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Robot-Guided Evacuation as a
Paradigm for Human-Robot
Interaction Research
Alan R. Wagner*

Robot Ethics and Aerial Vehicles Laboratory, Department of Aerospace Engineering, The Pennsylvania State University, University
Park, PA, United States

This paper conceptualizes the problem of emergency evacuation as a paradigm for
investigating human-robot interaction. We argue that emergency evacuation offers
unique and important perspectives on human-robot interaction while also demanding
close attention to the ethical ramifications of the technologies developed. We present a
series of approaches for developing emergency evacuation robots and detail several
essential design considerations. This paper concludes with a discussion of the ethical
implications of emergency evacuation robots and a roadmap for their development,
implementation, and evaluation.

Keywords: evacuation, human-robot interaction, robot ethics, emergency robotics, human-robot trust

INTRODUCTION

The field of Human-Robot Interaction (HRI) tends to focus on service, education, entertainment,
and healthcare applications (Bartneck, et al., 2020). HRI applications in these areas lend themselves
to laboratory development and eventual experimentation in real-world settings. Moreover, for the
most part, the human that is the focus of the service, educational experience, being entertained or
whose health is being attended to, is typically relaxed, affable, attentive to the robot, and
contemplative of the robot’s performance on its assigned tasks.

The psychological disposition and resulting behavior of people using a robot for these applications
stands in stark contrast to the use of robots for search and rescue or emergency evacuation
applications. During search and rescue or emergency evacuation people tend to be emotional, tense,
confused, inattentive, pliable, and reactive to the robot without consideration of its performance. In
other words, rescue and emergency evacuation situations tend to put people in a different state of
mind than traditional HRI application areas. Although, on the surface it may appear as if a
dichotomy exists between applications in these two areas, in reality people’s behavior can differ from
day-to-day.While being served, taught, entertained, or treated, occasionally people will be emotional,
tense, and reactive. It therefore behooves the HRI community to consider and explore both sides of
the human state of mind in order to develop robots that might be capable of prolonged interaction
with people and responsive to their daily psychological states.

With this in mind, our research examines the development and use of mobile robots as guides
leading human evacuees to safety. We focus on the evacuation of buildings that contain large
numbers of people, high-rise residential complexes, schools, and shopping malls, for example,
because we believe that emergency guidance robots placed in these buildings could save a significant
number of lives. At least with respect to high-rise residential complexes, the global number of these
buildings is increasing (CTBUH, 2018) and the evacuation of these buildings is a complex and time-
consuming process (Gershon et al., 2007). For example, after the 1993World Trade Center bombing
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people could be found at their desk 6 h after the beginning of the
evacuation (Fahy RF, 1995). Many high-rise buildings are not
designed for rapid emergency evacuation (Meacham, 1999).
Moreover, rescue of occupants by first responders is dangerous
and takes a long time after the beginning of the emergency
(Gershon et al., 2012).

In its broadest formulation, robot-guided emergency
evacuation tasks the robot with leading individuals or groups
of people away from danger to a safe location. This broad
formulation can, however, be delimited in a variety of
different ways to make the problem more tractable without
necessarily compromising real-world applicability. For
example, if the robot is tasked with evacuating residents from
an apartment building, then the robot can be provided with a
priori information about the location of exits, stairwells, and
potential evacuees. Moreover, many evacuation environments
have ample infrastructure, such as WIFI, to make the task easier.
These and other reasonably grounded assumptions simplify the
robot-guided emergency evacuation task. Traditional, non-
robotic approaches to emergency evacuation include the use of
exit signs, flooring lights, and broadcast announcements. These
approaches are reasonably effective as a means of communicating
a pathway to an exit. But traditional approaches to emergency
evacuation are static and may not be well informed about the
emergency. For example, during the 2001 World Trade Center
bombing announcements over the public address systems told
evacuees to return to their desks (Averill et al., 2013). Exit signs
can be confusing (Figure 1) and some exits may be blocked or
overcrowded. Robot emergency evacuation guides may therefore
be able to adapt to the emergency in real time to save lives.

As with many HRI problems, robot-evacuee interaction is
dictated by the context, the evacuee(s), and the robot. Contextual
factors include the cause and type of emergency, the location of
the evacuation, and the ease of exiting. Evacuation from a school,
for example, is physically less demanding than evacuation from a
high-rise building because a large number of stairs must traversed
in order exit a high-rise building. The type of evacuee includes
factors such as the person’s age, disabilities, or psychological state.
For instance, evacuating children may require different methods
and styles of communication than evacuating adults. Health and

especially health limitations can affect one’s ability to evacuate
and understand the robot’s directions. Finally, factors related to
the robot include how the robot should be designed, the
modalities it uses to communicate with evacuees, and how it
uses its communicative behaviors and mobility to successfully
and quickly evacuate people.

The remainder of this paper begins by presenting a rationale
for robot-guided evacuation. Next we describe different
approaches to robot-guided evacuation, including a discussion
of how to formulate the problem of robot-guided evacuation. We
then discuss principles for robot design followed by an
examination of the ethical implications of robot-assisted
evacuation. We conclude by presenting a roadmap for this
application domain.

WHY EVACUATION?

There are a number of reasons that robot-guided emergency
evacuation is a valuable human-robot interaction problem. First,
and perhaps most importantly, robots might one day be
developed to serve as an instantaneous first responders
immediately reacting to an emergency by contacting the
authorities and guiding people to safety. During an emergency,
people are often initially confused (Proulx, 2003). Information
and leadership, even in the form of a robot, may be important for
initiating the evacuation process (Bryan, 2002). Ideally, these
robots will save lives by reducing the time required for
evacuation, increasing the number of people evacuated,
reducing crowding at exits, and providing timely information
about the emergency to evacuees.

Evacuation robots might not only protect the lives of evacuees
but also reduce the risks for first responders. By providing
information about the emergency to first responders the robot
might be able to alleviate some of the risks to first responders. For
instance, simply providing camera images or streaming video
could help first responders gauge the nature of the situation.
Moreover, robots might be developed that could be remotely
controlled, thereby allowing first responders to intentionally
gather information about the emergency or how evacuees are
responding to the emergency. One can imagine an advanced 911
operator that responds to emergencies in apartment buildings or
schools by taking control of an onsite robot to provide additional
up-to-date information for police officers and fire fighters.

Robot-guided evacuation also allows HRI researchers to
investigate how humans in a highly aroused and potentially
emotional state of mind interact with a robot. The vast
majority of HRI research focuses on applications developed
for staid, controlled environments such as one’s home or the
classroom (Kidd and Breazeal, 2007; Park et al., 2017; Zachiotis
et al., 2018). Very little HRI research has examined situations in
which the human or humans are under pressure or threat of
physical harm. People act differently during an emergency (Klein
et al., 1986; Jansen et al., 1995). Interacting with a person that is
fleeing from some threat is, in many ways, fundamentally
different from interacting with a person in a laboratory
environment. Fight-or-flight responses can be debilitating and

FIGURE 1 | Confusing exit signs.
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impair judgment. Evacuee-robot interaction may therefore
demand a unique perspective on how a robot should behave.
An evacuation robot may need to adjust its behavior based on the
person’s reaction and emotional state; it may need to be
authoritative and interact with a commanding presence in
order to convince people when and how to leave (Kuligowski,
2008; Robinette et al., 2012). The dynamic nature of the evacuee-
robot relationship presents challenges as well as opportunities for
important and novel research.

For many HRI applications, ecological validity is simply
assumed (Dragan et al., 2013; Bartneck, et al., 2020; Chen
et al., 2018). It may be expected that HRI research performed
in a well-controlled laboratory experiment will extrapolate to
more realistic settings. For some applications, such as service
robots, such assumptions may be warranted (King et al., 2010;
Mast, et al., 2015). For applications such as emergency
evacuation, on the other hand, researchers cannot assume that
results and data gathered from laboratory experiments will
inform how real people react to a real emergency. Because
externally invalid simplifications could eventually increase the
risks to evacuees, we argue that research in this area must include
real-world experiments with real robots operating as they would
during a real emergency. Although challenging, these
experiments serve to moor simulation experiments and well-
controlled laboratory experiments to reality. These real-world
experiments may allow a researcher to compare the results from
simulation experiments to results from laboratory experiments to
results from real-world experiments in a way that few other
applications allow. This is not to say that simulation experiments
do not have a role to play in this type of research. We are merely
arguing that the results from simulation experiments should be
supported by real-world experiments.

Finally, emergency evacuation can be used as a domain to
study a variety of important HRI problems. For example,
evacuation can be used as means for gauging the efficacy of an
explanation (Nayyar et al., 2020), estimating a person’s emotional
state, or quantifying the impact of trust repair methods
(Robinette et al., 2015). As a paradigm, emergency evacuation
lends insight to exploring both how to develop interactive robots
and how people respond to robots.

The section that follows reviews the robot-guided evacuation
research.

REVIEW OF RELATED WORK

There has been substantial work on the mathematical modeling
of large-scale evacuations of an urban populace (Verdiere, et al.,
2014; Song et al., 2014; Song, et al., 2017). However, robot-guided
evacuation has only very recently been studied (Robinette et al.,
2014; Boukas et al., 2015; Robinette et al., 2016a). For example,
(Boukas et al., 2015) use cellular automata to model crowd
dynamics and test the system by having a robot guide human
subjects during a simulated evacuation showing that their robot
can improve evacuation times and influence approximately 12%
of the evacuees to follow the robot’s guidance. Outside of our
research this is the only example of an evaluation of a physical

robot in a human subject evacuation experiment. Other related
work has examined the several related challenges associated with
robot-guided evacuation. For example, (Jiang et al., 2016)
employed robots as dynamic obstacles near exits to improve
the evacuation efficiency using a social force model. The existing
work clearly demonstrates that robots are able to speed the
evacuation process.

It is worth pointing out that the aforementioned research only
considers single robots. Robot-guided evacuation involving
multiple robots is quite limited. A cooperative exit-seeking
algorithm for robots is designed in (Zhang and Guo, 2015) to
guide evacuees using online estimation of the gradient and tracing
gradient-descent while maintaining a predefined formation in
movement. A similar idea is implemented by (Tang et al., 2016)
where an algorithm was developed to help pedestrians find the
best exit with the shortest escape time. However, current multi-
robot evacuation systems are only validated in simulation and
lack detailed coordinated motion planning strategies and human-
robot interaction studies (Sakour and Hu, 2017). We are thus
motivated to develop systematic methods of designing
coordinated robot decision-making and motion planning in
human crowded environments to achieve an efficient
evacuation, investigate the human-robot interaction issues
associated with evacuation through real human-robotic
experimental studies, and evaluate the effectiveness of our
theoretical and experimental results by creating a coordinated
multi-robot evacuation system and field testing these systems.

The next sections attempt to organize the various aspects of
the robot-guided emergency evacuation problem. This section
also seeks to codify the goals and metrics for success of different
approaches to this problem.

APPROACHES TO ROBOT-GUIDED
EMERGENCY EVACUATION

There are different approaches to robot-guided emergency
evacuation that can be taken depending on characteristics of
the robot, such as its ability to autonomously move around the
environment, and the number of robots available. In general, we
assume that a non-trivial amount of tuning to the environment is
necessary and will be completed prior to deployment of the
evacuation robots. Typically a map and the location of the
building’s exits will be necessary. Information about irregular
flooring or visual codes placed into the environment itself may
also be required. Moreover, large alterations to the map, such as
hallway or exit closures will also present problems. In the worst
case the robot could guide evacuees to an exit that no longer
exists. Just as other types of emergency equipment requires
periodic (often annual) updates and testing, we believe that
emergency evacuation robots will also require annual testing.

The accumulation of clutter in the environment can present
navigation and perception problems for the robot and the
evacuees. Such clutter may represent a hazard irrespective of
the use of emergency robots. Only if the evacuation robots
become stuck in or part of the clutter itself does the use of
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emergency robots add to this risk. To prevent choke points,
clutter should not be allowed to accumulate in buildings that may
require evacuation.

The sections below describe some approaches the have been
explored by our lab. It is important to note that these approaches
range in the technical complexity needed for the robot to operate
as a guide.

Actuated Traffic Cop
A less complex, yet still robotic, approach to developing an
emergency evacuation robot is to simply create a robot capable
of moving to a fixed, known and nearby location in the
evacuation environment to act as a type of automated traffic
cop during an emergency evacuation. When an emergency
occurs, these robots are activated to move to a predefined
location, such as a corridor, to direct evacuees toward an exit
(Figure 2). The robot may have limited or no ability to interact
with humans. Alternatively, the robot may be able to broadcast
verbal or visual messages but incapable of responding to
inquiries.

Although limited in its interactive capabilities, actuated
evacuation traffic cop robots may nevertheless improve
evacuation by directing people away from crowded exits or
providing situation awareness for first responders. These
robots may even be programmed to count the number of
evacuees to generate a rough estimate of the number of people
still in the building. From a practical perspective, traffic cop style
robots present the least technically challenging form of
evacuation robot. Moreover, this style of evacuation robot has
the potential to evolve into more technically complex and
nuanced versions with time and research. As such it
represents more of a starting point than an end goal.

Multi-Robot Handoffs
A multi-robot version of the actuated traffic cop approach
described above allows for more nuanced guidance of groups
and crowds by serially directing evacuees from one robot to the
next (Figure 3), essentially handing off the guidance
responsibility from one robot to the next. For this approach,
when an emergency occurs several individual actuated traffic cop
robots move to predetermined evacuation guidance points, for
example multi-junction corridors. Guidance points are points
where the evacuee needs to make a decision about which
direction to go. These points are typically corridor
intersections or places where a corridor branches. At a set of
predefined guidance points, each robot uses arm motions and
verbal statements to encourage evacuees to move in a specific
direction. Evacuees follow the robot’s guidance moving in the
specified direction until either the evacuees encounter another
robot or they arrive at the exit. We denote the path from one
robot to the next robot the inter-handoff traversal. The robots
coordinate their guidance directions to funnel evacuees toward
the safest nearby exit. Figure 4 depicts an overhead map of a
multi-robot handoff evacuation depicting these concepts in a
simulation of an office building. For example, in a school
evacuation students from a classroom may encounter the first
robot outside the door of their classroom. This robot directs them
to a four-way hallway intersection where they encounter another
robot directing them down the corridor to the rear of the school.
At the end of the corridor they encounter a final robot directing
them to an exit at the end of a hallway. Hence, the evacuee is
handed off from one guidance robot to another guidance robot
until arriving at a safe exit.

Although each individual robot is reasonably simple in its
perceptual, decision-making, and behavioral capabilities, having a

FIGURE 2 | This image depicts an emergency evacuation robot meeting a human subject at the entrance to an office building. The robot leads the subject to a
meeting room in the environment.
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multi-robot evacuation team significantly increases the
complexity of the system when compared to a single actuated
traffic cop. Nevertheless, this cost comes with the benefit of
increasing the system’s ability to guide evacuees to possibly

distant exits in order to avoid crowding or other dangers
associated with a nearby exit. The system may also be more
robust because the presence of multiple robots increases the
likelihood that an evacuee will notice guidance directions of

FIGURE 3 | An example of the use of multi-robot handoffs. The nearby robot does not move. It simply directs the subject to the far away robot within the green
circle.

FIGURE 4 | An overhead map of our emergency evacuation environment. The red arrows highlight several key locations used for our emergency evacuation
experiments. The yellow circles depict guidance points. The black arrow depicts an inter-handoff traversal.
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one robot even if a nearby robot has failed. Moreover, multi-robot
handoffs can still provide situation awareness by observing
evacuees as they pass by or the environment from a fixed
direction. This system can redirect evacuees to a different exit
if the nature of the emergency changes, but evacuees may become
confused or disoriented by the change in directions, especially if
they are currently moving between two robots and one robot
directs them to go back in the direction from which they came.
Finally, the robot’s limited mobility (i.e., inability to climb stairs
or lack of speed) will not impact its ability to provide emergency
evacuation directions.

On the other hand, robot handoffs do limit the guidance that
the robot can provide. Specifically, the robot may not be able to
adapt to issues that arise while the person is traveling from one
robot to the next. Additionally, evacuees may not be able to see
the robot that they are moving toward, leading to confusion and
possibly slowing their evacuation (Figure 3). Moreover, multi-
robot handoff systems may be better suited for some
environments and some emergencies than others. For
example, open area environments such as sporting events may
increase the visibility of the next robot whereas hotels with short,
winding hallways may limit the evacuee’s visibility of the next
robot. Further, multi-robot handoffs may also be well suited for
earthquakes because the robot does not need to travel far to reach
its guidance point, whereas handoffs may be less well-suited for
fires again because of limited visibility.

Shepherding
In contrast to multi-robot handoffs, shepherding is an approach
to robot-guided evacuation in which the robot leads individual
evacuees or groups of evacuees to an exit (Figure 5). In this case,
when an emergency occurs the robot may move to a specific
location where evacuees may be known to congregate, or simply
search for evacuees to help. Upon locating potential evacuees the
robot engages the evacuees either asking if they need help finding

an exit or, in some situations, authoritatively demanding that the
evacuees follow the robot to an exit. The robot then leads, or
shepherds, the evacuees to an exit, before returning to another
congregation point.

One advantage of shepherding is that the robot remains near
the evacuee(s) at all times. This may allow the robot to provide the
evacuees with information or observe any medical issues that
occur. Shepherding also allows the robot to tailor its behavior to
the evacuee(s). For instance the robot can reduce its speed to
match the speed of the evacuee. Shepherding also allows the robot
to dynamically alter its evacuation path as dictated by the
situation and explain to the following evacuees why such a
change was necessary. Moreover, simulation experiments that
have compared the shepherding approach to the handoff
approach for robot-guided evacuation have found that
shepherding results in a greater decrease in evacuation time
(Nayyar and Wagner, 2019).

The major disadvantage of shepherding is the technical
complexity necessary to develop and test a reliable system.
Creating an autonomous shepherding robot that operates
during an emergency is technically challenging. Even if the
robot possess a great deal of prior knowledge about the
building, including a floor plan, the location of exits, and
accurate localization information, the robot will still need to
navigate around obstacles, move quickly, recognize evacuees
and determine if the evacuees are following or ahead of the
robot. Because of these challenges, to the best of our knowledge
shepherding robots have only been developed for simulation
environments.

In a recent virtual experiment we compared a human
participant’s decision to follow the robot during an emergency
when the robot evacuation approach wasmulti-robot handoffs vs.
shepherding (Nayyar and Wagner, 2019). In this experiment,
remote participants are guided to a meeting room by a robot that
either made mistakes or made no mistakes. While in the room

FIGURE 5 | A sheperding robot guiding an evacuee to an exit. The robot travels in front of the evacuee all of the way to the exit.
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performing a nominal task an emergency occurs. The robot offers
to guide the evacuee to an exit to the right using one of the two
approaches while either witnessing or not witnessing a crowd of
individuals running to the left. In general we found that the
shepherding approach convinces significantly more evacuees to
follow the robot. When there is no crowd fleeing in the opposite
direction and the robot had not previously made a mistake, 75%
of subjects followed the robot when it shepherded them to an exit.
The percentage following the robot drops to 60% if the robot had
previously made a mistake, 45% if there is a crowd fleeing in the
opposite direction but no prior robot mistake, and less than 12%
if the subject witnesses a crowd fleeing and the robot has recently
made a mistake. When handoffs are used the percentage of
subjects that follow the robot drops to 27% (no mistake, no
crowd), 19% (mistake, no crowd), 2% (no mistake, crowd), and
3% (mistake, crowd), respectively. These results suggest that
evacuees will be more likely to follow a robot that shepherds.
Still, significant technological advances will be needed for
shepherding to be possible during an emergency.

Multi-Robot Shepherding and Handoffs
The most complex approach to robot-guided emergency
evacuation is one that combines multi-robot shepherding with
handoffs. For this approach, multi-robots react to changes in the
situation by switching between handoffs and shepherding as
needed. For example, this approach could operate by initially
taking a handoff approach until a large number of evacuees have
exited and then, once the majority of the building is empty, patrol
the building seeking to identify stragglers and shepherding these
stragglers to a nearby exit. This approach may also be necessary
when individuals are hiding or too frightened to move to an exit
without an escort. Although technically challenging, this
approach follows naturally once a system that is capable of
shepherding has been developed.

Shelter in Place Situations
Some types of emergencies, such as active shooter situations or
tornados, require that people shelter in place. For these types of
situations an evacuation robot can still be useful. During active
shooter situations the robot can simply patrol hallways

broadcasting information such as warnings that there is
currently an active shooter on the premise and that all people
should shelter in place. The robot can also broadcast updates
about the situation as it changes. Likewise, information about an
incoming tornado can keep people abreast of changes in the
situation and when it is safe to evacuate. To the best of our
knowledge robot assistance during a shelter in place situation has
not been investigated by researchers. A summary of the
advantages and disadvantages of each approach is provided in
Table 1.

ROBOT AND EXPERIMENTAL DESIGN FOR
ROBOT-GUIDED EVACUATION

Robot Design
Our previous work has shown that in-situ robots can improve
existing technology, such as static emergency exit signs and
alarms, by communicating the conditions of the emergency
site to command posts while finding and guiding victims of
the emergency out of danger (Robinette and Howard, 2011;
Robinette and Howard, 2012). Conveying guidance
information to a small percentage of evacuees can dramatically
improve survivability (Robinette et al., 2012).

Our prior work in this area examined how best to construct a
mobile robot that could convey understandable directions to
evacuees (Robinette et al., 2014). Figure 6 depicts several of
the different robot designs tested. We considered three categories
of visual methods for conveying guidance information: static
signs, dynamic signs, and arm gestures. We combined these
categories with each other and a mobile robot base to form
five different platforms with information conveyance packages
and one baseline platform with no specialized information
conveyance abilities. The information conveyance ability of
these robots was tested by recording simulations of the six
resulting platforms performing each of four guidance
instructions at both an instruction point near an evacuee and
a point further away from the evacuee. Human participants then
interpreted the instructions and rated the understandability of the

TABLE 1 | Summary of different robot-guided evacuation approach advantages and disadvantages.

Approach Name Approach advantages Approach disadvantages

Actuated traffic cop Relatively simplistic implementation in ecologically valid environments.
Approximate technology readiness level (TRL) 5–6. Appropriate for a
wide range of different emergencies

Limited ability to respond to dynamic emergency situations

Multi-robot handoffs Moderately difficult implementation in ecologically valid environments.
Approximate technology readiness level (TRL) 4–5. Capable of
dynamically redirecting to different exits. Multi-robot system may
increase robustness

Guidance directions conveyed over a distance and are not
personalized or adapted to the evacuees. Multi-robot system adds
complexity

Shepherding Capable of dynamically redirecting to different exits. Guidance
directions can be personalized to the evacuee or evacuee group

Complex implementation in ecologically valid environments.
Approximate technology readiness level (TRL) 3

Multi-robot shepherding
and handoffs

Capable of dynamically redirecting to different exits. Guidance
directions can be personalized to the evacuee or evacuee group.
Capable of dynamically redirecting to different exits. Multi-robot system
may increase robustness

Complex implementation in ecologically valid environments.
Approximate technology readiness level (TRL) 3

Shelter in place situations Relatively simplistic implementation. Near-term technology readiness Appropriate only for certain types of emergencies
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information being conveyed. Our results showed that a ground
platform with a dynamic display andmulti-arm gestures provides
the clearest instructions to evacuees during an emergency. We
also found that adding seemingly trivial aesthetics such as signs
can produce differences in outcomes of human-robot interaction
experiments.

A follow-up experiment was conducted examining the
difference between virtual vs. remote vs. physical robots and
environments (Robinette et al., 2016b). The remote presence
experiment tasked human subjects with watching a video of a
physical robot attempting to convey directions at close and far
distances. The physical experiment repeated the remote
experiment with in person subjects and a physically present
robot. Our results showed little difference between the virtual,
remote, and physical experiments. These experiments reinforced
our original finding that a two armed robot provided the best
emergency evacuation guidance.

In addition to conveying directions, an emergency guidance
robot must also localize itself on a map of the environment, move
past or around static obstacles, and be generally capable of
moving to a guidance point in order to direct evacuees.
Additional perceptual capabilities, such as recognizing people,
identifying the direction of their movement, counting people, and
recognizing crowded exits would be beneficial but are currently in
the early stages of development.

Simulation Versus Real-World Experiments
One important and challenging aspect of robot-guided
emergency evacuation research is the need to create as realistic
an emergency as possible. A large body of evidence suggests that
emergencies activate fight-or-flight responses which strongly
influence how evacuees make decisions (Klein et al., 1986;
Jansen et al., 1995). The fight-or-flight responses are only
triggered when the subject believes that they may be in

FIGURE 6 | Different robot designs evaluated for its ability to communicate guidance directions. The physical robots are based on the multi-arm design.
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danger. Yet generating fictitious, yet convincing, emergencies is
difficult and must only be undertaken with care. In real-world
experiments sham emergencies could put the subject at risk if
they panic. On the other hand, if the emergency is not convincing
then the validity of the data is uncertain. Moreover, for real-world
experiments, creating a convincing sham emergency is difficult
given that subjects know that they are participating in an
experiment. In the past we have, for example, used smoke
machines to fill rooms and hallways with smoke in order to
make the emergency convincing (Robinette et al., 2016c). But
creating convincing sham emergencies that do not actually
endanger the participant and are acceptable to an institutional
review board is challenging. Furthermore, word that the
emergency is a sham may spread quickly among potential
subjects if the experiment is conducted at a university. Thus
experiments must be conducted quickly, over only a few days and
nights, if possible.

Simulation experiments offer the possibility of not only testing
out a wider variety of experimental conditions, but also much
easier methods for generating sham emergencies. Simulation
effects such as sirens, flashing-lights, explosions, smoke, and
fire are all available and easily incorporated into a simulation
environments such as Unity. Moreover, services such as Amazon
Mechanical Turk provide a very large and diverse pool of
potential subjects. The problem with simulation experiments,
however, is creating convincing and engaging sham emergencies
and the resulting validity of the subject’s responses. Our lab has
conducted a large number of emergency evacuation simulation
studies (Robinette et al., 2016b; Robinette et al., 2017). We have
also conducted physical experiments attempting to confirm (or
refute) these prior simulation studies with mixed results. There is
much more work that needs to be done in this area. We are now
attempting to use virtual reality as a method to more realistically
engage subjects in simulate emergencies. Our hope is to find an
ideal middle ground that will allow us to test a wide range of
variables in a manner that results in ecologically valid responses.
If we can achieve such a balance, then real-world testing of the
most promising variables can commence. We believe that the
HRI field would benefit from the development of a well-honed
process that begins with large scale simulation (or virtual reality)
based testing of social phenomena but then leads to a small
number of ecologically valid experiments of the most promising
factors and hypotheses.

EVACUATION AS AN PARADIGM FOR
HUMAN-ROBOT INTERACTION

Considering the different approaches to robot-guided emergency
evacuation described above, there are several experimental
designs that can be used for human subject testing. These
different experimental designs attempt to measure whether or
not human subjects will follow a robot’s guidance to an exit after
an unexpected emergency has occurred and contribute to the
design of robots that promote trust calibration (Wagner et al.,
2018). Understanding how human subjects respond to the
guidance instructions of an evacuation robot is critical for the

design and application of useful emergency evacuation robots.
Our robot-guided evacuation experiments typically introduce the
human subject to the robot, ask the subject to complete a nominal
task, an emergency occurs, and the robot offers to guide the
person to a safe exit (Figure 7). The percentage of people that
follow the robot represents a metric of not only the robot’s
usefulness, but also of the person’s trust in the robot. In a
real-world application, when an emergency occurs the robot
will travel to guidance points to guide evacuees to safety.

Metrics for Measuring Evacuation Success
One advantage of using robot-guided evacuation as a paradigm
for studying human-robot interaction is that evacuation has very
intuitive and well-defined metrics for success (Gershon et al.,
2007; Gershon et al., 2012). Generally speaking, the success of an
evacuation is measured by two criteria: the percent of people
evacuated and the rate of evacuation. The percent of people
evacuated is often not known until after the emergency has ended
and casualty rates are known or estimated. The rate of evacuation
is generally measured in terms the time required to evacuate a
percentage of people. For robot-guided emergency evacuation
these two metrics offer a means to evaluate and compare different

FIGURE 7 | The general procedure for robot-guided emergency
evacuation experiments. The subject is introduced to the robot. The robot
guides the subject to a meeting room or the subject self-guides to a meeting
room. An emergency occurs. The robot approaches subject asking the
subject if they would like to follow the robot to an exit. After reaching (or not
reaching) the exit the subject completes a survey.
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evacuation approaches, robots, control algorithms, and methods
of communication. Of course, many additional factors, such as
the characteristics of the evacuees and the type of emergency, also
influence these metrics. Nevertheless, simply having metrics for
quantifying the performance of a human-robot interaction
paradigm helps to ground the problem and make it more
tractable.

The connection between evacuation rate and the robot’s
guidance assumes that the presence of the robot will decrease
the time that it takes the evacuee to exit. This can occur in several
ways. The most obvious is if the robot guides the evacuee to a
closer exit than they would have other traveled to. A less obvious,
but more realistic way in which robots can decrease evacuation
time is for the robot to prompt or pressure the person to evacuate.
It is often noted in the evacuation research that one of the biggest
challenges associated with an emergency is getting people to
evacuate in the first place. As noted earlier, 6 h after an explosion
occurred under the world trade center people were still found at
their desks (Fahy RF, 1995). A robot might compel straggling
evacuees to move to an exit by directing individualized messages
at the stragglers. The development of evacuation choke points is a
significant risk during some types of emergencies (Robinette
et al., 2012). Hence, one final way that a robot could be able
to increase the evacuation rate is by attempting to redirect
evacuees away from choke points and toward less crowded exits.

If one assumes that the robot’s evacuation guidance will result
in an evacuation rate increase, then a critical metric is evacuee
compliance with the robot’s guidance. In other words, measuring
how often and for how long people will follow the robot.
Intuitively, even if an evacuation robot is excellent at its job, it
makes no difference if few people follow it. Evacuee perception of
the robot, measured by questionnaires such as the Godspeed
survey, can also be useful for gauging the robot’s effectiveness.

Independent Variables: The Environment,
the Robot, the Evacuee
Given the abovemetrics and the described experimental setup, we
now consider the different types of variables that can be
examined. We broadly categorize these variables as
environmental, robot-related, and evacuee-related.
Environmental variables include the type of emergency faced,
the level of uncertainty generated by that emergency, the
familiarity of the person with the environment, the presence
or absence of family members or a social group, and other
environment-related issues. Simulation experiments allow one
to broadly explore many different aspects of the environment.
The design of the robot may also influence a human subject’s
decision to follow the robot. Robot-related variables may include
the robot’s form factor, mobility, ability to attract an evacuee’s
attention, and its ability to interact with evacuees including
answering questions. The robot’s ability to explain its
directions or the need for evacuation may be an important
determinate of the person’s decision to follow the robot.
Similarly, the robot’s mannerisms and behavior must appear
authoritative in order to promote compliance and induce
evacuees to follow its directions. Finally, characteristics of the

evacuee(s) will also shape the decision to follow the robot. Age,
mobility, the presence of disabilities, and occupation, may
influence the evacuee’s following behavior. Moreover, one’s
personal experiences, including experiences with robots, can
impact the decision or hesitancy to follow a robot’s guidance
during an emergency. Importantly, although we are describing
the decision to follow as an all-or-nothing choice, in practice,
evacuees may initially follow the robot and then change their
mind. Recording the evacuee’s movements (Figure 8) provides
insight into the decision making process and, we have found,
often conflicts with what people say about their own behavior
(Nayyar and Wagner, 2019). Experimentally, we can attempt to
isolate these variables in order to evaluate the influence each one
has on the subject. In practice, because of the number of
permutations of these variables, this is practical only in
simulation.

DESIGN ASPIRATIONS FOR EVACUATION
ROBOTICS

Our research and reflection on the topic of robot-guided
emergency evacuation has resulted in the development of
several design aspirations for evacuation robotics. These
aspirations are meant to serve as an initial set of guiding
principles, open to future refinement if necessary, for
researchers interested in the topic of robot-guided emergency
evacuation. These are aspirations in the sense that they are meant
to encompass somewhat abstract design and ethics goals for these
types of systems. For example, our hope is that researchers will
aspire to design evacuation robots that can communicate
understandably with as diverse a population as possible.
Importantly, it is hoped that these principles will ensure that
the development of these technologies will positively impact
future societies.

• Principle 1: Do no harm. An evacuation robot must not
hinder an evacuation. It must not mistakenly direct
evacuees toward danger, delay evacuation by blocking
passageways or exits, or slow evacuation by drawing
interest to itself. It is better to not have evacuation robots
than to have evacuation robots that may increase the risk to
the evacuee. Furthermore, robots should only be deployed
in situations in which the “Do no harm” principle can be
reasonably guaranteed. The primary purpose for this
principle is to prevent the premature deployment and
justification for evacuation robots. Evacuation robots
should only be deployed if the developer has shown that
the system will do no harm. The use of shoddy or untested
evacuation robots on the basis that they are better than
nothing at all should be avoided.

• Principle 2: Communicate understandably with as diverse a
population as possible. Evacuation robots must be designed
to communicate with a diverse population of evacuees.
Explicit or implicit limitations on the robot’s ability to
communicate could inadvertently increase the survival
rate of some evacuees over others. For example, limiting
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evacuation directions to English could disadvantage non-
English speakers attempting to evacuate. Hence, an
evacuation robot’s method of communication should not
be designed for a narrow or predetermined population.
Evacuation directions should be understandable, within
reason, regardless of age or native language. Moreover,
we encourage the use of gestures, lights, signs on the
robot and audio messages in order to promote the
robot’s ability to communicate with individuals with
disabilities. Extensive testing should be conducted with as
diverse a population of subjects as possible to measure
whether the robot’s guidance directions are
understandable (Robinette et al., 2016a). This evaluation
should include reasonable environmental conditions, such
as recognizing commands from a distance, or while being
distracted.

• Principle 3. Be authoritative. An evacuation robot should act
and be seen as an authority figure during an emergency.
Acting as an authority figure may be necessary to generate
compliance from evacuees. Command presence is defined as
presenting one’s self as someone in authority (Mitchell and
Von Zoller, 2019). Robots will need to either imitate human
command presence or develop a set of behaviors that
generate a type of robot command presence. Lights,
behaviors, and mannerisms can be used to establish the

robot as an authority figure during an emergency. Police or
emergency style beacon lights, forceful behaviors and
gestures, or authoritative commandments can be used by
the robot to improve evacuee compliance. Childish or overly
commercial designs should be avoided.

• Principle 4. Attract attention, but also keep interactions
minimal. An evacuation robot should attract an evacuee’s
attention in order to provide guidance to an exit, but must
also keep interactions short and focused on directing the
evacuee to the exit. Evacuees may be distracted by the sights
and sounds of the emergency, alarms, and movement of the
people around them. Capturing the evacuee’s attention in
such a situation can be difficult. An evacuation robot should
use movements, lights, and sounds to attract evacuee
attention. Once the robot has captured an evacuee’s
attention it must communicate directions to the exit
quickly and precisely. It should otherwise minimize
interactions with evacuees. In spite of the emergency, the
evacuee may slow their evacuation to engage or marvel at
the robot. The robot should not engage in question and
answer sessions, lengthy explanations, or allow the person to
gape at the robot. The robot must not encourage evacuees to
preoccupy themselves with the robot during the emergency.
This can be challenging, especially if the alarm is not
deemed credible or if the robot is a novelty. Hence,

FIGURE 8 | A map of subject movements (60 subjects are depicted). The blue lines depict movement following a crowd of evacuees. The green line depicts
subjects that followed the robot. Notice some blue lines appear to initially move toward the robot exit, before following the crowd.
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balancing the robot’s ability to attract attention and yet keep
interactions minimal is an important design goal.

• Principle 5. When the situation demands it, evacuate as
many people as possible, as quickly as possible. Saving as
many lives as possible is an evacuation robot’s ultimate goal.
Different emergencies, however, demand different
approaches to obtaining this goal. During a fire the robot
should quickly guide evacuees to an exit. The performance
of an evacuation robot during a fire is based on its ability to
quickly lead as many people as possible to an unobstructed
exit. During an active school shooting, on the other hand,
the robot should guide students and staff to shelter in place.
In this case the robot’s performance may need to be
evaluated in terms of its ability to relay information
about the evolving situation to the students and staff. A
variety of different factors, such as characteristics of the
evacuees, the environment, or the emergency, can impact
the robot’s performance. Nevertheless, the design of the
robot must always be centered on saving as many lives as
possible.

ETHICS OF ROBOT EVACUATION

The possibility of creating an emergency evacuation robot raises a
number of important ethical considerations. Robot-guided
emergency evacuation generates both robot ethics and
machine ethics questions. Robot ethics examines the ethical
problems that arise when using robots (Lin et al., 2014). For
example, recognizing and ensuring that an evacuation robot does
not preferentially select some evacuees over others is a robot
ethics question. Machine ethics, on the other hand, explores how
to create robots that act ethically (Moor, 2006). Developing
algorithms that allow robots to recognize and use explanations
to prevent overtrust is an example of a machine ethics facet of
this work.

The development of an evacuation robot might change the
nature of evacuation itself. Currently, once an alarm is sounded
evacuees decide for themselves how to respond. For many people,
the typical response is to do nothing and assume that the alarm is
a false alarm (Winerman, 2004). An evacuation robot might use a
variety of different means to dissuade people from remaining in a
building. As mentioned in the previous section, we contend that
acting as an authority figure to demand that the people leave is
ethically acceptable based on the assumption that the robot is
trying to save lives. On the other hand, a robot that threatens
people that refuse to evacuee is likely unethical. Although
different situations and evacuees may require different
persuasive approaches, a robot that threatens or menaces
evacuees in order to gain compliance is likely beyond that
bounds of acceptable behavior. The use of deception to gain
compliance may be ethical in some situations and unethical in
others. First responders, for example, may omit information, such
as the demise of a loved one, if they believe that such information
will distract or dissuade an evacuee from leaving. It may be
acceptable and necessary for future versions of evacuation robots
to similarly omit such information in similar situations. On the

other hand, the general use of deception, exaggeration, or lies in
order generate compliance is likely unethical.

Futuristic versions of emergency evacuation robots could
present additional ethical considerations, especially if these
robots are designed to make decisions about who to evacuate
first. Yet, if we assume that the robot has the capability to move an
injured person to safety, we contend that it then becomes
reasonable for the robot to decide who to move first. These
types of triage decisions are challenging even for humans
(Grimaldi, 2007; Holt, 2008). Cultural and experience-based
beliefs can play a role. If future evacuation robots are
developed with the ability to move people to safety it will be
important for the scientific and broader community to discuss
and develop rules for whom to save first.

The robot-guided emergency evacuation problem also offers a
venue for the development ofmachine ethics related technology. In
particular, developing technology that allows a robot to explain to
people why they should evacuate, observe their reaction, and then,
if needed, reformulate the explanation is important for some
approaches to robot-guided emergency evacuation. Additional,
developing methods that allow authorized first responders and
medical personnel to observe an evolving emergency while also
protecting the privacy andmedical information of the observed will
also require the development of specialized technology.

CONCLUSION

This paper has presented a conceptual outline for the problem of
robot-guided emergency evacuation. Our purpose is to introduce
this problem as well as the technological and interactive
challenges that must be solved in order to create robotic
evacuation solutions. We believe that the investigation of this
problem offers a novel and important opportunity to investigate
human-robot interaction in situations in which the human is
reacting in an emotion inducing, stressful situation.We feel that it
is important explore how people interact with robots during
trying situations. The results from research on this problem may
lend insight into understanding how a robot should interact with
a frightened child or a terminally ill patient. Further, if successful,
this research may also one day save lives during real evacuations.

Although the presence of an evacuation robot might alleviate
some of the challenges of emergency evacuation, it is possible,
however, that the use of robots could cause other issues. For
example, our research has demonstrated that evacuees tend to
overtrust an evacuation robot (Robinette et al., 2016c). Hence,
they may follow a broken or lost robot, putting themselves at
greater risk. Further, evacuees may simply wait for the robot or
some sign of the robot before they begin evacuating, thus
increasing the time required to evacuate and reducing the
evacuation rate. People may also intentionally block, mob or
prevent the robot from moving, even during an evacuation. This
type of behavior has been witnessed in children in non-
emergency settings (Nomura et al., 2016). Similarly, first
responders may come to overtrust the ability of evacuation
robots to lead people to safety, reducing their sense of urgency
to assist. Moreover, the information provided by the robot may
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focus on some aspects of the emergency, drawing the attention of
first responders away from other risks. For example, if the robot’s
camera searches for and focuses on injured humans then it may
draw the attention of first responders away from other dangers,
such as a fire. In general, experimental evaluation and rigorous
testing should highlight and help prevent most of these concerns
from occurring in fielded systems.

A roadmap for robot-guided emergency evacuation would
likely begin with simple traffic-cop style robots that move to
nearby locations during an emergency. These robots could also
serve some other purpose, typically cleaning hallway floors, for
example, but spring into action once an alarm is sounded.
Additional features, such as allowing first responders to take
over control of the robots, can be added gradually with significant
testing. As methods for perception and more capable, cost
effective robots become available, robots that shepherd
evacuees to exits can be implemented. Eventually we hope the
field will work toward systems that become autonomous yet
active partners in the rescue of victims during an emergency.

We hope and believe that one day robots will save lives during
emergencies by thoughtfully and carefully leading people to
safety. Such an application could contribute the peace of mind

necessary to focus on learning, entertainment and one’s long-
term health.
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A Theory of Social Agency for
Human-Robot Interaction
Ryan Blake Jackson* and Tom Williams

MIRRORLab, Department of Computer Science, Colorado School of Mines, Golden, CO, United States

Motivated by inconsistent, underspecified, or otherwise problematic theories and usages
of social agency in the HRI literature, and leveraging philosophical work on moral agency,
we present a theory of social agency wherein a social agent (a thing with social agency) is
any agent capable of social action at some level of abstraction. Like previous theorists, we
conceptualize agency as determined by the criteria of interactivity, autonomy, and
adaptability. We use the concept of face from politeness theory to define social action
as any action that threatens or affirms the face of a social patient. With these definitions in
mind, we specify and examine the levels of abstraction most relevant to HRI research,
compare notions of social agency and the surrounding concepts at each, and suggest new
conventions for discussing social agency in our field.

Keywords: politeness theory, moral agency, human-robot interaction, social agency, levels of abstraction

1 INTRODUCTION AND MOTIVATION

The terms “social agency” and “social agent” appear commonly within the human-robot interaction
(HRI) research community. From 2011 to 2020, these terms appeared in at least 45 papers at ACM/
IEEE International Conference on HRI alone,1 with more instances in related conferences and
journals. Given the frequency with which these terms are used in the HRI community, one might
expect the field to have established agreed upon definitions to ensure precise communication.
However, when these terms are used, they are often not explicitly defined, and their use frequently
varies in important but subtle ways, as we will discuss below. Most HRI research is not concerned
with exploring the entire philosophy of agency to find a theory that fits their study. As we show in
Section 1.3, it is therefore common to simply use terms like “social agency” without espousing a
particular concrete definition and move on under the assumption that it is clear enough to the reader
what is meant. This may be fine within any individual paper, but confusion arises when different
papers in the same research area use the same term with different meanings. We seek to formalize
social agency in accordance with the existing underspecified usage because 1) having a rigorously
specified definition for the term will help create common ground between researchers, help new
researchers understand the vernacular of the community, and provide writing guidelines for HRI
publications concerning social agency; and 2) attempting to redefine social agency in a substantially
different way from existing habits of use would greatly hamper popular acceptance of the new
definition.

We present a theory of social agency for HRI research (as visualized in Figure 1) that deliberately
aligns with and builds on other philosophical theories of robot agency. Specifically, we leverage
insights from philosophers seeking to define moral agency in HRI. Moral agency provides an
excellent analog to facilitate our discussion of social agency because it is an intimately related concept
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for which scholars have already developed rigorous definitions
applicable to HRI, in a way that has not yet been done for social
agency.

To design and justify our theory of social agency, we will first
briefly survey existing definitions of social agency outside of HRI,
and explain why those definitions are not well-suited for HRI. We
will then survey theories of social agency from within HRI, and
explain why those definitions are both inconsistent with one
another and insufficient to cover the existing casual yet shared
notion of social agency within our field. To illustrate this existing
notion, we will then present a representative sample of HRI
research that refers to social agency (without focusing on
developing a definition thereof) to demonstrate how the
greater HRI community’s casual use of social agency differs
from the more rigorous definitions and theories found within
and beyond the field of HRI.

1.1 Social Agency Outside Human-Robot
Interaction
There are many different definitions of social agency from various
disciplines including Psychology, Education, Philosophy,
Anthropology, and Sociology. Providing an exhaustive list of

these differing definitions is infeasible, but this section briefly
summarizes a few representative definitions from different fields
to show that they are not well-suited to HRI and to illustrate the
broader academic context for our discussion of social agency.

Educational psychologists have used the term “social agency
theory” to describe the idea that computerized multimedia
learning environments “can be designed to encourage learners
to operate under the assumption that their relationship with the
computer is a social one, in which the conventions of human-to-
human communication apply” (Atkinson et al., 2005).
Essentially, social agency theory posits that the use of verbal
and visual cues, like a more humanlike than overtly artificial
voice, in computer-generated messages can encourage learners to
consider their interaction with the computer to be similar to what
they would expect from a human-human conversation. Causing
learner attributions of social agency is hypothesized to bring
desirable effects, including that learners will try harder to
understand the presented material (Atkinson et al., 2005). In
contrast, typically in HRI to be a social agent is humanlike in that
humans are social agents, but more human-likeness, particularly
in morphology or voice, does not necessarily imply more social
agency. This theory also seems fundamentally concerned with
social agency creating a social partnership to facilitate learning,

FIGURE 1 | Concept diagram visualizing the theory of Social Agency presented in this paper, and the core concepts combined to construct this theory.
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but we also view non-cooperative social behaviors, like
competition or argument, as socially agentic (Castelfranchi,
1998).

Other education researchers use the term social agency
differently. For example, though Billett (2008) does not
explicitly define social agency (a practice that we will see is
common in HRI literature as well), they seem to view social
agency as the capacity for the greater social world to influence
individuals. This concept contrasts with personal agency, which
Billett defines explicitly as an individual’s intentional actions.
Personal and social agencies exert interdependent forces on the
human worker as they negotiate their professional development
and lives. This notion of social agency that precludes it from being
a property held by a single individual, which does not seem to be
how we use the term in HRI.

Scholars in education and social justice have also defined social
agency as the extent to which individuals believe that being active
socio-politically to improve society is important to their lives, and
the extent to which individuals believe that they can/ought to alter
power relations and structural barriers (Garibay, 2015; Garibay,
2018). This definition is largely centered around value placed on
prosocial behavior. In contrast, in HRI we often apply the concept
of social agency regardless of whether a robot is having any
nontrivial impact on society or is trying to do so. We also ascribe
social agency regardless of what a robot believes or values, or
whether it can even believe or value anything.

Much of the discussion around agency in Anglo-American
philosophy has revolved around intentionality, but some
influential anthropologists have centered not only
intentionality in defining agency, but also the power,
motivation, and requisite knowledge to take consequential
action (Gardner, 2016). Social agency, then, could be
understood as agency situated within a social environment,
wherein agents produce and reproduce the structures of social
life, while also being influenced by those structures (and other
material conditions), particularly through the rules, norms, and
resources that they furnish. Social agency here is concerned with
structures and relationships of power between actors. Other
scholars in anthropology and related fields have criticized this
notion of agency, for, among other reasons, over-emphasizing the
power of the individual and containing values particular to men
in the modern West. Some scholars that have de-emphasized
power and capacity have stated that intentions alone are what
characterize an agent and choices are the outcomes of these
intentions, without necessarily qualitatively redefining the
relationship between agency and social agency (Gardner,
2016). These definitions, and other similar ones, are also
common in sociology and other social sciences. For reasons
that we will argue below, we avoid “internal” factors like
intentionality, motivation, and knowledge in defining social
agency for HRI. We are also not concerned with whether
robots have the power to act with broad social consequences
since that does not seem important to HRI researcher’s usage of
the term.

Anthropologists and archaeologists apply “social agency
theory” to the study of artifactual tools and technologies to
understand the collective choices that were made during the

manufacture and use of such artifacts, the intentions behind those
choices, the sociocultural underpinnings of those intentions, and
the effects that the technologies had on social structures and
relations. In doing so, they commonly refer to the social agency of
technology or of technological practice to discuss the
relationships between a technology and the social structures
and decisions of its manufacturers and users. For example, the
choice to use inferior local materials for tools rather than sourcing
better materials through commerce given the material means to
do so can indicate constraining social structures outweighing the
enabling economic structures (Dobres and Hoffman, 1994;
Gardner, 2016). Contrastingly, in HRI robots are discussed as
having social agency in and of themselves, separate from that of
the humans that make and use them. Social robots are also
attributed social agency without really being embedded in the
same broader social structures as their human interactants,
though it is likely that they will be increasingly as the field
progresses.

Scholars in Sociology have also conceptualized agency as the
constructed authority, responsibility, and legitimated capacity to
act in accordance with abstract moral and natural principles.
Modern actors (e.g., individuals, organizations, and national
states) have several different sorts of agency. Agency for the
self involves the tendency of an actor towards elaborating its own
capacities in accordance with wider rationalized rules that define
its agency, even though such efforts are often very far removed
from its immediate raw interests. For example, organizations
often develop improved information systems toward no
immediate goal. Agency for other actors involves opining,
collaborating, advising, or modeling in service of others.
Agency for nonactor entities is the mobilization for culturally
imagined interests of entities like ecosystems or species. Finally,
agency for cultural authority describes how, in exercising any type
of agency, the actor assumes responsibility to act in accordance
with the imagined natural and moral law. At the extreme, actors
can represent pure principle rather than any recognized entity or
interest. However, for the modern actor, being an agent is held in
dichotomy with being a principal, where the principal “has goals
to pursue or interests to protect, [and] the agent is charged to
manage this interestedness effectively, but in tune with general
principles and truths.” In other words, the principal is concerned
with immediate raw interests, while the agent is concerned with
higher ideals. For example, the goals of a university as principal
are to produce education and research at low cost, whereas the
goals of the university as agent include having the maximum
number of brilliant (expensive) professors and the maximum
number of prestigious programs. The same tension manifests in
individuals as classic psychological dualisms (e.g., short-term vs.
long-term interests) By this duality, highly agentic features like
opinions and attitudes can be decoupled from behaviors, actions,
and decisions (Meyer and Jepperson, 2000).

Social agency, within this body of work, refers to the social
standardization and scriptedness of agency, and to how agency
dynamics permeate and shape social structure. In a society of
social agents, each individual or organization acts in accordance
with their socially prescribed and defined agency, which is akin to
the ideals defining their social role. In general terms, “the
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actorhood of individuals, organizations, and national states [is]
an elaborate system of social agency. . .” wherein actors routinely
shift between agency for the self and otherhood for the
generalized agency of the social system. Individuals share in
the general social agency of the system, negotiating the bases
for their own existence via the rules and definitions of the broader
system. This general social agency can function as the capacity for
collective agentic action (Meyer and Jepperson, 2000). This
understanding of agency as an upholding of higher ideals,
principles, and truths (and social agency as the collective
version of this), often in conflict with baser self-interested
principalhood, is so different from conceptions of agency and
social agency in HRI as to be essentially completely disjoint
concepts. As we will illustrate below, agency in HRI is not (to
our knowledge) discussed in duality with the notion of a
principal, and social agency is not understood as a collective
version of individual agency.

In presenting the definitions in this section, we do not intend
to suggest that other fields have reached some sort of internal
consensus regarding social agency or perfect consistency in its
usage. Like in HRI, there appears to be ongoing conversation and
sometimes disagreement about social agency within many fields,
though the HRI-specific branch of this conversation seems
relatively nascent. For example, there are ongoing debates in
anthropology about whether (social) agency is an essential
property of individuals, or somehow exists only in the
relationships between individuals. Likewise, there are differing
opinions within and between social science research communities
about whether nonhuman entities can have (social) agency
Gardner (2016). Unfortunately, we cannot present all
perspectives here, nor can we really present the full detail and
nuance of some of the perspectives that we have presented. What
we hope to have indicated is that definitions of social agency from
other fields, though academically rigorous and undoubtedly
useful within their respective domains, are, for various
reasons, neither intended nor suitable for the unique role of
social agency in HRI, and an HRI-specific definition is needed.

1.2 Theories of Social Agency in
Human-Robot Interaction
A number of theories of Social Agency have been defined within
the HRI community to address the unique perspective of our
field. Many of these grew out of foundational work on Social
Actors from Nass et al. (1994), which suggested that humans
naturally perceive computers with certain characteristics (e.g.,
linguistic output) as social actors, despite knowing that computers
do not possess feelings, “selves”, or human motivations (Nass
et al., 1994). This perception leads people to behave socially
towards machines by, for example, applying social rules like
politeness norms to them (Nass et al., 1994; Jackson et al.,
2019). It is perhaps unsurprising that this human propensity
to interact with and perceive computers in fundamentally social
ways extends strongly to robots, which are often deliberately
designed to be prosocial and anthropomorphised. While Nass
et al.’s work establishing the theory that humans naturally view
computers as social actors did not call computers “social agents”

or refer to the “social agency” of computers, it nevertheless
established that the human-computer relationship is
fundamentally social, and laid the groundwork for much of
the discussion of sociality and social agency in HRI today. In
this section we will discuss four rigorously defined theories of
Social Agency in HRI.

Nagao and Takeuchi
At around the same time that Nass and colleagues introduced
their “Computers As Social Actors” (CASA) paradigm (Nass
et al., 1994), Nagao and Takeuchi (1994) made one of the earliest
references to computers as social agents. In describing their
approach to social interaction between humans and
computers, Nagao and Takeuchi argue that a computer is a
social agent if it is both social and autonomous. These authors
define socialness as multimodal communicative behavior
between multiple individuals. Nagao and Takeuchi initially
define autonomy as “[having] or [making] one’s own laws,”
but later clarify that “an autonomous system has the ability to
control itself andmake its own decisions.”Wewill see throughout
this paper that sociality and autonomy remain central to our
discussion of social agency today, but not necessarily as defined
by these authors.

Nagao and Takeuchi also define a social agent as “any system
that can do social interaction with humans,” where a “social
interaction” 1) involves more than two participants, 2) follows
social rules like turn taking, 3) is situated and multimodal, and 4)
is active (which might be better understood as mixed initiative).
Some of these requirements, including at least the involvement of
more than two participants and mixed initiativity, seem unique to
this theory. Nagao and Takeuchi also differentiate their “social
interactions” from problem solving interactions, though we
believe, and see in the HRI literature, that task-oriented
interactions can be social and take place among social agents.

Pollini
Pollini (2009) presents a theory that is less concerned with
modality of interaction or type of robot embodiment, focusing
instead on the role of human interactants in constructing a
robot’s social agency. For Pollini, robotic social agents are
both physically and socially situated, with the ability to engage
in complex, dynamic, and contingent exchanges. Social agency,
then, arises as the outcome of interaction with (human)
interlocutors, as “the ability to act and react in a goal-directed
fashion, giving contingent feedback and predicting the behavior
of others.” We see the goal-directedness in this definition as
loosely analogous to the notion of autonomy that is centered in
other theories. In contrast to those theories, however, Pollini
considers social agency as a dynamic and emergent phenomenon
constructed collectively within a socially interacting group of
autonomous actors, rather than as an individual attribute
separately and innately belonging to the entities that comprise
a social group. This presents a useful framing for understanding
the social agency of multi-agent organizations like groups and
teams. However, this multi-agent perspective prevents this
definition from aligning with common references in HRI to
the “social agency” of an individual robot. Nonetheless, some
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degree of autonomous behavior, interaction, perception, and
contingent reaction must clearly remain central to our
discussion of social agency.

Pollini also opines that “social agency is rooted in fantasy and
imagination.” It seems that humans’ attribution of social agency
may be tied to the development of imagination during childhood,
leading Pollini to argue that people can “create temporary social
agents” of almost anything with which they have significant
contact, including toys like dolls, tools like axes, and places
like the home. This leads them to the question “what happens
when such ‘entities-by-imagination’ also show autonomous
behavior and contingent reactions, and when they exist as
social agents with their own initiative?” However, we argue
that axes, dolls, and places actually cannot be social agents, at
least not in the way that the typical HRI researcher means when
they call a robot (or human) a social agent, since robots can
conditionally take interactional behavior, which we believe is
necessary for social agency.

Finally, Pollini argues that agency-specific cues embedded in
robots (e.g., contingent behavior) are insufficient by themselves
for creating social agency, and that social agency, rather, is
negotiated between machines and their human interactants via
a process of interpretation, attribution, and signification. This
process involves interpreting a machine’s behavior as meaningful
and explicative, and then attributing social agency based on the
signification of that behavior as meaningful, which may also
involve attributing internal forces like intentions and
motivations. This means that, through this process, things
with simple behaviors like cars or moving shapes on a screen
can end up being ascribed social agency. Again, however, we see a
fundamental difference between these examples and social robots,
which can actually deliberately manifest meaningful and
explicative behaviors. We interpret this discussion as circling
the distinction between “actual” and “perceived” social agency
that we will discuss below.

Levin, Adams, Saylor, and Biswas
Though much of the HRI literature exploring the standalone
concept of agency is beyond the scope of this work as it focuses on
the agency of machines without centering notions of sociality, the
theory of agency from Levin et al. (2013) is relevant here because
it explores attributions of agency specifically during social
human-robot interactions. Levin et al. argue that people’s first
impulse is to strongly differentiate the agency of humans and
nonhumans, and that people only begin to equate the two with
additional consideration (e.g., when prompted to do so by the
robot defying initial expectations). They also describe how simple
robot behavioral cues like the naturalness of movement or gaze
can influence people’s attribution of agency to robots, as well as
states and traits of the human attributor, like loneliness. Like
some previous theories, Levin et al. center goal-orientedness and
intentionality in their account of agency. However, they include
not only behavioral intentionality, which we saw in other theories
(Pollini, 2009), but also intentionality in cognition. Their example
of this cognitive intentionality is drawing ontological distinctions
between types of objects based on their use rather than their
perceptual features.

Alač
Finally, Alač (2016) presents a theory in which multimodal
interaction, situatedness, and materiality are important to a
robot’s social agency, and justifies this theory with an
observational study of a robot in a classroom. Alač frames
robot agenthood as coexisting with the contrasting status of
“thing,” with agentic features entangled in an interplay with a
robot’s thing-like materiality. However, Alač moves away from
discussing a robot’s social nature as an intrinsic and categorical
property that resides exclusively in the robot’s physical body or
programming, instead seeing robot sociality as enacted and
emergent from how a robot is experienced and articulated in
interactions. To Alač, the socially agentic facets of a robot are
evident in the way it is treated by humans, focusing on proxemic
and haptic interaction patterns and linguistic framing (e.g.,
gendering the robot) in group settings. Our work can augment
ethnography-based theories like this one by exploring 1) the
features of the robot’s behavior that give rise to perceptions of
social agency, 2) what concepts constitute such perceptions, and
3) exactly what such perceptions imply. In other words, we focus
on what social agency is, rather than on human behaviors that
indicate ascription thereof.

1.3 Notions of Social Agency in
Human-Robot Interaction
While in the previous section we discussed rigorously defined
theories of social agency, much of the HRI literature that engages
with social agency does not actually connect with those theories.
In this section, we will thus explore the ways in which HRI
researchers casually refer to social agency without focusing on
developing or defining a formal theoretical account of it. Our
goals in doing so are to 1) illustrate that notions of social agents
and agency are commonly applied within the HRI research
community, 2) provide examples of how these terms are used,
and demonstrate important qualitative differences among the
entities to which these terms are applied, 3) show that the existing
theories defined in the previous section do not capture the
common parlance usage of “social agency” among HRI
researchers, and 4) lay the groundwork for developing a
theory that does accommodate these usages.

There are many papers that refer to robots as social agents
without mentioning or dealing with social agency per se. The term
social agent is widely applied to entities that are both embodied
(Heerink et al., 2010; Lee et al., 2012; Luria et al., 2016; Westlund
et al., 2016) and disembodied (Lee et al., 2006; Heerink et al.,
2010); remote controlled by humans (Heerink et al., 2010; Lee
et al., 2012; Westlund et al., 2016) and self-controlled (Heerink
et al., 2010); task-oriented (Heerink et al., 2010; Lee et al., 2012)
and purely social (Lee et al., 2006); anthropomorphic (Heerink
et al., 2010; Lee et al., 2012), zoomorphic (Lee et al., 2006; Heerink
et al., 2010; Westlund et al., 2016), and mechanomorphic
(Heerink et al., 2010; Luria et al., 2016); mobile (Heerink
et al., 2010; Lee et al., 2012) and immobile (Heerink et al.,
2010; Luria et al., 2016); and able to communicate with
language (Heerink et al., 2010; Lee et al., 2012) and unable to
do so (Lee et al., 2006; Luria et al., 2016). Any theory of social
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agency for HRI, then, should either encompass this diversity of
social agents or account for ostensible misattributions of social
agency. However, the theories we have examined, which
emphasize embodiment (Nagao and Takeuchi, 1994; Alač,
2016), language (Nagao and Takeuchi, 1994), and self-control
or intentionality (Pollini, 2009; Levin et al., 2013), exclude usages
that are apparently common in HRI research.

Of course, one could argue that casual references to robots as
“social agents” are synonymous to references to robots as “social
actors,” and that such references do not actually have anything to
do with the agentic nature of the robot. By this argument, the
existing theoretical work on social agency in HRI would best be
understood as investigating a completely separate topic from
social agents. This reasoning, however, would result in a
confusing state-of-affairs in which social agency is not a
prerequisite for being a social agent, with the two topics
unrelated except by the general connection to social
interaction. We therefore assume that a social agent must be a
thing with social agency, and that these two terms must be tightly
and logically related. A clear conception of social agency is thus a
prerequisite for the study of social agents. However, much of the
work in HRI that concerns social agency does not focus on
rigorously defining it. Indeed, some of these studies do not
explicitly provide their definition of social agency at all.

An illustrative example of a casually referenced “social agent”
is the “Snackbot” developed by Lee et al. (2012). The
anthropomorphic Snackbot had real interactions with many
humans over the course of multiple months as a snack
delivery robot. The robot’s movement was self-controlled, but
a human teleoperator hand-selected its delivery destinations. The
human operator also remotely controlled the robot’s head and
mouth movements and the robot’s speech, by selecting from a
number of pre-made scripts, both purely social and task-oriented.
We will refer back to this example in Section 2.

In their investigation of how cheating affects perceptions of
social agency, Ullman et al. (2014) used perceptions of
trustworthiness, intelligence, and intentionality as indicators of
perceptions of social agency in an anthropomorphic robot. Using
intentionality as a proxy for social agency aligns directly with
several of the theories that we described in Section 1.2 (Pollini,
2009; Levin et al., 2013). Intelligence and trustworthiness,
however, seem less closely related to social agency, and
trustworthiness is explicitly not an aspect of social agency in
theories that discuss competition and uncooperative behavior as
inherently social actions (Castelfranchi, 1998).

Baxter et al. (2014) also study attributions of social agency to
robots without explicitly defining the term, and measure it via a
different proxy: human gaze behavior. This proxy does not
obviously align with any of the theories of social agency
discussed above. Although it is possible that gaze could be a
good proxy for some definition of social agency (or the ascription
thereof), further empirical work would be needed to establish that
relationship.

Straub (2016) adopt yet another definition of social agency in
their investigation of the effects of social presence and interaction
on social agency ascription. In their study, social agents are
characterized as “having an ‘excentric positionality,’ equipped

with a) an ability to distinguish themselves, their perceptions as
well as their actions from environmental conditions (embodied
agency), b) the ability to determine their actions and perceptions
as self-generated, c) having the ability to define and relate to other
agents equipped with the same features of a) and b), along with d)
defining their relationship to other agents through reciprocal
expectations toward each other (‘excentric positioned’ alter ego).”

This definition, particularly part b, is somewhat ambiguous.
One interpretation is that the robot simply needs to distinguish its
own actions from the actions of others, and know that it is the
cause for the effects of its actions; if the robot moves its arm into a
cup, then it is the source for both the movement of the arm and
the movement of the cup. However, this seems more like the
robot knowing that its actions’ effects are self-generated and that
it was the one that acted, rather than viewing the choice to act or
the genesis of the action itself as self-generated. Another
interpretation, which is similar to some of the definitions of
social agency discussed in Section 1.1, is that seeing an action as
self-generated requires the robot to understand its choice to act,
perceive that choice as its own, and believe that it could have acted
differently. This definition appears to require some form of
consciousness or experience of free will, and is thus not well-
suited to HRI. Straub uses human behavioral proxies, like eye
contact, mimicry, smiles, and utterances, to measure ascriptions
of social agency to robots (with more of these behaviors
indicating more ascribed social agency), but such behavioral
proxies do not measure all components of their definition.

Ghazali et al. (2019) study the effects of certain social cues
(emotional intonation of voice, facial expression, and head
movement) on ascriptions of social agency. Professedly
inspired by research in educational psychology described
above (Atkinson et al., 2005), they define social agency as “the
degree to which a social agent is perceived as being capable of
social behavior that resembles human-human interaction,” and
thenmeasure it by collecting participant assessments of the extent
to which the robot was “real” and “like a living creature.”
Roubroeks et al. (2011) use the exact same definition of social
agency as Ghazali et al. (2019) in their investigation of
psychological reactance to robots’ advice or requests, but
operationalize it differently. Although they did not attempt to
measure social agency, they did seek to manipulate it by varying
robot presentation, presenting a robot’s advice as either text
alone, text next to a picture of the robot, or a video of the
robot saying the advice.

This definition seems problematically circular in that it defines
social agency by the degree to which a social agent does
something, without defining what it means to be a social
agent. We also argue that Ghazali et al.’s chosen measures do
not clearly align with the formal definitions of social agency
proposed above, nor with Ghazali et al.’s stated definition.
Moreover, this conceptualization excludes a large number of
robots that the HRI literature calls social agents, and focuses
on factors that many theories de-emphasize (e.g., livingness and
human likeness). This example in particular shows that disparate
definitions of social agency currently exist in the HRI literature,
leading to confusion when authors underspecify or neglect to
specify a definition.
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Other work from Ghazali et al. (2018) on the relationship
between social cues and psychological reactance centers the
concepts of “social agent” and “social agency” explicitly, using
the terms over 100 times in reference to robots and computers.
However, the authors do not expressly provide any definition for
those terms, despite ostensibly manipulating social agency in an
experiment. Implicitly, the authors appear to follow their
definition described above, with more humanlike superficial
behavior (e.g., head/eye movement and emotional voice
intonation) being considered more socially agentic, while the
semantic content and illocutionary force of all utterances was
kept constant across social agency conditions. However, Ghazali
et al. (2018) also seem to consider the capacity to threaten others’
autonomy as a critical feature of social agency, since they measure
perceived threat to autonomy as a manipulation check on social
agency (though the social agency manipulation did not
significantly impact perceived threat to autonomy). This
choice was not extensively justified. As discussed in Section
2.2, perceived threat to autonomy is strongly related to
(negative) face threat, which we view as important to social
agency. However, as we will discuss, the capacity to threaten
face is far broader than the capacity to threaten autonomy as
measured by Ghazali et al. (2018).

To summarize, we have discussed several conflicting theories
and usages of social agency in HRI, which, to varying extents: a)
exclude common uses of the term “social agency” by being too
restrictive, b) include objects that nearly all researchers would
agree are neither social nor agentic, c) focus on factors that do not
seem relevant to social agency in most pertinent HRI work, or d)
conflate other concepts (like livingness or human-likeness) with
social agency as it seems commonly understood. In addition, we
have shown examples of the diversity of uses of the term “social
agency” in the HRI research literature. We now contribute our
own theory of social agency, with the specific intention of
accommodating the HRI research community’s existing
notions of social agency.

2 A THEORY OF SOCIAL AGENCY FOR
HUMAN-ROBOT INTERACTION

In this section, we propose a formal theory of social agency for
HRI to address the challenges and limitations discussed in the
previous sections. Our key arguments are: 1) social agency may be
best understood through parallels to moral agency; 2) considering
various levels of abstraction (LoAs) is critical for theorizing about
any kind of agency; 3) a social agent can be understood as
something with agency that is capable of social action; 4)
social action is grounded in face; and 5) social and moral
agency are related yet independent.

To best understand social agency, we draw parallels to recent
work on moral agency. Not only are the concepts centered in
theories of social agency discussed in Section 1.2 (e.g., autonomy,
contingent behavior, and intentionality) also centered in many
theories of moral agency, but the moral agency of robots and
other artificial actors has also received a more rigorous treatment
than social agency in the HRI literature. The moral agency

literature thus represents a valuable resource for constructing a
parallel theory of social agency. Furthermore, the two concepts of
moral and social agency are inexorably linked, representing the
two halves of interactional agency. They provide congruent
relationships to (and means of understanding) moral/social
norms and are key to our most foundational understandings
of interaction. Given these similarities and connections, parallel
understandings of the two concepts are not only intuitive but
necessary, and we see no reason to attempt to define moral and
social agency completely separately. For our purposes, we will
leverage the moral agency theory of Floridi and Sanders (2004),
but note that, as with social agency, there is not yet consensus
among scholars as to a single canonical definition of moral
agency, prompting ongoing debate (Johnson and Miller, 2008).

2.1 Agency and Levels of Abstraction
Because of historical difficulties in defining necessary and
sufficient conditions for agenthood that are absolute and
context-independent, Floridi and Sanders (2004) take analysis
of levels of abstraction (LoAs) (Floridi, 2008) as a precondition for
analysis of agenthood. A LoA consists of a collection of
observables, each with a well-defined set of possible values or
outcomes. An entity may be described at a range of LoAs. For a
social robot, the observables defining an average user’s LoAmight
only include the robot’s behavior and other external attributes,
like robot morphology and voice. In contrast, the robot
developer’s LoA would likely also include information internal
to the robot, such as the mechanisms by which it perceives the
world, represents knowledge, and selects actions. Critically, a LoA
must be specified before certain properties of an entity, like
agency, can be sensibly discussed, as a failure to specify a LoA
invites inconsistencies and disagreements stemming not from
differing conceptions of agency but from unspoken differences
in LoA.

The “right” LoA for discussing and defining moral agency
must accommodate the general consensus that humans are moral
agents. Floridi and Sanders (2004) propose a LoA with
observables for the following three criteria: interactivity (the
agent and its environment can act upon each other),
autonomy (the agent can change its state without direct
response to interaction), and adaptability (the agent’s
interactions can change its state transition rules; the agent can
“learn” from interaction, though this could be as simple as a
thermostat being set to a new temperature at a certain LoA). For
the sake of simplicity, we will consider LoAs consisting only of
observations that a typical human could make over a relatively
short temporal window. These observables encompass some
concepts that were important to the theories discussed in
Section 1.2 (e.g., autonomy and contingent behavior), and
exclude others (e.g., teleological variables like intentionality or
goal-directedness), which we discuss more below. We also
consider a criterion that was not included in many theories for
social agency, namely adaptability.

At the user’s LoA, wherein the deterministic algorithms
behind a robot’s behavior are unobservable, the robot is
interactive, autonomous, and adaptable, and therefore is an
agent. However, at the robot developer’s LoA [or what Floridi
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and Sanders (2004) call the “system LoA”], which includes an
awareness of the algorithms determining the robot’s behavior, the
robot loses the attribute of adaptability and is therefore not an
agent. These two LoAs will be important throughout the rest of
this paper.

We argue that the distinction between these two LoAs (the
user’s and the developer’s) explains why some scholars have
suggested conceptualizing and measuring “perceived moral
agency” in machines as distinct from moral agency itself. This
notion of perceived moral agency would ostensibly capture
“human attribution of the status of a machine’s agency and/or
morality (independent of whether it actually has agency or
morality)” (Banks, 2019), and these authors could easily define
“perceived social agency” the same way.

Much of the impetus for defining these new concepts seems to
be a desire to avoid the varied and conflicting definitions for
agency (and the social and moral variants thereof). Typically
within HRI, researchers are primarily concerned with how their
robots are perceived by human interactants (the user’s LoA), and
how those interactants might ascribe social agency to those
robots. In that sense, perceived social agency as a concept
seems like a good way to allow researchers to focus on what
they really care about without getting mired in discussions of
their robot’s “actual” agency, though it can still leave exactly what
is perceived as (socially) agentic underspecified.

However, as we saw in Section 1, authors seldom refer to
perceived social agency (particularly since we just defined it as
parallel to perceived moral agency, which also does not seem to
have caught on), but rather use the unqualified term “social
agency”. Thus, rather than attempting to enforce a change in
terminology, we propose that “perceived moral/social agency”
should be understood as moral/social agency at the robot user’s
LoA, and “actual” moral/social agency is the corresponding
notion at the developer’s LoA. To illustrate, consider the
SnackBot (Lee et al., 2012) described in Section 1.3. This
robot was largely remotely controlled by a human, but, at the
snack orderer’s (user’s) LoA it is a social agent. At the developer’s
LoA, the robot is not an agent, but the system in aggregate might
be considered socially agentic since one of its constituent parts,
the human, is a social agent in and of itself.

If SnackBot could manifest the same behavior without human
input, it would still not be agentic at the developer’s LoA insofar
as its behavior is the direct result of deterministic algorithms that
only act on its state. However, it does intuitively seem more
agentic, prompting us to consider another useful LoA: one where
we are aware of the general distributed system that controls a
robot (in terms of software cognitive architectural components,
hardware components like cloud computing, and human
teleoperators), but not aware of the inner workings of each
constituent part of that system. At this LoA, which we call the
“architecture LoA”, a robot that does its computation internally
might be agentic, but a robot that is remote controlled by either a
person or another machine could not be an agent in and of itself.
Hundreds of different LoAs could be constructed with various
degrees of detail regarding how a robot works, but this is largely
not constructive if humans are unlikely to ever view the robot
from those LoAs. However, we believe that the architecture LoA is

realistic for many potential robot interactants, particularly those
that might own their own personal robots, or participants in
laboratory HRI studies after the experimental debriefing.

At first glance, it would be easy to draw some parallels between
our three main LoAs (developer’s, architecture, and user’s) and
Dennett’s three stances from which to view an entity’s behavior in
terms of mental properties (physical, design, and intentional)
(Dennett, 1978). The user’s LoA in particular bears loose
resemblance to Dennett’s intentional stance because the user is
aware only of the robot’s externally observable behaviors, and
may rationalize them by projecting internal states onto the robot.
Likewise, our architecture LoA is explicitly concerned with the
parts comprising a robot’s distributed system and the broad
purpose of each constituent part, like the design stance,
though it is not necessarily concerned with the purpose of the
robot itself as a whole. However, several key distinctions separate
our three LoAs form Dennett’s three stances. Most obviously, the
developer’s LoA is unlike Dennett’s physical stance in that it is
concerned with the algorithms producing the robot’s behavior
but not the specifics of their implementation nor the hardware
executing them.

More broadly, the three LoAs we have presented generally
represent three of the sets of information that real people are most
likely to have regarding robots during HRI, but there is no reason
for this set of LoAs to be considered exhaustive, and no reason
why our analysis of social agency cannot also apply to any other
LoA from which a person views a robot. In contrast, more rigidly
tripartite approaches to epistemological levelism, like Dennett’s,
though readily formalized in terms of LoAs, contain an implicit
ontological commitment and corresponding presupposed
epistemological commitment because they privilege
explanations over observable information (Floridi, 2008). That
is not to say that such approaches to multi-layered analysis are
not interesting and illustrative to HRI. For example, many
researchers have explored whether humans naturally adopt the
intentional stance towards robots and other artificial entities like
they do towards other humans (Thellman et al., 2017; Marchesi
et al., 2019; Perez-Osorio and Wykowska, 2019; Schellen and
Wykowska, 2019; Thellman and Ziemke, 2019). However, it
seems intuitive that robot developers versus users might take
the intentional stance towards robots to different extents and
under different conditions, so we posit that a specification of LoA
is helpful in considering Dennett’s stances and other attitudinal
stances in HRI inmuch the same way that it is to our discussion of
social agency, rather than Dennett’s stances being homeomorphic
to the three LoAs most salient here.

Most current cognitive architectures are precluded from
agency at the developer’s LoA because any learning is typically
a matter of updating the robot’s state by the deterministic rules of
its code, rather than an actual update to the rules for transitioning
between states (Floridi and Sanders, 2004). This includes black-
box systems, like deep neural networks, because their lack of
interpretability comes from an inability to fully understand how
the state results in behavior, not from actual adaptability.
However, we accept that humans have adaptability, and see no
theoretical reason why the same level of adaptability could not be
implemented in future artificial agents. Of course, particularly
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within the theory of causal determinism, there exists an LoA
wherein humans do not have agency if all human behavior is
rooted in the physical and chemical reactions of molecules in the
brain (a “physical” LoA a la Dennett). Regardless of the veracity
of this deterministic point of view, it seems clear that no LoA
precluding agency from existing in the universe as we know it is a
useful LoA at which to discuss agency in HRI.

We adopt the above notion of LoA and criteria for agenthood
from Floridi and Sanders (2004) for our theory of social agency
for several reasons. First, different LoAs help us to account for
different understandings of social agency in the HRI literature, as
we saw in our discussion of “actual” versus “perceived” social
agency. Second, we can explicitly avoid conflating moral/social
agency with moral/social responsibility (i.e., worthiness of blame
or praise), which is another discussion beyond the scope of this
paper. Third, avoiding internal variables like intentionality, goal-
directness, and free-will guarantees that our analysis is based only
on what is observable and not on psychological speculation, since
a typical robot user cannot observe these attributes in the internal
code or cognitive processes of their robot; we thus prefer a
phenomenological approach.

Having established an understanding of agency, we now need
to define some notion of sociality congruent to Floridi and
Sanders’s notion of morality. However, we first want to point
out that our justification for avoiding unobservable factors in
defining and assessing (moral/social) agency parallels a similar
argument from proponents of ethical behaviorism in defining and
assessing the moral status of robots. Ethical behaviorism is an
application of methodological behaviorism (as opposed to
ontological behaviorism) to the ethical domain, which holds
that a sufficient reason for believing that we have duties and
responsibilities toward other entities (or that they have rights
against us) can be found in their observable relations and
reactions to their environment and ourselves. In other words,
robots have significant moral status if they are roughly
performatively equivalent to other entities that have significant
moral status, and whatever is going on unobservably “on the
inside” does not matter. This is not to say that unobservable
qualia do not exist, nor do we deny that such qualia may be the
ultimate metaphysical ground for moral status. However, the
ability to ascertain the existence of these unobservable properties
ultimately depends on some inference from a set of observable
representations, so a behaviorist’s point of view is necessary to
respect our epistemic limits (Danaher, 2020). We agree with this
reasoning. Our definition of social agency could be framed as a
form of “social behaviorism” that specifies the behavioral patterns
that epistemically ground social agency and, by considering LoAs,
is sensitive to the behaviors that are actually observed, rather than
the set of behaviors that are, in principle, observable.

Of course, avoiding attributes like intentionality or goal
directedness in our definitions in favor of a behaviorist
approach does not completely free us from needing to rely on
some form of inference. At a minimum, making observations
from sensory input requires the inference or faith that one’s
sensory inputs correspond to some external reality. Likewise, our
interactivity criterion for agency requires some causal inference
or counterfactual reasoning. For example, concluding that a robot

can be acted on by the environment requires the counterfactual
inference that the robot’s “response” to a stimulus would not have
occurred absent that stimulus. Unfortunately, requiring some
inference is unavoidable. In light of this, one could argue that it is
equally reasonable and necessary to infer intention and goal
directedness from behavior. For example, pulling on a door
handle might signal an intent to open the door with the goal
of getting into the building, even though the same behavior could
also signal mindless programming to tug on handles without
representing goals or having intentions. We argue that the
sensory and causal inferences required by our framework are
lesser epistemological leaps and more necessary and common
(and therefore more justifiable) than inferences about other
agent’s mental states like intentionality and goals. We also
emphasize that goals and intentions are apparently not
important to social agency at the developer’s LoA, since we
saw many robots referred to as social agents by their
developers in Section 1.3 that did not internally represent
goals or intentions, and their developers would have known that.

2.2 Social Action Grounded in Face
We nowmove on to developing a notion of sociality congruent to
Floridi and Sanders’s notion of morality. For Floridi and Sanders
(2004), any agent that can take moral action on another entity
(e.g., do good or evil; cause harm or benefit) is a moral agent. Any
entity that can be the recipient of moral action (e.g., be harmed or
benefited) is a moral patient. Most agents (e.g., people) are both
moral agents and moral patients, though research has indicated
an inverse relationship between perceptions of moral agency and
moral patiency (e.g., neurodivergent adults are perceived more as
moral patients and less as moral agents than neurotypical adults)
(Gray and Wegner, 2009).

Just as a moral agent is any agentic source of moral action, we
can define a social agent as any agentic source of social action. We
ground our definition of social action in the politeness theoretic
concept of “face” (Brown and Levinson, 1987). Face, which
consists of positive face and negative face, is the public self-
concept (meaning self-concept existing in others) that all
members of society want to preserve and enhance for
themselves. Negative face is defined as an agent’s claim to
freedom of action and freedom from imposition. Positive face
consists of an agent’s self-image and wants, and the desire that
these be approved of by others. A discourse act that damages or
threatens either of these components of face for the addressee or
the speaker is a face threatening act. Alongside the level of
imposition in the act itself, the degree of face threat in a face
threatening act depends on the disparity in power and the social
distance between the interactants. Various linguistic politeness
strategies exist to decrease face threat when threatening face is
unavoidable or desirable. Conversely, a face affirming act is one
that reinforces or bolsters face for the addressee or speaker
(though our focus will be on the addressee). We define social
action as any action that threatens or affirms the addressee’s face.
So, affirming and threatening face are social analogs to doing
moral good and harm respectively. In contexts where it is helpful,
this definition also allows us to refer to robots with different
capacities to affect face as having different degrees of social
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agency, rather than viewing social agency as a strictly binary
attribute. We also propose that the term “social actor” can refer to
interactive entities capable of social action, but lacking the other
criteria for agency (autonomy and/or adaptability).

Some scholars have opined that it is common to view social
agents as equivalent to “communicating agents” (Castelfranchi,
1998), and thus might simply say that any communicative
action is a social action. Though the ability to nontrivially
communicate implies the capacity to threaten face, we choose
to base our definition of social action directly on face because it
allows for a more intuitive parallel to moral agency without
excluding any meaningful communicative actions. The vast
majority of communicative actions that an agent can perform
have the capacity to impact face. Just in terms of face threat, any
kind of request, reminder, warning, advice, offer, commitment,
compliment, or expression of negative emotion threatens the
addressee’s negative face, and any criticism, rebuke, insult,
disagreement, irreverence, boasting, non-cooperation, or
raising of divisive topics threatens the addressee’s positive
face (Brown and Levinson, 1987). A single speech act can
carry several elements that affect face in different ways, and
even the mere act of purposefully addressing someone is slightly
affirming of their positive face by acknowledging them as worth
addressing, and slightly threatening of their negative face by
imposing on their time. Indeed, it is difficult to think of a
meaningful communicative action that would have no impact
on face.

Another reason to ground social action in face is because face
is more concrete and computationalizable than some other
options (e.g., induced perceptions of human likeness or
influence on emotional state), while still being broad enough
to encompass the whole set of actions that we would intuitively
consider to be social. There exist various parameterizations or
pseudo-quantifications of face threat/affirmation, including
Brown and Levinson’s own formula which presents the weight
of a face threatening act (W) as the sum:W � D(S,H) + P(H, S) +
R whereD(S,H) is the social distance between the speaker (S) and
hearer (H), P(H, S) quantifies the power that H has over S, and R
represents the culturally and situationally defined level of
imposition that the face threatening act entails. For negative
face threatening acts, R includes the expenditure of time and
resources. For positive face threatening acts, R is harder to
determine, but it is given by the discrepancy between H’s own
desired self-image and that presented in the face threatening act.
Individual roles, obligations, preferences, and other
idiosyncrasies are subsumed into R. Of course, the constituent
parts of this equation cannot be precisely quantified in any
canonical way (nor can, for example, influence on behavioral
or emotional status). We do not view this as a weakness because
we would not expect to precisely quantify the magnitude of
socialness in an action. Humans cannot precisely answer
questions like “How social is it to hug your grandmother?” or
“Which is more social, asking a stranger for the time or tipping
your waitress?”. However, this equation nonetheless illustrates
some of the concrete underpinnings of face and shows how face
connects to concepts like relational power, interpersonal
relationships, material dependence, cultural mores, etc.

Robots are valid sources of social action under this face-based
definition. Typical task-oriented paradigms of HRI involve robots
either accepting or rejecting human requests (which either
affirms or threatens both positive and negative face), or
making requests of humans (which threatens negative face).
Even simply informing human teammates about the
environment threatens negative face by implying that the
humans ought to act based on the new information. Less task-
oriented cases, like companionship robots for the elderly
(Heerink et al., 2010), also require face affecting social actions,
though these may tend to be more face affirming than in task-
based interaction. Again taking the SnackBot Lee et al. (2012) as
an example, bringing someone a requested snack is face affirming,
and so are dialogue behaviors like complimenting snack choice or
apologizing for delays. The SnackBot’s dialogue behavior of
asking people to move out of the way is face threatening.
Research examining how robots influence human face and
how humans react to robotic face threatening actions is
ongoing (Jackson et al., 2019; Jackson et al., 2020).

In comparison to our definition, Castelfranchi (1998) define
an action as either social or nonsocial depending on its purposive
effects and the mind of the actor. Their social actions must be
goal-oriented and motivated by beliefs about predicted effects in
relation to some goal. Their social actions are mainly based on
some exercise of power, to attempt to influence the behavior of
other agents by changing their minds. They specifically say that
social action cannot be a behavioral notion based solely on
external description. This definition is not well-suited to our
purposes because these internal underpinnings are unknowable
to a typical robot user, and thus preclude the user from viewing a
robot as a social agent. We saw similar reasoning in our decision
to exclude goal-orientedness as a prerequisite for agency. Even if a
user chooses to adopt an intentional stance (see Dennett, 1978)
toward a robot and infer goals motivating its behavior, this does
not imply that the robot actually has an internal representation of
a goal or of the intended effects of its actions; the person’s
intentional stance would only allow them to take social action
towards the robot, not vice versa. Given the popular perception of
robots as social and the academic tendency to call them social
agents, we do not want a definition of social action that cannot
apply to robot action or that relies on factors that cannot be
observed from a user’s LoA. Furthermore, Castelfranchi’s
definition excludes, for example, end-to-end deep neural
dialogue systems that may not explicitly represent goals,
beliefs, causality, or interactants as potential sources of social
action, but whose actions can clearly come across as social and
carry all the corresponding externalities. Our face-based
definition does not have these limitations.

To be clear, our decision to define social action via face is not
an arbitrary design choice, but rather a result of face’s integral role
in all social interaction. We believe that an action’s relationship to
face is, unavoidably and fundamentally, what determines whether
that action is social because face is what creates the experience of
having social needs/desires in humans. It follows that, for robots,
the appearance or attribution of face, or some relationship to
others’ face, is what allows them to be social actors. Any action
that affects face is necessarily social, and any action that does not
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is necessarily asocial. This aligns well with widespread intuitions
about sociality and common parlance use of the term.

2.3 Social Patiency as Having Face
Any social action must have a recipient whose face is affected. If
social agency is an agent’s capacity to be a source of social action
(to affirm or threaten face), then the corresponding notion of
social patiency is the capacity to have one’s face threatened or
affirmed (i.e., having face). This is similar to the notion of moral
patiency as the capacity to be benefited or harmed by moral
action. Clearly, conscious humans are simultaneously moral and
social agents and patients at any reasonable LoA. However,
neither moral nor social patiency at any given LoA strictly
requires moral or social agency at the same LoA, which leads
us to the question of whether our robotic moral/social agents in
HRI are also moral/social patients.

It seems clear that, at a reasonable LoA for a human
interactant, it is possible to harm a robot, making the robot a
moral patient. This is especially clear for robots capable of
affective displays of protest and distress (Briggs and Scheutz,
2014). Indeed people deliberately abuse robots with surprising
frequency (Nomura et al., 2015). However, at a deeper LoA, we
know that current robots cannot feel pain (or pleasure), have no
true internal emotional response to harm like fear, and lack the
will towards self preservation inherent in most lifeforms. Thus, at
this deeper LoA the robot is not a moral patient.

Likewise, a robot’s social patiency depends on the LoA
considered. It is feasible to program a robot to manifest
behaviors indicating face wants, like responding negatively to
insults and positively to praise, in which case it would be a social
patient at the user’s LoA. However, at the developer’s LoA, the
robot still has no face.

2.4 Social and Moral Agencies as
Independent
We now discuss the extent to which social agency and moral
agency canmanifest in machines independent of one another.We
believe that some machines, including some robots, are largely
perceived as asocial moral agents, while others are seen as amoral
social agents. Although, for the most part, social robots do not fall
in either of these groups, we believe that they are worth presenting
as points of reference for understanding the special moral and
social niche occupied by language capable robots. We continue to
consider these technologies from the user’s LoA.

Some artificial agents are popularly ascribed some form of
moral agency without behaving socially or even possessing the
capacity for communication outside of a narrow task-based
scope. We call such agents “asocial moral agents”, and use
autonomous motor vehicles as the quintessential example. If
we include the likely possibility that autonomous vehicles will
learn and change their behavior in response to changing road
conditions or passenger preferences, they are agentic at the
passenger’s LoA by being interactive, autonomous, and adaptive.

In terms of moral action, while autonomous motor vehicles
are obligated to conform to the legal rules of the road, they are
also expected to engage in extralegal moral decision making and

moral reasoning. Myriad articles, both in popular culture and in
academia, contemplate whether and how autonomous cars
should make decisions based on moral principles (e.g.,
Bonnefon et al., 2016). Questions like “in an accident, should
the car hit a school bus to save its own passenger’s life? Or should
it hit the barrier and kill its passenger to save the school children?”
have taken hold of popular imagination and proliferated wildly.
Regardless of the actual usefulness of such questions (cf.
Himmelreich, 2018), it is clear that autonomous cars are being
ascribed moral agency.

We can also consider whether autonomous vehicles might be
capable of social action. For example, using a turn signal is clearly
communicative, but it is also legally mandated; an autonomous
vehicle would signal an impending turn regardless of whether any
other driver was present to see the turn signal. Given the legal
motivation behind the turn signal and the fact that it has no
specific intended addressee, we view it as the rare communicative
act with no (or negligible) impact to face. Indeed, any
communication via turn signal would be considered incidental
to law-following by the typical driver. Other driving behavior can
also be communicative; though we do not expect autonomous
vehicles to engage in tailgating or road rage, we could imagine
that they might change the norms governing human driving
behavior by modeling those norms themselves. For example, if all
autonomous vehicles on the road adopt a uniform following
distance, this behavior might influence human drivers sharing the
road to do the same. However, this potential normative influence
is distinct from that of social robots in that it is passive, incidental,
unintentional, and not principally communicative, and therefore
not face-relevant.

In other cases, depending on behavior, robots could be
perceived as amoral social agents. Social robots that do not
have the ability to act on their environment in any meaningful
extra-communicative capacity may be physically unable (or
barely able) to produce moral action. As an example, consider
MIT’s Kismet robot, which is expressive, (non-linguistically)
communicative, and social, but largely helpless and incapable
of acting extra-communicatively. Many social actions are
available to Kismet. For example, making a happy expression/
noise when a person enters the room is face affirming, and a
disgusted expression face threatening. Given the right behaviors,
Kismet could also meet our prerequisites for agency and be an
amoral social agent.

When moral and social agency are both present, as is the case
for most social robots at the user’s LoA, their combination gives
rise to interesting phenomena. Social robots can occupy a unique
sociotechnical niche: part technological tool, part agentic
community member. This status allows robots to play an
active role in shaping the community norms that inform
human morality, which behavioral ethics has shown to be
dynamic and malleable (Gino, 2015). And while robots are not
the only technology to play a role in shaping human norms
(Verbeek, 2011), we believe their social agency grants them
uniquely powerful normative influence. For example, robots
have been shown to hold measurable persuasive capacity over
humans, both via explicit and implicit persuasion (Briggs and
Scheutz, 2014; Kennedy et al., 2014), and even to weaken human
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(application of) moral norms via simple question asking behavior
(Jackson and Williams, 2019).

Language capable robots are unique among technologies not
only in the strength of their potential moral influence, but also in
their ability to take an active and purposeful role in shaping
human moral norms (or human application of moral norms) as
social agents. However, this capability is a double-edged sword.
On the one hand, robots of the future could productively
influence the human moral ecosystem by reinforcing desirable
norms and dissuading norm violations. On the other hand,
today’s imperfect moral reasoning and natural language
dialogue systems open the door for robots to inadvertently
and detrimentally impact the human moral ecosystem through
reasoning errors, miscommunications, and unintended
implicatures. It is thus crucial to ensure moral communication
and proper communication of moral reasoning from robots,
especially in morally consequential contexts. The power to
transfer or alter norms comes with the responsibility to do so
in a morally sensitive manner.

