
EDITED BY : Nianyin Zeng, Kathy Clawson and Yonghong Peng

PUBLISHED IN :  Frontiers in Public Health, Frontiers in Medical Technology, 

Frontiers in Computational Neuroscience and 

Frontiers in Physiology

DATA-ENABLED INTELLIGENCE 
FOR MEDICAL TECHNOLOGY 
INNOVATION, VOLUME I

https://www.frontiersin.org/research-topics/15899/data-enabled-intelligence-for-medical-technology-innovation-volume-i
https://www.frontiersin.org/research-topics/15899/data-enabled-intelligence-for-medical-technology-innovation-volume-i
https://www.frontiersin.org/research-topics/15899/data-enabled-intelligence-for-medical-technology-innovation-volume-i
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/research-topics/15899/data-enabled-intelligence-for-medical-technology-innovation-volume-i


Frontiers in Public Health 1 February 2022 | Data-Enabled Intelligence

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88974-452-7 

DOI 10.3389/978-2-88974-452-7

https://www.frontiersin.org/research-topics/15899/data-enabled-intelligence-for-medical-technology-innovation-volume-i
https://www.frontiersin.org/journals/public-health
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Public Health 2 February 2022 | Data-Enabled Intelligence

DATA-ENABLED INTELLIGENCE 
FOR MEDICAL TECHNOLOGY 
INNOVATION, VOLUME I

Topic Editors: 
Nianyin Zeng, Xiamen University, China
Kathy Clawson, University of Sunderland, United Kingdom
Yonghong Peng, Manchester Metropolitan University, United Kingdom

Citation: Zeng, N., Clawson, K., Peng, Y., eds. (2022). Data-Enabled Intelligence 
for Medical Technology Innovation, Volume I. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88974-452-7

https://www.frontiersin.org/research-topics/15899/data-enabled-intelligence-for-medical-technology-innovation-volume-i
https://www.frontiersin.org/journals/public-health
http://doi.org/10.3389/978-2-88974-452-7


Frontiers in Public Health 3 February 2022 | Data-Enabled Intelligence

05 Editorial: Data-Enabled Intelligence for Medical Technology Innovation, 
Volume I

Nianyin Zeng, Kathy Clawson and Yonghong Peng

07 Causal Discovery in Radiographic Markers of Knee Osteoarthritis and 
Prediction for Knee Osteoarthritis Severity With Attention–Long 
Short-Term Memory

Yanfei Wang, Lei You, Jacqueline, Lan Lan, Weiling Zhao, Yujia Zhou, 
Hua Xu, Philip Noble and Xiaobo Zhou

17 Diagnosis of Patellofemoral Pain Syndrome Based on a Multi-Input 
Convolutional Neural Network With Data Augmentation

Wuxiang Shi, Yurong Li, Baoping Xiong and Min Du

26 Variations of Time Irreversibility of Heart Rate Variability Under 
Normobaric Hypoxic Exposure

Yang Li, Jianqing Li, Jian Liu, Yong Xue, Zhengtao Cao and Chengyu Liu

34 A Psychometric Platform to Collect Somatosensory Sensations for 
Neuroprosthetic Use

Giacomo Valle, Francesco Iberite, Ivo Strauss, Edoardo D’Anna, 
Giuseppe Granata, Riccardo Di Iorio, Thomas Stieglitz, Stanisa Raspopovic, 
Francesco M. Petrini, Paolo M. Rossini and Silvestro Micera

46 Fatty Liver Disease Prediction Model Based on Big Data of Electronic 
Physical Examination Records

Mingqi Zhao, Changjun Song, Tao Luo, Tianyue Huang and Shiming Lin

54 Adaptive Sparse Detector for Suppressing Powerline Component in EEG 
Measurements

Bin-qiang Chen, Bai-xun Zheng, Chu-qiao Wang and Wei-fang Sun

63 Ultra-Resolution Spectral Correction Based on Adaptive Linear Neuron 
for Biomedical Signal Processing

Binqiang Chen, Baixun Zheng and Weifang Sun

67 Economic Burden of Major Diseases in China in 2013

Xianyan Song, Lan Lan, Ting Zhou, Jin Yin and Qiong Meng

75 Reducing False-Positives in Lung Nodules Detection Using Balanced 
Datasets

Jinglun Liang, Guoliang Ye, Jianwen Guo, Qifan Huang and Shaohui Zhang

83 Gaussian Process Autoregression for Joint Angle Prediction Based on 
sEMG Signals

Jie Liang, Zhengyi Shi, Feifei Zhu, Wenxin Chen, Xin Chen and Yurong Li

98 Research on the Construction and Application of Breast Cancer-Specific 
Database System Based on Full Data Lifecycle

Yin Jin, Wang Junren, Jiang Jingwen, Sun Yajing, Chen Xi and Qin Ke

109 Multi_Scale_Tools: A Python Library to Exploit Multi-Scale Whole Slide 
Images

Niccolò Marini, Sebastian Otálora, Damian Podareanu, Mart van Rijthoven, 
Jeroen van der Laak, Francesco Ciompi, Henning Müller and 
Manfredo Atzori

Table of Contents

https://www.frontiersin.org/research-topics/15899/data-enabled-intelligence-for-medical-technology-innovation-volume-i
https://www.frontiersin.org/journals/public-health


Frontiers in Public Health 4 February 2022 | Data-Enabled Intelligence

121 FPGA-Based High-Performance Phonocardiography System for 
Extraction of Cardiac Sound Components Using Inverse Delayed Neuron 
Model

Madhubabu Anumukonda, Prasadraju Lakkamraju and 
Shubhajit Roy Chowdhury

132 Identifying the Phenotypic and Temporal Heterogeneity of Knee 
Osteoarthritis: Data From the Osteoarthritis Initiative

Mengjiao Li, Lan Lan, Jiawei Luo, Li Peng, Xiaolong Li and Xiaobo Zhou

142 Improvements in Medical System Safety Analytics for Authentic Measure 
of Vital Signs Using Fault-Tolerant Design Approach

Prasadraju Lakkamraju, Madhu Anumukonda and Shubhajit Roy Chowdhury

156 OSA Patient Monitoring Based on the Beidou System

Cai Liangming, Cai Xiaoqiong, Du Min, Miao Binxin, Lin Minfen, 
Zeng Zhicheng, Li Shumin, Ruan Yuxin, Hu Qiaolin and Yang Shuqin

https://www.frontiersin.org/research-topics/15899/data-enabled-intelligence-for-medical-technology-innovation-volume-i
https://www.frontiersin.org/journals/public-health


EDITORIAL
published: 14 January 2022

doi: 10.3389/fmedt.2021.841150

Frontiers in Medical Technology | www.frontiersin.org 1 January 2022 | Volume 3 | Article 841150

Edited and reviewed by:

Yu-Dong Zhang,

University of Leicester,

United Kingdom

*Correspondence:

Nianyin Zeng

zny@xmu.edu.cn

Specialty section:

This article was submitted to

Medtech Data Analytics,

a section of the journal

Frontiers in Medical Technology

Received: 22 December 2021

Accepted: 22 December 2021

Published: 14 January 2022

Citation:

Zeng N, Clawson K and Peng Y

(2022) Editorial: Data-Enabled

Intelligence for Medical Technology

Innovation, Volume I.

Front. Med. Technol. 3:841150.

doi: 10.3389/fmedt.2021.841150

Editorial: Data-Enabled Intelligence
for Medical Technology Innovation,
Volume I

Nianyin Zeng 1*, Kathy Clawson 2 and Yonghong Peng 3

1Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China, 2 School of Computer Science,

University of Sunderland, Sunderland, United Kingdom, 3Department of Computing and Mathematics, Manchester

Metropolitan University, Manchester, United Kingdom

Keywords: medical data analysis, digital health, data-enabled intelligence, artificial intelligence, machine learning,

med-tech

Editorial on the Research Topic

Data-Enabled Intelligence for Medical Technology Innovation, Volume I

Artificial intelligence (AI) is increasingly being applied to solve real-world problems across a variety
of domains and provides opportunities to reshape healthcare, the economy, science, and beyond. In
this context, AI- enabled Medical Technology (Med-Tech) has been gaining a significant amount
of attention and interest. The development of Med-Tec that incorporate AI, big data methods, and
Internet of Things (IoT) can enhance quality of life and has aroused academic interest within the
global science community. There is increasing research focusing on how data-driven methods can
be utilized to gain greater understanding of medical data, enhance decision making, and leverage
operational efficiencies.

Med-tech is of significant importance in this big-data era—it facilitates the development of more
advanced devices and corresponding algorithms in order to address global healthcare challenges.
This Research Topic seeks original research articles in data science and artificial intelligence that
extend medical technology innovation and facilitate a better understanding of the frontiers of AI
methods in medical areas.

We are pleased to see the quality and volume of research that was submitted to our topic
in data-enabled intelligence for medical technology. We received a total of 28 international
submissions from scholars in a variety of countries (China, United States, Switzerland, Netherlands,
Sweden, Italy, India, and Germany) and accepted 16 quality and most relevant articles. We
provide a brief introduction of accepted papers herein, and welcome readers to refer to these
papers and their associated references for more details on the topic. Liangming et al. proposed
an obstructive sleep apnea patient rescue monitoring system which provided data support via
a Beidou satellite system. Jin et al. presented a breast cancer-specific database and analysis of
corresponding applications based on big data techniques. Li M. et al. employed a subtype and
stage inference model to identify subtypes of knee osteoarthritis. Liang, Shi, et al. designed a
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Gaussian process model to predict knee joint angles via
surface electromyography signals. Marini et al. developed a
library of convolutional neural network (CNN) structures to
extract multi-scale information from whole slide images. Chen
B.-q. et al. proposed a separation method on the basis of
adaptive linear neuron, where the intrinsic structure of data
was depicted by an autoregressive model. Liang, Ye, et al.
designed a computer-aided detection (CAD) system based
on faster R-CNN for early diagnosis of lung cancer via CT
images. Chen B. et al. proposed an adaptive sparse detector for
reducing power line interference based on sparse representation.
Zhao et al. employed machine learning techniques to build
a prediction model for large-scale screening of fatty liver
disease. Lakkamraju et al. used fault-tolerant features in a
non-invasive medical diagnostic framework to enhance system
reliability. Anumukonda et al. designed an ANN-based multi-
channel phonocardiography system for extracting cardiac sound
components. Song et al. applied a two-step model and a human
capital method to assess the economic burden of disease (EBD)
in China. Shi et al. proposed a multi-input convolutional neural
network to diagnose patellofemoral pain syndrome. Valle et
al. developed a standard psychometric platform that could be
used for data analysis in the somatosensory neuroprosthetics
domain. Li Y. et al. carried out research on time irreversibility
of HRV in a hypoxic environment. Wang et al. established
an attention mechanism integrated long short-term memory
(LSTM) model to predict Kellgren/Lawrence (KL) grade for knee
osteoarthritis patients.

We would like to thank all authors again for their
contributions to this special topic, and we very much appreciate
the efforts of the reviewers for ensuring manuscript quality. It is
highly hoped that this special topic could effectively advance the
state-of-the-art innovations in medical technology.

AUTHOR CONTRIBUTIONS

NZ wrote the editorial. KC and YP edited the editorial.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported in part by the Natural Science
Foundation of China under Grant No. 62073271, International
Science and Technology Cooperation Project of Fujian
Province of China under Grant No. 2019I0003, in
part by the UK-China Industry Academia Partnership
Programme under Grant No. UK-CIAPP-276, in part by
the Open Fund of Engineering Research Center of Big Data
Application in Private Health Medicine of China under Grant
No. KF2020002.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those

of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Copyright © 2022 Zeng, Clawson and Peng. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Medical Technology | www.frontiersin.org 2 January 2022 | Volume 3 | Article 8411506

https://doi.org/10.3389/fcomp.2021.684521
https://doi.org/10.3389/fpubh.2021.669190
https://doi.org/10.3389/fpubh.2021.671070
https://doi.org/10.3389/fpubh.2021.682377
https://doi.org/10.3389/fpubh.2021.668351
https://doi.org/10.3389/fmedt.2021.666671
https://doi.org/10.3389/fmedt.2021.666650
https://doi.org/10.3389/fpubh.2021.649624
https://doi.org/10.3389/fpubh.2021.643191
https://doi.org/10.3389/fmedt.2021.619280
https://doi.org/10.3389/fphys.2021.607356
https://doi.org/10.3389/fpubh.2020.604654
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


ORIGINAL RESEARCH
published: 18 December 2020

doi: 10.3389/fpubh.2020.604654

Frontiers in Public Health | www.frontiersin.org 1 December 2020 | Volume 8 | Article 604654

Edited by:

Nianyin Zeng,

Xiamen University, China

Reviewed by:

Zichen Xu,

Nanchang University, China

Guozheng Rao,

Tianjin University, China

*Correspondence:

Xiaobo Zhou

Xiaobo.Zhou@uth.tmc.edu

Specialty section:

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

Received: 10 September 2020

Accepted: 09 November 2020

Published: 18 December 2020

Citation:

Wang Y, You L, Chyr J, Lan L,

Zhao W, Zhou Y, Xu H, Noble P and

Zhou X (2020) Causal Discovery in

Radiographic Markers of Knee

Osteoarthritis and Prediction for Knee

Osteoarthritis Severity With

Attention–Long Short-Term Memory.

Front. Public Health 8:604654.

doi: 10.3389/fpubh.2020.604654

Causal Discovery in Radiographic
Markers of Knee Osteoarthritis and
Prediction for Knee Osteoarthritis
Severity With Attention–Long
Short-Term Memory
Yanfei Wang 1, Lei You 1, Jacqueline Chyr 1, Lan Lan 1, Weiling Zhao 1, Yujia Zhou 1, Hua Xu 1,

Philip Noble 2 and Xiaobo Zhou 1,2*

1 School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States,
2McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States

The goal of this study is to build a prognostic model to predict the severity of radiographic

knee osteoarthritis (KOA) and to identify long-term disease progression risk factors

for early intervention and treatment. We designed a long short-term memory (LSTM)

model with an attention mechanism to predict Kellgren/Lawrence (KL) grade for knee

osteoarthritis patients. The attention scores reveal a time-associated impact of different

variables on KL grades. We also employed a fast causal inference (FCI) algorithm to

estimate the causal relation of key variables, which will aid in clinical interpretability. Based

on the clinical information of current visits, we accurately predicted the KL grade of

the patient’s next visits with 90% accuracy. We found that joint space narrowing was a

major contributor to KOA progression. Furthermore, our causal structure model indicated

that knee alignments may lead to joint space narrowing, while symptoms (swelling,

grinding, catching, and limited mobility) have little impact on KOA progression. This study

evaluated a broad spectrum of potential risk factors from clinical data, questionnaires,

and radiographic markers that are rarely considered in previous studies. Using our

statistical model, providers are able to predict the risk of the future progression of KOA,

which will provide a basis for selecting proper interventions, such as proceeding to

joint arthroplasty for patients. Our causal model suggests that knee alignment should

be considered in the primary treatment and KOA progression was independent of

clinical symptoms.

Keywords: LSTM – Long Short-Term Memory, attention-LSTM, causal inference, prediction model, disease

progression

INTRODUCTION

Osteoarthritis (OA) is a common disease in older individuals, and the economic burden of OA
rapidly increases with obesity prevalence and aging in the United States. Knee osteoarthritis
(KOA) is the most prevalent type of osteoarthritis with around 22.7% (54.4 million) adults
diagnosed with arthritis in the United States (1). The main symptoms of knee OA (KOA)
are pain, stiffness, and swelling. These symptoms cause inconvenience to everyday life,
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and some people may even lose their physical ability due to
this. Once the symptoms appear, it is hard to be cured since
damage to the joints cannot be reserved. There is no effective
disease-specific drug for this irreversible degenerative disease
currently (2). Medication only helps to relieve OA symptoms,
primarily pain. Since OA is a slow-developing disease, it is
often undiagnosed until symptoms appear, so the best treatment
opportunity is missed. It is estimated that the number of total
knee replacement surgery or knee arthroplasty (TKA) will reach
1.26 million by 2030 in the United States (3). Considering the
rapid increase of KOA patients, it is important to detect KOA at
an early stage and perform intervention treatment before knee
condition deteriorates.

The most common standard of quantifying the severity of
KOA is the five-grade Kellgren and Lawrence (KL) system (4).
This grading system divides KOA into four stages, ranging from
0 to 4. Grade 0 indicates no evidence of KOA and grade 4
indicates severe KOA. Medically, incident radiographic KOA is
defined when KL grade is ≥2 (5). A great number of works
have been done to identify risk factors for the occurrence of
KOA (6, 7). Zhang et al. used a logistic regression model and
identified age, sex, body mass index (BMI), occupational risks,
injury, and family history of KOA as risk factors (8). However,
these studies only identified risk factors for the occurrence of
KOA (whether KL≥ 2), instead of the progression of the disease.
There were also some attempts to quantify KOA severity. Du
et al. employed support vectormachine, random forest, and naive
Bayes to predict the progression of KOA from 3-D magnetic
resonance (MR) imaging (9). Although these specific models
can quantify KOA severity, most attempts were built on image
processing and were hard to interpret in the clinical setting.
Therefore, our study was designed to build a predictive model
with patients’ assessment data such as symptoms, questionnaire
data, and interpretable image features and identify the key risk
factors during the disease progression. Besides the predictive
model, we also adopted the causal inference to verify the risk
factors identified in predictive models. In order to get higher
accuracy, the predictive model may include some unnecessary
predictors since it only considers the association between the
dependent variable and predictors. However, if physicians take all
predictors under consideration in intervention treatment, it may
cause overtreatment, because some predictors are not the cause
of the disease. In order to eliminate the effect of unknown factors
(also called confounders) and avoid unnecessary therapies,
we adopted a causal analysis to estimate the causal effect
relationship between clinical factors and radiographic markers.
The directed graphical causal models (DGCM) can identify
the causal relationship instead of association (10). This causal
relation is the result of multiple hypothetical experiments by
measuring how much an error score will change when the values
of a variable are randomly permuted (11). These experimental
predictions are computed from the probability distribution.
Therefore, a causal relation is defined when variable A and
variable B co-vary if we only changed variable A (12). In
this study, we used the fast causal inference (FCI) algorithm
(12) for causal inference. FCI is designed to test conditional
independence. It first generates a complete undirected graph

and then deletes recursively edges based on the conditional
independence decisions.

The purpose of this study is to use short-term data to
predict long-term KOA progression by inputting observed
time series into an attention–long short-term memory (LSTM)
model and outputting the likelihood of patients’ KL grade.
Additionally, we built a causal model that evaluates the causal
structure of potential predictors and identified the primary
contributors to KOA progression and pain progression. To
characterize the OA progression, we used 5-year data from
the Osteoarthritis Initiative (OAI), specifically patients’ clinical
assessment data such as symptoms, questionnaire data, and
interpretable radiographic image features.

MATERIALS AND METHODS

Study Population
The OAI is a multicenter observational cohort study with
longitudinal clinical and image data. This database includes
MRI/CT imaging data, genotyping data, and clinical data for
evaluating potential biomarkers and characterizing OA incidence
and progression. Individuals from this study were between the
ages of 45 and 79 and were at high risk for KOA. We selected
patients with at least five visits over the 5-year longitudinal study
and excluded patients who underwent knee replacement surgery.
In total, 518 patients were included in our study. Among these
patients, 394 patients remained in the same level of KL while the
knee conditions for other 124 patients had worsen during the
5-year following-up period. We used predictive mean value to
impute the missing values. For patients with OA in both knees,
we selected the knee with a higher KL grade. We also extracted
data from the Cerner Health Facts database to cross-validate our
predictive model. This database contains clinical health records
from over 500 health care centers across the United States.
This clinical dataset uses ICD-9/10 diagnosis codes instead of
KL grades.

Predictors
To capture the full picture of disease progression, we extracted
clinical data, questionnaires, and radiographic markers from
the OAI. In order to assess the functional status of patients,
we adopted the Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC). The WOMAC questionnaire
evaluates the level of pain, stiffness, and function of the
knee. The American College of Rheumatology considers this
questionnaire as the gold standard for KOA functional status
(13). For the clinical data, we chose patients’ characteristics that
could potentially predict future KOA, such as age, BMI, and
measurements of physical ability. The radiographic markers,
such as joint space width and knee alignment (the hip–knee–
ankle angle), were extracted from X-ray. The minimal joint space
width (mJSW) has been considered as a proxy for cartilage
thickness (14).We first analyzed different independent predictors
of KL grade in a multivariate logistic regression model, which
is assumed as the basic standard in KOA analysis. BMI and
age were analyzed as a categorical variable. BMI is divided into
four groups: underweight (BMI 10–19), normal (BMI 20–26),
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overweight (BMI 26–34), and obese (35+). Age was divided into
5-year intervals, namely 50–54, 55–59, 60–64, 65–69, 70–74, and
75–79. We set the normal BMI and age between 45 and 49 as the
reference for the odds ratio. For the questionnaire, we marked
“no symptom” as the reference and the highest score as the worst
condition of the individual in that question. Table 1 shows the
independent predictors of KL grade in a multivariate logistic
regression model.

Predictive Model
The traditional prediction methods based on time series
primarily comprise the autoregressive integrated moving average
model (ARIMA), hidden Markov model (HMM), and recurrent
neural networks (RNN) (15). However, ARIMA models are
usually applied where data shows evidence of non-stationarity
and suitable for numerical sequence (16). Since we included some
questionnaires as inputs, ARIMA is not a good option. AMarkov
model is a useful tool to characterize the moving process where
an individual transits among multiple states. In this study, we
used Markov processes to estimate KOA disease stage transition
probabilities. However, one limitation of the Markov model is
that it assumes that the future state only depends on the current
state (17). Unlike theMarkovmodel, RNN allows the future states
to depend on all past states (18).

RNN is a special neural network which could efficiently pass
forward information to the next cell at each point (19). For each
hidden layer at time point t, it not only includes the input layer
at time point t but also considers the output of the hidden layer
at the previous time point t−1(20). Although RNN did a very
good job in dynamically combining the sequential information
based on its internal recurrence (21), RNN may have some
issues of gradient vanishing when dealing with long-term data.
Therefore, an advanced type of RNN named LSTM was designed
to solve the gradient disappearing (22). Unlike other RNNs,
LSTM introduced a forget gate (22) to decide whether to keep
or drop a cell state based on the previous hidden state and the
current input variables. Another important component of LSTM
is cell state which is used to control whether to add or remove
the information in the previous cell state. It has been proven that
LSTM did a better job in long-term time series data (23).

The attention mechanism focuses on certain time points in
the time series when processing the data. For example, BMI
is very important in the early stage of the disease, while joint
space width is more important in the late stage. It allows the
model to pay more attention to the most important time point
based on what it has learned so far. We adopted the attention
mechanism from Nauta’s repository and calculated the context
vector as a weighted sum of each input vector instead of each time
series so that an attention vector learns weights corresponding to
input features (11). The attention mechanism assigns a different
weight to different variables based on its ability to forecast.
All initial attention scores are set to one and updated in every
training epoch.

Causal Inference
In this study, we used FCI with directed acyclic graphs (DAGs).
DAGs are commonly used to represent causal relationships,
where vertices denote variables and the edges represent causal

relationships between variables. The PC algorithm uses statistical
tests to find conditional independence and constructs the
structure of DAGs based on the results (12). The FCI algorithm
is a generalization of the PC algorithm, except that it allows
the existence of confounder variables (12). The FCI algorithm is
able to detect a Markov equivalence class of DAGs with latent
variables based on conditional independence information from
the observed variables (12).

There are two important structures in FCI: the “V” structure
and the “Y” structure (24). The “V” structure is defined when A
andC are independent but dependent conditionally on B,marked
as A→B←C. The “Y” structure is defined when A and C are
independent of D conditional on B, marked as A→B←C and
B→D. The FCI starts with a complete, undirected graph and
removes recursively edges based on conditional independence
decisions. After finding the skeleton of DAG, edges are oriented
by identifying the “V” and “Y” structures, and further orientation
rules given by Zhang (25) are applied.

Validation and Data Integration
We used 10-fold cross-validation for performance evaluation and
compared true KL grade vs. the KL grade predicted. Figure 1
reports areas under the receiving operating characteristic curves
(ROC). The x-axis presents sensitivity (true-positive rate) and the
y-axis represents specificity (false-positive rate). The area under
the curve is defined as AUC, which is a standard of performance
of classification. The higher the AUC is, the better the classifier.

One limitation of the OAI dataset is that not every hospital
measures KOA-specific features. In order to include these clinical
indicators, we chose 30 clinical features from the Cerner database,
which are commonly used for KOA diagnosis, but not included
in the OAI, such as pulse popliteal of the knee. Previous studies
identified age and BMI as the most significant risk factors
in the development of KOA (26); therefore, we assumed that
patients may have similar clinical indicators with those who
shared the same BMI and age. Under this assumption, we
used values from the Cerner dataset to estimate the values of
variables that are missing in the OAI dataset. For each patient
in the OAI dataset, we extracted clinical features from age- and
BMI-matched patients from the Cerner database. OAI patients
who are age- and BMI-matched with only one patient from
the Cerner dataset are directly assigned the matched patient’s
Cerner clinical values. For patients who matched with multiple
patients from the Cerner dataset, we took the average of matched
patients and assigned averages to corresponding OAI patients.
However, the prediction accuracy of LSTM after this imputation
reduced to 85%. Therefore, we applied autoencoder and principal
components analysis (PCA) as the denoising feature extractor.
The performance of autoencoder is better than PCA and achieved
a prediction accuracy of 93% in the dataset combined with the
OAI and Cerner data.

RESULTS

Characterizing Disease Progression
Before we built the predictive model, we used logistic regression
for feature selection. Compared with the other predictive models,
such analysis can avoid confounding effects by considering the
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TABLE 1 | Multivariable logistic regression model demonstrating independent predictors of KL >1.

Predictors Odds ratio [95% conf. interval] p > z p (>Chi)

JSPAINPRG JSL and pain progressor 0.3391265

1 0.63 0.39 1.01 0.054881

LKALNMT 1.02 0.95 1.1 0.623373 0.3143121

RKALNMT 0.96 0.89 1.03 0.263646 0.56715

JSONLYPRG JSL only progressor 0.287

1 0.5 0.29 0.87 0.013476

PAINONLYPRG Pain only progressor 0.3808985

1 0.73 0.44 1.21 0.212488

XRJSM 4.1 2.9 5.86 <0.001 <0.001

XRJSL 1.04 4.38 2.67 0.934219 0.5478206

MCMJSW 0.84 6.83 1.04 0.11842 0.19541

BMI Body mass index <0.001

Overweight 3.35 2.01 5.58 <0.001

Obese 5.44 3.23 9.2 <0.001

Morbidly obese 13.81 3.49 93.9 0.001

WOMKP 1.16 1.03 1.3 0.012959 <0.001

WOMADL 0.97 0.94 1.01 0.174 0.9597197

P02KPN Either knee pain, aching or stiffness: any, in the past 12 months <0.001

1 0.2 0.08 0.43 <0.001

P01KPACT30 Whether either knee, limit activities due to pain, aching or stiffness, past 30 days 0.490686

1 0.89 0.6 1.33 0.582108

SF2 How much health limit involvement in moderate activities (e.g., moving a table, pushing a vacuum cleaner...) 0.1215677

1: Yes, limited Ref

2: Limit a little bit 0.32 0.1 0.87 0.03652

3: Not limited at all 0.57 0.18 1.49 0.284351

WSRKN1 Right knee stiffness: in the morning, the last 7 days 0.151677

1 0.6 0.37 0.95 0.028428

2 0.5 0.25 0.97 0.039967

3 0.55 0.16 2.11 0.353752

WSRKN2 Right knee stiffness: later in the day, the last 7 days 0.8830752

1 0.96 0.59 1.58 0.85981

2 1 0.49 2.07 0.989272

3 0.93 0.24 4.21 0.913856

KSXRKN1 Right knee symptoms: swelling, the last 7 days <0.001

1 2.1 1 4.88 0.063434

2 2.06 0.89 5.21 0.105648

3 2.57 0.66 13.29 0.206253

4 0.67 0.22 2.3 0.495412

KSXRKN2 Right knee symptoms: feel grinding, hear clicking or any other type of noise when knee moves, the last 7 days 0.1097449

1 1.8 0.96 3.52 0.075166

2 1.49 0.88 2.57 0.141885

3 2.28 0.98 5.63 0.062791

4 2.52 0.77 9.27 0.141467

KSXRKN3 Right knee symptoms: knee catch or hang up when moving, the last 7 days 0.0368252

1 2.9 1.38 6.8 0.008418

2 1.62 0.72 3.86 0.256756

3 0.93 0.23 4.88 0.920198

KSXRKN4 Right knee symptoms: straighten knee fully, the last 7 days 0.1337019

1 3.86 1.21 14.23 0.029485

2 6.09 0.85 132.68 0.130066

(Continued)
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TABLE 1 | Continued

KSXRKN5 Right knee symptoms: bend knee fully, the last 7 days 0.790488

1 0.64 0.28 1.55 0.307365

2 0.6 0.18 2.44 0.433231

3 0.33 0.08 1.52 0.124832

4 0.32 0.08 1.46 0.114924

KSXLKN1 Left knee symptoms: swelling, the last 7 days 0.1417692

1 2.32 1.04 5.73 0.050612

2 1.35 0.63 3.13 0.460365

3 3.93 0.87 30.51 0.117698

4 2.67 0.69 14.19 0.193381

KSXLKN2 Left knee symptoms: feel grinding, hear clicking or any other type of noise when knee moves, the last 7 days 0.8641942

1 0.84 0.45 1.61 0.58539

2 0.73 0.42 1.26 0.251584

3 0.82 0.35 2.01 0.649514

4 0.76 0.24 2.61 0.651474

KSXLKN3 Left knee symptoms: knee catch or hang up when moving, the last 7 days 0.7839969

1 0.97 0.49 1.99 0.924445

2 1.1 0.5 2.57 0.81326

3 0.33 0.064 2.62 0.22145

KSXLKN4 Left knee symptoms: straighten knee fully, the last 7 days 0.1494063

1 0.2 0.07 0.59 0.00364

2 0.44 0.08 3.62 0.380026

3 0.04 0.005 0.49 0.006329

KSXLKN5 Left knee symptoms: bend knee fully, the last 7 days 0.0377456

1 3.45 1.18 11.47 0.03219

2 3.66 1.15 13.96 0.039426

3 7.66 1.31 70.22 0.039477

4 5.76 1.17 48.2 0.057999

Age <0.001

50–54 1.62 0.85 3.17 0.161995

55–59 3 1.47 6.1 0.002337

60–64 2.09 1.02 4.21 0.039225

65–69 3.23 1.51 6.9 0.00243

70–74 5.61 2.43 13.21 <0.001

75–79 2.32 1.02 5.29 0.044134

association of all variables (27). The result of multivariable
logistic regression is presented in Table 1. Odds ratio (OR) is
the constant effect of a predictor on the occurrence of outcome.
Susceptible risk factors, including BMI and age, were associated
independently with increased risk of KOA severity. Compared
with normal BMI (18.5–24.9), BMI was associated with increased
likelihood of KOA severity and the odds of KOA severity increase
as BMI increases (overweight: OR: 3.35; 95% CI: 2.01–5.58, p <

0.001; obese: OR: 5.44; 95% CI: 3.23–9.20, p < 0.001; morbidly
obese: OR: 13.81; 95% CI: 3.49–93.9, p = 0.001). Age is also
a risk factor for KOA. The OR for people between ages 70
and 74 has the highest OR (OR: 5.61; 95% CI: 2.43–13.21, p <

0.001). Susceptible joint factors, including joint space narrowing
(XRJSM) (OR: 4.10; 95% CI: 2.9–5.86, p < 0.001) and knee
pain, aching, or stiffness in the past 12 months (P02KPN)
(OR: 0.2; 95% CI: 0.08–0.43, p < 0.001), were associated with

increased risk of occurrence of KOA independently. Swelling in
the knee (KSXRKN1) was associated with successively increased
odds of occurrence of KOA. Based on the result, we removed
three variables from the predictor list for the predictive models,
including right knee stiffness status later in the day, the ability
to bend right knee fully in the last 7 days, and whether left knee
feels grinding.

Predicting Disease Progression With
Attention–LSTM
We investigated the performance of LSTM algorithms in
predicting KL grade using clinical data spanning 1 year. The
predicted accuracy of LSTM achieved 90%. We compared the
LSTM model against the previous models, namely, random
forest, support vector machine, and naive Bayes. Random forest
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(RF) constructs a set of multiple decision trees on data and then
averages the prediction from each of them. Compared with a
single decision tree, RF reduces the chance of overfitting. Support
vector machine (SVM) adopts kernels, which transform a lower
dimensional input space into a higher dimensional space. This
conversion made SVMmore flexible and accurate. Naive Bayes is
another classification technology based on Bayes’ theory, which

assumes that all the predictors are independent to each other.
Our LSTMmodel performs better than RF, SVM, and naive Bayes
in predicting KL grade. ROC curves are shown in Figure 1. A
value of 0.5 in AUC represents as a random guessing and a value
higher than 0.8 is considered quite good. Based on the results,
LSTM and RF both did a good job in KL classification. The AUC
value of LSTM is higher than that of SVM and naive Bayes for

FIGURE 1 | AUC curve for predictive models. The x-axis represents sensitivity and the y axis represents specificity.

FIGURE 2 | Markov model for KOA progression. Rates of transition between four stages of OA. The number 1, 2, 3, 4 represent four stages of KOA. The arrows are

the transitions rates between these states.
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all KL grades, and LSTM has better performance than random
forest for KL = 3/4. In other words, random forest did a better
job in diagnosing KOA, while LSTM did a better job in predicting
KOA severity.

To better describe disease progression, we consider Markov
states as disease stages. The Markov chain result is shown in
Figure 2. For example, the patients at high risk (KL = 1) have
17% chance tomove to the next stage (KL= 2) and 78% chance to
maintain their KL grade after the 1-year follow-up visit. It should
be noted that patients diagnosed with knee osteoarthritis (KL ≥
2) are more likely to remain at this stage and very less likely to
revert back to previous disease states.

Importance Analysis of Variables
Figure 3 graphically depicts the important indexes of random
forest. We used the mean decrease in accuracy index to
evaluate the importance of variables in classification. It
shows that the variable “XRJSM” (joint space narrowing)
stands out among all the variables with the largest mean
decrease in accuracy. Variables “P01BMI” (BMI), “MCMJSW”
(medial minimum joint space width), “V00AGE” (age), and
“WOMADL” (WOMAC disability score) are also relatively
important for predicting KOA severity based on the indexes of
variable importance.

The attention maps in Figure 4 demonstrate how attention
scores can identify the dynamics. Although it was hard to
distinguish which visit would have the model attended the most,
XRJSM (OARSI joint space narrowing grade) was significantly
important in predicting KL grade. The attention mechanism
identified that joint space narrowing leads to the worsening status
of KOA, which causes pain. The finding also explained why joint
space narrowing is the most important factor in predicting KL
progression in the LSTMmodel.

Causal Relationship of Variables
To understand the dependency and independency of important
features in predicting KL progression, we employed FCI. We
found that misalignments of the left and right knee are the
reason for joint space narrowing. The angles of tibiofemoral
and patellofemoral joints affected the alignment of the knees
and caused joint space narrowing. This is consistent with
previous reports that various knee alignment is associated with
the radiographic measures of KOA severity (28). The FCI
output is presented in Figure 5. The bidirected edge between
left alignment and right alignment indicates that there exists
at least one unmeasured confounder of left alignment and
right alignment. The “o” symbols at alignment and joint space
narrowing (JSM) indicate that it is difficult to distinguish whether

FIGURE 3 | Features importance of random forest. The left figure is mean decrease in accuracy which measures misclassification of removing the given variable. The

right figure is mean decrease in Gini which measures the average gain by splitting the given variable.
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FIGURE 4 | Features Importance of LSTM. The x-axis represents the name of variable and the y axis represents the number of visit. The color represents the attention

score.

FIGURE 5 | Causal Inference. (A) the result of FCI in DAGs. The number denotes the variable and the edges represent the causal relationship. (B) is snapshot of a

small part of (A).
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the connection between alignment and JSM connection is a
directed edge or an unmeasured confounder. This result also
eliminated some unnecessary predictors from the LSTM model.
Although the symptoms, such as swelling, feel grinding, knee
catch, straighten knee full, and bend knee full, may be good
predictors for KL grade, they are not the reason causing KOA
progression. Symptoms seem to be a good predictor of pain
progression. Using FCI, we find that the change in joint space is
the real reason for disease progression.

DISCUSSION

KOA is a slowly progressive disease with irreversible joint
damage. With obesity prevalence and aging in the United States,
KOA becomes the most frequent disease. However, an accurate
predictive model with diagnostic criteria is still unavailable.
Therefore, the goal of this study was to develop a mathematic
model to predict OA severity and the key risk factors associated
with disease progression. In this study, we used logistic regression
for feature selection. After removing the irrelevant variables,
we employed the attention–LSTM predictive model to predict
OA severity and compared this approach against the existing
methods. RNN, especially LSTM, did a good job in modeling
long-term dependency in time series data. The AUC values
of LSTM for KL = 1, 2, 3, and 4 are 0.81, 0.91, 0.99,
and 0.98, respectively. The attention mechanism allows us
dynamically to detect the feature importance across multiple
time steps for predicting KOA progression. Meanwhile, the
attention scores extracted from the attention mechanism would
help to discover the direction of causal relationship. Finally,
we use causal inference to interpret the inside connection of
variables. To validate our predictive model, we used the OAI
database in conjunction with the Cerner Health Facts database.
Our experiments showed that the attention–LSTM with the
scaled autoencoder resulted in 3% increased accuracy (from
90 to 93%). Hence, this method can be a promising tool for
patients and doctors to prescreen for possible osteoarthritis to
prevent deterioration of OA, thereby supporting for clinical
decision-making.

Our attention–LSTM model not only reliably and accurately
predicts KL grade and progression but also identifies the key
factors among different time points. Using our model, clinicians
can predict the possible KOA progression of patients and take
preventative measures in advance. The attention mechanism
dynamically shows the importance of variables at different
disease stages and indicates that joint space narrowing is the
primary factor in KOA progression at all time points. This
method will provide strong support in clinical decision-making,
including diagnosis, appropriate treatments, and preventive care.
Using causal inference analysis, we identified the real cause
of joint space narrowing and pain. They are misalignments
of tibiofemoral and patellofemoral joints. Current primary
preventive intervention is limited to weight loss (29). This
finding recommended another possible intervention in clinical
practice. The causal discovery also helped providers to avoid
overtreatment. For example, treatment for symptoms such as

swelling, grinding, catching, and inability to straighten or fully
flex the knee may not be able to prevent the worsening status
of knee OA. Our work had two major clinical contributions.
(1) We evaluated a broad spectrum of potential risk factors
(clinical variables such as age, BMI, clinical symptoms, WOMAC
questionnaires, and image measurements from X-rays) and
investigated the performance of RNN algorithms in predicting
KL grade. By usingMarkov hidden states as the disease stages, we
have gained more knowledge about the stage transition, which
enables a deeper understanding of the temporal progression
of OA. (2) Considering the existence of hidden confounding
variables, we built a causal structure of candidate risk factors and
identified the preventable factors for treatment.

This study has several limitations to be considered. First,
the research target of the OAI is individuals at high risk,
with expected overweight and aging population. Thus, our
model may not be applicable to the general population. The
continuing work will focus on testing its generalizability of
the models to different populations. To improve the expansion
ability, we would consider transfer learning and generative-
adversarial-network-based method in further studies. Second,
when interpreting the findings, we found that symptoms of right
knee and left knee have different impacts on KOA progression.
This finding required some external validation. An additional
limitation of this study is the small sample size. We have included
prominent OA symptoms such as swelling joint pain, stiffness,
and bending (30) in this study. However, we were unable to adjust
for factors that may affect long-term outcomes, such as other
symptomatic joint diseases.

In conclusion, we used attention scores in LSTM to describe
feature importance at different time points and compared our
model with previous works. In addition, we used causal inference
to identify the key diagnostic criteria in disease progression. Our
study has illustrated that clinical symptoms are important in
predicting disease severity but may not be essential in disease
progression. With the help of causal inference, LSTM is a better
tool to help physicians in decision-making.
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Patellofemoral pain syndrome (PFPS) is a common disease of the knee. Despite its

high incidence rate, its specific cause remains unclear. The artificial neural network

model can be used for computer-aided diagnosis. Traditional diagnostic methods

usually only consider a single factor. However, PFPS involves different biomechanical

characteristics of the lower limbs. Thus, multiple biomechanical characteristics must

be considered in the neural network model. The data distribution between different

characteristic dimensions is different. Thus, preprocessing is necessary to make the

different characteristic dimensions comparable. However, a general rule to follow in

the selection of biomechanical data preprocessing methods is lacking, and different

preprocessing methods have their own advantages and disadvantages. Therefore, this

paper proposes a multi-input convolutional neural network (MI-CNN) method that uses

two input channels to mine the information of lower limb biomechanical data from

two mainstream data preprocessing methods (standardization and normalization) to

diagnose PFPS. Data were augmented by horizontally flipping the multi-dimensional

time-series signal to prevent network overfitting and improve model accuracy. The

proposed method was tested on the walking and running datasets of 41 subjects

(26 patients with PFPS and 15 pain-free controls). Three joint angles of the lower limbs

and surface electromyography signals of seven muscles around the knee joint were used

as input. MI-CNN was used to automatically extract features to classify patients with

PFPS and pain-free controls. Compared with the traditional single-input convolutional

neural network (SI-CNN) model and previous methods, the proposed MI-CNN method

achieved a higher detection sensitivity of 97.6%, a specificity of 76.0%, and an accuracy

of 89.0% on the running dataset. The accuracy of SI-CNN in the running dataset was

about 82.5%. The results prove that combining the appropriate neural network model

and biomechanical analysis can establish an accurate, convenient, and real-time auxiliary

diagnosis system for PFPS to prevent misdiagnosis.

Keywords: patellofemoral pain syndrome, convolutional neural network, data preprocessing, data augmentation,

biomechanical analysis
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INTRODUCTION

Patellofemoral pain syndrome (PFPS), also known as
patellofemoral pain and chondromalacia patellae, often presents
as a gradual onset of knee pain behind or around the patella
(1–3). PFPS is a common chronic knee disease, especially among
women and athletes (4, 5). It can cause pain in patients climbing
up and down the stairs or squatting, thereby affecting their
activities of daily living (6). According to the survey, PFPS may
eventually evolve into patellofemoral osteoarthritis (7–9). If not
treated in time, it can cause joint deformities and disability. Thus,
the early and accurate diagnosis of PFPS is highly important.

Despite the high prevalence of PFPS, the etiology and
gender differences of this disease remain unclear (10, 11). Two
main difficulties are encountered in its diagnosis. One is the
multifactorial etiology of PFPS (12, 13). It may be due to excessive
extension of the knee joint, quadriceps weakness, valgus or
varus of the knee joint, medial femoral muscle weakness, or
gastrocnemiusmuscle tension. The other is the similarity of PFPS
to many knee joint disease symptoms, such as bursitis, patellar
tendinitis, and rheumatoid arthritis, causing misdiagnosis. The
previous diagnosis of PFPS generally depends on the subjective
judgment of doctors; thus, doctors should have very rich
experience in patellar tracking, patellar apprehension, Waldron
test, and squatting test (14, 15). However, the diagnosis results
for the same patient may be inconsistent because of the different
diagnostic criteria (14, 16).

The objective auxiliary diagnosis methods of PFPS include
X-ray, magnetic resonance imaging, computed tomography,
and arthroscopy (17–19). Among them, arthroscopy has the
highest accuracy in diagnosing PFPS. However, arthroscopy is
an invasive operation and requires a professional arthroscopy
doctor (19). Magnetic resonance imaging has high diagnostic
accuracy and non-invasiveness (20). However, its detection time
is long, and some patients have claustrophobia, preventing them
from actively cooperating with the examination. These imaging
auxiliary diagnostic techniques require expensive equipment and
professional doctors who are familiar with patellar abnormalities
to correctly diagnose PFPS. Inexperienced personnel are prone
to misdiagnosis, missed diagnosis, and other medical accidents.
Subjective factors, such as the psychology and physiology of
experts, can greatly reduce the diagnosis and medical effect, thus
affecting the stability of the diagnosis.

In recent years, biomechanical research has been a hot spot in
disease diagnosis, and PFPS is no exception (21, 22). Besier et al.
used the lower limb joint angle and surface electromyography
(sEMG) signals of 10 muscles around the knee joint as the
input of the musculoskeletal model to explore the changes
in muscle forces in patients with PFPS (23). Ferrari et al.
discussed the diagnostic value of sEMG signals of the vastus
medialis (VM) and the vastus lateralis (VL) for PFPS by an
independent t-test (15). Briani et al. used linear regressionmodels
to diagnose PFPS through the time-domain and frequency-
domain variables of sEMG and compared the results (24).
However, the results of these traditional analysis methods are
inaccurate, and experienced doctors are needed to select the
classification features.

With the development of machine learning, the combination
of machine learning and biomechanical analysis has become
increasingly popular (25, 26). In recent years, machine learning
algorithms have been improved and applied in various fields
(27–29). Many studies have shown that it is also suitable for
disease diagnosis (30, 31). The artificial neural network model is
widely used in machine learning because of its good non-linear
adaptive information processing ability. Wang et al. trained a
deep neural network using electroencephalography to diagnose
neonatal encephalopathy (32). Cho et al. used an artificial neural
network model with a single hidden layer to distinguish normal
and abnormal knee joints, thereby assisting in the treatment
of unstable patella and anterior knee pain (33). These neural
network models have shown good results in the diagnosis of
various diseases. However, the selection of a suitable neural
network model is a problem worth considering, and the result
of the network model is often related to the method of data
processing. A general rule for the selection of the preprocessing
method for biomechanical data is currently lacking.

To solve the above problems, we propose an improved
multi-input convolution neural network (MI-CNN) model to
diagnose PFPS. Compared with the single-input convolutional
neural network (SI-CNN), MI-CNN simultaneously extracts
data information from two mainstream data preprocessing
perspectives of normalization and standardization. Given that
biomechanical time-series data are different from image data,
MI-CNN adopts the 1D convolution kernel, that is, it only
slides on the time axis. The model was tested on the walking
and running datasets of 41 subjects (26 patients with PFPS
and 15 pain-free controls). Meanwhile, data augmentation was
performed in the training set to prevent model overfitting.
Compared with SI-CNN and previous methods, MI-CNN
achieved higher accuracy (89.0%) on the running dataset. This
method can be used as a computer-aided diagnosis method to
prevent doctors from misdiagnosing.

METHODS

Dataset
All experimental data in this paper were obtained from the
database published by the website https://www.sciencedirect.
com/science/article/pii/S0021929009000396?via%3Dihub. The
database collected 10 types of the biomechanical characteristic
of 41 subjects (26 patients with PFPS and 15 pain-free controls)
during walking and running, including three joint angles and
seven sEMG signals: hip flexion angle (HF), knee flexion angle
(KF), ankle dorsiflexion angle (ADF), semimembranosus (SEB),
rectus femoris (REF), VL, VM, biceps femoris (BIF), medial
gastrocnemius (MG), and lateral gastrocnemius (LG). The
sampling frequency of angle data was 60Hz, and the sampling
frequency of the sEMG signal was 2400Hz. These conditions
were set because the effective sEMG signal spectrum distribution
is between 10 and 500 hz. Thus, the sampling frequency of the
sEMG signal should be large enough to ensure the quality of the
sampling signal. Each biomechanical characteristic contains 100
time-series values. The detailed gathering process of the whole
dataset can be seen in the reference (23).
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FIGURE 1 | Overall algorithm flow chart.

The overall algorithm flow is shown in Figure 1.

Data Augmentation
At present, a large number of experiments have proven that data
size directly affects the performance of neural networks. PFPS
involves many types of physiological signals of the lower limbs,
but the number of samples in the dataset is relatively small, which
easily leads to model overfitting. Data augmentation can prevent
overfitting to some extent. Many methods of data augmentation
for image data are available, such as rotation, horizontal flipping,
vertical flipping, and random scaling. However, biomechanical
data are different from image data. They are interrelated in the
time dimension. Thus, many data augmentation methods are
not applicable. We used the data of each subject to form a 100
× 10 2D matrix, with 100 rows representing time series values
and 10 columns representing biomechanical characteristics. It
has the same format as the image data to facilitate data
augmentation. Hence, we can flip it horizontally because no
strong correlation exists between these characteristics, thus
doubling the training set.

Data Preprocessing
Before data input into the neural network, data preprocessing
is an important link because it can accelerate the convergence
speed of the neural network and improve the accuracy of the
model. PFPS involves a variety of lower limb biological signals,
and the ways to select these signals are different. Evaluating
PFPS only based on a single index is usually insufficient.
The problem from multiple indexes should be considered
comprehensively. However, given their different nature, various
evaluation indicators usually have different data scales. The level
of each index differs greatly if the original data is directly used for
analysis, highlighting the role of the index with a high numerical
value in the comprehensive analysis and relatively weakening
the role of the index with a low numerical level. Therefore, the
original data must be preprocessed to ensure the reliability of
the results. Different preprocessingmethods have different effects
on the evaluation results of the system. Unfortunately, a general
rule to follow in the selection of data preprocessing methods is
lacking. To improve data preprocessing, we need to view the
distribution of data. Thus, we plotted the data distribution for one
of the subjects, as shown in Figure 2, which from top to bottom

are three joint angle values and seven sEMG signals: HF, KF, ADF,
SEB, REF, VL, VM, BIF, MG, and LG.

Figure 2 shows that the range and distribution of the three
joint angle values largely differ from those of the seven sEMG
signals. Feeding such data into the neural network leads to
poor results, and preprocessing is needed. The two most used
pretreatment methods are standardization and normalization,
which have their advantages and disadvantages.

Standardization can scale the data distribution of different
characteristic dimensions to near 0, with the mean value of 0 and
the variance of 1, which is comparable. The formula is as follows:

Xi=
Xi−X

Xstd
, (1)

where X is the mean value of each column characteristic in
the original data X, and Xstd is the variance of each column
characteristic in the original data X.

Normalization can limit the range of values of different
characteristic dimensions within (0, 1), but it changes the
distribution of the original data. The formula is as follows:

Xi=
Xi−Xmin

Xmax−Xmin
, (2)

where Xmin is the minimum value of each column characteristic
in the original data X, and Xmax is the maximum value of each
column characteristic in the original data X.

These two preprocessing methods can improve the
convergence speed of the neural network but also have
some shortcomings. The standardized results are related to
each data point, and a specific scope limit is absent, causing the
data to lack mean and variance information. The normalized
result is mainly related to the maximum and minimum values
but not much to the intermediate value. Moreover, the scaling
range of normalization is mandatory and cannot be exceeded,
causing the loss of some abnormal value information. Therefore,
standardization and normalization were used for the data, and
data features were extracted from these two aspects to maximize
mining of data information.

In the process of data preprocessing, we preprocessed the
training set and test set separately. More specifically, each column
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FIGURE 2 | Raw data distribution in the walking and running datasets.

feature of each subject in the dataset was standardized and
normalized separately.

Multi-Input Convolution Neural Network
CNN has achieved excellent results in various classification and
recognition tasks (34–36). The advantage of using CNN for time
series classification is that it can learn directly from the original
time series data without requiring domain experts to design
input featuresmanually. Thus, after data augmentation,MI-CNN
with the 1D convolution kernel is proposed in this paper to
extract the features of normalized and standardized data from
two input channels simultaneously. Its model structure is shown
in Figure 3.

All convolutional layers in the model have 16 filters with a
convolution kernel size of 3 and a sliding step size of 1. A Relu
activation function is added after each convolutional layer to
perform a nonlinear mapping on the output of the convolutional
layer. The calculation formula is as follows:

Relu (X)= max (X, 0) (3)

Thus, if the data value transmitted to the neuron is <0, the value
of the neuron will be changed to 0.

