for the NO vacuum in (Elizaga Navascués et al., 2020).

This manuscript is organized as follows. In Section 3 we
review the application of SLEs in LQC as presented in (Martín-
Benito et al., 2021). In Section 4 we explore the consequence of
excluding the high curvature regime from the test function,
computing the corresponding SLEs and power spectra at the
end of inflation. Section 5 is devoted to a proof that the NO
vacuum is Hadamard, based on the comparison with SLEs in the
UV limit. Finally, we conclude in Section 6 with a discussion and
closing remarks.

Throughout we adopt Planck units c � Z �G � 1 for numerical
computations, keeping factors of G in expressions.

2 COSMOLOGICAL PERTURBATIONS AND
STATES OF LOW ENERGY IN LQC

In this section we will briefly review the dynamics of cosmological
perturbations in LQC through its hybrid approach, as well as the
definition of SLEs in this context, as exposed in (Martín-Benito
et al., 2021). Let us start by considering the spatially flat FLRW
model with scale factor a, minimally coupled to the scalar field ϕ
subject to the potential V(ϕ), which will drive inflation.
Cosmological perturbations are usually described by scalar and
tensor gauge invariant perturbations Q and T I respectively,
where I denotes the two possible polarizations of tensor
perturbations. Expanding in Fourier modes Qk and T I

k, we
can write the equation of motion for each mode with wave
number k � |k⃗ | as.

Q̈k + 3H(t)Q ̇
k + ω(s)

k (t)( )2Qk � 0, (1)

T ̈I
k + 3H(t)T ̇I

k + ω(t)
k (t)( )2T I

k � 0, (2)

where the dot denotes derivative with respect to cosmological
time t, and H � a ̇/a is the Hubble parameter. As we will discuss
further ahead, the form of the terms ωk depends on the
quantization. It is common to work with the rescaled fields
u � aQ, μI � aT I , and in conformal time η, such that dη � dt/
a. Then, we find the equations of motion of the Fourier modes of
these fields, uk and μk respectively, to be.

uk″(η) + k2 + s(s)(η)( )uk(η) � 0, (3)

μIk(η)( )′′ + k2 + s(t)(η)( )μIk(η) � 0, (4)

where the prime denotes derivative with respect to conformal
time η and s(s) (η) and s(t) (η) are the time-dependent mass terms
of scalar and tensor modes respectively. From the hybrid
approach to LQC, one can write these as functions of the
background variables a, ρ (inflaton energy density), P (inflaton
pressure) and the inflaton potential V(ϕ) as (Elizaga Navascués
et al., 2018a):

s(t) � − 4πG
3

a2(ρ − 3P), s(s) � s(t) + U , (5)

where

U � a2 V,ϕϕ + 48πGV(ϕ) + 6
a′ϕ′

a3ρ
V,ϕ − 48πG

ρ
V2(ϕ)[ ]. (6)

To simplify notation, in the following we will use s(η) to refer
generically to both of them, as our comments apply equally to
both scalar and tensor modes. When doing so, for simplicity, we
will refer only to u as everything is analogous for μI. It is easy to
find that s(η) can be related to ω2

k, now written in terms of
conformal time, through

ω2
k(η) �

1
a2(η) k2 + s(η) + a′′(η)

a(η)[ ]. (7)

Generally, there are no analytical solutions to such equations
of motion, and results have to be obtained numerically, given
initial conditions uk (0), uk′(0). These can be parametrized up to a
phase through

uk(0) � 1����
2Dk

√ , uk′(0) �
���
Dk

2

√
Ck − i( ), (8)

where Dk is a positive function and Ck any real function. Once
defined, the perturbations can be evolved until a time ηend during
inflation when all the scales of interest have crossed the horizon.
The primordial power spectra of the comoving curvature
perturbation Rk � uk/z (where z � aϕ̇/H) and tensor
perturbations T , defined as

PR(k) � k3

2π2

|uk|2
z2

, PT (k) � 32k3

π

|μIk|2
a2

, (9)

are evaluated at η � ηend. The choice of initial conditions amounts to
a choice of vacuum state for the perturbations. In this context, there
is no notion of a unique natural vacuum. Indeed, several proposals
have been made of initial vacua within the LQC framework (Agullo
et al., 2015; de Blas and Olmedo, 2016; Ashtekar and Gupt, 2017;
Elizaga Navascués et al., 2020) that result in primordial power
spectra compatible with observations. In these analyses, initial
conditions are set at the LQC bounce where the scale factor of
the geometry reaches a minimum, and then it starts expanding. At
this bounce, the spacetime curvature reaches a maximum value of
the order of the Planck scale. The work of (Martín-Benito et al.,
2021) applied the SLE construction defined in (Olbermann, 2007)
to this context. These are defined as the states that minimize the
energy density smeared along a time-like curve, specified by a test
function f. In the following we summarize this procedure, adapted
to our notation (namely working with u and μ and in conformal
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time). For further details we refer the reader to (Olbermann, 2007;
Martín-Benito et al., 2021). Given a fiducial solution v to the
equation of motion (3), the SLE associated to the test function
f(η) is found through the Bogoliubov transformation

uk � α(k)vk + β(k)v ̄k, (10)

where the Bogoliubov coefficients α(k) and β(k) are found
uniquely (up to a phase) to be.

β(k) �
�����������������

c1(k)
2
������������
c21(k) − |c22(k)|
√ − 1

2

√√
, (11)

α(k) � −e−iArg[c2(k)]
�����������������

c1(k)
2
������������
c21(k) − |c22(k)|
√ + 1

2

√√
. (12)

with.

c1(k)d1
2
∫ dη f 2(η)a vk

a
( )′∣∣∣∣∣∣∣

∣∣∣∣∣∣∣2 + ω2
k

vk
a

∣∣∣∣∣∣ ∣∣∣∣∣∣2[ ], (13)

c2(k)d1
2
∫ dη f 2(η)a vk

a
( )′( )2 + ω2

k

v2k
a2

[ ], (14)

Note that these quantities carry a dependence on the test function f.
Indeed, as remarked, Eq. 10 defines the SLE associated to this f. This
introduces an ambiguity in the procedure, which has been explored
within the LQC approach in (Martín-Benito et al., 2021). In that work,
only natural choices for f within this framework were considered,
whose support thus included the bounce of LQC. In this current
investigation, we will consider test functions that exclude it.

3 EFFECT OF THE BOUNCE IN SLES

In (Martín-Benito et al., 2021) we have shown that there are two
families of test functions that can be seen as natural choices for
the smearing function within LQC, and that provide SLEs that are
very insensitive to their particular form. Namely, we have found
that for a test function supported around the bounce of LQC the
resulting SLE does not qualitatively depend on its shape or
support, as long as it is wide enough. In the case of a test
function supported on the expanding branch only, from the
bounce onward, in (Martín-Benito et al., 2021) only the case
of a steep (but smooth) step function was investigated, in order to
fully retain the contributions coming from the bounce. In this
case, the SLE remains insensitive to the size of the support as long
as it is wide enough. The resulting power spectrum inherits this
independence on the choice of test function, and coincidentally
shows good agreement with the one of a second order adiabatic
vacuum state.

In this section we explore the consequences of not including
the bounce in the support of the test function. This way we will be
able to study also the effect of the shape of the test function when
supported only on the expanding branch away from the high-
curvature regime. This will allow us to provide a comparison with

an analogous classical scenario of an FLRW model with a period
of kinetic dominance prior to inflation.

Let us start by considering the smooth step function f2 plotted
in Figure 1, supported in the interval η ∈ [η0, ηf ], as defined in
(Martín-Benito et al., 2021):

f 2(η) �
S

η − η0
δ

π( ) η0 ≤ η< η0 + δ,

1 η0 + δ ≤ η≤ ηf − δ,

S
ηf − η

δ
π( ) ηf − δ < η≤ ηf ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(15)

where δ determines the ramping up, with a smaller δ resulting in a
steeper step, and S is the auxiliary function:

S(x) � 1 − tanh[cot (x)]
2

. (16)

Figure 2 shows the initial conditions, parametrized through
(8), corresponding to the SLE obtained for scalar perturbations when
considering the test function (15), with η0 � 0, 1, 10 and 100 Planck
seconds after the bounce, with ηf fixed at the onset of inflation, and
for a sharp step of δ ∼ 0.06. The case of η0 � 0 corresponds to the one
analysed in (Martín-Benito et al., 2021). The effect of excluding the
bounce is immediately noticed as soon as the support of the test
function is moved one Planck second into the expanding branch. If
we push the initial time further into the future, the change is
gradually decreased, and for η0 � 100 we see some convergence.
The corresponding figure for tensormodes is omitted since the initial
conditions are essentially the same, as discussed in (Martín-Benito
et al., 2021). Within this family of test functions that exclude the
bounce, we have also investigated the consequences of changing their
shape. In all these cases, we find that, as the starting point moves
further away from the bounce, the SLE becomes more insensitive to
the shape of the test function. For this reason, below, we will focus
our comments on the four step functions defined above, as they
already show the different qualitative behaviors onemay obtain from
different test functions in this scenario.

FIGURE 1 | The smooth step function defined in (15), represented in
terms of its parameters: initial and final points, ηi and ηf respectively, and δ,
which controls the ramping up.
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Figure 3 shows the corresponding primordial power spectra
for scalar and tensor perturbations, computed through (9). Here,
the effect of removing the bounce is evident. As the support of the

test function is pushed further away from the high curvature
regime, the oscillations in the power spectra are gradually
dampened. It is interesting to note that, in fact, as Figure 4

FIGURE 2 | Initial conditions in terms of Dk and Ck, as constructed in (8), for scalar modes at the bounce corresponding to the SLEs obtained with the window
function (Eq. 15) covering the expanding branch until the onset of inflation with starting points: η0 � 0 (solid gray line), η0 � 1 (dashed red line), η0 � 10 (dotted green line)
and η0 � 100 (dotted-dashed blue line). The scale of k is in Planck units. All computations were performed for a quadratic potential V(ϕ) �m2ϕ2/2, withm � 1.2 × 10–6 and
with the value of the scalar field at the bounce fixed to ϕB � 1.225 (toy value). For tensor modes, the resulting SLE at the bounce shows no significant qualitative
differences.