3 REVISITING RELATED WORK

Revisiting the theories of social agency from Section 1.2, we see
that our definition is more inclusive than that of Nagao and
Takeuchi (1994) and Alač (2016) in that we demphasize the
robot’s embodiment and materiality to account for purely digital
potential social agents that we see in HRI research (Lee et al.,
2006; Heerink et al., 2010), and do away with the teleological and
internal considerations (e.g., goal-orientedness and
intentionality) that would not be knowable to the typical robot
user (cp. Pollini, 2009; Levin et al., 2013). On the other hand, our
work is more restrictive than Pollini (2009) because we exclude
“entities by imagination” as potential social agents, and specify
that there are several behavioral traits necessary for social agency.
This approach balances the more human-ascription-centered and
more robot-trait-centered conceptualizations of social agency.
Our theory acknowledges the human role in determining social
agency by centering human face and the human’s LoA, without
reducing social agency to the mere ascription thereof. At the same
time, we concretely describe the robot traits necessary for social
agency at a given LoA.

Revisiting the studies from Section 1.3, which referenced
social agents and social agency without principally focusing on
defining those concepts, we see that our definition can
encompass the wide diversity of potential social agents in
HRI. Particularly at the user’s LoA, robots can be social
agents regardless of embodiment, teleoperation, task-
orientedness, morphology, mobility, or linguistic capacity.
However, some of the robots we reviewed would actually be
excluded by our definition at the user’s LoA by failing to meet
behavioral prerequisites, particularly by lacking indications of
adaptability (e.g., Lee et al., 2006; Heerink et al., 2010;
Roubroeks et al., 2011). Interestingly, robots with a human
teleoperator, like the SnackBot (Lee et al., 2012) might be more
likely to be socially agentic at the user’s LoA than those with
simpler self-controlled behavior.

Finally, we stress that our theory complements (rather than
competes with) much of the previous work we discussed. For
example, some of the proxemic and haptic human behavior that
Alač (2016) observed in their ethnographic study, like the choice
to touch a robot’s forearm rather than other body parts, might be
understood within our theory as stemming from attributions of
social patiency to the robot, rather than social agency. Likewise,
our conception of social agency may well be tied to, for example,
psychological reactance (Roubroeks et al., 2011) or trust (Ullman
et al., 2014).

4 CONCLUDING REMARKS

We have presented a theory of social agency wherein a social
agent (a thing with social agency) is any agent capable of social
action at the LoA being considered. A LoA is a set of observables,
and the LoAs most relevant to our discussion have been the robot
user’s, the developer’s (or system LoA), and, to a lesser extent, the
architecture LoA. Agency at any given LoA is determined by three
criteria which we defined concretely above: interactivity,
autonomy, and adaptability. We have defined social action as
any action that threatens or affirms the addressee’s face, and refer
to the addressee in this scenario as a social patient. More
specifically, social patiency is the capacity to be the recipient of
social action, i.e., having face. These definitions came from
parallel concepts in the philosophy of moral agency (Floridi
and Sanders, 2004). We motivated our theory of social agency
by presenting a sample of the inconsistent, underspecified, and
problematic theories and usages of social agency in the HRI
literature.

Based on our theory, we have several recommendations for
the HRI community. We recognize a tendency to casually use
the word “agent” to refer to anything with any behavior, and to
correspondingly use “social agent” to simply mean “social
thing.” A summary of the concepts that are central to our
theory can be found in Table 1. We encourage authors to
consider either switching to the broader term “social actor” as
defined above, or to briefly specify that they are using the term
“social agent” informally and do not intend to imply social
agency in any rigorous sense. We further recommend that any
paper dealing with social agency be specific in selecting a
suitable definition (such as the one presented in this work)
and LoA.

It will be important for future studies to develop, refine, and
validate measurements of social (and moral) agency. There
exists early work on developing a survey to measure
“perceived moral agency” for HRI (Banks, 2019), however
some questions seem to conflate moral goodness with moral
agency, and, despite measuring facets of autonomy and moral
cognition, the survey does not measure the capacity for taking
moral action. Some of the proxies that we saw used for social
agency in Section 1.3, like human-likeness, realness, and
livingness (Ghazali et al., 2019) do not match our new
conceptualization of social agency. Others, like gaze (Baxter
et al., 2014), could be promising but have yet to be validated with
our theory (or, to our knowledge, any particular theory) of social
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agency in mind. Validated metrics would facilitate experimental
work motivated by our theory.

For example, future work designed to evaluate and further
concretize our theory could empirically verify whether changing
the LoA at which somebody is viewing a robot causes a
corresponding change to their assessment of that robot as a
(social) agent. The results could either strengthen the
argument that the LoA is a critical prerequisite for the
discussion of agency, or indicate that colloquial conceptions of
agency do not account for LoA, despite its importance in rigorous
academic discussions. Another avenue for this type of work
would be to manipulate the magnitude of face threat/
affirmation that a social robot is capable of and examine how
that manipulation effects perceptions of the robot as a social
agent. This experiment would specifically target our definition of
social action as grounded in face.

Measures of social agency would also allow us to examine its
relationship with persuasion and trust. On the one hand, we could
imagine that decreasing a robot’s social agency (by lowering its
propensity to affect face) could increase its persuasive capacity if
people are more amenable to persuasion when their face is not
threatened. On the other hand, increasing a robot’s social agency
might increase its persuasive capacity if people are more likely to
trust a more human-like robot.

Furthermore, it will be important to probe for causal
relationships between ascriptions of social agency and
ascriptions of moral responsibility and competence in robots.
In human children, development of increased capacity for social
action is typically correlated with development of other facets of
intelligence and skills, including moral reasoning. However, this
correlation does not necessarily exist for robots, since a robot
could be socially agentic and competent, with a wide range of
possible social actions, and still have no moral reasoning capacity.
If robot social agency, or social behavior in general, leads
interactants to assumptions of moral competence or overall
intelligence (as it likely would in humans), this could lead to

dangerous overtrust in robot teammates in morally consequential
contexts that they are not equipped to handle. Thus, giving a
robot linguistic/social competence would also necessitate giving
the robot a corresponding degree of moral competence.

Finally, though there is evidence for an ontological distinction
between humans and robots (Kahn et al., 2011), it is not yet clear
where differences (and similarities) will manifest in terms of
moral and social agency. We will require human points of
reference in future HRI studies to fully understand how the
emerging moral and social agency of robots relate to those
qualities in humans.
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TABLE 1 | Summary of terms that are important to our concept of social agency.

Term Definition

Level of Abstraction (LoA) A collection of observables describing an entity (Floridi and Sanders, 2004; Floridi, 2008). A user’s LoA for a robot includes
movement, speech, morphology, etc., while the developer’s LoA also includes the algorithms controlling the robot

Agent Anything possessing the three criteria of interactivity, autonomy, and adaptability
Interactivity The capacity to act on the environment and to be acted upon by the environment (Floridi and Sanders, 2004)
Autonomy The capacity to change state without direct response to interaction (Floridi and Sanders, 2004)
Adaptability The capacity for interaction to change the system’s state transition rules. The capacity to “learn” from interaction (Floridi and

Sanders, 2004)
Social agent Anything capable of taking social action at the LoA under consideration
Social action Any act that threatens or affirms an other’s face. Analogous to moral action (doing harm/good to an other)
Social patient Anything that can be a recipient of social action, i.e., anything with face
Face The public self-concept (meaning self-concept existing in others) that all members of society want to preserve and enhance

for themselves
Negative face: an individual’s claim to freedom of action and freedom from imposition
Positive face: an individual’s self-image and wants, and the desire that these be approved of by others (Brown and Levinson,
1987)
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Task-Level Authoring for Remote
Robot Teleoperation
Emmanuel Senft 1*, Michael Hagenow2, Kevin Welsh1, Robert Radwin3, Michael Zinn2,
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1Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States, 2Department of Mechanical
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Remote teleoperation of robots can broaden the reach of domain specialists across a wide
range of industries such as home maintenance, health care, light manufacturing, and
construction. However, current direct control methods are impractical, and existing tools
for programming robot remotely have focused on users with significant robotic experience.
Extending robot remote programming to end users, i.e., users who are experts in a domain
but novices in robotics, requires tools that balance the rich features necessary for complex
teleoperation tasks with ease of use. The primary challenge to usability is that novice users
are unable to specify complete and robust task plans to allow a robot to perform duties
autonomously, particularly in highly variable environments. Our solution is to allow
operators to specify shorter sequences of high-level commands, which we call task-
level authoring, to create periods of variable robot autonomy. This approach allows
inexperienced users to create robot behaviors in uncertain environments by
interleaving exploration, specification of behaviors, and execution as separate steps.
End users are able to break down the specification of tasks and adapt to the current
needs of the interaction and environments, combining the reactivity of direct control to
asynchronous operation. In this paper, we describe a prototype system contextualized in
light manufacturing and its empirical validation in a user study where 18 participants with
some programming experience were able to perform a variety of complex telemanipulation
tasks with little training. Our results show that our approach allowed users to create flexible
periods of autonomy and solve rich manipulation tasks. Furthermore, participants
significantly preferred our system over comparative more direct interfaces,
demonstrating the potential of our approach for enabling end users to effectively
perform remote robot programming.

Keywords: human-robot interaction, end-user programing, teleoperation, robotics, remote robot control, user study

1 INTRODUCTION

Effective teleoperation of robots—broadly, a remote human controlling a robot at a distance
(Niemeyer et al., 2016)—is critical in scenarios where automation is impractical or undesirable.
When a person operates a remote robot, they must acquire sufficient awareness of the robot’s
environment through sensors and displays, be able to make decisions about what the robot should
do, provide directions (control) to the robot, and evaluate the outcomes of these operations. These
challenges have been addressed with a wide range of interfaces that span a continuum of levels of
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autonomy (Beer et al., 2014), ranging from direct control where
the operator drives the moment-to-moment details of a robot’s
movements, to asynchronous control, where operators send
complex programs to the robot to execute autonomously,
e.g., space exploration where robots receive programs for a
day’s worth of activities (Maxwell et al., 2005). The choices
of level of control provide different trade-offs to address the
goals of a specific scenario. In particular, longer-horizon control
offers better robustness to communication issues and provides
long periods of idle time for the operator while the robot is
executing the commands. However, it also limits the
opportunities for the human to react to unexpected
situations during the program execution and requires
significant huamn expertise to design robust behaviors and
advanced sensing skills for the robot. On the other hand,
more direct control allows operators to react quickly and
easily to uncertainty, but demands constant attention from
the operator, often relies on dedicated hardware, and requires
a fast and stable connection to ensure that the tight real-time
loop between the operator and the robot is maintained.

Our goal is to provide effective telemanipulation for end-user
applications, such as home care, light manufacturing, or
construction. In such scenarios, high level robot autonomy of
autonomy would be desirable, as this would reduce the operator’s
workload, however there remains situations where a fully
autonomous behavior cannot be created. Users have domain
knowledge, they can analyze the robot environment and
determine appropriate actions for the robot, but they have no
expertise in creating robot programs. Building a system
supporting teleoperation for these novice users presents a
number of challenges, the system needs to 1) be easy to use,
2) support active perception (Bajcsy, 1988), 3) support
specification of robot behaviors adapted to the current state of
the environment, and 4) allow for periods of autonomy. As we
will detail in Section 2, current interfaces for teleoperation are
often specifically tailored to highly trained operators or adopt a
low level of autonomy. The former are not suited to novice users
and the latter forces users to continuously provide inputs to the
robot, reducing both the usability over extended periods of time
and increasing the sensitivity to communication issues.

Our key idea is to use task-level authoring to enable the
operator to control the robot by specifying semantically
connected sequences of high-level (task-level) steps. This
paradigm supports various lengths of program depending on
available environment information, ranging from single actions
to longer plans. For example, a robot might need to open a drawer
with a specific label and empty it, however the robot does not have
character recognition. The operator could use the robot to locate
the appropriate drawer and then create a plan for the robot to
open this specific drawer, remove all items in it, and then close it.
Task-level authoring aims to offer more flexibility for the
operator, allowing them both to specify long periods of
autonomy when possible, but also have a more direct control
when necessary to allow the operator to obtain the environmental
awareness necessary to make longer plans.

We propose four principles to support effective
telemanipulation by novices:

1) Interleaving observation and planning: the stepwise nature of
manipulation tasks allows phases of observing the environment
to gain awareness with phases of acting on that information.
Execution occurs asynchronously, allowing it to be robust
against communication problems and providing idle time to
the user. Users can assess the state of the environment, devise a
short plan for the robot, execute it, and the restart the process
with the new state of the environment.

2) Controlling the robot at the action level: instead of controlling
the robot motions, operators can select actions for the robot
(e.g., pick-up, pull, or loosen). Such higher level of control
allows participants to focus on the task that needs to be solved
instead of the robot’s kinemathics or workspace geometry.

3) Providing a unified augmented reality interface: task
specification can be accomplished from a viewpoint chosen
by the user to be convenient, as part of their awareness
gathering process. This process allows us to use a screen
overlay-based augmented reality interface that aggregates
all the required information for decision making on a
single view also used to specify actions. This single view
makes the programming easier for the users as all the
important information are available in a single place.

4) Specifying actions graphically: the augmented-reality interface
allows for details of operations to be specified and verified
graphically in context, simplifying the interface further.
Additionally, such graphical specification allows easily to
generalize a plan to a group of objects of the same type.

We have prototyped these ideas in a system called Drawing
Board after an artist’s portable drawing board (Figure 1) and
evaluated it in a user study with 18 participants. Our central
contribution is to show that a task-level authoring approach can be
applied to teleoperation to create a system that affords both ease-

FIGURE 1 | Drawing Board: task-level authoring for robot teleoperation.
By watching a robot-centric augmented video feed and annotating it, novice
users can acquire awareness about the robot’s environment and send task-
level plans to control a robot remotely.
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of-use and asynchronous operation. In our study, remote operators
(students with limited programming knowledge) were able to
perform complex tasks, gaining the benefits of asynchronous
operation (robustness to delays and opportunities for longer
periods of idle time) with the ease-of-use and reactivity of more
direct interfaces. Participants—some literally on the other side of
the world—were able to teloperate the robot with little training and
preferred our system compared to interfaces not embodying our
principles. These findings show how the core choice of task-level
authoring is supported by specific interface and implementation
designs, yielding a system that meets our goals, allowing end users
to remotely create short period of autonomy for robots.

2 RELATED WORK

Our work brings elements from the field of authoring and end-
user programming to teleoperation.

2.1 Teleoperation
Fundamentally teleoperation refers to human control of robot
actions, typically done remotely (i.e., the human and the robot are
not collocated and the human can only perceive the robot’s
environment through artificial sensors and displays)
(Niemeyer et al., 2016). With teleoperation, the question of
the appropriate level of autonomy is important, especially in
the presence of delay and partial situational awareness (Yanco
et al., 2015; Niemeyer et al., 2016). Levels of autonomy form a
continuum between direct control and long-term programs:

1) Direct control: low-level control where the operator is
manually controlling all actions of the robot in real-time
(e.g., remote surgery (Marescaux et al., 2001), military
(Yamauchi, 2004)).

2) Semi-autonomy: the human operator intermittently controls
robot actions where required and can parameterize higher-
level actions that are executed autonomously by the robot
(e.g., search-and-rescue, DARPA Robotics Challenge
(Johnson et al., 2015)).

3) Teleprogramming: operators create programs defining actions
and reactions to changes in the environment for the robot to
execute over longer period of time (e.g., Mars rovers
programmed every day for a full day of autonomy (Norris
et al., 2005)).

Direct control has seen widespread use in the aerospace,
nuclear, military, and medical domains (Niemeyer et al., 2016)
as it allows operators to quickly react to new information.
However, this type of teleoperation requires constant inputs
from the operator and is highly sensitive to communications
problems. Researchers have explored various methods to address
this communication challenge. One direction of research involves
optimizing the communication channel itself to reduce delay and
allow the operator to have quick feedback on their actions
(Preusche et al., 2006). Another method, shared control, seeks
to make the process more robust to human error through means
such as virtual fixture methods, which support the operator in

their direct manipulation task (Rosenberg, 1993) or alternating
phases of teleoperation and autonomous operation (Bohren et al.,
2013). Finally, a third alternative uses a virtual model of the
workspace to provide rapid feedback to the user from simulation
while sending commands to the robot (Funda et al., 1992).

On the other end of the spectrum, traditional programming
for autonomy and teleprogramming provides only limited
feedback to the operator about the robot behavior. Operators
need to have complete knowledge about the task including all
required contingencies, to create dedicated programs for each
task. These programs must be robust enough to run
autonomously for hours without feedback. Furthermore, the
robot needs to have the sensing capabilities to capture and
analyze every relevant information in the environment. This
highly autonomous control method is especially useful where
there are large time delays between the robot and the operator
which prevents the operator from intervening in real-time, such
as when controlling a rover on Mars (Maxwell et al., 2005).

A semi-autonomous robot is a middle ground between these
two extremes: it can execute short actions autonomously, but
relies on the human operator to determine a plan of action and
provide the correct parameters for these actions. The human (or
team of humans) can use the robot to actively collect information
about the environment, and provides near real-time inputs to the
robot. The DARPA robotic challenge explores this space. In this
case, the robot can run parameterized subroutines while multi-
person teams of highly trained operators analyze data from the
robot and control it at various abstraction-levels (from joint angle
to locomotion goal), including situations with unstable
communication channels (Johnson et al., 2015). These
subroutines can be parameterized by selecting or moving
virtual markers displaying the grasping pose (Kent et al.,
2020), robot joint position (Nakaoka et al., 2014), or using
affordance templates (Hart et al., 2014). In a retrospective
analysis, Yanco et al. (2015) highlight the training required for
operating the robots during these trials, and reports that
researchers should explore new interaction methods that could
be used by first responders without extensive training.

One approach to simplify both awareness acquisition and
control (two keys aspects in teleoperation) is to use monitor-
based augmented reality—overlaying digital markers on views
from the real world (Azuma, 1997). For example, Schmaus et al.
(2019) present a system where an astronaut in the space station
controlled a robot on earth using this technology. Their point-
and-click interface presents the video feed from the head camera
of a humanoid robot with outlines of the detected objects and
menus around the video. When clicking on one of these objects,
the system filters the actions that can be done on this object to
propose only a small subset of possible actions to the operator.
Similarly, Chen et al. (2011) propose a multi-touch interface
when actions are assigned to gestures on a video feed displayed on
a touch screen. This type of point-and-click or gesture interface
allows the remote operator to gain awareness about the
environment and simply select high-level actions for the robot
to perform. Simulations can also be overlaid with markers that
users can manipulate to specify the desired position of a robot or
its end-effector (Hashimoto et al., 2011; Hart et al., 2014; Nakaoka
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et al., 2014). However, despite these advances, little work has been
done to explore and evaluate interfaces that allow naive operators
to actively acquire awareness about the environment and create
longer plans consisting of multiple actions.

2.2 Authoring
In the context of robotics, the term authoring refers to methods
allowing end users to create defined robot behaviors (Datta et al.,
2012; Guerin et al., 2015; Weintrop et al., 2018). The general process
starts with a design period where an initial behavior is created, then
the robot can be deployed in the real world and its behavior tested
and refined in additional programming steps if needed. When the
desired requirements are achieved, the authoring process is finished
and the robot is ready to be deployed to interact autonomously.
Authoring differs from classic programming in its focus on end users
with limited background in computer sciences and seeks to address
questions of how can these users design, or author, behaviors using
modalities such as tangible interactions (Sefidgar et al., 2017; Huang
and Cakmak, 2017), natural language (Walker et al., 2019),
augmented- or mixed-reality (Cao et al., 2019a; Peng et al., 2018;
Akan et al., 2011; Gao and Huang, 2019), visual programming
environments (Glas et al., 2016; Paxton et al., 2017), or a mixture of
modalities (Huang and Cakmak, 2017; Porfirio et al., 2019).
Steinmetz et al. (2018) describe task-level programming as
parameterizing and sequencing predefined skills composed of
primitives to solve a task at hand. Their approach combines this
task-level programming and programming by demonstration
(Billard et al., 2008) to create manipulation behaviors.

While promising, classic authoring methods suffer from two
limitations when applied to remote robot control. First, the
authoring process is often considered as a single design step
creating a fully autonomous behavior (Perzylo et al., 2016; Cao
et al., 2019b). This monolithic approach differs from teleoperation
which assumes that human capabilities (sensory or cognitive) are
available at runtime to help the robot successfully complete a task.
Second, many authoring methods such as PATI (Gao and Huang,
2019) or COSTAR (Paxton et al., 2017) use modalities only available
in situations where the human operator and the robot are collocated
(e.g., kinesthetic teaching, tangible interfaces, or in-situ mixed
reality). For example, teach pendants—which are interfaces
provided by manufacturers of industrial robots—are designed to
be used next to the robot and often require the operator to manually
move the robot. Consequently, while available to end users, such
methods are not possible to use remotely. Our work is in the line of
Akan et al. (2011), who used augmented reality to specify plans for a
robotic arm. However, our premise is that to enable novice users to
teleoperate robots, active perception (i.e., environment exploration)
and behavior specification should be interleaved and coupled
through a single simple interface, and that manipulation of
graphic handles is a powerful way to specify parameters for actions.

3 DESIGN

To allow non-expert users to control robots remotely, we propose
a system rooted in task-level authoring which allows users to
navigate the live environment and specify appropriate robot

behaviors. The following sections and Figure 2 detail the key
concepts of the system topology.

3.1 Interleaving Observation and Planning
Specifying full execution plans for a robot would allow to reduce
the operator workload during plan execution, but requires
significant expertise in robotics and highly capable robots. To
allow end users to create adaptable periods of autonomy for the
robot, we propose to use a task-level authoring approach. This
approach simplifies the programming process by allowing the
programmer to break tasks into sequences of high level actions
based on what they observe at the moment. Users can chain
together actions to create flexible periods of autonomy, adapted to
their knowledge of the situation. For example, a set of actions may
consist of grabbing a set of bolts in an area and moving them into
a set grid pattern to fasten a structure. If the user is unsure what
action is required next or if something unexpected occurs, the
task-level authoring approach allows the user to explore the
environment and create new programs based on the outcome
of previous actions and new information.

Controlling robots at the task level creates a number of
opportunities for end-user teleoperation; it allows the human
to remain in the decision loop to provide necessary expertise,
while maintaining an asynchronous workflow. Such design allows
end-users to alternate between observing the environment,
specifying robot actions, and executing sequences of
commands. Operators can specify short actions to explore the
environment by moving the robot camera, acquiring awareness,
and selecting an appropriate view point to author task plans.
Then, once they have gathered enough information about the
environment to know their next actions, they can schedule a
longer plan consisting on multiple actions to solve the current
part of the task. This process can be repeated as much as needed
which allows for plans to be tailored to the current state of the
environment. The asynchronous execution also provides
robustness to communication instability. The inclusion of the
operator in the control loop takes away the complexity of
teleprogramming by having the human making complex
perceptions and decisions. Thus, it keeps the benefits of direct
control without the requirement of a tight and stable control loop
and maintain the benefits of asynchronous control without
requiring to create complex programs and plan ahead for
unknown future.

3.2 Controlling the Robot at the Action Level
As mentioned in Section 2.1, teloperation levels of control covers
a spectrum from direct control to teleprogramming. Direct
control can afford ease of use when the user is provided with
intuive input device (Rakita et al., 2018), however it requires
minute control from the operator and is very sensitive to delay.

As shown in Schmaus et al. (2019), controlling a robot at the
action level provides a number of advantages for teleoperation.
First, as actions are executed using a local control loop, it allows to
be robust to delays in communication. Second, it is intuitive for
users, new operators can pick-up the system easily without
requiring the user to possess any knowledge about robotics
and control. Nevertheless, controlling solely at the action level
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suffers from some limitations. When using a single actions, even
when users know what the robot should do over the next few
actions, they have to specify an action, wait for it to be executed,
specify the next action, and repeat, which can be suboptimal for
the user. Additionally, similarly to any high-level control scheme,
any action not in the robot vocabulary cannot be executed.

3.3 Providing a Unified, Augmented Reality
Interface
Similar to some other robot authoring interfaces (Schmaus et al.,
2019; Walker et al., 2019), our approach uses augmented reality
(AR) to simplify perception and action specification. The interface
is composed of a unifiedmonitor-based AR interface showing a live
camera view of the robot’s environment augmented with digital
markers representing detected objects (see Figure 2). The camera is
mounted directly on the robot’s end-effector for viewpoint
flexibility and registration. The interface is overlaid with a
canvas where the operator can design robot behaviors. This
paradigm is consistent with research which shows that the most
intuitive way to communicate information to an untrained
operator is through vision (Yanco et al., 2004). More complex
information such as the detected object pose and the environment
point cloud are used to parameterize robot behavior behind the
scenes, but hidden from the user’s display.

3.4 Specifying Actions Graphically
One challenge in designing an interface for novice end users is to
simplify the specification of complex manipulations. In
programming, classic ways to set parameters are through
sliders and numbers. Numerical parameter-setting allows

greater precision, but can be unintuitive for users. Instead, our
interface design leverages graphical representations whenever
possible and minimizes required user input.

Our interface uses visual and interactive representations,
mapped onto the augmented video feed, that enable users to
parameterize predefined actions by manipulating these graphical
representations. For example, to move a known object to a known
positions, the interface creates anchors that can be moved by the
user. Then, the interface will display an arrow from the starting
point in the video to the goal point, visually representing the
action in context. The interface uses 2D affordances throughout,
as this is consistent with the 2D representation in video. 6D
locations are inferred from the 2D interface based on
environment information. Additionally, through graphical
localization, a series of actions on a specific object can be
generalized to nearby objects of the same category.

Our interface design only exposes high-level actions to the user
(e.g., move, tighten, pull). The local robot controller decomposes
these high-level actions into series of lower-level actions and
translates them into primitives to reach the desired robot
behavior. The user only has to specify the minimum fields
required to execute the task and graphical specification allows
to specify multiple parameters at the same time and in an intuitive
matter.

4 IMPLEMENTATION

4.1 System
Following the considerations detailed in the previous section, we
implemented Drawing Board, a prototype focused on enabling

FIGURE 2 | Drawing Board’s interface demonstrating our design principles.
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users with little programming experience to operate a robot
remotely. The interface was designed to be served from a
traditional laptop or desktop display and focuses on
controlling a single robotic manipulator. Our implementation
integrates a collaborative robot (Franka Emika Panda) outfitted
with an ATI Axia80-M20 6-axis force torque sensor and a
Microsoft Azure Kinect providing both a 2D image and 3D
point cloud. The camera is placed at the end-effector to allow
for the greatest flexibility in camera position. The components of
the system communicate using ROS (Quigley et al., 2009) with
logic nodes implemented in Python, the graphical user interface
in QML, and the low-level control in C++.1

For facilitating precise interaction with the environment, we
implemented a hybrid controller to have more control over the
forces applied by the robot when doing precise manipulation such
as pulling a drawer. The hybrid control law follows an admittance
architecture where interaction forces are measured from the
force-torque sensor and resulting velocities are commanded in
joint space via pseudo-inverse based inverse kinematics.

We also leverage the Microsoft Azure Kinect depth sensor to
observe the environment. Objects are first localized in the scene
by feeding the color image to Detectron2 (Wu et al., 2019), which
provides a high fidelity binary pixel mask for each detected object.
Once the object is localized, a GPU-accelerated Hough transform
is used to register the known triangle mesh with each instance.
This pipeline allows us to achieve 6D object pose estimation,
which can then be used to provide the user with semantically

correct actions as well as inform the robot motion plan. Our
system also uses a number of predefined points of interest that
represent the position of known static objects in the workspace.
These known points are used as reference for the robot and to
filter the position of objects detected by the live pose estimation
pipeline.

4.2 Workspace
We applied our system to the workspace shown in Figure 3. This
workspace guided our implementation, but the system can be
adapted to other tasks or interactive objects. This workspace is
composed of a number of drawers on the left of the robot with
known positions. The middle of the workspace contains three
white boxes above a blue area and a blue eraser, which are not
detected by the robot object recognition system. The right part of
the workspace contains a grid with holes and a screw box with
known positions, and the grid can contain screws which are
detected by the vision system.

The current prototype includes the following actions:

• Pulling and pushing the drawers;
• Picking, placing, and moving detected objects (e.g., screws)
and undetected objects (e.g., boxes);

• Tightening and loosening the screws;
• Wiping an area.

By having general actions such as pull or move our system can
adapt easily to other objects or different locations and
orientations for these objects.

4.3 Interface
The default interface layout shows the video feed augmented with
markers showing the detected or known points of interest (see
Figure 2). The camera view is cropped to fill the full screen while
showing clearly the robot’s finger to allow users to know the
gripper’s status (open, closed, full).

4.3.1 Direct Control
At the bottom of the screen there are a number of buttons for
direct control: 12 buttons allow the user to move the camera by a
discrete increment in each of the 6 potential directions (5 cm for
the position buttons and π/16 radians for rotations), two buttons
allow grasping and releasing, and a last button resets the robot to
its homing position.

4.3.2 Authoring
To create task-level plans for the robots, users can annotate the
augmented display to select actions applied to objects detected or
parts of the environment. Users can click (or click-and-drag) on
the screen to create selection areas to plan actions for the robot.
Each selection area corresponds to one action or a set of actions
on one type of object. Actions that can be parameterized (e.g.,
move actions) provide different types of handles that can be used
to fully characterize the action. Users can create multiple selection
areas to schedule different types of actions, and the resulting plan
is shown in the Game Plan at the right of screen (see Figure 2).
Users can use this game plan to confirm that the interface

FIGURE 3 | Workspace used for our implementation.

1Open-source code for our system implementation is available at https://github.
com/emmanuel-senft/authoring-ros/tree/study.
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interpreted the intentions correctly before sending the plan to the
robot. During the execution, the user can monitor the robot
progress in the task by watching the video feed and checking the
progress in the plan. Video examples can be found at https://osf.
io/nd82j/.

4.3.3 Interaction with undetected objects
To pick and place an object not detected by the system, users can
manipulate a start pose and a goal pose handles to specify the
motion (see Figure 4). These handles are composed of three
connected points: the interaction point (grasping or releasing) as
well as points representing the robot’s fingers, and users canmove
the handle on the screen to change the interaction location, and
rotate it to specify the end-effector orientation. This pixel value is
then mapped into a 3D point in the camera frame using the
Kinect’s depth camera and converted in a point in space for robot.
The orientation from the interface specifies the rotation on the
vertical axis and consequently completely characterize a vertical
tabletop grasp.

4.3.4 Generalization to Groups of Objects
When creating a selection area, the interface will select a default
object to interact with based on the ones present in the area, but
the type of object can be changed by clicking on radio buttons
displaying the objects present in the area. Each object has a
number of actions that can be executed on it (e.g., a screw can be
tightened, loosened, or moved), and the user can select which
action to apply and in what order by using numbered checkboxes.
These actions will then be applied on each object of the selected
type in the area (e.g., loosen and move all the screws in the area).

4.4 Backend
The interface exposed the following high-level actions: move
(both known and unknown objects), loosen, tighten, wipe,
pull, and push. These high-level actions selected by users are
grounded in the real world by finding the 6D pose of the
interactions points in the user plan (either using the depth
map from the Kinect or the location of points in a list of
known objects). Each action is then hierarchically decomposed
in a set of lower level actions (e.g., pick-up, view, place) and
primitives (e.g., move to position, move to contact, grasps). For
example, a move known object action is decomposed first into a
pick and a place actions, which are then decomposed into a
multiple of primitives (move above grasping point, move to
grasping point, grasp, move above grasping point, move above
release point, move to release point, release, and finally move
above releasing point). During execution, the robot will perform
each of the parameterized primitive to complete the plan.

This method can be extended to new applications in three
ways: 1) adding new objects to the image recognition and
interface affordances, 2) by composing existing primitives to
create new higher-level actions, and 3) if needed, by creating
new primitives. The first two improvements could be made using
graphical interface without having to code (e.g., using approaches
similar to Steinmetz et al. (2018)), however the third one would
require actual code modification. This is similar to the current
state-of-the-art cobots teach pendants: they expose a number of
primitives that users can use to create behaviors, but any
requirement not covered by the primitives (such as additional
sensor-based interaction) would need code development to add
the capability. Nevertheless, we could envisage a mixed system

FIGURE 4 | Example of parameterization of a moving unknown object action, with full interface for the initial state and zoom in.
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where creating new primitives and actions could be done locally,
using learning from demonstration, and then exposed at a higher
level to remote users using our interface.

5 EVALUATION

We conducted an evaluation to assess the impact of the design
principles of our system. As mentioned in Section 3, our task-
level authoring system is based around four principles: 1)
interleaving observation and planning, 2) controlling the robot
at the action level, 3) providing a unified, augmented reality
interface, 4) graphical specification of actions. For the sake of the
evaluation, the unified AR interface principle was not evaluated as
too many different alternatives exist, however, we explored the
three other axes. We conducted a 3 × 1 within-participants study
to explore three types of interfaces embodying or not our design
principles: our task-level authoring interface (TLA), a point-and-
click interface (PC) inspired from Schmaus et al. (2019), and
finally a Cartesian control interface (CC) as can be found
traditionally on a cobot’s teach pendant (e.g., PolyScope for
the universal Robots2) or recent work in teleoperation
(Marturi et al., 2016).

The CC condition does not use any of our design principles
and serves as an alternative to kinesthetic teaching (Akgun et al.,
2012) which cannot be applied due to the remote aspect and to
direct control which would have required 6D input control on the
user side. The PC condition only embodies the second design
principle (controlling the robot at the action level). It corresponds
to a simpler version of our interface, where the robot has similar
manipulation capabilities (e.g., pick-up objects, loosen or tighten
screws, pull drawers) but where actions can only be specified one
at a time and where parameters have to be set numerically (e.g.,
using use sliders to specify parameters such as angles). The last
condition TLA is the interface described in Sections 3 and 4 and
embodies all four of our principles.

The evaluation took place over Zoom,3 a video conference
platform, and we use the built-in remote screen control as a way
to allow participants to control the robot from remote locations.
We did not assess the latency inherent of such system, but
estimated it around one second.

5.1 Hypotheses
Our evaluation uses the metrics S for the task score, a
performance measure; A for robot autonomy, measured by
both total and individual periods of autonomy; U for usability,
measured by the SUS scale (Brooke, 1996); P for user preference
for the control method; and W for workload, measured by the
NASA Task-Load Index (NASA TLX) (Hart and Staveland,
1988). Below, we describe our hypotheses and provide specific
predictions for each measure. Subscripts denote study conditions
(TLA, PC, and CC).

Our evaluation tested three hypotheses along the three
evaluated design axes:

H1 Task score, autonomy, usability, and user preference will
be higher, and workload will be lower with high-level control
(PC, TLA) than low-level control (CC).
- Prediction P1a: SPC > SCC, APC > ACC, UPC >UCC, PPC > PCC,
and WPC < WCC.

- Prediction P1b: STLA > SCC, ATLA > ACC, UTLA > UCC, PTLA >
PCC, and WTLA < WCC.

H2 Autonomy and user preference will be higher, and the
workload will be lower when users are able to interleave
observation and planning (TLA) than when they are not
able to (PC).
- Prediction P2a: ATLA > APC.
- Prediction P2b: WTLA < WPC.
- Prediction P2c: PTLA > PPC.
H3: Task score, usability, and user preference will be higher
when users are able to parameterize actions graphically (TLA)
than when they are not able to (PC).
- Prediction P3a: STLA > SPC.
- Prediction P3b: UTLA > UPC.
- Prediction P3c: PTLA > PPC.

H1 is based on the expectation that high-level action
specification present in TLA and PC method automates away a
large number of low-level actions that the user must specify in CC,
which will save the user time and reduce the number of operations
they must perform, thus their workload. H2 is grounded in the
expectation that the task planning offered by our system will be
used by participants to create longer periods of autonomy, which
should reduce the workload, and make the participants prefer the
method. Finally, H3 supposes that the graphical specification of
actions will allow participants to specify action quicker (increasing
their performance in the task), more easily (increasing the
usability), and that participants will prefer this modality.

5.2 Method
5.2.1 Participants
We recruited 18 students enrolled in the Mechanical Engineering
and Industrial and Systems Engineering departments at the
university (3F/15M, age: M � 19.6, SD � 1.54). We selected
our participants from this population as they represent people
with some exposure but little expertise in robotics (familiarity
with robotsM � 2.9, SD � 1.2 on a five-point scale—none, a little,
some, moderate, a lot—and familiarity with programmingM � 3,
SD � 0.6). The procedure was approved by the university’s
Institutional Review Board and participants were compensated
at the rate of $15/hour. The study was designed to last 80 min and
included around 45 min of robot operation. Since it was
completed remotely, participants stayed in their daily
environment as shown in Figure 5 top right, where a
participant controlled the robot from his dorm bed.

5.2.2 Conditions
In all conditions, the layout of the interface was the same. It
showed the camera feed, overlaid with arrows for direct control,

2https://www.universal-robots.com
3https://zoom.us/
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buttons to grasp and release and the reset button. The difference
was in the type of command sent to the robot as well as the
modalities provided to the user. This study compared three
conditions:

CC Cartesian control: the user uses six text boxes showing the
current Cartesian position of the end-effector (x, y, z, rx, ry, rz)
(see Figure 6-left). These text boxes can be edited with the
desired command and sent to the robot either after modifying
a single dimension or multiple ones.
PC Point-and-Click: the user is shown objects known by the
system as markers overlayed on the video feed in an AR fashion
(see Figure 6-center). The user can click on these markers or
other parts of the view and is shown the different actions available
on this object. Right clicking on an action allows to specify
parameters, left clicking has the robot directly execute the action.
TLA Task-Level Authoring: interface presented in Sections 3
and 4, the user can annotate the video image to create actions
associated to objects in the selection area and create task plans
(see Figure 6-right).

To illustrate the difference between these conditions, we
consider a move action on an unknown object (i.e., an object

the operator can see, but the robot does not identify). With the
CC condition, participants had to enter the 6D pose of a grasping
point. Often, this process would be iterative, the operation
would first have the robot approach the object by
specifying a higher point, then correct the position and
angle, then move to the grasping point. Then the operator
had to press the grasp button, move to a dropping point (by
specifying the 6D pose or using the camera control buttons),
then press release. With the PC conditions, participants
could click on the grasping location on the screen,
parameterize the action with a grasp angle, execute the
pick-up action, reset the robot, click on the destination
location on screen and select the place action. With TLA,
participant could click on the screen to create a section area,
keep the move unknown object action (the default one if no
identified object was in the selection area), move the start
and goal handles (as shown in Figure 4), and finally press
execute.

5.2.3 Tasks
As shown in Figure 6, the workspace has a number of drawers on
the left, three white boxes on the bottom, an eraser at the top and
four screws on the right.

FIGURE 5 | Example of a participant using Drawing Board to control the robot from his dorm bed.

FIGURE 6 | Interfaces used in the study. Left shows the Cartesian Control interface: the user specifies numerically the end-effector position. Middle shows the
Point-and-Click interface: the user selects direct actions on objects. Right shows the Task-Level Authoring interface allowing users to remotely create task plans for
the robot.
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Participants had to complete a training task followed by four
additional tasks:

Task 0: Training - move the angled white box to the top
left area.
Task 1: Pick - and - place - move the additional two boxes (at
different orientations) to the top left area.
Task 2: Repeated actions - loosen the four screws from the
grid and move them to the top - right gray box.
Task 3: Exploration - locate a specific drawer on the left, pull
it, inspect its content and push it back.
Task 4: Continuous action - wipe the blue area with the
eraser.

These tasks were selected to represent different types of
actions that a remote operator may need to complete. The
first three pick-and-place actions free the area that need to
be wiped, demonstrating workspace manipulation actions. The
loosening and moving of the four screws represent repeated
actions. The drawer inspection task combines two awareness
acquisition actions: locating the drawer and inspecting its
content, as well as two workspace manipulation actions:
opening and closing the drawer. Finally, the wiping action
represents a continuous action over an area, similar to
cleaning a table or sanding a piece.

Of note, the three pick-and-place actions (task 0 and task
1) requires the human to specify manually the grasping and
placing point as the robot does not detect the boxes by itself.
And the exploration (task 3) requires the operator to gather
information outside of the default field of view by moving the
camera on the robot, read the labels on the drawers, locate the
relevant drawer, open the drawer, look into the drawer, count
the numbers of items, and finally close the drawer. To be able
to complete this task autonomously, a robot would need to
have optical character recognition capabilities and be able to
detect and count any type of object present in the drawers.
Furthermore, as shown in Algorithm 1, if an operator wanted
to design in a single step a program solving this task, the
resulting program would require logic functions such as
loops, conditional on sensors, functions within conditions,
and loop breaking conditions. All these functionalities could
be supported by more complex visual programming
languages (such as Blockly4) which requires more
knowledge in programming. Such a program would also
require more capabilities for the robot, more complex
representation of the world (e.g., having a list of all
drawers with positions to read the label from, and
positions to inspect the content), and more complex
programming languages. Instead, using a human-in-the-
loop approach (through direct control or task-level
authoring) allows to achieve the same outcome, but with
much simpler robot capabilities and interfaces.

Algorithm 1 | Example of algorithm to solve the exploration task
autonomously.

5.2.4 Procedure
Participants joined a zoom call from their home or other
daily environment. The study started with informed consent
and a demographic questionnaire. Then participants were
asked to watch a video introducing the robot and the
workspace, followed by a second video introducing the
tasks participants would need to complete 5. For each
condition, participants first watched a 2-min video
presenting the main modalities of the interface and
demonstrating how to make a pick-and-place action. Then,
participants had 15 min to complete as many of the tasks as
possible. During the training, they could ask any questions to
the experimenter, however in the four later tasks the
experimenter was only able to answer the most simple
questions (e.g., “the screws are tightened down, right?” but
not “how to move this object?”).

The interaction with the robot stopped when participants
reached 15 min or when they completed all the tasks. After
this interaction, participants filled out NASA Task-Load Index
(NASA TLX) (Hart and Staveland, 1988) and System Usability
Scale (SUS) (Brooke, 1996) questionnaires before moving on to
the next condition. The order of the conditions was counter-
balanced and the study concluded with a semi-structured
interview and a debriefing where participants could ask
questions to the experimenter. Despite our best efforts,
some participants created actions that could trigger the
robot’s safety locks (often due to excessive force being
applied). In such situations, the timer was paused, the robot
was restarted and the participant continued from where they
stopped.

4https://developers.google.com/blockly 5All the videos are available at https://osf.io/nd82j/.
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5.2.5 Measurements
We collected four types of quantitative data from the study.
Task score, measured by how many tasks were fully or partially
completed by the participants in the 15 min allocated per
condition (with one point for the training and per task).
Workload (i.e. how demanding it was to use the interface),
measured by the NASA TLX. Usability (i.e. how intuitive the
interface was), measured by SUS. Periods of autonomy,
measured from period where the robot was moving
continuously for more than 10 s (to be as inclusive as
possible while not counting short periods that could barely
be considered autonomous). We measured the periods of
autonomy with a mixture of logs from the system and video
coding of the interaction recordings using the Elan software
(Nijmegen: Max Planck Institute for Psycholinguistics, The
Language Archive, 2020).

In addition to the quantitative metrics, we collected qualitative
impressions through the semi-structured interviews where
we asked questions to the participants about their
different experiences with the methods and which one they
preferred.

6 RESULTS

Figure 7 and Figure 8 present the quantitative results from the
study. Results are first analyzed with a repeated measure ANOVA
(corrected as needed using Greenhouse-Geisser), and then with
post-hoc paired t-tests. A Bonferroni correction was directly
applied to the p-values to protect against Type I error. For the
periods of autonomy, as there was an unbalanced number of
samples, we used ANOVA and Games-Howell post-hoc test.

6.1 Score
We observe significant impact of the condition on the score
(sphericity was violated, Greenhouse-Geisser correction was
used, F (2, 34) � 115.53, p < 0.001). Both the PC and the TLA
interface achieved a score significantly higher than the CC (PC-CC:
t (17.0) � 13.0, p < 0.001, TLA-CC: t (17.0) � −23.0, p < 0.001).
However, we do not observe a significant difference of score
between the PC and the TLA interfaces (t (17.0) � −1.0, p � 1.0).

Additionally, we did not observe an impact of the
order, indicating that there no significant learning effect
(F (2, 34) � 0.698, p � 0.50).

FIGURE 7 | Study results: p-values are computed using post-hoc paired t-test adjusted with Bonferroni correction (n � 18). Results show that both TLA and PC
achieved a higher performance than CC (as shown by the task score), CC had a higher workload than both PC and TLA, and that both PC and TLA had a higher usability
than CC. On the performance, workload, and usability no significant difference was observed between TLA and PC.

FIGURE 8 | Autonomy results. Left shows the total autonomy time for each conditions (only periods of autonomy of more than 10 s are counted), p-values are
computed using post-hoc paired t-test adjusted with Bonferroni correction (n � 18). Right shows every single period of autonomy, p-values are computed using Games-
Howell post-hoc to adjust for unequal sample size.
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6.2 Periods of Autonomy
As shown in Figure 8, we observe a significant effect of the
condition on the total autonomy time, F (2, 34) � 297.45, p <
0.001, and each condition was significantly different from the
others, PC-CC: t (17.0) � 18.0, p < 0.001, TLA-CC: t (17.0) �
−25.0, p < 0.001, TLA-PC: t (17.0) � −7.0, p < 0.001). With the
CC offering the least amount of autonomy time, PC in the
middle, and TLA offering the most of autonomy time. It can be
observed that in addition to have a higher total autonomy time, the
TLA condition also led to longer individual periods of autonomy
than the other conditions (one way ANOVA: F (2, 402) � 60.87, p <
0.001, Games-Howell post-hoc test PC-CC: Mean Difference �
−3.57, p � 0.129, TLA-CC: Mean Difference � −22.66, p < 0.001,
TLA-PC: Mean Difference � −26.24, p < 0.001).

6.3 Workload
Weobserve significant effect of the condition onworkload asmeasured
by the NASA TLX, F (2, 34) � 46.29, p < 0.001. Both the PC and the
TLA interface imposed aworkload significantly lower than theCC (PC-
CC: t (17.0) � −9.0, p < 0.001, TLA-CC: t (17.0) � 8.0, p < 0.001).
However, we do not observe a significant difference of workload
between the PC and the TLA interfaces (t (17.0) � 1.0, p � 0.49).

6.4 Usability
We observe a significant effect of the condition on usability as
measured by the SUS, F (2, 34) � 23.18, p < 0.001. Both the PC
and the TLA interface were rated as having a high usability (SUS
score around 80) significantly outperforming the Cartesian
interface (PC-CC: t (17.0) � 4.0, p < 0.001, TLA-CC: t (17.0)
� −6.0, p < 0.001). However, we do not observe a significant
difference of usability between the PC and the TLA interfaces (t
(17.0) � −1.0, p � 0.69).

6.5 Preference
When asked which methods they preferred, 14 participants
replied they preferred the TLA method, three preferred the PC
method and one the CCmethod. Using one-sample binomial test,
we measure a significant preference for our TLA method (95%
Adjusted Wald Confidence Interval is (54.24%, 91.54%),
preference TLA >33% with p < 0.001).

6.6 Observations and Feedback From
Participants
In addition of our quantitative metrics, we made a number of
anecdotal observation during the study and the following semi-
structured interview. First, the two main justifications for
participant’s preference of the TLA interface were the ability
to queue actions and the visualization (the two design principles
not supported by the PC interface):

“[TLA was] by far the best, because you could do so
many tasks at once, and it was just really intuitive to
figure out, okay, this is what it’s gonna do”

“I like that little line thing which would show up on
positions, so you could determine like initial position

and the final position [. . .] without having to remember
numbers”

“Being able to angle the jaws, and have visual reference
for that, was really useful”

Some participants used the periods of autonomy of the TLA
interface to perform secondary actions, e.g., drinking water or
even as one participant did, sending a message to a friend.
Combined to our quantitative results showing that the
authoring interface frees longer periods of time to the
operators, these observations provide anecdotal evidence that
interfaces similar to TLA could help operators perform secondary
action. However, as our study did not assess such an hypothesis,
future work should confirm it.

Some participants were slightly confused by the different
modalities used and monitored the game plan to understand
how their inputs were parsed:

“[TLA] also gave you that menu of like the order that
you were going. I feel like that was really helpful”

Even though many participants qualified the PC interface of
being very simple (almost too simple for some), participants still
had to follow the progress of their series of action which can be
complicated. For example, the screw task requires four repetitions
of a loosen, a pick, a reset and a place action. Some participants in
the study lost the track of which action was done, and for example
forgot to loosen a screw, or did it twice. Some participants felt
annoyed to have to re-specify each action every time:

“[With TLA] you could I guess perform multiple tasks
at once, you didn’t have to click on it every single times”

“[PC] it took more time, still because that you had to
unscrew it, and then you had to pick it up, and then you
had to move it and place it”

Being able to program the robots to sequence actions when
having to repeat them over multiple objects allowed operators to
keep track more easily of the progress in the task without having
to keep in memory which actions were already executed.

Additionally, due to the lower granularity of control in CC and
PC participants reported difficulties to know the distance between
the robot’s fingers and the table or objects or faced occlusion
issues while operating the robot with the PC or CC interfaces. The
task-level authoring offered by our system allowed participants to
control the robot without facing these two obstacles.

7 DISCUSSION

7.1 Observations
Our results provide partial support for our hypotheses. H1 is fully
supported (both P1a and P1b are supported). The higher level
interfaces performed better than Cartesian Control on all metrics
supporting H1. H2 is partially supported, TLA offered more
autonomy than the other methods (supporting P2a), and TLA
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was preferred to the other methods and participants referred to
the ability of queuing actions as a reason (supporting P2c),
however TLA did not reduce the workload compared to PC
(failing to support P2b). Finally, H3 is also partially supporting.
Participants did not achieve a higher score with TLA than with
PC and did not rate the usability as higher for TLA (failing to
support both P3a and P3b), however, participants did prefer TLA
over PC and participants referred to the graphical action
parameterization as a reason (supporting P3c).

Overall, these results show that our design principles partially
achieved their goals: the high-level control allowed participants to
think at the task level and progress quicker in the tasks. TLA was
preferred overall due to the opportunity to create flexible periods of
autonomy and the graphical parameterization of actions. This
flexible programming horizon allowed participants to specify
long periods of autonomy when possible, but also directly select
actions when the next step is unclear. Traditionally, robots with
more autonomy will require a lower workload at runtime, as the
operator does not need to provided inputs when the robot is
autonomous. However, such autonomous robots might inflict a
higher workload at design time and require more skills for the
operator and more capabilities for the robot. By interleaving
exploration, design of short plans, and execution, TLA aims to
maintain this low workload both at runtime and design time.
Compared to specifying a behavior a priori, allowing the operator
to specify commands at runtime allows to solve similar problems,
but with simpler robot capabilities (as the operators can perform
some sensory analysis) and simpler interface (as the operators does
not have to create programs handling every possible situation).

We observed a potential ceiling effect on the usability (a
score of 85 on the SUS is defined as excellent usability (Brooke,
2013)), and possibly a floor effect on the workload (14 and 11 on
the NASA TLX are very low scores). These effects may have two
distinct origins. Either our study was not sufficiently challenging for
our operators, or our action sequencing principle did allow
participants to obtain capabilities closer to programming
(through the scheduling of action, automatic generalization of a
set of actions to a group of objects etc.), which may have increased
the complexity of the interface, but our graphical specification
principle balanced this added complexity to maintained a low
workload and high usability. Due to time constraints and study
complexity, we could not explore individually the impact of each
axis, which prevents us to identify the root cause of this effect.
Future work should investigate more precisely the situations in
which these methods could differ in usability and workload.

Nevertheless, from our study we can confirm that our authoring
interface allowed participants to specify longer plans for the robot
and streamlined the execution of repeated and composite actions.
These two additional benefit might allow operators to perform
secondary task, and potentially facilitate extended use (as
anecdotally supported by the observation that some participants
lost track of their progress in the repeated action and did the same
action twice, or forgot whether they unscrewed a bolt already). This
additional gain comes at no cost in term of workload and usability,
which supports the conclusion that our design principles allowed the
interface to be usable with limited training while incorporating
additional programming capabilities. Future work should evaluate

whether such increase in autonomy could allow operators to
perform secondary tasks in practice and how such programming
capabilities could be used by operators.

7.2 Limitations
Our approach suffers from a number of limitations that we plan
to address in future work. A key limitation is that the high-level
interface requires the specific primitives and actions to be pre-
determined and pre-programmed. Extending the set of operations
to support a broader range of tasks may create challenges in helping
the user understand the range of options. Allowing users to specify
actions that are not in the interfaces “vocabulary” is challenging, as
this requires detailed specification that often must consider low-
level control issues such as compliance. This issue is common in
authoring—for example, teach pendants are also intrinsically
limited in the robot’s capabilities they expose and more complex
uses often require coding. Additionally, our system relied on robust
actions and we did not explore how to recover from failures when
executing actions. We identify four ways such action failures could
be handled. First, actions could be made more robust by integrating
replanning strategies (e.g., planning a new grasp pose after a failed
grasp). Second, high-level actions could take more parameters after
a failure (e.g., specifying a full 6D grasp pose if the default one did
not work). Third, the operator could provide additional runtime
inputs to address small trajectory errors (Hagenow et al., 2021). And
finally, the user could change the control mode for such infrequent
event (e.g., temporarily using direct control instead of TLA).

The evaluation of our approach also has a number of
limitations. For example, the study considered relatively simple
tasks, used a mostly male population, and our population was
not total novice, but had some experience with programming.
Additionally, due to time constraints, we could not explore every
single design axis individually. Future work should involve ablation
studies, where the specific impact of design principles are evaluated,
explore interactions in real environments, and use operators from
the targeted population (family member controlling a robot in a
home-assistant scenario or workers in a factory). Finally, future work
should also explicitly explore the impact of latency when performing
task-level authoring, especially compared to more direct control. We
plan to address such limitations in future work.

7.3 Implications
Results from our evaluation lead a number of implications. Centrally,
the use of task-level authoring seems to be an interesting trade-off,
allowing for sufficient programming to gain the advantages of
asynchronous control (i.e., programming longer periods of
autonomy for the robot and leading to longer and better quality
idle time, offloading some tasks following to the robot), yet having the
programming be simple enough that it can be used during the
interaction with little training. The approach affords an interface
design that combines exploration, specification, and monitoring in a
single view. The specific interface provides other general lessons. First,
our work expands on the ideas of using higher-level controls to enable
effective teleoperation interfaces. While prior systems have shown
point-and-click interfaces (Schmaus et al., 2019), ours expands the
concept to accomplish longer autonomous behavior. Second, by
connecting these higher-level controls in a paradigm where
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exploration and manipulation are interleaved, we can create single-
view interfaces that are usable in more complex scenarios. Third, our
work extends prior see-through interfaces with camera control,
allowing them to work in more environments. Fourth, our work
shows the potential of asynchronous interfaces by improving the
amount and duration of the offered periods of autonomy. By
allowing the user to quickly specify longer plans, they gain
opportunities for idle time, potentially freeing them to perform
other tasks during execution. Finally, by demonstrating effective
telemanipulation only using consumer interfaces shows that
remote robot operation is possible for novice users—even at
distances of many time zones.

8 CONCLUSION

In this paper, we explored the design of interfaces for remote control
of a robotic arm by novice users. Our design considers the key goals of
teleoperation interfaces: allowing remote novice operators to analyze
the robot’s environment and specify robot behavior appropriate to
the situation. To address these challenges for scenarios with novice
users and standard input devices we adopted a task-level authoring
approach. The approach allowed for the design of an interface that
interleaves exploration and planning, allowing us to utilize both direct
control (more intuitive interface and benefiting from the human
knowledge more frequently) and asynchronous control (robustness
to communications issues and increased idle time for the operator).
Our interface uses graphical overlays on a video feed of the
environment to provide for simple exploration, specification of
operations, and sequencing of commands into short programs. We
evaluated a prototype system in an 18-participant study which
showed that our interface allowed users with some familiarity with
programming to 1) operate the robot remotely to gain awareness
about the environment, 2) performmanipulation of the workspace,
and 3) use the scheduling of actions to free long periods of idle
times that might be used to perform secondary tasks. Furthermore,
our interface was largely preferred compared to two other simpler
interfaces.

Our work adds a new tool to the existing library of
teleoperation approaches and demonstrates that task-level
authoring is a powerful method to allow non-experts to
remotely create short periods of autonomy for robots while
allowing them to explore the robot’s environment.
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10 Years of Human-NAO Interaction
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The evolving field of human-robot interaction (HRI) necessitates that we better
understand how social robots operate and interact with humans. This scoping review
provides an overview of about 300 research works focusing on the use of the NAO robot
from 2010 to 2020. This study presents one of the most extensive and inclusive pieces of
evidence on the deployment of the humanoid NAO robot and its global reach. Unlike
most reviews, we provide both qualitative and quantitative results regarding how NAO is
being used and what has been achieved so far. We analyzed a wide range of theoretical,
empirical, and technical contributions that provide multidimensional insights, such as
general trends in terms of application, the robot capabilities, its input and output
modalities of communication, and the human-robot interaction experiments that
featured NAO (e.g. number and roles of participants, design, and the length of
interaction). Lastly, we derive from the review some research gaps in current
state-of-the-art and provide suggestions for the design of the next generation of
social robots.

Keywords: social robot, human-robot interaction, nao, survey, review, humanoid robot, qualitative, quantitative

1 INTRODUCTION

For some decades, social robots have been used for research purposes in an attempt to assist
humans and bring social benefits to their life. These social robots have been envisioned to
interact with humans in various application domains such as education, healthcare, industry,
entertainment, and public service. However, in order to claim that social robots reached
their full potential as social assistive agents, they have to be able to create sustainable and
intelligent interactions in the real world while acting in an acceptable and credible way.
Therefore, the field of human-robot interaction has fueled research into the design,
development and evaluation of social robots. There is a significant number of social robots
in research, such as Kaspar for autism therapy (Wood et al., 2019), iCub for cognitive
development (Natale et al., 2016), and Robovie for public spaces (Das et al., 2015), and the
NAO robot. NAO has been among the most widely used social robots in human-robot
interaction research due to its affordability and broad functionality. Developed by the
French company, Aldebaran Robotics, in 2008 and acquired by the Japanese company,
Softbank Robotics, in 2015, NAO is an autonomous and programmable humanoid robot
that has been successfully applied to research and development applications for children,
adults, and the elderly people. More than 13,000 NAO robots are used in more than 70 countries
around the world. Consequently, a number of recent large-scale interdisciplinary projects, such
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as ALIZ-E1, DREAM2, CoWriter3, SQUIRREL4, L2Tor5 have
explored child-centered research with the mission to enable
NAO to take a role of a tutor, a therapist, or a peer learner.

There have been several reviews about social robots used for
specific application domains, such as robot-assisted education
(Mubin et al., 2013; Belpaeme et al., 2018; Johal, 2020) and
autism therapy (Saleh et al., 2020). There is evidence that NAO
was among the heavily used social robots for these applications
(Belpaeme et al., 2018; Saleh et al., 2020; Henschel et al., 2021).
Among the most recent literature surveys, Robaczewski
et al. (2020) reviewed the use of NAO as a socially assistive
robot (SAR). The authors studied a total of 51 user-study
publications and discussed their major findings around six
themes: social engagement, affectivity, intervention, assisted
teaching, mild cognitive impairment/dementia, and autism/
intellectual disability. While providing a good overview of
some of the social assistive robotics studies that were
conducted with the NAO, this previous survey does not
consider technical contributions, thus is limited in
identifying research and development trends in its
deployment across application domains. Therefore, it is still
unclear how and why this social robot has been used in
research over the last 10 years and how this standardized
platform contributed more widely to the field of human-
robot interaction.

For these reasons, a scoping review was a necessary step to
systematically map the research done with the NAO robot in
HRI and identify research trends and potential gaps of
investigations that could lead to the development of a new
standard platform for social robotics research. It seems a
worthwhile effort to reflect on the dynamics of the socially
acceptable robot - a humanoid NAO robot - that has a particular
appeal for improving the social, behavioral, physical, and
cognitive well-being of humans of various age groups. The
present paper aims to provide a holistic understanding of the
NAO robot for research by analyzing the unrestricted type of
contributions, both theoretical and experimental. We also
report on technical contributions that helped the field of HRI
to grow over the years. While following a strict and reproducible
protocol, our review probably does not cover the complete
literature work in HRI research with the NAO robot.
However, we consider that our screening protocol allowed to
capture a good amount of the body of research using NAO and
to present useful insights, findings, and trends in the use of the
robot in the past decade. Unlike previous reviews, our research
approach allows us to present general and specific findings that
were gleaned from quantitative and qualitative analysis. We find
our review vital in understanding how the social robots like
NAO serve educational, professional, and social roles when
interacting with humans and what are the crucial insights

about its use and prospects. This research potentially benefits
a wider community of stakeholders such as novice and expert
HRI researchers, robotics labs or startups and those
professionals working at the intersection of interdisciplinary
fields like education and healthcare.

Our meta-analysis seeks to provide broad insights into the
use of NAO in HRI by annotating a wide range of categories
of applications (including but not limited to social assistive
robotics), geographical distribution, type of contribution,
application fields, experimental methodology, duration, and
the number of sessions, human-robot ratio, participant
demographics, human-robot roles, robot autonomy, input/
output data, and equipment used. We propose respectively:
a quantitative analysis allowing to observe objective
metrics on trends and qualitative analysis of the relevant
research topics to HRI covered by papers used in this review.

2 TECHNICAL OVERVIEW OF NAO OVER
THE YEARS

NAO is 58 cm in height and weighs 5.6 kg. The robot is
programmed by a specialised NAOqi framework, has an easy
to use graphical programming tool Choregraphe (for complex
applications and control of motions), and Monitor (for robot
feedback and verification of joints or sensors), all of which allow
to easily program and introduce the NAO behaviours
(Bertacchini et al., 2017). It can be connected via wired or
wireless (Wi-fi) network, thus allowing autonomous operation
and remote control, which is important, especially when the
robot is operating in a real-world setting. It has 25° of freedom,
of which 12 for legs, five for the arms, two for the head,
which enables it to move and perform actions. Furthermore,
it has four directional microphones and speakers and two
cameras that are necessary for basic modules such as built-in
text-to-speech and speech recognition for 20 languages, object
recognition, face detection, recognition, and tracking, all of
which provide the possibility to act more naturally and
human-like. Table 1 presents an overview of NAO’s
hardware and software improvements over the years. For
example, NAO’s V3 in 2008 supported only nine languages,
while the current V6 version provides support for 20 languages.
Additionally, NAO’s cameras, microphones, and storage
were improved in three instances: from V3 to V4 or V5
to V6.

The first NAO driver for Robot Operating System (ROS) was
released by BrownUniversity’s RLAB in November of 2009 (ROS,
2010) which supported head control, text-to-speech, basic
navigation, and access to the cameras. Later, the University of
Freiburg’s Humanoid Robot Lab improved NAO’s driver with
new capabilities, such as torso odometry and joystick-based
teleoperation. Already in December that year, the Humanoid
Robot Lab released a complete ROS stack for the NAO that
additionally contained IMU state, a URDF robot model,
visualization of the robot state in rviz, and more (ROS, 2010).

Additionally, NAO users around the world had an
opportunity to download an existing behavior or upload their

1http://www.aliz-e.org/
2http://dream2020.eu/
3http://chili.epfl.ch/cowriter
4http://www.squirrel-project.eu/
5http://www.l2tor.eu/
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own robot behavior to the Application Store. In 2014, ASK NAO6

was released to support ready robot behaviors for conventional
and special education. Similarly, but with a more general purpose,
Zora Solution Software7 was also offered to the market with more
than 50 different robot activities to be used via a tablet by a non-
technical user (such as a health professional).

3 METHODOLOGY

Our methodology followed similar works previously published
in HRI and presenting a review of articles in the domain

(Belpaeme et al., 2018; Johal, 2020; Obaid et al., 2020). We
adopted a scoping review framework to extract relevant
information from the literature to address our research
questions. This approach is helpful to provide an overview
of diverse research evidence in broad types of literature
(Sucharew and Macaluso, 2019). We describe below the
procedure carried out to collate the set of the relevant
article and analyze their content in Figure 1 which follow
the PRISMA flowchart.

3.1 Identification
To identify potentially relevant documents, the Scopus8

bibliographic database was searched for papers published

TABLE 1 | NAO’s evolution in technical characteristics over the years.

NAO version V3+ (2008) V3.2 (2009) V3.3 (2010) V4 (2011) V5 (2014) V6 (2018)

Storage 2 GB Flash memory 2 GB+8 GB Micro SDHC 32 GB SSD
2 × Cameras 640 × 480, 30 fps 1280 × 960, 30 fps 640 × 480, 30 fps or 2560 × 1920, 1 fps

58 Diagonal Field Of View 72.6 Diagonal FOV
(47.8 Horizontal FOV, 36.8 Vertical FOV) (60.9 Horizontal FOV, 47.6

Vertical FOV)
67.4 Diagonal FOV (56.3 Horizontal FOV, 43.7 Vertical FOV)

4 × Microphones Sensitivity: −40 mV/Pa ± 3 dB 20 mV/Pa ± 3dB Omnidirectional
250 mV/Pa ± 3dB
100 Hz to 10 kHzFrequency range: 20 Hz–20 kHz 150 kHz to 12 kHz

Languages 9 (English, French, Spanish, German, Italian,
Japanese, Korean, Chinese, Portuguese)

19 languages (+ Arabic, Czech,
Danish, Dutch, Brazilian, Greek,
Polish, Finnish, Swedish, Russian,
Turkish

20 languages (+ Norwegian)

FIGURE 1 | The screening process (adapted from PRISMA template 2009).

6https://www.asknao-tablet.com/en/home/
7https://www.robotlab.com/store/zora-robot-solution-for-healthcare 8https://www.scopus.com
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from 2010 to October 2020. The term search was performed
in October 2020. The Scopus database includes IEEE,
Springer, and ACM DL and allows it to cover a wide range
of publication venues. Because our goal is to broadly look
at the research works done in HRI with NAO, we kept
the search term open. We limited our search string to
English-written publications as we searched for the terms
“NAO” AND “human-robot interaction” in title, abstract,
or keywords.

Overall, an initial 452 records were retrieved and
underwent the screening process. They were stored on
Zotero and then were exported into BibTeX and CSV. The
following steps of the analysis of the collected documents
were done by entering information on an online Google
spreadsheet.

3.2 Screening Process
After identifying the records, we first consulted abstracts to
ensure that they used NAO in the study. We excluded 106
studies provided only a quick overview (e.g., workshop,
demonstration) in one or two pages in length. We removed
the review and off-topic papers that lack any NAO
intervention, both theoretically and practically.

In the second round, we consulted full texts to ensure that the
chosen records do not replicate results. Since we had some studies
produced by the same group of authors, we screened them in-
depth and kept an extended version of the work. In addition,
seven papers were excluded from review as we could not access
full texts. As a result, we were left with 288 papers for the final
analysis - annotation.

3.3 Coding Framework
To identify the categories for data analysis, we integrated and
adapted the HRI taxonomies from previous studies (Yanco and
Drury, 2004; Bethel and Murphy, 2010; Salter et al., 2010;
Tsiakas et al., 2018; Baraka et al., 2020; Onnasch and
Roesler, 2020) and annotated the papers by the predefined
categories. We describe below the different annotations used.
These were used to produce quantitative analysis and to identify
trends.

3.3.1 Geographical Distribution
This information is not easy to infer from the publication; we
chose to manually extract this information by checking the
author’s affiliation and address, and country on the paper.
While not perfect, we believe that it should give us a
reasonable estimation of the country where the research was
conducted for most articles.

3.3.2 Type of Contribution
The field of HRI is very interdisciplinary. Inspired by the
research themes of the ACM/IEEE HRI conference9, we
chose to annotate the type of contribution according to four
themes:

• User studies provide rigorous data on and analysis of HRI
in the laboratory or in-the-field settings. They also
should present sound methodology (quantitative,
qualitative, or both) and accurate analyses that result
in novel insights and acknowledge the limitations and
relevance of the methods. Papers that presented an
empirical evaluation with human participants were
annotated as a user study.

• Technical papers are motivated to improve robot’s
behaviors for the purposes of better interaction and
collaboration with humans. The question of how
technology advances HRI is key to these studies. They
should include novel robot system algorithms, software
development technologies, and computational
advancements in support of HRI.

• Design contributions target research that takes a design-
centric approach to HRI. They usually discuss the design of
new robot morphologies and characteristics, behavior
patterns, and interaction methods and scenarios, among
many others. They should demonstrate essential or better
interaction experiences or behaviors for robots.

• Theory and methods aim at unpacking fundamental HRI
principles that include interaction patterns, theoretical
concepts, updated interpretations of existing results, or
new evaluation methodologies. Such papers might
originate from original studies and existing research and
methods or may take solely theoretical or philosophical
perspectives.

3.3.3 Research Contributions
Looking at all the papers in the selection, we identified the main
research objective (e.g., facial recognition, non-verbal
communication, programming framework) for each paper. We
then grouped these objectives into several classes of
contributions: robot perception and recognition (emotion,
facial, object, body, sound, speech, gesture, color, gender, text),
robot’s communication (verbal, non-verbal), reinforcement
learning, and cognitive architecture. Imitation and display of
emotions are separated from non-verbal communication due to a
greater focus on them in observed studies. Apart from them, we
included kinesthetic learning, physical exercises, taking an object,
walking, and moving body parts. Some studies are both technical
and user study, and there is more than one contribution example
per paper.

3.3.4 Application Field
Baraka et al. (2020) provided a cross-sectional snapshot of key
application areas for social robots, and, intuitively, robots are
used in more than one field. Our categories included: autism
therapy, education, elderly care, healthcare, learning disabilities,
public service, entertainment, art, sport, and generic.

3.3.5 Human-Robot Ratio
Goodrich and Schultz (2007) considered that the ratio of people
to robots directly influences the human-robot interaction. This
taxonomy classification defines the number of a robot(s) and a
participant(s).9https://humanrobotinteraction.org/2021/full-papers/

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 7445264

Amirova et al. NAO Scoping Review

51

https://humanrobotinteraction.org/2021/full-papers/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


3.3.6 Participant’s and Robot’s Role
Goodrich and Schultz (2007) identified HRI roles, which were
adopted by other researchers (Yanco and Drury, 2004; Tsiakas
et al., 2018; Onnasch and Roesler, 2020). Based on their
classification, 12 distinct participant’s roles and eight robot’s
roles were defined. The description of each role is shown in
Table 2.

3.3.7 Input and Output Channels
Onnasch and Roesler (2020) presented a taxonomy category
which is named as the communication channels, split into
input and output to highlight the human-robot interaction.
Input describes how the robot “perceives” information coming
from the human. Humans may provide information either using
an electronic (e.g., remote control through the device), a
mechanical (e.g., robot’s kinematic movement), an acoustic
(e.g., commands), or an optical channel (e.g., gesture control).
In turn, the robot’s output can be transmitted to humans through
tactile communication (e.g., haptics), an acoustic (e.g., sounds),
and a visual channel (e.g., eye movements). In the current study,
the major distinction is that we view the input as any information
coming from the environment (e.g., camera), while the output is
what the robot produces through its channels (e.g., speech).

3.3.8 Robot’s Autonomy Levels
According to Salter et al. (2010), the robot’s level of autonomy is
defined as shown in Table 3.

3.3.9 Experimental Methodology
Based on the classification proposed by Bethel and Murphy
(2010), a study design is grouped into three categories:

• Within-subjects design - each participant undergoes the
same experimental condition and is exposed to all levels of
the independent variables.

• Between-subjects design - participants are exposed to
different groups where each group experiences different
conditions.

• Mixed-model factorial design - the use of both between-
subjects and within-subjects design components.

3.3.10 Duration of Interaction
Human-robot interaction studies can be grouped on the basis of
the duration of interaction, which means the certain period of
time when the human interacts with the robot (Baraka et al.,
2020). Albeit it is challenging to define set boundaries between
interaction times, we decided to follow the proposed duration

TABLE 2 | The description of roles for participant and robot.

Role Description

Participant peer interacts with a robot to achieve a shared goal
coperator works with a robot to fulfil a shared goal and does not directly depend on a robot
collaborator works as a teammate together for joint task completion
learner learns something from a robot
imitator imitates a robot’s gestures or action
interviewee answers to the questions from a robot
mentor takes on a leadership or teaching role
supervisor monitors a robot and gives instructions on how to perform the task
operator is aware of where and what a robot is doing
mechanic works with robotic software or hardware and controls the physical setting
information consumer does not necessarily interact with a robot, but uses information that comes from it
bystander does not interact with a robot but shares the same space

Robot peer acts as a friend to achieve a common interaction goal
learner acquires new skills or behaviors from humans
tutor supports learning by being in a teaching position
mediator enables an interaction between two or more people, so that they can engage through a robot
assistant performs actions alongside humans (e.g. a teaching assistant)
interviewer asks questions
demonstrator shows model behaviors or actions
testbed platform validates or tests theories and algorithms in an experiment

TABLE 3 | The level of robot autonomy.

Level Description

Wizard of Oz (Woz) the robot is controlled by a human in the non-collocated environment where the robot is present
Autonomous the robot acts based on its input without any external human control during decision-making
Combination the robot integrates different levels of autonomy (e.g. controlled fixed command patterns)
Scripted/fixed the robot follows scripted spatio-temporal command patterns, despite the external factors
Teleoperation the robot is controlled by a human present in the same environment as the robot is
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looking at the number of sessions. We annotated according to the
following categories: short-term (single or few interactions),
medium-term (several days or weeks), long-term (extended
period).

4 QUANTITATIVE RESULTS

We propose to address our research questions with quantitative
analysis to look at research trends over the years and the different
categories identified above. All the graphs were generated using
Altair, which is the declarative statistical visualization library for
Python (VanderPlas et al., 2018).

4.1 Geographical Distribution
Figure 2 shows the frequency of publications across countries
and per year. Earlier works that date back to 2010 were produced
in anglophone countries such as the US and UK and European
countries including Austria and Italy. France being the NAO’s
homeland, it also figures among the countries reporting a lot of
research works. From the figure, it is apparent that the
(predominantly) English-speaking world continues to
dominate the HRI research with NAO. When compared to
other parts of Europe, Nordic countries and Eastern Europe
are substantially underrepresented. Notably, NAO has been
used regularly in economically wealthy Asian countries such as
China and Japan. Over the years, the largest number of papers
were published by researchers from the USA (N � 33), China (N �
30), and France (N � 25). These results may serve as an example

of widening digital inequity between countries with different
economies.

Having said that, it is interesting to note that NAO was used
quite broadly around the globe. Evidently, increasing the number
of languages supported by the robot as shown in Table 1 has been
an important factor in the integration of the robot. The language
options for its text-to-speech API covering 20 languages can
explain this broad use. We also can note that this multilingualism
supports cross-cultural reproductibilty of previous studies and
theories that were tested with NAO.

4.2 Research Contributions
Figure 3 demonstrates research topics that were identified as the
papers’ main contributions. We group them by paper type and
show their frequencies over the years. As of 2010, earlier
contributions represent verbal communication, cognitive
architecture, and imitation in technical and user studies. We
cannot observe straightforward trends in design, theory and
methods, but verbal communication and cognitive architecture
seem to have a proper representation as common contribution
topics. Our analysis shows that verbal (e.g., dialogues) and non-
verbal communication (e.g., joint attention) were the most
common contributions among user studies published in 2019.
Gesture recognition was generally observed to be a popular
contribution topic in technical papers, especially in 2017.
Color, face, touch, and sound recognition were among the
least popular topics for contributions, probably because of
NAO’s limited perception abilities. It is important to note that
some technical contributions (e.g., emotion recognition) are

FIGURE 2 | Number of publication per country.

FIGURE 3 | Contributions made over the years grouped by each study type.
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present within user studies or theory and method groups due to a
single paper having several contributions. The more consistent
distribution of design, theory and methods, and technical
contributions, and the increasing rate of user studies through
the years shows how the first three have contributed to the
integration and testing of the robot in various domains
through user studies.

4.3 Application Fields
The applications contexts of NAO are displayed in Figure 4.
Evidently, generic fields are prevalent across all types of studies.
This hints on how the community has been keen on developing
the generic technology with the NAO robot with the goal of
integrating it in various applications. Which, in turn can
contribute to integrating the robot not only in the research
domain but also in the real-world applications. Furthermore,
this means that NAO is being used for non-specific purposes such
as addressing general hypotheses and technical questions, as can
be seen from the share of technical studies. In user studies, the use
of NAO has expanded stably in healthcare, autism therapy, and
education since 2015. We separated studies on autism therapy
from healthcare as this context is receiving a growing attention
within HRI. Some unusual application areas are space (helping
astronauts in space flight-operations in Sorce et al. (2015), art
(drawing on canvas in Gurpinar et al. (2012) and performing in
theatrical play in Petrović et al. (2019).

4.4 Human-Robot Ratio
Figure 5 displays the ratio of participants to robots for various
kinds of robot and participants’ roles. The vast majority of studies
used one-to-one interaction with the roles of the robot as a
testbed platform (N � 55) and the role of the human as an
information consumer (N � 33). In a dyadic interaction, the robot
quite often played a role of a peer (N � 28), demonstrator

(N � 22), tutor (N � 17), assistant (N � 17), followed by
learner (N � 10), mediator (N � 7) and an interviewer (N �
5). Participants often played the role of a mentor (N � 28), learner
(N � 25), and peer (N � 24).

The ratio of many participants to a robot (M: 1) comes second
with the robot roles of assistant (N � 9) and demonstrator (N � 8).
In this context, humans were introduced as information
consumers and learners in 10 studies for each. Triadic
interaction was common among mediator and assistant robot
roles and human learners (N � 13). Only a few studies had the
ratio of 3 : 1 with no obvious trends.

The first trend shows that the majority of studies were carried
out using dyadic interactions. The limited number of studies with
two robots or more can imply either on the difficulties of
developing multi-robot interactions or lack of interest in the
community. Furthermore, while there are quite a few number of
studies on triadic interactions with two humans and one robot,
they are still limited to specific types of interaction where the
human is a learner or an information consumer. On the other
hand, after dyadic interactions, the most number of publications
were carried out with one robot to more than five human ratio,
with the robot being a demonstrator, assistant, or tutor. The
analyses shows the number of studies using such dynamic has
increased over the years.

4.5 Human-Robot Roles
In Figure 5 (right), we also demonstrate robot-participant
interaction roles. It becomes clear that NAO generally plays
collaborative and mediating roles. Our analysis shows that the
most common HRI roles with NAO have been: peer-to-peer (N �
28) and demonstrator-to-information consumer (N � 22). When
the human was in the learner’s role, a robot was most frequently
in the role of either a tutor (N � 19), mediator (N � 17) or an
assistant (N � 14). Our analysis presents the interviewee-

FIGURE 4 | Application fields grouped by each study type over the years.

FIGURE 5 | Human-robot ratio per role of robot and participant, and co-occurrence of robot and participant role (right).
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interviewer dyad as an exceptional and interesting case in HRI.
The examples of peer interaction include learning a language
(Kim et al., 2019), playing a game (Hirose et al., 2015), and
working as a team (Mubin et al., 2014). NAO as demonstrator or
presenter performs actions in front of the participants (Krogsager
et al., 2014; Wang et al., 2014; Kaptein et al., 2017). Learner-tutor
interaction occurs in educational settings where NAO is engaged
with language teaching (Kose et al., 2014; de Wit et al., 2020) and
providing emotional support (Miskam et al., 2015; Cuadrado
et al., 2016). NAO as a mediator predominantly helps children
with autism or learning disabilities to scaffold social and
communication skills (Shamsuddin et al., 2012; Huskens et al.,
2016; Ioannou and Andreva, 2019). A further analyses of the
dynamics between the role of the robot versus participant show
some pairs of roles appear more than others. For example, there is
a consistent use of robot as a testbed platform with human
acquiring various roles such as mentor, mechanic, or
information consumer. On the other hand, we can see lots of
studies with human as a learner where the robot might have been
a tutor, mediator, or assistant. It is also important to mention,
some dynamics such as peer/peer or learner/tutor are more
common in education and autism therapy.

4.6 Number of Participants and Age Groups
Figure 6 juxtaposes how often the user studies had various ranges
of participants. For the most part, the number of participants
ranges from 1 to 20 people, having the greatest number in the
range “10–20.” A smaller number of participants (up to three
people) is mostly used for autism therapy, generic, and healthcare
applications. A fair amount of generic studies recruited a large
number of participants ranging from 30 to 75. Interestingly,
studies conducted for education recruited the biggest number
of participants that can go up to 125 people. There were a few
entertainment, generic, and healthcare studies that hadmore than
150 participants.

Figure 6 (right) demonstrates the total number of studies that
had various age groups for each application field. Children at
preschools and primary schools participate in studies that focus
on education (N � 17) and autism therapy (N � 25). Generic fields
work with much older age groups since the studies are typically

conducted with university students or staff (e.g., (Stadler et al.,
2014; Celiktutan and Gunes, 2015)). The figure also reveals that
senior adults interact with NAO for elderly care and learning
disabilities applications. Infants and adolescents are the least
represented age groups.

Figure 6 (left) shows that some application types such as
autism therapy and healthcare use a smaller number of
participants per study (< 20). A quick look at the distribution
of age groups in autism therapy showed more focus on preschool
and primary school aged children. This can explain the possible
difficulties in recruiting participants for autism therapy studies
which can be one of the causes of small sample sizes. On the other
hand, educational user studies tend to have a higher number of
participants (between 20 and 125) with the age group distribution
of primary school and young adults. One of the interesting trends
is the higher population of young adults and adults in generic
studies, which can be explained by the possible easier procedure
to recruit them for user studies. Whereas, most studies with
children and the elderly that might be harder to recruit are
conducted for specific applications such as autism therapy,
education, and elderly care.

4.7 Input and Output Data
Figure 7 provides the frequency of input and output data
throughout the application fields. Primarily, generic studies
deployed speech (N � 36), full-body (N � 27), face (N � 22),
and gestures (N � 21) as an input data for recognition.
Interestingly, tactile input is mostly used within generic types
of applications, with a few studies in autism therapy, elderly care,
and learning disabilities. Tablet and mobile devices were mostly
used for autism therapy, education, and generic fields. The least
popular types of input data come from wristbands and
electroencephalography (EEG). This might be due to the
intrusive features of most wearables.

In line with these results, NAO’s output data is mostly speech
and gestures in generic fields, autism therapy, and education. Eye
contact and LEDs were comparatively less used by the robot.

Considering the various types of studies conducted with the
NAO robot, we also looked at the type of equipment used
alongside the robot. Figure 7 shows the input data (left),

FIGURE 6 | Number and age group of participants per application field.
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output data (middle), and equipment (right) used over all
application fields. Speech recognition dominates the type of
input data, which has been used on almost all of the
application types, and it is proceeded by gesture, face, body,
and object recognition. It is notable that apart from generic
applications, higher use of speech recognition can be seen in
autism therapy and education. Considering the target age groups
for these applications, this calls for more attention in developing
speech recognition technologies for children. As for the output
data, 7 (middle), most applications seem to have utilized the
robot’s speech and gestures. Autism therapy, entertainment, and
healthcare had shown a higher tendency of using gestures in
comparison to other applications.

4.8 Equipment
Figure 7 (right) also presents the use of different equipment that
researchers make use of during their user studies. The most
popular equipment are RGB-D cameras, ordinary cameras, and
physical objects (e.g., a ball, geometric figures). Again generic
studies employed these equipment more often than any other
field. Tablet or mobile devices are commonly used in educational
settings. Some examples of wearable devices are a helmet with
electrodes (Gomilko et al., 2016), pluggable eyebrows to express
emotions (De Beir et al., 2016) and peripheral devices such as a
microphone, keyboard, and LCD monitor to show visual stimuli
(Hu et al., 2016). Looking at the additional equipment used with
the NAO robot, one notable trend is the additional usage of the

camera and RGB-D camera alongside the NAO robot. While the
camera might have been used to provide additional data from
different angles to analyze the participant or the interaction, the
use of RGB-D cameras, specifically in case of its placement from
the robot’s point of view, can hint on the possible use cases of
adding such a gadget to the robot, even as a supplementary item.
Other equipment frequently used are laptop/computer and
objects which depending on the activity, can add more
interaction dimensions and modalities to the robot.

4.9 Robot’s Autonomy
Figure 8 illustrates the levels of robot autonomy by year and
application fields. We observe clear trends that NAO is becoming
more autonomous in recent years, with a significant increase
from 2016 to 2019. Wizard of Oz is the second most widely
chosen control type that has been evenly spread across the given
years, except for 2011. Only generic fields appear to use all levels
of robot autonomy, as a rule, autonomous mode, when compared
to other fields. Novel application fields (space, art, and sports)
constitute the least share in robot autonomy. Essentially, we can
also report that technical studies use autonomous mode, while
user studies give preference to the WoZ setting. In fact, a robot’s
autonomy greatly varies in user studies as the modes are divided
proportionately. The combination mode appears to be unpopular
across all study types.

As we know NAO robot comes with NAOqi, a visual
interface called Choregraphe and can be programmed using

FIGURE 7 | Input data (left), output data (middle), equipment (right) for each application field.

FIGURE 8 | Robot’s autonomy per year and application fields.
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ROS. These all give the user plenty of opportunities to develop
behaviors and interactions with the robot. As a result, in
Figure 8, we looked at the distribution of the robot’s
autonomy over the years (left), per application fields
(middle), and study types (right). One noteworthy trend is
the increasing rate of studies with the fully autonomous robot
through the years, more specifically in 2016, 2017, and 2019.
This can hint on how the technical developments and
increasing interest in using the robot have contributed to
the more autonomous deployment of the robot. After generic
applications, education, autism therapy, and healthcare had
the highest population in using NAO robot autonomously. It
is worth mentioning that more studies in autism therapy have
used Wizard of Oz than fully autonomous, which can also be
explained by the restriction associated with running studies in
this field. Looking at the autonomy versus study types (right),
it can be seen that Wizard of Oz autonomy was more popular
in user studies which can be explained by considering the
difficulties of deploying a fully autonomous robot to interact
with users. On the other hand, the fully autonomous robot has
been used more in technical studies, then in user studies, and
finally in design studies.

4.10 Experimental Methodology
Figure 9 illustrates the frequency of using three types of
experimental methodology across years and application
fields. Seemingly, a within-subject design was commonplace
from 2012 onwards. It reached the maximum number of
publications (N � 13) in 2019, and the three most common
fields of its use are generic, autism therapy, and education.
Generic fields again lead the field by deploying both within-
and between-subject design. Studies on autism therapy and
education adopt the two designs. Studies in healthcare and
public service choose between-subjects design rarely than any
other field.

We have also analyzed the experimental methodologies used
in user studies, both through the years and based on application
fields as shown in Figure 9. As seen from the figure, the use of
within-subject experimental design has increased through the
years, and it is generally used more than between-subject and
mixed designs. And among application fields, autism therapy,
education, and entertainment were more prone to using within-
subject designs. Apart from methodology, we also looked at
experiment duration, as categorised in short, medium, and
long-terms.

4.11 Duration of Experiment and Sessions
Figure 10 shows how long human-robot interaction lasts
across years and fields. We see clearly that the majority of
studies are short-term, specifically between 2015 and 2019.
This obvious trend is explained by the prevalence of generic
fields. Medium-term and long-term studies were scarce before
2014, but their numbers relatively increased by the mid-2010s.
Only several studies that focus on autism therapy with NAO
used a long-term approach. Despite no explicit trends, we can
observe that the interaction up to 30 min is more common
compared to other periods of time, mostly in generic and
autism studies. Considerably, a few studies (N � 5) lasted
for more than 60 min.

Figure 10 (left) shows the majority of the studies have been
conducted on a short-term basis, and as the number of studies
increased through the years the number of short-term studies has
increased as well. There is no visible trend of increasing long-term
studies at least with the NAO robot which can be thought
provoking and worth understanding its underlying causes. As
human-robot interaction field is thriving to understand the
dynamics between human and the robot, we need more long-
term studies to be able to show how the robots can integrate into
our lives and society. Looking at Figure 10 (middle), we can see
all generic studies have been conducted with short-term duration.
It is intuitive to conduct a short-term study when developing or
testing technology for generic purposes and invest more in
running long-term studies with the specific application in
mind. For example, studies on autism therapy and healthcare
were more likely to have medium and long-term duration than
the rest of the applications. The Figure 10 (right) shows a quick
overview of the duration of the sessions in minutes. The duration
of sessions is a function of the application and the interaction;
hence we cannot observe a particular trend. However, it is
interesting to see that people have been participating in
experiments with NAO robots that had lasted up to 120 min.
In general, the more we are trying to integrate robots into society
andmove them from research labs into the wild, wemight need to
run more long-term studies.

4.12 Concluding Remarks
The noteworthy findings that emerge from this quantitative
data are:

• While studies with NAO have been produced all over the
world, the great majority of studies are published by

FIGURE 9 | Experimental methodology per year (left) and application fields (right).
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researchers in the Global North, particularly in the U.S and
Western Europe.

• NAO has been used for generic purposes, yet it appears
to gain traction in autism studies and education since
2015.

• Despite physical limitations, speech, and gestures are the
main communication channels for NAO to interact with the
environment. The lack of accurate speech recognition and
natural behaviours such as emotions and spontaneity causes
mixed feelings about its social use.

• Although efforts have been made to allow NAO to function
autonomously in generic fields, it still depends on human
control and supervision when interacting with the end-users
(such as children).

• Humans from different age groups can interact with NAO,
depending on the variation in contexts of use. Therapeutic
and educational studies recruit primary age children, while
generic studies mix up all available age groups. Dyadic
interaction prevails significantly.

• The most recurrent robot roles for NAO are found to be
peer, demonstrator, tutor, and mediator.

• The studies with NAO are predominantly short-term and
may last for approximately 15–30 min.

• The available studies apply within-subject design more
often than between-subject or mixed-subject. This is
indicative of its relatively easier process as the number of
participants can be smaller.

5 QUALITATIVE RESULTS

We also conducted a qualitative narrative review to discuss the
primary research focus reported in the papers present in our
collection. This section is concluded with the key findings that
emerge from the literature.

5.1 The Human Perception of NAO
The way robots interact with humans is critical to evaluate the
overall quality of robot capabilities. HRI has drawn great
attention in studying how humans perceive robots in terms
of their appearance, task performance, and communication
skills, among many other robot features. User perceptions and
experiences with NAO vary from one context to another as
well as between user populations, including children, parents,
teachers, and experts. Due to its small size, NAO is

predominantly used in the child-robot interaction scenarios
(see Figure 6), with some exceptions, in elderly care.
Nevertheless, the majority of users perceive NAO as a
friendly and sociable robot (Hernandez-Cedeño et al., 2019;
Turp et al., 2019). There were also reports of mixed
feelings about the robot, considering its physical and
technical limitations (Cruz Maya et al., 2015; Sarabia et al.,
2018). Additionally, the human-like appearance and non-
judgemental characteristics of NAO are highly appreciated by
users (Henkel et al., 2019; Olde Keizer et al., 2019). Users would
like NAO to be more emotionally expressive, responsive, and
have a natural voice and gesturing (Anastasiou et al., 2013;
Ahmad et al., 2017). Authors used a variety of questionnaires to
evaluate NAO’s characteristics and performance based on:
anthropomorphism (Zlotowski et al., 2014; Kraus et al.,
2016), user experience (Alenljung et al., 2018; Olde Keizer
et al., 2019), user acceptability (Ahmad et al., 2017), robot
personality (Liles and Beer, 2015; Peters et al., 2017; Kraus
et al., 2018), robot behaviors (Pan et al., 2013; Njeri et al., 2016;
Rossi et al., 2019), user expectations and evaluation (Anastasiou
et al., 2013; Henkel et al., 2019), and perceived trustworthiness
(Jessup et al., 2019). Table 4 presents common questionnaires
that are used in evaluating human-oriented perception
of NAO.

When touching the robot, positive experiences with NAO
were characterized as fun and engaging, while negative
experiences were described to be odd and unsafe due to its
small size and hard surface (Alenljung et al., 2018).
Comparing low and high interactivity, Tozadore et al.
(2017) found that children enjoy their experience with the
high interactive NAO that use a warm greeting and recognizes
their names. When compared to the virtual agent, users still
favored NAO to be engaging and responsive (Artstein et al.,
2017). Both teachers and students were comfortable with the
use of NAO, yet they emphasised the need for facial
expressions in NAO (Ahmad et al., 2017). Gender might
influence how robots are perceived. For example, users
found a male NAO more trustworthy and competent than
a female one, which was only rated as likable (Kraus et al.,
2018). In another study, children at different developmental
stages had varying preferences towards NAO’s gender:
younger children (5–8 years old) wanted a robot that
matched their own gender, while older children (9–12 years
old) did not have such gender-driven preferences (Sandygulova
and O’Hare, 2015).