The size of the max-pooling layer is 2 and the sliding step is 1,
which only keeps the maximum value in the window to reduce
the complexity of the model and expand the receptive field.
After the last convolutional layer, a dropout layer (rate = 0.3)
is added to randomly ignore 30% of the neurons when training
the network model. It can prevent the neural network from
overfitting and reduce the training time. Then, the flattening

layer will flatten the features extracted by the convolutional
layer into a 1D vector and concatenate the output of the two
convolutional channels by the fusion layer. At the end of the
model is a fully connected neural network to interpret all the
feature information extracted by the convolutional layer andmap
it to the category value. The first fully connected layer has 50
neurons and uses the Relu activation function. The output layer
has two neurons, representing two categories. The activation
function of the output layer is SoftMax, which maps the output
into two types of probability values. The formula for the SoftMax
function is as follows

yout= SoftMax (Zi)=
eZi

∑2
p=1 e

Zp
, for p = 1, 2, (4)

where Zi is the output value of the ith neuron in the output layer.
After setting the model structure, we use the Adam

optimization algorithm to update the network parameters by
backpropagation. The learning rate is set to 0.00001, the number
of iterations is set to 4000, and the Cross-Entropy function is
selected as the loss function.

RESULTS

Test Environment and Evaluation Index
Two datasets of 41 subjects in walking and running
states were used as experimental data to verify the
effectiveness of the proposed algorithm. The dataset is
described in detail in Section 2.1. The neural network
model in this paper was constructed using the Keras
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FIGURE 3 | Network structure of MI-CNN.

TABLE 1 | Configuration of test environment.

Parameters Version or value

Operating system Windows 10 (*64)

CPU Intel Core i7-8700

GPU GTX 1080

RAM 16.0 GB

Tensorflow 1.13.1

Keras 2.2.4

Python 3.7

framework based on Tensorflow. The configuration
parameters of this experimental environment are shown
in Table 1.

We randomly selected 70% of the dataset as the training set
and the remaining 30% as the test set. The training and test sets
were subjected to the same preprocessing, namely, normalization
and standardization, and the data enhancement was only used on
the training set. Meanwhile, given that our dataset is not large, the
training batch size of the model was set to the whole training set
to reduce the training time and improve the stability of training.

In this paper, accuracy, sensitivity, specificity, and training
time were selected as the evaluation indexes of the test results.
The definitions of these indexes are as follows

accuracy =
TP + TN

TP + FP + FN + TN
, (5)

sensitivity =
TP

TP + FN
, (6)

specificity =
TN

TN + FP
, (7)
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where TP is the number that is correctly classified as PFPS, TN
is the number that is correctly classified as pain-free controls, FN
is the number that is wrongly classified as pain-free controls, and
FP is the number that is wrongly classified as PFPS.

The best parameters of each model were selected by ten-fold
cross-validation, which is equivalent to training 10 models and
makes up for the disadvantage of a small amount of training data.
Each experiment was repeated 10 times independently, and the
average value was taken as the evaluation result.

We conducted four experiments on the running and
walking datasets, respectively, including SI-CNN without any
data preprocessing, SI-CNN with standardization processing,
SI-CNN with normalization processing, and MI-CNN with
standardization processing and normalization processing. Then,
their results were compared.

Comparison of Test Results on the Walking

Dataset
To clarify the comparison results, we randomly created the
accuracy and loss curves of four data preprocessing methods in

one of the experiments, as shown in Figure 4. Meanwhile, the
average results of the 10 repeated tests on the running dataset are
shown in Table 2.

Comparison of Test Results on the

Running Dataset
In the same way, we randomly created the accuracy and loss
curves of four data preprocessing methods in one of the

TABLE 2 | Results of neural networks with different data preprocessing methods

on the walking dataset.

Algorithm Accuracy Sensitivity Specificity Training

time (s)

SI-CNN (raw data) 0.415 0.548 0.2 28.5

SI-CNN (Normalization) 0.615 0.908 0.167 29.8

SI-CNN (Standardization) 0.639 0.824 0.32 29.8

MI-CNN 0.692 0.88 0.4 38.8

FIGURE 4 | “acc-loss” curves with different data preprocessing on the walking dataset.
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experiments, as shown in Figure 5. The average results of the 10
repeated tests on the running dataset are shown in Table 3.

DISCUSSION

As shown in Figures 4, 5, when the neural network model
does not carry out any data preprocessing, the loss curve of
its training set drops rapidly, but the accuracy of the test set
is not effectively improved. This result can be ascribed to the
considerably different data range and data distribution of the
joint angle and sEMG. The decrease in the loss curve of the
training set is mainly affected by the joint angle value. Network
learning is very one-sided, leading to poor results. The loss
and accuracy curves of the training set jitter because of the
added dropout layer, which only acts on the training of the
neural network.

Tables 2, 3 show that the results of the neural network
after data standardization are slightly better than those after

data normalization possibly because sEMG has no negative
value after rectification, but the joint angles have some negative
values, whereas the normalization completely limits the range
of values, resulting in the loss of some outlier information.
Thus, unlike image data, joint angle data are more suitable for
standardized processing.

TABLE 3 | Results of neural networks with different data preprocessing methods

on the running dataset.

Algorithm Accuracy Sensitivity Specificity Training

time (s)

SI-CNN (raw data) 0.596 0.75 0.35 29.1

SI-CNN (Normalization) 0.781 0.868 0.63 29.2

SI-CNN (Standardization) 0.825 0.84 0.72 29.5

MI-CNN 0.89 0.976 0.76 38.5

FIGURE 5 | “acc-loss” curves with different data preprocessing on the running dataset.
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TABLE 4 | Comparison results with previous methods.

Methods Sensitivity Specificity

Ferrari’ method on VM and VL 70% 87%

Briani’ method on VM 72% 69%

Briani’ method on VL 68% 62%

Squatting test 91% 50%

VM coordination test 16% 93%

MI-CNN on running data 97.6% 76.0%

Tables 2, 3 also show that the results of MI-CNN are better
than those of traditional SI-CNN on the walking and running
datasets. The accuracy rate of MI-CNN has increased by nearly
6%, but its training time is longer, because it has two input
channels. Thus, the network parameters of MI-CNN are almost
double that of SI-CNN. Given that this model is mainly used for
the auxiliary diagnosis of diseases, accuracy is more important.
Moreover, as long as the neural network model is saved after
training, it can be used for real-time diagnosis.

Comparison of Tables 2, 3 shows that the convolutional
neural network model does not perform well on the walking
dataset, and the results on the running dataset are better,
which indicates that the biomechanical data of patients with
PFPS in walking state is not much different from that
of the pain-free controls, but large differences exist in the
running state.

Finally, the method proposed in this paper is compared with
the previous methods. Ferrari et al. obtained 70% sensitivity
and 87% specificity through the sEMG signals of VM and
VL. Its dataset contains 51 subjects (22 patients with PFPS
and 29 pain-free controls) (15). Briani et al. obtained 72%
sensitivity and 69% specificity through the sMEG signals of
VM and 68% sensitivity and 62% specificity through the sEMG
signals of VL. Its dataset includes 59 subjects (31 patients
with PFPS and 28 pain-free controls) (24). According to the
survey (14), in the previous methods, the squatting test has
the highest sensitivity (91%), but its specificity is only 50%.
The VM coordination test has the highest specificity (93%), but
its sensitivity is only 16%. To clarify the comparison results,
we prepared Table 4. The MI-CNN method proposed in this
paper has a sensitivity of 97.6% and a specificity of 76.0% on
the running dataset, which is better than the previous methods
in general.

CONCLUSION

PFPS is a common knee joint disease, but its specific etiology
remains unclear. An accurate, convenient, and real-time PFPS
detection system must be established for clinical auxiliary
diagnosis. MI-CNN is proposed to diagnose PFPS. Compared
with the musculoskeletal model, this model is more convenient
and more versatile without considering the differences between
subjects. Compared with the linear regression model, this

model is more suitable for non-linear biomechanical data.
Compared with the traditional 1D convolution neural network
model, this model can fully mine data information from
standardization and normalization at the same time to improve
the accuracy of the model. The multi-dimensional biomechanical
data are also augmented to prevent the neural network
model from overfitting and further improve the accuracy of
the model.

In sum, the biomechanical analysis technology based on
real and objective gait data of patients can effectively reduce
the influence of subjective factors and improve the stability
of diagnosis and medical treatment. Combining it with the
neural networkmodel canmake the biomechanical analysis more
convenient and accurate.

This work is a preliminary study, and its applicability needs to
be cautious. The next research work will focus on two aspects.
One is to try to test the dataset with multiple gait diseases
to obtain multi-classification models. The other is to continue
to optimize the network structure to improve the accuracy
of diagnosis.
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In the field of biomedicine, time irreversibility is used to describe how imbalanced and
asymmetric biological signals are. As an important feature of signals, the direction of time
is always ignored. To find out the variation regularity of time irreversibility of heart rate
variability (HRV) in the initial stage of hypoxic exposure, the present study implemented
2 h acute normobaric hypoxic exposure on six young subjects who have no plateau or
hypoxia experiences; oxygen concentration was set as 12.9%. Electrocardiogram (ECG)
signals were recorded in the whole process and RR interval sequences were extracted.
Mathematical operations were executed to transform the difference of adjacent RR
intervals into proportion and distance with delay time to conduct time irreversibility
analysis of HRV. The same calculating method was implemented on six items randomly
picked out from the MIT-BIH normal sinus rhythm database as a control group. Results
show that variation of time irreversibility of HRV in a hypoxic environment is different from
that in a normoxic environment, time irreversibility indices of a hypoxic group decreases
continually at a delay time of 1 and 2, and indices curves of time irreversibility gradually
tend to be steady and gather with each other at a delay time of 3 or 4. The control
group shows no consistent tendency no matter what the delay time is in the range of
1–4. Our study indicates that in short-time hypoxic exposure, as hypoxic time goes by,
regulation of the cardiovascular autonomic nervous system weakens; regulation times
and intensity of sympathetic and parasympathetic nerves tend to be equal.

Keywords: time irreversibility, hypoxia, heart rate variability, delay time, autonomic nervous system

INTRODUCTION

Time irreversibility is one of the basic features of nonlinear systems. It describes the
process of how the physical state and statistical characteristics of a system depend on
the direction of time (Yao et al., 2019). If a sequence has the same joint probability
distribution with its reversal sequence, it is said to be time invertible. Invertible processes
include Gaussian linear processes and isentropic processes. On the contrary, time
irreversibility of series indicates the existence of nonlinear processes in the underlying
dynamics, including non-Gaussian stochastic processes and dissipative chaos (Lacasa et al.,
2012). The heartbeat of normal individuals is jointly controlled by multiple factors of
sympathetic and parasympathetic nerves, and thus the time series of cardiac intervals shows
characteristics of chaos, nonlinearity, and complexity (Rajbhandari Panday and Panday, 2018).
Costa et al. (2005) pointed out that time irreversibility of cardiac intervals is influenced
by age and pathological factors; healthy young people have significantly higher time
irreversibility of cardiac intervals than that of healthy elderly people, and healthy aged people
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have distinctly higher time irreversibility of cardiac intervals than
patients with congestive heart failure (CHF) or atrial fibrillation.
This conclusion was also supported by Hou et al. (2011) with
multi-scale time irreversibility method, and she also indicated
that there are significant differences of time irreversibility in
healthy young people between day and night (Hou et al., 2012).

Many methods have been proposed for the measurement of
time irreversibility of cardiac interval sequences. Differentiate
operations between adjacent RR intervals is used by Porta
et al. (2006) who took the occurrence frequency of adjacent
intervals’ difference greater than or less than zero as the time
irreversibility index. And Costa et al. (2008) introduced the
coarse-grained multi-scale method on Porta’s work. Guzik et al.
(2006) performed scaling operations on the square of RR
intervals. Lacasa et al. (2012) traced the amplitude of each point
in the sequence with a graph, calculated the number of points
that each point could reach without crossing with other points,
and constructed a new sequence as the calculating basis of time
irreversibility. Ordinal mode has been applied to calculate the
emergence frequency of various patterns (Graff et al., 2013). Hou
et al. (2011) defined high-dimensional irreversibility calculation
index on the work of Porta (Graff et al., 2013) and Guzik (Guzik
et al., 2006) by introducing different delay times for irreversibility
analysis, and the mean value of all calculation results is the value
of high-dimensional irreversibility. It reflects the comprehensive
influence of different levels’ time delay of nerves and fluid in
the human body on time irreversibility of heart rate variability
(HRV). And research shows that both age and exercise have a
great effect on high-dimensional irreversibility (Hou et al., 2011,
2013).

Hypoxia is one of the stimulating factors that make HRV
change. When entering a hypoxic environment, blood oxygen
saturation (SpO2) of the human body decreases, and regulation
of the autonomic nervous system changes, which is usually
manifested as an accelerated heart rate and shortened breath
(Xue et al., 2010; Liu et al., 2019). Lower oxygen concentration
may even result in altitude sickness, with symptoms such as
headache and nausea (Zhang et al., 2014). Different methods
have been applied to assess how HRV changes when people are
exposed to a hypoxic environment. Most of the research results
found that the standard deviation (SDNN) and root mean square
(RMSSD) between adjacent heartbeat intervals and low frequency
(LF) and high frequency (HF) in the spectrum decrease while
the ratio of LF to HF increases (Krejčí et al., 2018) and sample
entropy declines (Zhang et al., 2014) at the same time. However,
other researchers gave different results (Iwasaki et al., 2006; Vigo
et al., 2010). Normobaric hypoxic chambers are often used in
laboratories to simulate the plateau hypoxic environment. It
creates hypoxic effects by filling the chamber with excess nitrogen
to dilute the air, which is safe, economic, and easy to use.

Existing studies mostly compare the physiological state under
normoxia and hypoxia and find out how physiological indicators
change after people are exposed to a hypoxic environment.
For example, variation of electrocardiogram (ECG) in hypoxic
exposure was studied in Coustet et al. (2015); variation tendencies
of HRV and SPO2 within 10 min of acute hypoxic exposure
were revealed in Krejčí et al. (2018). Some other studies explored

people’s hypoxic acclimatization speed or physical training
methods through experiments (Beidleman et al., 2008; Zeng
et al., 2013, 2019; Sinex and Chapman, 2015). As one of the
methods to evaluate the health of the physiological system,
time irreversibility analysis method has been widely used in
medical research. It can reflect the pathological information
of the cardiovascular system and aging status, however, this
method has never been used in the study of human physiological
variation in a hypoxic environment. Some symptoms that occur
in hypoxia are similar to other diseases and there must be
connections between time irreversibility and those symptoms.
We need to conduct research over a continuous period of time
at the beginning of hypoxia to study the subtle variation trends of
physiological indicators. This research is of great importance for
the prevention of acute altitude sickness, the physical training of
pilots and astronauts in response to accidents of loss of pressure,
and the revelation of dynamics and autonomic rhythm changes
of the human cardiovascular nervous system in the early stage
of hypoxic exposure. In the process of cardiac feedback control,
delay happens at all levels of the physiological system due to
the reaction speed of chemical transmitters (Casali et al., 2008;
Alvarez-Ramirez et al., 2009), and some useful information that
the data can express may be lost if time irreversibility is calculated
only based on the difference between adjacent RR intervals. In
order to explore variation laws of time irreversibility of HRV in
the early stage of hypoxic exposure, experiments will be carried
out in a normobaric hypoxic chamber. By introducing different
delay times, time irreversibility variation rules of HRV will be
studied in an acute 2 h hypoxic exposure. Few reports have
been posted on the research of time irreversibility of HRV in a
hypoxic environment.

MATERIALS AND METHODS

Subjects
Six young and healthy male volunteers were recruited for our
experiment. Over 24 h stay at an altitude >3,000 m in the
previous 6 months, born at an altitude >1,000 m, being a smoker,
or having a history of severe respiratory or cardiopulmonary
diseases are the exclusion criteria. All subjects were forbidden to
consume tea, coffee, alcohol, medicine that could get the neural
system excited, or do intense physical exercise 24 h prior to
the experiment. Characteristics of the subjects are presented in
Table 1. The study was approved by the Ethics Committee of

TABLE 1 | Characteristics of subjects.

Body mass (kg) 65.8 ± 6.0

Body height (cm) 173.3 ± 5.1

Body mass index (kg/m2) 21.9 ± 1.3

Age (years old) 20.4 ± 1.5

Smoker None

Prior altitude >3,000 m experience None

History of severe respiratory or cardiopulmonary disease None

Data are listed as means ± SD or as number.
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Southeast University, China. All the subjects were well informed
of the aim and risks of the experiment and they all signed their
informed consent before the study.

Experimental Design and Data
Acquisition
This experiment was implemented in a normobaric hypoxic
chamber. Before the experiment, nitrogen was filled into the
chamber to reduce the oxygen concentration to 12.9% (equivalent
to the altitude of 3,600 m), then subjects entered the chamber.
During the experiment, the nitrogen flow was controlled by an
automatic valve (Yu et al., 2011), so that the oxygen concentration
in the chamber was maintained at 12.9%± 0.2%. The experiment
lasted for 2 h, and subjects were asked to keep quiet and lie in
their bunks. They could watch cellphones, read books, and listen
to gentle music. ECG signals were recorded by tiny equipment
inlaid in a chest belt for each subject (SensEcho-5A, Health
Regulation Co. Ltd., Beijing, China). The sampling rate was 200
Hz, and digitized ECG signals were stored in a built-in hard
disk, which is capable of storing 24 h of data. The temperature
and humidity in the chamber were maintained at 22 ± 1◦C and
25± 1%, respectively.

Data Processing and Calculating Method
First, we identified each QRS complex automatically by P&T
methods (Pan and Tompkins, 1985) for its extensively tested
accuracy and efficiency. False and missing detection were
calibrated artificially. Then we extracted R-R intervals series by
corrected R wave positions.

Porta et al. (2006) counted the number of times that the
difference of one RR interval with the next was less than
zero and when the number was unequal to zero; the two
numbers’ ratio was defined as time irreversibility index P%. Guzik
et al. (2006) performed arithmetical operations on the square
of the difference between adjacent RR intervals and defined
time irreversibility index G%. We denote any element in RR
intervals sequence as RRi(1 ≤ i ≤ n), where n is length of RR
intervals sequence. The difference between adjacent RR intervals
is shown as 1RR = RRi − RRi−1. 1RR is also expressed as
1RR+ when 1RR > 0, and 1RR− when 1RR < 0. N(1RR+)
is the number of 1RR+ in the entire 1RR sequence. Delay
time τ is introduced in this study. For τ = 1, 2, . . . , n− 1,
1RRτ = xi+τ − xi (1 ≤ i ≤ n− τ), time irreversibility indices
P%(τ) and G%(τ) for each τ are given by

P%(τ) =
N(1RR−τ )

N(1RR−τ )+ N(1RR+τ )
× 100, (1)

G%(τ) =

∑N(1RR+τ )
i=1 1RR+τ (i)2∑N(1RR+τ )

i=1 1RR+τ (i)2 +
∑N(1RR−τ )

i=1 1RR−τ (i)2
× 100.

(2)

Distance between P%(τ), G%(τ) and 50 are expressed as

QPτ = |50− P%(τ)| , (3)

QGτ = |50− G%(τ)| . (4)

In order to make comparisons with the hypoxic group, we
randomly selected six items of 2 h from the MIT-BIH Normal
Sinus Rhythm Database (Goldberger et al., 2000) to perform the
same time irreversibility analysis on ECG data. We will take QPτ

and QGτ as the measurement of time irreversibility.

RESULTS

Since QPτ and QGτ are all statistics independent of the sequence
length, we calculated each index value from the beginning of
the experiment and moved forward by 1 min each time. The
first computation scope is [0,5 min]. That is, we calculated
the indexes in the scope of [0,5 min], [0,6 min], [0,7 min],
. . ., [0,120 min], respectively, and drew line graphs. In this
way, data volume for calculation is gradually increased and the
curve is relatively flat. Interference for observation and analysis
because of a short or sharp change in a certain data section
can be avoided.

Variation of QP1, QG1, QP2, and QG2
If delay time was set to be 1 or 2 (as shown in Figure 1),
indexes of all subjects in the hypoxic group fluctuated greatly
in the first 15 min after the experiment began, which is possibly
due to the data volume for calculation being small meaning the
autonomic nervous system of the human body must undergo
the process of adjustment and adaptation when first entering
the hypoxic environment. In the entire experiment, the trends
of QP1, QG1, QP2, and QG2 are generally toward zero, which
indicates time irreversibility of HRV of the hypoxic group tends
to decline.

Different from the hypoxic group, which showed a
significant downward trend of QP1, QG1, QP2, and QG2,
indicators of the MIT normoxic group did not show
an obvious consistent changing direction (as shown in
Figure 2).

If we calculate indicators every 15 min and take both
τ = 1 and τ = 2 into consideration, we can draw an error bar
chart with the average value of QP1 and QP2 (as shown in
Figure 3), which clearly shows the average time irreversibility
of all subjects with a delay time of 1 and 2 in different
groups. As in the charts above, indicators of the hypoxic
group decreases and the MIT normoxic group shows no
clear differences.

Variation of QP3, QG3, QP4, and QG4
If delay time was set to be 3 or 4 (as shown in Figure 4),
a great difference in variation trend happened in QP and QG
from that when delay time is 1 or 2. Indicators no longer show
a slow downward trend toward zero with time going by, but
gradually tend to be stable after the drastic transition period
of the first 30 min. And most of the subjects’ indicator curves
gradually converge to a narrow range. In contrast, there was no
significant trend change in the MIT normoxic group (as shown
in Figure 5).
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FIGURE 1 | (A–D) show the corresponding results of QP1, QP2, QG1, and QG2. Variation tendency of QP1, QP2, QG1, and QG2 within 2 h of hypoxic group (each
color represents a subject, the same below).

FIGURE 2 | (A–D) show the corresponding results of QP1, QP2, QG1, and QG2. Variation tendency of QP1, QP2, QG1, and QG2 within 2 h of MIT normoxic group.
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FIGURE 3 | Average value error bar chart of QP1 and QP2 of two groups.
(A) Error bar chart of hypoxic group. (B) Error bar chart of MIT normoxic
group.

DISCUSSION

Research on time irreversibility of HRV in a hypoxic environment
has not been carried out before. Previous studies have shown that
age and pathology will lead to a decrease of time irreversibility
of HRV (Costa et al., 2005) and, compared to the daytime, time
irreversibility of both healthy people and patients with congestive
heart failure (CHF) declines at night (Porta et al., 2009). Our
study in a hypoxic environment reveals a similar rule: prolonged
hypoxic exposure leads to a sustained decline of time irreversible
of HRV within 2 h when the delay time is 1 or 2.

Hypoxia is one of induction factors that can make
regulatory mechanisms of cardiovascular nervous system
change: parasympathetic activity was significantly reduced and
autonomic nervous system regulation was greatly inhibited

(Zhu et al., 2010). Since healthy physiological systems have
the strongest nonlinearity and complexity, the decrease of
time irreversibility in an anoxic state indicates a depression of
nonlinearity and complexity.

In RR interval series, the positive difference between
adjacent RR intervals represents a sudden increase of heart
rate due to sympathetic modulation, whereas the negative
difference represents a decrease in instantaneous heart rate
due to parasympathetic modulation. The indicators variation
of an MIT normoxic group reveals that there is always a
certain difference of regulation times between sympathetic
and parasympathetic nerves in normal individuals under
normal oxygen concentration, while the difference tends
to diminish in hypoxic environments. By definition, QP1
reflects the absolute difference of regulation times between
sympathetic and parasympathetic nerves, and QG1 is a
measurement of regulation intensity by calculating the square
of RR intervals difference. The fact that both of them are
approaching zero indicates that regulation times and intensity
of sympathetic and parasympathetic nerves tend to be close to
each other.

The LancetIn the present study, we observed a decrease
in time irreversibility of the hypoxic group when the delay
time was 1 and 2, but the variation trend changed when
the delay time was increased to 3 or 4. It can be seen that
the trend of QP3, QG3, QP4, and QG4 in the hypoxic group
gradually becomes stable and converges with each other, while
there is no significant difference whatever the delay time
is of the MIT normoxic group, which indicates that time
irreversibility of HRV is closely related to the delay time in
a hypoxic environment. The results of mutual information
analysis shows that the delay time of RR interval sequence
in the elderly was significantly longer than that in the young
(Ma and Zhang, 2010). Further research is needed to find
out what generates the difference of delay time between
hypoxic and normoxic environments. Hou et al. (2011) defined
the average value at different delay times of QP and QG
as the high dimensional time irreversibility index Pm, Gm,
and the square root of their sum of squares was defined
as their comprehensive measurement index Dm. Her study
pointed out that the relationship between age, CHF, and
time irreversibility of HRV was affected by the embedded
dimension. When the value range of the embedded dimension
changed, the variation rule revealed by time irreversibility
indicators also changed. If the embedding dimension is m,
the essential meaning of Pm and Gm is the average value
of QP and QG when the delay time is taken from 1 to m.
In the multi-level control loop and feedback network system
of the human body, they can reflect the average effect of
signals derived from different levels and different delays, but
researchers cannot make observations on the specific value of
time irreversibility index under a certain delay time. When the
value of delay time increases continuously, variation of Pm and
Gm must become gentler and have the characteristics of lag.
It was found that time irreversibility of HRV during exercise
was significantly increased when taking multiple dimensions
into consideration (Hou et al., 2013). Time irreversibility of

Frontiers in Physiology | www.frontiersin.org 5 March 2021 | Volume 12 | Article 60735630

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-607356 March 2, 2021 Time: 19:21 # 6

Li et al. Time Irreversibility in Hypoxia

FIGURE 4 | (A–D) show the corresponding results of QP3, QP4, QG3, and QG4. Variation tendency of QP3, QP4, QG3, and QG4 within 2 h of hypoxic group.

FIGURE 5 | (A–D) show the corresponding results of QP3, QP4, QG3, and QG4. Variation tendency of QP3, QP4, QG3, and QG4 within 2 h of MIT normoxic group.
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HRV in a short period of time at the beginning of hypoxic
exposure was investigated in this paper. Studies have shown
that intermittent hypoxic training over several days significantly
improves SDNN, RMSSD, LF HF (Xu et al., 2004), and SPO2
(Fulco et al., 2013), however, the impact on time irreversibility
needs further research.

CONCLUSION

Variation laws of time irreversibility of HRV in a normobaric
hypoxic environment were researched in the present study. We
found that in 2 h hypoxic exposure, time irreversibility indicators
QP1, QG1, QP2, and QG2 decrease continuously, while QP3, QG3,
QP4, and QG4 gradually tend to be stable and converge to a
narrow range, which means there is a relationship between time
irreversibility of HRV and delay time, and that proper selection
of delay time is important for the observation of the relationship.
In contrast, normoxic environments do not have any influence
on time irreversibility of HRV whatever the delay time is. Results
when delay time is 1 or 2 suggests a decline in automatic nervous
system activities in a hypoxic environment, and regulation times
and intensity of sympathetic and parasympathetic nerves get
close to each other.
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Krejčí, J., Botek, M., and McKune, A. J. (2018). Dynamics of the heart rate
variability and oxygen saturation response to acute normobaric hypoxia within
the first 10 min of exposure. Clin. Physiol. Funct. Imaging 38, 56–62. doi:
10.1111/cpf.12381

Frontiers in Physiology | www.frontiersin.org 7 March 2021 | Volume 12 | Article 60735632

https://doi.org/10.1063/1.3152005
https://doi.org/10.1249/mss.0b013e31815a519b
https://doi.org/10.1249/mss.0b013e31815a519b
https://doi.org/10.1103/PhysRevE.77.066204
https://doi.org/10.1016/j.jelectrocard.2005.06.076
https://doi.org/10.1016/j.jelectrocard.2005.06.076
https://doi.org/10.1007/s10558-007-9049-1
https://doi.org/10.1161/CIRCULATIONAHA.114.013144
https://doi.org/10.1097/JES.0b013e31825eaa33
https://doi.org/10.1140/epjst/e2013-01857-4
https://doi.org/10.1140/epjst/e2013-01857-4
https://doi.org/10.1515/BMT.2006.054
https://doi.org/10.7498/aps.61.220507
https://doi.org/10.7498/aps.61.220507
https://doi.org/10.1016/j.medengphy.2011.01.002
https://doi.org/10.1016/j.medengphy.2011.01.002
https://doi.org/10.1111/cpf.12381
https://doi.org/10.1111/cpf.12381
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-607356 March 2, 2021 Time: 19:21 # 8

Li et al. Time Irreversibility in Hypoxia

Lacasa, L., Nuñez, A., Roldán, É, Parrondo, J. M. R., and Luque, B. (2012). Time
series irreversibility: a visibility graph approach. Eur. Phys. J. B 85, 1–11. doi:
10.1140/epjb/e2012-20809-8

Liu, C. Y., Yang, M. C., Di, J. N., Xing, Y. T., Li, Y. W., and Li, J. Q. (2019). Wearable
ECG: history, key technologies and future challenges. Chin. J. Biomed. Eng. 38,
641–652.

Ma, Y. X., and Zhang, D. Z. (2010). The study on delay time of cardiac RR intervals
series. Chin. J. Med. Phys. 27, 2135–2137.

Pan, J., and Tompkins, W. J. (1985). A real-time QRS detection algorithm.
IEEE Trans. Biomed. Eng. 32, 230–236. doi: 10.1109/TBME.1985.32
5532

Porta, A., D’Addio, G., Bassani, T., Maestri, R., and Pinna, G. D. (2009). Assessment
of cardiovascular regulation through irreversibility analysis of heart period
variability: a 24 hours Holter study in healthy and chronic heart failure
populations. Philos. Trans. AMath. Phys. Eng. Sci. 367, 1359–1375. doi: 10.1098/
rsta.2008.0265

Porta, A., Guzzetti, S., Montano, N., Gnecchi-Ruscone, T., Furlan, R., and
Malliani, A. (2006). “Time reversibility in short-term heart period variability,”
in Proceedings of the 2006 Computers in Cardiology (Valencia: IEEE), 77–80.

Rajbhandari Panday, K., and Panday, D. R. (2018). Heart rate variability (HRV).
J. Clin. Exp. Cardiol. 09, 1–12. doi: 10.4172/2155-9880.1000583

Sinex, J. A., and Chapman, R. F. (2015). Hypoxic training methods for improving
endurance exercise performance. J. Sport Health Sci. 4, 325–332. doi: 10.1016/j.
jshs.2015.07.005

Vigo, D. E., Perez, L. S., Videla, A. J., Perez, C. D., Hunicken, H. M., Mercuri, J.,
et al. (2010). Heart rate nonlinear dynamics during sudden hypoxia at 8230 m
simulated altitude. Wilderness Environ. Med. 21, 4–10. doi: 10.1016/j.wem.2009.
12.022

Xu, X., Lu, L. L., Chen, Z. H., Liu, X. X., and Li, Y. Z. (2004). Analysis of heart
rate variability during acute exposure to hypoxia. Space Med. Med. Eng. 17,
334–339.

Xue, Y., Yang, J., Feng, Y. T., Zhou, Y. B., Qin, Y. F., Li, Y., et al.
(2010). Effects of mindful breathing on rapid hypoxia preacclimatization

training. J. Med. Imaging Health Inform. 10, 718–723. doi: 10.1166/jmihi.2020.
2923

Yao, W., Yao, W., and Wang, J. (2019). Equal heartbeat intervals and their effects
on the nonlinearity of permutation-based time irreversibility in heart rate. Phys.
Lett. A 383, 1764–1771. doi: 10.1016/j.physleta.2019.03.002

Yu, M. S., Yang, J., Wang, H. T., Miao, Y., Wang, N. Z., and Li, Y. (2011).
Normobaric Hypoxic Cabin for Intermittent Hypoxic Training and Method for
Manipulate Oxygen Concentration. CN Patent No 102198321 B. Beijing: State
Intellectual Property Office of the People’s Republic of China.

Zeng, N., Wang, Z., Li, Y., and Du, M. (2013). Time series modeling of nano-gold
immunochromatographic assay via expectation maximization algorithm. IEEE
Trans. Biomed. Eng. 60, 3418–3424. doi: 10.1109/TBME.2013.2260160

Zeng, N., Wang, Z., Zhang, H., Kim, K.-E., Li, Y., and Liu, X. (2019). An improved
particle filter with a novel hybrid proposal distribution for quantitative analysis
of gold immunochromatographic strips. IEEE Trans. Nanotechnol. 18, 819–829.
doi: 10.1109/TNANO.2019.2932271

Zhang, D., She, J., Zhang, Z., and Yu, M. (2014). Effects of acute hypoxia on heart
rate variability, sample entropy and cardiorespiratory phase synchronization.
Biomed. Eng. Online 13:73. doi: 10.1186/1475-925X-13-73

Zhu, S., Ding, N. W., and Liu, L. (2010). Research progress on the influence of
altitude and hypoxic environment on heart rate variability. Chin. J. Sports Med.
29, 359–362.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Li, Li, Liu, Xue, Cao and Liu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 8 March 2021 | Volume 12 | Article 60735633

https://doi.org/10.1140/epjb/e2012-20809-8
https://doi.org/10.1140/epjb/e2012-20809-8
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1098/rsta.2008.0265
https://doi.org/10.1098/rsta.2008.0265
https://doi.org/10.4172/2155-9880.1000583
https://doi.org/10.1016/j.jshs.2015.07.005
https://doi.org/10.1016/j.jshs.2015.07.005
https://doi.org/10.1016/j.wem.2009.12.022
https://doi.org/10.1016/j.wem.2009.12.022
https://doi.org/10.1166/jmihi.2020.2923
https://doi.org/10.1166/jmihi.2020.2923
https://doi.org/10.1016/j.physleta.2019.03.002
https://doi.org/10.1109/TBME.2013.2260160
https://doi.org/10.1109/TNANO.2019.2932271
https://doi.org/10.1186/1475-925X-13-73
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


TECHNOLOGY AND CODE
published: 09 March 2021

doi: 10.3389/fmedt.2021.619280

Frontiers in Medical Technology | www.frontiersin.org 1 March 2021 | Volume 3 | Article 619280

Edited by:

Yonghong Peng,

Manchester Metropolitan University,

United Kingdom

Reviewed by:

Ning Lan,

Shanghai Jiao Tong University, China

Xia-an Bi,

Hunan Normal University, China

*Correspondence:

Giacomo Valle

giacomo.valle@hest.ethz.ch

Silvestro Micera

silvestro.micera@epfl.ch

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Medtech Data Analytics,

a section of the journal

Frontiers in Medical Technology

Received: 19 October 2020

Accepted: 08 February 2021

Published: 09 March 2021

Citation:

Valle G, Iberite F, Strauss I, D’Anna E,

Granata G, Di Iorio R, Stieglitz T,

Raspopovic S, Petrini FM, Rossini PM

and Micera S (2021) A Psychometric

Platform to Collect Somatosensory

Sensations for Neuroprosthetic Use.

Front. Med. Technol. 3:619280.

doi: 10.3389/fmedt.2021.619280

A Psychometric Platform to Collect
Somatosensory Sensations for
Neuroprosthetic Use
Giacomo Valle 1,2*†, Francesco Iberite 1†, Ivo Strauss 1, Edoardo D’Anna 3,

Giuseppe Granata 4, Riccardo Di Iorio 4, Thomas Stieglitz 5, Stanisa Raspopovic 2,

Francesco M. Petrini 2, Paolo M. Rossini 4 and Silvestro Micera 1,3*

1 The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy, 2Department of Health Sciences and Technology,

Institute for Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland, 3 Bertarelli Foundation Chair in Translational

Neuroengineering, Centre for Neuroprosthetics, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL),

Institute of Bioengineering, Lausanne, Switzerland, 4 Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-Policlinic A.

Gemelli Foundation, Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy, 5 Laboratory for Biomedical

Microtechnology, Department of Microsystems Engineering–IMTEK, Bernstein Center, BrainLinks-BrainTools Cluster of

Excellence, University of Freiburg, Freiburg, Germany

Somatosensory neuroprostheses exploit invasive and non-invasive feedback

technologies to restore sensorimotor functions lost to disease or trauma. These

devices use electrical stimulation to communicate sensory information to the brain. A

sensation characterization procedure is thus necessary to determine the appropriate

stimulation parameters and to establish a clear personalized map of the sensations

that can be restored. Several questionnaires have been described in the literature to

collect the quality, type, location, and intensity of the evoked sensations, but there is

still no standard psychometric platform. Here, we propose a new psychometric system

containing previously validated questionnaires on evoked sensations, which can be

applied to any kind of somatosensory neuroprosthesis. The platform collects stimulation

parameters used to elicit sensations and records subjects’ percepts in terms of sensation

location, type, quality, perceptual threshold, and intensity. It further collects data using

standardized assessment questionnaires and scales, performs measurements over

time, and collects phantom limb pain syndrome data. The psychometric platform is

user-friendly and provides clinicians with all the information needed to assess the

sensory feedback. The psychometric platform was validated with three trans-radial

amputees. The platform was used to assess intraneural sensory feedback provided

through implanted peripheral nerve interfaces. The proposed platform could act as a

new standardized assessment toolbox to homogenize the reporting of results obtained

with different technologies in the field of somatosensory neuroprosthetics.

Keywords: neuroprosthesis, neurostimulation, electrodes, sensory feedback, amputees, psychophysics,

somatosensations, platform

INTRODUCTION

Somatosensory neuroprostheses are highly innovative devices (1). Several research groups have
investigated the ability to restore sensory feedback in patients with upper or lower limb amputation,
tetraplegia, or paraplegia using invasive (2–14) and non-invasive (15–19) interfaces with the
peripheral (PNS) and the central nervous systems (CNS) (Figure 1). The main aim of these
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FIGURE 1 | Neuroprosthetic applications. Neurotechnologies for restoring somatosensations have been developed for peripheral (PNS) or central nervous systems

(CNS). The stimulation technique used to restore sensory feedback can be invasive (surgically implanted and in intimate contact with the nervous tissue) or

non-invasive (applied on the skin surface). Delivering a stimulation to the brain or peripheral nerves provides benefits such as the control of robotics, smart prosthetics,

or other assistive technologies.

technologies is to elicit somatotopic-referred sensations
emanating from the affected limb, creating a personalized map of
the these sensations which could be used as a sensory feedback
aimed at improving the patients’ quality of life (20, 21). All these
approaches use neural stimulation to evoke sensations stemming
from contact with sensory peripheral nerves or the neural
interfaces are placed directly on the somatosensory cortex.

The external stimulation of the residual (still functional
proximal to the lesion) nervous structures guarantees to evoke
an artificial sensation that can also be controlled by modulating
the stimulation parameters (22–24).

Since there is intersubject variability due to the different
nerve structures, implantation levels, and innervation (25–
27), together with the subjective perception of the elicited
sensations, a “sensation characterization” procedure is necessary

to obtain a uniform sensation mapping (Figure 2). The goal
of this procedure is to collect all the stimulation parameters
corresponding to the evoked sensations characterized by
the intensity, quality, location, and type in order to have a
personalized sensation map. The mapping phase is crucial
to implement an effective real-time assistive system, e.g.,
bidirectional hand or leg prostheses, eliciting homologous
referred sensations emanating from the phantom limb
(somatotopic) for therapeutic or functional purposes. In
fact, the personalized sensation map is often translated into a
robotic arm or hand in order to elicit sensations during object
manipulation tasks aimed at increasing patient motor control
performance (4, 6, 28, 29). When the patient is controlling a
robotic arm, and touches a surface with the second robotic
digit, the sensation perceived should be in the same location
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FIGURE 2 | Sensation characterization procedure. (1) Stimulation parameters are selected. The stimulation trains are delivered using the neurostimulator; the software

also sends control commands to the Easy Quest app. (2) Patient perceives a stimulation-evoked sensation on the phantom hand thanks to the neural implant. (3)

Easy Quest app in ODF mode is used to report the sensations. (4) Experimenters collect all sensation characterization outcomes and import them in MATLAB or Excel

to plot the results.

(index), with the safety and exact intensity (mapped with the
pressure force of the robotic finger) and the type should be
in line with finger pressure (i.e., no electricity or warmness).
The personalized sensation map should thus be as detailed
as possible.

In addition, to provide a rich and reliable artificial sensory
feedback to the patient, it is necessary to accurately test
multiple sets of stimulation parameters and re-test them even
over multiple days during long-term applications (14, 30–33).
This characterization procedure is fundamental to re-create an
artificial sensory feedback that could be effectively exploitable
in neuroprosthetic applications by the users. To this aim, it
is crucial to collect the data in an effective and efficient way
using a platform in which the information are exhaustive and
standardized. This would guarantee an easy comparison of the
results with different technology or algorithm.

Several psychometric questionnaires exist regarding the
quality and type of the sensations evoked (15, 34–36). However,
they do not appear to be easy-to-use or fast for recording and
integrating all the properties of the elicited sensations with

detailed standard questionnaires and which could be used for
several types of sensory feedback.

The psychometric platform presented in this study provides
a uniform way of characterizing and quantifying the artificial
sensory feedback systems used for invasive and non-invasive,
peripheral, and central sensory feedback, in order to efficiently
compare, optimize, and evaluate all the different approaches even
over time. Our platform records the stimulation parameters,
quality, type, intensity, and location of the evoked sensations.
All the sensation data are collected from questionnaires already
presented in the literature.

The platform also provides a user-friendly graphical user
interface with a touch screen for the patient’s answers that not
only enables the patient to describe the percept in detail but also
provides clinicians with all the main information on the evoked
sensation. The platform accepts new questionnaire definitions
as text and is easy to understand and implement. This means
that researchers can add new questionnaires, such as phantom
limb pain (PLP) (37, 38), in order to collect information on
new treatments.
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This psychometric platform was tested on three trans-radial
amputees who had four intrafascicular electrodes (39) implanted
in their median and ulnar nerves for 6 months each. The patients
responded using the psychometric platform when they received
electrical stimulation by the electrical contacts of the neural
interfaces. The software was used by clinicians and engineers
to collect the data. This has proven to be more convenient
than writing down hundreds of answers in weekly trials over
18 months.

In this study, we describe the usability of this new platform.
We believe that our new psychometric platform will facilitate and
unify the characterization of percepts and the comparison of the
effects when applying different neural stimulation techniques or
using different devices.

METHODS

Software Platform
The psychometric platform is made up of a mobile application
for compiling questionnaires (which we have called Easy Quest),
two desktop tools (Easy Quest Create and Easy Quest Evaluate),
and a desktop application to control the neurostimulator.

The Easy Quest mobile app is described in depth in the
following sections.

Easy Quest Create shows a simple graphical user interface in
which the experimenter can create a list of questions from a set of
predefined types. The content can be customized.

Easy Quest Evaluate is devised for the rapid evaluation of a
set of answers; the software reads the archive file exported by
EasyQuest and exports a comma-separated values (CSV) file. The
choice of CSV format of the results makes further analyses easier,
as it is compatible with MATLAB (MathWorks, Inc., Natick,
Massachusetts, United States) and Microsoft Excel (Microsoft
Corporation, Redmond, Washington, United States).

The desktop application for the actual neurostimulation
is not described here, because its design is strongly
dependent on the type of experiment and neurostimulation
device (communication protocols, stimulator commands,
and architecture); however it is mentioned as part of the
experimental setup.

Somatosensory Questionnaires
Somatosensory descriptors were selected from the literature and
clinical settings also including questionnaires that have already
been used in neuroprosthetic studies. Several options describing
the type, quality, intensity, and the location are presented in
order to characterize the somatosensory percepts being evoked
during the stimulation. To describe the quality of sensations, we
used a scale presented by Lenz et al. (34) and used also by Valle
et al. (9). For the sensation type, we adapted the questionnaire
proposed by Kim et al. (36) based on our experience with several
upper limb patients stimulated with invasive (4, 9, 23, 24, 29,
31, 40–47) and non-invasive technologies (17, 48). We also
considered other studies on sensations elicited using peripheral
(5, 10, 14, 22, 49–55) or central (6, 8, 13) neural stimulation
approaches. For the intensity, we used a Visual Analog Scale
(VAS) (37) already presented by Tan et al. (56). Lastly, the

perceived sensation locations were shown directly on a schematic
representation of the human hand. It is further possible to
select the feet, arms, or legs (11, 12) with several possible spots
(Figure 2). In this way, the patient can accurately indicate the
affected areas.

We added several questionnaires in order to collect
information on PLP: VAS (37) and neuropathic pain symptom
inventory (NPSI) (38). It is also possible to add or modify the
existing questionnaires in order to adapt the platform to the
needs and specifications of the clinical trial.

Use Cases
Two main use cases for the app were identified (Figure 3). In
the first, the user fills in a questionnaire and saves the results on
the device, defined as the “local fill-in” (LF). In the second, an
external software prompts the app to show a questionnaire and
to send back the results, defined as “on demand fill-in” (ODF).
The two cases (Figures 3A,B) involve the same procedure in the
part where the user is asked to fill in the answers.

The main difference, besides the location where the results
are stored, is how the procedure starts: in the first case, the
user choses a questionnaire by selecting it from the main
menu, in the second, the app waits for an external command,
usually from the network, instructing the software to show a
specific questionnaire.

The application can set recurrent reminders for specific
questionnaires, enabling the experimenter to plan the follow-up
for home use by the patient, and these reminders prompt the user
to fill in the questions in LF mode.

A third use case (Figure 3C) explains the workflow from
the perspective of the experimenter, who uses the companion
software to define new questionnaires at the beginning of the
experimentation and to display the results at the end.

An explanatory example of the platform is displayed in
Supplementary Video 1.

Software Architecture
The software was developed in Dart, an object-oriented
programming language developed by Google in order to address
server-side, web, and mobile platforms. The mobile SDK,
Flutter, compiles the code in fast native apps for Android and
iOS devices.

The app is developed following the Model View Controller
(MVC) pattern, and a simple Object-Relational Mapping (ORM)
is implemented to store the models in an SQLite database in the
device’s memory. The ORM is accessed through classes which
show APIs where serialized objects can be stored and retrieved.

To implement the ODF, a simple Hypertext Transfer Protocol
(HTTP) server runs in the background thus the app can, when
requested, wait for remote commands from the network. While
doing so, the app shows a numerical code, which must be notified
to the experimenter to secure the remote connection.

An interface with the mail app is used to send the completed
questionnaires as a CSV file by e-mail.

Another provider class parses the questionnaires defined in
JavaScript Object Notation (JSON) format, making it possible
to create and add new questionnaires to working devices,
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FIGURE 3 | Use cases. The three main features of the psychometric platform: the first two are implemented by the mobile app and the last by the whole system. (A)

Defined as Local Fill-in (LF), where the users compile a questionnaire and the answers are stored in the device. (B) On demand fill-in (ODF), in this case, the app waits

for an external command from a controller app containing information on the questionnaire to be shown; the fill-in procedure is the same but nothing is stored within

the device, instead results are sent back to the controller. (C) The procedure seen from the experimenter’s point of view, here, the role of the other software programs

of the platform (Easy Quest Create, Easy Quest Evaluate) is explained.

without code interventions and recompiling the whole app. The
import service can parse a compressed file containing a set of
questionnaires and also a collection of images referred to in the
questions. There are five questions accepted by the parser: (1)
open, which prompts the user for a string (2); radio, which asks
the user to choose one option from a set (3); multiple choice; (4)
slider, where users have to select a number or a label with a slider;
and (5) image touch, where the user selects a set of touchable
areas displayed on top of a given background image.

The app enables multiple users to access the same device while
keeping the results separate.

The system architecture is shown in Figure 4, along with
the external software highlighting its relationship with the
app modules.

The app UI/UX is designed in accordance with Material,
an open source system of guidelines developed by Google. The
view layer written for the app exploits all the available space,

presenting the questionnaire as a list of questions on small devices
and as a grid on larger screens.

Quality and Usability Assessment
During the clinical trial, we collected feedback information
from patients, clinicians, and engineers who used the platform
presented in this study in three clinical trials (N = 12). The
investigations regarded the development and assessment of
bidirectional hand prostheses for upper limb amputees with
a neural sensory feedback delivered by implantable electrodes
(9, 23, 31, 41, 42). After 6 months of use, we asked participants
to answer different quality and usability questions using:
questionnaires for user interface satisfaction (QUIS) (57), system
usability scales (SUS) (58, 59), Nielsen’s attributes of usability
(NAU) (60), and after-scenario questionnaires (ASQ) (61). We
collected and analyzed all the information using validated and
standardized questionnaires (Figure 5).
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FIGURE 4 | Software architecture. The main components of the platform depicted as squares, external services are shown with an icon and communication with

arrows, some show a label with examples of the information flowing through. A gray shadow surrounds the software modules of the mobile app (Easy Quest).

Data Storage
Alongside the answers to the psychometric questionnaires, a
MATLAB script running in experimenter’s computer stored date
and time for further analysis about the use of the platform. All
the relevant measurements are stored as.mat files, as all the data
processing have been performed inside the MATLAB software.

RESULTS

Somatosensory Questionnaires for
Sensation Characterization
To efficiently characterize the sensations emanating from
(invasive or non-invasive) electrical (central or peripheral)
stimulation, a user-friendly platform is needed with a set
of somatosensory-related questionnaires. This helps to reduce

the long time required to collect all the electrically evoked
sensation data.

To assess the properties of the sensations being evoked
by stimulating peripheral nerves using a neural interface in
trans-radial amputees, we used the psychometric platform
presented here. We performed a procedure called “sensation
characterization” with all the patients involved in the clinical
investigation (Figure 2). For each electrically active site used
to stimulate the nerve, the neural stimulation was delivered,
and the patient was asked to report the sensations he/she
felt. This mapping phase enabled us to identify the sensation
properties for all the stimulation channels of the implanted
electrodes by varying the stimulation parameters and building a
personalized map of the sensations. The stimulation parameters
varied in terms of frequency (1–1,000Hz), pulse-width (1–
120 µs), and amplitude (1–1,000 µA), as well as stimulation
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FIGURE 5 | Usability assessment. All the usability scales are reported: Overall reaction to the software, QUIS, SUS, NAU, and ASQ. Three clinicians, six engineers,

and three patients evaluated the psychophysical platform (N = 12). The data in the figure are represented as means ± standard deviations. The last row resumes

usage metrics.
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TABLE 1 | List of sensory descriptors.

Vibration

Flutter

Buzz

Movement through body/across skin

Movement without motor activity

Urge to move

Touch

Pressure

Sharp

Prick

Tap

Electric current

Shock

Pulsing

Tickle

Itch

Tingle

Numb

Warm

Cool

Here, the chosen descriptors are shown, the user can also enter free text when the other
options are insufficient.

train duration (discrete or continuous). We collected the
sensation intensity, quality, type, and location of the patient’s
perceived sensations.

The intensity was used to find the perceptual thresholds for
each stimulation channel (4, 23, 24, 31), together with the range
of stimulation (between threshold and below pain level). Using
a VAS scale in the range from 0 to 10 also enables us to identify
perceptual magnitude levels (5, 23, 32, 52, 62).

The quality of the sensory feedback was assessed in order
to test different stimulation strategies and approaches (9, 23),
since this quality is considered to be an important factor for
prosthesis acceptance (53, 63). To quantify the perception quality
and naturalness, we used a scale (34) from 1 (totally unnatural)
to 5 (totally natural).

The type of sensation was collected in order to understand
the type of fibers being recruited during the stimulation and to
identify the best channels for restoring homologous sensations
while using the bidirectional prosthesis. We used 20 descriptors
(Table 1) considering all the important aspects. In this platform,
the patient could also report a new sensation or add comments
in an empty text box when a correct descriptor for the elicited
sensation was lacking.

The sensation location was reported using a picture of
the limb of interest (foot, arm, leg, or hand) with several
highlighted spots (20 for foot, 24 for leg, 48 for arm, and
45 for hand) (Figure 2). The zones with a higher density
of receptors had more selectable spots. This information
is useful to understand the electrode stimulation selectivity
(analyzing the spreading of the zone) and the layout of the
fibers inside the nerve. In addition while the bidirectional
prosthesis was being used, the location map was needed to

stimulate the correct active sites eliciting the somatotopic
sensation during the prosthesis hand/finger contact with
objects (4).

Finally, several questions can be used to assess phantom limb
pain levels before and after a pain treatment with electrical
stimulation (31). We decided to use two different questionnaires
(VAS and NPSI) to characterize the location, quality, and
intensity of the pain (11, 31).

Software Usability
The usability testing of the app was performed on an Android
phone (a Nexus 6p), designed by Huawei and running Android 8.