FIGURE 3 | Power spectra of the comoving curvature perturbation PR and tensor perturbation PT corresponding to the SLEs obtained with the window function
(Eq. 15) covering the expanding branch until the onset of inflation with starting points: η0 � 0 (solid gray line), η0 � 1 (dashed red line), η0 � 10 (dotted green line) and η0 �
100 (dotted-dashed blue line). The scale of k is in Planck units. All computations were performed for a quadratic potential V(ϕ) �m2ϕ2/2, withm � 1.2 × 10–6 and with the
value of the scalar field at the bounce fixed to ϕB � 1.225 (toy value).

FIGURE 4 | Comparison between the power spectra of the comoving curvature perturbation PR and tensor perturbation PT corresponding to the SLE obtained
with η0 � 100 (dotted-dashed blue line) and to the NO vacuum (solid black line). The scale of k is in Planck units. All computations were performed for a quadratic potential
V(ϕ) � m2ϕ2/2, with m � 1.2 × 10−6 and with the value of the scalar field at the bounce fixed to ϕB � 1.225 (toy value).
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shows, the power spectra are pushed towards those obtained from
the non-oscillatory (NO) vacuum state defined in (de Blas and
Olmedo, 2016), which is constructed by minimizing the
oscillations in time of the power spectrum of perturbations for
the whole expanding branch, including the bounce. We further
note that the case where the support of the test function starts at η0
� 100 will essentially correspond to that obtained by using the SLE
as the vacuum state of primordial perturbations in a classical
FLRW model with a period of kinetic dominance prior to
inflation. However, for smaller η0, SLEs show oscillations in k
at and below scales comparable to those of the curvature at that
initial time. Then we can conclude that the oscillations that appear
in the power spectra when including the high curvature region (for
instance the bounce of LQC) in the support of the test function
open an interesting observational window.

For completion, we added an appendix where we apply the
SLE and NO vacuum prescriptions in a classical Universe
dominated by the kinetic energy of the scalar field. We discuss
the situations in which they agree with the natural choice for
vacuum state considered in (Contaldi et al., 2003).

4 COMPARISON BETWEEN SLE AND NO
VACUUM

One remarkable property of the SLEs that is usually not explicitly
proven for other vacua proposals is that they are of Hadamard
type (Olbermann, 2007; Banerjee and Niedermaier, 2020). This
guarantees that computations such as that of the expectation
value of the renormalized stress-energy tensor will be well
defined. On the other hand, the NO vacuum has only been
proven to behave in the ultraviolet (UV) asymptotic regime as
a high order adiabatic state, at least of fourth order (Elizaga
Navascués et al., 2018b). Indeed, considering two adiabatic states
of orders n and m, one can compute the β coefficient of the
Bogoliubov transformation between the two:

β � i un
k umk( )′ − um

k unk( )′[ ], (17)

and find that in the UV |β| decays with k−l−2, where l �min (n,m).
In the case of the comparison of the NO vacuum with an nth-
order adiabatic one, it was found that |β| ∼ k−2−n at least up to
n � 4, which shows that the NO vacuum is the highest order one
of the two. As a Hadamard type vacuum is an infinite order
adiabatic state, this is an indication that the NO vacuummight be
as well, though a stronger proof would be desirable. In this
section, we will provide one, through a comparison with the
(Hadamard-like) SLEs.

To simplify the comparison, let us write the UV expansions of
both the SLE and the NO state as

uk(η) ∼ 1������
2Fk(η)
√ e

−i∫ dηFk(η), (18)

where ∼ means the behavior in the large k regime. The NO
vacuum state has recently been analysed analytically in (Elizaga
Navascués et al., 2020). In particular, that work has found that the
state admits the UV asymptotic expansion (18) with:

FNO
k (η) � −Im(hk(η)), (19)

where

kh−1k ∼ i 1 − 1
2k2

∑∞
n�0

−i
2k
( )ncn⎡⎣ ⎤⎦, (20)

and the cn coefficients are given by the iterative relation

cn+1 � −cn′ + 4s(η) cn−1 + ∑n−3
m�0

cmcn−(m+3)⎡⎣ ⎤⎦ − ∑n−1
m�0

cmcn−(m+1), (21)

with c0 � s(η) and c−n � 0 for all n > 0.With this expansion, we are
able to compute the NO state up to any order in 1/k easily.
Actually, one can check by direct inspection that

FNO
k (η) ∼ k 1 +∑

n≥1

(−1)n
k2n

Gn(η)
⎧⎨⎩ ⎫⎬⎭

−1
, (22)

where the Gn are determined recursively by

Gn(η) � ∑
m,l≥0,m+l�n−1

1
4
GmGl″ −18Gm′ Gl′ + 1

2
s(η)GmGl{ }

− 1
2

∑
m,l≥1,m+l�n

GmGl, (23)

with G0 � 1. Remarkably, in (Banerjee and Niedermaier, 2020),
the SLEs are found to have the same asymptotic expansion (22),
regardless of the choice of the test function.

Therefore, the β coefficients of the Bogoliubov transformation
between the SLE and NO vacuum are identically zero in the UV.
Thus, we conclude that the NO vacuum is of Hadamard type
since it displays exactly the same short-distance structure as
the SLEs.

5 CONCLUSION AND DISCUSSION

SLEs have recently been proposed as a suitable choice for the
vacuum state of perturbations in LQC (Martín-Benito et al.,
2021), where the dependence of the state on the test function
was explored. For that investigation, only test functions that
included the bounce of LQC were analysed, as they are natural
choices within this framework. In this work, we investigate the
effect of pushing the support of the test function away from the
bounce and indeed from the high curvature regime. In addition to
offering a more complete analysis of SLEs within LQC, this allows
us to disentangle the effects coming from quantum corrections to
the dynamics, which are important in the high curvature regime,
from those that arise from having only a period of kinetic
dominance prior to inflation, which can be found also in
classical inflationary models, and is not a direct consequence
of the quantum nature of geometry.

We have found that whether the support of the test function
includes the high curvature regime or not has a greater influence
on the resulting SLE than any other parameter of the test function
that has been studied previously. Indeed, in (Martín-Benito et al.,
2021), we had already shown that as long as the support of the test

Frontiers in Astronomy and Space Sciences | www.frontiersin.org August 2021 | Volume 8 | Article 7025435

Martín-Benito et al. Non-Oscillatory Power Spectrum From SLEs

173

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


function includes the high curvature regime and it is wide
enough, the SLE is very insensitive to its shape and support.
In this work, we have shown that as soon as the test function is
pushed away from the bounce, the SLE suffers a big shift, which
then converges as the test function is pushed further away from
the high curvature regime. We have also found that in this case,
when convergence with respect to the support is reached, the SLE
is again insensitive to the shape of the test function. Furthermore,
through the computation of the power spectra of perturbations at
the end of inflation, we see that as the test function is shifted away
from the high curvature region the oscillations found for lower
modes (scales comparable to those of the curvature at initial time)
are gradually dampened, and the spectra are pushed to those of
the NO vacuum state introduced in (de Blas and Olmedo, 2016).
Then it is safe to conclude that these oscillations are in fact a
consequence of the corrections coming from LQC, which opens
an interesting observational window into signatures from LQC in
observations of the CMB. For instance, the enhancement of
power at super-Hubble scales in the primordial power
spectrum of scalar perturbations has been proposed, together
with large scale non-Gaussianities, as a mechanism to explain
several anomalies in the CMB (Agullo et al., 2021a; Agullo et al.,
2021b). From this perspective, the power spectrum provided by
SLEs prescription when including the bounce is physically
relevant. On the other hand, the NO-like power spectra show
a lack of power at large scales of primordial origin that can, on the
one hand, alleviate some tensions in the CMB (Ashtekar et al.,
2020; Ashtekar et al., 2021), and on the other hand, ease the trans-
Planckian issues on these scenarios (Brandenberger and Martin,
2013; Ashtekar and Gupt, 2017). See (Li et al., 2021) for a recent
comparison on further details about different proposals in LQC.
However, a detailed analysis of all this requires a rigorous
investigation that we leave for future work.

Finally, the fact that SLEs are proven to be Hadamard is a great
advantage that most proposals don’t enjoy. Typically, this
property is difficult to prove explicitly. One strategy, that may
be enough for practical purposes, is to compare a state with an
adiabatic one of increasing (finite) order, and show, through the β
coefficients of the Bogoliubov transformation between the two
states, that the state in question is always of higher order than the
adiabatic one considered. This shows that it is at least a very high
order adiabatic state, and since a Hadamard state is an adiabatic
state of infinite order, then most likely so is the proposed state.
However, we now have a family of states, namely SLEs, that are
explicitly Hadamard. Therefore, the β coefficients of the
transformation between any Hadamard state and any SLE
should decrease faster than any power of the wave number.
We have applied this reasoning to the NO vacuum state, that

had previously been shown to be at least of fourth order (Elizaga
Navascués et al., 2018b). We find that, in the ultraviolet limit of
large wave numbers, the asymptotic expansion that the NO
vacuum satisfies (found in (Elizaga Navascués et al., 2020))
agrees exactly with that of the SLE (Banerjee and Niedermaier,
2020) (no matter the test function chosen to define it). As a
consequence, the β coefficients of the transformation between the
two will be identically zero in the ultraviolet. In other words, the
NO vacuum has the same short-distance structure than the SLEs,
which proves that the NO vacuum is of Hadamard type as well.
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Anomalies in the Cosmic Microwave
Background and Their Non-Gaussian
Origin in Loop Quantum Cosmology
Ivan Agullo1*, Dimitrios Kranas1 and V. Sreenath2

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, Unites States, 2Department of Physics,
National Institute of Technology Karnataka, Surathkal, India

Anomalies in the cosmic microwave background (CMB) refer to features that have been
observed, mostly at large angular scales, and which show some tension with the statistical
predictions of the standard ΛCDM model. In this work, we focus our attention on power
suppression, dipolar modulation, a preference for odd parity, and the tension in the lensing
parameter AL. Though the statistical significance of each individual anomaly is inconclusive,
collectively they are significant, and could indicate new physics beyond the ΛCDM model.
In this article, we present a brief, but pedagogical introduction to CMB anomalies and
propose a common origin in the context of loop quantum cosmology.