FIGURE 10 | Timespan of the experiment per year (left) and application fields (middle) and duration of sessions in application field (right).
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5.2 Verbal Communication With NAO
NAO can also be presented as a conversational companion to
assist people with daily tasks, serving as language tutors in autism
therapy (Fuglerud and Solheim, 2018), facilitators in speech
therapy for hearing-impaired children (Ioannou and Andreva,
2019), and peers for self-disclosure among people with visual
impairments and intellectual disabilities (Eyssel et al., 2017; Groot
et al., 2019). Interestingly, NAO can also act as a storyteller that
sustains children’s attention due to novelty and gesture
frequency, while human storytellers may become fatigued to
deliver the story (Wu et al., 2018; Ruffin et al., 2020). These
studies also suggest that timely feedback during human-robot
communication has been regarded as a success factor
contributing to the quality of interaction. By presenting NAO
as a talking partner, Omokawa et al. (2019) distinguished between
two dialog types for verbal interaction: query type is a question-
and-answer format, and phatic type is a casual format that
involves small talk and/or personal feelings (e.g. acceptance).
As the authors noted, human utterances are hardly recognized in
the latter dialog type due to short words that probably express
emotions. In Da Silva et al. (2018), NAO as a motivational
interviewer also enabled verbal communication with humans,
yet its lack of personalization was disliked by many participants
(e.g. repeating the question an user had already answered).
Recently, Graña and Triguero (2019) proposed a spoken
dialogue system for the NAO to learn to answer
autonomously based on human input10. For human-friendly
communication, Manome et al. (2020) developed a machine
translation system in which the NAO correctly speaks
Japanese words that were converted into morphemes to enable
easier pronunciation. The examples above indicate great
prospects for the NAO to improve its verbal skills that are
necessary for natural communication with humans.

5.3 Non-verbal Communication With NAO
In the same way, NAO’s non-verbal social cues play an important
role during human-robot interaction. Non-verbal
communication happens in many instances that help facilitate
joint attention, turn-taking, shared attention during HRI.
Although NAO lacks orientable eyes, which may be counted
as a serious limitation, results indicate that head rotations
typically help imitate eye contact (Cuijpers and van der Pol,
2013). For instance, NAO can serve the needs of children with
autism who often find eye contact with other people
uncomfortable and therefore try to avoid it. Additionally,
different visual stimuli such as changing eye colour cyclically
and blink by NAO were added to encourage eye contact with
children (Ismail et al., 2012; Ali et al., 2020). Eye contact and turn-
taking usually fit together, for example, when children kick the
ball and wait for NAO to kick it back (Tariq et al., 2016). Gazing
behavior, however, is the important sign of communication
because it allows people to infer engagement and intent. NAO
gazes over objects of its attention and points to them to elicit joint
attention (Anzalone et al., 2015). These examples demonstrate
the extent to which the child’s eye movements would be
responsive when NAO directs its attention to other objects.
NAO was able to perform Turkish Sign Language gestures
(Kose et al., 2014). In a buyer-seller negotiating, a human-
robot handshake prior to negotiation may benefit both sides
to reach a more positive outcome (Bevan and Stanton Fraser,
2015).

5.4 NAO as a Support for Affective
Computing Research
NAO cannot directly express emotions through facial
expressions, yet it can perform acoustic and physical
expression of emotions. It is viewed as one of the limitations
in its design. Most research studies proposed to express emotions
through utterances (De Beir et al., 2016), gestures (Beck et al.,

TABLE 4 | Perception questionnaires commonly utilized in the reviewed studies.

Name Author Measurements Item type

Godspeed Questionnaire Series (GQS) Sturgeon et al. (2019) anthropomorphism, animacy, likeability, perceived intelligence, and
perceived safety

5-item with 5-point
Likert scales

Unified Theory of Acceptance and Use of
Technology (UTAUT)

Sinnema and
Alimardani. (2019)

anxiety, attitude towards technology, perceived enjoyment, perceived
sociability, perceived usefulness, social influence, and trust

7-item with 5-point
Likert scales

Negative Attitude Toward Robots Scale
(NARS)

Mirnig et al. (2017) attitude toward interaction with robots, social influence of robots, and
emotions in interaction with robots (e.g. I would feel relaxed talking with
robots)

10-item with 5-point
Likert scales

System Usability Scale (SUS) Olde Keizer et al.
(2019)

attitude towards usability (e.g. “I thought the systemwas easy to use,” “I felt
very confident using the system”)

10-item with 5-point
Likert scales

Individual Differences in Anthropomorphism
Questionnaire (IDAQ)

Zlotowski et al. (2014) anthropomorphic (“durable,” “useful,” “good-looking,” “active” and
“lethargic”) and nonanthropomorphic traits (intentions, emotions,
consciousness, free will, mind)

30-item with 10-point
Likert scales

Complacency-Potential Rating Scale (CPRS) Zlotowski et al. (2014) attitudes towards automation (confidence-related, reliance-related, trust-
related, and safety-related complacency

20-item with 5-point
Likert scales

Propensity to Trust Technology (PTT) Jessup et al. (2019) attitudes towards technology and collaboration with technology (e.g.
“Generally, I trust technology”; “Technology helps me solve many
problems”)

6-item 5-point Likert
scales

Robot Interactive Experiences Questionnaire Mubin et al. (2014) attitudes towards engagement and social interaction (e.g. alive, friendly,
social)

8-item with 7-point
Likert scales

10https://zenodo.org/record/2567595#.YPVq0y8RoUs
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2012; Erden, 2013; Miskam et al., 2013; Rudovic et al., 2017), or
both (Aly and Tapus, 2013; Tielman et al., 2014; Miskam et al.,
2015). A few others attempted to use innovative ways such as
eyebrows showing emotions (De Beir et al., 2016) and motion
planning for four emotional patterns (Wei and Zhao, 2016).

Beck et al. (2012) designed six key poses that were
implemented on the NAO to display emotions such as anger,
pride, sadness, happiness, fear, and excitement, as captured by a
motion camera system. Similarly, Erden (2013) adapted
emotional human postures to the robot that expressed anger,
happiness, and sadness through 32 different postures for each
emotion. Creatively, De Beir et al. (2016) used 3D-printed and
wearable eyebrows that allow NAO to show anger or sadness
while doing other tasks simultaneously. In a play scenario, NAO
can also show excitement and enjoyment using matching phrases
such as “I am really excited!,” “I enjoy playing with you!”while no
emotional posture or saying is expressed in a boring or tiresome
state (Franco, 2015). Miskam et al. (2015) proposed to use NAO
for teaching emotions using LEDs, hand or body gestures to the
children with autism, who then imitate the robot by repeating the
emotions such as being happy or hungry. Rudovic et al. (2017)
also used NAO for robot-assisted autism therapy, where children
had to recognize different robot emotions as shown in emotion
cards. Through LabanMovement Analysis (LMA),Wei and Zhao
2016) integrated four emotional patterns into robot behaviours
using motion planning. Interestingly, (Manohar and Crandall,
2014) studied how novice people program robot’s behaviors to
express emotions through recorded audios and gestures and then
recognized them. The study found that non-verbal emotions were
not easy to discern than those expressed via verbal channels.
NAO can also recognize human emotions through speech cues
and facial expressions. For instance, Bechade et al. (2015)
proposed an emotion recognition game in which the robot
had to recognize emotions through the speech of humans.
Likewise, Diaz et al. (2018) implemented a text2emotion
system that enables NAO to execute behaviors based on its
ability to recognize audiovisual stimuli. Stojanovska et al.
(2018) tested NAO’s emotion recognition rate by recruiting
participants to act emotions in front of the robot. Lopez-
Rincon (2019) enabled NAO to recognize human emotions
based on their photos on the computer screen, from which
NAO detected one-half of the face images (535/1192) from the
Child Affective Facial Expression (CAFE) dataset. Roshdy et al.
(2019) applied a human brain-basedmapping system for emotion
recognition through Emotiv headset, motivated by the mapping
of the human brain activity into NAO. In general, the robot can
express and recognize emotions successfully except if users are
not good at displaying them.

5.5 NAO as a Tool for Therapy and Learning
Despite many generic use cases implemented for NAO, this robot
is widely deployed withinmedical and educational institutions for
use by children.

Learning by imitation refers to observing and performing a
new behaviour by replicating the action of others. Within HRI,
imitation is generally practiced with children with health
problems (e.g., autism) because they have difficulties in motor

and/or turn-taking skills. When children mirror robot gestures
and other behaviours, they can improve social interaction skills.
In this way, most human-robot interaction occurs in a playful
environment, where children, robot, or both imitate. In Arent and
Kruk-Lasocka (2019), NAO played two interactive games with
children to improve their turn-taking skills through movement
imitation. Arias-Aguilar et al. (2017) designed a child-robot
interaction in which NAO proposes typically developing
children to a “play” by imitating the same arms and legs
movements that it makes itself. Chevalier et al. (2017)
designed a playful task in which NAO performed several hand
gestures in the background of music with the same duration and
rhythm. Both the robot and children with ASD had to imitate
each other’s arm movements, but children were a bit confused to
initiate them. In Di Nuovo et al. (2020), NAO presented itself and
engaged with the children by playing music and storytelling and
then asked to imitate its dance movements. Greczek et al. (2014)
developed a Copy-cat game played between an NAO robot and a
child with ASD. In the game, the robot asks a child to mirror its
pose, saying, “Can you copy me?.” In learning by imitation
framework, some authors propose to use Dynamic Time
Warping that observes joint angles trajectories instead of
Hidden Markov Models (HMM) for time normalization
(Thobbi and Sheng, 2010).

Meanwhile, some researchers (Cazzato et al., 2019) proposed a
system where NAO recognizes the presence of a user in real-time
and imitates the human’s head pose. To augment motor skills,
NAO may encourage imitation learning (e.g., sit-to-stand) in
children with cerebral palsy, despite its physical limitation to
move naturally (Rahman et al., 2015). In Ros et al. (2014), NAO
taught children dance moves while providing verbal support with
music. Tapus et al. (2012) developed a motor imitation task in
which NAO imitates gross arm movements of children with ASD
in real-time. The results show a high variation in children’s
reactions to the NAO, which means that not all children can
benefit in the same way. For rehabilitation and prevention of
scoliosis (abnormal curve of the backbone), Vircikova and Sincak
(2013) presented NAO in hospital and school settings. The
participating children imitated NAO’s motions accurately,
which also increased their motivation to exercise more. Quite
similarly, NAO, as a trainer, performed physical exercises with
elderly people who tried to imitate movements (Werner et al.,
2013). In this context, users had to imitate mood-modified NAO’s
arm gestures in a game, after which the robot provided verbal
feedback about user performance (e.g., “Yes, those were the right
gestures” for a correct movement). Imitation is one of the
important skills for individuals with developmental disorders
who need to understand social cues from a young age.
Therefore, research shows that NAO is able to facilitate
initiation and turn-taking skills through imitation tasks or games.

NAO is generally welcomed by students who view this robot as
a learning peer, a more knowledgeable tutor, or a less
knowledgeable learner (Johal, 2020). Rosenberg-Kima et al.
(2019) found that the physical presence of robots brought
positive changes for university students because of the
technical functionality, social, and psychological activity.
Namely, students pointed out the benefits as follows:
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“accessible to multiple people,” “immediate feedback,” “he is not
judgmental like human beings,” “pleasant and motivating.” Some
research has targeted specific skills required for language
learning: reading (Yadollahi et al., 2018), grammar (Belpaeme
et al., 2018), handwriting (Hood et al., 2015), alphabet
(Sandygulova et al., 2020) or vocabulary learning (Balkibekov
et al., 2016). Other research demonstrated that learners cultivate
favorable impressions toward robots as learning companions, and
the child-robot interaction may lead to increased self-confidence
(Hood et al., 2015) and better task performance requiring
creativity and problem-solving. Other studies e.g., Vogt et al.
(2019) explored long-term learning between NAO and children
to better understand this type of HRI in a real-world
environment.

5.6 Typical Comparisons in HRI Studies
With NAO
To identify the robustness and applicability of the social robot,
comparative studies have been undertaken in terms of interaction
roles and behaviors. Comparison occurs not only between robots
but also between participants and interaction types. The
comparisons between humans include children vs. adults
(Kaptein et al., 2017), expert vs. non-expert (Ansermin et al.,
2017), autistic vs. typically developing children (Anzalone et al.,
2015), programmer vs. non-programmer (Stadler et al., 2014),
and people from different cultures (Rudovic et al., 2017;
Shidujaman and Mi, 2018). This shows that different groups
of humans may have different experiences with a social robot.

Bethel et al. (2013) compared a human interviewer and a robot
interviewer to find out which of them impacts participants when
presented misleading information. The results show that the
misinformation effect was significant in the human interviewer
condition than in the robot interviewer condition. The authors
suggest that its TTS system caused the lack of speech
comprehension, which results in issues with the robot’s
understandability. In Henkel et al. (2019), participants found
the robot interviewer as non-judgemental with whom they were
likely to share secrets. In a language learning context, a human
teacher and robot teacher performed sign language gestures in a
real and virtual environment, addressing the embodiment effect
(Kose et al., 2012). Tapus et al. (2012) explored whether children
with autism engage more with a robot partner or a human partner
during a movement imitation task, in which no significant
differences were found. In performing physical exercises
(Werner et al., 2013), users perceived NAO as less motivating
than humans, but they also rated the robot as more motivating
than a standard training plan they use regularly.

When exploring robot embodiment, most users perceive NAO
better in terms of its engagement and social characteristics.
Artstein et al. (2017) found that a physical robot was more
preferred and engaging to participants when compared with a
virtual agent, which in turn led to better memorization over a
longer period. Bevan and Stanton Fraser (2015) were interested in
comparing telepresent NAO against non-telepresent NAO when
shaking hands with participants during negotiations, whereas
Tozadore et al. (2017) evaluated controlling the robot

autonomously and through WoZ. Both studies suggest that a
robot’s presence did not affect the degree of trustworthiness and
appraisal, and user enjoyment, but the perceived level of robot
intelligence may decrease when people know about teleoperation.
Some studies explored robot personality effect on interaction
quality such as extroverted vs. introverted (Aly and Tapus, 2013;
Celiktutan and Gunes, 2015), low interactive vs. high interactive
(Tozadore et al., 2016; Horstmann and Krämer, 2020), active vs.
passive (Mubin et al., 2014), affective vs. non-affective (Tielman
et al., 2014), emotional vs. unemotional and high vs. low
intelligence (Zlotowski et al., 2014), lack of ability vs. lack of
effort (van der Woerdt and Haselager, 2019), and simulated vs.
real robot (Riccio et al., 2016). The robot-to-robot interaction and
comparisons were also carried out in different contexts. However,
only some papers compared the efficacy and utility benefits of the
robots, mainly using the other robot as an alternative to the NAO
or vice versa. Although children prefer NAO, they find easier to
understand the gestures of a taller R3 (Kose et al., 2014) and rate
Baxter robot as more positive and acceptable than NAO (Cuan
et al., 2018). NAO was reportedly used along with Aibo in gesture
experiments (Andry et al., 2011), iCub in eliciting behaviors on
humans (Anzalone et al., 2015), Wifibot to carry the NAO (Canal
et al., 2016), Pepper in human head imitation (Cazzato et al.,
2019), Turtelbot in providing elderly care (DiMaria et al., 2017),
Robokind R25 in interviewing humans (Henkel et al., 2019), Reeti
(Johal et al., 2014) in expressing different parenting styles, R3
(Kose et al., 2014) in performing sign language gestures, Palro and
Gemini (Pan et al., 2013) in evaluating interaction styles, and PR2
in identifying preferred human-robot proxemics (Rajamohan
et al., 2019).

5.7 Novel Developments in Human-NAO
Interaction
NAO has been used for unique purposes, which paved the way for
new developments in human-robot interaction. One of the
limitations of NAO is linked to physical abilities. Therefore,
researchers try to improve physical contact with humans based
on sensory information coming from them. Technical studies
demonstrate promising results in relation to kinesthetic teaching
by humans (Cho and Jo, 2011; Stadler et al., 2014). For instance,
Bellaccini et al. (2014) proposed manual guidance of NAO
without force sensors to improve physical human-robot
interaction (pHRI). In a quite similar way, Berger et al. (2013)
introduced a machine learning approach that enables NAO to
follow human guidance by identifying human forces during a
joint transportation task. Cao et al. (2014, 2017) presented a novel
collaborative behavior controller ROBEE that selects actions
based on homeostatic drive theory for NAO to jointly perform
a task with participants more autonomously. In other words, this
controller allows NAO to be aware of users’ psychological (e.g.,
valence) and physical (e.g., thirst) needs. The brain-machine
interface (BMI or BCI) has been commonplace in studies that
address the problems of people with motor disabilities.
Accordingly, some researchers proposed a novel BMI interface
such as EOG/ERP hybrid human-machine interface (Ma et al.,
2013), EEG-based recognition of imaginary movements of fingers
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(Stankevich and Sonkin, 2016) and Emotive EPOC (Gomilko
et al., 2016) to control NAO behaviours through commands by
translating human brain activity. These findings show that NAO’s
limitations might be overcome by using more advanced deep
learning solutions that enable the robot to function in natural
environments.

5.8 From Close-Loop Systems Towards
Real Autonomy
The realization of versatile and human-like intelligence and
cognitive modules in robots remains a challenge for the HRI
field. As shown by our analysis, all autonomous systems used
in user studies were targeting a specific application field.
Generic reasoning relates to developmental robotics that
can include various theories and methods such as deep
learning, sensorimotor information processing,
metacognition, memory, and decision making (Miyazawa
et al., 2019). Several studies proposed a cognitive
architecture for NAO’s system design. For instance, Adam
et al. (2016) presented Cognitive and Affective Interaction-
Oriented architecture (CAIO) that allows NAO to perceive its
environment multi-modally, to manipulate mental states, to
respond emotionally, and to execute physical and verbal
actions. Aly and Dugan (2018) proposed Experiential
Robot Learning in which NAO must autonomously learn
and gradually acquire knowledge and skills through
experience in the real world, achieved through
reinforcement learning. Dindo and Zambuto (2010)
focused on a multi-instance learning algorithm for NAO to
learn the word-to-meaning associations through visual
perceptions. Andry et al. (2011) presented an artificial
neural network control architecture that allows rhythm
detection to build an internal reward for learning inspired
by human behavior. It has implications on the quality of the
interaction in which NAO is capable of predicting and
following human actions. To endow NAO with more
adaptive behaviours, Bertacchini et al. (2017) designed a
cognitive architecture that consists of human identification,
emotions and gestures recognition and exhibition, and speech
sentiment analysis in customer-robot interaction. Using
computational modeling, Cantucci and Falcone (2019)
endowed NAO with social autonomy in which it serves the
role of infoPoint assistant that helps users to find out the
location of their point of interest (e.g., a restaurant) and how
to get to the place. Quite similarly, through the Internet of
Things framework (IoT), Mondal and Nandi (2017) created a
customizable assistant by enabling NAO to perform daily
tasks that its owner requests. To increase the emotional
aspect of interaction, Chella et al. (2013) built the cognitive
architecture of NAO based on perceptual, emotional, and
behavioural data. Another attempt in this area is made by
Ribeiro et al. (2016) that presented the Socially Expressive
Robotics Architecture (SERA) ecosystem for NAO as an
autonomous and emphatic robot tutor in teaching
sustainable development. These multiple examples of
cognitive architectures for NAO are important to enable

human-like intelligence and develop more natural HRI. A
more detailed overview of research on cognitive architectures
can be found in Ye et al. (2018) and Kotseruba et al. (2020).

5.9 Concluding Remarks
NAO is a well-accepted social robot valued for its fun and
enjoyable appearance. However, there were mixed feelings
about its interaction capabilities, which manifest diverse
individual preferences and perceptions. Its interactive abilities
can be empowered when displaying and recognizing emotions.
Commonly, its body language is a medium for expressing
emotions. NAO can detect emotions from facial expressions,
and therefore, there is an emotional contagion in which NAO
adapts to a human’s emotional state or vice versa (Xu et al., 2015;
Stojanovska et al., 2018). Users also want NAO to feel and show
different kinds of emotions. For instance, students thought they
wanted NAO to “feel life” and feel happiness and togetherness
when interacting with them (Omokawa and Matsuura, 2018). As
compared to the unemotional NAO, the emotional robot was
considered more anthropomorphic, while its intelligence may not
affect the perception of anthropomorphism (Zlotowski et al.,
2014).

NAO is widely accepted as a socially assistive robot, which
communicates with users socially rather than physically (Sarabia
et al., 2018). A great body of research has used NAO as a mediator
in autism therapy and other therapeutic interventions with older
people. Using social robots can offer alternative or
complementary ways to support traditional treatment. As a
viable approach to autism treatment, robot-mediated autism
intervention is designed to improve children’s verbal and non-
verbal behaviours as well as social skills. Levels of autism are
known to be the most defining factor that accounts for different
social interaction experiences and engagement rates (Ahmad
et al., 2017). So far, the autism studies with NAO found that it
has a great potential in helping children with autism to maintain
eye contact (Anzalone et al., 2015), prefer specific instructions
over spontaneity (Arent and Kruk-Lasocka, 2019) and augment
communication skills (Hamid et al., 2013). Some other therapies
focus on physical therapy, for instance, to improve motor
learning skills of children with cerebral palsy (Rahman et al.,
2015; Buitrago et al., 2020). Children with motor disabilities may
become motivated and encouraged to do imitation and motor
learning tasks. In addition, hearing-impacted children’s sound
detection improved over sessions, meaning that NAO can be used
for auditory-verbal therapy (Ioannou and Andreva, 2019). Verbal
communication with NAO has occurred in different learning and
communication scenarios. Its speech is mainly based on scripted
texts and therefore usually lacks personalized responses. Thus,
autonomous and natural human-NAO verbal interaction is still at
its infancy.

Users liked the robot’s nonjudgemental behavior (Da Silva
et al., 2018), and they were more engaged when the robot
asked for personal details than quiz-like questions (Eyssel
et al., 2017). In particular, game-based relationship with the
robot may result in more self-disclosure (Groot et al., 2019).
Furthermore, NAO was seen as more trustworthy and
persuasive when compared to a virtual agent in either voice
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or virtual embodiment (Artstein et al., 2017). This distinctive
characteristic hints that NAO can deal with sensitive issues
carefully without making people feel uncomfortable when
revealing oneself.

It was found that robots playing games with humans have an
entertainment value (Johnson et al., 2016). Especially, it holds
true for young children since their learning is mainly based on
free play activities than instructed guidance on task performance.
For instance, users preferred the R3 robot for learning, while
NAO was associated with play (Kose et al., 2014). In another
study, NAO played a board game known as tic-tac-toe with users
on a tablet and showed that its behaviors could be robust with the
help of voice synthesis and recognition. A more active,
interactive, and extrovert robot is preferred as a partner in
meetings (Mubin et al., 2014). There was no significant
difference in user enjoyment between the system conditions,
but most children tend to favor autonomous robot (Tozadore
et al., 2017). Learning with NAO is interesting for children, and
the content of play may affect the result of the learning process.
Character recognition also plays an important role, how NAO
recognises the kids’ writing, and it can be spelled back towards
them. In this case, the kids can learn how to pronounce English
much better and learn the handwriting of the alphabet (Kim et al.,
2019). The two-way communication is found to be effective since
each child can respond to the questions from NAO (Miskam
et al., 2013).

Personalization is a much-needed feature for all social robots,
and NAO’s case is no exception. It is commonly regarded that the
robot may become more effective and human-like when it is able
to tailor to user’s needs and preferences and build a sustainable
and long-term relationship. Personalized human-robot
interactions are specifically suitable when robots interact with
humans for longer periods (Irfan et al., 2019). In such context,
robots may develop a certain kind of memory storage that allows
them to remember and record all available information about
people through continuous interaction with humans.
Considering the variation in autism symptoms, there is a clear
need for robot personalization in autism therapy (Fuglerud and
Solheim, 2018). To illustrate, Greczek et al. (2014) emphasized
that varied feedback may be more effective and less discouraging
than descriptive feedback in an imitation game for children with
autism. Also, Mirnig et al. (2011) found that human-robot
interaction might be affected due to the provision or
withholding of feedback. Users’ perception of the robots could
be distinguished based on different interaction styles even when it
is a short-lived encounter (Pan et al., 2013). We come back to this
subject later in the paper.

Personal characteristics of NAO are essential as each human
shows idiosyncratic preferences in behaviours. What is
interesting is that both introverted and extroverted humans
wanted to interact with the personality-matching robot (Aly
and Tapus, 2013). This posits that the personality traits of the
robot are a relatively significant factor in relation to its non-verbal
behavior. Users prefer to have a robot partner that shares the
same personality as in the human-human interaction. Not
surprisingly, it is suggested that extroverted robots positively
affect interaction flow (Celiktutan and Gunes, 2015).

Similar to a human-human relationship, it may not be realistic
if the human-robot interaction imitates faultless and impeccable
communication. In psychology, the pratfall effect explains that a
mistake would increase the interpersonal appeal and make
humans more likable (Aronson et al., 2014). In this regard,
Mirnig et al. (2017) highlights that the same phenomenon can
be applied to social robots. In their study, participants liked
the faulty robot significantly better than the robot that
interacted flawlessly. The timing of the errors might also
play an important role. Much interestingly, Lucas et al.
(2018) found that NAO having conversational errors
during warm-up conversation may recover sooner.
Nevertheless, some users may develop biases toward the
robot to be faulty and have limited skills (Turp et al.,
2019). Although an erroneous robot is generally under-
studied, it certainly is one of the key areas to understand
human-robot interaction in an unrestricted way.

Researchers have used external measurement devices such as
RGB-D camera, eye tracker, motion detector, and many other
tools for some decades. They make it possible to measure human
features such as body postures, movement, speech, and gaze in a
more accurate and reliable way. They can fill the gap in the robot’s
capabilities in measuring a human’s input and engagement. In
Craig et al. (2016), gaze tracking hardware is used to create gaze-
based language command in order to facilitate the
communication barriers between NAO and users. In another
study, a speech recognition system called Cloud technology was
used to assess the correct understanding of Chinese language
words that were transmitted to NAO (Han et al., 2018). Other
researchers use gesture recognition system based on external
cameras (Ajili et al., 2017) and object detection algorithm to
recognize the face from NAO’s main camera (Cheng et al., 2012;
Cuijpers and van der Pol, 2013). These advancements are
significant as service robots are becoming popular in our
domestic and social lives. In some way, it would be innovative
if these technologies could also evaluate the quality of human-
robot interaction. For instance, there might be some level of
subjectivity in coding behaviours, especially in autism therapy
(Baraka et al., 2017).

Existing research studies found no conclusive evidence
regarding the benefits of social robots over other
technologies. NAO’s advantage over other technologies is
still unclear as there are insufficient evidence for its benefit
compared to tablets and computers. It might be intuitive to
consider that users prefer to interact with a physical robot
because of its animate and lively appearance. However, a user
preference may depend on other factors, such as age and
context. Notably, older adults who have serious underlying
health issues may be inclined towards physical robots. For
example, elderly people preferred robots over a tablet, despite
technical limitations of the NAO (Olde Keizer et al., 2019).
Furthermore, students perceived NAO as a sociable agent and
favored it over other learning aids, e.g., a computer (Liles and
Beer, 2015). Focusing on a language learning context,
Zhexenova et al. (2020) reported that there is no significant
difference in children’s perceptions of NAO’s effectiveness in
comparison with a tablet and a human teacher. In the
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entertainment area, Wong et al. (2018) revealed that physically
present NAO improved information dissemination and hence
increased visibility of the advertised product.

6 KEY INSIGHTS: STRENGTHS AND
LIMITATIONS

Our overall impression of the current review demands a further
reflection on how research could be conducted with a social robot
NAO. Although some points may be generic, we believe the
research-based insights will benefit researchers either working or
intending to work with NAO.

6.1 Strengths
NAO is commonly regarded as a widely used platform. Researchers
tend to skip the details of why they choose NAO over other social
robots except acknowledging its wider use. The most
straightforward reason is that NAO has become the standard
platform for RoboCup, an international robotics competition, for
over 10 years.

NAO enjoys a great appeal from its end-users. Its child-like and
non-threatening appearance makes it appealing. In particular,
children at younger ages appear to engage with NAO more
successfully than those at later childhood stages. This idea is
supported by the significant number of studies that have been
conducted in the educational and therapeutic context.

NAO is certainly not just an eye-catcher robot as its portability
is highly appreciated by the researchers. Its small size in addition
to light weight is helpful for easy transportation in a standard
car (e.g. a taxi) which makes in the wild research possible.

NAO can be regarded as a plug-and-play robot due to its robust
and easy setup characteristics. This allows researchers to have a
reliable platform for a real-world deployment as confirmed by
numerous research works conducted in diverse settings, ranging
from schools to hospitals.

NAO is an affordable robot with a cost of around 6000 Euro11.
Although it might be more expensive in comparison to other
smaller humanoid robots, NAO is one of the most complete
humanoid robots on the market in terms of functional and
technical abilities.

NAO’s customizable features also meet the needs of multi-
disciplinary researchers worldwide. This is surely thanks to the
multi-level programming framework proposed to researchers.
While the block-based programming framework, Choregraphe,
allows researchers from social sciences to easily implement
novel behaviors, the C++/Python API allows engineers to
develop novel technical contributions (i.e. computer vision,
control, etc.) and deploy directly on the robot. The HRI field
being so multi-disciplinary, its programming framework positively
contributed to the success of the NAO platform.

NAO is multimodal in both its input and output
communication modalities. It is relatively well equipped with

internal sensors to perceive its environment as well as external
actuators to perform verbal and non-verbal behaviors (e.g. body
motion and LEDs).

NAO can take on a unique social role of one’s learner. NAO as
an educational robot has assisted poorly performing children to
engage in a learning activity by taking up a unique social role of
their learner. This can positively affect meta-cognitive abilities
such as increased self-confidence and problem-solving (Hood
et al., 2015). Other notable examples include handwriting
practicing, second language learning, and studying school
subjects like mathematics and science classes. With remarkable
achievements in education, NAO is not much used in traditional
and formal learning settings and rather acts as a one-to-one tutor,
peer, or a learner (Johal, 2020).

NAO can bring cognitive and affective values when interacting
with humans that have social and learning barriers. Although the
robot can not replace the key social actors such as therapists and
teachers, it can make learning and therapy engaging and fun
experience, while educators can focus on creative as well as
differentiated teaching practices.

NAO could be a great help for individuals who have less social
experience and companionship in their life. For instance, in
treating dementia and for other elderly care therapies, it could
be applied to assist in daily life by monitoring and reminding to
take the pills and do physical exercises following a certain plan
instructed by medical staff. NAO as a companion may enhance
the quality of life that most people expect to enjoy in their
later lives.

Gendered stereotypes seem to persist in human-robot
interaction. Multiple research indicate that users may perceive
the robot in different ways based on gender markers such as voice
and verbal commands (Sandygulova and O’Hare, 2015; Jackson
et al., 2020). To a great extent, NAO is among the genderless
robots (Obaid et al., 2016) compared to other robots (e.g., Kaspar,
Milo). Thus, research with less gendered robots is important to
eliminate gendered attitudes towards feminine and masculine
qualities, which appear to contribute to the interaction outcomes.

6.2 Weaknesses
NAO has a low battery life and overheating issues that make it
less durable than other social robots (e.g., Pepper). Generally, it
works for 60 min in active use and 90 min in normal use. These
issues question its sustainability and long-term efficacy. As our
review shows, the majority of experiments with NAO usually
happen on a short-term basis lasting for no more than 30 min.
For instance, some participants are concerned with the robot
being not active and responsive as they expected it to be. With
that in mind, the activities and experimental design need to be
adjusted time-wise.

Although NAO is relatively well equipped to perform near-
human actions, it is quite often supported by input/output external
devices such as high-quality or depth cameras and microphones.
While NAO has two internal cameras, the low resolution does not
allow to perform complex vision recognition tasks. For example,
the closer a person is, the better the robot detects facial expressions
and other visual cues, while it cannot recognize people who are
more than 2 m away (Bolotnikova et al., 2017). Oftentimes, the use

11https://www.generationrobots.com/en/403100-programmable-humanoid-robot-
nao-v6.html
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of additional equipment such as touchscreens, tablets, or wearables
can substitute for perceptual limitations (Johal, 2020).

NAO can hardly function in a noisy environment and recognize
human speech. User’s age influences speech recognition as young
children and older people have different speech characteristics
and coherence (Vargas et al., 2021). In particular, it is not yet
practicable for NAO to recognize children’s speech (Kennedy
et al., 2017). Alternatively, researchers could use Google Cloud
Speech recognition services that allow NAO understand different
languages and optimize its workflow.

Hard surfaces are needed for NAO’s movements and stable
positioning. Aldebran first designed NAO as bipedal robot to
walk in open loop. Closed loop walk algorithm was adopted on
NAO humanoids that became capable of omnidirectional walking
(Gouaillier et al., 2010; Kasari et al., 2019). NAO has a particular
way of walking, and while the robot can move freely on flat and
hard surfaces, it lacks robustness on surfaces such as on carpets or
rugs (Shamsuddin et al., 2011). For instance, RoboCup teams like
Berlin United (previously NAO Team Humboldt) have long been
exploring the robot’s ability to move and kick the soccer ball
autonomously based on visual spatial perception12.

Autonomy is undoubtedly the most demanding feature that
most social robots lack. NAO has been predominantly used in the
Wizard of Oz approach, a frequently employed method; wherein
the interaction is controlled remotely by human input along the
autonomy spectrum (Riek, 2012). Scripted, although highly
constrained interactions are also commonly used solutions.

7 FUTURE RESEARCH WITH NAO

Our results allow us to make a number of recommendations for
future research using NAO:

Data-driven behavior generation: While rule-based behaviour
generation approaches perform well, they are often costly, time-
consuming and bound up to expert knowledge. The cost of creating
production rules and the need for manual configurations in order
to generate complex and natural human behaviours put a limit to
the complexity and diversity of generated behaviours. Thus, the
development of data-driven behaviour generating systems using
machine learning have to become the research focus as the actual
human-human interaction data can provide a more human-like
and multimodal behaviour generation (see Liu et al. (2021) for a
review on gesture generation).

Long-term engagement: Although cross-sectional studies are
commonplace due to different technological and methodological
constraints, it is feasible to commit to long-term goals and test the
efficacy of NAO and its capabilities. The user studies in robot-
assisted educational and therapeutic settings need convincing
evidence of the robot’s long-term efficacy, especially those
working with underserved populations (Rakhymbayeva et al., 2021).

Multi-party interaction: It would be suitable to observe and
refine NAO’s behaviors and its relationship with study
participants in the presence of co-present others. One-on-one

interaction has long been practiced, however, it is still unclear how
NAO interacts with multiple participants. This type of interaction
deserves much attention because it allows to maintain collaborative
HRI. The robot’s mediating role is important to facilitate human
relationships such as student-student, student-tutor, and child-
parent. In addition, professionals from other fields such as
psychology and education can also contribute to evaluating the
quality of human-robot interaction. For instance, in an educational
setting, teachers may assess the interaction outcomes based on
rubrics and observation.

Natural communication: Social dialogues should be more
uplifting and engaging using more affective reactions. They may
be based on a real interaction scenario where different participants
react in varying ways. Interaction roles might be specified in
advance, or users may find out in the course of the dialogue.
Open-ended interactions can be designed where the robot is faulty
or make errors during the interaction from which they can recover
during the session. However, it might be helpful to maintain a
cooperative imagined contact relying on real-life scenario. Research
shows that imagined contactmay provide humanswith a behavioral
guide, which probably improves their feelings of self-efficacy and
confidence in future interaction (Kuchenbrandt and Eyssel, 2012).

Personalization: One cannot fit all, especially when it comes to
social interaction. For that reason, it seems that adaptation and
personalization have been under investigated as the NAO robot was
used across various populations and cultures without much
changes. Interventions have to be aware of user demographics
which is the most straightforward way to adapt the content by
adding specific verbal and non-verbal cues. The decision over how
much personalization to use has to derive from study focus and
population, which is highly anticipated of any experiment. In the
case of young children with autism, there is a strong need for
customized robot behaviors, as these children show varying degrees
of autism symptoms that develop individually. For this reason, the
NAO can target different social skills development activities and
then find out what works best for a certain child. It would be an
important objective forNAO to learn child preferences from session
to session and adapt its behaviors accordingly.

Impact of COVID-19 on HRI: If we consider the significant
decrease in an experiment-basedHRI, it becomes clear that some of
us may not embrace an online research environment. There might
be a serious disparity between subject areas, institutional support,
and early-career and expert researchers. Besides, there is a
geographical factor that might influence research activity as
some countries (e.g. Israel, New Zealand) cope better with
COVID-19, while others (e.g. USA, Italy) have been hardest hit
by it. Thus, a collaboration between researchers within and beyond
the field can be a silver lining of current research-related challenges.

8 CONCLUSION AND LIMITATIONS

In HRI, we often work and develop closer ties with a particular
robot, and may overlook how other robots contribute to the field.
In this review, we presented a comprehensive overview on the use
of NAO, which is a remarkable social robot in many instances. So
far, NAO has been exposed to challenging yet rewarding journey.12https://www.naoteamhumboldt.de/en/team/
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Its social roles have expanded thanks to its likeable appearance
and multi-modal capabilities followed by its fitness to deliver
socially important tasks. Still, there are gaps to be filled in view of
sustainable and user-focused human-NAO interaction. We hope
that our review can contribute to the field of HRI that needs more
reflection and general evidence on the use of the social robots,
such as NAO in a wide variety of contexts. The main limitation to
this study is that our search was limited to keywords in abstract
and titles. It means that we could not cover other studies that
might enrich the current review. Nevertheless, we believe that our
research may engender important insights into the use of NAO
across different domains and shape a broader understanding of
human-robot interaction over the last decade. An implication of
the findings shows a greater need for increasing the value and
practical application of NAO in user-centered studies. Future
studies should consider the importance of real-world and
unrestricted experiments with NAO and involve other humans
that might facilitate human-robot interaction.
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LEADOR: A Method for End-To-End
Participatory Design of Autonomous
Social Robots
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Participatory design (PD) has been used to good success in human-robot interaction (HRI)
but typically remains limited to the early phases of development, with subsequent robot
behaviours then being hardcoded by engineers or utilised in Wizard-of-Oz (WoZ) systems
that rarely achieve autonomy. In this article, we present LEADOR (Led-by-Experts
Automation and Design Of Robots), an end-to-end PD methodology for domain expert
co-design, automation, and evaluation of social robot behaviour. This method starts with
typical PD, working with the domain expert(s) to co-design the interaction specifications
and state and action space of the robot. It then replaces the traditional offline programming
or WoZ phase by an in situ and online teaching phase where the domain expert can live-
program or teach the robot how to behave whilst being embedded in the interaction
context. We point out that this live teaching phase can be best achieved by adding a
learning component to aWoZ setup, which captures implicit knowledge of experts, as they
intuitively respond to the dynamics of the situation. The robot then progressively learns an
appropriate, expert-approved policy, ultimately leading to full autonomy, even in sensitive
and/or ill-defined environments. However, LEADOR is agnostic to the exact technical
approach used to facilitate this learning process. The extensive inclusion of the domain
expert(s) in robot design represents established responsible innovation practice, lending
credibility to the system both during the teaching phase and when operating
autonomously. The combination of this expert inclusion with the focus on in situ
development also means that LEADOR supports a mutual shaping approach to social
robotics. We draw on two previously published, foundational works from which this
(generalisable) methodology has been derived to demonstrate the feasibility and worth of
this approach, provide concrete examples in its application, and identify limitations and
opportunities when applying this framework in new environments.

Keywords: social robotics, HRI, participatory design,mutual shaping of technology and society, autonomous robots,
robot development
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1 INTRODUCTION

In the context of robotics research, participatory design (PD)
attempts to empower non-roboticists such that they can shape
the direction of robotics research and actively collaborate in robot
design (Lee et al., 2017). Typically, PD is achieved by researchers
running workshops or focus groups with end users and/or domain
experts. Output may include potential use case scenarios (Jenkins
and Draper, 2015), design guidelines/recommendations (Winkle
et al., 2018), and/or prototype robot behaviours (Azenkot et al.,
2016). Šabanović identified such methods as appropriate for the
pursuit of amutual shaping approach in robot design that is one that
recognises the dynamic interactions between social robots and their
context of use (Šabanović, 2010), an approach that we find
compelling for designing effective and acceptable social robots
efficiently. However, the automation of social robot behaviour,
which requires a significant technical understanding of robotics
and artificial intelligence (AI), is not typically considered during such
activities.

Instead, common methods for the automation of social robot
behaviour include utilisingmodels based on human psychology (e.g.,
Theory ofMind, Lemaignan et al., 2017) or animal behaviour (Arkin
et al., 2001) or attempting to observe and replicate human-human
interaction behaviours (e.g., Sussenbach et al., 2014). This limits the
potential for direct input from domain experts (teachers, therapists,
etc.) who are skilled in the use of social interaction in complex
scenarios. Previous work with such experts has demonstrated that a
lot of the related expertise is intuitive and intangible, making it
difficult to access in a way that can easily inform robot automation
(Winkle et al., 2018). This is somewhat addressed by methods that
capture domain expert operation of a robot directly, for example,
end user programming tools (e.g., Leonardi et al., 2019) or learning
from expert teleoperation of robots (e.g., Sequeira et al., 2016).
However, these methods tend to focus on offline learning/
programming. As such, there is no opportunity for experts to
create an adequate, situated mental model of the capabilities of
the robot, limiting the guarantee of appropriate behaviour when the
robot is eventually deployed to interact with users autonomously.

Instead, we argue that robots should be automated by domain
experts themselves, in real time, and whilst being situated in the
interaction context; and that this automation should be done
through a direct, bi-directional interaction between the expert
and the robot. We refer to this as the teaching phase, where the
robot is taught what to do by the domain expert, regardless of
whether it is, e.g., a machine learning algorithm or an authoring
tool that underpins this interaction. This live, in situ, and
interactive approach allows mutual shaping to occur during
robot automation, as the expert defines the program of the
robot in response to the evolving dynamics of the social
context into which the robot has been deployed.

1.1 Supporting a Mutual Shaping Approach
to Robot Design
Šabanović proposed a mutual shaping approach to social robot
design that is one that recognises the dynamic interactions between
social robots and their context of use, in response to their finding that

most roboticists were taking a technologically deterministic view of
the interaction between robots and society (Šabanović, 2010). Studies
of real-world human-robot interaction (HRI) motivate such an
approach, because they demonstrate how mutual shaping effects
impact robot effectiveness upon deployment in the real world. For
example, the use and acceptance of robots in older adult health
settings has been shown to be affected by situation and context of use
factors such as user age and gender, household type, and the
prompting of its use by others (Chang and Šabanović, 2015; de
Graaf et al., 2015), i.e., factors unrelated to the functionality of the
robot. The pursuit of a mutual shaping approach, primarily through
use of PD and in-the-wild robot evaluation methods, gives the best
possible chance of identifying and accounting for such factors during
the design and development process, such that the robot has
maximum positive impact on its eventual long-term deployment.

To this end, Šabanović describes four key practices that
underpin a mutual shaping approach to support a “socially
robust understanding of technological development that enables
the participation of multiple stakeholders and disciplines”:

1) Evaluating robots in society: HRI studies and robot
evaluations should be conducted “in the wild”, i.e., in the
environments and context of use for which they are ultimately
intended to be deployed (Ros et al., 2011).

2) Studying socio-technological ecologies: Robot design should
be informed by systematic study of the context of use, and
evaluation of robots should consider impact on the socio-
technology ecology into which they have been deployed.

3) Outside-in design: Design constraints should be defined by
empirical social research and the social context of use, rather
than technical capabilities, and evaluation should be based on
user experiences rather than internal measures of technical
capability.

4) Designing with users: Stakeholders (those who will be directly
affected by the deployment and use of the robot) should be
included in identifying robot applications and thinking about
how robots will be used and in designing the robot and its
behaviour(s).

However, as we explain in Section 2, robot development at
present typically represents a discontinuous process, particularly
broken up by the automation of social robot behaviour. It still
tends to heavily rely on technical expertise, executed in research/
development environments rather than the real world, with little
active inclusion of domain experts or other expert stakeholders.
This discontinuity also represents a key hurdle to truly multi-
disciplinary working, a disconnection between those of different
academic backgrounds on the research team, which can result in a
number of practical challenges and frustrations.

1.2 The Led-By-Experts Automation and
Design of Robots Method
The generalisable method that we provide in this work is derived
from two (independently undertaken) foundational works. First
is the educational robot by Senft et al. (2019) for school children,
in which a psychologist taught a robot to support children in an
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educational activity. After the teaching phase with 25 children,
the robot was evaluated in further autonomous interaction with
children, which demonstrated the opportunity of online teaching
as a way to define autonomous robot behaviours.

Second is the robot fitness coach by Winkle et al. (2020). This
work built upon the work by Senft et al. (2019) by integrating the
online teaching method into an end-to-end PD process, whereby
the same professional fitness instructor was involved in the co-
design, automation, and evaluation of a robot fitness coach. This
work also demonstrated the value of online teaching when
compared to expert-designed heuristics as a next best
alternative for defining autonomous robot behaviours with
domain expert involvement. Both studies used a teaching
phase where a domain expert interacted with the robot to
create an interactive behaviour, and in both studies, the
resulting autonomous robot behaviour was evaluated with
success.

From these works, we have derived a five-step, generalisable
method for end-to-end PD of autonomous social robots (Led-by-
Experts Automation and Design Of Robots or LEADOR), depicted
alongside typical PD in Figure 1. The key stages of our approach,
as referenced in the figure, can be summarised as follows:

1) Problem definition: Initial brainstorming, studies of context of
use, and studies with stakeholders.

2) Interaction design: Detailed refinement of robot application
and interaction scenario, and choice/design of robot platform.

3) System specification: Co-design of the action space of the robot,
input space, and teaching interface.

4) Technical implementation: Realisation of the third stage
through technical implementation of underlying architecture
and all sub-components and tools required for the
teaching phase.

5) Real-world deployment: Robot is deployed in the real world,
where a teaching phase is undertaken, led by the domain
expert(s), to create autonomous robot behaviour.

The cornerstone of our method is to facilitate robot
automation through direct interaction between the expert and
the robot, during a “teaching phase”, whereby the domain expert
teaches the robot what to do during real interaction(s) with the
target user. The resultant interaction is depicted in Figure 2.
Regardless of the specifics of the final interaction, the output of

FIGURE 1 | Comparison between a classic participatory design (PD) approach and LEADOR, our proposed end-to-end participatory design approach. Green
activities represent joint work between domain experts, multidisciplinary researchers, and/or engineers; yellow activities are domain expert-led; blue activities are
engineer-led. Compared to typical PD, the two key differences in our approach are the focus on developing a teaching system instead of a final autonomous behaviour in
step 4, and the combining of autonomous action policy definition and deployment in the real world into a single step 5 + 6. In addition, our method reduces the
amount of work that is carried out independently by engineers (i.e., with no domain expert or non-roboticist input).

FIGURE 2 | Three-way interaction between the domain expert, the
robot, and the target user through which the expert teaches the robot during a
teaching phase upon real-world deployment. Robot automation is therefore
happening in the real world, whereas the robot is fully embedded in its
long-term application context. The expert is teaching the robot through bi-
directional communication, as the robot interacts with the target user. The
extent of interaction(s) between the domain expert and target user
should be consistent with what is envisaged for long-term deployment of
the robot and is domain-dependent. People vector created by
studiogstock - www.freepik.com.
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this phase is a robot that can operate autonomously but could also
allow for continued expert-in-the-loop supervision and/or
behaviour correction/additional training.

Through our foundational works, we demonstrate the
flexibility in our method for developing autonomous robots
for different long-term interaction settings. The educational
robot by Senft et al. (2019) was intended for diadic,
unsupervised robot-user interactions, whereas the robot fitness
coach by Winkle et al. (2020) was intended primarily for diadic
robot-user interactions but to be complimented with additional
expert-user interactions/supervision and with additional expert-
robot-user teaching interactions if necessary. LEADOR could also
be used to design robots with other interaction requirements, e.g.,
an autonomous robot to be used in fully triadic expert-robot-user
interactions or to facilitate permanent expert supervision and
validation of autonomous behaviour.

In this paper, we have combined our experiences from these
foundational works to propose an end-to-end PD process,
centred around an in situ teaching phase, that uniquely
delivers on the promises of mutual shaping and PD. We
suggest that this approach is as practical as it is responsible,
because our foundational studies demonstrate that we were able
to create appropriate, intelligent, and autonomous social robot
behaviour for complex application environments in a timely
manner. As detailed in Senft et al. (2015) and Senft et al.
(2019), this teaching phase is achieved by deploying the robot
in the proposed use case and it is initially controlled completely
by a human “teacher”. The teacher can progressively improve the
robot behaviour in situ and generate a mental model of the policy
of the robot. This teaching can continue until the domain expert
is confident that the robot can satisfactorily operate
autonomously. This approach therefore allows non-roboticist,
domain experts to actively participate in creating autonomous
robot behaviour. It also allows for the continual shaping of robot
behaviour, because teaching can be seamlessly (re-)continued at
any time to address any changes in the interaction dynamics,
therefore better supporting a mutual shaping approach. We
suggest that our methodology is particularly appropriate for
use cases, in which difficult-to-automate and/or difficult-to-
explain “intuitive” human domain expertise and experience are
needed to inform personalised interaction and engagement (e.g.,
socially assistive robotics). The result then is an autonomous
robot that has been designed, developed, and evaluated (by a
multi-disciplinary research team) directly in conjunction with
domain experts, within its real-world context of use, that can
intelligently respond to complex social dynamics in ways that
would have otherwise been very difficult to automate.

For clarity, hereafter, we use the term domain expert (or
teacher) to refer to experts in an application domain. For
example, these domain experts could be therapists, shop
owners, or school teachers. These experts interact with the
robot and specify its behaviour in a teaching interaction (even
if no actual machine learning might be involved). On the other
hand, engineers or developers refer to people with technical
expertise in robotics or programming. They are the ones
typically programming a robot behaviour or developing tools
to be used by domain experts. Finally, the target user is the person

a robot would interact with in the application interaction. For
example, such target users could be children during a therapy
session or store customers in a shopping interaction. This
population is expected to interact with the robot at the point
of use, rather than be the ones directly defining the autonomous
robot behaviour.

2 RELATED WORK

2.1 Participatory Design
PD is fundamentally concerned with involving the people who
will use and/or will be affected by a technology in the design of
that technology, with a focus on mutual learning between
participants who typically represent either domain experts
(users) or technology experts (designers) (Simonsen and
Robertson, 2012). Contemporary PD has been concerned with
combining typical, iterative PD practices with evaluation of the
design in use under the concept of sustained PD or design as
“emerging change” (Simonsen et al., 2010; Simonsen et al., 2014).
Originally posed in the context of large-scale information systems
projects, the sustained PD approach presented by Simonsen and
Hertzum (2012) not only emphasises the evaluation of systems by
exposing them to real-situated work practices but also notes
associated challenges regarding management of a stepwise
implementation process and the conducting of realistic, large-
scale PD experiments.

This focus on implementation of the new technology as part of
PD also therefore raises the notion of user participation in that
implementation process. Fleron et al. (2012) demonstrated this in
the context of first designing an electronic whiteboard with
healthcare practitioners, followed by healthcare practitioner-led
implementation of that whiteboard at two emergency
departments. Notably, this work investigated differences in the
experiences between staff who did and did not participate in this
implementation process. Specifically, the participating staff (those
responsible for the system implementation) identified some
difficulties in understanding their role/responsibilities. The non-
participating staff expressed a desire for earlier (pre-deployment)
testing of the system but demonstrated positive “buy-in” of the
system, nonetheless, with the authors positing this linked to reputed
credibility of the system given it was (co-)developed and
implemented by their peers. This points towards not only the
potential benefits but also the challenges when trying to include
end users and/or domain experts in this sustained PD process.

Specifically concerning PD, AI, andmachine learning, Bratteteig
and Verne (2018) note three key challenges when using PD with/
for AI systems. First is that users and designers might struggle to
conceptualise the possibilities and limitation of AI; second is that
(machine learning–based) AI systems develop over time and hence
are difficult to evaluate within a typical PD experimental period;
and third is how to distinguish between “normal” use and training.
Overall, the authors conclude that AI and machine learning can be
part of a PD process, but that AI poses complex challenged that go
beyond the scope of typical PD projects.

From the PD literature then, there is a clear motivation to
explore PD processes that go beyond initial design to also include

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 7041194

Winkle et al. Participatory Design of Autonomous Social Robots

75

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


implementation and to understand how best to approach the PD
of machine learning–based AI systems. The notion of using
expert-in-the-loop machine learning for sustained PD that also
includes implementation specifically sits at this exact intersection.
However, whilst many contemporary PD works have described
applications in the development and implementation of
information technology systems, there seem to be very few (if
any) that consider autonomous, social robot design, and
development. Considering literature from the HRI field,
however, a number of (interdisciplinary) HRI researchers have
utilised and drawn from PD in the context of designing robots
and their applications.

Participatory Design in Social Robotics
Here, we identify relevant works utilising PD and other related
methodologies specifically in the context of designing social HRI.
Notably, these works primarily originate from the HRI
community, as opposed to the PD community, but most such
works showcase one (or more) of the following methodologies:

1) Ethnographic/”In-the-Wild” Studies: These typically focus on
understanding situated use and/or emergent behaviour(s) on
deployment of a robot into the real world. Concerning robot
design, such studies are inherently limited to the testing of
prototypes, Wizard-of-Oz (WoZ) systems, or finished
products (e.g., Forlizzi, 2007 and Chang and Šabanović,
2015). However, they might be used to inform initial
design requirements (and their iteration) through
observation of the use case environment and user behaviour.

2) User-Centred Design (UCD): This aims to understand and
incorporate user perspective and needs into robot design.
Typically, researchers set the research agenda based on prior
assumptions regarding the context of use and proposed robot
application (e.g., Louie et al., 2014, Wu et al., 2012, and Beer
et al., 2012).

3) Participatory Design (PD): This encourages participants
(users, stakeholders, etc.) to actively join in decision
making processes which shape robot design and/or the
direction of research. This typically involves participants
having equal authority as the researchers and designers,
with both engaging in a two-way exchange of knowledge
and ideas (e.g., Azenkot et al., 2016 and Björling and Rose,
2019).

Lee et al. give a good overview of the above practices as
employed in social robot and HRI design/research, with a
particular focus on how the shortcomings of 1 and 2 can be
addressed using PD (Lee et al., 2017). The authors use a case study
of social robot PD from their own work to highlight a number of
PD design principles for informing social robot design and
further development of PD methodologies. They particularly
highlight the empowering of PD participants to become active
“robot co-designers” through mutual learning, as introduced
previously, whereby there is a two-way exchange of knowledge
and experience between researchers/designers and expert
stakeholders. Through this process, users learn about, e.g.,
robot capabilities, such that they are better informed to

contribute to discussions on potential applications, whilst the
researchers/designers come to learn more about the realities of
the proposed context of use from the perspective of the users.

Since publication of work of Lee et al., PD methods have been
gaining visibility for the design of social robots, with other
roboticists further refining PD methods and best practice for
their use in social robotics and HRI. As such, PD works relating to
ours can be grouped into two categories:

1) Results-focused publications that utilised PD methods.
2) Methodology-focused publications in which the authors share

or reflect on PD methods for use in social robot/HRI design.

Works on 1) have typically taken the form of researchers
working closely with prospective users and/or other stakeholders
via focus groups, interviews, workshops, etc., with the researchers
then concatenating their results to produce potential use case
scenarios (Jenkins and Draper, 2015), design guidelines/
recommendations (Winkle et al., 2018), and/or prototype
robot behaviours (Azenkot et al., 2016). For example, Azenkot
et al. (2016) used PD to generate specifications for a socially
assistive robot for guiding blind people through a building. The
study of the authors consisted of multiple sessions including
interviews, a group workshop, and individual user-robot
prototyping sessions. The initial interviews were used, in part,
to brief participants about robot capabilities. The group session
was used to develop a conceptual storyboard of robot use,
identifying interactions between the robot guide and the user.

Winkle et al. (2018) conducted a study with therapists,
utilising a novel focus group methodology combined with
follow-up individual interviews to generate an expert-informed
set of design guidelines for informing the design and use of
socially assistive robots in rehabilitative therapies. The topic
guides for each part of the study were designed to help the
researchers to understand typical therapy practice and therapist
best practices for improving patient engagement and to explore
the ideas and opinions of the therapists on the potential role(s)
social robots, which might play in rehabilitation. A key finding of
this work was the extent to which intuitive, instantaneous
behaviour of therapists is driven by situational factors specific
to each individual client, making it difficult, for example, to
extract any clear cut heuristics that might inform
generalisable, autonomous social robot behaviour directly. The
resultant design guidelines therefore suggested that socially
assistive robots require “high-level” personalisation to each
user as well as the ability to adapt, in real time, to, e.g., the
performance of the user and other situational factors. This is one
of the key works that motivates our effort to therefore facilitate
expert-led, in situ robot teaching, to capture this sort of tacit social
intelligence.

A follow up publication by the same authors then comes under
category 2). Specifically, the authors provide more detail on their
focus group methodology, and how it reflects a mutual shaping
approach to social robot design, alongside a general guide in how
it might be applied to other domains (Winkle et al., 2019a). The
method combines elements of PD and UCD and utilises a
demonstration of robot capabilities to support mutual learning
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between the researchers and participants. To evidence how this
method supported mutual shaping in their work and why this was
beneficial, the authors identify specific project-related
considerations as well as new research directions that could
only be identified in conjunction with their domain expert
participants and also note that taking part in a focus group
significantly (positively) impacted on the acceptance of
participants of social robots.

Further, under category 2), Björling and Rose (2019) shared
PD methods that they used in the context of taking an overall
human-centred design approach to co-designing robots for
improved mental health with teens. They present three
method cases that cover novel and creative participatory
techniques such as research design, script-writing and
prototyping, and concluding with a set of PD principles for
guiding design work with vulnerable participants in a human-
centred domain. One of their methods revolved around inviting
teens to act as WoZ robot operators. Specifically, their setup had
one teen teleoperating a robot, whereas another teen recounted a
(pre-scripted) stressful experience. In the second experiment,
they utilised virtual reality (VR) such that one teen interacted,
in an immersive VR environment, with a robot avatar
teleoperated by a teen outside of that VR environment. From
this study, the authors gathered data about the way teens
collaborate and their perceptions of robot roles and
behaviours. To this end, they demonstrated the value in expert
(user) teleoperation of a proposed robot, not only to better
understand both the use case requirements and user needs but
also to generate exemplars of desirable autonomous robot
behaviour. Alves-Oliveira et al. (2017) also demonstrated a
similar use of puppeteering and role-play methods as part of a
co-design study with children.

In summary, the work to date has demonstrated how PD
methods can be used to study a proposed application domain in
an attempt to ensure that researchers thoroughly understand the
context of use and to elicit some expert knowledge for informing
robot design and automation. This goes some way to supporting a
mutual shaping and responsible robotics approach to social robot
development. However, there remains two key disconnects in
delivering truly end-to-end PD and mutual shaping in
development of an autonomous social robot. First, robot
automation is informed but not controlled or developed by
domain experts. Second, there is a disconnection between this
program definition and the real-world interaction requirements
and situational specificities that will likely be crucial to overall
robot success when deployed in real-world interaction.

2.2 Alternative Methods to Capture Domain
Expert Knowledge
One of the key assumptions of PD in the context of robotics
research is that the knowledge of the desired robot behaviour is
held by domain experts and needs to be translated into programs.
Typically, this translation is made by engineers, obtaining a
number of heuristics from the domain experts and
consequently automating the robot. Although widely applied
even in PD research, this method only partially delivers on the

promises of PD, because domains experts are used to inform
robot behaviours but still rely on external actors (the engineers) to
transform their intuition, knowledge, and expertise into actual
code. Furthermore, this process can lead to a number of
communication issues because members from different
communities have different ways of expressing needs and
desires. Nevertheless, there exist a number of alternative
solutions to capture domain expert knowledge that could
support a PD approach to robot automation.

2.2.1 End User Programming Tools
A first solution is to create tools to allow domain experts to create
robot behaviours themselves. The research on end user
development or end user programming explores tools to allow
domain experts or end users to create programs without requiring
coding knowledge. Typical applications are home automation,
application synchronisation (e.g., IFTTT or Microsoft Flow), or
video games development. In addition, end user programming
has seen large interest in robotics, for example, to create
autonomous robot behaviours for both industrial robots
(Paxton et al., 2017; Gao and Huang, 2019) and social robots
(Leonardi et al., 2019; Louie and Nejat, 2020). These authoring
tools are often developed by engineers and then provided to users
to create their own applications without relying on text-based
coding, for example, by using visual or block programming
(Huang and Cakmak, 2017), tangible interfaces (Porfirio et al.,
2021), or augmented reality (Cao et al., 2019).

However, whilst being more friendly for users, such methods
still suffer from two main drawbacks. First, the interface is often
developed by engineers without necessarily following principles
of PD. Second, these methods often see the programming
process as a discrete step leading to a static autonomous
behaviour with limited opportunity to update the robot
behaviour or little focus on testing and evaluating the created
behaviour in real interactions. More precisely, users of these
tools might not be the actual target of the application interaction
and would program robots outside of the real context of use,
forcing the aspiring developers to rely on their internal
simulation of how the interaction should happen. For
example, a shop owner could use an authoring tool to create
a welcoming behaviour for a social robot and test it on
themselves whilst developing the behaviour and then
deploying it on real clients with limited safeguards. In such
process, the developers have to use their best guess to figure out
how people might interact with the robot and often have issues
to infuse the robot with tacit knowledge, such as timing for
actions or proxemics. This disconnect can lead to suboptimal
robot behaviour as the robot will face edge cases in the real
world that the designer might not have anticipated.

2.2.2 Learning From Real-World Interaction(s)
Amethod to address this gap between an offline design phase and
the real world is to mimic the expert whilst they perform the
interaction. Using machine learning, systems can learn from the
experts how robots should behave. For example, Liu et al. (2016)
asked participants to role play an interaction between a
shopkeeper and a client and recorded data about this
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interaction (e.g., location or speech of participants). From these
recordings, Liu et al. learned a model of the shopkeeper,
transferred it to the robot, and evaluated its HRIs. Similarly,
Porfirio et al. (2019) recorded interaction traces between human
actors and formalised them into finite state machine to create a
robot behaviour. Whilst relying on simulated interactions, these
methods provide more opportunities to developers to explore
situations outside of their initial imagination.

One assumption of these methods is that robots should
replicate human behaviour. Consequently, such methods allow
the capture of implicit behaviours such as the timing and
idiosyncrasies of human interactions. However, real-world
interactions with robots might follow social norms different
from ones between humans only. Consequently, learning
directly from human-human interaction also presents
limitations.

WoZ is an interaction paradigm widely used in robotics
(Riek, 2012), whereby a robot is controlled by an expert deciding
on what actions the robot should execute and when. The main
advantage of this paradigm is to ensure that the robot behaviour
is, at all times, appropriate to the current interaction. For this
reason,WoZ has been extensively used in robot-assisted therapy
and exploratory studies to explore how humans react to robots.
Recent research has explored how this interaction can be used to
collect data from real HRI and learn an appropriate robot
behaviour. Knox et al. (2014) proposed the “Learning from
the Wizard” paradigm, whereby a robot would first be
controlled in a WoZ experiment used to acquire the
demonstrations and then machine learning would be applied
offline to define a policy. Sequeira et al. (2016) extended and
applied this Learning from Demonstration (LfD), with an
emphasis on the concept of “restricted-perception WoZ”, in
which the wizard only has access to the same input space as the
learning algorithm, thus reducing the problem of
correspondence between the state and action spaces used by
the wizard and the ones available to the robot controller. Both of
these works could support a PD approach to robot automation,
because they could be used to generate an autonomous robot
action policy based on data from (non-roboticist) domain
expert WoZ interactions in real-world environments.
Nevertheless, the typical WoZ puppeteering setup results in
an absence of interaction between the design/development team
and the robot, which prevents designers from having a realistic
mental model of the robot behaviour and does not allow for any
mutual shaping between the wizard, the robot, and the
contextual environment. Traditionally, LfD separates data
collecting and learning into distinct steps, limiting the
opportunity to know during the teleoperated data collection
process at what point “enough” training data has actually been
collected, because the system can only be evaluated once the
learning process is complete. Similarly, when using end user
programming methods, there is little opportunity to know how
the system would actually behave when deployed in the real
world. This lack of knowledge about the actual robot behaviour
implies that robots have to be deployed to interact in the real
world with limited guaranties or safeguards ensuring their
behaviours are actually efficient in the desired interaction.

2.2.3 Interactive Machine Learning
Interactive Machine Learning (IML) refers to a system learning
online whilst it is being used (Fails and Olsen, 2003; Amershi et al.,
2014). The premise of IML is to empower end users whilst reducing
the iteration time between subsequent improvements of a learning
system.Using IML to create robot behaviours through an interaction
between a designer and an autonomous agent allows for full
utilisation of the teaching skills of the expert. It has been shown
that humans are skilled teachers who can react to the current
performance of a learner and provide information specifically
relevant to them (Bloom, 1984). Similarly, the previous research
showed that this effect also exists, to a certain extent, when teaching
robots. Using Socially Guided Machine Learning (Thomaz and
Breazeal, 2008), a human teacher adapts their teaching strategy to
robot behaviour and thus helps it to learn better. If able to observe
(and correct) the autonomous behaviour of the robot, seeing the
result of the robot behaviour as it progresses, then the expert can
create a model of the knowledge, capabilities, and limitations of the
robot. This understanding of the robot reduces the risk of over-
trusting (both during training and/or autonomous operation) and
introduces the potential for expert evaluation to become part of the
verification and validation process.

3 A BLUEPRINT FOR END-TO-END
PARTICIPATORY DESIGN

We identify the following requirements to extend PD into an end-
to-end methodology that include the co-design of the automated
behaviour of the robot. Such a method needs to allow for the
following:

1) systematic observation and study of the use case environment
in which the robot is to ultimately be deployed;

2) inclusion and empowerment of relevant stakeholders (users
and domain experts) from the initial design phases, such that
the design and application of the robot/interaction scenario is
co-produced by researchers and stakeholders together;

3) (safe and responsible) evaluation of prototypes in the real-
world environment(s) into which the robot is eventually
intended to be deployed;

4) inclusion of relevant stakeholders in creation of autonomous
robot behaviours, which should utilise interaction data
collected in the real world;

5) two-way interaction between the domain expert “teacher” (e.g.,
a therapist) or designer and robot “learner” such that the
teacher can better understand the state of the robot/to what
extent learning “progress” is being made and hence adapt their
teaching appropriately/flag any significant design issues; and

6) inclusion of relevant stakeholders (e.g., parents of a child in
therapy) in (safe) evaluation of autonomous robot behaviours,
as they perform in the real world.

Requirements 1 and 2 can be addressed by the typical PD
methods discussed in Section 2.1.1, and requirements 3 and 6 can
be addressed by carefully designed “in-the-wild” studies. In our
work, we therefore look to specifically tackle requirements 4 and 5
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by demonstrating how robot automation can be approached as an
in situ, triadic interaction between domain expert teacher(s),
robot learner, and target end user(s). With LEADOR, we
showcase how this approach can be integrated into one
continuous, end-to-end PD process that satisfies all of the
above requirements.

Table 1 summarises the key outcomes of and some potential
tools for each stage of LEADOR. Figure 1 shows how these
steps compare to typical PD, as well as who (domain experts
and/or engineers) are involved at each stage. Each stage is
detailed in full below. Table 2 shows how these steps have been
derived from/were represented in our two foundational
studies.

3.1 Step 1: Problem Definition
As noted in Figure 1, Step 1 of our method aligns to best practice
use of PD as previously demonstrated in social robotics. The
purpose of this stage is to generate a thorough understanding of
the use context in which the robot is to be deployed and to invite

stakeholders to influence and shape the proposed application. It
would likely include observations, focus groups, and/or
interviews with a variety of stakeholders.

The focus group methodology presented in Winkle et al.
(2019a) is one appropriate method that could be used for
engaging with stakeholders at this stage because it facilitates
expert establishment of non-roboticists, broad discussion of
the application context (without presentation of a pre-defined
research agenda), participant reflection on the context of use “as
is”, and researcher-led sharing of technical expertise, followed by
detailed consideration and refinement of the research agenda
based on researchers and participants now being equal co-
designers.

3.2 Step 2: Interaction Design
Similarly to Step 1, Step 2 of our method also aligns to best
practice use of PD as previously demonstrated in social robotics.
The purpose of this stage is to define and refine the interaction
scenario(s) that the proposed robot will engage in and hence the

TABLE 1 | Key outcomes of and appropriate tools for each stage of LEADOR.

Outcomes Tools

1. Problem Definition Domain understanding Ethnographic studies, focus groups, brainstorming
2. Interaction Design Interaction scenario, robot selection/design Workshop, role-playing, low-tech prototyping
3. System Specification State-action space for the robot, teaching tools Brainstorming, behaviour prototyping
4. Technical

Implementation
Robot system (sensors and actions), teaching system (authoring tools or learning
algorithm)

Software development, laboratory studies, testing
workshops

5. Real-World Deployment Delivering on the application target, autonomous robot In situ teaching by expert

TABLE 2 | Overview of activities undertaken in the two case studies as exemplars for applying our generalised methodology. See Table 4 for a pictorial “storyboard” of this
process and the co-design activities undertaken for development of the robot fitness coach.

School-based
educational robot

Gym-based
robot fitness coach

Step 1 Decision by researchers based on experience to focus on learning food chain
around an educational game for children of age 8–10

Researchers identified the NHS C25K exercise programme based on research
goals (longitudinal, real-world HRI) but worked with a fitness instructor to
observe typical environment and refine problem definition

Step 2 Decision by researchers to focus on robot-user interaction, with expert only
providing robot commands and oversight of the robot behavior to ensure that
each action is validated by them. Goal is to evaluate the creation of an
autonomous robot

Decision in conjunction with the fitness instructor that the robot would lead
exercise sessions (in which he would minimise interaction with exercisers) but
that he would provide additional support (e.g., health advice, and stretching)
outside of these. Goal is to create and demonstrate an effective, real-world
SAR-based intervention via PD (as responsible robotics)

Step 3 Using SPARC (Senft et al., 2015) as interaction framework, robot state, and
action spaces defined by researchers. Teaching through a GUI on a tablet

Also using SPARC (Senft et al., 2015) the robot state and action spaces as well
as the teaching GUI were all co-designed with the fitness instructor

Step 4 Implementation of all the actions and learning algorithm. Prototype evaluation in
laboratory. Initial pilot study in schools for evaluating the game with the target
population and used as teacher training

Implementation of all the actions and learning algorithm. Fitness instructor
provided all dialogues for robot actions. Prototype evaluation was undertaken
in the laboratory, and in the final study, gym environment, final robot
placement, and system installation details were also decided in conjunction
with the fitness instructor

Step 5 Deployment in two local schools with more than 100 children over multiple
months. Between-subject evaluation with three conditions: a passive robot, a
supervised robot (during the teaching interaction) and an autonomous
unsupervised robot

Deployed in to the university gym for teaching and autonomous evaluation
through delivery of the C25K programme (27 sessions over 9–12 weeks) to 10
participants. Ran a total of 232 exercise sessions of which 151 were used for
teaching the IML system, 32 were used for evaluating the IML system when
allowed to run autonomously and 49 were used to test a heuristic-based
“control” condition (all testing was within-subject)
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functionalities/capabilities that it might require. The robot
platform should also be chosen at this stage. For simplicity,
here, we have equated robot platform choice with robot
platform design. Much current social robotics research utilises
off-the-shelf robot platforms (e.g., Pepper and NAO from
Softbank Robotics), but others focus on the design of new
and/or application-specific platforms. Either can be
appropriate for LEADOR as long as the choice/design is
participatory with stakeholders (for a good example of PD in
design of a novel robot, see the work of Alves-Oliveira et al. (2017)
on designing the YOLO robot).

Focusing then on more specific application of the robot and
the interaction(s) that it should engage in, the methods for PD
might include focus groups similarly as those in Step 1 but could
also include more novel and/or creative PD activities such as
script writing (Björling and Rose, 2019), role playing (including
also stakeholder teleoperation of the robot) (Björling and Rose,
2019; Alves-Oliveira et al., 2017), and accessible, “low-tech”
prototyping (Valencia et al., 2021).

Note that there is an important interaction design decision to
be made here regarding what final deployment of the robot “looks
like” in terms of long-term oversight by/presence of domain
expert(s) (those involved in its co-design or otherwise) and the
role those experts play with regard to the target user. This can be
reflected in the teaching interaction setup, specifically with regard
to the amount of interaction between the domain expert(s) and
target users (see Figure 2). For example, it was decided early on in
the design of fitness coach robot byWinkle et al. (2020) that there
was no intention to ever fully remove the expert presence from
the interaction environment. As an alternative, in the work of
Senft et al. (2019), the intention from the onset was to create a
fully autonomous and independent robot that interacted alone
with the target users. Such decisions regarding the role of domain
experts would ultimately emerge (explicitly or implicitly) in
conjunction with deciding the functionalities of the robot and
the further system specification undertaken in Step 3. However,
this long-term desired role of the domain expert(s) should be
made clear, explicitly, at this stage, such that it can be reflected in
the approach to program definition.

3.3 Step 3: System Specification
As shown in Figure 1, it is at this stage that our method begins to
diverge from the typical PD process, although we continue to
utilise PD methods. This step is concerned with co-design of
system specifities required to 1) deliver the interaction design
resulting from Step 2 and 2) facilitate expert-led teaching phase
on real-world deployment that is fundamental to our method (see
Step 5). In summary, the aim of this step is to co-design the action
space and input space of the robot and the tool(s) that are
required to facilitate the bi-directional teaching interaction
between the domain expert and the robot. There is also some
similarity here to the design process for a WoZ or teleoperated
system, which would also require design of the action space of the
robot and an interface for (non-roboticist) teleoperation of the
robot. The key difference here is the additional requirement to
specify the input space of the robot and the choice of teaching
tools for the move towards autonomy during Step 5.

3.4 Step 4: Technical Implementation
The main development effort for our method lies in producing
the full architecture and tools to allow domain experts to specify
autonomous robot behaviour. We note here that the technical
implementation required is likely to be greater than that required
for a typical WoZ setup and might not be simpler than heuristics-
based robot controller.

Four main components need to be developed during this
phase:

1) Set of high-level actions for the robot;
2) Set of sensory inputs that will be used to drive the future robot

behaviour;
3) A representation of the program which will encode

autonomous behaviour; and
4) Expert tools to specify the mapping between the sensory state

and the actions.

With our method, the program representation could take the
shape of a machine learning algorithm taking inputs from the
expert via the interface and learning a mapping between the
current state of the world when the action was selected and the
action itself (the approach taken in our foundational works).
Alternatively, the representation could allow the expert to encode
a program explicitly, for example, through state machines or
trigger-action programming, whilst allowing the expert to update
the program in real time and to control the robot actions to
ensure that they are constantly appropriate.

A typical automation system would replace the expert tools
with an actual definition of the behaviour making use of the
program representation to map sensors to actions and define fully
an autonomous behaviour. On the other end of the spectrum, a
WoZ setup might not need a representation of the program but
instead would rely on the interface to display relevant sensory
inputs to the wizard (if any) and allow them to select what action
to do.

3.5 Step 5: Real-World Deployment and
Teaching Phase
Undertaking robot automation (and evaluation) in-the-wild is a
key part of LEADOR. To satisfy requirements 5 and 6 as laid out
in the introduction, support a mutual shaping approach to robot
design, and ensure appropriate robot behaviour, the teaching
phase should adhere to the following:

1) It must be undertaken in situ, i.e., in the context of the final
context of use, and with the real target population.

2) It must utilise a domain expert teaching the robot as it delivers
on the application interaction.

3) The expert-robot interaction should be bi-directional, i.e., the
expert should be able to define and/or refine the autonomous
behaviour policy of the robot, whereas the robot informs the
expert about its status.

Requirement 1 ensures that the approach is ecologically valid
and that the information used by the expert for the automation
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are suited to the real challenges and idiosyncrasies of the desired
context of use.

Requirement 2 ensures that people with domain knowledge
can encode that knowledge in the robot. Furthermore, the
presence of the expert should be used to ensure that the robot
is expressing an appropriate behaviour at all times. As the
teaching happens in the real world, with the real users, there
is limited space for trial and error. The expert can be used as a
safeguard to ensure appropriate robot behaviour even in the
initial phases of the teaching.

Requirement 3 ensures that the expert can create a mental
model of the robot behaviour. This point is a key difference to
non-interactive teaching methods such as the ones based on
offline learning (e.g., Sequeira et al., 2016). With the feedback of
the robot on its policy (through suggestions or visual behaviour
representation), the expert can assess the (evolving) capabilities of
the robot and decide what inputs would further improve the
policy of the robot.

Finally, during this real-world deployment, if the robot is
ultimately expected to interact autonomously/unsupervised, then
the expert can use their mental model of the robot behaviour to
decide when enough teaching has been done and when the robot
is ready to interact autonomously. By relying on online teaching,
this decision does not have to be final because the expert could
seamlessly step back into the teacher position when the robot
interacts with sensitive populations or if the robot requires
additional refinement of its policy.

4 FOUNDATIONAL STUDIES

The LEADOR method is primarily derived from two
foundational studies made by the authors, which were
themselves informed by the previous experiences of authors
working with domain experts in the design of social robots.
The first one, presented in Senft et al. (2019), explores a study
with 75 children on how the teaching interaction could be used to
create an autonomous robot behaviour. As shown in Table 2, this
study did not employ PD, the authors (researchers in HRI) did
the early steps by themselves based on their previous related
experiences. The second one, presented in Winkle et al. (2020),
built on the first study by utilising the same teaching approach to
robot automation but incorporating that into an end-to-end PD
process to support mutual shaping. The end goal of each study
was also slightly different, as Senft et al. (2019) aimed to produce a
robot that would ultimately interact with users with little to no
further expert involvement. Winkle et al. (2020) also aimed to
produce an autonomous robot that would primarily interact 1:1
with users, but with no desire to remove the expert, who would
have their own interactions with the users, and/or provide
additional teaching to the robot should they deem it necessary.

4.1 Study 1: Evaluating the Teaching
Interaction
The goal of this first study was to evaluate if the teaching
interaction could be used to create autonomous social

behaviours (Senft et al., 2019). This study was designed by the
authors, who had experience designing robots for the application
domain but did not involve external stakeholders such as
teachers.

During the problem definition phase, researchers decided to
contextualize the work in robot tutoring for children and explore
questions such as how robots can provide appropriate comments
to children (both in term of context and time) to stimulate
learning. This work was based on experience and knowledge
from the researchers about educational robotics.

During the interaction design phase, researchers decided to
focus the application interaction around an educational game
where children could move animals on a screen and understand
food nets. This part included an initial prototype of the game. As
the goal was to explore how autonomous behaviours could be
created, the teacher was not involved in the game activity, and
only the robot was interacting with the child. The robot used was
a NAO robot from Softbank Robotics.

In the system specification, the state and action spaces of the
interaction were selected. Examples of state include game-related
component (e.g., distance between animal) and social dynamics
elements (e.g., timing since last action of each agents). The actions
of the robot were divided into five categories: encouragements,
congratulations, hints, drawing attention, and reminding rules.
The teacher-robot interaction used SPARC (Senft et al., 2015).

In the technical implementation phase, the learning algorithm
was developed, tested, and interfaced with the other elements of
the system. The teaching interface was also created in such a way
as to allow the teacher to select actions for the robot to execute
and receive suggestions from the robot. At this stage, initial
prototypes were tested in laboratory studies and schools.

In the real-world deployment, authors evaluated the system in
two different schools with 75 children. The study adopted a
between-participant design and explored three conditions: a
passive robot, a supervised robot (referring to the teaching
interaction), and an autonomous robot (where the teacher was
removed from the interaction and the learning algorithm
disabled).

Results from the study showed that the teaching interaction
allowed the teacher to provide demonstrations to the robot to
support learning in the real world. The teacher used the teaching
interaction to create a mental model of the robot behaviour.
When deployed to interact autonomously, the robot enacted a
policy presenting similarities with the one used by the teacher in
the teaching phase: the frequency of actions was similar and the
robot captured relation and timing between specific events and
actions (e.g., a congratulation action should normally be executed
around 2 s after an eating event from the actions of a child).
Overall, this study demonstrated that human can teach robot
social policy from in situ guidance.

4.2 Study 2: Teaching Interaction as
Participatory Design
The goal of this study was to use the teaching interaction
approach to facilitate creation of a fully expert-informed/
expert-in-the-loop autonomous socially assistive robot-based
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intervention for the real world. The fundamental activity to be
delivered by robot, the NHS C25K programme, was selected by
the researchers based on this research goal, but all study
implementation details were decided and designed in
conjunction with a domain expert (fitness instructor)
throughout. Given the end-to-end and constant expert
involvement for this study, there was seamless progression and
some overlap between the problem definition, interaction design,
and system specification phases, as we present them for
LEADOR. A number of co-design activities were undertaken
(over a total of six sessions totalling approximately 12.5 h), which
ultimately covered all of these key phases, sometimes in parallel,
allowing for iteration of the overall study design.

Problem definition was achieved by researchers working with
the fitness instructor to 1) understand how a programme like
C25K would be delivered by a (human) fitness instructor and 2)
explore the potential role a social robot might take in supporting
such an intervention. This involved the researchers visiting the
university gym and undertaking mock exercise sessions with the
instructor, and the instructor visiting the robotics laboratory to
see demonstrations of the proposed robot platform and a
presentation by the researchers on their previous works and
project goals. The robot used was a Pepper robot from
Softbank Robotics.

For the interaction design, the researchers and fitness
instructor agreed that exercise sessions would be led by the
robot and primarily represent robot-user interactions, with the
fitness instructor supervising from a distance and only interacting
to ensure safety (e.g., in the case of over exertion). As this study
also aimed to test (within-subject) the appropriateness of
resultant autonomous behaviours, it was decided to
purposefully leave the details of the role of the fitness
instructor somewhat ambiguous to exercising participants. The
instructor was not hidden away during the interaction, and it was
clear he was supervising the overall study, but exercisers were not
aware of the extent to which he was or was not engaging in
teaching interactions with the robot during sessions. As noted in
Section 3, deciding on what long-term deployment should “look
like” in terms of robot-user-expert interactions is a key design
requirement at this stage. For the robot fitness coach, we
imagined a “far future” scenario, where one of our robot
fitness coaches would be installed next to every treadmill on a
gym floor, supervised by one human fitness instructor. That
instructor would ensure the physical safety of exercisers and
still play a role in their motivation and engagement as human-
human interaction is known to do. This type of interaction with
one expert, multiple robots, and multiple target users is a
common goal in many assistive robot applications where some
tasks could be automated, but there is a desire to keep an expert
presence to, e.g., maintain important human-human interactions
and ensure user safety.

The system specification represented somewhat of a
“negotiation” between the researchers and the fitness
instructor, as he identified the kind of high level action and
inputs he felt the robot ought to have, and the researchers
identified how feasible that might be for technical
implementation. The state space consisted of static and

dynamic features that were designed to capture exerciser
engagement, task performance, and motivation/personality, all
identified by the fitness instructor as being relevant to his
decisions in undertaking fitness instruction himself and hence
teaching the robot how best to interact with a particular
participant. The action space was divided into two categories:
task actions and social supporting actions. The task actions were
fundamentally set by the C25K programme (i.e., when to run or
walk and for how long at a time). The social supporting actions
were then broken down into eight sub-categories covering time
reminders, social interaction, performance feedback, praise,
checking on the user, robot animation, and two proxemics-
related actions (leaning towards/away from the user).
Importantly, system specification for this study also included
co-designing the GUI that would facilitate the bi-directional
teaching interaction (also utilising SPARC, Senft et al., 2015)
between the robot and the fitness instructor with the fitness
instructor himself.

The technical implementation phase essentially mirrored
that of Study 1: the learning algorithm was developed, tested,
and interfaced with the other elements of the system. The
teaching interface was also finalised based on the co-design
activities described previously and similarly allowed the fitness
instructor to select actions for the robot and to respond to its
suggestions. Initial prototypes of both the robot and the GUI
were tested in the laboratory studies and the final gym
environment.

In the real-world deployment, researchers evaluated the
system in a university gym with 10 participants recruited to
undertake the 27-session C25K programme over a maximum of
12 weeks. The study adopted a within-subject design and
explored three conditions: a supervised robot (referring to the
teaching interaction), an autonomous robot (where the fitness
instructor was still in position but allowed all learner-suggested
actions to auto-execute), and a heuristic-based autonomous
robot; a “control” condition for comparing the “teaching
interaction as PD” approach to, representing a “next best”
alternative for generating expert-informed autonomous
behaviour.

Results from the study again demonstrated the feasibility of
SPARC and IML for generating autonomous socially assistive
robot behaviour suggested that the expert-robot teaching
interaction approach can have a positive impact on robot
acceptability (by the domain expert and targets users) and that
the teaching approach yields better autonomous behaviour that
expert informed heuristics as a “next best” alternative for expert-
informed autonomous behaviour creation.

4.3 Evidence of Mutual Shaping
Typical PD facilitates mutual shaping as it allows non-roboticist,
domain experts to shape research goals, design guidelines, and
evaluate robot prototypes, etc. Here, we reflect on observations of
mutual shaping effects in our foundational works, specifically
resulting from our teaching approach to robot automation.

During our first study, we observed evidences of mutual
shaping and the teacher creating a mental model of the robot.
For example, our teacher realised with experience that children
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tended have issues with some aspect of the game (i.e., what food a
dragonfly eats). Consequently, she changed her strategy to
provide additional examples and support for this aspect of the
game. Similarly, the teacher also found that the robot was not
initiating some actions often and consequently used these actions
more frequently towards the end of the teaching phase to ensure
that the robot would exhibit enough of these actions. This exactly
evidences the notion that human teachers can tailor their
teaching to the progress of a (robot) learner (Bloom, 1984;
Thomaz and Breazeal, 2008).

In the second study, we were able to demonstrate mutual
shaping in the way the fitness instructor used the robot differently
for different participants and/or at different stages of the C25K
programme. The longitudinal nature of this study, combined with
our approach in supplementing the diadic robot-user interactions
with expert-user interactions, meant that the fitness instructor got
to know exercise styles/needs of each user and could tailor the
behaviour of the robot accordingly. This resulted in the
autonomous robot similarly producing behaviour that varied
across participants. Similarly, as the programme progressed,
the fitness instructor could tailor the behaviour of the robot to
reflect the changing exercise demands (e.g., using fewer actions
when the periods of running were longer). The flexibility of our
approach was also demonstrated when, in response to this
increase in intensity, the fitness instructor requested that we
add a robot-led cool-down period to the end of each exercise
session. This was relatively simple to implement from a technical
perspective (an additional “walk” instruction at the end of each
session plan) but represented a new part of the session for which
there existed no previous training data. As we made this change
within the teaching phase (before the switch to autonomous
operation), the instructor was able to address this, such that
the robot was able to successfully and appropriately support this
new cool-down phase when running autonomously.

We also saw an interesting, emergent synergy in the way that
the fitness instructor utilised and worked alongside the robot
coach. Towards the end of the study, as exercise sessions
became more demanding, the fitness instructor took more
time at the end of each session to undertake stretching
exercises with each participant. This leads to small amounts
of overlap between each participant, at which point the fitness
instructor would start the next participant warming up with the
robot, whilst he finished stretching with the previous
participant. We find this to be compelling evidence of the
way domain experts will change their practice and/or the
way they utilise technological tools deployed into their
workplace, particularly when they can be confident in their
expectations of how that technology will perform, as is
particularly fostered by our approach.

4.4 Interactive Machine Learning for the
Teaching Interaction: Opportunities and
Limitations
As noted previously, both of our foundational studies utilised
IML via the SPARC paradigm to facilitate the teaching
interaction. From a technical perspective, our foundational

studies demonstrate the feasibility and relative effectiveness (in
terms of teaching time) of this approach. Fundamentally,
LEADOR is agnostic with regard to the specific computational
approach to facilitating the teaching interaction, but we find IML
to be a particularly compelling solution, in line with the overall
aims of the method, as it makes for an intuitive bi-directional
teaching interaction for the domain expert. Specifically, through
one single interface, they can see what the robot intends to do
(and potentially why) before that action is executed, improving
their understanding of the learning progress of the robot, and
instantiate teaching exemplars in real time, informed by that
understanding as well as the instantaneous requirements of the
application task.

However, here, we draw attention to one key limitation
regarding expert-robot interactions and assessment when
using IML. An important element of mutual shaping not
considered here is if/how/to what extent the suggestions
made by the learning robots may have influenced the domain
experts. For example, had the learning robots not been making
suggestions, such that the robot was entirely controlled/
teleoperated by the experts, would the action distribution and
timing of actions remained the same? Further, if the experts did
not have the ability to actively reject suggestions (indicating that
the learner was not producing appropriate robot behaviour),
then would they still have post hoc identified those actions as
being inappropriate?

This is particularly interesting given the high number of suggested
actions still being rejected at the end of the training phase, in both of
our foundational studies, immediately followed by seemingly
appropriate robot behaviour that was positively evaluated by the
experts themselves during autonomous operation. Success of our
approach inherently assumes that the domain expert/system
“teacher” would provide a “correct” and fairly consistent response;
i.e., that they 1) can correctly assess the quality of each action
suggested by the robot and make an informed about whether this
action should be executed and 2) are always able to ensure that
required robot actions are executed in a timely fashion.With SPARC,
these robot suggestions are themainmeans to help the expert create a
mental model of the robot behaviour. Consequently, whilst our
results demonstrate that the IML does fundamentally “work” for
automating robot behaviour and that our domain experts did
construct a mental model of the behaviour of the robots, there
remains an open question regarding how the robot could improve the
transparency of its behaviour to actively support mental model
creation for the teacher.

5 DISCUSSION

5.1 A Flexible and Effective Method for
Automating Social Robots
We suggest that LEADOR can be used to design robots for a variety
of interaction settings, in terms of the required autonomy and the
nature of expert-robot-user interactions long-term. We propose two
axes to describe the different types of interaction that might be
desired, based on the application (Figure 3). A first axis describes the
extent to which the domain expert(s) and user(s) are expected to
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interact long term, as a supplement to the robot-user interaction(s).
The second axis reflects the autonomy of the robot, from full
supervision (teleoperation) to full autonomy. These two axes are
independent as, for example, cases exist where the expert might be
continuously interacting with the target users, whilst continuing or
not to supervise and/or improve the autonomous behaviour of the
robot long term. In addition, these axes do not represent a discrete
space, as the teaching interaction element of LEADOR specifically
makes it possible to move along either axis at any point during real-
world deployment.

The robots developed in our foundational studies demonstrate
this flexibility and exist in slightly different spaces on these axes.
The educational robot by Senft et al. (2019) is an example of an
autonomous robot operating without the expert, and the teaching
interaction represented a typical Wizard-of-Oz setup, i.e., there
was no interaction. The robot fitness coach byWinkle et al. (2020)
is closer to an autonomous robot operating side by side with the
domain expert, and the teaching interaction utilised some
interactions between the expert and the users (although this
was undertaken outside of direct teleoperation).

The two foundational studies also demonstrate and evaluate
different, complimentary elements of the effectiveness of
LEADOR for designing social robots. More specifically, Senft
et al. (2019) fundamentally demonstrated the practical feasibility
of the teaching interaction for creating appropriate autonomous
behaviour. After a teaching phase with 25 children, the robot was
deployed autonomously and without expert supervision. It
displayed a similar policy to when it was supervised, for
example, capturing connections between some events and
actions with appropriate timing. However, it was not using a

PD approach from the onset, if LEADOR had been applied, then
teachers would have been involved more thoroughly in the game
design and the interface development.

WhilstWinkle et al. (2020) again demonstrated similarity between
supervised and autonomous behaviour, this work also specifically
demonstrated that the teaching interaction resulted in a better
autonomous robot than an expert-informed heuristic based
alternative. In addition, the work specifically explored to what
extent the overall LEADOR could support mutual shaping and
influence robot acceptability. To this end, as shown in Figure 4,
the significant co-design work undertaken by the domain expert
seems likely to have contributed to the high level of ownership he
seemed to feel towards the system, and the way in which he
conceptualised the robot, throughout, as an independent agentic
colleague he was training. When asked whether he perceived Pepper
as more of a tool or a colleague, the fitness instructor commented “It
was definitely more of a colleague than a tool [. . .] I like to think her
maybe early bugs or quirks definitely gave her a bit more of a
personality that maybe I held on to”. In addition, when evaluating
the performance of the robot, the instructor also reflected on the
difference between how the robot might behave in comparison to
himself: “Pepper’s suggestions might not be what *I* would say in that
exact same situation; however, it does not mean that what was said or
suggested was wrong”. This gives credibility to the suggestion that
LEADOR can be used to create robots that do not simply attempt to
imitate or replicate the domain expert directly but instead play a
distinct but complimentary role alongside that domain expert in
delivering an assistive intervention.