The app loading time is <2 s, needing only the time to open
the local database, and after the login screen, the user can access
all the main functions in no more than two taps.

The home page shows a list of all the available questionnaires,
the user can tap on each one to see the questions and fill in the
answers, which are stored in the internal database.

From the lateral menu (drawer), the ODF mode can be
accessed in only one tap, after which the app will wait for a
network command containing the identifier of the questionnaire
to be shown.

Minimal user interaction is needed to complete a
questionnaire, usually all the questions need just one tap,
except for the multiple choice and clickable area ones. The
average time to fill in a sensation characterization questionnaire
is 10 s.

The export page lets the user write all the stored data in
a CSV archive file and opens the default mail to send to the
experimenters for further analysis, facilitating and speeding up
the data-gathering phase.

A specific section of the app lets the user choose which
questionnaire should be visible in the home page, personalizing
the user interface for a specific use.

Other pages are designed for secondary tasks, such as
previewing stored answers and editing settings.

Psychometric System Validation
In order to assess the usability and quality of this novel
psychometric platform to collect somatosensory percepts, several
questionnaires were filled in by different kinds of users. Three
patients, six engineers, and three clinicians evaluated the system
by answering four questionnaires after using the platform in
clinical applications (Figure 5). Analyzing the results, the overall
reactions to the system were very positive. The average score was
7.1± 0.3. Considering the user interface satisfaction (QUIS), the
rating achieved was 6.6 ± 0.8. In both these questionnaires, the
maximum achievable score was 9.

In the SUS (range 1–5), Q1-Q3-Q5-Q7-Q9 scored 4 ± 0.2,
while Q2-Q4-Q6-Q8 scored 2.3± 0.2. These results indicate that
the users agreed more with the positive sentences and disagreed
more with negative ones. The NAU (range 1–7) showed high
ratings of 5.6 ± 0.5, and the ASQ (range 1–5) showed an average
value of 3.7± 0.8.

During the clinical trial, the psychophysical platform stored
1,913 measurements.
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Usage Metrics
The time passed between a measurement and the subsequent
have been calculated and plotted in Figure 5. Records were
aggregated by day and outliers due to technical problems and
breaks for the subject were ignored, the mean time between two
measurements is 74 ± 31.8 s. The number of measurements per
day have also being considered an indicator of the overall use of
the platform, the mean use overall was 128± 39.6 measurements
per day. Each measurement consisted of a.mat file of roughly
1.14 kB, the whole dataset totaled then for almost 2.2 MB.

DISCUSSION

Electrical stimulation has been proposed as a way of restoring
somatosensations (15, 63–67) in cases where they have been
lost due to injury or disease in both the CNS or the PNS. In
fact, sensory feedback is crucial to improve the motor control
of robotic limbs or prostheses, enabling the patient to be more
efficient in manipulating objects (4, 28, 55, 68). The sensations
evoked thus had to be characterized in detail in patients receiving
stimulation in order to restore the sensory information. The
psychometric questionnaires were able to register all the aspects
of the sensations being restored in a reliable and efficient way,
considering more descriptors than in previous studies (34) and
using a user-friendly platform.

Currently, there are many important sensation properties
which need to be collected in order to obtain an intuitive
and rich sensory feedback. In particular, the sensation location,
type, quality, and intensity are valid and extendable for all the
approaches in different neurological conditions. Considering
the previously presented interface to collect stimulation-evoked
somatosensory percepts, Geng et al. (35) showed a platform
used to evaluate electrical stimulation to relieve PLP. Their
platform was interfaceable with one type of neural stimulator and
contained three questions to characterize the evoked sensation
considering 12 sensation descriptors. The psychometric platform
presented here reports somatosensory percepts based on five
questionnaires containing 20 standard sensory descriptors
(Table 1). The platform exploits a customizable, fast, and easy-
to-use GUI which can be efficiently connected to several neural
stimulators (31, 69, 70).

Since several groups are currently using electrical stimulation
to restore sensory feedback, a standard somatosensory platform
could facilitate their comparison, assessment, and optimization.
Our findings support the conclusion that this psychometric
platform could help and accelerate the development of
sensorimotor neuroprostheses.

Given the simple software architecture, this platform is
flexible in terms of modifications and upgrades. It is possible
to add new questionnaires regarding other aspects of sensory
feedback restoration. For example, two important features to
be considered for the development of the next generation of
somatosensory neuroprostheses are embodiment (42, 71, 72) and
psychological/affective aspects (73).

The psychometric platform is simple to interface with other
devices and also with existing software, thanks to its open and
platform-agnostic interfaces: in ODF mode the HTTP interface

accepts commands regardless of the device and the programming
language of the sender application (all major languages can
implement HTTP communication effortlessly). Answers to the
questionnaires are exported in a CSV format, making it easy for
any other software program to import and analyze them.

Considering the results of the usability assessments (Figure 5),
users highlighted various positive and negative aspects which
will then help us to improve the platform. The most positive
aspect in terms of the “overall reaction to the software” was that
the software is easy to use, which is crucial both for patients
and experimenters.

The QUIS answers revealed that this system is consistent and
very clear; however, we still need to improve error and warning
messages. These aspects mainly regard the experimenters’ side.
The SUS again indicated that the system is easy to use and
intuitive, but additional material and instructions should be
included as support. Moreover, the NAU showed a high user
satisfaction along with a request for more error messages.
Finally, the ASQ revealed “the ease of completing this task,”
thus highlighting the need for more support, information, and
documentation. We thus intend to improve the platform using
these usability results.

Usage metrics confirmed the ease of the fill-in process, with
a mean time needed for a complete session of 74 s. Thanks to
that stimulation spots were probed with a suitable rate (128 ±

39.6 measurements per day), for the intended objectives. The
small dimension of the measurements made easy the subsequent
steps of data revision, analysis, and storage, anyway authors are
planning further reduction in the memory needed.

STUDY LIMITATIONS

There are several limitations connected to the patient attention
at the time of testing. To solve this issue, it is important to
repeat the test multiple times over multiple days in order to
increase its reliability. The test is also highly subjective, and
the mapping results could strongly depend on the sensation of
the patient and his/her personal experience (74). The individual
subjective differences remain a big challenge for interpreting the
somatosensory results and also the semantic differences. The
usability and the utility of the platform need to be demonstrated
with a larger population of patients with sensory deficits and with
other technologies for the restoration of sensory feedback (e.g.,
non-invasive stimulation, brain stimulation).

Sham (placebo) and blind stimulations could also be
delivered to test individual response bias and identify possible
unreliable self-reports.

The software design, particularly the GUI, was inspired by the
principles of the ISO 9241 standard. In fact, the users’ opinions
of the platform were taken into consideration during the design
phase and the assessment.

The software will be actively used during experiments, and
the user experience will be monitored to improve new versions,
ensuring an iterative development driven by user feedback, as
also stated in ISO 9241. In particular, in addition to the online
availability of the software, the platform needs to be used in
future clinical trials for both upper- and lower-limb amputees
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provided with a fully implantable sensory feedback system in
long-term studies.

CONCLUSIONS

This study has presented a psychometric platform used to
record a complete somatosensory percept description, which
can be evoked by several different methods of electrical
stimulation in humans. The subjective somatosensory sensation
type, location, quality, and intensity are collected and used to
develop a somatosensory questionnaire, which can be used for
neuroprosthesis calibration and optimization. The psychometric
toolbox is implemented in a user-friendly software program. The
platform was validated in patients with electrodes implanted in
the PNS.

We believe that this new somatosensory psychometric system
will help to establish a standard and uniform methodology of
subjective sensory reports, which is a pivotal step to uniformly
develop, adapt, and improve somatosensory neuroprostheses.

DATA AVAILABILITY STATEMENT

The datasets generated during and/or analyzed during the
current study are available from the corresponding author on
reasonable request. The Easy Quest Android application is
available from the Google Play Store platform: https://play.
google.com/store/apps/details?id=me.francescoiberite.research.
easy_quest.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Ethics Committees of Policlinic
A. Gemelli at the Catholic University and Italian Ministry
of Health. The patients/participants provided their written
informed consent to participate in this study. Written informed
consent was obtained from the individual(s) for the publication
of any potentially identifiable images or data included in
this article.

AUTHOR CONTRIBUTIONS

GV designed the study, developed the software, analyzed
the data, and wrote the paper. FI developed the software,
analyzed the data, and reviewed the manuscript. IS designed
the study, developed the software, and reviewed the manuscript.
ED’A developed the software and reviewed the manuscript.
GG, RD, and PR tested the platform with patients. TS
developed the TIME electrodes. TS and PR discussed the
results and reviewed the manuscript. SR designed the platform.
FP designed the platform and discussed the results. SM
designed the study, discussed the results, and reviewed the
manuscript. All authors read, commented, and approved
the manuscript.

FUNDING

This work was supported by the EU Grant FET 611687 NEBIAS
Project (NEurocontrolled BIdirectional Artificial upper limb and
hand prosthesiS) and Bertarelli Foundation.

ACKNOWLEDGMENTS

This manuscript has been released as a preprint at Biorxiv (75).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmedt.
2021.619280/full#supplementary-material

Supplementary Video 1 | Example of collection of somatosensory sensation

data. The video shows the ODF procedure, where the Easy Quest app and the

software controlling the stimulator interact. After the login procedure, the user sets

the android application in ODF, opening the communication port. As soon as the

controller software, after a verification procedure, detects the running app, there is

a visual confirmation in the dashboard on the right-hand side of the screen. When

stimulation parameters are correctly set, the software can deliver the stimulation

and automatically send a sensation questionnaire to the subject’s device. Instead

of being stored in the device, the answers are sent back to the control software

and are shown in the lower part of the interface.
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Fatty liver disease (FLD) is a common liver disease, which poses a great threat to

people’s health, but there is still no optimal method that can be used on a large-scale

screening. This research is based on machine learning algorithms, using electronic

physical examination records in the health database as data support, to a predictive

model for FLD. The model has shown good predictive ability on the test set, with its AUC

reaching 0.89. Since there are a large number of electronic physical examination records

in most of health database, this model might be used as a non-invasive diagnostic tool

for FLD for large-scale screening.

Keywords: fatty liver disease, electronic medical records, genetic algorithm, machine learning, XGBoost,

chi-square binning algorithm

1. INTRODUCTION

Fatty liver disease (FLD) is a lesion with excessive accumulation of fat in liver cells, which is divided
into non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) (1). In
recent years, with the improvement of living standards, changes in lifestyle and diet, and the wide
use of ultrasound and other imaging technology, the prevalence of FLD is growing rapidly (2). In
fact, it has become the most common cause of chronic liver disease in developed and developing
countries (3). According to research, about 25% of people worldwide and 21% of people in China
catch NAFLD (4, 5).

At present, the pathogenesis of NAFLD is not completely clear, and there is no ideal and
effective treatment drug, but it is reversible in the early stages. Research shows that effective
lifestyle interventions such as energy restriction, dietary changes, and increased physical activity
are particularly effective in the early stages of NAFLD (6). Therefore, early detection and treatment
is the key. At present, the main clinical diagnostic methods are ultrasound, CT, and liver biopsy
(7). For their invasiveness and complexity, they are not suitable for large-scale epidemiological
screening (8–10).

Based on the above situation, many scientists try to use machine learning algorithm to build
the prediction model of FLD. In recent years, several machine learning models based on medical
data have been proposed (11–13). Italian scholar Giorgio Bedogni collected data by gender, age,
alcohol intake, alanine aminotransferase, aspartate aminotransferase, bodymass index (BMI), waist
circumference, the sum of four skinfolds, etc., and established a prediction model for NAFLD
(13). However, most of the models are carried out through questionnaire surveys and medical
experiments and use some features that are not easy to obtain in large quantities. The limitation
of data quantity and the complexity of features make these models difficult to generalize.
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https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2021.668351
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2021.668351&domain=pdf&date_stamp=2021-04-12
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xmulsm@xmu.edu.cn
https://doi.org/10.3389/fpubh.2021.668351
https://www.frontiersin.org/articles/10.3389/fpubh.2021.668351/full


Zhao et al. Fatty Liver Disease Prediction Mode

The purpose of this study is to establish an efficient and
convenient FLD prediction model using machine learning
algorithm which can help doctors to screen out the patients that
need further liver examination and can be applied to large-scale
epidemiologic screening. To facilitate the generalization of the
model, the features we use will be as convenient as possible, and
the amount of data we use will be as much as possible.

2. MATERIALS AND METHODS

2.1. Dataset
The development of the medical system, the popularity of
electronic physical examination records, and the establishment
of health databases provide data support for large-scale
epidemiological research. The data set used in this study is from
the health database of a hospital in China, which contains the
electronic physical examination records of 44,854 patients. And
in this data set, no patient’s privacy information is included,
only routine physical examination data and age are included.
To simplify and generalize the model, we only extracted 129

FIGURE 1 | Data preprocessing flowchart.

routine physical examination items of all patients, including
blood routine, biochemistry, urine routine, etc.

In this study, patients diagnosed with FLD by ultrasound were
marked as 1, and the remaining patients were marked as 0. The
prevalence of FLD in the data set is 23%, which is close to the
previous research (5).

2.2. Data Preprocessing
Firstly, for the accuracy of the model, we deleted individuals who
had not undergone ultrasound examination because we did not
know if they had FLD. Then, we delete the items with more
than 2

3 missing values that most people have not been examined.
Finally, we randomly select 70% of the data set as the training set
of the model and 30% as the test set.

Figure 1 shows the process of data preprocessing. Figure 2
shows the mean (standard deviation) of the different features
of FLD patients and normal people and whether these features
have passed the chi-square test with significance level of 0.05.
It can be seen that there are significant differences in Male
gender percentage, Uric acid (UA), Triglycerides (TG), Alanine
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FIGURE 2 | Statistical information and chi-square test results of different features in different groups.

aminotransferase (ALT), Aspartate aminotransferase (AST),
Gamma glutamine transpeptidase (GGT), Age and AST/ALT
between FLD patients and normal people, while Carbon dioxide
(CO2), Total bilirubin (TBIL), Total protein (TP), and Anion gap
do not.

2.3. Missing Value Processing
Compared with conducting medical experiments and
questionnaire surveys, the advantage of using electronic
physical examination records in the health database for
modeling is that the amount of data is large and the model is
easy to be generalized, but the disadvantage is that there are
lots of missing values. Therefore, how to fill in missing values is
critical to modeling. The usual practice is to fill in the mean or
median for missing values. In fact, the distribution of medical

indicators varies with gender and age, and the range is large.
So it’s a good choice to fill in the median according to age
and gender.

For age grouping method, standard age grouping can be
used, but the result is not ideal. So we use the chi-square
binning algorithm to group age. Chi-square binning algorithm
is a binning algorithm based on the chi-square test, which is
specifically implemented by the independence test in the chi-
square test. The theoretical basis for binning is: the lower the chi-
square value between two bins, the more likely they are to have
similar distributions (14). If two adjacent bins have very similar
distributions, then the two bins should be merged, otherwise,
they should be separated. Therefore, in each step of the algorithm,
the two bins with the smallest chi-square valuemust be combined
until the number of bins meets the stopping condition.
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In the present study, a bin refers to an age group and
distribution refers to the prevalence of FLD. And we set the
expected number of bins to 5, and the result after calculation
on the training set is: [0, 17], (17, 29], (29, 35], (35, 47], (47, 197].
According to the results of age grouping, Figure 3 shows
the distribution of several important features that need to
be filled with missing values under different age and gender
groups. It can be seen that the difference in distribution is
obvious, so our strategy of filling in missing values is necessary
and effective.

2.4. Feature Engineering
In machine learning modeling, the quality of features often
determines the upper bound of model performance. Therefore,
we need to do feature engineering on the existing routine
features to maximize the usage of them. In clinical diagnosis, the
combination of multiple characteristics often plays an important
role in the judgment of diseases. For example, AST/ALT
(Aspartate aminotransferase/Alanine aminotransferase) is of
great significance in the diagnosis of liver diseases (1). So we want
to generate new features through a combination of features.

In the present study, we use Spearman’s correlation coefficient
as a standard to measure the quality of features and use the
genetic algorithm to find the optimal solution. Spearman’s
correlation coefficient, also known as rank correlation coefficient,
can measure the rank correlation between two variables. If

the machine learning model used is based on a decision
tree, the Spearman correlation coefficient can measure the
correlation between a feature and the target. The genetic
algorithm is a method of searching for the optimal solution
by simulating the natural evolution (15, 16). The algorithm
transforms the problem-solving process into a process similar
to the crossover and mutation of chromosomal genes in
biological evolution. When solving more complex combinatorial
optimization problems, Compared with some conventional
optimization algorithms, it can usually obtain better optimization
results faster (16).

Figure 4 shows the process of feature engineering using
genetic algorithm. In the algorithm, an individual in the
population is defined as a binary tree. Each leaf node of the
binary tree is a certain feature in the data set, and each inner
node of the binary tree is an operator in {+, -, *, /, log, sqrt}.
Each individual represents an expression composed of features
and operators. Fitness is the Spearman correlation coefficient
between the new feature and the target. In each generation,
individuals with high fitness will be retained, and individuals
with low fitness will be eliminated. The upper left of Figure 5
shows an individual example, which represents TG∗AST+GLU.
The upper right and lower parts of Figure 5 respectively show
crossover operations and mutation operations, both of which
generate new individuals by changing subtrees in the way that
simulates biological variation.

FIGURE 3 | Violin chart: the distribution of different features under different age groups and genders.
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FIGURE 4 | Genetic algorithm flowchart.

FIGURE 5 | Demonstration of individual and individual variation.
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We set the number of individuals in each generation to 1,000
and set the maximum depth of the binary tree to three. Use the
normalized features and iterating ten generations, the individuals
with the first three fitness levels are added to the data set as new
features. The result is:GA_fea1 = TG+log(ALT)with fitness 0.89,
GA_fea2 = TG ∗ GGT with fitness 0.87, and GA_fea3 = (UA +

AST) ∗ log(ALT) with fitness 0.79.

3. EXPERIMENTS AND RESULTS

XGBoost (eXtreme Gradient Boosting) is an engineering
implementation of gradient boosting decision tree (GBDT) (17).
Its core idea is to perform a second-order Taylor expansion of
the loss function, and gradually train the decision tree based on
the objective function, and greatly improve the training model
speed (18, 19). XGboost has many advantages. For example,
traditional GBDT only uses first-order derivative information
in optimization, while XGboost performs a second-order Taylor
expansion on the cost function to make the result more accurate.
Xgboost adds a regular term to the cost function to control the
complexity of themodel, which reduces the variance of themodel
and makes the learned model simpler and prevents overfitting.
XGboost supports parallel computing on feature granularity,
which greatly reduces the amount of calculation and improves
the training speed. In addition, XGBoost is a model based on
the decision tree model, it is more explanatory than neural
networks and other algorithms, which can enable us to better
understand how a physical examination data plays a role in the
model (20). Therefore, the present study uses the XGBoost model
for modeling.

The error of a machine learning model includes two aspects:
variance and bias (21). High bias models usually have relatively
simple parameter settings and tend to underfit, that is, there is
little difference in performance between the training set and test
set, but both are relatively low. High variancemodels usually have
complex parameter settings and tend to overfit. They perform
well on the training set, but the performance on the test set
drops seriously. The usual practice is to make a trade-off between
variance and bias to get a reasonable model. AUC (Area Under
Curve) is defined as the area under the ROC curve (Receiver
Operating Characteristic curve), which is a commonly used
indicator to measure the quality of a machine learning model
(22). AUC has nothing to do with the ratio of positive and
negative samples, it represents the model’s ability to sort samples
to a certain extent (23). In present study, we use AUC as the
evaluation criterion of the XGBoost model. On the training
set, Bayesian optimization of hyperparameters is performed
using triple cross-validation, and then the obtained results are
fine-tuned to prevent over-fitting and ensure the rationality of
the parameters. The main results are as follows: max_depth : 3,
learning_rate : 0.07, n_estimators : 150, scale_pos_weight : 2, mi
n_child_weight : 6, gamma : 0.2, reg_alpha : 0.1.

The upper left and upper right of Figure 6 respectively show
the performance of the high variance model and the high bias
model. The lower left shows the effect of the hyperparameter
iterations on the model performance. It can be seen that with

the increase of iterations, the over fitting phenomenon of the
model appears, and the variance of the model becomes larger.
The lower right shows the performance of the model with the
optimal hyperparameter combination set. It can be seen that the
AUC of the model reached 0.89, which shows that the model has
a strong predictive ability for FLD, and the performance of the
model in the test set and training set is basically the same, without
over fitting phenomenon.

4. DISCUSSION

Using the number of times the feature is used as the basis
for splitting in the decision tree splitting as the importance of
the feature, we can sort all the features by importance. Left of
Figure 7 shows the model performance obtained by gradually
adding the top 60 features of importance to the model. It can
be seen that the top 10 features are the most important, and the
features after the 20th place are dispensable. This shows that even
if we only use the first ten features to train the model, its AUC
can still reach the level of 0.87–0.88, but the model is greatly
simplified at this time.

Right of Figure 7 shows the importance of the top 10 features.
According to research, the degree of fat accumulation in the liver
is directly proportional to body weight. The prevalence of obesity
in NAFLD patients is estimated to be 51.34% (95% CI: 41.38–
61.20) (1), so many FLD patients have a significant increase in
TG. At the same time, and when liver disease occurs, ALT and
GGT will increase significantly. Right of Figure 7 shows that
TG, ALT, GGT, GA_fea1, and GA_fea2 play a vital role in the
model, which is in line with the facts. Studies have also shown
that the prevalence of diabetes in NAFLD patients is estimated
to be 22.51% (95%CI: 17.92–27.89) (1), and with the increase of
age, people’s metabolism slows down and people are more likely
to suffer from metabolic diseases. So the importance of GLU and
Age is also well-understood.

We analyzed the patients with FLD who were mispredicted
in the test set and found that their indicators were basically
normal. We think that these people may be patients with AFLD
or patients with mild FLD, they often do not have obvious
symptoms and indicators change (1). Our data set does not
include the alcohol intake and body condition of patients, which
limits our prediction ability, because we can not exclude the
interference of AFLD and we can not use the waist circumference
of patients to judge whether they are obese(Even so, the AUC of
our model is still high). But because of this, our model can be
directly applied to the electronic physical examination records of
the current health database for large-scale epidemics screening.

5. CONCLUSION

In the present study, we use the electronic physical examination
records in the health database as data support, use the chi-square
binning algorithm to help fill in the missing values, and use
the genetic algorithm as the optimization algorithm for feature
engineering, which tentatively solves the two disadvantages of
the large-scale electronic medical record–missing values and
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FIGURE 6 | Trade-off between variance and bias.

FIGURE 7 | The influence of the number of features used on the model and feature importance.

lack of features. In the end, this study established an FLD
prediction model based on the XGBoost algorithm with an
AUC of 0.89. The satisfactory performance of the model makes

large-scale screening of FLD possible, but due to the limited
data breadth, more data is needed for external verification
before applications.
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Powerline interference (PLI) is a major source of interference in the acquisition of

electroencephalogram (EEG) signal. Digital notch filters (DNFs) have been widely used

to remove the PLI such that actual features, which are weak in energy and strongly

connected to brain states, can be extracted explicitly. However, DNFs are mathematically

implemented via discrete Fourier analysis, the problem of overlapping between spectral

counterparts of PLI and those of EEG features is inevitable. In spite of their effectiveness,

DNFs usually cause distortions on the extracted EEG features, which may lead to

incorrect diagnostic results. To address this problem, we investigate an adaptive

sparse detector for reducing PLI. This novel approach is proposed based on sparse

representation inspired by self-adaptive machine learning. In the coding phase, an

overcomplete dictionary, which consists of redundant harmonic waves with equally

spaced frequencies, is employed to represent the corrupted EEG signal. A strategy

based on the split augmented Lagrangian shrinkage algorithm is employed to optimize

the associated representation coefficients. It is verified that spectral components related

to PLI are compressed into a narrow area in the frequency domain, thus reducing

overlapping with features of interest. In the decoding phase, eliminating of coefficients

within the narrow band area can remove the PLI from the reconstructed signal. The

sparsity of the signal in the dictionary domain is determined by the redundancy factor.

A selection criteria of the redundancy factor is suggested via numerical simulations.

Experiments have shown the proposed approach can ensure less distortions on actual

EEG features.

Keywords: EEG, spare representation, fourier transform, powerline interference, basis pursuit

INTRODUCTION

Electroencephalography (EEG) aims at measuring potentials that reflect the electrical activity of
the human brain (1). It has been recognized as a powerful tool in psychophysiology due to its
high temporal resolution and sensitivity to index different functional brain states (2). However,
because of imperfect measurement conditions, noises are likely to be incorporated in the records
of EEG. For instance, EEG signals in actual measurements can often be exposed to strong
powerline interferences (PLIs) at 50 or 60Hz, which is originated from AC power (3). In laboratory
environments, good shielding measures, such as shielded rooms, can be helpful to reduce the
influence of PLI. But shielding measures are usually impractical for healthcare practices of EEG
monitoring via mobile instrument such as wearable devices (4, 5).
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In practical applications, solutions to remove the PLI can
be roughly categorized into two types, the hardware ways and
the software ways (6). The hardware ways are referred to
active electrodes with integrated analog filters, but a significant
residual interference still remains. In contrast, the software
based solutions are more flexible and they can be combined
with hardware based techniques. To achieve a more robust
performance of the PLI removal, novel approaches based on
digital signal processing techniques are more popular and have
been extensively studied (7–9). The digital notch filter (DNF)
at the powerline frequency, which is designed based on the
theory of traditional Fourier analysis, has been widely employed
to reduce PLI in biomedical measurements (10). In spite of its
effectiveness, side effects of the DNF are also reported in related
researches. Firstly, the stop band of the DNF is difficult to be
selected. Although the main frequency of PLI stays at 50 or 60Hz
nominally, there is always a variation of±2Hz in the actual power
system. Secondly, the sampling parameters also affect the filtering
results. A phenomenon of energy leakage is likely to be produced
by sinusoidal waves whose sampling does not satisfy the full
period sampling condition (11). Thirdly, the actual EEG features
cover a comparatively broad range in the frequency domain.
Thus, overlapping between the spectral counterparts of PLI and
those of the EEG features is inevitable. As a result, DNF is not a
perfect tool for removing PLI.

Multiresolution analysis (MRA) is a powerful tool to
characterize non-stationary and transient components. The past
three decades have witnessed the rapid development of MRA.
As a concrete example of MRA, discrete wavelet transform
(DWT) is implemented using a scaling function and a wavelet
function (12). DWT has been widely utilized to separate signal
components in many scientific researches. On the other hand,
flexible DWTs, based on parameter optimization schemes, are
also employed to extract transient features (13). In the field
of biomedical signal processing, wavelet transform can reveal
weak features related to the transient nature of biomedical
measurements which are not so obvious by using spectrum
analysis. In the literature, it has been reported that DWT can be
used as an effective tool in dealing noises such as PLI and baseline
wandering from a corrupted biomedical measurement (14).
DWT can be also combined with artificial intelligence methods
(15, 16), such as deep learning and support vector machine, to
realize signal classification applications. However, in suppressing
the PLI components, which are more similar to stationary
contents in waveform, DWT may be not perfect. Recently,
compressed sensing and sparse representation, which still rely on
the idea of signal representation, emerge as enhancements to the
conventional DWT.

In this paper, to achieve a better PLI suppressing performance,
we proposed a novel adaptive detector (ASD). It can be regarded
as an improvement to fast Fourier transform, which is a classical
spectral analysis tool. Within the proposed method, a redundant
Fourier dictionary, developed from the orthogonal Fourier
basis, is employed as an over-complete dictionary. The linear
combination coefficients with respect to the redundant dictionary
are optimized to achieve a sparse representation. Therefore, a
sinusoidal wave can be expressed as a combination of a very

limited number of sinusoidal atoms. Due to the narrow band
property of PLI in the spare representation, they can be more
easily isolated from other contents. The performance of the
proposed method is verified by numerical simulations and a case
study of actual EEGs.

MATERIALS AND METHODS

Signal Modeling and Notations
For the convenience of discussion, we use the following notations
for mathematical argument. Let {x(n)|, n ∈ Z

+
⋃

{0}} be a
corrupted EEG signal containing both the actual brain potential
waveform s(n) and the PLI component p(n). That is to say,
x(n) = s(n) + p(n). Let the sampling length and the sampling
frequency of x(n) be denoted as N and fs. The estimated signal
after PLI cancellation using some specific algorithm is expressed
as s̃(n). In this article, p(n) is modeled as a simple harmonic wave
characterized by the harmonic parameters of amplitude (Amppli),
frequency (fpli), and initial phase (ϕpli).

p(n) = Amppli · cos(2π fpli(n− 1)1t)+ ϕpli) (1)

where the time interval1t = 1/fpli. To remove PLI, an important
task lies in accurate estimation of these harmonic parameters
such that a compensation signal can be reconstructed. The actual
EEG waveform s(n) is by nature non-stationary and its spectrum
covers a comparatively wide range of area in the spectral domain,
which is essentially different from that of p(n).

In optimization theory, the norms of x(n) are indispensable.
Two types of commonly used norms are the ℓ1 and ℓ2 norms.
They are computed using the following formulae.

ℓ1 norm : ||x||1 : =

N−1∑

i=0

∣
∣x(i)

∣
∣

ℓ2 norm : ||x||2 : =

(
N−1∑

i=0

∣
∣x(i)

∣
∣2
)1/2

(2)

The ℓ1 is essential to ensure sparse representation using
redundant dictionaries. The ℓ2 is strongly connected to
least squares approximation, and it is also known as the
Euclidean distance.

Notch Filters Based on Fourier Transform
Theory
Fast Fourier transform (FFT) is a fundamental tool for discrete
signal analysis. It is an orthogonal decomposition of input signal
x(n) of length N via a orthonormal basis ΦFourier .

Φ
Fourier

=
1

√
N

[φ0 φ1 . . . φN−1] (3)

The k-th sinusoidal atom in the Fourier dictionary can be
defined as

φk =

(
ej·

2π
N ·k·0, ej·

2π
N ·k·1, ej·

2π
N ·k·2, . . . , ej·

2π
N ·k·(N−1)

)T
(4)
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where j =
√
−1 is defined as the imaginary number and T means

the transpose operation in matrix algebra. That is to say, the
frequency of the sinusoidal atom φk is 2π(k − 1)/N. A uniform
step of 2π/N is assumed for angular frequencies of two adjacent
atoms in the Fourier dictionary. The transform coefficient is
computed using the following formula

ck = φH
k x, (5)

where H means conjugate transpose in complex analysis. The
representation coefficients of a input signal x with respect to the
dictionary ΦFourier is expressed using the matrix operation of
ΦH

Fourier x. By using the above transformation, the input signal
is expressed as the sum of a few sinusoidal waves with different
frequencies, which is expressed as

x =

N−1∑

k=0

ckφk. (6)

The above Equation is also named as the inverse fast Fourier
transform (IFFT). For a sinusoidal wave whose sampling
parameters satisfy the full period sampling condition, it is
mapped to a single spectral line (11). Otherwise the phenomenon
of energy leakage occurs and causes dense representation of the
sinusoidal wave in the frequency domain.

The method of digital notch filter is theoretically based on
the Fourier transform theory. Either finite impulse response
(FIR) filters or infinite impulse response (IIR) filters can
be designed for conducting PLI removal applications.
Some mature development toolkit for designing notch
filters can be found in commercial software of numerical
computation. By specifying a few parameters, notch filters can
be designed conveniently. Despite the effectiveness reported
in the literature, these filters also suffer a few drawbacks
and may cause distortions on the extracted EEG features.
Owing to frequency variations existed in the PLI, it is not
possible to design a uniform DNF with pre-determined
parameters. Hence, during the implementation of DNFs,
strategies allowing self-adaptivity of parameters should
be considered.

Redundant Fourier Dictionary for Spectral
Analysis
In the FFT spectrum, the spectral lines are sampled at the
frequency of k · fs/N, in which k = 0, 1, . . . ,N − 1. The interval
between adjacent spectral lines are uniform. Just as the digital
signal can be regarded as a sampling of the analog signal, the FFT
spectrum can be also interpreted as a sampling of the continuous
Fourier spectrum. For an arbitrary frequency of fa, the associated
Fourier coefficient can be calculated using the following formula

X(fa) =

N−1∑

k=0

x(k)e−j·2π fak1t , (7)

in which 1t = 1/fs. Besides the FFT sampling grids mentioned
above, additional Fourier coefficients can be computed in
order to allow insightful investigations. Because redundancy
is introduced in signal representation, the relevant dictionary
is called as redundant Fourier Dictionary (RFD). A few
efficient implementation using RFD have been developed,
such as Goertzel algorithm (17), chirp-Z transform (18) and
zero padded FFT (19). Among these implementations, the
combination of zero padding and FFT algorithm is usually
adopted for computing redundant Fourier spectra, in which
the RFD is composed of uniformly spaced spectral bins.
Although redundancy is beneficial in revealing information in
the frequency domain, the corresponding representations are
likely to be dense. Therefore, post-processing steps are usually
required to estimate harmonic parameters of PLI.

In this paper, in order to sparsely represent a signal, a tight
dictionary composed of redundant Fourier atoms is employed.
For a N-point digital signal, a tight Fourier dictionary A
containing K atoms (K > N) is defined as

A =
(
φ̃0 φ̃1 . . . φ̃K−1

)
, (8)

in which the angular frequency associated with the sinusoidal
atom φ̃k is 2πk/N. It can be regarded as a representation matrix
of mapping: CN

7→ C
K . Different from φk, the definition of φ̃k is

given as

φk =

(
ej·

2π
K ·k·0, ej·

2π
K ·k·1, ej·

2π
N ·k·2, . . . , ej·

2π
K ·k·(N−1)

)T
. (9)

The vectors x, φk, φ̃k are of the same dimension. The redundancy
factor of the dictionary of A can be defined as Q = K/N.
The forward transform of x with respect to A can be written
as AHx. However, according to the Fourier theory, this process
is somewhat time consuming. By using the algorithm of
FFT, a fast implementation can be shown as blow. The first
step is to enlarge the length of x to the dimension of K
by zero-padding,

x
Zero Padding
−−−−−−−→

[
x

01×(N−k)

]

. (10)

The second step is to perform FFT on the augmented series.
However, it can be seen that this forward transform is generally
a dense representation. Therefore, a sparse coding algorithm
is required.

Sparse Fourier Spectrum Analysis via
SALSA
In optimization theory, a constraint optimization problem can be
summarized as

argmin
z

E(z) such that Cz − b = 0, (11)
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where E (·) is the cost function. The associated augmented
Lagrangian is defined as

LA(z, λ,µ) = E(z) + λT(cz − d)+ µ||cz − b||22. (12)

where the vector-valued variable λ is the Lagrange multiplier.
Based on these methodologies, we can find numerical solutions
for sparse representation problems.

Sparse representation (SR) is a novel idea of signal expansion
by using redundant dictionaries, which can be expressed as

y = Ax. (13)

In the above equality, the matrix A represents a dictionary of
the dimension N × K, in which K ≫ N. The variable x is the
linear combination coefficient vector of the dimensionK×1. The
theory of SR requires that most of the entries in x are zero. The
solution to the above optimization problem can by numerically
implemented via either matching pursuit (MP) or basis pursuit
(BP). In this article, we present the idea of sparse Fourier
spectrum based on BP algorithms. In engineering applications,
in order to handle the noises in the measurement, an improved
problem of Pε

1 can be formulated as

min ||x||1such that ||Ax− y||2 6 ε, (14)

where ε stands for the admissible error. That is to say, the
ℓ1 norm is utilized as the measure of the sparsity. In the
literature, various techniques have been developed to solve the
above Pε

1 problem. In this paper, the strategy of split augmented
Lagrangian shrinkage algorithm (SALSA) is employed. The
strategy of SALSA (20) is celebrated due to its flexibility and fast
convergence. By introducing the ideals of variable splitting and
augmented Lagrangian (21) into this algorithm, it can address
the constraint optimization problem with robust performance.
As such, let the observed signal be y and the dictionary matrix
be A, the Pε

1 problem to obtain the optimized solution x̂ can be
written as

x̂ = argmin
x

1

2
||y− Ax||22 + ||λ ⊙ x||1, (15)

where the vector-valued variable λ is the Lagrange multiplier and
the operator ⊙ means element-wise product of two vectors of
equal size. The i-th element of λ ⊙ x is defined as

[λ ⊙ x]i = λixi. (16)

Applying the strategy of variable splitting, we can have the
following problem.

x̂ = argmin
x,u

1

2
||y− Ax||22 + ||λ ⊙ u||1 such that u− x = 0.

(17)

FIGURE 1 | Flow chart of the proposed ASD algorithm.

According to the augmented Lagrangian theory, the problem in
Equation (17) can be prepared in a matrix form, which is shown
as below.

z1 = x, z2 = u, z =

[
z1
z2

]

,C =
[
I −I

]
, b = 0. (18)

and

E(z) =
1

2
||y− Az1||

2
2 + ||λ ⊙ z2||1 (19)

The Proposed Adaptive Sparse Detector
(ASD) for PLI
It can be inferred form the definition of the redundant
dictionary A that it is a Parserval tight frame because
AHA = pI, where p is a constant. According to the
theory of SALSA, the following algorithm based on iterations
can be employed. The series y is the measured EGG
signal, which is used as the input of the algorithm. The
series x is the linear combination coefficient series. The
variables λ and µ are necessary parameters required by the
algorithm. The procedure of the algorithm is summarized
as below.

Step 1. Initialize the parameters and passenger variables: k = 1
µ > 0, d
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FIGURE 2 | (A) Time domain waveform of the simulated signal; (B) FFT spectrum of the simulated signal; (C) zoom-in plot of the FFT spectrum; and (D) linear

combination coefficients of the redundant Fourier dictionary.

Step 2. Repeat the following routine

v = soft

(

x+ d,
λ

µ

)

(20)

d =
1

µ + p
AH(y− Av) (21)

x = d + v (22)

Step 3. k = k+ 1. If k 6 Inter_num, repeat Step 2. Otherwise,
the iteration ends.

In the above procedure, the function soft(·) indicates the soft
threshoding function defined by

soft(x,T)= max (T./x, 0) , (23)

in which the symbol ′
− /′ means division by element and T

is the threshoding value. For the ease of argument, we require
that K, the number of atoms in the redundant dictionary A, to
be multiples of N. The relationship of K and N is expressed as
K = MN, in which M is a positive integer greater than one. The
flowchart of the algorithm is depicted in Figure 1.

RESULTS

Numerical Simulation
In this subsection, numerical simulations are utilized to validate
the performance of the proposed ASD. Following the definition
of PLI in Equation (1), a digital signal is set as

p(t) = cos
(
2π · (50+ 1f ) · t +

π

3

)
, (24)

in which the frequency shift 1f=0.15Hz. The number of
samplings and the sampling frequency are set as 1,000 and
1,000Hz respectively. The time domain waveform of the p(t)
is shown in Figure 2A. In the spectral analysis, the frequency
resolution is calculated as.

1f =
fs

N
= 1Hz/Spectral Line (25)

Because the sampling of the sinusoidal component does not
meet the full period sampling condition, the energy leakage
phenomenon occurs in the FFT spectrum. Figure 2B shows the
energy of this sinusoidal component spreads across the entire
frequency domain with slow decaying rate.

Frontiers in Public Health | www.frontiersin.org 5 May 2021 | Volume 9 | Article 66919058

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Chen et al. Sparse Method for PLI Removal

FIGURE 3 | (A) The cost function history; (B) sparse Fourier spectrum by the proposed ASD methodology; and (C) zoom-in plot of sparse Fourier spectrum.

A redundant Fourier dictionary with the definition in
Equation (8) is used to represent the signal. The redundancy
factor of the dictionary is set as 10. That is to say, ten thousand
sinusoidal atoms are employed. A direct transform generates the
redundant Fourier spectrum (Figure 2D). Compared with the
waveform in Figure 2C, the space between adjacent spectral lines
is reduced to one-tenth of that in the FFT spectrum. However,
the energy leakage problem remains unchanged, which can be
observed from the envelope of the redundant spectrum.

To sparsely represent the signal, the ASD algorithm is
performed by using the redundant Fourier basis. The iteration
number is set as 100. Let x(k) be the linear combination
coefficients in the k-th iteration, an indicator of loss function can
be defined as

Loss Fun(k) =
∥
∥
∥λ ⊙ x(k)

∥
∥
∥
1
. (26)

The curve of the cost function is shown in Figure 3A. It can be
seen that the cost function converges quickly. About tem times
of iterations are enough to guarantee an approximate sparse
representation with respect to the dictionary A. The final linear
combination coefficient vector x̂ of the ASD methodology is
shown in Figure 3B. It can be observed that only three spectral
lines are large in amplitude. The associated frequencies of them
are 50, 50.1, 50.2, and 50.3Hz. The amplitudes of the other
spectral lines are very small in value, so they are negligible.

Processing Results of Actual EEG
Measurements
In this subsection, the analyzed datasets are provided by the
Department of Epileptology at University of Bonn (22). The
EEGs were recorded at the sampling frequency of 173.61Hz.
According to the Shannon sampling theorem, the spectral band-
width of the EEG recordings is 0.5–85Hz. Digital filters, with the
passing band of 0.53–40Hz, were utilized as pre-processings of
the EEGs. Figure 4A illustrates a EEG segment collected from
healthy volunteers in an awake state with eyes open. The FFT
spectrum of the signal segment is shown in Figure 4B. Due to
the band pass filtering step, the spectrum components in the
frequency range 40–85Hz are relatively small. However, by visual
inspection, an energy concentration area can be still found near
the power line frequency (Figure 4C).

To remove the PLI, the ASD methodology is performed
on the EEG segment. In order to guarantee the convergence
of the algorithm, two thousand iterations are employed. The
convergence of the loss function can be found in Figure 4G. The
sparse Fourier spectrum is depicted in Figure 4D. The contents
of the signal in the frequency domain are quite complicated.
Many non-stationary components can be detected. Due to the
sparse representation algorithm, the amplitudes of many spectral
lines are almost zero. As such, sinusoidal waves, whose sparse
spectrum consists of a very limited number of spectral lines, can
be effectively isolated from other non-stationary components.

Two spectral lines, whose frequencies are 49.95 and 49.96Hz,
can be used for retrieve the PLI component. Besides, another
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FIGURE 4 | (A) The time domain waveform of the EEG measurement; (B) FFT spectrum in linear scale; (C) FFT spectrum in logarithmic scale; (D) sparse FFT

spectrum by the proposed method; (E) zoom-in plot of the sparse spectrum in the neighbor of 50Hz; (F) zoom-in plot of the sparse spectrum in the neighbor of

76Hz; (G) the cost function history of the iterated algorithm; (H) the synthesized compensation signal; and (I) the denoised signal.

strong sinusoidal wave, whose frequency is ∼76Hz, is also
found in the spectrum. zoom-in plots of two sinusoidal waves
are illustrated in Figures 4E,F. The spectral lines of 49.95 and

49.96Hz are picked out to reconstruct the PLI component, whose
time domain waveform is shown in Figure 4H. By checking
the shape, it is confirmed that the sinusoidal wave is perfectly
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reconstructed. By subtracting the retrieved PLI component from
the EEG segment, the denoised signal is shown in Figure 4I. The
PLI component is relatively weak in energy, and therefore the
denoised signal is very similar to the original EEG segment.

DISCUSSION

According to the above arguments, it can be concluded that the
proposed ASD, which is based on the SALSA, can be utilized as
an effective algorithm to retrieve sinusoidal waves.

In spectral analysis of sinusoidal waves of finite digital
samples, the ASD can achieve sparse representation. For a
sinusoidal wave, the phenomenon of energy leakage occurs if
its sampling does not meet the full period sampling condition.
In such circumstances, the spectral counterpart of a sinusoidal
wave is composed of a main lobe and a few side lobes. The
side lobes caused by energy leakage spread across the entire
frequency domain. For signal analysis with a segmentation
window of the rectangular shape, the side lobes decay very
slowly. Reconstruction error by using the main lobe will cause
a big error. However, by using a redundant Fourier dictionary
containing evenly spaced sinusoidal atoms, it is possible to
alleviate this problem. In the numerical simulation, the simple
harmonic wave can be sparsely represented by four spectral
lines. The amplitudes of two adjacent side lobes are 1.63 × 10−4

and 1.39 × 10−4respectively. The reconstructed signal can be
obtained using the four spectral lines shown in Figure 3C. The
relative error between the reconstruction error and the original
signal is calculated to be 0.2%. While in the EEG recorded from
actual measurements, only two spectral lines are sufficient to
allow a reconstruction of PLI with high accuracy. The amplitudes
of two adjacent side lobes are 3.88 × 10−7 and 3.78 × 10−7

respectively. The side lobes also exist in the ASD, but they very
small in energy. Therefore, the side lobes can be ignored in the
reconstruction process.

As shown in the flow chart (Figure 1), there are many
parameters in the SALSA algorithm. The redundancy factor (Q)
of the employed dictionary and the iteration number can directly
affect the sparse Fourier spectrum. In the numerical simulation,
there are 4 strong spectral lines when Q = 10 and Iter_Num =

100. Keeping the parameter Q unchanged, there can be only 2
strong spectral lines when the iteration number is increased to
1,000. On the other hand, a large value of Q is beneficial in
prompting the sparsity of the resultant spectrum. However, larger
values of Q and Iter_Num requires are more time consuming. To
suppress the PLI component as well as other sinusoidal waves, we
can set the amplitudes of spectral lines as zero relevant to them

and keep other spectral contents unchanged. It is unnecessary to
identify their harmonic parameters of amplitude, frequency and

phase. However, these parameters can be calculated by using FFT
on their reconstruction signals.

Regarding how to determine the number of atoms in the
Fourier dictionary, as the number of atoms increases, it will
be beneficial to the compression of the main lobe width of
the PLI, but it will also affect the efficiency of the whole
algorithm, generally ten times the number of atoms of the
original is enough.

In addition to the method proposed in this paper, the using
of adaptive notch filters for PLI removal has been investigated
by the authors (23). The core of the study is ratio-based spectral
correction which can extract the spectral information of the PLI
components. The difference between the study and ours is that
the preceding method does not change the spectral resolution.
The information of the PLI components is based on the ratio
computation, while the energy leakage of the spectrum faces no
mitigation. Our method reduces the phenomenon of overlapping
by increasing the spectral resolution. And due to the narrow band
property of PLI in the spare representation, they can be more
easily isolated from other contents, making its signal information
extraction efficient and accurate.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://epileptologie-bonn.de/cms/.

AUTHOR CONTRIBUTIONS

B-qC and W-fS conceived and designed the classification
method and reviewed and edited the manuscript. C-qW and
B-xZ performed the experiment. C-qW and B-xZ preprocess
and analyzed the data and wrote the manuscript. All authors
contributed to the article and approved the submitted version.

FUNDING

This research was supported financially by National Natural
Science Foundation of China (No. 51605403), Natural
Science Foundation of Guangdong Province, China (No.
2015A030310010), Natural Science Foundation of Fujian
Province, China (No. 2016J01012), the Aeronautical Science
Foundation of China (No. 20183368004), and the Fundamental
Research Funds for the Central Universities under Grant
(No. 20720190009).

REFERENCES

1. Birbaumer N, Weber C, Neuper C, Buch E, Haagen K, Cohen K. Brain–

computer interface research: coming of age. Clin Neurophysiol. (2006)

117:479–83. doi: 10.1016/j.clinph.2005.11.002

2. Lehmann D. EEG assessment of brain activity: spatial aspects,

segmentation and imaging. Int J Psychophysiol. (1984) 1:267–76.

doi: 10.1016/0167-8760(84)90046-1

3. Leske S, Dalal SS. Reducing power line noise in EEG and MEG

data via spectrum interpolation. Neurolmage. (2019) 189:763–76.

doi: 10.1016/j.neuroimage.2019.01.026

4. Gramann K, Ferris DP, Gwin J, Makeig S. Imaging natural cognition in action.

Int J Psychophysiol. (2014) 91:22–9. doi: 10.1016/j.ijpsycho.2013.09.003

5. Makeig S, Gramann K, Jung TP, Sejnowski TJ, Poizner H. Linking

brain, mind and behavior. Int J Psychophysiol. (2009) 73:95–100.

doi: 10.1016/j.ijpsycho.2008.11.008

Frontiers in Public Health | www.frontiersin.org 8 May 2021 | Volume 9 | Article 66919061

http://epileptologie-bonn.de/cms/
https://doi.org/10.1016/j.clinph.2005.11.002
https://doi.org/10.1016/0167-8760(84)90046-1
https://doi.org/10.1016/j.neuroimage.2019.01.026
https://doi.org/10.1016/j.ijpsycho.2013.09.003
https://doi.org/10.1016/j.ijpsycho.2008.11.008
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Chen et al. Sparse Method for PLI Removal

6. Benatti S, Casamassima F, Milosevic B, Farella E, Schönle P, Fateh

S, et al. A versatile embedded platform for EMG acquisition and

gesture recognition. IEEE Trans Biomed Circuits Syst. (2015) 9:620–30.

doi: 10.1109/TBCAS.2015.2476555

7. Qin L, He B. A wavelet-based time-frequency analysis approach for

classification of motor imagery for brain-computer interface applications. J

Neural Eng. (2005) 2:65–72. doi: 10.1088/1741-2560/2/4/001

8. Siuly S, Li Y. Improving the separability of motor imagery EEG signals

using a cross correlation-based least square support vector machine for brain

computer interface. IEEE Transact Neural Syst Rehabil Eng. (2012) 2.0:526–38.

doi: 10.1109/TNSRE.2012.2184838

9. Tomasini M, Benatti S, Milosevic B, Farella E, Benini L. Power line

interference removal for high-quality continuous biosignal monitoring

with low-power wearable devices. IEEE Sens J. (2016) 16:3887–95.

doi: 10.1109/JSEN.2016.2536363

10. Verma AR, Singh Y. Adaptive tunable notch filter for

ECG signal enhancement. Proc Comp Sci. (2015) 57:332–7.

doi: 10.1016/j.procs.2015.07.347

11. Chen BQ, Lan QX, Li Y, Zhuang SQ, Cao XC. Enhancement of fault feature

extraction from displacement signals by suppressing severe end distortions

via sinusoidal wave reduction. Energies. (2019) 12:3536. doi: 10.3390/en1218

3536

12. Peng ZK, Tse PW, Chu FL. A comparison study of improved Hilbert–

Huang transform and wavelet transform: application to fault diagnosis

for rolling bearing. Mech Syst Signal Process. (2005) 19:974–88.

doi: 10.1016/j.ymssp.2004.01.006

13. He WP, Zi YY, Chen BQ, Wu F, He ZJ. Automatic fault feature extraction

of mechanical anomaly on induction motor bearing using ensemble

super-wavelet transform. Mech Syst Signal Proces. (2015) 54–55:457–80.

doi: 10.1016/j.ymssp.2014.09.007

14. Poornachandra S. Wavelet-based denoising using subband dependent

threshold for ECG signals. Digital Signal Process. (2008) 18:49–55.

doi: 10.1016/j.dsp.2007.09.006

15. Wang SH, Govindaraj VV, Górriz JM, Zhang X, Zhang YD. Covid-19

classification by FGCNet with deep feature fusion from graph convolutional

network and convolutional neural network. Inform Fusion. (2021) 67:208–29.

doi: 10.1016/j.inffus.2020.10.004

16. Wang SH, Nayak DR, Guttery DS, Zhang X, Zhang YD. COVID-

19 classification by CCSHNet with deep fusion using transfer learning

and discriminant correlation analysis. Inform Fusion. (2020) 68:131–48.

doi: 10.1016/j.inffus.2020.11.005

17. Varadarajan KK, Suhasini PR, Manikantan K, Ramachandran S. Face

recognition using block based feature extraction with CZT and Goertzel-

algorithm as a preprocessing technique. Proc Comp Sci. (2014) 46:1458–67.

doi: 10.1016/j.procs.2015.02.065

18. Li F, Gao Y, Cao Y, Iravani R. Improved teager energy operator and improved

chirp-Z transform for parameter estimation of voltage flicker. IEEE Trans

Power Del. (2015) 31:245–53. doi: 10.1109/TPWRD.2015.2448943

19. Zhang B, Xiao TY, Zhong JZ. A simple determination approach for zero-

padding of FFT method in focal spot calculation. Opt Commun. (2019)

451:260–4. doi: 10.1016/j.optcom.2019.06.065

20. Afonso MV, Bioucas-Dias JM, Figueiredo MAT. Fast image recovery using

variable splitting and constrained optimization. IEEE Trans Image Process.