Keywords: cosmic microwave background, loop quantum cosmology, anomalies, early universe, quantum
cosmology

I INTRODUCTION

Observations of the cosmic microwave background (CMB) by the Planck satellite have revealed
that the ΛCDM model together with the inflationary scenario checks nearly all the right boxes
(Aghanim, 2018a; Akrami, 2018; Aghanim, 2020)—in the sense that it provides a detailed fit to the
CMB spectrum based on a few free parameters (Aghanim, 2018a; Aghanim, 2019). The nearly
scale-invariant power spectrum predicted by slow-roll inflation has been confirmed with a
significance of more than 7σ (Aghanim, 2018b; Akrami, 2018). Further, observations are
consistent with the near Gaussian nature of the primordial perturbations predicted by slow-
roll inflation (Akrami, 2020).

But in spite of this success, several open questions remain. A prominent one concerns the past
incompleteness of the inflationary scenario. As it is well known, general relativity, on which the
inflationary scenario rests, breaks down as we approach the Planck regime. Loop quantum
cosmology (LQC) uses the principles of loop quantum gravity to address this issue (Bojowald,
2001; Ashtekar et al., 2003; Mena Marugan, 2010; Ashtekar and Singh, 2011; Banerjee et al., 2012;
Agullo et al., 2014; Agullo et al., 2017a). In LQC, the big bang singularity is replaced by a bounce
(Ashtekar et al., 2006a; Ashtekar et al., 2006b; Ashtekar et al., 2007; Szulc, 2007; Szulc et al., 2007;
Bentivegna and Pawlowski, 2008; Martin-Benito et al., 2008; Ashtekar and Wilson-Ewing, 2009a;
Ashtekar and Wilson-Ewing, 2009b; Garay et al., 2010; Wilson-Ewing, 2010; Pawlowski and
Ashtekar, 2012) which is triggered by quantum gravitational effects. This bounce by itself is not
able to generate the primordial perturbations though, and it must be complemented with another
mechanism. A natural strategy is to maintain the inflationary phase in the post-bounce era. In such a
scenario, the goal of the bounce is, in addition to overcoming the difficulties arising from classical
general relativity, to bring the Universe to an inflationary phase. Interestingly, although the
inflationary phase is responsible for the primordial perturbations, certain features from the pre-
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inflationary bounce may survive if the inflationary era is not too
long, and be imprinted in the CMB. Numerous studies have
examined the way the bounce predicted by LQC modifies the
primordial power spectra of scalar and tensor perturbations
(Bojowald et al., 2009; Bojowald and Calcagni, 2011; Agullo
et al., 2012; Agullo et al., 2013a; Agullo et al., 2013b;
Fernández-Méndez et al., 2013; Fernández-Méndez et al.,2014;
Agullo and Morris, 2015; Barrau et al., 2015; de Blas and Olmedo,
2016; Martínez and Olmedo, 2016; Ashtekar and Gupt, 2017;
Agullo et al., 2017b; Castelló Gomar et al., 2017; Zhu et al., 2017;
Agullo, 2018; Agullo et al., 2020a; Agullo et al., 2020b; Li et al.,
2020a; Li et al., 2020b; Ashtekar et al., 2020; Navascués et al., 2020;
Navascués and Mena Marugán, 2020; Martín-Benito et al., 2021)
and the non-Gaussianity (Agullo, 2015; Agullo et al., 2018; Zhu
et al., 2018; Sreenath et al., 2019) at large angular scales, and
showed that at smaller scales in the CMB the predictions are
indistinguishable from those of standard inflation with Bunch-
Davies initial conditions. Hence, if at all early Universe scenarios
such as LQC were to leave any imprints on the CMB, they would
be expected at the longest observable scales, or equivalently, at the
lowest angular multipoles.

It is for this reason that certain puzzling signatures which have
been recently observed at large angular scales in the CMB become
relevant (Akrami et al., 2019). These signatures, generically
known as CMB anomalies, are features that are in conflict
with the almost scale invariance predicted by inflation, or with
the statistical isotropy and homogeneity assumed in the ΛCDM.
In more detail, the anomalies observed by Planck include a lack of
two-point correlations at large angular scales, a dipolar
asymmetry, a preference for odd parity, alignment of low
multipoles, a cold spot, etc. In addition, the Planck analysis
has also found a preference for a larger value of the lensing
parameter (Aghanim, 2018b) than it is expected. Some of these
anomalies were already observed by theWMAP satellite and even
by COBE. Hence, the consensus is that these signals are not due to
unaccounted systematics. Put it simply, there is no debate about
the fact that these are real features in the CMB [see e.g., (Schwarz
et al., 2016)]. However, the statistical significance with which
these features depart from the predictions of the ΛCDMmodel is,
though non-negligible, inconclusive, and the debate is rather
whether any of these features are significant enough to require
the introduction of new physics. Recall that the ΛCDM only
makes statistical predictions, and therefore none of these features
are actually incompatible with ΛCDM. But if we accept the
ΛCDM model, the observed features imply that we live in an
uncommon realization of the underlying probability distribution.
Another possibility is that some or all these features are signatures
of new physics, and they are in fact expected signals in a suitable
extension of the ΛCDM theory.

In recent work (Agullo et al., 2021a; Agullo et al., 2021b) we
proposed that a cosmic bounce before inflation naturally changes
the primordial probability distribution in such a way that, in a
statistical sense, the observed features are not anomalous. The
core of the idea is that a cosmic bounce generates strong
correlations (non-Gaussianities) between the longest modes we
observe in the sky and longer, super-horizon modes. We cannot
observe directly these correlations since some of the modes

involved have wave-lengths larger than the Hubble radius
today. But these correlations produce indirect effects in
observable modes, which can account for the observed
anomalies. The goal of this article is to apply the general ideas
introduced in (Agullo et al., 2021a; Agullo et al., 2021b) to LQC.
We will also take the opportunity to provide a succinct and
pedagogical introduction to CMB anomalies and the
phenomenon of non-Gaussian modulation, addressed to the
quantum cosmology community. See (Agullo and Morris,
2015; de Blas and Olmedo, 2016; Ashtekar and Gupt, 2017;
Agullo et al., 2020a; Ashtekar et al., 2020; Agullo et al., 2020b)
for other ideas to account for some of the features observed in the
CMB within LQC. In particular, the companion article (Ashtekar
et al., 2021) in this special issue, provides an interesting set of
complementary ideas and perspectives on the way LQC can
account for the CMB anomalies.

The plan of this article is as follows. In the next section, we
discuss the basic principles behind quantifying temperature
anisotropy and discuss the implications of statistical
homogeneity and isotropy for CMB anisotropies. Then, we
describe some of the anomalies observed by the Planck
satellite, which point to a violation of the underlying
assumption of statistical homogeneity and isotropy. In section
III, we describe the mechanism behind the phenomenon of non-
Gaussian modulation. In section IV, we provide a quick
description of the evolution of perturbations in LQC and
discuss the power spectrum and bispectrum generated therein.
We then apply non-Gaussian modulation to LQC in section V
and present our results. In this section, we describe how the
presence of non-Gaussian modulation in LQC makes these
anomalous features more likely to occur, in a way that they
are no longer anomalous. Finally, in section VI, we conclude with
a discussion of our results, its short comings, and future
directions.

II INTRODUCTION TO CMB ANOMALIES

The temperature T(n̂) of the CMB as a function of the direction n̂
is nearly uniform, making it convenient to split T(n̂) into an
isotropic part, the mean temperature T � 1

4 π ∫ dΩT(n̂), and the
anisotropic deviation from it

δT(n̂) ≡
T(n̂) − T

T
� ∑

ℓm

aℓm Yℓm(n̂), (2.1)

where in the last equality we have decomposed the function δT(n̂)
in spherical harmonics Yℓm. [see, for instance, (Durrer, 2008;
Weinberg, 2008)]. The mean temperature T is a free parameter of
the ΛCDMmodel, which is determined by observations. Our best
measurement of T comes from the FIRAS instrument in the
COBE satellite, and is measured T � 2.7260 ± 0.0013K (Fixsen,
2009).

TheΛCDMmodel predicts only the statistical properties of the
temperature map δT(n̂) or, equivalently, of the coefficients aℓm.
Therefore, the quantities we want to extract from observations are
the moments: 〈aℓmaℓ′m′〉, 〈aℓmaℓ′m′aℓ′m′ ,〉, etc. There are
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theoretical reasons, further supported by observations, to argue
that the probability distribution we are after is very close to
Gaussian, in which case the simplest non-zero moment,
〈aℓmaℓ′m′〉, is all we need (recall that a Gaussian distribution
is completely characterized by the mean and the variance).
Furthermore, the assumption of statistical homogeneity and
isotropy, on which the ΛCDM model rests, implies that
〈aℓmapℓ′m′〉 must be diagonal in ℓ and m, and m-independent

〈aℓm ap
ℓ′m′〉 � Cℓ δℓℓ′ δmm′ . (2.2)

In other words, homogeneity and isotropy imply that all
information contained in the second moments can be codified
in the m-independent coefficients Cℓ, for ℓ � 1, 2, 3, . . .. Cℓ is
known as the angular power spectrum.