The feedback of the fitness instructor also suggested that the use
of the robot did not prevent him from still developing a working
relationship with the exercisers or from having a positive impact on
their motivation, as he “did care about their progress and their
health”. This appears to be true on the side of the exerciser, too,
because their evaluations suggested they perceived the fitness
instructor and the robot as playing distinct but complimentary
roles in their undertaking of and engagement with the prescribed
exercise programme: “Pepper was a good instructor and positively
motivated my runs. The role of Don [the fitness instructor] assisted
this in that having him there meant I could follow the robot’s
instructions safe in the knowledge that there was some support
there should anything go wrong!”

In summary, the fitness coach robot example therefore
demonstrates the end-to-end PD element of LEADOR, how
this seemingly contributes to robot acceptability by both
domain experts and target users, and can successfully facilitate
meaningful triadic (domain expert-robot-user) interactions in
human-centred domains where there might be a desire to reduce
domain expert workload without ever removing them from the
interaction completely. As such, Winkle et al. (2020) might be
seen as a first attempt to fully implement LEADOR ahead of
refinement for presentation as a generalisable methodology.

5.2 Supporting “Responsible by Design”
Robotics
The Foundation for Responsible Robotics (FRR) defines responsible
robotics as “the responsible design, development, use,

FIGURE 3 | Two-dimensional representation for visualising the different
types of long-term expert-robot-user interactions that a social robot might be
designed for, all of which LEADOR can facilitate. Note that this is not a discrete
space, and LEADOR specifically makes it possible to move along these
axes upon real-world deployment. People vector created by studiogstock -
www.freepik.com.
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implementation, and regulation of robotics in society”1. Concerning
research and development, the FRR demonstrates a significant
overlap with the goals of mutual shaping and, hence, our goals in
proposing LEADOR: “Responsible robotics starts before the robot
has been constructed. Ethical decision-making begins in the R&D
phase. This includes the kind of research practices that are employed,
ensuring that a diverse set of viewpoints are represented in the
development of the technology, using methods of development and
production that are sustainable, and taking into consideration the
impact that the technology will have on all stakeholders to mitigate
harm preemptively rather than after the fact.”

A significant number of attempts to more formally define the
ethical design and development have taken the form of published
principles of AI and robotics 2, many of which similarly identify the
importance of engaging (non-roboticist) users and domain experts in
robot design and evaluation processes. Arguably, one of the more
practical resources is the British standard BS8611-2016 Guide to the
Ethical Design and Application of Robots and Robotic Systems (BSI,
2016), which explicitly identifies ethical risks posed by robots,
mitigating strategies and suggested methods for verification and
validation. Notably, the standard suggests that a number of the
identified ethical hazards might be verified and validated through
expert guidance and user validation. Through LEADOR, such

guidance and validation is inherently “built-in” to the design and
development process. On the basis of this, we posit that, in supporting
a mutual shaping approach to robot development, and specifically by
“opening up” robot automation to non-roboticists (such that they can
contribute to robot design and automation but also better understand
robot capabilities and limitations), LEADOR also represents a
concrete implementation of a responsible robotics approach and
offers a practical way to create social robots with expert guidance
and user validation being inherent to the development process.
Consequently, whilst the program is evaluated by its designers,
these designers are the domain experts and thus the best persons
to assess whether the robot behaviour is successful or not.

5.3 Future Development
5.3.1 Inclusion of Application Targets in Design,
Automation, and Evaluation
A key limitation in both of our foundational works was the lack of
including target users during the design processes. This is partly
because both of these works are concerned in the development of
robots that would be assisting the domain expert practitioners (i.e., a
teaching assistant and a fitness instructor), and so, it made sense to
focus on working with such experts as co-designers of the system.
However, as discussed in the introduction, inclusion of all
stakeholders is a key aim of mutual shaping approaches to robot
design/development.

A desire to include target users in the design and evaluation of the
robot would raise the interesting question of how target users, who

FIGURE 4 | Pictorial representations of the participatory design activities and final teaching setup undertaken in application of our method to the robot fitness coach
by Winkle et al. (2020), as per Table 2 with reference to Steps 1–5 of our method as per Figure 1.

1https://responsiblerobotics.org/
2http://alanwinfield.blogspot.com/2019/04/an-updated-round-up-of-ethical.html
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are expecting to beneficiaries of the interaction, could design the
robot. In a number of situations where the robot is expected to
provide support or additional knowledge, including target users in the
co-design of the action state, for example, could be either complex or
negate the perception of the robot as an agent. This also overlaps with
discussions in contemporary PD works regarding the “legitimacy” of
different PD participants and specifically with the idea of participants
learning from the researchers as a pre-requisite for becoming such
(Ehn, 2008). In the first instance, however, as an obvious extension to
LEADOR, target users could certainly be included in preliminary
testing of those actions designed with a domain expert.

5.3.2 Alternative Teaching/Learning Interactions
The method presented in this paper focused on a teaching phase
where a domain expert teaches the robot how to interact with a target
user, with the target user unaware of the extent to which the expert is
involved in the robot behaviour. It abstracts away the type of learning
used as each situation has different constraints and requires variations
on the teaching interaction and learning algorithm. Consequently,
LEADOR might not be applicable directly to every situation. Future
work should explore the applicability of LEADOR with other
interaction designs not explored in our foundational studies and
explore combination with other methodologies to extend this
applicability whilst maintaining the key tenets regarding expert
involvement and in situ robot design, teaching, and testing.

Whilst situations such as therapy or education require the
expert and target user to be different persons, a large number of
other domains relax this constraint. For example, an elderly at
home could have a robot carer and teach the robot how to support
them in their daily activity. In this case, the target user is the
person knowing best their needs and as such would be the perfect
expert. LEADOR would be highly applicable to this situation as
the target users could be involved early in the design process, help
specify the state and action spaces and tools that they would need,
and finally teach in situ their robot how to interact whilst
benefiting from the interaction themselves.

Alternatively, building on the previously noted limitation
regarding target user inclusion, applications where the robot is to
playmore of a peer role, rather than an expert authoritymight be best
achieved by having one target user teach the robot how to interact
with another target user. This might be particularly appropriate for,
e.g., allowing teenagers to automate companion robots that support
themental health of teenagers (Björling and Rose, 2019). This raises a
number of interesting research questions regarding how the teaching
interaction might impact on the teacher’s (self-)understanding of the
application domain, representing another aspect of mutual shaping
that could be considered in more detail in future works.

An alternative, exciting teaching interaction is having the teaching
phase being open and transparent to the target user. Teaching robots
could be similar to how adult teach children to interact, by providing
explicit feedback guideline openly in the social environment. This
situation raises a number of open questions such as to what extent
having the expert providing feedback to the robot could impact the
ascribed agency of the robot or how could the target user be included
in telling the robot how best to help them. We have good evidence
from our work (Winkle et al., 2020) that such open interaction would
not “break the illusion” of the robot being an independent (credible)

social agent. Further, previous work suggests that robot users value
the human developers “behind” the robot, because it is their “genuine
intentions” that underlie the social and assistive behaviours of robot
(Winkle et al., 2019b). In sensitive application environments such as
the previously mentioned teenage mental health support, such
openness may indeed be crucial to robot effectiveness and
acceptability (Björling et al., 2020).

However, these alternative teacher/learner configurations
need to account for the existing practical constraints of using
reinforcement learning (RL) in human-robot interaction. Indeed,
in the context of HRI, RL faces two main issues: 1) the large
number of data points required to improve the policy (which have
to come from real-world interaction) and 2) the risks posed by the
RL “exploration” in the real HRI, where the RL algorithm might
suggest actions that are inappropriate in a given context.

In our two studies, the domain expert also acted as a “gate keeper”
for the suggestions of the robot and as a general safety net, able to
intervene if the autonomous robot behaviour was inappropriate.
Likewise, when applying LEADOR in other scenarios, adequate
safeguarding needs to be in place, until further research on RL
can provide adequate safety guarantees. Alternatively, the expert
could serve early on to help create an initial safe and effective
policy by providing a high amount of guidance. Then, in the
second phase, the expert could revert only to the “gate keeper”
role, working as a safeguard to ensure that the policy of the robot has a
minimum efficacy whilst letting the robot self-improve. Finally, when
the robot reaches a sufficient expertise in the interaction, it could be
left to fine-tune its policy with less supervision.

6 CONCLUSION

In this article, we present LEADOR, a method for end-to-end PD
of autonomous social robots that supports a mutual shaping
approach to social robotics. This general method is derived from
two independent foundational studies and represents a
culmination of the experiences of authors working with
domain experts in the development of autonomous socially
assistive robots. We describe the activities undertaken in those
studies to demonstrate how the method has been derived and
give tangible examples of how it might be applied. Together, we
suggest that these foundational studies also demonstrate both the
feasibility and the value of the approach, because both resulted in
acceptable, autonomous, and effective socially assistive robots
successfully utilised in complex real-world environments.

The first key contribution of LEADOR is to make robot
automation participatory, such that non-roboticist, domain experts
can contribute directly to generating autonomous robot behaviours.
This particularity compliments more typical use of PD, e.g.,
generating the initial robot design guidelines or evaluation robot
prototypes. We achieve this expert-led automation by utilising a
teaching interaction, whereby the domain expert(s) can directly define
and refine the autonomous behaviour of the robot through a teaching
interface. Both of our foundational studies utilised IML and the
SPARC paradigm (Senft et al., 2015), which we suggest is particularly
well suited to the overall method goals; therefore, we particularly
reflect on this approach and its benefits, challenges, and limitations.
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However, whilst we refer to this as a teaching interaction, because the
domain expert is “teaching” the robot how to behave, our method is
agnostic as to the specific technical approach taken (e.g., machine
learning and authoring) to facilitate it.

The second key contribution of our LEADOR is to facilitate a
mutual shaping approach throughout robot development. This is
achieved, first, by the increased domain expert participation in robot
automation as described above. In addition, however, our
integration of the teaching interaction into real-world robot
deployment means that this automation of robot behaviour can
actually be informed by and reflect the complex and nuanced
realities of the real-world context, capturing the tacit and
intuitive responses of the expert to real-world social dynamics.
Given that teaching can be re-convened at any time, themethod also
facilitates the updating of robot behaviours in response to these
evolving dynamics or new emerging dynamics, i.e., observation of
mutual shaping effects. More generally, the in situ robot deployment
and expert teaching role maximise the opportunity to identify and
understand suchmutual shaping effects to better evaluate the overall
impact and efficacy of the robot for the proposed application.

In facilitating end-to-end PD and mutual shaping, we also
suggest that our method inherently supports responsible robotics,
by design. Specifically, it allows for a diverse set of viewpoints to
be represented in the development of the technology and for
preemptive consideration of the impact that technology will have
on stakeholders. Finally, on a practical level, we also suggest our
method can better facilitate multi-disciplinary working because it
systematically combines PD and technical development such that
non-roboticist researchers and stakeholders are no longer
excluded from any stage of the development process.

In summary, we suggest that LEADOR is an all-around effective
approach for creating socially intelligent robots, as practical as it is
responsible in facilitating the creation of expert-informed, intuitive
social behaviours. We identify a number of areas for potential future
development, which we hope will be of interest to other roboticists in
refining the method further and working further towards
democratisation of robot design and development.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the University of Plymouth and the University of the
West of England Research Ethics Committees as appropriate.
Written informed consent to participate in these studies were
provided by the legal guardian/next of kin of the participants.
Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

KWand ES led foundational studies 1 and 2 fromwhich this work
is derived, both of which were (independently) conducted in close
collaboration with SL. KW and ES led on derivation of the
generalisable method based on their shared experiences, with
all authors contributing to reflections on the foundational studies,
resultant implications for the generalisable methodology and
producing the final manuscript.

FUNDING

This work was partially supported by the EPSRC via the Centre
for Doctoral Training in Future Autonomous and Robotic
Systems (FARSCOPE) at the Bristol Robotics Laboratory,
University of the West of England and University of Bristol
(grant number EP/L015293/1), partially funded by the EU FP7
DREAM project (grant no. 611391) and partially funded by the
KTH Digital Futures Research Center.

ACKNOWLEDGMENTS

We wish to acknowledge our PhD supervisors, Paul Bremner,
Praminda Caleb-Solly, Ute Leonards, Ailie Turton, Tony
Belpaeme, and Paul Baxter with whom we collaborated on the
foundational studies and previous experiences that informed this
work. In addition, we wish to acknowledge the two domain
experts, Madeleine Bartlett and Donald Knight, who took part
in our foundational works whose reflections contributed to our
refinement of the method.

REFERENCES

Alves-Oliveira, P., Arriaga, P., Paiva, A., and Hoffman, G. (2017). “YOLO, a Robot
for Creativity,” in Proceedings of the 2017 Conference on Interaction Design
and Children (IDC ’17), New York, NY, United States (New York, NY, USA:
Association for Computing Machinery), 423–429. doi:10.1145/
3078072.3084304

Amershi, S., Cakmak, M., Knox,W. B., and Kulesza, T. (2014). Power to the People:
The Role of Humans in Interactive Machine Learning. AIMag 35, 105–120.
doi:10.1609/aimag.v35i4.2513

Arkin, R. C., Fujita, M., Takagi, T., andHasegawa, R. (2001). “Ethological Modeling
and Architecture for an Entertainment Robot,” in Proceedings 2001 ICRA.

IEEE International Conference on Robotics and Automation (Cat.
No.01CH37164), Seoul, Korea, May 2001, 453–458. doi:10.1109/
ROBOT.2001.932592

Azenkot, S., Feng, C., and Cakmak, M. (2016). “Enabling Building Service
Robots to Guide Blind People a Participatory Design Approach,” in 2016
11th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), Christchurch, New Zealand, March 2016, 3–10. doi:10.1109/
hri.2016.7451727

Beer, J. M., Smarr, C.-A., Chen, T. L., Prakash, A., Mitzner, T. L., Kemp, C. C., and
Rogers, W. A. (2012). “The Domesticated Robot,” in HRI ’12: Proceedings of the
Seventh Annual ACM/IEEE International Conference on Human-Robot
Interaction, Boston, MA, United States, March 2012 (New York, NY, USA:
ACM), 335–342. doi:10.1145/2157689.2157806

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 70411916

Winkle et al. Participatory Design of Autonomous Social Robots

87

https://doi.org/10.1145/3078072.3084304
https://doi.org/10.1145/3078072.3084304
https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.1109/ROBOT.2001.932592
https://doi.org/10.1109/ROBOT.2001.932592
https://doi.org/10.1109/hri.2016.7451727
https://doi.org/10.1109/hri.2016.7451727
https://doi.org/10.1145/2157689.2157806
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Björling, E. A., Thomas, K., Rose, E. J., and Cakmak, M. (2020). Exploring Teens as
Robot Operators, Users and Witnesses in the Wild. Front. Robot. AI 7.
doi:10.3389/frobt.2020.00005

Björling, E., and Rose, E. (2019). Participatory Research Principles in Human-
Centered Design: Engaging Teens in the Co-design of a Social Robot. Mti 3, 8.
doi:10.3390/mti3010008

Bloom, B. S. (1984). The 2 Sigma Problem: The Search for Methods of Group
Instruction as Effective as One-To-One Tutoring. Educ. Res. 13, 4–16.
doi:10.3102/0013189x013006004

Bratteteig, T., and Verne, G. (2018). “Does AI Make PD Obsolete? Exploring
Challenges from Artificial Intelligence to Participatory Design,” in Proceedings
of the 15th Participatory Design Conference: Short Papers, Situated Actions,
Workshops and Tutorial-Volume 2, Genk, Belgium, August 2018, 1–5.

BSI (2016). [Dataset]. BS 8611 - Robots and Robotic Devices: Guide to the Ethical
Design and Application of Robots and Robotic Systems (No. BS 8611:2016). BSI
Standards Publication.

Cao, Y., Wang, T., Qian, X., Rao, P. S., Wadhawan, M., Huo, K., et al. (2019).
“Ghostar: A Time-Space Editor for Embodied Authoring of Human-Robot
Collaborative Task with Augmented Reality,” in Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology, New
Orleans, Louisiana, United States, October 2019, 521–534. doi:10.1145/
3332165.3347902

Chang, W.-L., and Šabanović, S. (2015). “Interaction Expands Function,” in HRI
’15: Proceedings of the Tenth Annual ACM/IEEE International Conference on
Human-Robot Interaction, Portland, Oregon, United States, March 2015 (New
York, NY, USA: ACM), 343–350. doi:10.1145/2696454.2696472

de Graaf, M. M. A., Allouch, S. B., and Klamer, T. (2015). Sharing a Life with
Harvey: Exploring the Acceptance of and Relationship-Building with a Social
Robot. Comput. Hum. Behav. 43, 1–14. doi:10.1016/j.chb.2014.10.030

Ehn, P. (2008). “Participation in Design Things,” in Proceedings of the Tenth
Participatory Design Conference (PDC), Bloomington, Indiana, United States,
October 2008 (Bloomington, Indiana, USA: ACM Digital Library), 92–101.

Fails, J. A., and Olsen, D. R., Jr (2003). “Interactive Machine Learning,” in
Proceedings of the 8th International Conference on Intelligent User
Interfaces, Miami, Florida, United States, January 2003, 39–45. doi:10.1145/
604045.604056

Fleron, B., Rasmussen, R., Simonsen, J., and Hertzum, M. (2012). “User
Participation in Implementation,” in Proceedings of the 12th Participatory
Design Conference: Exploratory Papers, Workshop Descriptions, Industry
Cases-Volume 2, Roskilde, Denmark, August 2012, 61–64. doi:10.1145/
2348144.2348164

Forlizzi, J. (2007). “How Robotic Products Become Social Products: An Ethnographic
Study of Cleaning in the home,” in 2nd ACM/IEEE International Conference on
Human-Robot Interaction (HRI), Arlington, Virginia, United States, March 2007,
129–136.

Gao, Y., and Huang, C.-M. (2019). “Pati: a Projection-Based Augmented Table-
Top Interface for Robot Programming,” in Proceedings of the 24th
International Conference on Intelligent User Interfaces, Marina del Ray,
California, United States, March 2019, 345–355.

Huang, J., and Cakmak, M. (2017). “Code3: A System for End-To-End Programming of
mobile Manipulator Robots for Novices and Experts,” in 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), Vienna, Austria,
March 2017 (IEEE), 453–462.

Jenkins, S., and Draper, H. (2015). Care, Monitoring, and Companionship: Views
on Care Robots from Older People and Their Carers. Int. J. Soc. Robotics 7,
673–683. doi:10.1007/s12369-015-0322-y

Knox, W. B., Spaulding, S., and Breazeal, C. (2014). “Learning Social Interaction
from the Wizard: A Proposal,” in Workshops at the Twenty-Eighth AAAI
Conference on Artificial Intelligence, Québec City, Québec, Canada, July 2014.

Lee, H. R., Šabanović, S., Chang, W.-L., Nagata, S., Piatt, J., Bennett, C., and Hakken, D.
(2017). “Steps toward Participatory Design of Social Robots,” in HRI ’17:Proceedings
of the 2017 ACM/IEEE International Conference on Human-Robot Interaction,
Vienna, Austria, March 2017 (New York, NY, USA: ACM), 244–253. doi:10.1145/
2909824.3020237

Lemaignan, S., Warnier, M., Sisbot, E. A., Clodic, A., and Alami, R. (2017). Artificial
Cognition for Social Human-Robot Interaction: An Implementation. Artif.
Intelligence 247, 45–69. doi:10.1016/j.artint.2016.07.002

Leonardi, N., Manca, M., Paternò, F., and Santoro, C. (2019). “Trigger-action
Programming for Personalising Humanoid Robot Behaviour,” in Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,
Glasgow, Scotland, United Kingdom, May 2019, 1–13. doi:10.1145/
3290605.3300675

Liu, P., Glas, D. F., Kanda, T., and Ishiguro, H. (2016). Data-Driven HRI: Learning
Social Behaviors by Example from Human-Human Interaction. IEEE Trans.
Robot. 32, 988–1008. doi:10.1109/tro.2016.2588880

Louie, W.-Y. G., Li, J., Vaquero, T., and Nejat, G. (2014). “A Focus Group Study on the
Design Considerations and Impressions of a Socially Assistive Robot for Long-Term
Care,” in The 23rd IEEE International SymposiumonRobot andHuman Interactive
Communication, Edinburgh, Scotland, United Kingdom, August 2014, 237–242.
doi:10.1109/ROMAN.2014.6926259

Louie, W.-Y. G., and Nejat, G. (2020). A Social Robot Learning to Facilitate an
Assistive Group-Based Activity from Non-expert Caregivers. Int. J. Soc.
Robotics 12, 1–18. doi:10.1007/s12369-020-00621-4

Paxton, C., Hundt, A., Jonathan, F., Guerin, K., and Hager, G. D. (2017). “Costar:
Instructing Collaborative Robots with Behavior Trees and Vision,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
Singapore, June 2017 (IEEE), 564–571. doi:10.1109/icra.2017.7989070

Porfirio, D., Fisher, E., Sauppé, A., Albarghouthi, A., and Mutlu, B. (2019).
“Bodystorming Human-Robot Interactions,” in Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology, New
Orleans, Louisiana, United States, October 2019, 479–491. doi:10.1145/
3332165.3347957

Porfirio, D., Stegner, L., Cakmak, M., Sauppé, A., Albarghouthi, A., and Mutlu, B.
(2021). “Figaro: A Tabletop Authoring Environment for Human-Robot
Interaction,” in Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, May 2021. doi:10.1145/3411764.3446864

Riek, L. (2012). Wizard of Oz Studies in Hri: a Systematic Review and New
Reporting Guidelines. Jhri 1, 119–136. doi:10.5898/jhri.1.1.riek

Ros, R., Nalin, M., Wood, R., Baxter, P., Looije, R., Demiris, Y., et al. (2011). “Child-
robot Interaction in theWild: Advice to the Aspiring Experimenter,” in Proceedings
of the 13th International Conference on Multimodal Interfaces, Alicante, Spain,
November 2011, 335–342.

Šabanović, S. (2010). Robots in Society, Society in Robots. Int. J. Soc. Robotics 2,
439–450. doi:10.1007/s12369-010-0066-7

Senft, E., Lemaignan, S., Baxter, P. E., Bartlett, M., and Belpaeme, T. (2019).
Teaching Robots Social Autonomy from In SituHuman Guidance. Sci. Robot 4,
eaat1186. doi:10.1126/scirobotics.aat1186

Senft, E., Baxter, P., Kennedy, J., and Belpaeme, T. (2015). “Sparc: Supervised
Progressively Autonomous Robot Competencies,” in International
Conference on Social Robotics, Paris, France, October 2015 (Springer),
603–612. doi:10.1007/978-3-319-25554-5_60

Sequeira, P., Alves-Oliveira, P., Ribeiro, T., Di Tullio, E., Petisca, S., Melo, F. S.,
et al. (2016). “Discovering Social Interaction Strategies for Robots from
Restricted-Perception Wizard-Of-Oz Studies,” in 2016 11th ACM/IEEE
International Conference on Human-Robot Interaction (HRI),
Christchurch, New Zealand, March 2016 (IEEE). doi:10.1109/
hri.2016.7451752

Simonsen, J., Bærenholdt, J. O., Büscher, M., and Scheuer, J. D. (2010). Design
Research: Synergies from Interdisciplinary Perspectives. Abingdon-on-Thames,
United Kingdom: Routledge.

Simonsen, J., and Hertzum, M. (2012). Sustained Participatory Design: Extending
the Iterative Approach. Des. Issues 28, 10–21. doi:10.1162/desi_a_00158

Simonsen, J., and Robertson, T. (2012). Routledge International Handbook of
Participatory Design. Cambridge, MA, United States: MIT Press.

Simonsen, J., Svabo, C., Strandvad, S. M., Samson, K., and Hertzum, M. (2014).
Situated Design Methods. Abingdon-on-Thames, United Kingdom: Routledge.

Sussenbach, L., Riether,N., Schneider, S., Berger, I., Kummert, F., Lutkebohle, I., andPitsch,
K. (2014). “A Robot as Fitness Companion: Towards an Interactive Action-Based
MotivationModel,” inThe 23rd IEEE International SymposiumonRobot andHuman
Interactive Communication, Edinburgh, Scotland, United Kingdom, August 2014,
286–293. doi:10.1109/ROMAN.2014.6926267

Thomaz, A. L., and Breazeal, C. (2008). Teachable Robots: Understanding Human
Teaching Behavior to Build More Effective Robot Learners. Artif. Intelligence
172, 716–737. doi:10.1016/j.artint.2007.09.009

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 70411917

Winkle et al. Participatory Design of Autonomous Social Robots

88

https://doi.org/10.3389/frobt.2020.00005
https://doi.org/10.3390/mti3010008
https://doi.org/10.3102/0013189x013006004
https://doi.org/10.1145/3332165.3347902
https://doi.org/10.1145/3332165.3347902
https://doi.org/10.1145/2696454.2696472
https://doi.org/10.1016/j.chb.2014.10.030
https://doi.org/10.1145/604045.604056
https://doi.org/10.1145/604045.604056
https://doi.org/10.1145/2348144.2348164
https://doi.org/10.1145/2348144.2348164
https://doi.org/10.1007/s12369-015-0322-y
https://doi.org/10.1145/2909824.3020237
https://doi.org/10.1145/2909824.3020237
https://doi.org/10.1016/j.artint.2016.07.002
https://doi.org/10.1145/3290605.3300675
https://doi.org/10.1145/3290605.3300675
https://doi.org/10.1109/tro.2016.2588880
https://doi.org/10.1109/ROMAN.2014.6926259
https://doi.org/10.1007/s12369-020-00621-4
https://doi.org/10.1109/icra.2017.7989070
https://doi.org/10.1145/3332165.3347957
https://doi.org/10.1145/3332165.3347957
https://doi.org/10.1145/3411764.3446864
https://doi.org/10.5898/jhri.1.1.riek
https://doi.org/10.1007/s12369-010-0066-7
https://doi.org/10.1126/scirobotics.aat1186
https://doi.org/10.1007/978-3-319-25554-5_60
https://doi.org/10.1109/hri.2016.7451752
https://doi.org/10.1109/hri.2016.7451752
https://doi.org/10.1162/desi_a_00158
https://doi.org/10.1109/ROMAN.2014.6926267
https://doi.org/10.1016/j.artint.2007.09.009
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Valencia, S., Luria, M., Pavel, A., Bigham, J. P., and Admoni, H. (2021). “Co-
designing Socially Assistive Sidekicks for Motion-Based AAC,” in HRI ’21:
Proceedings of the 2021 ACM/IEEE International Conference on Human-
Robot Interaction, March 2021 (New York, NY, USA: Association for
Computing Machinery), 24–33. doi:10.1145/3434073.3444646

Winkle, K., Caleb-Solly, P., Turton, A., and Bremner, P. (2019a). Mutual Shaping
in the Design of Socially Assistive Robots: A Case Study on Social Robots for
Therapy. Int. J. Soc. Robotics 12, 847–866. doi:10.1007/s12369-019-00536-9

Winkle, K., Caleb-Solly, P., Turton, A., and Bremner, P. (2018). “Social Robots for
Engagement in Rehabilitative Therapies,” in HRI ’18:Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction, Chicago,
IL, United States, March 2018 (New York, NY, USA: ACM), 289–297.
doi:10.1145/3171221.3171273

Winkle, K., Lemaignan, S., Caleb-Solly, P., Leonards, U., Turton, A., and Bremner, P.
(2019b). “Effective Persuasion Strategies for Socially Assistive Robots,” in 2019
14th ACM/IEEE International Conference on Human-Robot Interaction (HRI),
Daegu, South Korea, March 2019, 277–285. doi:10.1109/HRI.2019.8673313

Winkle, K., Lemaignan, S., Caleb-Solly, P., Leonards, U., Turton, A., and Bremner,
P. (2020). “In-situ Learning from a Domain Expert for Real World Socially
Assistive Robot Deployment,” in Proceedings of Robotics: Science and Systems
2020. doi:10.15607/rss.2020.xvi.059

Wu, Y.-H., Fassert, C., and Rigaud, A.-S. (2012). Designing Robots for the Elderly:
Appearance Issue and beyond. Arch. Gerontol. Geriatr. 54, 121–126. doi:10.1016/
j.archger.2011.02.003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Winkle, Senft and Lemaignan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org December 2021 | Volume 8 | Article 70411918

Winkle et al. Participatory Design of Autonomous Social Robots

89

https://doi.org/10.1145/3434073.3444646
https://doi.org/10.1007/s12369-019-00536-9
https://doi.org/10.1145/3171221.3171273
https://doi.org/10.1109/HRI.2019.8673313
https://doi.org/10.15607/rss.2020.xvi.059
https://doi.org/10.1016/j.archger.2011.02.003
https://doi.org/10.1016/j.archger.2011.02.003
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Aerial Flight Paths for Communication
Alisha Bevins* and Brittany A. Duncan*

NIMBUS Lab, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States

This article presents an understanding of naive users’ perception of the communicative
nature of unmanned aerial vehicle (UAV) motions refined through an iterative series of
studies. This includes both what people believe the UAV is trying to communicate, and how
they expect to respond through physical action or emotional response. Previous work in
this area prioritized gestures from participants to the vehicle or augmenting the vehicle with
additional communication modalities, rather than communicating without clear definitions
of the states attempting to be conveyed. In an attempt to elicit more concrete states and
better understand specificmotion perception, this work includes multiple iterations of state
creation, flight path refinement, and label assignment. The lessons learned in this work will
be applicable broadly to those interested in defining flight paths, and within the human-
robot interaction community as a whole, as it provides a base for those seeking to
communicate using non-anthropomorphic robots. We found that the Negative Attitudes
towards Robots Scale (NARS) can be an indicator of how a person is likely to react to a
UAV, the emotional content they are likely to perceive from a message being conveyed,
and it is an indicator for the personality characteristics they are likely to project upon the
UAV. We also see that people commonly associate motions from other non-verbal
communication situations onto UAVs. Flight specific recommendations are to use a
dynamic retreating motion from a person to encourage following, use a perpendicular
motion to their field of view for blocking, simple descending motion for landing, and to use
either no motion or large altitude changes to encourage watching. Overall, this research
explores the communication from the UAV to the bystander through its motion, to see how
people respond physically and emotionally.

Keywords: drone, gesture, human-robot interaction, communication, small UAS

1 INTRODUCTION

As UAVs increase in popularity and functionality, they are becoming easier to obtain and
significantly more visible in standard occurrences for the general public. In addition to the
increase in visibility to the public in everyday occurrences, they are being used in many
professional environments such as disaster relief, agriculture, and product delivery. One of the
problems with increased visibility and use is that not everyone who comes in contact with the UAV
will have context for its purpose or current task. This becomes an even larger issue when a
malfunction or abnormality occurs. UAVmanufacturers, programmers, and users need to be able to
understand how they can expect the uninformed person to react to their vehicle. In addition to this, a
bystander needs to be able to understand what is occurring to minimize concern and unnecessary
intervention.

The main purpose of this work is to inform future researchers, and UAV developers, about how
participants perceive UAV paths. This includes what they believe the system to be communicating,
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the most important components of the flight paths, and their
intended reactions based on those communications. To address
these issues, we first explore how consistently people label
motions (Phase 0). Those labels were then presented to
participants to create their own motions to see if there were
inherent similarities in these motions (Phase 0). A combined set
of motions were then presented to new participants to see if user
generated paths had increased label agreement (Phase 1–3).
Finally, states which were more effective at generating
responses were presented to a final set of participants to
understand whether their created motions would align with
the expected path characteristics from earlier phases (Phase 4).
Figure 1 further introduces the phases and how they will be
presented in this paper, in addition to showing prior contributing
works.

Overall lessons from this work indicate that:

• frequent motions or gestures applied in non-UAV
situations are associated and understood on UAVs,

• landing is conveyed by direct movements with an altitude
change,

• people will follow a UAV’s path when the motion
approaches and then retreats towards a location when in
the absence of altitude changes, and

• flights across an area are likely to cause participants to avoid
the vehicle or that area (regardless of the altitude).

We found that simpler motions are more likely to have
consistent interpretation across participants. Considering the
most basic flight paths, people took the front-back motion on
the y-axis to mean to follow the vehicle, a side to side motion
focused on the x-axis to stay back (or to not follow it), and an
up-down motion on the z-axis to mean landing. We also
found that NARS can be an indicator of how people expect to
react, if they are likely to expect a negative message to be
conveyed, and their expectation for the UAV to have negative
personality traits.

2 LITERATURE REVIEW

When considering the topics discussed in this paper, the related
work is broad and inherits best practices across many fields. This
chapter discusses the most relevant work when developing the
studies and provides context to those hoping to adopt these
practices in the future.

2.1 Social UAVs
The work of social UAVs, which we will define as “UAVs that will
operate in spaces used by and necessitate communication with
human bystanders,” has been expanding rapidly in recent years.
This has lead to (Funk, 2018) providing a comprehensive
overview of UAVs as flying interfaces, and (Baytas et al.,
2019) providing design recommendations for UAVs in
inhabited environments. A significant finding from (Baytas
et al., 2019) discusses the idea of providing future work on
“Intuitive Comprehension” of UAV movements, which means

understanding what a UAV is trying to convey without additional
explanation. A more comprehensive discussion of social uses for
UAV systems can be found in these works.

2.2 UAV Communication
(Cauchard et al., 2015; Obaid et al., 2016) have examined different
methods to facilitate communication from the human to the
UAV. In the work presented here we are more interested in what
a UAV can communicate to a person who may or may not be its
operator. This can be achieved through a variety of methods, with
the most popular discussed further here.

2.2.1 Video, Lights, and Stereo
Audio or video methods can be very direct in their
communication by providing speech, either verbal or written,
or figures. Attaching a projector onto a UAV is a common video
communication method, as demonstrated by (Matrosov et al.,
2016; Nozaki, 2014; Scheible et al., 2013). These projects typically
project text or video onto an arbitrary object and can also include
an interface to allow user control of the display (Matrosov et al.,
2016). Merged these uses by creating interfaces projected onto the
ground that allowed interactions using motions of a foot. Another
visual modality demonstrated for UAV communications are
lights (Szafir et al., 2015). Showed the ability to convey robot
flight intentions at a glance, specifically to better express
directionality. They found participants were able to better
distinguish robot predictability over baseline flight behaviors
when given four different signal designs.

On the audio side, providing speech to observers is as
straightforward as attaching a speaker (Yamazaki et al., 2019).
Demonstrated one strong use case by attaching a speaker and
microphone system on a UAV that would make sounds for
natural disaster victims to react to, and then capture their
vocal reactions.

Althoughmost of these studies were more qualitative in nature
and had limited participants included, they do show the capability
of direct communication from a UAV to a bystander.
Unfortunately, adding components to a system always comes
with the natural drawbacks of impacting system weight limits and
battery usage, which can then in turn impact the system
performance. The other drawback for these components is
simply that they require additional hardware that is, not
standard with most UAV systems. Finally, the methods
mentioned here can have a reduced communication range, as
they can only communicate as far as their screens can be seen or
their speakers heard clearly. Eventually, communications will
likely incorporate some of thesemethods while also leveraging the
motion of a UAV, which we will investigate throughout this work.

2.2.2 UAV Proxemics
Proxemics is “the study of how man unconsciously structures
microspace—the distance between men in the conduct of daily
transactions” as described by (Hall, 1963). It is another
component that can be manipulated to assist or change the
overall message attempting to be conveyed through a system
(Baytas et al., 2019). Discusses the concept of understanding how
distancing impacts interaction from a comprehensive view of
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social UAVs. Other works that have explored the impact of UAV
distancing in interactions includes (Duncan and Murphy, 2013;
Wojciechowska et al., 2019), who explored using vehicles at
different heights (Acharya et al., 2017). Explored that effect
using an untethered system in addition to comparing it a
ground vehicle. The overall consensus across studies was that
interactions within the social zone were preferred to the personal
zone, which is in contrast to research with human-human or
human-ground robot interactions.

2.2.3 Flight Paths
The benefit of using flight paths for communication fromUAV to
human has been briefly explored (Sharma et al., 2013). Explored
using UAV paths to communicate affective information, and
suggested direct vs. indirect use of space and changing the speed
of the system are two components that have a direct effect on the
valence. From their study they found that a direct quick motion
gave higher valence (Szafir et al., 2014). Used flight to assist in
communicating intended destination while the system also
completed other goals. Overall, they found easing into the
motion and arcing it made participants feel the motions were
more natural and safe, which is also consistent with the idea that
direct, quick motions increased participant valence in (Sharma
et al., 2013).

2.3 Personality Model
To obtain a richer understanding of how people would respond to
a UAV, it is also important to consider their projected emotion in
relation to the UAV (Fong et al., 2003). Suggests that stereotype
personalities can be created using immediate response emotions
(Cauchard et al., 2016; Spadafora et al., 2016) explored this
concept and presented an emotional model space for UAVs.
Cauchard then also used these models to represent a full
personality, or emotional state, such as Brave or Grumpy.
These personalities, along with all individualized
characteristics, could then be mapped based on varying speed,
reaction time, altitude, and additional movement characteristics.
Ultimately providing four different stereotypes of personality
models that create the Emotional Model Space for UAVs. A
few examples of these models include an Adventurer Hero or
Anti-Social Drone. Understanding these categories allows us to
better match a UAVs’ action to expected action or scenario, in
addition to some insight in how they may be perceived.

2.4 Affect, Attitude, and Perception
Interactions are biased by our previous experiences and
interactions, but it can be difficult to know a participant’s
current affective state (and its impact on their study
responses) without including a validated instrument. To
understand the impact of a participant’s previous experiences
on their current interaction, questionnaires can provide this
insight. One such instrument to better understand a
participant’s affective state and how it changes throughout the
study is the Positive and Negative Affect Scale (PANAS) from
(Watson et al., 1988). This questionnaire provides insight into
how a participant is feeling that day compared to their normal
state over the past week, and can be administered post-interaction

to examine how the interaction impacts their state. Previous work
by (Acharya et al., 2017) suggested that participants may have a
higher negative affect after interacting with a UAV. The
discomfort with the UAV was also supported by an increased
distance in interaction when compared to a ground robot which
did not result in an increased negative affect.

Another instrument, the Negative Attitude towards Robots
Scale (NARS), has been suggested by (Riek et al., 2010) to impact
a participant’s ability to recognize humanoid motions, where
participants with more negative attitudes were less able to
recognize robot motions. NARS was introduced by (Nomura
et al., 2004) and refined by (Syrdal et al., 2009). A participant’s
NARS score is calculated by averaging their values for three
subcategories: Social/Future Implications, Emotional Attitudes,
and Actual Interactions.

2.5 Crowdsourcing
Although running in-person studies may typically be preferred,
online crowdsouring can be very useful in certain cases. There are
a few cases where it may be more appropriate to use a
crowdsourcing method. A few examples of these may include:
when a large range of participants are needed, materials are
targeted for refinement through many different proto-studies,
or the work can be delegated into small tasks. Previous work by
(Toris et al., 2014; Casler et al., 2013) have compared
crowdsourced results to in-person and saw minimal to no
difference in their results between the participants who came
in person and those who completed tasks online.

3 EXPERIMENTAL METHODS AND DESIGN

This section describes experimental methods, materials, and
design which are consistent across the phases of the studies to
improve the readability of the article.

3.1 Pre and Post Interaction Surveys
Following a consent form, participants completed a demographic
questionnaire, the first half of PANAS (based on their test
condition, as listed in Table 3), and NARS. After the main
task, they all completed a post-survey questionnaire consisting
of questions about the study. If they completed PANAS prior to
their task, they were asked to complete the second half of PANAS
at this time.

3.2 Materials
For both Phase 0 studies an Ascending Technologies (AscTec)
Hummingbird and Vicon motion capture system were used. For
Phase 1–4 we used the DJI flamewheel F450, Pixhawk flight
controller, and Vicon motion capture system.

3.3 MTurk
It is important to note the constraints on participants who were
included in studies that were completed on Amazon Mechanical
Turk (MTurk), which includes Phase 0 (Duncan et al., 2018),
Phase 1, and Phase 3. Each participant’s condition was dependent
upon which of the mTurk task postings they selected. All tasks
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appeared the same to participants, so they had no insight into any
differences and participants were excluded from future tasks once
they participated in one. All participants were considered an
MTurk “master,” as determined by Amazon through analyzing
worker performance over time. Also due to IRB restrictions from
the GDPR privacy directive, none of the participants were allowed
to be from the European Union.

Following any pre-interaction surveys, participants were
redirected to a Google Form where they were asked to watch
unique videos of a UAV flying in specific motions. The motions
used for each phase are mentioned in their respective sections.
Each video was 30 s in length, with repetitions added to reach the
desired length if necessary. We used the Exhausted Drone
template speed from (Cauchard et al., 2016) and the Anti-
Social Drone altitude template to better compare to previous
work. During a study participants would randomly be shown an
attention check video that had a word displayed in the middle of it
rather than simply showing a repeating motion. This check was
placed to ensure participants were attending to the questions and
watching the majority of the videos.

3.4 Motion Design
For the remaining participants, those in Phase 0 (Firestone et al.,
2019) and Phase 4, they were presented with proposed states and
asked to create motions to communicate those to others. In the
case of Phase 0 (Firestone et al., 2019) this study was completed
entirely in person. For Phase 4, the design and pre-interaction
surveys were administered over Zoom and Google Forms,
respectively. Following this they were asked to verbally
describe and physically demonstrate their created motions
using a small object (either a model drone in Phase 0 or an
object roughly the size of a cell phone in Phase 4). The final
component of the motion design study in either phase was to
observe their drone flights in a Viconmotion capture space before
completing the post-interaction survey.

4 PHASE 0

We now present the initial phase of the project, which includes
two different studies. The first study explores label assignment at
a high-level, looking for general agreement amongst participants.
The second study explores user-defined flights created to convey
the labels presented in the first study via an in-person setting.

4.1 Broad Agreement
Phase 0 (Duncan et al., 2018) involved 64 participants in total (43
Male, 21 Female). 56 identified as Americans, 2 as Chinese, 1
Korean, 1 Japanese, 1 Indian, 2 as “Other,” and 1 did not respond.
Each participant was paid 2 dollars and Amazon was paid 50
cents for recruitment. In the two alternative forced-choice
(2AFC) task participants were given two labels, one of which
was the expected label, and the other was a distractor chosen from
a set of seven choices. In the seven alternative forced-choice
(7AFC) task they were given all 7 of the options. Participants took
24.63 min (SD � 12.18) in the 2AFC task, and 26.15 min (SD �
12.29) in the 7AFC task.

The goal of this study was to understand if novice users
showed broad agreement on the meaning of UAV gestures. To
begin we looked to previously established protocols used for
human gestures in (Krauss et al., 1991). Krauss looked to
understand the level of participants’ agreement by showing
them a limited gesture set, followed by a request for them to
apply a label from a limited set. Implementing this into a UAV
gesture set began by exploring flight paths used by birds in nature
and other biologically inspired behaviors, such as in (Arkin, 1998;
Murphy, 2000).

4.1.1 Flight Path Labels
Labels were chosen based on flights that generally would require
redirection, intervention, or awareness from either bystanders or
operators. They were also chosen with the expectation that they
would be well understood by novices due to their frequently
observed use in other aircraft, being in general common system
tasks, and similarity to other states in common technology (such
as phones). The final consideration was choosing states that were
domain independent, instead of focusing on applications (such as
photography). Ultimately, the states chosen were: lost signal, lost
sensor, draw attention, landing, missed goal, change position, and
low battery.

4.1.2 Flight Path Selection
The original flight path selection was chosen to include motions
that had steady periodic motion which could be created from
sinusoid functions, to offer the ability to scale, and loop as needed.
This in addition to drawing similarities to the biologically
inspired avian flight paths originally identified by (Davis,
2000), lead to the eight cyclic motions of: Circle, Figure-8,
Left-Right, Loop, Spiral, Swoop, Undulate, and Up-Down.
Further details related to these choices and this work in
general can be seen in (Duncan et al., 2018).

4.1.3 Results
The results in these studies were judged using a binomial test for
2AFC (compared to 50%) and a chi-squared test (compared to an
even distribution) with p < 0.01; the resultant necessary
agreement was 75% agreement in 2AFC and 34.4% agreement
in 7AFC. In the 2AFC test the motions labeled with high
agreement included Spiral (Landing, 87.5%), Figure 8 (Lost
Sensor, 84.38%), and Swoop (Draw Attention, 75%). In the
7AFC test, 5 motions (3 unique from the first set) were
significant at p < 0.01. Significant motions were: Circle (Draw
Attention, 40.6%), Figure-8 (Change Position, 40.6%), Loop
(Landing, 34.4%), Spiral (Landing, 59.4%), and Undulate
(Draw Attention, 34.4%).

The full chi-squared values for the 7AFC are χ2(6, N � 32) �
23, p < 0.001 for Circle, χ2(6,N � 32) � 22.6, p < 0.001 for Figure 8,
χ2(6,N � 32) � 12.6, p � 0.049 for Left-Right, χ2(6,N � 32) � 19.4,
p � 0.003 for Loop, χ2(6, N � 32) � 50.6, p < 0.001 for Spiral, χ2(6,
N � 32) � 11.8, p � 0.066 for Swoop, χ2(6, N � 32) � 15.8, p � 0.01
for Undulate, and χ2(6, N � 32) � 9.4, p � 0.15 for Up-Down.

Due to the number of chi-squared tests conducted, we are
using the Bonferroni Correction to address possible effects found
due to chance. Using this correction, our p-values will need to be
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below 0.0014 to still be considered significant at the same
significance level, rather than below 0.01. Using this
adjustment, only Circle, Figure 8, and Spiral are still
considered significant.

Results overall showed a stronger understanding for Landing
to be communicated by a spiraling path, and in general
participants gravitated towards states that were less technical.
This is shown from having stronger agreement for Draw
Attention and Landing, and lower agreement for Lost Sensor.
This finding shows support for the need of better refined labels
that are commonly understood. Also due to the overall lack of
strong agreement, this work suggested exploring open-ended
responses and user generated flight paths. Finally, after initial
observations, further research is needed to see if a negative NARS
score suggests a decreased understanding of a UAV’s motion,
similar to the finding for humanoid robots in (Riek et al., 2010),
or if a version of NARS should be revised to apply specifically to
UAVs. The flight paths, the labels, and the application of NARS
are investigated in the remainder of the paper.

4.2 Motion Elicitation
Phase 0 (Firestone et al., 2019) presented the same states from the
earlier Phase 0 (Duncan et al., 2018) to twenty in-person participants
(10 Male, 10 Female) who were local to the testing location in the
United States. The cultural breakdown included 10 Americans, 2
Korean, 2 Indian, and 1 of each of Hispanic, Mexican, Austrian-
American, Russian, European, and “other.” As an incentive for
participation they were each put into a drawing for a chance to
win a $25 gift card. The seven states provided to participants were:
Attract Attention, Sensor Lost, Low Battery, Signal Lost, Area of
Interest, Missed Goal/Target, and Landing.

After eliciting a total of 140 gestures, a taxonomy was created
to group the motions according to specific, common
characteristics. This taxonomy encapsulates many different
categorization/classification techniques. One of the most

popular being the Laban Effort System best represented here
by the complexity and space categories, from (Ruiz et al., 2011;
Chi et al., 2000) respectively. Sharma et al. (2013) also previously
used these two characteristics of the Laban Effort System to
explore how they impacted people’s perception of robotic
motions, specifically flight paths. These categories are also well
reflected within categories mentioned throughout (Venture and
Kulić, 2019). This taxonomy is presented in Table 1.

The designed gestures were also grouped with common
features according to the taxonomy, in addition to common
motion characteristics. The most significant groupings were
from Landing (thirteen people assign it as descending), Area
of Interest and Missed Goal/Target (both had horizontal circles),
and Low Battery (up-down motions).

A primary limitation of this work was the relative simplicity in a
majority of the designed flight paths. This limitation was addressed in
Phases 1–4 which followed to understand whether the difficulty in
path creation was due to limited understanding of possible flight
paths, difficulty with the initially defined states, or other limitations
imposed by the experimental design.

5 EXPLORATION: PHASE 1

Based on the findings from the Phase 0 explorations into how
participants would use a drone’s motion to communicate, we
embarked on an iterative approach in hopes of refining and
collecting the different possible responses to drone motions.
Further detail can be found in (Bevins and Duncan, 2021). A
subset of motions demonstrating agreement from both studies in
Phase 0 were presented to participants who were asked to respond
to different questions about what they believed the drone was
communicating and how they may respond.

5.1 Approach
The goals of this work were to validate the proposed videos for
participant agreement, prototype questions for ability to elicit
consistent responses, and understand the impact of asking
multiple questions on participant responses. Throughout the
study, other interesting considerations were encountered
including the impact of pre- and post-questionnaires on the
quality of participant responses, which is not central to the
understanding of the motions, but is described further detail
in (Bevins et al., 2020). The questions and processes developed
were then used to better understand participants’ expected
perception and anticipated reaction to UAV flight paths. The
full list of questions are presented in Table 2, with “Question
Type” referring to the participant’s anticipated response type. All
of the questions were looking to obtain realistic answers to how
participants’ expect to perceive and/or react to a UAV’s motion.

5.1.1 Question Variants
Three question types, each with two variations, were used in an
attempt to obtain convergent responses with respect to participants’
expected reactions. Gesture questions were expected to elicit
participants’ relation of the motion of the UAV to an action they
have previously observed. Speech questions sought an anticipated

TABLE 1 | Taxonomy for UAV flight classification.

Taxonomy for user-designed flight paths

Complexity Simple Single movement
Compound Collection of movements

Space Direct Focused approach to a point
Indirect Deviates from direct path

Cyclicity Cyclic Repeated motion (same path)
Random Singular flight path

Command Roll Left or right movement
Pitch Forward or back movement
Yaw Rotation
Throttle Up or down movement

Altitude Increasing Increase flight height
Decreasing Decrease flight height
Variable Increase and decrease
Stable No height change

Motion Rectilinear Only straight movement(s) and 90-degree turns
Curvilinear Only curved movement(s)
Rotational Only rotates
Combinational Combination of the above
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verbal communication assigned to the UAV’s motions. Physical
questions sought to capture both speech and gesture aspects of the
motion, in addition to a possible physical response. For this phase,
participants would answer either 1 or 2 questions in a free-response
method. The questions chosen are shown in Table 2. The full list of
test conditions used, which question(s) were included in each
condition, and whether that condition administered PANAS is
shown in Table 3. Each line represents 8 participants.

5.2 Participants
Phase 1 had 80 participants in total (46 Male, 33 Female, 1 No
Answer), with an age range of 24–68 (M � 38.6, SD � 10.7). Of the
80, 76 identified as American, 3 as Indian, and 1 as Chinese. The
education levels were: high school (12), some college without a
degree (17), college degree (46), and graduate-level degrees (4).
Each participant was paid 4 dollars and Amazon was paid 1 dollar
for recruitment. Across all of the conditions, participants took
roughly 35 min.

5.2.1 PANAS
When examining the initial data that was collected from MTurk,
the participants seemed to produce less diverse results towards the
end of tasks (particularly those with single questions and double
videos). To investigate the possible impact of participant fatigue, we
removed the PANAS and additional videos during retests of
selected conditions. All test conditions are listed within Table 3.

5.3 Videos
Participants were asked to watch 16 unique videos of a UAV
flying in specific motions chosen and created from Phase 0
(Duncan et al., 2018) and Phase 0 (Firestone et al., 2019). This
included all of the motions from Phase 0 (Duncan et al., 2018),

complemented with a set of motions demonstrating the
taxonomic differences and most popular flight paths from
Phase 0 (Firestone et al., 2019). The base flight paths included:
front-back, straight descend, descend and shift (descend then
shift horizontally), diagonal descend, horizontal figure 8,
horizontal circle, hover in place, left-right, plus sign, spiral,
undulate, up-down, U-shape, vertical circle, X-shape, and yaw
in place. Visualisations of these flight paths can be seen in
Figure 2. Videos were each 30 s long, and if necessary
repetitions of the flight were added to reach the desired length of
the video. The paths were held constant for speed, around 0.5 m/s,
and overall distance covered was held constant as much as possible.
Depending on their condition, participants would see each video
either once or twice. It was necessary to repeat a video set when
they were asked two questions from the same category (two speech
or two gesture). With each video they would receive either 1 or 2
questions. Each time they were asked to watch the entire video, but
did have the capability of answering the question and proceeding,
as there was not an attention check on every page.

5.4 Free Response Question Findings
An analysis of the question results sought to understand which
question and/or question type produced the most actionable
answers. Specifically, “actionable answers” referred to
responses that indicated an intention for verbal or physical
response to UAVs. The question type which proved most
effective towards this goal was the “Physical” type. Since both
questions of this type elicited similar results and only one was
needed, we proceeded with “If you were in the room with the
robot, how would you respond immediately following the robot’s
actions?” Further rationale for this decision is provided in (Bevins
et al., 2020). For the purpose of the results presented here, and
analysis within Phase 2, the responses were collapsed to be viewed
as a single set. This choice was made due to the fact that responses
in general were consistent enough for initial analysis, and
seemingly more related to the flight path rather than the question.

6 REFINEMENT: PHASE 2

Through the methods described in this section, an analysis of the
data from Phase 1 was conducted to determine which labels
contained the most information, in addition to which question
would be most effective. This section discusses that process and
the steps taken for refinement in future phases.

TABLE 2 | Study questions, with their anticipated response type, assigned number, and character length.

Question number Question type Question(s) Characters

1 Speech If you saw this drone in real life, what would it say to you? 61
2 Speech If this drone could speak what would it tell you to do? 55
3 Gesture What human gesture does this remind you of? 43
4 Gesture If you had to replicate this movement with your head and/or body, what would you do? 84
5 Physical If you were in the room with the robot, what would you do immediately following the robot’s action? 99
6 Physical If you were in the room with the robot, how would you respond immediately following the robot’s action? 103

TABLE 3 | Question combinations for all test conditions within Phase 1.

Test condition Question numbers asked PANAS used

1 Speech 1 Yes
1 Speech 1 No
2 Speech 1, 2 Yes
1 Gesture 4 Yes
1 Gesture 4 No
2 Gesture 3, 4 Yes
1 Speech, 1 Gesture 1, 4 Yes
1 Speech, 1 Gesture 1, 4 No
1 Physical 5 Yes
1 Physical 6 Yes
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6.1 Frequency Analysis
For an initial understanding of the content of the responses, the
80 participants’ responses from Phase 1 were roughly grouped
based on the most commonly used words and general intent
behind the words. An example of intent-based grouping would be
how the words “stand” and “still” would both be sorted into a
stare/observe type of category. From these methods we found 13
prominent categories that covered most of the expressed concepts
which are listed in Section 6.2. Through this method we also
found that many of the responses had participants describing the
motion in some way, such as with “back” for front-back (25),
“around” for yaw (20), and “side” for left-right (17). In addition to
this, it was common to associate a motion with a human gesture
that already exits, such as “nodding” for up-down (12) and
“cross” for plus (6).

6.2 Category Formation
In addition to the states defined in the Frequency Analysis
section, we incorporated categories that represented states
such as delivery which are expected to be conveyed within
UAV research. In most categories, multiple similar actions
were combined to give raters a better sense of the types of

responses that could be reasonably grouped together. The full
list included:

• Follow/Follow a Path
• Blocked/Stop/Restricted/Do Not Pass
• Go Away/Back Away/Leave
• Move Towards/Approach
• Yes/Approval/Accept/Nodding
• No/Nagging
• Welcome/Hello
• Land/Falling/Lower
• Delivery
• Help
• Watch it/Caution/Slow Down/Investigate
• Stare/Hover/Look/Observe
• Power off

Two raters were asked to categorize the responses based on the
provided categories. The raters were given instructions to choose
a category only if they believed it appropriately fit, but to
otherwise choose “Other.” The raters ended up with kappa
agreement scores over 0.93 for all of the categories, which

FIGURE 1 | Breakdown of Phases: initial introduction, an iterative creation/labeling exploration, and finally a supporting in-person study.

FIGURE 2 | Flight paths from top left to bottom right: undulate, left-right, U-shape, hover, vertical circle, up-down/descend, front-back, yaw, descend and shift,
diagonal descend, horizontal figure 8, horizontal circle, plus, spiral, X-Shape, and up-down.
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shows excellent agreement (Landis and Koch, 1977). Overall, the
goal for this method was to augment the findings from the
frequency analysis to generate potential labels in future phases.

Looking into categories when responses are sorted by video
provides a few further insights. 15/80 classified hover as “Stare/
Hover/Look/Observe.” 10/80 of front-back, 11/80 of horizontal
circle, and 11/80 horizontal figure 8 were all classified as “Go
Away/Back Away/Leave.” 11/80 straight descend as “Land/
Falling/Lower,” 8/80 undulate responses sorted into “Blocked/
Stop/Restricted/Do Not Pass,” and finally 8/80 vertical circle as
“Watch it/Caution/Slow Down/Investigate.”

6.2.1 Forced Choice Definition
Following the raters’ categorization, the categories were kept for
inclusion if they showed high agreement and participant preference.
Every category except for “Power Off” ended up being presented to
the participants in Phase 3. From the categorization we also noticed
that a second question for the participant would be beneficial to elicit
answers in all of the categories, and provide more insight into how
participants expected to respond. For this reason Question 1, “If you
saw this drone in real life, what would it say to you?” was added to
Question 6 when designing for Phase 3. The category options were
then split across the two questions in an attempt to obtain convergent
ideas between the two of them, while also allowing a comparison of
the perceived communication with the intended reaction.

Five of the responses were appropriate choices for how
participants plan to physically respond to a UAV: “Watch it/
Look at it/Stare,” “Investigate,” “Follow it,” “Move Away,” and
“Help it,” in addition to an Other category.

The remaining categories were well suited for a speech
category question because they helped communicate the states
being conveyed to the person rather than showing a reaction to
them. Since the responses being chosen here were states that
could be communicated, a few of the categories were placed as
response options in similar forms to both questions. All response
options for Question 1 are: “To Follow It/Move Towards,” “Do
Not Follow/Do Not Pass/Restricted/Go Away,” (DNF) “Yes/
Approval,” “No,” “Welcome,” “Landing,” “Delivery,” “Help,”
and “Caution” in addition to an added Other category.

7 CONFIRMATION: PHASE 3

Following the refinement phase, we were able to present a new set
of participants with the newly generated labels and questions
defined in Phase 2 from the data collected in Phase 1. Phase 3
consisted of 40 participants (19 Male, 20 Female, 1 No Answer),
ranging in age from 25 to 57 (M � 39.1, SD � 8.1). Of the 40, 33
identified as American, 2 Chinese, 2 Indian, 1 Mexican, 1 Korean,
and 1 did not answer. Each participant was presented with the 16
videos, for which they were asked to answer Questions 1 and 6
using the forced choice responses provided in Section 6.

A chi-squared test compared to an even distribution was used
to find the statistically significant responses at α � 0.01 with the
participants from Phase 3, given a null hypothesis that all of the
states should be chosen equally. All responses within Table 4
(excluding yaw and the RFP rows) and in Table 5 (excluding the

RFP rows) reports significant results at the original given threshold.
Similarly to the data presented in Section 4.1.3, due to the number of
chi-squared tests conducted we need to address possible effects found
due to chance. One way of addressing this is to use the Bonferroni
Correction. Using this correction, our p-values will need to be below
0.000625 to still be considered significant, rather than below 0.01.
Taking this into consideration, all responses withinTable 4 excluding
Plus, Yaw, and the RFP rows are considered significant. All responses
in Table 5 excluding Undulate, Vertical Circle, and the RFP rows are
considered significant. The effect sizes and p-values are provided in
each section.

7.1 Perceived Communication
This section further discusses the results from the question “If you
saw this drone in real life, what would it say to you?” In general,
most participants assigned either DNF or “Landing.”

The results presented in Table 4, suggest that participants
would perceive a UAV to be blocking a path given large
movements across the x-axis, with or without movement in
the z-axis as well. Simpler motions with altitude changes were
strongly associated with the intent to communicate “Landing.”
When the motions became more complex, incorporated a second
direction (descend and shift), or additional axis of motion (spiral)
it was not understood as clearly to mean “Landing” even though
the dominant motion was within the z-axis.

There were a total of 640 responses, the breakdown of
responses is represented by 25.7% responses for DNF, 15.9%
for “Landing,” about 13% for both “Caution” and “To Follow It/
Move Towards,” and 7.5% or less for each of the remaining
categories. These values demonstrate that some categories are
more likely to be chosen while others are either not well-defined
or not anticipated to be associated with drone motions. These
values are presented across all videos, but the distribution by
video can be seen in Tables 4, 5.

7.2 Anticipated Physical Response
Question 6, “If you were in the room with the robot, how would
you respond immediately following the robot’s actions?” the
second question asked of participants saw a majority of
responses for “Move Away” or “Watch it/Look at it/Stare,”
with the only significant deviation being front-back receiving
an answer of “Follow it.”

Some significant motion traits that appear when analyzing the
responses for this question include “Watch it” responses having a
key motion along the z-axis or not having movement along any of
the axes. Vertical circle, descend and shift, yaw, up-down, plus,
and diagonal descend all demonstrate this trend. Most of these
motions also have a second highest choice of “Move Away,”
which likely explains the dissent within the straight descend and
spiral paths. For these two specific motions, the popular choice
was more evenly split between “Watch it” and “Move Away,” of
which the latter ultimately won out. The main takeaway from
these results is that we can assume people would either watch or
move away from vehicles that are relatively static or undergoing
large altitude changes. “Follow it” was most prominent only with
movements that were focused on the x-axis or x-y plane and
approached closer to the participant, as shown with front-back
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and horizontal figure 8. This led to an additional exploration of
the RFP motions which is presented in Section 10.2.

Of the 640 responses, the breakdown of responses is
represented by 36% of the responses were for “Move Away,”
30% “Watch it,” 18.8% “Investigate,” 10.4% “Follow it,” 4.5%
“Help It” and Other was only chosen once for hover.

7.3 Free Response Within Forced Choice
With each of the questions participants had an “Other” option
they could fill in if they felt none of the forced choice responses
provided accurately portrayed their intentions. There were 13
total write-ins, accounting for a total of about 2% of the responses.
None of the motions received more than 4 write-in answers. 12 in

TABLE 4 |Q is Quantity of People providing that response, DoF is degrees of freedom, Sample Size is the total number of participants, and RFP refers to rotated flight paths
with results only discussed in Section 10.

Motion Say: Winning Response(s) Q DoF Sample Size Chi-Square Statistic p-value Cramer’s
V (effect size)

Undulate Do not follow/Do not pass/restricted/go away (DNF) 14 9 40 52 p < 0.0001 0.360
Left-Right 14 50 p < 0.0001
Horizontal Figure 8 14 54.5 p < 0.0001
Horizontal Circle 15 42.5 p < 0.0001
X-Shape 15 41 p < 0.0001
U-Shape 13 33.5 p � 0.0001
Hover 12 29.5 p � 0.0005
Plus 11 23.5 p � 0.0052
Vertical Circle 13 33 p < 0.0001
Up-Down Yes/Approval 15 39.5 p < 0.0001
Spiral Tie: DNF 10 37 p < 0.0001

Tie: Landing
Front-Back To Follow It/Move Towards 23 124.5 p < 0.0001
Yaw Caution 7 32 13.5 p � 0.1412 0.528
Descend and Shift Landing 21 92.5 p < 0.0001
Diagonal Descend 23 112.5 p < 0.0001
Straight Descend 22 103 p < 0.0001
RFP: Undulate DNF 5 8 22 p � 0.0088 0.429
RFP: Rotated Figure 8 4 16 p � 0.0669
RFP: X-Shape DNF/Landing 2 6 p � 0.7399
RFP: U-Shape DNF/Landing/Help 2 8 p � 0.5341

TABLE 5 |Q is Quantity of People providing that response, DoF is degrees of freedom, Sample Size is the total number of participants, and RFP refers to rotated flight paths
with results only discussed in Section 10.

Motion Respond: Winning Response(s) Q DoF Sample Size Chi-Square Statistic p-value Cramer’s
V (effect size)

Undulate Move Away 15 5 40 20.86 p � 0.0008 0.375
Left-Right 17 29.43 p < 0.0001
Horizontal Figure 8 15 22.57 p � 0.0004
Horizontal Circle 18 30.29 p < 0.0001
X-Shape 18 32.00 p < 0.0001
U-Shape 17 32.57 p < 0.0001
Spiral 19 39.14 p < 0.0001
Plus Watch it/Look at it/Stare 15 29.71 p < 0.0001
Vertical Circle 14 18.85 p � 0.0020
Up-Down 16 25.43 p � 0.0001
Hover Tie: Watch it/Look at it/Stare 14 30.29 p < 0.0001

Tie: Move Away
Front-Back Follow It 15 26.29 p < 0.0001
Yaw Watch it/Look at it/Stare 13 32 22.33 p � 0.0004 0.424
Descend and Shift 15 32.33 p < 0.0001
Diagonal Descend 14 35.66 p < 0.0001
Straight Descend Move Away 12 25.00 p � 0.0001
RFP: Undulate Move Away 4 8 16.00 p � 0.1562 0.547
RFP: X-Shape 3 8.00 p � 0.5494
RFP: Rotated Figure 8 Tie: Follow it 3 14.00 p � 0.2206

Tie: Move Away
RFP: U-Shape Watch it/Look at it/Stare 3 10.00 p � 0.4158
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total were written in for the perceived communication question
from 8 different people, and only 1 answer was written in for the
anticipated physical response question. Responses varied in
content, but searching, confusion, and watching were popular
among the write-ins.

8 PHASE 4

As an exploration to support the results from earlier phases, we
presented 8 participants (6 Male, 2 Female) with the 8
communicative states used in Phase 3 to observe whether their
motions would agree with the findings of Phase 3. Prior to
participating these participants agreed to both an online and
in-person session, so they are all local to the testing location in the
United States.

Participants were asked to create flight paths to communicate
states from Phase 3, similar to the methods of (Firestone et al.,
2019), but over Zoom instead of in-person. Following this, they
were expected to come in-person to view their flight paths on a
real UAV, but for various reasons not all were able to complete
the viewing portion of the study. This section also discusses the
work of Phase 4 as compared to the other phases and
related works.

8.1 Methods
After being greeted and consented, participants were asked to
“please design an appropriate gesture, a flight path, for a drone to
fly to communicate the state” for each of the states. After
designing an appropriate gesture, they were asked to specify
details about their motions, such as specific height, speed, and
characteristics they would apply to their motions. They filled out
a Google Form to answer all of these questions before verbally
describing and physically demonstrating their motion using a
small object of their choice (around the size of a cell phone).

8.1.1 Height
Participants were given the options of “Above Head,” “Eye Level,”
“Chest Level,” “Waist Level,” “Knee Level,” “Ground,” and
“Other” to associate with each motion. Due to low response
choices, the options for waist, knee, and ground were grouped
together for discussion. Table 6 shows the full breakdown of
heights chosen, sorted by state.

8.1.2 Speed
Participants were given the options “Fast,” “Average,” “Slow,”
and “Other” as options for their chosen speed. No further details
about what concrete speed these choices entailed were provided.
All eight participants answered this question for the majority of
motions, but one chose “Other” for Do Not Follow, and another
did not answer the question for Follow it. Table 7 shows the full
breakdown of speeds chosen, sorted by state.

8.1.3 Size and Space of UAV
Since participants created the gestures online they had no concept
of where these motions would be used (i.e., indoor/outdoor) and
thus how much space their UAV would have to fly. Some people

TABLE 6 | Participants’ chosen height of operation by state.

Above head Eye Chest Waist and
below

Other

Do not follow/Go away 1 3 2 1 1
Watch it/Look at it 1 5 1 0 1
Investigate 2 1 4 1 0
Caution 2 1 4 1 0
Follow it/Move towards 2 1 5 0 0
Yes/Approval 3 3 2 0 0
Landing 1 2 1 3 1
Delivery 2 1 0 4 1

TABLE 7 | Participants’ chosen speed of interaction by state.

Fast Average Slow

Do Not Follow/Go Away 4 1 2
Watch it/Look at it 0 4 4
Investigate 1 3 4
Caution 1 3 4
Follow It/Move Towards 1 4 2
Yes/Approval 2 5 1
Landing 1 2 5
Delivery 0 4 4

TABLE 8 | Motions created in Phase 4 classified according to the taxonomy and labeling from (Firestone et al., 2019).

State Complexity Space Cyclicity Command Altitude Motion

Do Not Follow/Go Away Simple (5) Direct (5) Random (6) Pitch (7) Stable (5) Rectilinear (7)
Watch it/Look at it Simple (5) Direct (4) Random (4) Throttle (6) Variable (3) Rectilinear (4)

Indirect (4) Cyclic (4) Roll (4)
Investigate Compound (5) Indirect (5) Random (5) Roll (6) Stable (4) Combinational (4)

Pitch (5)
Caution Compound (6) Indirect (6) Random (5) Roll (4) Stable (5) Rectilinear (6)
Follow it/move towards Simple (5) Direct (6) Random (7) Pitch (6) Stable (5) Rectilinear (7)
Yes/Approval Compound (6) Indirect (6) Cyclic (5) Throttle (7) Variable (6) Rectilinear (6)
Landing Simple (4) Direct (4) Random (7) Throttle (7) Decreasing (6) Rectilinear (5)

Compound (4) Indirect (4)
Delivery Simple (4) Direct(5) Random (8) Roll (4) Stable (4) Rectilinear (3)

Compound (4) Pitch (4)
Throttle (4)
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created motions that were either fully or slightly dependent upon
the space that the UAV was flying in. For example, one person
created motions that should go to the extremity of a person’s view
(fly as far as the operator could see it), or to the extremity of an
available space (edges of a room). A more frequent response was
to slightly scale up motions for a larger space/interaction area or
larger UAV. The size of the UAV was also left open-ended, this
appeared to cause some participants to think of the UAV as the
size of the object they were holding.

8.1.4 Excluded Participants
In the early trials of running the Phase 4 study, and in response to
the limitations identified from Phase 0 (Firestone et al., 2019), the
experimenter showed brief demonstrations of possible flight
characteristics. Due to anomolies in their responses this
resulted in two participants, in addition to the eight described
earlier, being excluded from the results, and analysis presented
here in case they were unknowingly biased by the experimenter.
During their task descriptions one participant was shown a circle
and the other was shown line movements along axes. Both of
these participants then showed these demonstrated
characteristics consistently within their created flight paths.
For the participant shown the circle 6/8 of their motions were
categorized as curvilinear, and for the participant shown axis
movement all of their motions were categorized as rectilinear.
The remaining participants were not shown any example flight
demonstrations. This exclusion raises significant concern on how
seemingly small differences in experimental design with nascent
technologies can unwittingly prime participant responses.

8.2 Results
We had participants recommend their preferred characteristics
for an entire interaction space, including speed, height, and
motion. The designed interactions section below provides a
summary for each of the states, in addition to participants’
speed and height characteristics.

8.2.1 Designed Flight Paths
Starting with “DoNot Follow/Go Away,” five participants created
different variations of a motion retreating from them, in addition
to that two others chose small back-forth juts. This later motion is
well reflected in the dominant speed trait, with fast being the most
popular choice. For this motion it was also most common to place
it around eye level.

For “Watch it/Look at it,” two participants chose a yaw
motion, for this motion we also see the first dynamic designs.
With participants creating motions that either circled, created a
diagonal line, or yaw towards the object of interest. There were
also designs involving all three of those motion components that
did not have a mentioned attachment to a specific area or object
to observe. Five participants designed motions that they placed at
eye level, and split their speed preference evenly between average
and slow.

For “Investigate” the most dominant trait having movement
along the x-y plane. Four of these motions involving a circle, three
of which were horizontal. Most of them contained a line either
moving left-right or front-back, but not both. Both Investigate

and Caution were placed at a majority of chest level (with some
eye level and above), and have a split for speed between average
and slow. Looking deeper into the per-person breakdown shows
that even though these two ended up with the same distribution,
many of the participants chose different answers for each one
(i.e., the same people didn’t pick the same answers for both). The
motions for “Caution” also don’t have any curvilinear
characteristics, and while three people designed a left-right
motion, three more people also designed a vertical motion
(up-down, vertical triangle) indicating further differences
between the two states.

The “Follow it/Move Towards” motions, similar to the “Do
Not Follow/Go Away,” had six people create motions that moved
away from the person. In these cases though the motions were
more dynamic. A great example of this from one person is that
they wanted the motion to make a line towards their destination
with periodic yaws back towards the person. The remaining two
suggested up-down changes. Overall the speed and height also
show distinction between the two states. People here wanted the
motion to be at chest level rather than eye, and chose an average
speed rather than fast. This speed difference could indicate more
of an offer for guidance (particularly paired with the yawing to
ensure following) rather than fleeing in the earlier state.

For “Yes,” all eight designed motions in the vertical plane, four
of which were simply an up-down motion. Participants
commonly noted that a reason for this was because it matches
current human non-verbal communication in nodding or
because it matches yes in sign language. These motions were
placed at above head/eye levels with an average speed.

“Landing” also showed high agreement among participants,
with six including a down motion, three of which were straight
down. All of the motions involved the vertical plane, and two of
them incorporated a yaw component. Every height category
received placement, with slight majority going to waist and
below, but there is much greater agreement that the motion
should be slow in speed.

Finally, “Delivery” involved four participants designing an
approach and three including a curved motion in various ways
(curved approach, vertical circle, and “D” shape). Again placing
the height at waist and below, and speeds of average or slow.

A couple of people mentioned when choosing motions placed
below eye level that they wanted to be able to clearly see the UAV.
One person described having it fly at this lower height gave them
what felt like more control over the situation.

8.3 In-Person
Five of the eight participants were able to come in-person to view
their created gestures performed by a DJI Flamewheel F450, the
same vehicle that was used in the video recordings and in the
same lab space used throughout the phases. After viewing their
motions, they were asked if they would change anything. Most
did not request any major changes to their originally designed
motion, but all five mentioned changes they would make to at
least one of their motions after viewing.

Typically these changes were in relation to the overall size of
the motion, such making it larger or smaller. The amount that
these motions were made larger was not consistent or a direct
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multiple of their small demonstration object to the size of the
UAV. One participant designed motions that were originally
proposed to be six inches in size, after viewing they determined it
was not as clear as they desired. Another participant’s motion was
originally proposed to be approximately one foot and instead
requested a change to six feet. One hypothesis for the large
number of requested size changes was because participants
may not have considered that a UAV, even in a highly
controlled space with a Vicon system, has small perturbations
while hovering. Because of this noise, the smaller motions were
not usually large enough to create a clear distinction for their
specific motion. Besides size changes, the only other change of
note was when a participant requested to have the UAV move
away from them rather than towards in all motions they designed
with an approach (Watch it/Look at it, Investigate, Caution, and
Delivery).

8.3.1 Added Modalities
At the end of their interaction each person was asked if they could
add any modality to the UAV, what it would be. The responses
were: Speaker/Sound x2, LED Panel x2 (green � good, red � bad/
stop) (green � follow me, yellow/orange � caution), and an on-
board distance sensor to have the ability to act with a perception
of the space around them.

8.4 Comparison to Previous Work
Phase 4 was run explicitly to compare to previous work in Phases
0–3 and to prior work by other colleagues working in this area. In
this section, we will describe where this phase supports or
contradicts work that has come before and then present areas
that are well motivated for future studies.

8.4.1 Comparison to Phase 0 (Label Creation)
Only two of the states included in this phase were presented in
Phase 0 (Duncan et al., 2018), “Landing” and “Draw Attention”
which map to “Landing” and “Watch it/Look at it.” The methods
for Phase 4 are significantly different than in (Duncan et al.,
2018), so any support is likely to be only via high-level flight path
characteristics. Examining commonalities in responses between
these works, we can see that all motions with a draw attention
label (Circle, Loop, Swoop) are curvilinear, which we also see � in
two of the eight motions designed for the “Watch it/Look at it”
state. For “Landing,” while one person did create a spiral in Phase
4 for landing, more common is a significant movement along the
z-axis. From the similar characteristics found between the two
works, we see very light support for Phase 0 (Duncan et al., 2018)
results from Phase 4.

8.4.2 Comparison to Phase 0 (Gesture Elicitation)
The motions created by participants in Phase 4 were all
categorized according to the taxonomy presented in Phase 0
(Firestone et al., 2019), and shown in Table 8.

Three states here are considered similar to those from
Firestone (landing, investigate, and watch it/look at it).
“Landing” is referred to by the same name here. In both of
these studies throttle and decreasing altitude are considered
significant, with weaker support for direct.

The second is area of interest, which we map to “Investigate”
here. For both of these we see roll and pitch as significant
commands. Four of the motions here are also curvilinear,
supporting the motion finding.

Finally, the third is attract attention, which we map to “Watch
it/Look at it.” For this state, roll and throttle are the only
characteristics that were considered significant for attract
attention, and we see both of those represented here, with six
out of eight motions containing throttle and four containing roll.

It should be noted the final two states do not perfectly map to
states in (Firestone et al., 2019), but rather convey similar intents.
In any case, the support seems reasonably strong for similarities
in the structure of the designed motions indicating potential
differences across states.

8.4.3 Comparison to Phase 3
Once again, when comparing across these phases, the expectation
for Phase 4 to show support for Phase 3 findings would be based
on high-level similarities between the created and selected
motions. Notably, the same state options from Phase 3 are
presented here, with only “Do Not Follow/Do Not Pass/
Restricted/Go Away” condensed down to “Do Not Follow/Go
Away” differing.

This phase shows strong support for the idea that movement
along the z-axis is distinguished as a characteristic of landing,
with all participants having movement along the z-axis (six
descend, two up-down). It also supports that “Follow it/Move
Towards” should have large motions along the y-axis (six based
on y-axis), although the motions are split (five and three) in terms
of having an associated movement on the z-axis.

The recommendation to stay and watch a UAV was to
minimize the amount of motion or have large altitude
changes. Three of the states are presented as minimized
motion, two yaw only and one circle defined as being only big
enough to see movement. In addition to this, six participants
include a throttle component, three of which were defined as
moving a large amount (in these cases at least six feet). So we see
some support for minimizing motion, but also overlap with the
findings for landing. This is not unexpected and has been
common across the studies where participants indicate an
interest in watching a landing vehicle.

For “Yes” we again saw people associate up-down here, four
provided basic up-down movements. In both phases, participants
mentioned that this was because they associated the movement
with nodding or yes in sign language.

In terms of the “Do Not Follow” state, we saw five of the
participants design a motion that involved retreating (moving
away) in some capacity, which is strange because many of the
participants also designed a retreating motion to signify “Follow
it/Move Towards.” Phase 3 found it likely that movement along
the x-axis would mean to not follow, so this phase does not
support that finding. It should be noted that Phase 4 was the first
to include differences in the speed of motions, so given this as an
option it appears that participants may use speed to differentiate
the meanings.

Another finding from Phase 3 indicated that complex motions
should also result in participants moving away from an area.
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These results are generally supported by the “Caution” state,
which has six motions defined as compound.

Generally, we observe at least partial support for the findings
in Phase 3 from the motions designed by participants in Phase 4.
One notable exception is in “Do Not Follow/Move Away,” but
this could also be due to the simplification of this state to exclude
the idea of a restricted area after the conclusion of Phase 3.

9 CHARACTERISTICS

During the free response analysis in Phase 2, we quickly noticed
people were responding with feelings within the responses
regardless of whether we asked for it. Considering the findings
from (Cauchard et al., 2016), we hoped to elicit similar
personality traits, but were curious how participants would
respond to flight paths when not varying the speed and height
characteristics as in that work. Explicitly including this question
also allowed us to investigate if different flight paths would elicit
similar or different personalities.

We presented 2 independent raters, who were not participants,
with the data from Phase 1 and asked them to attempt to
categorize the responses into the emotional states from
(Cauchard et al., 2016): Dopey/Sleepy/Sad, Grumpy/Shy,
Happy/Brave, and Scared/Stealthy/Sneaky. They had high
agreement (Kappa �0.63 and above) but indicated difficulty
with the task. Feedback from raters indicated that they felt
they were making a lot of assumptions by categorizing into
these states, since it was typically inferred from an unrelated
response. In future phases, we explicitly asked the questions to the
participants and with the goal to gain complementary
information regarding the states being selected. In regards to
the raters, the overwhelmingly popular (by more than three
times) category for both of them when sorting Phase 1
responses was Happy/Brave.

9.1 Personality Scale Definition
Modeled after (Spadafora et al., 2016; Cauchard et al., 2016) who
presented the stereotypes of personality, each of the participants
were given five scales they had to rank each of the videos using a 5
point Likert scale, pairing one extremity to the left side and the
other to the right. The questions represented the “Big five” traits
conveyed by two opposite poles: Openness to Experience,
Conscientiousness, Agreeableness, Extraversion, and
Neuroticism. Figure 3 is a visual example of how this was

presented to participants, and Table 9 is the full list of
presented characteristics.

9.2 Phase 3: Personality Characteristics
Most commonly participants classified the videos with Practical/
Conforming, Organized/Disciplined, and Calm/Secure
characteristics. According to (Cauchard et al., 2016) this
meant that almost all of them would classify as brave, which
Cauchard further goes on to classify as anAdventurer HeroDrone
type, regardless of the motion depicted.

X-shape and undulate stand out as being more imaginative,
disorganized, ruthless, and anxious in nature than the other
motions. These four characteristics don’t perfectly match any
of the models, but come closest to Sad, Dopey/Sleepy, and Scared,
which closely resemble the Exhausted Drone. This is interesting
because in (Cauchard et al., 2016) they involve significant altitude
changes, and thus would be unlikely to be designed this way to
convey such a state. The difference in perceived personality is also
interesting given that both of these flight paths still elicited the
most common forced choice responses of “Move Away”
and DNF.

9.2.1 Personality Differences in Free Response vs.
Forced Choice
Plus and Left-Right show opposite personalities when the
participants were presented with free response options rather
than forced choice. The responses for both motions showed
significantly more imaginative traits assigned in free response,
as categorized by the raters, and more practical in forced choice,
as chosen by the participants. Again, this may be at least
partially attributed to the experiment design as participants
may be projecting their emotions onto what they see the
UAV doing.

9.3 Phase 4: Personality Characteristics
During the online creation of participants’ motions, they were
also asked to assign a UAV model to each state. Those responses
are shown in Table 10.

Overall there is strong consensus for Adventurer Hero,
which is the model most applicable to the results of Phase
3. Other states that diverge have converged to applicable
archetypes, such as Anti-Social for “Do Not Follow/Go
Away,” Sneaky Spy for “Investigate,” Adventurer Hero for
“Follow it/Move Towards” and “Delivery,” and Exhausted
for “Landing.” This lends support to both lines of work

FIGURE 3 | Example of personality question as displayed to the participants in Phase 1 and 3.
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and calls for future studies explicitly linking the design
characteristics from the designed motions here and the
motion characteristics defined in (Cauchard et al., 2016).

There were still differences in the design of the motions
when these motion characteristics were requested. For
example, Cauchard places Anti-Social at about chest height
and at an average speed. From our findings, “Follow it/Move
Towards”motion had a large number of participants placing it
at chest height with an average speed, but it is classified as
Adventurer Hero by these participants. While none of the
states have both a categorization of above head height and fast
speed in this work, the closest resembling this is for “Yes/
Approval,” which participants also classify as Adventurer
Hero and which matches the recommendations of
Cauchard. The final set of parameters in Cauchard are for
Exhausted personality profile. For this, the speed is slow and
the altitude is best understood to be waist or below in this case.
This best matches Delivery, which is also classified as
Adventurer Hero by these participants.

9.4 Phase 4: In-Person Characteristics
The participants that came in-person to complete their study
were presented with the same labels presented inTable 9, but on a
scale of 1-6 instead. All eight states had a classification of
practical, organized, softhearted, and calm when sorted as
(1,2,3) and (4,5,6). Practical/conforming, organized/disciplined,
and calm/secure were the same characteristics applied to the
majority of videos in Phase 3. In addition to these four
classifications, the only state that had a significant result on
the Retiring/Sociable scale was “Retiring, Sober, Reserved” for
“Landing,” which had all five people classify it as a 3 (which is
slightly agree on this scale). As before, this collection of
characteristics doesn’t map perfectly to any of the models, but
of the options 3 of the 4 map to brave, happy, and shy. Happy and

brave are condensed into the Adventurer Hero Drone, and shy
falls under Anti-Social, regardless of the requested state. This
could again be due to the lack of co-design in the personality
characteristics and the motion of the UAV, so this is suggested for
explicit inclusion in future work.

10 ADDITIONAL EXPLORATORY STUDIES

Throughout these studies opportunities were presented to gain
additional knowledge about both state labels and the effect of the
different axes of motion within the flight paths. Some of these
opportunities were investigated via small proto-studies that were run
in-between the larger studies to better inform their design. These
additional investigations were not central to the narrative above, but
do provide complimentary information for completeness.

10.1 State Elicitation
Between Phases 2 and 3, an additional sixteen participants (not
included in any of the above studies) were asked for 3-5 states they
believe a UAV should convey. Eight of these participants were also
asked what information they believed a UAV should be able to
communicate to those not involved in the UAV’s operations. The
question placement was counterbalanced between the beginning
and the end of their study to see if participants provided more
creative responses prior to applying given labels, or if they would
provide the same states we provided if requested to provide states at
the conclusion of the study. The placement of the request did not
seem to have an effect overall. Regardless of placement, each of the
participants submitted at least one of the states or labels that were
included in the forced choice responses. The remaining portions of
this study were not analyzed further due to poor responses. One
lesson here, similar to that in the motion design and label creation
categories is that creating prompts for participants which are open-

TABLE 9 | Big five opposing characteristics presented as anchors to the Likert scale.

1 5

Practical, conforming, interested in routine Imaginative, independent, interested in variety
Disorganized, careless, impulsive Organized, careful, disciplined
Ruthless, suspicious, uncooperative Softhearted, trusting, helpful
Retiring, sober, reserved Sociable, fun-loving, affectionate
Anxious, insecure, self-pitying Calm, secure, self-satisfied

TABLE 10 | Applied characteristics.

Sneaky spy Adventurer hero Anti-social Exhausted Other

Do not follow/Go away 0 1 6 0 1
Watch it/Look at it 2 3 0 0 1
Investigate 4 2 1 1 0
Caution 0 2 2 2 2
Follow it/Move towards 2 4 1 1 0
Yes/Approval 1 3 0 1 3
Landing 1 1 1 5 0
Delivery 1 4 0 1 1
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ended enough to generate new ideas but narrow enough to provide
overlap is a difficult endeavour.

10.2 Axis Investigation
After brief examination of the initial results of Phase 3 (the first
32/40 participants), we observed a seemingly consistent
observation about the impact of the primary axis of motion.
The initial observation was that motions moving mostly along the
x-axis appeared as though they would elicit a blocked response, as
demonstrated by all actions with the DNF choice were either
significantly or solely on the x-axis. Whereas motions mostly on
the y-axis seemed to rather encourage motion in that direction (to
follow it), shown by front-back.

To test this observation, four of the motions that received the
least amount of DNF categorizations from the first 32/40
participants in Phase 3 (front-back, straight descend, yaw, and
diagonal descend) were replaced with four motions receiving the
highest DNF classifications that had their primary axis of motion
relocated from x-axis to y-axis (undulate, U-shape, X-shape, and
horizontal figure 8). For these cases participants would then see
both the original undulate on the x-z plane, in addition to an
undulate on the y-z plane. This design was adopted to reduce any
differences in this participant set. A visualization of the axes of
motion relative to the participant is shown in Figure 4.

Ultimately there was not support for this initial observation
within the exploratory dataset. The motions when rotated were
still DNF, but we did observe a decrease in the intention to “Move
Away” when compared to the earlier results. A different takeaway
from these results is that it appears simplicity of the flight still
holds a priority in effect, as with added complexity to the front-
back motion we observed a change to a DNF state.

A noteworthy exception to the findings here is that horizontal
figure 8, although initially classified DNF, when rotated received a
tie for DNF and “Follow it” classifications. This could be due to
the fact that this motion is unique from the others in that it moves
a similar total x and y distance, with the distance on the y-axis
from the participant being similar to that of the front-back

motion. Another distinction this motion has from the other
turned motions is a lack of motion on the z-axis. Overall this
exploration is small and further study of these concepts would
prove beneficial.

10.3 Phase 3 NARS Impact
The NARS questionnaire (Syrdal et al., 2009) contains questions
asked on a Likert scale from 1 to 5, limiting participants’ scores
within a given category to an average between 1 and 5. A score
below 2 is considered positive, and a score above 3 is considered
negative. Values between 2 and 3 are considered neutral.

After reviewing the states that were being presented to
participants in Phase 3, they fell within three natural
groupings. The first grouping contains states that can be
associated with a more positive connotation, while also being
states that could be considered as welcoming movement towards
the UAV. The second grouping was neutral states, or states that
may invite the viewer to be stationary. Finally, the third grouping
was negative sentiment states, otherwise viewed as states that
encouraged the viewer to move away from the UAV or
discouraged interactions.

• Positive/Move Towards: “To Follow It/Move Towards,”
“Yes,” “Welcome,” “Help,” “Follow it,” “Help it”

• Neutral/Stay: “Landing,” “Delivery,” “Watch it,”
“Investigate”

• Negative/Move Away: DNF, “No,” “Caution,” “Move
Away”

In total, participants provided 32 responses to questions that
were prompted with this set of responses (16 responses for each
question, 2 questions per video). Observing the correlation between
people’s NARS scores and their chosen states, participants
appeared more likely to choose a state from a given category
based on whether they have a positive or negative NARS score. We
observe that people with a NARS score classified as negative were
more likely to pick negative states (mean:13.07, SD:4.7), and overall
they were not as likely to choose one of the positive responses
(mean:6.36, SD:3.4) t(26) � 4.27, p � 0.0002. Those with a positive
NARS were likely to pick a positive state (mean:10, SD: 3.08) or
negative state (mean:9.6, SD: 2.07) at about the same frequency t(8)
� 0.24, p � 0.815. Both positive and negative NARS participants
classified motions as one of the neutral options about 12 times on
average [t (17) � 0.12, p � 0.907].

10.3.1 Personality Traits and NARS
Another correlation was between the NARS scores and the
personality traits assigned to the motions. The 14 participants
who had a negative NARS score were more likely to define the
UAV as conveying practical, disorganized, ruthless, retiring, and
anxious characteristics as seen in Figure 5. Whereas the 5
participants who had a positive NARS score generally selected
the opposite traits (imaginative, organized, softhearted, sociable,
and calm). The average of all 56 participants fell within the
neutral values on all of the traits.

We test the null hypothesis that there is not a relation between
NARS scores and chosen personality traits using t-tests. Using a

FIGURE 4 | Direction of axes of motion relative to participant.
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t-test for 2 independent means we see that 4 of these results show
significance, meaning that there is a correlation between
participants’ NARS score and categories chosen, with an alpha
of 0.05. These four results are Imaginative t (17) � 2.35, p � 0.031,
Softhearted t (17) � 3.51, p � 0.003, Sociable t (17) � 2.24, p �
0.038, and Calm t (17) � 3.13, p � 0.006.

There was no significant difference for practical t (17) � −0.24,
p � 0.815, Disorganized t (17) � −0.53, p � 0.601, Organized t (17)
� 1.28, p � 0.216, Ruthless t (17) � −1.38, p � 0.187, Retiring t (17)
� −0.33, p � 0.749, and Anxious t (17) � −0.18, p � 0.862.

11 DISCUSSION

This work investigated how the general public would perceive and
respond to communicative flight paths from UAVs through an
iterative refinement of both flight paths and state labels. The
limitations, implications, recommendations, and our reflections
on this work will be presented in this section.

11.1 Limitations
A limitation for all phases of this study is that the flight controller
used did not maintain precision control of the altitude of the
UAV over time, because of this the paths were slightly varied
based on the battery levels at the time of a specific flight. This is
primarily a concern for the videos since these motions were
intended to be held at exactly the same center position. This was
also less of a concern in-person as the in-person flights were
typically much shorter than the 30 s, and if a significant change
was noticed in the flight controller’s ability to hold the altitude the
battery was just changed between demonstrations.

Although the biologically inspired motions chosen at the
beginning of this research were expected to be culturally
universal, the interpretations of the motions presented here
are likely to be impacted by our participants’ culture. This is
related to how cultures interpret body movements differently, as
discussed in (Sogon and Masutani, 1989; Kita, 2009). This idea is
particularly supported by Andonova and Taylor (2012) which

discusses the cultural associations with specifically head nodding/
shaking. Although head-nodding means approval or “yes” in
many countries, it does not mean this universally. For example,
Bulgaria has a reversed response pattern, where a vertical head
movement means “no” and horizontal head movement means
“yes.” Given the relatively limited representation of non-
Americans in our studies this is important to note as it
impacts the generalizability of these results to other cultures.

Another note is the differences in pay participants received
throughout these phases. Pay for the tasks in Phase 0 was
comparable to other similar tasks available on mTurk and to
similar in-person studies at related universities at the time, but
was ultimately determined to be too low. In addition to taking
place in different years, this is why the pay was increased for
future studies. It is possible that this may have impacted the
quality of work provided by participants in Phase 0, as noted by
(Litman et al., 2015).