(2010) 19:2345–56. doi: 10.1109/TIP.2010.2047910

21. Afonso MV, Bioucas-Dias JM, Figueiredo MAT. An augmented

Lagrangian approach to the constrained optimization formulation of

imaging inverse problems. IEEE Trans Image Process. (2011) 20:681–95.

doi: 10.1109/TIP.2010.2076294

22. Andrzejak RG, Lehnertz K, Rieke C, Mormann F, David P, Elger CE.

Indications of nonlinear deterministic and finite dimensional structures in

time series of brain electrical activity: dependence on recording region

and brain state. Phys Rev Ed. (2001) 64:061907. doi: 10.1103/PhysRevE.64.0

61907

23. Chen BQ, Li Y, Cao XC, Sun WF, He WP. Removal of power line interference

from ECG signals using adaptive notch filters of sharp resolution. IEEE Access.

(2019) 7:150667–76. doi: 10.1109/ACCESS.2019.2944027

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Chen, Zheng, Wang and Sun. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Public Health | www.frontiersin.org 9 May 2021 | Volume 9 | Article 66919062

https://doi.org/10.1109/TBCAS.2015.2476555
https://doi.org/10.1088/1741-2560/2/4/001
https://doi.org/10.1109/TNSRE.2012.2184838
https://doi.org/10.1109/JSEN.2016.2536363
https://doi.org/10.1016/j.procs.2015.07.347
https://doi.org/10.3390/en12183536
https://doi.org/10.1016/j.ymssp.2004.01.006
https://doi.org/10.1016/j.ymssp.2014.09.007
https://doi.org/10.1016/j.dsp.2007.09.006
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1016/j.inffus.2020.11.005
https://doi.org/10.1016/j.procs.2015.02.065
https://doi.org/10.1109/TPWRD.2015.2448943
https://doi.org/10.1016/j.optcom.2019.06.065
https://doi.org/10.1109/TIP.2010.2047910
https://doi.org/10.1109/TIP.2010.2076294
https://doi.org/10.1103/PhysRevE.64.061907
https://doi.org/10.1109/ACCESS.2019.2944027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


OPINION
published: 14 May 2021

doi: 10.3389/fpubh.2021.682377

Frontiers in Public Health | www.frontiersin.org 1 May 2021 | Volume 9 | Article 682377

Edited by:

Yonghong Peng,

Manchester Metropolitan University,

United Kingdom

Reviewed by:

Shuai Wang,

Hefei University of Technology, China

Zhe Yang,

Dongguan University of

Technology, China

*Correspondence:

Weifang Sun

swf@wzu.edu.cn

Specialty section:

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

Received: 18 March 2021

Accepted: 19 April 2021

Published: 14 May 2021

Citation:

Chen B, Zheng B and Sun W (2021)

Ultra-Resolution Spectral Correction

Based on Adaptive Linear Neuron for

Biomedical Signal Processing.

Front. Public Health 9:682377.

doi: 10.3389/fpubh.2021.682377

Ultra-Resolution Spectral Correction
Based on Adaptive Linear Neuron for
Biomedical Signal Processing

Binqiang Chen 1, Baixun Zheng 1 and Weifang Sun 2*

1 School of Aerospace Engineering, Xiamen University, Xiamen, China, 2College of Mechanical and Electrical Engineering,

Wenzhou University, Wenzhou, China

Keywords: fast fourier transform, biomedical signal, adaptive linear neuron, sinusoidal wave, spectrum correction

INTRODUCTION

Sinusoidal waves (SWs) are often presented in engineering dynamic measurements. They also
appear in biomedical signals (1–3), such as electrocardiogram (ECG), electroencephalogram (EEG)
and electromyography (EMG). The power line interference (4–6) is among the major types of
interferences in these biomedical signals and it should be removed using hardware or software
based techniques (7–9). A simple harmonic wave can be characterized using a group of harmonic
parameters. By identifying these parameters, a compensation signal can be constructed and
subtracted from the original measurement (10). In the literature, current techniques to estimate
harmonic parameters mainly rely on discrete Fourier analysis. According to the theory of discrete
Fourier analysis, the spectral resolution of a spectrum is the reciprocal of the signal sample length.
Therefore, greater values of the sampling length are beneficial in improving the performance of
harmonic parameter identification.

During the past decades, various spectrum correction methods have been developed to estimate
harmonic information with high precision (11–15). With the help of spectrum correction methods,
the harmonic information of a signal SW can be retrieved effectively. In the practices of biomedical
signal processing, multiple SWs may be presented in the signal simultaneously. In ideal cases, the
frequency distances of adjacent SWs should be sufficiently large such that they can be separated
individually. Generally, at least a distance of five spectral resolutions is required. Otherwise, as the
distance between their frequencies gets closer, the PFE even deteriorates and the overlapping of
their energies cannot be neglected. To separate MSWs with relative small differences in frequency,
there are still no effective method in the literature.

In order to address this problem, an effective solution is to predict additional data samples
beyond the recorded datasets. As the number of samples increases, including the original samples
and the predicted samples, the spectral resolution in the FFT spectrum can be improved such that
the coupled MSWs can be separated. This solution has been adopted in the theory of modern
spectrum analysis (16). However, current techniques can only ensure effective time series prediction
in a short time. The prediction errors increases dramatically in a long term situation. As such, only
a limited number of prediction samples can be obtained by post-processing of the original dataset.
Hence, a limited improvement of spectral resolution can be derived.

In this paper, a novel separation method, based on the adaptive linear neuron, is proposed for
MSWs whose frequencies are closed spaced in the spectral domain. The autoregressive model is
employed to describe intrinsic structure of the MSW data. The obtained samples are utilized to
train the AR model. In order to reduce the training errors, a norm function is formulated and the
pseudo inverse is used to derive the closed form solution. Additional samples can be predicted via
the established AR model from the recorded samples. Simulation results show the auto-regression
algorithm can guarantee precise predictions in a long time interval beyond the original sampling
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FIGURE 1 | (A) The structure of a typical adaptive linear neuron; (B) The procedure of the proposed method.

length. An extremely high spectral resolution can be achieved
from the extended data length, therefore the coupled MSWs can
be distinguished in the spectral domain. The proposed method
can be regarded as a theoretical model to separate the coupled
MSWs in the frequency domain. Numerical simulations are

presented to show the effectiveness of the proposed method.

PERSPECTIVE METHOD FOR
SEPARATION OF CLOSED SPACED MSWS

Picket Fence Effect and Aliasing of MSW
In mathematics, FFT generates a series of spectral lines evenly

spaced at a specific frequency resolution, which is the reciprocal
of the entire sampling interval. For a sinusoidal wave with

a specific frequency, If the signal sampling period does not
contain an integer number of harmonic periods (full period

sampling condition), the energy leakage problem of the harmonic
components occurs. This phenomenon is also known as the

picket fence effect (PFE). Side effects of PFE are also reported in

wavelet decompositions (17, 18).

Adaptive Linear Neuron
The adaptive linear neuron is a naive and useful tool in artificial

neural networks (19, 20). As a single layer artificial neural

network, the structure of a typical ADALINE is illustrated in
Figure 1A. A classical proportional function y = x is employed

as the activation function. On the other hand, the indicator of

mean squared error can be employed as the loss function. As
a supervised learning method, the strategy of back propagation

(BP) can be used to train the weights. The research of artificial

neural network is a hot topic in the scientific and engineering

community. In the past decade, by introducing new activation

functions and loss functions, deep neural network based on
stacked neurons can be constructed.

A Perspective Method for Multi-SW
Separation Problem
In order to establish a precise model for a dynamic
process of multi-SW, the celebrated auto regressive
model is introduced to implement weight training in
ADALINE. An autoregressive model of order p can be
expressed as

xt = α0 + α1xt−1 + α2xt−2 + . . . + αpxt−p + εt . (1)

The error term εt can be interpreted as stochastic noises. For
an MSW series with a mean value of zero, this parameter
can be set to zero. The values of rest weight parameters
αi, i = 0, 1, . . . , p, can be obtained using a least mean
square (LMS) approach. Supposing that we have an original
series of length L. All the equations associated with the
AR(p) model in Equation (1) can be expressed in a matrix
form as








x1 x2 . . . xp
x2 x3 . . . xp+1

...
...

. . .
...

xL−p xL−p+1 . . . xL−1















α1

α2

...
αp








=








xp+1

xp+2

...
xL







. (2)

In the above equation, the coefficient matrix A is of the size
(L−p)×p. It is amatrix of full column rank and its pseudo inverse

Frontiers in Public Health | www.frontiersin.org 2 May 2021 | Volume 9 | Article 68237764

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Chen et al. Ultra-Resolution Spectrum Analysis

can be computed as A†
= (ATA)

−1
AT . The unknown column

vector containing the AR parameters can be computed using

α = A†(xp+1 xp+2 . . . xL
)T
. (3)

The above least mean square method is among the
various techniques to estimate the AR parameters. Because
the order of p is relatively small, this method can be
extremely efficient.

After establishing the AR model, data extrapolation can
be made. Beside the available data, additional samples can
be predicted using Equation (1). The flow chart of the
proposed method is displayed in Figure 1B. The estimation error
significantly affects the prediction accuracy, which is shown in
the discussion part.

Since the length of the time series being investigated can be
substantially enlarged using the data extrapolation, the spectral
resolution in the FFT spectrum also improves. As a result, the
MSWs closely spaced in the original spectrum can be separated
in the new spectrum.

Discussions
In the proposed method, the training process of ADALINE
is completed by AR. However, in the literature, the back

propagation (BP) is more popular. By using BP, the cost function
can also be blow in value. However, the prediction errors grow
significantly as the prediction length increases. Therefore, AR
can be regarded as an effective long term prediction tool in
multi-SW processes.

We can lengthen the entire sampling interval based on
predictions of additional samples, which significantly improves
the actual frequency resolution in the FFT spectrum. That is to
say, we can separate their counterparts in the spectral domain.
However, for SW components which do not satisfy the full period
sampling condition, spectrum correction methods should be
combined to further investigate their harmonic information.
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Studies on the economic burden of disease (EBD) can estimate the social benefits of

preventing or curing disease. The majority of studies focus on the economic burden

of a single or regional disease; however, holistic or national research is rare in China.

Estimating the national EBD can provide evidence for policy makers. We used the

top-downmethod to assess the economic burden of 30 types of diseases between urban

and rural areas in China. The two-step model was used to evaluate the direct economic

burden of disease (DEBD), while the human capital method was used to assess the

indirect economic burden of disease (IEBD). The total economic burden of 30 types of

diseases in China was between $13.39 and 803.00 billion in 2013. The average total

economic burden of disease (TEBD) in cities was $81.39 billion, while diseases in villages

accounted for $50.26 billion. The range of direct and indirect EBD was $5.77–494.52

billion, and the range in urban areas was $0.61–20.34 billion. The direct and indirect EBD

in rural areas accounted for $5.88–277.76 billion and $0.59–11.39 billion, respectively.

There was a large difference between the economic burden of different diseases. The

economic burden of urban diseases was more significant than the burden for the

rural. The top five most economically burdensome diseases were myocardial infarction

coronary artery bypass, acute myocardial infarction, cerebral hemorrhage, acute upper

gastrointestinal bleeding and acute appendicitis.

Keywords: direct economic burden, indirect economic burden, disease, China, decision making

INTRODUCTION

The rapid development of the economy has improved living and nutritional standards.
Simultaneously, it has had a large effect on changing the spectrum of diseases in China (1, 2).
Chronic non-communicable diseases are currently the prevailing diseases, increasing number of
people paying more attention to their health. Furthermore, the study of the economic burden of
disease (EBD) can help estimate the social benefits, resulting in the prevention or cure of disease,
and can provide information related to the economic evaluation of disease (3–6).More importantly,
this type of research offers a scientific basis for limited medical insurance and a rational allocation
of health resources.
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China introduced a new medical system reform policy on
March 17, 2009. The main purpose of the new policy was
to solve the problems that made it difficult and expensive
for patients to visit a doctor. The new policy has decreased
the damage on patients’ bodies and the loss to society caused
by illnesses. However, if the main disease can be prevented
by implementing certain intervening measures with limited
health resources, injuries and losses for individuals, families and
societies that are caused by the disease can be avoided. Due to
China’s unique economic development, there is great economic
disparity between urban and rural areas in China, which has
greatly affected the constituent of the disease and the treatment
options that are available to residents living between urban and
rural areas. The majority of researches on economic burden
has mostly focused on a single disease or localized diseases
(7–11), but an integrated study of multiple diseases is rare in
China. Recent studies only estimated the economic burden of
lung cancer (12), seasonal influenza (13), chronic diseases (14),
children with asthma (15) and Alzheimer’s disease (16) in China,
and the economic burden of Alzheimer’s disease in Zhejiang
Province (17), hepatitis E-infected patients in Jiangsu Province
(18) and rare diseases in Shanghai (19) etc. Therefore, we intend
to estimate the overall EBD and then, to separately measure the
EBD between urban and rural areas in China in order to provide
evidence for relevant policy makers.

METHODS

We used a top-down approach to estimate EBD in China.
The top-down approach (6) finds national or regional total
health expenditures in advance, relying on the existing system
for information on health expenditures. Then, the various
expenses are classified, such as hospitalization costs, outpatient
and emergency costs, drug costs, etc., based on a certain
percentage corresponding to the allocation of items used to target
disease. Lastly, the average cost of individual or various diseases
is calculated.

Data Collection
The Analysis Report of Notional Health Services Survey in
China 2013 (ARNHSS) provided consultation rates data for 2
weeks, categorized by the diseases and hospitalization rates and
constituent ratio of outpatient and inpatient institutions in 2013.
The China Health and Family Planning Statistical Yearbook 2014
(CHFPSY) provided the data for the average outpatient costs,
hospitalization costs and the length of stay by diseases at different
hospital levels and the total national health expenditure in 2013.
The China Statistical Yearbook 2014 (CSY) provided the urban
and rural population numbers and the Gross Domestic Product
(GDP) data in 2013.

Every 5 years, the Chinese government conducts the national
health services survey, which is a special sample survey, in
order to understand the urban and rural residents’ health
status, health care utilization, health care costs and burden on
the country. In 2013, the fifth national health services survey
adopted multi-stage stratified cluster random sampling. The

sample covered 31 provinces, 156 counties, 780 towns and
1,560 villages. It collected data from a total of 93,600 families,
which is ∼30 million people and is a good representative
sample of China. The data from CHFPSY and CSY were
reported by the administrative agency that is highly credible
and known for high quality work. Furthermore, in order to
obtain a consistent statistical caliber, each analytical index in
CHFPSY was as closely matched as possible with ARNHSS
in China.

Research Disease
We selected 30 types of diseases from CHFPSY for this
study to estimate their direct and indirect economic burden
because the classification of diseases did not precisely match
between CHFPSY and ARNHSS in China. Additionally, the
CHFPSY classification of diseases was coded according to ICD-
10. Therefore, it can be deduced that data integration was in
process. Firstly, we listed the 30 types of diseases from CHFPSY
2014, and thenwematched the name of the disease with ARNHSS
in China 2013. If we could not find the exact same name of the
disease, we classified the diseases into related systems according
to the systems of diseases or main symptoms. If they still did not
match using this method, the disease was classified as missing.

Direct Economic Burden of Disease (DEBD)
DEBD refers to the total direct costs for the prevention and
treatment of diseases, including various costs incurred by the
individual, family and society for preventing, diagnosing, treating
and rehabilitating the diseases and injuries (20). On the one hand,
it includes the costs of health services provided by the health
institutions, such as the prevention of capital costs, emergency
expenses, outpatient diagnosis and treatment costs, hospital
expenses, medical expenses, health technology labor, family bed
treatment and care costs, etc. On the other hand, other charges
paid by the patients while receiving health services are included,
such as nutrition fees, transportation fees, travel expenses, non-
prescription costs for purchasing rehabilitation equipment, etc.
We estimated the direct economic burden of 30 types of diseases,
including outpatient medical expenses and inpatient medical
expenses only because we don’t have non-medical expenses. The
formula is as follows:

DEBDi = N × [2-week consultation rate × 26 × (Σ
outpatient facilities constituent ratio × average outpatient
medical cost in outpatient institutions at different levels) +

hospitalization rate × (Σ inpatient facilities constituent ratio ×

average hospitalization medical expense in inpatient institutions
at different levels)] (1)

In the above formula, DEBDi is the direct economic burden
for the class i disease, and N is the number of people in the
research population.

Indirect Economic Burden of Disease
(IEBD)
IEBD refers to a society and family’s loss between the current
value and future potential value due to illness that may result
in the reduction of effective working time and the ability to
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TABLE 1 | Direct economic burden of 30 types of diseases in urban areas in China in 2013.

Name of disease 2-week

consultation rate

(‰)

Weighted

average

outpatient costs

($)

Outpatient costs

($billion)

Inpatient rate

(‰)

Weighted

average

inpatient costs

($)

Inpatient costs

($billion)

Direct economic

burden ($billion)

Viral hepatitis 0.46 28.73 2.50 0.79 1,237.78 7.19 9.69

Infiltrative pulmonary tuberculosis 0.46 28.73 2.50 0.79 1,217.77 7.08 9.57

Acute myocardial infarction 3.37 28.73 18.39 8.07 2,871.28 169.33 187.72

Congestive heart failure 3.37 28.73 18.39 8.07 1,141.58 67.32 85.71

Bacterial pneumonia 0.51 28.73 2.78 2.77 805.43 16.29 19.07

Chronic pulmonary heart disease 3.37 28.73 18.39 8.07 1,278.13 75.38 93.76

Acute upper gastrointestinal

bleeding

7.63 28.73 41.68 9.78 1,241.93 88.83 130.51

Primary nephrotic syndrome 0.34 28.73 1.84 0.53 1,010.48 3.93 5.77

Hyperthyroidism 8.85 28.73 48.32 4.74 865.29 29.97 78.29

Cerebral hemorrhage 2.26 28.73 12.32 7.06 2,475.15 127.79 140.12

Cerebral infarction 2.26 28.73 12.32 7.06 1,302.97 67.27 79.60

Aplastic anemia 0.34 28.73 1.84 0.53 1,130.33 4.40 6.24

Acute leukemia 0.34 28.73 1.84 0.53 2,131.53 8.30 10.14

Nodular goiter 0.34 28.73 1.84 1.98 1,422.72 20.59 22.43

Acute appendicitis 7.63 28.73 41.68 9.78 1,020.75 73.01 114.69

Acute cholecystitis 0.68 28.73 3.73 2.04 1,194.06 17.80 21.53

Inguinal hernia 1.48 28.73 8.11 1.24 947.41 8.57 16.67

Malignant gastric tumor 0.91 28.73 5.00 4.90 2,492.69 89.35 94.35

Pulmonary malignant tumor 0.91 28.73 5.00 4.90 1,807.28 64.78 69.78

Esophageal malignant tumor 0.91 28.73 5.00 4.90 2,406.22 86.25 91.25

Myocardial infarction coronary

artery bypass

3.37 28.73 18.39 8.07 8,073.60 476.13 494.52

Malignant neoplasm of bladder 0.91 28.73 5.00 4.90 2,139.75 76.70 81.69

Benign prostatic hyperplasia 3.27 28.73 17.85 5.23 1,553.33 59.43 77.28

Intracranial injury 1.08 28.73 5.90 1.70 1,850.28 23.02 28.92

Prolapse of lumbar intervertebral

disc

6.51 28.73 35.58 6.12 1,308.20 58.51 94.09

Bronchial pneumonia in children 3.37 28.73 18.39 2.77 432.84 8.75 27.14

Infectious diarrhea in children 3.37 28.73 18.39 9.78 269.22 19.26 37.64

Leiomyoma of uterus 3.37 28.73 18.39 1.24 1,428.34 12.92 31.30

Cesarean section 0.11 28.73 0.61 9.51 944.71 65.71 66.32

Senile cataract 0.73 28.73 4.01 2.00 907.82 13.28 17.30

work (21). This is also known as indirect costs. Indirect costs
represent the value given by society to health and life. While
it broadly includes social productivity losses, losses of income,
losses of housework, employment costs, training costs, insurance
costs, management costs, etc., indirect costs indicate the loss of
productivity in this narrow sense. We used the human capital
approach (22) to estimate the indirect economic burden of 30
types of diseases and calculate the economic loss of missed
working time due to hospitalization. The formula is as follows:

IEBDi = N × hospitalization rate × (Σ inpatient facilities
constituent ratio ×average hospitalization days in inpatient
institutions at different levels)× GDP/365 (2)

In the above formula, IEBDi is the indirect economic burden
for the class i disease, and N is the number of people in the
research population.

RESULTS

DEBD
We weighted the average outpatient medical costs that were
not caused by disease according to the constituent ratio
of first diagnosis mechanism for urban outpatients over 2
weeks. The proportions of average outpatient medical costs
in tertiary, secondary and primary hospitals were 14.46,
18.18, and 67.36%, respectively. In 2013 for urban patients,
there were 16.04% distributed in tertiary hospitals, 69.28%
distributed in secondary hospitals, and 14.68% distributed
in primary hospitals. This distribution was used to weigh
the average medical costs of hospitalization. China had
a population of 731.11 million urban residents in 2013.
The result of the outpatient costs, hospitalization costs and
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TABLE 2 | Direct economic burden of 30 types of diseases in rural areas in China in 2013.

Name of disease 2-week

consultation rate

(‰)

Weighted

average

outpatient costs

($)

Outpatient costs

($billion)

Inpatient rate (‰) Weighted

average

inpatient costs

($)

Inpatient costs

($billion)

Direct economic

burden ($billion)

Viral hepatitis 0.43 25.75 1.80 1.25 1,088.56 8.55 10.35

Infiltrative pulmonary

tuberculosis

0.43 25.75 1.80 1.25 993.99 7.81 9.61

Acute myocardial infarction 2.84 25.75 11.96 5.79 2,133.82 77.85 89.81

Congestive heart failure 2.84 25.75 11.96 5.79 1,005.15 36.67 48.63

Bacterial pneumonia 0.63 25.75 2.67 3.11 625.97 12.25 14.92

Chronic pulmonary heart

disease

2.84 25.75 11.96 5.79 1,047.51 38.22 50.18

Acute upper gastrointestinal

bleeding

9.59 25.75 40.42 10.55 1,031.80 68.53 108.95

Primary nephrotic syndrome 0.48 25.75 2.01 0.72 854.14 3.87 5.88

Hyperthyroidism 3.93 25.75 16.56 2.34 733.45 10.80 27.35

Cerebral hemorrhage 2.19 25.75 9.22 6.74 2,104.12 89.33 98.55

Cerebral infarction 2.19 25.75 9.22 6.74 1,063.90 45.17 54.39

Aplastic anemia 0.48 25.75 2.01 0.72 868.45 3.94 5.95

Acute leukemia 0.48 25.75 2.01 0.72 1,546.24 7.01 9.02

Nodular goiter 0.27 25.75 1.14 2.05 1,184.70 15.26 16.40

Acute appendicitis 9.59 25.75 40.42 10.55 862.14 57.26 97.68

Acute cholecystitis 0.88 25.75 3.73 1.86 934.11 10.94 14.67

Inguinal hernia 1.52 25.75 6.40 1.13 806.33 5.75 12.15

Malignant gastric tumor 0.61 25.75 2.55 2.98 1,862.85 34.94 37.50

Pulmonary malignant tumor 0.61 25.75 2.55 2.98 1,406.94 26.39 28.95

Esophageal malignant

tumor

0.61 25.75 2.55 2.98 1,901.10 35.66 38.22

Myocardial infarction

coronary artery bypass

2.84 25.75 11.96 5.79 7,285.04 265.80 277.76

Malignant neoplasm of

bladder

0.61 25.75 2.55 2.98 1,744.04 32.72 35.27

Benign prostatic hyperplasia 3.12 25.75 13.16 5.58 1,335.90 46.94 60.10

Intracranial injury 0.96 25.75 4.06 1.47 1,480.87 13.69 17.75

Prolapse of lumbar

intervertebral disc

7.83 25.75 33.02 5.83 934.17 34.29 67.32

Bronchial pneumonia in

children

2.84 25.75 11.96 3.11 363.62 7.11 19.07

Infectious diarrhea in

children

2.84 25.75 11.96 10.55 255.41 16.96 28.92

Leiomyoma of uterus 2.84 25.75 11.96 1.13 1,199.35 8.56 20.52

Cesarean section 0.08 25.75 0.33 10.02 810.88 51.16 51.50

Senile cataract 0.64 25.75 2.70 1.72 743.22 8.04 10.74

DEBD in urban China are shown in Table 1, which is
based on Formula (1). The largest DEBD in urban areas
was myocardial infarction coronary artery bypass (MICAB),
and the second largest was acute myocardial infarction
(AMI), while the smallest DEBD was primary nephrotic
syndrome (PNS).

Similar to the method used to process urban medical costs,
we weighted the average rural outpatient medical costs. As a
result, the proportions of average rural outpatient medical costs

in tertiary, secondary and primary hospitals for rural outpatients
were 2.53, 16.31, and 81.16% in 2013, respectively. In 2013,
there were 13.11% of rural inpatients distributed in tertiary
hospitals, 56.61% distributed in secondary hospitals, and 30.28%
distributed in primary hospitals. China had a rural population
of 629.61 million residents in 2013. The result of the outpatient
costs, hospitalization costs and DEBD in rural China are shown
in Table 2, which is based on Formula (1). The largest DEBD in
rural areas was MICAB, and the second largest was acute upper
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TABLE 3 | Indirect economic burden of 30 types of diseases in urban areas in China in 2013.

Name of disease Inpatient rate (‰) Weighted inpatient

days (day)

Daily GDP per capita

($)

Indirect economic

burden ($billion)

Viral hepatitis 0.79 15.70 18.65 1.70

Infiltrative pulmonary tuberculosis 0.79 12.84 18.65 1.39

Acute myocardial infarction 8.07 9.08 18.65 9.99

Congestive heart failure 8.07 9.90 18.65 10.88

Bacterial pneumonia 2.77 8.78 18.65 3.31

Chronic pulmonary heart disease 8.07 11.11 18.65 12.22

Acute upper gastrointestinal bleeding 9.78 7.79 18.65 10.39

Primary nephrotic syndrome 0.53 12.12 18.65 0.88

Hyperthyroidism 4.74 8.89 18.65 5.75

Cerebral hemorrhage 7.06 14.93 18.65 14.38

Cerebral infarction 7.06 11.64 18.65 11.21

Aplastic anemia 0.53 8.36 18.65 0.61

Acute leukemia 0.53 14.91 18.65 1.08

Nodular goiter 1.98 8.19 18.65 2.21

Acute appendicitis 9.78 6.87 18.65 9.16

Acute cholecystitis 2.04 8.50 18.65 2.36

Inguinal hernia 1.24 6.94 18.65 1.17

Malignant gastric tumor 4.90 13.61 18.65 9.09

Pulmonary malignant tumor 4.90 14.11 18.65 9.43

Esophageal malignant tumor 4.90 15.79 18.65 10.55

Myocardial infarction coronary artery bypass 8.07 18.50 18.65 20.34

Malignant neoplasm of bladder 4.90 14.06 18.65 9.40

Benign prostatic hyperplasia 5.23 11.67 18.65 8.32

Intracranial injury 1.70 12.27 18.65 2.85

Prolapse of lumbar intervertebral disc 6.12 11.00 18.65 9.17

Bronchial pneumonia in children 2.77 6.88 18.65 2.60

Infectious diarrhea in children 9.78 4.94 18.65 6.59

Leiomyoma of uterus 1.24 9.44 18.65 1.59

Cesarean section 9.51 6.69 18.65 8.68

Senile cataract 2.00 4.26 18.65 1.16

gastrointestinal bleeding (AUGIB), while the smallest DEBD
was PNS.

IEBD
We weighted average hospitalization days by disease based on
the constituent ratio for China’s urban inpatients in 2013. The
GDP per capita was $6,807 in China in 2013. The indirect
economic losses of urban patients caused by hospitalization
are shown in Table 3, which is based on Formula (2). The
largest IEBD in urban areas was MICAB, which was followed by
cerebral hemorrhage (CH), and the smallest IEBD was aplastic
anemia (AA).

Similar to the method used for dealing with urban patients’
data, we weighted average hospitalization days by disease to
obtain rural patients’ hospitalization days by disease. The indirect
economic losses of rural patients due to hospitalization are
demonstrated in Table 4, which is based on Formula (2). The
largest IEBD in rural areas was CH, which was followed by
MICAB, and the smallest IEBD was AA.

Total Economic Burden of Disease (TEBD)
The total health expenditure of China in 2013 was $517.64
billion. The top five diseases among 30 types of diseases that
had the heaviest TEBD based on the proportion in total health
expenditure were MICAB (15.51%), AMI (5.67%), CH (5.11%),
AUGIB (5.01%) and acute appendicitis (AAs) (4.45%). The last
five diseases that had the smallest TEBD were AA (0.26%), PNS
(0.26%), acute leukemia (AL) (0.41%), infiltrative pulmonary
tuberculosis (IPT) (0.43%) and viral hepatitis (VH) (0.46%). The
average TEBD for cities was $81.39 billion and for the villages
was $50.26 billion, respectively. The total economic burden of
30 types of diseases in urban and rural areas in China is shown
in Table 5.

DISCUSSION

This study integrally estimated the EBD of China. The TEBD
was between $13.39 and 803.00 billion, which included 30 types
of common diseases in China. This accounted for 2.54% of
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TABLE 4 | Indirect economic burden of 30 types of diseases of rural area in China, 2013.

Name of disease Inpatient rate (‰) Weighted average

inpatient days (day)

Daily GDP per capita

($)

Indirect economic

burden ($billion)

Viral hepatitis 1.25 15.58 18.65 2.28

Infiltrative pulmonary tuberculosis 1.25 12.50 18.65 1.83

Acute myocardial infarction 5.79 8.94 18.65 6.09

Congestive heart failure 5.79 9.86 18.65 6.71

Bacterial pneumonia 3.11 8.46 18.65 3.09

Chronic pulmonary heart disease 5.79 10.74 18.65 7.31

Acute upper gastrointestinal bleeding 10.55 7.61 18.65 9.42

Primary nephrotic syndrome 0.72 11.55 18.65 0.98

Hyperthyroidism 2.34 8.61 18.65 2.36

Cerebral hemorrhage 6.74 14.39 18.65 11.39

Cerebral infarction 6.74 11.16 18.65 8.83

Aplastic anemia 0.72 7.01 18.65 0.59

Acute leukemia 0.72 12.37 18.65 1.05

Nodular goiter 2.05 8.17 18.65 1.96

Acute appendicitis 10.55 6.95 18.65 8.60

Acute cholecystitis 1.86 8.03 18.65 1.75

Inguinal hernia 1.13 7.01 18.65 0.93

Malignant gastric tumor 2.98 13.03 18.65 4.56

Pulmonary malignant tumor 2.98 13.88 18.65 4.86

Esophageal malignant tumor 2.98 15.06 18.65 5.27

Myocardial infarction coronary artery bypass 5.79 15.25 18.65 10.38

Malignant neoplasm of bladder 2.98 13.74 18.65 4.81

Benign prostatic hyperplasia 5.58 11.27 18.65 7.39

Intracranial injury 1.47 11.54 18.65 1.99

Prolapse of lumbar intervertebral disc 5.83 10.43 18.65 7.14

Bronchial pneumonia in children 3.11 6.55 18.65 2.39

Infectious diarrhea in children 10.55 4.73 18.65 5.87

Leiomyoma of uterus 1.13 9.39 18.65 1.25

Cesarean section 10.02 6.62 18.65 7.79

Senile cataract 1.72 4.42 18.65 0.89

the average proportion of the national total health expenses;
although, the highest proportion was 15.51%. This proportion
is enough to capture our government’s attention. The DEBD
of cities was $5.77–494.52 billion, while the DEBD of villages
was $5.88–277.76 billion. The IEBD for citizens was $0.61–20.34
billion, and the IEBD for the rural population was $0.59–11.39
billion. Whether in cities or countryside, the DEBD was much
higher than the IEBD.

The DEBD, IEBD, and TEBD of VH, IPT, and PNS in urban
areas were slightly lower than those in rural areas; however,
the residual EBD of 27 types of diseases for the cities were
higher than those for the countryside. Interestingly, the largest
difference for the EBD of MICAB between urban and rural
areas, which exceeded $226.72 billion for TEBD, was a relatively
large difference for DEBD but a slight difference for IEBD.
There is a possible explanation for this difference. One possible
reason could be that there were more MICAB patients in cities
than in the countryside because rural patients failed to visit

a doctor because they were worried about incurring expensive
medical bills.

The EBD had a large difference among different diseases. The
average total economic burden of 30 types of diseases was $131.65
billion in China. The largest five diseases for TEBD were MICAB,
AMI, CH, AUGIB, and AAs. The smallest five diseases for TEBD
were AA, PNS, AL, IPT, and VH. The middle position for TEBD
was held by malignant tumors.

It is important to note that this study has some limitations.
The following costs or intangible economic burdens were not
taken into consideration because of limited data: self purchased
medical fees, the cost of time in bed, and cost of recovery time
at home. Additionally, we could not measure the production
value of the loss of life due to premature death and the loss
of production value due to long-term disability caused by
illness or disability, which will likely result in underestimating
the EBD. The misclassification of the diseases may also result
in errors.
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TABLE 5 | Total economic burden of 30 types of diseases in China in 2013.

Name of disease National Urban Rural

Total economic

burden ($billion)

Proportion in total

health expenses

(%)

Total economic

burden ($billion)

Proportion in total

health expenses

(%)

Total economic

burden ($billion)

Proportion in total

health expenses

(%)

Viral hepatitis 24.02 0.46 11.39 0.22 12.63 0.24

Infiltrative pulmonary tuberculosis 22.40 0.43 10.96 0.21 11.44 0.22

Acute myocardial infarction 293.61 5.67 197.71 3.82 95.90 1.85

Congestive heart failure 151.93 2.94 96.59 1.87 55.34 1.07

Bacterial pneumonia 40.39 0.78 22.38 0.43 18.01 0.35

Chronic pulmonary heart disease 163.47 3.16 105.98 2.05 57.49 1.11

Acute upper gastrointestinal

bleeding

259.28 5.01 140.91 2.72 118.37 2.29

Primary nephrotic syndrome 13.52 0.26 6.65 0.13 6.86 0.13

Hyperthyroidism 113.75 2.20 84.04 1.62 29.72 0.57

Cerebral hemorrhage 264.44 5.11 154.5 2.98 109.95 2.12

Cerebral infarction 154.03 2.98 90.81 1.75 63.23 1.22

Aplastic anemia 13.39 0.26 6.85 0.13 6.54 0.13

Acute leukemia 21.29 0.41 11.22 0.22 10.07 0.19

Nodular goiter 43.00 0.83 24.64 0.48 18.36 0.35

Acute appendicitis 230.14 4.45 123.85 2.39 106.28 2.05

Acute cholecystitis 40.31 0.78 23.89 0.46 16.42 0.32

Inguinal hernia 30.93 0.60 17.85 0.34 13.09 0.25

Malignant gastric tumor 145.5 2.81 103.44 2.00 42.06 0.81

Pulmonary malignant tumor 113.01 2.18 79.21 1.53 33.80 0.65

Esophageal malignant tumor 145.28 2.81 101.80 1.97 43.48 0.84

Myocardial infarction coronary

artery bypass

803.00 15.51 514.86 9.95 288.14 5.57

Malignant neoplasm of bladder 131.17 2.53 91.10 1.76 40.08 0.77

Benign prostatic hyperplasia 153.09 2.96 85.60 1.65 67.49 1.30

Intracranial injury 51.50 0.99 31.76 0.61 19.74 0.38

Prolapse of lumbar intervertebral

disc

177.72 3.43 103.26 1.99 74.46 1.44

Bronchial pneumonia in children 51.20 0.99 29.74 0.57 21.46 0.41

Infectious diarrhea in children 79.02 1.53 44.23 0.85 34.79 0.67

Leiomyoma of uterus 54.66 1.06 32.89 0.64 21.77 0.42

Cesarean section 134.29 2.59 75.00 1.45 59.29 1.15

Senile cataract 30.09 0.58 18.46 0.36 11.63 0.22

CONCLUSION

The EBD reflects the burden caused by illness for a society.
If we can reduce or eliminate EBD, socioeconomic losses
will decrease, and our society will benefit. However, policy
makers must make allocations with limited resources.
Therefore, this paper provides solid data and research for
policy makers to make informed decisions. Overall, there
was a large difference in the economic burden of different
diseases, and the total economic burden of urban patients’
disease was larger than that of rural patients. The top ten
diseases were myocardial infarction coronary artery bypass,
acute myocardial infarction, cerebral hemorrhage, acute upper
gastrointestinal bleeding, acute appendicitis, prolapse of
lumbar intervertebral disc, chronic pulmonary heart disease,

cerebral infarction, benign prostatic hyperplasia and congestive
heart failure.
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Malignant pulmonary nodules are one of the main manifestations of lung cancer in early

CT image screening. Since lung cancer may have no early obvious symptoms, it is

important to develop a computer-aided detection (CAD) system to assist doctors to

detect the malignant pulmonary nodules in the early stage of lung cancer CT diagnosis.

Due to the recent successful applications of deep learning in image processing, more and

more researchers have been trying to apply it to the diagnosis of pulmonary nodules.

However, due to the ratio of nodules and non-nodules samples used in the training

and testing datasets usually being different from the practical ratio of lung cancer, the

CAD classification systems may easily produce higher false-positives while using this

imbalanced dataset. This work introduces a filtering step to remove the irrelevant images

from the dataset, and the results show that the false-positives can be reduced and the

accuracy can be above 98%. There are two steps in nodule detection. Firstly, the images

with pulmonary nodules are screened from the whole lung CT images of the patients.

Secondly, the exact locations of pulmonary nodules will be detected using Faster R-CNN.

Final results show that this method can effectively detect the pulmonary nodules in the

CT images and hence potentially assist doctors in the early diagnosis of lung cancer.

Keywords: pulmonary nodule detection, lung image classification, deep learning, convolutional neural network,

transfer learning

INTRODUCTION

Lung cancer is one of the most common cancers in the world and has the highest proportion of
new cases (11.6%) and deaths (18.4%) among all cancers in 2018 (1–3). A lack of obvious clinical
symptoms in the early stage of the disease are one of the main reasons for the high mortality rate
of lung cancer, because most patients have missed the best time for treatment when they go to see a
doctor with symptoms. At that time, lung cancer may be too advanced to be effectively treated with
surgery. Therefore, the early screening, diagnosis, and treatment of lung cancer is a major focus of
lung cancer prevention and control. In the early stage, malignant pulmonary nodules are one of
the main manifestations of lung cancer on CT images. Pulmonary nodules are a common disease,
which is a small round or oval tissue growing in the lungs. However, it does not mean all pulmonary
nodules are malignant, so it is necessary to detect the malignant pulmonary nodules in the lung.

Previous studies show that low-dose spiral CT (CT) is an effective method to analyze lung cancer
nodules and reduce mortality compared with chest X-ray photography (4). The whole lung usually
needs to be scanned to detect tiny pulmonary nodules, which will produce a huge amount of images
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for each patient. It is a serious challenge for radiologists to
detect pulmonary nodules from so many CT images by excluding
uncorrelated tissues such as bronchi and blood vessels. It could
easily lead to misdiagnosis due to the radiologist’s fatigue and
distraction caused by the overwhelming number of images.
Therefore, it is urgent to develop an automated efficient system
for pulmonary nodules screening.

A Computer-Aided-Detection (CAD) system is one of the
feasible methods to assist doctors to detect and classify lung
images. Furthermore, a promising CAD system not only can
reduce the missed detection of pulmonary nodules but also can
improve the accuracy and efficiency of the analysis of CT images.
There are several commercial CAD systems in clinical use, such
as the Lung Care commercial CAD system developed by Siemens
and the Image Checker CTLN-1000 commercial CAD system
developed by R2 (5). A typical CAD system mainly consists of 3
parts, including pre-processing, nodule candidate detection, and
false-positive reduction (6). The main purpose of pre-processing
is to standardize data, enhance images and reduce noise. The
detection stage after pre-processing uses very high sensitivity to
detect all nodules as much as possible, forming candidate nodules
with many false positives. The previous stage produces a large
number of candidate nodules, so this stage is mainly to reduce
the number of false positives in the candidate and generate the
final result.

In the past decade, especially in combination with image
processing methods (7), machine learning methods have been
studied extensively in the medical detection field. In addition,
researchers have also obtained many related achievements (8, 9).
The pulmonary nodules detection in lung CT images is one of
the complex and highly concerning problems in medical image
processing. The conventional lung nodule detection algorithms
detect the pulmonary nodules by processing and analyzing
CT images mainly through combining the pulmonary nodule
characteristics such as size, location, and shape with the image
processing algorithm andmachine learning (10). These detection
algorithms include two steps. The region of interest (ROI) was
firstly extracted by image segments to identify suspected targets,
and secondly, the ROI will be classified as malignant and non-
malignant pulmonary nodules. Messay et al. pre-processed the
image by combining the multi-layer gray threshold method
with the open operation in morphology and then extracted the
ROI of pulmonary nodules by rule-based analysis method (11).
Murphy et al. used cluster structure and cluster merging to
extract the nodules by calculating the shape index and curviness
of each pixel in the image of the lung parenchyma, and setting
thresholds for these two parameters to obtain seed points (10).
Although conventional machine learning methods can achieve
high accuracy in one type of target, they are still hard to achieve
good results in other types of modules. This is mainly due to
the complexity of different types of pulmonary nodules and the
complex situations in classification.

With the development of artificial intelligence (AI) and the
increasingly reliable large-scale annotated datasets, a series of
deep learning algorithms has experienced an enormous advance
in the image processing and video processing field, especially the
deep convolutional neural network (CNN). Meanwhile, many

improvements and optimization algorithms were proposed to
improve the effect (12), and it has gradually made achievements
in the field of medical image recognition (13, 14). CNN
can automatically learn image features from sufficient training
data. Automatic extraction of pulmonary nodules features
can adapt to different types of pulmonary nodules. It can
avoid the problems of omission or incomplete features in
artificial extraction features and also improve the automation
of pulmonary nodules detection (15). Therefore, compared with
the traditional computer-aided lung image diagnosis method
the deep learning algorithm has great advantages. It shows
a significant improvement in the detection of the pulmonary
nodules and it is gradually becoming the mainstream method
in the field of pulmonary nodules detection and more and more
research results have been achieved.

Anirudhi et al. proposed a method based on a 3D CNN for
pulmonary nodules detection. It used weakly labeled data to train
the neural networks in the field of pulmonary nodules detection.
The experimental results were also superior to the traditional
methods and the method produced fewer false positives (16, 17).
Golan et al. proposed a method for lung nodule detection based
on a deep CNN, which used the open data set LIDC and IDRI
with a CNN to extract the characteristics of the lung nodules.
This method does not use the segmentation and false-positive
method, but still obtains a good result (15). Fu et al. proposed
a feature extraction method of pulmonary nodules based on
CNN. This method can effectively extract the brightness, shape,
material, and other features of pulmonary nodules. This method
can effectively combine the features extracted by hand with the
features extracted by the neural network (18). Li et al. used an
integrated CNN to solve the problem of high false-positives. This
method combined three CNNs and achieved good results on the
JSRT data set (19). Although deep learning can detect pulmonary
nodules with various characteristics, it still produces many false
positives. Thus, the high false-positive rate is the key issue of
using deep learning techniques in pulmonary nodules.

This paper intends to solve the mentioned problem from
the perspective of preliminary screening. The main idea is to
introduce a filtering step to remove irrelevant images before
testing to reduce false positives. This new method is based on
deep learning which is divided into two steps. The first step is
to screen the images with pulmonary nodules from the whole
lung CT image of the patients and the second step is to detect the
exact locations of pulmonary nodules using Faster R-CNN. In the
first step, a classification network is trained to screen the target
images with suspected pulmonary. The experimental results on
a balanced LUNA16 dataset have achieved an accuracy of above
98%. In this way, the suspected pulmonary nodules in the CT
image of the case can be quickly selected by the classification
network, and the location range of the suspected nodules in
the CT image can be detected by the FasterRCNN. This can
improve the efficiency of the detector, increase the reliability of
the detection, and reduce the false positive of the detector.

The main framework of this paper is as follows. In
section Background, we briefly introduce the relative networks,
including Alexnet, Resnet, and FasterRCNN. In sectionMaterials
and Methods, we describe the LUNA16 dataset, the CT
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image processing, and the experimental method. In section
Experimental Results and Analysis we explain the experimental
results and analysis. The last section is the conclusion of
this paper.

BACKGROUND

Transfer Learning
Because of the increasing popularity of deep neural networks,
more and more scholars are adopting deep learning to solve
complex problems in the field of medical imaging. At present,
there are mainly three feasible methods to successfully apply
CNNs to medical images: (1) Training CNN from the ground
up, (2) conducting unsupervised CNN pre-training with the
supervised fine-tuning base on off-the-shelf pre-trained CNN
features, (3) transfer learning (20). Since the pre-trained network
has learned a wealth of image features, it is usually faster and
easier to use the pre-trained network with transfer learning
compared to training the network from scratch. ImageNet
is a famous database in the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC), and the majority of the pre-
trained networks are trained on it (21). It can learn features
specific to the new data set when fine-tuning the network. In the
following, we introduce the networks that were used in this paper,
Alexnet Faster R-CNN and ResNet.

Alexnet
For screening suspected pulmonary, we train a classification
model base on Alexnet in the first step. Alexnet is a
typical deep convolutional neural network and the champion
of the ImageNet 2012 Image Recognition Challenge. The
Alexnet network has a total of 60 million parameters and
650,000 neurons, consisting of five convolutional layers and
three fully-connected layers. After the first, third, and fifth
convolutional layers are followed by the max-pooling layer, the
last fully-connected layer has a 1000-way softmax (22). The
main feature of the Alexnet networks includes the following
four parts:

(1) The Relu activation function is added at the end of each Conv
layer, which solves the problem of gradient disappearance
of Sigmoid and makes the convergence faster. The common
linear rectifier functions are the ramp function, which is

f (x) = max(0, x) (1)

Here x is the input to the neuron.
(2) To reduce overfitting, it employed the random discard

technique (Dropout) in the fully-connected layers. Dropout
is regularizationmethod in which some neural network units
are temporarily discarded (their weights are retained) from
the network according to a certain probability and no longer
respond to the forward and reverse transmission of data
in the training process of the deep learning network. At
the same time, the data set is artificially enlarged, including
image translation, horizontal reflection, and changing the
intensity of the RGB channel in the training image.

(3) It has also added a layer of Normalization (Local Response
Normalization), which makes it more accurate. ReLU
function does not have a limited range like tanh and Sigmoid,
so it needs to be normalized after ReLU. The idea of
LRN originated from a concept called lateral inhibition
in neurobiology, which means that the activated neuron
inhibits the surrounding neurons.
The core idea of Local Response Normalization is to
normalize by using neighboring data, as shown in the
following formula:

bix,y = aix,y/(k+ α

min(N−1,i+n/2)∑

j=max(0,i−n/2)

(aix,y)
2
)β (2)

Where aix,y acts on the convolution kernel at position (x, y),
and then performs ReLU, the resulting neuron output. N is
the total number of convolution kernels of this layer. n is the
number of convolution kernels adjacent to the same location.
k, α,β are hyper-parameters.

(4) It used the overlapping maximum pool and obtain greater
performance. In general, there will not be overlap between
adjacent sliding windows, which means the pooling unit’s
step size s equal to the pooling unit’s size z. On the contrary,
it set s < z in Alexnet networks.

Faster-RCNN
In fact, detecting pulmonary nodules is one of the target detection
of lung images. The target detection methods based on deep
learning are mainly divided into two categories: (1) end-to-
end, such as YOLO and SSD network architecture, (2) based on
Region Proposal like Faster R-CNN. The former has a relatively
fast detection speed, while the latter has a relatively high detection
rate and accuracy. Therefore, the detection network of this paper
adopted Faster R-CNN as the basic network structure.

The feature of the target detection method based on Regional
Proposal is to extract the regional proposal from the input image
at first, which is to get the Region Of Interest (ROI) of the target.
Before the Faster R-CNN was proposed, the commonmethod for
obtaining Regional Proposal is Selective Search. Target detection
methods such as R-CNN, SPP-NET, Fast R-CNN, etc., use
selective search algorithms to extract target regions. Compared
with the former algorithm, the groundbreaking development of
Faster R-CNN directly computes the candidate box by Region
Proposal networks, which makes the target detection speed
significantly improved.

The network structure of Faster R-CNN mainly includes
four parts:

1) Conv layers. Faster R-CNN as a detection method based on
the CNN network target, this part is the basis of the extraction
of the features of images, consisting of Conv + ReLU +

pooling layer. These feature maps obtained from Conv layers
are shared for subsequent Region Proposal Networks (RPN)
layer and full connection layer.

2) Region Proposal Networks (RPN). The Region Proposal is
generated by the RPN network. This part uses Softmax
to classify anchors as positive or negative proposals and
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then obtains accurate proposals through bounding box
regression correction.

3) Anchors. The key in RPN is anchors, which is a set of
rectangular boxes, in which each row has four values (x1, y1,
x2, y2), representing the coordinates of the upper left corner
and the lower right corner of the rectangle. Input candidate
boxes of different sizes can be obtained by setting different
aspect ratios of the anchor. These anchors actually introduce
the multi-scale approach that is often used in detecting.

4) ROI Pooling. This part combines the feature maps and Region
Proposals from the output of Conv layers and RPN layer,
integrating the information to extract proposal feature maps
and send them to the subsequent full connection layer to
determine the target category. The exact position of the
anchor is obtained again by the bounding Box regression.

The Loss used by the entire network is as follows:

L
({
pi

}
, {ti}

)
=

1

Ncls

∑

i

Lcls
(
pi, p

∗

i

)
+ λ

1

Nreg

∑

i

p∗i Lreg
(
ti, t

∗

i

)

(3)

In the above formula, i represents the anchor index in the
mini-batch and pi is positive softmax probability. Moreover, p∗i
represents the corresponding ground-truth predict probability,
that is, when IOU >0.7 is between the anchor and ground-
truth, the anchor is considered to be positive and p∗i = 1;
on the contrary, when IOU <0.3, this anchor is considered as
negative and p∗i = 0; anchors with 0.3< IOU <0.7 are excluded.
ti represents the predicted bounding box and t∗i represents the
ground-truth box corresponding to the positive anchor. The total
loss is divided into two parts. For the regression loss, it is activated
only for the positive anchor. The two terms usingNcls andNreg to
normalize, since in the actual process, the gap between Ncls and
Nreg is too large, use the parameter λ to balance (23).

ResNet
He Kaiming’s team proposed a deep convolutional neural
network structure ResNet in 2015. Furthermore, the network
won the champion of image classification, object detection, and
target positioning in the ImageNet (ILSVRC2015) competition.

As CNN can extract the features of multiple levels from the
data, and that the more network layers mean can extract richer
features at different levels. Therefore, the deeper the network
structure, the stronger the ability to extract abstract features,
and the richer the semantic information obtained. However,
when the depth of the network is increased, the effect of the
stochastic gradient descent algorithm will become weaker, which
will eventually lead to a gradient disappearance or gradient
explosion. The previous network structure can train dozens of
layers of the network by standard initialization and regularization
layer, but with the further increase of the network layer, the
degradation phenomenon will eventually appear, namely as the
increase of the number of the network layer the accuracy of both
the training set and the test set decreases. It is not caused by
overfitting, but by redundant network layers learning parameters
that are not identical mappings.

The idea of ResNet is to assume that there is an optimized
network layer in a network layer, so often the deep network we
design has many redundant network layers. So we want these
redundant layers to be able to do identity mapping so that the
inputs and outputs that go through the identity layer are exactly
the same (24).