The equivalent statement in angular space is that the second
moments of δT(n̂), C(θ) ≡ 〈δT(n̂) δT(n̂′)〉 can only depend on
the angle θ between the two directions n̂ and n̂′:

C(θ) ≡ 〈δT(n̂) δT(n̂′)〉 � 1
4π

∑
ℓ

(2 ℓ + 1)Cℓ Pℓ(cosθ). (2.3)

If the assumptions of statistical homogeneity and isotropy
break down, then the simple characterization of the two-point
correlations in terms of the simple quantity Cℓ or C(θ) becomes
insufficient, and one would have to work with the full covariance
matrix of aℓm or δT(n̂).

The angular power spectrum Cℓ is measured by averaging
the data from satellites. But, what is the correct notion of
average? Ideally, one would like to have different realizations
of the probability distribution (that is, different universes) and
take averages on them, which is closer to the way averages are
measured in quantum systems. Another possibility is to take
averages over the CMB temperature map observed from
different locations in the Universe. The ergodic theorem
relates both averages. Unfortunately, none of these two
strategies is available at the practical level. Rather, what is
done in practice is to take advantage of the m-independence of
the power spectrum Cℓ, and obtain it by averaging over its
value obtained from individualm’s (we actually observe δT(n̂),
but a simple computer code can translate the data to values of
aℓm). The limitation of this strategy is clear: we have 2ℓ + 1
values of m for each multipole ℓ, and consequently the
uncertainty about the value of Cℓ obtained in this way will
be large for small values of ℓ. This uncertainty is known as
cosmic variance, and it is quantified by ±

��������
2/(2ℓ + 1)

√
Cℓ . It is

not difficult to translate this uncertainty to angular space, and
the result is ± σ(C(θ)), with

σ2(C(θ)) � 1
8 π2

∑
ℓ

(2 ℓ + 1)C2
ℓ
P2
ℓ
(cosθ). (2.4)

Cosmic variance is an intrinsic limitation of cosmological
observations, and cannot be overcome by building more
precise instruments. Therefore, in making predictions for Cℓ

or C(θ), one needs to keep in mind this inherent uncertainty.
We now discuss the anomalous features that have been

observed in CMB. The Planck team has carried out several

tests to check the statistical isotropy of the CMB (Ade, 2014;
Ade, 2016a; Akrami et al., 2019). The CMB is a spherical shell of
radiation, which captures a spherical sample of the density
perturbations at the time of decoupling in the early Universe.
Hence, deviations from isotropy in the CMB sphere will signal
deviation from statistical homogeneity or isotropy in the early
Universe. Since, as emphasized above, the predictions from the
ΛCDM model are statistical, a key aspect of the analysis is to
quantify the statistical significance of any observed departure
from the theory. In statistical parlance, this is known as
hypothesis testing, wherein a null hypothesis, which in this
case is the ΛCDM model, is compared with observations. The
departure from the null hypothesis is often quantified in terms of
the so called p-value. Given a null hypothesis, the p-value is the
probability with which a certain phenomenon can occur. If the p-
value of an observed feature is zero, the null hypothesis is
automatically considered as incorrect. A very small value of
the p-value, would rather rule out the hypothesis with a
statistical significance given by 1 − p. The concept is visually
illustrated in Figure 1: the p-value corresponds to the area of the
shaded region.

In order to quantify an anomaly, the first step is to choose an
observable of interest, which will serve as the indicator of the
anomaly. Rather than analytically deriving the probability
distribution of the chosen observable out of the theory, a task
that may be difficult for some observables, in practice it is often
more convenient to estimate the p-value numerically. This can be
done by simulating a large number of random realizations of the
CMB temperature map from the probability distribution of the
ΛCDM model—using the best fit for the free parameters—and
computing the p-value of the chosen observable from them. This
is the way the Planck collaboration has evaluated the p-value of
the anomalies discussed below (Ade, 2014; Ade, 2016b). For

FIGURE 1 | Illustration of the concept of p-value. The figure shows the
probability distribution of a certain observable X according to the null
hypothesis in black. The value of X that is actually observed is shown in red.
Although the expected value of X is zero, the observation is not
incompatible with the theoretical prediction, given the statistical character of
the later. The shaded area gives us the p-value of the observed value of X. As it
is evident from the figure, a smaller p-value implies a larger departure from the
null hypothesis.
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example, if only five simulations out of a thousand lead to a value
of an observable which is at least as extreme as the observed value,
they would report a p-value of 0.005 for that observation, or
equivalently 0.5%. The anomalies considered in this article have
p-value ≤ 1% (Schwarz et al., 2016). In the remaining part of this
section, we briefly describe the anomalies that we consider in this
article.

A Power Suppression
Data from the satellites COBE (Hinshaw et al., 1996), WMAP
(Bennett et al., 2003) and Planck (Akrami et al., 2019), have
consistently found a lack of two-point correlations at low
multipoles, or at large angular scales, compared to what is
expected in the ΛCDM model. Visually, this lack of
correlations is evident in the real space two-point correlation
function C(θ), shown in the right panel of Figure 2: for angles
larger than 60°, the two-point function is surprisingly low. The
WMAP team had come up with an appropriate observable to
quantify this lack of power (Spergel et al., 2003). It is defined by

S1/2 � ∫1/2

−1
C(θ)2 d(cosθ). (2.5)

Its physical meaning is obvious: it captures the total amount of
correlations squared (to avoid cancellations between positive and
negative values of C(θ)) in angles θ > 60°. The ΛCDM model
predicts S1/2 ≈ 42000 μK4, while the Planck satellite has reported a
measured value1 of S1/2 � 1,209.2 μK4 (Akrami et al., 2019), which
corresponds to a p-value less than 1% [≤0.5% according to
(SchwarzSchwarz et al., 2016)]. Put in simpler terms, this p-
value tells us that if we were able to observe one thousand
universes ruled out by the ΛCDM model, only about a
handful will show such a low value of S1/2.

B Dipolar Modulation Anomaly
A second important anomaly that has been also observed by
multiple satellites, is the presence of a dipolar modulation of the
entire CMB signal (Akrami et al., 2019). This dipole should not be
confused with the multipole ℓ � 1. Rather, the anomaly makes
reference to correlations between multipoles ℓ and ℓ + 1, which
can be explained by a modulation of dipolar character, as we
further discuss below.

Such modulation was first modeled mathematically in
(Gordon et al., 2005), by adding a simple dipole to the
temperature map as follows

T(n̂) � T0(n̂) 1 + A1 n̂ · d̂],[ (2.6)

where T0(n̂) is the unmodulated (statistically isotropic)
temperature field, A1 is the amplitude of the modulation, and
d̂ its direction. It is easy to check that such modification affects
not only the ℓ � 1 angular multipole, but actually all multipoles
equally, and for this reason it is known as a scale-independent
dipolar modulation. Its main effect is to create correlations
between multipoles ℓ and ℓ + 1. Such correlations, as
mentioned above, violate isotropy [see Appendix B of (Agullo
et al., 2021b) for further details].

The Planck team has carried out a likelihood analysis of
such modulation of the CMB, and arrived at constraints on the
amplitude and direction of the dipolar modulation in different
bins of multipoles ℓ. Surprisingly, the analysis has revealed a
non-zero amplitude of the dipolar modulation only for low
multipoles, in the bin ℓ ∈ [2, 64]. The amplitude reported in
this bin is A1 ≈ 0.07 (Ade, 2016a), and the significance of the
detection is greater than 3σ. This reveals, not only a significant
deviation of the ΛCDM model, but also that the dipolar
modulation is scale-dependent, since it only appears for low
multipoles. Therefore, the simple model (Eq. 2.6) is
insufficient to account for the observed modulation. Finding

FIGURE 2 | The TT power spectrum in the multipole (A) and angular space (B) generated in the standard model corresponding to the best fit parameters provided
by Planck. The blue shaded region indicates the uncertainty due to cosmic variance. The black dots with error bars are the data from Planck. Note that the observed
quadrupole is quite low compared to the prediction from the standard model, although it is compatible with the prediction within 1σ when we account for cosmic
variance. The lack of power at large angular scales is more evident in the angular power spectrum, where the power is considerably low for angular scales greater
than 60°. Furthermore, the amplitude of the predicted power is larger than the observed one by more than 1σ for the largest angular scales and for angles between ≈60°

and 80°.

1The value of S1/2 varies a bit depending on the choice of map and the mask used.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org August 2021 | Volume 8 | Article 7038454

Agullo et al. CMB Anomalies, Non-Gaussianity and LQC

179

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


a mechanism to generate a scale-dependent dipolar
modulation, without introducing other undesired effects,
has challenged the imagination of theorists during the last
decade (Dai et al., 2013).

C Parity Anomaly
Observations from both WMAP and Planck have found a
preference for odd parity two-point correlations, as opposed
to the predictions of the standard ΛCDMmodel, which predicts
that the primordial perturbations generated in our Universe are
parity neutral. The parity of the primordial perturbations can be
studied by analyzing the multipoles in the range [2, 50], known
as the Sachs-Wolfe plateau. This range of multipoles
corresponds to long wavelength perturbations which entered
the horizon in the recent past, and hence have been relatively
unmodified by late time physics. The asymmetry in the parity
can be quantified using the estimator

RTT
ℓmax( ) � D+ ℓmax( )

D− ℓmax( ), (2.7)

where D±(ℓmax) quantify the sum of power contained in even (+)
or odd (−) multipoles, up to ℓmax. More specifically, D±(ℓmax) are
defined as

D± ℓmax( ) � 1
ℓ
±
tot

∑±
2,ℓmax

ℓ(ℓ + 1)
2 π

Cℓ (2.8)

where the + or − signs on the right refer to the fact that we include
only even or odd multipoles in the sum, respectively, and ℓ

±
tot

refers to the total number of multipoles in the sum. Figure 3
illustrates that CMB data in the multipole range of [2, 50] shows a
clear preference for odd parity compared to the parity neutral,
i.e., RTT(ℓmax) � 1, prediction of the standard model. Although
this anomaly, as well as the anomaly in the lensing amplitude
discussed in the next subsection, are not as severe as the previous
ones due to their lower statistical significance (≲ 2σ), we will later
argue that they may be related to the power suppression.