Finally, the most significant limitation is that this work focuses
exclusively on single-turn communication rather than multi-turn
interactions such as in (Clinkenbeard, 2018; Csapo et al., 2012;
Sidnell and Stivers, 2012). Future works should focus on more
involved multi-turn interactions to better leverage the promise of
this new communication modality.

11.1.1 Video
A limitation of the work is that Phases 0 (Duncan et al., 2018),
Phase 1, and Phase 3 were all limited to remote viewing using
video recordings. While an effective preliminary method, the
main concern is that it likely impacted participants’ ability to
provide their true reaction, as there is almost always a difference
between an expected reaction and a natural reaction. Another
aspect of this work which might impacts participants’ ability to
accurately predict their true reaction could be the lack of previous
UAV interactions, particularly in a social context. This would
naturally increase the gap between their expected reaction and
actual reaction, or interpretation. This concern is further
reinforced by the fact that every person who came in-person
during Phase 4 had at least one motion they wanted to modify.

FIGURE 5 | Average number of times a personality category was chosen by a participant based on their NARS score. The upper bound for number of uses is 16 per
participant.
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Video use also eliminates the ability to explore varied UAV
size and sound effect. While participants were asked to always
have their sound enabled for the videos, there was no sound
verification. This likely means that some participants had their
sound off, or at a barely audible level. This is a problem that needs
to be further explored in-person because of the high level of
impact these factors can have on presence, fear, and interest in the
machine.

The height, size, and speed of the recorded motions presented
were held relatively constant in these studies, as opposed to being
varied to elicit emotional responses as in (Cauchard et al., 2016).
This is a limitation because varying these factors may allow
exploration of additional communicative functions (rushing,
thoughtful, contemplative, etc). This was not an oversight, but
a priority for the study to reduce those factors and see what
emotions or states were elicited specifically from the flight paths.
The impact of these factors is briefly explored in Phase 4, but
warrants further investigation.

In general, when presented with a forced choice option, most
people agreed that these states appropriately conveyed the
message they were looking for or at least did not care to
write-in a response. While we cannot know for sure which of
these is true, however since the results of Phase 4 generally
confirm those of Phase 3, the categories seem appropriate choices.

11.1.2 Phase 4
A similar limitation (lack of choice and context) within the final
phase was that the participants had to create the motions
remotely over Zoom. As mentioned in further detail within
Section 8, this reduced the fidelity of the participant
interactions and raised questions from the participants about
how and where this motion would be used. Some of this
confusion could have been amplified because participants were
purposefully not provided with any details about intended use or
demonstrations so that they ideally create gestures that are able to
be broadly applied. The danger in accidentally priming
participants is discussed in more detail within that section, but
also bears repeating here. Two excluded participants were each
presented with curvilinear and rectilinear paths, respectively, as a
demonstration before producing their own paths almost
exclusively within those categories. Further investigation into
appropriate context, demonstrations, and other priming
mechanisms would be valuable when generating design
characteristics for new technologies.

The size of the participant count within Phase 4 is also of note.
There were limitations in having a larger participant pool
participate in-person due to health and community regulations
at the time of the study (in winter 2020). Thus the concept behind
Phase 4 is support our larger online studies and provide possible
paths for future work, rather than being a summative study to
conclude the work.

11.2 Implications
We present an exploration into perceived communication,
expected physical response, and emotional response to varied
UAV flight paths. As a result of this, there are important practical
implications discovered here for UAV developers and future

researchers that may help to provide safe and knowledgeable
interactions for the general public. This work indicates that
people relatively easily associate motions applied in other
situations onto UAVs, especially in the cases of Landing being
conveyed with an altitude change, and a controlled up-down
communicating “Yes.” If a UAV begins to move away from
someone at a lower height and slower speed, it is highly likely
to be understood to follow it, especially if the motion is dynamic
(periodic yaw to “look back” at the person, or clearly going in a
specific direction). Because we also saw Do Not Follow have a
retreating motion, the context added by the speed and height of
interaction become highly important.

We were able to elicit different personalities, as described by
(Cauchard et al., 2016), without varying the underlying flight
characteristics and thus extending that work. One of the more
significant deviations from (Cauchard et al., 2016) is that the
undulate motion is used as a prototype of Adventurer Hero, but
the participants here classify that motion as one of few to be
Exhausted. Overall, participants classified almost all motions as
Brave, and in turn the UAV as an Adventurer Hero type, which
held across both Phase 3 and 4 and in spite of the UAV base
characteristics being more closely aligned with those of the Anti-
Social Drone and Exhausted Drone.

Overall, the work presented here builds and presents aspects in
each new phase that support previous findings with at least a low
level of confirmation by leveraging early findings as a starting
point for exploration in this iterative process.

11.3 Recommendations
A major recommendation which has been presented in recent
sections and in the discussion so far has been in the need for study
on how to situate requests to participants in designing
interactions with novel technologies without priming their
responses and while still producing convergent ideas. The
work presented here was a first step towards identifying
common expected communications and underlying
assumptions about the meaning of different flight paths, but
still leaves many questions open regarding height, speed, and
place of interaction. A challenge throughout this work has been
establishing underlying mental models of UAV flight paths
without priming those models towards specific path
components (as discussed in Section 8.1.4).

Another recommendation is to explicitly bridge the work
between (Cauchard et al., 2016; Bevins and Duncan, 2021) in
order to apply the personality models to the designed flight paths
and understand any changes in participant perception. Given
how underexplored the area of human-UAV interaction has
been, this work has converged in an interesting and exciting
ways to build upon these lines of inquiry.

In a more fundamental sense, we have recommendations on
flight paths, which include the complexity of motion, leveraging
other motions within a culture, and the need to include the speed/
height characteristics in future studies. From our results we found
that complex motions frequently indicated an intention to move
away from the UAV and/or area whereas simplifying or
minimizing the motion would encourage them to stay and
watch the UAV. Participants also associate motions applied in
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other situations well onto UAVs, especially in the cases of
“Landing” being conveyed with an altitude change, and a
controlled up-down communicating “Yes/Approval.” If a UAV
begins to move forward at a lower height and slower speed, it is
highly likely to be understood to follow it, especially if the motion
is dynamic (periodic yaw to “look back” at the person, or clearly
going in a specific direction). Finally, as mentioned above, we
note the need to have speed and height control to motivate a given
context of interaction.

11.4 Reflection
An interesting result from the final Phase was the large amount
of movement along the y-axis for the “Do Not Follow/Go
Away”motions. At least one participant mentioned that if they
were not supposed to follow the UAV then they would prefer
that it depart the area (or at least their view). Contrast this to
participants from Phase 3 where they perceived the “Go
Away,” as more similar to a guarding or protecting motion
seen in a variety of communication scenarios (such as
basketball guarding, a patrol team or dog). The dissonance
between the two could be from a change in the state description
where “Do Not Pass” and “Restricted” were removed as a
simplification between Phase 3 and 4. While the authors
assumed this change would have little to no effect on the
responses, if this were a correct assumption, it could be
assumed that a movement in-front of a person would give
off a message that an area is blocked/to not approach, and to
communicate not to follow is more associated with a speed and
height than a particular motion (i.e., too fast and high). These
types of findings can lead to a perceived brittleness in the
studies conducted and the generalizability of the findings,
however they could also be a testament to the difficulty in
defining interactions with a new technology. Many of the
findings were consistent across a 3-years, four phase study
that was meant to both build and challenge its earlier results.

Throughout this work the most popular and recognizable
characteristics of motion seem to frequently mirror an already
recognized motion in a variety of domains. We see this
represented most prominently with yes being associated
with up-down and landing being associated with a straight
descend, in addition to the note about guarding above.
Everyday people, regardless of their design ability, have
seemingly pulled these characteristics from interactions
across human, object, or animal movement, and applied it
as being effective in human-UAV communication. This is
promising for future studies in this area, particularly in the
open areas identified to provide support among disparate lines
of research within this new field.

While this work has limitations, it extends the state-of-the-art in
understanding how people interpret aerial vehicle motions to assist in
informing how they may most effectively communicate messages
(both via targeted motions and messages people are expecting to
receive) to people using the most fundamental communication
method in their flight paths. Future work is necessary to build
upon the results shown here, but this work has taken a
meaningful step towards bringing together previous work and
understanding what people perceive about these systems.

11.5 Future Work
The most well-motivated future work described here is to merge
the lines of research discussed in Phase 4 with those presented in
(Cauchard et al., 2016) via a larger study either online or in-
person. This would provide a richer set of flight paths with clear
guidance on speed, height, and personality expectations to
communicate specific states. This work could also be extended
to understand how those flight path characteristics are impacted
by the location of interactions and context inherent in the
location changes (expectations for indoor versus outdoor,
home versus public spaces, etc.).

As motivated in the limitations section, this work is focused
exclusively on either one way communications or, at best, single-
turn interactions. Future work would benefit from understanding
how to leverage these into multi-party or at least multi-turn
interactions. Recommended additional studies described below
will also contribute to this improved understanding of a more
involved or robust interaction.

Some specific limitations of the current work that could be
addressed through additional studies include: adding context,
adapting from designers in other areas, understanding the
perception changes from in-person to online interactions, and
the impact of additional communication modalities. It would be
interesting to explore how flight paths vary when participants are
given a specific scenario or use case to see how they adapt for each
situation. As in other design work, it may prove beneficial to
explore having animators, or dancers create the motions, as they
are already trained in thinking about how to have people interpret
motion that communicates messages. An extension of specifically
Phase 3 would be to run the motions from Phase 3 in-person to
see the full effects of being near the UAV as opposed to just
viewing it online. Other factors to explore in the future that would
compliment this work include adding light components, as
mentioned by participants throughout, or changing the vehicle
design.

Briefly addressed above and in Phase 4 would be further
separation of categories combined here for simplicity,
specifically splitting the“Do Not Follow/Do Not Pass/
Restricted/Go Away” category. While this category did provide
general motivation, which was its purpose, it also appeared to be a
catchall and may be better understood with separation of it into
individual components. This was partially attempted by
removing the restricted/go away between Phase 3 and Phase 4,
it also appeared to lead to a large change in meaning and should
have been split rather than simplified. Finally, a common note
from in-person participants in Phase 4 was that they had
imagined the motion would be more noticeable. This gap
reinforces a rather simplistic understanding of UAV motion
that we have (unsuccessfully) attempted to address in various
phases. It is imperative to understand how to create a model of
UAV flight, including the range of motion and inherent noise in
the motion while not biasing the motions created by the
participants. Perhaps this limitation could be addressed by
providing a comprehensive explanation of typical UAV
movement during describing the task or training participants
on UAV flight characteristics, but there are concerns with
priming responses when providing further details or
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demonstrations. This is a fundamental issue which needs to be
addressed in future work to truly understand how to best leverage
flight paths for communications.

12 CONCLUSION

Through this work we have been able to understand how
participants would respond, both physically and emotionally,
as well as better understand their perception of the messages
naturally being conveyed within vehicle flight paths.

This work suggests that NARS can be an indicator of how a
person may expect to respond and perceive the general sentiment
of the message being conveyed. This work also indicates that
people associate motions applied in other situations well onto
UAVs. Especially in the cases of “Landing” being conveyed with
an altitude change, and a controlled up-down communicating
“Yes/Approval.” If a UAV begins to move forward at a lower
height and slower speed, it is highly likely to be understood to
follow it, especially if the motion is dynamic (periodic yaw to
“look back” at the person, or clearly going in a specific direction).
Because we also saw “Do Not Follow/Go Away” have a retreating
motion, it’s highly important to note the need for speed and
height situational control for proper context. Finally, flights
crossing (moving along the x-axis) an area are likely to cause
participants to avoid that area.

Finally, this work provides a roadmap to iteratively investigate
the underlying communicative potential of new technologies
while also raising significant questions about how to best elicit
convergent states to communicate and common understanding
of motion primatives. The discussion provided should be of keen
interest to researchers investigating novel communication and to
researchers in human-UAV interactions to understand where
future work may have the most impact on bridging disparate
investigations into this novel field.
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Evaluation of Socially-Aware Robot
Navigation
Yuxiang Gao* and Chien-Ming Huang

Department of Computer Science, The Johns Hopkins University, Baltimore, MD, United States

As mobile robots are increasingly introduced into our daily lives, it grows ever more
imperative that these robots navigate with and among people in a safe and socially
acceptable manner, particularly in shared spaces. While research on enabling socially-
aware robot navigation has expanded over the years, there are no agreed-upon evaluation
protocols or benchmarks to allow for the systematic development and evaluation of
socially-aware navigation. As an effort to aid more productive development and progress
comparisons, in this paper we review the evaluation methods, scenarios, datasets, and
metrics commonly used in previous socially-aware navigation research, discuss the
limitations of existing evaluation protocols, and highlight research opportunities for
advancing socially-aware robot navigation.

Keywords: socially-aware navigation, human-robot interaction, mobile robots, robot navigation, human-aware
navigation

1 INTRODUCTION

Fueled by advances in artificial intelligence (AI) technologies, mobile robots are realizing increased
adoption in various delivery-based industries, from mail1 and packages2 to pizza.3 Mobile robots
designed for these consumer-facing services must not only navigate safely and efficiently to their
destinations but also abide by social expectations as they move through human environments. For
example, it is desirable for mobile robots to respect personal space (Althaus et al., 2004), avoid cutting
through social groups (Katyal et al., 2021), move at a velocity that does not distress nearby
pedestrians (Kato et al., 2015), and approach people from visible directions (Huang et al., 2014)
while maintaining relevant social dynamics (Truong andNgo, 2018). Research that investigates robot
capabilities for navigating in human environments in an efficient, safe, and socially acceptable
manner is commonly recognized as socially-aware navigation—also known as human-aware
navigation (e.g., Kruse et al., 2013), socially compliant navigation (e.g., Kretzschmar et al., 2016),
socially acceptable navigation (e.g., Shiomi et al., 2014), or socially competent navigation (e.g.,
Mavrogiannis et al., 2017).

While research on socially-aware navigation has expanded over the years (Kruse et al., 2013; Rios-
Martinez et al., 2015; Charalampous et al., 2017; Pandey, 2017), there are no standard evaluation
protocols—including methods, scenarios, datasets, and metrics—to benchmark research progress.
Prior works on socially-aware robot navigation utilize a variety of evaluation protocols in custom
settings, rendering comparisons of research results difficult. We argue that commonly agreed-upon
evaluation protocols are key to fruitful progress, as observed in other research fields (e.g., computer
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vision). As an effort to productively advance socially-aware
navigation, in this paper we review commonly used evaluation
methods, scenarios, datasets, and metrics in relevant prior
research. We note that our review focuses on evaluation
protocols rather than the algorithmic methods and systems
that enable socially-aware navigation. We further note that
socially-aware navigation is strongly related to an array of
research topics, including human trajectory prediction, agent
and crowd simulation, and robot navigation; some of the
evaluation protocols reviewed in this paper may apply to these
related research areas. Our review complements the
recommendation for evaluation of embodied navigation
suggested by Anderson et al. (2018) and can be consulted
along with other general evaluation guidelines for human-
robot interactions (Steinfeld et al., 2006; Young et al., 2011;
Murphy and Schreckenghost, 2013).

The reminder of this paper is organized as follows. In Section
3, we present evaluation methods, scenarios, and datasets
commonly used for evaluating socially-aware navigation. In
Section 4, we review evaluation metrics and focus on the
aspects of navigation performance, behavioral naturalness,
human discomfort, and socialbility. We conclude this review
with a discussion of limitations of existing evaluation protocols
and opportunities for future research.

2 METHODOLOGY

Methodologically, this paper can be considered as a literature
review—“a literature review reviews published literature, implying
that included materials possess some degree of permanence and,
possibly, have been subject to a peer-review process. Generally, a

literature review involves some process for identifying materials for
potential inclusion—whether or not requiring a formal literature
search—for selecting included materials, for synthesizing them in
textual, tabular or graphical form and for making some analysis of
their contribution or value” (Grant and Booth, 2009).We focus on
reviewing evaluation protocols for socially-aware robot
navigation. While we did not follow the scoping process used
for a systematic review, we identified materials (papers and
datasets) for inclusion based on their relevance to the topic of
socially-aware robot navigation and its evaluation methods.
Specifically, we used keywords “socially-aware
navigation,”“socially-acceptable navigation,” “human-aware
navigation,” or “crowd-aware navigation” when searching
papers through ACM Digital Library, IEEE Xplore, and
ScienceDirect. We additionally included some preprints from
ArXiv through Google Scholar searches. This process yielded 188
papers in our initial search. Upon further reviewing the titles and
abstracts of the papers, we removed 11 papers that did not address
socially-aware robot navigation. The remaining 177 papers were
published between 2005 and 2021 (Figure 1). A co-occurrence
network of the keywords of the included papers is shown in
Figure 2; the network illustrates three clusters that approximately
represent topics related to human-robot interaction or social
aspects of navigation (red), algorithmic methods for navigation
(blue), and navigation systems (green). The co-occurrence
network was automatically generated through Bibilometrix
(Aria and Cuccurullo, 2017), a bibliometrics analysis tool,
using Louvain algorithm. Table 1 lists major venues where the
177 papers were published.

Upon collecting the 177 papers, we further reviewed the
evaluation section of each paper and chose the studies that are
representatives of the evaluation metrics, evaluation methods,

FIGURE 1 | Number of publications collected by year.
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datasets, and test scenarios described in the next section. Through
this process, we observed that many of the evaluation metrics
were originated from related works on neighboring research
topics such as human trajectory prediction, autonomous robot
navigation, and crowd simulation. As a result, we include relevant
works on these topics to better understand the development of the
evaluation methods in our report and discussion below.

3 EVALUATION METHODS, SCENARIOS,
AND DATASETS

In this section, we describe evaluation methods, scenarios, and
datasets commonly used in socially-aware navigation research,
some of which apply directly to the problems of human trajectory
prediction, crowd simulation, and general robot navigation.

3.1 Evaluation Methods
Mavrogiannis et al. (2019) classified the evaluation methods into
three categories: simulation study, experimental demonstration,
and experimental study. In this review, we follow a similar but

more granular classification based on the type, location, and goal
of the evaluation methods. Specifically, we focus on four
evaluation methods—case study, simulation and
demonstration, laboratory study, and field study—regularly
used in socially-aware navigation research. Each method has
its own advantages and disadvantages and is often used at
different stages of development.

3.1.1 Case Studies
Because navigating among people in human environments
involves complex, rich interactions, it is common to break
down socially-aware navigation into sets of primitive, routine
navigational interactions such as passing and crossing (Table 2).
As such, prior research has utilized case studies to illustrate robot
capabilities in handling these common navigational interactions.
Said case studies usually involve prescribed interaction behaviors
(e.g., asking the test subjects to walk in a predetermined direction
or behave as if they were walking together) and environmental
configurations. For example, Pacchierotti et al. (2006) studied
how a person and a robot may pass each other in a hallway
environment; their study involved different human behaviors,

FIGURE 2 | Co-occurrence network of the keywords appeared in the collected publications. The keywords are clustered using Louvain algorithm. This graph is
generated using Bibilometrix (Aria and Cuccurullo, 2017), a bibliometrics analysis tool.

TABLE 1 | Publication venues of the included 177 publications. Only venues that have more than five papers are listed.

Publication venues #Of papers collected

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 21
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) 13
IEEE International Conference on Robotics and Automation (ICRA) 12
International Journal of Social Robotics 8
IEEE Robotics and Automation Letters (RA-L) 6
ACM/IEEE International Conference on Human-Robot Interaction (HRI) 5
Others 112
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such as moving at a constant speed or stopping in the middle of
the hallway, and illustrated how the robot may respond to those
behaviors. Similarly, Kretzschmar et al. (2016) reported a study
demonstrating how their inverse reinforcement learning
approach allowed a robotic wheelchair to pass two people
walking together in a hallway without cutting through the
group. Truong and Ngo (2017) presented an illustrative study
comparing their proactive social motion model (PSMM) against
the social force model (SFM) in four experimental settings and
showed that their model yielded a more socially acceptable
navigation scheme. Case studies can also be presented via
simulation; Rios-martinez et al. (2013) used a set of predefined
simulated configurations of human behaviors (e.g., moving
around and interacting with each other) to illustrate their
proposed method for reducing discomfort caused by robot
movements.

3.1.2 Simulation and Demonstrations
Simulation experiments have been regularly utilized in recent
years due to advances in reinforcement learning and data-driven
approaches to socially-aware navigation (e.g., Chen C. et al., 2019;
Li et al., 2019; Liu Y. et al., 2020). They are particularly useful for
agile development and systematic benchmarking. Simulation
experiments are typically supplemented by physical
demonstrations to exhibit intended robot capabilities; the
objective of these demonstrations is to illustrate that the
proposed algorithmic methods work not only in simulated

setups but also in the physical world with a real robot. For
instance, Chen et al. (2020) first evaluated their method for
crowd navigation in a simulated circle crossing scenario with
five agents, after which they provided a demonstration of their
method using a Pioneer robot interacting with human subjects.
Katyal et al. (2020) and Liu L. et al. (2020) followed a similar
method, including a simulation evaluation and a physical
demonstration in their investigation of adaptive crowd
navigation. Prior works that report this type of physical
demonstration typically provide supplementary videos of the
demonstrations (e.g., Jin et al., 2019).

Because of the popularity of simulation-based evaluation, an
array of simulation platforms have been developed for robot
navigation, ranging from simplistic 2D simulation [e.g., Stage
(Gerkey et al., 2003) and CrowdNav (Chen C. et al., 2019),
pedsimROS (Okal and Linder, 2013), MengeROS (Aroor et al.,
2017)], to high-fidelity simulation leveraging existing physics and
rendering engines [e.g., Webots,4 Gibson (Xia et al., 2018), and
AI2-THOR (Kolve et al., 2019)] and virtualized real
environments [e.g., Matterport3D (Chang et al., 2017)].
Among these efforts, the following simulation platforms
address socially-aware navigation specifically:

TABLE 2 | Scenarios commonly used in evaluating socially-aware navigation. The publications that employ each scenario in simulation or real-world settings are listed
respectively.

Interaction type Illustrations Used in simulation Used
in real-world settings

Passing Chen et al. (2017a); Vega et al. (2019b); Yang and Peters
(2019); Randhavane et al. (2019); Pandey and Alami (2010);
Pérez-D’Arpino et al. (2020)

Butler and Agah (2001); Pacchierotti et al. (2006);
Kretzschmar et al. (2016); Okal and Arras (2016);

Crossing Alahi et al. (2016); Chen et al. (2017a); Chen K. et al. (2019);
Sui et al. (2019); Manso et al. (2019); Khambhaita and Alami
(2020); Nishimura and Yonetani (2020); Daza et al. (2021)

Guzzi et al. (2013b); Kretzschmar et al. (2016);
Johnson and Kuipers (2019); Mavrogiannis et al.
(2019)

Overtaking Kirby (2010); Pandey and Alami (2010); Anvari et al. (2015);
Chen et al. (2017a)

Pandey and Alami (2010); Šochman and Hogg (2011);
Robicquet et al. (2016); Yang and Peters (2019)

Approaching Turner (1981); Sisbot et al. (2005); Truong and Ngo (2018);
Johnson and Kuipers (2019); Truong and Ngo (2019)

Butler and Agah (2001); Satake et al. (2009); Kato et al.
(2015); Truong and Ngo (2018); Joosse et al. (2021)

Following, leading, and
accompanying

Ferrer et al. (2013b); Yao et al. (2019) Ferrer et al. (2013a); Ferrer et al. (2013b); Ferrer et al.
(2017); Du et al. (2019); Repiso et al. (2020)

Combined Okal and Arras (2014); Okal and Arras (2016); Pandey
(2017); Yang and Peters (2019)

Shiomi et al. (2014); Truong and Ngo (2018); Vega et al.
(2019b)

4https://www.cyberbotics.com
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• PedsimROS (Okal and Linder, 2013) is a 2D simulator based
on Social Force Model (SFM) (Helbing andMolnár, 1995). It
is integrated with the ROS navigation stack and enables easy
simulation of large crowds in real time.

• MengeROS (Aroor et al., 2017) is a 2D simulator for realistic
crowd and robot simulation. It employs several backend
algorithms for crowd simulation, such asOptimal Reciprocal
Collision Avoidance (ORCA) (Van Den Berg et al., 2011),
Social Force Model (SFM) (Helbing and Molnár, 1995), and
PedVO (Curtis and Manocha, 2014).

• CrowdNav (Chen C. et al., 2019) is a 2D crowd and robot
simulator that serves as a wrapper of OpenAI Gym
(Brockman et al., 2016), which enables training and
benchmarking of many reinforcement learning based
algorithms.

• SEAN-EP (Tsoi et al., 2020) is an experimental platform for
collecting human feedback on socially-aware navigation in
online interactive simulations. In this web-based simulation
environment, users can control a human avatar and interact
with virtual robots. The platform allows for easy
specification of navigation tasks and the distribution of
questionnaires; it also supports simultaneous data
collection from multiple participants and offloads the
heavy computation of realistic simulation to cloud
servers. Its web-based platform makes large-scale data
collection from a diverse group of people possible.

• SocNavBench (Biswas et al., 2021) is another benchmark
framework that aims to evaluate different socially-aware
navigation methods with consistency and interpretability.
As opposed to most simulation-based approaches where
agent behaviors are generated from crowd simulation [e.g.,
using Optimal Reciprocal Collision Avoidance (ORCA)
(Van Den Berg et al., 2011) or Social Force Model (SFM)
(Helbing and Molnár, 1995)], human behaviors in
SocNavBench are grounded in real-world datasets
(i.e., UCY and ETH datasets) (Section 3.3).
SocNavBench renders photorealistic scenes based on the
trajectories recorded in these datasets and employs a set of
evaluation metrics to measure path (e.g., path irregularity)
and motion (e.g., average speed and energy) quality and
safety (e.g., closest collision distance).

• The CrowdBot simulator (Grzeskowiak et al., 2021) is
another benchmarking tool for socially-aware navigation
that leverages the physics engine and rendering capabilities
of Unity and the optimization-based Unified Microscopic
Agent Navigation Simulator (UMANS) (van Toll et al.,
2020) to drive the behaviors of pedestrians.

In addition to shared platforms for simulation-based
evaluation, several online technical competitions have sought
to benchmark socially-aware navigation. For instance, the
TrajNet++ Challenge5 focuses on trajectory prediction for
crowded scenes and the iGibson Challenge6 includes a social

navigation task contextualized in indoor navigational
interactions with human avatars.

3.1.3 Laboratory Studies
As opposed to case studies, which often involve prescribing
human test subjects’ behaviors (e.g., having them intentionally
walk toward the test robot), laboratory studies utilize
experimental tasks to stimulate people’s natural behaviors and
responses within specific contexts. Laboratory studies can be
either controlled experiments or exploratory studies.
Controlled experiments allow for statistical comparisons of
navigation algorithms running on physical robots in semi-
realistic environments; we note that controlled laboratory
experiments contrast with simulation experiments, which lack
the fidelity to represent real-world human-robot interactions. As
an example, Mavrogiannis et al. (2019) designed an experimental
task allowing three participants and a robot to move freely
between six stations following a specified task procedure. A
total of 105 participants were recruited for this experiment
and a variety of objective and subjective metrics were collected
to assess and compare three navigation strategies: Optimal
Reciprocal Collision Avoidance (ORCA), Social Momentum
(SM), and tele-operation. Additionally, Huang et al. (2014)
evaluated how a humanoid robot may signal different levels of
friendliness toward participants via movement behaviors—such
as approach speed and direction of approach—in a mock
museum setup.

Laboratory studies may also be exploratory, allowing
researchers to gain early, prompt feedback from users without
controlled experimentation. For instance, Bera et al. (2019)
conducted an exploratory in-person lab study with 11
participants to investigate their perceptions of a robot’s
navigational behaviors in response to their assumed emotions.

3.1.4 Field Studies
While laboratory experiments allow for controlled comparisons,
they bear reduced ecological validity; to address this limitation,
field studies are used to explore people’s interactions with robots
in naturalistic environments. The pioneering tour guide robots
RHINO (Burgard et al., 1998) andMINERVA (Thrun et al., 1999)
were deployed in museums to study their collision avoidance
behaviors and how people reacted to them. More recently, Satake
et al. (2009) conducted a field deployment in which a mobile
robot approached customers in a shopping mall to recommend
shops; they explored different approach strategies and examined
failed attempts. Similarly, Shiomi et al. (2014) investigated
socially acceptable collision avoidance and tested their
methods on a mobile robot deployed in a shopping mall for
several hours with the objective of interacting with uninstructed
pedestrians. Trautman et al. (2015) collected 488 runs of their
experiment in a crowded cafeteria across 3 months to validate
their algorithm. A benefit of deploying robots in the field is that
they may reveal unexpected human behaviors; for instance, it was
observed that young children “bully” a deployed mobile robot
(e.g., intentionally blocking its way), which subsequently led to
new research on how to recognize and avoid potential bullying
behaviors in the field (Brščić et al., 2015). All in all, field studies

5https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge
6http://svl.stanford.edu/igibson/challenge.html
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are difficult to execute due to the unstructured, complex nature of
real-world interactions—but are vital in evaluating socially-aware
navigation andmay offer insights that are otherwise impossible to
discover in laboratory studies.

3.2 Primitive Scenarios
In this section, we describe common primitive scenarios found in
the evaluation methods discussed in the previous section. Table 2
summarizes primitive scenarios in evaluating socially-aware
navigation by the nature of the interactions involved. These
scenarios include:

• Passing: This scenario captures interactions in which two
agents or groups are heading in opposite directions, usually
in constrained spaces such as hallways or corridors, and
need to change their respective courses to pass each other.

• Crossing: This scenario captures interactions in which two
agents or groups cross paths in an open space; it also
considers if one of the agents or groups is stationary.
Common examples of this scenario are circle crossing,
where all agents are initiated on points of a circle (e.g.,

Chen C. et al., 2019; Nishimura and Yonetani, 2020), and
square crossing, where all agents are initiated on the corners
of a square (e.g., Guzzi et al., 2013b).

• Overtaking: This scenario captures interactions in which
two agents or groups are heading in the same direction and
one of them overtakes or passes the other.

• Approaching: This scenario captures interactions in which a
robot intends to approach or join a stationary ormoving group
or individual. This scenario is observed when a robot attempts
to join a static conversational group (e.g., Truong and Ngo,
2018; Yang et al., 2020), initiate an interaction (e.g., Kato et al.,
2015) or follow a moving social group (e.g., Yao et al., 2019).

• Following, leading, and accompanying: This scenario
captures interactions in which a robot intends to join a
moving group by following (e.g., Yao et al., 2019), leading
(e.g., Chuang et al., 2018), or accompanying the group side-
by-side (e.g., Ferrer et al., 2017; Repiso et al., 2020).

3.3 Datasets
Table 3 details a number of datasets of humanmovement that are
regularly used in developing algorithms for and evaluating

TABLE 3 | Datasets used in socially-aware navigation.

Name Year #
Of

people

#
Of

scenes

Scene
type

View
type

Sensor
type

Annotations Publications

UCY (Lerner et al., 2007) 2007 786 3 Outdoor Top-down Mono Trajectories,
Gaze

Lerner et al. (2007); Alahi et al. (2016);
Robicquet et al. (2016); Charalampous
et al. (2016); Gupta et al. (2018); Vemula
et al. (2018); Amirian et al. (2019); Yao
et al. (2019); Kothari et al. (2020); Liu Y.
et al. (2020); Biswas et al. (2021)

ETH (Pellegrini et al., 2009) 2009 750 2 Outdoor Top-down Mono Trajectories,
Group
Membership

Pellegrini et al. (2009); Alahi et al. (2016);
Charalampous et al. (2016); Robicquet
et al. (2016); Gupta et al. (2018); Vemula
et al. (2018); Amirian et al. (2019); Yao
et al. (2019); Liu Y. et al. (2020); Kothari
et al. (2020); Biswas et al. (2021)

Edinburgh Informatics
Forum Pedestrian Database
(EIPD) (Majecka, 2009)

2009 95 ,998 1 Outdoor Top-down Mono Trajectories Majecka (2009); Luber et al. (2012);
Rudenko et al. (2017)

PETS2010 2010 — 8 Outdoor Surveillance Mono — Bandini et al. (2014); Bastani et al. (2015);
Ristani and Tomasi (2015)

VIRAT (Oh et al., 2011) 2011 4,021 11 Outdoor Surveillance Mono Trajectories Oh et al. (2011); Vasquez (2016)
Town Centre (Benfold and
Reid, 2011)

2011 230 1 Outdoor Surveillance Mono Bounding Boxes Benfold and Reid (2011); Ristani and
Tomasi (2015); Le and Choi (2018)

Grand Central Station (Zhou
et al., 2012)

2012 12 ,600 1 Indoor Surveillance Mono Trajectories Zhou et al. (2012); Gaydashenko et al.
(2018)

CFF (Alahi et al., 2014) 2014 42
million

1 Outdoor Top-down RGB-D Trajectories,
Bounding Boxes

Alahi et al. (2014); Liu et al. (2020b);
Kothari et al. (2020)

Stanford Drone Dataset
(Robicquet et al., 2016)

2016 11 ,216 8 Outdoor Top-down Mono Trajectories Robicquet et al. (2016); Sadeghian et al.
(2018a); Sadeghian et al. (2018b); Amirian
et al. (2019); Li et al. (2020)

EgoMotion (Park et al., 2016) 2016 — 26 Indoor FPV RGB-D Bounding Boxes Park et al. (2016)
L-CAS (Yan et al., 2017) 2017 6,140 1 Indoor FPV RGB-D Trajectories Yan et al. (2017); Kothari et al. (2020); Liu

Y. et al. (2020)
STRAND (Hawes et al., 2017) 2017 — 1 Indoor FPV RGB-D — Hawes et al. (2017)
WildTrack (Chavdarova et al.,
2018)

2018 9,518 7 Outdoor Surveillance Mono Trajectories,
Bounding Boxes

Chavdarova et al. (2018); Liu Y. et al.
(2020); Kothari et al. (2020)

JackRabbot Dataset
(Martín-Martín et al., 2021)

2019 260 — Both FPV RGB-D Trajectories,
Bounding Boxes

Martín-Martín et al. (2021)
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socially-aware navigation systems. These datasets typically
capture human movement in terms of trajectories or visual
bounding boxes in various indoor and outdoor environments.

The datasets are used to train models for predicting
pedestrian trajectories and for generating robot movement in
the presence of pedestrians. In particular, they are commonly
utilized in modern data-driven approaches to socially-aware
navigation, such as deep learning methods (e.g., Alahi et al.,
2016; Zhou et al., 2021; Kothari et al., 2020), reinforcement
learning (e.g., Chen et al., 2017a; Li et al., 2019), and generative
adversarial networks (GAN) (e.g., Gupta et al., 2018; Sadeghian
et al., 2018a).

Datasets are also used to evaluate and benchmark the
performance of socially-aware navigation (e.g., Biswas et al.,
2021; Xia et al., 2018); for example, datasets ETH (Pellegrini
et al., 2009) and UCY (Lerner et al., 2007) have been widely
utilized in comparing navigation baselines (e.g., Sadeghian et al.,
2018a; Bisagno et al., 2019; Gupta et al., 2018). One way to use the
data of human trajectories in evaluation is to replace one of the
human agents with the test robot agent and compare the robot’s
trajectory with the corresponding prerecorded human trajectory;
various evaluation metrics described in the next section may be
used to quantify the differences.

4 EVALUATION METRICS

In this section, we review common metrics used to evaluate
socially-aware navigation. We begin by presenting metrics for
assessing navigation performance in the presence of humans. We
then review metrics for representing various aspects of social
compliance; in particular, we focus on the three key aspects of
social compliance in socially-aware navigation as proposed by
Kruse et al. (2013): naturalness—capturing motion-level
similarity between robots and people;
discomfort—representing the level of annoyance, stress, or
danger as induced by the presence of the robot; and
sociability—encapsulating how well the robot follows the social
norms expected by surrounding pedestrians.

4.1 Navigation Performance
In general, prior works used navigation efficiency (Guzzi et al.,
2013a; Guzzi et al., 2013b; Mavrogiannis et al., 2018; Liang et al.,
2020) and success rate (Burgard et al., 1998; Guzzi et al., 2013b; Jin
et al., 2019; Liang et al., 2020; Nishimura and Yonetani, 2020; Tsai

and Oh, 2020) to quantify the navigation performance of a robot.
The common metrics for navigation performance are shown in
Table 4.

4.1.1 Navigation Efficiency
We observed multiple measures of navigation efficiency in prior
research, including path efficiency and relative throughput. Path
efficiency is defined as the ratio of the distance of two waypoints
to the length of the agent’s actual path between those points
(Mavrogiannis et al., 2019). Relative throughput (Guzzi et al.,
2013b) is defined as the ratio of the number of targets the agent
can reach if it ignores all collision and social constraints to the
number of targets an agent can reach in an actual simulation.
Both metrics calculate a ratio of performance under an ideal
condition to performance under the actual condition, indicating
the influences of interactions—either with people or the
environment—on navigation efficiency. Other metrics for
assessing efficiency include average velocity and mean time to
goal (Liang et al., 2020).

4.1.2 Success Rate
In addition to the efficiency metrics discussed above, success rate
is commonly used to quantify navigation performance in socially-
aware navigation (Burgard et al., 1998; Guzzi et al., 2013b; Jin
et al., 2019; Liang et al., 2020; Nishimura and Yonetani, 2020; Tsai
and Oh, 2020). Success rate, or arrival rate, measures an agent’s
ability to reach its goal. When reporting success rate, it is also
common to disclose the number of collisions and timeouts (e.g.,
Chen C. et al., 2019; Nishimura and Yonetani, 2020); a navigation
trial is considered “timed out” if the agent cannot reach its goal
within a specified time limit.

It is worth noting that success rate is highly dependent upon
the environmental context and does not differentiate the quality
of navigation between successful trials. As a result, weighted
success rate metrics have been proposed to consider aspects of
navigation efficiency, such as path length and completion time,
while assessing success rate. These weighted metrics are single,
summary metrics that represent navigation performance and can
be particularly useful in reinforcement learning, which is a
popular method used in recent works on robot navigation
(Anderson et al., 2018; Yokoyama et al., 2021).

4.2 Behavioral Naturalness
Metrics related to naturalness focus on low-level behavioral
patterns, i.e., how human-like and smooth robot movements

TABLE 4 | Evaluation metrics for navigation performance.

Metric Description

Path Efficiency The ratio between the distance between twowaypoints and the length of the agent’s actual path between those
points

Publications: Qian et al. (2010a); Guzzi et al. (2013b); Kruse et al. (2013); Stein et al. (2016); Sebastian et al. (2017); Honig et al. (2018); Mavrogiannis et al. (2018); Neggers et al.
(2018); Johnson and Kuipers (2019); Mavrogiannis et al. (2019); Vasconez et al. (2019); Ahmadi et al. (2020); Batista et al. (2020); Chadalavada et al. (2020); Liang et al. (2020);
Hacinecipoglu et al. (2020); Zhang et al. (2021)

Success Rate Ratio of successful trials
Publications: Burgard et al. (1998); Jin et al. (2019); Nishimura and Yonetani (2020); Guzzi et al. (2013b); Tsai and Oh (2020); Liang et al. (2020); Chen et al. (2019b,a); Honig
et al. (2018); Kamezaki et al. (2020); Qian et al. (2010b); Samsani and Muhammad (2021); Sprute et al. (2019); Yao et al. (2021)
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are; measures of human similarity and path smoothness are also
commonly used in human trajectory prediction research
(Rudenko et al., 2019). A summary of the metrics for
behavioral naturalness are shown in Table 5.

4.2.1 Movement Similarity
A common hypothesis in socially-aware navigation is that robots
should possess navigational behaviors similar to humans’ (Luber
et al., 2012; Kruse et al., 2013). As a result, many prior works focus
on developing and evaluating methods of producing robot
trajectories that resemble those of humans under similar
conditions. These prior works use a variety of
measures—including displacement errors, dynamic time
warping distance, and Hausdorff distance—to directly assess
similarities between trajectories and end states in navigational
performances.

Displacement Errors
Displacement errors are a family of metrics typically utilized in
evaluating how well a predicted trajectory matches human
trajectory data or a trajectory derived from other baseline
methods. These metrics are widely used in pedestrian
trajectory prediction research (Anderson et al., 2019; Rudenko
et al., 2019; Kothari et al., 2020); they are also applied as
evaluation metrics to assess the similarities between
trajectories produced by navigation algorithms and by humans
(Bera et al., 2017; Gupta et al., 2018; Manso et al., 2019; Kothari
et al., 2020).

• Average Displacement Error (ADE) is the average L2
distance between the predicted trajectory and the human

data to which it is being compared. It was first used to
evaluate trajectory similarity in socially-aware navigation by
Pellegrini et al. (2009). As the nonlinear segments of a
trajectory are where most of the social interactions between
a robot and pedestrians occur (Alahi et al., 2016), ADE over
these nonlinear portions provides a more specific metric for
assessing human-robot navigational interaction.

• Final Displacement Error (FDE) is the distance between the
final destination in the predicted trajectory and the human
data at the same time step. It was proposed by Alahi et al.
(2016) as a complement to ADE and nonlinear ADE.

Variations such as minimum, minimum over N, best-of-N,
and top n%ADE and FDE are also employed by recent pedestrian
trajectory prediction works (Anderson et al., 2019; Rudenko et al.,
2019); these metrics distinguish the highest accuracy a prediction
can achieve on human data, which is vital for trajectory
prediction. However, accuracy is not a primary concern for
socially-aware navigation research, which prioritizes learning
general behavior patterns rather than generating exact matches
of human trajectories; therefore, these variations are rarely
applied to socially-aware navigation.

Dynamic Time Warping Distance
While displacement metrics are useful in characterizing overall
trajectory similarities, they are inadequate in delineating the
similarities between motion behaviors at different speeds;
mismatched moving speeds are especially relevant to robot
navigation as mobile robots have diverse form factors,
resulting in widely varying velocities when compared to
humans. To address this limitation, Luber et al. (2012) took a

TABLE 5 | Evaluation metrics for naturalness.

Metric Type Description

Similarity Smoothness

Average Displacement
Error (ADE)

✓ The average L2 distance between the predicted trajectory and the human data

Publications: Pellegrini et al. (2009); Alahi et al. (2016); Bera et al. (2017); Gupta et al. (2018); Anderson et al. (2019); Manso et al. (2019); Rudenko et al. (2019); Kothari et al.
(2020); Zou et al. (2020); Hacinecipoglu et al. (2020); Zhou et al. (2021)

Final Displacement Error (FDE) ✓ The distance between the final destination in the prediction and the human data at the same
time step

Publications: Rudenko et al. (2019); Anderson et al. (2019); Kothari et al. (2020); Gupta et al. (2018); Manso et al. (2019); Bera et al. (2017); Pellegrini et al. (2009); Alahi et al.
(2016); Zou et al. (2020); Zhou et al. (2021)

Asymmetric Dynamic Time
Warping

✓ A trajectory measure that doesn’t require both trajectories to have the same length

Publications: Luber et al. (2012); Charalampous et al. (2016); Charalampous et al. (2017); Kostavelis et al. (2017); Avelino et al. (2021)

Velocity and Acceleration ✓ Basic dynamics measures
Publications: Sisbot et al. (2005); Sisbot et al. (2007); Pandey and Alami (2010); Qian et al. (2010a); Qian et al. (2010b); Scandolo and Fraichard (2011); Kruse et al. (2012);
Shiomi et al. (2014); Kollmitz et al. (2015); Kretzschmar et al. (2016); Truong et al. (2017); Truong and Ngo (2017); Claes and Tuyls (2018); Honig et al. (2018); Tail et al. (2018);
Buchegger et al. (2019); Mavrogiannis et al. (2019); Papenmeier et al. (2019); Randhavane et al. (2019); Yoon et al. (2019); Zhong et al. (2019); Boldrer et al. (2020);
Chadalavada et al. (2020); Fang et al. (2020); Hacinecipoglu et al. (2020); Ngo et al. (2020); Senft et al. (2020); Shiying et al. (2020); Gonon et al. (2021); Kivrak et al. (2021); Yao
et al. (2021)

Path Irregularity ✓ The amount of unnecessary turning over the whole path
Publications: Guzzi et al. (2013b); Mavrogiannis et al. (2018)

Topological Complexity ✓ Measures path entanglement to quantify encounters
Publications: Kretzschmar et al. (2016); Mavrogiannis et al. (2018)
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different approach by focusing on the fact that trajectories are
time-series data bearing resemblance to spoken language; they
proposed a modified version of Dynamic Time Warping (Sakoe
and Chiba, 1978)—an algorithm commonly used for matching
spoken-word sequences at varying speeds—to transform one
trajectory into another via time re-scaling. A dynamic time
warping distance can then be calculated to compare
trajectories produced by agents moving at different velocities.

4.2.2 Smoothness
The smoothness of both the geometric path and the motion
profile of a robot are two important contributing factors to
natural, safe navigation (Mavrogiannis et al., 2017;
Mavrogiannis et al., 2018; Mavrogiannis et al., 2019). Not only
are irregular paths and jittery movements inefficient, but they can
also discomfort nearby pedestrians (Fraichard, 2007); therefore, it
is critical to evaluate the smoothness of a robot’s geometric path
and motion profile in socially-aware navigation.

Path Irregularity
The smoothness of a trajectory can be characterized by the
geometry of its path. For example, path irregularity (PI)
(Guzzi et al., 2013b) measures the amount of unnecessary
turning over the whole path a robot has traveled:

PI � ∑
Path

Robot Rotation −Min.RotationNeeded
Unit Path Length

(1)

Topological Complexity
Prior research has also explored the use of the topological
complexity index (Dynnikov and Wiest, 2007) to measure the
level of entanglement in agents’ paths (Mavrogiannis et al., 2018;
Mavrogiannis et al., 2019). Greater path entanglement means that
the agents are more likely to encounter each other during
navigation, thereby inevitably forcing movement impact.
Moreover, trajectories with simpler topological entanglements
have been shown to be more legible (Mavrogiannis et al., 2018).

Motion Velocity and Acceleration
Velocity and acceleration are typically used to characterize
motion profiles; a robot navigating in human environments is
expected to keep a maximum velocity that allows it to reach the
target while still maintaining a smooth acceleration profile. As an
example, Mavrogiannis et al. (2019) used acceleration per
segment and average energy per segment, where energy is the
integral of squared velocity, to capture change in their robot’s
motion.

4.3 Human Discomfort
In this section, we present metrics used to measure human
discomfort in socially-aware navigation. A summary of these
metrics are shown in Table 6. We define discomfort as
pedestrians’ level of annoyance, stress, or danger caused by the
robot’s presence. Discomfort—either physical or
psychological—is typically quantified by spatial models and
subjective ratings (e.g., perceived safety).

4.3.1 Spatial Models
Spatial Models for Individuals
The impact of a mobile robot’s navigational behavior on human
comfort is difficult to quantify (Rios-martinez et al., 2013; Rios-
Martinez et al., 2015; Kothari et al., 2020), as no universal “rules”
are available for defining psychological comfort. Nevertheless,
research suggests that the psychological comfort of humans is
affected by interpersonal distance (Aiello, 1977; Baldassare, 1978;
Greenberg et al., 1980). Proxemic theory (Hall, 1966) studies the

TABLE 6 | Evaluation metrics for human discomfort.

Metric Type Description Proposed in

Spatial Groups Safety

Personal space ✓ ✓ Spatial compliance for individuals Hall (1966)
Publications: Pacchierotti et al. (2006); Kessler et al. (2011); Scandolo and Fraichard (2011); Torta et al. (2013); Shiomi et al. (2014); Tomari et al. (2014); Talebpour et al. (2015);
Kollmitz et al. (2015); Lindner (2016); Luo and Huang (2016); Kodagoda et al. (2016); Truong and Ngo (2016); Truong et al. (2016); Truong and Ngo (2018); Forer et al. (2018);
Vega-Magro et al. (2018); Fei et al. (2019); Rajamohan et al. (2019); Randhavane et al. (2019); Bachiller et al. (2021); Banisetty et al. (2021); Batista et al. (2020); Fang et al.
(2020); Fuse and Tokumaru (2020); Ngo et al. (2020); Shiying et al. (2020); Vega et al. (2020); Neggers et al. (2021)

o/p/r-space ✓ ✓ Spatial compliance for static groups Kendon (2010)
Publications: Kessler et al. (2011); Scandolo and Fraichard (2011); Torta et al. (2013); Shiomi et al. (2014); Tomari et al. (2014); Kollmitz et al. (2015); Talebpour et al. (2015);
Batista et al. (2020); Kodagoda et al. (2016); Lindner (2016); Luo and Huang (2016); Truong et al. (2016); Truong and Ngo (2016); Fei et al. (2019); Rajamohan et al. (2019);
Randhavane et al. (2019); Fang et al. (2020); Forer et al. (2018); Truong and Ngo (2018); Vega-Magro et al. (2018); Fuse and Tokumaru (2020); Ngo et al. (2020); Shiying et al.
(2020); Vega et al. (2020); Bachiller et al. (2021); Banisetty et al. (2021); Neggers et al. (2021)

Social Force Model (SFM) ✓ ✓ Measures social compliance by artificial forces Helbing and Molnár (1995)
Publications: Šochman and Hogg (2011); Anvari et al. (2015); Huang et al. (2018); Kivrak and Kose (2018); Yang et al. (2019); Katyal et al. (2021)

Extended social force model ✓ ✓ ✓ Adds support for social groups to SFM Moussaïd et al. (2010)
Publications: Yang et al. (2019); Katyal et al. (2021)

TABLE 7 | Interpersonal spaces as defined by Hall (1966).

Space name Range Function

Intimate space < .45m Intimate interactions
Personal space 0.45–1.2 m Friendly interactions
Social space 1.2–3.6 m Buffer zone for coexistence
Public space >3.6m Public interactions
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function of the space an individual maintains for different social
purposes in interpersonal interactions. According to Hall’s
observation, an individual’s perceived personal space consists
of several layers of concentric circles structured by their social
functions, as presented in Table 7; however, according to Hall,
most of his subjects were healthy business professionals from the
northeastern seaboard of the United States. So these spaces may
vary by culture and interaction context. Other
representations—such as ovoids, concentric ellipses, and
asymmetric shapes—have also been used to represent personal
spaces and encode more complicated social rules (Rios-Martinez
et al., 2015).

Among the four spaces laid out by Hall (1966), personal space
is often used as the boundary of measuring perceived safety or
social comfort—either as a no-go zone, where entering the space
is counted as a violation of social comfort (Rios-martinez et al.,
2013; Shiomi et al., 2014), or as the boundary of a potential
function that assigns costs or penalties to robots entering that
space (Amaoka et al., 2009; Truong and Ngo, 2018; Yang and
Peters, 2019).

However, the circular representation of personal space as
suggested by Hall (1966) is quite restrictive, as it does not
adequately account for characteristics of human perception
and motion. As a result, many works have explored different
representations to consider face orientation (Amaoka et al., 2009;
Truong and Ngo, 2016), approach pose (Truong and Ngo, 2018),
and motion velocity (Helbing and Molnár, 1995; Truong and
Ngo, 2016). Prior research has also leveraged empirical data from
experiments to model complex and realistic uses of space (Gérin-
Lajoie et al., 2008; Moussaïd et al., 2009). Most notably, the Social
Force Model (SFM) (Helbing and Molnár, 1995), which has been
widely used to simulate human navigation behavior in social
contexts, represents the constraints of personal space as attractive
or repulsive forces originating from each agent. Specifically, Eq. 2
describes how an agent i’s behavior is driven by a combination of
forces:

• fi
→des

: an attractive force that drives the agent to the
desired goal.

• fi
→obs

: the repulsive forces from obstacles.

• ∑j
�f
social

ij : the sum of social repulsive forces from all other
agents, j.

dvi
→
dt

� fi

→des + fi

→obs +∑
j

fij

�→social
(2)

Although SFM was designed for simulating crowd behavior, it
has inspired metrics seeking to quantify social comfort in socially-
aware navigation. For instance, repulsive forces from obstacles
and nearby agents can be used to quantify violations of social
comfort and indicate “panic” behaviors in emergencies (Mehran
et al., 2009). Truong and Ngo (2018) proposed the Social
Individual Index (SII) to measure the physical and
psychological safety of an individual. Similarly, Robicquet
et al. (2016) proposed the Social Sensitivity index, which uses
potential functions to model how agents interact; high social
sensitivity indicates that an agent will tend to avoid other agents.

Spatial Models for Groups
The aforementioned measures consider agents individually, but
we must also consider that people interact socially in group
settings. Social groups can be categorized into static and
dynamic groups; static groups are groups of people standing
closely together and engaging in conversations as commonly seen
at social events, whereas dynamic groups are groups of people
walking together toward shared destinations.

Static, conversational groups can be modeled using
f-formation (Kendon, 2010). F-formation is the spatial
arrangement that group members maintain in order to respect
their communal interaction space, where o-space is the innermost
space shared by group members and reserved for in-group
interactions; p-space surrounds the o-space and is the space in
which members stand; and r-space is the outermost space
separating the group from the outer world. Similar to
individual discomfort, discomfort caused by a robot to a group
may be measured by the robot’s invasion into either the r-space or
the o-space, based on the f-formation of the group (Mead et al.,
2011; Rios-martinez et al., 2013; Ferrer et al., 2017).

It is commonly observed that people walk together in dynamic
social groups (Federici et al., 2012; Ge et al., 2012). In addition,
individual people tend to stay away from social groups when
walking (Efran and Cheyne, 1973; Knowles et al., 1976; Moussaïd
et al., 2010). A mobile robot deployed in human environments
must know how to behave around human groups by observing
such inherent etiquette. To simulate dynamic social groups,
Moussaïd et al. (2010) proposed the Extended Social Force
Model (ESFM).7 As shown in Eq. 3, ESFM adds a new group
term �f

group

i that dictates intra-group dynamics to the original
SFM. The group term, as defined by Eq. 4, is the summation of
three forces: a cohesive force that defines attractions between
group members �f

att

i ; a repulsive force between group members
�f
rep

i ; and a gaze force �f
gaze

i that aligns each agent with the center-
of-mass of the social group, factoring in head orientation to
simulate in-group social interactions.

dvi
→
dt

� fi

→des + fi

→obs +∑
j

fij

�→social + fi

→group
(3)

fi

→group � fi

→att + fi

→reb + fi

→gaze
(4)

Similar to spatial models for individuals, spatial models for
groups can be used to approximate discomfort in group
interactions. As an example, to evaluate a robot’s social
compliance as a group member when accompanying humans,
Ferrer et al. (2017) proposed a quantitative metric based on the
robot’s position in relation to the human members, accounting
for whether or not the robot was in the field of view of the human
members and the distances between group members.

4.3.2 Physical Safety
Safety is the preeminent concern in socially-aware navigation. At the
most basic level, navigational safety amounts to collision avoidance: a

7Our implementation of ESFM—https://github.com/yuxiang-gao/PySocialForce
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mobile robot should not have any physical contact—intentional or
otherwise—with any human being. Metrics based on collision count
or violation count are commonly used in simulated environments
and in some robot-only experiments. For example, Liu L. et al.
(2020) used the number of collisions with agents within and without
the test agent’s field of view, along with success rate, as the main
evaluation metrics in conducting their assessment of their deep
reinforcement learning based navigation algorithm in simulation.
Guzzi et al. (2013b) used small-scale robots in physical experiments,
allowing them to use collision count as one of their main metrics in
evaluating the impact of safety margin size.

While they are arguably the most straightforward methods of
measuring navigational safety violations, collision and violation
counts are neither practical nor ethical to use in real-world
experiments and deployments involving humans, as collisions
present potential harm to the participants. Consequently, safety
violations should be approximated by invasions of defined safety
zones. A safety zone is typically derived from the proxemics theory
proposed by Hall (1966), wherein the personal space—ranging from
0.45 to 1.2 m in Western culture—is used to measure how well a
mobile robot maintains the physical safety of nearby human
pedestrians (e.g., Vega et al., 2019b). Variations on safety zones
are frequently used in prior works; for example, the Collision Index
(CI) (Truong and Ngo, 2016), or Social Individual Index (SII)
(Truong and Ngo, 2018), is a distance-based metric for capturing
the violation of personal space. The index is specified in Eq. 5, where
(xp

i , y
p
i ) is the position of the ith pedestrian pi, (xr, yr) is the position

of the robot, and σpx0 and σpy0 are the standard deviations of the
personal space, empirically set to the value of 0.28:

CI � max
i�1: N

exp − xr − xp
i�

2
√

σpx0
+ yr − yp

i�
2

√
σpy
0

( )( ) (5)

In the original definition of the index (Truong and Ngo, 2016),
the standard deviations are the same for both directions
(σpx0 � σpy0 ), thus assuming that personal space is a perfect
circle. However, as we discussed earlier, additional
representations of personal space have been proposed to
capture nuanced social rules, cultural influences, and specific
situations (Rios-Martinez et al., 2015); therefore, this index may
be adapted to account for different cultures, types of
relationships, and interaction contexts by modifying the
standard deviations. As another example of custom safety
zones, Jin et al. (2019) defined the ego-safety zone as a
circular space around an agent, analogous to the personal
space, and the social-safety zone as a rectangular region
stretching along an agent’s current moving direction.

4.3.3 Psychological Safety
In addition to preserving physical safety, it is important to evaluate
the effects of socially-aware navigation on psychological safety.
Preserving psychological safety, or sometimes referred to as
perceived safety, involves ensuring a stress-free and comfortable
interaction (Lasota et al., 2017). Although they may not physically
endanger a person, amobile robot’s navigational behaviors (e.g., how
they approach and pass a person) may yet induce feelings of
discomfort or stress (Butler and Agah, 2001). Consider a

situation in which a mobile robot moves rapidly toward a person
and only changes its moving direction right before the imminent
collision; while the robot does not make direct physical contact with
the person, its navigational behavior is still likely to cause them
significant stress.

A common method of assessing people’s perceived
psychological safety is through questionnaires. Butler and
Agah (2001) asked participants to rate their comfort from 1 to
5 (with 1 being very uncomfortable and 5 being very comfortable)
under different experimental conditions, including varying robot
speed, distance from the human subject, and approach patterns.
Similarly, Shiomi et al. (2014) used a survey to assess people’s
experiences interacting with a deployed mobile robot during a
field study; specifically, the inquiry focused on three aspects:
whether the interaction was free from obstruction, whether the
person could maintain their preferred velocity in the presence of
the robot, and their overall impression of the encounter.

Several established questionnaires designed for social robotics
research already include questions regarding psychological safety.
For example, the Godspeed questionnaire (Bartneck et al., 2008)
has a sub-scale, perceived safety, comprised of questions related
to subjects’ relaxed/anxious, calm/agitated, and surprised/
quiescent emotional states. The Robotic Social Attributes Scale
(RoSAS) (Carpinella et al., 2017), based on the Godspeed
questionnaire, measures people’s perception and judgement of
the robots’ social attributes, including warmth, competence, and
discomfort. The BEHAVE-II instrument (Joosse et al., 2013)
includes a set of behavioral metrics that measure human
responses to a robot’s behavior; some of the metrics were
specifically designed to gauge the discomfort caused by a
robot’s approach behavior (e.g., a person’s step direction and
step distance when a robot intrudes upon their personal space).
Joosse et al. (2021) used this instrument to measure people’s
responses to and tolerance of personal space invasion when being
approached by agents at varying speeds.

4.4 Sociability
We define sociability as a robot’s conformity to complex, often
nuanced, social conventions in its navigational behavior. Previously,
we have described various metrics used to measure motion-level
social conventions, such as approach velocity, approach pose,
invasion of personal space, or passing on the dominant side (e.g.,
Truong and Ngo, 2016; Guzzi et al., 2013b; Yang and Peters, 2019;
Pacchierotti et al., 2006). However, there exist more complex social
norms around navigation-based interactions, such as elevator
etiquette, waiting in a queue, asking permission to pass, and
observing right-of-way at four-way intersections. A robot may
move in a natural and appropriate manner that does not cause
discomfort, but still violates expected, high-level social norms. For
example, a robot may enter an elevator full of people in a perfectly
smooth and natural fashion without first letting anyone inside leave;
while the robot does not exhibit any unnaturalness or cause
discomfort by violating motion-level social conventions, it breaks
higher-level social norms that most people expect when riding an
elevator. Measuring these high-level social norms would allow for a
more holistic understanding of the impact of robot presence on
humans; however, measuring sociability remains largely difficult and
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is considered one of the key challenges in the field of socially-aware
navigation (Mavrogiannis et al., 2021).

The Perceived Social Intelligence (PSI) scales proposed by
Barchard et al. (2018); Barchard et al. (2020) evaluate 20 aspects
of robotic social intelligence. For instance, the Social Competence
(SOC) scale consists of four items: 1) social competence, 2) social
awareness, 3) social insensitivity (reversed), and 4) strong social
skills. PSI scales have been used in previous evaluations of
socially-aware navigation (e.g., Barchard et al., 2020); recently,
Banisetty and Williams (2021) used the perceived safety scale
from the Godspeed questionnaire in conjunction with PSI to
evaluate how a robot’s spatial motions may communicate social
norms during a pandemic via an online study. Additionally, it has
been determined that robots using socially-aware navigation
planners are perceived to be more socially intelligent as
measured by PSI than those using traditional navigation
planners (Honour et al., 2021).

In addition to using validated scales, prior research has
employed custom questions relevant to specific evaluation
contexts to gauge people’s perceptions of robot sociability. For
example, Vega et al. (2019a) used three questions—Is the robot’s
behavior socially appropriate?; Is the robot’s behavior friendly?;
and Does the robot understand the social context and the
interaction?—to evaluate how a mobile robot may interact
with people to ask for permission to pass when they block its
path. All in all, how best to measure sociability remains
unresolved, as opposed to the consensus on metrics for
evaluating navigation performance and trajectory similarity.

5 DISCUSSION

In this paper, we review the evaluation protocols—focusing on
evaluation methods, scenarios, datasets, and metrics—most
commonly used in socially-aware robot navigation with the goal
of facilitating further progress in this field, which currently lacks
principled frameworks for development and evaluation. Prevalent
evaluation methods include simulation experiments followed by
experimental demonstration, as well as laboratory and field
studies. Controlled experiments, either in simulation or in the
physical world, typically focus on a set of primitive scenarios
such as passing, crossing, and approaching. Datasets of human
movements and trajectories are regularly utilized in developing
and evaluating socially-aware navigation policies. Prior works
have also explored a range of objective, subjective, and behavioral
measures to evaluate navigation performance, naturalness of
movement, physical and psychological safety, and sociability.
Below, we discuss limitations of the existing evaluation protocols
and open problems to solve in future research.

5.1 Limitations of Existing Evaluation
Protocols
5.1.1 Evaluation Methods, Scenarios, and Datasets
Recent works on socially-aware navigation rely heavily on
datasets and simulation experiments for evaluation
(Mavrogiannis et al., 2021); this trend has been accelerated by

advances in reinforcement learning and data-driven approaches
in general (e.g., Luber et al., 2012; Zhou et al., 2012; Alahi et al.,
2014; Alahi et al., 2016; Kretzschmar et al., 2016; Park et al., 2016).
However, this type of evaluation makes strong assumptions about
human and robot behaviors. For example, in simulation
experiments, researchers typically rely on pedestrian behavior
models such as Optimal Reciprocal Collision Avoidance (ORCA)
(Van Den Berg et al., 2011) (e.g., Chen et al., 2017b; Daza et al.,
2021) and the Social Force Model (SFM) (Helbing and Molnár,
1995) (e.g., Katyal et al., 2021). Reciprocal behavior models such
as ORCA impose the assumption that each agent is fully aware of
its surroundings and the position and velocity of the other agents;
this assumption of omniscience does not hold true for a real robot
or person (Fraichard and Levesy, 2020). Moreover, agents trained
using ORCA and SFM behave much differently than real-life
agents (Mavrogiannis et al., 2021) and there exist a multitude of
SFM variations (e.g., Moussaïd et al., 2009; Anvari et al., 2015;
Truong and Ngo, 2017; Huang et al., 2018; Yang and Peters,
2019); therefore, it is important to ensure comparable settings for
training and evaluation when comparing algorithms in
simulation experiments.

To add to this concern of agent behavior assumptions, the
simulators used in virtual social navigation experiments have
their own limitations. While 2D simulators such as Stage (Gerkey
et al., 2003) and CrowdNav (Chen C. et al., 2019) are lightweight
and easy to extend, they oversimplify and abstract, rendering
their results difficult to apply to the real world. Recently, several
high-fidelity, photorealistic simulation environments were
developed for indoor navigation, such as Matterport 3D
(Chang et al., 2017) and Gibson (Xia et al., 2018). These
environments offer improved simulations closer to real-world
settings; however, generating realistic, grounded human social
behaviors in high-fidelity simulation environments is still
challenging.

Simulation experiments typically leverage datasets and metrics
that quantify performance and similarity as described in Section
4.2.1. This reliance on datasets and quantitative metrics assumes
that the human behaviors recorded in those datasets represent the
optimal behaviors for a robot—despite robots possessing
dynamics and dimensions largely dissimilar to humans; at
best, it is highly debatable whether an exact copy of human
trajectories is socially acceptable for all robots. Finally, as
described in Section 3.1, simulation experiments are
commonly followed by demonstrations with physical robots in
a real-world setting; while appropriate for proofs-of-concept,
these demonstrations are mainly illustrative and lack statistical
rigorousness.

In contrast, laboratory studies allow for controlled
experiments with statistical precision. However, such
experiments are often simplistic and designed for specific
navigational interactions (Table 2) in certain settings (e.g.,
passing interactions in a hallway). Moreover, it is important to
note that interaction scenarios are usually evaluated out of
context. Take the crossing scenario as an example; although
crossing is largely evaluated in an open setting (e.g., circle
crossing), people may exhibit very different crossing behaviors
in real life, as shaped by their individual objectives, other
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pedestrians, and the environment (e.g., in an open square or an
art gallery). Furthermore, laboratory studies typically rely on
convenience sampling for participant recruitment (e.g., college
students and local residents), resulting in findings that may have
limited generalization to a broader population.

Field studies are arguably the most challenging evaluation
method to execute; they require robots to operate robustly and
safely in unstructured human environments and naturally
involve emergent, unprescribed human-robot interactions.
While challenging and costly, field studies can provide rich,
and sometimes unexpected, insights that simulation and
laboratory studies cannot offer (Section 3.1.4).

Going forward, we predict an increased need for bridging
algorithmic innovations in simulation and autonomous, real-
world interactions. Deploying robots for human interaction,
either in the field or in laboratory settings, will help us better
understand the true limitations of robotics technology and how
people experience and interact with it. We strongly advocate for
more laboratory and field studies to productively advance
socially-aware robot navigation and develop useful, functional
mobile robots.

5.1.2 Evaluation Metrics
Navigation Performance
Socially-aware robot navigation shares many performance
metrics with general robot navigation. Conventional
performance metrics, such as efficiency and success rate, are
commonly reported in the literature of socially-aware robot
navigation. For example, path efficiency is the ratio of the
optimal path’s length to that of the actual path and is used to
measure path disturbance to agents (either the robot or human
pedestrians), while success rate measures an agent’s ability to
reach its goal. Though not typically used in evaluating socially-
aware navigation, we believe metrics that account for both path
efficiency and success rate, such as Success weighted by Path
Length (SPL) (Anderson et al., 2018), Success weighted by
Number of Actions (SNA) (Chen et al., 2021), and Success
weighted by Completion Time (SCT) (Yokoyama et al., 2021),
are useful metrics to compare navigation policies. However, these
metrics should only be used for comparisons in the same setting,
as different settings have different optimalities. All in all, these
metrics attempt to sum up navigation trials into singular values;
while such abstraction is useful for systematic comparison, it
makes the assessment of fine-grained trajectory quality more
difficult. To answer questions like what caused a particular defect
in efficiency, researchers typically visualize trajectories for more
qualitative analysis. However, it is worth noting that the most
socially acceptable navigational behaviors are not necessarily
efficiency- or performance-oriented.

Naturalness
A common method of measuring naturalness is quantifying the
similarity between the robot’s or the predicted trajectory and
those observed in human data. Average Displacement Error
(ADE) and Final Displacement Error (FDE) are conventional
metrics for quantifying trajectory differences. Variations of
displacement- or distance-based metrics may be employed to

highlight certain aspects of navigation; for instance, ADE over the
nonlinear portions of a trajectory may capture the effects of
navigational interactions (e.g., passing and crossing). These types
of metrics are typically used in benchmarking navigation
algorithms against provided datasets in simulation
experiments. While allowing for reproducible and systematic
development and evaluation, this dataset-oriented evaluation
protocol has several limitations. First, human navigational
behaviors and trajectories are context-dependent. The recorded
human behaviors in a dataset are specific to the scenario in which
the data was collected; moreover, most datasets only include a
limited number of scenarios. Therefore, the generalizability of the
evaluated algorithms to different contexts is not adequately
captured by these metrics. Second, robots and humans afford
distinct navigational behaviors and expectations. At the physical
level, robots are quite dissimilar to humans and therefore afford
different navigational behaviors, such as moving speed. At the
social level, it has been revealed that people exhibit different social
expectations toward robots than humans; for instance, empirical
data suggests that people are willing to let robots get closer to
them than they let fellow humans (Joosse et al., 2021). Finally, the
majority of existing datasets are limited to 2D trajectories and
neglect the fact that navigational behaviors are multimodal in
nature. Such limitations necessitate the inclusion of additional
metrics to cover aspects of naturalness like sociability and
interaction quality.

Instead of using recorded human trajectories as a gold
standard for assessing naturalness, several context-independent
metrics have been utilized to measure movement smoothness,
which is regarded as an important indicator of naturalness. These
metrics usually consider velocity and acceleration profiles and
path irregularity, which captures the number of unnecessary
turns in a path. However, appropriate interpretation of the
results from these metrics requires reference points (e.g., is a
path irregularity value of 0.72 “good?”) that are difficult to obtain
and may depend on various factors such as environmental
context and culture.

Discomfort
Discomfort is another key dimension in which socially-aware
robot navigation is evaluated; it can be characterized generally by
physical and psychological safety. To approximate discomfort,
prior works have relied upon spatial models including Hall (1966)
theory on proxemics and personal space, f-formation for groups
(Kendon, 2010), the Social Force Model (SFM) (Helbing and
Molnár, 1995), and the Extended Social Force Model (ESFM)
(Moussaïd et al., 2009). These models are particularly relevant to
and useful in evaluating mobile navigation and spatial
relationships; specifically, they have been adapted to define
safety zones and identify abnormal behaviors (e.g., invading
personal space) that may cause discomfort. For instance, prior
research has used the Social Individual Index (SII), a numerical
metric derived from spatial models, along with empirically
determined thresholds to gauge psychological safety (Truong
and Ngo, 2017). However, spatial model-based metrics are
limited in several ways. First, all agents are assumed to be
identical (e.g., possessing the same personal space and social
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forces), neglecting individual differences observed in the real
world; for instance, how people distance themselves from
others depends upon personal relationships, individual
characteristics, interaction contexts, and cultural norms.
Second, common spatial models do not have sufficient
granularity to represent environmental contexts. As an
example, in SFM, repulsive forces from the environment are
all treated the same; however, people move and interact
differently in different contexts, and are therefore likely to
have varying levels of discomfort tolerance in response to
robot navigational behaviors. Third, it is difficult to encode
high-level social norms (e.g., sociability) into these spatial
models. Altogether, spacial model-based metrics are limited in
their ability to represent, simulate, and quantify complex,
nuanced social behaviors that humans expect and exhibit in
navigation.

In addition to using the aforementioned metrics, discomfort
may be measured by self-report ratings [e.g., the perceived safety
subscale from the Godspeed questionnaire (Bartneck et al., 2008)]
and behavioral indices [e.g., the BEHAVE-II instrument (Joosse
et al., 2013)]. These measures are effective in revealing people’s
subjective experiences and genuine behavioral responses, which
may not be accurately represented by objective metrics derived
from spatial models. It is worth noting that these subjective and
behavioral measures are collected after experiment completion
and are consequently unsuitable for learning or adapting robot
behavior in real time; however, some of the behavioral measures
(e.g., step distance, facial expressions, and eye gaze) from
BEHAVE-II may be calculated using computer vision
techniques and therefore have the potential to be utilized in
real-time behavioral adaptation.

Sociability
Sociability is a complex construct that characterizes a robot’s
conformity to high-level social conventions, which are
conditioned on varying factors such as culture, interaction and
environmental contexts, and individual characteristics (e.g.,
gender); as a result, there are no predetermined sets of high-
level social conventions. Therefore, research thus far has explored
social conventions that are by and large cherry-picked by the
researchers themselves. For example, Pacchierotti et al. (2006)
defined a set of social rules for hallway interactions, suggesting
that a robot should 1) signal its intention by proactively moving
to the right; 2) stay as far away from humans as the width of the
hallway allows; and 3) wait until a person completely passes by
before resuming normal navigation in order to avoid causing
discomfort. Salek Shahrezaie et al. (2021) emphasized that social
rules differ based on environmental contexts; for instance, a robot
will need to behave differently in galleries, hallways, and around
vending machines. The wide range of influencing factors on
sociability makes it challenging to adopt a uniform evaluation
standard or set of metrics. As a consequence, most prior works
adopted an ad hoc approach, using custom questions to assess
sociability (e.g., Vega et al., 2019a). More recently, Perceived
Social Intelligence (PSI) scales (Barchard et al., 2020) offer an
initial point for benchmarking the subjective construct of
sociability. In order to productively advance socially-aware

navigation, however, further research is required to develop
comprehensive instruments specifically designed to measure
sociability and higher-level social skills in the context of
navigational interactions.

5.2 Open Problems and Opportunities
5.2.1 Diverse, Dynamic Human Models and
Long-Term Effects
As discussed in Section 5.1.1, there are several limitations to
simulation-based evaluation, the most notable of which being
homogeneity—all agents are driven by a static behavior
engine—and omniscience—all agents have full awareness of
their surroundings (Fraichard and Levesy, 2020); these
assumptions are a result of the oversimplification and
abstraction built into simulators. Moreover, most spatial
models for crowd behavior and proxemics are derived from
population data; consequently, the experiments and
simulations using them often do not support a sufficiently
diverse representation of different groups of people (Hurtado
et al., 2021). Indeed, humans are naturally diverse and their
behaviors and expectations change over time and according to
complex factors like individual traits, cultures, and contexts. For
example, abundant empirical evidence has demonstrated how age
(e.g., Nomura et al., 2009; Flandorfer, 2012), personality (e.g.,
Walters et al., 2005; Robert, 2018), gender (e.g., Flandorfer, 2012;
Strait et al., 2015), and cultural (e.g., Lim et al., 2020) differences
may affect people’s perceptions of and interactions with robots.
Moreover, similar to how people gradually change their behaviors
(e.g., standing closer when talking to each other) to reflect
developments in a relationship (Altman and Taylor, 1973),
robots must also evolve their behaviors—as opposed to
exhibiting behaviors uniformly over time—to match their
relationships and promote rapport with users. Not only must
we develop behavior models to account for gradual changes in
relationships, but we must conduct more longitudinal studies to
explore how people’s experiences with, perceptions of, and
behaviors toward robots change over long periods of time.
Buchner et al. (2013) demonstrated that a person’s experience
with a collaborative robot clearly changes over the course of a
year; will we see similar effects in navigational human-robot
interactions? Ultimately, we have three recommendations for
future research:

• Enrich pedestrian models: Although there are limitations to
simulation-based approaches to socially-aware navigation,
these approaches allow for rapid development and
systematic benchmarking and are particularly useful for
early-stage validation. However, future simulation-based
research must augment pedestrian models to account for
human diversity; this may be achieved by including
variables to represent the influencing factors we
previously discussed and by introducing parameters to
regulate said variables over time and according to
interaction contexts.

• Examine longitudinal effects: Our understanding of the
longitudinal effects of navigational human-robot
interactions is fairly limited, yet such knowledge is
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critical in developing and integrating mobile robots into
real-life environments with the goal of interacting with and
assisting people in their daily lives. As the field of socially-
aware robot navigation continues to evolve, research efforts
should increasingly concentrate on conducting longitudinal
field studies.

• Measure and report individual characteristics: As previously
mentioned, many characteristics and factors demonstrably
influence general human-robot interaction. To collectively
advance our understanding of navigational human-robot
interaction, we encourage future works to collect and report
data on individual characteristics (e.g., age, personality,
gender, and culture) and how they relate to the metrics
of socially-aware navigation.

5.2.2 Evaluating Mobile Robots of Different Forms
In this paper, we focus on the evaluation of socially-aware
navigation in typical mobile robots that move around and
interact with people in human environments, such as indoor
or outdoor delivery robots. However, mobile robots can take
many forms, interactions with humans can happen in different
settings (e.g., where people are “on” or “inside” the robot), and
human environments can include larger-scale infrastructures
such as roads and highways. In particular, our review does not
address two notable classes of “robot”: robotic wheelchairs and
autonomous vehicles. While these two categories share various
characteristics in terms of socially-aware navigation, they
necessitate additional evaluation considerations and methods.

Similar to traditional mobile robots, robotic wheelchairs must
consider the people around them when moving through human
environments (e.g., Kretzschmar et al., 2016); as such, various
evaluation considerations and metrics discussed in this paper
may be adapted for this category of “robot.” However, robotic
wheelchairs must also take into account additional considerations
for their direct users; for instance, Morales et al. (2015) explored
ways of including human factors (e.g., user visibility of the
environment) when planning paths for a robotic wheelchair and
evaluated how comfortable users felt during the ride. In support of
greater accessibility and equity, more research is needed to
investigate developing and evaluating methods that enable people
who are robotic wheelchair-bound to engage in social interactions
with individuals or groups of people (e.g., joining or following a
social group) (e.g., Escobedo et al., 2014); as such, robotic
wheelchairs should consider both users’ and surrounding
pedestrians’ social signals (e.g., intent to interact). The navigation
evaluation should also include behavioral indices that capture such
nuanced social dynamics. Moreover, as robotic wheelchair users
have varying physical disabilities, the development and evaluation of
socially-aware navigation capabilities for robotic wheelchairs must
pay closer attention to individual needs. Accordingly, custom
metrics may be more appropriate for evaluation, as opposed to
relying upon a rigid set of standardized evaluation protocols.
Detailed reporting of user characteristics and specific needs
would help contextualize evaluation results.

Autonomous vehicles (AVs) are up-and-coming “mobile robots”
that interact with humans, including the “driver,” pedestrians, and
other motorists on the road. Like traditional delivery robots, AVs

must drive in a safe and predictable manner, but beyond excellent
safety protocols and autonomous capabilities, AVs also require
critical social awareness; social interactions underlie all
pedestrian-vehicle interactions (Rasouli and Tsotsos, 2020) and
even AV-AV interactions are considered social coordination
events (Schwarting et al., 2019). Similar to evaluating robotic
wheelchair applications, the evaluation of AV technology must
consider a range of stakeholders, including pedestrians (e.g.,
Randhavane et al., 2019; Camara et al., 2021), bicyclists (e.g.,
Rahman et al., 2021), and other drivers (e.g., Schwarting et al.,
2019). However, AV evaluation poses additional challenges (e.g.,
legal regulation for high-stake, life-critical applications) and has
different considerations and norms (e.g., following traffic rules). To
mitigate safety concerns, recent research has leveraged modern
immersive technology such as virtual reality (VR) (e.g., Goedicke
et al., 2018; Mahadevan et al., 2019; Camara et al., 2021) when
evaluating socially-aware AVs; for instance, Camara et al. (2021) did
their user study in a virtual reality setting to evaluate pedestrians’
behavior when crossing road with vehicles present. Similar to the
evaluation for mobile robots, it is very important to measure the
subjective perception of pedestrian-vehicle interactions (Mahadevan
et al., 2019) and consider unique spatial interactions in AV
applications.

To conclude, we expect to see more autonomous mobile
technologies coexisting with people in their daily lives. While
these technologies—ranging from mobile service robots and
robotic wheelchairs to autonomous vehicles—may have
domain-specific considerations for their development and
evaluation, social awareness will be vital to the successful
adoption of these technologies by the general population.

6 CONCLUSION

As the field of socially-aware navigation continues to evolve, it is vital
to cultivate principled frameworks for the development and evaluation
of mobile robots that aim to navigate in human environments in an
efficient, safe, and socially acceptable manner. In this paper, we review
the evaluation protocols commonly used in socially-aware robot
navigation as an effort toward developing a principled evaluation
framework. Our review highlights the advantages and disadvantages
of different evaluation methods and metrics; in particular, while
simulation experiments allow for agile development and systematic
comparisons, laboratory and field studies can offer valuable insights
into navigational human-robot interactions. Moreover, objective,
subjective, and behavioral metrics used together offer a more
comprehensive view of robot navigation performance and user
experience than individual sets of metrics alone. By reviewing
evaluation protocols for socially-aware robot navigation, this paper
contributes to the broader vision of successful integration of socially-
aware mobile technologies into our daily lives.
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Pose Generation for Social Robots in
Conversational Group Formations
Marynel Vázquez*, Alexander Lew, Eden Gorevoy and Joe Connolly

Department of Computer Science, Yale University, New Haven, CT, United States

We study two approaches for predicting an appropriate pose for a robot to take part in
group formations typical of social human conversations subject to the physical layout of the
surrounding environment. One method is model-based and explicitly encodes key
geometric aspects of conversational formations. The other method is data-driven. It
implicitly models key properties of spatial arrangements using graph neural networks
and an adversarial training regimen. We evaluate the proposed approaches through
quantitative metrics designed for this problem domain and via a human experiment. Our
results suggest that the proposed methods are effective at reasoning about the
environment layout and conversational group formations. They can also be used
repeatedly to simulate conversational spatial arrangements despite being designed to
output a single pose at a time. However, the methods showed different strengths. For
example, the geometric approach was more successful at avoiding poses generated in
nonfree areas of the environment, but the data-driven method was better at capturing the
variability of conversational spatial formations. We discuss ways to address open
challenges for the pose generation problem and other interesting avenues for future work.

Keywords: human–robot interaction (HRI), group conversations, F-Formations, spatial behavior analysis, proxemics

1 INTRODUCTION

In this work, we study how to generate appropriate poses for social robots to take part in
conversational group formations with users. This problem is important because people naturally
establish these spatial formations with social robots when conversing with them (Hüttenrauch et al.,
2006; Kuzuoka et al., 2010; Vázquez et al., 2015a; Karreman et al., 2015; Bohus et al., 2017). Further,
people expect robots to conform to these formations when adapting to changes to group members
(Vázquez et al., 2017; Yang et al., 2017).

Although it is common to model conversational spatial behavior with discriminative models of
group formations (Truong and Ngo, 2017; Vázquez et al., 2017; Hedayati et al., 2019; Barua et al.,
2020; Swofford et al., 2020), we approach the problem of predicting a pose for a robot in a group
conversation with generative models. These models can directly output poses for the robot based on
the social context of the interaction and spatial constraints imposed by the environment, for example,
due to small objects such as tables or bigger structures such as walls. An illustrative example is
provided in Figure 1.

In this work, we explore two approaches for generating spatial behavior: a model-based, geometric
approach that explicitly encodes important properties of conversational group formations as often
discussed in the social psychology literature (Kendon, 1990), and a data-driven adversarial approach
that, once trained, implicitly encodes these properties. While our geometric approach builds directly
in some cases on prior work, to the best of our knowledge, no prior effort has explored generating
suitable spatial behavior for conversations subject to spatial constraints due to the environment
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layout. By studying these two methods, this work contributes not
only novel approaches, but also better understanding of how
model-based and data-driven solutions for spatial reasoning in
Human–Robot Interaction (HRI) complement each other.

We evaluated the proposed approaches quantitatively and
qualitatively in relation to expected spatial behavior. Also, we
conducted an online evaluation to gather human opinions about
each method’s performance when applied to situated human-robot
interactions. Our results show that incorporating spatial constraints
into models for pose generation is beneficial. Further, we show that
the proposed methods can be used to effectively model a
nonparametric distribution of poses for conversational groups. In
practice, we find that considering this distribution when generating
an appropriate pose can lead to better results than predicting a single
pose directly. Interestingly, the human evaluation suggested that the
geometric approach wasmore effective than the data-drivenmethod
when applied to small groups such as dyadic interactions, but the
data-driven approach was better for groups with four to six
interactants. We discuss ways to address this disparity. Lastly, we
demonstrate the applicability of the proposed approaches for
simulating conversational spatial arrangements.

2 BACKGROUND

Before explaining how the proposed methods work, the next
sections provide a brief introduction to conversational group
formations from a social psychology perspective and introduce
Graph Neural Networks (GNNs) from amessage-passing point of
view. The former description is important for contextualizing the
proposed geometric approach for pose generation and for
understanding the rationale behind several of the metrics used
in our evaluation. The latter primer on GNNs aids in
understanding the proposed data-driven approach.

2.1 Conversational Group Formations
During human conversations, people often position and orient
themselves in special spatial patterns known as Face Formations
(F-Formations) (Kendon, 1990). F-Formations are characterized
by people being nearby one another such that they can
communicate easily. Also, interactants tend to direct their
lower bodies toward one another or toward a common focus
of attention for the conversation. These behaviors lead to spatial

arrangements where individuals typically have equal, direct, and
exclusive access to a common space. The formations keep groups
as separate units from other close interactions.

Figure 1A depicts an example F-Formation from the Cocktail
Party dataset (Zen et al., 2010), a computer vision dataset that is
often used for evaluating group detection approaches based on
human spatial behavior (Ricci et al., 2015; Setti et al., 2015). As
illustrated in Figure 1B, the interior region of an F-Formation is
known as its o-space. The area where people stand around the
o-space is the p-space. Later in this article, we refer to these terms
when formally describing geometric properties of F-Formations.

2.2 Graph Neural Networks
In this work, we use the message-passing framework for GNNs
proposed by Gilmer et al. (2017), Battaglia et al. (2018) to design
our data-driven pose generator method. In contrast to more
traditional algorithms for reasoning about graphs, GNNs allow
for learning representations, the structure of entities, and
relations from graph data. Consider a graph G � (u, V, E),
where the vector u is a global attribute (or feature) for the
graph, the set V � {vi}i�1: n corresponds to features for the
graph’s vertices, and E � {(ek, rk, sk)}k�1: m is the set of edge
features ek with (rk, sk) being the indices of the nodes
connected to the edge. Then, a Graph Network block (GN
block)—the basic element of a GNN—can be used to
transform a graph G into an updated graph G′ � (u′, V′, E′)
via three steps. First, the edge features are updated. Second,
the node features are updated, potentially using aggregated
edge information. Third, the global attribute for the graph is
updated, perhaps using node and edge information as well.
Because these operations are implemented via differentiable
functions, as further detailed below, the GN block can be
integrated as a module into more complex neural network
models.

In this work, we are concerned with using GNNs to compute
vector representations for fully connected social interaction
graphs that describe conversations. These graphs have a global
attribute u, corresponding to contextual information for the
interaction, such as the layout of the physical environment.
The graphs’ node features encode pose information for the
interactants, but they have no relevant edge features. Thus,
applying the GN block computation to them consists of two
main steps: updating the nodes features and then updating the

FIGURE 1 | Conversational spatial arrangement from the Cocktail Party dataset (A), spatial formation typical of group conversations (B), and problem setup (C).
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global graph attribute. The updated global graph attribute is used
to represent the graph in downstream tasks. Mathematically, we
can express the two key GN block operations as follows:

vi′ � ϕv(vi) (1)

�v′ � ρv→u({vi′}i�1: n) (2)

u′ � ϕu(�e′, �v′, u) (3)

where the update functions ϕv(·), ϕu(·) and the aggregate function
ρv→u(·) are differentiable functions. In general, the aggregate
function should take a variable number of arguments so that
the GN block is suitable for processing different graphs. In
addition, ρv→u(·) is often implemented as a symmetric
mathematical function (such as element-wise summations or
maximum) because it is common for graph nodes to lack a
natural order. Note that Equations 1–3 are similar to deep set
operations (Qi et al., 2017; Zaheer et al., 2017). Indeed, deep sets
are sometimes regarded as a specialization of GNNs (Battaglia
et al., 2018).

3 RELATED WORK

Experimental HRI work has validated the idea that spatial
formations typical of human–human conversations naturally
emerge in human-robot interactions (Hüttenrauch et al., 2006;
Kuzuoka et al., 2010; Karreman et al., 2015; Vázquez et al., 2015a,
2017). In turn, this research led to work on recognizing
F-Formations in robotics, such as methods geared toward
improving robot navigation (Rios-Martinez et al., 2011),
generating multimodal nonverbal robot behavior (Vázquez
et al., 2017), helping recognize the beginning and ending of
human-robot interactions (Gaschler et al., 2012), joining
groups (Barua et al., 2020), and other approaches for service
robots (Hedayati et al., 2019; Swofford et al., 2020). Oftentimes,
prior work on F-Formation detection in robotics builds on
mathematical models of human F-Formations from the
computer vision community, for example, (Cristani et al.,
2011; Setti et al., 2013; Setti et al., 2015; Vascon et al., 2014).
In a similar manner, mathematical models from computer vision
inspired the proposed geometric approach for generating poses
for a robot in a conversation andmotivated a variety of evaluation
metrics in this work.

Several methods for generating spatial behavior
representative of F-Formations have been proposed in HRI.
For example, Vázquez et al. (2016) explored reinforcement
learning for adapting the pose of a robot during
conversations. Morales et al. (2014) proposed a method for a
robot to walk side-by-side to a human. In addition, other work
has investigated methods for robots to approach F-Formations
(Shi et al., 2011; Truong and Ngo, 2017; Yang and Peters, 2019;
Yang et al., 2020a). Among these methods, that of Yang and
Peters (2019) is closest to our work because they explore
generative adversarial networks to predict appropriate robot
navigation behavior. Similar to this prior work, we are interested
in modeling spatial behavior during group conversations;
different to it, though, we make predictions without temporal

information and subject to environmental spatial constraints,
for example, nearby walls and objects.

Close to our work, Swofford et al. (2020) used a neural
network model to detect F-Formations. We build on this
effort because we use a similar network architecture to handle
variable group sizes. Interestingly, we make an explicit
connection between this prior work—which was inspired by
deep sets—and GNNs following (Gilmer et al., 2017; Battaglia
et al., 2018). It is worth nothing that the idea of representing
interactions with graphs (as described in Section 2.2) is inspired
by foundational work on detecting F-Formations (Hung and
Kröse, 2011; Vascon et al., 2014) and a long history of
applications of graph theory to social network analysis (Scott,
1988; Borgatti et al., 2009; Hamilton et al., 2017).

Among prior work that has used GNNs to reason about
situated social interactions, that of Yang et al. (2020b) is
perhaps the closest prior effort. While their work aimed to
classify human behavior in group social encounters, we instead
use GNNs to model properties of spatial formations and predict
an interactant’s pose within an adversarial neural network
framework. Battaglia et al. (2018) and Hamilton (2020) discuss
broader applications of GNNs, which are beyond the scope of this
paper.

Another important related work is that of Yang et al. (2017),
which proposed an approach for a robot to position itself
relative to humans during a group conversation. Because this
approach builds on geometric properties of F-Formations,
we consider it as a baseline for the proposed methods in our
evaluation.

There has also been interest in generating appropriate spatial
behavior for social agents within the virtual agent community.
For example, Jan and Traum (2007) considered the problem of
computing agents’ positions in order to create circular group
formations. We also consider circular groups in this work,
although these arrangements are often idealistic, as shown in
our experiments. In addition, Pedica and Högni Vilhjá lmsson
(2010) proposed an approach to generate human-like motion for
virtual characters based on the territorial organization of social
situations, including F-Formation systems. Their approach used a
combination of low-level reactive behaviors to control the pose of
social avatars as they move in virtual worlds. Similar to this work,
we consider social norms as a driving factor when generating
spatial behavior for robots and when evaluating the results of the
proposed methods. Different to this prior effort, we do not expect
a user to provide pose commands for the social agent of interest;
rather, we study the problem of automatically generating suitable
poses for a robot in a conversation.

4 GENERATING APPROPRIATE POSES
DURING CONVERSATIONS

We contribute two approaches to generate an appropriate pose
for a social robot in a group conversation. The key novelty of
these methods stems from considering environmental spatial
constraints along with the pose of other interactants upon
making a prediction. These methods are both generative
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models, capable of representing the distributions of suitable poses
via a discrete set of samples.

4.1 Problem Statement
Consider a social robot in a human environment in which there are
other people with whom the robot wants to establish a situated
conversation. We formulate the problem of generating an
appropriate pose for the robot to sustain the conversation as
follows: let C � { < xi, θi > | 1 ≤ i ≤ P} be the social context of
the interaction encoded by the poses of the P people with whom the
robot wants to converse, where xi � [xi yi]T is their position on the
ground, and θi is their body orientation. In addition, let M be a
metric two-dimensional (2D) map with semantic labels for the
physical environment surrounding the group. The labels encode
the probability of occupancy, such as occupied space by a “small or
movable object” or a “tall barrier” like a wall. Then, the goal is to
compute a pose �p � < x, θ > for the robot to take part in the
conversational group givenC andM, as illustrated in Figure 1C. The
generated pose should preserve the spatial structure of the group,
that is, their F-Formation. Also, the pose should be such that the
robot does not collide with objects according to the map, as well as
does not violate social norms such as personal space.