The ResNet still allows the non-linear layer to satisfyH (x,ωh),
and then introduces a short connection directly from the input to
the output of the non-linear layer, making the whole mapping to

y = H (x,ωh) + x (4)

This is the core formula of the ResNet. In other words, the
ResNet is an operation of network construction, and any network
that uses this operation can be called the residual network.
Through the experiment on ImageNet, the ResNet can be
deepened to hundreds of layers, and higher accuracy of previous
convolutional neural networks such as VGGNet and GoogLeNet
can be obtained.

MATERIALS AND METHODS

Image Datasets
In this study, we make use of the LUNA16 (LUng Nodule
Analysis) datasets for training and testing the deep learning
model, which is one of the most representative international
data sets in the field of pulmonary nodule detection, providing
a publicly available data set about pulmonary nodules in the
lung. In LUNA16, the data was collected from LIIDC-IDRI
data sets, which is the largest public database for lung nodules
(25–27). Based on LIDC-IDRI, LUNA16 datasets retain scans
with a thickness of ≤3mm and eliminate inconsistent or
missing slices. Thus, 888 CT scans were screened out of 1,018
scans in LIDC-IDRI. In addition, four experienced thoracic
radiologists annotated all LIDC-IDRI scans and there were
36,378 annotations made by the radiologists in these 888 scans.
However, only the annotations were categorized as pulmonary
nodules larger than 3mm as relevant lesions. So only the
pulmonary nodules that had been annotated by at least three out
of the four radiologists were selected.

Finally, 888 scans were screened in the LUNA16 data set.
A total of 1,186 nodules were annotated by at least three
radiologists, which are lesions that the algorithm should detect.
For ease of download, the data is not stored in the generic DOM
format, but inMetalmage (.mhd) format, with each image the size
of 512×512 pixels.

Image Pre-processing
According to the principle of CT, the value of CT represents that
X-ray beams illuminate different parts of the body with different
densities to distinguish different tissues and organs. The higher
the value of CT, the greater the density of the substance, and HU
(Hounsfield unit) is the unit of CT value. The lung CT value is
between −600 and −450 HU, the body fat is between −20 and
−10 HU, blood is between 13 and 32 HU. For reference, in the
state of nature, the CT value of the air is about −1,000 HU, and
water is about 0 HU, the bone of the human body is about 1,000
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FIGURE 1 | Example of CT images in lung and pulmonary nodule.

HU. The raw CT images include other substances like air and
skeleton that we do not focus on, so we filter out the irrelevant
substance by a threshold of the CT value to obtain clear images.

We read the CT image from each subset of Luna16, then
filtered the values of < −1,000 HU and >500 HU, and
standardized to the range of 0–1. After that, we were able to get
the CT images with clear pulmonary nodules, which are shown
in Figure 1 first row. The center of the image in the second row
in Figure 1 shows the pulmonary nodules.

Training
To accurately screen out images with pulmonary nodules, images
with pulmonary nodules were taken as positive samples, whereas
images without pulmonary nodules were taken as negative
samples. To test the effect of sample balance on themodel, several
models were trained according to different positive and negative
sample ratios. In this study, all experiments are conducted on a
computer with an Intel Xeon Silver 4210 CPU and two NVIDIA
GeForce RTX 2080 Ti GPU, and the software environment is
Win10 and MATLAB 2020a.

The details of the experiment setting are as follows:

1) In the training dataset, images from LUNA16 datasets were
mainly divided into the following two parts: The positive
samples taken from the 1,186 CT images with annotations
by the radiologists mentioned earlier. The negative samples
mainly consist of total lung CT images from several cases that
were not annotated. According to the different proportions of
the number of positive samples and negative samples, several
different groups were constructed for training and testing
their respective effects.

2) To adapt the pre-training network to the new data set, the
network was fine-tuned as follows: The last three layers of the

network were removed and replaced with a fully connected
layer, a softmax layer, and a classification output layer. The
output of the fully connected layer was set to 2, which is the
same size as the number of classes in the new data, and both
WeightLearnRateFactor and BiasLearnRateFactor were 20.

3) All the samples used for training were resized to 227∗227
pixels to adapt the input layer of the pre-train network
Alexnet. The data set is divided into the training set and test
set for cross-validation. Themini-batch size was set to 128, the
learning rate was 0.001, and the max epoch number was 200.

After filtering the images, we trained the Faster R-CNN model
to detect pulmonary nodules. According to the annotation
information of 1,186 pulmonary nodules, the pulmonary nodules
were annotated to generate the annotation files needed for
training. After the selective node ROI was extracted from the
RPN, Resnet101 was used to determine whether the region was
a nodule or not. The training option was mainly as follows, the
optimization method was stochastic gradient descent method,
500 epoch, 1 mini-batch size, 0.0001 initial learning rate, 0.1
“LearnRateDropFactor,” 100 “LearnRateDropPeriod.”

EXPERIMENTAL RESULTS AND ANALYSIS

Results on Difference Proportion Sample
We conducted computer experiments on the LUNA16 dataset
to prove the effectiveness of the method. Table 1 summarizes
the performance of the model with different ratios of training
data, including accuracy, True Positive Rate (TPR), and False
Positive Rate (FPR). It is obvious that the accuracy could reach
a maximum of 99.43% in the first row of Table 1 when the
ratio of Pulmonary nodule and Non-Pulmonary nodule is near
1, that is, the number of positive samples and negative samples is
balanced (28).

In addition to this, it does not perform very well in the case
of unbalanced proportions of samples in the training set. Due
to the serious imbalance of samples, networks are prone to treat
the test sets as a category with a large sample size. Although the
accuracy performance is high, the recall rate is low. As can be
seen from Table 1, when the ratio increases from 1:1 to 1:10 and
then to 1:60, the TPR also decreases continuously. Because of the
unbalanced sample proportion, increasing the sample size will
lead to a worse effect. However, there were only 1,086 positive
samples, so the generalization ability of the model is not strong.

Results on Detection
Then we introduced the CT images of the patients into the
classification network and classified several CT images before and
after the location of pulmonary nodules. After determining the
range of pulmonary nodules, the Faster RCNN model was used
to detect pulmonary nodules.

We visualize the results of the test on the test set to verify their
accuracy. The test results were shown in Figure 2, in which CT
images with pulmonary nodules were selected from the test set for
testing. The first row in the figure is marked with the annotation
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TABLE 1 | Summary of inference different ratio of training data, presenting the accuracy.

Number of images Evaluate

Positive Negative Accuracy TPR FPR

1,086 1,171 (4 cases) 99.43% 98.90% (347 TP/351 P) 0% (0 FP/351N)

1,086 1,353 (5 cases) 99.08% 98.00% (344 TP/351 P) 0% (0 FP/406N)

1,086 1,029 (4 cases) 99.39% 98.90% (347 TP/351 P) 0% (0 FP/309N)

1,086 10,166 (50 cases) 97.68% 78.06% (274 TP/351 P) 0% (0 FP/3050N)

1,086 67,845 (287 cases) 98.91% 32.48% (114 TP/351 P) 0.01% (3 FP/20350N)

201 201(1 case) 99.20% 98.30% (59 TP/60 P) 0% (0 FP/60N)

494 494(2 cases) 98.00% 95.90% (142 TP/148 P) 0% (0 FP/148N)

753 753(3 cases) 99.30% 98.70% (223 TP/226 P) 0% (0 FP/226N)

TP, True Positive; P, Positive; FP False Positive; N, Negatives.

FIGURE 2 | Comparison of pulmonary nodules test results and actual locations.

by radiologists, the second row is detection network test results,
and the third row is the nodules detection accuracy.

As you can see from Figure 2, the detected nodule is
approximately the same as the actual location, and the size of
the detection frame is approximately the same as the actual size.
Detection accuracy has reached a high value, which can prove
that based on the detection of the network of the nodules, the test
set has a good detection effect.

Discussion
According to the result of the tests on the LUNA16
datasets, the pulmonary nodule classification model
performance is satisfactory and stable when the proportions
of samples are relatively balanced. It means that CT images
with positive pulmonary nodules can be efficiently and
accurately classified through the classification network.
Therefore, a simple filtering process can remove a lot
of unrelated images so that the Faster R-CNN model
could detect the pulmonary nodule in a small quantity
of CT images that may contain pulmonary nodules
without examining all CT images. So, it is a feasible

method and is expected to help solve the problems of
low detection rates and high false-positives in pulmonary
nodules detection.

In this way, the suspected pulmonary nodules in the
CT image of the case would quickly be selected through
the classification network, and the location range of the
suspected nodules in the CT image can be determined,
and then detected by the detector, so as to improve the
efficiency of the detector, increase the reliability of the
detection, and reduce the false positive of the detector. It
means that it could effectively detect the positive pulmonary
nodules in the total CT image to assist doctors in the
early screening of pulmonary nodules and has certain
research value.

CONCLUSIONS

In this paper, deep learning and related algorithms are used
to study and discuss lung image classification, a new method
based on the deep convolutional neural network to detect
pulmonary nodules in CT images is proposed. This method
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can be regarded as a different way to reduce the false-
positive rate of detection by Screening targets before detection.
The main contribution of this method greatly reduces the
detection time and efficiency and reduces the false-positive
rate. The following conclusions can be drawn from the
experimental results:

1) Under the training set of positive and negative sample
balance, the classification network can accurately classify lung
CT images with pulmonary nodules or not.

2) A simple filtering process can remove a large number of
unrelated images so that the Faster R-CNN model could
detect the pulmonary nodule in a small quantity of CT
images without examining all CT images. Therefore, the
proposed method can reduce the time spent on testing and
improve efficiency.

3) Because the number of samples of pulmonary nodules
is insufficient, the generalization ability of the model is
not strong.

In the next work, we intend to improve the generalization
ability. Ideally speaking, if we can introduce more positive
samples to the training dataset, the predictive performance
can be more accurate. Moreover, we hope to integrate the
information about benign or malignant pulmonary nodules into
the deep network so that it can automatically complete testing
and evaluation.
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There is uncertainty in the neuromusculoskeletal system, and deterministic models

cannot describe this significant presence of uncertainty, affecting the accuracy of

model predictions. In this paper, a knee joint angle prediction model based on surface

electromyography (sEMG) signals is proposed. To address the instability of EMG

signals and the uncertainty of the neuromusculoskeletal system, a non-parametric

probabilistic model is developed using a Gaussian process model combined with the

physiological properties of muscle activation. Since the neuromusculoskeletal system is

a dynamic system, the Gaussian process model is further combined with a non-linear

autoregressive with eXogenous inputs (NARX) model to create a Gaussian process

autoregression model. In this paper, the normalized root mean square error (NRMSE) and

the correlation coefficient (CC) are compared between the joint angle prediction results of

the Gaussian process autoregressive model prediction and the actual joint angle under

three test scenarios: speed-dependent, multi-speed and speed-independent. The mean

of NRMSE and the mean of CC for all test scenarios in the healthy subjects dataset

and the hemiplegic patients dataset outperform the results of the Gaussian process

model, with significant differences (p < 0.05 and p < 0.05, p < 0.05 and p < 0.05).

From the perspective of uncertainty, a non-parametric probabilistic model for joint angle

prediction is established by using Gaussian process autoregressive model to achieve

accurate prediction of human movement.

Keywords: sEMG, Gaussian process, joint angle prediction, NARX, neurorehabilitation

1. INTRODUCTION

Rehabilitation robots and other rehabilitation equipment have developed rapidly and are widely
used for therapeutic training of patients suffering from neurological disorders including stroke,
cerebral palsy and spinal cord injury. Patients with impaired neurological function are able
to use rehabilitation equipment for a variety of exercises to restore strength and flexibility in
their extremities (1). Neurorehabilitation techniques can help both passive and active training
of patients with neurological injuries. Compared to passive training through rehabilitation
equipment, training that involves the patient’s own will can improve the effectiveness of treatment
and restore motor function through active movement (2). Electromyography (EMG) represents
the sum of subcutaneous motor action potentials generated through muscle contraction (3),
which can represent neuromuscular activity and is a way to reflect the patient’s voluntary effort.
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Surface electromyography (sEMG) is a non-invasive EMG signal
that is mainly acquired through non-invasive electrodes, which
has the advantage of being more accessible and less likely to
impede the normal activity of the user and will override the actual
joint motion (4), and is often used as a control command to
realize the human-robot interface (HRI) of portable or wearable
assisted rehabilitation equipment. The surface electromyography
(sEMG) is a non-invasive EMG signal collected by surface
electrodes, which has the advantage of being more accessible
than electroencephalography (EEG) and less likely to impede
the user’s normal activities. The forces generated by muscles in
response to neural control signals depend on a large number
of variables distributed over many spatiotemporal scales (5),
which makes it difficult to predict the muscle force. While the
nervous system clearly has knowledge of some of these variables,
such as muscle length and velocity, other aspects of muscle
dynamics (e.g., the detailed dynamics of molecules at the level of
individual myofibrils and sarcomeres) are much more difficult to
measure and estimate. With knowledge of the nervous system,
it is possible to model the relationship between neural control
signals and muscle force and use it to predict or simulate muscle
force production. However, this relationship itself cannot be
accurately estimated, and the remaining unaccounted aspects of
muscle dynamics will result in seemingly random fluctuations
in force, also known as motor noise. Therefore, there are two
main sources of uncertainty in the neuromusculoskeletal system:
irreducible noise during the motor system and variability in the
relationship between neural control signals and muscle outputs
(6). The impact of uncertainty in neuromusculoskeletal models
on joint motion prediction can be mitigated, but not completely
eliminated, by different modeling approaches. The human
neuromuscular system is a highly non-linear and time-varying
system with uncertainty (7). In order to allow models to handle
the dynamic high-dimensional nature of the neuromuscular
system, it is not enough to rely on traditional model structures
and faster computational processing. Therefore, a central issue
for further research on neuromusculoskeletal systems, or any
artificial controller, is how to command muscles effectively in the
presence of uncertainty.

Non-linear systemmodeling and identification can be divided
into parametric and non-parametric models from the perspective
of model structure (8–12). From the perspective of the
Bayesian statistical framework, probability distributions over the
functional space can be considered and modeled by optimizing
these distributions to characterize uncertainty. This type of
model has no explicit modeling mechanism or constraints and is
referred as non-parametric modeling (13). The non-parametric
model does not depend on a specified set of parameters or a
fixed model structure, and is an estimation method based on
statistical principles, which can generate functions to fit the data
without the constraints of the model mechanism. The number
and nature of the parameters of the non-parametric model are
flexible and variable, which can change accordingly with the
change of the data set. It can be used for modeling and analyzing
high-dimensional time-varying systems, taking the uncertainty
into account during the modeling process, and characterizing
the uncertainty. The non-parametric methods mainly include

spectral estimation, spectral analysis, correlation analysis and
kernel-based analysis methods. Gaussian process (GP) model is
a non-parametric kernel method in the framework of Bayesian
model, which is simple to implement, computationally efficient,
and most importantly, GP model can describe the posterior
distribution of the model function, which in turn can be used
to describe the uncertainty of the model, and is a recent
research hotspot for non-parametric methods (14, 15). Kang et al.
proposed an effective method for generating suboptimal motion
of a multi-body system using a GP dynamics model to achieve
dimensionality reduction of the system and deal with motion
optimization problems (16). Schearer and Ullauri achieved the
estimation of joint moments by building semi-parametric and
non-parametric models through GP model, respectively (17,
18). Xiloyannis et al. used a Gaussian autoregressive model
for decoding neural information to achieve multidimensional
decoding control of 11 joint movements (19). Yang et al.
proposed a proportional pattern recognition control of arm
muscles using a wearable ultrasound sensor to achieve both
gesture recognition and muscle contraction force estimation
based on statistical features and Gaussian process regression
models (20).

It has been shown that joint motion can reflect the intrinsic
dynamics of human movement (21), so motion signals can also
be used in the modeling of the neuromusculoskeletal system
for building autoregressive models for prediction. The non-
linear autoregressive with eXogenous inputs (NARX) model is
an effective method for solving non-linear sequential problems,
and modeling in conjunction with the NARX model can better
incorporate the non-linear spatiotemporal correlation structure
of muscle-driven control signals and natural humanmotion (22).
Dynamic recurrent neural networks based on the NARX model
are widely used for joint angle estimation, decoding shoulder,
elbow and wrist motions and prosthesis model control (23–25).
Gupta proposed an ankle joint angle estimation model based
on the NARX model using sEMG signals and knee joint angle
signals, and the performance of the model proved its applicability
to ankle joint angle estimation for active prosthesis, orthosis and
lower limb rehabilitation (26). Liu et al. used the NARXmodel to
train and identify the EMG signals motion mapping relationship
between a rehabilitation training bed and sEMG signals based
motion prediction to achieve the identification of upper body
tilt in different directions (27). Raj et al. proposed a multilayer
perceptron neural network model based on the NARX model for
estimating elbow joint angle and elbow joint angular velocity, and
the proposed model estimated elbow joint angle and elbow joint
angular velocity with high accuracy (28).

Since the neuromusculoskeletal system is a dynamic time-
varying system, the GP model is only a mapping of the input
to the output distribution, which is a basic static system. By
combining the NARX model into the modeling, the resulting
model can not only adapt to non-linear discrete-time processes,
but also to different noise models, and the resulting dynamic
model, which will better fit the physiological properties of the
neuromusculoskeletal system. Thus, in this paper, a knee joint
angle prediction model based on sEMG signals is proposed
by considering the physiological properties of microscopic
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FIGURE 1 | Muscle activation dynamics.

muscle activation and combining NARX with GP model. First,
considering the physiological properties of sEMG, the muscle
activation kinetic model is used to extract features from the
sEMG signals of a pair of antagonist muscles controlling knee
joint motion, and the muscle activation intensity of this pair is
obtained. Then a joint angle predictionmodel based onGPmodel
is proposed for the uncertainty of the neuromusculoskeletal
system with the muscle activation intensity as the input signal.
Since the neuromusculoskeletal system is a time-varying non-
linear system, the one-step ahead (OSA) prediction of the
NARX model is introduced to construct a Gaussian process
autoregressive model, which uses the confidence interval of the
prediction to describe the uncertainty, reduces the influence of
model uncertainty on the prediction results, and improves the
prediction rationality, accuracy, and efficiency of the joint angle
prediction model.

2. MATERIALS AND METHODS

2.1. Muscle Activation Dynamics
The sEMG signal is the sum of action potentials recruited to the
muscle by surface electrodes and is used to reflect the activation
level of the muscle. sEMG signals can be considered as a form
of characterization of neuromotor control commands and are
widely used to analyze musculoskeletal models. The feature
extraction of the EMG signals by the existing studied models only
considers the macroscopic characteristics of the EMG signals,
without considering themicroscopic physiological characteristics
of muscle activation. In order to characterize the time-varying
features of the sEMG signals, respond to micro-physiological
properties, and reflect the relationship between EMG signals,
neural activation and muscle activation, a muscle activation
kinetic model was established to achieve feature extraction of the
sEMG signals (29–31). The muscle activation kinetics is mainly
expressed as the transformation process between EMG signals
and muscle activation, as shown in Figure 1, where a(t) is the
muscle activation, e(t) is the processed sEMG signal, q(t) the
neural activation, and detailed in Li et al. (32).

2.2. Gaussian Process
Gaussian process (GP) is defined as a random process consisting
of infinite high-dimensional random variables in a high-
dimensional space, in which the joint distribution among any
finite number of random variables is a Gaussian distribution. GP
model can be derived from the weight-space view or the function-
space view. Since each set of weights implies a specific function
and the distribution of the weights implies the distribution of
the function, the distribution of the GP can be obtained from the
function-space view to obtain the equivalent of the weight-space

view (33), which is the more commonly used derivation method
for Gaussian process models.

Suppose the sample set D has N samples:

D = (X,Y) =
{
(xi,yi)|xi ∈ R

d,yi ∈ R, i = 1, . . . ,N
}

(1)

where xi denotes input vector,yi denotes output vector.
A Gaussian process is completely specified by its mean

functionm(x) and covariance function k(x, x′) (34):

f (x) ∼ GP(m(x), k(x, x′)) (2)

m(x)= E
[
f (x)

]
(3)

k(x, x′)= E
[
(f (x)−m(x))(f (x′)−m(x))

]
(4)

where the random variable function f (x) represents the
distribution of yi at xi, the mean function m(x) reflects the
expected function value at input x. The covariance function
models the dependence between the function values at different
input points x and x′, which is often referred as the kernel
function of a GP model.

In the Gaussian process regression, considering the
following model:

Y= f (X)+ ε (5)

where X denotes the input vector,Y denotes the
observed vector with noise, the noise follows a Gaussian
distribution ε ∼ N(0, σ 2), the random variable function f (X)
follows a Gaussian distribution:

f (X) ∼ N(µ(X),K(X,X)) (6)

Thus:

Y ∼ N(µ(x),K(X,X)+ σ 2I) (7)

For the prediction input X∗
= (x∗1 , . . . , x

∗
N)

T , the joint
distribution of the predicted values f (X∗) and the training data
output is:

(
Y

f (X∗)

)

∼ N

([
µ(X)
µ(X∗)

]

,

[
K(X,X)+ σ 2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])

(8)
where K(X,X) denotes the covariance matrix of the input signal,
which is a symmetric semi-positive definite matrix of N ×

N order:

K(X,X)=






k(x1, x1) · · · k(x1, xN)
...

. . .
...

k(xN , x1) · · · k(xN , xN)




 (9)

Frontiers in Public Health | www.frontiersin.org 3 May 2021 | Volume 9 | Article 68559685

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Liang et al. GP Autoregression for Angle Prediction

Knowing the joint high-dimensional distribution, the
posterior distribution is obtained by finding the conditional
probability p(f (X∗)|Y,X,X∗) according to Bayes’ theorem:

f (X∗)|X∗
∼N(µ∗,6∗) (10)

µ∗
= K(X∗,X)[k(X,X+ σ 2I]−1(Y− µ(X))+ µ(X∗) (11)

6∗
= K(X∗,X∗)− K(X∗,X)[K(X,X)+ σ 2I]−1K(X,X∗) (12)

The covariance matrix accounts for the major part of the
posterior distribution of the Gaussian process, and the covariance
matrix is a key component of the Gaussian process prediction.
The kernel function is the main structure of the covariance
matrix, so it is also a central part of the Gaussian process
model. In the modeling and identification of dynamic systems,
the dimensions of the inputs are relatively high, which makes
the description of the mapping function complex. Considering
the smoothness and continuity of dynamic systems, the squared
exponential (SE) kernel function is often used in the modeling
process (35), which is defined as:

k(x, x′) = σ 2
f exp

[

−
(x− x′)T(x− x′)

2σ 2
l

]

(13)

where hyperparameter σl is the characteristic length scale, which
determines the relative weights of the distances of the input
variables. σf is the signal standard deviation, which reflects the
magnitude of the function change.

The Gaussian process model is mainly determined by the
kernel function and its hyperparameters, and its learning process
is a process of training through the data to obtain the posterior
probability distribution, which mainly includes the selection
(or design) of the kernel function and the determination of
the hyperparameters.

The kernel functions of Gaussian processes often contain
unknown and indefinite hyperparameters, such as length scales,
signal and noise variances, etc. These need to be inferred from the
data, resulting in posterior distributions of the hyperparameters
that are not easily obtained. Therefore, the full Bayesian
derivation of hyperparameters is not commonly used in practical
applications. The usual practice is to obtain point estimates of the
hyperparameters by maximizing the log marginal likelihood.

Given a sample setD and the hyperparameter of the Gaussian
process is θ , the marginal likelihood is as shown in Equation (14):

p(Y|X, θ) =

∫

p(Y|X, f , θ)p(f |X, θ)df (14)

The marginal likelihood is mainly a marginalization of the
function. In the Gaussian process model, the prior f |X, θ of
the model is a Gaussian distribution, i.e., p(f |X, θ)=N(0,Kθ ).
When the observed likelihood function p(Y|X, f , θ) of the sample
set is also Gaussian distributed, i.e., p(Y|X, f , θ)=N(f , σ 2I),
then p(Y|X, θ) is also Gaussian distributed:

p(Y|X, θ) =

∫

N(0,KY)N(f , σ 2I)df=N(0,KY+σ 2I) (15)

According to Equation (15), the log marginal likelihood is
obtained as:

log p(Y|X, θ) = −
1

2
YTKY

−1Y−
1

2
log |KY| −

N

2
log 2π (16)

where KY = K(X,X)+σ 2I is the output covariance matrix.
The maximum likelihood estimation combined with the

conjugate gradient method is commonly used for the Gaussian
process model to achieve the estimation of the hyperparameters
of the model, and the computational complexity of this method
is O(N2) for each hyperparameter, and the computational
complexity is small. The hyperparameter estimates of the
Gaussian process model are obtained by maximizing the log
marginal likelihood function through a gradient ascent based
optimization tool:

∂
∂θi

log p(Y|X, θ) = −
1
2Y

TKY
−1 ∂KY

∂θi
KY

−1Y−
1
2 tr(KY

−1 ∂KY
∂θi

)

=
1
2 tr

(
(αα

T
− KY

−1) ∂KY
∂θi

)

(17)
where α = K−1

Y Y.

2.3. Non-parametric Model for Joint Angle
Prediction Based on sEMG Signals
2.3.1. Joint Angle Prediction Based on Gaussian

Process Model
The hamstrings and quadriceps are antagonistic muscles that
together control the flexion and extension of the knee joint. The
hamstrings are the muscles of the posterior thigh and consist
mainly of the semitendinosus, semimembranosus and biceps
femoris, while the quadriceps are the muscles of the anterior
thigh and consist mainly of the vastus lateralis, vastus medialis,
vastus intermedius and rectus femoris. In this paper, the sEMG
signals of a pair of muscles in this antagonistic muscle group,
the semimembranosus and the lateral femoris, were selected
for the development of a non-parametric model for joint angle
prediction. The physiological properties of muscle activation are
combined with the GPmodel, and the squared exponential kernel
is selected for subsequent modeling and analysis to establish
a non-parametric model for joint angle prediction based on
the GP model, as shown in Figure 2, where k denotes kth
time step, e1,k and e2,k are the preprocessed sEMG signals
of semimembranosus and lateral femoris muscles, respectively,
which are then subjected to muscle activation dynamics to
calculate the muscle activation a1,k and a2,k. uk denotes the input
of the GP model, uk = [a1,k, a2,k]

T . The output of the Gaussian
process model ŷk is the predicted value of the joint angle.

FIGURE 2 | Joint angle prediction based on Gaussian process model.
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FIGURE 3 | Joint angle prediction based on Gaussian process autoregressive model.

2.3.2. Joint Angle Prediction Based on Gaussian

Process Autoregressive Model
Since the neuromusculoskeletal system is a dynamic time-varying
system, the joint angle prediction based on GP model only
maps the input to the output distribution, which is a basic
static system. Therefore, this paper further considers the time
series of input and output signals to establish dynamic Gaussian
process regression.

Non-linear autoregressive with eXogenous inputs (NARX)
model is an effective method for solving non-linear sequence
problems that accommodates non-linear discrete time processes
and noisy models (36, 37). NARX is a dynamic recurrent network
that predicts the current value of the system output by using
a non-linear function f with previous inputs and outputs. The
NARX model based on the actual measured values of the output
is called One-step ahead (OSA) prediction:

y∗k = f (uk, uk−1 . . . , uk−nu , yk−1, yk−2, . . . , yk−ny ) (18)

where f (·) is the non-linear function between the input uk and
the estimated value y∗

k
and yk denotes measured value of model

output, k represents kth time step, nu and ny are the maximum
lags for model input and output, respectively.

The joint angle signal can be easily collected by inertial
measurement unit (IMU), etc., and the joint angle prediction
system can be established by EMG signals to achieve further
advance prediction of joint angle. Since the high accuracy of joint
angle prediction is required in practical applications, this paper
improves the joint angle prediction method based on GP model
by using the NARX model and muscle activation dynamics,
which establishes a Gaussian dynamic model with NARX
structure, i.e., Gaussian process autoregressive model, for joint
angle OSA prediction, as shown in Figure 3, where yk denotes
measured value of joint angle, ŷk denotes the joint angle
prediction of Gaussian process autoregressive model, Ny and Ny

are the maximum lags for model input and output, respectively.

3. EXPERIMENTS AND RESULTS

3.1. Datasets
In this paper, publicly available datasets (dataset 1 and dataset 2)
were cited to validate and analyze the proposed knee joint angle
prediction model.

3.1.1. Healthy Subjects Dataset
Dataset 1 contains gait data from 10 healthy subjects in running
condition, and Dataset 1 is published in https://simtk.org/
projects/nmbl_running. The dataset measured knee moment
signals, EMG signals and motion data of 10 healthy subjects
running on a treadmill at four speeds (2.0, 3.0, 4.0, and 5.0 m/s).
Subjects were all male (age: 29 ± 5 years; height: 1.77 ± 0.04
m; weight: 70.9 ± 7.0 kg), all provided informed consent, and
each subject was experienced in long-distance running, at least 50
km per week. Fifty-four reflective markers were placed on each
subject, and the trajectory of the markers was recorded using
eight Vicon MX40+ cameras with a data acquisition frequency
of 100 Hz. Ground reaction forces and moments were acquired
using a Bertec Corporation treadmill with a sampling frequency
of 1,000 Hz. Motion data and ground reaction forces were
preprocessed with 4th order zero-phase hysteresis Butterworth
low-pass filtering (cutoff frequency 15 Hz) and critical damping
low-pass filtering (cutoff frequency 15 Hz), respectively. The
Delsys Bangoli system was used to collect EMG signals. A total
of 11 muscles including the gluteus maximus, biceps femoris
long head, medial femoris, lateral femoris, semimembranosus,
and tibialis anterior muscles were collected. Hamner et al. gave
a complete description of the dataset (38).

3.1.2. Hemiparetic Subject Dataset
Joint angle prediction is mainly applied to the development of
rehabilitation equipment and rehabilitation training, so a gait
dataset containing a male patient with high-functioning right
hemiparesis, which is publicly available at https://simtk.org/
projects/emgdrivenmodel, was also selected for further testing
and analysis of the knee angle prediction model proposed in
this paper. The subject was 79 years old, height 1.7 m, mass
80.5 kg, with a LE Fugl-Meyer motor assessment score of
32/34 and right-sided hemiparesis. All experimental procedures
were approved by the University of Florida Health Sciences
Center Institutional Review Board (IRB-01), and the subject
signed a written informed consent prior to participation in
the experiment. The dataset collected gait data from subjects
walking on a split-belt instrumented treadmill (Bertec Corp.,
Columbus, OH) at five different speeds (0.4, 0.5, 0.6, 0.7, and 0.8
m/s), with over 50 gait cycles collected for each speed. Motion
capture in the experiments was mainly performed by an optical
motion capture system (Vicon Corp., Oxford, UK) and ground
reaction force detection was measured using the treadmill with
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FIGURE 4 | Feature extraction of the lateral femoral.

FIGURE 5 | Feature extraction of semimembranosus.

sampling frequency of 100 and 1,000 Hz, respectively. The EMG
signal acquisition was performed using Motion Lab Systems
with a sampling frequency of 1,000 Hz. Ground response and
marker motion data was filtered using a fourth-order zero-phase
lag Butterworth filter with a cutoff frequency of 7 divided by
the gait period. EMG signal data were collected for 16 muscle
groups of the lower extremity, including the anterior tibialis,
semimembranosus, long head of the biceps femoris, medial
femur, and lateral femur. A full description of this dataset is
provided by Meyer et al. (39).

3.1.3. Pre-processing and Feature Extraction Results
The sEMG signals of dataset 1 and dataset 2 are preprocessed.
Raw sEMG signals was firstly filtered using Butterworth zero
phase shift bandpass filter (4th order, cutoff frequency 40 Hz)
to eliminate low-frequency noise, then full-wave rectified and

low-pass filtered (4th order, cutoff frequency = 3.5/step period),
and finally sEMG data from each muscle were normalized to
the maximum value over all trials to obtain the processed sEMG
signals e(t).

Feature extraction was then further performed using the
muscle activation kinetic model in section 2.1. The results of pre-
processing and feature extraction for dataset 1 (subject 1, 2 m/s)
for the lateral femoral and semimembranosus muscles are shown
in Figures 4, 5.

3.2. Data Allocation Strategy
To study the effect of different speeds on joint angle prediction,
joint angle prediction results were analyzed for two datasets
of healthy subjects and hemiplegic subject in three conditions:
speed-dependent, multi-speed and speed-independent. The
normalized root mean square error (NRMSE) and correlation
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coefficient (CC) were used as evaluation indicators of the
prediction performance of the joint angle, as shown in
Equations (19) and (20).

NRMSE=
1

ymax
real

√
1

num

∑num

i=1
(yest − yreal)

2 (19)

CC=
cov(yest , yreal)

σyest · σyreal
(20)

where num denotes the number of samples tested, yest denotes
the predicted value of joint angle, yreal denotes the actual value
of joint angle, and ymax

real
denotes the maximum magnitude of the

actual joint angle value.
One-way analysis of variance (ANOVA) was conducted to

assess the statistical difference of estimation errors obtained by

different models (40). The level of statistical significance was set
to p<0.05.

Dataset 1 contained 10 subjects, each speed containing five
gait cycles, and three conditions were analyzed for each subject.
speed-dependent took the first three cycles of each speed as a
training set, and the last two cycles at the corresponding speed
as test set; multi-speed took the first three cycles of each speed
together as a training set, and the last two cycles of each speed
separately as a test set; the speed-independent took the last two
cycles of one speed in turn as test set, and the first three cycles of
each unselected speed together as training set.

Dataset 2 contained the left and right leg gait data of a
subject with right-sided hemiplegia, and the left and right leg
gait data were analyzed for three conditions. speed-dependent
tested the angle prediction results of each speed, using 10
gait cycles of a single speed as the training set and another

FIGURE 6 | Joint angle prediction under speed-dependent of subject 9.
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10 cycles of the same speed as the test set; multi-speed used
data from 5 m/s, each with 10 gait cycles, for a total of
50 gait cycles as the training set, and 10 gait cycles for
each speed as the test set; speed-independent test took 10
gait cycles of one speed in turn as the test set, and 10 gait
cycles of each of the other unselected speeds together as the
training set.

Before performing the joint angle prediction based on
Gaussian process model and Gaussian process autoregressive
model, the Gaussian process model needs to be trained offline
for different datasets according to the data allocation strategy.
In this paper, the dataset was trained and tested on the
MATLAB platform, and the Gaussian process regression model
was trained offline using the “fitrgp” function. The method
of estimating the model parameters was set to “exact,” and
the point estimates of the hyperparameters were obtained

by maximizing the log marginal likelihood, and the kernel
function was set to the squared exponential kernel function.
The input signal for offline training of joint angle prediction
based on Gaussian process model was the muscle activation
of lateral femoral and semimembranosus muscles, and the
output was the normalized joint angle signal. Given that
muscle dynamics is a second-order model, the joint angle
prediction based on the Gaussian process autoregressive model
is set to second order, which lead to the number of the
maximum lags for model input and output be 2, i.e., nu
= ny = 2. Therefore, the output signal of offline training
was the joint angle signal, and the input was the muscle
activation. The model was trained offline and joint angle
prediction was performed according to the data allocation
strategy for different datasets under different data allocation
strategies, respectively.

FIGURE 7 | Joint angle prediction under multi-speed of subject 9.
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FIGURE 8 | Joint angle prediction under speed-independent of subject 9.

3.3. Estimation Results
3.3.1. Joint Angle Prediction Results for Dataset 1
The proposed method was tested using the data in dataset
1. Subjects were tested for knee angle prediction in three
cases, speed-dependent, multi-speed, and speed-independent,
according to the data allocation strategy, and the test results for
subject 9 knee angle predictionwere shown in Figures 6–8, where
“NARX-GP” was the joint angle prediction based on the Gaussian
process autoregressivemodel, “GP” was the joint angle prediction
based on the Gaussian process model, and “measurement” was
the actual measurement of joint angle. The gray shading was
the 95% confidence interval (µ ± 2σ ) for the prediction of the
joint angle based on the Gaussian process autoregressivemodel to
describe the uncertainty. From Figures 6–8, it can be concluded
that the direct joint angle prediction by Gaussian process model
cannot describe the relationship between sEMG signal and joint

angle well, and the knee joint angle prediction results have a
large error. Establishing a Gaussian process autoregressive model
for OSA prediction of joint angle can significantly improve the
prediction accuracy and can approximate the actual joint angle
signal. OSA prediction incorporates the actual values of the
previous moments of output into the model structure with high
prediction accuracy, and is suitable for scenarios where the actual
measurements of the output are easy to collect and where high
prediction accuracy is required. The joint angle signal can be
easily collected by inertial measurement unit (IMU), etc., and the
joint angle prediction system can be established by EMG signals
to achieve further advance prediction of joint angle.

Further error assessment and statistical analysis of the
prediction results were performed, and the mean NRMSE and
CC between the predicted and actual measurements for different
velocity joint angles of the subjects are shown in Figures 9, 10.
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FIGURE 9 | Average NRMSE for prediction of joint angle under different speed.

FIGURE 10 | Average CC for prediction of joint angle under different speed.

It can be seen from the figures that the prediction results of
the NARX-GP model were significantly better than those of
the GP model, the NRMSE between the prediction results of
the NARX-GP model for knee joint angle and the actual knee
joint angle was small and significantly smaller than that of the
GP model, and the strong correlation between the prediction
results of the NARX-GP model and the actual values of the
joint angle with a higher correlation coefficient than that of
the GP model.

The means and standard deviations of NRMSE and CC
between predicted and actual values of joint angles for
all subjects in speed-dependent, multi-speed and speed-
independent conditions are shown in Tables 1, 2. From
Tables 1, 2, it can be seen that the predictions of the NARX-GP
model were highly correlated, and the NRMSE of the predictions
was significantly lower than that of the GP model. The mean
NRMSE was further calculated as 0.0039 ± 0.019, 0.0038 ±

0.0019, and 0.0059 ± 0.0061 for all subjects in the NARX-GP
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model in the load-dependent, multi-load and load-independent
conditions, 0.1728 ± 0.0543, 0.1795 ± 0.0563, and 0.2003
± 0.0659 for the GP model. ANOVA was used to evaluate
NRMSE of NARX-GP and GP model predictions, showing
significant differences (p < 0.05, p < 0.05, and p < 0.05). The
NARX-GP model prediction errors were smallest for all three
scenarios, and slightly larger for load-independent. The joint
angle prediction results of the GP model for all three scenarios
were optimal for speed-dependent, with the smallest NRMSE,

followed by multi-speed, and worst for speed-independent.
The variability of joint motion at different speeds affected the
prediction results of the model, and the experimental results
also demonstrated that the speed-dependent results were
optimal and the speed-independent results were the worst.
The average NRMSE of NARX-GP model prediction results
for all scenarios was 0.0045 ± 0.0040, which was better than
the GP model results (0.1842 ± 0.0602), with a significant
difference (p<0.05).

TABLE 1 | NRMSE between the estimated joint torque of different models and the measurements (“true” values) of all subjects (mean ± std).

2 m/s 3 m/s 4 m/s 5 m/s

Speed-dependent
GP 0.1788 ± 0.0756 0.1802 ± 0.0475 0.1604 ± 0.0483 0.1718 ± 0.0356

NARX-GP 0.0046 ± 0.0016 0.0039 ± 0.0023 0.0031 ± 0.0023 0.0041 ± 0.0021

Multi-speed
GP 0.1850 ± 0.0735 0.1745 ± 0.0489 0.1712 ± 0.0457 0.1874 ± 0.0510

NARX-GP 0.0052 ± 0.0028 0.0033 ± 0.0010 0.0030 ± 0.0011 0.0035 ± 0.0011

Speed-independent
GP 0.2075 ± 0.0697 0.1852 ± 0.0560 0.1910 ± 0.0563 0.2174 ± 0.0746

NARX-GP 0.0086 ± 0.0086 0.0039 ± 0.0014 0.0046 ± 0.0030 0.0066 ± 0.0072

TABLE 2 | CC between the predicted joint angle of different models and the measurements (“true” values) of all subjects (mean ± std).

2 m/s 3 m/s 4 m/s 5 m/s

Speed-dependent
GP 0.6276 ± 0.4151 0.7819 ± 0.1202 0.8241 ± 0.1120 0.8170 ± 0.1080

NARX-GP 0.9999 ± 0.0001 0.9999 ± 0.0002 0.9999 ± 0.00004 0.9999 ± 0.0001

Multi-speed
GP 0.6381 ± 0.3708 0.7744 ± 0.1573 0.8026 ± 0.1141 0.7710 ± 0.1591

NARX-GP 0.9998 ± 0.0002 0.9999 ± 0.00003 0.9999 ± 0.00003 0.9999 ± 0.0001

Speed-independent
GP 0.5970 ± 0.3333 0.7387 ± 0.2172 0.7493 ± 0.1540 0.6733 ± 0.2494

NARX-GP 0.9991 ± 0.0020 0.9999 ± 0.00006 0.9998 ± 0.0002 0.9996 ± 0.0009

FIGURE 11 | Joint angle prediction of 5 m/s (speed-dependent).
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FIGURE 12 | Joint angle prediction of 5 m/s (multi-speed).

FIGURE 13 | Joint angle prediction of 5 m/s (speed-independent).

3.3.2. Joint Angle Prediction Results for Dataset 2
The proposed method was further tested using the data in dataset
2 to validate the accuracy of the proposed method for predicting
the knee joint angle of patients. To reduce the influence of
different muscle selections on the prediction results, the sEMG
signals of the same pair of muscles, semimembranosus and lateral
femoris, were selected for testing in dataset 2 as in dataset
1 and used to build a non-parametric model for joint angle
prediction. Dataset 2 included data from the left and right legs

of patients with different speeds, so the joint angle prediction
results of subjects in three cases of speed-dependent, multi-
speed and speed-independent were tested separately for the left
and right legs according to the data allocation strategy, and
the test results of joint angle prediction for speed of 5 m/s
are shown in Figures 11–13, where “NARX-GP” was the joint
angle prediction based on the Gaussian process autoregressive
model, “GP” was the joint angle prediction based on the Gaussian
process model, and “measurement” was the actual measurement
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FIGURE 14 | Angle prediction results of NARX-GP model and GP model for hemiplegic subject dataset.

FIGURE 15 | Angle prediction results of NARX-GP model and GP model for hemiplegic subject dataset.

of joint angle. The gray shading was the 95% confidence interval
for the prediction of the joint angle based on the Gaussian
process autoregressive model to describe the uncertainty. From
Figures 11–13, it can be concluded that the patient’s knee
joint NARX-GP model has better angle prediction than the
GP model and can achieve good prediction results, and the
joint angle prediction can approximate the actual joint angle
for both the healthy side and the affected side (right side) of
the patient.

The error assessment and statistical analysis of the prediction
results of the NARX-GP model and the GP model for the
hemiplegic subject dataset, the NRMSE and CC between the
predicted and actual values of joint angles at different speeds are
shown in Figures 14, 15. The errors between the predicted results
and the actual values of joint angles for both the left and right leg
NARX-GPmodels were small, highly correlated, and significantly
better than the GP model.

Further evaluation and analysis of variance of the prediction
results for the left and right legs of the dataset showed that
the mean NRMSE of the prediction results of the NARX-GP
model for the left and right legs were 0.0063 ± 0.0081 and
0.0032 ± 0.0028, respectively, which were significantly better
than those of the GP model (0.1466 ± 0.0127 and 0.1012 ±

0.0092), with significant differences (p < 0.05 and p < 0.05).
Joint angle prediction using the NARX-GP model for both the
healthy and affected side of the patient was able to have high
accuracy with no significant difference (p = 0.1919 > 0.05).

the NRMSE of the NARX-GP model prediction results for all
scenarios was 0.0047 ± 0.0063 on average, which was better
than the GP model results (0.1239 ± 0.0253) with a significant
difference (p<0.05).

4. DISCUSSION AND CONCLUSION

The EMG signal contains abundant motion information, which
is ahead of the actual joint motion, and is often used as a control
signal to predict joint motion. Therefore, EMG signals are widely
used in applied scientific research related to the development of
intelligent rehabilitation technologies and devices. EMG signal
based modeling of the neuromusculoskeletal system, as an
important component of joint motion prediction, has become a
hot topic of research as it is important to help the development
of rehabilitation techniques and equipment for patients with
sports injuries. There is uncertainty in the neuromusculoskeletal
system, and in order for the model to provide a description of
the uncertainty, this paper proposes to model the uncertainty
using a Gaussian autoregressive model. The muscle activation
dynamics model was first introduced into the Gaussian process
model to establish a joint angle prediction model based on
Gaussian process. Due to the high requirement for joint angle
prediction accuracy in practical applications and the fact that
the neuromusculoskeletal system is a dynamic non-linear system,
the NARX model was introduced into the Gaussian process
model to establish a Gaussian autoregressive model to achieve
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OSA prediction of knee joint angle. The results of different
test scenarios on the healthy subjects and hemiplegic subject
datasets showed that the designed Gaussian autoregressive model
had significantly better prediction accuracy than the Gaussian
process model, and there was no significant difference in the
prediction accuracy between the affected and healthy sides of
the hemiplegic subject, both of which were able to achieve more
accurate prediction results for knee angles and could provide
uncertainty information.

In this paper, a non-parametric model for knee joint angle
prediction was developed from a predictive value-based NARX
model approach by mixing a muscle activation kinetic model
with a data-driven model. The proposed modeling approach was
validated with a publicly available dataset. The proposed method
utilizes only the EMG signals of a pair of antagonistic muscles,
reducing the cost of EMG signal detection and the complexity
of the model. However, there are still some shortcomings in this
paper and there aremany problems that have not yet been studied
with some need for improvement. In this paper, the performance
of only one pair of antagonist muscles in the hamstrings and
quadriceps was tested, and the effect of sEMG signals from
other muscles in the hamstrings and quadriceps as input on the
accuracy of knee joint angle prediction can be further tested. In
addition, although the knee joint is used as the research object
for the study and validation of the model in this paper, the
proposed joint angle prediction method is not limited to the knee
joint angle prediction. In the subsequent research, the proposed
method can be applied to the angle prediction of other joints for
relevant testing and validation.
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Relying on the Biomedical Big Data Center of West China Hospital, this paper makes an

in-depth research on the construction method and application of breast cancer-specific

database system based on full data lifecycle, including the establishment of data

standards, data fusion and governance, multi-modal knowledge graph, data security

sharing and value application of breast cancer-specific database. The research was

developed by establishing the breast cancer master data and metadata standards,

then collecting, mapping and governing the structured and unstructured clinical data,

and parsing and processing the electronic medical records with NLP natural language

processing method or other applicable methods, as well as constructing the breast

cancer-specific database system to support the application of data in clinical practices,

scientific research, and teaching in hospitals, giving full play to the value of medical big

data of the Biomedical Big Data Center of West China Hospital.

Keywords: breast cancer, disease-specific database, metadata, data governance, data security sharing,

knowledge graph

INTRODUCTION

With the rapid development of new technologies such as big data and artificial intelligence, the
medicine overlaps with such disciplines as information technology, computer science, and cyber
security in more and more aspects. Particularly, thanks to the constant advancement of medical
technology, the process for screening, diagnosis and treatment of diseases is being expanded to
generate various new data. Based on different data modalities, artificial intelligence technology
has been widely applied in the field of medicine (1–5). This research focuses on breast cancer
which results in the second highest cancer mortality in women (6) and its screening, diagnosis
and treatment strategies which have developed from single surgical therapy to a comprehensive
treatment mode that combines surgical therapy, chemotherapy, radiotherapy, endocrinotherapy,
and targeted therapy, forming a multi-disciplinary team (MDT) of breast cancer. Multi-source
heterogeneous data, such as electronic medical record data, image data and gene data, were
generated in the whole diagnosis and treatment process to drive the disease diagnosis and treatment
and disease research into a big data era of disease-specific research (7).
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Currently, the most fundamental challenge confronting
the medical research institutions in the development of
disease-specific data research is how to integrate multi-source
heterogeneous data and build a disease-specific database, so as
to support the discovery of potential diagnosis and treatment
knowledge patterns from the massive medical data. For example,
the data are too much to be screened manually by clinicians; the
attributes of the same data element are described in different
ways across hospitals or even across information systems of
the same hospital, e.g., the same drug may be identified by
different codes. As unstructured data such as electronic medical
records contain medical information of important value, the
difficulty lies in the effective and accurate extraction of such
information. Based on the medical big data governance activities
in China, Li et al. proposed a big data governance framework
for medical data in China through literature review, expert
consulting and structural modeling, providing an important
reference for data governance framework in this research (8).
This paper aims to integrate two heterogeneous clinical data
sources, i.e., unstructured medical records and structured clinical
data, through clinical text analysis and knowledge extraction;
to break the information barriers within the organization and
between clinical departments and to promote data sharing
among medical centers in combination with patient information
from multiple clinical data sources; to establish the disease-
specific data standards in accordance with international industry
standards and then to construct a multi-modal knowledge
graph specific to breast cancer; finally to build a disease-
specific database system for the purpose of analyzing disease
characteristics, thus providing supports in clinical decision-
making and rational drug use to clinicians in the diagnosis and
treatment of breast cancer.

THE INVOLVEMENT OF BREAST CANCER

PATIENTS

Patients pathologically diagnosed with breast cancer are
prospectively registered in the Breast Cancer-specific Database
System at West China Hospital, Sichuan University since 2008
(9, 10). Medical records, diagnostic pathology reports, treatment
records are recorded by oncologists. All patients are followed
by outpatient visit or telephone at 3–4-month intervals within
3 years after diagnosis, 6-month intervals within 4–5 years, and
then annually. The characteristics description of breast cancer
patients included in the database is shown in Table 1.

OVERALL DESIGN SCHEME FOR BREAST

CANCER-SPECIFIC DATABASE SYSTEM

Overall design thought of the breast cancer-specific database
system is shown in Figure 1.

Several important oncology patient data systems of China
and foreign countries (e.g., cancer registration software CanReg
designed and developed by the Descriptive Epidemiology Unit
of IARC\the cancer screening database of Chinese Anti-Cancer
Association) were referred in the overall design and construction

TABLE 1 | Characteristics description among breast cancer patients at

recruitment.

Group Value

Age, median (IQR) 41.0 (47.0, 55.0)

Sex Female 7697 (99.6%)

BMI, median (IQR) 20.83 (22.86, 24.97)

Menopause status, No (%) Yes 2999 (38.8%)

No 4693 (60.7%)

Unknown 38 (0.5%)

Stage, No (%) 0 0

I 1619 (25%)

II 3427 (33.5%)

III 1927 (29.8%)

Unknown 757 (11.8%)

pT status, No (%) 0 308 (4.0%)

1 2532 (32.8%)

2 3633 (47.0%)

3 336 (4.3%)

4 440 (5.7%)

Unknown 481 (6.2%)

pN status, No (%) 0 3748 (48.5%)

1 2227 (28.9%)

2 856 (11.1%)

3 783 (10.1%)

Unknown 116 (1.4%)

ER Negative– 2323 (30.1%)

Positive+ 5094 (65.9%)

Unknown 313 (4.0%)

PR Negative– 2680 (34.7%)

Positive+ 4737 (61.3%)

Unknown 313 (4.0%)

HER2 Negative– 4555 (58.9%)

Positive+ 1856 (24.0%)

Unknown 1319 (17.1%)

Ki67 <14% 1370 (17.8%)

≥14% 5752 (74.4%)

Unknown 608 (7.8%)

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor

receptor-2; Ki-67, marker of proliferation Ki-67.

of the breast cancer-specific database system (11, 12). The
database is composed of four parts: a patient standard database, a
breast cancer malignancy-specific database, a diagnostic imaging
database and a breast cancer patient follow-up visit database.
Data governance is based on these four parts. The construction
of the disease-specific database system involves governance,
extraction and application. Governance is performed firstly
to collect the current disease-specific data assets of the West
China Hospital and sort out their meanings, ownership, etc.
The next step is to conduct data classification and quality
control to ensure the accuracy of data processing. The last
step is to provide a unified standard interface services based
on the governed and integrated disease-specific data center.
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FIGURE 1 | Overall design of breast cancer-specific database system. HIS, Hospital Information System; EMPI, Enterprise Master Patient Index.