D Lensing Amplitude Anomaly
The cosmic microwave background radiation undergoes lensing
by the intervening distribution of matter, as it propagates from
the surface of last scattering to us. An important observable in
the CMB, in addition to temperature and polarization, is the
lensing potential. From the CMB maps, Planck has
reconstructed the lensing potential and computed its power
spectrum (Aghanim, 2018b). The effect of lensing is the
smoothing of CMB power spectrum at small angular scales.
The amount of smoothing observed in the CMB angular power
spectrum should be consistent with the smoothing derived from
the power spectrum of the lensing potential. In order to check
this consistency, (Aghanim, 2018a), considered a test-
parameter, known as the lensing parameter AL, that
multiplies the lensing power spectrum. Theoretically, the
value of lensing parameter should be AL � 1, and in fact
Planck assumes this value during the process of parameter
estimation. However, if AL is left as a free parameter, along
with the six parameters of the ΛCDM model, in the Markov
Chain Monte Carlo (MCMC) analysis, one finds that AL �
1.243 ± 0.096 for PlanckTT + lowE data, which is more than 2σ
away from one. If the reconstructed lensing data is also used,
along with Planck EE and TE data, then the lensing parameter is
consistent with 1 within 2σ.

A key feature of the anomalies discussed above, except perhaps
for the lensing anomaly, is that they appear clearly associated with
the largest angular scales we can observe. This suggests a common
origin in primordial physics for these diverse set of anomalies.
The next section introduces a proposal for a mechanism that can
provide such common origin, namely the phenomenon of non-
Gaussian modulation. Together with the scale dependence
introduced by the quantum bounce of LQC, this mechanism
constitutes a promising candidate for the origin of the anomalies
we have just described.

III NON-GAUSSIAN MODULATION

Temperature anisotropies in the CMB are a consequence of the
evolution of photons and other constituents of the Universe in a
perturbed spacetime. Since the observed anisotropies are small,
δT/T ∼ 10−5, perturbation theory is an appropriate tool. If the
primordial perturbations in the metric generated in the early
Universe were exactly linear,2 then only those perturbations
with wavelengths smaller than the radius of the Hubble horizon
today would be able to affect the CMB. On the contrary, non-
linear effects, generically known as non-Gaussianity, couple
modes of different wavelengths, and make it possible that
primordial perturbations with wavelengths larger than the
Hubble radius today can impact what we observe in the
CMB (Schmidt and Kamionkowski, 2010; Jeong and
Kamionkowski, 2012; Dai et al., 2013; Schmidt and Hui,
2013; Agullo, 2015; Adhikari et al., 2016). We will refer to

FIGURE 3 | RTT(ℓmax) generated in the standard model (blue) along with
2σ shaded contours arising from cosmic variance. Black points are the
observations by Planck. The observed value of RTT(ℓmax) for most points is
lower than the predictions of the standard model by more than 1σ.

2Strong non-linearities are important at late times in the Universe during structure
formation, but not to explain the CMB.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org August 2021 | Volume 8 | Article 7038455

Agullo et al. CMB Anomalies, Non-Gaussianity and LQC

180

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


this phenomenon as non-Gaussian modulation of the CMB.
Since long wavelength, super-horizon modes do not evolve with
time, we could treat them as spectator modes, whose role is to
influence, or bias, sub-horizon modes.

Primordial perturbations are random variables with zero
mean and a variance characterized by the two-point
correlations discussed in the previous section. We will
show that one consequence of the coupling between super-
horizon and sub-horizon wavelengths is to modify the two-
point correlation functions (Schmidt and Hui, 2013; Agullo,
2015; Adhikari et al., 2016). Though the mean value of the
primordial perturbations is not modified, the variance is, in
such a way that certain features in the CMB are more likely to
be observed than in the absence of non-Gaussian correlations,
and consequently they should not be considered as
anomalous. In this section, we will describe the essential
features of the mechanism of non-Gaussian modulation.
We will split the discussion in two parts: in the first one,
we will discuss the modulation of the primordial power
spectrum due to non-Gaussian correlations with a
spectator mode, and in the second part, we describe the
effect of such a modulation on the CMB TT angular power
spectrum.

A Non-Gaussian Modulation of Primordial
Perturbations
We are interested in computing the two-point correlation
function of the curvature perturbation Rk⃗ for a mode k⃗ that is
observable in the CMB, in the presence of a longer wavelength
mode Rq⃗ , when both modes are correlated.

A convenient and general way to model the effects of non-
Gaussian correlations, is to write the curvature perturbations at a
given time t in terms of a Gaussian field RG as follows (Schmidt
and Kamionkowski, 2010)

Rk⃗(t) � RG
k⃗
(t) + 1

2
∫ d3q

(2π)3 fNL(q⃗ , k⃗ − q⃗ )RG
q⃗ (t)RG

k⃗−q⃗(t).
(3.1)

The convolution in the integral is the Fourier transform of a
quadratic combination ofRG in position space, and is the source
of the non-Gaussian character of Rk⃗ (t), and the function
fNL(k⃗1, k⃗2) contains the information about the strength and
details of the non-Gaussianity. The goal of this equation is
simply to parameterize the non-Gaussianity in a simple and
tractable way, while the form of the function fNL(k⃗1, k⃗2) is
expected to come from a concrete microscopic model of the
early Universe.

Statistical isotropy and homogeneity implies that the function
fNL(k⃗1, k⃗2) depends only on the modulus of the two
wavenumbers involved, k1 ≡ |k⃗1| and k2 ≡ |k⃗2|, and on the
(cosine of the) angle between them, μ:
fNL(k⃗1, k⃗2) � fNL(k1, k2, μ). From it, the three-point correlation
function is given by 〈Rk⃗1

Rk⃗2
Rk⃗3

〉 � (2π)3

δ(k⃗1 + k⃗2 + k⃗3)BR(k⃗1, k⃗2, k⃗3), where the bispectrum
BR(k⃗1, k⃗2, k⃗3) is

BR(k⃗1, k⃗2, k⃗3) � fNL(k⃗1, k⃗2) [PR(k⃗1)PR(k⃗2) + PR(k⃗2)PR(k⃗3)
+ PR(k⃗3)PR(k⃗1)],

(3.2)
and PR(k⃗ ) is the power spectrum of RG, defined as

〈RG
k⃗1
RG*

k⃗2
〉 � (2π)3 δ(k⃗1 − k⃗2) PR(k⃗1). (3.3)

The dimensionless power spectrum is defined as PR(k⃗ ) �
k3 PR(k⃗ )/2π2.

Our goal is to compute the two-point function of Rk⃗ in the
presence of the spectator mode Rq⃗ . Using (Eq. 3.1), one obtains

〈Rk⃗1
Rp

k⃗2
〉|Rq⃗

� 〈RG
k⃗1
RGp

k⃗2
〉 + 1

2
∫ d3q′

(2π)3 fNL(q′⃗, k⃗2 − q′⃗)

× 〈RG
q′⃗ RG

k⃗1−q′⃗R
G*
k⃗2
〉 + 1

2
∫ d3q′

(2π)3 fNL(q′⃗, k⃗ 2 − q′⃗)

× 〈RG
k⃗ 1
RGp

q′⃗RGp

k⃗2−q′⃗〉 +O(f 2NL).
(3.4)

In order to evaluate the impact of the spectator modes RG
q⃗
, it

must be taken out of the statistical average

〈Rk⃗1
Rp

k⃗2
〉|Rq⃗

� (2π)3 δ(k⃗ 1 − k⃗ 2) PR(k⃗ 1)

+ fNL(k⃗1,−k⃗ 2) 12 PR(k⃗ 1) + PR(k⃗ 2)( )Rq⃗ +/ .

(3.5)

where the trailing dots indicate terms that are higher order in
non-Gaussianity, and will be subdominant.

It is interesting to note the following facts about the above
expression. First of all, non-Gaussianity leads to a modulation of
the primordial power spectrum, and the strength of modulation
depends on both the size and shape of fNL(k⃗1, k⃗2), as well as the
size of the spectator mode Rq⃗ . Secondly, statistical isotropy and
homogeneity constrain the wavenumber of the spectator mode to be
q⃗ � k⃗1 − k⃗2. In other words, this is the onlymode that can affect the
two-point correlation function between k⃗1 and k⃗2. Additionally, the
effect of themodulation is to introduce “non-diagonal” elements in the
two-point function, i.e., terms not proportional to δ(k⃗1 − k⃗2). But
recall that such non-diagonal terms break homogeneity and isotropy.
It is not surprising that we see deviations from these fundamental
symmetries, since we are not averaging over the spectator mode: such
average would make those terms disappear, since 〈RG

q⃗ 〉 � 0. But, as
it happens for the magnitude of the temperature anisotropies, the
quantity that is more interesting for observations is the typical value of
such term, and not only its statistical average.