4.2 A Geometric Approach for Pose
Generation
One way to compute a viable pose for a robot to take part in a
conversational group is to explicitly formalize key geometric
properties of its expected spatial behavior. To this end, we first
consider the fact that F-Formations often have a circular shape
because of people’s tendency to position in a way such that they can
see and monitor one another during conversations (Kendon, 1990).
The circular shape not only defines an expected distribution for
people’s locations but also guides their body orientations toward the
center of their group’s o-space. Second, we consider the fact that the
agent should not be in an occupied location and should not violate
other people’s personal space.

Based on the above properties, we propose a three-step
algorithm for computing a pose �p � < x, θ > given the context
C and map M:

1) Fit circular shape to the context poses. We represent the
geometric shape of the group formation parametrically with a
2D circle or ellipse fitted to the context C (as illustrated in
Figures 1A,B). The edge of the shape represents the p-space of
the F-Formation, whereas its interior corresponds to the o-space.
Intuitively, fitting an ellipse should be preferable to fitting a
circle because of the variability of human spatial behavior.
However, we sometimes default to using circles because fitting
ellipses requires at least 5 points.
To fit a circle, we consider three cases. First, if the context has a
single individual, |C| � 1, then we assume that the center of the
circle is d units in front of the individual, in the direction of its
transactional segment. This means that the o-space of the
group is defined by the circle with a center at c � x1 +
d [cos(θ1) sin(θ1)]T and a radius of d. The distance d has
been defined in the literature as the stride parameter of

mathematical F-Formation models (Cristani et al., 2011).
Second, if the context has two individuals, |C| � 2, then we
assume that the center of their group’s o-space is in between them
because face-to-face spatial arrangements are common for dyads.
This means that the center of the circle is given by c � (x1 + x2)/2,
and its radius is ‖x1 − x2‖/2. Third, if the context has at least three
people, |C| > � 3, then we fit a circle to their locations using
orthogonal distance regression (Boggs and Rogers, 1990), which
tends to be more robust to potential errors in the location
measurements than ordinary least squares.
To fit an ellipse to the location of the interactants in C, we
follow the direct fitting approach by Halíř and Flusser (1998).
We found this approach to be fast in comparison to iterative
approaches and more robust than that of Fitzgibbon et al.
(1996) when |C| � 5.

2) Compute the robot’s location. We view the problem of
computing a suitable location for the robot given the fitted
circular shape, the context C, and map M as an optimization
problem. The key factor in this formulation is the loss function,
which we define as a weighted sum of three components that
penalize for deviations from the fitted circular shape (ℓc), close
proximity to other individuals (ℓp), and positioning in nonfree
areas of the environment (ℓf). Formally:

ℓ(x) � λcℓc(x) + λpℓp(x) + λfℓf(x) (4)

where λc, λp, λf ∈ R+ control the effect of each penalty. The
first component ℓc corresponds to the perpendicular distance
from x to the fitted circle or ellipse. The second component
ℓp penalizes violations to personal space:
ℓp(x) � ∑P

i�1N (x; xi, Iσ), where N denotes a normal
distribution with mean xi and variance σ. Lastly, ℓf in Eq. 4
is a penalty for the input location corresponding to a nonfree
cell of the map M. Figures 2A–E illustrate these different
components for the loss, where the map has been smoothed
to avoid positions too close to nonfree cells.
While one could use brute-force search to find a minima of
Eq. 4 around the contextC, we propose tominimize the loss using
Powell’s conjugate direction method (Powell, 1964), a
popular optimization algorithm. This method does not
require derivatives, which is convenient for this
optimization because computing the orthogonal distance
to an ellipse, as needed by the ℓc penalty, is a nontrivial
problem for which we use an iterative method. See Uteshev
and Yashina (2015) and Uteshev and Goncharova (2018) for
a discussion on the point-to-ellipse problem.

3) Compute the robot’s orientation. We finally set θ such that the
robot orients toward the center of the fitted circular shape,
corresponding to the expected center of the o-space.

4.3 A Data-Driven Adversarial Approach for
Pose Generation
Another way to approach the problem of generating a suitable
pose for a robot in a conversation is to leverage generative
data-driven methods. In particular, we explore using Wasserstein
Generative Adversarial Networks (WGAN), originally proposed by
Arjovsky et al. (2017), to produce poses that conform to measured
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characteristics of F-Formations. This type of data-driven model is
composed of two neural networks: a generator G, which we use to
predict the desired pose �p; and a discriminator D, which helps
discern generated poses from poses in the true data. Note that for
WGANs, D is often called the critic because the network is not
trained to classify, but outputs a real value; here, we use the terms
interchangeably to help readers familiar with adversarial networks
follow our explanation.

Without loss of generality, let us represent the pose of a social
agent < x, θ > as a 4D row vector p � [x y cos(θ) sin(θ)] so that we
do not have to worry about θ wrapping around the (−π, π]
interval. Also, assume that we have a dataset D �
{<Cj,Mj, pj > } with ideal poses p for a social robot given a
corresponding context C andmapM. Our goal with theWGAN is
to then train the generator and discriminator networks using D.
Formally, the WGAN objective can be expressed as a minimax
game:

min
G

max
D

Ep∼Pr[D(p|C,M)] − E�p∼Pg[D(�p|C,M)] (5)

where we have conditioned the discriminator D on the
corresponding context and map data for the sampled pose,
following the formulation for Conditional Generative
Adversarial Networks by Mirza and Osindero (2014). The
discriminator (or critic) in Eq. 5 should be in the set of 1-
Lipschitz functions, which we implement via a gradient penalty
added to the loss in Eq. 5 per (Gulrajani et al., 2017). Lastly, Pr in
Eq. 5 is the real data distribution induced by D, and Pg is the

distribution implicitly defined by the generator G:
�p � G(z|C,M), with the latent variable z ∼ p(z) coming from
a simple prior (e.g., a standard normal distribution in this work).

We propose a novel two-stream architecture for the generator
and discriminator networks (Figure 3). This architecture is
driven by our knowledge of the problem domain—we take
advantage of inductive biases (in terms of relational and
spatial structure) to facilitate learning. The next sections
provide more details.

4.3.1 The Generator Network
Figure 3A describes how the generator predicts a pose �p given a
social interaction graph G as input. The nodes of the graph
correspond to pose features vi � [xi yi cos(θi) sin(θi)]. The
graph’s global attribute u is a tensor with dimensions 3 × h × w.
The first two channels correspond to the mapM ∈ R2×h×w, which
represents occupancy by tall and short barriers in its first and
second channels, respectively. The last channel of u corresponds
to the latent variable z.

One processing stream of the generator reasons about the
graph G focusing on the spatial–orientational arrangement of
the interactants (i.e., the information in the node features)
using a GNN that operates in the same spirit as deep sets (Qi
et al., 2017; Zaheer et al., 2017)—similar to the “context
transform” proposed by Swofford et al. (2020). Another
parallel stream processes the graph focusing on proxemics,
that is, how interactants use space in relation to the

FIGURE 2 | Example losses for the Geometric approach on a sample from the Cocktail Party dataset. From left to right: (A) social context on an environment map
with free space (light gray color), short obstacles (medium gray), and tall obstacles (darker gray); (B) circular fit loss; (C) personal space loss; (D) penalty associated with
nonfree cells of the environment map; and (E) weighted sum of those three losses. The arrows indicate the pose of the interactants. Brighter values in the loss plots
correspond to lower cost.

FIGURE 3 | The generator (A) and the critic (B) process the information in the social interaction graph via two GNNs. One GNN reasons about the
spatial–orientational arrangement of the group (encoded in the vertex features vi). The other GNN reasons about proxemics based on the interactant’s positions
(encoded in the vertices) and themap (encoded in the global attribute u). Note that the global attribute for the graph input to the generator also includes the latent variable
z. The “mlp” blocks are multilayer perceptrons.
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environment (Hall, 1966). This stream is a GNN that uses 2D
convolutional layers to reason about two types of spatial
relationships: the shape of the formation based on the
location of interactants (encoded in the vertices of G) and
the location of nearby objects relative to the group (based on
the map in the graph’s global attribute).

The generator concatenates the vector representations that
result from the two computation streams and then transforms
the data through a two-layer perceptron (with ReLU
transformations) and one additional linear layer. This results
in a 4D output vector, whose first two elements correspond to the
position of the output pose �p. The last two elements are the cosine
and sine of the robot’s orientation, which are constrained to lie in
(−1, 1) through a final hyperbolic tangent transformation applied
to these elements.

The next sections explain how the parallel streams of the
generator network are implemented. More implementation
details are provided in the Supplementary Material.

4.3.1.1 Spatial–orientational GNN
Figure 4A illustrates the architecture of the spatial–orientational
component of the generator. The network is a GN block that
aggregates position and orientation information from the group:
u1′ � ρv→u

1 ({ϕv1(vi)}i�1: P), where the update function ϕv1
corresponds to a multilayer perceptron (with ReLU
activations) applied to the vertex features vi, and the aggregate
function ρv→u

1 is max pooling. Comparing these operations with
Eqs. 1–3, this GN block can be thought of as having a trivial ϕu

function in Eq. 3 that simply returns the aggregate feature for
the nodes.

4.3.1.2 Proxemics GNN
Figure 4B depicts the generator’s proxemics component, which is
also a GN block. First, the GN block updates the node features by
creating a 2D tensor vi′ � ϕv2(vi) ∈ Rh×w that represents the
personal space of the interactant i using a simple Gaussian
blob. That is, vi′ is a matrix of the same width and height as
the mapM, where each cell corresponds to a physical location in
the world and has a value equal to the probability density of a
normal distribution centered at the location of the interactant
[xi yi]. Second, the GN block aggregates the updated node features
�v′ � ∑i�1: Pvi′ using element-wise summation. Third, the global

attribute is updated by concatenating u (with the map and latent
variable z) with the aggregated personal space representation �v′,
resulting in a tensor inR4×h×w. The latter tensor is then processed
by a three-layered convolutional neural network with ReLU
activation, and the result is finally flattened into a vector
representation u2′ for this stream. Note that the node update
and aggregate functions used by this GNN lead to a
representation similar to the personal space loss used for the
Geometric approach (and illustrated in Figure 2C). However, the
network is not told explicitly how to reason about this data;
instead, it needs to figure this out through the adversarial training
regimen implemented with the critic.

4.3.2 The Critic Network
We implement the critic in a similar fashion to the generator,
with two data processing streams. The main difference is that
instead of getting an input graph whose global attribute
contains a latent variable z, the global graph attribute u �
M in this case. Also, the critic gets an additional input pose p,
which may come from the dataset D or from the output of the
generator. This pose is processed in a third parallel stream, as
illustrated in Figure 3B, using a two-layer perceptron with
ReLU activations. The three-vector-representations output by
the two GNNs and the pose streams are concatenated and
finally projected into a scalar value. The Supplementary
Material provides more details on the GNNs and this last
transformation.

4.4 Generating a Distribution of Poses
Both the geometric and WGAN approach described previously
can be used to generate a nonparametric distribution of poses for
conversational group formations. This is useful in two ways: (1) it
can help identify multiple poses that may be suitable for a given
conversational group, and (2) it can help overcome predictions
that are not optimal, perhaps because of local minima. The latter
is particularly important for the Geometric approach because its
output is subject to the initial location provided to its
optimization routine. Also, computing a distribution can be
useful for the WGAN because its generator is not guaranteed
to output an ideal pose given an arbitrary input latent vector z.
Indeed, the neural network is trained to model the distribution of
the real data, not a single pose.

FIGURE 4 | Graph neural networks used in the generator. The “mlp” component in (A) is a multi-layer perceptron and “CNN” in (B) is a convolutional neural
network.
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Generating a distribution of poses with both approaches is trivial.
For the Geometric approach, we can start its optimization step from
different initial locations around the context C, predicting various
locations for the agent. Then, we can compute suitable orientations
for each of the locations as explained in Section 4.2. For theWGAN,
we simply need to run the generator multiple times using different
latent variables as input. Once a nonparametric distribution of poses
is computed, we can choose a single pose as output if desired. For
example, in our evaluation in Sections 5–6, we do this by searching
for a mode of the predicted locations using the mean shift algorithm
(Comaniciu andMeer, 2002) and then simply outputting the pose in
the distribution that is closest to this mode. We also tried more
involved approaches such as computing a mode for the angle of the
pose as well using a von Mises kernel density estimator (Fisher,
1995). However, the former approach gave similar or better
performance in practice and reduced the number of
hyperparameters that we needed to consider in our
implementation, facilitating future reproducibility.

5 EVALUATION ON THE COCKTAIL PARTY
DATASET

This section first evaluates the proposed approaches
quantitatively with respect to different metrics that describe
key properties of F-Formations and desired output poses.
Then, we discuss the results qualitatively.

5.1 Datasets
We used the Cocktail Party dataset (Zen et al., 2010) to evaluate the
proposed approaches. The dataset consists of approximately 30 min
of interaction data. It includes 320 frames with conversational group
annotations and pose information for six individuals who took part
in a Cocktail Party event, as shown in Figure 1A. While the original
dataset provides head orientation for each of the individuals based
on automatic tracking methods, our evaluation used manually
annotated body orientations (Vázquez et al., 2015b) as θ for the
pose of interactants. Reasoning about body orientation instead of
head orientation preserves consistency with the theory of
F-Formations (Kendon, 1990). In addition to this data, we
manually created an environment map for the Cocktail Party
scene with labels for “free space,” space occupied by “tall objects”
(through which social interactions are unlikely), and space occupied
by “short objects” (like the table in the room). Areas outside of the
Cocktail Party room were labeled as having “unknown” occupancy
in the map and were treated as occupied space in practice.

We split the group annotations from the Cocktail Party dataset
into two sets: training (80%) and testing (20%). The test set included
31 frames with group annotations at the beginning of the Cocktail
Party sequence, 31 frames in the middle, and 31more at the end; the
training set was composed of the other frames with group
annotations.1 The latter groups were then used to create a dataset
DCP

train � {<C,M, p> } of 1,394 examples with corresponding

contexts C, map M, and example ground truth pose p for a
robot. The map for these examples had 24 × 24 cells and a
resolution of 0.25m per cell. They were a cropped section
(generated with subpixel accuracy) of the full environment layout,
covering an area of approximately 3-m radius around the context C.
The ground ruth pose in the examples corresponded to the position
and orientation of onemember of the group who was excluded from
the context. Using the test groups, we created a similar dataset DCP

test
for evaluating the proposed models, where |DCP

test| � 347.
We also created a dataset of simulated F-Formations using 15

environment layouts from the iGibson simulation environment
(Shen et al., 2020). For each environment, we first created a 2D
layout intersecting the 3D geometry of the world with planes parallel
to the ground, as illustrated in Figures 5A, B. Using the layout, we
thenmanually created an environmentmapwith the same labels and
resolution of the Cocktail Party environment map and automatically
generated circular groups with two to six people in free areas of the
environment following a simple rule-based procedure. This resulted
in 34,405 simulated examples, each with a corresponding
environment map, context and example ground truth pose for
the robot. Figure 5C shows one sample from this dataset.

Upon preliminary testing of the data-driven method, we
realized that the WGAN significantly benefited from many
diverse examples. Thus, we further augmented the dataset of
simulated groups by warping the data using a small amount of
horizontal and vertical stretch as well as random rotations. This
resulted in an expanded dataset of 60,365 simulated examples in
total, which we used to train some variations of the data-driven
model in this evaluation. The Supplementary Material provides
more details about the data generation process used to create
simulated F-Formations in iGibson environments.

5.2 Pose Generation Methods
The present evaluation considered variations of the proposed methods
and a recent baseline for robot pose generation in F-Formations, which
does not use information about the surrounding physical environment.
To the best of our knowledge, no prior work has considered variability
in the environment of F-Formationswhen generating suitable poses for
an interactant. All methods were implemented in Python.

Baseline method: We implemented the pose generation
method by Yang et al. (2017). As with our model-based
approach, this method seeks a circular spatial pattern but
without explicitly accounting for environment characteristics.
Instead, the existing social context alone determines the
generated pose, which is computed as follows: First, any pair
of individuals in the context is used to define a mutual circular
region. Second, all pairwise centers are averaged to compute the
center coordinate of the o-space, to which the new member faces.
The minimum and maximum distances of individuals to the
common center demarcate the p-space of the group, the annular
zone that interacting peers occupy (as in Figure 1B). Finally,
bisecting the largest gap between adjacent neighbors identifies the
new member’s position within the group.

Geometric methods: We evaluated the Geometric approach
proposed in Section 4.2 considering two cases. In one case, the
method generates a single pose using an initial location for its
optimization step that is within a 3× 3m region around the center of

1Splitting the dataset in this manner minimized overlap between the training and
testing data given the temporal correlation of the data.
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the given context C. In the other case, we run the method multiple
times to model a distribution of poses and then use mean shift to
choose an output pose (as described in Section 4.4). In the latter
case, we initialize the method with 36 different initial values for its
optimization, which are sampled uniformly in the same 3 × 3m
region considered in the former case. For both variations, we set the
loss parameters σ � 0.21, λp � 1.25, λc � 0.2 and λf � 0.5 based on
initial results on DCP

train.
Data-driven methods: We considered three variations of the

proposed WGAN. First, we considered a model trained on the
simulated dataset (with a small amount of angular noise applied to
the orientation of the context poses to make the group arrangements
more varied). Second, we evaluated a model trained on the Cocktail
Party train data only (with 10% used for validation). Third, we
considered a model trained like the first one and then fine-tuned on
the Cocktail Party train data. In addition, we considered generating
one sample pose from the generator, as well as generating a
distribution of 36 poses from which we output a solution guided
by mean shift (as in Section 4.4).

We implemented the WGAN using the PyTorch library and
trained models using an NVidia GeForce RTX 2080 Ti GPU.
More specifically, we used the Adam optimizer with a learning
rate of 0.00002, a batch size of 32, and a weight of 10 for the
WGAN gradient penalty (Gulrajani et al., 2017). During gradient
descent, we weighted the training samples based on the relative
distribution of group sizes in the dataset and updated the critic
five times for every generator update. We trained models for at
least 600 epochs and chose the best training weights through a
combination of manual inspection of the generated samples and
quantitative metrics on the Cocktail Party validation data.

The Supplementary Material provides more implementation
details for the WGAN. Also, it describes results for several other
variations of the WGAN that we explored in this work, but that
resulted in no major improvement. For example, we considered a
model that only had information about free space, instead of multiple
map labels.

5.3 Quantitative Metrics
We considered a range of metrics that describe F-Formations and
social norms in regard to spatial behavior:

– Deviations from fitted circle or ellipse (Circ. Fit). We measure
the perpendicular distance from a generated pose to a circle or

ellipse that has been fitted to the context C. The circle or ellipse
is fitted following the same considerations described in Section
4.2 for the proposed Geometric approach.

– Individual is not on free space (Not Free). We compute how
often the location of a generated pose falls within a nonfree cell
in the environment mapM. The values for this metric ranged in
[0, 1] because of subpixel cropping of the maps.

–Violations to personal space (Per. Space).We compute the number
of cases in which the distance between the generated pose �p �
< x, θ > and the pose of another member of the group < xj, θj > is
less than a personal space threshold, ‖x − xj‖ < δ. We use a
threshold of δ � 0.68 m based on real-world data of interpersonal
distances in Italy (Sorokowska et al., 2017), because the Cocktail
Party data were originally captured in that country.

– Violations to intimate space (Int. Space). Similar to personal
space, we compute the number of cases in which the distance
between the generated pose and another group member j is less
than an intimate space threshold, ‖x − pj‖ < ρ. We use ρ �
0.42 m based on Sorokowska et al. (2017).

– Distance to group’s o-space center (Center Dist.). Let xi and θi
be the location and body orientation of a social agent (human
or robot) in a conversational group. Prior work, such as those of
Cristani et al. (2011) and Setti et al. (2013, 2015), has proposed
to compute the o-space center of an F-Formation as follows:

�o � 1
P
∑P
i�1

oi � 1
P
∑P
i�1

xi + d
cos(θi)
sin(θi)[ ]( ) (6)

where P is the number of interactants in the group, and oi
is a proposed o-space center for member i. Thus, we
measure alignment with an ideal F-Formation model as
the average distance between the group’s o-space center
and the o-space center proposals for individual members:
CenterDist � 1

P∑P
i�1‖�o − oi‖. For the parameter d, needed to

compute �o in Eq. 6, we use d � 0.72 as it minimizes

∑K
g�1∑Pg

i�1‖�og − oi‖2, considering all K ground-truth

groups for the Cocktail Party dataset (see Vázquez

(2017) for the derivation).
– Individual occludes another interactant (Occ. Other).

Ideally, the generated poses should not be in front of
other interactants, as this would prevent them from
having direct access to the o-space and exclude them
from the group. To identify these situations, we check if

FIGURE 5 | (A) Example 3D environment from iGibson (Shen et al., 2020), (B) environment layout generated from the 3D environment, and (C) simulated sample on
a cropped section of the layout.
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the generated pose is in between another interactant in the
group and the o-space center �o. The center �o is computed as
in Eq. 6 while excluding the generated pose, because a bad
prediction could skew significantly �o.

– Individual is behind another interactant (Is Occ.). This metric
is similar to the prior metric, but we invert the roles of the
generated pose and an interactant’s pose for which we compute
the occlusion.

The first three metrics correspond to each of the losses
considered by the Geometric approach and thus serve to
validate that the method was working as expected. In addition,
these metrics are useful to evaluate whether the data-driven
method behaved in a similar manner. The occlusion metrics
are inspired by the visibility constraints from Vázquez et al.
(2015b) and Setti et al. (2015), and the personal and intimate
space metrics signal potential violations to social norms. Lastly,
the Center Dist. metric serves to evaluate the combined effect of
position and orientation prediction. The metrics are inspired by
ideal models of F-Formations, but real-world data may not
perfectly satisfy all assumptions set forth by the metrics. Thus,
we report values for ground truth test data in our results as a
reference for comparison.

5.4 Quantitative Results
Table 1 presents the results on the Cocktail Party test set. As a
reference, the first row shows the values for the metrics using
ground truth poses from the test set (which were removed to create
the context C input to the pose generation methods shown in
Table 1).

Unless noted otherwise, we analyzed the results for the
quantitative metrics using restricted maximum likelihood (REML)
analyses considering method (10 levels, each one corresponding to a
row of Table 1) as main effect and Example ID from the Cocktail
Party test set as random effect. The results for the Circ. Fit metric
indicated a significant effect of method (F[9, 3114] � 5.50, p <
0.0001). A Tukey honestly significant difference (HSD) post hoc test
showed that the baseline method by Yang et al. (2017) led to
significantly higher Circ. Fit values than the other methods. The
baseline performed poorly because its o-space representation is the

average of all circles fitted to pairs of group members. Thus, a single
pair can heavily bias the position of the generated interactant. For
example, we often observed this bias when the difference between the
orientations of a pair of individuals in the context was small, which
resulted in a circle with a disproportionately long radius. There were
no other significant pairwise differences for the Circ. Fit results,
suggesting that the proposed methods were able to effectively
capture the circularity of F-Formations.

An REML analysis on the Not Free metric indicated that there
were significant differences by Method (F[9, 3114] � 64.72, p <
0.0001). The post hoc test showed that the baseline method by
Yang et al. (2017) resulted in significantly more poses generated
in occupied cells of the environment map than all other methods.
This was expected because the baseline did not consider the
environment map in its calculations. The only other pairwise
differences for the Not Free metric were the results for rows 4 and
8 in Table 1, which were low but significantly higher than the
results for rows 1, 3, 5, 7, and 9. As a reference, rows 4 and 8
corresponding to the WGAN trained on iGibson-simulated data
led to 24/347 and 22/347 examples for which the Not Free metric
was greater than 0.5. Meanwhile, the ground truth values had
3/347 instances in this category, and the Geometric approach
led to only one such case in the Cocktail Party test set.

We also found significant differences for violations to personal
space (p < 0.0001) and intimate space (p < 0.0001) using REML
analyses, as well as using Poisson generalizedmixed linearmodelswith
a log link function. In terms of Per. Space, a Tukey HSD post hoc test
showed that the Geometric approach (rows 3 and 7 in Table 1) led to
significantly lower number of personal space violations than all
other methods, followed by the Yang baseline (row 2) and the
WGAN trained on simulated data using iGibson environments
(rows 4 and 8). Also, the WGAN trained or fine-tuned on
Cocktail Party train data led to significantly higher violations
to Per. Space than all other methods. In terms of Int. Space,
best results were obtained with the Ground Truth poses (row
1), the Yang baseline (row 2), and the Geometric approaches
(rows 3 and 7). These methods had significantly fewer intimate
space violations than all other methods. Further, the WGAN
trained on simulated data (rows 4 and 8) was significantly
better in terms of Int. Space than the other WGAN variations

TABLE 1 | Results on the Cocktail Party test set.

Method Circ. Fit Not Free Per. Space Int. Space Center Dist. Occ. Other Is Occ.

1 Ground Truth 0.35 ± 0.24 0.01 ± 0.09 0.48 ± 0.56 0.00 ± 0.00 0.27 ± 0.10 0.00 ± 0.00 0.00 ± 0.00

2 Yang 3.02 ± 21.51 0.26 ± 0.43 0.28 ± 0.62 0.00 ± 0.05 1.20 ± 9.44 0.00 ± 0.00 0.02 ± 0.14

3 Geometric 0.33 ± 0.29 0.00 ± 0.05 0.01 ± 0.13 0.00 ± 0.00 0.30 ± 0.24 0.01 ± 0.27 0.09 ± 0.28

4 WGAN (iG) 0.33 ± 0.29 0.07 ± 0.23 0.38 ± 0.61 0.11 ± 0.33 0.45 ± 0.15 0.03 ± 0.17 0.01 ± 0.12

5 WGAN (CP) 0.28 ± 0.23 0.02 ± 0.13 0.73 ± 0.71 0.31 ± 0.49 0.46 ± 0.12 0.10 ± 0.40 0.06 ± 0.23

6 WGAN (iG, CP) 0.31 ± 0.23 0.03 ± 0.16 0.68 ± 0.64 0.22 ± 0.41 0.45 ± 0.11 0.12 ± 0.32 0.01 ± 0.12

7 Geometric* 0.29 ± 0.28 0.00 ± 0.05 0.01 ± 0.13 0.00 ± 0.00 0.30 ± 0.24 0.00 ± 0.05 0.07 ± 0.26

8 WGAN* (iG) 0.33 ± 0.28 0.07 ± 0.23 0.36 ± 0.59 0.10 ± 0.29 0.45 ± 0.15 0.03 ± 0.18 0.01 ± 0.09

9 WGAN* (CP) 0.29 ± 0.23 0.02 ± 0.13 0.72 ± 0.68 0.32 ± 0.49 0.46 ± 0.12 0.12 ± 0.40 0.04 ± 0.20

10 WGAN* (iG, CP) 0.31 ± 0.22 0.03 ± 0.15 0.66 ± 0.65 0.21 ± 0.41 0.45 ± 0.11 0.11 ± 0.32 0.02 ± 0.13

Each row shows µ ± σ for each of the metrics described in Section 5.3 (lower is better). Models without * output a single pose, whereas those with * output a distribution of 36 poses from
which we chose a single pose (guided by the mode of the distribution) as final output. “(iG)” models were trained on simulated data using iGibson environment maps, “(CP)” indicates
training with Cocktail Party train data, and “(iG,CP)” corresponds to pretraining with simulated data and then fine-tuning on Cocktail Party train data. The best results (for which there are no
significant differences) are highlighted in gray per column—see the text for statistical analyses.
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(rows 5, 6, 9, and 10). TheWGAN fine-tuned on Cocktail Party
train data (rows 6 and 10) was also significantly better than the
WGAN trained on these data only (rows 5 and 9).

The results for the Center Dist. metric were similar to the Circ.
Fit metric: an REML analysis showed significant differences per
Method (F[9, 3114] � 2.75, p � 0.003), and the post hoc test
showed that the Yang baseline had significantly worse Center
Dist. results than all the other methods.

The values for the occlusion metrics were generally low, but
there were significant differences across Methods. For Occ. Other
(p < 0.0001), the methods in rows 1–4, 7, and 8 in Table 1 resulted
in poses that led to significantly fewer occlusions than the
methods in rows 5, 6, 9, and 10. For the Is Occ. metric (p <
0.0001), the Tukey HSD post hoc indicated that the Ground Truth
results (row 1 in Table 1) were significantly lower than those for
the Geometric approach (rows 3 and 7) and the WGAN trained
on the Cocktail Party train data (rows 5 and 9). However, there
were no significant pairwise differences between the Ground
Truth results, the Yang baseline (row 2), the WGAN trained
on iGibson data (rows 4 and 8), or the WGAN fine-tuned on
Cocktail Party train data (rows 6 and 10).

In summary, the results in Table 1 led to three key takeaways.
First, the proposed methods worked better than the baseline in
terms of the Circ. Fit, Not Free, and Center Dist. metrics. This
showed the value of considering environmental spatial
constraints when predicting poses for agents in conversational
groups and the superiority of the proposed methods at modeling
the shape of F-Formations. Second, training the WGAN on
simulated data using iGibson environments turned out to be
as good as or better than training on realistic Cocktail Party data
only, except for the Not Free metric for which the simulated data
led to slightly worse results. We attribute this result to the fact that
generative adversarial models are data-hungry, and the Cocktail
Party train set had only 1,394 examples (approximately 2% of the
simulated dataset). Effective fine-tuning of the WGAN model on
the small Cocktail Party train set proved difficult. Third,
computing a distribution of poses led to slight improvements
in some cases compared to predicting a single pose directly. For
instance, the distribution helped slightly the WGAN model in
terms of personal space violations and the Geometric approach in
terms of occlusions.

5.5 Qualitative Results
We further analyzed the results from Section 5.4 qualitatively for
the baseline by Yang et al. (2017), the Geometric approach and
the WGAN (trained on simulated data). Figures 6A–E shows
example results by these methods on different group sizes. The
columns are identified with the same naming convention as
Table 1, where * in the Figure corresponds to methods that
internally predicted a distribution of 36 poses.

In comparison to the baseline (Yang column), the proposed
Geometric approach resulted in similar predictions when the
context had one or two poses (Figures 6A,B). However, for bigger
groups, the Geometric approach tended to model circular spatial
arrangements more consistently than the baseline, resulting in
poses that were better positioned or oriented with respect to the
context.

In regard to the methods that computed pose distributions,
Figure 6 shows that these distributions captured different viable
solutions to the pose generation problem. Interestingly, while the
Geometric* approach tended to lead to more multimodal
distributions than the WGAN* (iG), the data-driven method led
to fewer occluded poses in these distributions. Occlusions were a
problem for the Geometric approach due to local minima in its
optimization step, but by predictingmultiple poses, this problemwas
alleviated.

Figure 7 shows more difficult prediction problems, where the
context poses are distributed in less circular form or are closer to
physical obstacles. These cases led to poor o-spacemodeling for both
the baseline and the Geometric approach. In particular, in
Figure 7A, the Geometric approach fit a circular shape to the
context that had a disproportionately big radius and was oriented
in the wrong direction. In Figure 7B, the baseline by Yang et al.
(2017) had trouble with pairs of poses in the context being oriented
very similar to one another, which led to a generated pose that was
very far away from the group. Also, in Figure 7C, the baseline output
a generated pose in nonfree space.

In terms of the WGAN, Figure 7B shows that the WGAN had
more trouble avoiding short obstacles than the other methods.
Furthermore, Figure 7C shows that another failure for theWGAN
was to place poses toward the center of a group. Predicting a
distribution of poses in this case was useful in comparison to
generating a single pose, as the distribution comprised poses in
more appropriate positions relative to the context.

Despite the challenges encountered in some cases by the
proposed approaches, they generally performed better than the
baseline by Yang et al. (2017) both in terms of considering
environmental constraints and dealing with the variability
inherent in human spatial behavior. However, it was hard to
evaluate the methods holistically: we did not know of a good way
to combine the quantitative metrics considered in this section
into a single success measure. Thus, to complement these results,
we conducted a complementary, human-driven evaluation of the
proposed approaches. This evaluation is presented in the
following section.

6 HUMAN EVALUATION

We evaluated generated poses by the proposed geometric and data-
driven approaches from a human perspective. For this evaluation, we
chose a diverse set of the groups from the Cocktail Party test data.
We then removed one human member of the groups, as in the prior
evaluations, and computed the pose for a robot to be part of the
interaction with the remaining members. The resulting spatial
arrangement was rendered in a virtual scene similar to the
environment of the Cocktail Party dataset. Human participants
then gave us their opinion of the pose of the robot relative to the
virtual humans rendered in the scenes.

This experiment followed a similar protocol to Connolly et al.
(2021). The main difference is that our focus was not on
evaluating the effect of different robot embodiments on
human perception of conversational groups; instead, we
wanted to compare the two proposed methods for pose
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generation. For this reason, we focused on using a single robot
embodiment for this study. The selected robot was a humanoid
Pepper robot, which has an easily discernible body orientation
and head. Its dimensions are similar to those of a young
person.

6.1 Participants
We used Prolific to recruit a total of 60 participants (32 females
and 28males) for this human evaluation. The participants resided
in the United States, were fluent or native English speakers, had
normal or corrected-to-normal vision, and had an average age of
32.15 years (standard deviation [STD] � 12.57). They indicated
sometimes playing video games (mean [M] � 4.32, STD � 2.14)
and rarely interacting or working with a robot (M � 2.23, STD �

1.59) on 7-point responding formats (1 being the lowest rating
and 7 being highest).

6.2 Experiment Design
We controlled for three main variables in this evaluation:

Method (two levels). We compared the Geometric approach
(Section 4.2) with the WGAN approach (Section 4.3). Both
methods computed a distribution of 36 samples from which we
chose a single output pose by searching for a mode across predicted
locations (as explained in Section 4.4). For both methods, we used
the best hyperparameters found in Section 5. For the WGAN, in
particular, we chose themodel that was trained on simulated iGibson
data (row 8 ofTable 1) because, except for the Not Freemetric, it led
to better or similar performance than alternatives.

FIGURE 6 | Successful predictions for several methods (one per column) on five different problems (rows) from the Cocktail Party test set. The orange arrows
correspond to the poses in the context C, and the purple arrows are predicted poses, except for the Ground Truth column in which the purple arrows correspond to a
true pose by a groupmember. Note that the darker purple arrows are the final output by eachmethod, and the lighter ones are additional predictions by themethods that
computed a distribution of poses. The colors of the environment map are the same as in Figure 5C: “free space” is light gray, “short obstacles” is medium-intensity
gray, and “tall obstacles” is darker gray. In addition, these plots show one more label for “unknown” occupancy (darkest gray color). The latter label was a result of
cropping the full environment map around context poses next to the edge of themap.When computing results, “unknown” occupancy was considered as nonfree space
by the Geometric approach and was aggregated with tall obstacles for the WGAN. This Figure is best viewed in color.
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Context (10 levels). We considered 10 contexts (i.e., interactants’
poses input to the methods) for each of the Group Sizes mentioned
below. The contexts were chosen to try to maximize the diversity of
scenarios considered in the evaluation and without looking at how
well the proposed methods performed on them.

Group Size (five levels). We considered group sizes of two to six
interactants (including the robot). This means that the proposed
methods had as input a Context with one to five interactants.

The study was run with a mixed design using a Qualtrics online
survey. The participants provided their opinion of the pose of the robot
for a single Group Size (between participants) in renderings generated
for all Context/Method combinations (within participants). In
particular, for each combination of Context and Method, we
generated two renderings that depicted the resulting interaction.2

One rendering corresponded to a top-down view of the group, and
the other was a frontal view so that the participants could easily
perceive the robot’s spatial positioning relative to the other interactants
(as shown in Figure 8A).

The participants were randomly assigned to each Group Size
category, resulting in all categories having at least four males or
females. Renderings made for Group Sizes of three, four, and six
interactants were evaluated by 12 participants each, whereas the
renderings for Group Sizes of two and five interactants were
evaluated by 13 and 11 participants, respectively.

6.3 Measures
The participants provided feedback about the pose of the Pepper
robot on each scene shown in their survey, each of which
corresponded to a given combination of Context and Method.
In particular, the survey first asked them to visually identify the
Pepper robot in the rendered scene. Then, it asked them to rate
four statements about the robot’s pose relative to the virtual
humans. Example images can be seen in Figure 8, along with the
statements that the participants had to rate using a 7-point Likert
responding format from “strongly disagree” (1) to “strongly

FIGURE 7 |Difficult predictions on three different problems (rows) from the Cocktail Party test set. As in Figure 6, the orange arrows correspond to the poses in the
contextC, the purple arrows are Ground Truth or predicted poses, and the lighter gray color in the maps corresponds to free space. White areas within a plot correspond
to regions of the space out of the cropped map (considered as “unknown” occupancy by the proposed methods). This Figure is best viewed in color.

2The renderings were generated as in Connolly et al. (2021), using the Unity game
engine (https://unity.com/), tools from the Social Environment for Autonomous
Navigation (Tsoi et al., 2020), the Microsoft Rocketbox avatar library (Gonzalez-
Franco et al., 2020), and an open-source version of Pepper’s Universal Robot
Description File (http://wiki.ros.org/pepper_description).
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agree” (7). Following Connolly et al. (2021), we reversed the scores
for negative statements and computed the correlation between
them, obtaining moderate positive pairwise correlations (see
Supplementary Table S8 in the supplementary material).
Cronbach α for these ratings was 0.83, above the nominal 0.7
threshold. Thus, we grouped responses into an “InGroup”measure.

6.4 Procedure
Upon starting the survey, the participants completed a consent form
to take part in the evaluation and provided basic demographics data
(as described in Section 6.1). Then, the survey showed renderings of
two practice scenes and asked the participants to rate the pose of the
robot in them using the In Group statements from Figure 8B. The
practice scenes depicted different Contexts than those used for the
evaluation to avoid biasing participant’s opinion. In one practice
scene, the pose of the robot corresponded to the ground truth pose
for the individual that it replaced in the Cocktail Party dataset. In the
other practice scene, the robot’s pose was generated by taking the
ground truth pose and then reorienting the robot opposite to its
group. These examples served to familiarize participants with the
robot and the In Group statements used to rate its pose.

After the two practice scenes, the survey showed the real evaluation
scenes. For each scene, the survey asked the participants to evaluate the
pose of the Pepper robot using the In Group statements. Note that the
survey for the participants who provided feedback for groups of size 4
included only 19 evaluation scenes because the Geometric approach
led to positioning the robot outside of the Cocktail Party environment
in one case, which we removed from our evaluation. For all other
group sizes, the survey included 20 evaluation scenes as originally
planned (10 contexts× 2methods). The order of the evaluation scenes
was randomized for all the participants. That is, the renderings by
Method and Context were randomly interspersed with one another
within a participant’s survey to avoid potential ordering effects.

After rating all the scenes, the participants provided their
opinion about how hard it was to complete the survey. We used
these responses in pilots to improve the protocol design. The
survey typically took approximately 12 min to complete, for
which the participants were paid US $2.4. This protocol was
approved by our local Institutional Review Board.

The Supplementary Material provides more details on the
specific design of the online survey and shows all the renderings
used in this evaluation.

6.5 RESULTS

We conducted an REML analysis on the In Group measure. In
this analysis, we considered Method, Group Size, and their
interaction as main effects, and Context and Participant ID
as random effects. We found significant effects for Group Size (F
[4, 55.19] � 3.24, p � 0.019). A Tukey HSD post hoc test
suggested that the In Group ratings were significantly lower
on groups of size 4 (M � 4.44, STD � 1.67, N � 240) than on
groups of size 6 (M � 5.27, STD � 1.65, N � 240). No other
significant differences were obtained by Group Size. The ratings
for groups of size 2, 3, and 5 were M � 4.78 (STD � 1.37; N �
260), M � 5.14 (STD � 1.56; N � 240), andM � 4.91 (STD � 1.58;
N � 220), respectively.

The REML analysis indicated that Method had a significant effect
on the In Group ratings, F[1, 1115] � 10.06 (p � 0.002). A Student
t post hoc test suggested that the data-driven approach (M � 5.01,
STD � 1.44, N � 600) led to significantly higher ratings than the
Geometric approach (M � 4.81, STD � 1.73, N � 600), although this
difference was small (approximately 0.2 points on the 7-point scale).

There was also a significant interaction effect of Method and
Group Size on the In Group measure, F[4, 1114] � 61.43 (p <
0.0001). Interestingly, a Tukey HSD post hoc test indicated that the
In Group ratings were significantly higher for the WGAN than for
the Geometric approach on Group Sizes 4, 5, and 6. However, the
Geometric approach led to significantly higher ratings than the
data-driven method for the other Group Sizes, as illustrated in
Figure 9A. This difference in performance by Group Sizes was
observed on each of the individual components of the In Group
measure, as shown in Figure 9B.

We looked further into the generated renderings to better
understand why the methods led to different In Group values per
Group Size. We noticed two trends:

1. For a Group Size of 2 and 3, the WGAN tended to place the
robot farther away from the context individuals than the
Geometric approach. For example, this result can be seen
in Figure 8A. Also, additional examples can be found in
Supplementary Figures S4 and S5 in the supplementary
material. For instance, for groups of size 2 in
Supplementary Figure S4, the robot is farther away from
the groups with theWGAN than with the Geometric approach

FIGURE 8 | Example scene used for the human evaluation (A) and statements rated by the participants about the robot’s pose (B). (R) indicates that the ratings
were reversed before computing the “In Group” measure.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 70380713

Vázquez et al. Pose Generation for Conversational Formations

143

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


in Contexts 2, 3, 5, 6, 7, 9, and 10. Likewise, this effect can be
seen in Contexts 1, 3, 5, 6, and 8 for groups of size 3 in
Supplementary Figure S5.

2. For Group Sizes bigger than 3, we observed in the renderings that
the Geometric approach tended to place the robot more often
behind individuals than theWGAN. For example, this can be seen
in Contexts 4, 6, 9, and 10 for Group Size 4 in Supplementary
Figure S6 in the supplementary material. Likewise, this result can
be seen in Contexts 1, 3, 4, 5, 9, and 10 for Group Size 5 in
Supplementary Figure S7, and on Contexts 1, 3, 6, 7, 8, and 9 for
Group Size 6 in Supplementary Figure S8. This result is a direct
consequence of the hyperparameters that we chose for the model-
based method. In particular, when looking at preliminary results
in the Cocktail Party train dataset (as described in Section 5), we
prioritized avoiding violations to personal and intimate space.
However, this impaired the capacity of the Geometric approach to
find suitable gaps for the robot in spatial arrangements that
already had at least three members.

The mixed results for the In Group ratings highlight different
properties of the proposed pose generationmethods. First, we attribute
the lower In Group ratings for the WGAN on Group Sizes 2 and 3 to
the method’s reliance on the training data distribution. As mentioned
before, we trained theWGAN using simulated iGibson data, based on
our earlier results on the Cocktail Party dataset (Section 5). However,
these data were generated without special consideration for group size.
All the groups were created by simply placing interactants along a
circular arrangement in free space; we should have instead created
smaller circular arrangements for smaller groups. Second, the
difficulties that the Geometric approach had with Group Sizes 4, 5,
and 6 speak to how challenging it is to choose suitable hyperparameters
for the Geometric approach given all the many factors that matter for
the pose generation problem, including proxemics, the shape of
F-Formations, occlusionswithin groups, and the physical environment.

7 GENERATING CONVERSATIONAL
GROUPS

Although we focused our work on predicting a suitable pose
for a social agent in a group conversation, the proposed

approaches could be reused to create entire conversational
groups. These groups are constructed by invoking the
proposed generative methods iteratively given a map M, the
pose of an initial individual < x0, θ0 > , and the desired number
of group members. After each iteration, the newest generated
pose is added to the social context, which the generator
subsequently takes as an input.

Figure 10 illustrates conversational groups generated by
both proposed approaches using the above iterative method
on two different environments: one map corresponds to the
single room of the Cocktail Party dataset (Figures 10A,B),
and the other one is drawn from the iGibson environments
(Figures 10C,D). At each iteration of the group generation
approach, the final pose output for a new interactant is
selected from a distribution of 36 samples computed by the
corresponding method. These samples are shown as light
purple arrows in Figure 10. The hyperparameters for the
Geometric and WGAN methods used in this section are the
same parameters used for computing the results in Sections 5
and 6.

In general, the results for the iterative group generation
task reflect prior findings. First, the Geometric approach
generates poses that better respect personal space, as can
be seen in the right-most column of Figure 10. Second, for
smaller group sizes, the Geometric approach outputs poses
that are more tightly positioned relative to existing group
members than the WGAN; however, for bigger group sizes,
the WGAN outputs poses in more circular group formations
than the Geometric approach. These circular formations are
prototypical of real conversational interactions, suggesting
that the WGAN better identifies proxemic constraints
introduced by additional interactants than the Geometric
approach.

From a computational perspective, iterative invocation of the
geometric method, without special care for parallelization,
requires more time to output a result than the WGAN due to
the inherent sequential nature of its optimization step. For
example, while the WGAN might take approximately 0.08 s to
make a prediction on a consumer-grade MacBook computer, the
Geometric approach might take approximately 0.5 s. Owing to
this higher runtime cost yet greater stability, the optimization

FIGURE 9 | Results from online human evaluation comparing the Geometric and data-driven approach (WGAN). In the left plot, the symbol * indicates p < 0.05 and
*** indicates p < 0.001, and error bars correspond to standard. error. The right plots only show averages to illustrate the similarity among ratings.
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approach may be used to simulate very large groups appropriate
for training data-driven models in the future.

Lastly, the results also show limitations of the Geometric
approach in reasoning holistically about social scenes. For
example, in Figure 10D, the Geometric approach proposes a
pose for |C| � 9 that is separated from the rest of the context by
a wall. In contrast, the WGAN avoids placing poses far from the
existing context (Figure 10C) without a physically based rule. This
result further highlights the difficulty of handcrafting solutions to the
pose generation problem, as these solutions need to effectively
balance proxemics, spatial environmental constraints, and
arbitrary conversational group sizes.

8 DISCUSSION

8.1 Summary of Contributions
Our work introduced two approaches for generating poses for
social robots in group conversations given spatial constraints and

the pose of other group members. One approach formalizes key
geometric properties of spatial behavior evident in conversational
groups. In this Geometric approach, generating the location of a
pose is formulated as an optimization problem, whose loss
function penalizes divergence from the circular shape of the
existing group formation, violations of personal space, and robot
placement in nonfree environmental areas. The other, data-driven
approach models expected spatial behavior with a WGAN. The
inputs to the generator and discriminator networks are a map of the
environment and a social interaction graph, where the graph nodes
correspond to the pose features of existing interactants. Our novel
architectures for the generator and discriminator rely on GNNs,
which reason about spatial–orientational arrangements and
proxemic relationships in a more implicit manner than our
Geometric approach.

We evaluated our proposed methods on the Cocktail Party
dataset withmetrics based on desirable properties of conversational
group formations. We chose for a baseline a pose generation
method that does not consider environmental characteristics.

FIGURE 10 | Group generation through iterative invocations of the geometric and data-driven approaches. The plots in rows (A) and (B) show results in the map
from the Cocktail Party dataset. Rows (C) and (D) demonstrate our two approaches in a map from the iGibson dataset. As in Figure 6, the orange arrows correspond to
the poses in the contextC, the purple arrows are Ground Truth or predicted poses, and the lighter gray color in the maps corresponds to free space. |C| indicates the size
of the context used to make a prediction per column. This Figure is best viewed in color.
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Both of our approaches significantly outperformed the baseline
method on metrics for maintaining the circular shape of the group
and accounting for obstacles in the environment. This evaluation
affirms the importance of considering environmental constraints in
addition to interactants’ poses when generating spatial behavior for
social agents.

The quantitative evaluation also informed model selection for a
second evaluation, which compared our two pose generation
approaches from a human perspective. Study participants assessed
poses generated by our two proposed approaches in virtual scenes.
With respect to an In Group measure, the Geometric approach
generated superior poses for groups of three or four interactants,
whereas the data-driven approach scored better for larger groups. The
contrasting strengths of our two approaches further reinforce the
complexity of pose generation in social applications: an optimal
solution must respect spatial constraints from both the environment
and other group members while also considering human
expectations for behavior in a variety of scenarios.

In addition to the above contributions, this work explored
using the proposed pose generation methods to simulate
conversational groups of different sizes. We are excited about
the potential of this application to enhance robotics simulations
for HRI, like SEAN (Tsoi et al., 2020), as the proposed methods
could be used as a practical mechanism to add human–robot
social interactions to virtual environments. This could allow the
community to further study social robot navigation
(Mavrogiannis et al., 2021) or advance our understanding of
proxemics and human perception of spatial patterns of behavior
in HRI (Li et al., 2019; Connolly et al., 2021).

8.2 Limitations and Future Work
Our work is limited in several ways, which we consider avenues for
future work. First, we did not find a clear winner between the
proposed pose generation methods. The Geometric approach led to
best quantitative metrics, but according to human ratings, it did not
perform as well as the data-drivenmethodwith bigger groups.While
we believe that in the long term the data-driven approach is more
likely to succeed than the Geometric approach because it has more
flexibility to reason about the intricacies of human spatial behavior, it
is heavily dependent on the availability of significant amounts of
realistic data. Thus, future work could explore creating better
datasets for pose generation subject to environmental spatial
constraints and reevaluate the WGAN on such datasets. One
interesting idea in this respect is leveraging the Geometric
approach to augment the training data used for the data-driven
method.

Second, we focused on predicting a suitable pose for a robot given
the location and orientation of interactants, but one could consider
additional input features for the context in the future, such as motion
data. Adding this information to the Geometric approachmay require
additional special considerations, but providingmore input features to
the data-driven method is easier. For example, we could adjust the
architecture of the spatial–orientational GNN used in the generator
and critic to take onmore input features per interactant and thus allow
the networks to reason about this additional information.

Third, our work is limited in that our evaluation of the proposed
approaches considered simulated interactions only. We have not yet

evaluated the methods on real-world human robot interactions. In
the future, we would like to study the effectiveness of the proposed
methods to enable robots to adapt their pose during situated group
conversations, as interactants move or come and go. We would also
like to explore using the proposed methods for enabling robots to
join nearby group conversations subject to physical environmental
constraints.

Fourth, we often assumed in this work that robots should behave
in similar ways to humans. However, prior work suggests that robot
embodiment may affect the way in which people interpret robot
spatial behavior in HRI (Connolly et al., 2021). Thus, future work
should investigate whether the proposed methods are suitable for
different types of robots, especially those that are less
anthropomorphic than Pepper.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://gitlab.com/
interactive-machines/spatial_behavior/genff.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institutional Review Board of Yale University.
The participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

All the authors contributed to the implementation of the
proposed methods and their evaluation. They also contributed
to writing this article.

FUNDING

This work was supported by the National Science Foundation (NSF),
Grant No. (IIS-1924802). The findings and conclusions in this article
are those of the authors and do not necessarily reflect the views of the
NSF. EG was also supported by the Yale Hahn Scholars program.

ACKNOWLEDGMENTS

Thanks to Jeacy Espinoza for helping create the environment map
for the Cocktail Party dataset.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frobt.2021.703807/
full#supplementary-material

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 70380716

Vázquez et al. Pose Generation for Conversational Formations

146

https://gitlab.com/interactive-machines/spatial_behavior/genff
https://gitlab.com/interactive-machines/spatial_behavior/genff
https://www.frontiersin.org/articles/10.3389/frobt.2021.703807/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2021.703807/full#supplementary-material
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


REFERENCES

Arjovsky, M., Chintala, S., and Bottou, L. (2017). “Wasserstein Generative
Adversarial Networks,” in Proceedings of the 34th International Conference
on Machine Learning, 214–223.

Barua, H. B., Pramanick, P., Sarkar, C., and Mg, T. H. (2020). Let Me Join You!
Real-Time F-Formation Recognition by a Socially Aware Robot. arXiv preprint
arXiv:2008.10078. doi:10.1109/ro-man47096.2020.9223469

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., et al. (2018). Relational Inductive Biases, Deep Learning, and
Graph Networks. arXiv preprint arXiv:1806.01261.

Boggs, P. T., and Rogers, J. E. (1990). Orthogonal Distance Regression. Contemp.
Mathematics 112, 183–194. doi:10.1090/conm/112/1087109

Bohus, D., Andrist, S., andHorvitz, E. (2017). “A Study in Scene Shaping: Adjusting
F-Formations in the Wild,” in Proceedings of the 2017 AAAI Fall Symposium:
Natural Communication for Human-Robot Collaboration.

Borgatti, S. P., Mehra, A., Brass, D. J., and Labianca, G. (2009). Network Analysis in
the Social Sciences. Science 323, 892–895. doi:10.1126/science.1165821

Comaniciu, D., and Meer, P. (2002). Mean Shift: A Robust Approach Toward
Feature Space Analysis. IEEE Trans. Pattern Anal. Machine Intell. 24, 603–619.
doi:10.1109/34.1000236

Connolly, J., Tsoi, N., and Vázquez, M. (2021). “Perceptions of Conversational
Group Membership Based on Robots’ Spatial Positioning: Effects of
Embodiment,” in Companion of the 2021 ACM/IEEE International
Conference on Human-Robot Interaction, 372–376.

Cristani, M., Bazzani, L., Paggetti, G., Fossati, A., Tosato, D., Del Bue, A., et al.
(2011). Social Interaction Discovery by Statistical Analysis of F-Formations.
BMVC 2, 4. doi:10.5244/c.25.23

Fisher, N. I. (1995). Statistical Analysis of Circular Data. Cambridge University
Press.

Fitzgibbon, A. W., Pilu, M., and Fisher, R. B. (1996). “Direct Least Squares Fitting
of Ellipses,” in Proceedings of 13th International Conference on Pattern
Recognition (IEEE), 253–257. doi:10.1109/icpr.1996.546029

Gaschler, A., Jentzsch, S., Giuliani, M., Huth, K., de Ruiter, J., and Knoll, A. (2012).
“Social Behavior Recognition Using Body Posture and Head Pose for Human-
Robot Interaction,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IEEE), 2128–2133. doi:10.1109/iros.2012.6385460

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
“Neural Message Passing for Quantum Chemistry,” in International
Conference on Machine Learning (PMLR), 1263–1272.

Gonzalez-Franco, M., Ofek, E., Pan, Y., Antley, A., Steed, A., Spanlang, B., et al.
(2020). The Rocketbox Library and the Utility of Freely Available Rigged
Avatars. Front. Virtual Reality 1, 1–23. doi:10.3389/frvir.2020.561558

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).
“Improved Training of Wasserstein gans,” in Advances in neural information
processing systems, 5767–5777.

Halíř, R., and Flusser, J. (1998). “Numerically Stable Direct Least Squares Fitting of
Ellipses,” in International Conference in Central Europe on Computer Graphics
and Visualization. WSCG, 125–132.

Hall, E. T. (1966). The Hidden Dimension, 609. Garden City, NY: Doubleday.
Hamilton, W. L. (2020). Graph Representation Learning. Synth. Lectures Artif.

Intelligence Machine Learn. 14, 1–159. doi:10.2200/
s01045ed1v01y202009aim046

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive Representation
Learning on Large Graphs. arXiv preprint arXiv:1706.02216.

Hedayati, H., Szafir, D., and Andrist, S. (2019). “Recognizing F-Formations in the
Open World,” in 2019 14th ACM/IEEE International Conference on Human-
Robot Interaction (HRI) (IEEE), 558–559. doi:10.1109/hri.2019.8673233

Hung, H., and Kröse, B. (2011). “Detecting F-Formations as Dominant Sets,” in
Proceedings of the 13th international conference on multimodal interfaces,
231–238. doi:10.1145/2070481.2070525

Hüttenrauch, H., Eklundh, K. S., Green, A., and Topp, E. A. (2006). “Investigating
Spatial Relationships in Human-Robot Interaction,” in 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IEEE),
5052–5059.

Jan, D., and Traum, D. R. (2007). “Dynamic Movement and Positioning of
Embodied Agents in Multiparty Conversations,” in Proceedings of the 6th

international joint conference on Autonomous agents and multiagent systems,
1–3. doi:10.1145/1329125.1329142

Karreman, D., Ludden, G., van Dijk, B., and Evers, V. (2015). “How Can a Tour
Guide Robot’s Orientation Influence Visitors’ Orientation and Formations?” in
Proceeding of 4th International Symposium on New Frontiers in Human-
Robot Interaction.

Kendon, A. (1990). Conducting Interaction: Patterns of Behavior in Focused
Encounters, 7. Cambridge: CUP Archive.

Kuzuoka, H., Suzuki, Y., Yamashita, J., and Yamazaki, K. (2010). “Reconfiguring
Spatial Formation Arrangement by Robot Body Orientation,” in 2010 5th
ACM/IEEE International Conference on Human-Robot Interaction (HRI)
(IEEE), 285–292. doi:10.1109/hri.2010.5453182

Li, R., van Almkerk, M., van Waveren, S., Carter, E., and Leite, I. (2019).
“Comparing Human-Robot Proxemics Between Virtual Reality and the Real
World,” in 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI) (IEEE), 431–439. doi:10.1109/hri.2019.8673116

Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Steinfeld, A., Trautman, P., et al.
(2021). Core Challenges of Social Robot Navigation: A Survey. arXiv preprint
arXiv:2103.05668.

Mirza, M., and Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv
preprint arXiv:1411.1784.

Morales, Y., Kanda, T., and Hagita, N. (2014). Walking Together: Side-By-Side
Walking Model for an Interacting Robot. J. Human-Robot Interaction 3, 50–73.
doi:10.5898/jhri.3.2.morales

Pedica, C., and Vilhjálmsson, H. (2010). Spontaneous Avatar Behavior for Human
Territoriality. Appl. Artif. Intelligence 24, 575–593. doi:10.1080/
08839514.2010.492165

Powell, M. J. D. (1964). An Efficient Method for Finding the Minimum of a
Function of Several Variables Without Calculating Derivatives. Comput. J. 7,
155–162. doi:10.1093/comjnl/7.2.155

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). “Pointnet: Deep Learning on
point Sets for 3d Classification and Segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 652–660.

Ricci, E., Varadarajan, J., Subramanian, R., Rota Bulo, S., Ahuja, N., and Lanz, O.
(2015). “Uncovering Interactions and Interactors: Joint Estimation of Head,
Body Orientation and F-Formations from Surveillance Videos,” in Proceedings
of the IEEE International Conference on Computer Vision, 4660–4668.
doi:10.1109/iccv.2015.529

Rios-Martinez, J., Spalanzani, A., and Laugier, C. (2011). “Understanding Human
Interaction for Probabilistic Autonomous Navigation Using Risk-Rrt
Approach,” in 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IEEE), 2014–2019. doi:10.1109/iros.2011.6094496

Scott, J. (1988). Social Network Analysis. Sociology 22, 109–127. doi:10.1177/
0038038588022001007

Setti, F., Lanz, O., Ferrario, R., Murino, V., and Cristani, M. (2013). “Multi-Scale
F-Formation Discovery for Group Detection,” in 2013 IEEE International
Conference on Image Processing (IEEE), 3547–3551. doi:10.1109/
icip.2013.6738732

Setti, F., Russell, C., Bassetti, C., and Cristani, M. (2015). F-formation Detection:
Individuating Free-Standing Conversational Groups in Images. PloS One 10,
e0123783. doi:10.1371/journal.pone.0123783

Shen, B., Xia, F., Li, C., Martín-Martín, R., Fan, L., Wang, G., et al. (2020). iGibson,
a Simulation Environment for Interactive Tasks in Large Realistic Scenes. arXiv
preprint arXiv:2012.02924.

Shi, C., Shimada, M., Kanda, T., Ishiguro, H., and Hagita, N. (2011). Spatial
Formation Model for Initiating Conversation. Proc. Robotics: Sci. Syst. VII.,
305–313. doi:10.15607/rss.2011.vii.039

Sorokowska, A., Sorokowski, P., Hilpert, P., Cantarero, K., Frackowiak, T., Ahmadi,
K., et al. (2017). Preferred Interpersonal Distances: a Global Comparison. J.
Cross-Cultural Psychol. 48, 577–592. doi:10.1177/0022022117698039

Swofford, M., Peruzzi, J., Tsoi, N., Thompson, S., Martín-Martín, R., Savarese, S.,
et al. (2020). Improving Social Awareness Through Dante: Deep Affinity
Network for Clustering Conversational Interactants. Proc. ACM Hum.-
Comput. Interact. 4, 1–23. doi:10.1145/3392824

Truong, X.-T., and Ngo, T.-D. (2017). “To Approach Humans?”: A Unified
Framework for Approaching Pose Prediction and Socially Aware Robot
Navigation. IEEE Trans. Cogn. Developmental Syst. 10, 557–572.
doi:10.1007/s11370-017-0232-y

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 70380717

Vázquez et al. Pose Generation for Conversational Formations

147

https://doi.org/10.1109/ro-man47096.2020.9223469
https://doi.org/10.1090/conm/112/1087109
https://doi.org/10.1126/science.1165821
https://doi.org/10.1109/34.1000236
https://doi.org/10.5244/c.25.23
https://doi.org/10.1109/icpr.1996.546029
https://doi.org/10.1109/iros.2012.6385460
https://doi.org/10.3389/frvir.2020.561558
https://doi.org/10.2200/s01045ed1v01y202009aim046
https://doi.org/10.2200/s01045ed1v01y202009aim046
https://doi.org/10.1109/hri.2019.8673233
https://doi.org/10.1145/2070481.2070525
https://doi.org/10.1145/1329125.1329142
https://doi.org/10.1109/hri.2010.5453182
https://doi.org/10.1109/hri.2019.8673116
https://doi.org/10.5898/jhri.3.2.morales
https://doi.org/10.1080/08839514.2010.492165
https://doi.org/10.1080/08839514.2010.492165
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1109/iccv.2015.529
https://doi.org/10.1109/iros.2011.6094496
https://doi.org/10.1177/0038038588022001007
https://doi.org/10.1177/0038038588022001007
https://doi.org/10.1109/icip.2013.6738732
https://doi.org/10.1109/icip.2013.6738732
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.15607/rss.2011.vii.039
https://doi.org/10.1177/0022022117698039
https://doi.org/10.1145/3392824
https://doi.org/10.1007/s11370-017-0232-y
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Tsoi, N., Hussein, M., Espinoza, J., Ruiz, X., and Vázquez, M. (2020). “Sean: Social
Environment for Autonomous Navigation,” in Proceedings of the 8th
International Conference on Human-Agent Interaction, 281–283.

Uteshev, A. Y., and Goncharova, M. V. (2018). Point-to-Ellipse and Point-to-
Ellipsoid Distance Equation Analysis. J. Comput. Appl. Math. 328, 232–251.
doi:10.1016/j.cam.2017.07.021

Uteshev, A. Y., and Yashina, M. V. (2015). Metric Problems for Quadrics in
Multidimensional Space. J. Symbolic Comput. 68, 287–315. doi:10.1016/
j.jsc.2014.09.021

Vascon, S., Mequanint, E. Z., Cristani, M., Hung, H., Pelillo, M., and Murino, V.
(2014). “A Game-Theoretic Probabilistic Approach for Detecting
Conversational Groups,” in Asian Conference on Computer Vision
(Springer), 658–675.

Vázquez, M. (2017). Reasoning about Spatial Patterns of Human Behavior
During Group Conversations with Robots. Ph.D. Thesis. Carnegie Mellon
University.

Vázquez, M., Carter, E. J., McDorman, B., Forlizzi, J., Steinfeld, A., and Hudson, S.
E. (2017). “Towards Robot Autonomy in Group Conversations: Understanding
the Effects of Body Orientation and Gaze,” in 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction (HRI) (IEEE), 42–52.

Vázquez, M., Carter, E. J., Vaz, J. A., Forlizzi, J., Steinfeld, A., and Hudson, S. E.
(2015a). “Social Group Interactions in a Role-Playing Game,” in Proceedings of
the Tenth Annual ACM/IEEE International Conference on Human-Robot
Interaction Extended Abstracts, 9–10.

Vázquez, M., Steinfeld, A., and Hudson, S. E. (2015b). “Parallel Detection of
Conversational Groups of Free-Standing People and Tracking of Their Lower-
Body Orientation,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE), 3010–3017.

Vázquez, M., Steinfeld, A., and Hudson, S. E. (2016). “Maintaining Awareness of
the Focus of Attention of a Conversation: A Robot-Centric Reinforcement
Learning Approach,” in 2016 25th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN) (IEEE), 36–43.

Yang, F., and Peters, C. (2019). “Appgan: Generative Adversarial Networks for Generating
Robot Approach Behaviors Into Small Groups of People,” in 2019 28th IEEE
International Conference on Robot and Human Interactive Communication
(RO-MAN) (IEEE), 1–8. doi:10.1109/ro-man46459.2019.8956425

Yang, F., Yin, W., Björkman, M., and Peters, C. (2020a). “Impact of Trajectory
Generation Methods on Viewer Perception of Robot Approaching Group
Behaviors,” in 2020 29th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN) (IEEE), 509–516.
doi:10.1109/ro-man47096.2020.9223584

Yang, F., Yin, W., Inamura, T., Björkman, M., and Peters, C. (2020b). “Group
Behavior Recognition Using Attention-And Graph-Based Neural Networks,” in
Proceedings of the 24th European Conference on Artificial Intelligence.

Yang, S.-A., Gamborino, E., Yang, C.-T., and Fu, L.-C. (2017). “A Study on the
Social Acceptance of a Robot in a Multi-Human Interaction Using an F-
Formation Based Motion Model,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE), 2766–2771. doi:10.1109/
iros.2017.8206105

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., and Smola,
A. (2017). Deep Sets. arXiv:1703.06114.

Zen, G., Lepri, B., Ricci, E., and Lanz, O. (2010). “Space Speaks: Towards Socially
and Personality Aware Visual Surveillance,” in Proceedings of the 1st ACM
international workshop on Multimodal pervasive video analysis, 37–42.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Vázquez, Lew, Gorevoy and Connolly. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 70380718

Vázquez et al. Pose Generation for Conversational Formations

148

https://doi.org/10.1016/j.cam.2017.07.021
https://doi.org/10.1016/j.jsc.2014.09.021
https://doi.org/10.1016/j.jsc.2014.09.021
https://doi.org/10.1109/ro-man46459.2019.8956425
https://doi.org/10.1109/ro-man47096.2020.9223584
https://doi.org/10.1109/iros.2017.8206105
https://doi.org/10.1109/iros.2017.8206105
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Helping People Through Space and
Time: Assistance as a Perspective on
Human-Robot Interaction
Benjamin A. Newman*, Reuben M. Aronson, Kris Kitani and Henny Admoni

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States

As assistive robotics has expanded to many task domains, comparing assistive strategies
among the varieties of research becomes increasingly difficult. To begin to unify the
disparate domains into a more general theory of assistance, we present a definition of
assistance, a survey of existing work, and three key design axes that occur in many
domains and benefit from the examination of assistance as a whole. We first define an
assistance perspective that focuses on understanding a robot that is in control of its
actions but subordinate to a user’s goals. Next, we use this perspective to explore design
axes that arise from the problem of assistance more generally and explore how these axes
have comparable trade-offs across many domains. We investigate how the assistive robot
handles other people in the interaction, how the robot design can operate in a variety of
action spaces to enact similar goals, and how assistive robots can vary the timing of their
actions relative to the user’s behavior. While these axes are by no means comprehensive,
we propose them as useful tools for unifying assistance research across domains and as
examples of how taking a broader perspective on assistance enables more cross-domain
theorizing about assistance.

Keywords: human robot interaction, assistive robotics, socially assistive robotics, physically assistive robotics,
collaborative robotics, rehabilitative robotics

1 INTRODUCTION

Smart wheelchairs navigating easily through crowded rooms, coaching robots guiding older adults
through stroke rehabilitation exercises, robotic arms aiding motor-impaired individuals to eat a meal at a
restaurant: these are all examples of research in areas as disparate as intelligent motion planning,
rehabilitativemedicine, and roboticmanipulation that have been independently identified as being able to
contribute to the development of robots that can do helpful things for people. This research has been
fruitful, but has remained siloed as researchers from these various fields focus on the specific assistive tasks
relevant to their own disciplines.

A lack of common structure in the field of assistive robotics makes it difficult for researchers to
incorporate findings from other domains into their own work. For example, how does the relationship
between a grocery stocking robot and the surrounding customers relate to the relationship between an airport
guide robot and the surrounding crowd? Does a robot designed to autonomously declutter a room convey a
similar sense of agency as a virtual robot suggesting an optimal ordering in which you should clean your
room? Answers to these and similar questions would form a basis that would provide clarity for research in
assistive robotics, but are currently difficult to determine due to the disparate nature of assistive robotics.

In this work, we identify a subset of common challenges and develop themes that begin a
conversation about how assistance abstracted from specific problem domains and can be used to
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answer questions about assistance generally, thereby benefiting
the entire field of assistive robotics. This would enable researchers
to explore the underlying principles of assistive robotics and
communicate them across domains. To start, we suggest that
assistance is not a characteristic of a robotic system as it has been
historically treated. Instead, assistance is a task-independent
perspective on human robot interaction. Treating assistance as
a task-independent perspective on HRI, we can group existing
assistive research by its effect on three key axes: people (e.g., who
is involved in the system and the roles they play), space (e.g., how
the robot’s action affects the task), and time (e.g., when the robot
performs its actions during the task).

This perspective considers an assistive system as an interaction
in which a user and a robot forge a complex, asymmetric
relationship guided by the user’s goals. This perspective is
somewhat different from general HRI because the user is
responsible for determining the interaction’s end goal while
the robot acts in service of this goal. Similar to other
collaborative settings, the human-robot pair is then tasked
with performing subsequent actions to achieve the human’s
goal, but unlike some collaborations, maintaining human
autonomy is paramount. In this relationship, the robot has
more agency and independence of action choice than a simple
tool (i.e., the robot’s choice of action is not determined solely by
the user), but it must defer to the user’s goal and independent
actions.

We introduce three design dimensions with which roboticists
can begin to reason about the assistive interactions of robots and
humans. First, we discuss how the assistive robot’s role can be
described with respect to the relationship it has with its user, for
example, how it weighs priorities when there are multiple
potential people it could assist. Second, we propose that an
assistive robot’s role can be described in terms of how it
operates in the execution space, that is, the space in which the
robot has its primary effect. Finally, we propose that the same
robot’s actions can be described in terms of the temporal space,
that is, the duration and sequence of the actions. We support
these dimensions by reviewing and grouping over 200 recent
assistive robotics research papers.

By using assistance as a lens through which to analyze patterns
that arise in assistive robotics, we hope to help designers of
assistive robots more easily explore the design space and identify
similar examples of past solutions, even across application
domains. Additionally, we hope this work will motivate
researchers to continue to refine this notion of assistance and
its effects on human-robot interaction paradigms.

2 THE ASSISTANCE PERSPECTIVE

In the field of robotics, defining assistance can be tricky. In a broad
sense, every robot is built to assist some person. Therefore, we do
not attempt to separate assistive systems from non-assistive
systems. Instead, we propose assistance as a particular
perspective through which many robotic systems can be viewed.
This perspective considers robotic agents that are autonomous in
action but subordinate in goal to a human partner. Almost any

robot system can, in theory, be viewed as assistive to someone, so
we do not limit this scope. Rather, we explore what this analytic
framework provides. This perspective clarifies particular design
tradeoffs and trends general to assistive systems whatever their task
domain. In this work, we describe several key design axes that arise
when considering a robotic system as assistive and discuss
implications these axes have on the interaction.

Before discussing these key design axes, we first formalize what
we mean by a human-robot interaction, then provide a more
detailed description of what it means to view assistance as a
perspective. Next, we give a brief synopsis of previous attempts to
characterize assistance and assistive robotics, and finally we give
an overview of the remainder of this paper.

2.1 General Human-Robot Interaction
Before discussing assistance, we first sketch a general framework
for human-robot interaction, which we draw broadly frommulti-
agent systems research. Formalizations of this problem can be
found in previous literature (Jarrassé et al., 2012); here we only
establish enough language to discuss assistance rather than
requiring assistive systems to use this exact model.

First, we define a user u ∈ U as any person involved closely in
the interaction. Typically, the user is in close physical proximity
to the robot and provides explicit or implicit control signals to the
robot. For example, a person teleoperating a robotic arm, getting
directions from a social robot, or building a table with a robot
helper, would be considered a user.

Next, the system has at least one robot r ∈ R. Canonically, a
robot is defined as an embodied system that can sense its
environment, plan in response to those sensory inputs, and act
on its environment. An assistive robot may have a wide array of
sensory, planning, and acting capabilities in order to be successful
in its task. Some of these capabilities will be critical for the robot’s
functioning (e.g., LIDAR to avoid hitting obstacles), while others
will be critical for providing assistance to the user (e.g., a body pose
recognition algorithm to identify the user’s location and gestures).

Finally these agents exist in a shared environment, each with
its own internal state. These are described in totality by the
mutual state sm � (sr, su, se) that defines the individual states of the
robot, user, and environment. The robot and user both have goals
gr, gu ∈ G and can take actions ar ∈ Ar and au ∈ Au that affect their
mutual state. By acting to update their mutual state, each agent
has the potential to affect the other agent’s behavior resulting in
an interaction between the two agents. Depending on the exact
scenario, a task will be considered complete when one or more
agents has achieved their goal.

2.2 Assistance as a Perspective on
Human-Robot Interaction
Using this formulation, we can more carefully define assistance.
Assistive systems interpret the robot as autonomous in its actions but
subordinate in its goal. By giving the user the sole responsibility for
setting both agents’ goals, the two agents now attempt to satisfy some
shared goal g by reaching a mutual state where g is true: sgm. This
framing distinguishes assistive robotics from both traditional
assistive technologies like a white cane, which has no control
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over its actions or goals, and traditional robotics, which develops
systems with full control over their actions and goals. This framing
gives rise to three key design axes: how assistive robots affect people
through space and time. The discussion of these implications is the
subject of the rest of this paper.

In HRI, as in assistive robotics, there is no requirement for
there to be a single user. In fact, many assistive robotics scenarios
involve more than one user. This becomes challenging, as it is the
responsibility of one of these users to set the goal for the robot, but
selecting which user has this responsibility may change the type of
assistance the robot is able to provide. This is especially true when
one user’s goals may conflict with another user’s goals. This
highlights the importance of determining the roles of people
when considering assistive robotics problems (Section 4).

Furthermore, since the user and robot are working to
accomplish the same goal, the robot has freedom over its
action space. As a baseline, the robot can assume the user
would perform the task independently, without its aid. The
robot can then choose its action space to align with how it
can most beneficially assist the user over this baseline
scenario. In addition to the standard strategy of directly
manipulating the environment, the robot can assist by altering
the user’s state space, encouraging the user to make more effective
task progress. For example, a head-mounted augmented reality
device displaying the optimal path for cleaning a room can assist
the user without needing to physically interact with objects.
Assistive scenarios allow more choice over the robot’s action
space than would a general robot (Section 5).

Finally, in order to advance to themutual goal state and complete
the task, the user and robot each complete a sequence of actions
(a1u, . . . , a

t
u, a

1
r , . . . , a

t
r, respectively) that transition the system to the

desired goal state (sm � sgm). Given that these actions occur in the
mutual state, it is important that the user and the robot time their
actions appropriately, so that they do not attempt to solve the same
part of the task simultaneously, or worse, provide conflicting actions
that result in undoing each other’s work. How to time actions is
crucial to studying assistive robotics (Section 6).

Each of these axes presents researchers with decisions that result
in critical trade-offs when designing an assistive robot. Throughout
the remainder of this work, we will describe how assistive robots
from different application domains fall along these axes.

By taking assistance as a perspective, it is our goal to provide
an abstraction that allows for comparing systems from different
domains to discover universal challenges that arise from robot
assistance. We do not suggest that these axes describe a full
assistive system or are a complete set of critical design axes.
Rather, viewing assistance along these particular axes of people,
space, and time enables some cross-domain comparisons and
insights on its own, and it also demonstrates how assistance
overall can benefit from a general examination.

2.3 Prior Categorizations of Assistive
Robotics
By grouping assistive robots along the aforementioned design
axes, we view assistance as an abstract concept that illuminates
parallel research problems across different application domains.

We build on previous literature which categorizes assistive
robotics within particular application domains, for example
socially assistive robots (Fong et al., 2003; Matarić and
Scassellati, 2016), joint action (Iqbal and Riek, 2019) and
physically assistive robots (Brose et al., 2010).

Some work does try to describe assistance as a whole. Jarrassé
et al. (2012) categorizes joint action between dyads by positing a
cost function for each agent defined on each agent’s task error and
required energy. Among categories in which both agents are
working together towards the same goal, the paper specifies
collaboration between two equal peers, assistance when one
agent is subordinate to another, and education in which the
educator assists the partner but moderates its own effort to
encourage increasing effort from its partner. We take this core
idea of assistance as subordination and build on it in our
definition of the assistance perspective.

Most similar to the current work, perhaps, is the accounting
given in Wandke (2005). This overview of assistance in human-
computer interaction notes that defining assistance as any
system that provides some benefit to the user would include
nearly all technical artifacts. Therefore, the paper restricts its
attention to systems that bridge the gap between a user and the
technical capabilities of the system due to the user’s
unfamiliarity with the system or excessive burden of use. In
contrast to this approach, our work presents assistance as a
perspective rather than a definition; it could in principle be
applied to any technical artifact but may only be useful for some.
Additionally, this definition of assistance focuses on how
assistive systems correct a deficiency in a user’s
understanding of the system or capability to use it. In
contrast, our definition of assistance as a perspective admits
beneficial actions from the robot of all sorts, not just those
repairing the user’s ability to use a system.

2.4 Overview of This Paper
By defining assistance as a perspective, we provide language to
discuss ideas about assistance from different domains. This will
allow researchers from various areas of assistive robotics to
come together to illuminate and discuss common research
challenges. Additionally, researchers can make design
decisions about how the assistive robot affects people in
space and time by using this framework to consider similar
approaches to problems from disparate task domains. In the
remainder of this paper, we discuss these design axes and
explore their implications through a review of existing
assistive robotics literature. Section 3 describes our method
for collecting these papers Section 4 describes the people design
axis, Section 5 describes the space design axis, and Section 6
describes the time design axis. These axes are summarized in
Table 1. We then conclude the paper with a discussion over the
implications of this work.

3 METHODS

To develop this taxonomy, we conducted a literature review of
recent papers on assistive robotics.
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3.1 Initial Search
First, we hand-selected 74 papers from the last 5 years of the
annual Human Robot Interaction conference (HRI 2016–2020).
From these papers we generated an initial set of search terms by
aggregating titles, abstracts, and author generated keywords using
the R (R Core Team, 2017) package litsearchr (Grames et al.,
2019). Using these aggregated keywords, we formed an initial
search query.

3.2 Refined Search
We ran the initial search query on the Web of Science. This search
yielded approximately 1,500 papers. We repeated the keyword
aggregation on this set of keywords, and then hand-selected new
keywords from among them based on their prevalence and relevance
to assistive robotics. We repeated theWeb of Science query with this
refined set of keywords, which yielded, again, approximately 1,500
papers. The refined search was run on 29th January 2021. We
included a paper based onwhether the following statement evaluated
true based on a search of the entire text of the paper.

((assistp NEAR probotp)

OR (collabp NEAR probotp))

AND (phumanpOR ppeoplepOR ppersonpOR psubjectp

OR puserp OR “elderly people” OR “older adults” OR
“natural human” OR “stroke patients” OR “healthy
subjects”)

AND (“human-robot interaction” OR “human-robot
collaboration” OR “robot interaction” OR “robot
collaboration” OR collaboration OR hri OR “human
robot collaboration” OR “physical human-robot
interaction” OR “human robot interaction” OR
“machine interaction” OR “human-machine
interaction” OR “human interaction”)

AND (“collaboratp taskp” OR “assembly taskp” OR
“social interactionp” OR “assembly processp” OR
“shared workspacep” OR “manipulation taskp” OR
“human safety” OR “daily living” OR “service
probotp” OR “production systemp” OR “safety
standardp” OR “mobile robotp” OR “assisted therapp”
OR “collision avoidance”OR “object manipulation”OR

“collaborative assembly” OR “socially assistive” OR
“assistive *robotp” OR “social probotp” OR
“teleoperatp”))

3.3 Paper Selection
Starting from the refinedWeb of Science results, we filtered out all
papers from venues with fewer than two related documents and
papers that were older than 5 years, with a small exception. In an
attempt to keep papers with significant contributions to the field,
papers older than 5 years were kept if they had more than 10
citations. This process left approximately 465 papers. Each paper
in this set was thenmanually checked for relevance by reading the
title and abstract. To be included, we required the paper to
include both 1) an assistive interaction with the user and 2) a
system capable of taking actions. This step mainly removed
papers focused on robotic system development or perception
improvements rather than assistance itself. This yielded 313
papers, each of which was again reviewed against the
aforementioned exclusion criteria. The entire search process
yielded over 200 papers that we classified into our taxonomy.

4 PEOPLE

In Section 2, we described assistance with single users. This
description works well for situations that have only one user,
which is common in laboratory settings. In realistic settings,
however, a robot will typically encounter more than one person in
the course of completing their task. These other people can act in
a variety of different roles within the interaction. In this section,
we explore themes in how assistive interactions incorporate more
people into the general human-robot dyad (Figure 1).

4.1 Terminology
The simplest approach a system can take towards other people is
simply to ignore them completely. While this case tends not to be
analyzed explicitly, it is implicit in many systems. This strategy
can be appropriate, especially during situations in which
encountering additional people is rare. When working with
other people, though, the robot could implicitly account for
additional people by relying on its primary user to provide

TABLE 1 | Assistive robots can be explored along three key axes: how the assistive system thinks about additional people, what part of the mutual state aligns with its action
space, and at what time it executes its actions during a task.

Key axis Description

People (Section 4) How the robot considers additional people outside the baseline dyad.
Targets of assistance Additional people whose goals are of comparable importance to the user.
Interactants Additional people whose goals are not privileged and use general human-robot interaction approaches.

Space (Section 5) The portion of the mutual state the robot’s actions affect.
Environment The robot affects the environment directly by, e.g., manipulating task objects.
Human body The robot affects the user’s body by physically moving some portion of their body.
Human brain The robot affects the user’s mental state by providing information about the task or reducing the cognitive burden.

Time (Section 6) The relative timing between a robot’s actions and the user’s explicit commands during the task.
Proactive The robot acts before an explicit command.
Reactive The robot acts in response to an explicit command.
Simultaneous The robot acts simultaneously with user action.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7203194

Newman et al. Helping People Through Space and Time

152

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


controls that appropriately consider other users. Finally, a robot
might intentionally downplay its relationship to additional people
when accounting for them would conflict with its primary user’s
goals, such as an emergency response robot that ignores standard
social navigation behaviors to reach its patient as fast as possible.

When the system does choose to reason about other people, its
treatment of them can be determined by dividing them into two
different roles: the target of assistance, whose goals are of
equivalent importance as other targets; and interactants, who
require the attention owed to any other person as explored
throughout human-robot interaction research but don’t have
their goals privileged by the robot.

A target of assistance derives directly from the definition of
assistance: an assistive scenario must support the goals of at least
one person. Consider a scenario in which a person who has a
spinal cord injury uses a robotic arm to aid them in eating a meal
with friends at a restaurant. In this scenario, the arm’s user sets
the goal for the robot: to bring food from their plate to their
mouth so they can consume it.

The second role a person can play in an interaction is that
of interactant. An interactant is any other person involved in
the scenario who is not a target. Continuing the previous
example, the people who are out to dinner with their robot-
operating friend are interactants. They have no direct bearing
on the robot’s goal, but they are potentially affected by the
robot’s actions and may require some design effort for the
system. For example, the robot may have to avoid collisions
with them during its operation. While the robot’s
relationship to interactants is not assistive, the presence of
a specific target of assistance can affect how the robot
interacts with others.

When considering assistive systems that involve more than a
single target, the systemmust determine in which of these roles to
consider the additional people. These two roles are not mutually
exclusive; there can be more than one of each in a given scenario.
Additionally, both targets of assistance and interactants can give
explicit control input to the robot. Designating people as
additional targets or as interactants brings about different
challenges for the assistive system.

4.2 Additional Targets of Assistance
One challenge arising from a single robot having multiple targets
of assistance is that the goals issued by these targets can conflict
with one another. In the eating scenario, the robot might instead
be assisting everyone present, perhaps by both feeding its user
and serving food to other people at the table. Here, the robot is
presented with a conflict: how should it choose to prioritize the
goals given by its targets and reconcile differences between them?

This can be especially challenging in contexts such as
education. An educational robot might consider the teacher as
its target and work to enrich a student according to a mandated
curriculum. It can also consider the student as its target and try to
engage the student with concepts that are interesting to them
regardless of the curriculum. Much research in this area aims to
make the content proposed by the teacher more enjoyable by
developing robotic behaviors that are meant to keep the student
engaged. Leite et al. (2015) designed a robot puppet show to
engage young learners in an educational story, Martelaro et al.
(2016) designed a robot that encourages students to develop trust
and companionship with their tutor, and Christodoulou et al.
(2020) designed a robot to give nonverbal feedback to students in
response to quiz answers to keep them engaged with the testing
material. In contrast, Davison et al. (2020) took a different approach
and developed the KASPAR robot to look like another student and
deployed it in unsupervised interactions that were totally motivated
by the student. In this way, they allowed the student to approach the
learning material voluntarily, giving the student more agency to
learn what they desired and at their own pace.

This dilemma can again be seen in therapeutic contexts, where
a robot must reconcile the goals of the doctor and the patient.
Robots can increase a patient’s motivation to do mundane,
repetitive or uncomfortable exercises through the use of a
robot that does the exercise alongside the patient (Tapus et al.,
2007; Schneider and Kummert, 2016). Alternatively, a robot
could be used to give the patient more agency and
independence over their own treatment by helping someone
independently practice meditation (Alimardani et al., 2020),
do independent cognitive behavioral therapy (Dino et al.,
2019), or home therapy for autism (Shayan et al., 2016).

FIGURE 1 | An assistive system can treat people beyond a single user as additional targets of assistance or as interactants, and either choice introduces particular
complications into the assistive dynamic.
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A full analysis of these interactions treats both the teacher and
the student, or both the therapist and the patient, as targets of
assistance with goals that often align but are not identical. This
alignment mismatch can often lead to ethical challenges, which
are even more fraught when the capabilities, agency, and relative
power of the possible targets vary. While there is no general
technical solution, this language encourages designers to
explicitly enumerate the multiple targets of the assistance and
to reason directly about conflicts in their goals.

4.3 Additional Interactants
On the other end of the spectrum are robots that treat additional
people in the system as interactants. Robots designed with this
relationship in mind prioritize the goals of its target of assistance.
In our assisted eating scenario, the robot may need to follow basic
social norms around the other diners by avoiding collisions with
them, but it does not privilege their goals.

This relationship is typically used in scenarios where some
figure of authority (e.g., a teacher or a therapist) needs to relieve
themselves of some amount of work. For example, a teacher could
employ a robot to teach half of their class in order to reduce the
student-to-teacher ratio for a particular lesson (Rosenberg-Kima
et al., 2019), or even have the robot teach the class alone if they
need to finish other work (Polishuk and Verner, 2018). In this
way, the teacher is the target of assistance, while the students are
treated only as interactants. The robot should be able to teach
competently enough to achieve the teacher’s goals, but the
students’ preferences about using the robot are not of direct
concern.

Similarly in emotional or physical therapy a robot can be
employed to lead group sessions in lieu of a doctor, whomay have
more classes than they can handle (Fan et al., 2016; Ivanova et al.,
2017). Alternatively, the robot may be better at collecting certain
information than the user. For example a patient who has suffered
a stroke may be unable to emit certain social signals expected
during social interaction. This could negatively affect a doctor’s
opinion of this patient, a problem that could be circumvented by
having a robot collect this information (Briggs et al., 2015; Varrasi
et al., 2019). The patient here, however, is not asked whether they
may prefer the social interaction regardless of the implicit bias the
doctor may possess.

These systems don’t generally follow an assistance dynamic
with interactants, rather, general human-robot interaction
research applies. However, the fact that the system has a
target, even if the target is not present, can change the robot’s
behavior: a robot acting as a proxy for a specific teacher may have
different behavior than one employed as a general-purpose robot,
which might have bearing on how the general human-robot
interaction problem is resolved.

4.4 Combinations of Roles
If an assistive robot has multiple additional people present in the
interaction, it can choose to consider some of them as targets and
others as interactants. In this relationship, our assisted eating
robot might treat both the user and the companion seated next to
them as targets of assistance, while those eating companions
seated further away from the user are treated as interactants. In

this way the robot can carefully maintain the goals of multiple
people in proximity to the robot. This framework can allow for
more complex robot behavior near to the user without the
additional complication of handling everyone else at the table.

Another example would be a robot that participates in a
collaborative scenario with multiple human actors, some of
whom serve as both targets of assistance and interactants,
while others are only interactants. For example, consider a
local repair-person who needs help from a remote repair
person. To give instructions, the remote repair person can use
a robot to highlight the parts of the environment they are
discussing (Machino et al., 2006). In this way, both actors are
interactants in the scenario, but only the local repair person is the
target of assistance.

4.5 Implications
These various relationships clarify the design choices involved in
developing an assistive system. A particular task, such as assistive
eating, does not require a particular relationship between the
robot and the people it encounters. Rather, how a robot relates to
these people is a design decision that will have implications as to
how the task is completed.

The choice of roles affects how assistive systems with multiple
people are evaluated. When treating the user and their eating
companions all as targets of assistance, the robot would need to
verify that it is helping them all in achieving their independent
goals. This type of evaluation may be difficult to actually measure
and nearly impossible to succeed on, as the companions have
conflicting interests from the user. Identifying what type of
relationship the robot should have with its users can help
researchers disambiguate otherwise similar systems to
determine which evaluations are important.

The choice of which roles to use may also have implications on
how much autonomy to imbue in the robot. A robot that balances
the goals of many people may require complex sensing, modeling,
and planning to carefully moderate between them. A simpler robot
might delegate this goal moderation problem to its user and treat
additional people as interactants or ignore them entirely. This system
gives the target more control over the goals, but requires additional
input from the user. If the robot maintains full autonomy in this
scenario, but it does not plan for other people’s goals, it may in fact
endanger them by running into them where another system would
have chosen to avoid them. These ideas show how the choice of
relationship between the robot and the people it encounters
throughout a task can impact the design of the final system.

5 SPACE

Assistive robotic systems can perform similar tasks by acting in
different action spaces. We show in Section 2 how to represent
the mutual state during the interaction as the state of the user su,
the state of the robot sr , and the state of the environment se. In
general, a user employing an assistive robots is aiming to make
some alteration to se. Since the robot is tasked with aiding the user
and not directly accomplishing this state alteration, the robot can
assist the user by making a change to any part of the mutual state
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that makes it easier for the user to accomplish their goal. In this
maner, a robot can provide many different types of assistance
when helping to complete the same overall task.

Consider an assistive eating robot. The robot and its user sit at
a table across from one another, with a plate of food between
them. The user’s goal is to eat the food. The robot can provide
assistance by performing a variety of different actions: it can act
on the user’s mental state by projecting a light onto a morsel of
food that would be easy to grab next, it can change the physical
state of the user by guiding their hand into an appropriate
position, or it can change the environment by picking up the
morsel and feeding it to the user. All of these action spaces apply
to the same task and the same goal; what differs is in what way the
user would most benefit from assistance.

To illustrate this point more broadly, we provide a review of
recent assistive robotics literature, grouped by whether the robot
is acting on the user’s mind, user’s body, or environment
(Figure 2).

5.1 Environment
One straightforward assistive robot is one that simply completes a
task for the user. For example, research has focused on
autonomous butler robots (Srinivasa et al., 2010, 2012) that
perform tasks such as cooking and cleaning. Such a robot
assists a user by navigating around the apartment picking up
misplaced items such as dirty laundry and dishes and placing
them in appropriate locations such as a laundry hamper or
dishwasher. The robot provides assistance by directly changing
the environment. To meet the minimal requirement of providing
assistance (i.e., delivering some benefit to the target of assistance),
the robot must shift the environment from an undesirable state
configuration to a more desirable one.

Much research surveyed here assists users in exactly this way:
by providing autonomous assistance through environmental state
manipulations. Researchers have explored how a user can
command a robot to organize a messy room (Mertens et al.,
2011; Cremer et al., 2016; Koskinopoulou et al., 2016; Pripfl et al.,
2016; Jensen et al., 2017), fetch misplaced or distant items
(Iossifidis and Schoner, 2004; Unhelkar et al., 2014; Huang
and Mutlu, 2016; Wieser et al., 2016), or even perform more
specialized tasks autonomously (under the direction of the user)
such as assisted eating (Canal et al., 2016) and other tasks of daily

living (Nguyen and Kemp, 2008), search and rescue (Doroodgar
et al., 2010), welding (Andersen et al., 2016a), or other industrial
tasks (Mueller et al., 2017). Assistive tasks performed
autonomously at the request of a user through environmental
manipulation can provide several benefits. This method of task
execution requires little user input, which makes it efficient for
users who prefer not to spend time on chores and beneficial for
users who may not be able to accomplish the task at all.