In addition, main considerations in design of the disease-
specific database include the application of the standardized
and governed data in clinical diagnosis and treatment assistance
and scientific research. The patient’s medical record data can
be viewed as a time series that captures the entire clinical
process of collecting the patient’s medical history, analyzing
the condition, diagnosing, and treating the patient. Different
data sources have different time spans, resulting in complex
timing dependencies between events (13). Therefore, combined
with the actual application scenarios and for better support to
scientific research, the overall design and final data presentation
of the disease-specific database are logically linked through
the processes of admission registration, inpatient treatment,
checkout and discharge, etc. in the chronological sequence, so
as to establish a view for diagnosis and treatment based on full
data lifecycle.

METADATA-CENTERED DATA

GOVERNANCE SCHEME

Standards–Establishment of Data

Standards
Establishment of Dataset Standards
A regional breast cancer-specific database should include a
complete range of datasets in the uniform format and meeting
the normative standards. In addition, the database should
incorporate the national and medical industry standards and
all system datasets of medical institutions. A synonym database
of the dataset names should be created. A standard database
of breast cancer datasets should be created for the Center to
provide a dataset graph for its application and corpus support for
automatic identification of dataset names. The Center’s database
includes the scope, normative references, term abbreviations,
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TABLE 2 | Some referenced dataset standards.

Classification Standard name

National health industry

standards

Basic Dataset of Basic Information–Personal Information

(WS 371-2012)

Basic Items Data Set of Health Examination (T/CHIA

2-2018)

Guidelines for Data Schema Description of Health

Information (WS/T 304-2009)

Classification and Coding for Value Domain of Health

Data Element (WS364-2011)

International oncology

specialized standards

SEER Program Coding and Staging Manual of National

Cancer Institute (NCI)

International Classification of Diseases, Tenth Revision

(ICD-10)

International Classification of Diseases for Oncology,

Third Edition (ICD-O-3), etc.

Other standards Supplement to current hospital datasets

WS and WS/T refers to standards issued by Chinese Professional Committee on

Health Information Standards; T/CHIA refers to standards issued by Chinese Health

Information Association.

datasetmetadata attributes, and data element attributes. Standard
information for each dataset includes the dataset name, identifier,
classification, field description, definition, etc. The datasets are
saved in four different databases based on data types, and
subdivided into four modules and about 20 submodules. The
oncology datasets and breast cancer-specific datasets are created
accordingly with reference to different health industry standards.
Some referenced dataset standards are shown in Table 2, and
some collected fields of the breast cancer-specific dataset are
shown in Table 3.

Establishment of Data Element Standards
A local database of data element standards is established based
on the national and industrial standards and in combination
with the specific situation of the hospital. The local database
includes data element indicators, normative references, term
abbreviations, and data element directory. Data element
standards specify the Chinese name, English name, identifier,
definition, classification, data type, representation format, data
threshold value, allowable value type and allowable value of data
fields in the data dictionary, which are used to ensure the data
quality. In the management of metadata, data elements may be
classified and labeled, so as to establish a synonym database of
the data elements. The local database describes the attributes of
each data element, including Chinese field name, English field
name, field name abbreviation, field type, field length, required
or not, range or reference standards, notes and remarks. If
there are any relevant international standards for the range
of data elements, they can be referenced directly; otherwise,
the range will be set by physicians and other professionals in
combination with clinical experience. The set range standards
will be saved together with other collected standards in the
local database for the convenience of version management and
subsequent updates. Table 4 shows partial attributes of some
data elements.

Quality Control–Fusion and Governance of

Multi-Source Heterogeneous Data
The structured medical data from HIS (Hospital Information
System), LIS (Laboratory Information Management System),
and follow-up visit system are integrated with the image data
from PACS (Picture Archiving and Communication Systems).
These data are acquired by building an ETL (Extract-Transform-
Load) automation platform to perform incremental extraction
at regular intervals on a daily basis, and complete data
standardization and other processes during the extraction
process. The unstructured data in the electronic medical record
are structured through natural language processing and machine
learning after data source access, and then saved in the disease-
specific database.

Afterwards, the data in the four module databases are
linked primarily based on the patient ID, thus breaking the
information barriers within the organization and between clinical
departments. Finally, the front-end application is supported by
breast cancer-specific data for fully mining the data of full
lifecycle about single disease and providing support for data
analysis of multi-center joint scientific research projects. Specific
processing methods are described below. The data governance
framework is shown in Figure 2.

Structured Data Processing
Data acquisition (data reception or data capture) is performed
through the data fusion platform for the data of breast cancer
patients which are structured but exist in different systems.
The source data are extracted, integrated and saved in the
target database as per the following steps: (1) Establish a data
source directory, and determine the connection mode, access
permission, data storage directory, and interfaces of each data
source; (2) Data cleaning and filtering: Establish data review
rules, e.g., the gender can only be male, female, or unknown,
the ID number can only be 18 digits, the patient ID cannot
be blank, etc. Then, filter the data according to these rules,
and save the unqualified data in a temporary database, with
no need for data fusion. The cleaned data should not contain
missing or incomplete data, repeated data and nonstandard data.
See Figure 3 for the statistics of some cleaned data; (3) Map
the original data in the data source database with the standard
datasets in accordance with the specified data standards, and
complete the range conversion of data elements at the same time
to standardize the processing of breast cancer standard data, so
as to complete the collection, and collation of multi-source data;
(4) In the process of timed automatic incremental extraction of
medical data, monitor the log for each extraction, and count the
number of extraction records and completion for later failure
rollback (14).

Unstructured Data Processing
Electronic medical records contain highly valuable medical data.
The unstructured breast cancer data are parsed by the standard
medical structure based on natural language text data, and the
structured data correction, annotation and association tools are
provided for clinicians to manage the annotation tasks (either
by manual or automatic annotation) of the text data to be
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TABLE 3 | Some collected fields of the breast cancer-specific dataset.

Classification Field name Database type

Basic information Patient ID, patient name, home address, contact number, first contact name, relationship with

patient, ID number, gender, date of birth, height, weight, gender, age, marital status,

occupation, ethnicity, ancestral home, nationality, etc.

Patient standard database

Inpatient information Patient ID, time of medical records, reliability, medical unit admitted, nursing unit admitted, time

of admission by the current medical unit, current medical unit, current nursing unit, date of

diagnosis, time of admission, length of stay, time of discharge, transfer of departments, date of

transfer from current medical unit, medical unit transferred, nursing unit transferred, attending

physician, way of discharge, number of operations, etc.

Patient standard database

Progress note Patient ID, chief complaint, clinical pathway ID, medical advice, observations, results of ward

round, dosing regimen, summary opinions, etc.

Disease-specific database

Nursing assessment Details of occupational exposure, smoking status, duration of smoking, average number of

cigarettes, smoking cessation, duration of smoking cessation, drinking, duration of drinking,

average number of drinks, allergy history, details of allergy history, diet, general health

condition, vaccination history, past history of serious illness, details of serious illness, history of

blood transfusion, trauma history, history of infectious diseases, details of infectious diseases,

history of surgery, details of surgery, etc.

Patient standard database

Diagnostic information Diagnosis category, diagnosis code, diagnosis name, pre- and post-operation diagnostic

accordance, outpatient diagnostic accordance, clinical case diagnostic accordance,

radiopathological diagnostic accordance, discrepancy between admission diagnosis and

primary discharge diagnosis, cataloged diagnosis name splicing, cataloged diagnosis code

splicing, first page diagnosis name splicing, tumor morphological code name, tumor

morphological code, etc.

Disease-specific database

Physical examination Body temperature, pulse rate, respiratory rate, blood pressure, general condition, skin mucosa,

lymph nodes, head, hair distribution, eyes, ears, nose, mouth, face, neck, chest, lungs, heart,

blood vessels, abdomen, genitalia, anorectum, spine and extremities, nervous system, routine

examinations, specialist examinations, etc.

Patient standard database

Testing LIS reported DR, test time, item number in test results, item name in test results, sample code,

sample name, reference value range, quantitative result, item unit, label, result, etc.

Patient standard database

Examination Mass size, distribution of lesions (single or multicenter), tumor location, presence of distant

metastasis, etc.

Image database

Surgical anesthesia Date, operation level, anesthesia level, incision type, anesthesiologist, operation code & name,

operation time, surgeon, preoperative and postoperative diagnosis, preoperative

chemotherapy, radiotherapy, anesthesia method, intraoperative bleeding, blood transfusion,

etc.

Disease-specific database

Treatment information Inpatient diagnosis and treatment plan, type of medical advice, item name of medical advice,

frequency, usage, implementation date of medical advice, invalidation date of medical advice

(for long-term treatment), source of medical advice, treatment means, etc.

Disease-specific database

Postoperative radiotherapy for tumor Measurement of radiotherapy (single and cumulative), start and end time, adverse reactions,

etc.

Disease-specific database

Postoperative chemotherapy for tumor Chemotherapy regimen (i.e., drug type and dosage, route of administration), cycle, start and

end time, adverse reactions, etc.

Disease-specific database

Disease progression and outcome Conditions at admission, chief complaint, summary of medical record, course of disease (not

available), discharge summary, main discharge diagnosis and treatment, etc.

Disease-specific database

Follow-up visit Time, survival status, recurrence, metastasis, adverse reactions, etc. Follow-up visit database

Charges Charges for outpatient service, hospitalization, operation, examination, testing, drugs, etc. Disease-specific database

LIS, Laboratory Information Management System; DR, Digital radiography.

processed, so that the unstructured text data in breast cancer
pathology reports and present medical history are transformed
into analyzable structured data, providing a data basis for the
construction of a subsequent consensus data link mining engine,
an analysis tool for self-defined data link risk factors and a
breast disease knowledge graph. Natural language texts (such as
current medical history, color Doppler ultrasound description
and pathological description) are annotated by professional
physicians for entities and relations until 200 annotations,
and preliminary training is developed, then back-annotation is
performed using the trained model to assist the physicians in

annotation of subsequent samples. At present, 1,000 samples
have been annotated and trained, and completed for model
training and model evaluation using NLP to make profound
adjustment to model parameters. The model ability is evaluated,
with the recognition accuracy of 80–85%, reaching the level of
manual recognition by general physicians. The parsing results of
some electronic medical records are shown in Figure 4.

Image Data Processing
Medical imaging technology has increasingly become an
indispensable means for disease diagnosis, providing quick and
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TABLE 4 | Partial attributes of some standard data elements.

Field name Field type Field length Required or not Range or reference standard

Gender code varchar 10 Y GB/T 2261.1-2003

Marital status code varchar 10 Y GB/T 2261.2-2003

Health insurance category code varchar 10 N CVO2.01.204 Table for Health Insurance Category Code

Medical history varchar 200 N 0-No, 1-Yes

Registration category varchar 20 Y 01-General clinic, 02-Emergency, 03-Specialty clinic, 04-Specialist

clinic, 05-VIP clinic, 06-Disease-specific clinic, 09-Others

Diagnosis basis varchar 20 Y CT05.01.001

Prescription type/name varchar 20 Y 01-General prescription, 02-Pediatric prescription, 03-Emergency

prescription, 04-Narcotic drug prescription (Class I psychotropic

drug prescription), 05-Narcotic drug prescription (Class II

psychotropic drug prescription), 99-Others

Dosing frequency code varchar 20 N CV06.00.228

Examination site code varchar 60 N CV06.00.227

Surgical procedure code varchar 20 Y ICD-9-CM-3

Anesthesia mode code varchar 20 Y CV06.00.103

Surgical position code varchar 10 Y CV06.00.223

ASA physical status classification code varchar 10 Y CV05.10.021

GB/T refers to standard issued by China National Institute of Standardization; CV and CT refer to classification code table in standard issued by China National Institute of Standardization.

FIGURE 2 | Data governance framework. ETL, Extract-Transform-Load.
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FIGURE 3 | Database cleaning results.

accurate support for clinical practice. The imaging information
about a patient’s tumor site and the examination report issued
by the radiologist are saved in the medical image data. In the
process of image data governance, it is necessary to eliminate
unqualified image data. With AI deep neural network machine
learning technique, the machine can automatically distinguish
the unqualified image data and annotate such data (15). The
filtered unqualified images are saved in the temporary cache
database and manually verified later. The qualified image data
are extracted and saved together with basic patient information
and report results in the diagnostic imaging database, and finally
linked with the patient standard database and the disease-specific
database based on the patient ID to connect the whole treatment
process. The image data governance process is shown in Figure 5.

Model-Building - Multi-Modal Breast

Cancer-Specific Knowledge Graph
On the basis of the breast cancer-specific database system,
a multi-modal breast cancer-specific knowledge graph is
constructed to integrate texts, medical images, and even videos,

voices and other rich media information, and to reflect
the hierarchical relation among the entities and relations
related to breast cancer such as pathogenesis, symptom
characteristics, complications, treatment means, medical history,
and medication in the form of node network graph. Such a
centralized and clear structure can help researchers quickly
clarify the relations and differences among numerous and
complex knowledge points (16). AI mining engine is constructed
to identify valuable hidden relations from the huge breast cancer-
specific database and analyze such relations through clustering,
attribute comparison and AI active learning, and the results are
reviewed by experts and incorporated into the knowledge graph
if passing the review. After deep knowledge data mining, the
cross-departmental and even cross-hospital knowledge relations
can be established only for dynamic knowledge graphs based
on multivariate knowledge graph, thus expanding the entity set,
relation set and triple set of knowledge graph. Meanwhile, the
entity is not limited to the single representation only in breast
cancer-related terms. The traditional knowledge graph is out of
use, and the current knowledge graph integrates multi-modal
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FIGURE 4 | Parsing results of some electronic medical records. ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2;

Ki-67, marker of proliferation Ki-67.

knowledge, and displays, represents and utilizes medical data in
various forms to the largest extent for the convenience of learning
and understanding by researchers (17, 18). The partial knowledge
graph constructed is shown in Figure 6.

MAINTENANCE OF DATA SECURITY AND

SHARING OF THE ACHIEVEMENTS IN

DISEASE-SPECIFIC DATABASE

After the breast cancer-specific database system is constructed,
in order to maximize its value in clinical practice and scientific
research, rather than being limited to the inquiry and use in the
Center and the Hospital, the data should be shared to multiple
parties. However, medical data are particularly sensitive, so the

following solutions will be adopted to share the data under the
premise of ensuring the data security and patient privacy.

Due to the high security requirements of medical information
data and the small volume of data in a single institution, federated
learning, or multi-party secure computation can be considered to
achieve joint use of data by multiple parties while ensuring data
privacy and security. Essentially, both approaches limit the data
use to the specified scope, which is effective to avoid data leakage
and abuse. Federated learning is a distributed machine learning
technique which collaborates the data modeling by multiple
parties without data exchange (19). This model ensures the
privacy ofmedical data and allows scientific research.Multi-party
secure computation technically ensures that multiple parties of
data cannot obtain the original data, and realizes collaborative
computation without data leakage, that is, multiple parties run a
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FIGURE 5 | Image data governance process. PACS, Picture Archiving and

Communication Systems.

computing task, machine learning task and data retrieval so as
to obtain the final results based on common data, but data and
intermediate calculation results will not be disclosed to any party
in this process.

DEVELOPING DATA VALUE TO SUPPORT

CLINICAL RESEARCH

Support scientific research. The disease-specific database system
will provide massive datasets for scientific research. Researchers
can precisely filter target data according to their different research
needs. Data analysis tools are also provided to improve data
processing capabilities of theHospital. Researchers can customize
screening modes from the aspects of data sources, data time
periods, data label types, verified knowledge, etc. to efficiently and
accurately retrieve target data from massive data, thus indirectly
improving clinical scientific research capabilities.

Support clinical practice. The diagnosis and treatment data
of a breast cancer patient can be synchronized in real time
through the “Breast Cancer-specific Database System” to form
a data file which includes diagnostic imaging data, clinical
pathology data, basic patient information, medical advice
information, medication, surgery, radiotherapy, chemotherapy,
cost settlement, etc., as well as the associated breast cancer
knowledge database, etc. Combined with the “multi-modal breast
cancer-specific knowledge graph” and based on the database-
wide medical big data, various quantitative or qualitative big
data machine learning algorithms are utilized for data analysis
(20–22) to output the holographic knowledge portrait analysis
reports of the patient’s breast cancer risk profile, disease
trend, clinical protocol, etc., such as the possibility of certain

conclusion and the proportion of certain therapeutic regimen,
providing the physicians with multi-dimensional and rich
reference information, improving the ability of junior physicians
in identification, diagnosis and treatment, and reducing the
probability of missed diagnosis and misdiagnosis. Physicians
can intuitively view, analyze and integrate multi-dimensional
and multi-level holographic knowledge portrait, thus providing
reference knowledge for accurate diagnosis and treatment of
breast cancer based on the full-volume data. With the help of
the auxiliary diagnostic system, physicians can provide more
accurate therapeutic regimen based on the stage of the cancer
and the patient’s physical condition. Meanwhile, the intelligent
auxiliary diagnosis system for breast cancer also provides a whole
course management tool covering the examination, treatment
and follow-up visit, so that the physicians can optimize the
therapeutic regimen as appropriate in a timely manner, improve
the treatment effect, and also provide more valuable data for
the normalization and standardization of breast cancer treatment
while using it (23).

Support teaching. Based on the whole-process therapeutic
regimen in the breast cancer-specific database and the real
physiological data of patients, theoretical learning and practice
are carried out simultaneously for teachers and students. The
most important thing is that the data are real and updated in real
time update, so they are more instructive.

CONCLUSION

A breast cancer-specific database system based on full data
lifecycle, by integrating the data and processes of existing
clinical data systems, accumulates knowledge database,
provides standard access interface and back feeds business
integration to promote the optimization and transformation
of existing disease-specific research processes and form a
closed loop for sustainable development. The disease-specific
database system covers several disease-specific databases
for conveniently saving and managing patient data in a
systematic, standardized and accurate manner, so as to realize
the tracking of breast cancer cases, and effectively develop
teaching, scientific research and evaluation on the effects of
various therapies for breast cancer. A scientific platform is
created for research on breast cancer pathogenesis and etiology
through comprehensive long-term longitudinal tracking and
data comparison/analysis.

Clinical text analysis and knowledge extraction are conducted
to integrate two heterogeneous clinical data sources, that is,
unstructured medical record data and structured clinical data.
New-generation information technologies, such as big data, NLP
text parsing, data mining and knowledge graph, are deeply fused
and applied to build a disease-specific database system based
on full data lifecycle for the purpose of breast cancer disease
characteristic analysis, so as to effectively develop teaching,
scientific research and evaluation on the diagnosis and treatment
of breast cancer and the follow-up visit tracking of cases,
conduct comprehensive long-term longitudinal tracking and
data comparison and analysis, and create a scientific platform
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FIGURE 6 | Partial breast cancer knowledge graph.

for research on cancer pathogenesis and etiology. Big data
and AI technology are utilized to provide continuous help
for single disease of breast cancer before, during and after
surgery, enable the physicians to deeply participate in the
whole path of disease diagnosis and treatment, truly achieve
accurate diagnosis and treatment planning, and break the
data barriers between clinical departments. The governance
and application of image data are emphasized to explore
the image optimization algorithm and image recognition tool
through database feedback and cyclic iteration optimization.
The occurrence and development rules of relevant diseases
are analyzed based on population categories to provide big
data-based analysis and services for better clinical diagnosis
and treatment, health management and clinical evidence-
based medical research. Specialized research and disease-specific
database are the focus of the connotation construction of the
Hospital. The comprehensive hospitals in China can win a
competitive advantage only by strengthening the construction of

disciplines and also better meet the health service requirements
of society and the country.
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Multi_Scale_Tools: A Python Library to
Exploit Multi-Scale Whole Slide
Images
Niccolò Marini 1,2*, Sebastian Otálora1,2, Damian Podareanu3, Mart van Rijthoven4,
Jeroen van der Laak4,5, Francesco Ciompi4, Henning Müller1,6 and Manfredo Atzori 1,7

1Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Sierre, Switzerland, 2Centre
Universitaire d’Informatique, University of Geneva, Carouge, Switzerland, 3SURFsara, Amsterdam, Netherlands, 4Department of
Pathology, Radboud University Medical Center, Nijmegen, Netherlands, 5Center for Medical Image Science and Visualization,
Linkoping University, Linkoping, Sweden, 6Medical Faculty, University of Geneva, Geneva, Switzerland, 7Department of
Neurosciences, University of Padua, Padua, Italy

Algorithms proposed in computational pathology can allow to automatically analyze
digitized tissue samples of histopathological images to help diagnosing diseases.
Tissue samples are scanned at a high-resolution and usually saved as images with
several magnification levels, namely whole slide images (WSIs). Convolutional neural
networks (CNNs) represent the state-of-the-art computer vision methods targeting the
analysis of histopathology images, aiming for detection, classification and segmentation.
However, the development of CNNs that work with multi-scale images such asWSIs is still
an open challenge. The image characteristics and the CNN properties impose architecture
designs that are not trivial. Therefore, single scale CNN architectures are still often used.
This paper presents Multi_Scale_Tools, a library aiming to facilitate exploiting the multi-
scale structure of WSIs. Multi_Scale_Tools currently include four components: a pre-
processing component, a scale detector, a multi-scale CNN for classification and a multi-
scale CNN for segmentation of the images. The pre-processing component includes
methods to extract patches at several magnification levels. The scale detector allows to
identify the magnification level of images that do not contain this information, such as
images from the scientific literature. The multi-scale CNNs are trained combining features
and predictions that originate from different magnification levels. The components are
developed using private datasets, including colon and breast cancer tissue samples. They
are tested on private and public external data sources, such as The Cancer Genome Atlas
(TCGA). The results of the library demonstrate its effectiveness and applicability. The scale
detector accurately predicts multiple levels of image magnification and generalizes well to
independent external data. The multi-scale CNNs outperform the single-magnification
CNN for both classification and segmentation tasks. The code is developed in Python and
it will be made publicly available upon publication. It aims to be easy to use and easy to be
improved with additional functions.

Keywords: multi-scale approaches, computational pathology, scale detection, classification, segmentation, deep
learning
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1 INTRODUCTION

The implicit multi-scale structure of digitized histopathological
images represents an open challenge in computational pathology.
Training machine learning algorithms that can simultaneously
learn both microscopic and macroscopic tissue structures comes
with technical and computational challenges that are not yet well
studied.

As of 2021, histopathology represents the gold standard to
diagnose many diseases, including cancer (Aeffner et al., 2017;
Rorke, 1997). Histopathology images include several tissue
structures, ranging from microscopic entities (such as single
cell nuclei) to macroscopic components (such as tumor bulks).
Whole Slide Images (WSIs) are digitized histopathology images
that are scanned at high-resolution and are stored in a multi-scale
(pyramidal) format. WSI resolution is related to the spatial
resolution and the optical resolution used to scan the images
(Wu et al., 2010). The spatial resolution is the minimum distance
that the scanner can capture so that two objects are still
distinguished, measured in terms of μm per pixel (Sellaro
et al., 2013). The optical resolution (or magnification) is the
magnification factor (x) of the lens within the scanner (Sellaro
et al., 2013). Currently, the de facto standard spatial resolutions
adopted to scan tissue samples (for example in The Cancer
Genome Atlas) are usually 0.23–0.25 μm (magnification ×40)
or 0.46–0.50 μm (magnification ×20). Tissue samples such as
surgical resection samples (or specimens) are often
approximately 20 mm × 15 mm in size1, while samples such as
biopsies are approximatively 2 mm × 6 mm in size. The size of the
samples combined with the spatial resolution of the scanners
leads to gigapixel images: image size can reach 200 000 × 200 000
pixels, meaning gigabytes of pixel data. The multi-scale WSI
format (Figure 1) includes several magnification levels (with a
different spatial resolution) of the sample, stored in a pyramid,
usually varying between ×1.25 and 40x. The baseline image of the
pyramid is the one at the highest resolution. The multi-scale
structure of the images allows pathologists to analyze the image
from the lowest to the highest magnification level. Pathologists
analyze the images by first identifying a few regions of interest
and zooming afterwards through them to visualize different
details of the tissue (Schmitz et al., 2019). Each magnification
level includes different types of information (Molin et al., 2016),
since tissue structures appear in different ways according to their
magnification level. Therefore, it is essential to detect an
abnormality and detect it in a specific range of levels. The
characteristics of microscopes and scanners often lead to a
scale-dependent analysis. For example, at middle magnification
levels (such as 5–10x) it is possible to distinguish between glands,
while at the highest ones (such as 20–40x) it is possible to better
resolve cells. Figure 2 includes examples of tissues scanned at
different magnification levels.

Computational pathology is the computational analysis of digital
images obtained through scanning slides of cells and tissues (van der
Laak et al., 2021). Currently, deep Convolutional Neural Networks

(CNNs) are the state-of-the-art machine learning algorithms in
computational pathology tasks, in particular for classification (del
Toro et al., 2017; Arvaniti and Claassen, 2018; Coudray et al., 2018;
Komura and Ishikawa, 2018; Ren et al., 2018; Campanella et al.,
2019; Roy et al., 2019; Iizuka et al., 2020) and segmentation
(Ronneberger et al., 2015; Paramanandam et al., 2016; Naylor
et al., 2017; Naylor et al., 2018; Wang et al., 2019) of images.
Their success relies on automatically learning the relevant

FIGURE 1 | An example of WSI format including multiple magnification
levels. The size of each image of the pyramid is reported under the
magnification level in terms of pixels.

FIGURE 2 | An example of tissue represented at multiple magnification
level (5x, 10x, 20x, 40x). The tissues come from colon, prostate and lung
cancer images.

1http://dicom.nema.org/Dicom/DICOMWSI/. Retrieved 13th of November, 2020
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features from the input data. However, usually, CNNs cannot
easily handle the multi-scale structure of the images since they
are not scale-equivariant by design (Marcos et al., 2018; Zhu
et al., 2019) and because of WSI size. The equivariance property
of a transformation means that when a transformation is
applied, it is possible to predict how the representation will
change (Lenc and Vedaldi, 2015; Tensmeyer and Martinez,
2016). This is not normally true for CNNs, because if a scale
transformation is applied to the input data, it is usually not
possible to predict its effect on the output of the CNN. The
knowledge about the scale is essential for the model to identify
diseases, since the same tissue structures, represented at
different scales, include different information (Janowczyk and
Madabhushi, 2016). CNNs can identify abnormalities in tissues,
but the information and the features related to the abnormalities
are not the same for each scale representation (Jimenez-del Toro
et al., 2017). Therefore, the proper scale must be selected to train
CNNs (Gecer et al., 2018; Otálora et al., 2018b). Unfortunately,
scale information is not always available into images. This is the
case, for instance, of pictures taken with standard cameras or
processed in compression and resolution, such as images
downloaded from the web or images included in scientific
articles. Furthermore, modern hardware (Graphic Processing
Units, GPUs) cannot easily handle WSIs, due to their large pixel
size and the limited video random access memory space that has
to temporally store it. The combination of different
magnification levels leads to larger images, making it even
harder to analyze the images.

The characteristics of the WSIs can lead to modification of
CNNs in terms of architecture, both for classification (Jimenez-
del Toro et al., 2017; Lai and Deng, 2017; Gecer et al., 2018; Yang
et al., 2019; Hashimoto et al., 2020) and segmentation
(Ronneberger et al., 2015; Li et al., 2017; Salvi and Molinari,
2018; Schmitz et al., 2019; van Rijthoven et al., 2020), such as
multi-brach networks (Yang et al., 2019; Hashimoto et al., 2020;
Jain and Massoud, 2020), multiple receptive fields convolutional
neural networks (Han et al., 2017; Lai and Deng, 2017; Ullah,
2017; Li et al., 2019; Zhang et al., 2020) and U-Net based networks
(Bozkurt et al., 2018; van Rijthoven et al., 2020). The modification
of architectures to include multiple scales is prevalent in medical
imaging, since it can allow to identify examples of architecture’s
modifications also from other modalities, such as MRI imaging
(Zeng et al., 2021a) and Gold immunochromatographic strip
(GIGS) images (Zeng et al., 2019; Zeng et al., 2021b).

The code library (called Multi_Scale_Tools) described in this
paper contributes to alleviate the mentioned problems by
presenting tools that allow handling and exploiting
histopathological images’ multi-scale structure end-to-end
CNN architectures. The library includes pre-processing tools
to extract multi-scale patches, a scale detector, a component to
train a multi-scale CNN classifier and a component to train a
multi-scale CNN for segmentation. The tools are platform-
independent and developed in Python. The code is publicly
available at https://github.com/sara-nl/multi-scale-tools.
Multi_Scale_Tools is aimed at being easy to use and easy to
be improved with additional functions.

2 METHODS

The library includes four components: a pre-processing tool, a
scale detector tool, a component to train a multi-scale CNN
classifier and a component to train a multi-scale segmentation
CNN. Each tool is described in a dedicated subsection as follows:

• Pre-processing component, Sub-section 2.1
• Scale detector, Sub-section 2.2
• Multi-scale CNN for classification, Sub-section 2.3
• Multi-scale CNN for segmentation, Sub-section 2.4

2.1 Pre-Processing Component
The pre-processing component allows researchers to
generate multi-scale input data. The component includes two
parametric and scalable methods to extract patches from the
different magnification levels of a WSI: the grid extraction
and the multi − center extraction method. Both methods
need a WSI and the corresponding tissue mask as input,
and they both produce images and metadata as output. The
grid extraction methods (Patch_Extractor_Dense_Grid.py,
Patch_Extractor_Dense_Grid_Strong_Labels.py), allow to
extract patches from one magnification level (Figure 3). The
tissue mask is split in a grid of patches according to the following
parameters: magnification level, mask magnification, patch size, and
stride between the patches. The output of the method is a set of
patches selected according to the parameters. The multi − center
extraction methods (Patch_Extractor_Dense_Centroids.py,
Patch_Extractor_Dense_Centroids_Strong_Labels.py) allow to
extract patches from multiple magnification levels. According to
the user’s highest magnification level, the tissue mask is split into a
grid (as done in the functions previously described). The patches
within this grid are called centroids. Each centroid is used to generate
the coordinates for a patch at a lower magnification level, so that the
latter includes the centroid (the patch at the highest magnification
level) in its central section. Themethod’s output is a set of tuples, each
one including patches at different magnification levels (Figure 4).
Compared with other patch extraction methods, such as the one
presented in (Lu et al., 2021), this pre-processing component has two
main characteristics. The first one is that the component extracts
patches from multiple magnification levels of the WSIs, pairing the
patches coming from the same region of the image. The second one is
that the component allows extracting patches from an arbitrary
magnification level, despite the magnification level not being
included in the WSI. Usually, patch extractor methods extract
patches only from the magnification levels stored in the WSI
format (Ma), such as 40x, 20x, 10x, 5x, 2.5x and 1.25x. This
process is driven by the input parameters that include both the
patch size (Pw) and the magnification wanted (Mw). The method
extracts a patch of size Pa from amagnification stored in theWSI and
afterwards the patch is resized to Pw.

Pw : Mw � Pa : Ma. (1)

In both methods, only patches from tissue regions are
extracted and saved using tissue masks, distinguishing between
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patches from tissue regions and patches from the background.
The methods are developed to work with masks including tissue
and, in case they are available, with pixel-wise annotated masks.
In the case of tissue masks, the tissue masks are generated using
HistoQC tools (Janowczyk et al., 2019). The HistoQC
configuration adopted is reported in the repository. In the case
of pixel-wise annotations, the masks must be firstly converted to a
RGB image.

Besides the patches, the methods save also metadata file (csv
files). The metadata includes information regarding the
magnification level where the patches are extracted and the x
and y coordinates of the patches’ upper left corner. The scripts are
developed to be multi-thread, in order to exploit hardware
architectures with multiple cores. In the Supplementary
Materials section, the parameters for the scripts are described
in more detail.

2.2 Scale Detector
The scale detector tool is a CNN trained to estimate the
magnification level of a given patch or image. This task has been
explored in the past Otálora et al. (2018a), Otálora et al. (2018b) in
the prostate and breast tissue types. Similar approaches have been
recently extended to different organs in the TCGA repository Zaveri
et al. (2020). The tool involves the scripts related to the training of
the models (the input data generation, the training and testing
modules) and a module to use the detector as a standalone

component that performs the magnification inference for new
images. The models are trained in a fully-supervised fashion.
Therefore, the scripts to train them need a set of patches and
the corresponding magnification level as input, which are provided
into csv files, including the patch path and the corresponding
magnification levels. Two scripts are developed to generate the
input files, assuming that the patches are previously generated with
the pre-processing components, described in the previous section.
The first script is made to split the WSIs into partitions
(Create_csv_from_partitions.py), which generates three files (the
input data for training, validation and testing partitions) starting
from three files (previously prepared by the user) including the
names of the WSIs. The second script (Create_csv.py) generates an
input data csv starting from a list of files. The model is trained
(Train_regressor.py) and tested (Test_regressor.py) with several
magnification levels that the user can choose (in this paper, 5x,
8x, 10x, 15x, 20x, 30x, 40x were used). Training the model with
patches from a discrete and small set of scales can lead to regressors
that are precise to estimate the magnifications close to input scales,
and less precise when scales are far from them. Therefore, a scale
augmentation technique was applied to patches and labels during
the training (in addition tomore standard augmentation techniques
adopted such as rotation, flipping and color augmentation). In
order to perform scale augmentation, the image is randomly
cropped of a factor and resized to the original patch size. The
factor is applied to perturbate also the magnification level. The scale

FIGURE 3 | An example of the grid extraction method. The patches in green are selected since they contain enough tissue.
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detector component includes also a module to import and use the
model in the code (regression.py). The component works both as a
standalone module (with the required parameters) but it is also
possible to load the functions from the python module. The
Supplementary Materials section includes a more thorough
description of the parameters for the scripts.

2.3 Multi-Scale CNN for Classification
The Multi-scale CNN component includes scripts to train a multi-
scale CNN for classification, in a fully supervised fashion. Two
different multi-scale CNN architectures and two training variants
are proposed and compared with a single-scale CNN. The multi-scale
CNN architectures are composed of multiple branches (one for each
magnification level) trained with patches that come from several
magnifications. Each branch is fed with patches from a specific
magnification level. The first architecture of multi-scale CNN
combines each CNN branch features (the output of the
convolutional layers). The scripts developed to train and test the
models are Fully_supervised_training_combine_features_multi.py
and Fully_supervised_testing_combine_features_multi.py The
second architecture of multi-scale CNN combines the classifier

predictions (the output of each CNN’s fully-connected layers). The
scripts developed to train and test the models are
Fully_supervised_training_combine_probs_multi.py and
Fully_supervised_testing_combine_probs_multi.py Both
architectures are presented in two variants, optimizing respectively
one andmultiple loss functions. In the first variant (one loss function),
the input is a set of tuples of patches from several magnification levels
(one patch for each level), generated using the multi − center
extraction tool (presented in Section 2.1). The input tuples are
generated with a script (Generate_csv_multicenter.py) that exploits
the coordinates of the patches (stored in the metadata) to generate the
tuples (stored in a csv file). The tuple label corresponds to the class of
the centroid patch (the patch from the highest level within the tuple).
Therefore, the model outputs only the class of the tuple. Only one loss
function is minimized in this variant, i.e. the categorical cross-entropy
between the CNN output and the patch ground truth. Figure 5
summarizes theCNNarchitecture. In the second variant (multiple loss
functions), the input is a set of tuples of patches from several
magnification levels (one patch for each level), previously
generated using the grid extraction method (presented in Section
2.1). The input tuples are generated with a script

FIGURE 4 | An example of themulti − center extraction method. The grid is made according to the highest magnification level selected by the used. The patch is the
centroid for patches at lower magnification levels.
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(Generate_csv_upper.py) that exploits the coordinates of the patches
(stored in themetadata) to generate the tuples (stored in a csvfile). The
tuple labels correspond to the classes of the patches. Themodel hasn+
1 outputs: the class for each of the nmagnification levels and thewhole
tuple class. In this variant, n + 1 loss functions are minimized (n
representing the number of magnification levels considered). The n
loss functions are the categorical cross-entropy between the output for
each of the scale branches and the tuple labels. The other loss term is
the categorical cross-entropy between the output of the network (after
the combination of the features or the predictions of the single
branches) and the tuple labels. Figure 6 summarizes the CNN
architecture. The Supplementary Materials section includes a more
thorough description of the parameters.

2.4 Multi-Scale CNN for Segmentation
This component includes HookNet (van Rijthoven et al., 2020), a
multi-scale CNN for semantic segmentation. HookNet combines
information from low-resolution patches (large field of view) and
high-resolution patches (small field of view) to semantically segment
the image, using multiple branches. The low-resolution patches
come from lower magnification levels and include context
information, while the high-resolution patches come from higher
magnification levels and includemore fine-grained information. The
network is composed of two branches of encoder-decoder models,
the context branch (fed with low-resolution patches) and the target

branch (fed with high-resolution patches). The two branches are fed
with concentric multi-field-view multi-resolution (MFMR) patches
(284 × 284 pixels in size). Although they have the same architecture,
the branches do not share their weights (an encoder-decoder CNN
based on U-Net). Hooknet is thoroughly described in a dedicated
article (van Rijthoven et al., 2020).

2.5 Datasets
The following datasets are used to develop the Multi_Scale_Tools
components:

• Colon dataset, Sub-section 2.5.1, used in the Pre-processing
component, the Scale detector and the Multi-scale CNN for
classification

• Breast dataset, Sub-section 2.5.2, used in the Multi-scale
CNN for segmentation

• Prostate dataset, Sub-section 2.5.3, used in the Scale detector
• Lung dataset, Sub-section 2.5.4, used in the Scale detector
and the Multi-scale CNN for segmentation

2.5.1 Colon Dataset
The colon dataset is a subset of the ExaMode colon dataset. This
subset includes 148 WSIs (provided by the Department of
Pathology of Cannizaro Hospital, Catania, Italy), stained with

FIGURE 5 | The first multi-scale CNN architecture, in which features are combined from different scale branches, optimizing only one loss function (A) and
optimizing n + 1 loss function (B).
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Hematoxylin and Eosin (H&E). The images are digitized with
an Aperio scanner: some of the images are scanned with a
maximum spatial resolution of 0.50 μm per pixel (20x), while
the others are scanned with a spatial resolution of 0.25 μm per
pixel (40x). The images are pixel-wise annotated by a
pathologist. The annotations include five classes: cancer,
high-grade dysplasia, low-grade dysplasia, hyperplastic
polyp and non-informative tissue.

2.5.2 Breast Dataset
The breast dataset (provided by Department of Pathology of
Radboud University Medical Center, Nijmegen, Netherlands) is a
private dataset including 86 WSIs, stained with H&E. The images
are digitized with a 3DHistech scanner, with a spatial resolution
of 0.25 μm per pixel (40x). The images are pixel-wise annotated
by a pathologist. 6,279 regions are annotated, with the following
classes: ductal carcinoma in-situ (DCIS), invasive ductal
carcinoma (IDC), invasive lobular carcinoma (ILC) benign
epithelium (BE), other, and fat.

2.5.3 Prostate Dataset
The prostate dataset is a subset of the publicly available database
offered by The Cancer Genome Atlas (TCGA-PRAD), that
includes 20 WSIs, stained with H&E. The images come from
several sources and are digitized with different scanners, with a

spatial resolution of 0.25 μm per pixel (40x). The images come
without pixel-wise annotations.

2.5.4 Lung Dataset
The Lung dataset is a subset of the public available database
offered by The Cancer Genome Atlas Lung Squamous Cell
carcinoma dataset (TCGA-LUSC), including 27 WSIs stained
with H&E. The images come from several sources and are
digitized with different scanners, with a spatial resolution of
0.25 μm per pixel (40x). Initially, the images come without
pixel-wise annotation from the repository, but a medical
expert from Radboudc Hospital pixel-wise annotated them
with four classes: tertiary lymphoid structures (TLS), germinal
centers (GC), tumor, and other.

3 EXPERIMENTS AND RESULTS

The Section presents the assessment of the components of the
library Multi_Scale_Tools in dedicated subsections as follows:

• Pre-processing component assessment, Sub-section 3.1
• Scale detector assessment, Sub-section 3.2
• Multi-scale CNN for classification assessment, Sub-
section 3.3

FIGURE 6 | The second multi-scale CNN architecture, in which predictions are combined from different scale branches, optimizing only one loss function (A) and
optimizing n + 1 loss functions (B).
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• Multi-scale CNN for segmentation, Sub-section 3.4
• Library organization, Sub-section 3.5

3.1 Pre-Processing Tool Assessment
The pre-processing component allows to extract a large amount
of patches from multiple magnification levels, guaranteeing
scalable performance. The patch extractor components (grid
and multi-center methods) are tested on WSIs scanned with
Aperio (.svs), 3DStech (.mrxs) and Hamamatsu (.ndpi)
scanners, on data coming from different tissues (colon,
prostate and lung) and datasets. Table 1 includes the
number of patches extracted. The upper part of the table
includes the number of patches extracted with the grid
extraction method, considering four different magnification
levels (5x, 10x, 20x, 40x). The lower part of the Table includes
the number of patches extracted with the multi-center
extraction method, considering two possible combinations
of magnification levels (5x/10x, 5x/10x/20x). In both cases,
patches are extracted with a patch size of 224 × 224 pixels
without any stride. Methods performance are evaluated in
terms of scalability, since the methods are designed to work
on multi-core hardwares. Table 2 includes the time results
obtained with the grid method (upper part) and with the
multi-center method (lower part). The evaluation is made
considering the amount of time needed to extract the
patches from the colon dataset, using several threads. The
results show that both the methods benefit from multi-core
hardwares, reducing the time needed to pre-process data.

3.2 Scale Detector Assessment
The scale detector shows high performance in estimating the
magnification level of patches that come from different tissues.
The detector is trained with patches from the colon dataset and it is
tested with patches from three different tissues. The performance
of themodels is assessed with the coefficient of determination (R2),
the Mean Square Error (MSE), the Cohen’s κ-score (McHugh,
2012) and the balanced accuracy. While the experimental setup
and the metrics descriptions are presented in detail the
supplementary material, Table 3 summarizes the results. The
higher performance is reached on the colon test partition, but
the scale detector shows high performance also on the other tissues.
The scale detector makes almost perfect scale estimations in the
colon dataset (data come from the same medical source and
include the same tissue type), in both the regression and the
classification metrics. The scale detector makes reasonably good
scale estimations also on the prostate data, in both the regression
and the classification metrics, and in lung dataset, where the
performance is the lowest though. The fact that the regressor
shows exceptionally high performance in colon data and good
performance in other tissues means that it has learnt to distinguish
the colon morphology represented at different magnification level
very well and that the learnt knowledge can generalize well to other
tissues too. Even though tissues from different organs share similar
structures (glands, stroma, etc.), themorphology of the structures is
different in the organs, such as prostate and colon glands. Training
the regressor with patches from several organs may allow to close
this gap, guaranteeing extremely high performance for different
types of tissue.

TABLE 1 | Number of patches extracted with the grid extraction method (above) and with the multi-center method (below), at different magnification level.

Grid

Dataset/Magnification 5x 10x 20x 40x Total
Colon dataset (148 WSIs) 15,514 67,592 279,964 1,127,190 1,490,260
Prostate dataset (20 WSIs) 11,468 46,676 187,254 743,583 988,981
Lung dataset (27 WSIs) 22,124 90,307 365,398 886,298 1,364,127

Multicenter

Dataset/Magnification 5x/10x 5x/10x/20x Total
Colon dataset 135,184 839,892 975,076
Prostate dataset 93,352 561,762 655,114
Lung dataset 180,614 1,096,194 1,276,808

TABLE 2 | Time needed to extract the patches (in seconds), varying the amount of threads, using the grid extraction method (above) and using the multi − center method
(below). The method is evaluated on colon dataset (148 WSIs). The number of patches extracted from each method is reported in Table 1.

Magnification/N_threads 10 20 30 40 50

grid extraction
5x 408 ± 3 317 ± 7 285 ± 5 255s ± 5 238 ± 10
10x 553 ± 5 429 ± 6 389 ± 5 384 ± 8 371 ± 8
20x 1,295 ± 100 969 ± 113 876 ± 69 872 ± 41 869 ± 15

multi − center extraction
5x/10x 1,662 ± 30 1,180 ± 119 1,071 ± 50 1,039 ± 18 1,022 ± 14
5x/10x/20x 6,604 ± 104 5,745 ± 45 5,283 ± 161 4,814 ± 137 4,549 ± 82
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3.3 Multi-Scale CNN for Classification
Assessment
The multi-scale CNNs show higher performance in the fully
supervised classification compared to the single-scale CNNs.
Several configurations of the multi-scale CNN architectures are
evaluated. They involve variations in optimization strategy (one or
multiple loss functions), in the magnification levels (combinations of
5x, 10x, 20x) and in how information from the scales is combined
(combining the single-scale predictions or the single-scale features).
Table 4 summarizes the results obtained. The CNNs are trained and
tested with the colon dataset, that come with pixel-wise annotations
made by a pathologist. The performance of themodels is assessedwith
the Cohen’s κ-score and the balanced accuracy. More detailed
descriptions of the experimental setup and the metrics adopted are
presented in the Supplementarymaterial. In the presented experiment,
the best multi-scale CNN architecture is the one that combines
features from 5/10x magnification levels and is trained optimizing
n + 1 loss functions. It outperforms the best single-scale CNN (trained
with patches acquired at 5x) in terms of balanced accuracy, while the
κ-score of the two architectures is comparable. The characteristics of
the classes involved can explain the fact that CNNs trained combining
patches from 5/10x reach the highest results. These classes show
morphologies including several alterations of the gland structure.
Glands can be usually identified at low magnification levels, such
as 5/10x, while at 20x the cells are visible. For this reason, the CNNs
show high performance with patches frommagnification 5/10x, while

including patches from 20x decreases the performance. The fact that
the discriminant characteristics are identified in a range of scales may
explain why the combination of the features shows higher
performance than the combination of the predictions.

3.4 Multi-Scale CNN for Segmentation
Assessment
The multi-scale CNN (HookNet) shows higher tissue segmentation
performance than single-scale CNNs (U-Net). The model is trained
and tested with breast and lung datasets, comparing it with models
trained with images from a single magnification level. The
performance of the models is assessed with the F1 score and the
macro F1 score. More detailed descriptions of the experimental setup
and the metrics adopted are presented in the Supplementary
Material. Table 5 and Table 6 summarize the results obtained
respectively on the breast dataset and on lung dataset. In both the
tissues, HookNet shows an higher overall performance, while some of
the single scale U-Nets have better performance for some
segmentation tasks (such as breast DCIS or lung TLS). This result
can be interpreted as a consequence of the characteristics of the task,
therefore the user should choose the proper magnification levels to
combine, depending of the problem.

3.5 Library Organization
The source code for the library is available on GIT2, while the HookNet
code is available here3. The library is available can be deployed asPython
package directly from the repository or as Docker container that can be
downloaded from4 (themultiscale folder). Interaction with the library is
done through a model class and an Inference class5. The model
instantion depends on the choice of algorithms. For a more detailed
explanation about the hyperparameters and other options please make
sure to browse the Readme file6. An example can be found here7. The
Python libraries used to develop Multi_Scale_Tools are reported in
Supplementary Materials.

TABLE 3 | Performance of the scale detector, evaluated on three different tissue dataset. The scale detector is evaluated in: coefficient of determination (R2), Mean squared
error (MSE), balanced accuracy, Cohen’s κ-score.

Dataset/Metric R2 MSE Balanced accuracy κ-score

Colon dataset 0.9997 ± 0.0001 0.0250 ± 0.0155 0.9859 ± 0.0086 0.9991 ± 0.0004
Prostate dataset 0.8013 ± 0.0798 19.34 ± 7.78 0.9094 ± 0.0268 0.8515 ± 0.0589
Lung dataset 0.6682 ± 0.1549 32.13 ± 15.01 0.7973 ± 0.0458 0.8743 ± 0.0571

TABLE 4 | Performance of the multi-scale CNNs architectures, compared with
CNNs trained with patches from only one magnification level, evaluated in
κ-score and balanced accuracy. Both the multi-scale architectures are presented
(combine features and combine predictions from multi-scale branches) and both
the training variants (one loss function and n + 1 losses). The values marked in
bold highlight the method that reaches the highest performance, respect to
the metric.

Magnification/metric κ-score Balanced-accuracy

Single scale CNNs
5x 0.7127 ± 0.0988 0.6558 ± 0.0903
10x 0.6818 ± 0.0940 0.6200 ± 0.0780
20x 0.6005 ± 0.1106 0.5744 ± 0.0804

Multi-scale CNNs (combine features)
5x/10x (One loss) 0.6955 ± 0.1013 0.6529 ± 0.0859
5x/10x (n + 1 losses) 0.7167 ± 0.1060 0.6813 ± 0.0942
5x/10x/20x (One loss) 0.6630 ± 0.1090 0.6508 ± 0.1089
5x/10x/20x (n + 1 losses) 0.6871 ± 0.1110 0.6364 ± 0.1046

Multi-scale CNNs (combine probabilities)
5x/10x (One loss) 0.6901 ± 0.1136 0.6582 ± 0.0973
5x/10x (n + 1 losses) 0.7026 ± 0.0988 0.6626 ± 0.0897
5x/10x/20x (One loss) 0.6678 ± 0.0973 0.6239 ± 0.0860
5x/10x/20x (n + 1 losses) 0.6784 ± 0.0995 0.6355 ± 0.0835

2https://github.com/sara-nl/multi-scale-tools. Retrieved 11th of January, 2021
3https://github.com/DIAGNijmegen/pathology-hooknet. Retrieved 19th of
June, 2021
4https://surfdrive.surf.nl/files/index.php/s/PBBnjwzwMragAGd. Retrieved 11th of
January, 2021
5https://github.com/computationalpathologygroup/hooknet/blob/
fcba7824ed982f663789f0c617a4ed65bedebb85/source/inference.py#L20. Retrieved
11th of January, 2021
6https://github.com/sara-nl/multi-scale-tools/blob/master/README.md.
Retrieved 11th of January, 2021
7https://github.com/DIAGNijmegen/pathology-hooknet/blob/master/hooknet/
apply.py. Retrieved 19th of June, 2021
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4 DISCUSSION AND CONCLUSION

Multi_Scale_Tools library aims at facilitating the exploitation of
multi-scale structure in WSIs with code that is easy to use and
easy to be improved with additional functions. The library currently
includes four components. The components are a pre-processing tool
to extract multi-scale patches, a scale detector, two multi-scale CNNs
for classification and a multi-scale CNN for segmentation. The pre-
processing component includes two methods to extract patches from
several magnification levels. The methods are designed to be scalable
on multi-core hardware. The scale detector component includes a
CNN allowing to regress themagnification level of a patch. The CNN
obtains high performance in patches that come from the colon (the
tissue used to train it) and it reaches good performance on other
tissues such as prostate and lung too. Two multi-scale CNN
architectures are developed for fully-supervised classification. The
first one combines features from multi-scale branches, while the
second one combines predictions frommulti-scale branches. The first
architecture obtains better performance and outperforms the model
trainedwith patches fromonly onemagnification level. TheHookNet
architecture for multi-scale segmentation is also included into the
library, fostering its usage andmaking the librarymore complete. The
tests show that HookNet outperforms single scale U-Net in the
considered tasks. The presented library allows to exploit the multi-
scale structure of WSIs efficiently. In any case, the user remains a
fundamental part of the system for several components, such as

identifying the scale that can be more relevant for a specific problem.
The comparison between the single-scale CNNs and the multi-scale
CNN is an example of this. The CNN is trained to classify between
cancer, dysplasia (both high-grade and low-grade), hyperplastic polyp
and non-informative tissue. In the classification task, the highest
performance is reached using patches of magnification 5x and 10x,
while patches from 20x lead to lower classification performance. This
can likely be related to the fact that the main feature related to the
considered classes is the structure of the glands, therefore high
magnifications (e.g. 20x) limitedly introduce helpful information
into the models. The importance of the user to select the proper
magnification levels is highlighted even more in the segmentation
results. Considering low magnifications, the models show good
performance in ductal carcinoma in-situ and invasive ductal
carcinoma segmentation since these tasks need context about
the duct structures in the breast use case. Considering higher
magnifications, the models perform well in invasive lobular
carcinoma and benign tissue segmentation, where the details
are more important. The methods identified to pair images from
several magnification levels can pave the way to multi-modal
combination of images too. The combination may increase the
information included in the single modality, increasing the
performance of the CNNs. Some possible applications can be
the combination of WSIs stained with different reagents, such
H&E and immunohistochemical (IHC) stainings, the
application in Raman spectroscopy data, combining
information about tissue morphologies and architectures with
protein biomarkers, and the combination of patches from
different focal planes.
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The study focuses on the extraction of cardiac sound components using a multi-channel

micro-electromechanical system (MEMS) microphone-based phonocardiography

system. The proposed multi-channel phonocardiography system classifies the cardiac

sound components using artificial neural networks (ANNs) and synaptic weights that are

calculated using the inverse delayed (ID) function model of the neuron. The proposed

ANN model was simulated in MATLABR and implemented in a field-programmable gate

array (FPGA). The proposed system examined both abnormal and normal samples

collected from 30 patients. Experimental results revealed a good sensitivity of 99.1%

and an accuracy of 0.9.