B Non-Gaussian Modulation of CMB
The primordial perturbations Rk⃗ are related to the CMB
multipole coefficients aℓm through the relation

aℓm � 4π ∫ d3k

(2π)3 (−i)
ℓ Δℓ(k)Yp

ℓm(k̂)Rk⃗, (3.6)

where Δℓ(k) are the CMB temperature transfer functions, which
encode the post-inflationary evolution of the perturbations from
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the re-entry of perturbations into the horizon during late
radiation domination till today. From this equation, one can
compute the covariance matrix

〈aℓmapℓ′m′〉 � (4π)2 ∫ d3k1
(2π)3 ∫ d3k2

(2π)3 (−i)
ℓ−ℓ′ Δℓ(k1)Δℓ′(k2)

Y *
ℓm(k̂1)Yℓ′m′(k̂2) 〈Rk⃗1

Rp

k⃗2
〉|Rq⃗

,

(3.7)

which is obtained from the two-point functions of the curvature
perturbations given in (Eq. 3.5). Upon expanding fNL in terms of
Legendre polynomials, fNL(k1, q, μ) � ∑LGL(k1, q) 2L+1

2 PL(μ), and
using the multipole expansionRG

q⃗ � ∑L′M′RG
L′M′ (q)YL′M′ (q̂), one

can write (Eq. 3.7) as (Agullo et al., 2021b)

〈aℓmapℓ′m′〉 � Cℓ δℓℓ′δmm′ + (−1)m′ ∑
LM

ALM
ℓℓ′ C

LM
ℓmℓ′−m′ . (3.8)

The above expression consists of two terms. The first term is
the usual temperature power spectrum that is diagonal in ℓ andm.
The second term arises from the non-Gaussian modulation and,
as before, introduces non-diagonal terms. CLM

ℓmℓ′m′ are Clebsch-
Gordan coefficients, and the information about the primordial
non-Gaussianity is encoded in the coefficients

ALM
ℓℓ′ � 4

(2π)3 ∫ dk1 k
2
1 dq q

2 (−i)ℓ−ℓ′ Δℓ(k1)Δℓ′(k1) PR(k1) GL(k1, q)RG
LM(q)

× CL0
ℓ0ℓ′0

��������������
(2ℓ + 1)(2ℓ′ + 1)

4π (2L + 1)

√
.

(3.9)

These coefficients are known as bipolar spherical harmonic
(BipoSH) coefficients (Hajian and Souradeep, 2003; Joshi et al.,
2010). As we shall see, the BipoSH coefficients provide a
convenient way to organize the effects of the non-Gaussian
modulation.

The Clebsch-Gordan coefficients present in the above
expressions enforce certain properties on the BipoSH
coefficients. In particular, Clebsch-Gordan coefficients
CLM
ℓ1 ,m1 ,ℓ2 ,m2

are nonzero only if ℓ1 + ℓ2 ≥ L ≥ |ℓ1 − ℓ2| and if
M � m1 + m2. This, together with properties of the Clebsch-
Gordan coefficient CL0

ℓ0ℓ′0, implies that, if

i. L � 0, then ℓ1 � ℓ2

ii. L � 1, then |ℓ1 − ℓ2| � 1
iii. L � 2, then |ℓ1 − ℓ2| � 0, 2, etc.

Thus, a non-zero value of ALM
ℓℓ′ for L � 0 can be absorbed in the

diagonal angular power spectrum Cℓ. A non-zero value ofALM
ℓℓ′ for

L � 1 induces correlations between multipoles ℓ and ℓ + 1, or in
other words, a dipolar modulation. L � 2 induces a quadrupolar
modulation, etc. The presence of a large dipolar or higher
multipole modulation would appear in the CMB as
correlations between multipoles ℓ and ℓ + 1, which implies a
departure from isotropy, as described in section II. This
departure from isotropy is a consequence of the concrete
realization of the spectator mode Rq⃗ in our local Universe.

One would need to average among the observation of the
CMB from distant places in the cosmos to conclude that such
violation of isotropy is not fundamental, but rather the imprint of
strong correlations with super-horizon modes Rq⃗ .

Two remarks are in order now.
i. The strength of non-Gaussian modulation is dictated by the

size of fNL(k1, q, μ). But it is the dependence of fNL on μ, the cosine
of the angle between k⃗ 1 and q⃗ , what determines the relative size
of the BipoSH coefficients for different L’s, i.e., the “shape” of the
modulation. On the other hand, the dependence of fNL on the
moduli k1 and q determines the ℓ-dependence of the modulation.
The two multipoles should not be confused: the L-dependence
dictates the shape of the modulation, while the ℓ-dependence
controls the variation of the amplitude of the modulation at
different angular scales in the CMB. The non-Gaussianity
generated in slow-roll inflation is small and nearly scale-
invariant. Hence, the strength of modulation generated is also
quite small. Since the anomalies observed in the CMB are scale
dependent, we need a scenario with a strongly scale-dependent
and large non-Gaussianity. Such scale dependence is also needed
to explain why we have not observed non-Gaussian correlations
directly in the CMB, since a strong scale dependence can make
these correlations large only when at least one super-horizon
mode is involved. In such situation, we could only observe the
indirect effects that the non-Gaussian correlations induce in
the CMB.

ii.ALM
ℓℓ′ given in (Eq. 3.9) depend on the modeRG

�q . Since,RG
�q is

a random variable, we cannot predict the exact value of ALM
ℓℓ′ . We

can only compute the standard deviation of the BipoSH
coefficients, i.e.��������

〈|ALM
ℓℓ′ |2〉

√
� 1

2π
∫ dq q2 PR(q) |CL

ℓℓ′(q)|2[ ]1/2

× CL0
ℓ0ℓ′0

��������������
(2ℓ + 1)(2ℓ′ + 1)

4π (2L + 1)

√
, (3.10)

where

CL
ℓℓ′(q) ≡

2
π
∫ dk1 k

2
1 (i)ℓ−ℓ′ Δℓ(k1)Δℓ′(k1) PR(k1)GL(k1, q).

(3.11)

These are the typical values that the BipoSH coefficients are
expected to take in the sky. If these values are large, the effects
they entail should be expected in the CMB or, more precisely, they
would have a large p-value and should not be considered
anomalous.

IV LOOP QUANTUM COSMOLOGY

LQC describes the spacetime geometry in the quantum language
of loop quantum gravity. As discussed before, we consider in this
paper an early Universe sourced by a scalar field, which drives the
Universe to an inflationary phase after the bounce. The bounce
introduces a new physical scale to the problem, which can be
defined either from the value of the energy density or from the
Ricci scalar at the bounce. Perturbations, both scalar and tensor,
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are sensitive to this new scale, and their propagation across the
bounce amplifies them, for the same reason that propagation
across the inflationary phase does. As a consequence,
perturbations reach the onset of inflation in an excited and
non-Gaussian state, rather than the Bunch-Davies vacuum
commonly postulated. These excitations lead to a strongly
scale-dependent power spectrum and bispectrum of primordial
perturbations. In this section, we will briefly review some of the
essential features of perturbations generated in LQC, and in the
next section we will describe how these features can account for
the anomalous signals observed in the CMB. For further details,
see (Ashtekar et al., 2006b; Agullo et al., 2012; Agullo et al., 2013a;
Agullo et al., 2013b; Agullo and Morris, 2015; Agullo, 2018).

ABackground Dynamics and Free Evolution
of Perturbations
Consider a spatially flat Friedmann-Lemaitre-Robertson-Walker
spacetime. We shall describe the perturbations following the
dressed metric approach. This approach has been discussed in
(Agullo et al., 2012; Agullo et al., 2013a; Agullo et al., 2013b;
Agullo and Morris, 2015; Agullo et al., 2018) [for a recent review,
see (Agullo et al., 2017a)] and we refer the reader to these
references for details omitted here. For the purpose of this
article, it suffices to say that we consider perturbations as test
fields propagating on the background described by the effective
equations of LQC (Taveras, 2008; Ashtekar and Singh, 2011;
Agullo et al., 2017a). The essential features of perturbations
generated in LQC can be summarized using Figure 4. The left
panel of this figure plots a

����|R/6|√
as a function of time, where a

refers to the scale factor and R is the Ricci scalar. In making this
plot, we have worked with a scalar field governed by a quadratic
potential, and minimally coupled to gravity. Similar results are
obtained for other potentials (Bonga and Gupt, 2016a; Bonga and
Gupt, 2016b; Zhu et al., 2017). Different solutions to the effective
equations of LQC with a scalar field as the dominant source are

parameterized by the value of the scalar field at the bounce. As we
further discuss below, different choices of this quantity translate
to different amounts of cosmic expansion from the bounce to the
end of inflation. The Ricci scalar attains its largest value at the
bounce, and its maximum value sets a characteristic scale in LQC
denoted by kLQC ≡ a(tB)

������
R(tB)/6

√
≈ a(tB)

����
κ ρB

√
, where tB

indicates the time of the bounce and ρB is the energy density
of the scalar field at the time of the bounce. As the inset in the plot
shows, inflation occurs at late time, when a

����|R/6|√
grows

exponentially fast. Regarding scalar perturbations, they are in
an adiabatic regime before the bounce, and we choose them to
start in an adiabatic vacuum at those early times [see e.g., (Agullo,
2015; Agullo and Morris, 2015; de Blas and Olmedo, 2016;
Ashtekar and Gupt, 2017; Elizaga Navascués et al., 2019;
Navascués et al., 2020; Martín-Benito et al., 2021) for other
choices of initial state]. As perturbations evolve across the
bounce, modes with wavenumbers k ≲ kLQC are excited. These
excitations get further amplified as they cross the curvature scale
during inflation. Wavenumbers that are ultraviolet compared to
kLQC, k > kLQC, are not excited during the bounce, and remain in
the adiabatic vacuum at the onset of inflation. Hence, only for
those modes one recovers the familiar Bunch-Davies vacuum at
the onset of inflation, while more infrared modes keep memory of
the bounce. Consequently, as shown in Figure 4, the power
spectrum of curvature perturbations shows a strong scale
dependence at infrared scales, while approaches the more
familiar scale-invariant shape for large k’s. In particular, we
see that the power spectrum for infrared modes k ≲ kLQC is
enhanced and oscillatory. In the extreme infrared limit, modes are
neither excited during bounce nor during inflation, and this leads
to a power spectrum which scales as k2. The scale at which these
effects appear in the CMB depends on the physical size of the
mode kLQC today, compared to the Hubble scale [recall that the
physical wavenumber scales with time as kLQC/a(t)]. This
depends on the expansion accumulated—i.e., the number of e-
folds N—from the time of the bounce until the end of inflation.