Environmental assistance is not solely the domain of
autonomous robots, however. Collaborative robots, specifically
in tasks where the user and the robot take independent actions
that jointly manipulate the environment towards a mutual goal
state, also perform environmental assistance. Examples of such
systems include collaborative cleaning (Devin and Alami, 2016)
and assembly (Savur et al., 2019; Zhao et al., 2020). A robot
working collaboratively with a user can improve its efficiency by
modeling the user’s behavior, for example by determining specific
poses to hold an object in to facilitate fluid collaboration during
assembly (Akkaladevi et al., 2016) or by anticipating and
delivering the next required item in assembly (Hawkins et al.,
2013, 2014; Maeda et al., 2014) or cooking (Koppula et al., 2016;
Milliez et al., 2016), or by providing help under different initiative
paradigms during assembly (Baraglia et al., 2016). Collaborative
environmental assistance can also be used to perform joint
actions with a user, such as in handovers (Cakmak et al.,
2011; Kwon and Suh, 2012; Grigore et al., 2013; Broehl et al.,
2016; Canal et al., 2018; Cserteg et al., 2018; Goldau et al., 2019;
Lambrecht and Nimpsch, 2019; Nemlekar et al., 2019; Newman
et al., 2020; Racca et al., 2020), where the goal is to transfer an
object from the robot’s end effector to the user’s hand; or co-
manipulation (Koustoumpardis et al., 2016; Nikolaidis et al.,
2016; Schmidtler and Bengler, 2016; Schmidtler et al., 2016; El
Makrini et al., 2017; Goeruer et al., 2018; Rahman, 2019b;
DelPreto and Rus, 2019; Rahman, 2020; Wang et al., 2020),
where the aim is for the user and the robot to jointly move an
object to a specified location or provide redundancy in holding an
object in a joint assembly task (Parlitz et al., 2008) or safety critical
situation such as surgery (Su et al., 2018).

So far, all examples of environmental assistance have been
provided by standalone robots, commonly taking on a humanoid
or robotic arm morphology. These robots affect the environment
by changing their own configurations first (e.g., using a robot arm

FIGURE 2 | A robot can provide assistance by acting in several different action spaces. It can assist by giving information to the user, adjusting the user’s body, or
changing the environment to help complete the task.
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to pick up an object). As such, they are considered decoupled
from the environment. Robots can also be designed to be coupled
with the environment; in these examples, it is hard to distinguish
between the robot’s state and the environment state. These
robots often take on more conspicuous yet specialized
morphologies, such as a mechanical ottoman (Sirkin et al.,
2015; Zhang et al., 2018). For example, a robotic suitcase can
assist an airline passenger by following them through an
airport (Ferreira et al., 2016) and manipulating the user’s
sense of trust by moving across various proxemic
boundaries. A set of robotic drawers containing tools can
assist a user in completing an assembly by proactively
opening the drawer containing the next required tool (Mok,
2016), and it can also manipulate a user’s enjoyment in
completing the task by employing emotional drawer
opening strategies. Environmentally coupled robots can be
designed to be “invisible,” (Sirkin et al., 2015) or to be
modifications to an existing environment or object. Moving
away from more traditional robot appearances may mitigate
any negative effects from interacting with a robot.

Other approaches include shared control which separates the
responsibilities of the user and the robot during the task. For
example a teleoperated surgery robot can hold a patient’s skin
taut so that the surgeon can focus on performing incisions
(Shamaei et al., 2015). A telepresence robot (Kratz and
Ferriera, 2016) can automatically avoid obstacles during
navigation (Acharya et al., 2018; Stoll et al., 2018) or
automatically rotate its camera to keep a desired object within
view (Miura et al., 2016). Finally, a remote, teleoperated space
robot can perform as much of a task as is possible before it pings
the space station for human intervention (Farrell et al., 2017). By
having the robot configure itself according to some of the task
requirements, the robot allows the user to focus on other parts of
the task.

5.2 Human Body
While assistance applied directly to the environment can solve a
wide variety of tasks, some tasks require alternate strategies. One
such scenario is when some change to the user’s physical state is
required to perform the task. For example, consider a robot
designed to assist a user who has difficulty bathing themselves.
While it is technically possible for that robot to transform the
environment by bringing a bathtub to the user, this is obviously
impractical. The robot can instead transform the user’s state by
bringing them closer to the bathtub (Dometios et al., 2017;
Papageorgiou et al., 2019). This strategy of moving a user to
assist them is similar to autonomous environmental
manipulation, but now the user is being manipulated instead
of the environment. This strategy results in limited agency to the
user, and is typically only employed when the user has minimal
ability to complete the task themselves.

In cases where users can perform some aspects of the task, a
robot can also assist by supplementing a user’s existing abilities.
For example, if a user can walk but has difficulty balancing or
navigating, a smart walker can be utilized to help the user navigate
between locations (Papageorgiou et al., 2019; Sierra et al., 2019).
Similarly, if a user has some control over their limbs, an

exoskeleton robot can be used to provide extra support for
day-to-day usage (Baklouti et al., 2008; Lim et al., 2015; Choi
et al., 2018; Nabipour and Moosavian, 2018) or in therapeutic
scenarios in order to help a user strengthen weakened muscles
(Carmichael and Liu, 2013; Zignoli et al., 2019).

In addition to aiding in task execution, physical user state
manipulation can also be used to assist in planning, such as when
a user’s sensing capabilities are diminished. For example, a
visually impaired user may wish to solve a Tangram puzzle
but must pick up and feel each piece individually. To provide
assistance to the user, a robot could sense the puzzle pieces and
determine which pieces are viable for the next step of assembly.
The robot can then physically guide the user’s hand to this piece
allowing the user to solve the puzzle (Bonani et al., 2018). This is
an example of human body state manipulation. Instead of
manipulating the environment to solve the task, the robot
instead changes the user’s physical state configuration in order
to better position them to solve the task.

Robot assistance that acts on a user’s body can also be done by
using the resistance of the robot’s own joints. A user
kinesthetically manipulating a robot arm, for example, may
not know the exact path the arm should travel in order to
complete a co-manipulation task. The robot can change its
admittance or transparency such that it becomes easier
(Jarrasse et al., 2008; Li et al., 2015; Lee and Hogan, 2016;
Mariotti et al., 2019; Muthusamy et al., 2019; Luo et al., 2020)
or more difficult (Bo et al., 2016; Kyrkjebo et al., 2018; Cacace
et al., 2019a,b; Wu et al., 2020) to move as the robot’s end effector
deviates from a known, low-cost path. This idea can also be
applied to full-scale robots, allowing a user to navigate a robot
from one point to another by guiding it as if it were another
human (Chen and Kemp, 2010) or to use the stiffness of the
robot’s arm as a support while standing up (Itadera et al., 2019).
Admittance control as a body state manipulation allows the user
to have a high degree of control when operating the robot, but
allows the robot to provide information about which parts of the
environment are better to traverse by altering the stiffness of its
joints. This strategy can also be used in therapeutic settings, where
a patient recovering from a stroke can be given an automatic,
smooth schedule of rehabilitation exercises as the robot changes
its admittance depending on the force feedback it receives from
the user (Ivanova et al., 2017).

5.3 Human Brain
The final location of assistance we identify is the user’s mental
state. These robots assist by transforming the user’s
understanding of the world in a helpful way. One common
method is for the robot to communicate unknown
environmental information to the user. For example, a robot
can play particular sounds as it completes its tasks so that a user
can track it more easily (Cha et al., 2018). A robot can also
describe the local environment for a visually impaired user in a
navigation task, enabling them to create a semantic map of the
environment (Chen et al., 2016). Similarly, a robot can provide a
visual signal to designate objects it intends to interact with so the
user can avoid them (Machino et al., 2006; Andersen et al., 2016b;
Shu et al., 2018), areas where the robot expects tomove so the user
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can stay away (Hietanen et al., 2019), or areas or paths that the
robot thinks the user should take to complete a task in an optimal
fashion (Newman et al., 2020). In an emergency scenario, a robot
can visually indicate the direction of a safe exit (Robinette et al.,
2016). Finally, a robot can provide haptic feedback to indicate
when to turn in a navigation task (Moon et al., 2018; Li andHollis,
2019). Robots that provide alerts like these assist by
communicating information about the task or the
environment directly to the user so that the user can
effectively perform the task.

Robots can also assist in the mental state domain by adopting
social roles. Generally, these robots are designed to perform
socially beneficial functions similar to those that a human
would provide, such as a robot that takes the role of a
customer service agent (Vishwanath et al., 2019) or a bingo
game leader (Louie et al., 2014). In educational settings such
as one-on-one tutoring (Kennedy et al., 2016; Fuglerud and
Solheim, 2018; Kanero et al., 2018; van Minkelen et al., 2020)
and classroom teaching (Kennedy et al., 2016; Ramachandran
et al., 2016; Westlund et al., 2016; Polishuk and Verner, 2018;
Ono et al., 2019; Rosenberg-Kima et al., 2019), a robot can deliver
lectures in a similar manner to a human teacher. In therapeutic
and medical settings, a robot can administer routine medical
surveys (Varrasi et al., 2019) independent of the doctor’s social
biases (Briggs et al., 2015), provide therapy sessions for routine
cognitive behavioral therapy (Dino et al., 2019) or physical
therapy (Meyer and Fricke, 2017), and perform other general
therapeutic tasks (Agrigoroaie et al., 2016; Fan et al., 2016; Salichs
et al., 2018; Alimardani et al., 2020). Finally, a robot’s assistance
can vary based on its social role, such as a concierge robot
performing different social behaviors when responding to
children or adults (Mussakhojayeva et al., 2017), an advice-
giving robot providing explanations when a user’s behaviors
become non-optimal (Gao et al., 2020) or a robot that gives
cooking advice varying its strategies so that the advice is more
readily received (Torrey et al., 2013).

Instead of performing a procedure itself, a robot can assist a
professional when affecting a user’s mental state. When a
therapist is unable to be physically present with a child, for
example, a parrot robot can be employed in the home to entice a
child with autism to practice skills learned during a therapy
session (Shayan et al., 2016; Bharatharaj et al., 2017). During
therapy with agitated patients, introducing a pet-like PARO robot
can induce mental states more conducive to effective therapy
(Shibata et al., 2001; Sabanovic et al., 2013; Chang and Sabanovic,
2015; Shamsuddin et al., 2017). A child-like robot can allow a
young patient to practice social skills with a partner more akin to
a peer than the therapist is (Goodrich et al., 2011; Kim et al., 2014;
Taheri et al., 2014; Ackovska et al., 2017; Nie et al., 2018).
Similarly, a child-like robot can assist a teacher by reinforcing
a student’s desire to self-engage in educational material,
something students may be more likely to learn with a peer
than a teacher (Wood et al., 2017; Davison et al., 2020), or
increase a user’s ability to recall a story by acting out portions
of it (Leite et al., 2015).

Since robot actions are sometimes interpreted socially and as
being intentional, robots can select their actions to influence the

user’s mental state. For example, predictable and legible motion
strategies that indirectly communicate a robot’s goals are readily
interpreted by people (Dragan et al., 2013). These same strategies
can be used in collaborative tasks to indirectly show the robot’s
goal to the user (Bodden et al., 2016; Faria et al., 2017; Zhu et al.,
2017; Tabrez et al., 2019). Robots can also mimic human
nonverbal behaviors like deictic eye gaze and pointing gestures
to indicate task-relevant objects during collaborative tasks
(Breazeal et al., 2004; Fischer et al., 2015) or to assist in
completing mentally taxing tasks (Admoni et al., 2016;
Hemminghaus and Kopp, 2017).

Similarly, robots can use their behavior to suggest their
internal emotional state. This strategy can increase rapport,
fluidity and reception of a robot’s assistance through emotive
motions (Mok, 2016; Terzioglu et al., 2020) or giving the user
feedback regarding a task’s success through facial expressions
(Reyes et al., 2016; Rahman, 2019a; Christodoulou et al., 2020).
Using socially meaningful actions enables assistive robots to
communicate with the user efficiently and fluidly.

Robots can also use social behaviors to induce specific,
beneficial emotional responses from a user. By mimicking
human nonverbal behaviors, robots can use their eye gaze to
induce social pressure on a user to work more efficiently (Riether
et al., 2012) or to soften its own dominance to allow for better
teamwork (Peters et al., 2019). Assistive robotic gestures can also
increase feelings of openness in people who are discussing
negative experiences (Hoffman et al., 2014) and motivation in
users during medical testing (Uluer et al., 2020), in users during
physical exercise (Malik et al., 2014; Schneider and Kummert,
2016; Malik et al., 2017), and in stroke patients performing
rehabilitative exercises (Tapus et al., 2007). Since people
generally view robotic gestures as intentional, robots can use
these gestures to induce mental states that assist the user in
performing a task.

In addition to nonverbal communication strategies, robots
that are capable of speech can converse with users to induce
beneficial mental states (Knepper et al., 2017). Robots can use
speech to change the content of the conversation (Gamborino
and Fu, 2018) or to answer a question about the surrounding
environment (Bui and Chong, 2018). Robots can use dialogue
to gather information during collaborative teleoperation
(Fong et al., 2003), to engender trust in an escape room
(Gao et al., 2019), or to facilitate collaboration between two
targets of assistance (Strohkorb et al., 2016). Robots can also
talk about themselves to influence a user’s view of themselves.
For example, tutoring robots for children can make
vulnerable statements about themselves to increase trust
with the student and student engagement (Martelaro et al.,
2016). Similarly, a robot in a group setting can facilitate
group trust by leading with vulnerable statements about
itself, so that its teammates feel more comfortable sharing
their own vulnerabilities. This effect can cascade as more
group members explain their own failures, console each
other, and laugh together (Sebo et al., 2018). Failing to
deliver assistance in contexts where the robot is expected
to provide assistance can have deleterious effects on a user’s
mental state, causing users to mistrust the robot and harm
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their relationship and rapport (Kontogiorgos et al., 2020;
Rossi et al., 2020).

Beyond focusing on specific content of speech, conversational
robots can further affect the user’s mental state in the way they
speak. Robots can perform back-channelling to give the
appearance of active listening (Birnbaum et al., 2016; Sebo
et al., 2020), or give informative feedback to improve task
performance (Guneysu and Arnrich, 2017; Law et al., 2017;
Sharifara et al., 2018), a user’s self-efficacy (Zafari et al., 2019),
or their motivation (Mucchiani et al., 2017; Shao et al., 2019).
Robots can choose to only interrupt a distracted user at
appropriate times (Sirithunge et al., 2018; Unhelkar et al.,
2020). A robot can also change its tone to project an emotion
such as happiness to improve the user’s mood and task
performance (Mataric et al., 2009; Lubold et al., 2016; Winkle
and Bremner, 2017; Rhim et al., 2019). Finally, a robot can
combine these qualities with the content of the conversation
to change the user’s perception of the robot’s social role (Bartl
et al., 2016; Bernardo et al., 2016; Monaikul et al., 2020).
Specifically, a robot can act as a student during a tutoring
session to induce different learning techniques in a human
student (Sandygulova et al., 2020).

Shared control, especially when an input controller (e.g., a
joystick) limits the number of input degrees of freedom (Aronson
et al., 2018), can also be made easier for user’s by providing
assistance that alters the user’s mental state. A robot arm can
assist its user by maintaining more easily controllable state
configurations (Javdani et al., 2015; Till et al., 2015; Vu et al.,
2017; Aronson et al., 2018; Newman et al., 2018) or by optimizing
which degrees of freedom the user can control at any given time
(Herlant et al., 2016). This idea can be extended to
supernumerary arms that provide users with an additional
appendage but are difficult to control (Nakabayashi et al.,
2018; Vatsal and Hoffman, 2018), teleoperating robotic arms
through electromyography (Noda et al., 2013; Pham et al., 2017)
or similar sensing devices (Muratore et al., 2019), or humanoid
robots (Lin et al., 2019; Zhou et al., 2019). Additionally, a robot
might be able to enter environments that are unavailable to a user,
allowing the user to teleoperate the robot in these environments,
and effectively extend their reachable environment (Horiguchi
et al., 2000). These strategies all effectively alter the user’s mental
state by decreasing the burden of user communication.

Finally, another strategy for robots to assist a user is by
transforming the robot’s own physical configuration into one
that is more amenable to task completion. This approach is
useful in collaborative scenarios where the robot and user may
collide. To avoid this problem, robots can decrease their operating
velocity when working in close proximity to users (Araiza-Illan and
Clemente, 2018; Rosenstrauch et al., 2018; Svarny et al., 2019) or
take paths or actions specifically designed to reduce the likelihood
of a collision (De Luca and Flacco, 2012; Hayne et al., 2016; Liu
et al., 2018; Nguyen et al., 2018). Similar to shared control, these
strategies to assist the user decrease the user’s cognitive burden of
planning in the task. By taking responsibility for collisions, a robot
can effectively alter its own actions so that the user can be less
concerned with monitoring and modelling a robot’s behavior and
can concentrate on completing their portion of the task.

5.4 Implications
Choosing which action space the robot should act in is a crucial
decision for robot designers. To aid users in room cleaning, for
example, researchers have developed robots that alter the
environment by directly picking up misplaced objects, while
others have developed augmented reality solutions that provide
assistance in the user’s mental space by showing them routes that, if
followed, would lead to the shortest time spent cleaning. Realizing
that a given task can be solved by acting in any part of the state
allows researchers to develop novel solutions to problems that have
historically been restricted to robots that act in a single state.

This realization, however, means that determining the robot’s
action space is not simply determined by the task that the robot is
being built to solve. Instead, a roboticist must carefully consider the
capabilities of the users for whom they are designing the robot. The
choice of how the robot acts must be tuned to the needs of the user,
and it has broader implications on the user’s sense of agency and
trust in the system. This separation of robot action spaces enables
designers to compare robots from different domains that have
similar action spaces and develop better assistive solutions.

6 TIME

The third key design axis we present concerns how assistive robots
coordinate the timing of actions with the targets of their assistance.
Consider an assisted eating scenario. A robot might only offer food
when given an explicit trigger by the user, or it canmonitor the user’s
behavior to decidewhen to initiate the action itself.We categorize the
timing of assistive actions as reactive, proactive, or simultaneous.
Reactive robots act only when given explicit commands. Proactive
robots use predictive models or other approaches to understand the
world to initiate their actions without an explicit command. Robots
acting simultaneously occur in collaborative settings, during which
the robot continuously monitors the user for both explicit and
implicit information to direct its actions. Choosing how to time the
robot’s behavior can change the difficulty of the task and how users
react to the robot’s assistance (Figure 3).

6.1 Reactive
Reactive assistance occurs when the assistive action is triggered by an
explicit command. Consider a teleoperated robotic arm developed
for assistive eating (Javdani et al., 2015; Aronson et al., 2018;
Newman et al., 2018). In these studies, a user uses a two-degree
of freedom joystick to control a seven-degree of freedom robot arm
and pick up amorsel of food from a plate. Direct control of this robot
entails only moving the robot’s end-effector while the user is
engaging the joystick. The user might also give commands at a
higher level of abstraction, perhaps by pressing one button to request
food and another for water.

Reactive robots can also respond to more task-specific,
contextual triggers. In Canal et al. (2018), an assistive robot
helps a user to put on their shoes. This interaction is modeled
as a complicated handover problem,where the usermust have their
foot properly positioned and apply enough resistance that the shoe
remains on the foot. In this work, the robot responds to a gesture
performed by the user through their foot. When they move their
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foot in the specified way, the robot knows that it is an acceptable
time to place the shoe on their foot.

In general, reactive systems give the user more control over the
robot and therefore agency in the overall interaction. Additionally, the
robot does not generally need sophisticatedmodels of the task, since it
can rely on explicit input from the user. This simplicitymeans that the
robot tends to be less sensitive to the particular task or domain, as it
relies on the user to adapt the task to the robot’s capabilities. However,
this additional control requires the robot’s user to spend more time
and effort on controlling the robot, which can distract from other
tasks. Controlling a robot at this level may also require significant
training, as the robot’s capabilities may not clearly match the
requirements of the task. The control burden grows as the user
must explicitly command the robot to begin an interaction
(Baraglia et al., 2016), and requiring additional control complexity,
such as adding modal control to teleoperation, can be cognitively
taxing and slow down progress in the task (Herlant et al., 2016).
Furthermore, requiring the user to explicitly cue the robot to act
reduces collaborative fluency, which is undesirable as collaborative
fluency is a positive attribute that has shown to increase the user’s
perceived quality of the interaction (Hoffman et al., 2014) anddecrease
the time spent during interactions (Huang and Mutlu, 2016).

6.2 Proactive
Proactive assistance occurs when the robot predicts that an action
would fulfill the user’s goals and takes that action without explicit
prompting. For example, in assisted eating, the robot may anticipate a
user’s thirst after eating and choose to reach for the glass of water
before receiving explicit input. The robot relies on a model of the task
and user behavior to estimate what the user would want next.
Proactive assistance generally improves the smoothness of
interactions, as the assistance target does not need to spend time
training or cognitive load to provide explicit instructions to the robot.
However, this type of assistance is dependent on themodel used to cue
its actions, so the added complexity maymake the system less reliable.

Consider again the task of operating a high degree of freedom
robot using a low degree of freedom input device. Instead of using
explicit signals from the user, Herlant et al. (2016) designed a robot
that can proactively switch modes. In a simulated navigation task, a
user drives a robot whose movement is restricted to exclusively
moving either vertically or horizontally through a two-dimensional
maze. The robot uses a model of the environment to determine
whether horizontal or vertical motion is optimal given the robot’s
current position. The robot can then switch the mode proactively,
allowing the user to simply direct the robot to move, speeding up the

overall interaction time and removing the cognitive burden seen in
reactive mode-switching.

Another way a robot can assist proactively is by building a
model of the user to infer the task goal before it has been expressed.
For example, a robot can predict the next fruit that a customer
wants to add to their smoothie (Huang and Mutlu, 2016). Before
the user explicitly requests this ingredient, the robot can prepare to
grab that ingredient, increasing the fluidity of the interaction.

One challenge of proactive assistance is that users can be
uncomfortable or even endangered if the robot makes unexpected
motion. To mitigate this concern, the robot can communicate its
intentions to the user explicitly. This could be done by having the
robot show the user its plan directly on the physical environment,
for example highlighting the part of a car door it plans to work on
(Andersen et al., 2016b), or by showing its intended travel path in
a virtual reality headset (Shu et al., 2018).

Proactive assistance enablesmore robust and general applications
than reactive assistance does. However, the added sophistication in
assistance requires additional complexity in the robot’s models and
behavior, which is compounded by the need to act in varied
environments to unexpected stimuli. In addition, a purely
proactive system can be uncomfortable or dangerous if the user
is not prepared for the robot’s actions. To mitigate some of these
concerns, assistance systems can design some parts of the interaction
as reactive and others as proactive. For example, the serving robot in
Huang and Mutlu (2016) proactively moves closer to its estimate of
the user’s most likely request, but it does not initiate the actual
grasping process until it receives an explicit command.

6.3 Simultaneous
Simultaneous assistance exists between the previous two categories
and includes shared control and collaborative robots. These systems
generally function similarly to proactive assistance, but act at the
same time as the user. These systems include shared autonomy
systems (Javdani et al., 2015; Javdani et al., 2018; Losey et al., 2018),
which fuse the user’s direct command with an autonomously
generated command and arbitrate between the two according to
some schema. It also includes tasks like carrying a table together
(Nikolaidis et al., 2016; DelPreto and Rus, 2019), in which both the
user and the robot must act independently for progress to be made.

Simultaneous assistance occurs often in collaborative assembly
tasks. The goal and structure of a joint assembly task is often pre-
specified, making it easy to determine a user’s goal. A robot in such a
task can directly assist by, for example, lifting and holding heavy
objects steady so that they can be worked on (Fischer et al., 2015; El

FIGURE 3 | A key axis in assistive robotic systems concerns what type of cue leads to the robot taking actions. Robots can be reactive and respond to explicit input
only, be proactive and interpret the general task state to choose to act on their own, or collaborate closely with the user by acting simultaneously with them.
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Makrini et al., 2017). A robot can also assist by orienting a part to
optimize construction, for example by following the images found in
an assembly manual (Akkaladevi et al., 2016; Wang et al., 2020).

Simultaneous assistance often benefits from sophisticated
communication strategies. For example, DelPreto and Rus (2019)
designed a robot to sense electromyographic signals from a user to
jointly manipulate a heavy object. A robot could also communicate
back with the user, for example by changing its stiffness during a co-
manipulation task in order to alert the user they should not move an
object into a specific location (Bo et al., 2016). Similarly, a robot
could provide the user with cues as to the next step during a
complicated assembly task such as by pointing at the next item
of interest (Admoni et al., 2016), providing a negative emotive
feedback when a user completes an incorrect assembly step
(Reyes et al., 2016; Rahman, 2019a) or display other emotive
capabilities to signal task progress (Mok, 2016; Terzioglu et al., 2020).

Simultaneous assistive systems generally require tight
collaboration between the user and the robot. The closeness of the
collaboration requires the system to have amore complicated strategy
for understanding user commands, since it is unlikely that the user
will give precise commands while also accomplishing their task.
However, these models can be more flexible than pure proactive
systems: the robot can gain immediate feedback from the user about
whether or not its action is correct, so it can recover from somemodel
failures more quickly.

6.4 Implications
Determining when a robot should act has implications on the quality
of a robot interaction. Reactive systems use more explicit control
which enables more user agency, but it also increases the burden to
complete a task. Proactive systems require more sophisticated models
and sensing onboard the robot, but they can improve collaborative
fluency while decreasing user burden. Systems that act in anticipation
of explicit user commands may even be able to influence future user
behavior in unforeseen ways, leading to questions about who is in
control of setting the task goal (Newman et al., 2020). Proactive robots
also generally lead to more robot agency, which introduces complex
challenges such as safety and trust.

Preferences among when a robot chooses to take action may
differ among users even within the same task domain. While one
user may prefer a robot that requires less training and complication
to operate, another might prefer to havemore direct control over the
robot to determine its behavior more precisely. If the user is paired
with the system they least prefer, the interaction may cease to be
assistive. In addition, an assistive system need not be completely
proactive, reactive or simultaneous: the system can choose different
timing and cueing strategies based on the particular part of the task
under consideration. Choosing exactly when a robot executes its
actions requires careful thought about the nature of the task, the
capability of the robot, and the desires of the user.

7 CONCLUSION

In this paper, we describe an overall perspective on robotic systems
that emphasizes their assistive intentions.With this perspective, we
present three key design axes that compare assistive robotics

research across domains: the relationships they develop with
people, their action space, and their action timing. We explore
these axes through a review of recent assistive robotics research,
showing how assistive robots from across domains face similar
challenges and make comparable decisions along these axes.

Much of the research discussed in this paper is specific to its
task domain due to how the field has been organized and the
difficulty of building abstractions. In this work, we propose some
abstractions, and we hope that they will enable designers of
assistive robots to find systems in other domains that share
their problems and to draw deeper connections with them.

For each axis, we discuss design tradeoffs resulting from
particular approaches. From among these axes, several themes
emerge. Choices in the robot’s action space and timing can both
affect a user’s sense of agency. Similarly, both the robot’s action
space and relationship with the user impact the structure of the
communication between the robot and the user, which alters the
quality of the assistance. It is our hope that researchers will
explore more themes that span these design axes and provide
more structure to the development of assistive robots.

Finally, this work is intended to start a conversation about how
to understand the specific challenges of assistive robotics within
the general area of human-robot interaction. With this
framework, we hope to encourage researchers to further
explore the nature of assistance as a general concept and
describe its inherent challenges. We do not claim that these
axes are complete; rather, we present them as the beginning of
a larger effort to develop general principles of assistive robotics.
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Still Not Solved: A Call for Renewed
Focus on User-Centered
Teleoperation Interfaces
Daniel J. Rea1* and Stela H. Seo2

1Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada, 2Department of Social Informatics, Kyoto
University, Kyoto, Japan

Teleoperation is one of the oldest applications of human-robot interaction, yet decades
later, robots are still difficult to control in a variety of situations, especially when used by
non-expert robot operators. That difficulty has relegated teleoperation to mostly expert-
level use cases, though everyday jobs and lives could benefit from teleoperated robots by
enabling people to get tasks done remotely. Research has made great progress by
improving the capabilities of robots, and exploring a variety of interfaces to improve
operator performance, but many non-expert applications of teleoperation are limited by the
operator’s ability to understand and control the robot effectively. We discuss the state of
the art of user-centered research for teleoperation interfaces along with challenges
teleoperation researchers face and discuss how an increased focus on human-
centered teleoperation research can help push teleoperation into more everyday
situations.

Keywords: teleoperation, interfaces, user-centered design, user-centered teleoperation, literature review, human-
robot interaction

1 INTRODUCTION

Teleoperated robots, robots controlled at a distance, are already used in a number of situations where
it is unsafe for humans to be physically present, such as search-and-rescue (Casper and Murphy,
2003; BBCClick, 2017; Peskoe-Yang, 2019) after natural disasters (Settimi et al., 2014; Norton et al.,
2017; Tadokoro, 2019), scientific research such as moving underwater (Delmerico et al., 2019),
working in space (Schilling et al., 1997), or making critical inspection and repairs (Buonocore, 2021;
González et al., 2021; Koh et al., 2021). However, with a small number of exceptions, we see no
remotely operated robots in use by the general public, whether it is at work or in their personal space.
When we look to existing teleoperation situations–often robots in extreme situations–we find that
teleoperation, even when performed by expert operators, is still an extremely difficult task, requiring
multiple specialized operators for a single robot (Norton et al., 2017; Murphy and Tadokoro, 2019).
Despite such human resources, it is still difficult to perform even basic collision avoidance, and this
operation difficulty increases operator stress (Norton et al., 2017; Murphy and Tadokoro, 2019). If
experts struggle to teleoperate robots remotely, then it is likely that the average person, even using
simpler robots, would also struggle.

Teleoperation research has long noted that one of the bottlenecks to teleoperation performance is
the operator’s abilities, which can be limited by the technology itself, such as camera field of view
(Endsley, 1988; Yanco et al., 2004; Chen et al., 2007; Lin et al., 2007; Niemeyer et al., 2016). In light of
this, a long-term effective strategy for research is to create robots and interfaces that specifically
reduce these limiting factors of the robot, such as adding additional camera views (Saakes et al., 2013;
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Rakita et al., 2019a), leveraging multiple robots semi-
autonomously (Rakita et al., 2019b; Coelho et al., 2021), or
inventing new ways to control robots (Escolano et al., 2012;
Choi et al., 2018). This research has resulted in numerous new
techniques that can benefit numerous teleoperation scenarios.
Despite the progress in these areas, teleoperation remains
difficult.

In this paper, we review core challenges in teleoperation
interface design and recent systematic surveys and find that
teleoperation performance, especially for non-experts, is still
hindered by the operator and the interface they use to control
andmonitor the robot. We found less user-centered work, instead
focusing on improving and augmenting teleoperation technology
to mitigate its weaknesses. User-centered work, in contrast,
started from the abilities and needs of the operator and built
interfaces with them in mind. Showcasing the potential of this
approach, we highlight classic and recent examples for human-
centered and non-expert teleoperation interface design [e.g., for
manipulation (Herlant et al., 2016; Kent et al., 2017; Li et al., 2017;
Rakita et al., 2017), shared autonomy (Jain et al., 2015; Aronson
et al., 2018; Rakita et al., 2019b; Jeon et al., 2020; Nicolis, 2020),
camera control (Rakita et al., 2018; Rakita et al., 2019a), and social
and psychological interfaces (Rea et al., 2017a; Rea and Young,
2018; Rea and Young, 2019a; Rea et al., 2020; Seo et al., 2020;
Valiton and Li, 2020)], we call for teleoperation and robot
researchers broadly to use more additional advanced
applications of user-centered practices by starting with user-
driven solutions in addition to existing technically-driven
approaches.

We further argue that engage with user-centered problems in
teleoperation in a variety of applications, the field should focus
more on simple everyday applications for non-expert users. We
found that these seemingly simple tasks such as turning a door
knob are still surprisingly difficult for modern teleoperation
approaches, and we describe broad research directions for
making user-centered interfaces as well as user-focused
methods. Existing user-centered teleoperation research
demonstrates that our call is a complimentary approach to
traditional teleoperation research that has simply received less
attention, but nevertheless has the potential for impact. This
paper emphasizes and broadens other recent calls for increased
focus on human factors (Murphy and Tadokoro, 2019), general
usability (George et al., 2015), and information visualization
(Szafir and Szafir, 2021). These directions can help bring
teleoperated robots into daily life to improve productivity,
accessibility, and more.

2 CORE PROBLEMS IN TELEOPERATION
INTERACTION

Using recent systematic surveys as a base [e.g., general
telerobotics (Niemeyer et al., 2016), interfaces for teleoperated
manipulators (Young and Peschel, 2020), or field robotics (Liu
and Nejat, 2013; Delmerico et al., 2019; Murphy and Tadokoro,
2019)], we informally surveyed teleoperation interface research in
recent years, as well as more influential work from the past 2

decades. We targeted the keywords of “teleoperation,”
“interaction,” “interface,” and “user-centered,” in our journal
and conference searches, and excluded work that was
primarily engineering, algorithmic, or expert use-cases such as
teleoperated space or surgery robots. We found most work
focused on aiding two major user-centered problems in both
expert and non-expert teleoperation: situation awareness and
robot control. Together, these problems create a significant
cognitive burden on the operator, making teleoperation
difficult, regardless of the task being done with the robot. We
briefly describe and discuss these major problems, and highlight
some of the larger approaches we found. In particular, we found
some research highlighting the user-centered nature of these
problems, and successes for user-centered solutions.

2.1 Visualization of the Remote Data for
Teleoperation Awareness
The term, situation awareness, emerged from aviation psychology
to describe the pilot’s understanding of tactical flight operations
(Durso and Gronlund, 1999), but it is applicable broadly to any
cognitive activity and information processing, including
teleoperation (Durso and Gronlund, 1999; Yanco and Drury,
2004a; Endsley, 2015). Situation awareness, in teleoperation, is an
operator’s ability to perceive, understand, and reason about the
environment around them and around their remote robot
(Endsley, 1988; Rakita et al., 2017; Rakita et al., 2018; Nicolis,
2020), which requires the operator to process a large amount of
robot sensor data from the remote environment in real-time
(Goodrich et al., 2013).

2.1.1 Sensors for Situation Awareness
Research has been improving an operator’s ability to build and
maintain a high level of situation awareness for decades (Endsley,
1988; Endsley, 2016; Niemeyer et al., 2016). A general first-step
approach is to add sensors to enable the robot to provide some

FIGURE 1 | Cockpit for remote drone teleoperation. Pilots need to
process numerous sensors while handlingmission tasks with multiple controls
in stressful situations. (wikipedia.org/wiki/File:
6th_Reconnaissance_Squadron_-_Operator.jpg, public domain).
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information for the operator to perceive the remote space and
make better decisions [e.g., (Endsley, 1988; Endsley, 2016; Yanco
and Drury, 2004a), see Figures 1, 2]. Sensors may add perceptual
abilities that people typically do not have, such as depth sensors
that can see in the dark (Mast et al., 2015), or sonar that detects
nearby objects (Nielsen et al., 2007). Additional sensors may
instead simply add more advantageous data, such as egocentric
cameras that provide a better detailed view, or exocentric cameras
to provide a better sense of where the robot is in its environment
(Saakes et al., 2013; Seo et al., 2017a). Entire other robots may be
added to provide more abilities and viewpoints (Saakes et al.,
2013; Rakita et al., 2019a; Coelho et al., 2021).

Adding more information via sensors, however, does not
always help the operator’s situation awareness, as people can
only pay attention to a certain amount of information at once
(Drury et al., 2003; Endsley, 2016; Norton et al., 2017). Instead of
additional sensors, the user may be encouraged to perform robot
actions to actively observe the environment [active perception
(Bajcsy et al., 2018)]. This adds additional controls and
perception needs to teleoperation, creating more cognitive
load. The challenge of increasing cognitive load with robot
capability is an on-going research topic in human-robot
interaction (George et al., 2015; Delmerico et al., 2019;
Murphy and Tadokoro, 2019). Research has therefore focused
on reducing cognitive load for building and maintaining situation
awareness to improve overall teleoperator performance.

2.1.2 Visualizations for Increasing Situational
Awareness
To gain the benefits of additional sensors without increasing
cognitive load, research is actively developing new techniques to
visualize sensor data (Drury et al., 2003; Yanco and Drury,
2004b). A general trend is to process more raw data for the
operation, and then create a display of those results, that is, easy
for the operator to understand and reason about. For example,
interfaces can highlight points of interest in ways that naturally
draw the operator’s interest (Rea et al., 2017b), leverage people’s

existing knowledge to summarize an off-screen’s object’s position
and distance (Seo et al., 2017b), or combine multiple mediums
like sound or haptics [multi-modal interfaces such as
(Hacinecipoglu et al., 2013; Suarez Fernandez et al., 2016;
Nicolis, 2020; Seo et al., 2020)]. Making robot sensor
visualizations is not always obvious as sensors may detect
qualities that are hard to visualize with a screen or speakers
[such as haptic and force data (Reveleau et al., 2015; Nicolis,
2020)]. Interfaces like those described here—and many others
(Nielsen et al., 2007; Yang et al., 2015; Seo et al., 2017a)—that fuse
and interpret sensor data are essentially performing situation
awareness processing for the operator, instead of having the
operator analyze data or separate visualizations to come to
conclusions themselves. How to produce such visualizations is
difficult and an on-going topic in teleoperation, requiring more
research in information visualization (Szafir and Szafir, 2021).

2.2 Robot Control Interfaces
In addition to creating and maintaining situation awareness from
sensor data, the operator must make decisions quickly for their
tasks and provide commands to a robot using the available
controls. Understanding how to control a robot is also difficult
for operators. This may be adjusting the robot’s body pose, such
as moving a multi-jointed robot arm, or to help drive a robot
through an environment. Control itself consists of many
problems, including situation awareness, simplify control
complexity, choosing levels of autonomy for an action, or
dealing with physical problems like latency. In general, the
control scheme must be clear so that operators can
understand and reason about how to command a robot to
complete a task they may have—known as a gulf of execution
that the operator must cross with the help of good interaction
design (Norman et al., 1986). We found research typically focuses
on one of two problems: how the input is provided by the
operator, and what level of automation the robots behaviors use.

2.2.1 Level of Automation for Controls
A fundamental choice for robot control interfaces is how
autonomous the actions will be. Historically, this has been
almost no automation, with operators manually controlling
each motor [e.g., early arms seen in (Singh et al., 2013) or
remote-controlled vehicles]. However, in recent years, research
has increasingly focused on introducing more semi-autonomous
behaviors, enabling simple inputs to result in complex behaviors
(Singh et al., 2013; Herlant et al., 2016; Kent et al., 2017; Li et al.,
2017; Rakita et al., 2017; Rakita et al., 2019a; Nicolis, 2020; Young
and Peschel, 2020). In addition, high levels of automation are vital
to assist teleoperators in managing multiple robots while
performing their tasks (Squire and Parasuraman, 2010; Wong
and Seet, 2017). Automation enables the operator to think less
about the robot’s computers, sensors, and joints, and more as a
tool that can accomplish tasks, reducing cognitive load.

2.2.2 Freeing Operators With Semi-Autonomous
Controls
While there are clear benefits to semi-autonomous controls, there
are tradeoffs and other problems introduced. For example, consider

FIGURE 2 | A teleoperation interface from Clearpath Robotics. This
tablet interface contains numerous sensor data streams which are accessed
through mode switching via the top buttons in a tab-like interface. This
interface reduces information load for the operator, but makes accessing
all information quickly more difficult due to the need to switch tabs (source:
Clearpath Robotics).
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if the operator may define some level of goal (destination, pose,
action, etc.), and then the robot autonomously proceeds partially or
completely to that goal [e.g., (Quigley et al., 2004; Singh et al., 2013;
Tsui et al., 2013)]. Once commands have been given, there is time
while the robot proceeds which an operator can use to deal with
other tasks [e.g., (Olsen and Wood, 2004; Glas et al., 2012)].

However, algorithms may be imperfect and the real world is
dynamic, and so it may be necessary for the operator to provide
more input during a task, such as help a kinematics simulator predict
what position would be best to grip an option with a robotic arm
(Leeper et al., 2012). Another potential drawback is that while
attending other tasks, operators must maintain situation
awareness of the teleoperation task, or reacquire it upon
returning to the robot, potentially delaying task completion and
adding workload to the operator (Donald et al., 2015). An operator
may wish to edit or cancel an existing command in real-time, adding
more complexity to the interaction. Because of the benefits for
operator multitasking, and long-term planning of robot actions [e.g.,
(Liu et al., 2011; Sakamoto et al., 2009), see Figure 3], these problems
for semi-autonomous teleoperation remain under active research,
with research inventing new algorithms for autonomous behaviors
and investigating their user acceptance [e.g., (Dragan and Srinivasa,
2013;Mehr et al., 2016; Javdani et al., 2018; Reddy et al., 2018; Brooks
and Szafir, 2019)].

2.2.3 Robot and Mixed Initiative Controls
In addition to executing actions semi-autonomously, robots may
also take actions by themselves (machine initiative) instead of
waiting for operator commands [human initiative (Kortenkamp
et al., 1997; Gombolay et al., 2017)]. This is particularly suited to be
used in multiple robot teleoperation scenarios where one operator
controls multiple robots [e.g., (Kolling et al., 2012; Glas et al., 2012)].
However, any autonomous action by the robot again threatens to
break an operator’s situation awareness and can also be confusing to
the user if it is unclear the robot is taking initiative or a result of an
operator command (mixed initiative systems). Such shared
autonomy is a promising Frontier for improved usability and

under active research [e.g., (Dragan and Srinivasa, 2013; Jain
et al., 2015; Mehr et al., 2016; Aronson et al., 2018; Javdani et al.,
2018; Reddy et al., 2018; Brooks and Szafir, 2019; Jeon et al., 2020),
discussed later]. Recent research has shown the consistency and
transparency in these robot-initiated actions is key to a better user
experience (Small et al., 2018). Therefore, even with high levels of
robot autonomy, we still need to consider the operator’s user
experience when creating teleoperation interfaces.

2.2.4 Input Strategies for Teleoperation
Even controlling a single robot is a challenging task that taxes an
operator’s cognitive resources (Steinfeld et al., 2006); seemingly basic
tasks such as navigating a single, wheeled robot around a space are
difficult enough that researchers have invented interfaces that aim to
reduce the overhead required for a teleoperator in such a situation
[e.g., (Barber et al., 2010; Young et al., 2011; Singh et al., 2013)].

2.2.5 Input Strategies for Non-Expert Teleoperators
Some strategies specifically targeting non-expert users (Kent et al.,
2017; Li et al., 2017; Rakita et al., 2017; Rakita et al., 2019b; Jeon et al.,
2020), such as employing well-known control metaphors [e.g., a dog
leash for a robot companion (Young et al., 2011)], visualizing the
results of a command (Singh et al., 2013), using intuitive controls
such as sketching paths in an image of the environment (Sakamoto
et al., 2009; Sugiura et al., 2010; Liu et al., 2011) (see Figure 3). These
earlier works leverage user-centered design—the interface designs
are rooted in familiar ways of acting and thinking (behavioral and
cognitive psychology, human factors). We note that these controls
simplify or reduce the degrees of freedom in the interface that the
user has to explicitly think about (e.g., they simply move a pen
instead of working with multi-button or multi-axis controls for 2D
or 3D movement). With this approach of making interfaces more
approachable, simpler, and familiar, the general public are more
likely to find the controls usable than controls built for engineers or
programmers (Singh et al., 2013; Delmerico et al., 2019).

2.2.6 Dynamic Control Granularity
Another strategy is to allow flexible levels of control. For example,
an operator may need to define a precise path through an
environment or grip an object at a certain angle; in these cases
it is common to have complete control over robot movements
with specialized interfaces designed for one robot’s capabilities
[e.g., (Sakamoto et al., 2009; Hashimoto et al., 2011; Glas et al.,
2012)]. However, complex controls can make some actions,
especially common actions, tiring to manually perform
repeatedly. For these situations, one strategy is to combine
those common but complex commands into single actions
that are easy to invoke (Barber et al., 2010; Jain et al., 2015;
Jeon et al., 2020)—once again simplifying the control space the
user needs to think about. By understanding the tasks operators
wish to complete with a robot, the interfaces can be made more
manual or more automated to ease teleoperation.

While promising and demonstrably effective, we see little of
these advances in modern teleoperation in our daily lives. It is
possible that even further usability advances in feedback
interfaces are needed to make teleoperation more accessible to
the general public.

FIGURE 3 | A sketch-based control interface for a robot that overlays
commands in an overhead view of the real world to aid control and
understandability of the robot’s future actions. From Sakamoto et al. (2009),
with permission.
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2.3 Robot Awareness of the Operator
An even less studied aspect of situation awareness that
relates to controls is the robot’s (and the teleoperation
interface’s) awareness of the operator. In other words, to
properly execute commands and display appropriate
feedback, teleoperation interfaces and robots should
consider the environment and how commands serve the
operator’s goals (Endsley, 1988). A robot may also be
aware of an operator’s state, such as by user
modelling—algorithmically predicting what a person is
thinking, feeling, or will do (Basu et al., 2017; Jain and
Argall, 2020; Jeon et al., 2020), or by directly monitoring
the user [e.g., (Jia et al., 2014; Aronson et al., 2018)]. For
example, control can be simplified by guessing operator
intention to move to a space or pose and using
automation to move towards that goal [e.g., (Gopinath
et al., 2017; Aronson et al., 2018; Jain and Argall, 2020)],
or the robot may understand a command but modify
feedback to the operator to encourage better collision
avoidance (Hacinecipoglu et al., 2013). Interfaces could
even present information to create a specific state in the
operator to affect future teleoperation (Rea and Young,
2019a; Rea et al., 2020).

Robots can also consider how an operator thinks a task
should be completed, such as asking the operator to give input
when an algorithm cannot decide between several courses of
action [e.g., (Leeper et al., 2012)]. The robot should also be
aware if the operator is distracted or busy with other tasks if
input is needed, and use strategies such as taking intelligent
automated actions until the operator is free [e.g., (Glas et al.,
2012)], or the robot could use interfaces to draw operator
attention quickly to important areas without distracting them
too much (Rea et al., 2017b). Guessing operator intentions can
be used to assess how much the operator has paid attention
interface feedback, and could create an estimate of trust in
operator commands.

Drawbacks and open challenges include how to integrate such
machine initiative or shared autonomy actions in a way, that is,
not disliked or confusing to operators (Wang and Lewis, 2007;
Norton et al., 2017). Thus, by understanding the operator’s state
and goals, a robot can autonomously adapt commands to a
dynamic world in an intelligent way.

The key idea is for the teleoperation system itself to consider
not just the operator’s commands, but their state—a user-aware
interface—in order to help the operator’s situation awareness and
control accuracy. In other words, the operator is the center of the
interface design. Because of this, we believe that even more user-
centered designs and methodologies than are currently used are
necessary for improving teleoperation.

3 USER-CENTERED PRACTICES AND
TELEOPERATION

In our survey, we noted a trend for research to focus on solving
core problems through additional robot capabilities and interface
components, or addressing technical weaknesses (sensors,

algorithms, etc.). We also found solutions driven by user
needs and interface design in early and recent teleoperation
research; these user-centered approaches show great promise,
but we found fewer of these compared to technology-driven work.
We discuss these and other recent works while asking–Why is
teleoperation still so difficult?

3.1 Expert Interfaces for Usability Problems
Teleoperation has benefited from an increase in robot capabilities
and robot-centered research, with improvements in reliability,
robustness, sensing, traversal, and more (Delmerico et al., 2019;
Murphy and Tadokoro, 2019). There was a general focus on
expert users in highly technical, dangerous, and high-pressure
situations, such as search and rescue use cases, bomb disposal and
firefighting. In these cases, it is critical that the operator build an
accurate mental picture of the situation quickly and control the
robot successfully. Surveys noted that because the operator is so
preoccupied with safe and careful operation, they often work in
teams of multiple stakeholders (operators, engineers, decision-
makers, etc.), that direct and advise the operator at an objective-
level, rather than a robot level. This creates communication
challenges between the types of operators, and researchers
have noted they may each require a bespoke interface for
optimal performance (Murphy and Tadokoro, 2019).

This leads to most modern teleoperation interfaces being
expert interfaces—systems that assume extensive training and
deep knowledge of a specialized system or application for good
performance (Turchetti et al., 2012)1. These systems, due to their
very specific user base, circumvent the need for common usability
and learnability standards, often allowing or excusing increased
information density, and complex, manual control. In this light,
multiple operators may simply be one workaround to the
usability difficulties of these systems. Both older (Endsley,
1988; Drury et al., 2003; Yanco et al., 2004; Chen and Thropp,
2007; Chen et al., 2011) and recent research (George et al., 2015;
Murphy and Tadokoro, 2019; Szafir and Szafir, 2021), however,
has identified that even these expert systems still have a need to
incorporate and learn from basic HCI research (information
density, learnability, layout, etc.) to further aid experts during
teleoperation and decisions making, and going even further by
developing and leveraging more advanced and specialized HCI
areas like information visualization (Szafir and Szafir, 2021).

3.2 A Call for Additional Focus in
User-Centered Teleoperation
While acknowledging that user-centered research has and
continues to be an active subfield of teleoperation research
[e.g., for manipulation (Jain et al., 2015; Herlant et al., 2016;
Kent et al., 2017; Li et al., 2017; Rakita et al., 2017; Aronson
et al., 2018; Rakita et al., 2019b), integrating automation (Jain
et al., 2015; Rakita et al., 2019b; Jeon et al., 2020; Nicolis, 2020),
or better sensor use (Rea et al., 2017b; Rakita et al., 2019a; Rea

1https://abcnews.go.com/Blotter/drone-stigma-means-skilled-pilots-controls-
deadly-robots/story?id=23475968
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and Young, 2019a; Rea et al., 2020; Seo et al., 2020)], based on
our survey we call for more teleoperation researchers to engage
with teleoperation as a fundamentally user-driven domain that
should be approached with user-centered processes—a user
evaluation alone, performed after development is only the
beginning. Our goal should be that even everyday, non-
expert people should be able to use complex robots with
advanced manipulators, sensors, and movement abilities to
improve everyday situations, and that they should be
included throughout the design and development process.
Even experts benefit from better user experience, usability,
and learnability [e.g., in both general software (Dziubak
et al., 2016) and robotics (Huang and Cakmak, 2017)], and
user-focused improvements will lead to more accessible
teleoperation in a variety of applications.

Recent research notes that teleoperation is fundamentally
multitasking—doing a task with a robot, while figuring out
how to accomplish that task safely and efficiently with the
robot (Murphy and Tadokoro, 2019). Improving the
fundamental basics of an interface (human factors,
presentation, etc.) has long been known as an important factor
in teleoperation (Yanco et al., 2004; Chen et al., 2007; Chen et al.,
2011; George et al., 2015) but either sufficient improvement has
yet to be made, or these basic HCI principles are insufficient on
their own, perhaps due to the inherent complexities and
difficulties of teleoperation (Norton et al., 2017; Norton et al.,
2018; Murphy and Tadokoro, 2019; Szafir and Szafir, 2021). We
propose that to conduct this user-focused teleoperation, more
research should focus on general users in everyday applications
for teleoperation, as it removes the ability to rely on expertise and
technical ability.

To aid in this refocusing towards user-centered teleoperation,
we highlight several applications of teleoperated robots that are
not as extreme as the focus of many field robotics studies, note
their unique problems that come from a more general user base,
and motivate several future approaches for more research. We
conclude that the shared nature of these problems with the core
teleoperation problems described above suggests that
teleoperation in general can progress by also investigating
these simpler, more constrained applications, which in turn
could provide new techniques and avenues for improvements
in extreme robotics as well.

4 EVERYDAY APPLICATIONS OF
TELEOPERATION—STILL NOT SOLVED

We have been arguing that teleoperation is fundamentally
difficult from a usability perspective. To this end, we believe
that researching interfaces tailored to everyday non-expert
applications and users is important, as it provides similar
research challenges in a simpler and more tractable testbed to
progress fundamental usability issues in teleoperation. In fact,
there have long been researchers that study everyday applications
of teleoperation [e.g., (Niemeyer et al., 2016; Kent et al., 2017;
Rakita et al., 2017)] where they encounter and study similar
problems to more typical search-and-rescue robotics.

Telepresence can enter our daily lives in any situation a person
needs to be in a physical space but cannot for any reason (health,
distance, money, visas, etc.). Telepresence technologies has been
used for children to attend school (Tsui et al., 2013), remote
business meetings (Lee and Takayama, 2011), and more
(Kristoffersson et al., 2013; Tsui et al., 2015). However, the
core problems of teleoperation, difficult for experts, can be
even more challenging for non-expert users. While well-
developed commercial products exist, telepresence robots
(Neustaedter et al., 2016; Rae and Neustaedter, 2017) are far
from a solved problems, where challenges emerge from the
surprising complexities of everyday situations and the
interfaces needed to successfully navigate them.

Many industries have some level of routine inspection and
maintenance needs that could be done with teleoperated robots.
Some industries have well-defined and structured tasks and
environments and tasks that could be leveraged as a simpler
environment to develop better interfaces. Like more difficult
applications of robots, these applications require robot
navigation in constrained spaces, detailed inspection with
multiple advanced sensors, logging, and reporting, and
sometimes engaging in repair work using carefully controlled
manipulators (Buonocore, 2021; González et al., 2021; Koh et al.,
2021). These operators are often specialized in the industry the
robot is used in, but not necessarily familiar with robotics or
similar technology themselves. Thus, industrial teleoperation
should benefit from increased user-centered research to aid
these non-expert users while also acting as a simpler testbed
for more complex types of teleoperation.

Teleoperated robots also have the potential to provide help in
everyday situations, accessibility, and assist with ageing-in-
place—assistive telerobotics (Goodrich et al., 2013; Jain et al.,
2015; Tsui et al., 2015; Okamura and Tanaka, 2016; Jeon et al.,
2020). For people who may have difficulties with mobility,
strength, a comprised immune system (e.g., in a pandemic), or
simply need assistance in a task, teleoperated robots could help by
making tasks easier, reducing risk of injury or exposure to
diseases. With improved interface design, teleoperated robots
may improve feelings of efficacy, satisfaction, and independence
of the home operators. One promising existing example of this
technology is robotic wheelchairs with manipulators, which are
not remote but still face typical core teleoperation challenges (Al-
qaysi et al., 2018; Dragomir et al., 2021). These users may need
extra help or have trouble using interfaces due to special needs,
but designing for such users can improve customizability and
accessibility for all users [e.g., (Jain et al., 2015; Jeon et al., 2020)].

Teleoperated robots may also increasingly become a form of
everyday recreation [e.g., drone racing (Pfeiffer and Scaramuzza,
2021)]. The sport requires interfaces to support operators to drive
safely but quicly while maintaining awareness in a highly
dynamic environment. Drone racing is thus a useful real-
world scenario to develop and test interfaces that help even
everyday operators to leverage their skills to perceive, navigate,
and interact with the environment in a highly dynamic situation.
It further doubles as a safer test application for search and rescue
robotics as fast-paced and difficult teleoperation situation, but
with fewer serious consequences.
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Looking back to core problems with teleoperation, we can see they
all remain in everyday situations—achieving situation awareness with
various sensors, and controls for navigation andmanipulation. These
tasks seem simple compared to the challenge of disaster response and
search-and-rescue, but these “simple” everyday applications of
teleoperation are still difficult from a usability perspective. We
propose teleoperation requires research that focuses on the
interaction design, and to develop more best practices and
guidelines for user-centered interface design in teleoperation.

4.1 Considerations and Opportunities for
Everyday User-Centered Teleoperation
The core user-centered teleoperation problems continue to be
important to research from a systems perspective. However, with
a user-centered approach, the research goals should shift to
learnability, usability, and a better user experience, which can
themselves increase operator performance, efficiency, and
decision-making ability. We noted that everyday teleoperation
applications provide good related and safer real-life situations to
test and develop interfaces in. Here we discuss some main
differences and opportunities in these applications: the
operators, the robots, and the situations the robots are
operated in.

4.1.1 The Operators
The operators are often experts in some field, but are not
roboticists, engineers, or computer scientists. Thus, interfaces
should not assume operators understand how to interpret a point
cloud, how a differential drive works, or how kinematics affects
how an arm can move; such topics will need to be avoided,
hidden, or taught quickly but carefully in an interface. Operators
may also not even be experts in their own specific robots, using
them only a few times a year or less to do a maintenance task at
their workplace. Everyday operators will also be more sensitive to
user experience: since they are usually not required to use the
robot, the robot must compete with the familiarity and ease of
doing a task in a non-robotic way. They may even need additional
accessibility considerations. The need to consider the lack of
robot knowledge, familiarity, accessibility, and patience with poor
user experience is not new in teleoperation research [e.g., (Drury
et al., 2003; Chen et al., 2007; Sakamoto et al., 2009; Jain et al.,
2015)], but we argue they need to become a core design
consideration, as the experience and needs of operators differ
heavily—additional use of user-centered research methods will be
beneficial.

4.1.2 The Robots
The robots everyday people use may not be as advanced, robust,
accurate, or powerful as those used by experts in extreme search-
and-rescue situations, and this is potentially beneficial. For
example, the commercial Double 3 telepresence robot does not
have hundred-meter-reaching sensors, may not survive falling
over or outdoor use, and does not move very quickly—we know
how to build a more capable robot. However, these constraints
came about from user-centered design: fewer robot features make
creating a simple interface easier, it enables the robot to be built to

suit a specific use case (e.g., indoor office or school use), and keep
costs down for accessibility. In other words, a capable robot is not
necessarily a better robot for a given user or application (Rea et al.,
2017a). Leveraging these constraints and designing robots
specifically with user needs in mind throughout the
engineering process for more telepresence applications is an
opportunity to improve robot accessibility and translate to
better interfaces.

4.1.3 The Environment
The environments these robots are used in also may present
specific challenges. For example, robots may be in dynamic or
crowded spaces (a telepresence robot at a conference), or in an
unknown and non-structured environment (a doctor tele-visiting
a patient at their home). However, many environments are much
more structured and regular than what search and rescue robots
may be able to expect: factories have a well-known and
predictable environment for inspection and maintenance
robots, grocery stores have organized, easy-to-see-and-reach
shelves of goods for a robot being used to pick up groceries,
or public spaces like school or malls have a pre-defined
environment. In addition, the tasks needed to be performed in
these spaces may be completely or mostly defined in advance,
such as a robot for routine maintenance. By understanding the
user’s needs in the task and environment, robots can be better
designed to help in the most common cases.

4.1.4 Error Tolerance
Finally, while there are exceptions, many teleoperation
applications are in situations that have some level of fault
tolerance—delays will not result in lost lives, and minor
collisions may only result in an apology and no harm. Thus,
non-expert interfaces have an opportunity to help people learn
how the mistakes they encountered came to be, and help avoid
them in the future. This suggests that common performance
metrics like number of errors may need to be rethought, and
interfaces should explicitly be designed and tested expecting a
certain level of operator error.

These considerations share the idea of simplification: less pre-
supposed robot knowledge, simpler robots, simpler, safer, and
more structured environments, and smaller costs for error. These
simplifications may help make interface research more practical,
while staying grounded in real-world problems, before extending
to more difficult applications. While none of these problems are
new or unknown [see active research such as (Herlant et al., 2016;
Kent et al., 2017; Li et al., 2017; Rakita et al., 2017; Rakita et al.,
2018; Rakita et al., 2019a; Rakita et al., 2019b; Jeon et al., 2020;
Nicolis, 2020; Rea et al., 2020)], we call for additional attention to
these problem areas as they are well suited for studying general
user needs and perspectives.

5 CURRENT USER-CENTERED
APPROACHES

We emphasize that the current systems and usability work being
done in teleoperation is valuable—there are still hard robotics
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problems that would benefit usability if they were solved, and
fundamental human factors work is still necessary as robotic
platforms and new interaction methods (e.g., augmented or
virtual reality) arise. In particular, we want to highlight how
some existing work, some mentioned previously in Section 2, is
user-focused and how those processes and techniques benefit
teleoperation technologies.

5.1 Interfaces for Feedback
Research has developed many techniques over decades for
displaying sensor data in an intuitive way, but the situation
awareness problem is still unsolved (Norton et al., 2017;
Norton et al., 2018; Delmerico et al., 2019; Murphy and
Tadokoro, 2019). This is partly because new types of robot
platforms and sensors have appeared, and it has become
common for robots to have multiple sensors and cameras at
once, increasing the operator’s potential mental workload. If
expert users struggle to interpret multiple sources of advanced
sensor data, then there is a further need for simplified and easy to
interpret data displays for non-expert operators.

Recent calls for bringing in advanced information
visualization techniques acknowledge this, and is an important
future approach to improving teleoperation (Szafir and Szafir,
2021). Some of these techniques even leverage new display
technologies like augmented and virtual reality to explore new
ways to present interfaces in a natural way (Nielsen et al., 2007;
Labonte et al., 2010; Hedayati et al., 2018; González et al., 2021).
We would encourage additional focus on visualizations that
consider less experienced users, who may not understand or
be familiar with the limitations of sensor or data types, who will
likely be slower with any technique, and may be harder to train
due to lack of foundational knowledge in engineering, or
computer science.

Other recent surveys have noted that fundamental and basic
human-computer interaction principles, such as limiting
simultaneous information and considering interface layout, use
of colors, and more are important (Niemeyer et al., 2016;
Delmerico et al., 2019; Murphy and Tadokoro, 2019; Young
and Peschel, 2020; Szafir and Szafir, 2021). Our survey agrees,
and we encourage the development of additional user-centered
teleoperation guidelines with additional and more in-depth user-
driven solutions targeting non-expert applications.

5.2 Controls
Controls have also improved in terms of usability. Both aspects of
the core problems discussed in Section 2 have improved with
user-focused methods: the physical hardware of the controller,
and the way software can be used to add additional controls or
abstract actions.

5.2.1 Simplifying With Abstraction and Automation
We observed a general trend for human-centered systems to keep
controls simple by providing higher-level controls compared to
traditional teleoperation systems (Sakamoto et al., 2009; Leeper
et al., 2012; Ochiai et al., 2014; Kent et al., 2017), such as a point-
and-click system navigation, with more complex controls being
hidden with modes and menus. For more complex robots, the

basic controls will often be modal, with the most common
controls all accessible with video game or 3D haptic
controllers, with perhaps advanced or more specific manual
controls requiring something like a keyboard and mouse.
However, there are many more advances for complex
telemanipulation (Herlant et al., 2016; Kent et al., 2017; Li
et al., 2017; Rakita et al., 2017; Rakita et al., 2018; Rakita et al.,
2019a; Nicolis, 2020).

We also saw a trend for more abstract controls with
automation, which can help non-expert operators with less
experience. The key approach here is leveraging some level of
autonomy to enable the operators to think at a task level (e.g.,
“grab this”, “move there”, “stop and inspect on the left”), rather
than needing to reason about robot morphology, motors, or other
low-level robot factors (Rea et al., 2020). This can relieve the
workload of the operator [e.g., Section 2.2.2 (Dragan and
Srinivasa, 2013; Mehr et al., 2016; Javdani et al., 2018; Reddy
et al., 2018; Brooks and Szafir, 2019)], though it may also create
new user-centered problems related to initiative and
transparency. This research is on-going and is necessary to
both experts, and non-experts. In fact, being unable to rely on
expertise may require even more clever displays of information
and streamlined controls.

5.2.2 Simplifying With Modal Interfaces
We note some successes with modal inputs - the system’s state
changes how an input results in an action. For example, a joystick
may normally move the robot forward and back, but the operator
could enter a “manipulation mode” where the joystick instead
moves a robot arm forward and back. Traditionally in human-
computer interaction, modes are considered less usable for
general software due to mistaking which mode the system is
(Sarter and Woods, 1995) (mode error).

The common alternative for complex systems like telerobotics
which often have many degrees of freedom inherently, however,
is to just have a complex interface with many widgets, buttons,
and controls (Yanco et al., 2015; Norton et al., 2017). The example
modal control above is one method of enabling a smaller set of
inputs to cover a broader range of robot actions. While this
increases the possibility of mode error, well designed modal
controls could simplify the controls space enough to make a
net usability gain. Thus, more user centered work is required to
gracefully enable high degree of freedom control to simple
interfaces with potentially limited inputs.

As an example, we note that mode switching is commonly
used in video games as a way to circumvent controllers with
limited degrees of freedom to control a complex avatar. While
video games are not necessarily simple to control, they are
evidence that good user (or player)-centered designs can
mitigate the drawbacks of modal designs and limit mode
errors. We encourage this approach teleoperation designs, as
teleoperation and video games have been shown to share many
design similarities (Richer and Drury, 2006; Rea, 2020). Looking
at the academic research of games usability, it further suggests
that teleoperation may have its own set of usability guidelines that
may differ from general software, encouraging further
exploration of fundamental user-centered teleoperation research.
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6 RESEARCH DIRECTIONS FOR
USER-CENTERED TELEOPERATION

We are calling for a renewed user-centered focus to teleoperation
interfaces, especially for everyday applications for non-expert
users. We acknowledge that there has always been user-centered
research in teleoperation, however our survey found limited
engagement with this approach, focusing more often on
technical solutions to user-based problems in expert
applications. We view additional user-centered research as
complimentary to existing systems-focused research in
teleoperation and it will help operators take full advantage of
the hardware and algorithms being developed today. In fact,
many of these recommendations still require significant technical
contributions to enable these user-centered approaches. We have
highlighted state of the art successful techniques that are already
demonstrating the power of this approach and point the way for
future directions in a user-centered teleoperation.

We acknowledge the considerable overlap between the
following high-level research directions, but we recommend
future works focus on:

6.1 Help the User Do
Robot control is a large and general problem. However, there is
already evidence that consistent, reliable controls that are
intuitive and engaging to use while also accomplishing high-
level actions can improve teleoperation. Future interfaces for
robot control should aim for the following goals:

6.1.1 More Abstract Controls
A key trend we see in controls is abstraction–enabling operators
to think more at a conceptual level than a robot or hardware level.
Leveraging partial automation such as shared autonomy (Dragan
and Srinivasa, 2013; Mehr et al., 2016; Javdani et al., 2018; Reddy
et al., 2018; Brooks and Szafir, 2019) or other forms of automation
can enable operators to think at the task level, rather than at the
robot level. Manual modes should be placed behind menus or
modes for more rare, dexterous tasks.

6.1.2 Better Experiences—Consistent, Reliable, and
Transparent Controls
A user needs to be able to predict how a command will be
performed by the robot (consistency). When a command is
executing, succeeds, fails, or needs user input, the system
should communicate this to the user (transparency). These,
along with other guidelines, create good user experiences
(Forlizzi and Battarbee, 2004; Hassenzahl and Tractinsky,
2006), and enable an operator to act with confidence, be
engaged, satisfaction, and willingness to use again. We saw
very little recent user experience-focused teleoperation work,
but is known to be important to teleoperation (George et al.,
2015), and interactive applications in general (Benyon, 2019).

6.1.3 Model the User to Better Interpret Commands
To be user-centered, the system should first understand the user.
We suggest teleoperation systems further explore user
monitoring (with sensors) and user modelling (predict how

they are feeling and thinking) and adjust the interface and
interpretation of commands accordingly. For example, the
robot could detect a non-expert user is nervous, and ignore
sudden erratic commands that are caused by nerves, or detect
a tired operator and slow them down while reducing information
displays (cognitive load) to help them think clearer.

6.2 Help the User Understand
Situation awareness is not simply about providing more
information, it is about combining that information and
visualizing it in a way that helps the user think and act
effectively which is not straightforward in remote
teleoperation. While this has been noted in other works (Seo
et al., 2017a; Rea et al., 2017b; Seo et al., 2017b; Rea and Young,
2018; Rea and Young, 2019b; Szafir and Szafir, 2021), our own
literature search corroborates this goal, and should be
emphasized and be applied broadly to teleoperation. Mental
workload is a fundamental metric for evaluating interface
designs as workload has been strongly linked to teleoperation
performance, and so research continues to target interfaces that
reduce it, as well as improve other performance metrics (e.g.,
awareness) while adding minimal additional workload.

6.2.1 Leverage Human Psychology to Help People
Process Information Naturally
People naturally process information in certain ways, for
example, movement on screen can automatically draw a user’s
attention (Teng et al., 2013) and people automatically process
information encoded in social interfaces (Feldmaier et al., 2017;
Rea et al., 2020). This incurs a lower cognitive load than a multi-
step rational analysis, for example, a multi-dimensional graph,
which can be slow or need training non-expert operators may not
have. Thus, we recommend visualizations that replicate how
operators naturally process information (Rea et al., 2017b; Rea
and Young, 2019a; Rea et al., 2020) (familiar representations such
as faces, maps, etc.), which can be used to sidestep difficult
engineering problems like computer vision, making the
operator and robot as a sort of team (Mingyue Ma et al., 2018).

6.2.2 Create Understanding for Users and Avoid
Displaying Raw Data
Modern teleoperation systems are often designed as expert-user
interfaces, and so commonly display large amounts of
information. However, for better teleoperation for all users, we
recommend interfaces should add knowledge instead of
information, by processing raw data and presenting it in a
form, that, is more relevant and useful to users (Szafir and
Szafir, 2021). Alternatively, the system should predict and only
display relevant information to an operator, perhaps by
leveraging known properties of the task, environments, or
users. This could limit workload and increase non-expert
operator ability, while still allowing deeper and expert
interfaces to be present in menus, hidden for when needed.

6.2.3 Encourage Active Perception
People can build a better understanding by actively asking
questions and exploring a space through action—active
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perception, or thinking through embodiment (Klemmer et al.,
2006; Wainer et al., 2006; Bajcsy et al., 2018). An interface could
encourage a user to move to a space, use a robot sensor or
manipulator in a new way to understand the environment, and
generally explore through interaction instead of simply thinking
about the robot and sensor outputs. This method can be tailored
to guide non-expert users especially, whomay feel more confident
moving and interacting in a space like they naturally do.

6.3 Help the User Learn
Even with user-centered interfaces, some training is inevitable
Software learning has suggested general approaches to reduce the
need and cost of this training, and turn using the robot into a
learning experience for less experienced users:

6.3.1 Require Minimal Upfront Knowledge and
Training
New designs should require minimal upfront specialized knowledge,
and instead teach on-the-fly or leverage common designs that users
can leverage from their everyday experiences (e.g., video games). If
specialized interfaces are used, consider explaining them as they
become relevant. For example, a telepresence system could detect the
robot is looking at someone who is talking towards the robot, but
that person’s face is not visible. This could activate a tutorial to move
the robot’s camera to better see them and engage in conversation,
teaching a new skill in an applied environment.

6.3.2 Enable Review of Interfaces and Mistakes
Another goal to improve non-expert teleoperation is to provide
avenues for building skill, maintaining skill, reviewing the interface,
and preventing future mistakes, as mistakes will happen and can be
more excusable in everyday situations. Thus, we recommend
researching interfaces that help users understand when an error
occurred, how it occurred, and even how to prevent it in the future.
For example, if a user does make an error (a collision, or has to stop
and reposition the robot, etc.), the system could explain parts of the
interface that were meant to inform the user of the nearby object, or
even show a replay of recent operation, pointing out where the
mistake could have been prevented.

We note our research directions are themselves user-centered.
When building a user interface, researchers should focus on what
they want to aid operators with, what the outcomes should be, and
include users in the design process (not just in the evaluation stage).
Teleoperation is not only about making improving robot capabilities, it
is also about improving people’s ability to complete tasks with robots.

Our goal in the medium-term is for comfortable single-robot
non-expert operation.While the current multi-expert team standard

in search and rescue teleoperation maymaximize a robot’s lifesaving
potential, everyday non-expert operators have relaxed performance
requirements and penalties for mistakes. This provides opportunity
to better explore how to reduce information intelligently, help semi-
automate common robot tasks, and improve interface learning and
training. Teams of expert operators may always be the most effective
in critical situations, but striving for comfortable single-operation by
non-experts can make robots more appealing and applicable to a
variety of applications.

7 CONCLUSION: WHY IS TELEOPERATION
STILL SO HARD?

Teleoperation research has made great progress over the
decades, improving robots, reducing latency, improving
basic interfaces, and more. However, despite cheaper, more
capable robots and many applications that could benefit from
teleoperation, teleoperation remains at the edges of expert and
extreme use cases. We argue that this is in part because
teleoperation is a fundamentally difficult task for operators,
and more user-centered methods should be applied to research
in all areas of teleoperation design, especially in the interface.
We surveyed teleoperation papers and found progress on the
core teleoperation problems of control and situation awareness,
and recent surveys and techniques that demonstrate the
benefits of user-centered design for teleoperation. We called
for a renewed focus in broad, user-centered research goals to
improve teleoperation interfaces in everyday applications for
non-experts, and to develop better interfaces that leverage how
operators understand, think about, and use teleoperated robots.
This leads us to recommend that end-users should be included
throughout the teleoperation research process, not just as a user
study at the end of a project, and that experiments should take
advantage of such end-users’ approachable everyday
environments as experiment settings to test teleoperation
technologies in the real world. The results of this research
should complement the existing research approaches and
benefit teleoperation as a whole.
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In this paper, we survey the emerging design space of expandable structures in robotics,
with a focus on how such structures may improve human-robot interactions. We detail
various implementation considerations for researchers seeking to integrate such
structures in their own work and describe how expandable structures may lead to
novel forms of interaction for a variety of different robots and applications, including
structures that enable robots to alter their form to augment or gain entirely new capabilities,
such as enhancing manipulation or navigation, structures that improve robot safety,
structures that enable new forms of communication, and structures for robot swarms
that enable the swarm to change shape both individually and collectively. To illustrate how
these considerations may be operationalized, we also present three case studies from our
own research in expandable structure robots, sharing our design process and our findings
regarding how such structures enable robots to produce novel behaviors that may capture
human attention, convey information, mimic emotion, and provide new types of dynamic
affordances.

Keywords: deployable robot, human-robot interaction, modular robot, origami robotics, deployable structures,
shape-changing robots

1 INTRODUCTION

The ability to dynamically change shape and size is a key evolutionary advantage for many biological
organisms. For example, pufferfish (Tetraodontidae) and the frilled lizard (Chlamydosaurus kingii)
can change size as a self-defense mechanism, with the pufferfish able to expand up to three times their
original size to warn predators and the frilled lizard able to expand a large frill around its neck, which
is folded most of time, when threatened. Other organisms use size and/or shape changes for different
purposes. For instance, male magnificent frigatebirds (Fregata magnificens) inflate their red throats
to attract females, while octopuses change their structures to adapt to dynamic changes in their
environment or interact with particular objects. Several fields have adapted this idea and developed
shape-changing structures as solutions to various engineering challenges, leading to innovations in
the automobile industry (e.g., roof structures in convertible cars), architecture [e.g., temporary
exhibition rooms (Escrig and Valcarcel, 1993)], and design (e.g., self-inflating life vests). In addition,
human-computer interaction (HCI) researchers have investigated shape-changing properties for
developing new types of physical user interfaces (Rasmussen et al., 2012).
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Many of these systems can be described as expandable
structures: 1 constructions that can change shape, and size
using various linkages and joints (Pellegrino, 2002). Many
expandable structures can be found in nature, such as in the
leaves of hornbeams, flower petals, and the hind wings of beetles
(Vincent, 2000; Wang et al., 2017). Engineered expandable
structures, a subclass of more general shape-changing
technologies, are present in a variety of common consumer
products, such as umbrellas, Hoberman spheres, and Origami.
Such structures are also used in a diverse set of industrial and
scientific equipment, including various forms of construction
cranes, stents and other medical devices, foldable satellites,
and certain architectural designs, as in adaptive and morphing
building structures (Del Grosso and Basso, 2010). Figure 1
illustrates the diversity of expandable structure, showcasing
their applications across everyday and specialized items. There
are several methods for changing the size and shape of
expandable structures, including mechanical mechanisms (e.g.,
scissor assemblies, bistable structures, isokinetic/Hoberman
mechanisms, etc.), pneumatic or hydraulic mechanisms (e.g.,
inflatable structures), or through thermal or electrical
stimulation of certain materials [e.g., shape memory polymers
(Liu et al., 2014)].

In this work, we are primarily interested in expandable
structures and related shape-changing technologies in the
context of human-robot interaction (HRI) research and
applications, including interface technologies, haptics,

visualization, and robotics. For instance, one of the primary
uses of expandable and shape-changing structures from user
interface research has been the development of novel
technologies that provide users with physically dynamic
interfaces [Figure 2, see (Alexander et al., 2018) and
(Rasmussen et al., 2012) for full survey of this space]. The
goals of such research have strong alignment with many
traditional goals of HRI, where shape-changing technologies
have been applied to develop devices that can adapt to users
and the environment in new ways, communicate information to
users, and/or provide novel, adaptive affordances. As an example,
researchers have designed multi-touch display surfaces, where
each touch point can be deformed to be convex, flat, or concave
(Stevenson et al., 2010). This expandable surface matches the
physical shape of the display to its visual counterpart, enabling
more intuitive interactions, and we can envision HRI researchers
applying similar methods to developing novel robot interfaces for
teleoperation or supervision. Beyond such physical interfaces,
expandable structures have also been used to create brain-
computer interfaces (BCIs), which are also being explored for
robotics. In (Jiang et al., 2020), expandable fiber probes adapt to
contact various parts of nearby brain tissue, enabling scanning of
a greater area of brain tissue with fewer surgical insertions and
reducing patient risks in such procedures.

Another major focus of shape-changing structure research
relevant to human interaction has been developing new forms of
haptic feedback interfaces, particularly for use with Virtual
Reality (VR). This research generally leverages expandable
structures to provide encountered-type haptics, in which
certain aspects of the surrounding real-world environment
shift dynamically to provide physically resistive forces when
users make contact with virtual objects. For example, FEELEX
(Iwata et al., 2001) and shapeShift (Abtahi and Follmer, 2018; Siu

FIGURE 1 | Expandable structures are found in a variety of everyday items, such as window shades, canopies, construction equipment, tripods and stands, toys,
and umbrellas (A). Expandable structures are also used in a variety of industrial and scientific purposes, including foldable aircraft, satellite design, medical devices, and
architecture (B).

1Such structures are also commonly described as “deployable.” As we are primarily
focused on the use of such structures with robotics to improve HRI, in this paper we
use the terminology of “expandable” to avoid potential confusion with the notion
of “deploying” robots for particular applications.
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et al., 2018) implemented dynamically actuated shape displays
using an array of actuators in combination with a flexible screen
and electro-active polymers, respectively. These devices provide
the capability to simulate varying surfaces and shapes in VR. At a
larger scale, TilePoP (Teng et al., 2019) and LiftTiles (Suzuki et al.,
2020b) investigated the use of inflatable actuators to dynamically
change the user’s surrounding physical environment to provide
haptic proxies. Each of these haptic displays utilize expandable
structures to create a VR experience that users perceive as more
realistic, as the visual cues associated with virtual object
interaction can be accompanied by real forces.

Recent work has also shown the potential of expandable
structures for several other interaction-focused applications,
such as visualization, design, and education. For example, the
HATs (Mi and Sugimoto, 2011) and G-Raff (Kim and Nam,
2015) systems used height-changing structures to synchronize the
height of objects with digital content on a tabletop surface,
enabling intuitive interaction with 3D spacial data. LineFORM
(Nakagaki et al., 2015) demonstrated how a physical line made
from actuated linkages can transform into a wristwatch, a phone,
and several other objects. This type of dynamic physical display
allows for richer interactions with a wide array of objects and
data. Additionally, it can provide new constraints on user
interactions in order to provide guidance, presenting
opportunities for the device to scaffold learning. Moreover,
highly extendable linear actuators can achieve both shape- and
size-changing transformations (Takei et al., 2012; Hammond
et al., 2017; Hawkes et al., 2017). These devices present
opportunities in several domains, ranging from enabling
dynamic and self-erecting architecture to providing increased
mobility in search and rescue operations by supporting
adaptation to irregular terrain. The Topobo (Raffle et al.,
2004) and ShapeClip (Hardy et al., 2015) structures allow a
designer to construct different geometries of shape-changing
interfaces and have shown potential for enhancing early
education by helping children learn about relationships
between physical formations and physical properties, such as
balance and leverage.

In this paper, we focus on the integration of expandable
structures and robotics as a promising avenue for improving
human-robot interaction (HRI). In recent years, researchers and
engineers have leveraged expandable structures for several
robotic applications (Felton et al., 2014; Kornatowski et al.,
2017; Perez-Guagnelli et al., 2018). For example, expandable

structures have helped aerial robots navigate through narrow
spaces (Falanga et al., 2018) and robot arms reach confined areas
(Shikari and Asada, 2018). However, such prior deployments of
expandable structures for robotics have primarily focused on
specific aspects of robot task and/or control (e.g., manipulation,
locomotion, etc.). In this paper, we instead categorize a broad
range of HRI-relevant factors and implementation considerations
while synthesizing several interaction-based use-cases for
expandable structures and shape-changing robots. We use
these categorizations as part of detailing an incipient design
space in how such technologies may improve robot
interactions with collocated humans.

As examples of this design space, we also highlight three
specific implementations of expandable structures for HRI
from our own research, including RoomShift, a ground robot
that uses expandable structures to move furniture in a room in
order to provide haptics for a human working in virtual reality
(Suzuki et al., 2020a), PufferBot, an expandable structure for aerial
robots that can improve safety while also introducing a new
signaling mechanism to communicate with nearby humans
(Hedayati et al., 2020), and ShapeBot, a miniature tabletop
robot that can change shape individually and also as part of a
larger ShapeBot swarm to convey various information to users
(Suzuki et al., 2019b).

2 EXPANDABLE STRUCTURES FOR
ROBOTICS

To date, there has been very little work exploring robots with
expandable structures from a human-robot interaction
perspective. Instead, most prior work has focused on the
mechanical aspects of building expandable structure robots,
which fall within a broader category of shape-changing robots.
While precisely classifying the full space of shape-changing
robots is challenging, as some robots might cross categorical
boundaries, systems developed in prior research generally fall into
one of the following major groups: modular self-reconfigurable
robots, origami-like robots, tensegrity robots, soft robots, or
deployable/expandable robots.

Modular robots are robots made of identical or similar
elements that can be attached in different ways to form
different group structures (Støy, 2015; Shang et al., 2018). The
Reconfigurable Modular Manipulator System (RMMS) (Kelmar

FIGURE 2 | Examples of various ways shape-changing interfaces researchers and designers have proposed to augment human-computer interaction: (A)
dynamically actuated shape displays such as Materiable (Nakagaki et al., 2016b), (B) deformable, actuated linkages such as LineFORM (Nakagaki et al., 2015), (C)
inflatable structures such as TilePoP (Teng et al., 2019), and (D) Inflatable Mouse: a volume-adjustable mouse with air-pressure-sensitive input (Kim et al., 2008).
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and Khosla, 1990) was one of the earliest modular robots and
consisted of a set of modular links and joints of various sizes that
could be reconfigured according to specific tasks. This system
introduced dynamism to industrial robotics, enabling faster
productivity and reduced costs. In a similar vein, a modular
isomorphic master-slave robotic system was developed (Zheng
et al., 2013) to enable master robots to be highly adaptable to
varying structures and degrees of freedom in slave robots, further
increasing productivity and reducing costs in a wider range of
domains. Chain-type robots, such as PolyPod (Yim, 1994),
CONRO (Castano et al., 2000), and PolyBot (Duff et al.,
2001), are robots constructed as a connected series of modular
parts, simplifying and expanding the level of dynamic abilities
that robots can achieve. Lattice-type robots, such as Molecule
(Kotay et al., 1998) and 3-D-Unit (Murata et al., 1998), are
constructed as a grid-like network structure of modular pieces.
These robots provide similar benefits as chain-type robots, while
also expanding their reconfigurability into another dimension in
space. Hybrid modular robots, such as M-TRAN III (Kurokawa
et al., 2008) and SuperBot (Salemi et al., 2006), use a combination
of chain- and lattice-type structures. Changibles (Roudaut et al.,
2014) and Cubimorph (Roudaut et al., 2016) are shape-changing
robots that leverage a modular and reconfigurable design to
achieve different geometries, allowing for richer and more
intuitive interactions with dynamic shape displays.
ChainFORM (Nakagaki et al., 2016a) integrates modular
sensing, display, and actuation to further enhance interactions.

Another category of robots that exhibit shape- and/or size-
changing properties are Origami-like robots. Origami has been
used in many engineering areas (Okuzaki et al., 2008; Ma and
You, 2013) and is increasingly feasible for robotics due to
improvements in fabrication and actuator technologies.
Examples of origami-like robots include robotic sheets that
can be folded into different morphologies (Hawkes et al.,
2010) and a set of programmable triangles which can create
different patterns (Belke and Paik, 2017). Origami robots offer
several advantages, including the elimination of redundant
materials used in separate tasks, reducing the amount of
materials needed overall, and their foldable designs may often
serve dual purposes, such as providing a robot chassis with built-
in protection [e.g., as in origami-inspired mechanisms for aerial
robots (Kornatowski et al., 2017; Sareh et al., 2018; Shu and
Chirarattananon, 2019)]. To date, most research on Origami
robots has focused on physical design and actuation (Lee
et al., 2013; Onal et al., 2014; Vander Hoff et al., 2014;
Miyashita et al., 2015) or on using smart materials to create
self-folding robots (Paik et al., 2010; Paik andWood, 2012; Tolley
et al., 2014; Firouzeh and Paik, 2015). Recently, researchers have
also explored Kirigami structures, an extension of Orgami that
supports cutting in addition to folding, for deployable robot
design (Sedal et al., 2020).

Tensegrity robots and soft robotics take a different approach
towards developing actuated systems. Tensegrity robots focus on
designing systems made of tensegrity structures (Snelson, 1965),
which is an abbreviation of tensile integrity. Tensegrity robots are
typically formed from constructions of ropes, tube, springs, and
joints that provide strength and compliance while being

lightweight. As a result, tensegrity robots have particular
relevance to space robotics (SunSpiral et al., 2013; Sabelhaus
et al., 2015). Currently, most research in tensegrity robotics is
focused on design, locomotion, and control (Caluwaerts et al.,
2014; Sabelhaus et al., 2015; Zhang et al., 2017; Vespignani et al.,
2018; Wang et al., 2019). To the best of our knowledge, such
structures have yet to be explored from a human-robot
interaction perspective.

In contrast to rigid systems, soft robots actuate elastic and
compliant materials, such as rubbers, hydrogels, and silicone
elastomers (Coyle et al., 2018). There are a variety of actuation
methods for soft robots, including pneumatic, electroactive
polymer, tendon driven, shape memory alloy, and electro- and
magneto-rheological materials (Das and Nabi, 2019). From a HRI
perspective, soft robots may improve safety in collocated use cases
due to their complaint nature and have been explored for several
applications, including wearable robots that provide human
movement assistance (Maeder-York et al., 2014; Park et al.,
2014) or convey emotions (Hu and Hoffman, 2019).

In this paper, we are particularly focused on a subclass of
shape-changing robots: expandable (i.e., deployable) structure
robots that use rigidmechanisms to change their size and shape to
improve mobility or gain new interactive capabilities. In terms of
mobility, various “reconfigurable” or “hybrid” ground-mobile
robots have been developed that may change form to use
either wheel or leg locomotion to adjust to changes in terrain
[e.g., (Ding and Xu, 2009; Chen et al., 2013; Reid et al., 2020); for a
survey, see (Russo and Ceccarelli, 2020)]. Alternatively, the
AmphiHex-I presents a design for an amphibious robot with
leg-flipper composite propulsion, enabling the robot to walk and
move under water (Liang et al., 2012). Such concepts have also
been explored in aerial systems, where researchers have created
foldable drone frames to enable navigation through confined
spaces (Falanga et al., 2018) and hybrid systems, such as
HeritageBot, capable of walking and flying (Ceccarelli et al.,
2018). Beyond mobility, researchers have used expandable
structures for robots in various ways to enable dynamic robot
re-sizing. For example, expandable structures have led to
deformable wheels for robots (Lee et al., 2013), robots capable
of self-folding from a sheet to a 3D structure (Miyashita et al.,
2015), and robots arms able to extend to gain additional
manipulation reach (Shikari and Asada, 2018). While
promising, such research typically details the design of one
particular expandable structure robot or application. To help
researchers seeking to explore expandable structures for HRI,
below we synthesize several implementation considerations for
developing expandable structures specifically within the context
of robotics and describe a broader design space regarding how
expandable structures may afford new methods of interaction
between humans and robots.

3 IMPLEMENTATION CONSIDERATIONS

In this section, we present an overview of various implementation
details necessary for developing expandable structures for HRI
research. To help future researchers and designers better reason
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through the various alternatives and opportunities available for
developing expandable structure robotics, we describe
considerations involving expandable structure type, actuation
method, and integration with robot platforms. Figure 16
provides a visual reference for these implementation
considerations and potential interaction goals, which are
detailed in Section 4, and shows the decisions we made in
each of our case studies described in Section 5.

3.1 Expandable Structure Types
Depending on the purpose of the device, expandable structures
may use various methods to change their shape and size. While
several methods for classifying expandable structures have been
proposed [see (Fenci and Currie, 2017) for a survey], we are
primarily interested in two main categories: those that utilize
mechanical joints and those that utilize the physical properties of
continuous materials. One of the most widely-used mechanical
methods of expansion is a scissor-like structure [Figure 4A, see
(Zhao et al., 2009) for a review of the mechanics underlying
scissor structures]. Most commonly, these structures allow for
linear expansion and retraction, an example of which is the
electric scissor lift. However, scissor-like structures may also
be used to expand in a radial fashion. Another common
structure used for expansion is the Hoberman linkage
(Figure 4B). This structure is comprised of a similar series of
parts as the scissor-like structure, but instead allows for radial
expansion. Six Hoberman linkages may be aligned according to
the edges of an icosidodecahedron and actuated simultaneously
in order to create a Hoberman sphere. Another type of
expandable structure that is common among consumer
products are those that use retractable plates, such as a camera
shutter or movable form of wheelchair ramp used on buses to
provide for wheelchair access. A similar concept is found in
telescopic structures, which use concentric tubular sections that

slide into one another (See Figure 4D). Another class of
mechanical expandable structures are reel-based structures
(Hammond et al., 2017; Suzuki et al., 2019a; Suzuki et al.,
2021) or those that use revolute joints to unravel chain- or
lattice-type structures (Figure 4C). These structures are unique
in that they can allow for expansion in all three dimensions
of space.

Expandable structures that utilize the physical properties of
continuous materials do so with soft, flexible materials, such as
silicone (Figure 4D). The benefit of these structures typically resides
in their ability to take on many different types of shapes and
curvatures. Typically, these structures form a 3D surface, which
may be expanded and/or morphed into different shapes. For
example, one study used a self-expanding silicone stent to help
patients with esophageal cancer swallow food (Siddiqui et al., 2007).
An example of shape-changing soft expandable structures from user
interaction research is PneUI (Yao et al., 2013), which uses soft
composite materials to create a shape-changing interface.

When designing an expandable structure, one must carefully
analyze the physical domain in which the structure serves a purpose:
Howmany dimensions does the structure need to expand into? How
large must the structure be? How strong or rigid does the structure
need to be? The answer to these questions will be a primary
determining factor in deciding the type of structure that is best
suited for the problem. For example, if a structure only needs to
expand in one direction andmust interact with heavy objects, a rigid,
scissor-like structure is a natural choice. On the other hand, if the
structure is intended to represent data in various forms or is intended
to be touched and deformed by a human, a soft, shape-changing
structure may be better suited.

3.2 Actuation Methods
There are several methods researchers may choose to actuate
expandable structures, including hydraulic, pneumatic, electric,

FIGURE 3 | Examples of robots with shape-changing technologies, including (A)modular robots in ChainFORM (Nakagaki et al., 2016a), (B) origami structures in
Rotorigami (Sareh et al., 2018), (C) soft materials (Truby et al., 2018), (D) deployable structures that enable folding, expansion, and contraction (Falanga et al., 2018), and
(E) tensegrity systems (Wang et al., 2019).
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and mechanical. Hydraulic actuators consist of a hollow
cylindrical tube along which a piston can slide. A hydraulic
pump delivers a regulated flow of compressed liquid to move
the piston. These actuators are capable of exerting forces of
relatively high magnitude, but cannot achieve high acceleration
compared to other actuators. Pneumatic actuators work in a
similar fashion as hydraulic actuators, but instead use air pressure
to move the piston. They can also provide forces of high
magnitude with relatively small volumes of air, but require
complex systems of components (compressors, reservoirs,
filters, etc.) that may result in inefficient energy loss. Electric
actuators typically convert the rotational force of an electric
rotary motor into a linear movement, which can be done with
hydraulic or mechanical mechanisms. Another form of electric
actuators use a series of oppositely aligned magnets and electric
coils driven in opposing phases to generate a linear force without
extraneous mechanical or hydraulic components. Another type of
electric actuation uses electro-active polymers, which act like
artificial muscles. When an electric current is supplied through
the polymer, it contracts (Novack et al., 2021). Releasing the
current allows for the polymer to expand again. In this case, the
actuation method may act as the expandable structure itself.
Mechanical actuators convert rotational force into linear force
through the use of components such as belts, screws, or gears.
What makes the mechanical actuators different from electrical
actuators is that, in mechanical actuators, the energy needed for
actuation is stored in a non-electric way, such as in springs.