Keywords: phonocardiography, cardiac sounds, inverse delayed function model of neuron, artificial neural

networks, field programmable gate array

INTRODUCTION

Heart diseases are one of the major causes of human death worldwide. In the last 15 years, heart
disease and stroke have been the leading killers and causes of death on a global scale (1). Heart
failure has no cure, but early detection of its related symptoms helps in properly diagnosing heart
diseases and, thus, reducing the death rate. In the modern technological revolution, many heart
diagnosis methods like phonocardiography (PCG), ECG, echocardiogram (Echo), cardiac MRI
(CMRI), and CT heart scan are available to detect early heart failure. Each method has its own
advantages and disadvantages; for example, ECGs are widely used in diagnosis but have trouble
detecting the structural abnormalities of the heart valves, which can be detected through heart
murmurs. Furthermore, echo, CMRI, and CT scans provide accurate results but need a lot of
pre-evaluation, are high cost, and are not affordable for many people.

Phonocardiography is one of the non-invasive methods for the detection of major heart sounds
and murmurs (2). The stethoscope was the primary PCG instrument that was used to detect
cardiac auscultation; however, it had limitations in terms of clinical expertise for the analysis of
the low-frequency amplitudes formed during heart failures, such as systolic and diastolic murmurs
(3, 4). A great deal of research has been conducted in the field of heart sound segmentation
and classification in order to detect normal and abnormal components. Many signal processing
algorithms are proposed to extract heart sound components for detecting pathological events
(5–7). Artificial neural networks (ANNs) are widely used in cardiology (8–10). A neural network

121

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/journals/medical-technology#editorial-board
https://www.frontiersin.org/journals/medical-technology#editorial-board
https://www.frontiersin.org/journals/medical-technology#editorial-board
https://www.frontiersin.org/journals/medical-technology#editorial-board
https://doi.org/10.3389/fmedt.2021.666650
http://crossmark.crossref.org/dialog/?doi=10.3389/fmedt.2021.666650&domain=pdf&date_stamp=2021-08-12
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:madhubabu.a@research.iiit.ac.in
https://doi.org/10.3389/fmedt.2021.666650
https://www.frontiersin.org/articles/10.3389/fmedt.2021.666650/full


Anumukonda et al. ID Neuron Model for Cardiac Sound Components

model is a well-known method for separating the normal and
abnormal pathological events in heart sounds (11–14). A well-
trained neural network model can be used to detect the complex
relationship between abnormal and normal cardiac sounds.
Deep neural networks extract high-level features from low-level
features. The methods proposed (15–17) to play significant roles
in solving the non-linear functions in medical applications.

Cardiac auscultations are non-linear in nature and
are analyzed using ANNs, which are more useful for the
approximation of non-linear functions. The neural networks
models are mainly classified by their architecture, activation
function, and learning algorithm. Instead of directly emulating
biological behavior, the traditional neuron network models
translate this behavior in terms of time-averaging techniques
(9, 18, 19). The inverse delayed (ID) function model proposed
by Nakajima (20–22) is a universal neuron model that includes
characteristics of both the Bonhoeffer Van der Pol model (19) and
the Hopfield model (23). In addition, the ID function model uses
the inverse function of the activation function rather than the
traditional activation function and features a finite conversion
time from the internal state of the element to the output.

The energy function of the ID function model with symmetric
synapse weights is similar to that of the Hopfield model. Through
selective destabilization, the negative resistance of the ID model
can free the neural network state from such local minima (20).
Unlike the chaotic neural network, the ID model does not
need to transform the output vector, record the output vector
during calculation, or control the dynamics by changing the
network parameters (22). We only need to wait for it to enter
an inactive state in order to find a solution using the ID neural
network and a simple method of implementation. The ID model
is capable of resolving combinatorial optimization problems
(21). The negative resistance of the ID model can destabilize
the stable equilibrium points of a neural network, reducing the
possibility of unknown values in suboptimal synaptic weight
solutions obtained using an ANN based on a traditional neuron
model. The ANN implementation using the ID neuron model
needs numerous parallel computations to solve the real-time
complex data for the extraction of components. The advances in
field-programmable gate arrays (FPGAs) handle these real-time
complex computations effectively and improve the performance
of the system.

The current study concentrated on the non-invasive
detection of cardiac component abnormalities in raw samples
collected with micro-electromechanical system (MEMS)-based
microphones. Wavelet decomposition algorithms were used to
generate the featured set. The ID neuron function was used to
create the ANN model, which extracted the cardiac components
from the feature set obtained. The ID function model of the
neuron was used to optimize the weights of the synapses between
the neurons. The entire algorithm was implemented on a Xilinx
SoC FPGA XC7Z020CLG400 (Xilinx, USA). The proposed
system has been validated using the sensitivity, specificity, and
accuracy of the cardiac components, and justified using receiver
operating characteristic curve analysis. The study is organized
as follows: Section Theory focuses on the theory supporting the
proposed method using ID function model of the neuron and

illustrates the feature sets for cardiac sound assessment. Section
Materials and Methods focuses on the materials and methods
for the proposed technology. The results and discussions are
presented in Section Experimental Results and Discussion.

THEORY

Inverse Delayed Neuron Function Model of

the Neuron
The ANN was realized using the ID function model of the
neuron. Nakajima and Hayakawa proposed the ID function
model of the neuron by the following set of equations:

τ
dui

dt
=

∑

j.j6=i

wijxj−aiixi−ui (1)

τx
dxi

dt
= ui−g (xi) (2)

g (xi) = f−1 (xi)−Kxi (3)

Where ui is the ith neuron internal state, xj is the jth neuron
output, Wij is the synaptic weight between jth and ith neurons,
hi is the bias input, aii is the self-connection synaptic weight, τ
is the internal state time constant, and τx is the neuron output
time constant.

From Equation (3), f(x) is the neural network sigmoid
function, then g(x) = f−1(x) is the N-shaped inverse output
function (24). g(x) can be changed with a positive value of K times
output of the neuron. The transition time from u to x is less than
τ and thus τx < < τ . In general, the transition time should be
taken into account if it is significantly less than τ . For the present
problem, we used the self-connectionless neurons to devoid the
hysteresis effects (24). So aii = 0 in Equation (1).

Differentiating Equation (2) with respect to time t, we get

τx
d2xi

dt2
=

dui

dt
−

dg (xi)

dxi

dxi

dt
(4)

Let us consider

ϕi=
dg (xi)

dxi
+

τx

τ
(5)

Substituting Equation (5) and (4) gives

τx
d2xi

dt2
+ϕi

dxi

dt
−

τx

τ

dxi

dt
=
dui

dt
⇔ τ x

d2xi

dt2
+ϕi

dxi

dt

=
1

τ




∑

j

( wijxj−g (xi)



 (6)

Let, ∂Ui
∂xi

=
1
τ

(
g (xi) −

∑
wijxj

)

Equation (6) becomes

τx
d2xi

dt2
+ϕi

dxi

dt
=

∂Ui

∂xi
(7)

Where Ui =
1
τ

(∫ x
0 g(xi

)
dxi − xi

∑
j wijxj
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FIGURE 1 | Phonocardiography system block diagram.

FIGURE 2 | Micro-electromechanical system (MEMS) microphone frequency

response.

Ui denotes the potential of the ID function model of the
neuron. In Equation (7), the first term denotes the inertia and the
second term denotes the friction. If g(xi) is an N-shaped function,
then the area where

dg(x)
dxi

is less than −τx
τ

for specific values of xi is called the
negative resistance region.
From the Lyapunov function, the energy of the ID function
model is

E = −
1

2τ

∑

i

∑

j

wijxixj+
1

τ

∑

i

∫

0
g (xi) dxi

+
τx

2

∑

i

(
dxi

dt

)2

(8)

Since the proposed neuron network has self-connectionless
neurons, the self-connections between neurons are ignored.
The last term in Equation (8) shows the time delay in the ID
function model.
Differentiating both sides of Equation (8) with respect to time t,
we get

dE

dt
= −

∑

i

dxi

dt

{
1

τ
wijxj−

1

τ
g (xi)−τx

d2xi

dt2

}

(9)

dE

dt
= −

∑

i

(
dg (xi)

dxi
+

τx

τ

) (
dxi

dt

)2

(10)

dE

dt
= −

∑

i

ϕi

(
dxi

dt

)2

(11)

From Equation (11), the energy (E) of the ID model, similar to
that of the Hopfield model, decreases with time if the network
state is in the positive resistance region (φi > 0). However, in the
negative resistance region (φi < 0), the energy (E) increases with
time; thus, even if the state is in the minima region, it quickly
exits this region. It is necessary to have this feature in order to
avoid local minima. As a result, if the network is an ID function
model, the likelihood of escaping the local minima is expected
to increase.

Feature Sets for Cardiac Sound

Assessment
The assessment of the cardiac sound components involved
different parameters that were deferred by a set of features to
sort out the components from the heart sounds. In the current
research, the Springer segmentation algorithm by Springer et
al. (25) was used to differentiate the heart sounds using timing
intervals of S1, S2, systole, and diastole. The following parameters
were used as feature sets to identify the low-frequency abnormal
components and normal heart sound components.
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TABLE 1 | Cardiac sounds feature sets.

S. no Feature Description

1 F1 Mean of the Systolic to diastolic time interval ratio of each heart sound.

2 F2 Mean of the S1, S2 intervals ratio.

3 F3 Mean of the heart sound peak energy in systolic cycle to total cardiac cycle energy of each heart beat

4 F4 Mean of the heart sound peak energy in diastolic cycle to total cardiac cycle energy of each heartbeat.

5 F5 Mean of spectral frequencies from 10 to 900Hz with window resolution of 10Hz in systole cycle of each heartbeat.

6 F6 Mean of spectral frequencies from 10 to 900Hz with window resolution of 10Hz in diastolic cycle of each heartbeat.

FIGURE 3 | Artificial neural networks (ANNs) using the ID function neuron model.

MATERIALS AND METHODS

High-Performance Phonocardiography

System Hardware
The proposed high-performance phonocardiography system was
developed based on the advanced MEMS microphone to capture
the low-frequency components and analyze the captured data
using a proposed algorithm based on the inverse delayed neuron
model. The proposed algorithm was implemented on the Xilinx
Zynq-7 System on-chip FPGA, which has a dual-core ARM
cortex-A9 for application software and programmable logic for
algorithm complex computations. The detailed block diagram for
the high-performance phonocardiography system is as shown in
Figure 1.

A cardiac sound detection unit consists of a MEMS
microphone, which is a tiny integrated circuit with a sound
transducer, an analog front end, and a signal conditioning
circuit (7). The MEMS microphone has a high Signal-to-
Noise Ratio (SNR) at 70 dB and a good frequency response
from 10Hz to 10 kHz as shown in Figure 2. Due to its
flat response and high SNR in the lower region, a cardiac
sound detection (CSD) is more suitable for the detection
of the third and fourth heart sounds and murmurs. The
CSD module has four microphones, the placements of which
were on the basis of sound source localization to cover
the four heart valves (aortic valve, tricuspid valve, mitral
valve, and pulmonary valve). These valves are the origins of
cardiac sounds.
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FIGURE 4 | Transfer function.

FIGURE 5 | Real-time experimental setup with proposed hardware.

A high-speed data processing unit consists of a Xilinx Zynq-
7 System on-chip FPGA, which has a dual-core ARM cortex-
A9 processor for the application software and programmable
logic for algorithm complex computations. The high-speed data
processing (HSDP) module is responsible for the separation of
cardiac sounds based on the frequencies and processes used in the
proposed ANN-based ID model neuron. The Graphical Display
Recorder (GDR) unit consists of an LCD touchpad for parameter
configuration and a display for analyzing the results for further
diagnosis. The application software was developed on an ARM
cortex-A9 processor and interfaced to the GDR module.

The current system implemented was in two phases.
In the first phase, the proposed algorithm was modeled
using the MATLAB, simulated with different test parameters,
and baselined as a golden reference for further hardware

system development. The proposed neural network model
was implemented on FPGA in the second phase to achieve
performance comparable to the MATLAB model. The cardiac
sounds detected by the CSD unit were then passed to the HSDP
unit for the extraction of the cardiac feature set mentioned in
Table 1. Afterward, these feature sets were given as inputs to the
hidden layer and known spectrograms, which would train the
network and predict the error deviation to assess the features of
the cardiac sounds.

Prediction Model Using ID Function Model

of the Neuron
The proposed ANN algorithm is based on a feedforward network
with three layers as shown in Figure 3. The first layer has six
inputs for the six feature sets mentioned in Table 1. The second
layer is a hidden layer that consists of 12 hidden neurons that
compute the delayed weighted sum of inputs and the inverse
tangent sigmoid non-linear function for the feature extraction.
The third layer is an output layer that consists of five output
neurons. It is a logical net to reduce the error in extraction and
sends the output based on the input from the hidden layer.

Realization of Inverse Activation Function
An activation function is used to present non-linearity into the
output of the neuron. For the current work, an inverse tan
hyperbolic function is taken as the activation function.

f (x) = tan−1 h (x)=
1

2
ln

(
1+ x

1− x

)

(12)

f (x) =
1

2
(ln (1+ x)− ln (1− x) ) (13)

f (x) =
1

2

(

2x+
2

3
x3+

2

5
x5+ . . .

)

(14)

f (x) = x+
x3

3
+
x5

5
+ . . . (15)

Neglecting the higher terms f(x) becomes

f (x)= x+
x3

3
(16)

Equation (16) is realized using a constant (1/3), adder, and
multiplier. The activation limits the output in the range of (1,−1).

Figure 4 shows that the activation function in the ID model is
an N-shaped transfer function.

The ID network, which consisted of 12 hidden neurons
in the hidden layer, was trained using MATLABR. Learning
was accomplished through the use of the Levenberg–Marquardt
backpropagation algorithm. Backpropagation was used to obtain
the input and layer weight matrices by incorporating the
derivatives of the inverse functions. These matrices were used to
replicate the ID network onto the FPGA. The neural network was
trained using the ID function model. The result of the regression
coefficient “R” is shown in Figure 13.

System-Level Implementation
The experimental setup with PCG sensors and the CardiacHealth
Monitoring System (CHMS) is shown in Figure 5. The proposed
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FIGURE 6 | Flow diagram for extraction of cardiac sound components.

FIGURE 7 | Field-programmable gate array (FPGA) hardware for the proposed

system.

algorithm implementation in FPGA is shown in Figure 6. The
prediction model, which was based on the ID function neuron
model, was developed in the system generator tool, and the
Verilog netlist for RTL integration was generated. The VIVADO
design suite 2018.2 was used for simulation and synthesis. The
model was successfully dumped onto the Zynq7 – XC7Z010-
1CLG400 device FPGA board. The PCG sensor data captured in
FPGA internal Block RAMmemory were passed through the pre-
processing module to remove the unwanted noise. The cleaned
data were then processed through the cardiac cycle separation
engine to differentiate the systole and diastole cycles. The feature
extraction module extracted the features mentioned in Table 1

from systole and diastole. The extracted six featured sets were
passed through the ANN model to classify them into five heart
sound component groups. The decision logic outputted the
true-negative (TN), true-positive (TP), false-negative (FN), and
false-positive (FP) for corresponding heart sound components.
Figure 7 shows the FPGA hardware board developed for the
proposed system.

The ANN with the inverse delayed neuron model was
implemented in MATLABR using the neural network
toolbox and the fixed-point toolbox as discussed in
previous sections. The model was simulated to check
for functionality and then used to calculate the synaptic
weights and bias required for the hidden and output
layers. The simulated fixed-point MATLAB model was
taken as a golden reference for further hardware realization
using FPGA.

The Xilinx System generator tool was used for the
implementation and generation of the Verilog code for the
system integration. As discussed in earlier sections, the ANN
model was realized in three stages. For the first stage, in
the input layer, the inputs were scaled with weights and
passed to hidden neurons. For the second stage, the bias was
added to the summed weights by the hidden layer, which
then passed through the delayed activation function. For
the third stage, the output layer computed the output value
from all hidden neurons, the output bias, and the activation
function. The sigmoid activation function was a building
block that was used in both the hidden and output layers (26).
Equation (16) was used to implement the inverse activation
function, which consists of an adder, multiplier, and constant
value. As shown in Figure 8, the neuron model was realized
using a Mult-Add block and a constant block for bias, an
activation function.

Figure 9 depicts the proposed ANN model implementation.
The estimated sigmoid value is closer to the real sigmoid value
obtained fromMATLAB, allowing the approximation effect to be
reduced for improved accuracy when implemented in hardware.

EXPERIMENTAL RESULTS AND

DISCUSSION

The extraction of cardiac sounds from the MEMS-based high-
performance phonocardiography system using a neural network
was based on the ID function model of the neuron. The
neural networks based on the ID function model and the
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FIGURE 8 | Neuron model.

FIGURE 9 | System generator implementation of the ANN model.

FIGURE 10 | RTL Schematic—Neuron Model.
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FIGURE 11 | Physical layout for the proposed system.

FIGURE 12 | Resource utilization of the proposed system.

conventional neuron models were realized on FPGA, and the
hardware requirements and performance of the two models were
compared. The proposed system was validated using the data of
30 patients in accordance with the Declaration of Helsinki. After
obtaining informed consent, a total of 60 patients were made
available for evaluation, with the data of 30 patients being used
for training the neural networks and the data of the remaining 30
patients used for testing the proposed system.

The neural networks were trained offline using data from
the 30 patients in MATLABR, and then implemented on FPGA
to reduce design circuitry. The MATLABR model weights and
biases were used as hard-coded values in the FPGA ANN
model to reduce computational cycles and achieve the accuracy
obtained in the simulation. The FPGA implementation of the
inverse tangent sigmoid function, which requires the realization

of an N-shaped activation function, involved multiplication
but not division. The multiplier was all that was required for
the functional units of the ID model. This greatly reduced
hardware complexity. The system generator FPGA netlist files
were used to run the synthesis, and implement and generate
the bit file needed to program the FPGA. Figure 10 depicts the
RTL schematic for the neuron model following RTL synthesis.
The physical layout of the proposed system is depicted in
Figure 11.

Figure 12 shows the FPGA resource utilization of the
proposed layout after place and route.

The mean square error in the extraction of cardiac
sound components detection rate using neural networks
with 12 neurons in the hidden layer was .9. Regression
analysis was performed on the input and target datasets,
and the mean square error was found to be 4.4 × 10−5.
Figure 13 depicts the regression analysis of the training
and validation of the network. In the regression analysis,
the parameter “R” = 0.99 represents the correlation
between extracted cardiac components and actual
cardiac components.

The regression analysis showing the training and validation
of the network is depicted in Figure 13. The parameter “R,”
which is equal to 0.99 in the regression analysis, signifies the
correlation between extracted cardiac components with actual
cardiac components. Figure 14 depicts the training state analysis
of a neural network based on the ID function model of a neuron.
Figure 15 depicts a neural network for performance analysis.
Training analysis was performed for epoch 11, with a gradient
factor of 9.0661× 10−5 and validation checks equal to 6.

In accordance with the Declaration of Helsinki, clinical
trials were conducted on 30 patients using the proposed high-
performance phonocardiography system, and the results were
compared to the known test results from themedical practitioner.
The prevalence of disease in the tested population, the outcome of
the diagnostic test, and the sensitivity and specificity of the test all
had an impact on the reliability of any diagnostic test result. The
sensitivity, the specificity rate, and the accuracy can be computed
as follows

Sensitivity =
TP

TP+ FN
×100% (17)

Specificity =
TN

TN+ FP
×100% (18)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
×100% (19)

where true-negative (TN) represents the number of correct
heart sound components rejected, true-positive (TP) represents
the number of correct heart sound components detected by the
proposed system, false-negative (FN) represents the number of
incorrect heart sound components rejected, and false-positive
(FP) represents the number of incorrect heart sound components
detected by the proposed system. Table 2 displays the sensitivity,
specificity, and accuracy of cardiac component detection for a
healthy individual under specific disease conditions.
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FIGURE 13 | Regression analysis of neural network based on the ID function model of the neuron.

FIGURE 14 | Training state analysis of neural network based on the ID

function model of the neuron.
FIGURE 15 | Performance analysis of neural network based on the ID function

model of the neuron.

Frontiers in Medical Technology | www.frontiersin.org 9 August 2021 | Volume 3 | Article 666650129

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Anumukonda et al. ID Neuron Model for Cardiac Sound Components

The performance of the proposed method was evaluated
using the receiver operating characteristic (ROC) curve
area under curve (AUC) value. This validated the
extraction of cardiac components from the captured data
using the proposed algorithm. The ROC curve for the
extraction of cardiac component accuracy for the proposed
ID neuron model system is shown in Figure 16. The
accuracy of S1 and S2, S3 and S4, aortic stenosis, mitral
Stenosis, and mitral regurgitation is 99.3, 98.6, 98.7, 98.7,
and 98.6%, respectively, based on the AUC values in
Figures 16A–E.

TABLE 2 | Accuracy of proposed system for different cardiac components in

heart sounds.

Heart sound components Sensitivity (%) Specificity (%) Accuracy

S1 and S2 99.1 99.3 0.99

S3 and S4 98.1 98.6 0.98

Aortic stenosis 98.3 98.7 0.98

Mitral stenosis 98.5 98.7 0.98

Mitral regurgitation 98.2 98.4 0.98

CONCLUSION

The current research focused on the development of multi-
channel MEMS-based phonocardiography system to capture
heart sounds and process the acquired sample to remove
unwanted noise and derive a feature set using wavelet transforms.
Thereafter, the low frequency cardiac sounds were extracted
using the ANN based on the ID function of the neuron model.
The neural network was trained using real, known data, and
the proposed system was tested using patient test data. The
developed ANN-based phonocardiography system was useful
to the physician for recognizing abnormal, low-frequency heart
sounds with a simple diagnosis setup similar to the stethoscope
and visualizing graphical data for better medical diagnoses. The
performance of the phonocardiography system was evaluated
using 2,150 cardiac cycles of PCG from a cohort of 30 patients
with different pathophysiological conditions, resulting in a
sensitivity of 99% and an accuracy of 0.9.
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Objective: Previous studies discussing phenotypic and temporal heterogeneity of knee

osteoarthritis (KOA) separately have fatal limitations that either clustering patients with

similar severity or assuming all knees have a single common progression pattern, which

are unreliable. This study tried to uncover more reliable information on phenotypic and

temporal heterogeneity of KOA.

Design: Data were fromOsteoarthritis Initiative database. Six hundred and seventy-eight

unilateral knees that have greater Kellgren and Lawrence (KL) grade than the contralateral

knees at baseline and in all follow-up 48 months were included. Measurements of

biomarkers at baseline were chosen. Subtype and Stage Inference model (SuStaIn)

was applied as a subtype-progression model to identify subtypes, subtype biomarker

progress sequences and stages of KOA.

Results: This study identified three subtypes which account for 15, 61, and 24% of

knees, respectively. Each subtype has distinct subtype biomarker progress sequence.

For knees with KL grade 0/1, 2, 3, and 4, they have different distributions on stage

and 26, 53, 89, and 95% of them are strongly assigned to subtypes. When assessing

whether a knee has KL (grade ≥ 2), subtypes and stages from subtypes-progression

model (SuStaIn) are significantly better fitting than those from subtypes-only (mixture

of Gaussians) (likelihood ratio = 105.59, p = 2.2 × 10−16) or stages-only (SuStaIn

where setting c = 1) (likelihood ratio = 58.04, p = 2.57 × 10−14) model. Stages

in subtypes-progression model has greater β than stages-only model. Subtypes from

subtypes-progression model have no statistical significance.

Conclusions: For subtypes-progression model, stages contain more complete

temporal information and subtypes are closer to real OA subtypes.

Keywords: osteoarthritis, phenotype, subtype, progression, trajectories
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INTRODUCTION

Knee osteoarthritis (KOA) is recognized as a complex condition
with different clinical characteristics (1–3). Most of previous
studies only discussed phenotypic or temporal heterogeneity
of KOA, which referred as a subtypes-only models or stages-
only models.

Subtypes-only models cluster knees together into subtypes
based on the similarity of the biomarker measurements (1, 4).
The limitation is that those models could result in clusters
of patients with similar osteoarthritis (OA) severity, which
would not represent true OA subtypes. Stages-only models are
always built based on regression model (5–8). The inherent
assumption is that all knees have a same single common
progression pattern. But disease progressions in most cases are
complex and knees have phenotypic heterogeneity. Therefore,
stages identified based on the above assumption have limited
reliability. Some researchers tried to investigate subtypes and
temporal heterogeneity together (2, 9). However, they discussed
the distinct subtypes and OA severity scores separately.
The above-mentioned limitations could not be avoided in
previous studies.

KOA is a chronic progressive disease and has a long
course. The ideally long-term frequent follow-up data are
difficult to obtain. In this study, we use cross-sectional
data to research the characteristics of KOA progression and
phenotypic heterogeneity. There are three basic assumptions
for this study. (1) Cross-sectional data contain a certain
amount of temporal information. Knees have different changes
in biomarker measurement, which implies the disease stage
that they belong to. (2) Cross-sectional data consists of
subjects at all the periods of the whole disease course. It
can be roughly affirmed by the knees distributed in all the
KL grades. The first two assumptions make it possible that
researchers can reconstruct the trajectory of disease progression
with cross-sectional data. (3) Knees from different subtypes
have different trajectories of biomarker progression. Thus, the
optimal number of biomarkers progression trajectories that
maximizes the data likelihood represents the optimal number
of subtypes.

New machine learning and deep learning methods (10–12)
are brought into medical research. The recently introduced
Subtype and Stage Inference model (SuStaIn) is an unsupervised
machine-learning technique (13) and learns distributions of
biomarker values from the data. SuStaIn calculates the optimal
subtype biomarker progress sequences and the optimal number
of sequences to maximize the data likelihood. The number of
subtypes is represented by the optimal number of sequences.
The subtype biomarker progress sequence stands for the order
of the biomarker changed as disease progresses for a particular
group of knees. With the subtype biomarker progress sequences,
knees can be assigned into a certain subtype and progression
stage. Therefore, we used SuStaIn as the subtypes-progression
model to uncover phenotypic and temporal heterogeneity of
KOA simultaneously. And finally, we identified 3 KOA subtypes,
rebuilt the subtype biomarker progress sequences and assign each
individual to a most probable subtype and stage.

MATERIALS AND METHODS

Data Description
Study Population
The data were from Osteoarthritis Initiative (OAI) database
(https://nda.nih.gov/oai). OAI is a large multi-center, 10-
year prospective observational cohort study. The original
OAI participant recruitment and data collection process have
obtained ethical approval and informed consent. No specific
ethical approval was required for this study.

Previous study shows that risk of KOA increased with the
incidence of contralateral knee OA (3). For the two knees of
each subject which afflicted with KOA earlier and later, there
may be different risk factors and disease progression patterns.
As limited by available number of knees, we decided to discuss
a single condition that the unilateral knees have greater Kellgren
and Lawrence (KL) grade than the contralateral knees at baseline
and in all the follow-up 48 months. The exclusion criteria are
knees (1) having no KL grade assessment at baseline or in any
follow-up visit, (2) having no complete data of radiograph and
MRI image assessment at baseline. Finally, our study population
includes 678 eligible knees with different KOA severity.

Obviously, to construct the subtype biomarker progress
sequences, the data should cover the whole disease course
of KOA. Ideally, it should contain complete biomarkers’
measurements in the whole disease course of patients. However,
the course of KOA, just like other chronic diseases, takes
a period of decades. Following up for the whole disease
course is impossible. Study the disease trajectories with only
cross-sectional data is necessary. Then, we only chose the
measurements of biomarkers at baseline for each knee. Because
knees’ KOA severity increases over time and the number of knees
withmild severity reduces at follow-up time points. KOA severity
of study group ranges more widely at baseline than any follow-up
time points.

Biomarkers
Candidate biomarkers used in this study were the OA symptoms
which were obtained through questionnaires [Western Ontario
and McMaster Universities (WOMAC) pain score], quantitative
radiographic readings [Joint Space Width (JSW)], quantitative
MRI measures of cartilage thickness, and semi-quantitative
radiographic readings (osteophytes and sclerosis, per anatomical
compartment for the tibia and femur).

To simplify themodel, increase the clinical utility and improve
the generalization ability themost, we used the backward deletion
to select the fewest biomarkers, which maximized the data
likelihood (14). All the biomarkers were used to reconstruct KOA
subtypes progression models shown in Table 1 and Figure 2A.

Study Roadmap
The study roadmap is shown in Figure 1. We included 678
knees in the study population. Measurements of biomarkers at
baseline were chosen. Three models (SuStaIn model, mixture
of Gaussians model and SuStaIn model where setting c =

1) were fitted to the study population and formulated the
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TABLE 1 | Detailing the biomarkers used in the study.

No. Biomarkers Number of

z-scores events

Maximum

z-score

1 WOMAC pain score 3 5

2 Medial minimum JSW 3 5

Osteophytes

3 Tibia medial subregion 3 3

4 Tibia lateral subregion 2 3

5 Femur lateral subregion 3 3

6 Femur medial subregion 2 3

Sclerosis

7 Femur medial subregion 2 3

8 Tibia medial subregion 1 3

Mean cartilage thickness

9 Central medial femur condyle

(external)

3 5

10 Central medial femur condyle

(center)

3 5

11 Central medial femur condyle

(internal)

2 2

12 Central lateral femur condyle

(internal)

2 3

13 Central lateral femur condyle

(external)

3 3

The order numbers of biomarker in Table 1 match the numbers in Figure 2A.

subtypes-progression model, subtypes-only model, and stages-
only model, respectively. The subtypes, subtype biomarker
progress sequences and stages from the subtypes-progression
model were described and assessed. Finally, we compared the
subtypes and stages among the three models.

Subtypes-Progression Model
KOA Subtypes, Subtype Biomarker Progress

Sequences, Stages, and SuStaIn Model
In this study, we used SuStaIn as the subtypes-progression
model to identify KOA subtypes, rebuilt the subtype biomarker
progress sequences and assigned an individual to a most possible
subtype and stage. SuStaIn defined four important concepts.
(1) Biomarker event. A biomarker event is a new change in
symptom or structural lesion as KOA progression advances. Each
biomarker event corresponds to a switching from a z-score to
another. (2) Subtype. knees from different subtypes have different
trajectories of biomarker progression. The number of biomarkers
progression trajectories can be discovered in a disease represents
the number of all subtypes it contains. (3) Subtype biomarker
progress sequence. Each disease subtype has a particular progress
course. The course of each disease subtype progression can be
depicted by the order in which the biomarker events occur as each
disease subtype progresses, which is called as subtype biomarker
progress sequence. (4) Stage. Each disease subtype progression
advances from 0-th stage to S-th stage. S is the number of all
biomarker events. The i-th stage that a knee belongs to is defined
as a specific state that the previous i events of the sequence

have occurred. Occurrence of an event indicates that the disease
advances in a biomarker and disease progression switches from a
stage to the next.

SuStaIn is an unsupervised machine-learning technique and
doesn’t rely on a priori staging or subtype. SuStaIn is a mixture
of linear z-score models. It describes the subtype biomarker
progress sequence as a linear z-score model, which is an
improved model of the original event-based model (EBM) (15,
16). In EBM, each event represents the switch of a biomarker
from a normal to an abnormal level. SuStaIn reformulates
the events to make them correspond to the continuous linear
accumulation and each event of a biomarker represents change
from one z-score to another. SuStaIn simultaneously optimizes
the number of subtypes, subtype biomarker progress sequence,
and the posterior distributions of both. What’s more, SuStaIn
estimates the probability of assignment to a most probable
subtype and stage, respectively, for each knee. The most likely
biomarker event sequences are ones that maximizes the data
likelihood. The optimal number of subtype biomarker progress
sequences that maximize the data likelihood represent the
optimal number of subtypes. We fitted SuStaIn with python
(version 3.7). The source code of SuStaIn can be acquired
on https://github.com/EuroPOND/pySuStaIn.

Data Pre-processing
Every biomarker measurement was expressed as a z-score
relative to the control group. Since this, the corresponding
z-score can describe the abnormal degree of each biomarker
measurement from study population relative to control group.
Inclusion criterion for the OAI control group are (1) no
pain, aching or stiffness in both knee in the past year; (2)
no radiograph OA; (3) no eligibility risk factors; (4) age ≤

70 years. This study had an additional exclusion criterion:
incomplete data on radiographic and MRI image assessment
at baseline.

With KOA progress, medial minimum JSW and mean
cartilage thickness decrease and their z-scores became negative.
We took the negative value of the z-scores for convenience, so
that all the z-scores would increase as KOA severity increasing.

Input
A biomarker event is a new change in symptom or structural
lesion as KOA progression advances. Each biomarker event
corresponds to a switching from a z-score to another. The z-score
events of each biomarker were the most important input. For
each biomarker, the z-score events initially include z-scores of 1,
2, 3, and 5. However, some z-score events had low occurrence
frequency in the disease progression, thus fewer than 10 knees
had greater than that z-score. To simplify the model, we excluded
those z-score events. Finally, 32 z-score events were included
from the 13 biomarkers.

The maximum z-score means the final stage of the
progression. If the maximum z-score event was 1, 2, 3, and 5, the
input “maximum z-score” was set to be 2, 3, 5, and 7, respectively.
Detail of z-score of each biomarker is shown in Table 1.
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FIGURE 1 | Study roadmap for our study.

Evaluation of Subtypes and Stages From
Subtype Biomarker Progress Sequences
We used SuStaIn as the subtypes-progression model to identify
the KOA subtypes, subtype biomarker progress sequences and
the probability of assignment to a most probable subtype and
stage, respectively, for each knee.

We used 10-fold cross-validation to gain the optimal number
of subtypes by the Cross-Validation Information Criterion
(CVIC) (16). The CVIC was defined as CVIC = −2 × log [P
(X|M)], where P (X|M) is the probability of the data X for a
particular subtypes-progression modelM.

We tested the differences between the subtypes for a specific
biomarker with R (version 3.6.3). The logistic regression was
used for binary measurements and a general linear model for
continuous or ordered categorical measurements. Then we used
post-hoc analysis with a SNK test adjustment to test for which

subtypes the measurements were different.
We measured the strength of assignment to one of the

subtypes in KOA subtypes progression. A strong assignment
was defined as that the maximum probability of assigning

to a particular subtype is 1.5 times greater than any other

two subtypes.
We surveyed the consistency of KL grade and stages from

KOA subtypes progression model. KL grade represented the

temporal state of knees with KOA roughly. We grouped the

knees by KL grade and estimated the probability of assignment
to a stage.

Comparisons Among
Subtypes-Progression Model,
Subtypes-Only Model, and Stages-Only
Model
Subtypes-Only Model and Stages-Only Model
We used SuStaIn as the subtypes-progression model to identify
the KOA subtypes, subtype biomarker progress sequences, the
probability of assignment to a most probable subtype, and
stage, respectively, for each knee. The subtypes-only model and
stages-only model can also assign knees to a subtype or stage,
respectively. The subtype or stage that a knee is assigned reflects
the phenotypic or temporal information from our models.

We formulated subtypes-only and stages-only models as close
as possible to the subtypes-progression model. Thus, subtypes
and stages from the three models (subtypes-only model and
stages-only model, subtypes-progression model) are comparable.

In this study, the subtypes-only model was fitted to OA (KL
grade ≥2) with a mixture of Gaussians model. The stages-only
model was formulated by SuStaIn model, setting the subtype
number to 1.

Comparisons Among Subtypes and Stages From

Three Models
To compare the subtypes and stages from the three models, we
put forward a task that separates the knees with/without doubtful
KOA (KL grade 0/1) from those with KOA (KL grade ≥2). This
task can test the ability of the stages from the three models that
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FIGURE 2 | (A) The graphical representation of all biomarkers. Gray line is coronal sketch map of knee joint. Numbers in this figure match the order numbers of

biomarkers in Table 1. (B) KOA subtypes and subtype biomarker progress sequences identified by subtypes-progression model. Proportion of knees assigned to

each subtype are shown. Each row represents an biomarkers changes order as KOA stages advance. Biomarkers from different stages reach different z-scores relative

to control group. At each stage color in each region indicates level of severity of pain or lesions: gray is unaffected; blue is mildly affected (z-score of 1), and so on.

separates the knees in time-perspective. The more benefit the
stages contribute to the task, the more temporal information
are included in the stages. However, if the subtypes have more
contributions to the task, it has negative meaning. It indicates
that those subtypes include temporal heterogeneity and tend to
cluster the knees with similar KOA severity and don’t represent
true KOA subtypes.

We used logistic regression to compare the subtypes and
stages from the three models by the task of separating no
or doubtful KOA (KL grade 0/1) from KOA (KL grade ≥2).
The input variables were stages and subtypes from the three
models and demographic factors: gender, age, BMI and injury.
Likelihood ratio comparison between two models was used to
assess the goodness of fit of them (17). Statistical significance was
set as P < 0.05. All were analyzed with R (version 3.6.3).

RESULT

There were 678 unilateral knees included, which are from
subjects with average age 62.15 years old, 55.01% female, average

BMI of 23.1 and 20.65% injury in this study. KL grade 0/1, 2, 3,
and 4 accounted for 7.47, 34.22, 40.56, and 17.85%, respectively.
140 knees have injury which was defined as ever injured badly
enough to limit ability to walk for at least 2 days.

KOA Subtypes and Subtype Biomarker
Progress Sequences
As is shown in Figure 2, the subtypes-progression model
identified three subtypes. Each subtype had different clinical
symptoms and structural lesions at different progression stages.
We termed three subtypes as early pain, structural lesions
concurrence pain and late pain, which account for 15, 61, and
24% of the knees. Early pain subtype could be described as a
mild subtype. Serious pain occurs at first stages and osteophytes
follows. Not until the latter half stages, other structural lesions
occur. In structural lesions concurrence pain, serious pain also
occurs at first stages. but all the structural lesions appear and
progress soon and almost distribute in almost all the rest stages.
Late pain subtype is very similar to the former, but the pain hides
till the last stages and structural lesions occur at very early stages.
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TABLE 2 | Baseline demographics and risk factors for three subtypes and differences between the measurements of all biomarkers used for subtype definitions.

Stages P-value Subtypes P-value Subtypea

Early pain (n = 78) Structural lesions

concurrence pain

(n = 419)

Late pain (n = 181)

KL grade, n (%)

0/1 0 (0)S,L 36 (8.59)E,L 33 (18.23)E,S

2 17 (21.80)S,L 149 (35.56)E 79 (43.65)E

3 40 (51.28)L 175 (42.72)E,L 58 (32.04)E

4 21 (26.92)E,S 59 (14.08)E,L 11 (6.08)E,S

Injury, yes, n (%) 0.824 0.633 14 (17.95) 88 (21.00) 38 (20.99)

Gender, female, n (%) 0.294 0.419 50 (64.10) 220 (52.51) 103 (56.91)

Age, years, mean (standard deviation) <0.001 0.023 62.46 (8.67) 61.75 (9.20) 62.96 (9.54)

BMI, kg/M2, mean (standard deviation) 0.393 −0.004 29.36 (4.79)L 29.90 (4.79)L 28.02 (4.13)E,S

WOMAC pain score <0.001 <0.001 4.96 (3.52)L 4.42 (3.27)L 0.02 (0.30)E,S

Medial minimum JSW <0.001 <0.001 5.53 (1.24)S,L 3.1 (1.59)E,L 3.9 (1.30)E,S

Osteophytes

Tibia medial <0.001 <0.001 0.73 (0.77)S,L 1.21 (0.86)E 0.85 (0.71)E

Tibia lateral <0.001 <0.001 2.17 (0.90)S,L 0.62 (0.79)E 0.49 (0.78)E

Femur medial <0.001 0.778 1.49 (1.29)S,L 1.26 (1.13)E,L 0.77 (1.02)E,S

Femur lateral <0.001 <0.001 2.40 (0.76)S,L 0.69 (0.90)E 0.59 (0.93)E

Sclerosis

Femur medial <0.001 <0.001 0.10 (0.38)S,L 1.12 (0.94)E,L 0.57 (0.76)E,S

Tibia medial <0.001 <0.001 0.15 (0.40)S,L 1.12 (0.95)E,L 0.53 (0.80)E,S

Mean cartilage thickness

Central medial femur (external) <0.001 <0.001 1.60 (0.42)S,L 1.08 (0.49)E,L 1.25 (0.35)E,S

Central medial femur (center) <0.001 <0.001 2.39 (0.55)S,L 1.62 (0.75)E,L 1.96 (0.54)E,S

Central medial femur (internal) <0.001 <0.001 2.10 (0.50)S,L 1.80 (0.47)E 1.93 (0.38)E

Central lateral femur (internal) <0.001 0.0522 1.70 (0.52)S,L 1.86 (0.35)E 1.80 (0.36)E

Central lateral femur (external) 0.002 <0.001 1.09 (0.59)S,L 1.65 (0.35)E 1.53 (0.38)E

a Indices is the index number of the subtypes. The subtypes with corner mark a indicate that the specific subtype is significantly different from the subtypes represented by index numbers

(P < 0.05). E, early pain; S, structural lesions concurrence pain; L, late pain.

Evaluation of Subtypes and Stages From
Subtype Biomarker Progress Sequences
Demographic and Risk Factors Differences Between

Subtypes
All subtypes contained knees of the entire range of the KL grade,
except for the early pain subtype on KL grade 0/1 (Table 2).
Table 2 shows that early pain subtype had the highest proportion
of female (65%) than other two subtypes. BMI in late pain
subtype was significantly lowest. Age, injury proportion and
gender proportion had no significant difference between the
three subtypes.

After correction for stages, all biomarkers except osteophytes
femur medial compartment showed significant differences
between the subtypes. Post-hoc analysis showed that early pain
subtype was mainly different with others. Early pain subtype
had more changes in WOMAC pain score. What’s more,
structural lesions between the lateral and medial compartment
were different. More severe lesions occurred in osteophytes from
tibia lateral compartment and mean cartilage thickness in lateral
femur compartment. Less changes occurred in medial minimum

JSW, sclerosis and mean cartilage thickness in central medial
subregion. Further, the characteristics between the other subtypes
were different. Late pain subtype had slighter change in most
structural lesions (WOMAC pain score, medial minimum JSW,
osteophytes, sclerosis, and in mean cartilage thickness of central
lateral femur subregion).

Strength of Assignment to a Subtype
As is shown in Figure 3, for OA knees with KL grade 0/1, 2, 3,
and 4, the strong assignment to subtypes were 26, 53, 89, and
95%. With disease progress, the strength of assignment in KOA
subtypes increased. Moreover, even at early disease stages (KL
grade 0/1), 26% of the knees were strongly assigned to a subtype.

Probability of Assignment to a Stage
To evaluate the assignment to a particular stage, we estimated the
probability knees from each KL grade belonging to each of the
stages. As is shown in Figure 3, the knees from different KL grade
had different distributions in the stages.
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FIGURE 3 | (A–D) The assign ability of subtypes and stages. Plots in four scatter plots indicate knees from four KL grade groups. For a triangle scatter plot, each

corner indicates a probability of 1 of assigning to a particular subtype, and 0 for the other two subtypes; the center point of the triangle indicates a probability of 1/3 of

assigning to each subtype. (E) The probability of knees from each KL grade group belong to each stage. E, early pain; S, structural lesions concurrence pain; L,

late pain.

Comparisons With the Stages-Only Model
and Subtypes-Only Model
We used logistic regressionmodel to separate knees with/without
doubtful KOA (KL grade 0/1) from those with KOA (KL
grade ≥2). Table 3 shows that stages (p = 1.08 × 10−8) and

subtypes (p = 0.332) from subtypes-progression model had

significant hazards.
We compared subtypes-progression model, subtypes-

only and stages-only models with likelihood ratio tests.

Subtypes-progression model was significantly better fit than
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TABLE 3 | Results for comparing the subtypes and stages from subtypes-progression model with those from subtypes-only and stages-only with logistic regression

model by separating knees with no or doubtful KOA (KL grade 0/1) from those with KOA (KL grade ≥2).

Subtypes-progression model Stages-only model Subtypes-only model

β (95% CI) Adjusted P-value β (95% CI) Adjusted P-value β (95% CI) Adjusted P-value

Intercept 2.82 (−6.26, 0.56) 0.0974 −2.79 (−5.48, −0.14) 0.040 −0.89 (−3.75, 2.13) 0.544

Stages 0.70 (0.49, 0.98) <0.001 0.32 (0.22, 0.43) <0.001 — —

Subtypes 0.29 (−0.29, 0.89) 0.314 — — −2.00 (−3.82, −0.81) 0.006

Injury 0.33 (−0.39, 1.12) 0.400 0.43 (−0.25, 1.20) 0.247 0.48 (−0.12, 1.23) 0.181

Gender 0.40 (−0.98, 0.17) 0.158 −0.04 (−0.58, 0.49) 0.872 −0.10 (−0.62, 0.42) 0.729

Age 0.01 (−0.02, 0.04) 0.476 0.03 (0.00, 0.06) 0.029 0.04 (0.01, 0.06) 0.141

BMI 0.05 (−0.01, 0.13) 0.086 0.05 (−0.01, 0.12) 0.089 0.10 (0.04, 0.16) <0.001

CI, confidence intervals.

subtypes-only (likelihood ratio = 105.59, p = 2.2 × 10−16)
and stages-only (likelihood ratio = 58.04, p = 2.57 × 10−14)
models. A likelihood ratio of above 1 shows that, for distinguish
knees with no or doubtful KOA (KL grade 0/1) from those with
OA (KL grade ≥2), the subtypes and stages of KOA subtypes
progression model provided a significantly better fit than a
subtypes-only or stages-only model.

Table 3 shows that the stages in subtypes-progression model
had greater β than stages-only model. Rather than subtypes-only
model, the subtypes from subtypes-progression model had no
statistical significance.

DISCUSSION

Some studies tried to describe the temporal or phenotypic
heterogeneity for KOA. However, those studies that only explain
the temporal progression based on the assumption that all
the knees came from a single disease progress sequence (1,
4). As KOA is a disease with complex clinical characteristics,
this assumption may not hold. Some studies only discussed
about phenotypic heterogeneity and don’t account for temporal
heterogeneity (5–8). Subtypes identified by those studies tend
to cluster the knees with similar OA severity, which don’t
represent true OA subtypes. In our study, we used SuStaIn as a
subtypes-progression model to study the temporal or phenotypic
heterogeneity simultaneously and constructed a reliable picture
of how the lesions spread from a distinct region over the rest of
the knee in each subtype.

Because of the limitation of available number of knees, we
only discuss a single condition that the unilateral knees have
greater KL grade than the contralateral knees at both baseline
and all the follow-up 48 months. We fitted the SuStaIn model
to 678 knees to identify KOA subtypes and subtype biomarker
progress sequences. The biomarkers included the WOMAC pain
score, medial minimum JSW, quantitative MRI measures of
cartilage thickness, and semi-quantitative radiographic readings
(osteophytes and sclerosis, per compartment for the tibia
and femur). The subtypes-progression model identified three
subtypes and each subtype had its distinct biomarker progress
sequence. Three subtypes had different characteristics and were

termed as early pain, structural lesions concurrence pain and late
pain. The severity of all biomarker increased with greater stages.

Our results are agreed with previous studies, such as bigger
pain sore is always associated with severer osteophytes (18–23),
and narrower medial minimum JSW is always associated with
thinner mean cartilage thickness (24–28).

Between lateral and medial subregion of each subtype, the
changes in mean cartilage thickness existed inconsistency. Early
pain subtype had significantly slightest changes in medial
subregion and significantly greatest changes in lateral subregion.
Structural lesions concurrence pain subtype had opposite
changes. Late pain subtype had medium changes in both
subregion. Some studies found that greater BMI is associated with
incident medial tibiofemoral OA (3) and more serious changes in
lateral subregion in mean cartilage thickness, which is consistent
with our results.

The existence of phenotypic heterogeneity of KOA is
proved by our study. When we measured the strength of
a knee’s assignment to a given subtype, it showed strong
assignment of KOA patients to the subtypes. Therefore,
explaining heterogeneity in this study about KOA progression is

very necessary.
The subtypes and stages we identified have power to separate

the knees with phenotypic or temporal heterogeneity. At no or

doubtful KOA (KL grade 0/1), many knees gather around the
vertices of the triangles. It shows the subtypes are so effective
that have the ability of identifying knees even in very early stages.
Besides, the stages are certified to have the power to separate the
knees with different disease severity. The probabilities of knees
with each KL grade belonging to each of the stages show that the
distribution of the stages differ between KL grades.

The subtypes and stages from subtypes-progression model
performed significantly better than subtypes-only and stages-
only models. We used logistic regression to compare the subtypes
and stages from the three models by the task of separating no
or doubtful KOA (KL grade 0/1) from KOA (KL grade ≥2).
With the temporal task of separating early disease stages (KL
grade 0/1) from OA (KL grade ≥2), it shows that subtypes
and stages from subtypes-progression model are close to true
KOA subtypes and stages. Bigger regression coefficient of stages
from subtypes-progression model shows that they contain more
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complete temporal information. Furthermore, rather than those
from subtypes-only model, subtypes from subtypes-progression
model have no contribution to this temporal task. It suggests that
the subtypes from subtypes-progression model contain hardly
any temporal heterogeneity and are close to true OA subtypes.

The subtypes and stages identified by this study have clinical
practice value. First, with our subtypes-progression model, each
knee can be assigned into certain subtype, suggesting particular
disease characteristics. So that, we can help doctor to identify
the significant features of each knee and make more proper
treatment plan. Second, whole KOA progress course is divided
into more detailed stages. They offer a mini scale for doctor
to learn disease progress statue of a knee. What’s more, the
biomarker progress sequence can show the progress pathway for
each knee. The doctors and patients can foresee their subsequent
biomarker changes and estimate if a knee maintain same stage
over a period of time. It has a significant meaning in chronic
disease management. And finally, the study method can also be
expanded to carry out the research of other chronic disease.

There are some limitations in this study. As being confined
to the quantity of the knees available, the study population
only included the knee that afflicted with KOA earlier and had
greater KL grade for every knee. So our results may only act
as a reference for the knee with more serious OA condition
of the subject. In addition, the biomarkers only contain the
pain score and image assessment data. In future work, we
can study other groups of knees that afflicted with KOA later
and remain smaller KL grade or alternately having smaller
KL grade, and try to analyze more categories of biomarkers,
e.g., biochemical biomarker measurements from serum and
urine samples, so that we can learn the KOA progression in
wider range.