FIGURE 4 | Left: Evolution of the Ricci scalar in LQC. This plot corresponds to a solution of the effective equations with 71 e-folds of expansion between the bounce
and the end of inflation. Right: Primordial power spectrum of perturbations starting in an adiabatic initial state before the bounce in LQC. The gray dots correspond to
numerically-obtained data for individual values of k, while the continuous black line is the average of the grey dots. This plot is obtained for the background geometry
showed in the left panel.
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This is a free parameter in LQC. In this article, we investigate
whether there is a value of N for which this model can explain the
origin of the anomalies in the CMB.

B Generation of Primordial Non-gaussianity
The dressed metric approach was extended beyond linear
perturbation theory in (Agullo, 2018), and we provide here a
short summary. Primordial curvature perturbations whose
wavenumbers are comparable to or smaller than kLQC not only
get excited, as described above, but also become non-Gaussian as
they cross the bounce. The non-Gaussianity thus generated is
further enhanced as the perturbations cross the horizon during
inflation. Equal-time three-point functions are computed using
time dependent perturbation theory, generalizing the pioneering
calculations in (Maldacena, 2003) to bouncing geometries:

〈0|R̂k⃗1
te( ) R̂k⃗2

te( ) R̂k⃗3
te( )|0〉

� i ∫te

ti

dt′ 〈0| R̂k⃗1
(t) R̂k⃗2

(t) R̂k⃗3
(t), Ĥint t′( )]|0〉,[ (4.1)

where Ĥint is the interaction Hamiltonian [whose lengthy
expression can be found in (Agullo et al., 2018)], ti refers to
the time at which initial conditions are imposed and te is the time
at which the correlation is evaluated. Usually, te is chosen at the
end of inflation, after all the three modes have crossed the Hubble
radius. With the knowledge of the background dynamics and the
initial conditions, we can exactly evaluate the three-point
function and hence obtain the function fNL(k⃗ 1, k⃗ 2) which
characterizes the non-Gaussianity. Our exact computations
reveal that the non-Gaussianity generated in LQC is strongly
scale-dependent, large and oscillatory, similar to the power
spectrum. As for the power spectrum, the non-Gaussianity
quickly approaches the inflationary result for wave numbers
k > kLQC (Agullo, 2018; Sreenath et al., 2019), and in
particular they become negligibly small when the moduli of
the three wave numbers k⃗ 1, k⃗ 2 and k⃗ 1 − k⃗ 2 are larger
than kLQC, in such a way that they are too small to be
observed directly in the CMB. However, the non-Gaussianity
becomes large when at least one of the modes involved is infrared,
k < kLQC, or equivalently, when one of the modes has wavelength
larger than the Hubble radius today. These are the correlations
which can account for the CMB anomalies, as we argue in the
next section.

The strong oscillatory character of the non-Gaussianity
generated in LQC, makes it computationally difficult to obtain
an exact evaluation of (Eq. 3.10). For this reason, in this work,
rather than working with the exact numerically-evaluated non-
Gaussianity, we shall work with an analytical approximation
derived in (Agullo, 2018)

fNL k1, k2, k3( ) ≃ fNL e
−α k1+k2+k3( )/kLQC , (4.2)

where α � 0.647, fNL ≈ 2750, and k3 � k1

����������
1 + k22

k21
+ 2μ k2

k1

√
. The

value of α is determined from the behavior of the scale factor
around the time of the bounce, while the amplitude fNL is
determined from numerical simulations (Agullo, 2018). As
showed in (Agullo, 2018), this expression provides a good
approximation for the non-Gaussianity generated in LQC, and

is significantly easier to manipulate. This approximation,
however, neglects the oscillatory nature of fNL(k1, k2, μ) with
k1 and k2. The oscillations will generically reduce the size of the
effects we describe below. Therefore, the numbers obtained in the
next section should be understood as an upper bound for the
predictions of LQC, rather than an exact result. This is the main
technical limitation of our analysis, and it arises from the highly
oscillatory nature of the perturbations.

V RESULTS

In this section, we shall put the previous results together and
compute the root mean square value of the BipoSH coefficients
generated in LQC from (Eq. 3.10). We will show that the BipoSH
coefficients generated in this model are non-zero and have the
appropriate magnitude and scale dependence as demanded by
observations.

A Monopolar Modulation–Power
Suppression
We first consider the monopolar term (L � 0). The properties of
the Clebsch-Gordan coefficients for L � 0 impose the constraints
ℓ � ℓ′ and m � − m′. Therefore, the monopolar modulation
introduces an isotropic shift in the value of Cℓ, although the shift
can be different for different values of ℓ. More concretely, the
modulated power spectrum Cmod

ℓ
is given by

Cmod
ℓ

� Cℓ 1 − (−1)ℓ
Cℓ

A00
ℓ ℓ������

2 ℓ + 1
√( ). (5.1)

Note that A00
ℓ ℓ

can be either positive or negative, leading to an
enhancement or suppression of Cmod

ℓ
with respect to Cℓ. As

explained before, we cannot predict the exact value of A00
ℓ ℓ
.

The interesting quantity is rather the root-mean-square value
of the modulation:

FIGURE 5 | Root-mean-square of the monopolar modulation σ0(ℓ)
generated in LQC. Note the dependence of σ0 on ℓ. The scale dependence
introduced by the bounce in LQC makes the effects of the modulation
significant only for ℓ ≲ 30.
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σ20(ℓ) � 1

C2
ℓ

〈|A00
ℓ ℓ
|2〉

2 ℓ + 1
� 1

C2
ℓ

1
8π2

∫ dq q2 PR(q) |C0
ℓℓ
(q)|2,

(5.2)

where C0
ℓℓ
(q) was defined in (Eq. 3.11). This quantity determines

the typical size and scale dependence of the monopolar
modulation expected in the CMB. A large value of σ0 would
make deviations from the unmodulated power spectrum, Cℓ more
likely to be observed in the CMB. The result of our calculations,
using the power spectrum and the form of fNL(k1, q, μ) described
in the previous section, is plotted in Figure 5.

We will assume that the probability distribution for the
modulation is well approximated by a Gaussian, and hence
completely characterized by σ0(ℓ). This is a reasonable
approximation, since the deviations are expected to be of
second order in non-Gaussianity, and therefore very small.
With this probability distribution for the monopolar
modulation, we can now investigate the connection with the
power suppression observed in the CMB. In particular, we want
to answer the following question: what is the p-value given the
observed value of S1/2? We obtain that the probability to find S1/2
≤ 1,209.2 once the non-Gaussian modulation is taken into
account is approximately 16%. This is equivalent to saying
that the observed suppression is around one standard
deviation from the mean. Figure 6 shows the form of the T-T
power spectrum for a simulation for which the monopolar
modulation produces S1/2 in agreement with observation,
along with the 1σ confidence contour arising from cosmic
variance. For comparison, we provide the corresponding
quantities arising from the standard model, as well as data
from Planck (Aghanim, 2019).

These results show that, in presence of the LQC bounce
occurring before inflation, a power suppression as the one we
observe in the CMB should not be considered anomalous. It is
important to emphasize the precise sense in which the
suppression is explained: not because the theory predicts that
we should observe a suppression in the CMB, but rather because
the probability of observing such a suppression is much larger

than in the standard ΛCDM model with Bunch-Davies initial
conditions. In this sense, the resolution of the anomaly has
precisely the same character as its origin: probabilistic.

An important check is to confirm that the non-Gaussian effects
are not large enough to jeopardize the validity of the perturbative
expansion on which the calculations rest. This question was
explored in detail in Ref. (Agullo, 2018), confirming that, in
LQC, perturbation theory does not break down when non-
Gaussianity is included. Regarding the non-Gaussian
modulation discussed in this paper, we find that the correction
to the unmodulated angular power spectrum is not small, and it is
in fact a significant fraction of the final result, particularly for the
smallest multipoles. The relative contribution is, however, smaller
than one in all our calculations. In quantitative terms, the relative
contribution of the non-Gaussian modulation is of order
fNL

���PR
√

, which is smaller than one for fNL ∼ 103. More
importantly, higher order corrections introduce additional
powers of the power spectrum PR ≪ 1. So the next-to-leading-
order correction to the non-Gaussian modulation is of order
fNL(PR)3/2, which is negligible due to the smallness of PR.
Therefore, our results are robust under the addition of higher
perturbative corrections.