Different actuation methods provide trade-offs for researchers and
designers seeking to create expandable structures for human
interaction. For example, if the intended interaction may involve
direct physical contact with humans, an actuation method that
exerts relatively lower magnitudes of force may enhance user
safety—in the case of a system malfunction, there is less potential

for harm to the user. Conversely, if an expandable structure is used to
alter or manipulate objects and/or the environment, as is the case with
structures that enable encountered-type haptics, an actuation method
capable of exerting highermagnitudes of forcemay be necessary. If the
expandable structure is intended for visualization of various data,
actuation precision or speed may be primary considerations.

3.3 Robot Integration
Integrating expandable structures with robots may require specific
considerations of robot type, size, and capabilities. There are several
different ways of classifying robots, such as considering morphology
(e.g., anthropomorphic/human-like, biological/zoomorphic, or
functional) (Fong et al., 2003; Li et al., 2010), capability (e.g.,
fixed-based manipulation, ground-mobile, ground-mobile
manipulators, aerial), or degree of autonomy (Szafir et al., 2017).
For traditional and pre-existing robot platforms, expandable
structures may be added as sub-components [e.g., an expandable
structure for compliant robot grippers as in (Kaur andKim, 2019)] or
as entire frames [e.g., a protective frame around a drone (Hedayati
et al., 2020)]. Alternatively, new robots may be designed to leverage
expandable structures as central components of the robot itself, as in
the Triple Scissor Extender Robot Arm (Shikari and Asada, 2018), a
new design for an expandable structure robot arm that supports
manipulation in cluttered and confined areas. In both contexts,
relevant considerations for roboticisits include power, weight, and
structure materials. Power for expandable structures may be self-
contained or draw on a central robot power supply, while weight and
materials may be selected based on platform needs and application
goals. For example, a structure made for manipulation or lifting of
heavy objects would require a strong, rigid structure, while a structure
made to reduce the impact of collisions would require a more
compliant material to reduce the impact force. Prior work has
explored expandable structures constructed with various materials,

FIGURE 4 | (A) A scissor-like expandable structure, capable of expanding linearly. (B) A Hoberman linkage, capable of expanding radially. (C) A chain-type
expandable structure, capable of expanding various components in all directions in space (Kurokawa et al., 2008). (D) An electro-active polymer, which may be capable
of forming different shapes. (E) A telescopic structure.
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including metal (Shikari and Asada, 2018), ionic polymer-metal
composite (Niu et al., 2015), soft silicon (Takei et al., 2011a), latex
(Stevenson et al., 2010), plastics (Sedal et al., 2020), and other soft
materials. Other promising materials that have yet to be extensively
explored for expandable structures integrated with robots include
wire structures, wood, and linen. Roboticists seeking to integrate
expandable structures with existing platforms must additionally
consider how to mount expandable structures in a manner that
does not impede robotmobility or existing capabilities while ensuring
visibility, potentially by leveraging universal mounting systems or
developing custom mounting plates, as in (Suzuki et al., 2020a;
Hedayati et al., 2020).

Across all types of robots with expandable structures, researchers
must also consider size and expandable structure capabilities. The
size of the expandable structure will likely increase with the size of
the robot. As the size of the structure increases, so will its weight.
With these correlations, structure material may be the primary
consideration (i.e., robots with limited payload capacity must
make use of lightweight materials for their expandable
structures). A similar comparison can be made with smaller
robots, which may only be able to support smaller payloads due
to mounting challenges. Overall, researchers and developers will
need to consider the trade-off space between weight and strength
(resulting from material choice and structure design) and payload
capacity. Additionally, larger robots that utilize expandable
structures as a frame may need additional support mechanisms
for the structure to prevent it from collapsing.

In addition to material choice, the expandable structure’s
intended capabilities will have a large influence on the proper
actuation choice for the structure. For example, if the purpose of
the expandable structure is to enable better manipulation of
potentially heavy objects, the actuation will need to be able to
output a large force. In this case, a hydraulic or pneumatic
actuator will likely be a good choice. In some special cases, an
expandable structure that is expected to endure high forces may
be able to use less powerful actuators. For example, if the structure
is intended to protect the robot from collisions, one could rely on
other mechanisms besides the actuators to prevent the structure
from collapsing upon collision. One such mechanism could be
pieces of the structure that lock in to place upon expansion of the
structure, much like locking one’s knees when fully straightening
one’s legs. On the other hand, if the purpose of the structure is to
enhance fine manipulation or to visualize data, a more precise
actuation method (e.g. electromechanical) may be required.

4 INTERACTION DESIGN SPACE

In this section, we describe the design space regarding how
expandable structures may be integrated with robotic systems
to improve human-robot interaction (Figure 5). We highlight
how expandable structures may provide robots with new ways to
interact with both their surrounding environment and collocated
humans, expand robots abilities to signal and convey information
to humans, improve human-robot safety, and affect experiential
aspects of interactions, such as altering aesthetics or enhancing
enjoyment, curiosity, or playfulness.

4.1 Adaptive Affordances
Providing robots with the ability to adapt their shape and size
based on interaction context opens up many new possibilities in
how robots may interact with humans, objects, and their
environment. Such adaptation may be related to a specific
HRI task, where, for example, expandable structures may
afford a collaborative or teleoperated robot with new
capabilities for manipulating or assembling objects (e.g.,
altering leverage to adjust objects that would otherwise be too
unwieldy or expanding to grasp otherwise out-of-reach objects),
new ways to navigate through confined environments that would
otherwise be infeasible to operate within, or new ways for
multiple robots to work together by combining expandable
structures in a team fashion, making use of the fact that many
types of expandable structures are modular in design.
Alternatively, adaptation may be related to the user, where,
from a human’s point of view, expandable structures might
change shape and/or size to indicate different possibilities for
user interaction (e.g., a robot that detects an internal fault might
change shape to enable a technician easier access to internal
components that an expandable structure would guard in normal
circumstances). Certain applications may involve adaptation to
both task and user, as in the design of expandable structure
robotic exoskeletons [e.g., (Li et al., 2019)], where expandable
structures may provide singularity-free joints for wearable robots
that do not compromise human limb function (Castro et al.,
2019). Expandable structures also offer new capabilities for user
control of robots, particularly for novices, who may lack the
situational awareness or experience necessary to accurately
control complex systems such as redundant manipulators or
aerial robots leading to self-collisions, crashes, and/or damage
to surrounding objects or the environment. Expandable
structures may offer a new way in which robot operators may
physically “probe” the surrounding robot environment in a safe
manner by bumping into other objects, walls, ceilings, etc.
without damage. Such an interaction may be used in
educational or training scenarios, where users gain confidence
and abilities controlling new robotic systems or in real systems,
potentially combined with haptic feedback controls, to enhance
user awareness of the robot environment. In a similar fashion,
expandable structures can enable robots to work with users in
new environments that were previously too cluttered or confined
(Shikari and Asada, 2018; Hedayati et al., 2020).

One particularly promising application of how expandable
structures may provide robots with adaptive, task-based
capabilities to support human interaction is through using
robots as novel haptic interfaces, especially in conjunction
with virtual reality. As described in Section 2, encountered-
type haptics focuses on providing users with physically
resistive forces that simulate virtual objects to enhance user
presence in VR. With the ability to change size and shape, a
single robot might be able to represent several different sizes or
types of objects in a virtual environment. For example, a VR user
could interact with several virtual balls of different sizes that are
all physically represented by a single robot with a Hoberman
sphere structure that expands or contracts to match the size of the
ball used at any given time. We detail our own work at the
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intersection of expandable structure robots and encountered-type
haptics for VR in Section 5.1.

4.2 Non-Verbal Communication
One of the ways that we can improve human-robot interaction is
by expanding the communication mechanisms available for
exchanging information between humans and robots. Prior
research has explored a variety of communicative channels,
including gaze (Mulu, 2006; Andrist et al., 2012; Andrist et al.,
2014; Admoni, 2016; Oliveira et al., 2018), implicit motion
(Dragan et al., 2013; Szafir et al., 2014; Sadigh et al., 2016;
Zhou et al., 2017; Kwon et al., 2018), gesture (Waldherr et al.,
2000), sound (Cha and Matarić, 2016; Cha et al., 2018a), visual
displays, lights (Szafir et al., 2015; Baraka et al., 2016; Song and
Yamada, 2018), haptics (Guerreiro et al., 2019; Guinness et al.,

2019), projection (Pierce et al., 2012; Cauchard et al., 2019), and
augmented reality (Hedayati et al., 2018; Walker et al., 2018; Cao
et al., 2019; Szafir, 2019; Walker et al., 2019). Expandable
structures represent a promising new signalling medium to
add to this collection of methods for supporting human-robot
information exchange, which may take the form of functional
cues regarding the robot and task or affective signals that
communicate emotional information.

4.2.1 Functional Communication
We envision that expandable structures may be used to convey a
variety of common functional signals to collocated users,
including information about internal states (e.g., expansion of
the structure might correlate with battery level), higher-level
information about processes or tasks (e.g., the percentage of

FIGURE 5 | Expandable structures open up new design spaces for human-robot interactions by promoting physical safety, providing novel communicative
channels, supporting adaptive affordances, and altering experiential aspects such as aesthetics or enjoyment.

FIGURE 6 | Robots with expandable structures can improve the safety of collocated humans, the robot itself, and the environment.

FIGURE 7 | RoomShift is comprised of a swarm of shape-changing robots that provide haptic feedback in VR by manipulating physical furniture and walls. Multiple
robots move environmental objects to collectively construct and adapt a physical haptic environment that matches virtual scenes. Above, we show the physical
environment with a corresponding virtual scene, with a human silhouette added for a reference.
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completion of a task), or goals and intent (e.g., expanding a
structure the direction the robot intends to move and contracting
a structure on the opposite side). Expandable structures might
also enhance other methods of signaling in HRI by increasing or
decreasing the size of other signaling devices. For example, LED
arrays or strips can be flashed in different patterns to signal
information to humans. However, the discrenability of such
visual signals depends on the distance between the robot and
the user and the distance between individual lights. By using an
expandable structure, the visual signalling mechanisms could
dynamically change their separation, for example contracting
to aggregate various disparate visual signals into a cohesive
display or separating to make it easier to distinguish
individual visual channels from greater distances. To date, we
have yet to see any work in HRI examining the use of expandable
structures for such functional signalling and we believe it to be a
rich, untapped area for future exploration.

4.2.2 Affective Communication
Expandable structure designs are often inspired by plants and
animals that increase or decrease their size as a way to escape or
frighten predators. Robots equipped with expandable structures
might use similar life-like patterns of expansion or contraction to
convey affective information. Research has found that affective
communication and giving a human-like character can improve
human-robot interaction as users perceive the robot to be more
intelligent (Admoni, 2016; Cha et al., 2018b). Affective
communication conveys the emotions of a social robot (Hu and
Hoffman, 2019) or makes information like the robot’s intent more
understandable to users by exaggerating animations (Szafir et al.,
2015). For example, a robot with an expandable structure that could
present a danger to collocated humans or is engaged in a critical/
uninterruptible task might mimic the example of the pufferfish,
which increases in size when feeling threatened, by expanding to
warn humans against approaching or coming near the robot.
Alternatively, there are some animals that contract as a defense
mechanism. For example, the leaves of the shameplant (Mimosa
Pudica) fold inward and droop when touched or shaken, defending
themselves from harm, and re-open a few minutes later. This
mechanism offers an alternative inspiration for expandable
structure behavior, where a similar contracting mechanism might
convey weakness and robot fragility, contrasting the dangerous and
intimidating nature of an expansion behavior.

Finally, expandable structure designs can also be inspired by
human nature. For example, when people become anxious or
afraid, their heart rate increases and they may start breathing
faster. These physiological responses are a sign of discomfort and
something humans may intuitively understand and feel empathy
for. Alternatively, other patterns of behavior (e.g., foot tapping,
skipping, etc.) are commonly associated with a variety of other
affective states (e.g., irritation, joy, etc.), providing a rich area of
inspiration from which HRI researchers may draw. While we
believe that expandable structures hold significant promise in
conveying affective information in HRI contexts, to date we have
yet to see research investigating this space. We discuss our own
preliminary investigations in this area in Section 5.2.

4.2.3 Data Visualization
Expandable structures may also enable robots to provide new ways
of visually communicating data to users. As an example, robots
might use linear or radial expansion to physicalize data (e.g., forming
physical bar graphs or scatterplots). One advantage that such robots
may offer over static data physicalization techniques is the ability to
dynamically represent data. In addition, expandable structure robots
may also act as a dynamic physical displays, supporting real-time
transformations of data into different representations such as bar
graphs, line charts, or star graphs. We explore these aspects in
Section 5.3.

4.3 Safety
Within the broader area of HRI, the sub-field of physical human-
robot interaction (pHRI) focuses on concerns related to human
safety. Several methods of ensuring physical safety have been
identified in the pHRI literature, including safety through control,
motion planning, prediction, and consideration of human
psychological factors [see (Lasota et al., 2017) for a survey].
Specifically, with regard to physical safety, research has
predominantly focused on different methods for managing
collisions. Currently, most large robots that are potentially
fatal to humans on collision operate only in safety cages.
Other, less powerful but still potentially hazardous robots may
leverage expandable structures as another form of a physical
barrier. Expandable structures provide a simple, yet effective
mechanism for creating dynamic boundaries around
dangerous and fragile components of a robot. These structures
have the potential to provide safety to three different components
of any human-robot interaction scenario: the human, the robot
itself, and the surrounding environment.

Many robots are comprised of various components that posses
large momenta, which can result in a large impact force or pressure
upon coming into contact with a human. Expandable structures
provide a unique mechanism for physically separating these specific
components without imposing large restrictions on robotmovement
or functionality. In addition to preventing collisions entirely,
expandable structures also have some degree of compliance,
enabling them to act as an airbag or bumper in order to reduce
the impact of any collisions with a human.

Robots may also be dangerous to themselves. Certain
components of robots may be fragile, such as drone propellers,
or require precise and time-consuming calibration, as is the case
in many industrial robots. In such cases, collisions may damage
parts or shift components, requiring component replacement or
recalibration. For example, the propellers of aerial robots are
often extremely fragile. If a propeller comes in to contact with a
surrounding object during flight, it is likely to break or deform,
resulting in unstable and unpredictable flight patterns. While a
static cage (i.e., propeller guard) can provide one way of
protecting propellers, it permanently increases the size and
shape of the robot, potentially reducing its mobility. In
contrast, an expandable structure may expand to protect the
propellers when the robot is more likely to collide with
surrounding objects (i.e., when flying in constrained areas),
and retract when not needed to give the robot more mobility.
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In a similar fashion, expandable structures may reduce
potential damage to any objects in the surrounding
environment. For example, the compliance of expandable
structures will mitigate and forces transferred from a robot to
any object it hits (walls, instruments, other robots, etc.) in the
event of a collision.

4.4 Aesthetic and Experiential Purposes
In addition to the interactive possibilities described above,
expandable structures may be integrated with robotics purely
for aesthetic purposes, for fun and entertainment, or to simulate
users and enhance user enjoyment during the experience of
working with robots. For such use, roboticists may take
inspiration from aesthetic use of expandable structures in
fashion (e.g., smart adaptive garments), art, or architecture. In
addition, such structures might be used to give robots additional
lifelike traits or quirks, such as enabling robots to mimic
expansion and contraction in biological breathing movements
in a manner similar to the generation of natural robot motions
(Koditschek, 1984) and gaze patterns (Yoshikawa et al., 2006).

5 CASE STUDIES

To advance our vision for how expandable structures may
enhance HRI, in this section we detail three of our own
research projects integrating expandable structures and
robotics within interactive scenarios. We focus on illustrating
a broad swath of the design space (e.g., different structures,
robots, applications, etc.), showcasing our design and
implementation process, and highlighting human responses to
such robots. First, we introduce RoomShift (Suzuki et al., 2020a),
a large ground robot that uses scissor-like expandable structures
to move furniture in a room to enable encountered-type haptics
for a human using a virtual reality headset. Next, we describe
PufferBot (Hedayati et al., 2020), a medium-size aerial robot with
an isokinetic expandable structure that can take several forms and
afford three types of expanding behaviors. Finally, we detail
ShapeBot (Suzuki et al., 2019b), a miniature tabletop robot
that can alter its shape individually and as part of a larger
ShapeBot swarm for a variety of purposes, including
information visualization and environment manipulation.

5.1 RoomShift
RoomShift (Suzuki et al., 2020a) is a room-scale swarm of off-the-
shelf ground robots to which we added large expandable
structures to provide the robots with new environment
manipulation capabilities. We then leveraged these robots to
generate a new haptic feedback mechanism for virtual reality,
whereby RoomShift robots reconfigure the physical environment
in real time to match various virtual scenes, inspired by shelf-
moving robots in robotic warehouses (Guizzo, 2008; Wurman
et al., 2008).

5.1.1 Design and Implementation
In their original form, each robot (a Roomba) lacks the capability
to manipulate large objects. We added a mechanical lift

expandable structure that can extend from 30 to 100 cm,
affording the robots the ability to pick up, carry, and place
objects such as chairs, tables, and movable walls. When
combined with a virtual environment, the RoomShift system
enables users to touch, sit, place, and lean against objects in the
virtual world. In our current deployment, we have synchronized
VR scenes with a 10 m × 10 m physical environment outfitted
with an optical motion tracking system to support software that
tracks and controls the robots. To do so, we implemented
customized software in Unity which gets the user and
furniture positions from the motion tracking cameras, creates
the VR scene, and compiles the user’s commands to control the
robots’ movement of the furniture. This system continuously
maps virtual touchable surfaces in the proximity of users and
coordinates the robot swarm to move physical objects to their
target locations without colliding with each other or the users.
The user and robots do not interact with each other directly. Since
the user is fully immersed in the virtual environment, they can
only see and interact with the items rendered in the VR scene
(e.g., chairs, desks, etc.), which does not include the robots.

In designing RoomShift, we considered and tested several
expandable structures and actuation mechanisms, including a
pneumatically-actuated inflatable structure (Hammond et al.,
2017; Teng et al., 2019; Suzuki et al., 2020b), a deployable
structure using coilable masts (Jensen and Pellegrino, 2001;
Joosten, 2007), and a mechanical structure with reel-based
actuation (Takei et al., 2011b). Pneumatic actuation was
problematic for our mobile setup as it requires a tube
connected to a pump or pressure tank to supply air. The
deployable structure and mechanical reel-based actuation
afforded much higher extension ratios, but were limited in
robustness and load-bearing capabilities. We finally settled on
amechanical scissor structure due to its low-cost (compact drying
rack: $15, linear actuators: $35 × 2) and lightweight (2 kg)
components while providing sufficient structural integrity to
hold the weight of a variety of common objects. In
comparison with existing warehouse robots such as Kiva
(Guizzo, 2008), which have a limited expandable capability as
they are designed for one specific shelf, our mechanical scissor lift
can move various objects by leveraging its highly expandable
structure (4× expansion ratio). The actuation height (30–100 cm)
was chosen to cover a wide range of standard chairs and tables,
which measure 30–76 cm and 48–96 cm, respectively
(Woodworking, 2019). The maximum height of the scissor
structure itself can be also extended by adding more elements,
such as combining two scissor structures to double the maximum
height. However, such an adjustment comes with a loss in
structure stability.

5.1.2 Interaction Paradigms
We deployed RoomShift in applications for supporting virtual
real estate tours and collaborative architectural design, two
increasingly common use cases for VR (Ibayashi et al., 2015).
RoomShift supported these scenarios by enabling encountered-
type haptics, whereby the robots manipulates physical objects
(chairs, moveable walls, etc.) in order to adapt the physical
environment to mimic the virtual user experience.
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This system augmented several interaction paradigms for
users (see Figure 9). For example, users could implicitly
interact with the system by walking around and touching
virtual objects or could explicitly interact with the virtual
scene by physically moving objects tied to their virtual
counterparts. Users could interact with the virtual scene with
controller-based gestural interactions, for instance using controls
to relocate a distant piece of furniture or removing a wall in the
room. Users could also virtually teleport to new locations to
navigate through virtual scenes, with RoomShift adaptively
reconfiguring the physical environment to match each of the
user’s new virtual locations.

Traditionally, a large number of physical props and robots
would be required to render virtual spaces that users can walk

through and touch. Instead, RoomShift leverages low-cost,
expandable structures and nine off-the-shelf robots, along with
the insight that a user’s immediate physical reach (e.g., ~1.5 m
radius) is usually smaller than an entire virtual scene. Therefore,
the system only places haptic props within the user’s immediate
proximity. As the user walks around the space, the robots move
the props to maintain the illusion of a larger number of objects. In
this way, a small number of robots with a finite set of physical
props can suffice to provide haptics for the scene as the system
does not need to physically render the entire environment.

In addition, the system can mimic larger objects with a single
moving robot. For example, when the user is interacting with a
large table, either new physical table segments can be added or a
single robot can continually move the current table according to

FIGURE 8 | The design of RoomShift, which integrates an expandable scissor structure with a Roomba robot.

FIGURE 9 | RoomShift can provide encountered-type haptics for users in a variety of VR interactions, including when users walk to touch objects, physically move
virtual objects, virtually teleport to new locations, and virtually move objects.
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the user’s position to simulate touching a larger one. This way, a
limited number of robots and furniture can simulate large objects.
We also use this technique for rendering larger wall segments,
where the robot moves, carrying the proxy, as the user walks
along the wall, similar to a technique proposed in PhyShare (He
et al., 2017).

RoomShift also supports scene editing within VR. The virtual
scene layout editing is similar to standard VR interactions and
includes functionality like adding, removing, moving, resizing, or
rotating virtual building elements and furniture with a VR
controller or a GUI. For example, the user can point the
controller at a virtual object and move it to a target location.
RoomShift robots then update the corresponding physical
object’s position.

RoomShift illustrates an interesting paradigm for HRI, one in
which the user does not directly interact with robots at all, but
where robots seamlessly and invisibly operate in the background
to augment user experiences in a manner similar to traditional
goals of ubiquitous computing, where the goal of successful
technologies is to fade into the background (Weiser, 1999).
We conducted a preliminary evaluation of our system to
gauge user responses to RoomShift (for more details on the
evaluation, see (Suzuki et al., 2020a)). In a within-subjects
counterbalanced design, participants interacted with physical
chairs in a VR scene in two conditions: (1) with physical
chairs moved by robots and (2) with static physical chairs. All
participants expressed that the realism of the two conditions were
the same. In general, participants indicated positive experiences
and were enthusiastic about potential applications. By integrating
off-the-shelf robots with inexpensive expandable structures and
actuators, we added entirely new robot functionality and purpose,
enabling new forms of interaction with humans working in a
VR scene.

5.2 PufferBot
Next, we describe PufferBot (Hedayati et al., 2020), an example of
how expandable structures can serve multiple purposes for
robots, such as capturing human attention, conveying
information, and mimicking human emotions, while also
improving safety. PufferBot’s design illustrates an integration
of isokinetic structures, inspired by Hoberman spheres, with
aerial robots. For PufferBot, we designed four different
isokinetic expandable structures (ring, cylinder, hemisphere,
and sphere) and three biologically-inspired behaviors for the
structure to emulate (expansion, contraction, and pulsating).
Below, we detail our PufferBot design and implementation
process and summarize our findings of user perceptions of
PufferBot.

5.2.1 Design and Implementation
Our goal in designing PufferBot was to explore the integration of
expandable structures and aerial robots, with the notion that such
structures might enable new forms of robot signaling and serve as
protective guards to reduce the dangers of collisions. Previous
robot design approaches have focused either on protecting (e.g.,
propeller guards) or signaling (e.g., alarms). Our insight was that
expandable structures may offer a combination of both features.

As a result, we identified four design constraints for the
expandable structures. First, they should be low weight as
additional weight may reduce robot flight time or, in the worst
case, render the robot unable to fly. Second, they should be easy to
build. There is a limited number of primitive shapes that can
easily expand without drastically changing their structure. For
example, many structures utilize spheres because the shape can
expand and contract with ease. Pyramids and cubes are more rare
as they are complex and less conducive to shape-changing. Third,
the structures should be symmetrical, both when contracted and
in the expanded shape. This is because the aerial robot’s flight
controller is programmed with a predefined center of mass. Thus,
the structures should not change the robot’s center of mass in the
x-y plane. Changes in the z-axis however, are easier to adjust for.
Fourth, we needed to design structures such that no part of the
expandable structure would ever be in the way of spinning
propellers, as any interaction between the propellers and the
structure would lead to robot damage and likely a loss of flight.

With these constraints in mind, we designed four isokinetic
structures to surround the robot: a ring, hemisphere, sphere, and
cylinder (See Figure 11). The ring is a Hoberman linkage that is
positioned slightly above the propellers, expanding and
contracting on the x-y plane. The hemisphere consists of a
ring with two orthogonal half-rings positioned above it. The
sphere consists of three orthogonal rings (one oriented along the
x-y plane, one along the y-z plane, and one along the x-z plane).
The cylinder contains the same circle as the ring, as well as a
second one positioned just below the propellers.

To implement these designs, PufferBot itself is comprised of
three components: an off-the-shelf aerial robot (DJI FlameWheel
F450 frame), an electromechanical actuator, and one of the four
expandable structures described above (see Figure 12). As
mentioned, one of our primary concerns in designing
PufferBot was structure weight. The unmodified robot frame
weight is 282 g. After mounting additional components (motors,
battery, flight controller, etc.), the weight of the aerial robot
accumulates to 1.2 Kg. The platform itself is capable of lifting
up to 1.6 Kg of payload, meaning that the expandable structure
could weigh up to 0.4 Kg.

In addition, we needed to consider how to mount expandable
structures to the robot frame in a manner that did not interfere
with robot mobility or other internal components. The diagonal
length of the robot (motor to motor) is 45 cm. We used 4.5 inch
propellers (11.43 cm), which make the total length of the aerial
robot 70 cm. To attach our structures, we built a plate on top of
the aerial robot that provided a surface to mount and secure an
expandable structure and actuator, which can be powered by the
main robot power supply (we used a 4S Lithium-ion Polymer
(LiPo) battery, which gives the robot a flight time of
approximately 18 min). This plate also allows us to avoid
direct contact with the onboard sensors in the flight controller.

We designed a one degree-of-freedom rack and pinion
mechanism capable of actuating any of our four expandable
structure designs. The pinion gear located in the center rotates
the four individual racks at the same time, so that the actuated
racks can evenly apply the expansion or contraction force to the
expandable structure in four different directions with the same
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magnitude. The actuator joint attached to the end of the rack can
expand and collapse the expandable structure by pushing and
pulling the connected points. With the mounting plate and
actuation mechanism, we were able to implement each of our
four structure designs in a manner that satisfied all of our design
constraints. In simple flight tests, we found that each of our
designs could improve human and robot safety, acting in a
manner similar to deployable airbags to distribute collision
forces and reduce potential propeller damage (and damage
caused by propellers), often enabling the robot to remain
flying even after collisions.

The robot’s constraint on load capacity alongside the intended
purpose of the expandable structure providing a barrier for
collisions introduced a trade-off in the choice of material for
the structure. While a strong, rigid structure material (e.g., metal)
would provide the most protection during a collision, it would
limit the allowable size of the structure, as larger structures would
be too heavy for the robot to carry. On the other hand, an
extremely lightweight material would be efficient in terms of load
capacity, but would be more prone to break during a collision,
rendering the structure ineffective. Thus, we decided to use a
material that was relatively lightweight and capable of
withstanding small to medium impacts and 3D printed our
Hoberman linkages with PLA. We see a similar trade-off
between protection and load capacity when comparing each of
the four structure designs. While the sphere design offers the
most protection for the robot, it is also 3 times heavier than the

FIGURE 10 | PufferBot can exhibit various communicative behaviors when humans approach the robot. Above, PufferBot expands as a user approaches to warn
the human to stay away from the robot.

FIGURE 11 |We designed four varieties of expandable structures for PufferBot, each with trade-offs in the amount of protection it can provide, visual saliency for
communication purposes, and weight.

FIGURE 12 | The various components of PufferBot. At the base, we use
a DJI Flame Wheel F450 drone. A microcontroller is used to control the
actuation mechanism, a servo motor and a rack and pinion mechanism. The
racks are joined with the expandable structure to control its radius.
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ring design. Similarly, the cylinder and hemisphere designs
provide more protection than the ring, but are 2 times heavier.

5.2.2 Exploring Communicative Behaviors
Beyond safety, we were also interested in how such structures
might be leveraged as a new communicative medium in human-
robot interactions. To this end, we designed three expandable
structure behaviors to convey information to collocated humans,
with a focus on trying to convey that users should stay a safe
distance away from the robot so as to avoid creating any
potentially dangerous situations. In designing these behaviors,
we took inspiration from nature and how animals and plants
increase or decrease their size as a way to escape or frighten
predators. We describe each of the three behaviors below.

Expand: This design is inspired by animals that expand in size
when they want to frighten and scare off predators, like the
pufferfish. Our expandable structure has a radius of 52 cm when
contracted and expands to a radius of 82 cm in 6 seconds,
covering the propellers (Figure 13A). We designed this
behavior to mimic the aggressive nature of similar animal
defense mechanisms, conveying a message of “don’t come near
me, I’m dangerous.”

Contract: In contrast to the expand behavior, certain
organisms contract as a defense mechanism. For example, the
leaves of the shameplant (Mimosa pudica) fold inward and droop
when touched or shaken, defending themselves from harm, and
re-open a few minutes later. Such mechanisms inspired our
second behavior (Figure 13B). During contraction, the
expandable structure shrinks from an 82 cm radius to 52 cm.
This behavior is intended to convey more weakness and fragility
from the drone, contrasting the dangerous and intimidating
nature of the expansion behavior.

Pulse: The last behavior is inspired by humans where, when a
person gets anxious or afraid, their heart rate increases and they
may start breathing faster. The pulse behavior consists of two sub-
behaviors to mimic this physiological response.When the robot is
in a room with a collocated person at a safe distance (defined as
more than 3 m away (Duncan and Murphy, 2013)) the
expandable structure expands and contracts at a “regular”
breathing rate corresponding to approximately 20 times per
minute. During this sub-behavior, the robot expands for 1 s,

contracts for 1 s, and then rests for 1 s (Figure 13C-top). When
the collocated person comes closer than 3 m to the robot, the
robot starts to “breathe” faster: it expands and contracts within 1
second and takes no rest (Figure 13C-bottom). This is intended
to indicate that the robot is anxious and the collocated person is
making it uncomfortable.

We have explored people’s reactions to PufferBot’s expandable
structure designs and behaviors by gathering information on user
perceptions of various robot configurations through in-person
demonstrations and online studies using recorded videos from
multiple angles. We recruited 268 participants for this study: 260
for an online video study and eight for a follow-up, in-person
study. In these studies, we focused on how PufferBot may
dissuade users from approaching an interesting looking, but
potentially dangerous robot, as well as how PufferBot can
express emotions. For the online study, we asked participants
to imagine that they were to approach the robot, upon which it
would exhibit one of the three behaviors outlined above
(i.e., expanding, contracting, or pulsing at a more rapid rate)
with one of the structure designs, which they could see in a video.
The participants then filled out a survey asking them to rate
various qualities about the robot or their beliefs about it on a scale
of 1–7. For the in-person study, participants were asked to
approach the robot, which then executed one of the behaviors.
In-person participants were shown all combinations of structures
and behaviors and were asked to complete the same survey after
each combination.

A common theme that we have found is that a majority of
people (63% responses ≥5) believed the robot was discouraging
them from approaching it when it exhibited any of the three
behaviors. As a whole, the highest level of danger was conveyed by
the expansion behavior (M = 4.42) and the hemisphere (M =
4.88). The highest level of anxiety was conveyed by the contract
behavior (M = 4.92) and the hemisphere (M = 5.24). During an
open-ended discussion with the in-person participants, some
people believed that the robot was more dangerous in its
contracted state, noting the greater exposure of the propellers.
Similarly, some participants viewed the ring and cylinder
structures to be unprotective of the robot or themselves due to
the propeller exposure. It is important to note that even though
only these two shapes were associated with a lack of protection,

FIGURE 13 | (A) Expand, (B) Contract and (C) Pulse behaviors.
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each shape exposes the propellers to some degree. Out of all
combinations of structure shape and behavior, the in-person
participants identified the sphere and heartbeat as being the
most communicative or expressive. In general, these responses
indicate that users may have complex and varied responses to our
expandable structures and behaviors, although the structures in
general may be capable of expressing simple states (e.g., users
perceived the robot as experiencing noticeable levels of anxiety).

The open-ended responses from online participants also
revealed complicated, and at times conflicting, user
perspectives. Three participants believed that the intent of the
structure was to protect the robot, rather than the human. For the
ring, cylinder, and hemisphere structures, four participants
thought the robot was signalling an intent to land. The
responses below are illustrative of the diversity of participant
opinions:

P47 (Hemisphere, Expand, Eye level) “It reminds me of a
peacock expanding its feathers. It is trying to intimidate me,
show me its strength. It is telling me to watch out.”
P136 (Sphere, Expand, Eye level): “The robot is trying to make
itself more visible so I do not accidentally crash into it.”
P31 (Ring, Pulse, Below): “It almost looks like the robot is
inhaling and exhaling. Like it is taking in information instead
of air. As I get closer to the robot the movement seems to get
faster makingme believe that it is taking in more information.”
P155 (Ring, Pulse, Eye level): “It seemed to be looking around
for someone more interesting than me to interact with. Maybe
he’s trying to say, “you don’t interest me.”
P181 (Cylinder, Contract, eye level): “It seems to want to say
‘come here with me and follow’ to me.”
P95 (Cylinder, Pulse, Below): “It feels like the robot is
extracting something from me, and since it is not physically
touching me, I feel like it is trying to extract information from
my phone or personal electronic devices.”

Overall, the PufferBot platform demonstrates how expandable
structures and their corresponding nature-inspired behaviors
might be used by robots in multiple ways simultaneously and
opens the door to future research exploring the complex
intersection of expandable robot structures and user responses.
In the future, we hope to explore additional aspects of human-
robot interaction, such as whether such structures may enhance
user confidence when operating an aerial robot as crashes may
cause less harm.

5.3 ShapeBots
As a final case study, we describe ShapeBots (Suzuki et al., 2019b),
a swarm of small, self-transformable robots that can individually
and collectively change their configurations to display
information, actuate objects, act as tangible controllers,
visualize data, and provide adaptive physical affordances. Each
ShapeBot robot can change its individual shape by leveraging
small linear actuators that are thin (2.5 cm) and highly extendable
(up to 20 cm) in both horizontal and vertical directions. The
modular design of each actuator enables various shapes and
geometries of self-transformation. Below, we detail the design

of ShapeBots, illustrate several potential application scenarios,
and discuss how this type of interface opens up possibilities for
the future of ubiquitous and distributed shape-changing
interfaces for HRI.

5.3.1 Design and Implementation
In contrast to RoomShift and PufferBot, where our design process
involved creating expandable structures and adding them to pre-
existing robot platforms, we designed ShapeBots from the ground
up to be robots with embedded expandable structures. Each robot
is driven by two micro DC motors (TTMotor TGPP06D-136,
torque: 550 g/cm, diameter: 6 mm, length: 18 mm) that are
soldered to a dual motor driver (DRV8833) and controlled by
a main microcontroller (ESP8266). By individually controlling
rotation speed and direction, the robot moves forward and
backward and turns left and right. Two 3D printed wheels
(1 cm diameter) connect directly to the DC motors. An O-ring
tire on each wheel increases friction with the ground to avoid
slipping. A LiPo battery (3.7 V 110mAh) powers both the
microcontroller and the motors.

For the expandable structure, we developed a miniature reel-
based linear actuator that fits into a small footprint (3 cm × 3 cm)
while able to extend up to 20 cm in both horizontal and vertical
directions. The modular design of each linear actuator unit enables
the construction of various shapes and geometries of individual
shape transformations as seen in Figure 14 (e.g., horizontal lines,
vertical lines, curved lines, 2D area expansion with an expandable
origami structure, and 3D volumetric change with a Hoberman
mechanism). Such transformations support three major types of
shape change (form, volume, and orientation) categorized in
Rasmussen et al. (2012). Each robot has an additional DRV8833
motor driver to control these linear actuators; the two motor drivers
connect to the microcontroller through a 2-sided custom PCB.

All components are enclosed within a 3D printed housing
(3.6 cm × 3.6 cm × 3 cm) with three rectangular holes in the front
side (Figure 14) that provide micro USB ports for programming,
recharging, and the microcontroller reset switch. All 3D printed
parts were fabricated with a FDM 3D printer (Cetus 3D MKII)
and PLA filament (Polymaker PolyLite 1.75 mm True White).
For horizontal extension, each linear actuator unit is fixed with a
custom 3D printed holders. For the vertical extension, we used a
thick double-sided tape (3M Scotch Mounting Tape 0.5 inch) on
top of the swarm robot. In our current prototype, one swarm
robot costs approximately 20–25 USD (microcontroller: 4 USD,
motor drivers: 3.5 USD x2, DC motors: 3 USD x2, charger
module: 1 USD, LiPo battery: 4 USD, PCB: 1 USD) and each
linear actuator costs approximately 6-7 USD (DC motors: 3 USD
x2, limit switch: 0.5 USD, polyester sheet: 0.1 USD), but this cost
can be reduced with volume. For our system, we fabricated thirty
linear actuator units for twelve robots. To control the swarm of
robots, we implemented a custom centralized PID controller. The
PID controller gets the position of ShapeBots from the unique
fiducial marker attached to each of the robots using an RGB
camera and sends control signals to each robot through Wifi. As
an example, to create a formation (e.g., sine wave) the PID
controller moves each of the robots from their current state to
the desired location.
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5.3.2 HRI Applications
We describe several application scenarios showing how a swarm
of distributed self-transformable robots might support everyday
interactions. For example, one potential application area is
interactive data physicalization (Jansen et al., 2015; Taylor
et al., 2015), as in the first row of Figure 15, where seven
ShapeBots transform individually to represent a sine wave.
These representations are interactive with user input: when the
user moves the end robot to the right, the others move to change

the wavelength. The user can dynamically change the amplitude
of the wave by specifying the maximum length.

ShapeBots also support transforming data into different
representations, such as bar graphs, line charts, and star
graphs. Users can place and move robots, which enables
embedded data representations (Willett et al., 2017). For
example, ShapeBots can be placed on a map of the USA to
physically represent population density by changing their height
based on what state they are placed on (Figure 15, second row).

FIGURE 14 | The ShapeBot expandable structure design (left) and different types of transformation it enables: (A) the basic ShapeBot, (B) horizontal extension, (C)
vertical extension, (D) bending, (E) volume expansion, and (F) area expansion.

FIGURE 15 | First row: An interactive and animated sine wave. (A) Animated sine wave. (B)When the user moves one element, (C) then each robot can collectively
move to change the spatial period of the wave. Second row: Embedded data physicalization on amap. (A) Projected USmap. (B)When the user selects the dataset, the
ShapeBots move to position and visualize data with their heights. (C)When moved, the robots change their heights accordinly. Third row: Clean up robots. (A) A desk is
filled with debris. (B) Two robots starts moving and wiping the debris. (C) Once the robots finish cleaning up, the user can start using the workspace.
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Users can interact with the dataset by placing a new robot or
moving a robot to a different state, with the robots updating their
physical forms to represent the respective population.

Other examples of distributed representations include showing
the magnitude and orientation of wind on a weather map or
physicalizing magnetic force fields. This physical data
representation might be particularly useful for people with visual
impairments (Suzuki et al., 2017; Guinness et al., 2018). ShapeBots
can also act as an interactive physical display, meaning they can
render or enable users to preview various shapes. For instance, when
reading a picture book of animals, children might visualize a fish
with ShapeBots at actual size. Another application of Shapebots is for
use as an interactive tangible display. As an example, four ShapeBots
might display a small rectangle and, when the user moves a robot,
the others can change positions and lengths to appropriately scale
the shape. The user can also move robots to rotate or translate the
shape. In this manner, ShapeBots might provide a physical preview
of a CAD design (e.g., if a user is designing a box, ShapeBots can
physicalize the actual size of the design). In such interactions, the
design process and physical rendering are tightly coupled; as the user
changes aspects of the design in CAD software, the ShapeBots

change accordingly or the user can change the parameters of the
design by directly moving robots in the physical space, and these
changes are reflected in the CAD design. Finally, ShapeBots may
provide practical assistance by their ability to actuate objects and act
as physical constraints. As an example, Figure 15, third row) shows
two robots extending their linear actuators to wipe debris off a table,
clearing a workspace for the user.

In summary, ShapeBots are miniature tabletop robots with
expandable structures that enable individual and collective shape-
change. We highlight ShapeBots as an example of how robots
may be designed from the beginning with expandable structures
in mind and to illustrate additional collective shape-changing
capabilities for human-robot interaction beyond the implicit
interactions described in RoomShift.

6 DISCUSSION AND FUTURE RESEARCH
DIRECTIONS

We believe that expandable structures represent a significant and
underexplored avenue for HRI research. Our case studies, along with

FIGURE 16 | Above, we synthesize the major implementation and interaction considerations for designing expandable structures for HRI. We also highlight the
choices made in each of our three case studies.
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related systems such as the Triple Scissor Extender Robot Arm
(Shikari and Asada, 2018) and Rotorigami (Sareh et al., 2018),
demonstrate the potential of integrating of expandable structures
into robotics to enrich human-robot interactions, whereby such
structures may provide robots with new interactive capabilities,
enable novel forms of communication, and enhance safety. In
addition, we envision that such structures may serve aesthetic and
experiential purposes as well, such as piquing user curiosity, increasing
enjoyment, or promoting a sense of play, although we have yet to see
research explore such applications of expandable structures in HRI
contexts. To aid researchers and developers seeking to explore this
burgeoning space, we have summarized the major design and
implementation considerations for expandable structures in
robotics, highlighting the choices made in our three case studies
above, in Figure 16. We are excited to continue exploring expandable
structures forHRI and further develop the initial design space outlined
here as the research community begins to leverage expandable robots
in new forms of interaction. Moving forward, we believe the following
aspects hold particular promise for future research:

First, we believe research may more deeply explore the use of
expandable structure robots in conjunction with virtual reality, as
they show great value for augmenting VR experiences through
encountered-type haptics. In contrast to RoomShift, where we
used expandable structures to deliver haptic proxies, future work
might investigate how expandable structures could act as various
haptic proxies themselves. As the number of virtual objects that
someone can interact with in a virtual world is essentially limitless, it
is nearly impossible to design a system like RoomShift that can
deliver any type of physical object to a user in a virtual environment
unless the particular application is known in advance. However,
expandable and/or shape-changing structures may be able to
emulate a vast array of objects with which users can physically
interact. Additionally, systems might afford users the capability of
changing the physical shape or size of virtual objects while
simultaneously feeling such transformations in their hands.

Next, we envision future work may investigate how expandable
structure robots might improve users’ wellness and productivity.
Through our work with PufferBot, we have found that expandable
structures may alter the various anthropomorphic emotions and
personality traits that humans naturally ascribe to robots. We would
like to explore how to leverage expandable structures to change
human perceptual responses to robots in a principled manner and
believe that the range of possibilities is much greater than the small
subset of affective traits we have explored to date. For example, future
work might examine how expandable structure robots could convey
emotions such as empathy or tranquility to improve user wellness or
visualize aesthetically pleasing objects, such as blooming flowers, to
bring joy to users. As a practical example, expandable structures with
behaviors similar to the pulse pattern exhibited by PufferBotmight be

used as a guide for breathing patterns, as is done in meditation
practice, in a robot-guided meditation interaction. Towards
improving users’ productivity, we are interested in how small
expandable robot like Shapebot that could integrate within user
workstations might help users visually keep track of schedules,
provide appointment reminders, or increase user motivation
through emotive expressions.

Beyond individual interactions, we anticipate that expandable
structure robots may also hold benefits for interacting with
crowds. For instance, robots with expandable structures might
be used to create dynamic boundaries around areas, which could
change size depending on the size of the crowd. On a larger scale
(e.g., crowds of thousands of people), we envision that a swarm of
robots with expandable structures might be used to direct crowd
movement, such as providing guidance towards exits or along
evacuation routes, by expanding to block incorrect or
overcrowded paths and marking available routes. In
emergency scenarios, robots might also leverage expandable
structures to create space for injured parties or protect privacy.

Ultimately, we envision a future where shape-changing
technologies have been woven into standard robot design
practices, enabling robots to dynamically adapt to users and
their environment. Expandable structures can play a key role
in this vision by serving as low-cost, easy-to-implement, and
easy-to-control methods to augment robot capabilities. We
believe the time is ripe for HRI research to examine their
potential for enhancing human-robot interactions. We hope
the design space and case study examples provided here will
help advance and encourage further research in this area.
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Connecting the Dots of Social Robot
Design From Interviews With Robot
Creators
Patrícia Alves-Oliveira1*, Alaina Orr2, Elin A. Björling2 and Maya Cakmak1

1Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, United States, 2Department
of Human-Centered Design and Engineering, University of Washington, Seattle, WA, United States

Despite promises about the near-term potential of social robots to share our daily lives,
they remain unable to form autonomous, lasting, and engaging relationships with humans.
Many companies are deploying social robots into the consumer and commercial market;
however, both the companies and their products are relatively short lived for many
reasons. For example, current social robots succeed in interacting with humans only
within controlled environments, such as research labs, and for short time periods since
longer interactions tend to provoke user disengagement. We interviewed 13 roboticists
from robot manufacturing companies and research labs to delve deeper into the design
process for social robots and unearth the many challenges robot creators face. Our
research questions were: 1) What are the different design processes for creating social
robots? 2) How are users involved in the design of social robots? 3) How are teams of robot
creators constituted? Our qualitative investigation showed that varied design practices are
applied when creating social robots but no consensus exists about an optimal or standard
one. Results revealed that users have different degrees of involvement in the robot creation
process, from no involvement to being a central part of robot development. Results also
uncovered the need for multidisciplinary and international teams to work together to create
robots. Drawing upon these insights, we identified implications for the field of Human-
Robot Interaction that can shape the creation of best practices for social robot design.

Keywords: social robots, market studies, product design, qualitative research, domain experts

1 INTRODUCTION

How does a designer start to create a social robot? Our work lifts the curtain on a topic thus far
unexplored: how robot creators, from industry to research labs, design and fabricate social robots.
We shed light on current design practices for social robots and derive specific implications for the
emerging field of human-robot interaction (HRI). By identifying limitations and challenges inherent
in social robot design, we intend to inspire use of best practices for their creation, helping researchers
and commercial designers build higher quality products that are better suited for consumer markets.
Our ultimate goal is to inspire robot creators to build social robots that are closely aligned with
humans needs and values within the socio-technological society in which we live.

The term social robot has been used to define ‘socially interactive robots’ (Fong et al., 2003) that
have one or more of the following competencies: the ability to communicate, express affective
behaviors and/or perceive human emotions, have personality or character, model social aspects of
humans, learn and/or develop social skills, and establish and maintain social relationships (Shibata,
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2004; Yanco and Drury, 2004; Dautenhahn, 2007). Therefore,
designing social robots requires a combined understanding and
knowledge integration about human behavior and intelligence, as
well as a diverse set of technical skills, e.g., in computation and
fabrication (Baraka et al., 2020). This makes social robot design
intrinsically interdisciplinary compared to the design of other
artifacts or technologies.

In this paper, we provide recommendations for future robot
creators to inspire the design of successful social robots. We
conducted in-depth, qualitative interviews with expert robot
creators from companies and research labs who are directly
involved in the design, development, and testing of social
robots. During our interviews, they disclosed their design
process, the extent to which end-users were involved (if at all),
and how their teams were composed.

2 RELATED WORK

2.1 Uniqueness of Social Robots
Unlike industrial robots, which have been on the market for some
time, social robots are a newly emerging technology just now
appearing in our stores. In this work, we deliberately chose to
interview robot creators and analyze their design processes.
Previous research examined how digital fabrication tools, such
as 3D printers, laser cutters, and CNC routers, are fabricated by
interviewing professionals that utilize these tools (Yildirim et al.,
2020); it highlighted practices concerning the use of digital
fabrication tools, specifically focusing on machine awareness,
autonomy, and user agency. While these findings are relevant to
the field of robotics—especially because the initial stages of creating
a robot involve using digital fabrication tools to build
prototypes—it does not explore the design process for social
robots, which we address in this paper.

Sanneman et al. (2021) described the processes and challenges
that companies follow when working with new technologies such
as robotics and the Internet of Things (Sanneman et al., 2021).
Insights from interviews with key players in the industrial
robotics ecosystem contribute to research directions for the
field of industrial robotics. While this work is relevant for the
field of HRI since many components of social robots are shared
with industrial robots—including vision, perception, and
control—our work focuses more deeply on the challenges
inherent to designing interactive robots that communicate
with people, also fertile ground for investigation.

Previous work on robot teams explored the attitudes of
frontline employees who use industrial robots every day
(Sauppé and Mutlu, 2015; Elprama et al., 2017; Wurhofer
et al., 2018; Welfare et al., 2019). Additionally, an extensive
ethnographic investigation studied anthropomorphism in
teams that work with robots (Chun and Knight, 2020). While
these studies focus on the team that directly works side-by-side
with robots, our work focuses on the experience of teams that
design and build new robots.

By acknowledging the uniqueness of social robot design,
Axelsson et al. introduced a framework for participatory design
practices for social robots (Axelsson et al., 2021). This framework

provides templates and guidelines to promote collaboration
between multidisciplinary teams when creating social robots.
This approach relates to ours; however, the authors neither
explored the inclusion of users in the process of social robot
design nor accounted for the benefits and shortcomings of
different Human-Centered Design (HCD) practices applied to
this problem, which we uncover in this paper.

2.2 Product Design and Development
The product development cycle is characterized by multiples
theories and practices (Moni et al., 2020). During our
research, we interviewed robot creators about the life cycle
of creating a social robot. We highlight below some of the
more influential practices in product design and development
to better contextualize this research. Note that benefits and
costs apply to all approaches, which generally work in
combination rather than individually.

A linear design process is primarily used to manage risk when
conceptualizing a product. In this practice, each phasemust be fully
completed before proceeding to the next, letting designers catch
errors when they are least expensive and time-consuming to fix.
The linear method is straightforward but requires discipline to be
effective. However, during the design process, it is essential to
realize that most use scenarios will require flexibility and the ability
to react to new information and circumstances, challenging
considerations in this linear practice (Bocken et al., 2016).

In contrast, user-centered design (UCD) is an iterative design
process in which designers focus on users and their needs in each
phase. User-Centered Design (UCD) teams involve users via a
variety of research and design techniques to create highly useful
and accessible products. There exists an explicit understanding of
the users, tasks, and use environments: the aim of the process is to
capture and address the whole user experience. Therefore, the
design team includes professionals drawn from multiple
disciplines, and experts may conduct evaluations of the
produced designs using design guidelines and criteria (Still
and Crane, 2017). This work uses the term human-centered
design (HCD) to address inclusion of user emotional or
psychological preferences (Gasson, 2003). Examples of HCD
practices include the body of work by Don Norman (Norman,
2013) and the 7 Principles of universal Design (Story, 2001).

Finally, when using design heuristics, domain experts and users
can assess product usability. This rapid design evaluation calls
upon domain experts to go through checklists aimed at assessing
the system’s (or the robot’s) ‘heuristics’ to guide future
improvements (Jiménez et al., 2012). Such methods are
common in the design of a variety of products and also
contribute to the design of social robots.

2.3 Social Robotics Market
According to a 2020 market analysis by BCC Research, social
robots are a rapidly growing market, with a compound annual
growth rate of around 15% (LLC, 2020). According to Statista 1, in

1Statista: https://www.statista.com/statistics/755677/social-and-entertainment-
robot-sales-worldwide/.
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2018 social and entertainment robot sales reached 2.68 million
units worldwide. By 2025, that number is forecast to double to
5.51 million units. Thus, we see an emerging recognition of the
potential of this field, especially for use in healthcare, education,
and entertainment.

Despite this growth, many robot companies have failed in the
market. In 2019, the Robot Report 2 released information about
social robot companies that ceased production; it noted that
many initially thriving companies failed to succeed over the
longer run. Our work aims to be a conversation-starter on the
topic of social robot failure versus success by lifting the curtain of
a topic that is often discussed but little studied in the HRI
community: the inner workings of social robot design.

3 METHODS

After having developed our own social robot prototype (Björling
and Rose, 2019) for the Ecological Momentary Assessment Robot
(EMAR) project, we wanted to learn from other researchers and
designers of scalable robots currently on the market to assess how
best to scale our prototype. Our research questions were:

• What are the different design processes for creating a social
robots?

• Are users involved in the design of social robots, and how?
• Who participates on the teams that develop social robots?

3.1 Collective Case Study
We conducted an interview-based qualitative case study, an
established research design method, where we consulted a
variety of stakeholders involved in the creation of social
robots. Case studies enable in-depth appreciation and multi-
faced exploration of complex issues or phenomena of interest
(Crowe et al., 2011); their value in research lies in their ability to
explain, describe, or explore events (Yin, 2017). Unlike
experimental designs, which focus on testing a specific
hypothesis by deliberately manipulating interventions or
conditions, the case study approach captures information of a
more explanatory nature by focusing on ‘how,’ ‘what,’ and ‘why’
questions.

Our case study focused on identifying and comprehensively
describing how social robots are created. Specifically, we applied a
collective case study approach, which simultaneously explores
multiple cases in an attempt to generate broader appreciation
of particular issues (Stake, 1995). Thus, our collective case study
included employees from multiple social robot companies as well
as professors from university labs that build social robots.

3.2 Ethics and Permissions
This study was reviewed by and received Institutional Review
Board approval from the University of Washington, Seattle, WA,

United States. Participants verbally consented to be recorded. To
protect participants, all information that could potentially lead to
identification of individuals was removed, and transcripts were
anonymized.

3.3 Sampling and Recruitment
We used the purposive sampling technique to recruit subjects
for this study. Purposive sampling is a form of non-probability
sampling in which researchers deliberately choose participants
due to their unique qualities (Tongco, 2007); it is one of the most
effective techniques to study a specific domain with
knowledgeable experts, which is the case for our study.
Participants were identified by 1) drawing on the extended
network of authors of this paper, and 2) applying the
inclusion criteria that recruits required hands-on experience
in creating social robots. We specifically focused on subjects
who worked with social, interactive robots rather than industrial
ones: these two markets require different knowledge and
experience, are associated with different application
scenarios, target different users/consumers, and exhibit
diverse market maturity, with industrial robots being used in
the marketplace for far longer.

We identified 18 subjects who had created one of more robots
in the context of a research lab or in industry. We sampled
purposefully for maximum variability, ensuring representation
from a range of countries, professional backgrounds (including
engineers, designers, artists, system developers, academics, and
visionaries/futurists), and types of robots (Patton, 2005). The
initial recruitment email included an invitation to participate in
an interview about their role in the design of a social robot along
with sample questions from the interview template. A total of 13
subjects expressed an interest; the follow-up email contained the
interview schedule; refer to the demographic description in
Table 1 and the robots build by these creators in Figure 1.
The remaining 5 subjects who did not enroll in this study
mentioned either their concern about discussing the topic
given their non-disclosure agreement (NDAs) (2 subjects) or
simply failed to reply to our email solicitation (3 subjects).
Industry representatives were particularly uncomfortable with
sharing potentially sensitive commercial information. We
stopped recruiting additional participants when we reached
thematic saturation, which occurs when no new themes
emerge during analysis (Guest et al., 2006).

3.4 Data Collection
Among the wide range of qualitative methods, we specifically
chose to conduct interviews, which enable flexibility during data
collection while remaining grounded in a particular framework
(Gill et al., 2008). Interviews were conducted over Zoom 3,
digitally recorded, and transcribed. They ranged from 30, −
,90 min depending on the subject’s availability and how in-
depth the interview went. We explored the most promising
areas, including the development process of robots, user or
customer involvement in the robot creation, and team

2Robot Report ‘Remembering robotics companies we lost in 2019’: https://www.
therobotreport.com/robotics-companies-we-lost-2019/. 3Zoom: https://zoom.us.
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composition of the robot builders. A sample interview guide is
shown in the box below. While several pre-defined questions
employed a blend of closed- and open-ended formats, we often
accompanied these with follow-up ‘why’ or ‘how’ questions. This
enabled flexibility to explore novel topics raised by the subjects
while having a template that guided the discussion (Dearnley,
2005; Newcomer et al., 2015).

Interview Sample. Questions were distributed according to the
themes of interest in this study.

• What was the workflow that you followed for the
development of the robot? (robot development process)

• What types and how many robot prototypes did you explore?
(robot development process)

• How different were the prototypes compared to the last
version of the robot? (robot development process)

• Were users or consumers involved at any stage of the robot
creation? (user involvement)

• What type of data was collected, and how did it inform the
development of the robot? (user involvement)

• What were the backgrounds of the team that created the
robot? (team composition)

• How was the division of labor distributed across the team?
(team composition)

• With this particular robot today, what are the current pain
points? (lessons learned)

• What would you do differently if you were to do this again
from the beginning? (lessons learned)

3.5 Data Analysis
We identified different design processes for robot creation,
several degrees of user/customer involvement in the creation,
and different approaches to team composition of robot builders.
We anchored our data analysis in qualitative research methods,
suitable methods for exploratory studies such as ours that support
inductive practices; these methods can lead to prominent
emerging themes without existing prior hypotheses (Sofaer,
1999). While quantitative research could potentially be useful,
a growing consensus indicates that they are ideal to justify
research findings or differences across samples (Park and Park,
2016). In contrast, qualitative research is concerned with aspects

of reality that cannot be easily quantified, focusing on the
understanding and explanation of a phenomenon and thus
deepening our comprehension (Queirós et al., 2017). This was
compatible with the goal of this study, which aimed to deepen the
understanding of the processes and approaches used to design
social robots.

Transcribed interviews were uploaded to Miro 4, an online
collaborative whiteboard suitable for research analysis that
enables visual organization of data and exploration of
prominent themes. Three researchers were involved in
collaborative coding of the data. Two researchers
independently organized the interview materials into
emerging themes. To ensure consistency across coders,
calibration exercises were performed until stability was
reached (Krippendorff, 2009). After coding 30% of the
data, the two coders met to resolve discrepancies
(Campbell et al., 2013); they compared their coding
schemes to ascertain concordances (i.e., alignment in
definitions, language, and coding logic). When
discrepancies arose, a ‘negotiation agreement’ was used,
whereby they verbally discussed differences with a mutual
effort to reconcile disagreements and divergence (Hoyle et al.,
2002; Garrison et al., 2006). The third coder joined the
discussion when 50 and 100% of the data was coded to
help disambiguate negotiations.

We approached the analysis with an initial coding
framework based on our research questions to provide an
initial structure to our findings. We used an affinity diagram
approach to code and organize the data (originally called the
KJ method) (Kawakita, 1991). Affinity diagramming is a
technique used to externalize, make sense of, and organize
large amounts of unstructured, far-ranging, and possibly
dissimilar qualitative data (Hartson and Pyla, 2012). Data
collected in our interviews occasionally ventured in directions
that differed from our primary research focus due to the
nature of open-ended questions and semi-structured
interviews. While these extraneous data were interesting, if

TABLE 1 | Demographic description of study subjects. All subjects are robot creators who designed and built one or more robots in a research lab or company.

Subject ID Gender Country Role

1 Male Poland Co-Founder and Electrical Engineer
2 Male Israel Industrial Designer & Hardware Engineer
3 Female Australia Designer and Animator
4 Male US Robot Animator
5 Male US Software Engineer
6 Male US Software Engineer
7 Female US Chief Operating Officer (COO)
8 Female US Software Engineer
9 Male United Kingdom Co-Founder and Designer
10 Male US Senior Engineer
11 Male US Founder and Principal Investigator
12 Male US Researcher
13 Female Portugal and US Researcher

4Miro: http: miro.com.
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it was not relevant to our research questions, it was not
included in our results.

4 RESULTS

We now present our findings on several robot development
processes, the different degrees of user/customer involvement,
and the team composition of robot builders.

4.1 Robot Design Process
Three categories of design processes can be derived from our data:
1) iterative, 2) linear, 3) and data-point-driven (see Figure 2). We
extracted the most salient details of each development process to
provide a deeper understanding of the various workflows.
Further, these categories are not mutually exclusive, and
certain aspects overlap with others, meaning that the same

robot can be mapped to more than one design process. We do
not aim to compare the effectiveness of one design process to
another or to state preferences; rather, we provide a
comprehensive illustration of the current way robots are being
designed, which has inherent value.

4.1.1 Concrete and Linear Stages of Social Robot
Design
A linear robot design process refers to concrete and sequential
stages of a workflow underlying the robot’s creation. Drawing
from key tenets of linear processes in design, each phase in the
development life cycle should be completed before moving to the
next. An example was described by Subject 10 in five well-defined
stages: 1) hardware exploration, which consists of creating initial
prototypes and sketches of physical features for the robot, 2)
design investigations, which involves experimenting with simple
robot behaviors within interaction scenarios, 3) expressivity

FIGURE 1 |Moodboard of robots included in this study, including details of the robot’s founding company or university, business status, area of impact, and selling
price. Prices may vary from those noted here.
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implementation, which consists of creating 3D printed mock-ups
to test and refine degrees of freedom, 4) interaction design, which
uses a puppeteer and stop motion artists to test which degrees of
freedom are actually needed in the robot and which can be
removed, and 5) negotiation, where the team navigates
conflicting aspects of the design, striving to balance market
viability and mechanical feasibility. A description of five of the
created robot prototypes follows:

“Our first [prototype] was just a base platform. The
question was: can we make it work? Our second
[prototype] was this concept we liked, but we couldn’t
actually get it to be expressive enough. The third one has
the degrees of freedom in a different place. The fourth one
was pretty much the robot that you probably see now. The
fifth one has some tweaks here and there, and, beyond that,
there were other little tweaks.” (Subject 10, Male)

These sequential stages were described as one leading to
the next, with the ultimate design decisions driven by “this
tension between how much expressibility we want the robot to
have, how much it is going to cost us, how much can we sell it

for, and how do we want people to interact with it.” (Subject
10, Male).

The development process described by Subject 6 included not
only an iterative process but also linear stages. The overall process
was conceptualized as a series of phases, “We did go through
several phases of the robot [development]. Each one of those phases
lasted a few months, maybe 4 − 5months each” (Subject 6, Male).
The first stage was described as “bare bones utilitarian”, which
consisted of a prototype with finished electronic components and
an unfinished exterior. This featureless version was used to
evaluate the electronic components, tasks, and flows of the
robot. The following three versions were assigned labels by the
manufacturing team and used to perform lifecycle and long-term
testing and to make various other refinements. Each phase of
building was completed before moving on to the next.

Another example of a design process with clear sequential
phases consists of phases that can be charted along a timeline of
4 years:

“In year 1, lots of prototyping, need-finding, taking
prototypes out to get customer feedback, working with
the industrial designers, working with mechanical
designers, prototyping navigation software and drive
trains and animation for the degrees of freedom and
depth sensors. In the second year we hired our VPs [vice-
presidents], developed alpha versions of the robot, depth
sensor, at the end of the year prepped to launch at CES5

with our painted prototypes. In the third year we
launched at CES, did design for manufacturing, and
at the very end of the year, shipped our first small batch of
robots out to pre-order customers. In year 4 we scaled up
production, got shut down just as we had our full-speed
manufacturing line set up to turn out thousands of Kuris
every month.” (Subjects 7 and 8, both Female)

4.1.2 Iterative Process of Social Robots Design
Theiterative development process enables continuous
improvements of the robotic system and a deeper
understanding of users and their needs. A subject described
this iterative design process in the following way:

“We went through a lot of iterations of sketching and
then some low fidelity prototyping with cardboard. And
the process used a lot of increasingly high fidelity
prototypes with constant feedback, preferably from
users. It’s a kind of classic user-centric design process
in many ways.” (Subject 2, Male)

Another subject described a similar iterative process. The
process began with aiming for simplicity and speed because
“the first prototype is going to suck anyway and you will miss

FIGURE 2 | Design process of social robots.

5Consumer Electronic Show (CES) is an annual trade show organized by the
Consumer Technology Association (CTA) that typically hosts presentations of new
products and technologies in the consumer electronics industry. Link: http://ces.
tech.
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the target” (Subject 1, Male). In this case, each iteration brought
with it more learning, failure was acknowledged to be part of the
development cycle, and the finished robot design resulted from
numerous prototypes:

“[the development process of the robot] was very, very,
very iterative. That’s one of the things that, you know,
when you start building a robot, you think you will build
one, and NO. You will build many, many, and many
more than what you think you will.” (Subject 2, Male).

He added:

“You do the first [prototype] and it doesn’t work or works
badly. Then, you learn and make it again, and it gets
better. By the time you make it ten times, it’s pretty
good.” (Subject 2, Male)

The underlying approach of the iterative development reflects
the idea that iteration strengthens one’s knowledge and culminates
in “a good enough robot that works” (Subject 2, Male).
Furthermore, this approach addresses user needs and identifies
pain points: “You will want to build something that is meaningful,
and that means building something that people actually want and
that can solve a problem in the world.” (Subject 2, Male).

The users of social robots, though central, are not the only
references that developers rely on. For example, internal team
feedback was considered crucial since the team is also composed
of expert roboticists that can contribute to the problem. The team
would build mini prototypes of a certain robot feature or
interaction case, and the internal design teams would review
them and offer suggestions. They would then incorporate
feedback into the next prototype and repeat the process, as
noted by Subject 6:

“And we’d iterate back and forth on the interaction
design of the skill, and then we’d go off and sort of build
another version and show it to them [the team] on an
average of every 3 weeks or every month kind of
cadence.” (Subject 6, Male).

The iterations were driven by the goal of building a robot
with minimal areas of weakness: “at least five iterations [of the
robot], and then one big robustness redesign where we’re trying
to fix all the things that just don’t work well” (Subject 12,
Male). The iterations can be driven by a specific feature to
improve in the robot. For instance, while a robot can have
multiple iterations, the main motivation for them was to test
different designs and physical materials, not to make users the
focal point of the orbit: “We have possibly 10 versions of the
robot before we have the one that we have now and, you know,
we have 10 iterations of those, like different mechanical
designs, different materials, just small things.” (Subject 12,
Male).

Subjects 1, 2, 6, and 12 took iterative approaches when building
robots; however, Subjects 6 and 12 described workflows different
from those of Subjects 1 and 2 since their orbits weremore focused on

gathering feedback from internal teams or improving specific
features, rather than being driven by user feedback. Thus, an
iterative design process does not necessarily mean it is user-
centric, but rather that different expertise can be considered in the
iterative process (such as the internal expertise of the team).

4.1.3 Data-Point Driven Robot Design
In a data-point-driven robot design process, the workflow is
informed by points of reference, such as prior knowledge or
accumulated observations. Instead of concrete stages, data points
do not adhere to a specific timeline; rather, they serve as
important references throughout a whole development process.
Various theories and principles are associated with this method,
such as Don Norman’s definition of affordances, the Seven
Principles of universal Design, and Jakob Nielsen’s Ten
Usability Heuristics, showing how this design process pulls
data points from different disciplines, frameworks, and sources
of knowledge.

An example was described by Subject 3, who drew on various
data points when designing the robot, including her own
background in design and animation, affinity for
understanding the human experience, and prior research in
the field of robotics. For Subject 3, the philosophy around
developing social robots is that they should spark feelings and
emotions in the people who use them. She mentions the
importance of having companies that support this approach:
“They’re brave to design a robot that brings joy” (Subject 3,
Female). Along with this philosophy was the importance of
designing communication for joyful interactions mapped onto
the robots’ specific features and components. Subject 3
highlighted the importance of communication beyond
speaking, “What do we do when we’re being social? We don’t
just talk. What’s the content of that talk, and what are the things
we do?” (Subject 3, Female). Elaborating on this idea, creating a
social robot that brings joy is exemplified in her knowledge of
human behavior, which served as data points that drove the
aesthetic and gesture selection design of the robot:

“Many of the robots in the marketplace are designed for
movement, which is just motion. And not designed for
gesture, which is emotion.” (Subject 3, Female)

Subject 3 explained how prior experience informed her
approach to aesthetic robot design as follows:

“I come from an animation and design background. In
my design, I always worked to aesthetic principles, which
are super important to robotics. Aesthetics are important
to understanding a robot’s purpose, what it should be
used for, and how somebody relates to a robot.” (Subject
3, Female).

An additional reference point elaborated upon by Subject 3
was the key insights from surveys and interviews with the target
audience that would use the robot being created. A major
finding dealt with people’s expectations and comfort with
social robots:
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“In surveys I’ve done, there’s been a rebellion against
perfection in a robot, and rebellion against the robot
being a know-all, and also a rebellion against humanoid
robots. Also, that they [the target audience] didn’t want
robots to be gendered.” (Subject 3, Female)

Overall, these data points ‘interacted’with one another to form
the larger approach of developing a robot. Subject 3’s philosophy,
background, and research insights were not disparate elements of
robot creation; they were instead interwoven data points that the
team drew upon when designing the robot.

Another example came from Subject 9. For instance, research
informed the placement and design of the robot’s eyes:

“Stereo vision is very important. A rabbit has eyes on the
side for predators. The same for cows and horses. Instead,
cats and lions look straight ahead. So, the peripheral
placement is less threatening and is cuter. This part is
informed by research, and the robot was made with
peripheral eyes. However, we placed the cameras to see
straight ahead and not lose robot’s functionality.”
(Subject 9, Male)

Insights derived from researching animal features revealed the
importance behind eye placement. Since this robot was intended

to be “a cute animal”, mainly to have impact on the educational
sector, its eyes were positioned on the side of the face to be
perceived as approachable and friendly. Subject 9 also relied on
his basic understanding of human behavior as a point of reference
in the design process. The decision to model the robot after a pet
was driven by his perspective that humans view their pets as
companions:

“Everyone talks to their pets. Find me someone that does
not talk to a pet. But does the pet understand?” (Subject
9, Male)

An important data point is the background and experiences of
robot builders. Arguably, each subject drew upon unique experiences
and knowledge when designing the robots. Subjects 10 and 11
explicitly mentioned expertise as a driving force. For example,
“when the focus was hardware, the improvements were made
based on failures and expertise” (Subject 11, Male). Similarly,
relying on their background in robotics and HRI when faced
with design decisions was important: “A lot of [the development
process of a robot] was all about just trying to take the lessons learned.
I’ve been in HRI for how many years, and it is like, hey, this is what
people have shown so far. How do we apply these principles?” (Subject
10,Male). Thus, a main data point is the team’s expertise and unique
background, which can inform the process of robot development
and the underlying decisions made.

4.2 User Involvement in Robot Design
We identified three degrees of user or customer
involvement in social robot development (see Figure 3).
We note that in some stages of the robot’s development,
users can be involved in more than one way. Further, it is
not our intention to map specific robots to specific degrees
of user involvement.

4.2.1 Minimal User Involvement
This category includes robot development workflows that
consider minimal input from users during robot design and
testing. Here, users lack a concrete presence/identity and are
brought in to test the robot’s functionality, not to measure
whether the robot meets deployment needs (e.g., cost,
engagement in the interaction). In this case, users’
involvement is limited or nonexistent throughout robot
development. Subject 10 mentioned that the team did not
have a specific target user in mind throughout design and
testing. This can be seen in the minimal user involvement,
especially in the testing and evaluation stage:

“Mostly, what we were able to do was show to other
people in the company who weren’t working directly on
this robot. . .Sort of like grabbing another person in your
lab and being like, ’Hey, look at this.’ It wasn’t as formal
as a user study.” (Subject 10, Male)

In this case, the robot was tested within the team instead of
with actual users or customers who would be buying and
using it. In terms of design, most of the larger decisions were

FIGURE 3 | Different degrees of user or customer involvement in the
development of a social robots.
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made by the team without direct user input. For instance, the
decision to include prominent feminine features in the robot
was made solely by the team, none of whom were women.
This decision was a topic of contention among customers and
stakeholders:

“We got push-back because the silhouette [of the robot]
has a very thin waist and a prominent chest area. People
sort of mentioned that was perhaps feeding the
stereotype. There’s this whole thing about gendered
robots and gender perceptions, and we probably
could’ve done a better job with that aspect.” (Subject
10, Male)

As such, not involving the users or customers who represent
specific demographics in the design stage negatively affected the
outcome and resulted in perceptions of stereotypes perpetuation
that were neither initially intended nor considered. This was
identified as a pain point and a reflection for different future
decisions when creating robots: “I would probably fight harder to
bring other voices to the table. I think there’s a strong view of ‘Oh,
we know what we want to build,’ and less input from potential
customers.” (Subject 10, Male). This demonstrates the importance
of defining the target user to guide the direction of robot design,
gathering insights on their needs, and including them in design
evaluation to ensure their needs are met.

Another example of a low-level of user involvement in
development is stated by Subject 6: “I don’t think it was a
super user-driven design. We didn’t have a ton of users.”
(Subject 6, Male). Instead, the design was driven by “the
simplest possible mechanism that could still give us a wide
range of expression and expressive motion” (Subject 6, Male).
Here, the workflow behind this robot seemed to prioritize
optimization over user involvement.

4.2.2 User as Part of the Workflow
Through the lenses of HCD, users are central parts of the design
flow when they are included in different parts of the robot
development process. Knowledge gathered from the users at
different design stages enables a holistic understanding of their
needs, much like an outline or pattern of what would be desired in
a robot. This informs the research with a specific population of
user views to reflect in the design requirements (Cooley, 1999;
Buchanan, 2001). For instance, Subject 3 uncovered many key
insights from user input when designing the robot, which helped
her understand what users want in a robot and why:

“I did a survey on the robot with the target age group.
And what was interesting about that age group is that
they didn’t want a robot to share. They wanted a robot
for themselves. They wanted that robot in their room.
They wanted it because they spent a lot of time in their
rooms. They wanted a study buddy but also wanted
something that I suppose wasn’t threatening. It was like
social media and everything, but something that was
kind of like their own friend, that was just theirs.”
(Subject 3, Female)

User insight drove design decisions concerning how to convey
the robot’s purpose, character, and story. Instead of asking
customers for their desired features, the team let users drive
the design by investigating the underlying feelings behind
companionship and how they might interact with a robot.
From there, the team created physical representations of the
user’s feelings. For instance, the need for a non-threatening robot
that could act as a study buddy or friend informed the design of
communicative features, non-humanoid design, and genderless
identity.

Subject 2 took a similar approach in centering the user in the
workflow. One process involved designing a companion robot for
the elderly population to help them cope with loneliness, as
expressed below:

“We did a lot of interviews with the elderly where we
showed them different types of robots, and we did
thematic coding of what they think of these different
robots. We then made guidelines for designing a complex
social robot for the elderly, and a few things came up in
the end that we used as guidelines for the design of other
robots.” (Subject 2, Male)

Through interviews with the target demographic, they were
able to drive the design of the robot through guiding design
requirements. From the user’s input, they “designed a social robot,
which has social features aiming at giving people the feeling of
being seen.” (Subject 2, Male), which was one of the most salient
needs amongst the elderly population they interviewed.
Furthermore, the users were continually involved throughout
the other stages of design. In addition to using interviews, robot
developers applied other methods to understand the users and
gather their input. For instance, they “took videos of different
robots that represent different kinds of robots. We showed them a
few different robots and got information from them.” (Subject 2,
Male).

Different methods were used according to the competencies of
different users: “For 2 years, we observed how children play with
the robot prototypes that we gave them. They were always part of
the process; it just didn’t work asking them what the liked or not,
we just need to sit still and observe. This would tell us what needed
improvement.” (Subject 13, Female). In this way, the user was a
central part of the workflow and drove robot design. The different
inputs gathered at different design stages enabled a constellation
of knowledge about the users’ needs, desires, and wishes for
the robot.

4.2.3 User as a Reference Point
Users can also act as reference points that drive the
development of a robot. In this case, the design process
consists of a fine balance between user input, designer’s
decisions, and business or time constraints. For instance,
Subject 1 elaborated on the intricate dance of including
customers in the development of the product while
maintaining the designer’s vision: “The idea that you have
is still important, and it is a very, very fine balance because you
have to make sure you are building something for the users, but
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it is also very easy to ask the wrong questions here.” (Subject 1,
Male).

After asking users what they want, robot builders can be
inundated with complex features ideas that increase robot
costs. There might be reluctance to let users drive the design
process since the process can become subject to the ‘feature creep’
phenomenon [(Thompson and Norton, 2011)]:

There is a name in the start-up world, which is ’feature
creep,’ where basically you keep on adding, and adding,
and adding, and adding features to your product because,
well, your customers are asking. It’s actually a huge risk,
and it kills companies because it takes time to develop
features, and it’s very, very costly to develop something
that’s wrong because it’s something that the users say they
want or need, but it’s not something that they would need
somuch that they would pay for your product.” (Subject 1,
Male)

Feature creep introduces the dilemma that exists when asking
for user input. On one hand, it is important to ask for and
integrate user feedback in order to meet their needs. On the other
hand, including user input runs the risk of adding features to the
point of driving up costs, developing something that is not
marketable, and creating an overly complex product. Instead,
there are ongoing negotiations about finding balance between
user involvement and the designer’s visions for the robot. One
way to achieve this balance can be to include users in overcoming
major pain points of the robot’s design:

“The way to think about that is to not build something
that does everything, but to have the design process set up
so that you actually build for one thing that is very, very,
very specific and that solves a very big pain of your
customers or users.” (Subject 1, Male)

They refer to this approach as “solution viability”, which is
related to the idea of “building something that is so good and solves
such a big problem that people are actually willing to give you
money for it, regardless of whether you ask them for this money or
not.” (Subject 1, Male).

4.2.4 User as a Theoretical Construct
The user can also be included as a theoretical construct or as a
simulation. For the former, a set of assumptions about users is
derived from the experience or specific pain points of the team
who created the robot; however, these assumptions are not always
tested and might lead to biased decisions during robot
development. For example, among the target users for MiRo
are children who are not interested in coding, despite the robot
being developed to teach programming skills to children:

“A lot of kids that put aside coding in school are enjoying
teaching a cute animal, which is what it [the robot] is
intended to be. This is because we want to bring creative
kids to coding and interacting with the robot, because a
lot of kids are not into coding.” (Subject 9, Male)

This example shows how the robot’s target user differed from
the theoretical construct held by the team based on their previous
experiences. Subject 9 elaborates on this: “There was also a team
that when designing [the robot] expected it only to be used for
university students and not kids or the elderly, so they were not
included at the time in the design.” Although the subset of target
users was considered during certain stages of design, they were
not fully integrated in all areas of the workflow. In this case,
assumptions were made about children’s low interest in learning
to program that were not always investigated. Instead, this user
demographic existed in their design but served as a theoretical
construct with limited actual involvement. While this resulted in
positive outcomes for this particular robot, “Unintentionally, it
[the robot] has been more successful than what we thought it would
be.” (Subject 9, Male), this is not true for many robot companies
that eventually cease operations.

Users can also be simulated using algorithms. In this case,
instead of testing the robot with real users, the team can perform a
series of virtual simulations to assess how a robot would behave in
an interaction scenario among people. Another situation can take
place when users are asked to provide feedback of a virtual,
simulated robot. While the feedback from users can be valuable,
their experience of interacting with a virtual robot can
significantly differ than their experience interacting with a
physical robot, which can bias the design and development
process in ways that are not optimal for user adoption. For
example, “We developed a questionnaire for HRI researchers
where they were asked what they wanted in terms of degrees of
freedom for the robot.” (Subject 11, Male). However, the team
quickly realized that users wanted more than what was feasible to
achieve in a physical robot (compared to the virtual robot shown
in the questionnaire). Thus, we observe the necessity of testing a
physical robot with real people during robot development, where
substantial changes can be made, if necessary, to avoid biases
about users needs.

4.3 Team Composition When Designing
Social Robots
Several main topics emerged when discussing the composition
of teams that create robots: 1) all interviewed subjects
belonged to interdisciplinary teams, 2) the majority of
teams used outsourcing for special skill acquisition, 3) most
teams relied on international sites to manufacture scalable
robots. This section describes these topics and discusses the
human dynamics underlying the challenges and success of
these teams.

4.3.1 Interdisciplinary Teams
To create a social robot is to create an artificial being. Therefore,
the design, development, and testing of social robots calls for
interdisciplinary team composition. Reviewing our subjects’
backgrounds (Table 1), we see that teams are generally
composed of mechanical and electrical engineers, computer
scientists, psychologists, and artists.

When referring to how their team is composed, it was
mentioned: “We had the two founders and CEO, so they have
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an electrical engineering background and a design mechanical
engineering background. We had a mechanical engineer, a very
serious developer (really top notch), a second electrical engineer,
and then me. And I think we had a second 3D designer.” (Subject
10, Male). Another subject highlighted the richness of social robot
design when knowledge from different fields is incorporated:

“I come from an animation and design background. I
always worked to aesthetic principles, which is super
important to robotics.” (Subject 3, Female)

This idea was further reinforced:

“The team brought in different insights. I brought the
HRI part with the human scenarios, then there was the
hardware of how to actually build it, and the designers
were about how can we shape it. They knew what really
looks good.” (Subject 10, Male)

All interviewees mentioned they had interdisciplinary teams
and acknowledged the complexity of creating a social robot. The
main insight here is that interdisciplinary teams have the required
knowledge to create social robots.

4.3.2 Outsourcing Special Skills
Despite the necessity of working with interdisciplinary team
members, not all team members are needed at all stages of
robot development, and some roles are outsourced. This brings
the advantage of decreasing the complexity of the ‘core team’ of
robot builders and of making the product scalable and successful:
“The most robust robot that we built was with a collaborator, who
was a mechanical engineering consultant.” (Subject 12, Male).

According to the interviewees, the design of the robot is
explored within a small and cohesive team, and the product is
then outsourced to be manufactured at scale when there is a final
prototype: “We worked with an external manufacturer; you need
to come to them with a product, and they do design for
manufacturing.” (Subject 1, Male). The important aspect is to
provide a prototype that is ‘manufacturable,’ a complex topic that
depends on “all the processes that need to happen to make
something at scale.” (Subject 1, Male).

It is important that external manufacturing companies have
previous experience with building social robots or some type of
technology: “They should have done a robot before.” (Subject 9,
Male) because of reliability issues:

“It’s a very different ‘animal’ if you’ve built hardware but
without moving parts or when you actually need to move.
Here, you get into the reliability issues and how you build
something that does not hurt the user but at the same
time is robust enough. You need to find someone that has
experience with hardware, robots, or mechatronics
products somehow.” (Subject 1, Male)

Besides using external manufacturing companies to build the
robot, other team roles were outsourced, such as artists, “We had
several contracted animators who also helped with designing and

animating some eyes.” (Subject 4, Male); public relations team
members, “This is related to how you interact with customers;
that’s pretty important, and you will want to keep this in mind as
well.” (Subject 1, Male); and marketing, “Marketing dealt with
public relations, mostly. We had a third-party public relations firm
that worked with us a lot.” (Subject 7, Female). There were some
discussions about what types of team roles should not be outsourced;
for example, according to Subject 1 (Male), “I recommend not
outsourcing anything that is software; that’s something you have
to be building, and it is important to be in-house.”

4.3.3 International Personnel for Manufacturing
With few exceptions, the majority of the teams hired external
manufacturing companies to build social robots: “Our internal
hardware team did some electrical and mechanical engineering,
but we also interfaced with the various contractors. Flew to China
a whole lot.” (Subject 7, Female). According to Subject 10 (Male),
“We actually had a very good relationship with a manufacturing
plant in China, and they brought another piece of, like, what can
you actually build and scale.” The idea that building a social robot
requires joining the forces frommultiple disciplines is highlighted
in this quote:

“We’re working with The Netherlands, Germany, the
States, Australia, Japan, China. I mean, it’s an
international project.” (Subject 3, Female)

Some companies had no problem working with international
teams, “Japan, Taiwan, we worked with them to build it. The
distance was not a problem.” (Subject 9, Male). Other teams
struggled to find the balance between team cohesion and long-
distance professional relationships:

“While it is great to be working across distances, it was
rather difficult to coordinate the development of this
robot, especially due to differing time zones.” (Subject 4,
Male)

This was supported by others:

“I was never in Chinamyself, but my impression of that is
that to get things the way we wanted them, there had to
be that very tight on the ground interaction [between the
external manufacturing company and the core team]. To
have someone there, keeping eyes on things and
stop(ping) it from going in the wrong direction.”
(Subject 10, Male)

The main challenge with international teams was to develop
solid and sustainable relationships: “It was hard to organize times
for direct communication through video conferences, and getting
timely responses before deadlines was difficult.” (Subject 4, Male).
Inter-team synchronicity and mutual understanding was
important because “Manufacturing companies have their own
team, and we want someone representing our company sitting in
the meeting.” (Subject 10, Male) so that both views are
represented.
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Different strategies were used by the teams to build a
coordinated relationship across the globe. One way teams tried
to synchronize was to go on-site to the manufacturing company,
“They [the engineers] would frequently go to the factory for . . .weeks
at a time when some [robot] units were coming off. They would . . .
just go to China for . . .3 weeks at a time and . . .stay there and
intensively watch stuff roll off the line and tweak the process.”
(Subject 6, Male). However, there can be instances where a team
member going on-site is impossible, so another solution was raised:
“We’d probably want to have at least an independent agent in
China. That could be either someone in your own staff or you need
to hire someone in China who reports to you and not the
manufacturing company.” We note that most of the external
manufacturing companies referred during this study were
located in China chiefly because they have the “skills and
knowledge for making things super for us, like, really lowering
the cost.” (Subject 12, Male).

5 DESIGN IMPLICATIONS

Throughout this paper, we exposed different approaches to
creating robots. Given the knowledge gathered, we now
synthesize our findings into design recommendations for new
robots. These recommendations map different design processes
to different ways users are brought in the design of social robot.
Additionally, we elaborate on the opportunities and challenges of
the approaches (see Table 2). We hope to inspire future robot
creators to alter their design pipelines accordingly.

5.1 Robot Design With Human in Mind
Throughout this paper, we surfaced the benefits of users’
involvement in the design of social robots. We consider it
equally important to explicitly voice the negative impacts that
non-human-centric robot design processes can have. A non-
human-centric design process refers to minimal or non-existent
user/customer involvement in the process of robot design.
Designing robots without users in mind can lead to stereotype
propagation, creation of erroneous assumptions about what the
users need are, over-generalization and misinterpretation of
problems, and other forms of bias, such as the creation of
solutions that do not fit the user’s ecosystem (Benjamin,
2019). If robots are not designed with humans in mind, they
can rarely succeed in helping to solve a real need or problem,
falling short in the market since consumers avoid investing in
expensive products (such as robots) that do not help them in

concrete ways. In this work, we argue that one of the most
powerful ways to counteract biases in social robot design is to
follow design justice practices by creating a design pipeline that is
human-centered (Costanza-Chock, 2020). By doing so, robot
creators can translate human values, voices, and needs into
actionable design decisions for the robotic products they are
creating.

5.2 Distinctiveness of Social Robot Design
Designing social robots is a unique process that may not apply to
other technologies. Many theories and practices from the field of
human-computer interaction (HCI) need to be considered in this
process. For example, designing robots underlies an iterative
process, based on human needs, that requires technical
precision. While designing social robots shares aspects with
HCI, there are unique features of this design process that are
specific to HRI. A key insight from this work is that building a
robot is, in some ways, equivalent to the complexity of building an
artificial being. When designing social robots, we must account
for variables such as robot personality, artificial emotion
expression, conversational abilities, and movement/gestures.
For example, a robot can have varying levels of expressivity;
they are actuated and communicate throughmovement to change
the physical world we live in; and they are almost always
anthropomorphized to a certain degree. Thus, when
determining a robot’s “purpose,” it is essential to consider the
combination of these variables, which cause problems unique to
social robot creation.

5.3 Variable Alignment for Successful
Robots
While it was not the goal of this qualitative study to identify and
correlate variables associated with successful/unsuccessful robot
products, we highlight different processes and strategies used by
robot creators to better understand the challenges of building
robots. Besides defining the purpose of the robot, one of the
most important variables for success, our work showed a set of
other variables that must be aligned. These variables include
working in interdisciplinary teams, relying on outsourced labor
to scale the product across time, and establishing effective
international professional relations. A deeper understanding of
these variables made clear that robot success in the consumer
market is related not only to units of sale, but to the alignment of a
complex set of variables that come into play long before the robot
first appears on market shelves.

TABLE 2 | Synthesis of recommendations when designing new social robots.

Design
process

Role of the user Opportunities Obstacles

Iterative User is part of the
workflow

Flexible design process consists of improvement loops in the robot
considering users’ feedback

Design process can be chaotic, time consuming, and
requires access to multiple users

Linear There is minimal user
involvement

Design process is well-defined and concrete. This can lead to faster
results since it is easy to define cost, stages, and time

Design process is rigid, which can lead to undesirable
results as it lacks iteration

Data points User is a theoretical
construct

This is an economical design process since it leverages accumulated
expert knowledge or generalization

Risks include stereotyping the user and excluding
non-traditional populations
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5.4 Additional Aspects on Social Robot
Design
This work uncovered additional information about the design
process of social robots. Despite going beyond the proposed
research questions, we include this information as it can
influence how future robot creators conceive designing
a robot.

5.4.1 Success Through Purpose
It is essential to have a concrete answer to the question, “Why are
we building this robot?” As a participant mentioned, “You should
start with a need and provide a solution. You can say ‘I have a
robot’ and then look for the problem you want to solve, but I don’t
think this strategy is effective.” (Subject 1, Male).

Being able to quantify how successful a robot is important and
directly tied to the robot’s purpose. In a university lab, success might
be measured by the learning gains of students or the publication
record using the created robot. In amarket context, success might be
evaluated per unit sales or number of customer complaints. Defining
metrics of success lets us circle back to the question of “Why are we
building this robot?” and evaluate whether the initial purpose for
robot creation is being successfully met.

5.4.2 For Accuracy, Double Everything
In a study that evaluated time predictions for a coding task,
results showed that programmers take 1.5x more time than
initially expected, showing how “We are the worst at
completing a task in the originally planned amount of time.”
(Brauer, 2021). Our study shows that this is true even for expert
robot creators. As one participant mentioned, “It sounds simple, it
is like, oh yeah everything is here, we have all the things, but like
getting something to actually work and be reliable for a long time
and also keeping the knowledge of the complex system if they don’t
document, test things very, very rigorously, which is next to
impossible.” (Subject 2, Male).

A major pain point identified during our study was the
underestimation of effort and cost inherent in creating a social
robot, which can lead a company to fail in meeting important
deadlines and initially agreed upon business goals. As a participant
mentioned, to be successful “double is the metric. Double everything:
time, costs, everything.” (Subject 11, Male). to address this design
implication, it is crucial to identify the exact robot functionalities to
combat the tendency to add unplanned features. In social robot
design, it is easy to lose track of the initial vision for the robot when
new insights and feedback are being delivered by users testing it. We
argue that instead of designing for features, robot builders could
adopt the approach of designing for meaning. Towards this end,
users’ preferences should drive robot design decisions in meaningful
ways, keeping in mind the original purpose for the robot.

5.4.3 Simplicity in Design, Robustness in Function
The combination of simplicity and robustness in a robot are
two design values that matter for its success. As participants
mentioned, “If I had to build a robot, I’d build a waaaay less
complex and smaller robot.” (Subject 8, Female), and “It is
preferable [to build a robot] that is simple, niche, and that can

be done well.” (Subject 1, Male). Simplicity has been a core
design principle adopted in many ways in the design of
technologies (Chang et al., 2007); it avoids anything
getting in the way of the user and is defined in design as
the lack of obstruction (Karvonen, 2000). However, most
current robots fall into the category of humanoid robots,
with highly complex features that run counter to the principle
of simplicity. Additionally, humanoid robots frequently fall
prey to the uncanny valley effect, i.e., feelings of uneasiness
towards a robot that looks like a human but is not really
human, which could be avoided by taking a simpler design
approach that allows for more robustness (Mori et al., 2012).

Striving for simplicity, not only in terms of hardware but also
in terms of robot identity and behavior, seems important when
creating a robot. In this sense, the robot should pass a clear
message to the user about what it is, what it can do, and how it will
behave. Given this work, we argue that this can be conveyed in a
robot through its aesthetics, such as its materiality, colors, and
motions.

6 CONCLUSION

This work shed light on the design, development, and testing
processes of creating social robots. The main goal of this
qualitative investigation was to provide in-depth insights
about building robots as marketable products that work in
the real world. We have shown the existence of several layers in
the design of robots: from different development processes, to
several degrees of user involvement, to the complexity of team
compositions. All things considered, creating robots is an
extremely complex process that requires the alignment of
many variables to result in a successful and lasting market
product. It is thus important to question and consider the
value of a robot in our lives and its place in the socio-
technological world we live in and the future we want to create.
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