CONCLUSION

The subtypes-progression model identifies three subtypes and
each subtype has its distinct biomarker progress sequence. There
exists phenotypic heterogeneity of KOA, bigger pain sore is
always associated with severer osteophytes and the changes in
mean cartilage thickness exist inconsistency between lateral and
medial subregions of each subtype. The subtypes and stages
from subtypes-progression model have power to separate the
knees with phenotypic or temporal heterogeneity and perform
significantly better than those from stages-only model and

subtypes-only model. In a word, with subtypes-progression
model, stages contain more complete temporal information and
subtypes are close to real OA subtypes.
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The study presents a novel design method that improves system availability using

fault-tolerant features in a non-invasive medical diagnostic system. This approach

addresses the effective detection of functional faults, improves the uninterruptible system

operating period with reduced false alarms, and provides an authentic measure of vital

cardiac signs using diverse multimodal sensing elements like the photoplethysmogram

(PPG) and the ECG. Most systems rely on a 1oo1 (one-out-of-one) design method,

which inherently limits accuracy in existing practice. In this proposed approach, the

quality of segregated authentic vital sign measured values could tremendously benefit the

performance of resourceful nursing with negligible alarm fatigue and predict illness more

accurately. The system builds upon the selected 2oo2 (two-out-of-two) safety-related

design architecture and is evaluated with implemented functions like the fault detection

and identification logic, the correlation coefficient-based safety function, and the

fault-tolerant safe degradation switching mechanism for accurate measurements. The

system was tested on 50 adults of various age groups. The analyzed captured data

showed highly accurate vital sign data in this fault-tolerant approach with reduced false

alarms. The proposed design method evaluated safety-related mechanisms along with

a combination of the same and diverse sensors in a medical monitoring device, showing

more reliable functioning of the system and authentic data for better nursing. This design

approach showed a 45–55% increased improvement in system availability, thus allowing

for accurate and uninterruptable tracking of vital signs for better nursing during critical

times in the ICU.

Keywords: correlation, electrocardiography, fault-tolerant systems, fault detection, field programmable gate array,

multimodal sensor systems, photoplethysmography, safety analytics

INTRODUCTION

Advanced smart medical system engineering for safety-critical medical applications requires
the consideration of several dependable features, such as the functional safety, availability, and
reliability of the engineered system in signal processing algorithms (1, 2). With this consideration,
the advancement in high-performance electronics and sensors can become affordable and,
thus, increase the usage of these smart medical systems in clinical environments, such as
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performing critical patient treatments like robotic surgeries and
medication supervisions through the continuous monitoring
of patients (3–5). These smart, intelligent multimodal
computational electronics, along with system portability,
come with a significant increase in system complexity and
bring in major challenges like functional safety, reliability of
measurements, and patient safety. This type of safety-critical
smart medical device is often subject to an insignificant number
of failures with potentially catastrophic impacts on patients. A
previous study (6) on medical device recalls between 2006 and
2011 shows a 69.8% increase in the number of products being
recalled and a 103.3% increase in the number of adverse events
to patients like incorrect medications and deaths, where the
majority of the recalls were due to software faults. In a recent
report (7, 8) for the year 2018, a significant spike of 126% in
product recalls informed the U.S. Food and Drug Administration
(FDA) that most of the causes were due to software faults. These
detected spurious faults always interrupt the intended system
functionality and may generate safe alarms during critical
periods. However, the cause of numerous spurious alarms,
incorrect measurements of vital signs, single point of failure
(SPOF), and undetected faults may cause dangerous effects on
patients in nursing care. In the past, some of the medical system
designs were adopted with safety feature improvements like
data fusion and voting techniques (9–14). However, all these
techniques have their limitations and lack the mitigation of
challenges, such as the reduction of false alarms by effectively
detecting the actual faults, improvements in fault tolerability
having built-in safe degradable mechanisms, and providing
authentic measurements through the safe computation of vital
signs without interruption to system operability.

This study focused on presenting a safety-related, fault-
tolerant design approach to improve the safety features
in addressing the challenges related to the detection of
software faults in a non-invasive medical device. The safety
features include: (1) effective fault detection function and
(2) fault-tolerability with a safe degradable function. These
two functions were implemented and evaluated using the
proposed conceptualized 2oo2 (two-out-of-two) safety-related
design architecture. This approach provided uninterruptable
operability of the system by removing its faults. A detailed
framework proposed with five configurable conceptualized safety
design architectures based on composite fail-safety techniques
were realized and evaluated. A safe degradable function was
implemented using Karl Pearson’s coefficient of correlation
method. Thus, the results were analyzed and evaluated toward
the aims of reducing alarms for better nursing with reduced alarm
fatigue and providing improved authentic vital signs measured
values for better predictability of illnesses and proper assessment
of the condition of patients.

The systematic design assurance guidelines (15–17)
were followed in the implementation of the proposed
architectures. Detailed experimental research activity was
performed to evaluate the results and analyzed in detail for
safety improvements. The conceptual safety-related 2oo2
design architecture was reused from previous studies (1) in
implementing this proposed conceptual fault-tolerant safety

architecture for system functional safety evaluation. This study
focused on evaluating vital cardiac signs, such as heart rate
(HR), using the proposed design approach. The assessment
included the continuity of the measurement of HR-values and
the authenticity of the measured values. Two diverse sensors
were selected to detect biomedical signals, with these signals
being based on the physical media of light and electric potential.
These sensors, which consist of light-emitting diodes (LEDs) and
an optical detector, were used to detect the photoplethysmogram
(PPG) biomedical signal, and an electric-potential integrated
circuit (EPIC) sensor was used to detect the ECG biomedical
signal. Two diverse independent algorithms were used to
measure the HR in two independent channels in a 2oo2
safety-related design architecture. Analytics were performed
on the captured data to detect and identify the potential
systemic faults during vital sign parameter measurement at each
independent channel.

A set of measured parametric data was collected periodically,
such as HR, from two independent channels and correlated to
check for any computational faults. Karl Pearson’s coefficient
of correlation method was used (1) for safe voting logic
and implemented to detect the computational faults of the
two independent channels. A built-in test (BIT) fault-tolerant
safe degradation function was implemented to identify and
isolate systemic and computational faults. A set of sequence
operations were performed for any fault detected, such as (1) the
system operated in safe mode with safe degradation switching
from 2oo2 to 1oo2 or 1oo1 (one-out-of-one) and vice versa
toward the isolation of the fault and, thus, provided authentic
data; (2) the system used negation error codes for each fault
category, thus generating the related alarm for each significant
detected fault, and subsequently logging the results. Similarly,
the experiment was repeated on the proposed conceptualized
five design configurations and evaluated for system resilience.
The proposed design configurations are the following: (1)
using diverse ECG and PPG sensors and algorithms at each
independent channel to measure the HR, (2) using different ECG
sensors at each independent channel with diverse algorithms
to measure the HR, (3) using different PPG sensors at each
independent channel with diverse algorithms to measure the
HR, (4) using a single ECG sensor and measuring the HR
with diverse algorithms at each independent channel, and (5)
using a single PPG sensor and measuring the HR with diverse
algorithms at each independent channel. A detailed analysis was
carried out for each implemented conceptual architecture, and
the rightness of the cardiac vital sign heartrate measurements and
the coefficient of correlative results of vital sign measurements
between two channels were analyzed and presented using Bland–
Altman and correlative plots (18, 19). The recorded data, failure
detected signal, and vital sign HR measurements at each channel
output and the safe function output results were analyzed for
the effective functioning of fault isolation and reducing of
a SPOF.

The contributions of this research analysis to this configured
medical system prototype, with the analytics on data collected
using safety-related design approaches having interfaces with
diverse PPG and ECG sensors signified:
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1. Improvements in the elimination of PPG and ECG sensor-
related problems in bio-signal detection and identification
of the root causes for removing the deficiencies in signal
processing techniques to extract the authentic vital sign
signal information;

2. Efficient predictability in the estimation of illness using
accurate data, which eventually improves proper nursing;

3. Improvement in system operability with significantly less
insignificant alarms, thus improving the fault detection
mechanism, fault identification mechanism, fault tolerability,
and safety integrity level of the system for usage in safety-
critical applications.

Section Theoretical Framework provides the details about the
framework to address the specified challenges in the software
faults. This framework includes detailed requirements about
the conceptualized architectures and their approaches toward
the analysis of the challenges. Section Methodology provides
a detailed methodology about the system overview and its
realization of two independent channels for experimental studies.
Section Experimental Results and Discussion provides the
experimental results and analysis about the measured HR-
values evaluated along with the fault alarms between the
diverse channels and calculated correlation coefficient values
for the safety logic. This section tabulated a cause-and-effect
system analysis, emphasizing authentic measures, and safety
improvements in the medical system.

THEORETICAL FRAMEWORK

Work in safety-related electronic systems design and
development is multi-dimensional, which means several
safety aspects need to be considered in all phases of the product
development life-cycle (PDLC) (15–17). These related systems
should adhere to the standard development processes and
guidelines and need compliance to respective standards like IEC,
ANSI, AAMI, CENELEC, RTCA-DO (15, 17) to domains such
as the automotive, medical, railways, and aerospace domains.
The objective of any safety-related electronic system should
efficiently detect faults. It shall drive the system into a fail-safe
mode of system operation based on the severity level of the fault
that occurs. The systems where faults and failures like random
failures, systematic failures, hardware failures, software failures,
or any unknown erroneous errors lead to hazardous situations
like death, injury, or environmental damage. However, how
effective a system is engineered for a particular application and
a signal processing algorithm plays a critical role, as it extracts
and provides vital information to make decisions. Generally,
for this computation development process, defining the system
requirements always challenges dependencies and limitations in
sensors, hardware, and other operational environmental factors.
In particular, electronic medical systems, sensors, and related
computational systems provide important vital sign information
regarding the nursing of a subject by monitoring and controlling
treatment without any faulty or insignificant information. Thus,
the system should not go into a non-operational mode during
critical surgical procedures in the ICU.

Study of Potential Faults With PPG and
ECG Sensor Systems
Recent studies have shown significant differences in the many
brands of patient monitoring systems, particularly regarding
their bias and precision, even though they use identical hardware.
These variances are almost certainly due to the different
algorithms used in processing the PPG signal (20, 21). Equally,
different algorithms were used (21) in processing the EEG signal
to mitigate differences in the sensing of materials used and the
artifact of interest in the signal to be measured. In-depth studies
show that potential faults can notice if anything is compromised
or missed in defining the system requirements.

In defining the signal processing requirements, the
consideration of a few challenging areas (20) in the PPG
signal processing include (1) the selection of LEDs and detectors
frequency ranges, (2) the placement of the sensor probes
at the fingertips, ear, nose, or forehead, (3) non-invasive
probing mechanism, either through light radiation transmission
or reflection, (4) other considerable effects like changes in
saturation, signal quality, effects of dyshemoglobins, dyes, other
pigments, and extraneous factors, and (5) subject physical
motion and environmental effects. Equally, in the processing
of the ECG signal, the challenging areas (21–24) include: (1)
the sensing materials, (2) noise removal and signal quality,
(3) non-invasive probing mechanisms using or not using
dielectric mediums between the probes and subjects, and (4)
other considerable effects like subject physical motion and
environmental effects. However, considering these defined
requirements and the implementation of the signal processing
algorithms software, there is any inconsistency between the
algorithms to extract the same vital sign parameter due to
faults or limitations at a certain level. In the recent past, few
experimental studies with varied sample parameter voting and
data fusion methods were used (9, 12–14, 25–29) to better the
safety of these devices. Additionally, few studies (14, 21, 22)
reported that the same vital parametric data, like HR, can be
realized with the different mediums of the sensor.

The present research focused on the fault-tolerant design
approach and a safety aspect in the effective detection of the
software computing faults in an algorithmic function, which
used a defined framework and provided accurate measured
parameter data with reduced alarms. The presented framework
provided the fault detection and analysis approach and the
implementation results using the configurable safety-related
2oo2 design architecture.

Proposed Conceptual Safety Architectures
The proposed 2oo2 evaluated safety-related design approach (1)
was used for further experimental investigations and performed
functional safety assessments to validate the implemented bio-
signal processing functions in safety-critical medical applications
of the biomedical systems. The proposed concept evaluated a
set of configurable diverse medical sensors and different signal
processing algorithms to measure selected vital parameters.
This approach of processing the same parameter in a diverse
method, with correlative analytics, offered a scope to improve
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FIGURE 1 | Configurable 2oo2 system. (A) ECG and PPG sensor and diverse algorithm. (B) ECG1 and ECG2 sensor and the same algorithm. (C) PPG1 and PPG2

sensor and the same algorithm. (D) Single ECG sensor and the same algorithm. (E) Single PPG sensor and the same algorithm.

a useful technique in detecting faults. It also provided options
to implement fail-safe degradation mechanisms, and the related
usage of safety-related design architecture provided redundancy
and availability.

This study considered five different concepts for analysis by
configuring the system with diverse ECG and PPG sensors and
diverse algorithmic computing software. A correlative analysis
was performed and logged the results for each configuration. It
tabulated all analysis inferences for each detected abnormality
in the functional software and the results with analysis of cause
and effects toward improving functional safety. The functional
description of the 2oo2 architecture including hardware,
software, sensors, and its algorithms used is detailed (1). The
set of five selected configurations for framework analysis is
described below.

Multimodal Sensor Configurable 2oo2 System
The 2oo2 System in Figure 1A is configured in 2oo2 with
diverse sensor inputs, i.e., the ECG sensor interfaced to the
analog front-end (AFE) device in channel-A and the PPG sensor
interfaced to the AFE integrated chip (IC) in channel-B. Both
channels are configured with selected diverse algorithms (1) to
process the HR parameter. The outputs of modules A and B
from each channel correlated with a “safe correlative-bounded
configurable limits” function are implemented in Module-O

to detect faults and generate the failure detection signal. An
output signal consisted of accurate parametric data along with
processed alarm signal data generated by the fault-tolerant
safe degradation function. The safe function implementation
included Karl Pearson’s coefficient of correlation method, which
used (1) a time series sliding window technique between the data
of both channels and a fault-tolerant safe degradation voting logic
function for reliable switching between the computed output of
the channels.

As part of the framework analysis, the recorded output
data were analyzed toward the reliability and efficiency of the
implemented algorithmic software function and provided the
inferences on improvements in the system level requirements.
Thus, a practical HR computing function was realized in
both channels with authentic HR output with reduced alarms.
Similarly, this analysis was further carried out on selected
concepts to improve the safety check, like:

a) System configured with diverse ECG or PPG sensors with the
same algorithms in both channels, as shown in Figures 1B,C,
providing the opportunity to investigate the sensor sensitivity
and related deviances in the functional requirement for
measuring the same desired parameter.

b) A system configured with one sensor interfacing with
both channels, with the same algorithmic function for
computation, as shown in Figures 1D,E. This provided the
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FIGURE 2 | 2oo2 fault detection and fault-tolerant logic implementation.

opportunity to investigate the response of the safety functions
to implemented improvements in defining the requirements.
Furthermore, it helps in the evaluation of system-level
hardware failure analysis.

Evaluation Framework
Safety compliance is a systematic process followed in every
phase of the product development life cycle. Every safety-related
electronic system aims to detect faults when the system is in an
active state and shall drive the system into a fail-safe state. The
safe state shall be defined based on the mode of system operation
in the active state. During the system operation at a specificmode,
the cause of faults and failures is categorized as negation codes. It
needs to be defined by labeling and the severity level of the fault
that occurs.

In this study, we focused on the functional safety validity of
a specific signal processing algorithmic software function and
explained the implemented fault detection logic in the 2oo2
approach, its theoretical fault identification mechanism, and its
further evaluation framework.

2oo2-Fault Detection Logic and Analysis
The function 2oo2 fault detection logic received the parameter
input data from channel-A or channel-B and conditionally
checked between the threshold limits of that particular
parameter. The generated outputs were logically ORed as a
parallel circuit, and the hardcoded safe-output was selected

using the correlative coefficient condition (>0.5), which has a
moderate- to a very high-state relationship with parameter “r”
(1), as shown in Figure 2, to generate the fault detection signal.
Furthermore, this fault detection signal was driven back as a
feedback input to the primary function, which triggered the
diagnostic BIT functions to generate the output enable signal.
As shown, the primary function triggered a fault-tolerant enable
signal for every authentic fault detected. Thus, a predefined
priority-based fault-tolerant safe degradation sequence was
initiated to select the apt output to pass onto the display.
However, if there is no fault detected, both channel output
parametric values were in a good positive relationship. Thus, a
selected ORed output was released to the display and AI-based
computed prognostic health inference outputs.

In the process of the fault identification mechanism, a defined
(1) positive correlation coefficient constant value was compared
and continuously monitored to a correlation coefficient value
measured between two independently received output-parameter
values. Thus, a signal was generated when there was deviance
in the relationship between them. In theory, as per the 2oo2
safety-related voting approach, both channels needed to fail to
initiate the system to fail-safe mode. Thus, a failure detection
signal would then be generated when both the relationship
signal and ORed output signal failed. All identified cases
were analyzed as detailed in Figure 3 from one to eight
cases to determine the actual fault. As part of the evaluation
framework, all these cases are tabulated in Tables 1, 3 to
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FIGURE 3 | 2oo2 voting logic cases for assessment. (1) Values are in a relationship and are in the normal range. (2 and 3) Values in relationship with one signal drift

toward the limit. (4) Values in relationship with both signals drift toward the limit. (5) Values out of a relationship and in the normal range. (6 and 7) Values out of a

relationship with one signal drift toward the limit. (8) Values out of a relationship with both signals drift toward limits.

TABLE 1 | 2oo2-based safe-voting logical truth table for fault detection using a

correlative technique.

Evaluation

cases

ChA ChB rAB (>0.5)

(Correlation

coefficient)

Output signal

(2oo2 fault-

tolerant)

(OAB)

Fault detection

(Diagnostics)

Yes/No

(Fd)

Case-1 True True True No alarm No

Case-2 False True True No alarm Yes

Case-3 True False True No alarm Yes

Case-4 False False True Alarm No

Case-5 True True False Alarm Yes

Case-6 False True False Alarm Yes

Case-7 True False False Alarm Yes

Case-8 False False False Alarm Yes

analyze a selected vital parameter and were evaluated by
checking the validity of the related implemented function
for safety.

Following standard compliance, best development practices,
and analysis framework approaches in implementing safety-
critical medical systems significantly addressed the identified
challenges and improved the safety features of the medical
system. As part of the evaluation framework, a detailed analysis
was carried out for a specific vital parameter. Preliminary
analytical research results showed improvements in functional
safety in the reduction of spurious alarms, effective detection
of functional faults, and improvement of the uninterruptable
function of the system by providing authentic measurements.

METHODOLOGY

Experimental research activities of this part of the project were
divided into three main phases. The first phase was dedicated
to the study and evaluation of the aptness for use of the safety-
related architectures in the targeted non-invasive diagnostic
medical monitoring and control systems to measure basic vital
parameters and identify suitable sensors for sensing biomedical
signals like sensing through electric potential, sound, and light.
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The second phase was dedicated to the design and realization of
the three-independent modular designed channels. Each channel
was interfaced with a suitable sensor and each channel module
based on a field-programmable gate array (FPGA) design with
a modular integrated system interface research prototype was
built for experimental research studies. The final phase was the
validation of the experimental research platform. The system was
evaluated with varied configurations with sensors, configurable
safety-related architectures, and FPGA circuits. Lab and field

trials were performed to assess vital parameters like HR, address
the mentioned challenges, reduce fault alarms, identify algorithm
limitations, and improve uninterruptable functionality with safe
degradation mechanisms.

The present study focused on the final phase of the
research activities to improve fault detection mechanisms
and, subsequently, address the mentioned challenges. Using
configurable safety-related architectures with a combination of
ECG and PPG sensor interfaces, the details of the first and second

FIGURE 4 | 2oo2 fault-tolerant cardiac health monitoring system block diagram.

FIGURE 5 | Pseudocode for fault detection analytics and alarm output signal.
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part of the research prototype were used (1) to build activities,
design evaluation procedures, and application protocols.

System Overview
The cardiac health monitoring system (CHMS) is modular and
configured to a 2oo2 safety-related computing platform. The
system consists of two independent operating channels, as shown
in Figure 4 and explained in (1) detail with CHMS Graphical
User Interface (GUI) interfaces for test evaluations.

Sensors—PPG, ECG, and Its System
Configurations
The set of PPG sensors (LEDs and a detector), ECG sensors (EPIC
and Ag-AgCl electrodes), and its interfaces used in this system

configuration are detailed (1). These combinations of sensors
bonded into a single module for convenience, and each module
was placed on a subject at the prescribed location for better
measurements. These sensor modules were packaged in modular
combinations like ECG–PPG, ECG–ECG, and PPG–PPG, and
each module was interfaced with the integrated computing
system, as shown in Figure 4, configured, and evaluated for each
conceptual design.

2oo2 Based Safe-Voting Method Using
Correlation Analytics
The prototype system needed to be configured with 2oo2 with
a safe-voting mechanism for measuring a particular identified

TABLE 2 | 2oo2 configured-system safe degradation scheme.

Vital sign Fault-tolerant

system

Degradation level System configuration selection scheme for high availability or safety mode

1 2 3 High availability and fault-tolerant High safety and fault-tolerant

Heart rate or pulse 2oo2 1oo2 1oo1 Shut down/Safe mode 2oo2 → 1oo1 → Safe mode 1oo2 → 1oo1 → Safe mode

Respiratory rate 2oo2 1oo2 1oo1 Shut down/Safe mode

Blood pressure 2oo2 1oo2 1oo1 Shut down/Safe mode

Body temperature 2oo2 1oo2 1oo1 Shut down/Safe mode

Pulse oximetry 2oo2 1oo2 1oo1 Shut down/Safe mode

FIGURE 6 | (A) Heart rate (HR) measurement based on the ECG sensor vs. the fault alarm signal in 1oo1 configuration. (B) HR measurement based on the PPG

sensor vs. the fault alarm signal in 1oo1 configuration. (C) HR Measurement based on the ECG-2 sensor vs. the fault alarm signal in 1oo1 configuration. (D) HR

Measurement based on the PPG-2 sensor vs. the fault alarm signal in 1oo1 configuration.
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vital parametric function. In this system operation approach,
both channels A and B received the sample data and computed
the vital parameter independently. These measured values were
inputs to the safety function, where it correlated and voted to
generate the alarm output signal and fault-detection signal, which
is as perTable 1 and Figure 5. Furthermore, the generated signals
triggered the related diagnostic functions to process the data to
select the authentic vital output for display and the fault alarm
signal. Thus, this mechanism of configuring and configured safe-
voting computation was performed for each essential parameter
measured by the medical system.

2oo2 Safety-Related Degradation
Mechanism
Based on the selected configured parameters in an active system,
the system went into a predefined sequence of degradation for
any fault detected. These sequences of degradation depended
on the configuration of the system and its limitations, such
as sensors and availability of the independent processing
channels for the same selected parameter. A few identified
vital parameters and their feasible degradation scheme are
shown in Table 2. Since the system is a modular interface
and a provision for high reconfigurability was provided
during its initial start phase, it must either have a high-
availability system or high safety. Thus, the scheme from
2oo2 to 1oo1 can be altered for high availability with

fault-tolerability (or) 2oo2 to 1oo2 to 1oo1 for high-safety
with fault-tolerability.

Availability =
Uptime

(Uptime + Downtime)
(1)

Experimental Setup and System Evaluation
The experimental setup and its application protocol detailed in
(1) were effectively reused in assessing the proposed concepts.
The MATLAB-based CHMS GUI tool was used to configure and
capture the resultant data to Plot.

EXPERIMENTAL RESULTS AND
DISCUSSION

The system configured with 1oo1 could capture HR data
values vs. fault alarm signals individually as ECG−1oo1,
PPG−1oo1, ECG2–1oo1, and PPG2–1oo1, which are presented
in Figures 6A–D from a single subject. The captured alarm data
were analyzed to set configurable adjustable upper and lower
limits (ADJ-UL and LL) (1).

The configured 2oo2 outputs of ECG–PPG, ECG1–ECG2,
and PPG1–PPG2 correlation signal vs. the fault alarm signal are
shown in Figures 7A–C. The analysis showed that the reduction
of alarm readings from all 50 subjects was similar in meeting
the objectives. Figures 8A–C present the configured 2oo2 results

FIGURE 7 | (A) ECG and PPG HR measurements, rAB coefficient of correlation signal vs. fault alarm signal. (B) ECG-1 and ECG-2 HR measurements, rA1A2
coefficient of correlation signal vs. fault alarm signal. (C) PPG-1 and PPG-2 HR Measurements, rB1B2 coefficient of correlation signal vs. fault alarm signal.
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FIGURE 8 | (A) ECG–PPG recorded 2oo2 fault alarm output during HR monitoring within a 1-h period. (B) ECG1–ECG2 recorded 2oo2 fault alarm output during HR

monitoring within a 1-h period. (C) PPG1–PPG2 recorded 2oo2 fault alarm output during HR monitoring within a 1-h period.

of a single subject, which show the reduction in alarms and its
related cause-and-effect evaluated analysis presented in Table 3

with inferences.
The sensors and ECG and PPG processed signal data were

captured and used to performed analytics with the MATLAB
tool by configuring the system in 2oo2 configuration. The
tool computed system uptime and downtime by separating
the normal and abnormal signal data as shown in Figure 9.
Similarly, the data captured for ECG1–ECG2 and PPG1–PPG2

configurations and results were recorded in Table 4 for a
single subject. Following Helsinki’s declaration and consent, the
monitoring system evaluated 50 subjects of various age groups
and recorded the uptime and downtime of the system during
evaluation, with an average of 50 h for the total operating time
of the system and calculated system availability in percentile
as per Equation (1). Table 4 provides these results along with
system health inferences computed per negation codes specified
in Table 3 and assesses in the three configurations that the
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TABLE 3 | 2oo2-based cause and effect—fault detection and evaluation analysis and feasible mitigation solution for the identified cause.

Evaluation

cases

Channel-A (ECG)

(parameter within

set limits is true

else false)

Channel-B (PPG)

(parameter within

set limits is true

else false)

ECG–PPG

r (>0.5)

(correlation

coefficient)

Output signal

(2oo2

fault-tolerant)

(true—no alarm;

false—alarm)

Fault diagnostics

required for

detected failure

yes/no

Software

functional fault/

negation codes

[Sw, software;

Ag, algorithm;

F, function;

(four-digit)—Code]

Fault severity

analysis (no-

fault/minor/major/

critical)

(algorithms

function analysis)

Fault description

and probable

cause

Mitigation solution

for the identified

cause

Case-1 True True True True No SwAgF4001 No-Fault Data authentic No action

Case-2 False True True True Yes SwAgF4002 Minor • Data authentic

• Software

sync/delay issue

between channels

(or)

• Negligible higher

pulse count

detected in ECG

Perform analytics for

consistency (or)

repetitive higher

pulse count on ecg

signal and rectify the

issue

Case-3 True False True True Yes SwAgF4003 Minor Similarly, as above

for PPG

Similarly, as above

for PPG

Case-4 False False True False No SwAgF4004 No-Fault Data authentic No action

Case-5 True True False False Yes SwAgF4005 Major Possible software

sync/Delay issue

between channels

Perform analytics to

check for the

consistent difference

between channels to

rectify the issue

Case-6 False True False False Yes SwAgF4006 Major Possible cause in

software or

hardware issue

Perform built-in-test

(BIT) and analytics

between channels to

rectify the issue

Case-7 True False False False Yes SwAgF4007 Major Refer above

comment

Refer above

comment

Case-8 False False False False Yes SwAgF4008 Critical Possible cause in

software or

hardware issue

Perform BIT and

analytics between

channels to rectify

the issue
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FIGURE 9 | ECG and PPG processed signals data captured using MATLAB tool w.r.t 2oo2 configuration. (A) System uptime—normal signal data with no-fault

(green). (B) System downtime—abnormal signal data with a fault (red).

TABLE 4 | System availability results by configuring the fault-tolerant multimodal sensor system in 2oo2 system configuration mode.

Fault-tolerant

multimodal

sensor system

configuration

Signals Up-time

(normal

Signal)

(Avg. min)

(∼“t”−60min)

Down-timev

(abnormal

Signal)

(Avg. min)

(∼“t”−60min)

System

availability

configuration

(%)

System

availability

average of

∼50h (%)

Improvement in

system availability

using 2oo2 design

approach

% increase (%)

Data analytics

inferences on system

health—common

causes

Concept-1

(ECG–PPG)

Evaluation on 50

subjects

(1-h/person)

Channel-A

(ECG)

53.4 6.6 89 90 57.8 Main hardware causes:

• ECG/PCGSensor probe

contact fault.

• Power-related faults

Channel-B

(PPG)

55.2 4.8 92% 89

Fault-tolerant-

output

(ECG–PPG)

58.2 1.8 97 95

Concept-2

(ECG1–ECG2)

Evaluation on 50

subjects

(1-h/person)

Channel-A

(ECG1)

54.6 5.4 91 89 62.5 Main software causes:

• Data Sync delay Issues

between channels

due to algorithm

computation times

• Inaccuracy in detecting

the pulses or due to

Noise causes

Channel-B

(ECG2)

56.4 3.6 94 91

Fault-tolerant-

output

(ECG1–ECG2)

58.8 1.2 98 96

Concept-3

(PPG1–PPG2)

Evaluation on 50

subjects

(1-h/person)

Channel-A (PPG1) 57.6 2.4 96 91 46.4

Channel-B

(PPG2)

57.0 3.0 95 94

Fault-tolerant-

output

(PPG1–PPG2)

58.8 1.2 98 97

improvement in system availability significantly improved from
45 to 55%.

However, to validate the improvement function at the system
level resilience, some more tests needed to be performed with
various sensors to evaluate function performance better. It was

observed that, during experimentation, there were limitations
such as a signal drift issue during capture and appropriate sync
mechanisms needed to improve the signals and channels. The
drift of ±2 pulses was noticed as a limitation of the system
due to the mediums of the different sensors and the capturing
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and measurement periods. Furthermore, the system response
time of <5 s was noticed as a limitation. Detailed analysis
of the uptime period of signals confirmed that the count of
truthful pulses in both channels was almost the same during
long-term signal capture with negligible or no incorrect pulses
and undetected pulses recorded. In contrast, it can mitigate
drift issues during short-term signal capture in the design by
improving the synchronization mechanism for capturing the
signals between the channels.

Further investigation on the uptime and down signals could
help the understanding of the causes of various systemic faults
within the sensor system. The related fault data captured were
analyzed and used to provide inferences in Table 4. Additional
analysis of this corresponding prognostic health data was out
of the scope of this study as it required defining normal or
abnormal vital parameter signal classifications and identifying
support mechanisms within the system. In this study, as the focus
was on system availability with reduced alarms by processing
the signal data through the evaluation of the safety function,
only minimal conditions to infer the health of the system
were used.

The presented experimental data were captured from each
channel with HR measured data. The inverted logic level of
the alarm signal was logged for the 1-h duration per subject,
with consideration for evaluating the system. The analysis results
showed significant improvements in meeting the objectives and a
similar systematic approach to further apply this method to other
parameter evaluations for safety improvements.

CONCLUSION

In this paper, the concept of a fault-tolerant safety-related 2oo2
design approach implemented and evaluated in the configurable
medical CHMS, which is a research platform, addressed the
effective detection of functional faults, thus improving the
uninterruptable function of the targeted medical system by
reducing the false or spurious alarms. This framework found a
significant reduction in the generation of insignificant alarms and
increased uninterruptable system availability by 45–55%. These
findings and the design approach were important contributions

to issues related to present medical patient monitoring systems

without significant impact on cost since it uses the existing
system configuration of PPG and ECG signals, along with
FPGA technology devices. While eliminating identified issues
was specifically focused on, the conceptual design approach may
suit medical monitoring systems, implying that the findings are
likely to be of importance to the design of medical monitoring
and control systems. In terms of future research, it is particularly
suggested to use diverse algorithms and sensors or evaluation
with a combination of these with effective predictive system
maintenance, which could help eliminate spurious alarms with
a reduced downtime of the system and produce more accurate
data vital parameters.
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This paper presents an OSA patient interactive monitoring system based on the Beidou

system. This system allows OSA patients to get timely rescue when they become sleepy

outside. Because the Beidou position marker has an interactive function, it can reduce

the anxiety of the patient while waiting for the rescue. At the same time, if a friend helps

the OSA patients to call the doctor, the friend can also report the patient’s condition in

time. This system uses the popular IoT framework. At the bottom is the data acquisition

layer, which uses wearable sensors to collect vital signs from patients, with a focus

on ECG and SpO2 signals. The middle layer is the network layer that transmits the

collected physiological signals to the Beidou indicator using the Bluetooth Low Energy

(BLE) protocol. The top layer is the application layer, and the application layer uses

the mature rescue interactive platform of Beidou. The Beidou system was developed

by China itself, the main coverage of the satellite is in Asia, and is equipped with a

high-density ground-based augmentation system. Therefore, the Beidoumodel improves

the positioning accuracy and is equipped with a special communication satellite, which

increases the short message interaction function. Therefore, patients can report disease

progression in time while waiting for a rescue. After our simulation test, the effectiveness

of the OSA patient rescue monitoring system based on the Beidou system and the

positioning accuracy of OSA patients have been greatly improved. Especially when

OSA patients work outdoors, the cell phone base station signal coverage is relatively

weak. The satellite signal is well-covered, plus the SMS function of the Beidou indicator.

Therefore, the system can be used to provide timely patient progress and provide data

support for the medical rescue team to provide a more accurate rescue plan. After a

comparative trial, the rescue rate of OSA patients using the detection device of this

system was increased by 15 percentage points compared with the rescue rate using

only GPS satellite phones.

Keywords: IoT–internet of things, OSA patient rescue system, Beidou indicator, STM32 microcontroller

implementation, android
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INTRODUCTION

Sleep respiratory diseases include obstructive sleep apnea (OSA)
and central nervous system sleep apnea (CSA), etc., the research
shows that 80% of the patients with sleep apnea syndrome

have snoring phenomena (1). Long term sleep apnea can cause

dysfunction of the body’s system and multiple diseases, such as
increasing the risk of obesity and heart disease, and even sudden

death (2). According to the World Health Group, the high-risk

groups of sleep respiratory diseases mainly involve obese patients
and the elderly (3). In middle-aged men and women in the
United States, OSA incidence is high, the number of patients
with sleep disordered breathing in the world is a large group,
and nearly 80–90% of them have apnea syndrome but they are
often undiagnosed (4). Therefore, the monitoring and auxiliary
regulation of sleep disordered breathing are of great significance
for the prevention and diagnosis of sleep and related diseases.
Onemethod is to help patients achieve a normal BodyMass Index
(BMI), but the patients cannot always return to normal because
their perseverance is insufficient, so the method cannot achieve
the goal of reducing sleep disorders (SD) (5).

FIGURE 1 | OSA patient monitoring system structure.

There are ∼5,000 standard sleep laboratories in the world,
and most sleep laboratories use polysomnography (PSG) as
the gold standard for detecting sleep disorders (6). PSG
can only be used in specialized clinics or hospitals under
constant medical supervision to collect physiological signals
from patients with sleep disorders, and then use professional
sleep experts to diagnose patients who have sleep disorders
based on physiological signals detected by PSG (7). This means
that patients must go to specialized medical institutions, which
will inevitably increase the burden on patients. Moreover, PSG
requires the integration of many sensors on the human body,
which is considered invasive, so PSG screening can interfere
with sleep (8). In addition, PSG is costly and time consuming,
because the PSG test needs professional sleep experts. Therefore,
it would be difficult for PSG to become a method for long-
term monitoring of patients with sleep disorders (9). Limited
data show that patients with severe sleep apnea who do not
receive effective treatment will increase the risk of sudden
cardiac death. If there is no heart disease, only sleep apnea,
the possibility of death is very small. Long-term sleep apnea,
if not well-treated, will increase the incidence of a series
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of cardiovascular diseases including hypertension, pulmonary
hypertension, coronary heart disease, heart failure, etc., and
will also make the therapeutic effect of these diseases worse.
For example, about 70% of refractory hypertension patients
with poor blood pressure control have sleep apnea. Therefore,
screening sleep apnea is very important for hypertension patients
whose blood pressure is difficult to control. Sleep apnea may
also increase the incidence of diabetes, fatty liver, stroke, and

depression. It can make people sleepy and lack attention during
the day, which also increases the possibility of accidents such as
traffic accidents or the operation of other dangerous equipment.

Due to problems such as OSA not being effectively solved by
surgery, and sleep correction using CPAP causing discomfort to
patients with sleep disorders, the data suggests that 80% of the
patients with sleep disorders have not been effectively diagnosed
or treated in time. There is therefore a need for an Internet of

FIGURE 2 | Beidou terminal system design diagram.
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Things (IoT) framework system to monitor OSA patients. This
system enables OSA patients to be rescued in time when they
are drowsy outdoors. Because the Beidou position marker has an
interactive function, it can reduce the anxiety of the patient while
waiting for rescue. At the same time, if a friend helps an OSA
patient to call a doctor, the friend can also report the patient’s
condition in time.

The system uses a popular IoT framework. At the bottom is
the data acquisition layer, which uses wearable sensors to collect
vital signs from patients, with a focus on ECG and SpO2 signals.
The middle layer transmits the collected physiological signals to
the network layer of the Beidou indicator using the Bluetooth

Low Energy (BLE) protocol. The top layer is the application
layer, and the application layer uses the mature Beidou rescue
interactive platform. Since the GPS indicator does not include
a communication satellite, it does not have an SMS function.
OSA patients can only passively wait for rescue. In addition, due
to the lack of satellites in Asia and the insufficient density of
ground-enhanced systems, OSA patients have large positioning
errors. The Beidou system is developed by China itself, the
main coverage of the satellite is in Asia, and is equipped with a
high-density ground enhancement system. Therefore, the Beidou
model improves the positioning accuracy and is equipped with
a special communication satellite, which increases the short

FIGURE 3 | Android client system design.

Frontiers in Public Health | www.frontiersin.org 4 November 2021 | Volume 9 | Article 745524159

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Liangming et al. OSA Rescue With Beidou Indicator

message interaction function. Therefore, patients can report
disease progression in a timely manner while waiting for a rescue.

After our simulation test, the effectiveness of the OSA patient
rescue monitoring system based on the Internet of Things
framework and the positioning accuracy of OSA patients have
been greatly improved. Especially when OSA patients work
outdoors, the signal coverage of cell phone base stations is
relatively weak. The satellite signal is well-covered, plus the SMS
function of the Beidou indicator. As a result, the system can
be used to provide timely patient progression and provide data
support to the medical rescue team to provide a more accurate
rescue plan. After a comparative test, the rescue rate of OSA
patients using the system’s detection equipment increased by 15
percentage points compared to the rescue rate using only GPS
satellite phones.

The rest of this paper is structured as follows. Part 2
presents the latest literature on this area of research. Part
3 presents the methods and simulation results of a sleep

disorder monitoring system based on the Beidou system. Section
Experimental study summarizes and suggests the direction for
future improvements.

RELATED WORK

At present, the golden standard for the diagnosis of sleep apnea
is polysomnography (PSG) (10). However, PSG is expensive, so
it is necessary for special sleep respiratory monitors to connect
electroencephalogram (EEG), eye movement, EMG, and other
wires to the body surface of patients, so their application is
limited to a certain extent (11). In order to reduce the measured
physiological signals, the detection method of sleep dyspnea
based on SpO2, ECG (Electrocardiogram) signal has become a
hot research topic (12).

In the research of detecting sleep dyspnea based on ECG
signal, the methods of OSA detection of ECG signal were studied

FIGURE 4 | Server receiving broadcast flow chart.
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by the University of Wisconsin, Taiwan Jiaotong University and
Peking University (13–18). At present, there are several CFDA
certified devices in China to diagnose sleep dyspnea by sticking

electrodes in the human body (19). The latest research shows
that by monitoring the ECG signal, sending it to the neural
network through frequency domain and time domain analysis,

FIGURE 5 | Beidou terminal function service flow chart.

FIGURE 6 | Beidou interactive location-indicating machine.
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and establishing a classification model through statistical analysis
of the apnea-hypopnea index (AHI), the automatic detection
of SDB can be realized to a certain extent (20). However,
ECG signal acquisition requires patients to wear at least two
ECG electrodes for dynamic monitoring for a long time, which
brings serious physical and mental burden to patients. Therefore,
finding a physiological signal that can replace ECG and is easier
to obtain has become a research direction. Like the ECG signal,
there is a slight difference in the interval between consecutive
pulse waves. Pulse rate variability (PRV) is an analysis method
to study the physiological conditions of the human body that
these small changes can reflect. Studies have shown that using
photoplethysmography (PPG) signals to analyze PRV in healthy
people can replace HRV to reflect changes in the autonomic
nervous system (ANS), and there is a good correlation between
the two (21). Further studies have confirmed that PRV in SDB
patients also has a good correlation with HRV, thus shifting
SDB detection research from ECG signals to PPG signals that
are easier to obtain (22–26). Amir et al. (27) conducted PSG
synchronous PPG monitoring on 74 volunteers and found that
the use of PPG signals to determine sleep breathing status
indicated that PPG and PSG have a good consistency and can be
used for clinical sleep breathing monitoring.

The Beidou satellite navigation system provides positioning,
navigation, and timing services (28), which are divided into open
service (29) and authorized service (30). Licensing services: in
addition to free and open services to the world, there are services
that require an authorization, which is divided into different
levels and is distinguished between military and civilian use (31).
The Beidou satellite navigation system is very important when
calling for help and position when in distress at sea. In view
of this situation, IMO has developed a set of global maritime
distress and safety systems (GMDSS) (32). The systems consist of
three major parts: INMARSAT (Inmarsat system) (33) and COS-
PAS-SARSAT (Polar-orbiting Satellite Search and Rescue System)
(34), ground-based radio communication system (i.e., Coast
Station) (35), and Maritime Safety Information dissemination
system (36).

The above research proves the feasibility of using machine
learning to study the assistance positioning system for OSA

TABLE 1 | Success effect of Beidou sending information.

Time Longitude Latitude

T1 12:32:39 119◦46’46.6” 46◦46’37.6”

T2 12:34:37 119◦46’45.9” 46◦46’36.9”

T3 12:36:38 119◦46’45.8” 46◦46’37.2”

T4 12:38:38 119◦46’46.3” 46◦46’37.3”

T5 12:40:39 119◦46’46.1” 46◦46’37.1”

T6 12:42:38 119◦46’46.6” 46◦46’37.5”

T7 12:44:39 119◦46’46.6” 46◦46’37.3”

T8 12:46:39 119◦46’46.5” 46◦46’37.2”

T9 12:48:39 119◦46’46.4” 46◦46’37.3”

T10 12:50:39 119◦46’46.5” 46◦46’37.3”

patients. However, most of the above studies are based on
small sample data sets and lack large-scale clinical applications.
In addition, too many features may be selected in the feature
engineering, resulting in too many calculations. Or there are too
few functions selected, resulting in low classification accuracy. In
addition, when selecting a deep learning classification method,
manually setting parameters is too inefficient. At the same time,
it may overtrain and lead to test overfitting and, because most
research methods are only based on small data sets, in practical
applications, the generalization ability of this model is low.
Therefore, this topic aims to use machine learning algorithms on
the cloud platform to standardize rescue positioning data from
different devices.

METHOD AND SIMULATION RESULTS

The hardware component of the IOT-based sleep disorder
monitoring system consists of three parts. The bottom layer is
the hardware terminal of the indicator mark, the middle layer is
the transmission medium, and the upper layer is the application
platform. The beacon terminal includes an ARM main control
board, a 4th generationmobile communicationmodule, a Beidou
communicationmodule, a Bluetooth communicationmodule, an
antenna interface module, and a power management module.
In addition, the sides of the housing are provided. There
are data transmission interfaces, SOS buttons, and charging
ports. There are several sealing rings and fixing screws at
the bottom of the housing. However, when a sleep disorder
patient is working outdoors, when the drowsiness state occurs,
the SOS button can be used to send the help information
to the Beidou satellite. Through the auxiliary ground-based
augmentation system, Beidou Satellite sends the current status
and position coordinates of the sleep-disabled patients to the
Beidou rescue platform. The information released by the rescue
platform enables the rescue team to quickly and accurately find
the location to be rescued. As shown in Figure 1.

Design of the Perceptual Layer
Hardware Design
The whole system is based on ARM main control board,
4th generation mobile communication module, Beidou
communication module, Bluetooth communication module,
antenna interface module and power management module.
In addition, the sides of the housing are provided. There are
data transmission interfaces, SOS buttons and charging ports.
There are several sealing rings and fixing screws at the bottom
of the housing. However, when a sleep disorder patient is
working outdoors, when the drowsiness state occurs, the SOS
button can be used to send the help information to the Beidou
satellite. The Beidou second-generation passive positioning and
Beidou active short message communication are combined.
The location information of OSA patients can be obtained
through the Beidou module, while OSA patients can send disease
information through Android mobile phone software operation.
The emergency call function is provided in an emergency, and
the OSA patient can send his own location information and
simple condition information, thereby realizing the emergency
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rescue function of the OSA patient monitoring system based on
the IOT framework.

Function Design of Obtaining Position Information
The STM32 development board communicates with the Beidou
module by serial port. It uses the command of RNSS format and
uses BDGGA to get its own location information and stores it in
the cache. When a mobile phone is connected with the terminal
through Bluetooth, the data is forwarded to the mobile phone
if the mobile phone makes a data request. The mobile phone is
transformed into latitude and longitude coordinates through the
received Beidou position information and displayed.

Design of the Network Layer
Functional Design of the Mobile Phone
OSA patients can use the Android phone to send AT commands
to initialize the Beidou indicator, and obtain their own location
information through BLE communication. The latest rescue

information and the latest location information obtained through
the refresh function. The OSA can also provide a special
message input function through the Beidou indicator, input the
condition information through the mobile phone and forward
it to the terminal, and then the condition message and location
information can be sent to the Beidou rescue platform by the
Beidou indicator.

Design of Communication Protocol Between End and

Terminal of Mobile Phone
It is very necessary for the mobile terminal to communicate
with the terminal using Bluetooth to maintain complete
communication. The mobile phone terminal obtains whether
the communication is normal by sending instructions, and
the terminal receives the correct return value by continuously
sending test information, and providing an LED flicker
function display.

FIGURE 7 | Scatter plot from logistic regression.
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Terminal Automatic Help Function
By setting the timer, the function of obtaining the position can be
used automatically, and the acquired position information can be
sent periodically. The B4 function can be started by triggering the
button B3 automatic function to stop the automatic function.

The main consideration is to obtain location information, and
how to send information for help and other aspects. In the event
of a problem, the rescue party can get the message in time, and
the suitor can also get the necessary information anytime and
anywhere. The interactive function of the display object is mainly
realized by Bluetooth module and STM32 main control board.

Software Design
Terminal Part System Design
Figure 2 illustrates the initialization process of the Beidou
indicator, which provides a simple led indicator during

normal operation. When you are able to communicate
properly, you can view location information from your
phone software.

Android Client Design
Figure 3 illustrates the initialization process for the Android
phone side of OSA patients. The Beidou indicator mark
sends a simple condition message to the mobile terminal,
and presses the button SOS on the Beidou terminal to
immediately send the condition information to the fixed number
already stored in the Beidou indicator. The short message
content includes Beidou location information and simple disease
information. The Beidou indicator uses the Beidou module to
send information. OSA patients can use 4G mobile phones to
update data and display location and SMS status information for
OSA patients.

FIGURE 8 | ROC curve from logistic regression.
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Data Transmission
The Server Reception Broadcast Process
The default encoding mode for Android phones is utf-8, which
is used for serial communication to receive and send gdb32
encoded Chinese data. When you need to convert an object to a
String object, the encoding system may produce inconsistencies,
so the server also encodes and converts characters when
performing transceiver control. The Server still does not stop
when the Activity application is paused, so receiving information
should not stop when the application is not in use at this time.
Activity needs to bind to Server (Figure 4).

Terminal function service flow, as shown in Figure 5.

EXPERIMENTAL STUDY

Implementation Platform
The Beidou indicator uses the STM32F103RBT chip
development board. The code running on the beacon is
compiled on the mdk4.9 platform and downloaded using the
CooCox development tool. Android phones use android stdio
as the development platform for the Android sdk version. The
entire mark is shown in Figure 6.

Android Client
The Beidou indicator uses a switch control to control the switch
of the Bluetooth module. If Bluetooth is turned on, you can
choose to connect to the Beidou.

Send success messages and location for success as shown in
Table 1.

Logistic regression is a statistical tool based technique to
deal with machine learning problems. We evaluated the results
using logistic regression. Logistic regression works with sigmoid
function. the accuracy of the LR model is very high (90%). In
particular, LR models using all 10 features show better accuracy
than other existing models using RQA functionality with an
accuracy rate of 90%.

Most importantly, models using LR are still the best in terms
of prediction accuracy, precision, recall, and F-measure.

The results of scatter plot from logistic regression is shown
in Figure 7. It is very clear from the figure that logistic
regression has performed efficiently to solve the issue of OSA
patient monitoring. The ROC curve is shown in Figure 8.
Parallel co-ordinate plot also shows that the prediction is
accurate. From the confusion matrix in Figure 9, it can be
seen that the accuracy is 90%. Moreover, the figure also
shows the true positive rate and false negative rate. The
Figure 10 shows that positive predictive value is 90 % and
false discovery rate is 10%. Figure 11 consists of true class and
predicted class.

A customized fitting model is shown in Figure 12. The
coefficients of the model are a = 6.989, b = 0.0002727 and c =
247.1 (237.6, 256.7). The R-square value: 0.9222 and root mean
squared error is 382.8.

Figure 13 shows that the result is also fitted with exponential
fitting [f(x) = a∗exp(b ∗ x)]. The coefficients of the model
are a = 430.5, and b = 0.0005877. The R-square value:
0.8975 and root mean squared error is 439.5. The Gauss
fitting model is shown in Figure 14. The equation of gauss
fitting model is f (x) = a1∗exp[−((x–b1)/c1)2]. The coefficients

FIGURE 9 | Confusion matrix plot from logistic regression.
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FIGURE 10 | Confusion matrix plot with positive predictive value and false discovery rate from logistic regression.
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FIGURE 11 | Confusion matrix plot with true class and predicted class from logistic regression.

FIGURE 12 | Customized fitting model with f (x) = a*[sin(x−pi)] + b*[(x−10)2] + c.

of the model are a1 = 3855, b1 = 4005, and c1 = 2310.
The R-square value: 0.9795 and root mean squared error is
196.6.

The motivation of the current work is to locate and rescue
patients with OSA. Whether the positioning is accurate or not is
actually a problem of binary classification of rescue targets. We
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FIGURE 13 | Exponential fitting model.

FIGURE 14 | Gauss fitting model.

use logistic regression methods to create classification models.
The test result data set is divided into training and test data.
Among them, 70% of the data is used for training the model,
and 30% of the data is used for the test results. The simulation
results confirmed that logistic regression can be used to classify
the rescue positioning results of patients with sleep disorders. The
positioning accuracy of this system is 90%.

CONCLUSIONS

The OSA sleep disorder patient monitoring system is based on
the IoT framework structure. The entire system provides real-
time disease reporting information, precise location information,
and physician assistance information for OSA patients. The

terminal hardware is realized by the Beidou indicatormodule, the
4Gmobile communicationmodule, and the BLE communication
module. Through the secondary development of the Android
mobile phone SDK development kit, it is convenient for users to
operate. The special operation of shielding the Beidou indicator

is made to make this OSA patient monitoring and rescue system

easier to integrate into the existing hospital emergency system.
The system currently only provides the Android mobile phone
client as the input and receiving end of the message, which is
convenient for the user, who is able to interact with the doctor
in real time through the smart phone. The OSA monitoring
system has self-healing capabilities and is extremely robust,
providing system reliability. This system test shows that the OSA
patient system we developed has lower power consumption and
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a simpler hardware composition. In addition, our OSA patient
monitoring and rescue system has a stable and simple operation
while meeting design requirements. In short, our system is an
innovative application of IoT technology in modern medicine,
with a particular focus on the effective management of OSA
patients. In the future, we will explore how to further improve
system performance by integratingmore sensors to monitor OSA
patients in a more comprehensive manner.

The simulation results of this research show that the
use of machine learning techniques (such as logistic
regression) is very suitable for building a classifier
for the accuracy of the rescue positioning of patients
with sleep disorders. LR has the best performance
in all aspects of prediction accuracy, accuracy, recall,
and prediction.

These high-accuracy results will encourage researchers
to more rigorously study the accuracy of sleep disorder
rescue positioning data, and use logistic regression for binary
output in more practical classification problems. In the
next phase or research, we plan to use deep learning,
convolutional neural networks, and transfer the learning to
the classification of sleep disorder rescue positioning accuracy.
In addition, it aims to collect data from hospitals and use
machine learning algorithms to evaluate and predict the
accuracy of sleep disorder rescue positioning. It is possible to
manufacture devices with IOT to monitor sleep abnormalities in
real time.
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