B Dipolar Modulation
Next, we discuss the effects of the L � 1, dipolar modulation,
induced by the BipoSH coefficients, A1M

ℓℓ+1, and compare the
results with those reported by Planck. As discussed in section
IIB, the Planck team quantifies the dipolar modulation in terms
of a scale-dependent amplitude A1(ℓ) (Ade, 2016a), which can be
related with the BipoSH coefficients A1M

ℓℓ+1 as follows. First, define
from A1M

ℓℓ+1 the multipole coefficients m1M by

A1M
ℓℓ+1 ≡ m1M G1

ℓℓ+1, where

G1
ℓℓ+1 ≡ Cℓ + Cℓ+1( )

��������������
(2ℓ + 1)(2ℓ + 3)

4π 3

√
C10

ℓ,0,ℓ+1,0
(5.3)

is called a form factor. The m1M(ℓ) defined above can take three
values corresponding to M � −1, 0, +1, and in general, they

FIGURE 6 | Form of the modulated power spectrum for a typical value of the suppression. The figure shows that the monopolar modulation can account for the
suppression of power at multipoles lower than ℓ ≈ 30 (A). In the (B), we also see that the suppression translates to a very low real space power spectrum C(θ) for θ ≥ 60°.
The shaded region shows cosmic variance, and the black dots data from Planck.
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depend on ℓ. From them, the amplitude of the dipolar
modulation is defined as

A1(ℓ) ≡
3
2

�������������������������
1
3π

|m1 −1|2 + |m1 0|2 + |m1 1|2( )√
. (5.4)

Hence, from the value of the root-mean-square ofA1M
ℓℓ+1 we can

obtain the root-mean-square of A1(ℓ). It is given by the
expression

A1(ℓ) � 3
2

1��
π

√ 1

Cmod
ℓ

+ Cmod
ℓ+1

�����������������������
1
2π

∫ dq q2 PR(q) |C1
ℓℓ+1(q)|2

√
,

(5.5)

where we have used the modulated (i.e., suppressed) Cmod
ℓ

since, as
emphasized in (Ade, 2016a), the dipole amplitude must be evaluated
relative to the observed angular power spectrum. Hence, the fact that
the observed Cmod

ℓ
are smaller than the ones predicted by ΛCDM,

increases the amplitude of the observed dipole. In this sense, the
power suppression and the dipolar modulation are not completely
independent. However, the amplitude of the dipole is ultimately
dictated from the angular μ-dependence of the primordial non-
Gaussianity fNL(k1, k2, μ).

The result for A1(ℓ) is plotted in Figure 7. We find that the
dipolar modulation is strongly scale-dependent, as a
consequence of the scale-dependent nature of the non-
Gaussianity. Although Planck observations for A1(ℓ) are
limited, in the sense that only its mean value in the range ℓ

∈ [2, 64] is reported, the order of magnitude and scale
dependence agree with our results.

We have also checked that higher order multipolar
modulations, L � 2, 4, . . . have amplitudes significantly
smaller than the dipolar one (Agullo et al., 2018), and
therefore additional modulations are not expected in the CMB
according to LQC, in agreement with observations. Hence,
interestingly, the form of fNL(k1, k2, μ) derived from LQC
produces a hierarchy in the amplitude of the modulations
which is dominated by a monopole, and a smaller dipole.

C Parity and Lensing Anomalies
In this subsection we briefly discuss the results for the parity and
lensing anomalies. As discussed in previous sections, the
statistical evidence for these two features is weaker than the
power suppression and the dipolar anomaly. Nevertheless, it is
interesting to see what the predictions of LQC are.

We find that the monopolar modulation induces also a
preference for odd parity multipoles ℓ, in agreement with
observations. After inspection, this fact is not surprising, and
it is a consequence of the simple fact that, in a power suppressed
angular power spectrum, the sum of ℓ(ℓ+1)

2 π Cmod
ℓ

starting from

FIGURE 7 | The dipole amplitude A1(ℓ) generated in LQC. Planck reports
a value of A1 ≈ 0.07 in the multipole bin ℓ ∈ [2, 64].

FIGURE 8 | RTT(ℓmax) for the modulated spectrum generated in LQC
(solid red). RTT(ℓmax) predicted in LQC shows a preference for odd parity for
low multipoles, unlike the one in the standard model (dashed, blue).

FIGURE 9 | Marginalised joint probability distribution of τ and AL

obtained fromMCMC simulation for the standard model and modulated LQC.
As we can see, AL � 1 lies within the 2σ contour for the modulated model, thus
bringing the lensing parameter closer to one.
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ℓ � 2 is larger for odd multipoles, precisely because the sum starts
at an even multipole—it would have been otherwise if the sum
starts at ℓ � 1. Therefore, we find that in LQC there is a preference
for odd-parity multipoles ℓ, as measured by RTT(ℓmax), and the
result is a consequence of the power suppression. We report our
result in Figure 8. For comparison, we provide the corresponding
values obtained in the ΛCDM model and the observations made
by Planck (Aghanim, 2019). Although the result for RTT(ℓmax)
from LQC is closer to the data, the value of RTT(ℓmax) observed by
Planck is smaller than what we find in LQC, but the significance
of the deviation is modest. In the absence of a better estimator for
the parity anomaly, it is not possible for us to make a more precise
comparison.

Yet another effect of the power suppression caused by the
monopolar modulation is the alleviation of the lensing tension.
The relation between a power suppression and the lensing
anomaly was discussed in (Ashtekar et al., 2020), also in the
context of LQC, and our analysis confirms the relation. The value
of AL is obtained from data by performing MCMC simulations
involving the standard six free parameters, together with the
lensing amplitude AL. We repeat the analysis with the modified
probability distribution obtained from LQC, using TT + lowE
data (Aghanim, 2019), and find that the marginalized mean value
of the lensing parameter is AL � 1.20 ± 0.092. This value is 3.5%
smaller than the result obtained from ΛCDM. This is a modest
change. However, as shown in Figure 9, the joint probability
distribution of τ-AL, with τ the optical depth, shows that the value
of AL � 1 is within 2 standard deviations, and it is in this
sense that the anomaly is alleviated. It should also be
noted, however, that the marginalized mean value of the χ2

statistic, which is a measure of the difference between the
predictions of the model and the data, scaled suitably by the
expected error (Barlow, 1989), is larger for the modulated model
by Δχ2 � 5.29. This lower value of the lensing parameter AL can be
explained due to the slightly larger value of τ. This is because a
larger value of τ implies a slightly larger value of the scalar
amplitude As, which in turn leads to a smaller value of AL

(Ashtekar et al., 2020).

VI DISCUSSION

The success of any theory seeking to describe the unknown rests
on two criteria: it should be consistent with known facts and at the
same time be able to make new predictions. Loop quantum
cosmology, as an effort to extend the ΛCDM model to the
Planck regime, has met the first criterion since, when
combined with inflation, it is able to overcome the limitations
of general relativity and to produce a nearly scale-invariant power
spectrum and bispectrum for almost all scales in the CMB. As far
as the second aspect is concerned, LQC predicts that, if we
consider adiabatic initial conditions for perturbations before
the bounce, the primordial power spectrum and bispectrum
deviate from scale invariance at wavenumbers k ≲ kLQC. The
question is whether these features occur at scales that are
observable today. If this is the case, then we may keep the
hope to use observations to confirm some of the predictions

of LQC, and to further refine the theory. It is with this second
aspect in mind that we investigate the link between the enhanced
and scale-dependent perturbations generated in LQC and the
CMB anomalies.

CMB anomalies, as we discussed in section II, include several
features that have been observed, mostly at large angular scales in
the CMB. The genuineness of these features is not under dispute.
However, if considered individually, the p-values of these features
are not small enough to unambiguously establish a statistically
significant departure from the standard model. In other words,
the possibility that some of these features appear in the CMB in a
Universe governed by the standard ΛCDM model is not
negligible. However, the fact that all these seemingly distinct
features occur together in our Universe imply that we either live
in a rare realization of the probability distribution of the ΛCDM
model, or that new physics is needed. In this paper, we have
explored the second possibility in the context of LQC.

In this scenario, the cosmic bounce modifies the initial state of
the Universe from which inflation and the ΛCDM model take
over. The most relevant aspect comes from the fact that the
bounce generates strong correlations between the longest
wavelengths we can observe in the CMB and longer, super-
horizon perturbations. These correlations, although cannot be
observed directly in the CMB—because they involve at least one
super-horizon mode—bias the form of the observed power
spectrum. This bias translates in a higher probability for
certain features to be realized in our CMB. We find it
interesting that such an effect can simultaneously produce a
suppression and a dipolar modulation in the sky, both
compatible with observations. These two features were thought
to be unrelated, and LQC provides a common origin for both of
them. It is important to keep in mind that the origin of the
anomalies is probabilistic, and the way LQC can account
for them is by modifying the probability distribution. For
instance, the dipole asymmetry does not arise in LQC as the
result of breaking isotropy at the fundamental level, but rather
because in a non-Gaussian Universe the size of the anisotropies
expected to be found by a typical observer are larger than in a
Gaussian theory.

In our calculation we have adjusted a free parameter in LQC,
which controls the amount of expansion accumulated from the
bounce to the end of inflation. The statement is, therefore, that
there exist a value of this parameter for which the observed
anomalies can originate from LQC (this value is ≈71 e-folds, and
it includes the expansion during both the inflationary and the
pre-inflationary epochs). Our calculations also involve some
approximations and limitations, and in particular we have not
been able to account precisely for the effects of the oscillations in
the bispectrum. It would be desirable to investigate the way these
oscillations convolve with the power spectrum and transfer
functions in order to understand their effect on CMB.
Furthermore, the data quantifying the anomalies is limited, as
it is based on simple estimators such as S1/2 and the binned value
of the dipolar amplitude A1(ℓ). Additional data, for instance
coming from tensor modes, would allow a more precise
comparison of our ideas with observations. But in spite of
these limitations, we find remarkable that the bounce of LQC
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can produce effects in the CMB which are in good consonance
with the observed anomalies, regarding both the order of
magnitude of the amplitudes as well as their scale dependence.
The possibility that the observed features are informing us about
the Planck era of the cosmos is mind-blowing, and certainly
deserves further attention. Our contribution should be
considered as a first step in this direction.

Finally, in this work we have assumed adiabatic initial
conditions for the scalar perturbations before the bounce,
wherein the unmodulated primordial power spectrum
generated in LQC is enhanced at super-horizon scales. There
has been a proposal in LQC (Ashtekar and Gupt, 2017; Ashtekar
et al., 2020) for different initial conditions, which leads to a
suppressed power spectrum even before considering the non-
Gaussian modulation. It would be interesting to combine both
sets of ideas and compute the effect of non-Gaussian modulation
in that model.
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